
HP 64739

H8/536 Emulator
Softkey Interface

User’s Guide

HP Part No. 64739-97005
Printed in U.S.A.
February 1994

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
P.O.Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64739-97002, February 1991

Edition 2 64739-97005, February 1994

Using This Manual

This manual introduces you to the following emulators as used with the
Softkey Interface.

HP 64739A H8/536 emulator

HP 64739B H8/536S emulator

Throughout this documentation, the following names are used to
denote the microprocessors listed in the following table of supported
microprocessors.

Model Supported Microprocessors Reffered to as

HP 64739A(H8/536 emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP

H8/536
H8/536
H8/534
H8/534

HP 64739B(H8/536S emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP
HD6475368SCP
HD6435368SCP
HD6475348SCP
HD6435348SCP

H8/536
H8/536
H8/534
H8/534

H8/536S
H8/536S
H8/534S
H8/534S

For the most part, the H8/536 and H8/536S emulators all operate the
same way. Differences of between the emulators are described where
they exist. Both the H8/536 and H8/536S emulators will be referred to
as the "H8/536 emulator". In the specific instances where H8/536S
emulator differs from H8/536 emulator, it will be described as
"H8/536S emulator".

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator to
real-time execution, selecting a target system clock source.

This manual will not:

tell you how to use each and every emulator/analyzer
command (refer to the User’s Reference manual)

Organization

Chapter 1 Introduction to the H8/536 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic features
of the H8/536 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 In-Circuit Emulation. This chapter shows you how to install the
emulator probe into a target system and how to use the "in-circuit"
emulation features.

Chapter 4 Configuring the Emulator. This chapter shows you how to restrict
the emulator to real-time execution, select a target system clock source,
allow background cycles to be seen by the target system.

Chapter 5 Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter.

Appendix A Using the Foreground Monitor. This appendix describes the
advantages and disadvantages of foreground and background monitors
and how to use foreground monitors.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax
which may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands which
follow the "$" are entered at the HP-UX prompt.

<RETURN> The carriage return key.

Contents

1 Introduction to the H8/536 Emulator

Introduction . 1-1
Purpose of the H8/536 Emulator 1-1
Features of the H8/536 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-4
Analysis . 1-5
Registers . 1-5
Single-Step . 1-5
Target System Interface . 1-5
Breakpoints . 1-5
Reset Support . 1-6
Foreground or Background Emulation Monitor 1-6
Real-Time Execution . 1-6

Limitations, Restrictions . 1-7
DMA Support . 1-7
Sleep and Software Stand-by Mode 1-7
Watch Dog Timer in Background 1-7
RAM Enable Bit . 1-7

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6
Generate HP Absolute file . 2-6

Entering the Softkey Interface . 2-7
From the "pmon" User Interface 2-7
From the HP-UX Shell . 2-8
Using the Default Configuration 2-9

On-Line Help . 2-9

Contents-1

Softkey Driven Help . 2-9
Pod Command Help . 2-10

Loading Absolute Files . 2-11
Displaying Symbols . 2-12

Global . 2-12
Local . 2-13

Displaying Memory in Mnemonic Format 2-14
Display Memory with Symbols 2-15

Running the Program . 2-15
From Transfer Address . 2-16
From Reset . 2-16

Displaying Memory Repetitively 2-16
Modifying Memory . 2-16
Breaking into the Monitor . 2-17
Using Software Breakpoints . 2-18

Enabling/Disabling Software Breakpoints 2-19
Setting a Software Breakpoint 2-20
Displaying Software Breakpoints 2-20
Clearing a Software Breakpoint 2-21

Displaying Registers . 2-22
Stepping Through the Program 2-23
Using the Analyzer . 2-24

Specifying a Simple Trigger 2-24
Displaying the Trace . 2-26
Displaying Trace with Time Count Absolute 2-28
Displaying Trace with Compress Mode 2-29
Changing the Trace Depth 2-30
For a Complete Description 2-31

Exiting the Softkey Interface . 2-31
End Release System . 2-31
Ending to Continue Later . 2-31
Ending Locked from All Windows 2-31
Selecting the Measurement System Display
or Another Module . 2-32

3 In-Circuit Emulation

Prerequisites . 3-1
Installing the Target System Probe 3-2
Installing into a PLCC Type Socket 3-3
In-Circuit Configuration Options 3-4
Running the Emulator from Target Reset 3-5

2-Contents

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-3

Micro-processor clock source? 4-3
Enter monitor after configuration? 4-3
Restrict to real-time runs? . 4-4

Memory Configuration . 4-6
Monitor type? . 4-6
Mapping Memory . 4-8

Emulator Pod Configuration . 4-10
Processor type? . 4-10
Processor operation mode? 4-10
Enable bus arbitration? . 4-11
Enable NMI input from the target system? 4-12
Enable /RES input from the target system 4-12
Drive emulation reset to the target system? 4-13
Drive background cycles to the target system? 4-13
Reset value for stack pointer? 4-14

Debug/Trace Configuration . 4-15
Break processor on write to ROM? 4-15
Trace background or foreground operation? 4-16
Trace bus release cycles? . 4-16

Simulated I/O Configuration . 4-17
Interactive Measurement Configuration 4-17
External Analyzer Configuration 4-17
Saving a Configuration . 4-17
Loading a Configuration . 4-18

5 Using the Emulator

Introduction . 5-1
Features Available via Pod Commands 5-2
Using a Command File . 5-3
Debugging C Programs . 5-4

Displaying Memory with C Sources 5-4
Displaying Trace with C Sources 5-4
Stepping C Sources . 5-5

E clock synchronous instructions 5-5
Limitations, Restrictions . 5-6

DMA Support . 5-6
Sleep and Software Stand-by Mode 5-6
Watch-Dog Timer . 5-6

Contents-3

RAM Enable Bit . 5-6
Storing Memory Contents to an Absolute File 5-6
Coordinated Measurements . 5-7
Register Names and Classes . 5-7

Summary . 5-7
BASIC Class . 5-7
SYS Class . 5-8
INTC Class . 5-8
DTC Class . 5-8
PORT Class . 5-9
FRT1 Class . 5-9
FRT2 Class . 5-10
FRT3 Class . 5-10
TMR Class . 5-10
PWM1 Class . 5-10
PWM2 Class . 5-11
PWM3 Class . 5-11
WDT Class . 5-11
SCI1 Class . 5-11
SCI2 Class . 5-12
ADC Class . 5-12

A Using the Foreground Monitor

Introduction . A-1
Comparison of Foreground and Background Monitors A-1

Background Monitors . A-2
Foreground Monitors . A-2

An Example Using the Foreground Monitor A-3
Assemble and Link the Monitor A-4
Modify Location Declaration
Statement
(Minimum Modes) . A-4
Modify Location Declaration
Statement
(Maximum Modes) . A-5
Modifying the Emulator Configuration A-5
Load the Program Code . A-7
Single Step and Foreground Monitors A-7
Address Error During Step Operation A-7

Limitations of Foreground Monitors A-8
Synchronized Measurements A-8

4-Contents

Illustrations

Figure 1-1. HP 64739 Emulator for the H8/536 Emulator 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. Softkey Interface Display 2-8
Figure 3-1. Installing into a PLCC type socket 3-3

Tables

Table 1-1. Supported Microprocessors 1-3
Table 1-2. Clock Speeds . 1-4

Contents-5

Notes

6-Contents

1

Introduction to the H8/536 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/536 emulator.

Features of the H8/536 emulator.

Purpose of the
H8/536 Emulator

The H8/536 emulator is designed to replace the H8/536 microprocessor
in your target system to help you debug/integrate target system
software and hardware. The emulator performs just like the processor
which it replaces, but at the same time, it gives you information about
the bus cycle operation of the processor. The emulator gives you
control over target system execution and allows you to view or modify
the contents of processor registers, target system memory.

Introduction 1-1

Figure 1-1. HP 64739 Emulator for the H8/536 Emulator

1-2 Introduction

Features of the
H8/536 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The H8/536 emulator supports the microprocessors listed in Table 1-1.

Table 1-1. Supported Microprocessors

Model Supported Microprocessors Reffered to as

HP 64739A(H8/536 emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP

H8/536
H8/536
H8/534
H8/534

HP 64739B(H8/536S emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP
HD6475368SCP
HD6435368SCP
HD6475348SCP
HD6435348SCP

H8/536
H8/536
H8/534
H8/534

H8/536S
H8/536S
H8/534S
H8/534S

Clock Speeds You can select whether the emulator will be clocked by the internal
clock source or by the external clock source on your target system. You
must use a clock input conforming to the specification of Table 1-2.

When you use an external crystal, you need to input conforming to the
specification of microprocessor.

Introduction 1-3

Table 1-2. Clock Speeds

Clock source Model Microprocessor Clock Speed

Internal HP 64739A
(H8/536 emulator)

H8/536
H8/534

10MHz
(System clock)

HP 64739B
(H8/536S emulator)

H8/536
H8/534

H8/536S
H8/534S

10MHz
(System clock)

External HP 64739A
(H8/536 emulator)

H8/536
H8/534

From 0.5 up to 10MHz
(System clock)

HP 64739B
(H8/536S emulator)

H8/536
H8/534

From 0.5 up to 10MHz
(System clock)

H8/536S
H8/534S

From 0.5 up to 16MHz
(System clock)

Emulation memory The H8/536 emulator is used with one of the following Emulation
Memory Cards.

HP 64726A 128K byte Emulation Memory Card
HP 64727A 512K byte Emulation Memory Card
HP 64728A 1M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and
least 256 byte in length.) The emulator occupies 2K byte, which is
used for monitor program, leaving 126K, 510K, 1022K byte of
emulation memory which you may use. You can characterize memory
range as emulation RAM (eram), emulation ROM (erom), target
system RAM (tram), target system ROM (trom), or guarded memory
(grd). The emulator generates an error message when accesses are
made to guarded memory locations. You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution.

1-4 Introduction

Analysis The H8/536 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704A 80-channel Emulation Bus Analyzer
HP 64703A 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer.
HP 64794x 80-channel 8K/64K/256K Emulation Bus
Analyzer.

