HP 64700-Series Emulators

Terminal Interface
Reference

[’5)0 HEWLETT

PACKARD

HP Part No. 64740-97008
Printed in U.S.A.
January 1994

Edition 4

Notice

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1988, 1989, 1994 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-Packard
Company.

IBM and PC AT are registered trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.
UNIX is a registered trademark of AT&T.
Torx is a registered trademark of Camcar division of Textron, Inc.

Hayes and SmartModem are registered trademarks of Hayes
Microcomputer Products.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure

by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for

non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual revisions.

Edition 1 64740-90901E1187, November 1987
Edition 2 64740-90901E1288, December 1988
Edition 3 64740-97003, July 1989

Edition 4 64740-97008, January 1994

Using this Manual

This manual is a complete reference to all HP 64700 Terminal Interface
commands and non-processor specific numeric and analyzer
expressions.

The manual:
m Shows you the correct syntax for each command.
m Explains what the command does.

m Explains some of the side effects of a command (for example,
that the emulator may break to the monitor when the
command is executed).

m Shows examples of how to use the command in the context of
making a measurement.

m Lists other related commands with a brief description of
function.

The manual does not:

m Give you a complete tutorial on using the emulator. Refer to
the Emulator User’s Guidéor your particular emulator for
tutorial information.

Organization

Chapter 1

Chapter 2

Appendix A

Appendix B

Appendix C

Appendix D

Contains all HP 64700 Terminal Interface commands in alphabetical
order. Each new command starts on an odd page.

Contains information on numeric and analyzer expressions which apply
to all emulators. (Information on numeric expressions which are
specific to certain emulators (such as address syntax) is given in the
Emulator User’'s Guidéor that emulator.)

Lists the 68000 microprocessor assembly language program used in
several of the command examples. A listing for a similar program for
the 80186 microprocessor is also given; you can modify the examples
slightly to make them work with the 80186 emulator.

Gives a complete description of the binary/hexadecimal trace list dump
format. This format allows you to write host interface programs which
post process the trace list to allow you to display the trace in any style
you wish. It is the only way that external timing analyzer information
may be recovered from the trace.

Contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order,
and each description includes the cause of the error and the action you
should take to remedy the situation. Error messages described in this
appendix are "generic"; that is, they can occur in any of the HP 64700
emulators. Errors specific to a particular emulator are described in the
Emulator User's Guide

Contains information on entering commands. Included are descriptions
of emulator prompts, command recall and abort, multiple commands on
the same line, and comments in commands.

Manual Conventions Syntax diagrams used in this manual are interpreted as shown in the
following diagram.

perfoms the same function; OR,

on another (such as the emulation
and external analyzers).

the first command operates on one
section of the emulator, the secand

All command syntax diagrams |Operators such as "=
start with the command name. If|either in circles or bubbles; they
there are two names, separated |iave the same function in either
a"l", then either command case.

All command lines must be
terminated by a carriage return.

<NAME>

) =|] <RETURN>
<EXPR> J

=

}—{ <NAME>

VAR

This indicates a required space irCommand options are shown in
all of the command diagrams. Yobubbles such as this one. (Some
should only insert the number of| operators are also depicted in

spaces shown on the diagram, adubbles.)

some commands are sensitive tq
additional spacing.

All identifiers in rectangles
(except for <RETURN>) indicate
syntatic items which are further
defined, either in the command
description text, or by another se
of syntax pages. (For example,
<NAME> is completely defined
under theequ command;
<EXPR> has its own set of
descriptive pages.)

—

Contents

Emulator Commands

Summary of Commands o 1-1
b . e b1l
bc . . . bc1
bnct bnct 1
bp . . . bp 1
o3 cfl
CIM . . e e cim 1
Cl e cll
cmb .. e cmb 1
cmbt e cmbt 1
COV v ot e e e e e e e e covl
CP v v o e e e e e e e cpl
dt . e dt1l
dump . .o e dump 1
echo e echo 1
U . . . e e e e e e equl
S e s esl
help,? help 1
NIt . . . e init 1
lan e lan 1
lanpv lanpv 1
load e load 1
M e e e e e m1l
MAC e e e e e e e e e mac 1
MAP . . . o e e e e e e e e e map 1
MO . . . o o e e e e e mo 1
PO . . e e e e po1l
PV . e e e e e e pv1l
[e e e e e e e rl
=T reg 1
FED . o o e e e e e e rep1
] rstl

Contents-1

2-Contents

S e e s e sl
SEI . e e e e e serl
Sy . e e e e e stty 1
SYM . L L e e sym1
EXU . e tl
A . e e e tal
tarmxtarm L e e tarm 1
tefxtef . . . tcf 1
tekxtck . . . e tck 1
tegXtcq tcqg 1
telifxtelif telif 1
tExtf . tf 1
19Xt . . . e gl
tgout,xtgout L tgout 1
thxth th1
tifxtif . ..o tif 1
tinit tinit 1
thoxth. . o tl1
tlhhxtlb. tib 1
IPXID . e e e e e tpl
tpatxtpat tpat 1
tPAXIPY e e e e tpg 1
trngXtrng e e trng 1
ISXIS . . o o e e e ts1
tsckxtsck tsck 1
1SOXISq o e e tsq 1l
tstoXtsSto tsto 1
DOXEX L e e e e e e tx 1
Ve L e e e e e e e e ver 1
W e e e e e wl
X o e e e e e e e x1
Xteq xteq 1
XIOQ . . . xtgq 1
XM . e e xtm 1
XIMO e e e e e xtmo 1
XISP . . e xtsp 1
Xt e e xtt 1
xttd .. xttd 1
XUQ . . e xttq 1
XV o e e e e xtv 1

Expressions

ANALYZER_EXPR ANALYZER_EXPR 1
COMPLEX_EXPR COMPLEX_EXPR 1
EXPR . . . EXPR 1
SIMPLE_EXPR SIMPLE_EXPR 1

Sample Programs

68000 Sample Program A-1
Loading the 68000 Sample Program A-3
80186 Sample Programo A-5
SymbolFiles A-7
Loadinga SymbolFile A-12
8051 Sample Program A-13

Binary/Hexadecimal Trace List Format

Transfer Protocol B-1

Trace ListRecords B-1
NoTriggerRecord B-2
Empty Trace Record B-3
New State DataRecord B-3
More State DataRecord B-6
Trace State Record B-7
New Timing DataRecord B-8
More Timing Data Record B-12
Trace SampleRecords B-13

Error Messages

Emulator ErrorMessageso e e e e e C-1
General Emulator and System Error/Status Messages C-7
Analyzer Error Messageso o C-56

Command Entry

Prompts e D-1
Command LineEditing D-3
InputMode D-3
ControlMode D-3
ChangingModes D-5
Command Abort D-6
CommandRecall D-6

Contents-3

4-Contents

Multiple Commandso

Commenting

Emulator Commands

This chapter consists of HP 64700-Series Emulator/Analyzer Terminal
Interface commands and descriptions. The syntax, functional
description, parameters, default values, examples of command usage,
and related commands are included.

Summary of
Commands

COMMAND

b

bc
bnct
bp
cf
cim
cl
cmb

cmbt

DESCRIPTION
Break the emulator to monitor
Specify break conditions
Specify BNC signal drivers and receivers
Insert or modify software breakpoints
Set emulator specific configuration items
Copy target memory to emulation memory
Control command line editing
Enable/disable CMB interaction

Specify drivers and receivers of CMB trigger

Emulator Commands 1-1

cov Measure percentage of memory locations accessed

cp Copy memory blocks

dt Set or display system date/time

dump Dump memory to a host file

echo Echo character strings or expressions

equ Equate names to expressions

es Display emulator status

help,? Display help information for commands

init Initialize the emulator

lan Set configuration parameters

lanpv Performance verification on LAN interface

load Load user programs into emulation or target
memory

m Display/modify memory locations

mac Define command macros

map Map emulation and target system memory

mo Set global memory access and display modes

po Assign ports, redefine prompt, dump command files

pv Run emulator/analyzer performance verification

r Run the emulator from current PC or specified
location

1-2 Emulator Commands

reg
rep
rst

X

ser
stty

sym

t,xt

ta
tarm,xtarm
tcf, xtcf

tck xtck
tcq,xteq
telif,xtelif
tf,xtf

tg,xtg
tgout,xtgout
th,xth

tif xtif

Display/modify processor registers
Repeat a group of HP 64700 commands
Reset the emulation microprocessor

Specify starting address for coordinated emulator
run

Step the emulation processor
Search emulation or target memory for values
Set data communications parameters
Manage the emulator symbol table
Start an analyzer trace
Display analyzer line activity
Specify arming condition for analyzers
Set analyzer configuration to easy or complex
Specify analyzer master clock qualifiers
Specify analyzer trace tag count qualifier
Specify sequencer secondary branch qualifier
Specify the trace list display format
Specify a trigger condition for the analyzer
Specify signals to drive upon analyzer trigger
Halt the analyzer

Specify sequencer primary branch qualifiers

Emulator Commands 1-3

tinit Reset trace specification

tl,xtl Display/dump current trace list

tlb,xtlb Define labels for analyzer input lines

tp,xtp Specifies location of trigger state in trace list

tpat,xtpat Specify analyzer complex configuration patterns

tpg,xtpq Specify trace prestore qualifier

trng,xtrng Specify a complex configuration range qualifier

ts,xts Display status of analysis trace

tsck,xtsck Specify analyzer slave clocks

tsq,xtsq Manipulate the trace sequencer

tsto,xtsto Specify analyzer trace storage qualifiers

X, Xtx Set analyzer to trace on receipt of CMB
/EXECUTE

ver Display Terminal Interface firmware version
number

w Wait for specified event

X Start synchronous CMB execution

xteq Specify external timing analyzer edge trigger

xtgq Specify external timing analyzer glitch trigger

xtm Specify external timing analyzer mode

Xtmo Specify external analyzer mode

1-4 Emulator Commands

Xtsp
xtt

xttd
xttq

xtv

Define external timing analyzer sample period
Specify external timing analyzer trigger condition
Specify external timing analyzer trigger delay
Specify external timing analyzer transition trigger

Set threshold voltages for external analyzer probes

Emulator Commands 1-5

. Notes

1-6 Emulator Commands

Summary

Syntax

Break the emulator to monitor

b ?‘J <RETURN>

Function

Parameters

Defaults

Examples

Related Commands

Theb command issues a break to the emulator, causing it to stop
executing the user program and begin execution of the monitor
program. If the emulator is in the reset state when a break occurs, it
will be released from reset and will begin execution within the
emulation monitor.

None.

None.

To break the emulation microprocessor into the monitor, type:
U> b

You will see:
M>

r (runs the user program from the current pc or a specified address)

s (steps the user program a number of instructions from the current pc
or a specified address)

b1

. Notes

2b

bc

Summary

Syntax

Specify break conditions

Function

j = <RETURN>

Thebc command allows you to set break conditions for the emulation
system. You can independently enable or disable six different break
conditions: write to ROM, software breakpoints, breaks due to
assertion of the BNC or CMB trigger signals, and breaks due to the
assertion of the internaigl andtrig2 signals. This allows you to

have the emulator break to the monitor upon error conditions (such as
write to ROM or finding a software breakpoint in a piece of code it
never should have reached), or break to the monitor when an analyzer
measurement has completed.

When you use thiec command, the emulator may break into the

monitor while each enable/disable is being executed. If the emulator
was executing your program when tfeecommand was received, it

will return to your program when finished executing the command. If
you request only a display of the current break conditions, the emulator
does not break to the monitor.

A hardware reset which occurs during processing db¢remmmand
may result in the particular break condition being left in an unknown

bc 1

2 bc

Parameters

Note ﬂ

Note #

state. If this occurs, a display of the break conditions will show a
guestion mark "?" instead &f or -d next to the break condition.

-e Enables the indicated break conditions (which
must be specified immediately following tre
on the command line).

-d Disables the indicated break conditions (which
must be specified immediately following tkte
on the command line).

The optionse and-d cannot both be specified within the sdme
command.

rom Enable/disable emulator breaks to monitor on
occurrence of a write to ROM by the user
program.

A microprocessor like the 68000 with a pipeline architecture begins
execution of the next instruction before it completes execution of the
current instruction. Since a write to ROM cannot be detected until the
bus cycle which causes it completes, situations will arise where
instructions after the instruction that caused the write to ROM to occur
will execute.

bp Enable/disable recognition of software
breakpoints inserted with th command.

Note

Defaults

Examples

The "breakpoints" break condition should not be disabled
(bc -d bp) while the emulator is running user code. If this command
entered while the emulator is running user code, and the emulator i
executing code in the area where the breakpoints are being modified,
program execution may be unreliable. (Breakpoints are modified as a
result of theébc -d bp command because enabled breakpoints are
replaced by the original opcodes when the "breakpoints" break
condition is disabled.)

bnct Enable/disable breaks generated by assertion of
thebnct (rear panel BNC) signal. Note that
this signal may also drive either tiigl or
trig2 signals; or, it may drive both.

cmbt Enable/disable breaks upon assertion of the
CMB (Coordinated Measurement Bus) trigger
signal. Note that the CMB trigger signal may
also drive either theigl ortrig2 signals; or, it
may drive neither or both.

trigl Enable/disable breaks generated by assertion of
thetrigl (trace trigger one) signal. Refer to the
tgout, bnct, andcmbt commands for
information on specifying drivers and receivers
of thetrigl signal.

trig2 Enable/disable breaks generated by assertion of
thetrig2 (trace trigger two) signal. Refer to the
tgout, bnct, andcmbt commands for
information on specifying drivers and receivers
of thetrig2 signal.

If no parameters are specified, the enable/disable status of all six break
conditions is displayed.

To display the status of all six break conditions, type:

M> bc

bc 3

bc

bc
bc

bc

-e bp #enable
-d rom #disable
-d bnct #disable
-d cmbt #disable
-d trig1 #disable
-d trig2 #disable

Related Commands

4 bc

You will see something similar to the following:

To enable breaks on write to ROM and upon assertion ¢figlie
signal, and disable software breakpoints and breaks generated by the
trig2 signal, type:

M> bc -e rom trigl
M> bc -d bp trig2

bnct (specify drivers and receivers of the rear panel BNC signal)

cmbt (specify drivers and receivers of the CMB trigger signal)
bp (set/delete software breakpoints)
map (specify whether memory locations are mapped as RAM or ROM)

tgout (specify whether thiigl and/ortrig2 signals are to be driven
when the analyzer finds the trigger condition)

bnct

Summary Specify BNC signal drivers and receivers

Syntax

bnct () <RETURN>
S sz

Function Thebnct command allows you to specify which of the internal
trigl/trig2 trigger signals will drive and/or receive the rear panel BNC
trigger. You can specify the signals individually, as an ORed condition
for drive, or as an ANDed condition for receive; or, you can specify
that the signals are not to be driven or received.

Normally, you would use this command to cross-trigger instruments.
For example, you may wish to trigger a digitizing oscilloscope hooked
to various timing signals when the emulation analyzer finds a certain
state, or, you may wish to do the converse and trigger the HP 64700’s
analyzer when an oscilloscope finds its trigger.

Parameters
-d The-d parameter indicates that the BNC port

will drive the triggers, trigl and trig2, to the
emulator’s internal analyzer.

bnct 1

-r The-r parameter causes the BNC port to
receive the triggers, trigl and trig2, from the
analyzer, and send them out the BNC port.

none If you specifynonewith the-d option, then the
rear panel BNC signal will not drive either of
the analyzer triggers. If you specifgnewith
the-r option, the rear panel BNC will not
receive trigl or trig2 from the internal analyzer.

trigl If trigl is specified, then the internal "trig1"
signal will drive or receive the BNC signal,
depending on whether you specified t#ier -r
option.

trig2 If you specifytrig2, then the internal "trig2"
signal will drive or receive the BNC signal,
depending on whether you specified t#ier -r
option.

Note # You can also specify that both ttigl andtrig2 signals are to drive
or receive the BNC signal. To do this, place a comma between the two
signals on the command line.

Defaults If no options are specified, the current settinrudt is displayed.
Upon powerupbnct is set tdonct -d none -r none

If you specify one of thed or -r options without the other, the other
option is left in the same state it was in before the command was
entered.

Examples To view the currenbnct setting, type:

M> bnct

2 bnct

bnct -d none -r none

Note ﬂ

Related Commands

You will see:

If you want to trigger an instrument hooked to the BNC when the H
64700 analyzer finds its trigger, you might do the following:

M> tcf -e

M> tg addr=2000

M> tgout trigl

M> bnct -d none -r trigl

By specifying this command sequence, the external instrument will be
triggered when the emulation processor reaches the trigger pattern of
address=2000.

The reverse situation is where you want to trigger the HP 64700
analyzer when an external instrument finds its trigger. Type:

M> bnct -d trigl -r none
M> tarm =trig1l
M> tg arm

You should not set up an analyzer in an emulator to both drive and
receive the same trigger signal. For example, if you issued the
commandgg arm, tarm =trig1 , tgout trigl, andbnct -d trigl -r

trigl, then the analyzerigl signal will become latched in a feedback
loop and will remain latched until the loop is broken. To break the
loop, you must first disable the signal’s source, then momentarily
disable either the drive or receive function. In this case, the commands
tgout noneandbnct -d nonewill break the loop.

bc (break conditions; can be used to specify that the emulator will
break into the emulation monitor upon receipt of one ofrih&/trig2
signals)

cmbt (coordinated measurement bus trigger; used to specify which
internal signals will be driven or received by the HP 64700 coordinated
measurement bus)

bnct 3

tarm (analyzer trace arm; used to specify arming (begin to search for
trigger) conditions for the analyzertrigl/trig2 can be used to arm the
analyzer)

tgout (specifies which of thgigl/trig2 signals are to be driven when
the analyzer trigger is found)

4 bnct

Summary Insert or modify software breakpoints

Syntax

"<RETURN>

<ADDRESS>

Function Thebp command is used to insert, delete, display, or modify the status
of software breakpoints.

Note # Not all emulators support software breakpoints. Refer t&rdator

User's Guidesupplied with your particular emulator to determine
whether or not software breakpoints are supported.

There are four different operations to maintain the software breakpoint
table.

Inserting Breakpoints

Specifying only an address inserts the breakpoint instruction in
memory and makes a breakpoint table entry corresponding to that
address. If a software break instruction already exists at the address
specified, an error message is generated and the doypreatmmand is
aborted.

bp 1

Note

v

Enabling Breakpoints

Enabling a breakpoint at a specified address causes the system to search

the breakpoint table for that address; if it exists in the table, the
breakpoint instruction is written to memory at the corresponding
address.

Disabling Breakpoints

Disabling the breakpoint for a specified address again causes a search
for a breakpoint table entry; if found, the original contents of the
address (before the breakpoint was defined) are written to the
corresponding memory location. The contents of the breakpoint table
are unchanged, except to indicate that the particular breakpoint is now
inactivated.

When the breakpoint table is displayed withthpecommand, the
enable/disable status of each breakpoint is tested by reading the
memory locations in question. If a software break instruction is found,
the breakpoint is displayed @sabled if not, the breakpoint is

displayed aslisabled

Note

Software breakpoints should not be set, enabled, disabled, or remg
while the emulator is running user code. Also, you should not disa
the "breakpoints" break conditiobq -d bp) while the emulator is
running user code.

If any of these commands are entered while the emulator is running
user code, and the emulator is executing code in the area where the
breakpoint is being modified, program execution may be unreliable.

The problem occurs when the software breakpoint instruction (or the
original opcode) is partially written in the emulation memory location
while the emulation processor is fetching from that location; an illegal
opcode may result. This problem does not occur when breakpoints are
in target RAM because the emulation processor breaks into the monitor
to enable or disable software breakpoints.

Removing Breakpoints

Removing a breakpoint causes a search for a corresponding breakpoint
table entry; if found, the original memory contents are written to the
specified address, and the entry is removed from the breakpoint table.

When a software breakpoint instruction insertetjoys executed by
your program, it is removed from memory and maudisdbledin the
breakpoint table.

A status message indicates that a software breakpoint was found.

If the emulator executes a software break instruction that was placed by
you (either through your compiler or via memory modification) and not
by thebp command, an "undefined breakpoint" error message is
generated.

If the emulator is executing in the user program when you define or
modify breakpoints, it may break into the monitor for each breakpoint
defined or modified. Whether or not it will do this depends on the
location of the breakpoint in memory (breaks to the monitor are
required if the location is in target RAM), and whether your particular
emulator must break to the monitor for accesses to that memory type
(breaks into the monitor are not necessary if the location is in dual-port

bp 3

4 bp

Parameters

emulation memory). If a break to the monitor is required, the emulator
will return to user program execution after breakpoint definition or
modification.

In general, you should only define software breakpoints at memory
locations which contain user program instructions. If you set
breakpoints at other locations, it is unlikely that they will ever be
executed. The only exception to this might be in a case where you
suspect that your program is jumping into a data block and attempting
to execute code; setting a software breakpoint in this area will allow
you to verify the problem (and stop a runaway program).

Remember that any operation which modifies memory or the memory
map will alter the existing breakpoints. For example, if you load a new
program in the same address range where breakpoints reside, the
breakpoints will be destroyed. Changing the memory map will prevent
the emulator from placing new breakpoints or enabling existing
breakpoints.

You cannot define breakpoints until you have enabled them withcthe

-e bpcommand. If you disable the software breakpoint feature with the
bc -d bp command, the breakpoints currently defined will remain in the
breakpoint table, but will be disabled and will remain in that state until
the breakpoint feature is reenabled and the specified breakpoints are
reenabledlc -e bpandbp -e <ADDRESS3.

<ADDRESS> The<ADDRESS>parameter allows you to
specify the address location where the software
breakpoint is to be inserted. If you specify
options-d, -a, or-h, then the address specifies
the location of the breakpoint to be deleted,
activated, or inactivated. For these options, you
may specify the characteras the address
specifier, indicating that the operation is to be
performed on all of the addresses present in the
software breakpoint table.

Note

Note

Defaults

The default for theeADDRESS>parameter is a hexadecimal
expression, however, other numeric bases may be specified. Refe
the<ADDRESS>syntax pages and tfmulator User's Guidéor

your particular emulator for information on specifying address
information.

The memory access mode for writing breakpoints is set bmthe
(mode) command; if the mode is set to byte access and an odd address
location is specified, an invalid instruction may be inserted for
processors that expect alignment of opcodes on even byte boundaries.

-r Deletes the software breakpoint(s) at the
addresses specified. If the address specified
does not contain a breakpoint instruction, an
error will be returned. When the breakpoint is
deleted, the original memory contents are
restored, then the address is removed from the
breakpoint table.

-e Enables (activates) the breakpoint(s) at the
address(es) specified. This installs the
necessary breakpoint instruction in memory. If
the breakpoint is already enabled, no action is
taken.

-d Disables (deactivates or "hits") the
breakpoint(s) at the address(es) specified. The
breakpoints remain in the breakpoint definition
table and can be reset by usinglpee
<ADDRESS>command. If the breakpoint is
already disabled, no action is taken.

If no parameters are specified, the current status of all breakpoints is
displayed. Upon powerup ot initialization, the breakpoint table is
cleared and the breakpoint feature is disabled.

bp 5

Examples The following examples use the 68000 sample program from Appendix
A.

Assume that you need to verify that the processor is reaching the
COMMAND_A, OUTPUT, and LOOP routines at addresses 202c,
2052 and 2064 respectively. You can insert software breakpoints at
these addresses and run the program to each successive breakpoint.
First, you must enable the software breakpoint feature. Type:

M> bc -e bp

Now define the breakpoints at the start of each routine by typing:
M> bp 202c 2052 2064

You can view the current breakpoint settings by typing:
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 000202c #enabled
bp 0002052 #enabled
bp 0002064 #enabled

Note the headline that says "BREAKPOINT FEATURE IS
ENABLED". If you disable the software breakpoint feature Wwithd
bp, this will read "BREAKPOINT FEATURE IS DISABLED" and
you will not be able to define any new breakpoints (those already
defined are not removed g -d bp).

Now, run the program from the start and modify the command input
area at address 3000 by typing:

M> r 2000
U> m 3000=41

Since the command input was "A", the program will reach the software
breakpoint entered at 202c hex. You will see:

ISTATUS 615! Software breakpoint: 000202c@sp

You can run the processor to the next breakpoint by typing:
M> r

This is possible because the breakpoint is removed from location 202¢
after it is "hit"; the original instruction is returned to 202c.

6 bp

You will see:
ISTATUS 615! Software breakpoint: 0002052@sp

Now run the processor to the last breakpoint by typing:
M> r

You will see:
ISTATUS 615! Software breakpoint: 0002064@sp

If desired, you can run the processor from this breakpoint by typing:
M> r

To break back to the monitor, type:
U> b

Now look at the status of the breakpoint table. Type:
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 000202c #disabled
bp 0002052 #disabled
bp 0002064 #disabled

Since all of the breakpoints were "hit" (executed by the processor), they
are now disabled. You can reenable the existing breakpoints by typing:

M> bp -e 202c 2052 2064

You could also typbp -e * to reenable all breakpoints in the table.

View the reenabled breakpoints by typing:
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 000202c #enabled
bp 0002052 #enabled
bp 0002064 #enabled

If you want to disable a particular breakpoint, for example, the one at
location 202c hex, type:

bp 7

M> bp -d 202c

You can see the changes in the table by typing:
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 000202c #disabled
bp 0002052 #enabled
bp 0002064 #enabled

Note that the breakpoint at location 202c is now listed as disabled. Run
the processor and enter a "command" into the sample program by
typing:
M> r 2000
U> m 3000=41
ISTATUS 615! Software breakpoint: 0002052@sp

Notice that the first breakpoint encountered is the first one enabled in
the breakpoint table, that is, the breakpoint at 2052 hex. The
breakpoint at 202¢ hex was not found; since it is disabled, no software
break instruction was inserted in the code.

Run to the next breakpoint by typing:

M> r
ISTATUS 615! Software breakpoint: 0002064@sp

To see the current status of the breakpoint table, type:
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 000202c #disabled
bp 0002052 #disabled
bp 0002064 #disabled

Again, all breakpoints are disabled; the one at 202c through your
explicitbp -d 202ccommand, the others from being "hit" during the
program run.

8 bp

To completely remove the breakpoint at 202c from the breakpoint
table, type:

M> bp -r 202¢

Now type:
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 0002052 #disabled
bp 0002064 #disabled

As you can see, the breakpoint at address 202c has been removed from
the table.

You can reenable all breakpoints in the table by typing:
M> bp -e *
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 0002052 #enabled
bp 0002064 #enabled

Conversely, you can disable all breakpoints in the table by typing:
M> bp -d *
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
bp 0002052 #disabled
bp 0002064 #disabled

Finally, if you want to remove all breakpoints in the table, type:
M> bp -r *
M> bp

You will see:

BREAKPOINT FEATURE IS ENABLED
M>

bp 9

Related Commands

10 bp

Note that the breakpoint feature is still enabled, though there are no
breakpoints defined in the table. To disable the breakpoint feature, use
the commandbc -d bp.

bc (enable/disable breakpoint conditions (includipg)

cf (set instruction type used for software breakpoint (only available on
some processors))

mo (defines memory access and display modedygtecommand uses
the currently defined modes when writing software breakpoints into
memory)

cf

Summary

Syntax

Set emulator specific configuration items

o

> <RETURN>
ﬁ <CONFIG_ITEMS> }—j

Function

Parameters

Defaults

Examples

Related Commands

Thecf command allows you to modify various emulator specific
configuration parameters. For examglewill allow you to specify
whether the clock source is in the user system or in the emulator. Each
emulator has its own unique set of configuration items. For complete
details, refer to the <CONFIG_ITEMS> syntax pages irEtinalator

User’s Guidefor your particular emulator.

Refer to theemulator User’s Guidéor your emulator.

If no parameters are specified, the current configuration settings are
displayed. Refer to tHemulator User’s Guideegarding the default
settings for your emulator.

Refer to theemulator User’s Guidéor your emulator.

help (you can get an on line display of the configuration items for a
particular emulator by typinigelp cf. To obtain more information
regarding a particular configuration item, typep cf <config_item>.

cf 1

. Notes

2 cf

cim

Summary

Syntax

. = <ADDRESS> =) 1 = <RETURN>

Copy target system memory to emulation memory

4 <ADDRESS> %\

Function

Parameters

Thecim command allows you to copy an image of target memory into
emulation memory. You might wish to do this for the following
reasons:

You want to set software breakpoints to track down a problem. If your
target memory is ROM, you cannot set breakpoints without
programming new ROMSs; however, you can easily copy the code to
emulation memory and set or modify the breakpoints.

You want to test a code patch, and your target memory is in ROM as
above.

You would like to perform execution coverage measurements with the
covcommand to find out how much of your software in the target is
being accessed. (You need to move the code into emulation memory
since thecovcommand only works with memory mappeckesm
(emulation RAM) orerom (emulation ROM).)

Note that you may need to modify your memory map for this command
to work correctly. Essentially, you need to map the addresses of the
target system range you wish to copy to emulation memory space.
Refer to the examples below.

<ADDRESS> Specifies the lower, and possibly upper,
addresses of the range you want to copy.

cim 1

Although the default for <ADDRESS> is an
expression in which the default base is
hexadecimal, certain emulators allow
specification of additional address items such as
function codes. (You could also specify an
equate defined with thegu command.) Refer

to theEmulator User’s Guidéor your

particular emulator for further information on
address specification.

The two periods ".." are used as a separator
between the lower and upper address
boundaries of the range to be copied. Note that
no additional spaces are inserted; if they are, a
error message is generated. You can use
"<ADDRESS>.." to specify the range from that
address through the next 127 bytes.

Defaults None; at least one address range must be specified; both the lower
boundary and upper boundary can be the same; but in any case, the
upper boundary must be greater than or equal to the lower boundary.

