
HP 64700 Series Emulators

Analyzer

PC Interface

User’s Guide

HP Part No. 64740-97007
Printed in U.S.A.
August 1990

Edition 4

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1988, 1990, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

Advancelink, Vectra, and HP are trademarks of Hewlett-Packard
Company.

IBM and PC AT are registered trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

TORX is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64740-90911 E1187 November 1987
64740-90911 E0988 September 1988
64740-97006 May 1990
64740-97007 August 1990

Using this Manual

This manual will show you how to use the HP 64700 series analyzer
with the host computer PC Interface.

This manual will:

Briefly introduce the analyzer and its features.

Show you how to use the analyzer in its simplest, power-up
condition. From there, it will progressively show you how
and why you would use additional trace commands.

Show you how to connect the external analyzer probe to target
system signals and how to use the external analyzer as an
extension of the emulation analyzer.

Show you how to use the external timing analyzer via the
Timing Interface.

Show you how to set up the analyzer trigger to break the
emulator into the monitor program.

Show you how to drive external Coordinated Measurement
Bus (CMB) or BNC trigger signals with the analyzer trigger.

This manual will not:

Show you how to use every PC Interface command and
option; the PC Interface is described in the HP 64700
Emulators PC Interface: User’s Reference.

Organization

Chapter 1 Introducing the HP 64700 Series Analyzer. This chapter lists the
basic features of the analyzer. The following chapters show you how
to use these features.

Chapter 2 Using the Internal Analyzer. This chapter shows you how to use the
internal emulation analyzer, and it describes the basic steps performed
when using the analyzer.

Chapter 3 Internal Analyzer Examples. This chapter contains examples of
using the analyzer. It describes a sample program on which trace
measurements are made, and then it shows you how to specify a simple
trigger condition, how to use storage, prestore, and count qualifiers.
This chapter also shows you how to use the sequencer and how to trace
"windows" of program execution.

Chapter 4 Using the External Analyzer. This chapter shows you how to
connect the external analyzer probe to the target system and how to
configure the external analyzer (it may be aligned with the internal
analyzer, configured as an external state analyzer, or configured as an
external timing analyzer). This chapter shows you how to use the
external analyzer when it is aligned with the internal analyzer and
when it is configured as an external state analyzer.

Chapter 5 Using the External Timing Analyzer. This chapter shows you how to
use the external timing analyzer. The external timing analyzer allows
you to perform timing measurements and view the captured data in
waveform displays.

Chapter 6 Making Coordinated Measurements. This chapter shows you how to
allow other HP 64700 emulators to start trace measurements, how to
use the analyzer trigger condition to break the emulator, how to use the
emulation analyzer trigger to drive external trigger signals, and how to
allow the analyzers to be armed (turned on) by external trigger signals.

Contents

1 Introducing the HP 64700 Series Analyzer

Overview . 1-1
Analyzer Features . 1-3

Simple Measurements . 1-3
Trace Storage, Prestore, and Count 1-3
Sequencer . 1-3
External Analysis . 1-3
External Timing Analysis . 1-4
Coordinated Measurements . 1-5

2 Using the Internal Analyzer

Introduction . 2-1
Modifying the Trace Specification 2-1

Sequence Levels . 2-2
Sequence Level Field . 2-3
Storage Qualifier Field . 2-4
Find State or Trigger on State Field 2-4
Occurrence Count Field . 2-5

Branches . 2-5
Count . 2-6
Prestore . 2-6
Trigger Position . 2-7
Specifying State Patterns and Expressions 2-7

Values . 2-7
Constants. . 2-8
Operators. . 2-9

Assigning Values to the Range Resource 2-10
Assigning Values to the Pattern Resources 2-10

Trace Labels. . 2-10
Predefined Values for 68000 Emulator Status. 2-11

Specifying Pattern Expressions 2-12
Interset Operators. . 2-12
Intraset Operators. . 2-12
Set Operator Limitations. 2-13

Contents-1

Resetting the Trace Specification 2-13
Starting the Trace . 2-13

Halting a Trace Measurement 2-14
Displaying the Trace . 2-14

Changing the Trace Format 2-16
Tracing Foreground/Background Execution 2-16
Trace Labels . 2-17

3 Internal Analyzer Examples

Introduction . 3-1
Prerequisites . 3-2
The Sample Program . 3-2

What the Sample Program Does 3-2
Mapping Memory for the Sample Program 3-8
Loading the Sample Program 3-9
Set Up the Stack Pointer . 3-10
Running the Sample Program 3-10
Activating the Trace Window 3-10

Specifying a Simple Trigger . 3-11
Using Storage Qualifiers . 3-15
Using Trace Prestore . 3-18
Changing the Count Qualifier 3-21
Using "Restart On" Branches . 3-24
Using Branches "Per Level" . 3-27
Storing "Windows" of Program Execution 3-36

Excluding Windows of Program Execution 3-41
Triggering on a State Outside the Window 3-42

Using Multiple Trigger Levels 3-44

4 Using the External Analyzer

Introduction . 4-1
Before You Can Use the External Analyzer 4-2

Assembling the Analyzer Probe 4-2
Connecting the Probe to the Emulator 4-4
Connecting Probe Wires to the Target System 4-7
Specifying Threshold Voltages & Defining Labels 4-9

Specifying Threshold Voltages 4-10
External Trace Signal Activity 4-10
Defining External Analyzer Labels 4-10

Selecting the External Analyzer Mode 4-11
Using the External Analyzer when Aligned with Internal 4-12

2-Contents

Using the External State Analyzer 4-14
Selecting the Clock Source 4-14
Specifying the Maximum Qualified Clock Speed 4-16

External Analyzer Specifications 4-17
External State Analyzer Specifications 4-17

5 Using the External Timing Analyzer

Introduction . 5-1
Prerequisites . 5-2
Configuring for Timing Analysis 5-2
Specifying Threshold Voltages & Defining Labels 5-3

Threshold Voltages . 5-4
Activity . 5-5
Labels . 5-5

Timing Specification . 5-6
Acquisition Modes . 5-7

Transitional . 5-7
Standard . 5-9
Glitch . 5-9

Sample Period . 5-9
Armed By . 5-9

Begin . 5-9
TRIG1 or TRIG2 . 5-10

Trigger Position . 5-10
Trigger Holdoff (Prestore) 5-10

Trigger Delay . 5-10
Label Qualifier . 5-11
Specifying the Trigger Condition 5-11
Find Pattern . 5-12
Duration . 5-12

Greater Than Duration . 5-12
Less Than Duration . 5-12

Then Find Edge or Glitch . 5-14
Reset . 5-14

Timing Waveform Display . 5-17
Setting the Time per Division 5-17
Scrolling through the Waveform Display 5-18
Reference Points . 5-18

Trigger . 5-18
User Defined (X, O) . 5-18

Cursor moves (X, O, X & O) 5-18

Contents-3

Magnify About (X or O) 5-18
Inserting/Deleting Channels 5-19

Examples . 5-19
Starting the Timing Measurement 5-19
Halting the Trace . 5-19

External Timing Analyzer Specifications 5-20

6 Making Coordinated Measurements

Introduction . 6-1
Tracing at EXECUTE . 6-3
Using the Analyzer Trigger to Break into the Monitor 6-3
Using the Analyzer Trigger to Drive External Signals 6-4
Allowing CMB or BNC TRIGGERs to Arm the Analyzer 6-5

Arming the Internal Emulation Analyzer 6-5
Arming the External Analyzer 6-6

Using One Analyzer to Arm the Other 6-7
Other Trigger Combinations . 6-8

4-Contents

Illustrations

Figure 1-1. Block Diagram of HP 64700 Series Analyzer 1-2

Figure 2-1. Trace Specification Screen 2-2
Figure 2-2. Ranges, Patterns, and Expressions 2-8
Figure 2-3. Analysis Format Screen 2-17

Figure 3-1. Pseudo-Code Algorithm of Sample Program 3-3
Figure 3-2. Sample Program Listing 3-4
Figure 3-3. Memory Map Configuration Display 3-9
Figure 3-4. Simple Trigger Specification 3-11
Figure 3-5. Storage Qualifier Specification 3-16
Figure 3-6. Prestore Qualifier Specification 3-18
Figure 3-7. Count Qualifier Specification 3-21
Figure 3-8. Branches "Restart On" Specification 3-25
Figure 3-9. Tracing Last Write to RESULTS Area 3-29
Figure 3-10. Branches "Per Level" Specification 3-33
Figure 3-11. Storing a Window of Program Execution 3-37
Figure 3-12. Store "Window" Trace Specification 3-38
Figure 3-13. Excluding Windows of Program Execution 3-42
Figure 3-14. Triggering on a State Outside the Window 3-43
Figure 3-15. Using Multiple Trigger Levels 3-44

Figure 4-1. Assembling the Analyzer Probe 4-3
Figure 4-2. Attaching Grabbers to Probe Wires 4-4
Figure 4-3. Removing Cover to Emulator Connector 4-5
Figure 4-4. Connecting the Probe to the Emulator 4-6
Figure 4-5. Connecting the Probe to the Target System 4-8
Figure 4-6. Analysis Format Display 4-9
Figure 4-7. External Data in the Trace 4-13
Figure 4-8. Analysis Format Display 4-14
Figure 4-9. Qualified Clocks . 4-15

Figure 5-1. Timing Interface Main Display 5-3
Figure 5-2. Timing Label Specification 5-4
Figure 5-3. Transitional Acquisition Mode 5-7

Contents-5

Figure 5-4. Standard Acquisition Mode 5-8
Figure 5-5. Glitch Acquisition Mode 5-8
Figure 5-6. Pattern Trigger . 5-13
Figure 5-7. Edge Trigger . 5-15
Figure 5-8. Glitch Trigger . 5-16
Figure 5-9. Timing Waveform Display 5-17

Figure 6-1. Cross Trigger Configuration 6-4
Figure 6-2. Receiving External Signals 6-6
Figure 6-3. Using One Analyzer to Arm the Other 6-8

6-Contents

1

Introducing the HP 64700 Series Analyzer

Overview This manual describes the HP 64700 Series analyzer. Each HP 64700
Series emulator contains an internal emulation analyzer. Some
emulators may optionally contain an external analyzer.

The emulation analyzer, also known as the internal analyzer, captures
emulator bus cycle information synchronously with the processor’s
clock signal. A trace is a collection of these captured states. The
trigger state specifies when the trace measurement is taken. The
external analyzer captures activity on signals external to the emulator,
typically other target system signals.

The analyzer commands are the same in every emulator; consequently,
this manual is shipped with every HP 64700 Series emulator ordered
with the PC Interface. A block diagram of the analyzer is shown in
figure 1-1.

Introduction 1-1

Figure 1-1. Block Diagram of HP 64700 Series Analyzer

1-2 Introduction

Analyzer Features This chapter lists basic features of the HP 64700 Series analyzer. The
chapters which follow show you how to use these features.

Simple Measurements The default condition of the analyzer allows you to perform a simple
measurement by entering a single "analysis begin" command. You can
enter additional trace commands to qualify when execution should be
traced and which bus cycle states should be stored.

Trace Storage,
Prestore, and Count

The analyzer can store up to 1024 states in trace memory. These states
can be normal storage states or prestore states (states which precede
normal storage states). A count may be associated with normal storage
states; you can specify that the analyzer count in either time or the
occurrences of some state. When counts are specified, only 512 states
can be stored.

Sequencer You can use the analyzer to search for a particular sequence of states.
The sequencer, which makes this possible, has several levels. Each
level of the sequencer searches for a "find" or "trigger" state. When the
find/trigger state is captured, the analyzer goes on searching at the
following sequence level. If branches are turned on, a "branch" state is
also searched for in each sequence level. If the branch state is found
before the find/trigger state, the analyzer can jump to any sequence
level where it continues searching for states.

External Analysis Your HP 64700 Series emulator may optionally contain an external
analyzer. The external analyzer provides 16 external trace signals and
two external clock inputs. You can use the external analyzer as an
extension to the emulation analyzer, as an independent state analyzer,
or as an independent timing analyzer.

Introduction 1-3

External Timing
Analysis

If your emulator contains an external analyzer, you can configure the
external analyzer to perform timing measurements. Some of the
features of the external timing analyzer are listed below.

Standard data acquisition mode with a maximum sample rate
of 100 MHz (10 ns).

Transitional data acquisition mode extends the storage time
interval by storing only information changes and the time
between them.

Glitch data acquisition mode on all channels without reducing
the number of channels.

Trigger when signals on the external probe match a specified
pattern for greater than or less than a specified time (duration).
Edge and glitch qualifiers may be included in the trigger
specification.

You can place the trigger point at the start, center, or end of
the trace to view signals after, about, or before the trigger.

Timing Interface supports screen dumps to graphics printers
(for printing waveform displays).

Note The PC Interface requires EGA or VGA monitors and adapters to
display timing waveforms.

Note Two versions of the PC Interface are shipped with your emulator; one
contains interface software for the timing analyzer and the other does
not. The version that contains the timing interface software is larger
and requires most of the PC’s 640K bytes of RAM. The version that
does not contain the timing interface software requires approximately
480K bytes of RAM.