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703A 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the H8/536 internal register contents. This
includes the ability to modify the program counter (PC) and code page
register (CP) so you can control where the emulator begins executing a
target system program.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Target System
Interface

You can set the interface to the target system to be active or passive
during background monitor operation. (See the "Emulator Pod
Configuration" section of the
"Configuring the Emulator" chapter for further details.)

Breakpoints You can set the emulator/analyzer interaction so that when the analyzer
finds a specific state, emulator execution will break out of the user
program into the monitor.

You can also define software breakpoints in your program. The
emulator uses one of H8/536 undefined opcode (1B hex) as software
breakpoint interrupt instruction. When you define a software
breakpoint, the emulator places the breakpoint interrupt instruction (1B
hex) at the specified address; after the breakpoint interrupt instruction
causes emulator execution to break out of your program, the emulator
replaces the original opcode. Refer to the "Using Software
Breakpoints" section of "Getting Started" chapter for more information.

Introduction 1-5

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes H8/536 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground. The mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background. The emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy processor address space.

Real-Time Execution Real-time execution signifies continuous execution of your program
without interference from the emulator. (Such interference occurs
when the emulator temporarily breaks into the monitor so that it can
access register contents or target system memory.)

Emulator features performed in real time include: running and analyzer
tracing.

Emulator features not performed in real time include: display or modify
of target system memory; load/dump of any memory, display or
modification of registers, and single step.

1-6 Introduction

Limitations,
Restrictions

DMA Support Direct memory access to H8/536 emulation memory is not permitted.

Sleep and Software
Stand-by Mode

When the emulator breaks into the emulation monitor, H8/536
microprocessor sleep or software stand-by mode is released and comes
to normal processor mode.

Watch Dog Timer in
Background

Watch dog timer suspends count up while the emulator is running in
background monitor.

RAM Enable Bit The internal RAM of H8/536 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator accesses emulation RAM even if
the internal RAM is disabled by RAME.

Introduction 1-7

Notes

1-8 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the HP 64739 emulator with
the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s example.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Emulators Softkey Interface Installation Notice and the
HP 64700 Emulators: Hardware Installation and
Configuration manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Emulators Softkey Interface
Installation Notice for instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in the HP 64700 System Overview
manual. The System Overview also covers HP 64700 system
architecture. A brief understanding of these concepts may
help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
H8/536 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter. The sample
program is shipped with the Softkey Interface and may be copied from
the following location.

/usr/hp64000/demo/emul/hp64739/cmd_rds.src

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A,Msg_B, and Msg_I.

2-2 Getting Started

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "Command A entered "
Msg_B .SDATA "Entered B command "
Msg_I .SDATA "Invalid Command "
End_Msgs

 .SECTION Prog,CODE
;***
;* Sets up the stack pointer.
;***
Init MOV:G.W #Stack,R7
;***
;* Clear previous command.
;***
Read_Cmd MOV:G.B #0,@Cmd_Input
;***
;* Read command input byte. If no command has
;* been entered, continue to scan for input.
;***
Scan MOV:G.B @Cmd_Input,R0
 BEQ Scan
;***
;* A command has been entered. Check if it is
;* command A, command B, or invalid.
;***
Exe_Cmd CMP:E.B #H’41,R0
 BEQ Cmd_A
 CMP:E.B #H’42,R0
 BEQ Cmd_B
 BRA Cmd_I
;***
;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the
;* message. Jump to the routine which writes
;* the messages.
;***
Cmd_A MOV:I.W #Msg_B-Msg_A-1,R1
 MOV:I.W #Msg_A,R4
 BRA Write_Msg
;***
;* Command B is entered.
;***
Cmd_B MOV:I.W #Msg_I-Msg_B-1,R1
 MOV:I.W #Msg_B,R4
 BRA Write_Msg
;***
;* An invalid command is entered.
;***
Cmd_I MOV:I.W #End_Msgs-Msg_I-1,R1
 MOV:I.W #Msg_I,R4
;***

Figure 2-1. Sample Program Listing

Getting Started 2-3

Initialization

The program instruction at the Init label initializes the stack pointer.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to see if a command is entered
(a value other than 0 hex).

;* Message is written to the destination.
;***
Write_Msg MOV:I.W #Msg_Dest,R5
Again MOV:G.B @R4+,R3
 MOV:G.B R3,@R5+
 SCB/EQ R1,Again
;***
;* The rest of the destination area is filled
;* with zeros.
;***
Fill_Dest MOV:G.B #0,@R5+
 CMP:I.W #Msg_Dest+H’20,R5
 BNE Fill_Dest
;***
;* Go back and scan for next command.
;***
 BRA Read_Cmd

 .SECTION Data,COMMON
;***
;* Command input byte.
;***
Cmd_Input .RES.B 1
 .RES.B 1
;***
;* Destination of the command messages.
;***
Msg_Dest .RES.W H’3E
Stack .RES.W 1 ; Stack area.
 .END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register R1
with the length of the message to be displayed and register R4 with the
starting location of the appropriate message. Then, execution transfers
to Write_Msg which writes the appropriate message to the destination
location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20 hex bytes long.) Then, the program branches back to read the
next command.

The Destination Area

The "Data" section declares memory storage for the command input
byte, the destination area, and the stack area.

This program emulates a primitive command interpreter.

Getting Started 2-5

Sample Program
Assembly

The sample program is written for and assembled with the HP 64869
H8/500 Assembler/Linkage Editor. The sample program was
assembled with the following command below(which assumes that
/usr/hp64000/bin is defined in the PATH environment variable).

$ h8asm -debug cmd_rds.src <RETURN>

Linking the Sample
Program

The sample program can be linked with following command and
generates the absolute file. The contents of "cmd_rds.k" linkage editor
subcommand file is shown in figure 2-2.

$ h8lnk -subcommand= cmd_rds.k <RETURN>

Generate HP
Absolute file

To generate HP Absolute file for the Softkey Interface, you need to use
"h8cnvhp" absolute file format converter program. The h8cnvhp
converter is provided with HP 64869 H8/500 Assembler/Linkage
Editor. To generate HP Absolute file, enter following command:

$ h8cnvhp cmd_rds <RETURN>

You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are
generated. These are sufficient throughout this chapter.

Note You need to specify "debug" command line option to both assembler
and linker command to generate local symbol information. The
"debug" option for the assembler and linker direct to include local
symbol information to the object file.

 debug
 input cmd_rds
 start Prog(1000),Table(2000),Data(0FE00)
 output cmd_rds
 exit

Figure 2-2. Linkage Editor Subcommand File

2-6 Getting Started

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>

If you have not already created a measurement system for the H8/536
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>

After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>

To define a measurement system for the H8/536 emulator, enter:

make_sys emh8 <RETURN>

Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it h8 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named "emh8"
and "h8" as shown above, you can enter the emulation system with the
following command:

emh8 default h8 <RETURN>

Getting Started 2-7

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

 HP64739-19001 A.03.00 01Apr91
 H8/536 EMULATION SERIES 64700

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1990

 All Rights Reserved. Reproduction, adaptation, or translationwithout prior
 written permission is prohibited, except as allowed undercopyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) ofthe Rights
 in Technical Data and Computer Software clause at DFARS52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA94304-1181

 STATUS: Loaded configuration file____________________________________...R....

 run trace step display modify break end ---ETC--

Figure 2-3. Softkey Interface Display

2-8 Getting Started

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

Using the Default
Configuration

The default emulator configuration is used with the following examples.

The address range 0 hex through F5FF hex is mapped as emulation
ROM, and F600 hex through FEFF hex as emulation RAM.

The emulator emulates the H8/536 processor (rather than H8/534)
using the background monitor.

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

Getting Started 2-9

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help m’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

 ---SYSTEM COMMANDS---

 ? displays the possible help files
 help displays the possible help files
 ! fork a shell (specified by shell variable SH)
 !<shell cmd> fork a shell and execute a shell command
 cd <directory> change the working directory
 pwd print the working directory
 cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic
 pws print the working symbol
 <FILE> p1 p2 p3 ... execute a command file passing parameters p1, p2, p3

 log_commands to <FILE> logs the next sequence of commands to file <FILE>
 log_commands off discontinue logging commands
 name_of_module get the "logical" name of this module (see 64700tab)
 set <ENVVAR> = <VALUE> set and export a shell environment variable
 set HP64KPATH = <MYPATH> set and export the shell environment variable that
 specifies the search path for command files
 wait pause until <cntrl-c> (SIGINT)
 --More--(42%)

2-10 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" or
"user_mem". For example:

load cmd_rds <RETURN>

Normally, you will configure the emulator and map memory before
you load the absolute file; however, the default configuration is
sufficient for the sample program.

 Pod Commands
 Time Command
 10:00:00 help m

 m - display or modify processor memory space
 m <addr> - display memory at address
 m -d<dtype> <addr> - display memory at address with display option
 m <addr>..<addr> - display memory in specified address range
 m -dm <addr>..<addr> - display memory mnemonics in specified range
 m <addr>.. - display 128 byte block starting at address A
 m <addr>=<value> - modify memory at address to <value>
 m -d<dtype> <addr>=<value> - modify memory with display option
 m <addr>=<value>,<value> - modify memory to data sequence
 m <addr>..<addr>=<value>,<value> - fill range with repeating sequence
 --- VALID <dtype> MODE OPTIONS ---
 b - display size is 1 byte(s)
 w - display size is 2 byte(s)
 m - display processor mnemonics

 STATUS: H8/536-Running in monitor____________________________________........
 pod_command ’help m’

 run trace step display modify break end ---ETC--

Getting Started 2-11

Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" option), symbol information is loaded. Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol and the offset of
the symbol within the minimum value of these global symbols.

 Global symbols in cmd_rds
 Static symbols
 Symbol name Address range Contents Segment Offset
 Cmd_Input 0FE00 EE00
 Init 01000 0000
 Msg_Dest 0FE02 EE02
 Msgs 02000 1000

 Filename symbols
 Filename
 cmd_rds.src

 STATUS: H8/536--Running in monitor___________________________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

2-12 Getting Started

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.src:
<RETURN>

Listed are: address ranges associated with a symbol and the offset of
that symbol within the start address of the section that the symbol is
associated with.