Examples If you have target system ROM from 2000 hex to 2fff hex, and you
would like to insert a breakpoint at 2010 hex, type the following:

R> map

You might see something similar to the following (dependent on your
system memory map):

remaining number of terms : 5

remaining emulation memory : 1f800h bytes
map 001000..001fff tram #term 1

map 002000..002fff trom #term 2

map other tram

Now you can delete the target ROM mapper term and substitute an
emulation memory ROM term.

Type:
R> map -d 2
R> map 2000..2fff erom

2 cim

remaining number of terms :

To view the modified map, type:
R>map

You will see:

remaining emulation memory : 1e800h bytes
map 001000..001fff tram #term 1
map 002000..002fff erom #term 2

map other tram

Note ﬂ

Related Commands

Note that the emulator will now direct references to addresses 2000
through 2fff to emulation memory and ignores the presence of target
system memory within that range. However,dine command

explicitly ignores the map; adim address references refer to target
system memory ranges. Now copy the code resident in the target ROM
to emulation ROM by typing:

M> cim 2000..2fff

Now you can set the breakpoint by typing:

M> bc -e bp
M> bp 2010

The memory addresses copied from the target system must have
equivalent addresses already mapped to emulation memory before the
cim command is executed; otherwise, an error message will be
generated.

map (allows you to define the location and type of various memory
address ranges)

cov (allows you to measure the percentage of memory locations
accessed by your program within a particular range)

cim 3

. Notes

4 cim

cl

Summary Control command line editing

Syntax

J <RETURN>
-

@ <EXPR>

Function You can enable command line editing to include the ability to
manipulate command text lines.

Command line editing has two typing modes. The normal command
entry is input mode. The input mode functions like normal (canonical)
command entry. The control mode allows command modification.

Refer to the appendix on "Command Entry" for more information about
command line editing.

Parameters
-d This option disables command line editing.
-e This option enables command line editing.
-l This option allows you to set the column length for

the command line. This value can be from 40 to
132 columns.

Defaults = Command line editing is disabled.

c 1

Examples To set the number of columns in the command line to 80, enter:

cl-180

With command line editing enabled, to add text to the previously
executed command, enter:

<ESC> k
A
<additional text>

To display on-line help information for tilecommand, enter:
help cl

The result on screen resembles:

cl - set or display command line editing mode

cl - display command line editing mode
cl-e - enable command line editing mode
cl-d - disable command line editing

cl -1 <columns> - number of columns for command line

--- VALID <columns> SELECTIONS ---
range 40 to 132

--- Editing Mode Commands ---
<ESC>- enter command editing mode
i -insert before current character a - insert after current character

A - append to end of line X - delete current character

dd - delete command line D - delete to end of line

$ - move cursor to end of line 0 - move cursor to start of line
A - move cursor to start of line h - move left one character

| - move right one character k - fetch previous command

j - fetch next command r - replace current character

/<string> - find previous command in history matching <string>
n - fetch previous command matching <string>
N - fetch next command matching <string>

Related Commands none

2 cl

cmb

Summary

Syntax

Function

Enable/disable CMB interaction

| <RETURN>

Thecmb command allows you to enable or disable interaction on the
CMB (Coordinated Measurement Bus). The CMB allows you to make
complex measurements involving cross-triggering of multiple HP
64700 analyzers and other HP 64000 system instruments, and
synchronous emulator runs and breaks.

Thecmb command only affects the ability for multiple emulators to
run or break in a synchronized fashion; the analyzer trigger capability is
unaffected by themb command.

Interaction Enabled

When interaction is enabled via ttrab -ecommand, the emulator will
run code beginning at the address specified viaxtttemmand when
the CMB /EXECUTE (/ means active low) pulse is received.

The CMB READY line is driven false while the emulator is running in
the monitor. The line goes to the true state whenever execution
switches to the user program.

cmb 1

Note # Notice that if thex command is given, CMB interaction is enabled just
as if acmb -ecommand was issued. Refer to the syntax pages for the
rx command for further information.

Interaction Disabled

When interaction is disabled via tbeb -d command, the emulator
ignores the actions of the /EXECUTE and READY lines. In addition,
the emulator does not drive the READY line.

Parameters

-e The-e option enables interaction between the
emulator and the Coordinated Measurement
Bus.

-d The-d option disables interaction between the
emulator and the Coordinated Measurement
Bus.

Defaults If no options are supplied, the current state of CMB enable/disable is
displayed.

Examples To view the current state of CMB interaction, type:

M> cmb

You will see:

cmb -d #cmb currently disabled

To enable CMB interaction, type:
M> cmb -e

To disable interaction, type:
M> cmb -d

2 cmb

Related Commands rx (allows you to specify the starting address for user program
execution when the CMB /EXECUTE line is asserted)

tx (controls whether or not the emulation analyzer is started when the
/EXECUTE line is asserted)

X (pulses the [EXECUTE line, initiating a synchronous execution
among emulators connected to the CMB and enabled)

Also, refer to theCoordinated Measurement Bus User’s Gumle
further information on CMB operation.

cmb 3

. Notes

4 cmb

cmbt

Summary

Syntax

Specify drivers and receivers of the CMB trigger signal

) =J] <RETURN>

L
Lo

Function

Parameters

=

-r

[orars
oVars

Thecmbt command allows you to specify which of the internal
trigl/trig2 trigger signals will drive and/or receive the rear panel CMB
(Coordinated Measurement Bus) trigger. You can specify the signals
individually, as an ORed condition for drive, or as an ANDed condition
for receive; or, you can specify that the signals are not to be driven
and/or received.

You use this command to trigger other HP 64700 analyzers and
possibly HP 64000 system instruments. For example, you may wish to
start a trace on another HP 64700 analyzer when the analyzer in this
emulator finds its trigger; or, you may wish to do the converse and
trigger the analyzer in this emulator when another emulation analyzer
finds its trigger.

-d The-d parameter causes the CMB to drive the
trigger signals, trigl and trig2, to the emulator’s
internal analyzer.

cmbt 1

Note #

Defaults

Examples

cmbt -d none -r none

2 cmbt

none

trigl

trig2

The-r parameter causes the CMB to receive the
trigger signals, trigl and trig2, from the
analyzer.

If you specifynonewith the-d option, then the
CMB trigger signal will not drive either of the
analyzer triggers. If you specifpnewith the
-r option, the rear panel CMB will not receive
trigl or trig2 from the internal analyzer.

If trigl is specified, then the internal "trig1"
signal will drive or receive the CMB trigger
signal, depending on whether you specified the
-d or-r option.

If you specifytrig2, then the internal "trig2"
signal will drive or receive the CMB trigger
signal, depending on whether you specified the
-d or-r option.

You can also specify that both ttiggl andtrig2 signals are to be
driven and/or received. To do this, place a comma between the two
signals on the command line.

If no options are specified, the current settingrobt is displayed.
Upon powerupembt is set tacmbt -d none -r none

To view the currentmbt setting, type:

M> cmbt

You will see:

If you want to trigger the analyzer in another HP 64700 emulator
hooked to the CMB, you might do the following:

M> tcf -e

M> tg addr=2000

M> tgout trigl

M> cmbt -d none -r trigl

By specifying this command sequence, the other HP 64700 analyzer
will receive a trigger signal from its CMB when the emulation
processor in this HP 64700 reaches the trigger pattern of address=2000.

To set the other HP 64700 analyzer to break to monitor upon receiving
the CMB trigger, use the following command sequence:

M> cmbt -r trigl
M> bc -e cmbt

You might want to have an external instrument arm the analyzer in one
emulator which then arms a second analyzer attached through the
CMB. The second emulator then breaks to monitor when it finds its
trigger condition. Use the following command sequence in the first
emulator:

M> bnct -d trigl -r none
M> tarm =trigl

M> tsq -i 3

M> tif 1 arm

M> tif 2 addr=2000

M> tgout trig2

M> cmbt -d trig2 -r none

Now, on the second emulator, type:

M> cmbt -d trigl -r none
M> tarm =trigl

M> tsq -i 3

M> tif 1 arm

M> tif 2 addr=2018

M> tgout trig2

M> bc -e trig2

cmbt 3

Note ﬂ

Related Commands

4 cmbt

You should not set up an analyzer in an emulator to both drive and
receive the same trigger signal. For example, if you issued the
commandsg arm, tarm =trig1 , tgout trigl, andcmbt -d trigl -r

trigl, then the analyzerigl signal will become latched in a feedback
loop and will remain latched until the loop is broken. To break the
loop, you must first disable the signal’s source, then momentarily
disable either the drive or receive function. In this case, the commands
tgout noneandcmbt -d nonewill break the loop.

bc (break conditions; can be used to specify that the emulator will
break into the emulation monitor upon receipt of one ofrip&/trig2
signals)

bnct (BNC trigger; used to specify which internal signals will be
driven or received by the rear panel BNC connector)

cmb (Used to enable or disable interaction on the CMB. This does not
affect whether measurement instruments can exchange triggers over the
CMB; it only controls run/break interaction between multiple

emulators)

tarm (analyzer trace arm; used to specify arming (begin to search for
trigger) conditions for the analyzertrigl/trig2 can be used to arm the
analyzer)

tgout (specifies which of th&gigl/trig2 signals are to be driven when
the analyzer trigger is found)

cov

Summary

Syntax

Measure percentage of memory locations accessed

Function

Parameters

<ADDRESS>

(-0

<RETURN>

Thecovcommand allows you to measure the percentage of memory
locations accessed within a certain range. Each memory location has a
flag indicating whether or not it has been accessed; the flag is set
automatically when the address of that location appears on the
emulation processor bus.

The percentage accessed is calculated by dividing the number of
different locations accessed (no location is counted more than once) by
the number of different locations within the range and multiplying by
100.

Coverage measurements can only be performed on address ranges
mapped to emulation memory. If you wish to perform coverage
measurements on target system memory ranges, you can remap
memory and copy the target system memory to emulation memory
using thecim command.

-r The-r parameter resets the results from the
previous coverage measurement and sets all of
the coverage data bits to the NOT-ACCESSED
state.

cov 1

The-r option cannot be used in conjunction
with other parameters.

-a The-a option produces a list of locations within
the specified memory range that were accessed.

-n The-n option produces a list of locations within
the specified memory range that were not
accessed; the percentage measurement given is
in terms of locations not accessed..

<ADDRESS> Specifies the lower, and possibly upper,
memory address boundaries for the coverage
measurement. The default is a hexadecimal
number; other bases may be specified. Certain
emulators allow additional processor specific
addressing information for <ADDRESS>; refer
to theEmulator User’s Guidéor your
particular emulator for further information.

Multiple address ranges for coverage testing
can be specified; a space character must be
included between each range specification.

The separator between the lower and upper
address boundaries is two periods." Notice that
no additional spaces are inserted. You can use
"<ADDRESS>.." to specify a range from the
address through the next 127 bytes.

Note # Overlapping ranges in tlewv command will result in an incorrect
coverage percentage.

Defaults At least one address range must be specified. All of the coverage flags
are reset at powerup or yt.

2 cov

Examples

Note ﬂ

If you would like to measure the memory coverage of the 68000
sample program shown in appendix A, type the following after loadi
the program:

M> cov -r

You should make a habit of resetting the coverage information before
making measurements. This is because any activity which accesses
memory, even loading memory with your programs using modify
memory, will cause the coverage bits to be set for those memory
locations, leading to inaccurate measurement results.

M> r 2000
U> m 3000=41

This memory modification command causes the program to run some
of the output routines; it will access more memory locations. Now
display the coverage:

U> cov 2000..2071

You will see:

percentage of memory accessed: % 68.4

percentage of memory accessed: %

To reset the coverage data (which clears the coverage memory in
preparation for another measurement), type:

U> cov -r

To display the coverage on the overhead routines of the program (INIT,
CLEAR and READ_INPUT), type:

U> cov 2000..2071
You will see:

8.7

You should generally reset the coverage information between
measurements for the most accurate results. (The only exception might
be if you just need to specify additional address ranges for a
measurement.)

cov 3

Type:
U> cov -r
U> m 3000=43
U> cov -n 1000..1038 2000..2071

You will see:

coverage list - list of address ranges NOT accessed
0001000..0001029
0002000..000200b
000202c..0002047

percentage of memory NOT accessed: % 47.9

Note that the percentage is expressed in terms of memory locations
which were not accessed.

You can also display a list of the locations actually accessed within the
range. Type:
U> cov -a 1000..1038 2000..2071

You will see:

coverage list - list of address ranges accessed
000102a..0001038
000200c..000202b
0002048..0002071

percentage of memory accessed: % 52.0

Related Commands cim (allows you to copy target system memory images into emulation
memory for coverage measurements)

4 cov

cp

Summary

Syntax

Copy memory blocks

(o0 =G| <oes_soor> fe(=)»f <aporess> () »| <RETURN>
<ADDRESS>

Function

Parameters

Thecp command allows you to copy a block of data from one region of
memory to another. For example, you might want copy a data table in
your program to a buffer space so you can try some of your algorithms
for processing data in that buffer.

Whencp is executed, the data from the specified range is copied to the
destination address, with the lower boundary data going to the
destination address, lower boundary + 1 to destination + 1, and so on
until the upper boundary of the source range is copied. If the source or
destination addresses reside within the target system, the emulator will
break to the background monitor and will return to foreground after the
copy is completed.

If memory mapped as guarded is encountered in the source or
destination range during the copy, the command is aborted; however,
all locations modified prior to accessing guarded memory are left in the
modified state.

<DEST_ADDR>

Specifies the lower boundary of the destination
range. The processor specific conventions for
<ADDRESS> can be used for complete address
specification including function codes or
segmentation. Refer to thenulator User’s
Guidefor your particular emulator for details.

cp 1l

<ADDRESS> Specifies the lower, and possibly upper,
memory address boundaries of the source range
to be copied. The defaultis a hexadecimal
number; other bases may be specified. Certain
emulators allow additional processor specific
addressing information for <ADDRESS>; refer
to theEmulator User’s Guidéor your
particular emulator for further information.

The separator between the lower and upper
address boundaries is two periods (..). Notice
that no additional spaces are inserted. You can
use "<ADDRESS>.." to specify a range from
the address through the next 127 bytes.

Defaults Exactly one address range must be specified.

Examples You can use thep command to move the data area of the 68000
sample program (from Appendix A) from a base address of 1000 hex to
a base address of 5000 hex. First, let's look at the original data area.

Type:
M> m -db 1000..1038

You will see:

001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
001030..001038 44 20 43 4f 4d 4d 41 4e 44

Now you can copy the block to a base address of 5000 hex. Type:
M> cp 5000=1000..1038

To view the new block, type:
M> m 5000..5038

2cp

You will see:

005000..00500f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
005010..00501f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
005020..00502f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
005030..005038 44 20 43 4f 4d 4d 41 4e 44

The new block is identical to the old.

Related Commands cim (copies a memory image from the target system to emulation
memory)

m (allows you to display or modify memory locations or ranges)

map (used to define the type and location of memory used by the
emulator)

ser (used to search memory ranges for a specific set of data values)

cp 3

. Notes

4 cp

dt

Summary

Syntax

< dt

Function

Note #

Parameters

Note #

Set or display system date/time

= <RETURN>

<yymmdd>

<hh:mm:ss>

li

Thedt command allows you to set or display the current date and time
stored by the HP 64700 series emulators.

The emulator system date & time clock is reset when power is cycled.

<yymmdd> This variable sets the datg. are the last two
digits of the current yeamm specify the
current month, andd specify the day of the
month.

If yy is greater than 50, the year is assumed to be in the 20th century (in
other words19yy). If yy is less than 50, the year is assumed to be in
the 21st century (in other wordX)yy).

dt 1

<hh:mm:ss> This variable sets the time in 24 hour format.
hh specify the hounnm specify the minutes,
andssspecify the seconds. Notice that the only
difference between the date and time variables
is the presence of colons; therefore, if you
forget the colons while trying to reset the time,
you will actually change the date setting.

Defaults If no parameters are specified, the current date and time settings are
displayed.

Examples To display the current date and time settings at emulator powerup, type:

M> dt

You will see:
January 01, 1988 0:00:21

To set the date to August 18, 1987, type:
M> dt 870818

To set the date to August 18, 1987 and the time to 11:05:00, type:

M> dt 870818 11:05:00 (order of the two
arguments is not significant)

Related Commands None

2 dt

dump

Summary Dump memory to a host file

Syntax

RO G oo | o0 [

I

-)
L(c }-—{<HEX,CHAR> }

dumpsynt

Function Thedump command allows you to dump the contents of emulation
and/or target system memory to a host file. The contents can be
dumped in HP, Tektronix hex, Intel hex, and Motorola S-record
formats by specifying various options on the command line.

If you are uploading the file in HP file format using the HP 64000
transfer software, record checking is performed automatically by the
transfer protocol.

Parameters
-h The-h option indicates that the memory
contents will be dumped in HP absolute file
format.
-b Specifying theb option indicates that the

records will be sent in binary; this is only valid
with -h (HP file format).

dump 1

<HEX_CHAR>

<ADDRESS>

Defaults

2 dump

If you specify-x, the records will be sent in
hexadecimal; this is only valid with thie
option (HP file format).

Specify the-i option if you need to have the file
transferred in Intel hex record format. Note
that the various options for HP file format
transfer (such ax, -b, and-e) are invalid with
this format.

Specify them option if you need to have the
file transferred in Motorola S-record format.

Specify thet option if you need to have the file
transferred in Tektronix hex format.

Specifying -¢ along with an ASCII hexadecimal
character indicates that the character specified
should be sent to the host at the end of the file
upload.

<HEX_ CHAR> is an ASCII character to be

sent to the host at the end of the upload process.
The character is used to close the host file
which is receiving the uploaded data.

Specifies the lower, then upper, address
boundaries of the memory range to be dumped.
The default is a hexadecimal number; other
bases and expressions may be supplied. Refer
to the <EXPR> syntax pages for details. In
addition, many microprocessors allow special
address information such as segmentation or
function codes to be specified; refer to the
<ADDRESS> syntax pages in teenulator
User’s Guidefor details.

None; a file format and address range must be specified.

Note #

Related Commands

Note that the HP 64000 format ".X" file created with a "dump -hx"
command has records that contain 136 fewer bytes of data than th
format standard allows. Because of this, HP 64000 format ".X" file
which are created with tideimp command may take longer to be
processed by consumers of the ".X" file (depending on how the
consumer processes sequential records).

load (used to load emulation memory from a host computer file)

dump 3

. Notes

4 dump

echo

Summary

Syntax

Echo character strings or expressions

Function

Parameters

) = <RETURN>

<STRING>

U =R

nn

Theechocommand allows you to display ASCII strings or the results

of evaluated expressions on the standard output device. You must
enclose strings in single open quote marks (‘) (ASCII 60 hex) or double
quotation marks (") (ASCII 22 hex). A string not enclosed in

delimiters will be evaluated as an expression and the result will be
echoed. In addition, you may supply a backslash with a two digit hex
constant; the corresponding ASCII character(s) will be echoed.

Echoing strings or ASCII characters is particularly useful within

macros, command files, and repeats where you wish to prompt the user
to perform some action during a "wait for any keystroke" command

(see syntax fow). The expression capability is useful as a quick
calculator.

Note that all options may combined within the same echo command as
long as they are separated by spaces.

<STRING> Any set of ASCII characters enclosed between
single open quote marks (), or double quotes
(). Since the command buffer is limited to 256

echo 1

2 echo

Note

Note

Defaults

characters, the maximum number of characters
in a string is 248.

Many keyboards (and printers) actually represent the single open quote
mark (ASCII 60 hexadecimal) as an accent grave mark. The correct
character in any case is the one encoded as ASCII 60 hexadecimal. The
correct double quotation mark is ASCII 22 hexadecimal.

A character which is used as a delimiter cannot be used within the
string. For example, the strifiype "C™ is incorrect and will return
an error. The stringype "C" s correct.

<EXPR> A valid expression (refer to the expression
syntax pages for descriptions of valid
expressions). The expression will be evaluated
and the result will be echoed. Note that no
delimiters are used to define the start and end of
the expression.

<nn> "nn" is the hex code for any valid ASCI|I
character. More than one character can be
echoed with a single command; each "nn" must
be preceded by a backslash. A total of 62
ASCII characters can be represented within a
singleechocommand.

This capability is particularly useful for sending

non-displaying control characters to a terminal;
refer to the examples below.

Echo nothing.

Set S1 to OFF

SET S1 to OFF

Examples

To echo the string "Set S1 to OFF" to the standard output, type the
following:

M> echo "Set S1 to OFF"

OR
M> echo ‘Set S1 to OFF*

You will see:

Alternatively, you could use the ASCII character evaluation capability
to do the same thing by typing the following:

M> echo \53 \65 \74 \20 \53 \31 \20 \74 \6f \20
\4f \46 \46

You will see:

However, a more useful application of the backslash option is to send a
terminal control characters. Type:

M> echo \1b"H" \1b"J" \1b "&dBSet S1to OFF"

The above command sends "<ESC>H<ESC>J<ESC>&dB Set S1 to
OFF" to the terminal. On an HP 2392A this homes the cursor, clears
the screen, sets the video mode to inverse video, and writes the
message "Set S1 to OFF". Therefore, the user would see the message
"Set S1 to OFF" in inverse video at the upper left hand corner of an
otherwise blank screen.

echo 3

Set S1 to OFF
Waiting for any keystroke...

03dh

Note #

Related Commands

4 echo

You might combine this with a macro command as part of a procedure.
For example, type:

M> mac PROMPT={echo "Set S1 to OFF";w}
M> PROMPT

You will see:

To calculate the value of the expression (1f + 1e), type:
M> echo 1f+1e

You will see:

See the syntax pages fxpr for more details on construction of
various expressions.

When usingechoto calculate results of expressions, be aware that all
operations are carried out on 32-bit two's complement signed integers.
Results greater than 32 bits are truncated.

expr (details on what constitutes valid expressions)

mac (grouping a set of commands under a label for later execution)
rep (grouping a set of commands for immediate repetition)

w (wait command, allows user specified delays)

equ

Note

Summary

Syntax

Equate names to expressions

L L@ -
@ <EXPR>

Function

) % <RETURN>

—d H <NAME> ‘

Theequcommand allows you to equate arithmetic values with names
that you can easily remember; these names can then be used in other
commands to reference the value. This is useful in defining trigger
patterns for the analyzer and in other applications.

Multiple equates may be defined on the same command line, separated
by a space.

Each equate is translated to its actual value at the time of command
entry. For example, if you specify an equasant=21h and an
expressiorstart=2000h, then the commartg addr=start count will

be entered into the systemtgsaaddr=start 33. At this point,

redefining the value adddr or count would not change the address
expression or the occurrence counter for the trigger.

equ 1

2 equ

Parameters

Note ﬂ

Note ﬂ

<NAME> You use <NAME> to assign a character string
to the expression. <NAME> must be an
alphanumeric designator no greater than 31
characters in length, beginning with an alpha
character or underscore and including only
alphanumeric characters or underscores
thereafter. If <NAME> is specified without an
expression, then the existing definition for that
name is displayed. If <NAME> is specified as
*, and thed option is not given, then the
definitions for all equates is displayed.
However, if-d is supplied, then the equate table
is cleared.

Certain HP 64700-Series Emulators may predefine equates, such as
those which equate names to certain processor status bit patterns. You
should be careful not to delete these equates, as they are useful in
specifying analyzer trace qualifiers.

<EXPR> An arithmetic expression to be assigned to
<NAME>. The default is a hexadecimal
number. Refer to the <EXPR> syntax pages in
this manual for further details.

The combination of a singegu command with all names and

expressions cannot exceed 255 characters. The number of equates and
symbols that may be defined is limited only by available system
memory; thus, it is dependent on the number of macros defined and on
any emulator control code loaded by a high level software interface for
the emulator (such as the HP 64700 PC Interface).

Defaults

Examples

-d The-d option allows you to delete an existing
equate. If you specifid and <NAME>, then
the named equate is deleted. If <NAME> is
given as*, then all equates are deleted.

If no parameters are specified, then the current table of all equates is
displayed. If <NAME> is specified, then only the equate for that
particular name is displayed.

If you are working with the 68000 sample program in Appendix A, you
can predefine some equates to make it easier to set up analyzer and run
specifications.

For example, to equate the string "start" to the address value 2000 hex,
type:
M> equ start=2000

You can also make labels for arrays by using the power of the
expression specifications. For example, to define equates for the
message labels in the 68000 emulator tutorial program (included in the
appendix), type:

M> equ msgtbl=1008h msgsize=17T

M> equ msga=msgtbl+0*msgsize

msgb=msgtbl+1*msgsize invmsg=msgtbl+2*msgsize

To see the newly defined list of equates, type:
M> equ

equ 3

You will see:

Equates

equ cyc6800=0xxxxx0xxy
equ dma=0xx011xxxy
equ grd=0XXXXXXXy

equ intack=0xx111xxxy
equ invmsg=102ah

equ msga=1008h

equ msgb=1019h

equ msgsize=11h

equ msgtbl=1008h

equ read=0xxXxXxxx1xy

equ start=2000h

equ supdata=0xx101xxxy
equ supprog=0xx110xxxy
equ userdata=0xx001xxxy
equ userprog=0xx010xxxy
equ write=0xxxxxx0xy
equ wrrom=0x0xxxx0xy

(Note that the HP 64700 Emulator for the 68000 predefines some
equates for use in tracing various status conditions.)

These can now be used to create analyzer trigger expressions. For
example, you may want to have the analyzer trigger on the program
start plus an access to any one of the messages. To do this, type:

M> tinit
(Initializes the analyzer.)
M> tcf -c

(Sets trace configuration to complex configuration.)
M> tsq -t 3

(Sets trigger term as third sequencer term.)
M> tpat p1l addr=start

(Defines p1 to be the equate "start.")
M> tpat p2 addr=msga

(Defines p2 to be the equate "msga.")
M> tpat p3 addr=msgb

(Defines p3 to be the equate "msgb.")
M> tpat p4 addr=invmsg

(Defines p4 to be the equate "invmsg.")
M> tif 1 p1 2

(Jump from term 1 to term 2 upon finding "start.”)

4 equ

M> tif 2 p2|p3|p4 3

(Jump to trigger term if "msga”,
M> trng addr=1008..1038

msgb","invmsg" accessed.)

(Defines a range specifier of the message area.)
M> tsto r

(Analyzer stores only accesses to the message area.)
M>tps

(Positions trigger at beginning of trace list.)
M> t

(Begins trace.)
M> r start

(Starts program run at equate "start.")

The next three commands successively enter "command A", "command
B" and an "unrecognized command" into the program’s input area.

U> m 3000=41

U> m 3000=42

U> m 3000=43

U>tl -1.52

equ 5

You will see:

Line addr,H 68000 Mnemonic

17

6 equ

count,R seq

002000
001008
004000
002068
00206A
00206C
002064
001009
00100A
00100B
00100C
00100D
00100E
00100F
001010
001011
001012
001013
001014
001015
001016
001017
001018
001019
00101A
00101B
00101C
00101D
00101E
00101F
001020
001021
001022
001023
001024
001025
001026
001027
001028
001029
00102A
00102B
00102C
00102D
00102E
00102F
001030
001031
001032
001033
001034
001035
001036
001037

2479 supr prog

54 supr data rd byte
54 supr data wr byte

0001 supr prog

66F8 supr prog

4EF9 supr prog

12D8 supr prog

48 supr data rd byte
49 supr data rd byte
53 supr data rd byte
20 supr data rd byte
49 supr data rd byte
53 supr data rd byte
20 supr data rd byte
4D supr data rd byte
45 supr data rd byte
53 supr data rd byte
53 supr data rd byte
41 supr data rd byte
47 supr data rd byte
45 supr data rd byte
20 supr data rd byte
41 supr data rd byte
54 supr data rd byte
48 supr data rd byte
49 supr data rd byte
53 supr data rd byte
20 supr data rd byte
49 supr data rd byte
53 supr data rd byte
20 supr data rd byte
4D supr data rd byte
45 supr data rd byte
53 supr data rd byte
53 supr data rd byte
41 supr data rd byte
47 supr data rd byte
45 supr data rd byte
20 supr data rd byte
42 supr data rd byte
49 supr data rd byte
4E supr data rd byte
56 supr data rd byte
41 supr data rd byte
4C supr data rd byte
49 supr data rd byte
44 supr data rd byte
20 supr data rd byte
43 supr data rd byte
4F supr data rd byte
4D supr data rd byte
4D supr data rd byte
41 supr data rd byte
4E supr data rd byte

-+
1415 S +
0.400uS +
0.400uS +
0.400uS +
0.400uS +
0.600uS +
0.800 uS
3.000 usS
3.000 uS
3.000 uS

3.000 usS
3.000 usS
3.000uS .
3.000 uS
3.000 us
3.000 us
3.000 us
3.000 us
3.000 us
3.000 us
3.000 uS
3.000 us
2701 S
3.000 uS
3.000 uS
3.000 uS
3.000 uS
3.000 us
3.000 usS
3.000uS .
3.000 uS
3.000 us
3.000 uS
3.000 us
3.000 us
3.000 us
3.000 us
3.000 us
3.000 us
3375 S .
3.000 uS
3.000 uS
3.000uS .
3.000 usS
3.000 usS
3.000 us
3.000 us
3.000 usS
3.000uS .
3.000 uS
3.000 uS
3.000uS .
3.000 usS

As you can see from the listing above, the program accessed all th
the program message areas.