1-4 Introduction

Coordinated
Measurements

When multiple HP 64700 Series emulators are connected via the
Coordinated Measurement Bus (CMB), you can use the analyzer to
trigger the analyzers of other emulators. You can also use the analyzer
to trigger instruments connected to the BNC port. Conversely, the
analyzer may be triggered by other emulators and instruments.

Also, if your emulator contains an external analyzer being used as an
independent analyzer, coordinated measurements may take place
between the internal emulation analyzer and the external analyzer.

Introduction 1-5

Notes

1-6 Introduction

2

Using the Internal Analyzer

Introduction This chapter describes how to use the emulation analyzer from within
the PC Interface. The steps performed when using the analyzer are:

Modifying the trace specification (or using the default).

Starting the trace.

Displaying the trace.

These steps are described in the main sections of this chapter.

Modifying the
Trace
Specification

The PC Interface’s "Analysis Trace Modify" command provides one
screen (with one subscreen) from which you make a complete trace
specifications. This section describes the options available on those
screens. To access the trace specification screen, select:

Analysis, Trace, Modify

Note If your emulator contains an external analyzer (which can operate as an
independent analyzer), you will have to include another option,
"Internal", to specify which analyzer the command is for.

The trace specification screen (see figure 2-1) shows the sequence
levels that are being used, the qualifiers associated with those levels,

Using the Analyzer 2-1

the secondary branch mode, the count and prestore qualifiers, and the
trigger position selection. When you initially enter the PC Interface, the
default analyzer configuration specifies a trigger on any state, and that
all captured states are stored.

Sequence Levels The trace specification screen in figure 2-1 shows two sequence levels.
At least two sequence levels will always be used because a trigger level
is required and there must always be a level after the trigger level.

Each sequence level in the trace specification screen, except the last,
has four associated fields; the sequence level field, the storage qualifier
field, the find/trigger state field, and the occurrence count field. Only
the sequence level field and the storage qualifier field are available in
the last sequence level.

When you begin (start) a trace, the analyzer searches for the
find/trigger state of the first sequence level; when that state is found,
the analyzer searches for the find/trigger state of the second sequence
level, and so on.

Figure 2-1. Trace Specification Screen

2-2 Using the Analyzer

One of the sequence levels is specified as the trigger level. The
analyzer triggers when it finds the state associated with this level. The
trigger is the reference point in the resulting trace. States are stored
before, after, or about the trigger state. The trigger state is always on
line 0 of the trace.

Sequence Level Field

The sequence level field shows the level (1 through 8) of the sequence
term. This field also allows you to insert or delete sequence terms, or
to specify the trigger level.

Move the cursor to the first sequence level field in the upper left corner
of the screen, and use the Tab key to view the options associated with
sequence levels. These options are:

I Insert level.

D Delete level.

T Set the trigger level.

Select the "I" option and enter Enter to insert a new sequence level.
Using the arrow cursor keys, reposition the cursor and repeat this
process until eight sequence levels are used. This is the maximum
number of sequence levels.

Note When moving the cursor in the trace specification screen, use the arrow
cursor keys. Using Enter (carriage return) in the state qualification
fields causes the "patterns and expressions" screen to appear.

Move the cursor to level 5 and make this the trigger level by entering
"T" and a Enter. Notice that level 5 now shows "Trigger on" instead
of "Then find" while the previous trigger level now shows "Then find".

Move the cursor to the last sequence level and enter "D" and Enter.
Notice that the previous level is deleted instead.

Using the Analyzer 2-3

Now try to delete the trigger level. Notice that the following level is
made the trigger level until it is the second to last; then, the previous
level is made the trigger level.

Storage Qualifier Field

The storage qualifier field allows you to specify which states are stored
while the analyzer searches for that sequence level’s find or trigger
state.

Move the cursor to a storage qualifier field and use the Tab key to
scroll through the choices. You will see the following options:

any state All states are stored.

no state No states are stored.

r, !r Only states in the range (r) or states not in the range
(!r) are stored. Ranges are defined in the patterns
and expressions screen described below.

a, b, c, d,
e, f, g, h

Only states that match the pattern are stored. Up to
eight different patterns can be defined. Patterns are
defined in the patterns and expressions screen
described below.

arm Store only the state executing when the analyzer is
armed (enabled) by some condition external to the
analyzer. Conditions that can be used to arm the
analyzer are described in the "Making Coordinated
Measurements" chapter.

These same options are available in any state qualifier field.

Find State or Trigger on State Field

The "find state" or "trigger on" state field allows you to define the state
that causes the analyzer to start searching for the following sequence
level or that causes the analyzer to trigger.

The options available in this field are the same as for the storage
qualifier field.

2-4 Using the Analyzer

Occurrence Count Field

The occurrence count field specifies the number of times the state
specified in the find/trigger field must be found before the analyzer
goes on to the following sequence level.

The default base for an occurrence count is decimal. You may specify
occurrence counts from 1 to 65535.

Branches Branches alter the analyzer’s search sequence if the specified branch
state occurs before the find/trigger state.

When branches are turned off, the analyzer searches for the first
sequence level’s find/trigger state; when this state is found, the
analyzer searches for the second sequence level’s find/trigger state, and
so on.

When branches are turned on, the analyzer searches for find/trigger
states associated with each sequence level; if the find/trigger state is
found before the branch state, the analyzer still continues its search at
the following sequence level. However, if the branch state is found
before the find/trigger state, the analyzer can continue its search at a
different sequence level.

off Branches are turned off. The analyzer searches
only for the states defined in the find/trigger fields,
starting with the first sequence level, then the
second, and so on.

restart on Branches are turned on. You are given another
field in which to specify the restart state qualifier.
This restart qualifier is used for all sequence levels,
and the branch is always back to the first sequence
level. This is also known as "global restart"
because the same restart condition applies to all
sequence levels.

per level Branches are turned on. Two additional fields are
added to each sequence level except the last: one
for the branch state qualifier, and one to specify the
sequence level the analyzer branches to if the
branch state is found before the find/trigger state.

Using the Analyzer 2-5

No branch state qualifier field is added to the last
sequence level, but you are given a field in which to
specify the sequence level the analyzer branches to
when the "then find" state is found.

Count For each stored state, the analyzer can either count time or the number
of occurrences of some state.

time Time counts are recorded for each stored state.

state The number of occurrences of some state are
recorded for each stored state. You are given
another field in which to specify the state count
qualifier.

off Counting can be turned off to allow more states to
be stored. When the analyzer counts states or time,
512 states can be stored in a trace. When counting
is turned off, 1024 states can be stored in a trace.

Counts can be displayed in relative format (relative to the previous
state) or absolute format (relative to the trigger state). Refer to the
"Changing the Trace Format" section that appears later in this chapter.

Prestore Prestore allows you to store up to two states which match the prestore
qualifier state before each normal store state. Prestore is useful, for
example, in identifying the callers of a function or subroutine that is
called from many places in the program.

off Prestore is turned off.

on Prestore is turned on. You are given another field
in which to specify the prestore qualifier.

2-6 Using the Analyzer

Trigger Position The trigger position specifies where the trigger state appears in the
trace.

center Use "center" when you are interested in states that
occur before and after the trigger.

end Use "end" when you are only interested in states
that occur before the trigger.

start Use "start" when you are interested only in states
that occur after the trigger.

<number> In addition to start, center, and end, you can type in
a number to specify the trigger position. For
example, if you specify the trigger position as "10
of 512", nine states before the trigger will be stored,
and 502 states will be stored after the trigger
(assuming nine states must match the storage
qualifiers before the trigger and 502 states must
match the storage qualifiers after the trigger).

You will sometimes notice that the trigger position is not exact. The
actual trigger position will be within +/- 1 state of the position
specified if counting states or time; if the count qualifier is turned off,
the actual trigger position will be within +/- 3 states of the number
specified.

Specifying State
Patterns and
Expressions

Any time the cursor is in a state qualifier field, entering a Enter will
cause the patterns and expressions screen to appear (see figure 2-2).

In the patterns and expressions screen, you assign values to the range
and pattern resources and you combine these resources to create the
pattern expression.

Values

When assigning values to the range and pattern resources, you can use
symbols (in the address field only) or numeric constants in several

Using the Analyzer 2-7

number bases (including predefined equates in the status field only).
You can also use operators to combine symbols and numeric constants.

Constants. Values may be specified as numeric constants in
hexadecimal, decimal, octal, or binary. The number bases are specified
by the following characters:

Y y Binary (example: 10010110y).

Q q O o Octal (example: 377o or 377q).

T t Decimal (example: 2048t).

H h (or no base) Hexadecimal (example: 0a7fh or 0a7f). (The
leading digit of a hexadecimal constant must be
0-9.)

Don’t care digits may be included in binary, octal, or hexadecimal
numbers and they are represented by the characters X or x. A value of

Figure 2-2. Ranges, Patterns, and Expressions

2-8 Using the Analyzer

all don’t cares may be represented by a question mark (?) or a blank
field.

Operators. Values can also be symbols and numeric constants
combined with operators. All operations are carried out on 32-bit,
two’s complement integers. (Values which are not 32 bits will be sign
extended when expression evaluation occurs.)

The available operators are listed below in descending order of
evaluation precedence. Parentheses are also allowed in expressions to
change the order of evaluation.

-, ~ Unary two’s complement, unary one’s complement.
The unary two’s complement operator is not
allowed on constants containing don’t care bits.

* , /, % Integer multiply, divide, and modulo. These
operators are not allowed on constants containing
don’t care bits.

+, - Addition, subtraction. These operators are not
allowed on constants containing don’t care bits.

<<, <<<,
>>, >>>

Shift left, rotate left, shift right, rotate right.

& Bitwise AND.

^ Bitwise exclusive or, XOR.

| Bitwise inclusive OR.

&& Logical AND/bit-wise merge. When bits are
different, the first value overrides the second; e.g.,
10xxy && 11x1y == 10x1y.

Refer to the PC Interface: User’s Reference description of expr for
operator truth tables.

Using the Analyzer 2-9

Assigning Values to the Range Resource

The range resource defines a range of values associated with a
particular trace label. Move the cursor to the range label field and use
the Tab key to view the predefined trace labels. Notice that these
labels are also used when assigning values to the pattern resources.
Trace labels are described in the "Assigning Values to the Pattern
Resources" section that follows.

Pressing the right arrow key moves the cursor to the starting value
field. Notice that you are given a line in the bottom part of the display
in which to enter the value. The value you enter on this line may be
longer than the space available in the starting value field; when this
happens, as much of the value as possible is shown in the starting value
field. Pressing the right arrow key again moves the cursor to the
ending value field.

Assigning Values to the Pattern Resources

You can assign address, data, status, and xbits (if an external analyzer
is present) values to each of the pattern resources.

Move the cursor to the field to the immediate right of a pattern resource
and press the Tab key a couple times. When "=" is selected, the
pattern is equal to the state described by the following values; when
"!=" is selected, the pattern is not equal to the state described.

The addr, data, stat, and xbits (if an external analyzer is present)
columns allow you to assign values to each of the trace labels. When a
pattern has values assigned to more than one trace label, these values
are ANDed. In other words, if you assign an address value of 500H and
a data value of 1234H to a pattern, a captured state must have an
address of 5FFH AND data equal to 1234H in order to match the
pattern.

Trace Labels. The following trace labels are predefined in most of
the HP 64700 Series emulators:

addr Represents the trace signals which monitor the
emulation processor’s address pins (trace signals 0
through 23 in the 68000 emulator).

2-10 Using the Analyzer

data Represents the trace signals which monitor the
emulation processor’s data pins (trace signals 32
through 47 in the 68000 emulator).

stat Represents the trace signals which monitor other
emulation processor signals (trace signals 24
through 31 in the 68000 emulator).

xbits Represents the external trace signals. This trace
label is only available if an external analyzer is
present and aligned with the internal analyzer.

These trace labels are predefined. You can define additional trace
labels in the screen presented with the "Analysis Format" command.
Refer to the "Changing the Display Format" section that appears later
in this chapter.

The trace signals associated with the addr, data, and stat trace labels are
different for each emulator. Other emulators may provide additional
trace labels to choose from.

Predefined Values for 68000 Emulator Status. Move the cursor
to the "stat" field of a pattern resource. Notice that a line on which you
can enter status values appears on the bottom part of the screen. Use
the Tab key to view the predefined values. The predefined values for
the 68000 emulator are:

Qualifier Status Bits (31..24) Description
byte 0xxxx xxx1Y Byte cycle.
cyc6800 0xxxx x0xxY 6800 peripheral cycle.
data 0xxx0 1xxxY Data cycle.
dma 0xx01 1xxxY DMA cycle.
grd 00xxx xxxxY Guarded memory access.
intack 0xx11 1xxxY Interrupt acknowledge cycle.
prog 0xxx1 0xxxY Program cycle.
read 0xxxx xx1xY Read cycle.
super 0xx1x xxxxY Supervisor cycle.
supdata 0xx10 1xxxY Supervisor data cycle.
supprog 0xx11 0xxxY Supervisor program cycle.
user 0xx0x xxxxY User cycle.
userdata 0xx00 1xxxY User data cycle.
userprog 0xx01 0xxxY User program cycle.
word 0xxxx xxx0Y Word cycle.
write 0xxxx xx0xY Write cycle.
wrrom 0x0xx xx0xY Write to ROM.

Using the Analyzer 2-11

You can also select these predefined values when specifying status
values for the pattern resources.

