HP 64739

H8/536 Emulator
Softkey Interface

User’'s Guide

HEWLETT
[ﬁﬁ] PACKARD
HP Part No. 64739-97005

Printed in U.S.A.
February 1994

Edition 2

Notice

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company

P.O.Box 2197

1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure

by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (i) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a

one-to-one correspondence between product updates and manual
revisions.

Edition 1 64739-97002, February 1991

Edition 2 64739-97005, February 1994

Using This Manual

This manual introduces you to the following emulators as used with the
Softkey Interface.

m HP 64739A H8/536 emulator

m HP 64739B H8/536S emulator

Throughout this documentation, the following names are used to
denote the microprocessors listed in the following table of supported
microprocessors.

Model Supported Microprocessors Reffered to as

HP 64739A(H8/536 emulator) HD6475368CP H8/536
HD6435368CP H8/536
HD6475348CP H8/534
HD6435348CP H8/534

HP 64739B(H8/536S emulator, HD6475368CP H8/536
HD6435368CP H8/536
HD6475348CP H8/534
HD6435348CP H8/534
HD6475368SCP H8/536S
HD6435368SCP H8/536S
HD6475348SCP H8/534S
HD6435348SCP H8/534S

For the most part, the H8/536 and H8/536S emulators all operate the
same way. Differences of between the emulators are described where
they exist. Both the H8/536 and H8/536S emulators will be referred to
as the "H8/536 emulator". In the specific instances where H8/536S
emulator differs from H8/536 emulator, it will be described as
"H8/536S emulator".

This manual:

m Shows you how to use emulation commands by executing
them on a sample program and describing their results.

m Shows you how to use the emulator in-circuit (connected to a
target system).

m Shows you how to configure the emulator for your

development needs. Topics include: restricting the emulator to
real-time execution, selecting a target system clock source.

This manual will not:

m tell you how to use each and every emulator/analyzer
command (refer to thdser's Referenceanual)

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A

Introduction to the H8/536 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic features
of the H8/536 emulator.

Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

In-Circuit Emulation. This chapter shows you how to install the
emulator probe into a target system and how to use the "in-circuit"
emulation features.

Configuring the Emulator. This chapter shows you how to restrict
the emulator to real-time execution, select a target system clock source,
allow background cycles to be seen by the target system.

Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter.

Using the Foreground Monitor. This appendix describes the
advantages and disadvantages of foreground and background monitors
and how to use foreground monitors.

Conventions

Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax
which may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands which
follow the "$" are entered at the HP-UX prompt.

<RETURN> The carriage return key.

Contents

1 Introduction to the H8/536 Emulator

Introduction 1-1
Purpose of the H8/536 Emulator 1-1
Features of the H8/536 Emulator 1-3
Supported Microprocessorso e 1-3
ClockSpeeds 1-3
Emulationmemory oo 1-4
Analysis 1-5
Registers e 1-5
Single-Step 1-5
Target System Interface 1-5
Breakpoints 1-5
ResetSupport 1-6
Foreground or Background Emulation Monitor 1-6
Real-Time Execution 1-6
Limitations, Restrictions, 1-7
DMA Support e 1-7
Sleep and Software Stand-byMode 1-7
Watch Dog Timerin Background 1-7
RAMEnableBit. 1-7

2 Getting Started

Introduction 2-1
Before YouBegin 2-2
Prerequisites oo 2-2
A Look atthe Sample Program 2-2
Sample Program Assembly, 2-6
Linking the Sample Program 2-6
Generate HP Absolutefile 2-6
Entering the Softkey Interface 2-7
From the "pmon" User Interface 2-7
Fromthe HP-UX Shell 2-8
Using the Default Configuration 2-9
On-LineHelp 2-9

Contents-1

2-Contents

Softkey DrivenHelp oo oo 2-9

Pod CommandHelp 2-10
Loading Absolute Files 2-11
Displaying Symbols, 2-12

Global 2-12

Local e 2-13
Displaying Memory in MnemonicFormat 2-14

Display Memory with Symbols 2-15
Runningthe Program 2-15

From TransferAddress 2-16

FromReset. 2-16
Displaying Memory Repetitively 2-16
ModifyingMemory 2-16
Breaking into the Monitor 2-17
Using Software Breakpoints 2-18

Enabling/Disabling Software Breakpoints 2-19

Setting a Software Breakpoint 2-20

Displaying Software Breakpoints 2-20

Clearing a Software Breakpoint 2-21
Displaying Registers, 2-22
Stepping Through the Program 2-23
Usingthe Analyzer 2-24

Specifying a Simple Trigger 2-24

Displayingthe Trace 2-26

Displaying Trace with Time Count Absolute 2-28

Displaying Trace with CompressMode 2-29

Changingthe TraceDepth 2-30

For a Complete Description 2-31
Exiting the Softkey Interface 2-31

End Release System 2-31

Ending to Continue Later 2-31

Ending Locked from Al Windows 2-31

Selecting the Measurement System Display

or AnotherModule 2-32

In-Circuit Emulation

Prerequisites 3-1
Installing the Target System Probe 3-2
Installing into a PLCC Type Socket 3-3
In-Circuit Configuration Options 3-4
Running the Emulator from TargetReset 3-5

4 Configuring the Emulator

Introduction 4-1
General Emulator Configuration 4-3
Micro-processor clock source? 4-3
Enter monitor after configuration? 4-3
Restricttoreal-timeruns? 4-4
Memory Configuration, 4-6
Monitortype? 4-6
Mapping Memory 4-8
Emulator Pod Configuration 4-10
Processortype? 4-10
Processor operationmode? 4-10
Enable bus arbitration? 4-11
Enable NMI input from the target system? 4-12
Enable /RES input from the targetsystem 4-12
Drive emulation reset to the target system? 4-13
Drive background cycles to the target system? 4-13
Reset value for stack pointer? 4-14
Debug/Trace Configuration 4-15
Break processoronwritetoROM? 4-15
Trace background or foreground operation? 4-16
Trace busreleasecycles? 4-16
Simulated I/O Configuration 4-17
Interactive Measurement Configuration 4-17
External Analyzer Configuration 4-17
Saving a Configuration 4-17
Loading a Configuration 4-18

5 Using the Emulator

Introduction 5-1
Features Available via Pod Commands 5-2
UsingaCommandFile 5-3
DebuggingC Programs o 5-4
Displaying Memory with C Sources 5-4
Displaying Trace withC Sources 5-4
Stepping C SoUrceso 5-5
E clock synchronous instructions 5-5
Limitations, Restrictions 5-6
DMA Support 5-6
Sleep and Software Stand-byMode 5-6
Watch-Dog Timer 5-6

Contents-3

4-Contents

RAMEnableBit. 5-6

Storing Memory Contents to an Absolute File 5-6

Coordinated Measurements e 5-7

Register NamesandClasses 5-7
SUMMAarY o o e e e e e e e e 5-7
BASICClass v v v 5-7
SYSClass e 5-8
INTCClass @ i e e 5-8
DTCCIass v e e e e e e 5-8
PORTClass i i it e 5-9
FRTLICIlass @ e e e e e 5-9
FRT2Class e e 5-10
FRT3Class e 5-10
TMRClass 5-10
PWM1Class e 5-10
PWM2Class e 5-11
PWM3Class e 5-11
WDTCIass e e e e 5-11
SCILClass e e 5-11
SCI2Class e 5-12
ADCClass e 5-12

A Using the Foreground Monitor

Introduction A-1
Comparison of Foreground and Background Monitors A-1
Background Monitorso L A-2
Foreground Monitors L A-2
An Example Using the Foreground Monitor A-3
Assemble and Link the Monitor A-4
Modify Location Declaration
Statement
(Minimum Modes) A-4
Modify Location Declaration
Statement
(Maximum Modes) A-5
Modifying the Emulator Configuration A-5
Loadthe ProgramCode A-7
Single Step and Foreground Monitors A-7
Address Error During Step Operation. A-7
Limitations of Foreground Monitors A-8
Synchronized Measurements A-8

lllustrations

Tables

Figure 1-1. HP 64739 Emulator for the H8/536 Emulator 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. Softkey Interface Display 2-8
Figure 3-1. Installing into a PLCC type socket 3-3

Table 1-1. Supported Microprocessors

Table 1-2. Clock Speeds

Contents-5

Notes

6-Contents

Introduction to the H8/536 Emulator

Introduction The topics in this chapter include:
m Purpose of the H8/536 emulator.

m Features of the H8/536 emulator.

Purpose of the The H8/536 emulator is designed to replace the H8/536 microprocessor

H8/536 Emulator in your target system to help you debug/integratg target system
software and hardware. The emulator performs just like the processor
which it replaces, but at the same time, it gives you information about
the bus cycle operation of the processor. The emulator gives you
control over target system execution and allows you to view or modify
the contents of processor registers, target system memory.

Introduction 1-1

RS—232/R5—422
Connection

!

Green
Status Right

‘\\Probe Cable

Target System —— p

(typically contains memory,
CPU, and I/0 circuitry)

Emulator Probke

Figure 1-1. HP 64739 Emulator for the H8/536 Emulator

1-2 Introduction

Features of the This section introduces you to the features of the emulator. The .
H8/536 Emulator chapters which follow show you how to use these features.

Supported The H8/536 emulator supports the microprocessors listed in Table 1-1.
Microprocessors

Table 1-1. Supported Microprocessors

Model Supported Microprocessors Reffered to as

HP 64739A(H8/536 emulator) HD6475368CP H8/536
HD6435368CP H8/536
HD6475348CP H8/534
HD6435348CP H8/534

HP 64739B(H8/536S emulator, HD6475368CP H8/536
HD6435368CP H8/536
HD6475348CP H8/534
HD6435348CP H8/534
HD6475368SCP H8/536S
HD6435368SCP H8/536S
HD6475348SCP H8/534S
HD6435348SCP H8/534S

Clock Speeds You can select whether the emulator will be clocked by the internal
clock source or by the external clock source on your target system. You
must use a clock input conforming to the specification of Table 1-2.

When you use an external crystal, you need to input conforming to the
specification of microprocessor.

Introduction 1-3

Table 1-2. Clock Speeds

Clock source Model Microprocessor Clock Speed
Internal HP 64739A H8/536 10MHz
(H8/536 emulator) H8/534 (System clock)
HP 64739B H8/536 10MHz
(H8/536S emulator) H8/534 (System clock)
H8/536S
H8/534S
External HP 64739A H8/536 From 0.5 up to 10MHz
(H8/536 emulator) H8/534 (System clock)
HP 64739B H8/536 From 0.5 up to 10MHz
(H8/536S emulator) H8/534 (System clock)
H8/536S From 0.5 up to 16MHz
H8/534S (System clock)

Emulation memory The H8/536 emulator is used with one of the following Emulation
Memory Cards.

m HP 64726A 128K byte Emulation Memory Card
m HP 64727A 512K byte Emulation Memory Card
m HP 64728A 1M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and
least 256 byte in length.) The emulator occupies 2K byte, which is
used for monitor program, leaving 126K, 510K, 1022K byte of
emulation memory which you may use. You can characterize memory
range as emulation RAM (eram), emulation ROM (erom), target
system RAM (tram), target system ROM (trom), or guarded memory
(grd). The emulator generates an error message when accesses are
made to guarded memory locations. You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution.