You can remove equates from the table either individually or all at
once. Type:

M> equ -d start
M> equ

You will see:

Equates

equ cyc6800=0xxxxx0xxy
equ dma=0xx011xxxy
equ grd=0XXXXXXXy

equ intack=0xx111xxxy
equ invmsg=102ah

equ msga=1008h

equ msgb=1019h

equ msgsize=11h

equ msgtbl=1008h

equ read=0xxXxXxxx1xy

equ supdata=0xx101xxxy
equ supprog=0xx110xxxy
equ userdata=0xx001xxxy
equ userprog=0xx010xxxy
equ write=0xxxxxx0xy
equ wrrom=0x0xxxx0xy

Notice that the equate for the nastart has been removed. Now type:
M> equ -d *
M> equ

You will see:

Equates

Now all of the equates have been deleted.

equ 7

You can also use equates for more subtle applications. For example,
suppose you want to take 5 traces of the sample 68000 program, with
the trigger at address 2010. You would like to have each trace
numbered.

Enter the following commands:

M> tg addr=2010

M> equ c=0

M> mac numtrclist={t;w -m;equ c=c+1;echo
"trace # " c;tl}

M> r 2000

M> rep 5 tlist

You will see five trace lists, each sequentially numbered, displayed on
screen. You could use this feature in combination with a host logging
program or redirection of your terminal display to printer to
continuously monitor operation of a system. (To further aid your
troubleshooting, you could also display the date and time of each trace
sample using thdt command.)

Related Commands tg, tpat, tif, telif, and others. equ provides an easy way to name
expressions to use in setting up trigger or branch conditions)

r, m, bp (equates may be used to specify run addresses, memory
addresses, or breakpoint addresses)

8 equ

Summary Display emulator status

Syntax

es = <RETURN>

Function Theescommand displays the current status of emulation activity. The
following types of information may be displayed:

m processor status -- running/in monitor/reset
m slow bus cycle
m slow clock

m emulation halted due to halt input from target system or output
from processor

m emulation in "wait" state due to input signal (ready, sync,
DTACK) from target system

m emulation in monitor due to bus grant to the target system

The exact messages and information displayed varies slightly
depending on the emulator in use.

The emulator will not break to the monitor to obtain information.
Therefore, any information that can only be obtained while in the
monitor will not be displayed if the emulator is not in the monitor.

Parameters None.

Defaults Does not apply.

es 1

Examples These examples were constructed using the 68000 emulator, running
the sample program from Appendix A.

M> es
M68000--Running in monitor

M> r 2000

U> es
M68000--Running user program

U> rst

R> es

M68000--Emulation reset

R> cf clk=ext
c> es

M68000--Slow clock

Related Commands ta (allows you to display activity on emulation and external analyzer
lines)

ts (allows you to display the current status of the emulation analyzer)

2 es

help,?

Summary Display help information for commands

Syntax
M
<COMMAND_GROUP> |/
<COMMAND _NAME> |)
<COMMAND_GROUP> | J

Function Thehelp (?)command lets you display syntax, description and
examples for any HP 64700 emulator Terminal Interface command.
You may display a brief description for anything from a single
command to command groups or the entire command set. Detailed
information is available for single commands.

You may enter a question mathnstead of typing help; it performs the
same function.

Parameters

-S This option switches in the abbreviated help
mode; only the expanded name of each
command is displayed next to the command.

<COMMAND _ If the name of an individual command is
NAME> specified, only the detailed help information is
displayed for that command.

<COMMAND _ Specifying the name of a command group lists
GROUP> the commands available within that group.

help 1

Note

Defaults

Examples

help - display help information

help <group>
help -s <group>

help <command>
help

--- VALID <group> NAMES ---

If you specify "*" for <COMMAND_NAME> or
<COMMAND_GROUP>, information for all commands will be
displayed.

Thehelp command without any parameters provides a list of command
groups.

To display general help information listing the command groups and
information regarding the use of thelp command, type:

M> help

You will see:

- print help for desired group

- print short help for desired group
- print help for desired command

- print this help screen

gram - system grammar

proc - processor specific grammar
sys - system commands

emul - emulation commands

trc - analyzer trace commands

* - all command groups

2 help

To display the short version of the help listing, which lists only the
command groups and the commands available in the group, type:

M> ? -s

(Note that we typed the question mark symbol instead of help. You
could use either with the same results.)

You will see:

sys :?, bnct, cmbt, dt, echo, equ, help, init, mac, po, pv, rep,
stty, ver, w, X, Xp

emul : b, bc, bp, cf, cim, cmb, cov, cp, dump, es, io, load, m,
map, mo, r, reg, rst, rx, s, ser

trc :t, ta, tarm, tcf, tck, tcq, telif, tf, tg, tgout, th, tif,
tinit, tl, tlb, tp, tpat, tpg, trng, ts, tsck, tsq, tsto, tx

To display the same listing of commands for only one of the command
groups, type:
M> help -s emul

You will see:

emul : b, bc, bp, cf, cim, cmb, cov, cp, dump, es, io, load, m,
map, mo, r, reg, rst, rx, s, ser

You can display more information about each of the available memory
commands by leaving out theflag. Type:

M> help emul

You will see:

emul - emulation commands

b......break to monitor cp.....copy memory mo.....modes

bc.....break condition dump...dump memory r.....run user code
bp.....breakpoints es.....emulation status reg....registers
cf.....configuration io.....input/output rst....reset

cim....copy target image load...load emul memory rx.....run at CMB execute
cmb....CMB interaction m......memory S......step

cov....coverage map....memory mapper ser....search memory

help 3

Finally, to display specific information for ttme command, type:
M> help m

You will see:

m - display or modify processor memory space

m <addr> - display memory at address

m -d<dtype> <addr> - display memory at address with display option
m <addr>..<addr> - display memory in specified address range

m -dm <addr>..<addr> - display memory mnemonics in specified range
m <addr>.. - display 128 byte block starting at address A

m <addr>=<value> - modify memory at address to <value>

m -d<dtype> <addr>=<value> - modify memory with display option
m <addr>=<value>,<value> - modify memory to data sequence

m <addr>..<addr>=<value>,<value> - fill range with repeating sequence

--- VALID <dtype> MODE OPTIONS ---
w - display size is 2 byte(s)
b - display size is 1 byte(s)
| - display size is 4 byte(s)
m - display processor mnemonics

Related Commands None.

4 help

init

init
init -c
init -p

init -r

Summary Initialize the emulator

Syntax

- limited initialization; resets emulation and analysis
products

but not environment (macros, equates, date & time, etc..)
- complete initialization; does not run system memory
integrity tests

- powerup initialization; run from reset with complete
system verification tests

- powerup initialization; run from reset with complete
system verification tests

ignore all optional products

do not use flash ROM

Function Theinit command allows you to re-initialize the emulator. Powerup,
complete, and limited initializations are available through various
options. In most cases you should only use this command if the
emulator is not responsive to other commands.

If you wish to change other configuration parameters without
initializing the emulator, there are commands available for that
purpose. Refer to the list under "Related Commands" at the end of this

chapter.
Parameters

-p The-p option causes a powerup initialization
sequence. This initializes the operating system,
data communications, emulation and analyzer
boards, and runs extensive performance
verification.

-C The-c option causes a complete initialization

sequence. Everything is initialized as defined
by the powerup sequence with the exception of
the performance verification.

init 1

-r Specifies a complete initialization with system
verification tests (as witkp), but optional
products and the flash ROM are ignored.

Note # Note that thenit -c, init -p, orinit -r commands cause a loss of system
memory. If these commands are used in macros, commands that follow
them will not be executed.

Defaults If no options are specified, a limited initialization sequence is
performed. The operating system and data communications are not
affected but all of the emulation and analysis boards are reset. For
example, a limited initialization would not change macro definitions,
system date and time, or the data communications parameters, but the
emulation memory map and breakpoint list would be reset to their
default states.

Examples To perform a powerup initialization sequence, type:
m> init -p
You will see:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700 Series Emulation System
Version: B.01.00 04Jan94

HP64742 Motorola 68000 emulator
HP64740 Emulation Analyzer

To perform a complete initialization sequence, which resets the entire

emulator without executing performance verification, type:
m> init -c

2 init

You will see:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700 Series Emulation System
Version: B.01.00 04Jan94

HP64742 Motorola 68000 emulator
HP64740 Emulation Analyzer

Limited initialization completed

Related Commands

To perform a limited initialization sequence, resetting only the
emulator and analyzer, type:

m> init

You will see:

cf (change emulation configuration)

dt (set system date and time)
map (define the emulation memory map)
stty (set data communications parameters)

tinit (reset the analyzer to powerup defaults)

init 3

. Notes

4 init

lan

Summary set configuration parameters

Syntax
lan - display the current lan configuration
lan -I - startup lan if not already started
lan -b - enable BNC
lan -a - enable AUI

lan -i <ip_addr> - set Internet Protocol address
lan -g <ip_addr> - set Internet Protocol Gateway address
lan -p <port> - set TCP service port number

Parameters

-l Selects the LAN interface without having to
change the HP 64700 configuration switch
settings. Note that the serial interface is always
active.

-b Selects the LAN interface’s BNC connector
without having to change the HP 64700
configuration switch settings.

-a Selects the LAN interface’s AUI connector
without having to change the HP 64700
configuration switch settings.

-i <ip_addr> Internet Address in dot notation (for example,
192.6.94.2).

-g <ip_addr> Gateway Address in dot notation (for example,
192.6.94.2).

-p <port> Any number that is likely to be unused (for

example, 6470).

lan 1

. Notes

2 lan

lanpv

lanpv -b
lanpv -a
lanpv -v

Summary Performance verification on LAN interface

Syntax

- testing performed through BNC connector
- testing performed through AUI connector
- print the error code value

Function To run performance verification, the connector under test must be
removed from the network and capped with a terminator.

Parameters
-b Tests the LAN interface through its BNC
connector.
-a Tests the LAN interface through its 15-pin AUI
connector.
-v Prints the error code value.

lanpv 1

. Notes

2 lanpv

load

Summary

Syntax

Load user programs into emulation or target memory

G m-ol e

Function

I

<LOAD_OPTS> loadsynt

Theload command lets you load program code into emulation or target
memory. Various file formats are supported via options to the load
command. The destination of the program code is determined by the
information contained in the program file. Additional options allow

you to load only target memory or emulation memory as desired.

If a load error occurs, the current load procedure is aborted. However,
records which were successfully loaded will remain in memory.

For processors which use function codes, the function code information
in the program file must conform to the specifications of the emulation

load 1

memory mapper. For information on specifying emulator function
codes, refer to thEmulator User’'s Guidéor your particular emulator.
You should also refer to the manuals supplied with your assembler or
high-level language to determine how those tools specify function
codes for your processor.

Parameters
Note # At least one dash (-) must be included before any parameters are
specified. Itis optional to include or omit dashes for succeeding
parameters.

-i Specifies that the program code will be in Intel
hex file format.

-m Specifies that the program code will be in
Motorola S-record file format.

-t Specifies that the program code will be in
Tektronix hex file format.

-h Specifies that the program code will be in HP
file format. In this case, the file is expected to
be transferred using the HP 64000 Hosted
Development Systemnansfer protocol.

-e Load only those portions of program code
which would reside in memory mapped to
emulation memory space. (Refer to thap
command.)

-u Load only those portions of program code
which would reside in memory mapped to
target memory space. (Refer to thap
command.)

-q The program code will be transferred in quiet
mode. If-q is not specified, the emulator

2 load

<LOAD_OPTS>

<FILE>

-b

controller will write a "#" for each record
successfully received and processed.

This allows you to download a symbol file
from the host computer into the emulator. This
option is valid for HP 64700 emulators that
support the use of symbols.

This represents all options to e
command that are specific to a particular HP
64700-Series Emulator. Refer to your
Emulator Terminal Interface User’'s Guitle
see if your emulator supports any otteed
command options.

This represents the absolute file to load into the
emulator.

When using the HP file format, the program is
expected to be in binary.

When using the HP file format, the program is
expected to be in hex.

When using Intel, Motorola or Tektronix file
formats, this option sets up a protocol checking
scheme using ASCACK/NAK characters. If
using this option, the host should send one
record at a time and wait for the emulator to
return an ASCIACK character between
records. If the emulator returns an ASRAK
instead, there has been an error in data
transmission. When the emulator receives the
EOF character, it will return only the normal
emulator prompt since data transmission is
complete.

If, during the transfer, the host receivasAK
for arecord, it should retransmit the record
until anACK is received or until a timeout
value is reached, whichever occurs first.

load 3

4 load

Note

Defaults

-f You specify thef option if you are loading a
foreground monitor into an HP 64700 emulator
which supports a foreground monitor. Not all
HP 64700 emulators which allow foreground
monitors require this option for loading the
monitor. Refer to thEmulator User's Guide
for your particular emulator for further
information on the use of this option.

-g Certain emulators allow you to insert user code
into the background monitor. This code directs
the background monitor to perform certain
functions unique to your target system. The
option lets you load this special code. Refer to
the Emulator User’s Guidéor your particular
emulator for further information on the use of
this option.

When you load an absolute file, the incoming data is examined for
valid records (in the specified format). If the data being sent does not
contain any valid records, the emulator will wait forever looking for
valid records. The process must be terminated be entering a <€TRL>

At least one file format option must be specified.

Examples To connect to the emulator’s ftp interface, enter the following
command (use any name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for
a particular purpose.

FTP on the HP64700 serves as a means for downloading absolute files to the
emulation environment. The file transfer can be be performed as follows:

1. The data mode type must be set to IMAGE (binary)

2. Store the file using options to indicate the file format. The following
example uses PUT as the host command for sending the file. This may be
different for your ftp implementation.

put <file_name> <options>
<file_name> - host file to be loaded.
<options> - The options are preceeded by a minus (-). The available
options vary for individual emulators. All support HP OLS, Intel hex,
Motorola S-records, and Extended Tek Hex. Emulator specific options can
be viewed by issuing a Terminal Mode help for the load command.

put hpfile.X -h #to download an HP OLS file

put intelfile -i #to download an Intel Hex file

put motfile -m #to download a Motorola S-record file
put tekfile -t #to download an Extended Tek Hex file

230

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the HP 64000 format absolute file into the emulator:

ftp> put cmd_rdr.X -h

200 Port ok

150

226-

R>

226 Transfer completed

3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

load 5

Related Commands dump (allows you to transfer emulation memory contents to a host)

6 load

Summary Display/modify memory locations

Syntax

Cm
—d }—|<D|SPLAY_MODE>}-J
(Bc)»| <A0DRESS > > <RETURN>
=)
@,

Function Them command allows you to display and modify emulation and
target system memory. Options allow you to specify the display mode,
specific address or addresses for display or modification, and the data
values to be inserted.

If the selected address range for display or modification includes
memory within the user’s target system, the emulation processor will
be broken to background upon execution of the command. After the
command is complete, the processor will be returned to foreground
execution if no errors occurred.

Note # The method of specifying address information varies among different
types of microprocessors. Refer to Huelresssyntax pages in the
Emulator User’s Guidéor your particular emulator for specific address
information. Remember that specifying an address a patrticular way in
one command will affect the way you need to specify it for all
commands. For example, if you use function codes in specifying a
memory map, you will also need to use function codes within the
address information for the command to display or modify those
ranges of memory.

Parameters

-d The-d option allows you to set the display
mode for memory accesses.

<DISPLAY _ A one-character mnemonic specifying the

MODE> display mode to use in creating memory
displays. The allowable display modes are
specific to the microprocessor in use; some
typical modes arb (byte),w (word) andm
(mnemonic). Refer to thmode syntax pages
in theEmulator User’s Guidéor your emulator
to determine the correct display modes. If no
display mode is specified, the global display
mode set via theno command is used as a
default.

<ADDRESS> Specifies the address to be displayed or
modified. As noted in the syntax, an address
followed by two periods and another address
specifies a range of addresses to display or
modify. Address notation is specific to each
microprocessor. For example, the 68000
emulator allows the use of function codes in
specifying address information, whereas the
Z80 emulator does not. However, for all
processors the address default representation is
a hexadecimal number. Refer to the

<ADDRESS>syntax pages in tiemulator
User's Guidefor your emulator for examples o

correct address specifications.

Note # If you specify only the first address of a range followed by two periods
and omit the second address of the range, 128 bytes of the range
starting at the first address specified are selected for display or
modification.
<EXPR> Data value to which a particular location is to

be modified. If a range of locations is to be
modified to a sequence of data values, the
values must be separated by commas. Refer to
the examples for details.

Note # The way the data item is handled depends on the <DISPLAY_MODE>

in effect. For example, if the display mode is byte, and the data items
la, 3f, and 66 are entered as 1a3f66, the location specified will be
modified to 66 hex. If the display mode is word, the location will be
modified to 3f66 hex. And if the display mode is long word, the
location will be modified to 1a3f66. Note that data may be specified in
decimal, octal, or binary in addition to the hexadecimal default. (Refer
to the<EXPR> syntax pages for information on specifying numeric
bases.) Conversely, if you specify the value 33 hex for modification in
byte mode, the value 33 is entered; in word mode, the value 0033 is
entered; in long word mode, the value 000033 is entered. In other
words, if the value supplied is shorter than the mode in effect, it is
padded with leading zeros.

Defaults At least one address must be specified. If no display mode is specified
the display mode set by theo command is used. Data items specified
in memory modification are repeated as a group to fill the address
range specified (see the examples below for clarification). The
memory <DISPLAY_MODE> defaults to the last value specified, or

Note

001000..00100f

001010..00101f

001000..00100f
001010..00101f

001000..00100f
001010..00101f

the default format for the emulator in use upon powerup initialization
(varies dependent on the microprocessor being emulated).

Examples

These examples were constructed using the 68000 emulator, but
without the use of function codes. For information on using function
codes or other microprocessor specific address specifiers, refer to the
<ADDRESS>syntax pages in tHemulator User’s Guidéor your
particular emulator.

To display the memory range 1000 hex through 101f hex in byte
format, type:

M> m -db 1000..101f
You will see:

00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
4d 4553 53 41 47 45 20 41 54 48 49 53 20 49 53

To display the same address range in word format, type:
M> m -dw 1000..101f
You will see:

0000 3000 0000 4000 5448 4953 2049 5320
4d45 5353 4147 4520 4154 4849 5320 4953

To display the range in long word format (32 bits), type:
M> m -dl 1000..101f
You will see:

00003000 00004000 54484953 20495320
4d455353 41474520 41544849 53204953

For areas of memory that contain code, you may wish to display
memory contents as assembler mnemonics. Type:

M> m -dm 2000..201f

002000
002006
00200c
002010
002012
002016
002018
00201c

You will see:

2479000010 MOVEA.L 0001000,A2
2679000010 MOVEA.L 0001004,A3
14bc0000 MOVE.B #000,[A2]

1012

MOVE.B [A2],D0

0c000000 CMPI.B #000,D0

6718

BEQ.B 0002010

0c000041 CMPI.B #041,D0
6700000e BEQ.W 000202C

Note

Note

v

The instruction disassembler assumes that the first address location
disassembled contains the first byte of an opcode; therefore, if you
specify an address location that does not contain an opcode, the
memory display will be incorrect.

For the above examples, you should remember that the
<DISPLAY_MODE> parameters vary depending on what modes are
supported by your particular emulator. Refer tonloele syntax pages
supplied with theemulator User’s Guidéor your particular emulator
for details on supported display modes for that emulator.

Remember that display modes default to the last one specified.
Therefore, if you would like to examine data areas after using the
mnemonic display mode, you should change the mode. Also, you can
display more than a couple of rows of memory at a time. Type:

M> m -db 1000..10ff

You will see:

001000..00100f 0000300
001010..00101f 4d 45535
001020..00102f 204d 455
001030..00103f 44 20 43 4
001040..00104f ff df bf ff 7
001050..00105f ff cf ff df ff
001060..00106f ff ff {7 ff 3
001070..00107f ff ff {7
001080..00108f ffdfe

f

7

0 00 00 40 00 54 48 49 53 20 49 53 20
341 47 45 20 41 54 48 49 53 20 49 53
35341 47 45 20 42 49 4e 56 41 4c 49
f f ef ff ff ff ff

d

o
=
—
330
o
=
—_

001090..00109f {7 df

0010a0..0010af ff ff f

0010b0..0010bf ff df ff
0010c0..0010cf {7 df ff ff {6 ff
0010d0..0010df 7 df bf ff {7 f
0010e0..0010ef ff fe ff ff ff
0010f0..0010ff ff f7 ff ff fd f

e df f7 df {7 ff f7 dd {7 ff
f ff ff £7 7 16 ff
ff ff cb ff fd fe

ff ff f7 fd df

=R —
=
=1
=1
- =R
=%

—_

Let's examine the memory modification capabilities. First, view the
contents of location 5000 hex by typing:

M> m 5000

You will see:
005000..005000 41

Now modify the contents of 5000 hex to the byte value 21 hex by
typing:
M> m 5000=21

Note # Notice that the results of the memory modification are not
automatically displayed. To view the results of a modification, you
enter anothem command.

To view the new value of location 5000 hex, type:
M> m 5000

You will see:
005000..005000 21

Or you can clear the contents of a memory range. Type:
M>m 5000..501f=00

To display the results, type:
M> m 5000..501f

You will see:

005000..00500f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
005010..00501f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

You can also modify the contents of a range to some other hex value.
Type:
M> m 5000..501f=21

To view the results, type:
M> m 5000..501f

You will see:

005000..00500f 21212121212121212121212121212121
005010..00501f 21212121212121212121212121212121

A sequence of data items can be provided for modification. Type:
M> m 5000..501f=41,42,43

To view the results, type:
M> m 5000..501f

You will see:

005000..00500f 414243 41 42 43 41 42 43 41 42 4341424341
005010..00501f 424341 42 43 41 42 43 41 42 43 41 42 43 41 42

Note #

When a sequence of data items is provided for memory modification,
the sequence is repeated until the entire range has been modified.

Microprocessors such as the 80186 which put most significant bytes in
upper memory locations are handled correctly by the emulator. These
examples were constructed on an 80186 emulator.

First, let's modify a block of memory to a range of incrementing values
by typing:

00700.
00710.
00720.
00730.
00740.
00750.
00760.
00770.

00700.
00710.
00720.
00730.
00740.
00750.
00760.
00770.

00700.
00710.
00720.
00730.
00740.
00750.
00760.
00770.

.0070f
.0071f
.0072f
.0073f
.0074f
.0075f
.0076f
.0077f

.0070f
.0071f
.0072f
.0073f
.0074f
.0075f
.0076f
.0077f

.0070f
.0071f
.0072f
.0073f
.0074f
.0075f
.0076f
.0077f

R> m
700..7ff=0,1,2,3,4,5,6,7,8,9,0a,0b,0c,0d,0e,Of

Now, display that range in byte mode by typing:
R> m -db 700..

You will see:

00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of
00 01 02 03 04 05 06 07 08 09 Oa Ob Oc 0d Oe Of

Notice that the bytes were put in the proper positions. Now, display the
memory range in word mode:

R> m -dw 700..

You will see:

0100 0302 0504 0706 0908 ObOa 0d0Oc 0f0e
0100 0302 0504 0706 0908 ObOa 0d0Oc 0f0e
0100 0302 0504 0706 0908 ObOa 0dOc 0fOe
0100 0302 0504 0706 0908 ObOa 0d0Oc 0f0e
0100 0302 0504 0706 0908 ObOa 0d0Oc 0f0e
0100 0302 0504 0706 0908 ObOa 0d0Oc 0fOe
0100 0302 0504 0706 0908 ObOa 0d0Oc 0f0e
0100 0302 0504 0706 0908 ObOa 0d0Oc 0fOe

Notice that the bytes are swapped to represent significance. Now
display in double word mode:

R> m -dd 700..

You will see:

03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc
03020100 07060504 0b0a0908 0f0e0dOc

Again, the bytes were reordered to represent their significance.

If your emulator supports symbols, you can display those symbols
using thememory display mnemoniccommand. For example, using
an 8051 emulator and an example program, you may enter:

R> m -dm CMD_RDR:INIT..FILL_DEST+5
You will see:

03000@x CMD_RDR:INIT MOV SP #fe
03003@x MD_RDR:READ_CMD MOVDPTR,#0000

03006@Xx - MOV A,#00
03008@x - MOVX @DPTR,A
03009@x CMD_RDR:SCAN MOVXA,@DPTR
0300a@x - JZ CMD_RDR:SCAN
0300c@x - CJNE A#41,CMD_RDR:CMD_B
0300f@x - MOV R2#12
03011@x - MOV DPTR,#3100
03014@x - SIJMP CMD_RDR:WRITE_MSG
03016@x CMD_RDR:CMD_B CJNE A #42,CMD_RDR:CMD_|
03019@x - MOV R2#12
0301b@x - MOV DPTR, #3112
0301e@x - SIJMP CMD_RDR:WRITE_MSG
03020@x CMD_RDR:CMD_| MOV R2,#10
03021@x - JBC90,3055
03024@x - ADD A #ea
03026@Xx - XRL A #ff
03028@x - ADD A ,#21
0302a@x - MOV R3,A
0302b@x - INC DPS
0302d@x - MOV DPTR,#0001
03030@x CMD_RDR:AGAIN INC DPS
03032@x - MOVXA,@DPTR
03033@x - INC DPTR
03034@x - INC DPS
03036@Xx - MOVX @DPTR,A
03037@x - INC DPTR
03038@x - DJNZ R2,CMD_RDR:AGAIN
0303a@x - MOV A,#00
0303c@x D_RDR:FILL_DEST MOVX @DPTR,A
0303d@x - INC DPTR
0303e@x - DJNZR3,CMD_RDR:FILL_DEST
03040@x - INC DPS
03042@x - SIJMP CMD_RDR:READ_CMD
Note The command processor retains the name of the last module referenced.
If a symbol does not contain a module name, the list of global symbols

is searched. If the symbol is not found, the list of user symbols is
searched. If the symbol is still not found, the system searches the last
module referenced. If it doesn’t find it there, the rest of the modules
are searched.

Related Commands map (specify mapping of memory to emulation or user memory and to
RAM or ROM)

mo (specify global access and display modes)

io (display modify I/O locations (for processors which support
dedicated 1/O))

10 m

mac

Summary

Syntax

Define command macros

% <REITURN>

mdac

Function

Themaccommand allows you to save a group of commands under a
name of your choice. This allows you to instantly recall that command
group by typing in the assigned name; the emulator will then
preprocess the macro to expand the commands stored therein to a
normal command line; the command line is then executed as usual.

Nested macro calls are permitted and limited only by constraints of
system memory.

The commands within the macro definition are not checked for correct
syntax until the macro is executed; therefore, it is advisable to test the
command string before defining the macro.

The number of macros that can be created is limited to 100, but may be
less depending on the complexity of the macros defined.

mac 1

The length of the macro name combined with the macro definition is
limited only by the maximum HP 64700 command length of 255
characters; thus, the macro name and definition can be a maximum of
251 characters.

A command within a macro definition cannot contain the pound sign
character (#) unless the command is enclosed in a quoted string.
(Otherwise, text following the # is interpreted as a comment.) This
means there can be no matching brace at the end of the command. Use
theechocommand to place comments in a macro definition.

Command line substitution is possible when invoking a macro. During
the macro definition, you may include pseudo-parameters which allow
you to substitute parameters, such as file names, when invoking the
macro.

Parameters

-d The-d parameter, in conjunction with the
macro <NAME>, deletes the macro defined by
<NAME>. If <NAME> is given as the
character "*" then all macros are deleted.

<NAME> This represents the name you assign to the
macro definition. Names can be any
combination of alphanumeric characters;
however, you cannot define a macro that has a
name identical to that of another HP 64700
Terminal Interface command.

If you specify a name which is the same as a
currently defined macro, that macro will be
overwritten by the new macro you define.

Note # Certain HP 64700-Series emulators may predefine macros to aid you in
setting up configurations for certain emulation tasks, such as in-circuit
emulation.

2 mac

Defaults

<COMMAND>

This represents one or more emulator
commands, including names which are used
define other macros. <NAME> and
<COMMAND> must be separated by an equal
sign (=), and the command string must be
enclosed with braces "{ }." Each
<COMMAND> must be separated from other
commands by a semicolon (;).

When using command substitution, you can
include pseudo-parameters in the form of
"&token&" in the macro definition. Do not
include any white space between the two "&"
symbols. When you execute the macro, include
the string to be substituted for &token& as a
parameter on the command line. The macro
will execute using the command expanded with
the string you substituted. See the Examples
section for more information.

This option sets the macro expansion echo to
quiet mode. In this mode, any macro that you
run will be executed without displaying the
expanded command string.

This option sets the macro expansion echo to
verbose mode. In this mode, any macro that
you run will first display the expanded
command string as a comment, and then will
execute the macro.

If no parameters are supplied, the current set of macro definitions is
displayed. If only <NAME> is supplied without a command string, the
macro defined by <NAME> is displayed.

mac 3

Examples Let’s define a macro that resets the emulator, then defines the memory
map, resets the processor and breaks into the monitor, then sets up the
stack pointer. Type:

M> mac setup={init;map 0..7fff eram;rst
-m;reg usp=7000}

To execute the command, type:
M> setup

You will see:

init ; map 0..7fff eram ; rst -m ; reg usp=7000
All products re-initialized

To illustrate the changes caused by each command, let’s look at the
memory map and registers. Type:

M> map
You will see:

remaining number of terms : 6

remaining emulation memory : 17800h bytes
map 000000..007fff eram #term1

map other tram

Type:
M> reg
You will see:

reg pc=00000000 st=0000 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00000000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00007000
reg usp=00007000 ssp=00000006

You could define another macro called "echonwait" as follows:
M> mac echonwait={echo "Set S1 to OFF";w}

To see what macros are currently defined, type:
M> mac

4 mac

You will see:

mac setup={init ; map 0..7fff eram ; rst -m ; reg usp=7000 }
mac echonwait={echo "Set S1 to OFF" ; w}

To delete the macro namsetupthat we just defined, type:
M> mac -d setup

Verify that the macro namesttupwas in fact deleted by typing:
M> mac

You will see:

mac echonwait={echo "Set S1 to OFF" ; w}

To delete the remaining macro, you can either specify it by name, or
simply type:
M> mac -d *

Now type:
M> mac

Since no macros remain, you will see:
M>

To define a macro with a pseudo-parameter that allows you to
substitute a file name, enter:

M> mac getfile={load -hbs"transfer -t
&file&"}

To use the macro with the pseudo-parameter, and substitute the
pseudo-parameter (&file&) with an example file name, enter:

M> getfile YOURFILE.o

If the macro expansion mode is set to verbesejftion is used), you
will see the macro and associated parameters expand to include your
file name. For example, you will see:

load -hbs "transfer -t YOURFILE.o"

mac 5

Pseudo-parameters are replaced on a position-dependent scheme, where
the first pseudo-parameter encountered in the macro string is replaced
with the first parameter passed into the macro. The second
pseudo-parameter is replaced with the second parameter passed into the
macro, and so on.