The predefined values for emulator status are different for each
emulator. Refer to your PC Interface: Emulator User’s Guide for the
definitions of the status values predefined for your emulator.

Specifying Pattern Expressions

The range and pattern resources and the arm condition are split into
two sets.

Set 1: r , !r , a, b, c, and d.

Set 2: e, f, g, h, and arm.

Interset Operators. Resources from the two sets can be combined
with the and and or interset (between set) operators.

You cannot use these operators to combine resources from the
same set.

Intraset Operators. Resources within a set may be combined using
one of the intraset operators, | (OR) or ~ (NOR).

You cannot use both | (OR) and ~ (NOR) operators within the
same set.

You cannot combine resources from different sets with the |
(OR) or ~ (NOR) operators.

Note that "a ~ a" is allowed; this type of expression may
occasionally be useful if you are running out of pattern
resources and wish to specify a logical NOT of some existing
pattern.

The intraset (within a set) operators (~, |) are evaluated first; then, the
interset operators are evaluated.

2-12 Using the Analyzer

Set Operator Limitations. Only the OR (|) and NOR (~) logical
operators are available as intraset operators. However, you can create
the AND and NAND operators by applying DeMorgan’s law:

a AND b = a ~ b
a NAND b = a | b

To create a logical NOT of a pattern resource, invert the equality used
when assigning values to that resource.

Resetting the Trace
Specification

You can reset the analyzer to its default specification by selecting:

Analysis, Trace, Reset

The resulting trace specification is shown in figure 2-1.

Starting the Trace After the trace specification has been made, you can start the trace by
selecting:

Analysis, Begin

The emulator must be running before the analyzer can capture program
execution.

When the trigger state has been found and trace memory has been
filled with states, a message on the status line will show you that the
trace is complete. When the status line shows you that the trace is
complete, the next step is to display the trace.

If the status line continues to show that the trace is "running", two
things are possible:

1. The trigger has been found, but there haven’t been enough
storage states captured to fill the trace memory buffer.

2. The trigger has not been found.

To find out which of these situations is the case, enter the "Analysis
Display" command (described later in this chapter). The number of

Using the Analyzer 2-13

states that can be displayed is shown at the bottom of the screen. If
there are states to display, then situation 1 above has occurred.

If there are no states to display, then situation 2 above has occurred. If
the trigger state has not been found and you think it should have been
found, you may want to halt the trace and review your trace
specification.

Halting a Trace
Measurement

You can, and most likely will, specify traces whose trigger or storage
states are never found. When this happens, the "Trace complete"
message is never shown, and the trace continues to run ("Trace
running"). When these situations occur, you can choose to halt the
trace measurement. To do this, select:

Analysis, Halt

The trace halt command is also useful to deactivate signals which are
driven when the trigger is found (refer to the "Making Coordinated
Measurements" chapter).

Displaying the
Trace

To display the trace, select:

Analysis, Display

If states have been stored, you are now given two fields in which to
specify the states to display. Type the number of the first state you
want to display in the "Starting state to display" field, and press Enter.
Use the right arrow key to move the cursor to the "Ending state to
display" field. Type in the number of the last state you want to display,
and press Enter.

If your emulator supports symbol storage, you see an additional field
that gives you control of the display of addresses and symbols.

An example trace display is shown below.

2-14 Using the Analyzer

The first column on the trace list contains the line number. The trigger
is always on line 0.

The second column contains the address information associated with
the trace states. Addresses in this column may be locations of
instruction opcodes on fetch cycles, or they may be sources or
destinations of operand cycles.

The third column shows mnemonic information about the emulation
bus cycle. The disassembled instruction mnemonic is shown for
opcode fetch cycles. The data and mnemonic status ("0600 supr prog",
for example) are shown for operand cycles.

If your emulator contains an external analyzer (the model number has
an "L" suffix), the next column, labeled "xbits", shows the data
captured on the external channels.

The next column shows the count information (time is counted by
default). The "R" indicates that each count is relative to the previous
state.

Using the Analyzer 2-15

The last column contains information about the sequencer. The "+" on
line 0 indicates the state caused a sequencer branch (in this case, the
trigger on any state).

Sometimes, the trace will show opcode fetches for instructions which
are not executed because of a transfer of execution to other addresses.
This can happen with microprocessors like the 68000 and the 80186
because they have pipelined architectures or instruction queues which
allow them to prefetch the next few instructions before the current
instruction is finished executing.

Note When a trigger condition is found but not enough states are captured to
fill trace memory, the status line will show that the trace is still
running. You can display all but the last few captured states in this
situation; you must halt the trace to display the last few captured states.

Changing the Trace
Format

To change the trace format, select:

Analysis, Format

The analysis format screen is shown in figure 2-3.

The "Anlysis Format" command primarily allows you to arrange the
columns of trace information in a different manner. However, notice
that you can include any trace label in the trace. Also, notice that the
trace label information can be displayed in various number bases, and
that counts can be displayed relative or absolute.

Tracing Foreground/Background Execution

The first field in the "Analysis Format" display specifies whether the
analyzer should capture user (foreground) states, background states, or
all states (foreground and background). When background states
appear in the trace, a string indicating that it is a background state
typically appears at the end of the mnemonic column (for example,
"BGM" appears when using the 68000 emulator).

2-16 Using the Analyzer

Trace Labels

The bottom part of the "Analysis Format" display is used to specify
which trace labels appear in which column of the display. Several
trace labels are predefined for the internal emulation analyzer.

You can specify the number base (in hexadecimal, binary, octal,
decimal, and ASCII) for several of the predefined trace labels.

addr Values captured on the emulator’s address bus. If
your emulator supports symbol storage, you can
change the width of the address column so that
more symbol information is shown.

data Values captured on the emulator’s data bus.

stat Values captured on the trace signals used for the
emulator’s status.

Figure 2-3. Analysis Format Screen

Using the Analyzer 2-17

mne Captured information disassembled and presented
in mnemonic format.

count State or time count information presented in
absolute format (relative to the trigger state) or
relative format (relative to the previous state in the
trace).

seq Shows a "+" if the captured state is one the analyzer
was searching for and found (in other words, a find
state, a trigger state, or an branch state).

DELETE Deletes a trace label.

--OFF-- Turns a column off so that it is not displayed in the
trace.

This concludes the "Using the Analyzer" chapter. You have learned
about the analysis commands and all the trace specification fields
except those that appear when you emulator contains an external
analyzer. The additional fields are described in the "Using the External
Analyzer" chapter.

2-18 Using the Analyzer

3

Internal Analyzer Examples

Introduction This chapter shows you how to use the emulation analyzer from within
the PC Interface. It shows you how to make simple measurements as
well as how to search for a sequence of states.

This chapter describes:

The sample program on which example measurements are
made.

This chapter provides the following examples of using the analyzer:

Specifying a simple trigger.

Using storage qualifiers.

Using trace prestore.

Changing the count qualifier.

Trace a sequence of events using global restart.

Trace a sequence of events while specifying "else" branches
per level.

Storing a "window" of program execution.

Using multiple trigger levels.

Examples 3-1

Prerequisites Before reading this chapter you should already know how the emulator
operates. You should know how to use the PC Interface, and how to
control the emulator from within the PC Interface. Refer to the
appropriate PC Interface: Emulator User’s Guide manual to learn
about the emulator; then, return to this manual.

The Sample
Program

The sample program is used to illustrate analyzer examples. The
examples in this chapter have been generated using an 68000
(HP 64742) emulator. The sample program is written in 68000
assembly language.

It is not important that you know the 68000 assembly language;
however, you should understand what the various sections of the
program do and associate these tasks with the labels used in the
program.

You are encouraged to rewrite the sample program in the assembly
language appropriate for your emulator. Then, you can use your
analyzer to perform the examples shown in this chapter. Of course, the
output of your commands will be different than those shown here.

What the Sample
Program Does

A pseudo-code algorithm of the sample program is shown in figure 3-1.

The sample program is not intended to represent a real routine. The
program uses four different callers of the WRITE_NUMBER
subroutine to simulate situations in real programs where routines are
called from many different places. An example later in this chapter
will show you how to use the analyzer to determine where a routine is
called from.

3-2 Examples

An assembler listing of the sample program is shown in figure 3-2. It
is provided so that you can see the addresses associated with the
program labels. The program area, which contains the instructions to
be executed by the microprocessor, is located at 400H. The RESULTS
area, to which the random numbers are written, is located at 500H. The
area which contains a variable used by the RAND subroutine and the
locations for the stack is located at 600H.

Before you can use the analyzer to perform measurements on the
sample program, you must map memory and load the sample program.

 Initialize the stack pointer.
 Set up number counter.
 AGAIN: Save the two previous random numbers.
 Call the RAND random number generator subroutine.
 Test the two least significant bits of the previous random number.
 If 00B then goto CALLER_0.
 If 01B then goto CALLER_1.
 If 10B then goto CALLER_2.
 If 11B then goto CALLER_3.
 CALLER_0: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).
 CALLER_1: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).
 CALLER_2: Call the WRITE_NUMBER subroutine.
 Goto AGAIN (repeat program).
 CALLER_3: Call the WRITE_NUMBER subroutine.
 Decrement number counter.
 If the number counter is not zero
 Then goto AGAIN (repeat program).
 Else
 Reset number counter.
 Push parameters for QSORT.
 Call QSORT.

 RAND: Pseudo-random number generator which returns a random number
 from 0-0FFH.
 RETURN from subroutine.

 WRITE_NUMBER: Write the random number to a 256 byte data area, using the second
 previous random number as an offset into that area.
 RETURN from subroutine.

 QSORT: Quick-sort values in 256 byte data area.

Figure 3-1. Pseudo-Code Algorithm of Sample Program

Examples 3-3

HEWLETT-PACKARD: 68000 Assembler
FILE: C:\MNL\ODY\ANLY\PCI\SRC\68K\SRND.S
LOCATION OBJECT CODE LINE SOURCE LINE

 1 "68000"
 2 **
 3 * The "srnd.S" program runs in an infinite loop,
 4 * writing random numbers to an output area and
 5 * sorting the output area after 4FFH random
 6 * numbers have been written.
 7 **
 8 ORG 400H
 9 ;---
 10 ; Initialize the stack, and set up the counter
 11 ; for the number of random numbers before sort.
 12 ;---
 000400 2E7C 13 START MOVE.L #STACK,A7
 000402 00000BFE
 000406 343C 04FF 14 MOVE.W #4FFH,D2
 15 ;---
 16 ; The next two instructions move the second
 17 ; previous random number into A1 (offset to
 18 ; RESULTS area, and the previous random number
 19 ; into D1.
 20 ;---
 00040A 2241 21 AGAIN MOVE.L D1,A1
 00040C 2200 22 MOVE.L D0,D1
 23 ;---
 24 ; RAND returns random number in D0.
 25 ;---
 00040E 6100 005A 26 BSR RAND
 27 ;---
 28 ; The following instructions determine which
 29 ; caller calls WRITE_NUMBER (depends on last
 30 ; two bits of the previous random number).
 31 ;---
 000412 0801 0001 32 BTST #1,D1
 000416 6700 0004 33 BEQ ZERO_ONE
 00041A 600A 34 BRA.B TWO_THREE
 00041C 0801 0000 35 ZERO_ONE BTST #0,D1
 000420 6700 000E 36 BEQ CALLER_0
 000424 6010 37 BRA.B CALLER_1
 000426 0801 0000 38 TWO_THREE BTST #0,D1
 00042A 6700 0010 39 BEQ CALLER_2
 00042E 6012 40 BRA.B CALLER_3
 41 ;---
 42 ; The WRITE_NUMBER routine is called from four
 43 ; different places. The program is repeated
 44 ; after the subroutine return.
 45 ;---
 000430 6100 005C 46 CALLER_0 BSR WRITE_NUMBER
 000434 6010 47 BRA.B TEST
 000436 6100 0056 48 CALLER_1 BSR WRITE_NUMBER
 00043A 600A 49 BRA.B TEST
 00043C 6100 0050 50 CALLER_2 BSR WRITE_NUMBER
 000440 6004 51 BRA.B TEST
 000442 6100 004A 52 CALLER_3 BSR WRITE_NUMBER