1-4 Introduction

Analysis

Registers

Single-Step

Target System
Interface

Breakpoints

The H8/536 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

m HP 64704A 80-channel Emulation Bus Analyzer

m HP 64703A 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer.

m HP 64794x 80-channel 8K/64K/256K Emulation Bus
Analyzer.

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703A 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

You can display or modify the H8/536 internal register contents. This
includes the ability to modify the program counter (PC) and code page
register (CP) so you can control where the emulator begins executing a
target system program.

You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

You can set the interface to the target system to be active or passive
during background monitor operation. (See the "Emulator Pod
Configuration" section of the

"Configuring the Emulator" chapter for further details.)

You can set the emulator/analyzer interaction so that when the analyzer
finds a specific state, emulator execution will break out of the user
program into the monitor.

You can also define software breakpoints in your program. The
emulator uses one of H8/536 undefined opcode (1B hex) as software
breakpoint interrupt instruction. When you define a software
breakpoint, the emulator places the breakpoint interrupt instruction (1B
hex) at the specified address; after the breakpoint interrupt instruction
causes emulator execution to break out of your program, the emulator
replaces the original opcode. Refer to the "Using Software
Breakpoints" section of "Getting Started" chapter for more information.

Introduction 1-5

Reset Support

Foreground or
Background
Emulation Monitor

Real-Time Execution

1-6 Introduction

The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes H8/536 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can executeaneground The mode in which

the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also executeackground The emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy processor address space.

Real-time execution signifies continuous execution of your program
without interference from the emulator. (Such interference occurs
when the emulator temporarily breaks into the monitor so that it can
access register contents or target system memory.)

Emulator features performed in real time include: running and analyzer
tracing.

Emulator features not performed in real time include: display or modify
of target system memory; load/dump of any memory, display or
modification of registers, and single step.

Limitations,
Restrictions

DMA Support

Sleep and Software
Stand-by Mode

Watch Dog Timer in
Background

RAM Enable Bit

Direct memory access to H8/536 emulation memory is not permitted.

When the emulator breaks into the emulation monitor, H8/536
microprocessor sleep or software stand-by mode is released and comes
to normal processor mode.

Watch dog timer suspends count up while the emulator is running in
background monitor.

The internal RAM of H8/536 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator accesses emulation RAM even if
the internal RAM is disabled by RAME.

Introduction 1-7

. Notes

1-8 Introduction

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the HP 64739 emulator with
the Softkey Interface.

This chapter will:

m Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

m Describe the sample program used for this chapter’'s example.
This chapter will show you how to:

m Start up the Softkey Interface.

m Load programs into emulation and target system memory.

m Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites

A Look at the Sample
Program

2-2 Getting Started

Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. HRe64700
Series Emulators Softkey Interface Installation Ncdice the
HP 64700 Emulators: Hardware Installation and
Configurationmanual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to theHP 64700 Series Emulators Softkey Interface
Installation Noticefor instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in th#&P 64700 System Overview
manual. Th&ystem Overviealso covers HP 64700 system
architecture. A brief understanding of these concepts may
help avoid questions later.

You should read th8oftkey Interface Referenegnual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
H8/536 emulator.

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter. The sample
program is shipped with the Softkey Interface and may be copied from
the following location.

/usr/hp64000/demo/emul/hp64739/cmd_rds.src

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_AMsg_B, andMsg_|I.

.GLOBAL Init,Msgs,Cmd_Input
.GLOBAL Msg_Dest

.SECTION Table,DATA

Msgs

Msg_A .SDATA "Command A entered "
Msg_B .SDATA "Entered B command "
Msg_| .SDATA "Invalid Command "
End_Msgs

.SECTION Prog,CODE

5* Sets up the stack pointer.

Init MOV:G.W #Stack,R7

;* Clear previous command.

Read Cmd MOV:G.B #0,@Cmd_Input

5* Read command input byte. If no command has
;* been entered, continue to scan for input.

Scan MOV:G.B @Cmd_Input,RO
BEQ Scan

5* A command has been entered. Check if it is
;* command A, command B, or invalid.

Exe_Cmd CMP:E.B #H41,R0
BEQ cmd_A
CMP:E.B #H42,R0
BEQ cmd_B
BRA cmd_|

;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the

;* message. Jump to the routine which writes
;* the messages.

bmd_A MOV:I.W #Msg_B-Msg_A-1,R1
MOV:LW #Msg_A,R4
BRA Write_Msg

;* Command B is entered.

bmd_B MOV:I.W #Msg_I-Msg_B-1,R1
MOV:LW #Msg_B,R4
BRA Write_Msg

* An invalid command is entered.

bmd_l MOV:LW #End_Msgs-Msg_I-1,R1
MOV:ILW #Msg_|,R4

Figure 2-1. Sample Program Listing

Getting Started 2-3

;* Message is written to the destination.

Write_Msg MOV:L.W #Msg_Dest,R5
Again MOV:G.B @R4+,R3
MOV:G.B R3,@R5+
SCB/EQ R1,Again

5* The rest of the destination area is filled
;* with zeros.

Fil_Dest MOV:G.B #0,@R5+
CMP:L.W #Msg_Dest+H'20,R5
BNE Fill_Dest

* Go back and scan for next command.

BRA Read_Cmd
.SECTION Data, COMMON

5* Command input byte.

Cmd_lnput .RESB 1
RESB 1

;* Destination of the command messages.

Msg_Dest .RESW H3E
Stack .RESW 1 ; Stack area.
.END Init

Figure 2-1. Sample Program Listing (Cont’d)

Initialization

The program instruction at thait label initializes the stack pointer.

Reading Input

The instruction at thRead_Cmdlabel clears any random data or
previous commands from ti&md_Input byte. TheScanloop
continually reads th€md_Input byte to see if a command is entered
(a value other than 0 hex).

2-4 Getting Started

Processing Commands

When a command is entered, the instructions feoelm Cmdto
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions@tnd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions@ind_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

The instructions &€md_A, Cmd_B, andCmd_| each load register R1
with the length of the message to be displayed and register R4 with the
starting location of the appropriate message. Then, execution transfers
to Write_Msg which writes the appropriate message to the destination
location,Msg_Dest

After the message is written, the instructionBitht Dest fill the

remaining destination locations with zeros. (The entire destination area
is 20 hex bytes long.) Then, the program branches back to read the
next command.

The Destination Area

The "Data" section declares memory storage for the command input
byte, the destination area, and the stack area.

This program emulates a primitive command interpreter.

Getting Started 2-5

Sample Program
Assembly

Linking the Sample
Program

debug

input cmd_rds

The sample program is written for and assembled with the HP 64869
H8/500 Assembler/Linkage Editor. The sample program was
assembled with the following command below(which assumes that
/usr/hp64000/binis defined in the PATH environment variable).

$ h8asm -debug cmd_rds.src <RETURN>

The sample program can be linked with following command and
generates the absolute file. The contents of "cmd_rds.k" linkage editor
subcommand file is shown in figure 2-2.

$ h8Ink -subcommand=cmd_rds.k <RETURN>

start Prog(1000),Table(2000),Data(0FE00)

output cmd_rds

exit

Figure 2-2. Linkage Editor Subcommand File

Generate HP
Absolute file

Note #

2-6 Getting Started

To generate HP Absolute file for the Softkey Interface, you need to use
"h8cnvhp" absolute file format converter program. The h8cnvhp
converter is provided with HP 64869 H8/500 Assembler/Linkage
Editor. To generate HP Absolute file, enter following command:

$ h8cnvhp cmd_rds <RETURN>

You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are
generated. These are sufficient throughout this chapter.

You need to specify "debug” command line option to both assembler
and linker command to generate local symbol information. The
"debug" option for the assembler and linker direct to include local
symbol information to the object file.

Entering the
Softkey Interface

From the "pmon"
User Interface

If you have installed your emulator and Softkey Interface software as
directed in thedP 64700 Series Emulators Softkey Interface
Installation Notice you are ready to enter the interface. The Softkey
Interface can be entered through pineon User Interface Software or
from the HP-UX shell.

If /usr/hp64000/binis specified in your PATH environment variable,
you can enter themon User Interface with the following command.

$ pmon <RETURN>

If you have not already created a measurement system for the H8/536
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>

After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>

To define a measurement system for the H8/536 emulator, enter:
make_sys emh8 <RETURN>

Now, to add the emulator to the measurement system, enter:
add <module_number> naming it h8 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named "emh8"
and "h8" as shown above, you can enter the emulation system with the
following command:

emh8 default h8 <RETURN>

Getting Started 2-7

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned toheon User Interface. Error

messages are described in $udtkey Interface Referenaenual.

For more information on creating measurements systems, refer to the
Softkey Interface Referenoenual.

From the HP-UX Shell If /usr/hp64000/binis specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul name> <RETURN>
The "emul_name" in the command above is the logical emulator name

given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

HP64739-19001 A.03.00 01Aprol1
H8/536 EMULATION SERIES 64700

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1990

All Rights Reserved. Reproduction, adaptation, or translationwithout prior
written permission is prohibited, except as allowed undercopyright laws.

RESTRICTED RIGHTS LEGEND
Use, duplication , or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c) (1) (Il) ofthe Rights

in Technical Data and Computer Software clause at DFARS52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA94304-1181

STATUS: Loaded configuration file R

run trace step display modify break end ---ETC--

Figure 2-3. Softkey Interface Display

2-8 Getting Started

Using the Default

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in th&oftkey Interface Referencanual.