As an example of multiple parameter substitution, let's define a macro
that fills an arbitrary 100-byte block range with a user-defined value.
To do this, enter:
M> mac fill={equ start=&address&;m -db
start..start+100t=&value&}

To invoke the macro, enter:
M> fill 50 88

In this example, 50 will be substituted for &address&, and 88 will be
substituted for &value&. So, addresses 50 through 150 decimal will
contain the value 88.

Note # You can define multiple pseudo-parameters in a macro using the same
name for both (or all) of them. Because pseudo-parameters are
position-dependent, the first pseudo-parameter will always be
substituted with the first parameter you pass into the macro, the second
pseudo-parameter with the second parameter you pass into the macro,
and so on.

Related Commands rep (repeat; allows you to repeat any command, including macros)

6 mac

map

Summary

Syntax

Map emulation and target system memory

/=I <RETURN>

=N

\>[<ADDRESS> (.)-»{ <ADDRESS >

ey
. erom '
. tram '

trom

(-0 »Gp) <TERM_ NUMBER> f /

Function

-

Themap command allows you to map address ranges to one of five
different classes of memory. For example, you may want to specify

that addresses 1000 through 2fff hex are in emulation RAM, and
addresses 3000 through 3fff hex (where your program code will reside)
are in emulation ROM. Later, when your target system hardware is
prototyped, you will be able to easily modify these specifications to
indicate that the address ranges actually reside in target system RAM or
ROM.

The emulation system assigns a term number to each address range
specified by you in the map command. Term numbers are assigned in
ascending order of address range. Therefore, if you map the addresses
0 through 100 (TERM_NUMBER_1) and 1000 through 1fff
(TERM_NUMBER_2), then specify another range of 300 through 3ff,
TERM_NUMBER_2 will be renumbered as TERM_NUMBER_3 and

the range 300 through 3ff will become TERM_NUMBER_2.

map 1

2 map

Note

Note

Note

Remember to use the assigned term number when specifying mapper
terms to be deleted by theap -d <TERM_NUMBER> command.

The memory mapper re-assigns blocks of emulation memory after the
insertion or deletion of mapper terms. For example, if you modified
the contents of 300 through 3ff above, deleted TERM_NUMBER_1,
and displayed locations 300 through 3ff, you would notice the contents
of those locations are not the same as they were before deleting the
mapper term.

Mapper address block sizes vary with each individual emulator.
However, the block sizes for target memory and emulation memory on
a particular emulator are identical. If an address range smaller than a
multiple of the block size is entered as a map specification, the range is
rounded upwards to the nearest block size multiple.

When any map term is added or deleted the emulation processor will be
reset and held in the reset state until a break or run command is issued.

The processor remains reset in recognition of the fact that returning to
execution directly after mapper modification is most likely invalid.

Be sure to disable all breakpointe (-d bp) before changing the map.
Breakpoints are not cleared when the memory map is changed.
(Breakpoints are also not cleared when a file is loaded, or when
memory is manually modified.) After the new map and the program
are set up, you can re-enable the breakpoints by re-enabling the
breakpoints break conditiob -e bp and entering thep -e *
command. When the list of breakpoints is displaygd, the memory
is checked to verify whether the breakpoint is still in memory.

Each type of emulator has its own default memory map at powerup. If
all mapper terms are deleted with the comnmaag -d *, the "other"

Parameters

range is unaffected. The number of map terms available depends
the emulator in use; for example, the HP 64700 emulator for the 68
has 7 map terms available while the emulator for the Z80 has 16 m
terms available. Refer to th#nulator User’s Guidéor details on the
maximum number of map terms.

<ADDRESS>

other

eram

erom

The address values specify the address range to
be assigned to a particular memory type.
Whenever the emulation processor accesses the
range specified, it will be directed to the
memory type specified in the map.

Specification of address information defaults to
a hexadecimal value; some HP 64700
emulators, such as that for the 68000, allow
specification of additional address specifiers
such as function codes. Refer to the
<ADDRESS>syntax pages in tHemulator

User’s Guidefor your emulator for details of
address specification.

The address rangther specifies all address
ranges not otherwise specified by mapper
terms. Certain HP 64700 emulators restrict
type definition of the "other" range tam,
tram, orgrd.

Specifyingeram indicates that the given
address range is to reside in emulation address
space and act as RAM (read/write).

Specifyingerom indicates that the given
address range resides in emulation address
space; it is to act as ROM (read only). Bae
command allows you to specify that emulation
processor writes to this space or to space
designated as target ROMom) will cause an
emulation system break.

map 3

4 map

Defaults

Examples

tram

trom

grd

Current HP 64700 Emulators protect emulation
memory from being modified when a write to
emulation ROM occurs. (This feature may not
be supported in future HP 64700-Series
emulators.)

Specifyingram indicates that the given

address range lies within target system RAM
space. When the emulation processor accesses
an address within this range, the target system
data buffers will be enabled by a mapper signal
to complete the transaction.

Specifyingrom indicates that the given

address range lies within target system ROM
space. As with therom parameter above, the

bc command may be used to set up the
emulation system to break upon a write to these
address ranges. In any case, if target ROM
memory is actually implemented as RAM, and
the necessary write strobes are connected to this
memory, the emulator will allow the processor

to overwrite the memory locations.

Thegrd parameter indicates the given address
range is to be "guarded"; therefore, the
emulation system software should not know
that it exists. An emulation system break will
always be generated upon accesses to guarded
memory.

If the commandnap is entered with no parameters, the current
memory map is displayed.

Memory maps for each emulator type may differ. Refer to the
Emulator User’'s Guidéor your emulator for details.

These examples were created with a HP 64700 68000 emulator,
without the use of function codes. The 68000 uses a default block size
of 512 bytes for both user and target system memory.

To view the power up memory map, type:
M> map

You will see:

remaining number of terms : 7
remaining emulation memory : 1f800h bytes
map other tram

The first line lists the number of terms available for mapping (in this
case seven), the second line lists the number of bytes available in
emulation memory, and the last line lists the only map term. In this
case, all emulation memory is mapped as belonging to target system
RAM. You will notice in the examples below that the other term
doesn’'t have a term number. (Tdtber term does not occupy a term
number.)

Now let's map some address ranges to various types of memory. Type:

M> map 0..1ff eram

R> map 0..3ff erom (notice that the emulator
is now reset)

R> map 1000..15ff tram

R> map 2000..201f trom

You can view the resulting changes by typing:
R> map

You will see:

remaining number of terms : 3

remaining emulation memory : 1f400h bytes
map 000000..0001ff eram #term1

map 000200..0003ff erom # term 2

map 001000..0015ff tram #term 3

map 002000..0021ff trom #term 4

map other tram

Note that term 4 has a greater address range than what you originally
specified (2000..21ff instead of 2000..201f). This is because the 68000
emulator defaults to map terms with a multiple of 512 byte blocks. The
system therefore rounded your map entry up to the nearest 512 byte
boundary while creating the map term.

map 5

remaining number of terms
remaining emulation memory : 1f400h bytes

map 000000..0001ff
map 000200..0003ff
map 001000..0015ff
map 002000..0021ff
map 003000..0031ff
map other grd

6 map

eram
erom
tram
trom
trom

You can map all other memory to "guarded"; the emulator will generate
a break if a guarded memory access occurs, notifying you that
something is probably awry with your program. Type:

R> map other grd

View the changes in the map:
R> map

You will see:

12

#term 1
term 2
#term 3

#term 4
#term 5

Maybe you decided term 4 really wasn’'t what you wanted. Type:
R> map -d 4

View the changes:
R> map

You will see:

remaining number of terms : 3

remaining emulation memory : 1f400h bytes
map 000000..0001ff eram #term1

map 000200..0003ff erom # term 2

map 001000..0015ff tram #term 3

map 003000..0031ff trom #term 4

map other grd

Instead, what you really needed was an emulation ROM term from 400

through 5ff hex. Type:
R> map 400..5ff erom

You will see:

remaining number of terms : 2

remaining emulation memory : 1f400h bytes
map 000000..0001ff eram #term1

map 000200..0003ff erom # term 2

map 000400..0005ff erom #term 3

map 001000..0015ff tram #term 4

map 003000..0031ff trom #term5

map other grd

Related Commands

Notice that term 3 and term 4 were renumbered as term 4 and term 5;
the new entry was inserted as term 3. Mapper terms are arranged in
ascending address order.

To delete all of the map terms (reset the map), type:
R> map -d *

If you now typemap, you'll see the same display from the first
example.

bc (break conditions; determines whether emulator breaks to monitor
upon write to space mapped as ROM)

m (memory display/modify)

bp (set/delete software breakpoints)

map 7

. Notes

8 map

Summary Set global memory access and display modes

Syntax

& <RETURN>

= —a)ﬁ{ <ACCESS MODE>
—d)ﬁ <DISPLAY MODE>

Function Themo command allows you to modify the global access and display
modes. Access mode is defined as the type of processor data cycles
used by the emulation monitor to access a portion of user memory.
Display mode is defined as the method used to display or modify data
resident in memory.

The options for the access and display mode vary for each
microprocessor type, as each processor supports different data types for
memory transactions. Refer to tamulator User's Guidéor your

particular emulator for details on the supported modes.

Parameters

-a The-a parameter in combination with a single
character specifying mode type sets the global
access mode.

<ACCESS _ A single character used to specify the global

MODE> access mode. Note that there is no space
between thea parameter and the mode
specifier. Typical mode types dr€byte) and
w (word), although the types supported are

mo 1

Defaults

Examples

Note #

mo -ab -db

dependent on the microprocessor in use. For
further information, see the syntax pages for
<MODE> in theEmulator User’s Guidéor

your particular emulator.

-d The-d parameter in combination with a single
character sets the global display mode default.

<DISPLAY _ A single character used to specify the global

MODE> display mode default. Note that there is no
space between thd parameter and the mode
specifier. Typical mode types drébyte),w
(word),! (long word), andn (mnemonic);
however, the types available are dependent on
the microprocessor in use. For further
information, see the syntax pages for <MODE>
in theEmulator User’s Guidéor your
particular emulator.

If no parameters are specified, the current settings of the display and
access modes are displayed.

The examples below were created on a Motorola 68000 emulator.

For examples of the effects of changing the display mode, refer to the
syntax pages for thm (memory) command in this manual.

To view the current settings of the access and display modes, type:
R> mo

You will see:

Now, to set the access mode to words, type:
R> mo -aw

mo -aw -db

mo -aw -dI

Related Commands

No response is returned when a mode setting is changed. To veri
the mode status did in fact change, type:
R> mo

You will see:

To change the access mode to words and the display mode to long
words, type:

R> mo -aw -dI

To verify that the mode has changed, type:
R> mo

You will see:

To change the access mode to words, and the display mode to
mnemonics, type:

R> mo -aw -dm

To reset the access and display modes to the powerup defaults, type:
R> mo -ab -db

m (memory display/modify)

io (input/output display or modify)

mo 3

. Notes

po

Summary

Syntax

Assign ports, redefine prompt, dump command files

- e

Function

Parameters

Examples

B
(s S~ e

\ U <STRING>
\Qf posynt

Thepo command allows you to change the system prompt characters.

-p The-p option allows you to change the
emulator’'s command prompt to one specified
by <STRING>.

<STRING> <STRING> is any group of ASCII characters

enclosed by single open quotes (*) or double ()
guote marks. This parameter, when used with
-p, allows you to specify a new emulator
command prompt.

Upon powerup, the emulator prompt defaults to ™. (The character
before the string, for example, M, U, etc., is used to indicate the
current emulator status and is NOT affected by redefining the prompt
string.)

po 1

U\YOURID>

2 po

For example, you may want to redefine the prompt string to your name
so that others who use the emulator will know you are currently using
the system.

The standard prompt is:
u>

To redefine it with a separator character plus your name and a prompt,
type:
U> po -p "\YOURID>"

You will see:

To redefine the prompt back to the original, type:
U\YOURID> po -p ">"

You will see:

If several people use the system, you may want to define macros which
reset the prompt so each user knows who is currently using the
emulator. For example:

M> mac yourid={po -p "\YOURID>"}
M> mac herid={po -p "\HERID>"}
M> mac hisid={po -p "\HISID>"}

Summary Run emulator/analyzer performance verification

Syntax

(pv 7‘ <RETURN>

7@ = <REPEAT_COUNI>

Function Thepv command runs performance verification on the emulator and
analyzer. The performance verification exercises all the emulator
hardware and software to high confidence level.

You should only run performance verification when the emulation
probe isnot plugged into a target system. You should also make sure
to remove any conductive foam or plastic pin protectors from the
emulator probe, as these will cause failures during performance
verification.

Note # When you use thpv command, the emulator is initialized as if power
were cycled. Therefore, all equates, macros, memory map,
configuration settings, system clock, software breakpoints, trace
specifications, and other configuration items you have altered will be
cleared. Do not use tipg command unless you can restore these items
from a host, or have documented them so you can restore their states
manually.

If pv reports failures, first check your hardware installation as
documented in thelardware Installation and Configuratiomanual.

If the failures persist, call your local HP Sales and Service office for
assistance. A list of offices is provided in Sugpport Serviceguide.

Note that providing multiple commands suclpad.;r is invalid; the
second command will not execute due to the system reset.

pv 1

Typing in <CTRL>-C to abort thev command may result in incorrect
failure messages.

Parameters

<REPEAT _ <REPEAT_COUNT> allows you to specify
COUNT> the number of times to repeat the performance
verification. This is a required parameter.

Defaults If no parameters are given, a warning message about initialization of
the emulator along with correg command syntax is displayed. To
actually execute thev command, you must provide a
<REPEAT_COUNT> value.

Examples Executingpv with no parameters provides a warning display, along
with help for the correct syntax. Type:

M> pv

*kkkk WARNING *kkkk

Running this pv (Performance Verification) command destroys
the current system configuration by performing a cold system reboot
after the command has completed. All system and emulation setups
including the date, macros, equates, memory map, and configuration
items will be returned to their default powerup states.

The emulation probe should be disconnected from the target
system before running this performance verification.

To run pv type: "pv <repeat_count>"

To loop through the performance verification twice, type:
M> pv 2

2 pv

The example shown below is for an HP 68000 emulator.

Testing: HP64742 Motorola 68000 emulator
PASSED
Number of tests: 1 Number of failures: 0
Testing: HP64740 Emulation Analyzer
PASSED
Number of tests: 1 Number of failures: 0

Testing: HP64742 Motorola 68000 emulator
PASSED
Number of tests: 2 Number of failures: 0
Testing: HP64740 Emulation Analyzer
PASSED
Number of tests: 2 Number of failures: 0

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700 Series Emulation System
Version: A.00.01 03Dec87 Unreleased

HP64742 Motorola 68000 emulator
HP64740 Emulation Analyzer
R>

Notice that the emulator initializes and returns to the reset state.

Related Commands init (reinitializes the emulator)

pv 3

. Notes

4 pv

Summary Run the emulator from current PC or specified location

Syntax

r & <RETURN>
f@ = <ADDRESS>

Function Ther command starts an emulation run. Execution begins at the
address specified by the <ADDRESS> parameter; if no address is
specified, execution begins at the address currently present in the
program counter.

Parameters

<ADDRESS> Specifies the address where execution is to
begin. If you specifyp, the processor runs from
the current program counter value. If you
specifyrst, the processor runs from its reset
address.

Note # Different microprocessors have different addressing capabilities and so
do the emulators. Although <ADDRESS> defaults to a hexadecimal
number, each processor may allow specification of additional address
information (for example, the 68000 function codes). Refer to the
<ADDRESS> syntax pages in tRenulator User’s Guidéor your
particular emulator.

Note # Each emulator behaves differently on receivingst command.
Refer to th&emulator User's Guidéor further information.

Defaults If no parameters are specified, the emulation run begins at the address
specified by the processor’s current program counter contents.

Examples To start your program running from address 2000 hex, type:

R> r 2000
u>

(Note that the prompt changes to indicate the emulator is running user
code.)

Now let's issue a break command. Type:
U> b
M>

(Note that the prompt changes to indicate the emulator is running in the
emulation monitor.)

Let's view the current program counter value. Type:
M> reg

You will see:

reg pc=00002010 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
reg usp=00007000 ssp=00000006

To run the emulator from the current program counter value of 2012
hex, type:

M> r
u>

(Note the prompt changes again to indicate the emulator is running in
user code.)

Related Commands s (step; allows controlled stepping through program instructions)
rx (run only when CMB (Coordinated Measurement Bus) execute
pulse is received)

X (pulse the CMB execute line if resident on the CMB)

Refer to theaCMB User’s Guiddor information on the command’s
effect on the CMB.

. Notes

reg

Summary

Syntax

reg

Display/modify processor registers

~N <RETURN>

<REG_NAME>

<REG_ CLASS>

e <VALUE>

Function

Parameters

Thereg command allows you to display and modify emulation
processor register contents. Individual registers may be displayed or
modified; related groups of registers may be displayed; combinations
of display and modify are permitted on the same command line.

<REG_NAME>

<REG_CLASS>

The <REG_NAME> parameter allows you to
specify a specific register to display or modify.
The valid register names are microprocessor
dependent; therefore, refer to the
<REGISTERS> syntax pages in tinulator
User's Guidefor your emulator for the list of
valid register names.

The <REG_CLASS> parameter allows you to
specify an entire group of registers for display.
The group names vary from processor to
processor; therefore, refer to the
<REGISTERS> syntax pages in tBmulator
User’s Guidefor your emulator for a list of the
valid register classes.

reg 1

<VALUE> To modify a register’s contents, supply the new
contents in the <VALUE> variable. Thisis a
numeric value (default is hexadecimal, other
number bases may be specified.)

Examples These examples were constructed using the HP 64700 Emulator for the
68000 microprocessor and the 68000 sample program listed in
Appendix A.

To view the register values before the program is run, type:
M> reg

You will see:

reg pc=00000000 st=0000 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00000000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00007000
reg usp=00007000 ssp=00000006

Now let's see how the register contents are affected by executing only
the MOVE.L INPUT_POINTER,A2 instruction which begins the
program at address 2000 hex. To do this, we will usg (tep)
command. Type:

M> s 1 2000
You will see:

002000 2479000010 MOVEA.L 0001000,A2
PC = 002006@sp

View the new register values by typing:
M> reg
You will see:

reg pc=00002006 st=2000 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00003000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
reg usp=00007000 ssp=00000006

Notice that the following registers have changed: The program counter
pc now points to the next instruction; the status reggdteit 13 is set
to indicate that the processor is running in the supervisor state (since

2 reg

we did not set up the state, the default is supervisor state); and ad
registera2 contains the value 3000 hex as a result of the move
instruction (long word contents of address 1000 hex were moa). t

Step the program again from the current program counter value:
M>s1

You will see:

002006@sp 2679000010 MOVEA.L 0001004,A3
PC = 00200c@sp

Again, view the register contents:
M> reg
You will see:

reg pc=0000200c st=2000 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
reg usp=00007000 ssp=00000006

Note that the contents of address regis8awvere modified by the
instruction just executed. Step the program again:

M>s1
You will see:

00200c@sp 14bc0000 MOVE.B #000,[A2]
PC = 002010@sp

To see the effects of the instruction at location 2010 hex, we will
modify registed0. Type:

M> reg d0=050

Now execute the instruction at location 2010. Type:
M>s1

You will see:

002010@sp 1012 MOVE.B [A2],DO
PC =002012@sp

reg 3

This should have clearet), since the instruction at 200c hex cleared
the location pointed to bg2. In addition, the zero flag in the status
register should be set as a result of moving zeroednt&/erify this

by typing:
M>regdOst (note you can put more than one
register name on a line)

You will see:

reg d0=00000000
reg st=2004

Next, execute the compare instruction at location 2012 by typing:
M>s 1

You will see:

002012@sp 0c000000 CMPIL.B #000,D0
PC = 002016@sp

Look at the register contents:
M> reg

You will see:

reg pc=00002016 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
reg usp=00007000 ssp=00000006

Notice that the status register zero flag is still set after the compare. As
a result, the next instruction, a "branch if equal to zero", should return
the program counter to the beginning of the READ_INPUT loop. Type:

M>s1

4 reg

002016@sp 678
PC = 002010@sp

reg d0=00000041

You will see:

BEQ.B 0002010

Note that the program counter did return to the location of
READ_INPUT.

You can use the register modification ability to affect the processing of
such a loop. This can be handy if you're checking program logic and
don't have external hardware to change the value of an input port, or
don’'t want to wait for a loop to time out. Since we're back at
READ_INPUT, let's try it. Type:

M> reg d0=41

Verify the register modification by typing:
M> reg dO

You will see:

Now step through the loop:
M>s 1

You will see:

002012@sp 0c000000 CMPIL.B #000,D0

PC = 002016@sp

reg st=2000

The compare instruction should have reset the zero flag in the status
register since the value d0 was not zero. Type:

M> reg st

You will see:

As expected, the zero flag is reset. Now step the branch instruction:
M>s 1

reg 5

You will see:

002016@sp 678 BEQ.B 0002010
PC =002018@sp

Notice that the program has now "fallen through" the READ_INPUT
loop and is ready to execute the next instruction at PROCESS_COMM.

The only <REG_CLASS> parameter supported by the 68000 emulator
is * (all). Therefore, typingeg andreg * produce the same results.

M> reg *
You will see:

reg pc=00002010 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000

reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006
reg usp=00007000 ssp=00000006

Other HP 64700 Emulators provide multiple register classes. For
example, on the HP 64700 emulator for the Z80 you could type:

M> reg *
This would display all the main registers:
reg a=ff f=a8 bc=0bff de=0000 hI=0001 ix=0000 iy=0000 sp=003c pc=7f13
Or, you could display the alternate register set by typing:
M> reg alt
You will see:
reg a’=00 f'=00 bc’=0000 de’=0000 hl’=0000

To display the Z80 interrupt registers, type:
M> reg int

6 reg

You will see:
reg i=00 iff2=00 imode=00
By typing
M> reg all
You can display the complete register set:
reg a=ff f=a8 bc=0bff de=0000 hI=0001 ix=0000 iy=0000 sp=003c pc=7f13 r=46

reg a'=00 f'=00 bc’=0000 de’'=0000 hI'=0000 i=00 iff2=00 imode=00

Related Commands s (step; allows you to step through program execution -- combination
with thereg command is useful in debugging)

reg 7

. Notes

8 reg

rep

Summary

Function

Note ﬂ

Parameters

Repeat a group of HP 64700 commands

<RETURN>

Therep command allows you to repeat a group of commands a
specified number of times. The command list is simply a group of
valid HP 64700 commands separated by semicolons and delimited by
braces.

Command macros that you define usingrttee command can be used
within a command group for repetition.

No other command input will be accepted until the command group has
executed the indicated number of repetitions.

<COUNT> An integer value specifying how many times
the command list should be executed. A count
of zero is a special case, meaning "repeat
forever" (the repetition can be terminated by
entering <CTRL>-C, which issues a break
signal to the emulator).

<COMMAND> Any valid HP 64700 Emulator command,
including previously defined macros, may be
specified with the options appropriate to the
command. The list of commands must be

rep 1

2 rep

Defaults

Examples

preceded by an opening brace and followed by
a closing brace. Also, the commands must be
separated by semicolons. The commands will
be executed in the same order as they are
specified on the command line.

None -- both a count and at least one command must be specified.

The following example will show you how to simulate a repetitive
display of a memory block using ANSI terminal escape sequences, HP
64700 macros, and thep command.

You need to load the program from Appendix A into the emulator. A
"priming" run is necessary to make sure all of the pointer registers are
set up correctly. Type:

M> r 2000

Now break the emulator into the monitor. Type:
U> b

You will need to modify the IMP CLEAR instruction to a JMP
PROCESS_COMM instruction so the emulator will repeatedly execute
the output routine. Type:

M> m 2071=10

M> m 3000=41

Next, you will set up two macros. The first will home the cursor and
clear the screen on an ANSI standard terminal; the second homes the
cursor, displays a memory block, then waits for 0 seconds (the actual
wait time is that required to process the command).

M> mac cls={echo \1b \5b \32 \4a}

M> mac mem={echo \1b \5b \31 \3b \31 \48; m-db
4000..401f; w 0}

Now start an emulation run at the PROCESS_COMM routine (if you
start it earlier the input location of 3000 hex will be cleared; the output
memory locations will not change as desired).

M> r 2010

Clear the terminal screen by typing:

U> cls

Now, you can start a continuous repetitive display of the output
memory block by typing:
U> rep 0 mem

You will see the following display at the top of your screen. The
memory locations from 4000 through 4011 hex will change
continuously as they are alternately cleared and written by the sample
program.

004000..00400f 00 48 00 00 20 49 00 00 4d 00 00 53 00 00 45 00
004010..00401f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
waiting for O seconds...

echo \1b \5b \31 \3b \31 \48 ; m -db 4000..401f ; w O

To stop the command, ente€TRL> C.

Related Commands mac (allows assignment of a name to a command group for easy recall
of a specified command sequence)

rep 3

. Notes

4 rep

rst

Summary

Syntax

rst

Function

Parameters

Defaults

Examples

Reset the emulation microprocessor

<RETURN>
@

Therst command resets the emulation microprocessor. An option
allows you to specify that the processor should begin executing the
emulation monitor code immediately after the resetmlis not

specified, the emulation processor remains in the reset state. Note that
any commands which require the emulation processor to execute the
monitor code for command processing will not execute while the
processor is in the reset state; these include commands segh as

Commands or hardware signals which will take the emulator out of a
reset state include, r, s, and the CMB /EXECUTE pulse.

-m Causes the emulator to begin executing monitor
code immediately after the reset.

Reset and remain in the reset state.

To reset the processor and keep it in the reset state, type:

M> rst

You will see:
R>

rst 1

To reset the processor and have it immediately commence emulation
monitor execution, type:

U> rst-m

You will see:
M>

Related Commands None

2 rst

Summary Specify starting address for emulation run upon CMB execution

Syntax

% <RETURN>

Function Therx command allows you to set the starting address for synchronous
CMB (Coordinated Measurement Bus) execution.

If the HP 64700 emulator is connected to the CMB, and the
CMB-EXECUTE pulse is detected, followed by the CMB-READY
line in the true state, the emulator will begin execution at the address
specified by thex command. If nex command has been issued,
execution begins at the current program counter value (sam&gs

Execution will begin at the address specifiedbgvery time the
conditions listed above are met. For example, if you type the command
rx 100, the emulator will start executing at address 100 hex every time
the CMB-EXECUTE line is pulsed.

Therx command automatically turns on CMB interaction by
effectively performing the equivalent otenb -ecommand whether or
not you have done so.

rx 1

Parameters

Defaults

Examples

<ADDRESS> The <ADDRESS> parameter specifies where to
start program execution when the CMB
EXECUTE pulse is detected. If $ is specified
for address, the current program counter value
is used (default). The <ADDRESS> parameter
numeric base default is hexadecimal; other
bases can be specified with the proper
extension. (See thexpr syntax pages for a
description of supported bases.) Some
microprocessors, such as the MC68000, support
address extensions (function codes or other
types of extensions). These extensions may be
used in specifying <ADDRESS>.

For specific information on how to specify <ADDRESS> for a given
microprocessor, refer to the Emulator User’s Guide for your emulator.

If you enter thex command without any address parameters, the
current address value setting is displayed. If no rx command has been
entered since initialization of the emulator, then the default settirg is

$.

To view the current address setting specifiedxhyype:
M> rx

You will see:
rx$

If you want the emulator to begin executing a certain piece of code that
begins at address 2000 hex when the CMB-EXECUTE pulse is
received, type:

M> rx 2000

To view the new value ok, type:
M> rx

rx 002000

reg pc=0000044e

Related Commands

You will see:

Now return thex setting to the default setting by typing:
M> rx $

Verify the changes:
M> rx

You will see:
rx$

To see what value would be used as $ if the CMB-EXECUTE pulse
was received, type:

M> reg pc

You will see something similar to the following (the address will most
likely be different on your system):

Note that this address would only be used if the processor was reset or
running in the emulation monitor. If a user program run occurs before
the CMB-EXECUTE line is pulsed, the program counter value is likely
to be different.

cmb (enables or disables CMB interaction)

x (initiates a synchronous CMB interaction by pulsing the
CMB-EXECUTE line)

rx 3

. Notes

Summary Step the emulation processor one or more instructions

Syntax

s % <RETURN>
\b@

‘ <ADDRESS> '

-

Function Thescommand allows you to single-step the emulation processor
through a program. You can specify the number of steps to execute at a
single time; or, you can direct the emulator to step continuously. In
addition, you may specify the starting address for stepping.

If the emulator was in the run state (U> prompt) executing a user
program when you request the step, it will break to the monitor
program before executing the step.

Note # When the Coordinated Measurement Bus (CMB) is being actively
controlled by another emulator, the step commandaes not work
correctly. The emulator may end up running in user code (NOT
stepping). Disable CMB interactioonib -d) while stepping the
processor.

Parameters

-q If you enter theq parameter, stepping will
occur in quiet mode; that is, the instructions and

<COUNT>

<ADDRESS>

program counter are not displayed upon
execution of each step.

If you enter thew parameter, stepping will be
done in whisper mode; only the final program
counter value is displayed after the step is
executed.