Figure 3-2. Sample Program Listing

3-4 Examples

 000446 0C42 0000 53 TEST CMPI #0,D2
 54 ;---
 55 ; If the counter is not zero, continue to write
 56 ; random numbers.
 57 ;---
 00044A 57CA FFBE 58 DBEQ D2,AGAIN
 59 ;---
 60 ; The counter is zero. Sort the random numbers
 61 ; in the RESULTS area.
 62 ;---
 00044E 343C 04FF 63 MOVE.W #4FFH,D2 ; Reset counter.
 64 ;---
 65 ; Push the "high address" and "low address"
 66 ; parameters expected by the QSORT routine.
 67 ;---
 000452 2F3C 68 MOVE.L #RESULTS+0FFH,-[A7]
 000454 000005FF
 000458 2F3C 69 MOVE.L #RESULTS,-[A7]
 00045A 00000500
 70 ;---
 71 ; Call the QSORT routine. Increment the
 72 ; stack pointer after the call.
 73 ;---
 00045E 6100 0034 74 BSR.W QSORT
 000462 DFFC 75 ADDA.L #8,A7
 000464 00000008
 000468 60A0 76 BRA.B AGAIN ; Repeat program.
 77
 78 **
 79 * The RAND routine generates a pseudo-random
 80 * number from 0-0FFH, and leaves the result
 81 * in D0.
 82 **
 00046A 2039 0000 83 RAND MOVE.L RAND_SEED,D0
 00046E 0600
 000470 C1FC 4E6D 84 MULS.W #4E6DH,D0
 000474 2040 85 MOVEA.L D0,A0
 000476 41E8 0339 86 LEA 339H[A0],A0
 00047A 2008 87 MOVE.L A0,D0
 00047C 23C0 0000 88 MOVE.L D0,RAND_SEED
 000480 0600
 000482 4240 89 CLR.W D0
 000484 4840 90 SWAP D0
 000486 0280 91 ANDI.L #000000FFH,D0
 000488 000000FF
 00048C 4E75 92 RTS
 93
 94 **
 95 * The WRITE_NUMBER routine writes the random
 96 * number to the RESULTS area. The second
 97 * previous number is the offset in this area.
 98 **
 00048E 1340 0500 99 WRITE_NUMBER MOVE.B D0,RESULTS[A1]
 000492 4E75 100 RTS
 101
 102 **

Figure 3-2. Sample Program Listing (Cont’d)

Examples 3-5

 103 * The QSORT subroutine is passed (on the stack)
 104 * the high and low addresses of an area of bytes
 105 * to be sorted.
 106 **
 000494 226F 0008 107 QSORT MOVE.L 8[A7],A1 ; A1 = high index.
 000498 206F 0004 108 MOVE.L 4[A7],A0 ; A0 = low index.
 109 ;---
 110 ; The following section splits the area to be sorted
 111 ; into two areas. QSORT will be called to sort each
 112 ; of these smaller areas.
 113 ;
 114 ; If high index is less than low index, then sort
 115 ; is done.
 116 ;---
 00049C B3C8 117 OVER CMPA.L A0,A1
 00049E 6F00 0054 118 BLE DONE
 119 ;---
 120 ; D2 = dividing value (from low index).
 121 ;---
 0004A2 1410 122 MOVE.B [A0],D2
 123 ;---
 124 ; (Increment allows DEC_HIGH loop to work first
 125 ; time through.)
 126 ;---
 0004A4 5289 127 ADDQ.L #1,A1
 128 ;---
 129 ; Move low index up until it points to a value
 130 ; greater than the dividing value.
 131 ;---
 0004A6 5288 132 INC_LOW ADDQ.L #1,A0
 0004A8 B410 133 CMP.B [A0],D2
 0004AA 6F00 000A 134 BLE DEC_HIGH
 0004AE B3C8 135 CMPA.L A0,A1
 0004B0 6D00 0018 136 BLT OUT
 0004B4 60F0 137 BRA.B INC_LOW
 138 ;---
 139 ; Move high index down until it points to a value
 140 ; less than or equal to the dividing value.
 141 ;---
 0004B6 5389 142 DEC_HIGH SUBQ.L #1,A1
 0004B8 B411 143 CMP.B [A1],D2
 0004BA 6DFA 144 BLT DEC_HIGH
 145 ;---
 146 ; If high index is less than or equal to low index,
 147 ; the area is split; do not swap values.
 148 ;---
 0004BC B3C8 149 CMPA.L A0,A1
 0004BE 6D00 000A 150 BLT OUT
 151 ;---
 152 ; If high index is greater than low index, swap
 153 ; values and move indexes again.
 154 ;---
 0004C2 1610 155 MOVE.B [A0],D3
 0004C4 1091 156 MOVE.B [A1],[A0]
 0004C6 1283 157 MOVE.B D3,[A1]
 0004C8 60DC 158 BRA.B INC_LOW

Figure 3-2. Sample Program Listing (Cont’d)

3-6 Examples

 159 ;---
 160 ; A0 = low address (needed to swap dividing value).
 161 ;---
 0004CA 206F 0004 162 OUT MOVE.L 4[A7],A0)
 163 ;---
 164 ; Swap dividing value and high index value.
 165 ;---
 0004CE 1091 166 MOVE.B [A1],[A0]
 0004D0 1282 167 MOVE.B D2,[A1]
 168 ;---
 169 ; The area is now split into two smaller areas.
 170 ; The last high index value is the middle of the
 171 ; two areas. The high and low addresses for the
 172 ; second QSORT call are pushed first.
 173 ;---
 0004D2 2F2F 0008 174 MOVE.L 8[A7],-[A7] ; Push high.
 0004D6 5289 175 ADDQ.L #1,A1
 0004D8 2F09 176 MOVE.L A1,-[A7] ; Push middle + 1.
 0004DA 5589 177 SUBQ.L #2,A1
 0004DC 2F09 178 MOVE.L A1,-[A7] ; Push middle - 1.
 0004DE 2F08 179 MOVE.L A0,-[A7] ; Push low.
 0004E0 6100 FFB2 180 BSR.W QSORT
 181 ;---
 182 ; Increment stack pointer after call.
 183 ;---
 0004E4 DFFC 184 ADDA.L #8,A7
 0004E6 00000008
 0004EA 6100 FFA8 185 BSR.W QSORT
 0004EE DFFC 186 ADDA.L #8,A7
 0004F0 00000008
 0004F4 4E75 187 DONE RTS
 188
 189 **
 190 * Random numbers written to this area.
 191 **
 192 ORG 500H
 000500 193 RESULTS DS.B 100H
 194
 195 **
 196 * Variable used in RAND subroutine and stack area.
 197 **
 198 ORG 600H
 000600 0000 0001 199 RAND_SEED DC.L 1
 000604 200 DS.W 2FDH
 000BFE 201 STACK DS.W 1
 É 202 END START

Errors= 0

CROSS REFERENCE TABLE FILE: C:\MNL\ODY\ANLY\PCI\SRC\68K\SRND.S
LINE# SYMBOL TYPE REFERENCES

 21 AGAIN A 58, 76
 46 CALLER_0 A 36
 48 CALLER_1 A 37

Figure 3-2. Sample Program Listing (Cont’d)

Examples 3-7

Mapping Memory for
the Sample Program

The program, destination, and stack areas of the sample program were
ORGed at addresses 400H, 500H, and 600H, respectively. Therefore,
map the range from 400H through 0BFFH to emulation memory before
loading the program. Select the memory mapper configuration by
either by using the left and right arrow keys to highlight command
options and pressing Enter, or by typing the first letter of the command
options.

Config, Map, Modify

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

400..0bff

Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the eram (emulation RAM) type. To save your
memory map, use the Enter key to exit the field in the lower right
corner. (The End key on Vectra keyboards moves the cursor directly
to the last field.) The memory configuration display is shown in figure
3-3.

Memory mapping is described in more detail in your PC Interface:
Emulator User’s Guide.

 50 CALLER_2 A 39
 52 CALLER_3 A 40
 142 DEC_HIGH A 134, 144
 187 DONE A 118
 132 INC_LOW A 137, 158
 162 OUT A 136, 150
 117 OVER A
 107 QSORT A 74, 180, 185
 83 RAND A 26
 199 RAND_SEED A 83, 88
 193 RESULTS A 68, 69, 99
 201 STACK A 13
 13 START A 202
 53 TEST A 47, 49, 51
 38 TWO_THREE A 34
 99 WRITE_NUMBER A 46, 48, 50, 52
 35 ZERO_ONE A 33

Figure 3-2. Sample Program Listing (Cont’d)

3-8 Examples

Loading the Sample
Program

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

Move the cursor to the "Format" field and select the appropriate format
(HP64000 in this example). Select "yes" in the field that forces the
absolute file to be read. Now move the cursor to the "Absolute
filename" field and enter the name of your symbol file (SRND.L in this
example). The options available when loading absolute files into
memory are described in more detail in the PC Interface: User’s
Reference manual.

Figure 3-3. Memory Map Configuration Display

Examples 3-9

Set Up the Stack
Pointer

The 68000 emulator requires you to set up the system stack pointer
before you can run the program. To set up the system stack pointer,
you must first break into the monitor.

Processor, Break

To modify the system stack pointer, select:

Register, Modify

Use the Tab key to select register ssp, press Enter, type in the address
0BFEH, and press Enter once again.

Running the Sample
Program

To start the emulator executing the sample program, select:

Processor, Go, Address

Type in the module and symbol names associated with the sample
program’s starting address, SRND.S:START. The status line will
show that the emulator is "Running user program".

When entering the name of a local symbol for the first time, you need
to include the module name. This causes that module to become the
default module, and the next time you refer to a symbol from that
module, you do not have to include the module name.

Activating the Trace
Window

The examples which follow show results in the "zoomed" trace
window. To activate this window, select:

Window, Zoom

Then either type in, or use the Tab key to select "Analysis", and press
Enter.

3-10 Examples

Specifying a
Simple Trigger

Suppose you want to look at the execution of the sample program after
the AGAIN address, but only after it has occurred three times (in other
words, after the program has executed its complete loop three times).
To do this, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-4. (To access the
"patterns and expressions" screen, press the Enter key while the cursor
is in the "trigger on" field.)

Notice that the address symbol AGAIN is assigned to pattern "a" and
an occurrence count of "3" is specified.

To save the new specification, use the Enter key to exit out of the field
in the lower right corner.

Figure 3-4. Simple Trigger Specification

Examples 3-11

To begin the trace, select:

Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Type the first state that can be displayed into the starting state field and
press Enter. Move the cursor to the ending state field, enter the
starting state plus 15, and press Enter. The resulting trace is similar to
the trace shown in the following display.

Figure 3-4. Simple Trigger Specification (Cont’d)

3-12 Examples

In the trace list above, line 0 shows the beginning of the program loop
and line 2 shows the call of the RAND subroutine. The disassembled
mnemonics on line 6 shows the first instruction executed in the RAND
subroutine.

To display more lines of the trace, select:

Analysis Display

Notice that the starting and ending lines are incremented by the number
of lines given in the last display command. Press Enter two times to
select these values.

Examples 3-13

In the display above, you see remaining execution of the instructions in
the RAND subroutine. To display more lines in the trace, press
CTRL -R to repeat the previous command. Since you pressed Enter in
the previous command to select the automatically incremented starting
and ending line numbers, the automatically incremented line numbers
are selected again, and the next 16 lines of the trace are displayed.

3-14 Examples

In the trace list above you see the instructions that write the random
number to the RESULTS area.

Using Storage
Qualifiers

In the last example, all captured states were stored. To modify the
trace specification of the previous example so that only the states
which write random numbers to the RESULTS area are stored, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-5.

To begin the trace, select:

Analysis, Begin

Examples 3-15

Figure 3-5. Storage Qualifier Specification

3-16 Examples

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Type the number of the starting state plus 15 into the ending state field,
and press Enter. The resulting trace will be similar to the display
shown below.

Notice that the trigger state (line 0) is included in the trace list; trigger
states are always stored.

This trace shows that the last two hex digits of the address in the
RESULTS area are the same as the random number which gets written
two states earlier (see the data in the "mnemonic" column of the trace
list). This is expected because the sample program writes the current
random number using the second previous random number as an offset
into the RESULTS area.

Examples 3-17

Using Trace
Prestore

Prestore lets you to save up to two states which precede a normal store
state. The following example uses a prestore qualifier to show which
caller of WRITE_NUMBER corresponds to each value written to the
RESULTS area. Because you know the BSR assembly language
instruction is used to call a subroutine, you can qualify prestore states
as states whose data equals the BSR opcode (6100H). First of all, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-6.

Figure 3-6. Prestore Qualifier Specification

3-18 Examples

To begin the trace, select:

Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Type the number of the starting state plus 15 into the ending state field,
and press Enter. The resulting trace will be similar to the display
which follows.

Figure 3-6. Prestore Qualifier Specification (Cont’d)

Examples 3-19

The prestore state immediately preceding each write state shows the
address of the caller.

The analyzer uses the same resource to save prestore states as it does to
save count tags. Consequently, the "prestore" string is shown in the
"count" column of the trace list. Note that the time counts are relative
to the previous normal storage state. Turning off the count qualifier
does not turn off prestore; however, the "prestore" string cannot be
seen in the "count" column of the trace list.

States which satisfy the prestore qualifier and the storage qualifier at
the same time are stored as normal states.

3-20 Examples

Changing the
Count Qualifier

Suppose now that you are interested in only one address in the
RESULTS area, say 5C2H. You wish to see how many loops of the
program occur between each write of a random number to this address.
You can set up the trace specification so that only writes to address
5C2H are stored; then, you can specify as a count qualifier a state
which occurs once on each loop of the program. First of all, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-7.

Figure 3-7. Count Qualifier Specification

Examples 3-21

To begin the trace, select:

Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Type the number of the starting state plus 15 into the ending state field,
and press Enter. The resulting trace display will be similar to the
display which follows.

Figure 3-7. Count Qualifier Specification (Cont’d)

3-22 Examples

The trace listing above shows that the program executes a variable
number of times for each time that a random number is written to
5C2H. Where counts of 0 are seen, the sample program is executing in
the QSORT routine which sorts the values written to the RESULTS
area.