 Symbols in cmd_rds.src:
 Static symbols
 Symbol name Address range Contents Segment Offset
 Again 01032 0032
 Cmd_A 01019 0019
 Cmd_B 01021 0021
 Cmd_I 01029 0029
 Cmd_Input 0FE00 0000
 Data 0FE00 0000
 Exe_Cmd 0100F 000F
 Fill_Dest 01039 0039
 Init 01000 0000
 Msg_A 02000 0000
 Msg_B 02012 0012
 Msg_Dest 0FE02 0002
 Msg_I 02024 0024
 Msgs 01000 0000
 Prog
 STATUS: H8/536--Running in monitor___________________________________...R....
 display local_symbols_in cmd_rds.src:

 load store stop-trc copy reset specify cmb_exec ---ETC--

Getting Started 2-13

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example to display the memory of the "cmd_rds" program,

display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbol Init is used in the command above to specify the starting
address of the memory to be displayed.

 Memory :mnemonic :file = cmd_rds.src:
 address data
 --- --------------
 01000 0CFE7E87 MOV:G.W #FE7E,R7
 01004 15FE000600 MOV:G.B #00,@FE00
 01009 15FE0080 MOV:G.B @FE00,R0
 0100D 27FA BEQ 01009
 0100F 4041 CMP:E.B #41,R0
 01011 2706 BEQ 01019
 01013 4042 CMP:E.B #42,R0
 01015 270A BEQ 01021
 01017 2010 BRA 01029
 01019 590011 MOV:I.W #0011,R1
 0101C 5C2000 MOV:I.W #2000,R4
 0101F 200E BRA 0102F
 01021 590011 MOV:I.W #0011,R1
 01024 5C2012 MOV:I.W #2012,R4
 01027 2006 BRA 0102F
 01029 59000F MOV:I.W #000F,R1

 STATUS: H8/536--Running in monitor___________________________________...R....
 display memory Init mnemonic

 run trace step display modify break end ---ETC--

2-14 Getting Started

Display Memory with
Symbols

If you want to see symbol information with displaying memory in
mnemonic format, the H8/536 emulator Softkey Interface provides "set
symbols" command. To see symbol information, enter the following
command.

set symbols on <RETURN>

As you can see, the memory display shows symbol information.

Running the
Program

The "run" command lets you execute a program in memory. Entering
the "run" command by itself causes the emulator to begin executing at
the current program counter address. The "run from" command allows
you to specify an address at which execution is to start.

 Memory :mnemonic :file = cmd_rds.src:
 address label data

 01000 :Init 0CFE7E87 MOV:G.W #FE7E,R7
 01004 cmd:Read_Cmd 15FE000600 MOV:G.B #00,@FE00
 01009 cmd_rds:Scan 15FE0080 MOV:G.B @FE00,R0
 0100D 27FA BEQ cmd_rds.src:Scan
 0100F cmd_:Exe_Cmd 4041 CMP:E.B #41,R0
 01011 2706 BEQ cmd_rds.sr:Cmd_A
 01013 4042 CMP:E.B #42,R0
 01015 270A BEQ cmd_rds.sr:Cmd_B
 01017 2010 BRA cmd_rds.sr:Cmd_I
 01019 cmd_rd:Cmd_A 590011 MOV:I.W #0011,R1
 0101C 5C2000 MOV:I.W #2000,R4
 0101F 200E BRA cmd_rd:Write_Msg
 01021 cmd_rd:Cmd_B 590011 MOV:I.W #0011,R1
 01024 5C2012 MOV:I.W #2012,R4
 01027 2006 BRA cmd_rd:Write_Msg
 01029 cmd_rd:Cmd_I 59000F MOV:I.W #000F,R1

 STATUS: H8/536--Running in monitor___________________________________...R....
 set symbols on

 run trace step display modify break end ---ETC--

Getting Started 2-15

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the .END
assembler directive (i.e., pseudo instruction). For example, the sample
program defines the address of the label Init as the transfer address.
The following command will cause the emulator to execute from the
address of the Init label.

run from transfer_address <RETURN>

From Reset The "run from reset" command specifies that the emulator begin
executing from target system reset(see "Running From Reset" section
in the "In-Circuit Emulation" chapter).

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the information
on the screen is constantly updated. For example, to display the
Msg_Dest locations of the sample program repetitively (in blocked
byte format), enter the following command.

display memory Msg_Dest repetitively blocked
bytes <RETURN>

Modifying Memory The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labeled Cmd_Input . You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory Cmd_Input bytes to 41h <RETURN>

Or:

modify memory Cmd_Input strings to ’A’
<RETURN>

2-16 Getting Started

After the memory location is modified, the repetitive memory display
shows that the "Command A entered" message is written to the
destination locations.

Breaking into the
Monitor

The "break" command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

 Memory :bytes :blocked :repetitively
 address data :hex :ascii
 0FE02-09 43 6F 6D 6D 61 6E 64 20 C o m m a n d
 0FE0A-11 41 20 65 6E 74 65 72 65 A e n t e r e
 0FE12-19 64 20 00 00 00 00 00 00 d
 0FE1A-21 00 00 00 00 00 00 00 00
 0FE22-29 00 00 00 00 00 00 00 00
 0FE2A-31 00 00 00 00 00 00 00 00
 0FE32-39 00 00 00 00 00 00 00 00
 0FE3A-41 00 00 00 00 00 00 00 00
 0FE42-49 00 00 00 00 00 00 00 00
 0FE4A-51 00 00 00 00 00 00 00 00
 0FE52-59 00 00 00 00 00 00 00 00
 0FE5A-61 00 00 00 00 00 00 00 00
 0FE62-69 00 00 00 00 00 00 00 00
 0FE6A-71 00 00 00 00 00 00 00 00
 0FE72-79 00 00 00 00 00 00 00 00
 0FE7A-81 00 00 00 00 00 00 00 00

 STATUS: H8/536--Running user program_________________________________...R....
 modify memory Cmd_Input bytes to 41h

 run trace step display modify break end ---ETC--

Getting Started 2-17

Using Software
Breakpoints

Software breakpoints are provided with one of H8/536 undefined
opcode (1B hex) as breakpoint interrupt instruction. When you define
or enable a software breakpoint, the emulator will replace the opcode at
the software breakpoint address with the breakpoint interrupt
instruction.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (1B hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or opcode in your target
program.

If it is a software breakpoint, execution breaks to the monitor, and the
breakpoint interrupt instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.

If it is an opcode of your target program, execution still breaks to the
monitor, and an "Undefined software breakpoint" status message is
displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode.

Up to 32 software breakpoints may be defined.

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

2-18 Getting Started

Note Because software breakpoints are implemented by replacing opcodes
with the undefined opcode (1B hex), you cannot define software
breakpoints in target ROM. You can, however, use the Terminal
Interface cim command to copy target ROM into emulation memory
(see the Terminal Interface: User’s Reference manual for information
on the cim command).

Note Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the breakpoint interrupt instruction (1B hex) will be placed
at the address specified. When the special code is executed, program
execution will break into the monitor.

Getting Started 2-19

Setting a Software
Breakpoint

To set a software breakpoint at the address of the Cmd_I label, enter
the following command.

modify software_breakpoints set Cmd_I
<RETURN>

After the software breakpoint has been set, enter the following
command to cause the emulator to continue executing the sample
program.

run <RETURN>

Now, modify the command input byte to an invalid command for the
sample program.

modify memory Cmd_Input bytes to 75h <RETURN>

A message on the status line shows that the software breakpoint has
been hit. The status line also shows that the emulator is now executing
in the monitor.

Displaying Software
Breakpoints

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

The software breakpoints display shows that the breakpoint is
inactivated. When breakpoints are hit they become inactivated. To
reactivate the breakpoint so that is "pending", you must reenter
the "modify software_breakpoints set" command.

2-20 Getting Started

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear Cmd_I
<RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

 Software breakpoints :enabled
 Address label status
 01029 cmd_rd:Cmd_I inactivated

 STATUS: H8/536--Running in monitor Software break: 001029_______...R....
 display software_breakpoints

 run trace step display modify break end ---ETC--

Getting Started 2-21

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers class, or an individual register.

display registers <RETURN>

You can use "register class" and "register name" to display registers.
Refer to "Register Names and Classes" section in chapter 5.

 Registers

 Next_PC 01029
 CP 00 TP 00 DP 00 EP 00 SR 0700 < > MDCR C7
 PC 1029 SP FE7E FP 0000 BR 00
 R0 0075 R1 FFFF R2 0000 R3 0020 R4 2012 R5 FE22 R6 0000 R7 FE7E

 STATUS: H8/536--Running in monitor______Software break: 001029________...R....
 display registers

 run trace step display modify break end ---ETC--

2-22 Getting Started

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step
from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line, it
may be entered by pressing <RETURN>.

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

 Registers

 Next_PC 0102C
 CP 00 TP 00 DP 00 EP 00 SR 0700 < > MDCR C7
 PC 102C SP FE7E FP 0000 BR 00
 R0 0075 R1 000F R2 0000 R3 0020 R4 2012 R5 FE22 R6 0000 R7 FE7E

 Step_PC 0102C MOV:I.W #2024,R4
 Next_PC 0102F
 CP 00 TP 00 DP 00 EP 00 SR 0700 < > MDCR C7
 PC 102F SP FE7E FP 0000 BR 00
 R0 0075 R1 000F R2 0000 R3 0020 R4 2024 R5 FE22 R6 0000 R7 FE7E

 Step_PC 0102F MOV:I.W #FC02,R5
 Next_PC 01032
 CP 00 TP 00 DP 00 EP 00 SR 0708 < n > MDCR C7
 PC 1032 SP FE7E FP 0000 BR 00
 R0 0075 R1 000F R2 0000 R3 0020 R4 2024 R5 FE02 R6 0000 R7 FE7E

 STATUS: H8/536--Stepping complete____________________________________...R....
 step

 run trace step display modify break end ---ETC--

Getting Started 2-23

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse
of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Specifying a Simple
Trigger

Suppose you want to trace program execution after the point at which
the sample program reads the "B" (42 hex) command from the
command input byte. To do this, you would trace after the analyzer
finds a state in which a value of 42xxh is read from the Cmd_Input
byte. The following command makes this trace specification.

trace after Cmd_Input data 42xxh status read
<RETURN>

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "B" with the following
command.

modify memory Cmd_Input bytes to 42h <RETURN>

The status line now shows "Emulation trace complete".