The <COUNT> parameter allows you to
specify the number of steps to execute in
sequence before returning command control.
For example, if you specify 5 then five
instructions will be executed in sequence.

The default base for <COUNT> is decimal.
Other number bases may be specified; see the
EXPR syntax pages for more information.

If you do not specify a value for <COUNT>,
then a value of one (1) is assumed. If you
specify a step count of zero (0), the emulator
interprets this as "step continuously".
Continuous stepping can be aborted with the
<CTRL>-C command; or, it will be terminated
upon receipt of an emulation break condition
such as a write-to ROM.

The <ADDRESS> parameter allows you to
specify the starting address for stepping. The
default is a hexadecimal value; seeEXéR
syntax pages for information on specifying
other number bases. Some microprocessors
support address extensions such as function
codes; these can generally be specified as part
of the <ADDRESS> parameter. Refer to the
Emulator User’s Guidéor your emulator for
details.

If you substituteb for the <ADDRESS>
parameter, the current program counter value
will be used as the <ADDRESS> value. The

same will occur if no address parameter is

specified.
Note # If you specify a value for <ADDRESS>, then you must specify a value
for <COUNT>. Otherwise, the address value will be interpreted as a

step count; the emulator will step the number of locations specified.

Defaults If you specifys with no parameters, the processor is stepped one
instruction from the current program counter location. If you specify
<COUNT> but not <ADDRESS>, then the current program counter
value is specified for <ADDRESS>.

Examples The following examples use the 68000 sample program from Appendix
A of this manual.

If you want to step 1 instruction from the program'’s start at address
2000 hex, type:

M> s 1 2000
You will see:

0002000 2479000010 MOVEA.L 0001000,A2
PC = 0002006 @sp

Or, you could step all the way up to the READ_INPUT routine by
typing:
M> s 3 2000

You will see:

0002000 2479000010 MOVEA.L 0001000,A2
0002006@sp 2679000010 MOVEA.L 0001004,A3
000200c@sp 14bc0000 MOVE.B #000,[A2]

PC = 0002010@sp

Note that in both instances, the address and both the hexadecimal and
mnemonic version of the instruction are displayed, along with the
program counter value after the step. If you want to view all of the
processors register’s after the step, type:

M> reg

You will see:

reg pc=00002010 st=2004 d0=00000000 d1=00000000 d2=00000000 d3=00000000
reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
reg a2=00003000 a3=00004000 a4=00000000 a5=00000000 a6=00000000 a7=00000006

reg usp=00007000 ssp=00000006

PC = 0002010@sp

0002010@sp 1012

This allows you to verify that the information from the data area at
1000 hex and 1004 hex was moved to the A2 and A3 registers.

You can also step through the program in "quiet" mode. This inhibits
the display of any information about the stepping process. Type:

M> s -q 3 2000

This may be useful if you wish to step several locations but aren’t
interested in what's occurring during the step process.

Or, you can step the processor and display only the final program
counter value after the step by using the "whisper" mode. Type:

M> s -w 3 2000

You will see:

You could use this option if you wanted to step several locations and
verify only the final program counter value. (For example, you might
want to know if the emulator reached a specific location within a
certain number of instructions.)

Remember that you must specify a step count value if you specify an
address. If you don't, a <CTRL>-C will abort the stepping. Type:

M> s 2000

You will see: (note that the stepping starts at address 2010, not 2000)

MOVE.B [A2],D0

0002012@sp 0c000000 CMPI.B #000,D0

0002016@sp 67f8 BEQ.B 0002010
0002010@sp 1012 MOVE.B [A2],DO
0002012@sp 0c000000 CMPI.B #000,D0
0002016@sp 67f8 BEQ.B 0002010
0002010@sp 1012 MOVE.B [A2],DO
0002012@sp 0c000000 CMPI.B #000,D0
0002016@sp 67f8 BEQ.B 0002010
0002010@sp 1012 MOVE.B [A2],DO
PC = 0002012@sp

(enter <CTRL>-C)

ISTATUS 686! Stepping aborted; number steps completed: 10

You can also use the step capability in stepping through a loop. Type:
M> s 32010

You will see:

0002010@sp 1012 MOVE.B [A2],DO
0002012@sp 0c000000 CMPI.B #000,D0
0002016@sp 67f8 BEQ.B 0002010
PC = 0002010@sp

You can then modify some value which affects the loopback logic and
watch its effects on the processor instruction execution. Type:

M> m 3000=41
(This inputs a "command A" to the sample program.)

Now type:
M> s 4

0002010@sp 1012 MOVE.B [A2],DO
0002012@sp 0c000000 CMPI.B #000,D0
0002016@sp 67f8 BEQ.B 0002010
0002018@sp 0c000041 CMPI.B #041,D0
PC = 000201c@sp

Note that the program exited the loop and has begun processing a
command.

You can assign values to label names usinggueeommand and then
use these labels in specifying step information. For example, the
number of instructions in the READ_INPUT loop is 3, it begins at
2010 hex. Type:

M> equ readcount=3
M> equ readinput=2010

Now type:
M> m 3000=00

(This modifies the command input area of the program to a null value.)

Now you can step through the loop, one iteration at a time:
M> s readcount readinput

You will see:

0002010 1012 MOVE.B [A2],DO
0002012@sp 0c000000 CMPI.B #000,D0
0002016@sp 67f8 BEQ.B 0002010
PC = 0002010@sp

If your emulator supports symbols, and you have symbols loaded, when
you execute atepcommand, you will see the module and symbol in

the output. For example, using the 8051 emulator, you may execute the
following command:

R> s 1 CMD_RDR:INIT
The result will resemble:

03000@x CMD_RDR:INIT MOV SP ife
PC = 03003@p

Related Commands r (run emulation processor from a specified address)

reg (view or modify processor register contents)

ser

Summary Search emulation or target memory for values

Syntax

ser w55)+ <ADDRESS> D En
(-4) <DISPLAY_MODE> <ADDRESS>

Q@ <EXPR> <RETURN>
E@ <STRING> 9

Function Thesercommand allows you to search memory for a data value, a
character string, or a combination of both. For every pattern match, the
starting address of the match is displayed.

Using the-d (display mode) option, the method of interpreting the
pattern supplied by the user can be altered. If no option is given, the
display mode used is taken from global default set bynthe

command.

If addresses specified in the search reside in target system memory, the
emulator is broken to the monitor and returned to the user program
when the command is completed.

Parameters

-d The-d operator, in combination with the
<DISPLAY_MODE> parameter, allows you to
specify the display mode used for the search.
As a result, you can alter the method used by

ser 1

2 ser

<DISPLAY _
MODE>

<ADDRESS>

<EXPR>

the system for interpreting the display list data
and the resultant matches.

This is a single character specifying the display
mode to be used in the search. Most processors
supportb, for byte; some processors optionally
supportw (word) and (long word). For

specific information on the

<DISPLAY_MODE> parameters supported by
your emulator, refer to tHemulator User’s

Guide

You use <ADDRESS> to specify first the

lower, and possibly the upper, address
boundaries of the memory range to search for
the given data pattern. <ADDRESS> defaults
to a hexadecimal number; expressions may also
be provided. In addition, certain emulators
support additional processor specific addressing
information such as function codes. Refer to
the Emulator User’s Guidéor your emulator

for further details.

The two periods.() are used as a separator
between the lower and upper address boundary
specifications. Notice that no additional spaces
are inserted. You can use "<ADDRESS>.." to
specify the range from the address through the
next 127 bytes.

<EXPR> is a numeric expression to be used as
a reference pattern in the search. The default is
a hexadecimal number; other bases and
expressions may be specified. Refer to the
<EXPR> syntax for further information.

Note

Note

Note

Defaults

Examples

<STRING> You specify <STRING> if you want to search
for an ASCII character pattern. Note that
<STRING> must be bounded by single open
guote marks (*) or double quotes ().

Many keyboards (and printers) actually represent the single open quote
mark ‘ as an accent grave mark. In any case, the correct key is the one
which produces a character encoded as ASCII 60 hexadecimal. The
correct double quote mark is the character encoded as ASCII 22
hexadecimal.

If the character string you are searching for contains double quotes, you
must delimit the string with single open quotes and vice versa. For
example, the stringrype "C"™ will return an error; the stringype

"C" s correct.

You can concatenate various combinations of <STRING> and
<VALUE> to form more complex search patterns by separating the
parameters with commag.(

At least one address range and data pattern must be specified. If no
display mode is set with thd option, the current global display mode
from themo command is used.

We will do some searches of the message area from the sample
program in Appendix A. Let's look at the message area in byte form
first. Type:

M> m -db 1000..103f

ser 3

You will see:

001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
001030..00103f 44 20 43 4f 4d 4d 41 4e 44 ff ff e7 {7 fd fe ff

pattern match at address: 001008
pattern match at address: 001019

pattern match at address: 00100f
pattern match at address: 001020

Now let's search for the ASCII character string "THIS" (which consists
of the values 54,48,49, and 53 hexadecimal). Type:

M> ser 1000..103f="THIS"

You will see:

Note the correspondence of the first character found in the sequence
with the addresses of the data area shown above.

You can also combine searches for numeric values, numeric
expressions, and ASCII strings. Type:

M> ser -db 1000..103f=20,"MESSAGE",10+10

You will see:

Now we will modify the display mode and notice the effect it has upon
the search. First, let's look at the memory block in the new mode.

Type:
M> m -dw 1000..103f

You will see:

001000..00100f 0000 3000 0000 4000 5448 4953 2049 5320
001010..00101f 4d45 5353 4147 4520 4154 4849 5320 4953
001020..00102f 204d 4553 5341 4745 2042 494e 5641 4c49
001030..00103f 4420 434f 4d4d 414e 44ff ffe7 f7fd feff

4 ser

Now search for the same string, but change the display mode, by typing:
M> ser -dw 1000..103f=20,"MESSAGE",20

pattern match at address: 001001

The search failed since the end of the expression was not on a wor|
boundary. (It would have been satisfied if the first and last 20’s res
on word boundaries and if we searched for an additional space at t
end of the word "MESSAGE " that is, the word pattern 0020 4d45
5353 4147 4520 0020.) Now let's do another search to illustrate the
effects of the display mode. Type:

M> ser -dw 1000..101f=0003

Again, the search is unsatisfied because 03 hex is not at the end of a
word boundary. Now type:

M> ser -dw 1000..101f=0030

You will see:

Now the pattern is found since it is on a word boundary at address
1001.

Now look at the same search patterns in long word display mode.
View the block by typing:

M> m -dl 1000..103f

You will see:

001000..00100f 00003000 00004000 54484953 20495320
001010..00101f 4d455353 41474520 41544849 53204953
001020..00102f 204d4553 53414745 2042494e 56414c49
001030..00103f 4420434f 4d4d414e 44ffffe7 fridfeff

pattern match at address: 001000

Search for the pattern 030 hex by typing:
M> ser -dl 1000..101f=030

It isn't found since it isn’t on a word boundary. Now type:
M> ser -dl 1000..101f=03000

You will see:

The match is found at the first location in the range.

ser 5

. Related Commands cp (used to copy the contents of one memory range to another)

m (used to display/modify memory locations)

6 ser

stty

Summary

Syntax

Set data communications parameters

stty

PARITY

CHARACTER SIZE

ST0P B/7S

BAVD FATE

A

<

a

= B

~

b

noparity
evenp
= oddp

onep

it

zerop

o
1%
~

1stopb

2stopb

i

IR

[
S}
S

1200

2400

4800

9600

19200

38400

57600

115200

230400

460800

o

to

INTERFACE TYPE

or

LATA COMMUNICATIONS
OR LATA TERMINAL

CARRAGE RETURNS
WEW LIVE MAFPFING

RIS/CTS FANDSHAKE

DSRAOTR

XON/XOFF

£CHO

from
2

) <RETURN>

i

LTy
N

or

rs232

rs422

o

dte

onler

oncrnl

15}

crts

—crts

cdsr

—csdr

—xon

echo

stty 1

2 sty

Function

Note #

Parameters

Thestty command allows you to modify the parameters of the data
communications ports without changing the configuration switch
settings.

The serial port, port A, may be modified $tyy.

For further information on the meanings of various data
communications parameters, you may refer to the book entitled

Touring Datacomm: A Data Communications Prim&his book is
orderable from HP’s Direct Marketing Division under the part number
5957-4622. Another book which may be helpfulfie RS-232

Solution orderable from HP under the product number 92234X. You
also may need to refer to the hardware and software reference manuals
that are supplied with your terminal and/or host computer for further
information on required data communications parameters for links to
those devices.

PARITY Parity for either port may be set odd, even,
zero, one, or none.
CHARACTER The length of each character sent by the system
SIZE may be set to 7 bits or 8 bits.
STOP BITS The number of stop bits used to terminate each

character may be set to one (1) or two (2).

BAUD RATE The baud rate (rate at which bits are transmitted
and received) may be set to one of the
following values: 300 1200 2400 4800 9600
19200 38400 57600 115200 230400 460800.

INTERFACE The type of interface may be set to either
TYPE RS-232 or RS-422.

RS-422 utilizes balanced transmission lines and
therefore can achieve much higher data rates

DATA COM-
MUNICATIONS
OR DATA
TERMINAL

CARRIAGE
RETURN/
LINE FEED
MAPPING

RTS/CTS
HANDSHAKE

DSR/DTR
STATUS

XON/XOFF
HANDSHAKE

with reliability over long distances than
RS-232. Otherwise, the interfaces are similar|

Port A may be set to operate either as Data
Communications Equipment (DCE) or as Data
Terminal Equipment (DTE). This configures
the handshake lines and transmit/receive lines
for the proper signal to pin relationships on the
interface.

You can select several different options for
terminating lines of output from the system,
depending on what is required by your
hardware. The following choices are available:

onlcr -- generate new-line and carriage-return
on output

ocrnl -- generate carriage-return and new-line
on output

ocr -- generate carriage-return on output
onl -- generate new-line on output

The optioncrts enables the Request To
Send/Clear To Send handshake. Specifying
-crts disables this handshake.

The optioncdsr enables exchange and
recognition of the Data Set Ready/Data
Terminal Ready status lines. Specifyiagsr
disables the exchange.

If you specifyxon, the system generates
XON/XOFF (DC1/DC3 characters) software
handshaking to control the amount of data
received at a given time. Specifyingn
disables this handshake sequence.

stty 3

(When the emulator’s receive buffer is full, it
will send a DC3 (XOFF) character to the host
to stop transmission; when it is ready for more
data, it will send a DC1 (XON) character to
restart transmission.)

Note # If you toggle thexon parameter when running at 1200 baud and below,
the stty command will return invalid characters. The PC Interface
attempts to do this when starting up and fails with a datacomm error.
To get around this problem, set switch 13 on the emulator’s back panel
(enable xon) to allow the PC Interface to start up successfully. In the
Terminal Interface, just enter another carriage return to regain proper
communications.

ECHO If you specifyechq all characters received by
the emulator datacomm are echoed back to the
sending system. Specifyingchomeans the
system will not echo back characters received.

You will normally use this in conjunction with
the echo settings required by your host
computer and your terminal. Most
Hewlett-Packard systems will require that you
enable the echo feature, as HP host computers
automatically echo characters back to data
terminal devices.

4 stty

Defaults If no parameters are specified, the current settings are displayed.
powerup default configurations are determined by the rear panel
configuration switches; refer to th#? 64700 Emulator Hardware
Installation and Configuratiomanual for more information.

Examples To display the current data communications setting for both ports, type:
M> stty
You will see:

stty A 9600 cs8 1stopb noparity dce rs232 -crts -cdsr xon onlcr echo

Now, set the baud rate to 1200 baud by typing:
M> stty 1200

To view the changed baud rate, type:
M> stty B

You will see:

stty A 1200 cs8 1stopb noparity dce rs232 -crts -cdsr xon onlcr echo

stty 5

. Notes

6 stty

sym

Summary

Syntax

<rsym

Manage the emulator symbol table

o <RFTURN>

Function

C
-

\@-{mmm]

o
<SYMBOL> = <ADDRESS> /
SED

Thesym command defines, displays, or deletes symbols in the
emulator.

Three types of symbols are supported: global, local, and user. Global
symbols reference addresses anywhere in memory using an absolute
reference. Local symbols also use absolute addressing but are grouped
within a "module." User symbols are defined at the command line.
Global and local symbols cannot be defined at the command line.

The definition of a module for grouping local symbols depends on the
environment being used. For local symbols created by a high-level
language, a module might be a function, a procedure, or a separately
compilable source file. When you define local symbols through the use
of a symbol file, a module, in effect, becomes a technique to manage
the symbols. It can be a mnemonic device to refer to modules, or it can
be a simple way to group local symbols into a set for display and
deletion purposes since thgm command facilitates manipulation of

local symbols by their module name.

sym 1

2 sym

Note

Symbols are used like equated variables. When using symbols in
expressions, only theand- operators can be used immediately before
and after the symbol name. The expression can contain literals and
equatedéqu) labels, but not other symbols.

When using symbols, if a symbol and an equated value have the same
name, the equated value will be used.

The symbol table can be updated in three ways:
m You can enter user symbols at the command line.

m You can update it from an external "symbol file" using the
load -Socommand.

m You can load an absolute file (such as an Intel OMF file)
which can contain symbols as well as program code.

A "symbol file" is a text file containing user-specified symbols. Refer
to a discussion of the symbol file in appendix A.

Thesym command presently applies to some HP 64700-Series
emulators, and may apply to all HP 64700-Series emulators in the
future. If you are using an emulator that does not presently support
symbols, when you try to execute gygn command, a message will be
displayed indicating that symbols are not supported on your emulator.

If your emulator firmware is less than version A.02.00, you will not be
able to use theym command because your emulator will not support
symbols. To verify the version number of your emulator firmware,
execute "ver" at the Terminal Interface prompt.

Even if your emulator firmware version is A.02.00 or greater, your HP
64700-Series emulator may not necessarily support symbols.

Parameters

<ADDRESS>

_dg

-dl

<NAME>

The <ADDRESS> parameter specifies the
value to assign to a user symbol.

The-d option deletes all symbols.

The-du option deletes user symbols. If a
<NAME> parameter is not included, all user
symbols are deleted. If<?lNAME> parameter
is included, only user symbols matching the
entered name are deleted.

The-dg option deletes all global symbols. No
option exists to delete one global symbol.

The-dl option deletes local symbols in a
module. If a<NAME> parameter is not
included, all local symbols are deleted for all
modules. If &NAME> parameter is included
to specify a module name, only local symbols
in the module matching the entered name are
deleted.

The-g option specifies the display of global
symbols. If a<NAME> parameter is not
included, all global symbols are displayed. If a
<NAME> parameter is included, only global
symbols matching the entered name are
displayed.

This represents the symbol label to be defined
or referenced. The format of the symbol name
reference is determined by the type of symbol,
where:

name is a user symbol or module name

:name is a global symbol hame

name: is a local module name

sym 3

module:name is a symbol name in a local
module.

In addition, symbols can be referenced using a
"wild card" expression when displaying and
deleting names. Only one wildcard character
can appear in a symbol name. An asterisk ("*")
character is used to represent zero or more
characters at the end of a symbol name. A
wildcard can be used in any of the following
symbol types:

name* represents a user symbol name
followed by zero or more of any character or
characters

:name* represents a global symbol name
followed by zero or more of any character or
characters

module:name* represents a local
module:symbol followed by zero or more of
any character or characters.

-l This option allows you to display local modules
and symbols. If &NAME> parameter is not
included, all local modules are displayed. If a
<NAME> parameter is included, only local
symbols matching the symbol name or module
are displayed.

-u This option allows you to display user symbols.
If a<NAME> parameter is not included, all
user symbols are displayed. KNAME>
parameter is included, only user symbols
matching the entered name are displayed.

Defaults Thesymcommand without any parameters displays all of the symbols
currently defined.

4 sym

Examples To display all symbols, enter:

Related Commands

M> sym

To display all global symbols, enter:
M> sym -g

To display a global symbol, enter:
M> sym -g :GLOB_SYM

To display a user symbol, enter:
M> sym -u mysymbol

To display all local modules, enter:
M> sym -

To display symbols in a local module, enter:
M> sym -| LOCAL_MOD:

To display a symbol in a local module, enter:
M> sym - MOD_NAME:SYM_NAME

To delete all global symbols, enter:
M> sym -dg

To define a user symbol, enter:
M> sym mysymbol=107h

To display all symbols or local modules whose names begin with
"symb", enter:

M> sym symb*

equ (used to equate names to expressions)

load (used to load a program file with symbols, or a symbol text file)

sym 5

. Notes

6 sym

t,xt

Summary

Syntax

Function

Parameters

Defaults

Examples

Emulation trace started

Start an analyzer trace

Thet andxt commands start emulation and external traces,

respectively. These commands tfoif making a synchronous CMB
execution) must be entered to actually begin a measurement; most other
trace commands are used only for specification of triggering,

sequencer, and storage parameters; or to display trace results or status.

If the external analyzer has been linked to the emulation analyzer via
thextmo command, th& command is invalid and both analyzers
begin a trace when theeommand is entered.

None.
Does not apply.

To begin a trace, enter:
M> t

You will see:

To halt a trace in process, enter:
M> th

t1

Emulation trace halted

2t

Related Commands

You will see:

r (starts a user program run; normally will be specified after entering
thet command)

th (halts a trace in process)

ts (allows you to determine the current status of the emulation analyzer)
tx (specifies whether a trace is to begin upon start of CMB execution)

x (begins synchronous CMB execution)

xtmo (specifies whether or not the external analyzer bits are to be
treated as a separate analyzer or integrated with the emulation analyzer.
If associated with the emulation analyzer,xheommand is invalid;

thet command starts the trace on both analyzers.)

Summary Display analyzer line activity

Syntax

Function Theta command allows you to display the activity on each of the

analyzer input lines. Each signal may be low, high, or moving. These
are displayed as follows:

Type of Signal Activity |Symbol Displayed

Signal is Low 0
Signal is High 1
Signal is Moving ?

Each pod (group of 16 lines) is displayed on a single line with bit 0
(LSB) at the far right and bit 15 (MSB) on the far left. Each pod
represents the following analyzer bits:

Pod |Emulation Analyzer Bits | External Analyzer Bits

Pod 1 | Emulation Bits O thru 15 None

Pod 2 | Emulation Bits 16 thru 31 None

Pod 3 | Emulation Bits 32 thru 47 None

Pod 4 | Emulation Bits 48 thru 63 None

ta 1

Pod 3
Pod 2
Pod 1

Parameters

Defaults

Examples

Related Commands

2 ta

None.

Does not apply.

To display the current status of analyzer signal activity, type:
M> ta

You will see a display similar to the following:

You can interpret the results as follows:
Bit 15 of Pod 3 is low; all other Pod 3 bits are moving.

Bits 9,10,14 and 15 of Pod 2 are high, bit 13 is moving; all others are
low.

Bit 7 of Pod 1 is high; bits 1-6 and 10 are moving; all others are low.
xtv (used to set the threshold voltages for the optional external analyzer

inputs; incorrect specification may show up as lack of activitytan a
display)

tarm,xtarm

Summary

Syntax

Specify arming condition for analyzers

tarm/xtarm

Function

Parameters

B <RETURN>

Thetarm (xtarm) command allows you to specify an arming condition
for the emulation and external analyzers. You can specify the arm
condition as the assertion of the trig1 or trig2 signals tares

always The arm condition may then be used in specifying the

analyzer trigger or in specifying branch conditions for the sequencer, as
well as count or prestore qualifiers.

If the analyzers are connected through use oftthe command, then
thextarm command is invalid. In this case, them command will
set the arming condition for the analyzer combination.

, 1= The operators and!= are used to respectively
indicate that the arm condition is equal to or not
equal to the specifietigl ortrig2 condition.

tarm 1

2 tarm

Note

Defaults

Examples

If the external analyzer is configured to operate as a timing analyzer
(xtmo -t) then the= operator is invalid when used in tkiarm
command as given to the external analyzer. Only iyerator will be
recognized.

trigl If you specifytarm =trigl as the arming
condition, then the assertion of the trigl signal
will arm the analyzer. Conversely, if you
specifytarm !=trigl , the analyzer will remain
armed until the trigl signal is asserted. The
trigl signal can be asserted from many sources
including the analyzer itself or the rear panel
BNC connector or the CMB. Seéact, cmbt,
andtgout for examples.

trig2 If you specifytrig2 as the arming condition,
then the assertion of the trig2 signal will arm
the analyzer. Conversely, if you spedéym
I=trig2, the analyzer will remain armed until
the trig2 signal is asserted. The trig2 signal can
be asserted from many sources including the
analyzer itself or the rear panel BNC connector
or the CMB. Seénct, cmbt, andtgout for
examples.

always If you specifyarm always as the arming

condition, then the analyzer is continuously
armed.

If no parameters are supplied, the curtann condition is displayed.
The default setting after poweruptanit istarm always.

To view the current state tfrm, type:

M> tarm

tarm always

Related Commands

You will see:

You may want to hook an external instrument, such as a logic analyzer,
to the HP 64700 rear panel BNC port and have the external instrument
trigger an emulation analyzer trace. Type the following:

M> bnct -r trigl
M> tcf -c

M> tarm =trig1l
M> tg arm

This will cause the emulation analyzer to trigger upon assertion of the
rear panel BNC signal. To return the analyzer to the continuously
armed state, type:

M> tarm always

Perhaps you want the analyzer to store only states received while there
is NOT a trigger signal on the CMB (Coordinated Measurement Bus).
To do this, type:

M> cmbt -r trig2

M> tcf -c

M> tarm !=trig2

M> tsto arm

Here, we've set the trig2 signal to receive the CMB trigger. Then we
set the emulation analyzer configuration to complex (this is required to
use thearm parameter in analyzer expressions). Next, we set the tarm
condition to the logical NOT of the trig2 signal; finally, we qualify
analyzer storage with the arm parameter.

bc (can be used to cause the emulator to break to monitor execution
upon receipt of the trigl and/or trig2 signals)

bnct (used to define connections between the internal trigl and trig2
signals and the rear panel BNC connector)

cmbt (used to define connections between the internal trigl and trig2
signals and the CMB trigger signal)

tgout (defines whether or not the trigl or trig2 signals are driven when
the analyzer finds the trigger state)

tarm 3

. Notes

4 tarm

tcf,xtcf

Summary

Syntax

tcf/ xtef

Function

Set the analyzer configuration to easy or complex

= <RETURN>

Thetcf (xtcf) commands are used to set the configuration for the
emulation (external) analyzer.

There are two possible configurations for the analyzer, an easy
configuration {cf -€) and a complex configuratiotcf -c). Below,

each of the configurations is described briefly, along with some of the
commands that modify the analyzer in each configuration. The
command descriptions are not meant to be an exhaustive list of each
command'’s features; you should refer to the syntax pages for that
particular command.

Easy Configuration

When in easy configuratiotct -€), much of the complexity of the
analyzer is hidden from you. Some measurement power is lost; when
you need the full power of the analyzer, you can switch to complex
configuration.

Expressions. In easy configuration, all analyzer commands take the
general form okcommand> <simple_expression>The commands

that use this form arteq, tif, telif, tg, tpg, andtsto. A simple

expression is the information that can fit into a single pattern or a single
range (se@at, trng, andSIMPLE_EXPR syntax for further

information). Examples amddr=2105 data!=15 or data!=ff, and
addr=4012..401a

tef 1

Sequencing. The easy configuration allows you to have the analyzer
search for a simple expression; when it is found, it can then search for a
different simple expression. The ability to search for one expression,
then search for another expression based on the first is known as
sequencing.

In easy configuration, there are 4 sequencer terms available. Each has a
primary sequence branch, which always branches to the next sequencer
term (1 to 2, 2 to 3, and so on). The branch out of the last term defines
the trigger term. A global restart term is also available, which will

return the sequencer to term 1 if found. If both the primary branch and
global restart term are satisfied simultaneously, the primary branch is
always taken in preference to the restart.

Sequencer Manipulation. The simplest sequencer control is tilpe
command. This defines a one term sequence with the trigger occurring
upon the branch out of the term. You can specify an occurrence count;
that is, the number of times the given trigger qualifier must be found to
satisfy the trigger condition.

You can exercise greater control over the easy configuration sequencer
using thetsg command. This command allows you to insert additional
sequence terms (up to the limit of four) or delete terms.

By using thdif command, you can define the primary branch condition
for each sequence level. You can also specify an occurrence count for
each branch condition. The primary branch out of the last sequence
term in the list defines the trigger condition.

Thetelif command specifies the global restart condition. If both a
primary branch and global restart condition are satisfied at the same
time, the primary branch is always taken. However, if the primary
branch has an occurrence count greater than one (1), and the global
restart is encountered before the occurrence count is satisfied for the
primary branch, the global restart is taken, and the primary branch
occurrence count is reset to zero.

2 tcf

Storage Specification. You can specify which events should be
stored by the analyzer using tiseo command. This is a global storag
qualifier; that is, the qualifier is identical for all sequencer terms.
Analyzer events that cause the sequencer to change states are always
stored, regardless of the storage qualifier.

State/Time Counts. You can set up the analyzer to count time
between states or count occurrences of a specific state ustog the
command.

Prestore. The analyzer has a two stage prestore pipeline. You set up
the qualifier for this pipeline using tiyeg command. When the

qualifier is found, the event is stored in the pipeline; when a real
storage event is found (matching tht qualifier), the pipeline is

flushed and placed into trace memory immediately prior to the storage
event. You can use the feature to observe the relationships between
certain program variables and program routines or between two
program routines. (For example, you might set a prestore state to a
condition required to execute a specific routine.)

Complex Configuration

The full analyzer capability is available to you in the complex
configuration (cf -¢). Using the multiple sequence terms, primary and
secondary branch capability, and powerful expression capability, you
can make just about any conceivable measurement.