Examples 3-23

Using "Restart
On" Branches

Selecting "restart on" branches is useful in some situations to trace a
specific combination of events. For example, CALLER_3 can be used
to write any random number, but suppose you want to trace only the
situation where CALLER_3 is used to write a random number to
address 5C2H. You can set up the sequence levels so that the analyzer
first searches for CALLER_3.

After CALLER_3 is found, the sequencer should then search for the
write to address 5C2H.

However, if the program jumps to AGAIN or calls QSORT before the
write to 5C2H, you know that CALLER_3 is not used to write the
random number this time, and the analyzer should start searching again
from the beginning.

If the write to address 5C2H occurs before the program executes the
instruction at AGAIN or some instruction in the QSORT routine, the
analyzer will trigger.

To make this specification, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-8.

3-24 Examples

Figure 3-8. Branches "Restart On" Specification

Examples 3-25

To begin the trace, select:

Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Type -7 into the starting state field and 8 into the ending state field, and
press Enter. The resulting trace will be similar to the display which
follows.

3-26 Examples

Using Branches
"Per Level"

Selecting branches "per level" in the trace specification gives you
access to the full power and flexibility of the analyzer. Branches per
level are used when you need to trace more complicated conditions.

There is a "bug" in this chapter’s sample program. Occasionally, after
the 256 bytes of the RESULTS area have been sorted by the QSORT
subroutine, you will see a byte out of order in the last eight or so bytes
of the area. You can see what happens by setting software breakpoints
before and after the QSORT routine is executed, running the program,
and displaying memory.

First of all, break to the monitor by selecting:

Processor, Break

Now, define a keystroke sequence macro which will:

Set a breakpoint at the beginning of the QSORT subroutine.

Run the program until that breakpoint is hit (so you know the
contents in the RESULTS area are about to be sorted).

Set another breakpoint at the AGAIN address.

Run the program until the AGAIN address is hit (the contents
of the RESULTS area should be sorted at this point).

Display the contents of the results area.

To enter a keystroke macro, select:

Config, Key_Macro

The cursor is now in the field which defines the key that executes the
keystroke macro. Use the Tab key to select F3. Leave ESC as the key
used to quit the keystroke sequence, and position the cursor to the
keystroke sequence field and type:

bssQSORT

and press Enter. Now type:

Examples 3-27

pgpbssAGAIN

and press Enter. Continue typing:

pgpmdbRESULTS..RESULTS+0ffh

and press Enter. Terminate the kestroke macro by pressing ESC.

Before executing the F3 keystroke macro, define breakpoints at
QSORT and AGAIN by selecting:

Breakpoints, Add

Type in "QSORT;AGAIN" into the breakpoint addresses field, and
press Enter. When you add breakpoints, they are also set. Because
breakpoints should be cleared when you execute the keystroke macro,
select:

Breakpoints, Clear, All

Now, execute the keystroke macro by pressing F3, and press CTRL -Z
to zoom the emulation memory display window.

Look carefully at the last several bytes of the RESULTS area. You may
notice that a byte is out of order. If not, press F3 and look at the

3-28 Examples

display again. Sometimes, the program seems to work correctly; other
times, you will see a byte out of order.

The memory display shows that the QSORT routine works for the most
part, which makes it look like the problem occurs on the final write to
the RESULTS area. To verify this, set up the sequencer to trigger on
any event, store only the address following the return from QSORT (to
the main program), and prestore writes to the last eight bytes of the
RESULTS area. To do this, modify the trace specification by selecting:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-9.

Figure 3-9. Tracing Last Write to RESULTS Area

Examples 3-29

To begin the trace, select:

Processor, Go, Pc
Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting the following commands:

Window, Zoom

Use the Tab key to select the "Analysis" window, and press Enter.
Now to display the trace, select:

Analysis, Display

Enter the first state to display in the starting state field, and the starting
state plus 15 into the ending state field, and press Enter. The display
will be similar to the following display.

Figure 3-9. Tracing Last Write to RESULTS (Cont’d)

3-30 Examples

From the previous trace, you see that the final writes made in the
QSORT subroutine are indeed improper values for that part of the
RESULTS area. Displaying additional lines of the trace shows you
that it is common for bad values to be written to 5FEH. You can set up
a trace to trigger on one of the bad writes to 5FEH, and store all the
states which lead up to this event. The resulting trace may show you
what is wrong with the program.

The sequencer specification which follows will trigger on a write of
any value from 80H through 0FFH to 5FEH. The sequencer algorithm
to capture the events which lead to a final QSORT write of an
inappropriate value to 5FEH is listed below.

1. Search for the beginning of the QSORT routine. (The first
occurrence of the INC_LOW address assures that the QSORT
routine is actually entered; this eliminates prefetches of the
QSORT address from being interpreted as entry into the
routine.)

Examples 3-31

2. If a write of an inappropriate value (80H through 0FFH) to
address 5FEH occurs, this may or may not be the trigger event
-- another condition must be tested (see 3). Else, if the
QSORT routine exits before a write of a bad value to 5FEH
occurs, the trigger event has not occurred in this loop of the
program; in this case, the sequencer should restart.

3. A write of an inappropriate value to 5FEH has occurred. If
the QSORT routine exits without any other value being
written to 5FEH, this is the trigger event. Else, if a write of
some other value other is made to 5FEH, the previous write is
not the event to trigger on, and the sequencer should go back
to searching for writes of bad values to 5FEH.

To set up this trace specification, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-10.

Notice that the range of data values are from 8000H through 0FFFFH.
Byte values are written to 5FEH, and they are written on the upper 8
bits of the bus. It doesn’t matter what value is on the lower 8 bits of
the bus, but don’t cares are not allowed in values assigned to the range
resource.

Notice also that the trigger position is changed to 502 of 512.

3-32 Examples

Figure 3-10. Branches "Per Level" Specification

Examples 3-33

To begin the trace, select:

Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Display all the lines in the trace. After the trace is displayed, use the
PgUp to find the sequence branch prior to the trigger.

From the trace display above, you can see that the instructions at
addresses 4CAH and 4CEH are the ones that cause the problems.
These are the instructions associated with the OUT section of the
QSORT subroutine. They are used to swap the dividing value and the
value at the high index after a segment of the list to be sorted is split.
You can see that the high index is address 600H, which it should never
be.

Looking back at the program you see that the increment of the high
index so that DEC_HIGH works the first time through will cause
problems when the BLT OUT instruction gets executed in the

3-34 Examples

INC_LOW loop. Changing the program in the following manner will
fix the problem (notice the instructions surrounded by the "#"
character).

**
* The QSORT subroutine is passed (on the stack)
* the high and low addresses of an area of bytes
* to be sorted.
**
QSORT MOVE.L 8[A7],A1 ; A1 = high index.
 MOVE.L 4[A7],A0 ; A0 = low index.
;---
; The following section splits the area to be sorted
; into two areas. QSORT will be called to sort each
; of these smaller areas.
;
; If high index is less than low index, then sort
; is done.
;---
OVER CMPA.L A0,A1
 BLE DONE
;---
; D2 = dividing value (from low index).
;---
 MOVE.B [A0],D2
;---
; (Increment allows DEC_HIGH loop to work first
; time through.)
;---
;#### The following instruction is deleted. ######
; ADDQ.L #1,A1
;###
;---
; Move low index up until it points to a value
; greater than the dividing value.
;---
INC_LOW ADDQ.L #1,A0
 CMP.B [A0],D2
;#### The following instruction is changed. ######
; BLE DEC_HIGH
;###
 BLE NEXT
 CMPA.L A0,A1
 BLT OUT
 BRA.B INC_LOW
;#### The following instruction is new. ##########
NEXT ADDQ.L #1,A1
;###
;---
; Move high index down until it points to a value
; less than or equal to the dividing value.
;---
DEC_HIGH SUBQ.L #1,A1
 CMP.B [A1],D2
 BLT DEC_HIGH
;---
; If high index is less than or equal to low index,
; the area is split; do not swap values.
;---
 CMPA.L A0,A1
 BLT OUT

Examples 3-35

Storing
"Windows" of
Program
Execution

One common use for branches "per level" is to trace "windows" of
execution. If you’re only interested in the execution that occurs
between two instructions, you may not want the trace to contain states
that occur before and after.

Sequence levels are paired in a typical windowing trace specification.
The first sequence level searches for the window enable state, and no
states are stored while searching. When the window enable state is

;---
; If high index is greater than low index, swap
; values and move indexes again.
;---
 MOVE.B [A0],D3
 MOVE.B [A1],[A0]
 MOVE.B D3,[A1]
 BRA.B INC_LOW
;---
; A0 = low address (needed to swap dividing value).
;---
OUT MOVE.L 4[A7],A0)
;---
; Swap dividing value and high index value.
;---
 MOVE.B [A1],[A0]
 MOVE.B D2,[A1]
;---
; The area is now split into two smaller areas.
; The last high index value is the middle of the
; two areas. The high and low addresses for the
; second QSORT call are pushed first.
;---
 MOVE.L 8[A7],-[A7] ; Push high.
 ADDQ.L #1,A1
 MOVE.L A1,-[A7] ; Push middle + 1.
 SUBQ.L #2,A1
 MOVE.L A1,-[A7] ; Push middle - 1.
 MOVE.L A0,-[A7] ; Push low.
 BSR.W QSORT
;---
; Increment stack pointer after call.
;---
 ADDA.L #8,A7
 BSR.W QSORT
 ADDA.L #8,A7
DONE RTS

3-36 Examples

found, the analyzer proceeds to the second sequence level which stores
the states you’re interested in while searching for the window disable
state.

If you want to store the window before and after the trigger, use two
sets of paired sequence levels: one window enable/disable pair of
sequence terms before the trigger, and the another disable/enable pair
after the trigger (see figure 3-11). Notice that the order of the second
sequence level pair is swapped; if you find the trigger while searching
for the window disable state, you want the analyzer to branch to a level
that continues to search for the disable state.

For example, to trace only the execution of the sample program’s
RAND subroutine, you would set up the sequencer specification so that
the execution of the first instruction in the RAND subroutine is the
window enable state and the address of the RAND subroutine’s
"return" instruction is the window disable state. Suppose also that you
wish to trigger on the INC_LOW instruction of the QSORT routine.

Figure 3-11. Storing a Window of Program Execution

Examples 3-37

To set up this trace specification, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-12.

Figure 3-12. Store "Window" Trace Specification

3-38 Examples

To begin the trace, select:

Analysis, Begin

After the "Trace complete" message is shown on the status line, display
the trace by selecting:

Analysis, Display

Enter -8 in the starting state field and 7 in the ending state field to
display the following lines of the trace.

Figure 3-12. Store "Window" Trace Spec. (Cont’d)

Examples 3-39

Display more lines of the trace by selecting:

Analysis, Display

Press the Enter key twice to select the automatically incremented
starting state and ending state numbers to display the following lines of
the trace.

3-40 Examples

Excluding Windows
of Program Execution

You can use the sequencer to exclude windows of program execution
by switching the storage qualifiers on the enable and disable sequence
levels (see figure 3-13). In other words, store the states you’re
interested in while searching for the enable state and do not store states
while searching for the disable state.

Examples 3-41

Triggering on a State
Outside the Window

In the previous example, the trigger state occurred inside the window,
between two sequence levels that searched for the window enable state.
You can set up a trace specification that triggers on a state outside the
window by having the trigger occur between two sequence levels that
search for the window enable state as shown in figure 3-14.

Figure 3-13. Excluding Windows of Program Execution

3-42 Examples

Figure 3-14. Triggering on a State Outside the Window

Examples 3-43

Using Multiple
Trigger Levels

It is possible for the analyzer to trigger when finding a state in any
sequence level but the last because the trigger point is not actually
when the analyzer finds the state specified in the "Trigger on"
field; rather the trigger point is the first entry of the sequence level
following the level containing the "Trigger on" field.

To illustrate this point, select:

Analysis, Trace, Modify

Modify the trace specification as shown in figure 3-15.

You might think that because the "Trigger on" field contains "no state"
the analyzer will never trigger. But, according to the statement above,
the analyzer will trigger because the branch from sequence level one is
to the level following the one containing "Trigger on". To verify that
this is true, select:

Analysis, Begin

Figure 3-15. Using Multiple Trigger Levels

3-44 Examples

The "Trace complete" message is shown on the status line, indicating
that the analyzer has indeed triggered.

Examples 3-45

Notes

3-46 Examples

4

Using the External Analyzer

Introduction Most HP 64700 Series emulators may be ordered with an external
analyzer. The external analyzer provides 16 external data channels.
These data channels allow you to capture activity on signals external to
the emulator, typically other target system signals. The external
analyzer may be configured as an extension to the internal emulation
analyzer, as an independent external state analyzer, or as an
independent external timing analyzer.

The PC Interface is different in the following ways when an external
analyzer is present:

1. The "Analysis System" command is available so that you can
select the external analyzer mode.

2. The "Internal" and "External" command options are present so
that you can specify, when the external analyzer is configured
as an independent analyzer, which analyzer the command is
for.

3. The "Analysis Format" screen provides fields for selecting the
threshold voltages for the external trace signals, shows the
activity on the external trace signals, and allows you to define
trace labels for the external analyzer trace signals.

4. The predefined "xbits" external analyzer trace label appears in
the "Analysis Format" screen and in the trace specification
screen.

Using the External Analyzer 4-1

Before You Can
Use the External
Analyzer

There are several things to do before you can use the external analyzer;
these things are listed below and explained in the following paragraphs.