The default emulator configuration is used with the following exam

Configuration
The address range 0 hex through F5FF hex is mapped as emulation
ROM, and F600 hex through FEFF hex as emulation RAM.
The emulator emulates the H8/536 processor (rather than H8/534)
using the background monitor.
On-Line HeIp There are two ways to access on-line help in the Softkey Interface. The

Softkey Driven Help

first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next ling, just as
you do with the HP-UXnore command. After all the information on

the particular topic has been displayed (or after you press "g" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

Getting Started 2-9

---SYSTEM COMMANDS---

? displays the possible help files

help displays the possible help files

! fork a shell (specified by shell variable SH)

I<shell cmd> fork a shell and execute a shell command

cd <directory> change the working directory

pwd print the working directory

cws <SYMB> change the working symbol - the working symbol also

gets updated when displaying local symbols and
displaying memory mnemonic
pws print the working symbol
<FILE> pl p2 p3 ... execute a command file passing parameters pl, p2, p3

log_commands to <FILE> logs the next sequence of commands to file <FILE>

log_commands off discontinue logging commands

name_of_module get the "logical" name of this module (see 64700tab)

set <ENVVAR> = <VALUE> set and export a shell environment variable

set HP64KPATH = <MYPATH> set and export the shell environment variable that
specifies the search path for command files

wait pause until <cntrl-c> (SIGINT)

--More--(42%)

Pod Command Help To access the emulator’s firmware resident Terminal Interface help

information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help m" <RETURN>

The command enclosed in string delimiters (", ’, or #) is any Terminal

2-10 Getting Started

Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Pod Commands
Time Command
10:00:00 help m

m - display or modify processor memory space
m <addr> - display memory at address
m -d<dtype> <addr> - display memory at address with display option
m <addr>..<addr> - display memory in specified address range
m -dm <addr>..<addr> - display memory mnemonics in specified range
m <addr>.. - display 128 byte block starting at address A
m <addr>=<value> - modify memory at address to <value>
m -d<dtype> <addr>=<value> - modify memory with display option
m <addr>=<value>,<value> - modify memory to data sequence
m <addr>..<addr>=<value>,<value> - fill range with repeating sequence
--- VALID <dtype> MODE OPTIONS ---
b - display size is 1 byte(s)
w - display size is 2 byte(s)
m - display processor mnemonics

STATUS: H8/536-Running in monitor____~~~~~~ ...
pod_command ’help m’

run trace step display modify break end ---ETC--

Loading Absolute The "load" command allows you to load absolute files into emulation

Files or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" or
"user_mem". For example:

load cmd_rds <RETURN>
Normally, you will configure the emulator and map memory before

you load the absolute file; however, the default configuration is
sufficient for the sample program.

Getting Started 2-11

Displaying When you load an absolute file into memory (unless you use the
Svmbols "nosymbols" option), symbol information is loaded. Both global
y symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol and the offset of
the symbol within the minimum value of these global symbols.

Global symbols in cmd_rds
Static symbols

Symbol name Address range Contents Segment Offset

Cmd_Input OFEOO0 EEOO

Init 01000 0000

Msg_Dest OFE02 EE02

Msgs 02000 1000

Filename symbols

Filename

cmd_rds.src

STATUS: HB8/536--Running in monitor R

display global_symbols

run trace step display modify break end ---ETC--

2-12 Getting Started

Local

When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.src:
<RETURN>

Listed are: address ranges associated with a symbol and the offset of
that symbol within the start address of the section that the symbol i
associated with.

Symbols in cmd_rds.src:
Static symbols
Symbol name Address range Contents Segment Offset
Again 01032
Cmd_A 01019 0019
Cmd_B 01021 0021
Cmd_| 01029 0029
Cmd_Input OFEOO 0000
Data OFEOO 0000
Exe_Cmd 0100F 000F
Fill_Dest 01039 0039
Init 01000 0000
Msg_A 02000 0000
Msg_B 02012 0012
Msg_Dest OFEOQ2 0002
Msg_| 02024 0024
Msgs 01000 0000
Prog
STATUS: HB8/536--Running in monitor R
display local_symbols_in cmd_rds.src:
load store stop-trc copy reset specify cmb_exec ---ETC--

Getting Started 2-13

Displaying You can display, in mnemonic format, the absolute code in memory.

Memory

in For example to display the memory of the "cmd_rds" program,

Mnemonic Format

display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbolnit is used in the command above to specify the starting
address of the memory to be displayed.

Memory :
address

mnemonic :file = cmd_rds.src:
data

01000
01004
01009
0100D
0100F
01011
01013
01015
01017
01019
0101C
0101F
01021
01024
01027
01029

STATUS:

display memory Init mnemonic

run trace step display modify break end ---ETC--

OCFE7E87 MOV:G.W #FE7E,R7
15FE000600 MOV:G.B #00,@FE00
15FE0080 MOV:G.B @FEO00,RO
27FA BEQ 01009

4041 CMP:E.B #41,R0

2706 BEQ 01019

4042 CMP:E.B #42,R0

270A BEQ 01021

2010 BRA 01029

590011 MOV:LW #0011,R1
5C2000 MOV:I.W #2000,R4
200E BRA 0102F

590011 MOV:LW #0011,R1
5C2012 MOV:I.W #2012,R4
2006 BRA 0102F

59000F MOV:I.W #000F,R1

H8/536--Running in monitor R

2-14 Getting Started

Display Memory with If you want to see symbol information with displaying memory in
Symbols mnemonic format, the H8/536 emulator Softkey Interface provides "set
symbols" command. To see symbol information, enter the following
command.

set symbols on <RETURN>

As you can see, the memory display shows symbol information.

Memory :mnemonic :file = cmd_rds.src:
address label data

01000 :Init OCFE7E87 MOV:G.W #FE7E,R7
01004 cmd:Read_Cmd 15FE000600 MOV:G.B #00,@FE00
01009 cmd_rds:Scan 15FE0080 MOV:G.B @FE00,RO

0100D 27FA BEQ cmd_rds.src:Scan
0100F cmd_:Exe_Cmd 4041 CMP:E.B #41,R0
01011 2706 BEQ cmd_rds.sr:Cmd_A
01013 4042 CMP:E.B #42,R0

01015 270A BEQ cmd_rds.sr:Cmd_B
01017 2010 BRA cmd_rds.sr:Cmd_|I
01019 cmd_rd:Cmd_A 590011 MOV:L.W #0011,R1
0101C 5C2000 MOV:I.W #2000,R4

0101F 200E BRA cmd_rd:Write_Msg
01021 cmd_rd:Cmd_B 590011 MOV:L.W #0011,R1
01024 5C2012 MOV:L.W #2012,R4

01027 2006 BRA cmd_rd:Write_Msg

01029 cmd_rd:Cmd_I 59000F MOV:I.W #000F,R1

STATUS: HB8/536--Running in monitor R
set symbols on

run trace step display modify break end ---ETC--

Running the The "run" command lets you execute a program in memory. Entering
P the "run" command by itself causes the emulator to begin executing at
rogram " "
the current program counter address. The "run from" command allows
you to specify an address at which execution is to start.

Getting Started 2-15

From Transfer
Address

From Reset

The "run from transfer_address"” command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the .END
assembler directive (i.e., pseudo instruction). For example, the sample
program defines the address of the &bl as the transfer address.

The following command will cause the emulator to execute from the
address of thinit label.

run from transfer_address <RETURN>

The "run from reset” command specifies that the emulator begin
executing from target system reset(see "Running From Reset" section
in the "In-Circuit Emulation" chapter).

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the information
on the screen is constantly updated. For example, to display the
Msg_Destlocations of the sample program repetitively (in blocked
byte format), enter the following command.

display memory Msg_Dest repetitively blocked
bytes <RETURN>

Modifying Memory

2-16 Getting Started

The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labele@md_Input. You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory Cmd_lnput byfesto 41h <RETURN>

Or:

modify memory Cmd_lnput strings to A
<RETURN>

After the memory location is modified, the repetitive memory display
shows that the "Command A entered" message is written to the
destination locations.

address
0FE02-09
OFEOA-11
OFE12-19
OFE1A-21
0FE22-29
OFE2A-31
0FE32-39
OFE3A-41
OFE42-49
OFE4A-51
OFE52-59
OFE5A-61
OFE62-69
OFE6A-71
OFE72-79
OFE7A-81

run trace

data
43
41
64

6F
20
20

hex
6D
65
00

6D 61 6E 64 20 C
6E 74 65 72 65 A
d .

00

step display

Memory :bytes :blocked :repetitively

00

STATUS: HB8/536--Running user program R
modify memory Cmd_Input bytes to 41h

modify break end ---ETC--

:ascii

00 00 00

Breaking into the

Monitor

The "break” command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

Getting Started 2-17

Using Software
Breakpoints

Note #

2-18 Getting Started

Software breakpoints are provided with one of H8/536 undefined
opcode (1B hex) as breakpoint interrupt instruction. When you define
or enable a software breakpoint, the emulator will replace the opcode at
the software breakpoint address with the breakpoint interrupt
instruction.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (1B hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or opcode in your target
program.

If it is a software breakpoint, execution breaks to the monitor, and the
breakpoint interrupt instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.

If it is an opcode of your target program, execution still breaks to the
monitor, and an "Undefined software breakpoint" status message is
displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode.

Up to 32 software breakpoints may be defined.

You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Note # Because software breakpoints are implemented by replacing opcodes
with the undefined opcode (1B hex), you cannot define software
breakpoints in target ROM. You can, however, use the Terminal
Interfacecim command to copy target ROM into emulation memory
(see théTerminal Interface: User's Referenognual for information
on thecim command).

Note # Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Enabling/Disabling When you initially enter the Softkey Interface, software breakpoints
Software Breakpoints are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the breakpoint interrupt instruction (1B hex) will be placed
at the address specified. When the special code is executed, program
execution will break into the monitor.

Getting Started 2-19

Setting a Software
Breakpoint

Displaying Software
Breakpoints

2-20 Getting Started

To set a software breakpoint at the address dfthé | label, enter
the following command.

modify software_breakpoints set Cmd_lI
<RETURN>

After the software breakpoint has been set, enter the following
command to cause the emulator to continue executing the sample
program.

run <RETURN>

Now, modify the command input byte to an invalid command for the
sample program.

modify memory Cmd_lnput byfesto 75h <RETURN>
A message on the status line shows that the software breakpoint has

been hit. The status line also shows that the emulator is now executing
in the monitor.

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

The software breakpoints display shows that the breakpoint is
inactivated. When breakpoints are hit they become inactivated. To
reactivate the breakpoint so that is "pending”, you must reenter

the "modify software_breakpoints set' command.

Software breakpoints :enabled
Address label status
01029 cmd_rd:Cmd_| inactivated

STATUS: HB8/536--Running in monitor ~ Software break: 001029 R
display software_breakpoints

run trace step display modify break end ---ETC--

Clearing a Software To remove software breakpoint defined above, enter the following
Breakpoint ~ command.

modify software_breakpoints clear Cmd_lI
<RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

Getting Started 2-21

Displaying

Enter the following command to display registers. You can display the
Registers basic registers class, or an individual register.
display registers <RETURN>
Registers
Next_PC 01029

CPO0O TPOO DPO0O EPOO SRO0700< > MDCRC7
PC 1029 SP FE7E FP 0000 BR 00

RO 0075 R1 FFFF R2 0000 R3 0020 R4 2012 R5 FE22 R6 0000 R7 FE7E

STATUS: H8/536--Running in monitor Software break: 001029
display registers

run trace step display

modify break end ---ETC--

You can use "register class" and "register name" to display registers.
Refer to "Register Names and Classes" section in chapter 5.

2-22 Getting Started

Stepping Through The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step

the Program from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line,
may be entered by pressing <RETURN>.