Expressions. In complex configuration, all analyzer commands take
the general form ofcommand> <complex_expression>The
commands that use this form #eg, tif, telif, tg, tpg, andtsto. A
complex expression is made up of pattern, range and arm labels, tied
together with various operators that define the specific condition. Each
of the pattern and range labels must be previously assigned to a specific
simple expression using thgat andtrng commands. (These two
commands are only available in the complex configuration.) So, you
might define some pattern labels and a range label as follows:

U> tpat pl addr=205a

U> tpat p5 data!=00

U> trng addr=4000..4011

tcf 3

4 tcf

And then make complex expressions as follows:
pl or p5
r and p5
pl|!r

See thec<COMPLEX_EXPR> syntax pages for details on complex
expressions.

Sequencing. The complex configuration allows you to have the
analyzer search for a complex expression; when it is found, it can then
search for a different complex expression.

In complex configuration, there are always 8 sequencer terms. Each
has a primary sequence branch, which can branch to any sequencer
term (1to 5, 2 to 8, and so on). A secondary branch is also available,
which branch to any sequencer term. If both the primary branch and
secondary branch are satisfied simultaneously, the primary branch is
always taken in preference to the secondary branch.

Sequencer Manipulation. The simplest sequencer control is tilpe
command. As in easy configuration, this defines a two term sequence
with the trigger in the second term. You can specify an occurrence
count; that is, the number of times the given trigger qualifier must be
found to satisfy the trigger condition.

You can exercise greater control over the complex configuration
sequencer using thegq command. Although you cannot add or delete
sequence terms in complex configuration (there are always eight), you
can specify the trigger term; you can also reset the sequencer (which
clears all the branch specifiers and storage qualifiers).

By using theif command, you can define the primary branch condition
for each sequence level. You can also specify an occurrence count for
each branch condition, and the destination term for each branch.

Thetelif command specifies the secondary branch condition, which can
jump to any sequence term. If both a primary and secondary branch
condition are satisfied at the same time, the primary branch is always
taken. However, if the primary branch has an occurrence count greater
than one (1), and the secondary branch is encountered before the
occurrence count is satisfied for the primary branch, the secondary
branch is taken, and the primary branch occurrence count is reset to
zero.

Parameters

Defaults

Examples

Storage Specification. You can specify which events should be
stored by the analyzer using tis&o command. You may specify
different storage qualifiers for each sequencer term, allowing you t
precisely control the information captured by the analyzer. If you don't
specify a term number when specifying the storage qualifier, the
storage qualifier for all terms is set to the same qualifier.

State/Time Counts, Prestore. The state/time counting and

prestore facilities are identical to those provided in the easy
configuration; however, you must specify a complex expression instead
of an easy expression in qualifying the state count or prestore.

Resetting the Analyzer Configuration.

When the analyzer configuration is changed, the entire analyzer
specification is reset. You can perform a reset back to the default
sequencer setup in either configuration by usingsther command.

When the trace configuration is changed, the count qualifigix{cq)
is reset to "none" (instead of "time") if the clock maoi&/ktck) is fast
(F) or very fast (VF).

-e Specifying-e sets the analyzer to the easy
configuration.

-C Specifying-c sets the analyzer to the complex
configuration.

If no parameters are supplied, the current analyzer configuration is
displayed. After powerup ainit, the default analyzer configuration is
tcf -e.

To display the current analyzer configuration after powerup, type:

M> tcf

tcf 5

tcf -e

Related Commands

6 tcf

You will see:

To set the analyzer to complex configuration, type:
M> tcf -c

tarm (used to set the analyzer arm specification; this specification can
only be used in analyzer expressions in complex configuration)

tcq (sets the expression for the trace count qualifier in either analyzer
configuration)

telif (sets the global restart in easy configuration, secondary branch
condition in complex configuration)

tg (used to set a trigger expression in either analyzer configuration)
tif (sets primary branch specification in either analyzer configuration)

tpat (used to label complex analyzer expressions with a pattern name;
the pattern name is then used by the analyzer setup commands. Only
valid in complex configuration)

tpq (specifies trace prestore qualifier in either analyzer configuration)

trng (defines a range of values to be used in complex analyzer
expressions)

tsto (specifies a qualifier to be used when storing analyzer states)

tsq (used to modify the trace sequencer’'s number of terms and trigger
term)

xtmo (used to append or disconnect the external analyzer to/from the
emulation analyzer)

tck,xtck

Summary

Syntax

Specify analyzer master clock qualifiers

tek/xtek) (

On®

Function

Y >=} <RETURN>

Thetck (xtck) command allows specification of clock qualifiers,
master edges and maximum clock speed of the master clocks used for
the emulation and external analyzers.

Thetck command is included with the system for the purpose of
internal system initialization and system control through high-level
software interfaces; you should generally not use this command.

If you are using the optional external analyzer, you will usattie
command to set the clock parameters for your external analysis traces.

tck 1

2 tck

Parameters

Note ﬂ

Changing the clock speed with the SPEED>option affects thécq
command parameters. When speed is s (slow), thetcq

command may either count states or time. When speed isséet to
(fast), thetcg command may be used to count states but not time. |If
clock speed is set &/F (very fast)tcq cannot count either state or
time and should be settitg none.

The clocking options operate on five different clock sigrial&;, L, M

andN. ClocksL, M, andN are generated by the emulator; the

emulation master clock edges are set at powerup for the particular
emulator being used and should not be changed by the used.amtle

K clocks are the clock inputs on the external trace probe (if one is
present). These clock signals should only be used to clock the external
trace; they should not be used to clock the emulation trace although it
may occasionally be useful to use the external clock signals as
qualifiers for the emulation trace. TheandM clocks may also be

used to clock the external trace as well as the emulation trace.

When several clock edges are specified, any one of the edges clocks the
given trace. If several qualifiersdr h) are specified, they are ORed so
that the trace is clocked when any of the qualifiers are met.

b If theb option is specified, only background
monitor code will be qualified into the analyzer.

u If theu option is specified, only user code will
be qualified into the analyzer. This is the
default.

Theu andb qualifiers are ORed with all of the other qualifiers
specified.

S Thes option indicates that the maximum clock
speed is to be modified per a one or two letter
code immediately following.

S Specifies a clock speed of SLOW; less than
equal to 16 MHz.

F Specifies a clock speed of FAST; between 16
MHz and 20 MHz.

VF Specifies a clock speed of VERY FAST;
between 20 MHz and 25 MHz.

r Specifyingr indicates that the analyzer is to be
clocked on the rising edge of the indicated
clock signal.

f Specifyingf indicates that the analyzer is to be
clocked on the falling edge of the indicated
clock signal.

X Specifyingx indicates that the analyzer should
be clocked on both the rising and falling edges
of the indicated clock signal.

I Specifyingl indicates that the analyzer should
only be clocked by other clock signals when
this clock signal is low (less positive/more
negative voltage). Used as a qualifier
(example: clock on rising edge of J only if K is
low).

h Specifyingh indicates that the analyzer should
only be clocked by other clock signals when
this clock signal is high (more positive/less
negative voltage). Used as a qualifier
(example: clock on both edges of K only if J is

high).
CLOCK Ther, f, X, |, andh operators may be used on
SIGNALS the following clock signalsi, K, L, M orN.

Defaults If no parameters are specified, the current clock definitions are
displayed. After powerup ainit, theu option is always set. Other

tck 3

Examples

tck-rL-ub-s S

clock options set at initialization depend on the particular emulator in
use and whether or not there is an external analyzer present.

To display the current settings of the master clocks after powerup or a
tinit , type:
M> tck

You will see:

Here, the emulation analyzer is set to clock both user and background
code into the analyzer on the rising edge of L; the clock speed is less
than 16 MHz.

To trace user code on the falling edgé afhenM is high, at a speed
between 16 and 20 MHz, type:

M>tck-u-fL-hM-s F

IERROR 1239 : tck - clock speed not available with current count qualifier

tck-fL-hM-u-sF

4 tck

Since the clock speed is fast, we cannot count timetegthLet’s
disabletcq and re-execute the command. Type:

M> tcq none

M>tck-u-fL-hM-sF
Now the command completed successfully. Verify the settings by
typing:

M> tck

You will see:

Now let's add tracing of background code to the current clock settings.
M> tck -ub

Verify the changes by typing:
M> tck

tck-fL-ub-sF

tck -rJ-h K -s VF

Related Commands

You will see:

You'll note that the M clock qualifier was removed. If you modify any
of the qualifier, speed, or edge parameters, you must re-specify the
entire configuration for that particular parameter. The rest of the trace
clock specification is left alone. (In the example above, we modified
the qualifiers by changing to -ub; part of the original qualifier spec
was-h M. To retain this, we would have to speecifip -h M.)

Let's modify the external analyzer clocks. Type:
M> xtmo -s

This defines the external analyzer as an independent state analyzer.
Now type:

M> xtck -r J -h K -s VF

Here, we've set the external analyzer to clock on the rising edge of
but only wherK is high. The clock rate is set to a rate between 20 and
25 MHz.

Verify the setting by typing:
M> xtck

You will see:

ta (display current trace signal activity. This can be useful after you
have modified the clocks for the external analyzer; you can idsue a
command and verify that you are seeing activity on the signals of
interest.)

tcq (used to specify trace count qualifier for states, time, or none;
maximum clock speed settick affect whichtcq parameters are valid)

tsck (used to define slave clock signals used by the anatgker;
defines the master clock signals. Default modésftkis off on all
pods.)

tck 5

xtv (specifies threshold voltages for external analyzer input lines; must
be set correctly to ensure that thandK clock signals are recognized)

xtmo (specifies mode of operation for the external analyzer; that is,
whether it acts as an independent analyzer or is appended to the
emulation analyzer)

6 tck

tcq,xtcq

Summary

Syntax

tcg/ xteq

Function

Parameters

Specify analyzer trace tag count qualifier

‘ <ANALYZER _EXPR> '

& <RETURN>

Thetcq (xtcq) command allows you to specify a qualifier for the
emulation (external) trace tag counter.

When the tag counter is active, the analyzer counts occurrences of the
expression you specify (which may include simple or complex
expressions (depending on analyzer configurattong, ornone).

Each time a trace state is stored, the value of the counter is also stored
and the counter is reset. The tag counter shares trace memory with
stored states, so only half as many states can be captured by the
analyzer when the tag counter is active. (The analyzer can store 1024
states withicq nong 512 states otherwise.)

<ANALYZER_
EXPR>

<ANALYZER_EXPR> allows you to specify
an expression to be counted by the trace tag
counter. This expression consists of a
<SIMPLE_EXPR> in analyzer easy
configuration and &aCOMPLEX_EXPR> in
complex configuration. Refer to the syntax
pages for expressions for specific details of
analyzer expressions. In either configuration,
the expression may consist of the states
(count all states) arone(disable trace tag
counting).

tcq 1

Note #

Note ﬂ

Defaults

Examples

tcq time

Emulation trace started

2 tcq

The count qualifietcq arm is not permitted in any configuration.

time If you specifytime rather than an analyzer
expression, the trace tag counter measures the
amount of time between stored states.

Thetcq time qualifier is only available when the analyzer clock speed
is set to the slowg) speed setting (default). If the clock speed is set to
very fast YF), then trace tag counting must be turned off by specifying
tcqg none Refer to theck command (analyzer clock specification) for
further information.

If no parameters are given, the current count qualifier is displayed.
Upon powerup or aftémit initialization, the clock qualifier defaults to
the statdcq time.

If you want to view the curremtq setting, type:

M> tcq

You will see:

To see the effects of counting no states, you can set up the following
measurement (this measurement uses the 68000 sample program in
Appendix A):

M> tg addr=2000

M> t

M> tcq none

Emulation trace halted

U> r 2000
U> th

Now, view the trace listing from the above measurement by typing:

addr,H 68000 Mnemonic

U> tl-d

count,R seq

002000
002002
002004
002006
001000
001002
002008
00200a
00200c
001004

OCO~NOUTAWNEFO

tg addr=2000

MOVEA.L 0001000,A2
0000 supr prog
1000 supr prog
MOVEA.L 0001004,A3
0000 supr data rd word
3000 supr data rd word
0000 supr prog
1004 supr prog
MOVE.B #000,[A2]
0000 supr data rd word

Fhkkkkkkk
*kkkkkkkk
K*kkkkkkkk

*****;***

*kkkkkkkk
*kkkkkkkk
*kkkkkkkk
K*kkkkkkkk .
*kkkkkkkk
*kkkkkkkk ’

Note the asterisks in tlo®unt field; no states were counted. To count
time intervals, set up the following measurement:

Emulation trace started

Emulation trace halted

Line addr,H

68000 Mnemonic

U> tcqtime
U> tg

U>t

U> r 2000
U> th

U> tl-d

count,R seq

-1 000004
002000
002002
002004
002006
001000
001002
002008
00200a
00200c

O~NO U WNEFO

2000 supr data rd word
MOVEA.L 0001000,A2

0000 supr prog

1000 supr prog
MOVEA.L 0001004,A3

0000 supr data rd word

3000 supr data rd word

0000 supr prog

1004 supr prog
MOVE.B #000,[A2]

0.400uS +
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS .
0.400 uS

tcqg 3

Here, the relative amount of time measured between storage states is
0.400 uS. You can change the trace listing so that the time intervals are
displayed as an absolute value relative to the trigger state instead of the
last state stored. Type:

U> tf addr,h mne count,a seq
U> tl -td

(We used thet option totl to ensure the top states of the trace are
displayed).

Line addr,H 68000 Mnemonic count,A seq
-1 000004 2000 supr data rd word -0.400 uS
0 002000 MOVEA.L 0001000,A2 0 +
1 002002 0000 supr prog 0.400 uS
2 002004 1000 supr prog 0.800 uS
3 002006 MOVEA.L 0001004,A3 1.200 us
4 001000 0000 supr data rd word 1.600 uS
5 001002 3000 supr data rd word 2.000 us
6 002008 0000 supr prog 2.400 uS
7 00200a 1004 supr prog 2.800uS .
8 00200c MOVE.B #000,[A2] 3.200 uS

Emulation trace started

Emulation trace halted

4 tcq

Note that the time interval is now measured relative to the trigger state.
Let's reset the trace format to count relative:

U> tf addr,h mne count,r seq

You may want to count the number of accesses to the input pointer
address of 3000 hex. To make such a measurement, type:

U> tsto addr!=3000

U> tcq addr=3000
U> t

U> r 2000
U> th

U> tl -td 30

Line addr,H 68000 Mnemonic count,R seq
-1 000004 2000 supr data rd word -
0 002000 MOVEA.L 0001000,A2 0 +
1 002002 0000 supr prog 0 .

2 002004 1000 supr prog 0 .

3 002006 MOVEA.L 0001004,A3 0

4 001000 0000 supr data rd word 0

5 001002 3000 supr data rd word 0

6 002008 0000 supr prog 0 .

7 00200a 1004 supr prog 0

8 00200c MOVE.B #000,[A2] 0 .

9 001004 0000 supr data rd word 0 .
10 001006 4000 supr data rd word 0

11
12
13
14
15
16

00200e 0000 supr prog 0
002010 MOVE.B [A2],DO0
003000 00 supr data wr byte
002012 CMPI.B #000,D0
003000 00 supr data rd byte
002014 0000 supr prog

17 002016 BEQ.B 0002010

18 002018 CMPI.B #**,DO

19 002010 MOVE.B [A2],DO0

20 002012 CMPL.B #000,DO

21 003000 00 supr datard byte

22 002014 0000 supr prog

23 002016 BEQ.B 0002010

24 002018 CMPL.B #+*,D0

25 002010 MOVE.B [A2],DO

26 002012 CMPL.B #000,DO

27 003000 00 supr data rd byte

28 002014 0000 supr prog

o o ©O o ©O
FPoo o Foo o Foro.

In the above listing, we've seen four different accesses to the address
specified. Using thd command, you can specify that these accesses
are to be displayed as a count relative to the trigger state (as with
counting time). Type:

U> tf addr,h mne count,a seq

U> tl -td 30

tcqg 5

Line addr,H 68000 Mnemonic

15

6 tcq

000004
002000
002002
002004
002006
001000
001002
002008
00200a
00200c
001004
001006
00200e
002010
003000
002012
003000
002014
002016
002018
002010
002012
003000
002014
002016
002018
002010
002012
003000
002014

2000 supr data rd word
MOVEA.L 0001000,A2
0000 supr prog
1000 supr prog
MOVEA.L 0001004,A3
0000 supr data rd word
3000 supr data rd word
0000 supr prog
1004 supr prog
MOVE.B #000,[A2]
0000 supr data rd word
4000 supr data rd word
0000 supr prog
MOVE.B [A2],DO
00 supr data wr byte
CMPI.B #000,D0
00 supr data rd byte
0000 supr prog
BEQ.B 0002010
CMPL.B #**,D0
MOVE.B [A2],DO
CMPL.B #000,DO
00 supr data rd byte
0000 supr prog
BEQ.B 0002010
CMPL.B #**,D0
MOVE.B [A2],DO
CMPI.B #000,DO
00 supr data rd byte
0000 supr prog

count,A seq

N w w NN
Pww w Yo N Nero

Again, four accesses to address 3000 hex were recorded; however, the
occurrences are now displayed relative to the trigger state.

You can set up more complex count patterns in complex configuration.
For example, with the 68000 program, you might wish to count
occurrences of the CLEAR_LOOP routine without storing the states
associated with the routine. To make this measurement, first set the
analyzer to complex configuration by typing:

M> tcf -c

You next set up the patterns to use in the complex expressions. You'll
need a pattern to trigger on; make this the address of the OUTPUT
routine. You will also need a data value of 00 to count only nulls
written to the output area. In addition, you will need two range values.
Since the analyzer only has one range variable, you can roughly
approximate a second range variable by using don't care values in a
pattern expression.

Emulation trace started

Emulation trace halted

Set up the patterns and range expression as follows:
M> tpat p1 addr=2052
M> tpat p5 data=00
M> tpat p6 addr!=10000001XXXXXXy
M> trng addr=4000..40ff

Now specify the count qualifier. You want to count all states where the
address range 4000 through 40ff is accessed when data is equal to zero.

Type:
M> tcq r and p5

However, you don’t want to store any of the states associated with the
clear routine. Type:

M> tsto 2 Ir and p6

To set up the sequencer to trigger on term 2 after the address 2052 is
encountered, type:

M> tif 1 pl 2
M> tif 2 never
M> tsq -t 2

Now, begin the measurement by typing:
M> t

M> r 2000
U> m 3000=41

(If you don’t modify the input area, the output routine will never
execute; thus, the analyzer will not find its trigger and no measurement
will occur.)

U> th

U> tf addr,h mne count,R seq
U> tl -td 10

tcq 7

Line addr,H 68000 Mnemonic count,R seq
002052 MOVEA.L A3,A1 — o+
001008 54 supr data rd byte 32 .
001009 48 supr data rd byte 0 .
00100a 49 supr data rd byte 0 .
00100b 53 supr data rd byte 0 .
00100c 20 supr data rd byte 0 .
00100d 49 supr data rd byte 0 .
00100e 53 supr data rd byte 0 .
00100f 20 supr data rd byte 0 .
001010 4d supr data rd byte 0 .

OCO~NOUITAWNEFO

Related Commands

8 tcq

Looking at line number 1 of the trace listing, you will see that the

counter has a value of 32. Thus, the condition where address was in the
range 4000 through 40ff hex with data equal to zero occurred 32 times.
Notice that the counter resets on the next state, since no further
occurrences of the count pattern were found.

tck (used to specify the clock source and clock parameters for the
analyzer)

tp (specifies position of the trigger within the trace; notettuat
affects the number of states the analyzer can store and therefore may
affect trigger positioning)

tpat (assigns analyzer expressions to pattern names in complex
configuration; the pattern names are then used to specify qualifiers in
other analyzer commands suchiap

trng (specifies a range of values to be used as a complex mode
qualifier; this range definition can be used as a count qualifitcpy

tsg (used to manipulate the trace sequencer)

xtmo (used to choose the external analyzer mode; the external analyzer
can operate as an independent state or timing analyzer, or it may be
appended to the emulation analyzer. If appendedtthiecommand

has no effect and theq command specifies the count qualifier for

both analyzers.)

telif, xtelif

Summary

Syntax

EASY CONFIGURATION

telif / xtelif

Specify sequencer secondary branch qualifier

& <RETURN>

=S+ <sMPLE_ExpR>

COMPLEX CONFIGURATION

<teﬁf/xteﬁf &= <RETURN>
@ <TERM#>)

;H <COMPLEX_EXPR>

Function

Note #

1»*?{ <BRANCH_ 10_ TERM>

Thetelif (xtelif) command allows you to set the global restart qualifier
(in easy configuration) for the emulation (external) analyzer sequencer.
In complex configuratiortelif (xtelif) lets you set the secondary

branch qualifier for each term of the emulation (external) analyzer
sequencer.

Thetelif command is used as a global restart qualifier in easy
configuration and a secondary branch qualifier in complex
configuration. The hierarchy of tti& andtelif commands is such that
either branch will be taken if found before the other; however, if both
branches are found simultaneously,tthéranch is always taken over
thetelif branch.

telif 1

Note #

Parameters (Easy
Configuration)

Parameters (Complex

2 telif

Configuration)

When in easy configuration, the sequencer will restart by jumping to
sequencer term number one (1) when the expression specifield by
occurs.

When in complex configuration, the sequencer will branch to the
sequencer level specified by ttBRANCH_TO_TERM> parameter
when the expression specified is found. There are always eight
sequencer terms available. Position of the trigger term is defined with
thetsq command. If both thif andtelif expressions are satisfied
simultaneously, thef branch is taken; otherwise, branching occurs
according to which expression is first satisfied.

If thetif expression for the giveiTERM#> has acCOUNT>

parameter other than one (1), the counter is reset to zero (O)dfithe
branch is taken before the occurrence counter parameter is satisfied.
For example, if théf counter parameter is 7, and theexpression has
been found 5 times, then ttedif expression is satisfied, thadif

branch will be taken and thi¢ counter will be reset from 5to 0. This
might cause you difficulty if you happen to haelf branching back to
the same term; your occurrence condition may or may not be satisfied.

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a global restart
qualifier. For examplesSIMPLE_EXPR>
might consist of the expressiaddr=2000Q
For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

<TERM#> <TERM#> lets you specify a sequencer term
number to associate with the given

<COMPLEX_
EXPR>

<COMPLEX_EXPR>. When you associate a|
term number with a complex expression, that
expression is only used as a secondary bran
qualifier at the sequencer level specified by the
term number. If you specilyTERM#>

without an expression, the secondary branch
qualifier currently associated with that term
number is displayed.

<COMPLEX_EXPR> allows you to specify
complicated analyzer expressions made up of
relationships between simple analyzer
expressions. When you create a complex
expression, you must first assign pattern names
(p1-p8) to simple expressions using tipat
command. You then use the pattern names and
relational operators to create complex
expressions. For example, if you wish to
branch from term 1 to term 2 when
address=200&nddata=200r when
address=200Ganddata=42 you would use the
following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> telif 1 pl|p22

The | symbol represents an intra-set OR
operator. For more information on complex
expressions, operators, and pattern sets, refer to
the expression syntax pages within this manual.

telif 3

4 telif

Defaults

Note #

<BRANCH_ The<BRANCH_TO_TERM> parameter

TO_TERM> allows you to indicate the branch destination
when thec<COMPLEX_EXPR> is found. For
example, you may wish to have the sequencer
branch from term 1 to term 3 after the
expression is found. This would be specified as
telif 1 <COMPLEX_EXPR> 3. If you do not
specify a term number, the default is to
increment the sequencer leviglif <TERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

If telif is entered with no parameters, the global restart qualifier or
secondary branch qualifiers (depending on analyzer configuration) for
all sequencer levels are displayedtelif is entered with only a
<TERM#> parameter in complex configuration, the secondary branch
qualifier for only that term number is displayed.

Upon initialization via a powerup sequence ortthié command, the
secondary branch specifiers are seelib never.

In complex configuration, §BRANCH_TO_TERM> is not
specified, the default KTERM#> + 1).

At sequencer term number 8, the default branch to condition is
<TERM#>; that is, branch to the same term.

GLOBAL RESTART PRIMARY BRANCHES

ADDRESS

TERM2

TERM1
2048 | ADDRESS = 2010

ADDRESS = 2052
(TRIGGER TERM)

(TRIGGER = BRANCH
OUT OF TERM 2)

Examples

Emulation trace started

When the analyzer is in easy configuration, tdtié command allows
you to specify a global restart qualifier. This means that the analyz
will restart the sequencer when the qualifier is satisfied. To illustrat
this, you can create an example using the 68000 sample program from
Appendix A. In this example, the analyzer first looks for the
READ_INPUT routine, then the OUTPUT routine. However, if
anything other than 41 hex ("A") or 42 hex ("B") is input to the input
area, the analyzer will restart; that is, it will ignore the OUTPUT
routine and begin searching again for the READ_INPUT routine. In
this manner, you can have the analyzer record the OUTPUT routine
only when an "A" or "B" is input. To create the example, type:

U> tsq-i 2
This command inserts an extra sequence term. (Remember that the
analyzer is initialized in easy configuration with a one term sequencer;

you will need two terms for this measurement.) Now you must set up
the branch qualifiers. Type:

U> tif 1 addr=2010
U> tif 2 addr=2052

You can use the UNRECOGNIZED set up routine as the qualifier for
restarting the analyzer. Type:

U> telif addr=2048

Now make the measurement:
U> t

U> r 2000

To illustrate the restart, modify the input area value to an unrecognized
command. Type:

U> m 3000=43

Now check the trace status:
U> ts

telif 5

You will see:

--- Emulation Trace Status ---
NEW User trace running
Arm ignored

Trigger not in memory

Arm to trigger ?

States ? (512) ?..?
Sequence term 2
Occurrence left 1

Note that the trigger was not found. Another way to view this is as
follows:

U> tl

Line addr,H 68000 Mnemonic count,R seq

** Trigger not in memory **

Even though the analyzer saw the value 2052 hex, it was told to ignore
it by thetelif command instructing it to return and search for 2010 hex.
Now you can try satisfying the analyzer conditions. Type:

U> m 3000=41
U> ts
--- Emulation Trace Status ---
NEW User trace complete
Arm ignored
Trigger in memory
Arm to trigger ?
States 512 (512) -1..510
Sequence term 3
Occurrence left 1
uU> tl-d
Line addr,H 68000 Mnemonic count,R seq
-1 002038 ORI.B #**[A2]+ -
0 002052 MOVEA.L A3,Al1 0.600 uS +
1 002054 MOVE.B #020,D1 0.400 uS .
2 002056 0020 supr prog 0.400 uS
3 002058 MOVEA.L A3,A5 0.400 us
4 00205a MOVE.B #000,[A5]+ 0.400 uS
5 00205c 0000 supr prog 0.400 uS .
6 00205e SUBI.W #00001,D1 0.400 uS
7 004000 00 supr data wr byte 0.400 uS
8 002060 0001 supr prog 0.400 uS

6 telif

In this instance, the address 2048 was never encountered by the
analyzer, so the sequencer was not restarted. Therefore, the trigg
found and the trace completed.

In complex configuration, thielif command allows you to branch to

any sequence term from any other term. The example below is based
on a problem found in an incorrectly loaded version of the program
from Appendix A. Apparently, when commands "A" or "B" are
entered, the program does not execute the output routine.

Let's insert a bug in the program to simulate this problem. Type:
U> m -db 2039=34

You can set up a measurement to trace the problem; although only one
telif command is used as a restart branch, it illustrates the branching
possible. First, initialize the analyzer and set it to complex
configuration by typing:

U> tinit

U> tcf -c

Now you can set up the patterns necessary. We want a pattern to start
the sequencer which indicates that the program has begun executing, so
we'll just use the starting address of 2000 hex. We want to recognize
that a command "A" or "B" has been read, so we will set up patterns for
the address and command values. (Note the use of the newly defined
lowerdata label; this is set up because we don’t know what resides at
location 3001 hex and don’t want to bother finding out.) Finally, we
define patterns for OUTPUT and NOT OUTPUT addresses.

U> tpat p1 addr=2000
U> tpat p2 addr=3000
U> tpat p3 addr=2052
U> tpat p4 addr!=2052
U> tlb lowerdata 40..47
U> tpat p5 lowerdata=41
U> tpat p6 lowerdata=42

Now you can set up the branch conditions. By issuing the commands
below, you will specify that the sequencer transitions from term 1 to
term 2 when the program start address is recognized. Next, the
sequencer will transition from term 2 to term 3 when either a command
"A" or command "B" is read from the input area. Finally, if the
OUTPUT routine is not recognized within 20 states, the analyzer

telif 7

triggers. If OUTPUT is recognized before 20 additional states occur,
no problem was found and the sequencer branches back to term 2 (this
is thetelif branch), looking for another command input. Note that the
trigger position is set to the end of the trace; this allows you to see the
events leading up to the trigger.

SECONDARY BRANCHES PRIMARY BRANCHES

TERM1
ADDRESS = 2000

= ERM2

ADDRESS = 3000 AND

ADDRESS = 2052
(DATA - 41 OR DATA = 42)

i

TERM3
ADDRESS # 2052 WITHIN 20 STATES

TERM4 (TRIGGER TERM)

TERMS
TERM6
NOI USED

TERM7

TERMS

U> tif 1pl2

U> tif 2 p2 and p5|p6 3
U> tif 3 p4 4 20

U> tif 4 never

U> tsq-t4

U> telif 3p3 2

U>tpe

Now you can begin the measurement. Type:
U> t

Emulation trace started

U> r 2000
U> m 3000=41

(This command effectively enters a command "A" into the input area.)
U> ts

8 telif

--- Emulation Trace Status ---
NEW User trace complete

Arm ignored

Trigger in memory

Arm to trigger ?