Assemble the analyzer probe.

Connect the probe to the emulator.

Connect the probe wires to the target system.

Specify the threshold voltages for the external probe signals.

Label the external trace signals.

Select the external analyzer mode.

Assembling the
Analyzer Probe

The analyzer probe is a two-piece assembly, consisting of ribbon cable
and 18 probe wires (16 data channels and the J and K clock inputs)
attached to a connector. Either end of the ribbon cable may be
connected to the 18 wire connector, and the connectors are keyed so
they may only be attached one way. Align the key of the ribbon cable
connector with the slot in the 18 wire connector, and firmly press the
connectors together. (See figure 4-1.)

4-2 Using the External Analyzer

Each of the 18 probe wires has a signal and a ground connection. Each
probe wire is labeled for easy identification. Thirty-six grabbers are
provided for the signal and ground connections of each of the 18 probe
wires. The signal and ground connections are attached to the pin in the
grabber handle. (See figure 4-2.)

Figure 4-1. Assembling the Analyzer Probe

Using the External Analyzer 4-3

Connecting the
Probe to the Emulator

The external analyzer probe is attached to a connector under the
snap-on cover in the front upper right corner of the emulator. Remove
the snap-on cover by pressing the side tabs toward the center of the
cover; then, pull the cover out. (See figure 4-3.)

Note Check for bent connector pins before connecting the analyzer probe to
the emulator.

Figure 4-2. Attaching Grabbers to Probe Wires

4-4 Using the External Analyzer

Each end of the ribbon cable connector is keyed so that it can be
connected to the emulator in only one way. Align the key of the ribbon
cable connector with the slot in the emulator connector, and gently
press the ribbon cable connector into the emulator connector. (See
figure 4-4.)

Figure 4-3. Removing Cover to Emulator Connector

Using the External Analyzer 4-5

Figure 4-4. Connecting the Probe to the Emulator

4-6 Using the External Analyzer

Caution Turn OFF target system power before connecting analyzer probe wires
to the target system. The probe grabbers are difficult to handle with
precision, and it is extremely easy to short the pins of a chip (or other
connectors which are close together) with the probe wire while trying
to connect it.

Connecting Probe
Wires to the Target

System

You can connect the grabbers to pins, connectors, wires, etc., in the
target system. Pull the hilt of the grabber towards the back of the
grabber handle to uncover the wire hook. When the wire hook is
around the desired pin or connector, release the hilt to allow the tension
of the grabber spring to hold the connection. (See figure 4-5.)

Using the External Analyzer 4-7

Figure 4-5. Connecting the Probe to the Target System

4-8 Using the External Analyzer

Specifying Threshold
Voltages & Defining

Labels

To specify threshold voltages for the external probe signals, select:

Analysis, Format, I nternal

An example format specification display is shown in figure 4-6. This
screen allows you to specify threshold voltages, informs you of activity
on the external analyzer trace signals, and allows you to define external
analyzer labels.

When you are done specifying the threshold voltages and defining
labels, press End and Enter to save your specifications. To exit
without making changes to this label configuration, press Esc.

Figure 4-6. Analysis Format Display

Using the External Analyzer 4-9

Specifying Threshold Voltages

The external probe signals are divided into two groups, the lower byte
(channels 0 through 7), and the upper byte (channels 8 through 15).
Threshold voltage levels can be specified for each group. When the
cursor is in one of the threshold voltage fields, you can use the Tab key
to select one of the following values, or you can type in the voltage:

TTL 1.4 volts.

CMOS 2.5 volts.

ECL -1.3 volts.

<number> You can type in a threshold voltage. Voltages may
be from -6.4 volts to 6.35 volts with a 50 mV
resolution.

Note The threshold settings will not take effect until the next time you begin
a trace.

External Trace Signal Activity

This line of the display shows the activity on the external trace signals.
A trace signal is specified as low (0) when it is below the threshold
voltage, high (1) when it is above the threshold voltage, or moving
(double headed arrows).

Defining External Analyzer Labels

The format specification screen allows you to define external analyzer
labels. When you initially enter the PC Interface, one label, "xbits", is
predefined. The "xbits" label includes all 16 external channels as
specified by asterisks in the label value field.

You can define labels by moving the cursor to one of the label fields,
typing in a label name (embedded spaces are not allowed), and
pressing Enter. Once you have entered a label name, a label value
field appears. The label value field allows you to specify the external

4-10 Using the External Analyzer

channels that make up the label. The label value field allows you to
mask off unused or unimportant external channels.

New "label value" fields contain all periods. This means that the label
does not currently represent any timing signals (all external channels
are masked). To specify channels that the label is to represent, simply
move the cursor to the appropriate column, and either use the Tab key
to select an asterisk (include signal in the label) or type the asterisk key.

In figure 4-6, the external analyzer labels "lo_byte", "hi_byte", and
"bit0" are user-defined.

Selecting the
External Analyzer

Mode

The external analyzer may be configured as an extension to the
emulation analyzer, as an independent state analyzer, or as an
independent timing analyzer. To specify the external analyzer mode,
select:

Anlysis, System

Press the Tab key to scroll through the various options:

aligned with internalIn this mode, the external analyzer becomes an
extension of the internal emulation analyzer. In
other words, they operate as one analyzer. The
external trace signals may be used to capture target
system signals synchronized with the emulation
clock.

external state
analyzer

In this mode, the external analyzer operates as an
independent state analyzer. The independent state
analyzer is identical to the emulation analyzer,
except that only 16 bits of analysis are available.
Your HP 64700 Series emulator now contains two
state analyzers; two sets of analyzer resources
(trace memory, patterns, qualifiers, etc.) are
available, one for the emulation analyzer and one
for the independent state analyzer.

When one of the independent analyzer modes is
selected, you can use one analyzer to arm the other.
You can specify the arm condition as a qualifier,
perhaps as the trigger condition (cross-triggering).

Using the External Analyzer 4-11

(Refer to the "Making Coordinated Measurements"
chapter for more information on cross-triggering.)

external timing
analyzer

In this mode, the external analyzer operates as an
independent timing analyzer. Refer to the "Using
the External Timing Analyzer" for more
information.

Using the External
Analyzer when
Aligned with
Internal

When the "aligned with internal" mode of the external analyzer is
selected, it operates (from the PC Interface) as an extension to the
emulation analyzer. In other words, they operate as one analyzer.
External data is captured on the emulation clock as are the address,
data, and status signals.

When an external analyzer is present, you may enter external data
qualifiers in the trace specification, as shown in figure 4-7, by
assigning values to "xbits", or to user-defined external analyzer labels
such as "lo_byte", "hi_byte", or "bit0". Also, the trace display may
contain additional columns showing the data captured on the external
channels, as shown in figure 4-7. (You can use the CTRL and
right-arrow or left-arrow keys to view columns that are beyond the
width of the window.)

4-12 Using the External Analyzer

Figure 4-7. External Data in the Trace

Using the External Analyzer 4-13

Using the External
State Analyzer

When you select the "external state analyzer" mode, the external
analyzer operates as an independent state analyzer. You use the
independent state analyzer in the same way as you use the internal
analyzer, except that you must select the external analyzer clock source
and specify the maximum qualified clock speed. Both of these
specifications are made in the external analysis format screen (see
figure 4-8) which you access by selecting:

Analysis, Format, External

Selecting the Clock
Source

The independent state analyzer may be clocked with target system
clock signals connected to the JCL and KCL external clock inputs.

Notice that there are two "Clock on" fields (see figure 4-8), one for the
J signal and one for the K signal. Position the cursor in one of these

Figure 4-8. Analysis Format Display

4-14 Using the External Analyzer

fields and press the Tab key repeatedly to view the following
selections.

<rising edge> Selects the rising edge of this signal as the clock.

<falling edge> Selects the falling edge of this signal as the clock.

<both edges> Specifies that the external analyzer be clocked on
both the rising and falling edges of this signal.

high Specifies this signal as a qualifying signal that only
allows the other signal to clock the analyzer when
the qualifying signal is higher than the threshold
voltage (see figure 4-9).

low Specifies this signal as a qualifying signal that only
allows the other signal to clock the analyzer when

Figure 4-9. Qualified Clocks

Using the External Analyzer 4-15

the qualifying signal is lower than the threshold
voltage.

off Specifies that this signal is not used.

When edges are specified for both the J and K signals, the external
analyzer clocks on any of the specified edges.

Setup time for qualifying signals is approximately 20 nanoseconds.
Qualifying signal hold time is approximately 5 nanoseconds.

Specifying the
Maximum Qualified

Clock Speed

The maximum qualified clock rate is the repetition rate of all specified
clock signals (see figure 4-9). When selecting the maximum qualified
clock speed of the analyzer, there are tradeoffs involving the trace
count qualifier to be considered. You select the maximum qualified
clock speed in the "Clock Source" field of the "Analysis Format
External" screen (see figure 4-8). There are three maximum speeds
that can be specified:

slow Slow specifies a maximum qualified clock rate of
16 MHz. When "slow" is selected, there are no
restrictions on the trace count qualifier.

fast Fast specifies a maximum qualified clock rate of 20
MHz. When "fast" is selected, the trace count
qualifier may be used to count states but not time.

very fast Very fast specifies a maximum qualified clock rate
of 25 MHz. When "very fast" is selected, the trace
count qualifier may not be used at all (in other
words, the count qualifier field in the trace
specification screen must be "off").

4-16 Using the External Analyzer

External Analyzer
Specifications

Threshold Accuracy = +/- 50 mV.

Threshold Voltage Range = 6 V to -6 V.

Dynamic Range = +/- 10 V about threshold setting.

Minimum Input Swing = 600 mV pp.

Minimum Input Overdrive = 250 mV or 30% of threshold
setting, whichever is greater.

Absolute Maximum Input Voltage = +/- 40 V.

Probe Input Resistance = 100K ohms +/- 2%.

Probe Input Capacitance = approximately 8 pF.

Maximum +5 V Probe Current = 0.650 A.

+5 V Probe Voltage Accuracy = +5.0 +/- 5%.

External State Analyzer Specifications

Data Setup Time = 10 ns min.

Data Hold Time = 0 ns min.

Qualifier Setup Time = 20 ns min.

Qualifier Hold Time = 5 ns min.

Minimum Clock Width = 10 ns

Using the External Analyzer 4-17

Minimum Clock Period:

– No Tagging Mode = 40 ns (25 Mhz clock).

– Event Tagging Mode = 50 ns (20 MHz clock).

– Time Tagging Mode = 60 ns (16 MHz clock).

Minimum Time from Slave Clock to Master Clock = 10 ns.

Minimum Time from Master Clock to Slave Clock = 50 ns.

4-18 Using the External Analyzer

5

Using the External Timing Analyzer

Introduction The external analyzer can be aligned with the internal emulation
analyzer, configured as an external state analyzer, or configured as an
external timing analyzer. This chapter shows you how to use the
external timing analyzer. The main sections in this chapter:

Show you how to configure the external analyzer as a timing
analyzer.

Show you how to specify threshold voltages and define labels
for the external probe signals.

Describe the timing specifications.

Describe the timing waveform display.

Show you examples of using the external timing analyzer.

Note Two versions of the PC Interface are shipped with your emulator; one
contains interface software for the timing analyzer and the other does
not. The version that contains the timing interface software is larger
and requires most of the PC’s 640K bytes of RAM. The version that
does not contain the timing interface software requires approximately
480K bytes of RAM.

Using the External Timing Analyzer 5-1

Prerequisites Before you can use the external timing analyzer, you must have already
completed the following tasks:

You must be using the version of the PC Interface that gives
you access to the external timing analyzer.

The external analyzer probe must be assembled and connected
to signals of interest as shown in the "Using the External
Analyzer" chapter.

Configuring for
Timing Analysis

To configure your emulator’s external analyzer as a timing analyzer,
select:

Analysis, System

Now, use the Tab key to select "external timing analyzer" and press
Enter.

When the external analyzer is configured as a timing analyzer, the
"Analysis Trace Modify External" command gives you a special
timing analyzer trace specification screen (see figure 5-1) and the
"Analysis Display External" command gives you a timing waveform
display.

5-2 Using the External Timing Analyzer

Specifying
Threshold
Voltages &
Defining Labels

To specify threshold voltages for the external probe signals, select:

Analysis, Format, External

An example format specification display is shown in figure 5-2. This
screen allows you to specify threshold voltages, informs you of activity
on the external analyzer trace signals, and allows you to define timing
labels.

Trigger position

Trigger delay

Duration

Figure 5-1. Timing Interface Main Display

Using the External Timing Analyzer 5-3

When you are done specifying the threshold voltages and defining
labels, press End and Enter to save your specifications. To exit
without making changes to this label configuration, press Esc.

Threshold Voltages The external probe signals are divided into two groups, the lower byte
(channels 0 through 7), and the upper byte (channels 8 through 15).
Threshold voltage levels can be specified for each group. When the
cursor is in one of the threshold voltage fields, you can use the Tab key
to select one of the following values, or you can type in the voltage:

TTL 1.4 volts.

CMOS 2.5 volts.

ECL -1.3 volts.

Figure 5-2. Timing Label Specification

5-4 Using the External Timing Analyzer

<number> You can type in a threshold voltage. Voltages may
be from -6.4 volts to 6.35 volts with a 50 mV
resolution.