Registers

Next_PC 0102C

CP0O0 TPOO DP0O0 EPO0O0 SRO0700< > MDCR C7
PC 102C SP FE7E FP 0000 BR 00

RO 0075 R1 000F R2 0000 R3 0020 R4 2012 R5FE22 R6 0000 R7 FET7E

Step_PC 0102C MOV:LW #2024,R4
Next_PC 0102F

CPO0O TPOO DPO0O EPOO SRO0700< > MDCRC7
PC 102F SP FE7E FP 0000 BR 00

RO 0075 R1 000F R2 0000 R3 0020 R4 2024 R5FE22 R6 0000 R7 FE7E

Step_PC 0102F MOV:L.W #FC02,R5
Next_PC 01032

CPO0O TPOO DPO0O EPOO SRO0708<n > MDCRC7
PC 1032 SP FE7E FP 0000 BR 00

RO 0075 R1 000F R2 0000 R3 0020 R4 2024 R5FEO02 R6 0000 R7 FE7E

STATUS: HB8/536--Stepping complete R
step
run trace step display modify break end ---ETC--

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

Getting Started 2-23

Using the Analyzer

Specifying a Simple
Trigger

2-24 Getting Started

HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse

of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Suppose you want to trace program execution after the point at which
the sample program reads the "B" (42 hex) command from the
command input byte. To do this, you would trace after the analyzer
finds a state in which a value of 42xxh is read fromGhel_Input

byte. The following command makes this trace specification.

trace after Cmd_Input data 42xxh status read
<RETURN>

The message "Emulation trace started” will appear on the status line.
Now, modify the command input byte to "B" with the following
command.

modify memory Cmd_lnput byftesto 42h <RETURN>

The status line now shows "Emulation trace complete".

Triggering the Analyzer by Data

You may want to trigger the emulation analyzer when a specific data
appears on the data bus. You can accomplish this by specifyita) "
in the 'trace” command.

You always need to specify theédta" with a 16 bits value even when

the data access is performed with byte sizes. This is because the
emulation analyzer is designed to be able to catch the data on internal
16 bits-width data bus. The following table shows the way to specify
the trigger condition by data.

(DATA READ/WRITE)

| | Available
Location of data | Accesses | <DATA> Specification

Internal ROM,RAM | Word | HHLL *1
+ +
| Byte | DDxx *2
+ +
Others | DDxx

(INSTRUCTION FETCH)

| Available
Location of data | Address | <DATA> Specification

Internal ROM,RAM | EVEN | HHLL *1
+ +

|ODD | xxDD *2
+ +

Others | DDxx *2

*1 HHLL means 16 bits data
*2 DD means 8 bits data

For example, to trigger the analyzer when the processor accesses data
12 hex in external ROM, you may use "12xxh" datd" specification.

H8/536 Analysis Status Qualifiers

The status qualifier "read" was used in the example trace command
used before in this chapter. The following analysis status qualifiers
may also be used with the H8/536 emulator.

Qualifier Status Bits (36..47) Description
backgrnd = Oxxx Xxxx XxxxB Background cycle
brelease x111 xxxx xxxxB Bus release cycle

byte X110 xxxx xx1xB Byte access

cpu X110 xx1x XxxxB CPU cycle

data X110 xxxx X1xxB Data access

dtc %110 xx0x xxXxxB Data transfer controller cycle
exec X101 xxxx XxxxB Instruction execution cycle
fetch x110 xx1x x001B Program fetch cycle
foregrnd 1Xxx XXXX XXXxB Foreground cycle

grd %110 Oxx1 xxxxB Guarded memory access
intack X011 xxXxXx XxXxxB Interrupt acknowledge cycle
io %110 xxx0 xxxxB Internal 1/0 access

memory X110 xxx1 xxxxB Memory access

read X110 XXXX XXx1B Read cycle

word x110 xxxx XxxOxB Word access

write X110 xxxx Xxx0B Write cycle

wrrom x110 x0x1 xxx0B Write to ROM cycle

Getting Started 2-25

Displaying the Trace The trace listings which follow are of program execution on the

H8/536 emulator. To display the trace, enter:

display trace <RETURN>
Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: symbols hex mnemonic w/symbols relative
after :Cmd_Input 42FF 42 read mem byte 200 nS
+001 :cmd_rds.:+0000D FFFF INSTRUCTION--opcode unavailable 80. nS
+002 :cmd_rds.:+00010 4127 4127 fetch mem 120 nS
+003 cmd_rds.:Exe_Cmd FFFF CMP:E.B #41,R0 80. nS
+004 :cmd_rds.:+00012 0640 0640 fetch mem 200 nS
+005 :cmd_rds.:+00011 FFFF BEQ cmd_rds.sr:Cmd_A 120 nS
+006 :cmd_rds.:+00014 4227 4227 fetch mem 80. nS
+007 :cmd_rds.:+00013 FFFF CMP:E.B #42,R0 120 nS
+008 :cmd_rds.:+00016 0A20 O0A20 fetch mem 200 nS
+009 :cmd_rds.:+00015 FFFF BEQ cmd_rds.sr:Cmd_B 80. nS
+010 :cmd_rds.:+00018 1059 1059 fetch mem 120 nS
+011 cmd_rds.sr:=Cmd_B O0OE59 59 fetch mem 400 nS
+012 :cmd_rds.:+00022 0011 0011 fetch mem 200 nS
+013 cmd_rds.sr:=Cmd_B FFFF MOV:L.W #0011,R1 80. nS
+014 :cmd_rds.:+00024 5C20 5C20 fetch mem 120 nS
STATUS: HB8/536--Running user program Emulation trace complete R
display trace
run trace step display modify break end ---ETC--

Line O (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0. The other
states show the exit from tlseanloop and thé&exe_CmdandCmd_B
instructions. To list the next lines of the trace, press the <PGDN> or
<NEXT> key.

The resulting display shov@dnd_B instructions, the branch to
Write_Msg and the beginning of the instructions which move the
"Entered B command " message to the destination locations.

To list the previous lines of the trace, press the <PGUP> or <PREV>
key.

2-26 Getting Started

Trace List Offset=0

Label: Address Data Opcode or Status w/ Source Lines time count
Base: symbols hex mnemonic w/symbols relative
+015 :cmd_rds.:+00024 FFFF MOV:I.W #2012,R4 80. nS
+016 :cmd_rds.:+00026 1220 1220 fetch mem 120 nS
+017 :cmd_rds.:+00028 0659 0659 fetch mem 200 nS
+018 :cmd_rds.:+00027 FFFF BRA cmd_rd:Write_Msg 80. nS
+019 :cmd_rds.:+0002A 000F O0OOF fetch mem 120 nS
+020 cmd_rd:Write_Msg 245D 5D fetch mem 400 nS
+021 :cmd_rds.:+00030 FE02 FEO02 fetch mem 200 nS
+022 cmd_rd:Write_Msg FFFF MOV:I.W #FEO2,R5 80. nS
+023 cmd_rds.sr:Again C483 (C483 fetch mem 120 nS
+024 cmd_rds.sr:Again FFFF MOV:G.B @R4+,R3 80. nS
+025 :cmd_rds.:+00034 C593 (€593 fetch mem 120 nS
+026 :cmd_rds.:+00036 07B9 07B9 fetch mem 400 nS
+027 cmd_rds.sr:Msg_B 45FF 45 read mem byte 200 nS
+028 :cmd_rds.:+00034 FFFF MOV:G.B R3,@R5+ 80. nS
+029 :cmd_rds.:+00038 F9C5 F9C5 fetch mem 400 nS
STATUS: HB8/536--Running user program Emulation trace complete
display trace

run trace step display modify break end ---ETC--

Displaying Trace with No Symbol

The trace listing shown above has symbol information because of the
"set symbols ot setting before in this chapter. To see the trace listing
with no symbol information, enter the following command.

set symbols off

As you can see, the analysis trace display shows the trace list without

symbol information.

Getting Started 2-27

Trace List Offset=0

Label: Address Data Opcode or Status w/ Source Lines time count

Base: hex hex mnemonic relative

after OFEO0 42FF 42 read mem byte 200 nS

+001 0100D FFFF INSTRUCTION--opcode unavailable 80. nS

+002 01010 4127 4127 fetch mem 120 nS

+003 0100F FFFF CMP:E.B #41,R0 80. nS

+004 01012 0640 0640 fetch mem 200 nS

+005 01011 FFFF BEQ 01019 120 nS

+006 01014 4227 4227 fetch mem 80. nS

+007 01013 FFFF CMP:E.B #42,R0 120 nS

+008 01016 0A20 O0A20 fetch mem 200 nS

+009 01015 FFFF BEQ 01021 80. nS

+010 01018 1059 1059 fetch mem 120 nS

+011 01021 OE59 59 fetch mem 400 nS

+012 01022 0011 0011 fetch mem 200 nS

+013 01021 FFFF MOV:.W #0011,R1 80. nS

+014 01024 5C20 5C20 fetch mem 120 nS

STATUS: HB8/536--Running user program Emulation trace complete R

set symbols off

run trace step display modify break end ---ETC--
Displaying Trace with Enter the following command to display count information relative to

Time Count Absolute the trigger state.

display trace count absolute <RETURN>
Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic absolute
after OFEO0 42FF 42 read membyte = —-memeeeeee
+001 0100D FFFF INSTRUCTION--opcode unavailable + 80. nS
+002 01010 4127 4127 fetch mem +200 nS
+003 0100F FFFF CMP:E.B #41,R0 +280 nS
+004 01012 0640 0640 fetch mem +480 nS
+005 01011 FFFF BEQ 01019 +600 nS
+006 01014 4227 4227 fetch mem +680 nS
+007 01013 FFFF CMP:E.B #42,R0 +800 nS
+008 01016 0A20 O0A20 fetch mem + 1.0 uS
+009 01015 FFFF BEQ 01021 + 1.1 uS
+010 01018 1059 1059 fetch mem + 12 usS
+011 01021 OE59 59 fetch mem + 1.6 uS
+012 01022 0011 0011 fetch mem + 1.8 uS
+013 01021 FFFF MOV:.W #0011,R1 + 1.9 uS
+014 01024 5C20 5C20 fetch mem + 2.0 usS
STATUS: HB8/536--Running user program Emulation trace complete R
display trace count absolute
run trace step display modify break end ---ETC--

2-28 Getting Started

Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the H8/536
emulator Softkey Interface providesmpress moddor analysis

display. To see trace display with compress mode, enter the following
command:

display trace compress on <RETURN>
Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic absolute
after OFEO0 42FF 42 read membyte = —-memeeeeeee
+001 0100D FFFF INSTRUCTION--opcode unavailable + 80. nS
+003 0100F FFFF CMP:E.B #41,R0 +280 nS
+005 01011 FFFF BEQ 01019 +600 nS
+007 01013 FFFF CMP:E.B #42,R0 +800 nS
+009 01015 FFFF BEQ 01021 + 1.1 uS
+013 01021 FFFF MOV:.W #0011,R1 + 1.9 uS
+015 01024 FFFF MOV:I.W #2012,R4 + 2.1 uS
+018 01027 FFFF BRA 0102F + 25 uS
+022 0102F FFFF MOV:I.W #FEO2,R5 + 3.3 uS
+024 01032 FFFF MOV:G.B @R4+,R3 + 3.5 uS
+027 02012 45FF 45 read mem byte + 4.20 uS
+028 01034 FFFF MOV:G.B R3,@R5+ + 4.28 uS
+030 OFEO2 4545 45 write mem byte + 4.88 uS
+031 01036 FFFF SCB/EQ R1,01032 + 5.00 uS
STATUS: HB8/536--Running user program Emulation trace complete B = S
display trace compress on
run trace step display modify break end ---ETC--

As you can see, the analysis trace display shows the analysis trace lists
without fetch cycles. With this command you can examine program
execution easily.