States 1024 (1024) -1022..1

Sequence term 4
Occurrence left 1

U> tl-d -20..0

Line addr,H 68000 Mnemonic count,R seq
-20 003000 41 supr data rd byte 0.400uS +
-19 002014 ORI.B #0f8,D0 0.400 uS

-18 002016 67f8 supr prog 0.400uS .
-17 002018 CMPI.B #041,DO 0.400 uS
-16 00201a 0041 supr prog 0.800 uS .
-15 00201c BEQ.W 000202c 0.400 uS
-14 00201e 000e supr prog 0.400 uS

-13 00202c MOVE.B #011,D0 0.600 uS
-12 00202e 0011 supr prog 0.400 uS .
-11 002030 MOVEA.L #000001008,A0 0.400 uS
-10 002032 0000 supr prog 0.400 uS

-9 002034 1008 supr prog 0.400 uS

-8 002036 BRA.W 000206c 0.400 uS

-7 002038 0034 supr prog 0.400 uS

-6 00206c JMP 000200c 0.600 uS

-5 00206e 0000 supr prog 0.400 uS

-4 002070 200c supr prog 0.400 uS

-3 00200c MOVE.B #000,[A2] 0.400 uS

-2 00200e 0000 supr prog 0.400 uS

-1 002010 MOVE.B [A2],DO 0.400 uS .
0 003000 00 supr data wr byte 0.400uS +

The trigger was found, indicating that after command "A" was read

(line -20), the OUTPUT routine was not accessed within 20 states. If
you look at the listing, you will notice that at state -6, the program
jumped to address 206¢ and then back to 200c; therefore, it avoided the
output routine entirely. To track down the problem, you can use the
memory mnemonic display capability on the COMMAND_A routine:

U> m -dm 202c..204e

00202c 103c0011 MOVE.B #011,D0
002030 207c000010 MOVEA.L #000001008,A0
002036 60000034 BRA.W 000206C
00203a 103c0011 MOVE.B #011,DO
00203e 207c000010 MOVEA.L #000001019,A0
002044 6000000c BRA.W 0002052
002048 103c000f MOVE.B #00F,DO
00204c 207c000010 MOVEA.L #00000102A,A0

telif 9

Related Commands

10 telif

Notice that the branch instruction at 2036 jumps to 206¢. The problem
is the relative branch value in location 2039 hex; it should be 1a rather
than 34. You can repair this using the following command:

U> m -db 2039=1a

See thdsq syntax pages for further examples of complex configuration
telif commands.

tarm (allows you to specify that thegl ortrig2 signal will arm the
analyzer. This arm condition can then be used as part of the secondary
branch qualifier)

tcf (used to select whether the analyzer is operated in easy
configuration or complex configuration)

tif (used to specify a primary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer
configuration. Specifying thig command overrides the current
sequencer specification and will modify the existeld qualifier
stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in
specifying complex expressions. These complex expressions are used
to specifytelif qualifiers in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a
range variable. This range information may be used in specifying
complextelif qualifiers)

tsto (specifies a global trace storage qualifier in both easy & complex
configurations; also specifies a trace storage qualifier for each
sequencer term in complex configuration. Used to control the types of
information stored by the analyzer)

tsq (used to manipulate the trace sequencer)

xtmo (specifies whether the external analyzer operates as an
independent state or timing analyzer or is appended to the emulation
analyzer. If appended to the emulation analyzerstilé command is
invalid; all secondary branch qualifiers are specified withetlie
command)

B

Summary Specify the trace list display format

Syntax

(tf/ xtf (D% <RETURN>
L@m

oy —
LQT% >

Function Thetf (xtf) command allows you to specify which pieces of
information from the emulation (external) analyzer trace will be
displayed bytl (xtl) (trace list) commands.

¥>< mne
\~>< count

=

Each format item specifies a column of the trace list display. See
"Parameters" for a list of the possible format items.

Note # Changing the trace format DOES NOT change the type of information
captured by the analyzer; it only specifies how the captured data should
be displayed.

tf 1

2 tf

Parameters

<LABEL>

<BASE>

<WIDTH>

mne

count

If you specify<LABEL>, the analyzer bits
associated with that label will be displayed in a
column of the trace listing witdLABEL> as

the column header.

<BASE> allows you to specify the numeric
base in which <LABEL> is to display. The
choices ar¢y (binary),Q or O (octal),T
(decimal),H (hexadecimal), oA (ASCII). The
specifiers are not case sensitive. In ASCII
mode, non printing characters are displayed as
periods (.). IKBASE>is not specified, the
default base is hexadecimal.

This option allows you to set the width of the
address field to values from 4 to 50. If your
emulator supports symbols, by setting
<WIDTH>, you can view symbols in the
address field when you display memory
mnemonic.

<LABEL>, <BASE>, and<WIDTH> must
each be separated by a comma (,).

If you specifymne, the disassembled
mnemonic for each instruction captured by the
analyzer is displayed. To ensure correct
operation ofmne, the labelsaddr, data, stat
andextra (if applicable) must be defined
according to their power up defaults for the
target processor being emulated; otherwise,
incorrect disassembly may occur. Thee
format item is only allowed with thé

command, and not witktf.

If you specificount, the state or tag time
counter defined bicq is displayed in the trace
list. If you have designated prestore states via

Defaults

Note #

Examples

tf addr,H mne count,R seq

seq

thetpg command, these prestore states will b
flagged in thecount column of the trace list.

Specifyingcount,acauses the state/time
counter to display the count in absolute mode;
that is, each counter value is shown relative to
the trigger state. Therefore, states before the
trigger will show as negative values and states
after the trigger will show as positive values.
Prestore states do not have counts.

Specifyingcount,r causes the state/time
counter to display the count in relative mode;
that is, each counter value is shown relative to
the previous state. As witlount,a, prestore
states do not have counts.

If you specifiseq an indicator is printed for

each state which caused the sequencer to branch
from one term to another (whether the same

term or a different term).

If no parameters are given, the current settings of the trace format are
displayed. Upon powerup or aftetimit command, the trace format is

tf addr,H mne count,R seq (This command is for the 68000

emulator; other HP 64700-Series emulators may have slightly different
tf definitions upon initialization.)

Varioustf format items may be concatenated as desired on the
command line by including a space between each format item.

The examples below were created using the 68000 sample program in

Appendix A.

To view the default trace format, type:

tf 3

With this specification, there will be four information columns in the
trace list. The first will be address in hexadecimal; the second is
disassembled processor mnemonics, the third is the state/time counter
value, and the fourth is the trace sequencer status. To see the resulting
trace list, you can trace part of the sample program.

M> tg addr=2000

M> t
Emulation trace started
M> r 2000
uU> tl-d
You will see:
Line addr,H 68000 Mnemonic count,R seq
-1 000004 2000 supr data rd word -
0 002000 MOVEA.L 0001000,A2 0.400 uS +
1 002002 0000 supr prog 0.400 uS
2 002004 1000 supr prog 0.400 uS
3 002006 MOVEA.L 0001004,A3 0.400 uS
4 001000 0000 supr data rd word 0.400 uS
5 001002 3000 supr data rd word 0.400 uS
6 002008 0000 supr prog 0.400 uS
7 00200a 1004 supr prog 0.400 uS
8 00200c MOVE.B #000,[A2] 0.400 uS
Perhaps all the information you need is the address and data values in
hexadecimal. To put the trace list in that format, type:
U> tf addr,H data,H
U> tl -td
You will see:
Line addr,H data,H
-1 000004 2000
0 002000 2479
1 002002 0000
2 002004 1000
3 002006 2679
4 001000 0000
5 001002 3000
6 002008 0000
7 00200a 1004
8 00200c 14bc

Line addr, T

data,Y

-1 00000004 0010000000000000
0 00008192 0010010001111001
1 00008194 0000000000000000
2 00008196 0001000000000000
3 00008198 0010011001111001
4 00004096 0000000000000000
5 00004098 0011000000000000
6 00008200 0000000000000000
7 00008202 0001000000000100
8 00008204 0001010010111100

Or maybe you would rather have the address in decimal format an
data in binary. Type:

U> tf addr, T data,Y
U> tl -td

You will see:

The processor status information is not part of the default trace format.
To display this information in binary, type:

U> tf addr,H mne stat,Y

U> tl -td
You will see:
Line addr,H 68000 Mnemonic stat,Y
-1 000004 2000 supr data rd word 11101110
0 002000 MOVEA.L 0001000,A2 11110110
1 002002 0000 supr prog 11110110
2 002004 1000 supr prog 11110110
3 002006 MOVEA.L 0001004,A3 11110110
4 001000 0000 supr data rd word 11101110
5 001002 3000 supr data rd word 11101110
6 002008 0000 supr prog 11110110
7 00200a 1004 supr prog 11110110
8 00200c MOVE.B #000,[A2] 11110110

When you define labels for groups of analyzer input lines usintipthe
command, you can use these labels in trace format specifications.
Suppose you are interested in seeing what types of ASCII information
are transferred on the lower byte of the data bus. Type:

U> tlb lowerdata 40..47

tf 5

Now you can use this label in the trace format. Type:

U> tf addr,H mne lowerdata,A
U> tl -td

You will see:

Line addr,H 68000 Mnemonic lowerdata,A

CO~NO U WNEFO

6 tf

O~NOUIRAWNERO

000004 2000 supr data rd word .
002000 MOVEA.L 0001000,A2 $
002002 0000 supr prog

002004 1000 supr prog .
002006 MOVEA.L 0001004,A3 &
001000 0000 supr data rd word .
001002 3000 supr data rd word 0
002008 0000 supr prog

00200a 1004 supr prog

00200c MOVE.B #000,[A2]

You can display the trace sequencer information also. To do this along
with a status display in hex, type:

U> tf addr,H mne stat,H seq

U> tl -td

You will see:
addr,H 68000 Mnemonic stat,H seq
000004 2000 supr data rd word ee .
002000 MOVEA.L 0001000,A2 f6 +
002002 0000 supr prog f6
002004 1000 supr prog f6 .
002006 MOVEA.L 0001004,A3 f6
001000 0000 supr data rd word ee
001002 3000 supr data rd word ee
002008 0000 supr prog f6
00200a 1004 supr prog f6
00200c MOVE.B #000,[A2] 6

In addition, state/time counter information can be displayed. Type:
U> tf addr,H mne count seq

(The counter display defaults to count absolute unless specified
otherwise.)

U> tl -td

You will see:

Line addr,H 68000 Mnemonic count,A seq
-1 000004 2000 supr data rd word -0.400 uS
0 002000 MOVEA.L 0001000,A2 0 +
1 002002 0000 supr prog 0.400 uS
2 002004 1000 supr prog 0.800 uS
3 002006 MOVEA.L 0001004,A3 1.200 us
4 001000 0000 supr data rd word 1.600 uS
5 001002 3000 supr data rd word 2.000 us
6 002008 0000 supr prog 2.400 uS
7 00200a 1004 supr prog 2.800 uS
8 00200c MOVE.B #000,[A2] 3.200 uS

To change the counter display to count relative, type:
U> tf addr,H mne count,R seq

U> tl-td 0..28
You will see:

Line addr,H 68000 Mnemonic count,R seq
-1 000004 2000 supr data rd word -
0 002000 MOVEA.L 0001000,A2 0.400 uS +
1 002002 0000 supr prog 0.400 uS
2 002004 1000 supr prog 0.400 uS
3 002006 MOVEA.L 0001004,A3 0.400 uS
4 001000 0000 supr data rd word 0.400 uS
5 001002 3000 supr data rd word 0.400 uS
6 002008 0000 supr prog 0.400 uS
7 00200a 1004 supr prog 0.400 uS
8 00200c MOVE.B #000,[A2] 0.400 uS
9 001004 0000 supr data rd word 0.400 uS
10 001006 4000 supr data rd word 0.400 uS
11 00200e 0000 supr prog 0.400 uS .
12 002010 MOVE.B [A2],DO 0.400 uS
13 003000 00 supr data wr byte 0.400 uS .
14 002012 CMPI.B #000,D0 0.400 uS
15 003000 00 suprdata rd byte 0.400 uS
16 002014 0000 supr prog 0.400 uS
17 002016 BEQ.B 0002010 0.400 us
18 002018 CMPI.B #**,DO 0.400 uS
19 002010 MOVE.B [A2],DO 0.600 uS
20 002012 CMPL.B #000,DO 0.400 uS
21 003000 00 supr data rd byte 0.400 uS
22 002014 0000 supr prog 0.400 uS
23 002016 BEQ.B 0002010 0.400 uS
24 002018 CMPL.B #**,DO 0.400 uS .
25 002010 MOVE.B [A2],DO 0.600 uS
26 002012 CMPL.B #000,DO 0.400 uS
27 003000 00 supr data rd byte 0.400 uS

28 002014 0000 supr prog 0.400 uS

Related Commands

8 tf

Notice above the recurring CMPI.B instruction at location 2018, even
though the branch at location 2016 is constantly taken back to location
2010. The CMPI.B instruction is showing up because the processor is
prefetching this instruction; the HP 64700 emulator for the 68000
cannot determine whether or not prefetched instructions have actually
been executed.

tl,xtl (displays the current data in emulation (external) trace memory
according to the specifications set uptfh)y

tlb,xtlb (define labels which represent groups of emulation (external)
analyzer input lines; these labels may be used to create special trace list
displays by including the labels in ttiedefinition)

xtmo (defines whether the external analyzer acts as an independent
state/timing analyzer or is appended to the emulation analyzer)

tg,xtg

Summary

Syntax

Specify a trigger condition for the analyzer

< tg/xtg

Function

e

- <RETURN>

Thetg (xtg) command sets a trigger condition for the emulation
(external) analyzer.

When the expression specified occurs the number of times specified in
the<COUNT> parameter, the analyzer has found its trigger.

Thetg command modifies the current analyzer sequence specification.
(Refer to thesq command description for further information

regarding the trace sequencer.) The manner in which the sequencer is
modified is dependent upon the analyzer configuration.

If the analyzer is in easy configuratidof(-€), the sequencer is reduced
to a one term sequence triggering upon exit from term 1. The global
restart qualifier is set to neveelff never); the primary branch
condition is set to the specified trigger expressibi KEXPR>
<COUNT?>).

If the analyzer is in complex configuratianf(-c), the sequencer is
modified to trigger upon entrance to the second sequencetserab (
2), the secondary branch qualifier is set to netedif 2 never), and the
primary branch qualifier for term number 1 is set to the specified
expressiont{f 1 <EXPR> 2 <COUNT>).

The analyzer storage qualifidsto) is not affected in either
configuration; therefore, the analyzer uses the storage qualifier from the
most recentsto command.

tg 1

29

Parameters

Defaults

Examples

<ANALYZER_ <ANALYZER_EXPR> allows you to specify
EXPR> the expression to recognize as a trigger. This
expression consists o0k&IMPLE_EXPR> in
analyzer easy configuration and a
<COMPLEX_EXPR> when the analyzer is in
complex configuration. Refer to the syntax
pages for expressions for specific details of
analyzer expressions. In either configuration,
the expression may consist of the starggsor
all (trigger on any state) ooneor never
(don't trigger the analyzer).

<COUNT> You use the COUNT> parameter to specify
the number of times the expression
<ANALYZER_EXPR> must occur before the
trigger condition is satisfiedcCOUNT> is
specified as a decimal integer value; if
<COUNT?> is not specified, the default is one

(1).

If no parameters are specified, the current primary branch condition for
sequencer term 1 is displayed. Note that this is not necessarily the
trigger condition, depending on the analyzer commands leading up to
this point. (For more help on this concept, refer to the examples below,
other trace command descriptions, and&halyzer User's Guidg

After powerup ottinit initialization, tg is set tag any.

These examples were created using the sample 68000 program in
Appendix A.

When operating the analyzer in easy configuration, usintgthe
command resets the sequencer to a two term sequence with a primary
branch in term number one corresponding to the trigger condition. For
example, you may have been working with the following analyzer
sequence:

U> tsq

tif 1 addr=2010
tif 2 addr=2052
tsto all

telif addr=2048

tif 1 addr=205a 32
tsto all
telif never

Emulation trace started

Line addr,H 68000 Mnemonic

You will see:

Here, there are two sequence terms, with conditional branches from
term 1 to term 2 and from term 2 to the trigger. There is also a global
restart specification. Now, if you want to trigger the analyzer on the
32nd occurrence of address 205A, type:

U> tg addr=205a 32

To see the new sequencer specification, type:
U> tsq

To proceed with the measurement, type:
U>t

U> r 2000
U> m 3000=41

(This command inputs a "command" value for the program; otherwise,
the program will never execute the routine at 205a hex.)

U> tl-d

count,R seq

O©CO~NOURAWNEFO

00205a MOVE.B #000,[A5]+
00205¢c 0000 supr prog
00205e SUBI.W #00001,D1
00401f 00 supr data wr byte
002060 0001 supr prog
002062 BNE.B 000205a
002064 MOVE.B [AO0]+,[Al]+
002066 SUBI.W #00001,DO0
001008 54 supr data rd byte
004000 54 supr data wr byte

— o+
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS

0.400 US .
0.800 uS

0.400 uS
0.400 uS

tg 3

tif1pl2

tif 2 p2 and p5 | p6 3
tif 3p4 4 20
tif 4 never
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 4

tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
telif 1 never
telif 2 never
telif 3 p3 2
telif 4 never
telif 5 never
telif 6 never
telif 7 never
telif 8 never

tpat p1 addr=2000
tpat p2 addr=3000
tpat p3 addr=2052
tpat p4 addr!=2052

tpat p5 lowerdata=41
tpat p6 lowerdata=42

tpat p7 any
tpat p8 any

4 tg

The trigger condition was found; line 0 shows the 32nd iteration of the
trigger value.

In analyzer complex configuration, a similar situation exists. tghe
command defines simple sequence specification and overwrites
sequencer terms 1 and 2 to create the new specification. For example,
assume you were working with the following sequencer definition:

U> tsq

Notice that the trigger term is in term number 4; terms 1 through 3 have
various branch qualifiers specified which determine how the sequencer
advances to term 4. Assume that you've fixed the problem you were
troubleshooting with this sequence specification; now you just want to
trigger the analyzer on any command. First, you may need an extra
pattern definition. Type:

U> tpat

Note

tif 1 p2 and p7 2
tif 2 never
tif 3p4 4 20
tif 4 never
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 2

tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
telif 1 never
telif 2 never
telif 3 p3 2
telif 4 never
telif 5 never
telif 6 never
telif 7 never
telif 8 never

To trigger on any command (even unrecognized ones) you will nee
pattern where data is not equal to zero. Type:

U> tlb lowerdata 40..47
U> tpat p7 lowerdata!=00

Now you can define the trigger. Type:
U> tg p2 and p7

An occurrence count can also be specified for complex configuration
triggers; this particular example does not illustrate a count.

You might want to see how the sequencer has been modified. Type:
U> tsq

Notice that term 2 has been redefined as the trigger tegrt € and

tif 2 never). This was done automatically by tiggcommand.
Sequencer term number 1 has been redefined with the new trigger
branch qualifier ofif 1 p2 and p7 2

tg 5

To proceed with the measurement, type:
U>t

Emulation trace started

U> r 2000
U> m 3000=23

(This command inputs an "unrecognized" command to the program.)

U> tl-d 21
Line addr,H 68000 Mnemonic count,R seq
0 003000 41 supr data rd byte -+
1 002014 ORI.B #0f8,D0 0.400 uS
2 002016 67f8 supr prog 0.400 uS .
3 002018 CMPI.B #041,D0 0.400 us
4 00201a 0041 supr prog 0.800 uS .
5 00201c BEQ.W 000202c 0.400 uS
6 00201e 000e supr prog 0.400 uS
7 00202c MOVE.B #011,D0 0.600 uS
8 00202e 0011 supr prog 0.400 uS
9 002030 MOVEA.L #000001008,A0 0.400 uS
10 002032 0000 supr prog 0.400 uS
11 002034 1008 supr prog 0.400 uS
12 002036 BRA.W 0002052 0.400 uS
13 002038 001a supr prog 0.400 uS .
14 002052 MOVEA.L A3,A1 0.600 uS
15 002054 MOVE.B #020,D1 0.400 uS
16 002056 0020 supr prog 0.400 uS
17 002058 MOVEA.L A3,A5 0.400 uS
18 00205a MOVE.B #000,[A5]+ 0.400 uS
19 00205c 0000 supr prog 0.400 uS
20 00205e SUBIW #00001,D1 0.400 us

At line number zero (0) of the trace listing, you can see that the
analyzer did in fact trigger on address 3000 with data not equal to zero.

Related Commands bc (allows you to break the emulator to the monitor when various

6 tg

conditions occur; you can have the emulator break upon analyzer
trigger by specifyinggout trigl andbc -e trigl (or you could use the
trig2 signal to perform the same function))

t (starts an emulation trace)

tarm (used to specify an analyzer arm condition; the analyzer will not
trigger until the arm condition is received if you spetifarm)

tcf (used to specify whether the analyzer is operated in easy or co
configuration)

tpat (used to assign pattern names to simple analyzer expressions;
pattern names are then used in creating complex analyzer expressions
which could be used with thg command to trigger the analyzer)

trng (used to specify a range of values for a particular group of
analyzer lines; this range may be used in specifying complex analyzer
expressions for triggering the analyzer)

tsto (specifies which states encountered by the analyzer should be
stored in trace memory)

tsq (used to manipulate the trace sequencer. Note that the sequencer’s
current status is affected by tigecommand.)

xtmo (specifies whether the external analyzer is treated as a separate
state or timing analyzer or is appended to the emulation analyzer. If
appended to the emulation analyzer xtgecommand is no longer

valid; tg sets the trigger condition for both analyzers.)

tg 7

. Notes

8 tg

tgout,xtgout

Summary

Syntax

Specify signals to drive upon analyzer trigger

tgout/xtgout L

Function

Parameters

= <RETURN>

Thetgout (xtgout) command allows you to specify which of the
internal trigl and/or trig2 signals will be driven when the emulation
analyzer (external analyzer) finds its trigger condition.

Note that if the analyzer is receiving trig1 or trig 2 viattren
command, then that signal cannot be driven, although no error message
will be issued to that effect.

If the external analyzer has been appended to the emulation analyzer
via thextmo command, then thegout command is invalid and the
tgout command specifies the trigger signals to be driven when either
analyzer finds its trigger.

none Ifnoneis specified, neither the trigl nor trig2
signals are driven when the analyzer finds its
trigger state.

trigl If trigl is specified, then the trigl signal is

driven by the analyzer when the trigger state is
found.

tgout 1

Defaults

Examples

Related Commands

2 tgout

trig2 If trig2 is specified, then the trig2 signal is
driven by the analyzer when the trigger state is
found.

To specify that both trigl and trig2 should be
driven when the analyzer trigger is found,
concatenate both options with a comigaut
trigl,trig2.

If no parameters are specified, the current staitgooft is displayed.
Upon powerup ofinit , the default state tgout none

You may wish to have the emulator break to monitor execution upon
receipt of the analyzer trigger. Type the following:

M> tcf -e

M> bc -e trigl
M> tgout trigl
M> tg addr=2000
M> r

The emulator will break to the emulation monitor when it encounters
the trigger state of address 2000 hexadecimal.

To display the state éfout after powerup, type:
M> tgout

You will see:
tgout none

bc (allows you to specify a break to emulation monitor when the tgout
condition is satisfied)

bnct (specifies whether or not trigl and trig2 are used to drive and/or
receive the rear panel BNC connector signal line)

cmbt (specifies whether or not trigl and trig2 are used to drive and/or
receive the CMB trigger signal)

tarm (used to specify that the analyzer will be armed upon assertion or
negation of trigl or trig2)

th,xth

Summary

Syntax

Function

Halt the analyzer

th/ xth = <RETURN>

Theth (xth) command stops an emulation (external) trace.

If the external analyzer has been appended to the emulation analyzer
with thextmo command, th&th command is invalid anith halts both
the emulation and external trace in process.

The analyzer will stop driving thteigl andtrig2 signals when the

trace is halted. This may cause you difficulty in making measurements
with instruments connected to the BNC. For example, if you set the
HP 64700 analyzer to dritegl (tgout trigl) when the trigger

condition is found, then pipe this to the BNC connector fiitt -d

trigl, the BNC signal will be driven high when the HP 64700 analyzer
finds its trigger while a trace is in progress; it will fall low when the
trace finishes.

You should start the HP 64700 trace after you have begun the external
instrument’'s measurement. Otherwise, the following measurement
errors may occur, depending on the type of external instrument you are
using:

= With an edge sensitive instrument, starting the instrument
after the HP 64700 finds the analyzer trigger will mean that
the instrument never sees the transition ofrilgé line and
therefore never triggers.

m With a level sensitive instrument, starting the instrument after
the HP 64700 finds the trigger will mean that the instrument
triggers immediately; although many states of interest have
probably already passed.

th 1

Note ﬂ

Parameters
Defaults

Examples

Emulation trace started

Emulation trace halted

Related Commands

2 th

If the analyzer trigger specification has not been found, you will need
to use theh command to halt the analyzer before you can display the
trace list.

None.

Does not apply.

To start an emulation trace, type:
M> t

You will see:

To stop the emulation trace, type:
M> th

You will see:

t (used to start an analyzer trace)

ts (allows you to determine the current status of the emulation analyzer)
tx (starts an analyzer trace upon receipt of the CMB execute signal)

X (starts a synchronous CMB execution)

tif, xtif

Summary Specify sequencer primary branch qualifiers

Syntax

EASY CONFIGURATION

tif/ xtif

& <RETURN>

{ <TERM#>)
ﬂ <SIMPLE_EXPR> L

= <COUNT>

COMPLEX CONFIGURATION

(" i/ xtif = <RETURN>
ﬁ <TERM#>)

ﬂ <COMPLEX_EXPR> \;
(50)-+] <BRANCH_TO_TERM> }—j

<> <COUNT> }—/

Function Thetif (xtif) command allows you to set the primary branch qualifier
for each term of the emulation (external) analyzer sequencer.

tif 1

2 tif

Note #

Parameters (Easy
configuration)

Thetelif command is used as a global restart qualifier in easy
configuration and a secondary branch qualifier in complex
configuration. The hierarchy of tti& andtelif commands is such that
either branch will be taken if found before the other; however, if both
branches are found simultaneously,tthéranch is always taken over
thetelif branch.

When in easy configuration, the sequencer will increment to the next
sequencer level when the expression specifiei mgcurs the number

of times specified by theCOUNT> parameter. There is a maximum

of four sequence levels; only one is available at initialization. If you
require more sequencer levels, you must insert them withghe
command. (The term you are specifying a primary branch for with the
tif command must be present in the sequence.) The branch out of the
last sequencer term constitutes the trigger.

When in complex configuration, the sequencer will branch to the
sequencer level specified by ttBRANCH_TO_TERM> parameter
when the expression specified occurs the number of times indicated in
the<COUNT> parameter. There are always eight sequencer terms
available. Position of the trigger term is defined withtsige

command.

<TERM#> When you specifgTERM#>, it indicates
which sequencer term’s primary branch
qualifier is to be modified with the qualifier
specified in the<SIMPLE_EXPR> parameter.
If you specify<TERM#> without an
expression, thef qualifier for that term
number is displayed.

<SIMPLE_EXPR>

<COUNT>
Parameters (Complex
configuration)
<TERM#>
<COMPLEX_
EXPR>

<SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a storage
qualifier. For examplesSIMPLE_EXPR>
might consist of the expressiaddr=2000Q

For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

You use the COUNT> parameter to specify
the number of times the expression
<SIMPLE_EXPR> must occur before the
primary branch condition is satisfied.
<COUNT?> is specified as a decimal integer
value; if<COUNT> is not specified, the
default is one (1).

<TERM#> lets you specify a sequencer term
number to associate with the given
<COMPLEX_EXPR>. When you associate a
term number with a complex expression, that
expression is used as a branch qualifier at the
sequencer level specified by the term number.
If you specify<TERM#> without an
expression, the complex expression currently
associated with that term number is displayed.

<COMPLEX_EXPR> allows you to specify
complicated analyzer expressions made up of
relationships between simple analyzer
expressions. When you create a complex
expression, you must first assign pattern names
(p1-pY) to simple expressions using tipat
command. You then use the pattern names and
relational operators to create complex
expressions. For example, if you wish to
branch from term 1 to term 2 when
address=200Ganddata=200r when

tif 3

4 tif

address=200anddata=42, you would use the
following commands:

U> tpat pl addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tif1pl|p22

The | symbol represents an intra-set OR
operator. For more information on complex
expressions, operators, and pattern sets, refer to
the expression syntax pages within this manual.

<BRANCH_ The<BRANCH_TO_TERM> parameter

TO_TERM> allows you to indicate the branch destination
when the<COMPLEX_EXPR> is found. For
example, you may wish to have the sequencer
branch from term 1 to term 3 after the
expression is found. This would be specified as
tif 1 <COMPLEX_EXPR> 3. If you do not
specify a term number, the default is to
increment the sequencer levidl € TERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

<COUNT> You use the COUNT> parameter to specify
the number of times the expression
<COMPLEX_EXPR> must occur before the
primary branch condition is satisfied.
<COUNT> is specified as a decimal integer
value; if<COUNT> is not specified, the
default is one (1).

Note # If you specify the<COUNT> parameter, you must also specify a
<BRANCH_TO_TERM> parameter. If you omit the
<BRANCH_TO_TERM> parameter when specifyirgCOUNT>,
the system will interpret the count as "branch to term" information; if
greater than eight (8), an error will be returned; otherwise, you will
have just specified an incorrect branch.

Note

Defaults

v

Examples

If tif is entered with no parameters, the primary branch qualifiers fo
sequencer levels are displayedtiflfis entered with only aTERM#>
parameter, the primary branch qualifier for only that term number is
displayed.

Upon initialization via a powerup sequence ortthié command, the
primary branch specifiers are setifcTERM#> any (KTERM#> +
1).