Triggering the Analyzer by Data

You may want to trigger the emulation analyzer when a specific data
appears on the data bus. You can accomplish this by specifying "data"
in the "trace" command.

You always need to specify the "data" with a 16 bits value even when
the data access is performed with byte sizes. This is because the
emulation analyzer is designed to be able to catch the data on internal
16 bits-width data bus. The following table shows the way to specify
the trigger condition by data.

2-24 Getting Started

 (DATA READ/WRITE)
 ===
 | | Available
 Location of data | Accesses | <DATA> Specification
 ===
 Internal ROM,RAM | Word | HHLL *1
 +----------+---------------------
 | Byte | DDxx *2
 -------------------+----------+---------------------
 Others | DDxx
 ===

 (INSTRUCTION FETCH)
 ===
 | | Available
 Location of data | Address | <DATA> Specification
 ===
 Internal ROM,RAM | EVEN | HHLL *1
 +----------+---------------------
 | ODD | xxDD *2
 --------------------+----------+---------------------
 Others | DDxx *2
 ===
 *1 HHLL means 16 bits data
 *2 DD means 8 bits data

For example, to trigger the analyzer when the processor accesses data
12 hex in external ROM, you may use "12xxh" as "data" specification.

H8/536 Analysis Status Qualifiers

The status qualifier "read" was used in the example trace command
used before in this chapter. The following analysis status qualifiers
may also be used with the H8/536 emulator.

 Qualifier Status Bits (36..47) Description

 backgrnd 0xxx xxxx xxxxB Background cycle
 brelease x111 xxxx xxxxB Bus release cycle
 byte x110 xxxx xx1xB Byte access
 cpu x110 xx1x xxxxB CPU cycle
 data x110 xxxx x1xxB Data access
 dtc x110 xx0x xxxxB Data transfer controller cycle
 exec x101 xxxx xxxxB Instruction execution cycle
 fetch x110 xx1x x001B Program fetch cycle
 foregrnd 1xxx xxxx xxxxB Foreground cycle
 grd x110 0xx1 xxxxB Guarded memory access
 intack x011 xxxx xxxxB Interrupt acknowledge cycle
 io x110 xxx0 xxxxB Internal I/O access
 memory x110 xxx1 xxxxB Memory access
 read x110 xxxx xxx1B Read cycle
 word x110 xxxx xx0xB Word access
 write x110 xxxx xxx0B Write cycle
 wrrom x110 x0x1 xxx0B Write to ROM cycle

Getting Started 2-25

Displaying the Trace The trace listings which follow are of program execution on the
H8/536 emulator. To display the trace, enter:

display trace <RETURN>

Line 0 (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0. The other
states show the exit from the Scan loop and the Exe_Cmd and Cmd_B
instructions. To list the next lines of the trace, press the <PGDN> or
<NEXT> key.

The resulting display shows Cmd_B instructions, the branch to
Write_Msg and the beginning of the instructions which move the
"Entered B command " message to the destination locations.

To list the previous lines of the trace, press the <PGUP> or <PREV>
key.

 Trace List Offset=0
 Label: Address Data Opcode or Status w/ Source Lines time count
 Base: symbols hex mnemonic w/symbols relative
 after :Cmd_Input 42FF 42 read mem byte 200 nS
 +001 :cmd_rds.:+0000D FFFF INSTRUCTION--opcode unavailable 80. nS
 +002 :cmd_rds.:+00010 4127 4127 fetch mem 120 nS
 +003 cmd_rds.:Exe_Cmd FFFF CMP:E.B #41,R0 80. nS
 +004 :cmd_rds.:+00012 0640 0640 fetch mem 200 nS
 +005 :cmd_rds.:+00011 FFFF BEQ cmd_rds.sr:Cmd_A 120 nS
 +006 :cmd_rds.:+00014 4227 4227 fetch mem 80. nS
 +007 :cmd_rds.:+00013 FFFF CMP:E.B #42,R0 120 nS
 +008 :cmd_rds.:+00016 0A20 0A20 fetch mem 200 nS
 +009 :cmd_rds.:+00015 FFFF BEQ cmd_rds.sr:Cmd_B 80. nS
 +010 :cmd_rds.:+00018 1059 1059 fetch mem 120 nS
 +011 cmd_rds.sr:Cmd_B 0E59 59 fetch mem 400 nS
 +012 :cmd_rds.:+00022 0011 0011 fetch mem 200 nS
 +013 cmd_rds.sr:Cmd_B FFFF MOV:I.W #0011,R1 80. nS
 +014 :cmd_rds.:+00024 5C20 5C20 fetch mem 120 nS

 STATUS: H8/536--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

2-26 Getting Started

Displaying Trace with No Symbol

The trace listing shown above has symbol information because of the
"set symbols on" setting before in this chapter. To see the trace listing
with no symbol information, enter the following command.

set symbols off

As you can see, the analysis trace display shows the trace list without
symbol information.

 Trace List Offset=0
 Label: Address Data Opcode or Status w/ Source Lines time count
 Base: symbols hex mnemonic w/symbols relative
 +015 :cmd_rds.:+00024 FFFF MOV:I.W #2012,R4 80. nS
 +016 :cmd_rds.:+00026 1220 1220 fetch mem 120 nS
 +017 :cmd_rds.:+00028 0659 0659 fetch mem 200 nS
 +018 :cmd_rds.:+00027 FFFF BRA cmd_rd:Write_Msg 80. nS
 +019 :cmd_rds.:+0002A 000F 000F fetch mem 120 nS
 +020 cmd_rd:Write_Msg 245D 5D fetch mem 400 nS
 +021 :cmd_rds.:+00030 FE02 FE02 fetch mem 200 nS
 +022 cmd_rd:Write_Msg FFFF MOV:I.W #FE02,R5 80. nS
 +023 cmd_rds.sr:Again C483 C483 fetch mem 120 nS
 +024 cmd_rds.sr:Again FFFF MOV:G.B @R4+,R3 80. nS
 +025 :cmd_rds.:+00034 C593 C593 fetch mem 120 nS
 +026 :cmd_rds.:+00036 07B9 07B9 fetch mem 400 nS
 +027 cmd_rds.sr:Msg_B 45FF 45 read mem byte 200 nS
 +028 :cmd_rds.:+00034 FFFF MOV:G.B R3,@R5+ 80. nS
 +029 :cmd_rds.:+00038 F9C5 F9C5 fetch mem 400 nS

 STATUS: H8/536--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

Getting Started 2-27

Displaying Trace with
Time Count Absolute

Enter the following command to display count information relative to
the trigger state.

display trace count absolute <RETURN>

 Trace List Offset=0
 Label: Address Data Opcode or Status w/ Source Lines time count
 Base: hex hex mnemonic relative
 after 0FE00 42FF 42 read mem byte 200 nS
 +001 0100D FFFF INSTRUCTION--opcode unavailable 80. nS
 +002 01010 4127 4127 fetch mem 120 nS
 +003 0100F FFFF CMP:E.B #41,R0 80. nS
 +004 01012 0640 0640 fetch mem 200 nS
 +005 01011 FFFF BEQ 01019 120 nS
 +006 01014 4227 4227 fetch mem 80. nS
 +007 01013 FFFF CMP:E.B #42,R0 120 nS
 +008 01016 0A20 0A20 fetch mem 200 nS
 +009 01015 FFFF BEQ 01021 80. nS
 +010 01018 1059 1059 fetch mem 120 nS
 +011 01021 0E59 59 fetch mem 400 nS
 +012 01022 0011 0011 fetch mem 200 nS
 +013 01021 FFFF MOV:I.W #0011,R1 80. nS
 +014 01024 5C20 5C20 fetch mem 120 nS

 STATUS: H8/536--Running user program Emulation trace complete______...R....
 set symbols off

 run trace step display modify break end ---ETC--

 Trace List Offset=0
 Label: Address Data Opcode or Status w/ Source Lines time count
 Base: hex hex mnemonic absolute
 after 0FE00 42FF 42 read mem byte ------------
 +001 0100D FFFF INSTRUCTION--opcode unavailable + 80. nS
 +002 01010 4127 4127 fetch mem + 200 nS
 +003 0100F FFFF CMP:E.B #41,R0 + 280 nS
 +004 01012 0640 0640 fetch mem + 480 nS
 +005 01011 FFFF BEQ 01019 + 600 nS
 +006 01014 4227 4227 fetch mem + 680 nS
 +007 01013 FFFF CMP:E.B #42,R0 + 800 nS
 +008 01016 0A20 0A20 fetch mem + 1.0 uS
 +009 01015 FFFF BEQ 01021 + 1.1 uS
 +010 01018 1059 1059 fetch mem + 1.2 uS
 +011 01021 0E59 59 fetch mem + 1.6 uS
 +012 01022 0011 0011 fetch mem + 1.8 uS
 +013 01021 FFFF MOV:I.W #0011,R1 + 1.9 uS
 +014 01024 5C20 5C20 fetch mem + 2.0 uS

 STATUS: H8/536--Running user program Emulation trace complete______...R....
 display trace count absolute

 run trace step display modify break end ---ETC--

2-28 Getting Started

Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the H8/536
emulator Softkey Interface provides compress mode for analysis
display. To see trace display with compress mode, enter the following
command:

display trace compress on <RETURN>

As you can see, the analysis trace display shows the analysis trace lists
without fetch cycles. With this command you can examine program
execution easily.