If you want to see all of cycles including fetch cycles, enter following
command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

Getting Started 2-29

Note # When the analysis trace is displayed with compress mode, the time
count may not indicate correct time counts. This happens when time
count isrelative. Since the compress mode feature is implemented by
eliminating fetch cycles when displaying analysis trace, relative time
count shows incorrect value. If you are interested in the time count,
display with time coundbsolute Absolute value of time count always
show correct value.

Changing the Trace The default states displayed in the trace list is 256 states. To reduce the
Depth number of states, use the "display trace depth” command.

display trace depth 512 <RETURN>

When you enter the following commands, you can see where the
program returns to tHRead_Cmdinstruction at state 341.

display trace 341
set symbols on

Trace List Offset=0

Label: Address Data Opcode or Status w/ Source Lines time count
Base: symbols hex mnemonic w/symbols absolute

+334 :cmd_rds.:+0003C 4DFE A4DFE fetch mem + 68.88 uS
+335 :cmd_rds.:+0003E 2226 2226 fetch mem + 69.40 uS
+336 :cmd_rds.:+00021 0000 00 write mem byte + 69.60 uS
+337 :cmd_rds.:+0003C FFFF CMP:.W #FE22,R5 + 69.68 uS
+338 :cmd_rds.:+00040 F820 F820 fetch mem + 69.88 uS
+339 :cmd_rds.:+0003F FFFF BNE cmd_rd:Fill_Dest + 70.00 uS
+340 :cmd_rds.:+00042 C120 C120 fetch mem + 70.08 uS
+341 :cmd_rds.:+00041 FFFF BRA cmd_rds:Read_Cmd + 70.20 uS
+342 01044 71C6 71C6 fetch mem + 70.40 uS

+343 cmd_rds:Read_Cmd 15FE 15FE fetch mem + 70.80 uS
+344 cmd_rds:Read_Cmd FFFF MOV:G.B #00,@FEOO + 70.88 uS
+345 :cmd_rds.:+00006 0006 0006 fetch mem + 71.00 uS

+346 :cmd_rds.:+00008 0015 0015 fetch mem + 71.20 uS

+347 :cmd_rds.:+0000A FEOO0 FEOO fetch mem + 71.40 uS
+348 :Cmd_Input 0000 00 write mem byte + 7180 uS
STATUS: HB8/536--Running user program Emulation trace complete R
set symbols on

run trace step display modify break end ---ETC--

2-30 Getting Started

For a Complete

For a complete description of using the HP 64700 Series analyzer with

Description the Softkey Interface, refer to tAmalyzer Softkey Interface User's
Guide
Exiting the There are several options available when exiting the Softkey Interf

Softkey Interface

End Release System

Ending to Continue
Later

Ending Locked from
All Windows

exiting and releasing the emulation system, exiting with the intent
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

You may also exit the Softkey Interface without specifying any

options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the
emul700command. When you enter the Softkey Interfac@rian
andMEAS_SYS only one window is permitted.

Refer to theSoftkey Interface Refereng®nual for more information
on using the Softkey Interface with window systems.

Getting Started 2-31

Selecting the
Measurement System
Display or Another
Module

2-32 Getting Started

When you enter the Softkey Interface praon andMEAS_SYS you

have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via theemul700command.

In-Circuit Emulation

Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

m Describe the issues concerning the installation of the emul
probe into target systems.

m Show you how to install the emulator probe.

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to the "Configuring the
Emulator" chapter.

Prerequisites

Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer tblkhe
64700 Emulators: System Overvievanual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

Caution '

3-2 In-Circuit Emulation

The emulator probe has a PLCC connector. The emulator is shipped
with a pin guard over the target system probe. This guard is designed
to prevent impact damage to the pins and should be left in place while
you are not using the emulator.

DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the H8/536 emulator.

Power Down Target System.Turn off power to the user target

system and to the H8/536 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge.The H8/536 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Componentslf your target system
includes any CMOS components, turn on the target system first, then
turn on the H8/536 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

Installing into a To connect the microprocessor connector to the target system,

PLCC Type Socket proceeded with the following instructions.
1. Remove the H8/536 microprocessor from the target system
socket (PLCC socket). Note the location of pin 1 on the
processor and on the target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket.

--——— PROBE CAHBLE

MICROPROCESSOR
CONNECTOR

PIN 1 OF
MICROPROCESSOR
CONNECTOR

TARGET SYSTEM
MICROPROCESS0OR
SOCKET

PIN 1 OF
TARGET SYSTEM
MICROPROCESS0R
SOCKET

Figure 3-1. Installing into a PLCC type socket

In-Circuit Emulation 3-3

Note ﬂ

To make sure the contact between emulator probe and target system
microprocessor socket, we recommend that you use

ITT CANNON "LCS-84" series 84 pin PLCC socket.

In-Circuit
Configuration
Options

3-4 In-Circuit Emulation

The H8/536 emulator provides configuration options for the following
in-circuit emulation issues.

Refer to the "Configuring the Emulator” for more information on these
configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system clock
source.

Selecting Visible/Hidden Background Cycles

Emulation processor activity while executing in background can either
be visible to target system (cycles are sent to the target system probe)
or hidden (cycles are not sent to the target system probe).

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system /RES line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to /RES signal by the
target system (see the "Enable /RES input from the target system?"
configuration in Chapter 4 of this manual).
To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will chang
show the appropriate emulator status.

In-Circuit Emulation 3-5

Notes

3-6 In-Circuit Emulation

Configuring the Emulator

Introduction

The H8/536 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to s
your needs at any stage of the development process. This chapter|
describes the options available when configuring the H8/536 emul

The configuration options are accessed with the following command.

modify configuration <RETURN>
After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

General Emulator Configuration:
— Specifying the emulator clock source (internal/external).

— Selecting monitor entry after configuration.

— Restricting to real-time execution.

Configuring the Emulator 4-1

Memory Configuration:

— Selecting the background or foreground emulation
monitor.

— Mapping memory.

Emulator Pod Configuration:
— Selecting the processor to emulate.

— Selecting the processor operation mode.

— Enabling emulator bus arbitration.

— Enabling NMI input from the target system.
— Enabling /RES input from the target system.

— Allowing the emulator to drive emulation reset to the
target system.

— Allowing the emulator to drive background cycles to the
target system.

— Selecting the reset value for the stack pointer.

Debug/Trace Configuration:
— Enabling breaks on writes to ROM.

— Specifying tracing of foreground/background cycles.

— Enabling tracing bus release cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/Oreference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in Baftkey Interface Referencenual.

External Analyzer Configuration: See theAnalyzer Softkey
Interface User's Guide

4-2 Configuring the Emulator

General Emulator
Configuration

Micro-processor
clock source?

Note ﬂ

Enter monitor after
configuration?

The configuration questions described in this section involve general
emulator operation.

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal clock oscillator as the emulator
clock source. The emulators’ internal clock speed
is 10 MHz (system clock).

external Selects the clock input to the emulator probe from
the target system. You must use a clock input
conforming to the specifications for the H8/536
microprocessor.

Changing the clock source drives the emulator into the reset state.
emulator may later break into the monitor depending on how the
following "Enter monitor after configuration?" question is answered.

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail.

When an external clock source is specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

Configuring the Emulator 4-3

Restrict to real-time
runs?

4-4 Configuring the Emulator

yes

no

When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
complete. If the reset to monitor fails, the previous
configuration will be restored.

After the configuration is complete, the emulator
will be held in the reset state.

If it is important that the emulator execute target system programs in
real-time, you can restrict to real-time runs. In other words, when you
execute target programs (with threri" command), the emulator will
execute in real-time.

no

yes

The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to target
system resources (display/modify: registers or
target system memory). If one of these commands
is entered, the system controller will temporarily
break emulator execution into the monitor.

If your target system program requires real-time
execution, you should enable the real-time mode in
order to prevent temporary breaks that might cause
target system problems.

Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the emulator is
running user code, the system refuses all commands that require access
to processor registers or target system memory. The following
commands are not allowed when runs are restricted to real-time:

m Register display/modification.
m Target system memory display/modification.
m Internal I/O registers display/modification.

m Load/store target system memory.
If the real-time mode is enabled, these resources can only be displayed
or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time executio
are:

reset
run
break
step

Configuring the Emulator 4-5

Memory
Configuration

Monitor type?

4-6 Configuring the Emulator

The memory configuration questions allows you to select the monitor
type and to map memory. To access the memory configuration
guestions, you must answer "yes" to the following question.

Modify memory configuration?

The monitor type configuration question allows you to choose between
a foreground monitor (which is supplied with the emulation software
but must be assembled, linked, converted, and loaded into emulation
memory) or the background monitor (which resides in the emulator).

Theemulation monitois a program that is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources, say a command to display
target system memory, the system controller writes a command code to
the monitor communications area and breaks execution of the
emulation processor from the user program into the monitor program.
The monitor program then reads the command from the
communications area and executes the H8/536 instructions which read
the contents of the target system memory locations. After the monitor
has completed its task, execution returns to the user program.

Thebackground monitgrresident in the emulator, offers the greatest
degree of transparency to your target system (that is, your target system
should generally be unaffected by monitor execution). However, in
some cases you may require an emulation monitor tailored to the
requirements of your system. In this case, you will need to use a
foreground monitor linked into your program modules. See the "Using
the Foreground Monitor" appendix for more information on foreground
monitors.

background Selects the use of the background monitor. A
memory overlay is created and the background
monitor is loaded into that area. When you select
the background monitor and the current monitor
type is "foreground", you are asked the following
guestion.

Reset map (change of monitor type requires map reset)?

This question must be answered "yes" to change the monitor type.

foreground Specifies that a foreground monitor will be used.
Foreground monitor programs are shipped with the
Softkey Interface (refer to the "Using the
Foreground Monitor" appendix). When you select
a foreground monitor, you will be asked additional
guestions.

Reset map (change of monitor type requires map reset)?

This question must be answered "yes" or else the foreground monitor
will not be selected.

Monitor address?

The default configuration specifies a monitor address of 8000 hex. The
monitor base address must be located on a 2K byte boundary othe
0 hex; otherwise, configuration will fail.

Monitor filename?

This question allows you to specify the name of the foreground

monitor program absolute file. Remember that the foreground monitor
must already be assembled and linked starting at the 2K byte boundary
specified for the previous "Monitor address?" question.