Activity This line of the display shows the activity on the external trace signals.
A trace signal is specified as low (0) when it is below the threshold
voltage, high (1) when it is above the threshold voltage, or moving
(double headed arrows).

Labels The format specification screen allows you to define timing labels.
When you initially enter the PC Interface, one label, "xbits", is
predefined. The "xbits" label includes all 16 external channels as
specified by asterisks in the label value field.

You can define labels by moving the cursor to one of the label fields,
typing in a label name (embedded spaces are not allowed), and
pressing Enter. Once you have entered a label name, a label value
field appears. The label value field allows you to specify the external
channels that make up the label. The label value field allows you to
mask off unused or unimportant external channels.

New "label value" fields contains all periods. This means that the label
does not currently represent any timing signals (all external channels
are masked). To specify channels that the label is to represent, simply
move the cursor to the appropriate column, and either use the Tab key
to select an asterisk (include signal in the label) or type the asterisk key.

Labels can be used for signal identification in the waveform display.
When a label consists of more than one signal, the signals within that
label are numbered from the least significant active channel. For
example, in figure 5-2, external channel 13 may be represented in the
waveform display with the following names: xbits 13, bgack 00, or
active 9.

Timing
Specification

This section describes the options available when modifying the timing
specification. To modify the timing specification, select:

Using the External Timing Analyzer 5-5

Analysis, Trace, Modify, External

Brackets, [], in the timing specification display indicate fields in which
the Tab key may be used to select choices.

When you are done modifying the timing specification, press End and
Enter to save your specifications. To exit without making changes to
the timing specification, press Esc.

5-6 Using the External Timing Analyzer

Acquisition Modes You can use the external timing analyzer in one of three modes:
transitional, standard (data acquisition), or glitch (data and glitch
acquisition).

Transitional

In the transitional mode, data is sampled at 100 MHz, but stored only
when an input transition (on any channel) is detected. A time tag is
also be stored so that the data can be accurately placed in the display.
This mode allows the effective time window stored to be increased
while maintaining resolution.

The number of data transitions stored depends on the incoming data
transmission rate. The minimum number of data transitions that will be
stored is 128. Because time tags are also stored, the maximum number
of transitions that can be stored is 512. See figure 5-3.

Figure 5-3. Transitional Acquisition Mode

Using the External Timing Analyzer 5-7

Figure 5-4. Standard Acquisition Mode

Figure 5-5. Glitch Acquisition Mode

5-8 Using the External Timing Analyzer

Standard

In the standard mode, the timing analyzer samples data on the external
analyzer probe at the selected sample rate. Up to 1024 samples can be
stored, and the maximum sample rate is 100 MHz (10 ns intervals).
See figure 5-4.

Glitch

This is the same as the standard acquisition mode except that glitch
information is also stored at each sample. A glitch is detected when
there are two or more transitions on a signal between samples. The
storing of glitch information reduces the number of samples that can be
stored to 512, and the maximum sample rate is 50 MHz (20 ns
intervals). See figure 5-5.

Sample Period The sample period in the transitional acquisition mode is always 10 ns.

Valid periods in the standard acquisition mode are between 10 ns and
50 ms in a 1/2/5 sequence.

Valid periods in the glitch acquisition mode are between 20 ns and 50
ms in a 1/2/5 sequence.

The accuracy of the sample rate is that of the crystal oscillator,
approximately +/- 0.01%.

Armed By The "Armed by" field reflects the arm condition of the external
analyzer.

Begin

When "Armed by Begin" is shown, the external analyzer is always
armed. This means that the analyzer can perform measurements at any
time.

Using the External Timing Analyzer 5-9

TRIG1 or TRIG2

When "Armed by TRIG1" or "Armed by TRIG2" is shown, the
external analyzer cannot perform a measurement until the arm is
received from an external trigger signal.

External trigger signals can drive the external analyzer over the TRIG1
or TRIG2 signals, as specified in the Trigger Configuration (see the
"Allowing CMB and BNC Triggers to Arm the Analyzer" section in
the "Coordinated Measurements" chapter).

Trigger Position The trigger position option allows you to place the trigger at the start,
center, or end of the trace. For example, if you wanted to look at
events before the trigger, you would place the trigger at the end of the
trace.

Trigger Holdoff (Prestore)

Trigger holdoff is the number of samples that are stored before the
trigger will be recognized. Trigger holdoff is as follows for the three
timing modes:

Transitional Mode None.

Standard Mode Start trace = 60 samples.
Center trace = 512 samples.
End trace = 960 samples.

Glitch Mode Start trace = 30 samples.
Center trace = 256 samples.
End trace = 480 samples.

Trigger Delay Timing trigger delay is the amount of time to delay the trigger after a
valid trigger condition. Trigger delay can be anywhere between 0 and
10 ms in 10 ns increments.

5-10 Using the External Timing Analyzer

Label Qualifier The "Label" field in the timing specification display allows you to
select one of the defined labels. You can use the Tab key to scroll
through the defined labels. Once a label is selected, you can then
specify patterns, edges, or glitches on the data channels associated with
that label. The trigger condition is the combined specifications of all
labels (that is, the pattern, edge, or glitch specifications for each label
are ORed together to form the complete specification for the 16
external data channels).

All defined labels can appear in the waveform display regardless of the
label qualifier selected.

Specifying the
Trigger Condition

The timing specification options described above tell the timing
analyzer how to capture data and how to display it, but they do not tell
the analyzer when to capture data; this is done by specifying the trigger
condition. The "Find" and "Then Find" options allow you to specify
the trigger condition.

There are three types of trigger conditions:

1. Pattern Trigger. This type of trigger condition occurs when
no edges (or glitches if the glitch acquisition mode is enabled)
are specified in the "Then Find" options. In order for the
trigger condition to become true, the pattern specified must be
present for greater than or less than a specified amount of time
(duration).

2. Edge Trigger. This type of trigger condition can only occur
when edges are specified in the "Then Find" options and a
greater than duration is specified. In order for this trigger
condition to become true, the specified pattern trigger must be
found and be present for greater than the specified period of
time, and a specified edge must be found while the pattern is
still present.

3. Glitch Trigger . This type of trigger condition can only occur
in the glitch acquisition mode when glitches are specified in
the "Then Find" options and a greater than duration is
specified. In order for this trigger condition to become true,
the specified pattern must be found and be present for greater
than the specified period of time, and a specified glitch must
be found while the pattern is still present.

Using the External Timing Analyzer 5-11

These three types of trigger conditions are described below.

Find Pattern Find pattern allows you to specify a data pattern consisting of 1’s, 0’s,
or X’s (don’t cares) across the 16 channels. The most significant bit is
channel 15 and least significant bit is channel 0.

Use the field editing keys to position the cursor to the different
channels, and use the Tab key to select the appropriate value.

Duration The "present for" option allows you to specify a pattern duration
greater than or less than a specified amount of time before the pattern
trigger condition is met.

If the pattern is valid but the duration is not met, there is a 20 ns reset
time before looking for a pattern again.

Greater Than Duration

The trigger occurs after the pattern is present on the probe for the
specified time duration. Selectable from 30 ns to 10 ms in 10 ns
increments.

Less Than Duration

The trigger occurs when the specified pattern is present on the probe
inputs for greater than 20 ns but less than the specified time duration.
Selectable from 40ns to 10 ms in 10 ns increments.

An example pattern trigger, with a duration greater than 30 ns, is
shown in figure 5-6.

5-12 Using the External Timing Analyzer

Figure 5-6. Pattern Trigger

Using the External Timing Analyzer 5-13

Then Find Edge or
Glitch

Edge or glitch triggers occur after the pattern has been present on the
probe for the specified duration and, while the pattern is still present,
an edge or glitch occurs on any of the selected channels. Edges on
each channel can be specified as rising, falling, or either rising or
falling.

Edge triggers may only be specified with "greater than" durations. See
figure 5-7 for an edge trigger example.

Glitch triggers may only be specified while in the glitch acquisition
mode and with "greater than" durations. See figure 5-8 for a glitch
trigger example.

Reset The timing specification reset command allows you to return the
timing specification to its default values (see figure 5-1).

5-14 Using the External Timing Analyzer

Figure 5-7. Edge Trigger

Using the External Timing Analyzer 5-15

Figure 5-8. Glitch Trigger

5-16 Using the External Timing Analyzer

Timing Waveform
Display

To view a timing waveform display, select:

Analysis, Display, External

You can exit the waveform display by pressing ESC, and you can
re-enter the waveform display by selecting the "Analysis Display
External" command. When you enter the waveform display, there are
several fields which allow you to change how the trace information is
displayed. This section describes the waveform display and the
features that allow you to change the display. An example timing
waveform display is shown in figure 5-9.

Setting the Time per
Division

By moving the cursor to the time/division field and using the Tab key,
you can change the time per division on the display. There are 10
divisions on the display, represented by vertical dotted lines.

Figure 5-9. Timing Waveform Display

Using the External Timing Analyzer 5-17

Scrolling through the
Waveform Display

When the time per division is decreased, not all of the trace can be
displayed on the screen. However, you can scroll the trace across the
screen by pressing the CTRL left arrow and CTRL right arrow keys.
The portion of the trace that is currently displayed is represented by a
bar at the bottom of the screen.

Reference Points Three reference points appear in the waveform display. The first is the
trigger point. The two remaining reference points are movable, and
you can place them at areas of interest in the trace.

Trigger

The trigger point is represented by the vertical dashed line. The trigger
point is the actual trigger condition (pattern, edge, or glitch) plus the
trigger delay.

User Defined (X, O)

The user defined reference points can be moved anywhere in the
display. These points are also represented by vertical dashed lines, and
they are labeled "x" and "o". The top of the waveform display shows
time between these two points and the time between them and the
trigger.

Cursor moves (X, O, X & O) The third field from the top allows
you to select which reference points the cursor will move, "x", "o", or
both "x & o".

Magnify About (X or O) Toggling the "display about" value from
"x" to "o" causes the waveforms to be displayed about the different
reference points.

5-18 Using the External Timing Analyzer

Inserting/Deleting
Channels

The Insert key allows you to increase the number of channels included
in the waveform display. By inserting channels, you can display a
maximum of 16 channels on the display.

Each channel can be used to display any of the defined labels.

The Delete key allows you to decrease the number of waveforms
included on the display.

Examples

Starting the Timing
Measurement

To start a timing measurement, select:

Analysis, Begin, External

Also, while in the waveform display, you can enter the "B" key to start
a timing measurement.

Halting the Trace To halt a currently running timing measurement, select:

Analysis, Halt, External

Also, while in the waveform display, you can enter the "H" key to halt
a timing measurement.

Using the External Timing Analyzer 5-19

External Timing
Analyzer
Specifications

Sample Rate Accuracy = 0.01%

Asynchronous Pattern. Trigger on pattern less than or greater than
specified duration. Pattern is logical AND of specified low, high, or
"don’t care" for each channel. If pattern is true then false for less than
the duration, there is a 20 ns reset time before looking for the pattern
again.

Greater Than Duration. Range is 30 ns to 20 ms. Resolution is +/- 10
ns or 0.01%, whichever is greater. Accuracy is (10 ns + 0.01%) to (-30
ns - 0.01%).

Less Than Duration. Range is 40 ns to 10 ms. Resolution is +/- 10 ns
or 0.01%, whichever is greater. Pattern must be valid for at least 20 ns.
Accuracy is (30 ns + 0.01%) to (-10 ns - 0.01%).

Delay Accuracy = 0.01% +/- 10 ns

Minimum Detectable Glitch = 5 ns at threshold

Typical Skew < 4 ns

5-20 Using the External Timing Analyzer

6

Making Coordinated Measurements

Introduction Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and some other
instrument connected to the BNC connector.

This chapter will describe coordinated measurements which involve
the emulation or external analyzers. These types of coordinated
measurements are:

Starting a trace on reception of the CMB EXECUTE signal.

Using the analyzer trigger to break emulator execution into
the monitor.

Using the analyzer trigger to drive the CMB or BNC
TRIGGER signal.

Allowing CMB or BNC TRIGGER signals to arm the
analyzer.

Using the external analyzer to arm the emulation analyzer,
and vice-versa.

Making Coordinated Measurements 6-1

Note You must use the background emulation monitor to perform
coordinated measurements. Refer to your PC Interface: Emulator
User’s Guide for more information on the emulation monitor.

Three signal lines on the CMB are active and serve the following
functions when enabled:

TRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When CMB run
control interaction is enabled, all emulators are
required to break to background upon reception of a
false READY signal and will not return to
foreground until this line is known to be in a true
state.

EXECUTE Active low. This line serves as a global interrupt
signal. Upon reception of an enabled EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
typically, run the emulator or start a trace
measurement.

6-2 Making Coordinated Measurements

Tracing at
EXECUTE

To specify that an analyzer measurement begin upon reception of the
CMB EXECUTE signal, select the following PC Interface command:

Analysis, CMB, Begin

The trace measurement defined by the current trace specification will
be started when the EXECUTE signal becomes active. When the trace
measurement begins, you will see the message "ALERT: CMB
execute; emulation trace started".