If you want to see all of cycles including fetch cycles, enter following
command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

 Trace List Offset=0
 Label: Address Data Opcode or Status w/ Source Lines time count
 Base: hex hex mnemonic absolute
 after 0FE00 42FF 42 read mem byte ------------
 +001 0100D FFFF INSTRUCTION--opcode unavailable + 80. nS
 +003 0100F FFFF CMP:E.B #41,R0 + 280 nS
 +005 01011 FFFF BEQ 01019 + 600 nS
 +007 01013 FFFF CMP:E.B #42,R0 + 800 nS
 +009 01015 FFFF BEQ 01021 + 1.1 uS
 +013 01021 FFFF MOV:I.W #0011,R1 + 1.9 uS
 +015 01024 FFFF MOV:I.W #2012,R4 + 2.1 uS
 +018 01027 FFFF BRA 0102F + 2.5 uS
 +022 0102F FFFF MOV:I.W #FE02,R5 + 3.3 uS
 +024 01032 FFFF MOV:G.B @R4+,R3 + 3.5 uS
 +027 02012 45FF 45 read mem byte + 4.20 uS
 +028 01034 FFFF MOV:G.B R3,@R5+ + 4.28 uS
 +030 0FE02 4545 45 write mem byte + 4.88 uS
 +031 01036 FFFF SCB/EQ R1,01032 + 5.00 uS

 STATUS: H8/536--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

Getting Started 2-29

Note When the analysis trace is displayed with compress mode, the time
count may not indicate correct time counts. This happens when time
count is relative. Since the compress mode feature is implemented by
eliminating fetch cycles when displaying analysis trace, relative time
count shows incorrect value. If you are interested in the time count,
display with time count absolute. Absolute value of time count always
show correct value.

Changing the Trace
Depth

The default states displayed in the trace list is 256 states. To reduce the
number of states, use the "display trace depth" command.

display trace depth 512 <RETURN>

When you enter the following commands, you can see where the
program returns to the Read_Cmd instruction at state 341.

display trace 341
set symbols on

 Trace List Offset=0
 Label: Address Data Opcode or Status w/ Source Lines time count
 Base: symbols hex mnemonic w/symbols absolute
 +334 :cmd_rds.:+0003C 4DFE 4DFE fetch mem + 68.88 uS
 +335 :cmd_rds.:+0003E 2226 2226 fetch mem + 69.40 uS
 +336 :cmd_rds.:+00021 0000 00 write mem byte + 69.60 uS
 +337 :cmd_rds.:+0003C FFFF CMP:I.W #FE22,R5 + 69.68 uS
 +338 :cmd_rds.:+00040 F820 F820 fetch mem + 69.88 uS
 +339 :cmd_rds.:+0003F FFFF BNE cmd_rd:Fill_Dest + 70.00 uS
 +340 :cmd_rds.:+00042 C120 C120 fetch mem + 70.08 uS
 +341 :cmd_rds.:+00041 FFFF BRA cmd_rds:Read_Cmd + 70.20 uS
 +342 01044 71C6 71C6 fetch mem + 70.40 uS
 +343 cmd_rds:Read_Cmd 15FE 15FE fetch mem + 70.80 uS
 +344 cmd_rds:Read_Cmd FFFF MOV:G.B #00,@FE00 + 70.88 uS
 +345 :cmd_rds.:+00006 0006 0006 fetch mem + 71.00 uS
 +346 :cmd_rds.:+00008 0015 0015 fetch mem + 71.20 uS
 +347 :cmd_rds.:+0000A FE00 FE00 fetch mem + 71.40 uS
 +348 :Cmd_Input 0000 00 write mem byte + 71.80 uS

 STATUS: H8/536--Running user program Emulation trace complete______...R....
 set symbols on

 run trace step display modify break end ---ETC--

2-30 Getting Started

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the
emul700 command. When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

Getting Started 2-31

Selecting the
Measurement System

Display or Another
Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

2-32 Getting Started

3

In-Circuit Emulation

Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to the "Configuring the
Emulator" chapter.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the HP
64700 Emulators: System Overview manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

The emulator probe has a PLCC connector. The emulator is shipped
with a pin guard over the target system probe. This guard is designed
to prevent impact damage to the pins and should be left in place while
you are not using the emulator.

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the H8/536 emulator.

Power Down Target System. Turn off power to the user target
system and to the H8/536 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/536 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the H8/536 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation

Installing into a
PLCC Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

1. Remove the H8/536 microprocessor from the target system
socket (PLCC socket). Note the location of pin 1 on the
processor and on the target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket.

Figure 3-1. Installing into a PLCC type socket

In-Circuit Emulation 3-3

Note To make sure the contact between emulator probe and target system
microprocessor socket, we recommend that you use

ITT CANNON "LCS-84" series 84 pin PLCC socket.

In-Circuit
Configuration
Options

The H8/536 emulator provides configuration options for the following
in-circuit emulation issues.
Refer to the "Configuring the Emulator" for more information on these
configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system clock
source.

Selecting Visible/Hidden Background Cycles

Emulation processor activity while executing in background can either
be visible to target system (cycles are sent to the target system probe)
or hidden (cycles are not sent to the target system probe).

3-4 In-Circuit Emulation

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system /RES line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to /RES signal by the
target system (see the "Enable /RES input from the target system?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

In-Circuit Emulation 3-5

Notes

3-6 In-Circuit Emulation

4

Configuring the Emulator

Introduction The H8/536 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the H8/536 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>
After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

General Emulator Configuration:

– Specifying the emulator clock source (internal/external).

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

Configuring the Emulator 4-1

Memory Configuration:

– Selecting the background or foreground emulation
monitor.

– Mapping memory.

Emulator Pod Configuration:

– Selecting the processor to emulate.

– Selecting the processor operation mode.

– Enabling emulator bus arbitration.

– Enabling NMI input from the target system.

– Enabling /RES input from the target system.

– Allowing the emulator to drive emulation reset to the
target system.

– Allowing the emulator to drive background cycles to the
target system.

– Selecting the reset value for the stack pointer.

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Specifying tracing of foreground/background cycles.

– Enabling tracing bus release cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

4-2 Configuring the Emulator

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
clock source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal clock oscillator as the emulator
clock source. The emulators’ internal clock speed
is 10 MHz (system clock).

external Selects the clock input to the emulator probe from
the target system. You must use a clock input
conforming to the specifications for the H8/536
microprocessor.

Note Changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the
following "Enter monitor after configuration?" question is answered.

Enter monitor after
configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail.

When an external clock source is specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

Configuring the Emulator 4-3

yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
complete. If the reset to monitor fails, the previous
configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Restrict to real-time
runs?

If it is important that the emulator execute target system programs in
real-time, you can restrict to real-time runs. In other words, when you
execute target programs (with the "run " command), the emulator will
execute in real-time.

no The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to target
system resources (display/modify: registers or
target system memory). If one of these commands
is entered, the system controller will temporarily
break emulator execution into the monitor.

yes If your target system program requires real-time
execution, you should enable the real-time mode in
order to prevent temporary breaks that might cause
target system problems.

4-4 Configuring the Emulator

Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the emulator is
running user code, the system refuses all commands that require access
to processor registers or target system memory. The following
commands are not allowed when runs are restricted to real-time:

Register display/modification.

Target system memory display/modification.

Internal I/O registers display/modification.

Load/store target system memory.
If the real-time mode is enabled, these resources can only be displayed
or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time execution
are:

reset
run
break
step

Configuring the Emulator 4-5

Memory
Configuration

The memory configuration questions allows you to select the monitor
type and to map memory. To access the memory configuration
questions, you must answer "yes" to the following question.

Modify memory configuration?

Monitor type? The monitor type configuration question allows you to choose between
a foreground monitor (which is supplied with the emulation software
but must be assembled, linked, converted, and loaded into emulation
memory) or the background monitor (which resides in the emulator).

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources, say a command to display
target system memory, the system controller writes a command code to
the monitor communications area and breaks execution of the
emulation processor from the user program into the monitor program.
The monitor program then reads the command from the
communications area and executes the H8/536 instructions which read
the contents of the target system memory locations. After the monitor
has completed its task, execution returns to the user program.

The background monitor, resident in the emulator, offers the greatest
degree of transparency to your target system (that is, your target system
should generally be unaffected by monitor execution). However, in
some cases you may require an emulation monitor tailored to the
requirements of your system. In this case, you will need to use a
foreground monitor linked into your program modules. See the "Using
the Foreground Monitor" appendix for more information on foreground
monitors.

background Selects the use of the background monitor. A
memory overlay is created and the background
monitor is loaded into that area. When you select
the background monitor and the current monitor
type is "foreground", you are asked the following
question.

4-6 Configuring the Emulator

Reset map (change of monitor type requires map reset)?

This question must be answered "yes" to change the monitor type.

foreground Specifies that a foreground monitor will be used.
Foreground monitor programs are shipped with the
Softkey Interface (refer to the "Using the
Foreground Monitor" appendix). When you select
a foreground monitor, you will be asked additional
questions.

Reset map (change of monitor type requires map reset)?

This question must be answered "yes" or else the foreground monitor
will not be selected.

Monitor address?

The default configuration specifies a monitor address of 8000 hex. The
monitor base address must be located on a 2K byte boundary other than
0 hex; otherwise, configuration will fail.

Monitor filename?

This question allows you to specify the name of the foreground
monitor program absolute file. Remember that the foreground monitor
must already be assembled and linked starting at the 2K byte boundary
specified for the previous "Monitor address?" question.

The monitor program will be loaded after you have answered all the
configuration questions; therefore, you should not link the foreground
monitor to the user program. If it is important that the symbol database
contain both monitor and user program symbols, you can create a
different absolute file in which the monitor and user program are
linked. Then, you can load this file after configuration.

Configuring the Emulator 4-7

Mapping Memory The H8/536 emulator contains 126 kilobytes of high-speed emulation
memory (no wait states required) that can be mapped at a resolution of
256 bytes.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM. You can include function code information
with address ranges to further characterize the memory block.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

The memory mapper allows you to define up to 16 different map terms.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Note The default emulator configuration maps location 0 hex through F5FF
hex as emulation ROM, and location F600 hex through FEFF hex as
emulation RAM. To use the internal ROM and RAM, memory space
of these memories must be mapped as emulation memory.

When you answered "yes" to the "Reset map (change of monitor type
requires map reset)?" question , you must map again for internal ROM
and RAM.

4-8 Configuring the Emulator

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

Configuring the Emulator 4-9

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Processor type? This configuration defines the processor to be emulated by the H8/536
emulator.

536 The emulator will emulate the H8/536
microprocessor.

534 The emulator will emulate the H8/534
microprocessor.

Processor operation
mode?