The monitor program will be loaded after you have answered all the
configuration questions; therefore, you should not link the foreground
monitor to the user program. If it is important that the symbol database
contain both monitor and user program symbols, you can create a
different absolute file in which the monitor and user program are
linked. Then, you can load this file after configuration.

Configuring the Emulator 4-7

Mapping Memory The H8/536 emulator contains 126 kilobytes of high-speed emulation
memory (no wait states required) that can be mapped at a resolution of
256 bytes.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be

treated as ROM or RAM. You can include function code information
with address ranges to further characterize the memory block.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

The memory mapper allows you to define up to 16 different map terms.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Note ﬂ The default emulator configuration maps location 0 hex through F5FF
hex as emulation ROM, and location F600 hex through FEFF hex as
emulation RAM. To use the internal ROM and RAM, memory space
of these memories must be mapped as emulation memory.

When you answered "yes" to the "Reset map (change of monitor type
requires map reset)?" question , you must map again for internal ROM
and RAM.

4-8 Configuring the Emulator

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Note # You should map all memory ranges used by your progbafose
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follownap/load
procedure for each memory range.

Configuring the Emulator 4-9

Emulator Pod
Configuration

Processor type?

Processor operation
mode?

4-10 Configuring the Emulator

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

This configuration defines the processor to be emulated by the H8/536
emulator.

536 The emulator will emulate the H8/536
microprocessor.

534 The emulator will emulate the H8/534
microprocessor.

This configuration defines operation mode in which the emulator
works.

external The emulator will work using the mode setting by
the target system. The target system must supply
appropriate input to MDO, MD1 and MD2. If you
are using the emulator out of circuit when
"external" is selected, the emulator will operate in
mode 7.
When mode_1 through mode_7 is selected, the emulator will operate in
selected mode regardless of the mode setting by the target system.

Selection Description

mode_1 The emulator will operate in mode 1. (expanded
minimum mode)

mode_2 The emulator will operate in mode 2. (expanded
minimum mode with internal ROM)

mode_3 The emulator will operate in mode 3. (expanded
maximum mode)

Enable bus
arbitration?

Note

v

mode_4 The emulator will operate in mode 4. (expanded
maximum mode with internal ROM)

mode_7 The emulator will operate in mode 7. (single chip
mode)

The bus arbitration configuration question defines how your emulator
responds to bus request signals from the target system during
foreground operation. The /BREQ signal from the target system is
always ignored when the emulator is running the background monitor.
This configuration item is only available for the H8/536 emulator.

yes When bus arbitration is enabled, the /BREQ (bus
request) signal from the target system is responded
to exactly as it would be if only the emulation
processor was present without an emulator. In
other words, if the emulation processor receives a
/BREQ from the target system, it will respond by
asserting /BACK and will set the various process
lines to tri-state. /BREQ is then released by the
target; /BACK is negated by the processor, and t
emulation processor restarts execution.

You cannot perform DMA (direct memory access) transfers between
your target system and emulation memory by using DMA controller on
your target system; the H8/536 emulator does not support such a
feature.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target system.
The emulation processor will never drive the
/BACK line true; nor will it place the address, data
and control signals into the tri-state mode.

Configuring the Emulator 4-11

Enable NMI input
from the target
system?

Enable /RES input
from the target
system

4-12 Configuring the Emulator

Enabling and disabling bus master arbitration can be useful to you in
isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code. You
can disable bus arbitration to check and see if faulty arbitration
circuitry in your target system is contributing to the problem.

This configuration allows you to specify whether or not the emulator
responds to NMI(non-maskable interrupt request) signal from the target
system during foreground operation.

yes The emulator will respond to the NMI request from
the target system.

no The emulator will not respond to the NMI request
from the target system.
If you are using the background monitor, the emulator does not accept
any interrupt during background execution. All edge-sensed interrupts
(include NMI) are latched last one during in background, and such
interrupts will occur when context is changed to foreground. All
level-sensed interrupts and internal interrupts are ignored during in
background operation.

This configuration allows you to specify whether or not the emulator
responds to /RES and /STBY signals by the target system during
foreground operation.

While running the background monitor, the emulator ignores /RES and
/STBY signals except that the emulator’s status is "Awaiting target
reset". (see the "Running the Emulation from Target Reset" section in
the "In-Circuit Emulation" chapter).

yes The emulator will respond to /RES and /STBY
input during foreground operation.

no The emulator will not respond to /RES and /STBY
input from the target system.

Note ﬂ

Drive emulation reset
to the target system?

Drive background
cycles to the target
system?

If you specify that the emulator will drive the /RES signal to the target

system during emulation reset or by the overflow of Watch Dog Timer,
the emulator should be configured to respond to the /RES input to the
target system.

This configuration allows you to select whether or not the emulator
will drive the /RES signal to the target system during emulation reset.

no Specifies that the emulator will not drive the /RES
signal during emulation reset.

yes The emulator will drive an active level on the /RES
signal to the target system during emulation reset.
This configuration option is meaningful only when the emulator is
configured to respond to the /RES input to the target system. Refer to
the "Enable /RES Input from Target?" configuration in this chapter.

This configuration allows you specify whether or not the emulator
drive the target system bus on background cycles.

If you have selected to use a foreground monitor in "Memory
Configuration" section in this chapter, emulator monitor cycles will
appear at the target interface exactly as if they were bus cycles caused
by any target system program.

no Background monitor cycles are not driven to the
target system. When you select this option, the
emulator will appear to the target system as if it is
between bus cycles while it is operating in the
background monitor.

Configuring the Emulator 4-13

yes Specifies that background cycles are driven to the
target system. Emulation processor’s address and
control strobes (except /WR) are driven during
background cycles. Background write cycles won't
appear to the target system.

Reset value for stack This question allows you to specify the value to which the stack pointer
pointer? (SP) and the stack page register (TP) will be set on entrance to the
emulation monitor initiated RESET state (the "Emulation reset" status).

The address specified in response to this question must be a 20-bit
hexadecimal even address.

You cannotset this address at the following location.
m Odd address
m Internal I/O register address
When you are using the foreground monitor, this address should be

defined in an emulation or target system RAM area which is not used
by user program.

Note We recommend that you use this method of configuring the stack
ﬂ pointer and the stack page register. Without a stack pointer and a stack
page register, the emulator is unable to make the transition to the run
state, step, or perform many other emulation functions. However,
using this optiordoes notpreclude you from changing the stack
pointer value or location within your program; it just sets the initial
conditions to allow a run to begin.

4-14 Configuring the Emulator

Debug/Trace
Configuration

Break processor on
write to ROM?

Note ﬂ

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, and specify that the analyzer trace
foreground/background execution, and bus release cycles. To access
the trace/debug configuration questions, you must answer "yes" to the
following question.

Modify debug/trace options?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Thewrrom trace command status options allow you to use "write to
ROM'" cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to RAde

about status wrrom <RETURN>

Configuring the Emulator 4-15

Trace background or
foreground
operation?

Trace bus release
cycles?

4-16 Configuring the Emulator

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles. When background cycles are
stored in the trace, all but mnemonic lines are tagged as background

cycles.

foreground

background

both

Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

Specifies that the analyzer trace only background
cycles. (Thisis rarely a useful setting.)

Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

You can direct the emulator to send bus release cycle data to emulation
analyzer or not to send it. This configuration item is only available for
the H8/536 emulator.

yes

no

When you enable tracing bus release cycles, bus
release cycles will appear as one analysis trace line.

Bus release cycles will not appear on analysis trace
list (display).

Simulated I/O
Configuration

The simulated 1/O feature and configuration options are described in
the Simulated 1/O referenamanual.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements iSdfitxey Interface
Referencenanual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the "Using the Emulator" chapter.

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User's Guide

Saving a
Configuration

The last configuration question allows you to save the previous

configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

Configuring the Emulator 4-17

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

Loading a
Configuration

4-18 Configuring the Emulator

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into the
emulator, how to modify memory and view a register, and how to
perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter discusses:
m Features available via "pod_command".
m Limitations and restrictions of the emulator.
m Register classes and names.
m Debugging C Programs

m Accessing target system devices using E clock synchronous
instruction.

This chapter shows you how to:

m Store the contents of memory into absolute files.
m Make coordinated measurements.

m Use a command file.

Using the Emulator 5-1

Features Available
via Pod
Commands

Note #

5-2 Using the Emulator

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>

pod_command ’'<Terminal Interface command>’
<RETURN>
Some of the most notable Terminal Interface features not available in

the softkey Interface are:
m Copying memory.

m Searching memory for strings or numeric expressions.
m Performing coverage analysis.

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in

"modify configuration" will NOT reflect the HP 64700 pod'’s
configuration if you change the pod’s configuration with this

command. Also, commands which affect the communications channel
should NOT be used at all. Other commands may confuse the protocol
depending upon how they are used. The following commands are not
recommended for use with "pod_command":

stty, po, xp- Do not use, will change channel operation and hang.
echo, mac-Usage may confuse the protocol in use on the channel.
wait -Do not use, will tie up the pod, blocking access.

init, pv -Will reset pod and force end release_system.

t - Do not use, will confuse trace status polling and unload.

Using a Command
File

load configuration cmd_rds
load cmd_rds

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that loads configuration, loads
program into memory and displays memory.

To create such a command file, typeg™ and press TAB key. You

will see a command linddg_commands$ appears in the command
field. Next, selecttd” in the softkey label, and enter the command file
name "sample.cmd". This set up a file to record all commands you
execute. The commands will be logged to the file sample.cmd in the
current directory. You can use this file as a command file to execute
these commands automatically.

Suppose that your configuration file and program are named
"emd_rds". To the load configuration:

load configuration cmd_rds <RETURN>
To load the program into memory:

load cmd_rds <RETURN>
To display memory 1000 hex through 1020 hex in mnemonic format:

display memory 1000h thru 1020h mnemonic
Now, to disable logging, typddy" and press TAB key, seleaff",
and pres&nter. The command file you created looks like this:

display memory 1000h thru 1020h mnemonic

If you would like to modify the command file, you can use any text
editor on your host computer.

To execute this command file, type "sample.cmd", and fness.

Using the Emulator 5-3

Debugging C
Programs

Displaying Memory
with C Sources

Displaying Trace with
C Sources

5-4 Using the Emulator

Softkey Interface has following functions to debug C programs.

m Including C source lines in memory mnemonic display
m Including C source lines in trace listing
m Stepping C sources

The following section describes such features.

You can display memory in mnemonic format with C source lines. For
example, to display memory in mnemonic format from addnessn
with source lines, enter the following commands.

display memory =~ _main mnemonic <RETURN>

set source on <RETURN>
You can display source lines highlighted with the following command.

set source on inverse_video on <RETURN>
To display only source lines, use the following command.

set source only <RETURN>

Specifying Address with Line Numbers

You can specify addresses with line numbers of C source program. For
example, to set a breakpoint to line 20 of "main.c" program, enter the
following command.

modify software_breakpoints set main.c: line
20 <RETURN>

You can include C source information in trace listing. You can use the
same command as the case of memory display. For example, to
display trace listing with source lines highlighted, enter the following
command.

display trace <RETURN>
set source on inverse_video on <RETURN>

Stepping C Sources You can direct the emulator to execute a line or a number of lines at a
time. For example, to step one line from addresain, enter the
following command.

step source from _main <RETURN>
To step 1 line from the current line, enter the following command.