Using the
Analyzer Trigger
to Break into the
Monitor

To cause emulator execution to break into the monitor when the
analyzer trigger condition is found, you must modify the trigger
configuration. To access the trigger configuration, select:

Config, Trigger

The trigger configuration display contains two diagrams, one for each
of the internal TRIG1 and TRIG2 signals.

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, highlight the "Analyzer" field in the TRIG1
portion of the display, and use the Tab key to select the single-headed
arrow pointing towards TRIG1; this shows that the analyzer is driving
TRIG1.

Next, highlight the "Emulator" field and use the Tab key to select the
arrow pointing towards the emulator; this specifies that emulator
execution will break into the monitor when the TRIG1 signal is driven.

The resulting trigger configuration display is shown in figure 6-1.

Making Coordinated Measurements 6-3

Both the emulation analyzer and the external analyzer may drive the
same internal signal; in this case, the internal signal will be driven by
the analyzer that finds its trigger condition (point) first.

Using the
Analyzer Trigger
to Drive External
Signals

To specify that external TRIGGER signals (either CMB or BNC)
become active when the analyzer trigger condition is found, access the
trigger configuration by selecting:

Config, Trigger

To use the internal TRIG2 signal to connect the analyzer trigger to the
CMB TRIGGER line, highlight the "Analyzer" field in the TRIG2
portion of the trigger configuration display, and use the Tab key to

Figure 6-1. Cross Trigger Configuration

6-4 Making Coordinated Measurements

select the single-headed arrow pointing towards TRIG2; this shows that
the analyzer trigger is driving TRIG2.

Next, highlight the "CMB" field and use the Tab key to select the
single-headed arrow pointing towards CMB; this shows that the CMB
TRIGGER signal becomes active when the TRIG2 signal is driven.

This trigger configuration is also shown in figure 6-1.

Allowing CMB or
BNC TRIGGERs to
Arm the Analyzer

The two previous examples show how the analyzer can be used to
drive signals. You can also specify that the analyzer be armed (turned
on, or enabled) on the reception of CMB or BNC TRIGGER signals.
(The analyzer is always armed unless one of these signals is
specifically used to arm the analyzer.) Until the analyzer is armed,
trace measurements cannot be performed.

Arming the Internal
Emulation Analyzer

To arm the internal emulation analyzer on reception of an external
CMB or BNC TRIGGER signal, select the following command from
within the PC Interface:

Config, Trigger

For example, to specify that the state analyzer be armed by the CMB
TRIGGER over TRIG2, highlight the "CMB" field and use the Tab
key to select the single-headed arrow pointing towards TRIG2; this
shows that the TRIG2 signal is driven when the CMB TRIGGER
signal becomes active.

Next, highlight the "Analyzer" field in the TRIG2 portion of the
display, and use the Tab key to select the arrow which points towards
"Analyzer"; this shows that the analyzer trigger receives TRIG2.

This trigger configuration is shown in figure 6-2.

Making Coordinated Measurements 6-5

In the internal emulation analyzer trace specification display, you can
use the "arm" resource in any of the state qualifier fields. For example,
if "arm" is shown in the "trigger on" field, the analyzer triggers when it
is armed.

Arming the External
Analyzer

To arm the external analyzer on reception of an external CMB or BNC
TRIGGER signal, select the following command from within the
Timing Interface:

Config, Trigger

For example, to specify that the timing analyzer be armed by the BNC
TRIGGER over TRIG1, highlight the "BNC" field and use the Tab key
to select the single-headed arrow pointing towards TRIG1; this shows
that the TRIG1 signal is driven when the BNC TRIGGER signal
becomes active.

Next, highlight the "External" field in the TRIG1 portion of the
display, and use the Tab key to select the arrow which points towards
"External"; this shows that the analyzer trigger receives TRIG1.

Figure 6-2. Receiving External Signals

6-6 Making Coordinated Measurements

This trigger configuration is shown in figure 6-2.

In the external state analyzer trace specification display, you can use
the "arm" resource in any of the state qualifier fields. For example, if
"arm" is shown in the "trigger on" field, the analyzer triggers when it is
armed.

When the external analyzer is configured as a timing analyzer and is to
be armed by an external CMB or BNC TRIGGER signal, the timing
trace specification display is updated to show "Armed by External".
The timing measurement begins when the arm signal is received.

Using One
Analyzer to Arm
the Other

You can use the trigger condition of the external analyzer to arm the
emulation analyzer, and vice-versa. To make a specification like this,
you also select:

Config, Trigger

For example, in figure 6-3, the TRIG1 signal is used to arm the internal
analyzer when the external analyzer’s trigger condition is found.

Making Coordinated Measurements 6-7

Other Trigger
Combinations

You may have noticed that the CMB or BNC TRIGGER signals may
be driven by the internal TRIG1 and TRIG2 signals, be received by
external sources, or both. When a CMB or BNC signal is received
from an external source, it may be used to break emulator execution
into the monitor. When a CMB or BNC signal is both driven and
received (double-headed arrow shown in the associated field), you can
set up the emulation analyzer to drive the internal signal; if the internal
signal drives the emulator break line, the emulator will break into the
monitor on either the analyzer trigger or on the reception of an external
TRIGGER signal.

Figure 6-3. Using One Analyzer to Arm the Other

6-8 Making Coordinated Measurements

When an emulator break occurs due to the analyzer trigger, the
analyzer will stop driving the internal signal that caused the break.
Therefore, if TRIG2 is used both to break and to drive the CMB
TRIGGER (for example), TRIGGER will go true when the trigger is
found and then will go false after the emulator breaks. However, if
TRIG1 is used to cause the break and TRIG2 is used to drive the CMB
TRIGGER, TRIGGER will stay true until the trace is halted or until the
next trace starts.

Making Coordinated Measurements 6-9

Notes

6-10 Making Coordinated Measurements

Index

A absolute count display, 2-16
absolute files, loading, 3-9
acquisition modes, 5-7
activity, external trace channels, 4-10, 5-5
add operator, 2-9
addr trace label, 2-10
analysis begin, 2-13
analysis display, 2-14
analysis halt, 2-14
analysis specification

trace at EXECUTE, 6-3
analyzer

features of, 1-3
internal, using the, 2-1

analyzer probe
assembling, 4-2
connecting to the emulator, 4-4
connecting to the target system, 4-7

AND operator (bitwise), 2-9
armed by, timing specification, 5-9

B bases (number), 2-8
binary numbers, 2-8
bitwise AND operator, 2-9
bitwise OR operator, 2-9
bitwise XOR operator, 2-9
BNC connector, 6-1
branch state, 1-3, 2-5
branches, 2-5

per level, 3-27
restart on, 3-24

breaking into the monitor on trigger, 6-3

C channels, inserting/deleting from waveform display, 5-19
clock source for external state analyzer, 4-14
clock speed, maximum qualified, 4-16

Index-1

CMB (coordinated measurement bus), 6-1
signals on, 6-2

CMOS threshold voltage specification, 4-10, 5-4
constants, 2-8
coordinated measurements, 1-5

definition, 6-1
count information in the trace listing, 1-3
count information in trace listing, 2-15
count qualifiers, 2-6, 3-21
counts

displaying relative or absolute, 2-16
cross-arming emulation and external analyzers, 6-7

D data trace label, 2-11
decimal numbers, 2-8
default trace specification, 2-2
DeMorgan’s law, 2-13
display about x or o, timing waveform display, 5-18
displaying the trace, 2-14
divide operator, 2-9
don’t care digits, 2-8
duration, 5-12

E ECL threshold voltage specification, 4-10, 5-4
edge trigger, 5-11, 5-14
emulation analyzer

definition, 1-1
emulator status lines, predefined values for, 2-11
EXECUTE

CMB signal, 6-2
tracing at, 6-3

executing programs, 3-10
expressions

pattern and range resource, 2-7
external analyzer, 1-3, 2-15

definition, 1-1
extension to emulation analyzer, 4-11/4-12
independent state analyzer, 4-11, 4-14
independent timing analyzer, 4-12
selecting the mode, 4-11
setup and hold times for qualifying signals, 4-16
specifications, 4-17

2-Index

external analyzer (cont’d)
timing analyzer, using the, 5-1
trace labels, creating, 4-10
using, 4-1

external timing analyzer, 1-4

F features of the analyzer, 1-3
find state, 1-3, 2-4

G glitch acquisition mode, 5-9
glitch trigger, 5-12, 5-14
global restart state, 2-5
grabbers

connecting to analyzer probe, 4-3
greater than duration, 5-12

H halting the trace, 2-14
hexadecimal numbers, 2-8
hold times for qualifying signals, 4-16
holdoff, trigger, 5-10

I instruction queues, 2-16
internal analyzer

definition, 1-1
examples, 3-1
using the, 2-1

interset operators, 2-12
intraset operators, 2-12

L labels (external analyzer)
defining, 4-10

labels (timing)
defining, 5-5
qualifying the timing specification, 5-11

less than duration, 5-12
line numbers, 2-15
loading absolute files, 3-9
logical AND/bitwise merge operator, 2-9
logical NOT, 2-12/2-13

M memory
mapping for the sample program, 3-8

mnemonic information in trace listing, 2-15

Index-3

modulo operator, 2-9
multiply operator, 2-9

N notes
Internal and External command options, 2-1
monitors/adapters to display timing waveforms, 1-4
threshold settings take effect when you begin the trace, 4-10
timing interface software, 1-4, 5-1

number bases, 2-8

O occurrence counts, 2-5
octal numbers, 2-8
operators, 2-9

interset, 2-12
intraset, 2-12

OR operator (bitwise), 2-9

P pattern expressions, 2-12
pattern resources, 2-10
pattern trigger, 5-11
pattern, timing specification, 5-12
patterns, 2-7
per level branches, 3-27
pipelined architecture, 2-16
predefined trace labels, 2-11
prefetch, 2-16
present for (duration), 5-12
prestore (trigger holdoff), 5-10
prestore qualifier, 2-6
prestore qualifiers, 3-18

Q qualified clock speed
maximum, 4-16

qualifiers
count, 3-21
prestore, 3-18
storage, 3-15

R range resource, 2-10
READY, CMB signal, 6-2
reference points, timing waveform display, 5-18

using the cursor to move, 5-18
relative count display, 2-16

4-Index

relative display of count information, 2-15
reset

emulation analyzer specification, 2-13
timing specification, 5-14

restart on, 3-24
restart state, 2-5
rotate left operator, 2-9
rotate right operator, 2-9
running programs, 3-10

S sample period, 5-9
sequence levels, 1-3, 2-2/2-3

deleting, 2-3
inserting, 2-3
maximum, 2-3
setting the trigger level, 2-3

sequencer, 1-3, 2-16
set operators

limitations, 2-13
setup times for qualifying signals, 4-16
shift left operator, 2-9
shift right operator, 2-9
simple measurements, 1-3
specifications

external analyzer, 4-17
external timing analyzer, 5-20

standard acquisition mode, 5-9
starting the trace, 2-13
stat trace label, 2-11
status lines, predefined values for, 2-11
storage (trace), 1-3
storage qualifiers, 2-4, 3-15
subtract operator, 2-9

T threshold voltages, 4-10, 5-4
time/division, timing waveform display, 5-17
timing analyzer

configuring the external analyzer, 5-2
trace labels, creating, 5-5

timing analyzer, using the, 5-1
timing specification, 5-6

reset, 5-14

Index-5

timing waveform display, 5-17
trace

at EXECUTE, 6-3
definition of, 1-1
description of listing, 2-15
displaying the, 2-14
halting the, 2-14
starting the, 2-13
window, 3-10

trace format, 2-16
trace labels, 2-10

external analyzer, creating, 4-10
timing analyzer, creating, 5-5
trace specification, 2-10

trace specification
count qualifier, 3-21
default, 2-2
modifying, 2-1
prestore qualifiers, 3-18
resetting the, 2-13
storage qualifiers, 3-15
trigger level, 3-11

transitional acquisition mode, 5-7
TRIG1, TRIG2 internal signals, 6-3
trigger

breaking into monitor on, 6-3
definition, 1-1
driving external signals on, 6-4
other combinations, 6-8
specifying a simple, 3-11
stop driving on break, 6-8

trigger condition, 3-11
timing specification, 5-11

trigger holdoff (prestore), 5-10
trigger level

setting the, 2-3
trigger point, timing waveform display, 5-18
trigger position, 2-7, 5-10

accuracy of, 2-7
trigger state, 1-3, 2-4

6-Index

TRIGGER, CMB signal, 6-2
TTL threshold voltage specification, 4-10, 5-4

U unary one’s complement operator, 2-9
unary two’s complement operator, 2-9
user defined reference points, 5-18
using the external timing analyzer, 5-1

V values
assigning to pattern and range resources, 2-7

values, predefined for emulator status, 2-11
voltages, threshold, 4-10, 5-4

W waveform (timing) display, 5-17
window zoom, 3-10
windows of program execution, tracing, 3-36

X xbits, external analyzer trace label, 2-11, 2-15
xbits, predefined timing label, 4-10, 5-5
XOR operator (bitwise), 2-9

Z zoom (windows), 3-10

Index-7

Notes

8-Index

	Using this Manual
	Contents
	Introducing the HP 64700 Series Analyzer
	Using the Internal Analyzer
	Internal Analyzer Examples
	Using the External Analyzer
	Using the External Timing Analyzer
	Making Coordinated Measurements
	Index