This configuration defines operation mode in which the emulator
works.

external The emulator will work using the mode setting by
the target system. The target system must supply
appropriate input to MD0, MD1 and MD2. If you
are using the emulator out of circuit when
"external" is selected, the emulator will operate in
mode 7.

When mode_1 through mode_7 is selected, the emulator will operate in
selected mode regardless of the mode setting by the target system.

Selection Description

mode_1 The emulator will operate in mode 1. (expanded
minimum mode)

mode_2 The emulator will operate in mode 2. (expanded
minimum mode with internal ROM)

mode_3 The emulator will operate in mode 3. (expanded
maximum mode)

4-10 Configuring the Emulator

mode_4 The emulator will operate in mode 4. (expanded
maximum mode with internal ROM)

mode_7 The emulator will operate in mode 7. (single chip
mode)

Enable bus
arbitration?

The bus arbitration configuration question defines how your emulator
responds to bus request signals from the target system during
foreground operation. The /BREQ signal from the target system is
always ignored when the emulator is running the background monitor.
This configuration item is only available for the H8/536 emulator.

yes When bus arbitration is enabled, the /BREQ (bus
request) signal from the target system is responded
to exactly as it would be if only the emulation
processor was present without an emulator. In
other words, if the emulation processor receives a
/BREQ from the target system, it will respond by
asserting /BACK and will set the various processor
lines to tri-state. /BREQ is then released by the
target; /BACK is negated by the processor, and the
emulation processor restarts execution.

Note You cannot perform DMA (direct memory access) transfers between
your target system and emulation memory by using DMA controller on
your target system; the H8/536 emulator does not support such a
feature.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target system.
The emulation processor will never drive the
/BACK line true; nor will it place the address, data
and control signals into the tri-state mode.

Configuring the Emulator 4-11

Enabling and disabling bus master arbitration can be useful to you in
isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code. You
can disable bus arbitration to check and see if faulty arbitration
circuitry in your target system is contributing to the problem.

Enable NMI input
from the target

system?

This configuration allows you to specify whether or not the emulator
responds to NMI(non-maskable interrupt request) signal from the target
system during foreground operation.

yes The emulator will respond to the NMI request from
the target system.

no The emulator will not respond to the NMI request
from the target system.

If you are using the background monitor, the emulator does not accept
any interrupt during background execution. All edge-sensed interrupts
(include NMI) are latched last one during in background, and such
interrupts will occur when context is changed to foreground. All
level-sensed interrupts and internal interrupts are ignored during in
background operation.

Enable /RES input
from the target

system

This configuration allows you to specify whether or not the emulator
responds to /RES and /STBY signals by the target system during
foreground operation.

While running the background monitor, the emulator ignores /RES and
/STBY signals except that the emulator’s status is "Awaiting target
reset". (see the "Running the Emulation from Target Reset" section in
the "In-Circuit Emulation" chapter).

yes The emulator will respond to /RES and /STBY
input during foreground operation.

no The emulator will not respond to /RES and /STBY
input from the target system.

4-12 Configuring the Emulator

Note If you specify that the emulator will drive the /RES signal to the target
system during emulation reset or by the overflow of Watch Dog Timer,
the emulator should be configured to respond to the /RES input to the
target system.

Drive emulation reset
to the target system?

This configuration allows you to select whether or not the emulator
will drive the /RES signal to the target system during emulation reset.

 no Specifies that the emulator will not drive the /RES
signal during emulation reset.

yes The emulator will drive an active level on the /RES
signal to the target system during emulation reset.

This configuration option is meaningful only when the emulator is
configured to respond to the /RES input to the target system. Refer to
the "Enable /RES Input from Target?" configuration in this chapter.

Drive background
cycles to the target

system?

This configuration allows you specify whether or not the emulator will
drive the target system bus on background cycles.

If you have selected to use a foreground monitor in "Memory
Configuration" section in this chapter, emulator monitor cycles will
appear at the target interface exactly as if they were bus cycles caused
by any target system program.

no Background monitor cycles are not driven to the
target system. When you select this option, the
emulator will appear to the target system as if it is
between bus cycles while it is operating in the
background monitor.

Configuring the Emulator 4-13

yes Specifies that background cycles are driven to the
target system. Emulation processor’s address and
control strobes (except /WR) are driven during
background cycles. Background write cycles won’t
appear to the target system.

Reset value for stack
pointer?

This question allows you to specify the value to which the stack pointer
(SP) and the stack page register (TP) will be set on entrance to the
emulation monitor initiated RESET state (the "Emulation reset" status).

The address specified in response to this question must be a 20-bit
hexadecimal even address.

You cannot set this address at the following location.

Odd address
Internal I/O register address

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not used
by user program.

Note We recommend that you use this method of configuring the stack
pointer and the stack page register. Without a stack pointer and a stack
page register, the emulator is unable to make the transition to the run
state, step, or perform many other emulation functions. However,
using this option does not preclude you from changing the stack
pointer value or location within your program; it just sets the initial
conditions to allow a run to begin.

4-14 Configuring the Emulator

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, and specify that the analyzer trace
foreground/background execution, and bus release cycles. To access
the trace/debug configuration questions, you must answer "yes" to the
following question.

Modify debug/trace options?

Break processor on
write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom trace command status options allow you to use "write to
ROM" cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to ROM: trace
about status wrrom <RETURN>

Configuring the Emulator 4-15

Trace background or
foreground
operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles. When background cycles are
stored in the trace, all but mnemonic lines are tagged as background
cycles.

foreground Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

Trace bus release
cycles?

You can direct the emulator to send bus release cycle data to emulation
analyzer or not to send it. This configuration item is only available for
the H8/536 emulator.

yes When you enable tracing bus release cycles, bus
release cycles will appear as one analysis trace line.

no Bus release cycles will not appear on analysis trace
list (display).

4-16 Configuring the Emulator

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the "Using the Emulator" chapter.

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User’s Guide.

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

Configuring the Emulator 4-17

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

Loading a
Configuration

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

4-18 Configuring the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into the
emulator, how to modify memory and view a register, and how to
perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter discusses:

Features available via "pod_command".

Limitations and restrictions of the emulator.

Register classes and names.

Debugging C Programs

Accessing target system devices using E clock synchronous
instruction.

This chapter shows you how to:

Store the contents of memory into absolute files.

Make coordinated measurements.

Use a command file.

Using the Emulator 5-1

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available in
the softkey Interface are:

Copying memory.

Searching memory for strings or numeric expressions.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in
"modify configuration" will NOT reflect the HP 64700 pod’s
configuration if you change the pod’s configuration with this
command. Also, commands which affect the communications channel
should NOT be used at all. Other commands may confuse the protocol
depending upon how they are used. The following commands are not
recommended for use with "pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac -Usage may confuse the protocol in use on the channel.
wait -Do not use, will tie up the pod, blocking access.
init, pv -Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

5-2 Using the Emulator

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that loads configuration, loads
program into memory and displays memory.

To create such a command file, type "log" and press TAB key. You
will see a command line "log_commands" appears in the command
field. Next, select "to" in the softkey label, and enter the command file
name "sample.cmd". This set up a file to record all commands you
execute. The commands will be logged to the file sample.cmd in the
current directory. You can use this file as a command file to execute
these commands automatically.

Suppose that your configuration file and program are named
"cmd_rds". To the load configuration:

load configuration cmd_rds <RETURN>
To load the program into memory:

load cmd_rds <RETURN>
To display memory 1000 hex through 1020 hex in mnemonic format:

display memory 1000h thru 1020h mnemonic
Now, to disable logging, type "log" and press TAB key, select "off",
and press Enter. The command file you created looks like this:

load configuration cmd_rds
load cmd_rds
display memory 1000h thru 1020h mnemonic

If you would like to modify the command file, you can use any text
editor on your host computer.

To execute this command file, type "sample.cmd", and press Enter.

Using the Emulator 5-3

Debugging C
Programs

Softkey Interface has following functions to debug C programs.

Including C source lines in memory mnemonic display
Including C source lines in trace listing
Stepping C sources

The following section describes such features.

Displaying Memory
with C Sources

You can display memory in mnemonic format with C source lines. For
example, to display memory in mnemonic format from address _main
with source lines, enter the following commands.

display memory _main mnemonic <RETURN>
set source on <RETURN>

You can display source lines highlighted with the following command.

set source on inverse_video on <RETURN>
To display only source lines, use the following command.

set source only <RETURN>

Specifying Address with Line Numbers

You can specify addresses with line numbers of C source program. For
example, to set a breakpoint to line 20 of "main.c" program, enter the
following command.

modify software_breakpoints set main.c: line
20 <RETURN>

Displaying Trace with
C Sources

You can include C source information in trace listing. You can use the
same command as the case of memory display. For example, to
display trace listing with source lines highlighted, enter the following
command.

display trace <RETURN>
set source on inverse_video on <RETURN>

5-4 Using the Emulator

Stepping C Sources You can direct the emulator to execute a line or a number of lines at a
time. For example, to step one line from address _main, enter the
following command.

step source from _main <RETURN>
To step 1 line from the current line, enter the following command.

step source <RETURN>
You can specify the number of lines to be executed. To step 5 lines
from the current line, enter the following command.

step 5 source <RETURN>

E clock
synchronous
instructions

You can access target system devices in synchronization with the
E clock. To do this, use the following commands:

display io_port
modify io_port

The emulator will access the device using the MOVFPE/MOVTPE
instruction.

Using the Emulator 5-5

Limitations,
Restrictions

DMA Support Direct memory access to H8/536 emulation memory is not permitted.

Sleep and Software
Stand-by Mode

When the emulator breaks into the monitor (foreground/background),
the H8/536 sleep or software stand-by mode is released and comes to
normal processor mode.

Watch-Dog Timer When the emulator breaks into background, the emulation processor’s
watch-dog timer suspends count up in background cycles.

RAM Enable Bit The internal RAM of H8/536 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator accesses emulation RAM even if
the internal RAM is disabled by RAME.

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory 1000h thru 1042h to absfile
<RETURN>

The command above causes the contents of memory locations 1000
hex through 1042 hex to be stored in the absolute file "absfile.X".
Notice that the ".X" extension is appended to the specified filename.