Step source <RETURN>
You can specify the number of lines to be executed. To step 5 lines
from the current line, enter the following command.

step 5 source <RETURN>

E clock You can access target system devices in synchronization with the
synchronous E clock. To do this, use the following commands:

instructions

display io_port
modify io_port

The emulator will access the device using the MOVFPE/MOVTPE
instruction.

Using the Emulator 5-5

Limitations,
Restrictions

DMA Support

Sleep and Software
Stand-by Mode

Watch-Dog Timer

RAM Enable Bit

Direct memory access to H8/536 emulation memory is not permitted.

When the emulator breaks into the monitor (foreground/background),
the H8/536 sleep or software stand-by mode is released and comes to
normal processor mode.

When the emulator breaks into background, the emulation processor’s
watch-dog timer suspends count up in background cycles.

The internal RAM of H8/536 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator accesses emulation RAM even if
the internal RAM is disabled by RAME.

Storing Memory
Contents to an
Absolute File

5-6 Using the Emulator

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory 1000h thru 1042h to absfile
<RETURN>

The command above causes the contents of memory locations 1000
hex through 1042 hex to be stored in the absolute file "absfile.X".
Notice that the ".X" extension is appended to the specified filename.

Coordinated For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter iStftxey

Measurements

Interface Referencmanual.
Register Names The following register names and classes may be used with
and Classes display/modify registers" commands.

Summary H8/536 register designators.All available register class names and
register names are listed below.

BASIC Class

Register name Description

PC Program counter

CP Code page register
SR Status register

DP Data page register
EP Extended page register
TP Stack page register
BR Base register

RO Register RO

R1 Register R1

R2 Register R2

R3 Register R3

R4 Register R4

R5 Register R5

R6 Register R6

R7 Register R6

R7 Register R7

FP Frame pointer

SP Stack pointer

MDCR Mode control register

Using the Emulator 5-7

SYS Class System control registers

Register name Description

WCR Wait control register

RAMCR RAM control register

MDCR Mode control register

SBYCR Software stand-by control register

INTC Class Interrupt control registers

IPRA Interrupt priority register A
IPRAB Interrupt priority register B
IPRC Interrupt priority register C
IPRD Interrupt priority register D
IPRE Interrupt priority register E
IPRF Interrupt priority register F

DTC Class Data transfer controller registers

DTEA DT enable register A
DTEB DT enable register B
DTEC DT enable register C
DTED DT enable register D
DTEE DT enable register E
DTEF DT enable register F

5-8 Using the Emulator

PORT Class /0O port registers

Register name Description

P1DDR Port 1 data direction register
P2DDR Port 2 data direction register
P3DDR Port 3 data direction register
P4ADDR Port 4 data direction register
P5DDR Port 5 data direction register
P6DDR Port 6 data direction register
P7DDR Port 7 data direction register
P9DDR Port 9 data direction register
P1DR Port 1 data register

P2DR Port 2 data register

P3DR Port 3 data register

P4DR Port 4 data register

P5DR Port 5 data register

P6DR Port 6 data register

P7DR Port 7 data register

P8DR Port 8 data register

PI9DR Port 9 data register

P1CR Port 1 control register
P69CR Port 69 control register

FRT1 Class Free running timer 1 registers

FRTCR1 Timer control register
FRTCSR1 Timer control/status register
FRC1 Free running counter
OCRAl Output compare register A
OCRB1 Output compare register B
ICR1 Input capture register

Using the Emulator 5-9

FRT2 Class

FRT3 Class

TMR Class

PWM1 Class

5-10 Using the Emulator

Free running timer 2 registers

Register name Description

FRTCR2 Timer control register
FRTCSR2 Timer control/status register
FRC2 Free running counter
OCRAZ2 Output compare register A
OCRB2 Output compare register B
ICR2 Input capture register

Free running timer 3 registers

FRTCR3 Timer control register
FRTCSR3 Timer control/status register
FRC3 Free running counter
OCRA3 Output compare register A
OCRB3 Output compare register B
ICR3 Input capture register

Timer registers

TCR Timer control register
TCSR Timer control/status register
TCORA Timer constant register A
TCORB Timer constant register B
TCNT Timer counter

PWM timer1 registers

PWMTCR1 Timer control register
DTR1 Duty register
PWMTCNT1 Timer counter

PWM2 Class PWM timer2 registers

Register name Description
PWMTCR2 Timer control register

DTR2 Duty register
PWMTCNT2 Timer counter

PWM3 Class PWM timer3 registers

PWMTCR3 Timer control register
DTR3 Duty register
PWMTCNTS3 Timer counter

WDT Class Watchdog timer registers

WDTCSR Timer control/status register
WDTCNT Timer counter
RSTCSR Reset control/status register

SCI1 Class Serial communication interface 1 registers.

RDR1 Receive data register
TDR1 Transmit data register
SMR1 Serial mode register
SCR1 Serial control register
SSR1 Serial status register
BRR1 Bit rate register

Using the Emulator 5-11

SCI2 Class

ADC Class

5-12 Using the Emulator

Serial communication interface 2 registers.

Register name

RDR2
TDR2
SMR2
SCR2
SSR2
BRR2

Description

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

A/D converter registers

Register name

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

Description

A/D data register A
A/D data register B
A/D data register D
A/D data register D
A/D control/status register
A/D control register

Using the Foreground Monitor

Introduction By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.
The foreground monitors are supplied with the emulation software and
can be found in the following path:
/usr/hp64000/monitor/*
The H8/536 Softkey Interface is provided with four foreground
monitor programs. You need to select appropriate monitor program as
shown in the following table.
Processor Processor Mode Foreground Monitor

H8/536 Mode 1, 2,7 fmon536min.src

H8/536 Mode 3, 4 fmon536max.src

H8/534 Mode 1, 2,7 fmon534min.src

H8/534 Mode 3, 4 fmon534max.src

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for

information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Using the Foreground Monitor A-1

Background Monitors A backgroundmonitor is an emulation monitor which overlays the
processor's memory space with a separate memory region. Entry into
the monitor is normally accomplished by jamming the monitor
addresses onto the processor’s address bus.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

Foreground Monitors A foregroundmonitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. Foreground
monitors allow the emulator to service real-time events, such as
interrupts or watchdog timers, while executing in the monitor. For
most multitasking, interrupt intensive applications, you will need to use
a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor (see the "Configuring the
Emulator" chapter and the examples in this appendix).

A-2 Using the Foreground Monitor

You may link the foreground monitor with your code. However, if
possible, linking the monitor separately is preferred. This allows the
monitor to be downloaded before the rest of your program. Linking
monitor programs separately is more work initially, but it should prove
worthwhile overall, since the monitor can then be loaded efficiently
during the configuration process at the beginning of a session.

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to use a foreground
monitor with the sample program from the "Getting Started" chapter.
By using the emulation analyzer, we will also show how the emulator
switches from state to state using a foreground monitor.

For this example, we will be using the foreground monitor named
"fmon536min.src”. We will locate the monitor at 8000 hex; the sample
program will be located at 1000 hex with the message table at 2000 hex
and the command input, message destination, and stack locations at
FEOO hex.

At first, you should copy the foreground monitor source file to your
current directory and change file mode of the monitor source file.

$ cp /usr/hp64000/monitor/fmon536min.src .
<RETURN>

$ chmod 644 fmon536min.src <RETURN>

Using the Foreground Monitor A-3

Assemble and Link You can assemble, link and convert the foreground monitor program
the Monitor with the following commands (which assume thist/hp64000/binis
defined in the PATH environment variable):

$ h8asm fmon536min.src <RETURN>
$ h8Ink fmon536min <RETURN>
$ h8cnvhp -x fmon536min <RETURN>

If you haven't already assembled ,linked, and converted the sample
program, do that now. Refer to the "Getting Started" chapter for
instructions on assembling, linking, and converting the sample program.

Modify Location To use the monitor, you must modify the .SECTION statement just
Declaration after the first comment section of the monitor program listing. You
Statement should see the line below:

(Minimum Modes)

LOCATE_ADRS: .EQU H'8000 ;start monitor on 2k boundary

.SECTION fm536min,CODE,LOCATE=LOCATE_ADRS
You can specify the monitor location by modifying this label
LOCATE_ADRS. For example, if you want locate the monitor
program at 6000 hex, make above line to as below:

LOCATE_ADRS: .EQU H'6000 ;start monitor on 2k boundary

.SECTION fm536min,CODE,LOCATE=LOCATE_ADRS
Notice that the .SECTION statement is indented from the left margin;
if it is not indented, the assembler will attempt to interpret the
.SECTION as a label and will generate an error when processing the
address portion of the statement. You can loathtbe536min.src
monitor on a 2k byte boundary of 00800 hex through 0f800 hex.

In this example, we will locate the monitor at 8000 hex. Therefore, you
don't have to modify the monitor program.

A-4 Using the Foreground Monitor

Modify Location When you load the monitor "fmon536max.src” on a 2k byte boundary
Declaration of 10000 hex through 0ff800 hex, you must change the following
Statement Statement near the top of the monitor program. Because you cannot
define the base address larger than OFFFF hex with using ".SECTION"

(Maximum Modes) command in the monitor program.

LOCATE_ADRS .EQU H’8000 ;start monitor on 2k boundary
.SECTION fm536max,CODE,LOCATE=LOCATE_ADRS
;LOCATE_ADRS .EQU H'0000

; .SECTION fm536max,CODE

You must change the statement as follows to add ";" at the first and
second line and to delete ";" at the third and fourth line.

;LOCATE_ADRS .EQU H’8000 ;start monitor on 2k boundary
; .SECTION fm536max,CODE,LOCATE=LOCATE_ADRS
LOCATE_ADRS .EQU H’0000

.SECTION fm536max,CODE

When you link the monitor program, you must define the address
where the monitor will be loaded. For example, you may link the
monitor program "fmon536max.src” with the following command to
load the monitor at the base address 18000 hex.

$ h8Ink

INPUT fmon536max
:START fm536max(01:8000)
:OUTPUT fmon536max
EXIT

Notice that the "START fm536max(01:8000)" statement is used to
locate the monitor at the base address 18000 hex.

When you load the monitor "fmon536max.src" on a 2k byte boundary
of 00800 hex through 0f800 hex, you can take the same way to use the
"fmon536min.src” ; refer to the "Modify Location Declaration

Statement (Minimum Modes)" in this appendix.

Modifying the The following assumes you are modifying the default emulator
Emulator configuration (that is, the configuration present after initial entry into
Configuration the emulator or entry after a previous exit using
"end release_system"). Enter all the default answers except those
shown below.