5-6 Using the Emulator

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

Register Names
and Classes

The following register names and classes may be used with
"display/modify registers" commands.

Summary H8/536 register designators. All available register class names and
register names are listed below.

BASIC Class

Register name Description

PC
CP
SR
DP
EP
TP
BR
R0
R1
R2
R3
R4
R5
R6
R7
R7
FP
SP
MDCR

Program counter
Code page register
Status register
Data page register
Extended page register
Stack page register
Base register
Register R0
Register R1
Register R2
Register R3
Register R4
Register R5
Register R6
Register R6
Register R7
Frame pointer
Stack pointer
Mode control register

Using the Emulator 5-7

SYS Class System control registers

Register name Description

WCR
RAMCR
MDCR
SBYCR

Wait control register
RAM control register
Mode control register
Software stand-by control register

INTC Class Interrupt control registers

IPRA
IPRAB
IPRC
IPRD
IPRE
IPRF

Interrupt priority register A
Interrupt priority register B
Interrupt priority register C
Interrupt priority register D
Interrupt priority register E
Interrupt priority register F

DTC Class Data transfer controller registers

DTEA
DTEB
DTEC
DTED
DTEE
DTEF

DT enable register A
DT enable register B
DT enable register C
DT enable register D
DT enable register E
DT enable register F

5-8 Using the Emulator

PORT Class I/O port registers

Register name Description

P1DDR
P2DDR
P3DDR
P4DDR
P5DDR
P6DDR
P7DDR
P9DDR
P1DR
P2DR
P3DR
P4DR
P5DR
P6DR
P7DR
P8DR
P9DR
P1CR
P69CR

Port 1 data direction register
Port 2 data direction register
Port 3 data direction register
Port 4 data direction register
Port 5 data direction register
Port 6 data direction register
Port 7 data direction register
Port 9 data direction register
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register
Port 9 data register
Port 1 control register
Port 69 control register

FRT1 Class Free running timer 1 registers

FRTCR1
FRTCSR1
FRC1
OCRA1
OCRB1
ICR1

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

Using the Emulator 5-9

FRT2 Class Free running timer 2 registers

Register name Description

FRTCR2
FRTCSR2
FRC2
OCRA2
OCRB2
ICR2

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

FRT3 Class Free running timer 3 registers

FRTCR3
FRTCSR3
FRC3
OCRA3
OCRB3
ICR3

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

TMR Class Timer registers

TCR
TCSR
TCORA
TCORB
TCNT

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

PWM1 Class PWM timer1 registers

PWMTCR1
DTR1
PWMTCNT1

Timer control register
Duty register
Timer counter

5-10 Using the Emulator

PWM2 Class PWM timer2 registers

Register name Description

PWMTCR2
DTR2
PWMTCNT2

Timer control register
Duty register
Timer counter

PWM3 Class PWM timer3 registers

PWMTCR3
DTR3
PWMTCNT3

Timer control register
Duty register
Timer counter

WDT Class Watchdog timer registers

WDTCSR
WDTCNT
RSTCSR

Timer control/status register
Timer counter
Reset control/status register

SCI1 Class Serial communication interface 1 registers.

RDR1
TDR1
SMR1
SCR1
SSR1
BRR1

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

Using the Emulator 5-11

SCI2 Class Serial communication interface 2 registers.

Register name Description

RDR2
TDR2
SMR2
SCR2
SSR2
BRR2

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

ADC Class A/D converter registers

Register name Description

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

A/D data register A
A/D data register B
A/D data register D
A/D data register D
A/D control/status register
A/D control register

5-12 Using the Emulator

A

Using the Foreground Monitor

Introduction By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The foreground monitors are supplied with the emulation software and
can be found in the following path:

/usr/hp64000/monitor/*

The H8/536 Softkey Interface is provided with four foreground
monitor programs. You need to select appropriate monitor program as
shown in the following table.

Processor Processor Mode Foreground Monitor

H8/536 Mode 1, 2, 7 fmon536min.src

H8/536 Mode 3, 4 fmon536max.src

H8/534 Mode 1, 2, 7 fmon534min.src

H8/534 Mode 3, 4 fmon534max.src

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Using the Foreground Monitor A-1

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. Entry into
the monitor is normally accomplished by jamming the monitor
addresses onto the processor’s address bus.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. Foreground
monitors allow the emulator to service real-time events, such as
interrupts or watchdog timers, while executing in the monitor. For
most multitasking, interrupt intensive applications, you will need to use
a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor (see the "Configuring the
Emulator" chapter and the examples in this appendix).

A-2 Using the Foreground Monitor

You may link the foreground monitor with your code. However, if
possible, linking the monitor separately is preferred. This allows the
monitor to be downloaded before the rest of your program. Linking
monitor programs separately is more work initially, but it should prove
worthwhile overall, since the monitor can then be loaded efficiently
during the configuration process at the beginning of a session.

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to use a foreground
monitor with the sample program from the "Getting Started" chapter.
By using the emulation analyzer, we will also show how the emulator
switches from state to state using a foreground monitor.

For this example, we will be using the foreground monitor named
"fmon536min.src". We will locate the monitor at 8000 hex; the sample
program will be located at 1000 hex with the message table at 2000 hex
and the command input, message destination, and stack locations at
FE00 hex.

At first, you should copy the foreground monitor source file to your
current directory and change file mode of the monitor source file.

$ cp /usr/hp64000/monitor/fmon536min.src .
<RETURN>
$ chmod 644 fmon536min.src <RETURN>

Using the Foreground Monitor A-3

Assemble and Link
the Monitor

You can assemble, link and convert the foreground monitor program
with the following commands (which assume that /usr/hp64000/bin is
defined in the PATH environment variable):

$ h8asm fmon536min.src <RETURN>
$ h8lnk fmon536min <RETURN>
$ h8cnvhp -x fmon536min <RETURN>

If you haven’t already assembled ,linked, and converted the sample
program, do that now. Refer to the "Getting Started" chapter for
instructions on assembling, linking, and converting the sample program.

Modify Location
Declaration

Statement
(Minimum Modes)

To use the monitor, you must modify the .SECTION statement just
after the first comment section of the monitor program listing. You
should see the line below:

LOCATE_ADRS: .EQU H’8000 ;start monitor on 2k boundary
 .SECTION fm536min,CODE,LOCATE=LOCATE_ADRS

You can specify the monitor location by modifying this label
LOCATE_ADRS. For example, if you want locate the monitor
program at 6000 hex, make above line to as below:

LOCATE_ADRS: .EQU H’6000 ;start monitor on 2k boundary
 .SECTION fm536min,CODE,LOCATE=LOCATE_ADRS

Notice that the .SECTION statement is indented from the left margin;
if it is not indented, the assembler will attempt to interpret the
.SECTION as a label and will generate an error when processing the
address portion of the statement. You can load the fmon536min.src
monitor on a 2k byte boundary of 00800 hex through 0f800 hex.

In this example, we will locate the monitor at 8000 hex. Therefore, you
don’t have to modify the monitor program.

A-4 Using the Foreground Monitor

Modify Location
Declaration

Statement
(Maximum Modes)

When you load the monitor "fmon536max.src" on a 2k byte boundary
of 10000 hex through 0ff800 hex, you must change the following
statement near the top of the monitor program. Because you cannot
define the base address larger than 0FFFF hex with using ".SECTION"
command in the monitor program.

LOCATE_ADRS .EQU H’8000 ;start monitor on 2k boundary

 .SECTION fm536max,CODE,LOCATE=LOCATE_ADRS

;LOCATE_ADRS .EQU H’0000

; .SECTION fm536max,CODE

You must change the statement as follows to add ";" at the first and
second line and to delete ";" at the third and fourth line.

;LOCATE_ADRS .EQU H’8000 ;start monitor on 2k boundary

; .SECTION fm536max,CODE,LOCATE=LOCATE_ADRS

LOCATE_ADRS .EQU H’0000

 .SECTION fm536max,CODE

When you link the monitor program, you must define the address
where the monitor will be loaded. For example, you may link the
monitor program "fmon536max.src" with the following command to
load the monitor at the base address 18000 hex.

$ h8lnk
:INPUT fmon536max
:START fm536max(01:8000)
:OUTPUT fmon536max
:EXIT

Notice that the "START fm536max(01:8000)" statement is used to
locate the monitor at the base address 18000 hex.

When you load the monitor "fmon536max.src" on a 2k byte boundary
of 00800 hex through 0f800 hex, you can take the same way to use the
"fmon536min.src" ; refer to the "Modify Location Declaration
Statement (Minimum Modes)" in this appendix.

Modifying the
Emulator

Configuration

The following assumes you are modifying the default emulator
configuration (that is, the configuration present after initial entry into
the emulator or entry after a previous exit using
"end release_system"). Enter all the default answers except those
shown below.

Using the Foreground Monitor A-5

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

Monitor address? 8000h

Specifies that the monitor will reside in the 2K byte block from 8000
hex through 87FF hex.

Monitor file name? fmon536min

Enter the name of the foreground monitor absolute file. This file will
be loaded at the end of configuration.

Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added. Add the additional term to map memory
for the sample program, and "end" out of the memory mapper.

0 thru 7fffh emulation rom <RETURN>
0fb00h thru 0ffffh emulation ram <RETURN>
end <RETURN>

See the "Mapping Memory" section of the "Configuring the Emulator"
chapter for more information.

Configuration file name? fmcfg

If you wish to save the configuration specified above, answer this
question as shown.

A-6 Using the Foreground Monitor

Load the Program
Code

Now it’s time to load the sample program. You can load the sample
program with the following command:

load cmd_rds <RETURN>
Before running the sample program, you need to initialize the stack
pointer by breaking the emulator out of reset:

reset <RETURN>
break <RETURN>

Now you can run the sample program with the following command:

run from Init <RETURN>

Single Step and
Foreground Monitors

To use the "step" command to step through processor instructions with
either of the monitors listed in this chapter, you must modify the
processor’s exception vector table. The entry that you must modify is
the trace exception vector. The vector must point to the identifier
TRACE_ENTRY in the foreground monitor. You can know the
location of TRACE_ENTRY from the assemble listing generated by
the assembler.

Address Error During
Step Operation

In operation of H8/536 microprocessor, the Stack Pointer (SP) must
always contain an even value. Once it becomes to an odd value, an
address error will occur. In step operation of H8/536 emulator, if the
SP is forced to be an odd value by user program, the emulator will fail
to perform step instruction. The emulation processor will read the
address error exception vector, and it will continue executing from the
address pointed by the vector. If your program doesn’t have proper
routine to process the address error, the emulation monitor program
may run away.

Caution If the monitor program runs away, try to reset the emulator with
"reset" command. When the emulator cannot restore control, all you
can do is to initialize the emulator. In this case, you will lose all the
data in emulation memory.

Using the Foreground Monitor A-7

You can avoid the program run away by using an emulation monitor
routine. To use the routine, the address error exception vector in your
program must point to ADRSERR_ENTRY of the monitor program.

When the address error occurs, the emulator can break into the monitor
by using the routine. However, when the emulator breaks into the
monitor in this manner, register values are unreliable. Besides, the SP
will contain an odd value.

To continue your measurement, you have to do the following:

Reset the emulator.

Or:

 Modify registers to proper values by yourself.

When you are using the background monitor, you don’t have to worry
about this issue. The background monitor can handle it by itself.

Limitations of
Foreground
Monitors

Listed below are limitations or restrictions present when using a
foreground monitor.

Synchronized
Measurements

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
select the background monitor type when configuring the emulator.

A-8 Using the Foreground Monitor

Index

A absolute file, loading 2-11
absolute files

storing 5-6
Address error

during step operation A-7
analyzer

configuring the external 4-17
status qualifiers 2-25
trigger by data 2-24
using the 2-24

assembling the getting started sample program 2-6

B background 1-6
background cycles

tracing 4-16
background monitor 4-6, A-2

selecting 4-6
blocked byte memory display 2-16
breakpoint interrupt instruction

software breakpoints 2-18
breaks 1-5

break command 2-17
guarded memory accesses 4-8
software breakpoints 1-5, 2-18
write to ROM 4-15
writes to ROM 4-8

bus arbitration
using configuration to isolate target problem 4-12

C C program
debugging 5-4
displaying in mnemonic memory display 5-4
displaying in trace listing 5-4

cautions
installing the target system probe 3-2

characterization of memory 4-8
cim, Terminal Interface command 2-19

Index-1

clearing software breakpoints 2-21
clock source

external 4-3
internal 4-3

command file
creating and using 5-3

comparison of foreground/background monitors A-1
compress mode,trace display 2-29
configuration options

background cycles to target 4-13
drive emulation reset to target 4-13
enable /BREQ input 4-11
enable NMI input 4-12
honor target reset 4-12
in-circuit 3-4
processor mode 4-10
processor type 4-10
trace bus release cycles 4-16

convert SYSROF absolute file to HP Absolute 2-6
converter, h8cnvhp 2-6
coordinated measurements 4-17, 5-7
copy memory 5-2
coverage analysis 5-2

D Debugging C programs 5-4
device table file 2-8
display command

memory mnemonic 2-14
memory mnemonic with symbols 2-15
memory repetitively 2-16
registers 2-22, 5-7
software breakpoints 2-20
symbols 2-12
trace 2-26

drive emulation reset to target 4-13

E E clock 5-5
emul700, command to enter the Softkey Interface 2-8, 2-31
emulation analyzer 2-24
emulation memory

loading absolute files 2-11
note on target accesses 4-8

2-Index

RAM and ROM 4-8
size of 4-8

emulation monitor 4-6
background 4-6
monitor 1-6

emulation monitor, foreground or background 1-6
emulator

before using 2-2
device table file 2-8
DMA support 1-7, 4-11
features of 1-3
limitations 1-7, 5-6
memory mapper resolution 4-8
prerequisites 2-2
purpose of 1-1
running from target reset 3-5
sleep mode 1-7, 5-6
software stand-by mode 1-7, 5-6
target system 1-5
watch-dog timer 1-7

emulator configuration 2-9
break processor on write to ROM 4-15
clock selection 4-3
loading 4-18
monitor entry after 4-3
monitor type selection 4-6
restrict to real-time runs 4-4
saving 4-17
stack pointer 4-14
trace background/foreground operation 4-16

Emulator features
analyzer 1-5
clock speeds 1-3
emulation memory 1-4
supported microprocessors 1-3

Emulator limitations
DMA support 5-6
RAM enable bit 1-7, 5-6
watch-dog timer 5-6

END assembler directive (pseudo instruction) 2-16
end command 2-31, 4-18

Index-3

eram, memory characterization 4-8
erom, memory characterization 4-8
exit, Softkey Interface 2-31
external analyzer 2-24

configuration 4-17
external clock source 4-3

F features of the emulator 1-3
file extensions

.EA and .EB, configuration files 4-18
foreground 1-6
foreground monitor A-2

example of using A-3
location of shipped files A-1
selecting 4-6
using the foreground monitor A-1

foreground monitor address 4-7
Foreground monitors

single-step processor A-7
foreground operation

tracing 4-16
function codes

memory mapping 4-8

G getting started 2-1
prerequisites 2-2

global symbols 2-14
displaying 2-12

grd, memory characterization 4-8
guarded memory accesses 4-8

H h8cnvhp, converter 2-6
hardware installation 2-2
help

on-line 2-9
pod command information 2-10
softkey driven information 2-9

I in-circuit configuration options 3-4
in-circuit emulation 3-1, 4-1
installation

hardware 2-2
software 2-2

4-Index

installing target system probe
See target system probe

interactive measurements 4-17
internal clock source 4-3
internal I/O register display/modify 5-7
interrupt

NMI 4-12

L limitations of the emulator 1-7, 5-6
linking the getting started sample program 2-6
loading absolute files 2-11
loading emulator configurations 4-18
local symbols, displaying 2-13
locked, end command option 2-31
logging of commands 5-3

M mapping memory 4-8
measurement system 2-32

creating 2-7
initialization 2-7

memory
characterization 4-8
copying 5-2
mapping 4-8
mnemonic display 2-14
mnemonic display with C sources 5-4
mnemonic display with symbols 2-15
modifying 2-16
repetitively display 2-16
searching for strings or expressions 5-2

memory characterization 4-8
memory mapping

function codes 4-8
ranges, maximum 4-8
sequence of map/load commands 4-9

mnemonic memory display 2-14
modify command

configuration 4-1
memory 2-16
software breakpoints clear 2-21
software breakpoints set 2-20

module 2-32

Index-5

module, emulation 2-7
monitor

breaking into 2-17
monitor (emulation) 4-6

background 4-6, A-2
comparison of foreground/background A-1
foreground A-2

monitor type, selecting 4-6
monitors

foreground,specifying the filename 4-7
MOVFPE instruction 5-5
MOVTPE instruction 5-5

N non-maskable interrupt 4-12
nosymbols 2-12
note statements

display trace with compress mode 2-30
notes

"debug" option must need to generate local symbol information 2-6
config. option for reset stack pointer recommended 4-14
DMA to emulation memory not supported 4-11
internal memory must be assigned as emulation memory 4-8
map memory before loading programs 4-9
pod commands that should not be executed 5-2
selecting internal clock forces reset 4-3
setting software bkpts. while running user code 2-19
software breakpoint locations 2-18
software breakpoints and ROM code 2-19
target accesses to emulation memory 4-8
write to ROM analyzer status 4-15

O on-line help 2-9
out-of-circuit emulation 4-1

P PATH, HP-UX environment variable 2-6/2-8
Pin guard

target system probe 3-2
PLCC socket

 connect to the target system 3-3
pmon, User Interface Software 2-7, 2-31
pod_command 2-10

features available with 5-2
help information 2-10

6-Index

predefining stack pointer 4-14
prerequisites for using the emulator 2-2
processor operation mode 4-10
processor type 4-10
purpose of the emulator 1-1

R RAM, mapping emulation or target 4-8
real-time execution 1-6

commands not allowed during 4-5
commands which will cause break 4-5
restricting the emulator to 4-4

register display/modify 2-22
registers 1-5, 5-7

classes 2-22
release_system

end command option 2-31, 4-17/4-18
relocate the foreground monitor address (maximum modes) A-5
repetitive display of memory 2-16
reset (emulator)

running from target reset 3-5
reset(emulator) 1-6
reset(emulator), running from target reset 2-16
restrict to real-time runs

emulator configuration 4-4
ROM

mapping emulation or target 4-8
writes to 4-8

run command 2-15
run from target reset 3-5

S sample program
description 2-2

sample program, linking 2-6
saving the emulator configuration 4-17
simulated I/O 4-17
Single step

in foreground monitor A-7
single-step 1-5
softkey driven help information 2-9
Softkey Interface

entering 2-7
exiting 2-31

Index-7

on-line help 2-9
software breakpoints 1-5, 2-18

clearing 2-21
displaying 2-20
enabling/disabling 2-19
setting 2-20

software installation 2-2
stack pointer,defining 4-14
status qualifiers 2-25
step command 2-23

with C program 5-4
string delimiters 2-10
supervisor stack pointer

required for proper operation 4-14
symbols, displaying 2-12
system overview 2-2

T target memory, loading absolute files 2-11
target reset

running from 3-5
target system probe

cautions for installation 3-2
installation 3-2
installation procedure 3-3
pin guard 3-2

target system RAM and ROM 4-8
Terminal Interface 2-10
trace

display with C source lines 5-4
trace, displaying the 2-26
trace, displaying with time count absolute 2-28
trace, reducing the trace depth 2-30
trace,displaying with compress mode 2-29
tracing background operation 4-16
tracing bus release cycles 4-16
tram, memory characterization 4-8
transfer address, running from 2-16
trigger state 2-26
trigger, specifying 2-24
trom, memory characterization 4-8

8-Index

U undefined software breakpoint 2-18
user (target) memory, loading absolute files 2-11

V visible background cycles 4-13

W window systems 2-31
write to ROM break 4-15

Index-9

Notes

10-Index

	Using This Manual
	Contents
	Introduction to the H8/536 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	Using the Foreground Monitor
	Index