Using the Foreground Monitor A-5

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

Monitor address? 8000h

Specifies that the monitor will reside in the 2K byte block from 8000
hex through 87FF hex.

Monitor file name? fmon536min

Enter the name of the foreground monitor absolute file. This file will
be loaded at the end of configuration.

Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added. Add the additional term to map memory
for the sample program, and "end" out of the memory mapper.

0 thru Tfffth emulation rom <RETURN>

0fb0O0h thru Offffh emulation ram <RETURN>

end <RETURN>
See the "Mapping Memory" section of the "Configuring the Emulator"
chapter for more information.

Configuration file name? fmcfg

If you wish to save the configuration specified above, answer this
guestion as shown.

A-6 Using the Foreground Monitor

Load the Program

Code

Single Step and
Foreground Monitors

Address Error During
Step Operation

Caution

Now it's time to load the sample program. You can load the sample
program with the following command:

load cmd_rds <RETURN>
Before running the sample program, you need to initialize the stack
pointer by breaking the emulator out of reset:

reset <RETURN>
break <RETURN>
Now you can run the sample program with the following command:

run from Init <RETURN>

To use thesteg' command to step through processor instructions with
either of the monitors listed in this chapter, youst modify the
processor’s exception vector table. The entry that you must modify is
the trace exception vector. The vector must point to the identifier
TRACE_ENTRY in the foreground monitor. You can know the
location of TRACE_ENTRY from the assemble listing generated by
the assembler.

In operation of H8/536 microprocessor, the Stack Pointer (SP) must
always contain an even value. Once it becomes to an odd value, an
address error will occur. In step operation of H8/536 emulator, if the
SP is forced to be an odd value by user program, the emulator will fail
to perform step instruction. The emulation processor will read the
address error exception vector, and it will continue executing from the
address pointed by the vector. If your program doesn't have proper
routine to process the address error, the emulation monitor program
may run away.

If the monitor program runs away, try to reset the emulator with
"reset" command. When the emulator cannot restore control, all y
can do is to initialize the emulator. In this case, you will lose all the
data in emulation memory.

Using the Foreground Monitor A-7

You can avoid the program run away by using an emulation monitor
routine. To use the routine, the address error exception vector in your
program must point to ADRSERR_ENTRY of the monitor program.

When the address error occurs, the emulator can break into the monitor
by using the routine. However, when the emulator breaks into the
monitor in this manner, register values are unreliable. Besides, the SP
will contain an odd value.
To continue your measurement, you have to do the following:

m Reset the emulator.

Or:
m Modify registers to proper values by yourself.

When you are using the background monitor, you don’t have to worry
about this issue. The background monitor can handle it by itself.

Limitations of Listed below are limitations or restrictions present when using a
Foreground foreground monitor.
Monitors

Synchronized You cannot perform synchronized measurements over the CMB when
Measurements using a foreground monitor. If you need to make such measurements,
select the background monitor type when configuring the emulator.

A-8 Using the Foreground Monitor

Index

A absolute file, loadin@-11
absolute files
storing5-6
Address error
during step operatioA-7
analyzer
configuring the externa-17
status qualifier-25
trigger by dat2-24
using the2-24
assembling the getting started sample prodt#&in

B backgroundl-6
background cycles
tracing4-16
background monito#-6, A-2
selectingd-6
blocked byte memory displ@¢16
breakpoint interrupt instruction
software breakpoint2-18
breaksl-5
break comman@-17
guarded memory accesses
software breakpoints-5, 2-18
write to ROM4-15
writes to ROM4-8
bus arbitration
using configuration to isolate target problé2

C C program
debuggings-4
displaying in mnemonic memory display
displaying in trace listin§-4

cautions

installing the target system proBe&
characterization of memo#¢8
cim, Terminal Interface commar2d19

Index-1

clearing software breakpoin?s21
clock source

externak-3

internal4-3
command file

creating and using-3
comparison of foreground/background monitars
compress mode,trace disp2y29
configuration options

background cycles to targétl3

drive emulation reset to targel3

enable /BREQ input-11

enable NMI input}-12

honor target reset-12

in-circuit 3-4

processor mod4-10

processor typd-10

trace bus release cyclésl 6
convert SYSROF absolute file to HP Absol2t6
converter, h8cnvhp-6
coordinated measuremeutd 7, 5-7
copy memorys-2
coverage analysis-2

D Debugging C progranis4

device table file2-8

display command
memory mnemoni2-14
memory mnemonic with symbaks15
memory repetitivel2-16
register-22, 5-7
software breakpoint®-20
symbols2-12
trace2-26

drive emulation reset to targétl3

E E clock5-5
emul700, command to enter the Softkey Interia8e 2-31
emulation analyze2-24
emulation memory
loading absolute fileg-11
note on target accesses

2-Index

RAM and ROM4-8
size of4-8
emulation monito#-6
backgroundi-6
monitor1-6
emulation monitor, foreground or backgrouir@
emulator
before usin@-2
device table file2-8
DMA supportl-7, 4-11
features ofl-3
limitations1-7, 5-6
memory mapper resolutich8
prerequisite2-2
purpose ofl-1
running from target res&t5
sleep modé-7, 5-6
software stand-by mode7, 5-6
target system-5
watch-dog timed.-7
emulator configuratio@-9
break processor on write to ROML5
clock selectiort-3
loading4-18
monitor entry afted-3
monitor type selection-6
restrict to real-time runé-4
saving4-17
stack pointes-14
trace background/foreground operatibth6
Emulator features
analyzerl-5
clock speed§-3
emulation memori-4
supported microprocessdrs3
Emulator limitations
DMA support5-6
RAM enable bitl-7, 5-6
watch-dog timeb-6
END assembler directive (pseudo instructi2+)6
end comman@-31, 4-18

Index-3

eram, memory characterizatidrB

erom, memory characterizatidr8

exit, Softkey Interfac@-31

external analyze2-24
configuratiord4-17

external clock sourcé-3

F features of the emulatdr3
file extensions
.EA and .EB, configuration file$-18
foregroundl-6
foreground monitoA-2
example of usiné\-3
location of shipped filea-1
selecting4-6
using the foreground monitéw-1
foreground monitor addreds?7
Foreground monitors
single-step processér7
foreground operation
tracing4-16
function codes
memory mapping-8

G getting starte@-1
prerequisite®-2
global symbol-14
displaying2-12
grd, memory characterizati@dhR8
guarded memory acces<es

H h8cnvhp, converte2-6
hardware installatiog-2
help
on-line2-9
pod command informatio210
softkey driven informatio2-9

I in-circuit configuration option8-4
in-circuit emulatior3-1, 4-1
installation

hardware2-2
software2-2

4-Index

installing target system probe
Seetarget system probe
interactive measurememsl?
internal clock sourcé-3
internal 1/O register display/modify-7
interrupt
NMI 4-12

limitations of the emulatat-7, 5-6

linking the getting started sample prograsé
loading absolute fileg-11

loading emulator configuratiods18

local symbols, displaying-13

locked, end command opti@i31

logging of commands-3

mapping memory-8
measurement systePa32
creating2-7
initialization 2-7
memory
characterizatiod-8
copying5-2
mapping4-8
mnemonic displag-14
mnemonic display with C sourcsA
mnemonic display with symbois15
modifying 2-16
repetitively display2-16
searching for strings or expressidng
memory characterizatioh-8
memory mapping
function code-8
ranges, maximum-8
sequence of map/load comma#dds
mnemonic memory disple3+14
modify command
configuratiord-1
memory2-16
software breakpoints cledr21
software breakpoints s220
module2-32

Index-5

6-Index

module, emulatio2-7
monitor
breaking inta2-17
monitor (emulation}-6
backgroundi-6, A-2
comparison of foreground/backgroufiel
foregroundA-2
monitor type, selecting-6
monitors
foreground,specifying the filenarde7
MOVFPE instructiorb-5
MOVTPE instructiorb-5

non-maskable interrugt12

nosymbol2-12

note statements
display trace with compress mo230

notes
"debug" option must need to generate local symbol informaté&n
config. option for reset stack pointer recommentldd
DMA to emulation memory not supportdell 1
internal memory must be assigned as emulation me#8ry
map memory before loading program®
pod commands that should not be exectted
selecting internal clock forces rege8
setting software bkpts. while running user c2eE
software breakpoint locatior2s18
software breakpoints and ROM cazid9
target accesses to emulation memb/
write to ROM analyzer statés15

on-line help2-9
out-of-circuit emulatio-1

PATH, HP-UX environment variab®-6/2-8
Pin guard

target system proki2
PLCC socket

connect to the target systén8
pmon, User Interface Softwa2e7, 2-31
pod_comman@-10

features available with-2

help informatior2-10

predefining stack pointet-14
prerequisites for using the emula®s@
processor operation mode€l0
processor typd-10

purpose of the emulatdrl

RAM, mapping emulation or targé+8
real-time executioi-6
commands not allowed durirg5
commands which will cause breélbd
restricting the emulator -4
register display/modif@-22
registersl-5, 5-7
classe®-22
release_system
end command optio2-31, 4-17/4-18
relocate the foreground monitor address (maximum maddés)
repetitive display of memor2-16
reset (emulator)
running from target res&t5
reset(emulator)-6
reset(emulator), running from target re2t6
restrict to real-time runs
emulator configuratiod-4
ROM
mapping emulation or targét8
writes to4-8
run comman@-15
run from target rese&-5

sample program

descriptior2-2
sample program, linking-6
saving the emulator configuratidnl?
simulated I/OX4-17
Single step

in foreground monitoA-7
single-stefdl-5
softkey driven help informatio-9
Softkey Interface

entering2-7

exiting 2-31

Index-7

8-Index

on-line help2-9
software breakpoints-5, 2-18
clearing2-21
displaying2-20
enabling/disablin@-19
setting2-20
software installatior2-2
stack pointer,defining-14
status qualifier@-25
step comman@d-23
with C progranb-4
string delimiter2-10
supervisor stack pointer
required for proper operatierl4
symbols, displayin@-12
system overviev@-2

target memory, loading absolute fiz4.1
target reset

running from3-5
target system probe

cautions for installatioB-2

installation3-2

installation procedurg-3

pin guard3-2
target system RAM and ROKA8
Terminal Interfac®-10
trace

display with C source linés-4
trace, displaying th2-26
trace, displaying with time count absol2t28
trace, reducing the trace dept30
trace,displaying with compress magi29
tracing background operatidnl6
tracing bus release cyclésl6
tram, memory characterizatidn3
transfer address, running fra2vl6
trigger state2-26
trigger, specifyin@-24
trom, memory characterizati@in8

undefined software breakpoi?#18
user (target) memory, loading absolute fetl

visible background cycle$-13

window systemg-31
write to ROM breald-15

Index-9

Notes

10-Index

	Using This Manual
	Contents
	Introduction to the H8/536 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	Using the Foreground Monitor
	Index