In complex configuration, §BRANCH_TO_TERM> is not
specified, the default KTERM#> + 1); if <COUNT> is not
specified, the default count is one (1).

At sequencer term number 8, the default branch to condition is
<TERM#>; that is, branch to the same term.

Given the example 68000 program from appendix A, you might want
to trigger the analyzer when INIT and CLEAR are executed,
CLEARLOORP is executed 32 times, and LOOP is executed the number
of times necessary to move message A or message B. Further, you
would like to position the trigger so that you can see all of the states
recorded up until the trigger state.

You can set up some equates of values to labels for use in the trace
qualifiers. Type:

U> equ init=2000

U> equ clear=200c

U> equ clearloop=205a

U> equ loop=2064

U> equ clearcount=32T

U> equ abloop=17T

U> equ unrecloop=0f

tif 5

tif 1 addr=init

tif 2 addr=clear

tif 3 addr=clearloop 32
tif 4 addr=loop 17

tsto all

telif never

Emulation trace started

6 tif

Now you will need to insert additional sequencer terms. (The analyzer
defaults to one sequence term in the easy configuration after
initialization viatinit or powerup.) Type:

U> tsq-i 2
U> tsq-i 3
U> tsq-i 4

Next, set up the sequencer branch conditions. With the commands
given below, the analyzer will first look for the INIT routine, then the
CLEAR routine, then it will look for 32 occurrences of the
CLEARLOOP routine and 17 occurrences of the LOOP routine before
triggering. Type:

U> tif 1 addr=init

U> tif 2 addr=clear

U> tif 2 addr=clearloop clearcount

U> tif 4 addr=loop abloop

You can view the sequencer modifications by typing:
U> tsq

To position the trigger state at the end of the trace memory, type:
U>tpe

Now you can start the measurement. Type:
M> t

M> r 2000
U> m 3000=41

With them command, you have effectively input a "command" "A" t
the program. Now look at the trace listing:

U> tl -d -20..0

This command lists the last 21 states of the trace. You will see:

addr,H 68000 Mnemonic count,R seq
002066 SUBI.W #00001,DO0 0.400 uS
001015 47 supr data rd byte 0.400 uS
00400d 47 supr data wr byte 0.400 uS
002068 0001 supr prog 0.400 uS
00206a BNE.B 0002064 0.400 uS
00206Cc JMP Hrrkkkik 0.400 uS
002064 MOVE.B [AO0]+,[Al]+ 0.600 uS .
002066 SUBI.W #00001,DO0 0.400 uS
001016 45 supr data rd byte 0.400 uS
00400e 45 supr data wr byte 0.400 uS
002068 0001 supr prog 0.400 uS .
00206a BNE.B 0002064 0.400 uS
00206C JMP rxkkik 0.400 uS
002064 MOVE.B [AO0]+,[Al]+ 0.600 uS
002066 SUBI.W #00001,DO 0.400 uS
001017 20 supr data rd byte 0.400 uS
00400f 20 supr data wr byte 0.400 uS
002068 0001 supr prog 0.400 uS
00206a BNE.B 0002064 0.400 uS
00206c JMP rxrkkiik 0.400 uS .
002064 MOVE.B [AO0]+,[Al]+ 0.600us +

The trigger condition is the last state; this is where the analyzer has
found the 17th occurrence of the LOOP routine.

In complex configuration, you can set up even more complex
qualifiers. These can be used to store only execution between certain
addresses (windowing) until the trace memory is full. For example, if
you want to store only execution in the output routines for each
command of the sample program, use the following procedure.

First, initialize the analyzer and set it to complex configuration. Type:
M> tinit
M> tcf -c

tif 7

8 tif

We will need to define an analyzer label for the lower 8 data bits so we
can correctly qualify byte wide data transfers. Type:

M> tlb lowerdata 40..47

Now we can define the analyzer patterns necessary to set up the
sequencer and storage qualifiers. Type:

M> trng addr=4000..4011
M> tpat p1 addr=200c
M> tpat p2 addr=3000
M> tpat p3 addr=2018
M> tpat p4 addr=2064
M> tpat p5 lowerdata!=00
M> tpat p6 addr=202c
M> tpat p7 addr=203a
M> tpat p8 addr=2048

Next, you need to define the sequencer pattern. With the commands
below, the sequencer will jump from term 1 to term 2 when the
CLEAR routine is found. It will jump from term 2 to term 3 when a
command is read (that is, data not equal to zero) from address 3000
hex. Next, it will jump from term 3 to term 4 when the
PROCESS_COMM routine is found. The next jump is from term 4 to
term 5 when any of the command setup routines
(COMMAND_A,COMMAND_B, or UNRECOGNIZED) is found.

An increment from term 5 to term 6 occurs when the LOOP routine is
found. Finally, the sequencer will jump from term 6 back to term 2
when the CLEAR routine is found in subsequent passes.

You may wonder why the branch from term 6 is identical to that of
term 1. This is done so that different store specifications can be made.
The first time the CLEAR routine is found, it is stored. On subsequent
passes, the CLEAR routine address is not stored.

To set up the sequencer branches, type the following commands:

M> tif 1 p1 2

M> tif 2 p2 and p5 3
M> tif 3p3 4

M> tif 4 p6|p7|p8 5
M> tif 5 p4 6

M> tif 6 p1 2

Emulation trace started

Set the trigger term at term number 2 by typing:
M> tsq -t 2

Now you can set up the storage conditions. Type:

M> tsto 1 p1

M> tsto 2 p2 and p5
M> tsto 3 p3

M> tsto 4 p6|p7|p8
M> tsto 5 p4

M> tsto 6 r and p5

To see the messages written to the output area, alter the trace listing
format as follows:

M> tf addr,H mne lowerdata,A seq

Now you can begin the measurement. Type:
M> t

M> r 2000

The next three commands effectively "input” three different commands
to the program. The first two are "command A" and "command B"; the
third is unrecognized.

U> m 3000=41
U> m 3000=42
U> m 3000=43

Now view the resultant trace list by typing:
U> tl-d0..63

tif 9

This displays the first 64 trace states. You will see:

Line addr,H 68000 Mnemonic lowerdata,A seq
0 00200c MOVE.B #**[A2] . +
1 003000 41 suprdatard byte A +
2 002018 CMPI.B #* DO . +
3 00202c MOVE.B #**,D0 . +
4 002064 MOVE.B [AOQ]+,[Al]+ . +
5 004000 54 supr data wr byte T
6 004001 48 supr data wr byte H
7 004002 49 supr data wr byte |
8 004003 53 supr data wr byte S
9 004004 20 supr data wr byte .

10 004005 49 supr data wr byte |
11 004006 53 supr data wr byte S
12 004007 20 supr data wr byte .

13 004008 4d supr data wr byte M
14 004009 45 supr data wr byte E
15 00400a 53 supr data wr byte S
16 00400b 53 supr data wr byte S
17 00400c 41 supr data wr byte A
18 00400d 47 supr data wr byte G
19 00400e 45 supr data wr byte E
20 00400f 20 supr data wr byte .

21 004010 41 supr data wr byte A .
22 00200c MOVE.B #**[A2] . +
23 003000 42 supr data rd byte B +
24 002018 CMPI.B #**,D0 . +
25 00203a MOVE.B #** D0 . +
26 002064 MOVE.B [AQ]+,[Al]+ . +
27 004000 54 supr data wr byte T
28 004001 48 supr data wr byte H
29 004002 49 supr data wr byte |
30 004003 53 supr data wr byte S
31 004004 20 supr data wr byte .

32 004005 49 supr data wr byte |
33 004006 53 supr data wr byte S
34 004007 20 supr data wr byte .

35 004008 4d supr data wr byte M
36 004009 45 supr data wr byte E
37 00400a 53 supr data wr byte S
38 00400b 53 supr data wr byte S
39 00400c 41 supr data wr byte A
40 00400d 47 supr data wr byte G
41 00400e 45 supr data wr byte E
42 00400f 20 supr data wr byte . .
43 004010 42 supr data wr byte B .
44 00200c MOVE.B #**[A2] . +
45 003000 43 supr data rd byte C +
46 002018 CMPI.B #**,D0 . +
47 002048 MOVE.B #+*D0 . +
48 002064 MOVE.B [AQ]+,[Al]+ . +
49 004000 49 supr data wr byte |
50 004001 4e supr data wr byte N
51 004002 56 suprdata wr byte \%

52 004003 41 supr data wr byte A
53 004004 4c supr data wr byte L
54 004005 49 supr data wr byte |
55 004006 44 supr data wr byte D

56 004007 20 supr data wr byte

10 tif

57

59
60
61
62
63

004008
004009
00400a
00400b
00400c
00400d
00400e

43 supr data wr byte
4f supr data wr byte
4d supr data wr byte
4d supr data wr byte
41 supr data wr byte
4e supr data wr byte
44 supr data wr byte

ozr»zzO00

If you look at thdowerdata column, you will see commands "A", "B",
and "C" entered, and the respective output messages. The analyzer
would continue to store states every time a new command is entered
until trace memory is filled; then it will stop storing new states.

Related Commands tarm (allows you to specify that thegl ortrig2 signal will arm the

analyzer. This arm condition can then be used as part of the primary
branch qualifier)

tcf (used to select whether the analyzer is operated in easy
configuration or complex configuration)

telif (used to specify a secondary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer mode.
Specifying thég command overrides the current sequencer
specification and will modify the existing qualifier stored in
sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in
specifying complex expressions. These complex expressions are used
to specifytif qualifiers in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a
range variable. This range information may be used in specifying
complextif qualifiers)

tsto (specifies a global trace storage qualifier in both easy and complex
configurations; also specifies a trace storage qualifier for each
sequencer term in complex configuration. Used to control the types of
information stored by the analyzer)

tsq (used to manipulate the trace sequencer)

tif 11

xtmo (specifies whether the external analyzer operates as an
independent state or timing analyzer or is appended to the emulation
analyzer. If appended to the emulation analyzextiheommand is
invalid; all primary branch qualifiers are specified with tihe

command)

12 tif

tinit
Summary

Syntax

Function

Parameters

Defaults

Reset trace specification

Thetinit command restores all trace specification items to their
powerup default values. See "Defaults."

None.

These are the powerup defaults for the trace specification:

Analyzer arm
tarm always

Trace Configuration
tcf -e

Note that if the trace configuration was complex, it is reset to easy
configuration.

Analyzer master clocks
tck-rL-u-sS

The analyzer clock configuration at powerup is dependent on the
particular HP 64700-Series Emulator in use.

Trace count qualifier
tcq time

tinit 1

Trace format
tf addr,H mne count,R seq

The trace format may vary depending on the particular emulator in use.

Trace trigger

tg any
tgout none

Analyzer signal line labels

Emulation trace labels
tlb addr 0..23

tlb data 32..47

tlb stat 24..31

These labels will vary according to the emulator in use.

Trigger Position
tps

Trace Prestore Qualifier
tpg none

Trace sequencer (includes branch and store conditions)

tif 1 any
tsto all
telif never

Trace slave clocks

tsck -0 1
tsck -0 2
tsck -0 3

Trace Upon Execute?
tx -d # ignore the execute signal

2 tinit

Examples

Related Commands

To reset the analyzer parameters to the powerup defaults, type:
M> tinit

When the M> prompt returns, the analyzer has been re-initialized.

init (used to initialize selected portions of the emulator or the entire
emulator, dependent on the options given)

tinit 3

. Notes

4 tinit

tl, xtl

Summary

Syntax

Display/dump current trace list

'
[P Ge— .

\,‘ <LOWER_STATE>

J

@
e)
S
Ne(C o ef<morts F——

@
NN NN N

L@—» <UPPER_STATE>

D /

Function

Thetl (xtl) command allows you to display the current emulation
(external) analyzer trace list information. Options are available which
allow you to specify disassembly of instructions, number of states to
display and starting state to display.

You may also dump the trace list to a host computer using the
(binary) or-x (hexadecimal) options in conjunction with the HP 64000
transfer software. This allows you to perform post processing of the
trace data on your host. See Appendix B of this manual for details on
the binary and hexadecimal trace list formats.

th 1

2t

Parameters

If the trigger specification has not yet been satisfied, the trace list
cannot be displayed until the trace in progress is halted with the
command. Entering thecommand before the trace is halted results in
the message™* Trigger not in memory ** ."

If the analyzer was halted before any states were captured, the message

"** No trace data **" is displayed upon entry of thlecommand.

<COUNT>

Display the top states of the trace. If you have
specified the number of states to display with
the<COUNT> parameter, that number of
states is displayed. Otherwise, the default is to
display the same number of states as the last
time tl was invoked to display part (but not all)
of the trace.

Display the next states of the trace. If you have
specified the number of states to display with
the<COUNT> parameter, that number of
states is displayed. Otherwise, the same
number of states will be displayed as the last
time you usedl to display part (but not all) of

the trace.

<COUNT?> allows you to specify the number
of states to display with th&or-n options.

Normally, column headers are displayed at the
top of each trace list. These label the state
number, count, and each trace field specified by
thetf command. Specifying thé option

allows you to suppress printing of the column
headers.

Some emulators do not disassemble instruction
data in the trace list automatically (the 68000
emulator falls into this category). Specifying
the-d option results in disassembly of
instructions starting with the first state to be

displayed. Other emulators may ignore this
option.

o] Certain emulators allow specific inverse
assembler options for trace list instruction
disassembly. By specifying and
<IALOPTS>, you can control disassembly of
the trace list. Refer to yomulator User’s
Guidefor specific information on the
<IALOPTS> supported by your emulator.
Some emulators, such as the 68000, do not
support this option.

b The-b option dumps the trace list in binary
format using the HP 640Q@ansfer protocol.
Refer to Appendix B of this manual for details
on the binary trace list format.

X The-x option dumps the trace list in
hexadecimal format using the HP 64000
transfer protocol. Refer to Appendix B of this
manual for details on the hexadecimal trace list
format.

Note # The-h, -d, and-o options cannot be used with eithleror -x. Also, the
-b and-x options cannot be used together.

S This allows you to display symbols in the
address column.

a This allows you to display absolute addresses in
the address column. This is the default.

e This allows you to display symbols and
absolute addresses in the address column.

tl 3

Note

Note

Defaults

The HP 64700 remembers the last option specified for the address field
(-s, -a, or-¢), and uses it for the netttcommand if no other option is
specified.

* If you specify*, the entire trace list is
displayed. Notice thdl does not recognize
displaying the entire trace as the last default
count. (This helps avoid filling your screen
with lots of trace list data on subsequient

commands.)
<LOWER_ If you specify<LOWER_STATE>, the trace
STATE> display starts with that state.
<UPPER_ If you specify botkLOWER_STATE> and
STATE> <UPPER_STATE>, the trace list contains all
states between the lower and upper state
inclusive.

If you specify a lower state, it must be done without usingttbe-n
options, as the Terminal Interface will interpret your lower state
specification as @aCOUNT> parameter. However, you can specify a
range of states while using these options; the range will be interpreted
and displayed correctly.

If no parameters are given, the trace list is displayed starting with the
first state that has not yet been displayed. The number of states
displayed is identical to the number of states displayed by thé last
command.

For example, if the last trace list display wlagd 5, then the next
command will start the display at state 6 and display a total of five
states.

The-a option is in effect by default, which causes the address field to
display absolute addresses.

The trace list also defaults to the last disassembly state used (that i
-d was specified previously intacommand, it will continue).

Examples Using the 68000 sample program from Appendix A, we will show
some simple trace list examples.

First, we will set up a trigger at the start of the program and take a
trace. Type:

M> tg addr=2000
M> t

Emulation trace started

M> r 2000
uU> tl

The firsttl command you issue after a trace has begun always displays
the top of the trace:

Line addr,H 68000 Mnemonic count,R seq
-1 000004 2000 supr data rd word -

0 002000 2479 supr prog 0.400uS +

1 002002 0000 supr prog 0.400 uS

2 002004 1000 supr prog 0.400 uS

3 002006 2679 supr prog 0.400 uS .

4 001000 0000 supr data rd word 0.400 uS

5 001002 3000 supr data rd word 0.400 uS

6 002008 0000 supr prog 0.400 uS

7 00200a 1004 supr prog 0.400 uS

8 00200c 14bc supr prog 0.400 uS

u> tl
The nextl command issued starts with the first state not yet displayed:

Line addr,H 68000 Mnemonic count,R seq
9 001004 0000 supr data rd word 0.400 uS

10 001006 4000 supr data rd word 0.400 uS
11 00200e 0000 supr prog 0.400 uS

12 002010 1012 supr prog 0.400 uS .
13 003000 00 supr data wr byte 0.400 uS

14 002012 0c00 supr prog 0.400 uS

15 003000 00 suprdatard byte 0.400 uS

16 002014 0000 supr prog 0.400 uS

17 002016 67f8 supr prog 0.400 uS

18 002018 0c00 supr prog 0.400 uS

tl 5

Line addr,H

CO~NOUIARWNEFO

6 tl

If you now want to return to the top of the trace list and disassemble

instructions, type:

68000 Mnemonic

U> tl -td

count,R seq

000004
002000
002002
002004
002006
001000
001002
002008
00200a
00200c

2000 supr data rd word
MOVEA.L 0001000,A2

0000 supr prog

1000 supr prog
MOVEA.L 0001004,A3

0000 supr data rd word

3000 supr data rd word

0000 supr prog

1004 supr prog
MOVE.B #000,[A2]

You can also vary the number of states displayed. Type:

68000 Mnemonic

0.400uS +
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS
0.400 uS

U>tl-td5

count,R seq

000004
002000
002002
002004
002006

2000 supr data rd word
MOVEA.L 0001000,A2

0000 supr prog

1000 supr prog
MOVEA.L 0001004,A3

Remember that always displays the same number of states displayed
the last timel was executed (but did not display the whole trace).

68000 Mnemonic

0.400uS +
0.400 uS
0.400 uS

0.400 uS

U> tl-n

count,R seq

001000
001002
002008
00200a
00200c

0000 supr data rd word
3000 supr data rd word
0000 supr prog

1004 supr prog
MOVE.B #000,[A2]

0.400 uS

0.400 uS
0.400 uS
0.400 uS

0.400 uS

Notice that only five states were displayed.

You can also display a range of states:

U> tl -td 20..30
Line addr,H 68000 Mnemonic count,R seq
20 002012 CMPL.B #000,DO 0.400 uS
21 003000 00 supr data rd byte 0.400 uS
22 002014 0000 supr prog 0.400 uS
23 002016 BEQ.B 0002010 0.400 uS
24 002018 CMPL.B #*,D0 0.400 uS
25 002010 MOVE.B [A2],DO 0.600 uS
26 002012 CMPL.B #000,DO 0.400 uS
27 003000 00 supr data rd byte 0.400 uS
28 002014 0000 supr prog 0.400 uS
29 002016 BEQ.B 0002010 0.400 uS
30 002018 CMPL.B #+*,DO 0.400 uS

Remembert| displays the same number of states displayed last time a
partial trace was displayed, and starts with the next undisplayed state:

u> tl

Line addr,H 68000 Mnemonic count,R seq
31 002010 MOVE.B [A2],DO 0.600 uS
32 002012 CMPL.B #000,DO 0.400 uS
33 003000 00 supr data rd byte 0.400 uS
34 002014 0000 supr prog 0.400 uS
35 002016 BEQ.B 0002010 0.400 uS
36 002018 CMPL.B #**,D0O 0.400 uS
37 002010 MOVE.B [A2],DO 0.600 uS
38 002012 CMPL.B #000,DO 0.400 uS
39 003000 00 supr data rd byte 0.400 uS
40 002014 0000 supr prog 0.400 uS
41 002016 BEQ.B 0002010 0.400 us

Notice that 11 states were displayed, starting with state 31.

th7

8 tl

42 002018
43 002010
44 002012
45 003000
46 002014
47 002016
48 002018
49 002010
50 002012
51 003000
52 002014

53 002016
54 002018
55 002010
56 002012
57 003000
58 002014
59 002016
60 002018
61 002010
62 002012
63 003000
64 002014

To suppress display of the column headers, usétbption:

U> tl-h

CMPL.B #**,D0 0.400 uS
MOVE.B [A2],DO 0.600 uS
CMPI.B #000,D0 0.400 uS
00 supr data rd byte 0.400 uS

0000 supr prog 0.400 uS
BEQ.B 0002010 0.400 uS
CMPL.B #**,DO 0.400 uS
MOVE.B [A2],DO 0.600 uS
CMPI.B #000,D0 0.400 uS
00 supr data rd byte 0.400 uS

0000 supr prog 0.400 uS

You can also combine options (subject to the restrictions listed above
under the note on binary and hexadecimal trace dump formats):

U> tl -hnd 12
BEQ.B 0002010 0.400 uS
CMPL.B #**,DO 0.400 uS
MOVE.B [A2],DO 0.600 uS
CMPI.B #000,D0 0.400 uS
00 supr data rd byte 0.400 uS
0000 supr prog 0.400 uS
BEQ.B 0002010 0.400 uS
CMPL.B #**,DO 0.400 uS .
MOVE.B [A2],DO 0.600 uS
CMPI.B #000,DO 0.400 uS
00 supr data rd byte 0.400 uS
0000 supr prog 0.400 uS

Related Commands t (starts an analyzer trace)

tf (specifies the display format for the trace)
th (halts a trace in process)

tlb (defines analyzer signal line labels; these may be usgdrby
specifying the trace list display format)

ts (allows you to determine the current status of the emulation analyzer)

tlb,xtlb

tib/xtlb)

Summary

Syntax

Define labels for analyzer input lines

<LABEL>

<LABEL>

=|| <LABEL> <BIT#> I

O]

Function

Thetlb (xtlb) command allows you to define new labels for emulation
(external) analyzer lines, as well as display or delete previously defined
analyzer labels. Since labels are pre-defined for the address, data, and
status lines of the emulation analyzelt will be the more frequently

used command.

<BIT>..<BIT> specifies the range of analyzer lines to be associated
with <LABEL>. Note that it is not necessary to specify an upper
boundary; if only one bit number is given, it is the only one that will be
associated with the given label.

The external analyzer has 16 lines that may be assigned to labels,
numbered 0 through 15, where 0 is the least significant bit. The
emulation analyzer, dependent on the particular emulator in use, has
between 32 and 80 lines, where 0 is the least significant bit.

In emulation analyzer labels, no more than 32 signal lines may be
assigned to a given label. Also, an emulation analyzer label may not
cross more than a multiple of 16 boundary. For example, a label cannot
be defined for emulation analyzer lines 15..32 since one multiple of 16

tib 1

boundary is crossed from 15 to 16 and another boundary is crossed
from 31 to 32.

Labels can be made to overlap; for example, you may wish to define a
label for a particular status line or data bit so that you can easily track
its state in the trace list. See examples below.

The number of labels that can be defined is limited only by system
memory.

Parameters

-d If you specify thed option with a <LABEL>,
the named label is deleted from the definition
table. If the given <LABEL> is currently used
in a trace specification or in the trace display
format (tf command), it will not be deleted until
removed from all of the specifications. If
<LABEL> is given as *, all labels are deleted.

-n Specifying-n causes the named <LABEL> to
be defined with negative polarity. That is, after
label definition, bits that are a one (1) refer to a
signal lower than the threshold voltage and bits
that are a zero (0) refer to a signal higher than
the threshold voltage. {h is not specified, the
named <LABEL> defaults to positive polarity.

<LABEL> You use <LABEL> to specify a name for the
group of signals indicated by <BIT_RANGE>.
<LABEL> is an alphanumeric designator;
upper and lower case are distinguished. Labels
can have up to 31 characters. If <LABEL> is
supplied without an option, the named label is
displayed; if <LABEL> is given as *, all of the
label definitions are displayed.

2tlb

Defaults

Examples

Emulation trace labels
tlb addr 0..23

tlb data 32..47

tlb lowerdata 40..47

tlb stat 24..31

<BIT#> <BIT#> specifies first the lower (or only), then
upper, bits of the range to be assigned to the
named <LABEL>. If more than one bit is
specified (creating a range), the bit numbers are
separated by two periods (..).

If no parameters are specified, the current label definitions are
displayed. Upon emulator powerup, or afténa command, the only
label definitions are the address, data, and status labels needed to
operate the emulation and optional external analyzer. All new label
definitions default to positive polarity unless theoption is given.

For the 68000 example program in appendix A, you can define a trace
label overlapping the lower byte of the data label, then use this new
label in a trace format specification so that you can see the message
being written to the program’s output area after a command is entered.

First, set the analyzer to complex configuration:
M> tcf -c

Now, you can define a label which will overlap the lower data bus byte.
Type:
M> tlb lowerdata 40..47

To view the label definitions, type:
M> tlb

You will see:

If you want to view only the output write data on the lower data byte in
ASCII format, type:

M> tf lowerdata,A

tib 3

Emulation trace started

Line lowerdata,A

4 ilb

T I

> mE>nnmsI’ O

To set up an analyzer specification, you must first define the pattern
and ranges to trigger and qualify the trace. Type:

M> tpat p1 addr=4000

M> tpat p5 lowerdata!=0

M> trng addr=4000..4011

M> tg pl

The analyzer will trigger when it encounters address 4000 hex (the
output area); it will only store data not equal to zero that is read from or
written to the output area (thus, it will not store the CLEAR_LOOP
activity, but only the LOOP activity).

Now start the trace:
M> t

Run the program and input a command to the program’s input area by
typing:

M>r 2000

U>m 3000=41

To view the results, type:
U>tl0..17

Related Commands

tf (used to specify the trace list formidiy; <LABEL> definitions can
be specified as output columns in the trace listing througtf the
command)

tpat (trace pattern definition; labels definedlim can be used in
pattern definitions)

trng (trace range, used to specify a range of valid values to be used in a
trace specification; labels defined ity may be used in defining the
trace range)

xtv (threshold voltage setting for analyzer lintifs;can be used to
define positive and negative logic for labels encompassing those lines)

tlb 5

. Notes

6 tlb

tp,xtp

Summary Specifies location of trigger state in trace list

=] <RETURN>
& <POSITION>

Function Thetp (xtp) command allows you to specify where the trigger state
will be positioned within the emulation (external) trace list.

If the trace tag countetc()) is disabled, the position number specified
has an accuracy of +/- 3 states; otherwise, the accuracy is +/- 1 state.

Parameters

Specifying-a along with a <POSITION>
parameter indicates that the trigger is to be
placed in the trace list with <POSITION>
number of states after the trigger position to the
end of the trace. That s, there will be
<POSITION> number of states between the
trigger position and the end of the trace. This
option is invalid for the external analyzer set to
timing mode %tmo -t).

Specifying-b along with a <POSITION>
parameter indicates that the trigger is to be
placed in the trace list with <POSITION>
number of states before the trigger position to

tp 1

2 tp

Note

v

Defaults

Examples

<POSITION>

the beginning of the trace. That is, there will be
<POSITION> number of states between the
beginning of the trace and the trigger position.
This option is invalid for the optional external
analyzer set to timing modgt(no -t).

<POSITION> is a decimal value from O to
1023 (or 0 to 511 ifcq is in effect) specifying
the number of states positioned before or after
the trigger state, depending on the option
supplied.

If you specify thes parameter, the trigger is
positioned at the start of the trace list.

If you specify thes parameter, the trigger is
positioned at the center of the trace list.

If you specify the parameter, the trigger is
positioned at the end of the trace list.

Thes, c,ande options are the only position parameters that are valid
for the optional external analyzer set to timing modie@ -t).

If no parameters are supplied, the current trigger position setting is
displayed. Upon powerup or aftarit , the trigger position i s.

The following examples were constructed using the 68000 sample
program from Appendix A.

To display the current setting of the trigger position, type:

M> tp

You will see:

tps
Now let's define a trigger and try various positioning methods to see
the results. Type:

M> tg addr=2018

M> t
Emulation trace started
M> r 2000
M> m 3000=41
M> tl -d
Line addr,H 68000 Mnemonic count,R seq

0 002018 CMPI.B #**D0O —+

1 002010 MOVE.B [A2],DO 0.600 uS

2 002012 CMPIL.B #000,DO 0.400 uS

3 003000 00 suprdata rd byte 0.400 uS

4 002014 0000 supr prog 0.400 uS

5 002016 BEQ.B 0002010 0.400 uS

6 002018 CMPIL.B #**,DO 0.400 uS .

7 002010 MOVE.B [A2],DO 0.600 uS

8 002012 CMPIL.B #000,DO 0.400 uS

9 003000 00 supr data rd byte 0.400 uS

Note that the trigger (always state zero (0)) is positioned at the start of
the trace. Let's move it to the end of the trace and redo the trace by

typing:
M>tp e
M> t
Emulation trace started
M> m 3000=41
M> tl -d -10..1
Line addr,H 68000 Mnemonic count,R seq
-4
-3 003000 00 suprdatard byte -
-2 002014 ORI.B #0f8,D0 0.400 uS
-1 002016 67f8 supr prog 0.400 uS .
0 002018 CMPI.B #**,DO 0.400 uS +
1

tp 3

Here, the trigger has been positioned at the last state of the trace (note
that state 1 is empty). Now position the trigger at the center of the trace

list:
M> tp c
M> t
Emulation trace started
M> m 3000=41
M> tl -d -10..10
Line addr,H 68000 Mnemonic count,R seq
-3
-2 002014 0000 supr prog - .
-1 002016 67f8 supr prog 0.400 uS .
0 002018 0c00 supr prog 0.400 uS +
1 002010 1012 supr prog 0.600 uS .
2 002012 0c00 supr prog 0.400 uS .
3 003000 00 supr data rd byte 0.400 uS
4 002014 0000 supr prog 0.400 uS
5 002016 67f8 supr prog 0.400 uS
6 002018 0c00 supr prog 0.400 uS .
7 002010 1012 supr prog 0.600 uS
8 002012 0c00 supr prog 0.400 uS .
9 003000 00 supr data rd byte 0.400uS .
10 002014 0000 supr prog 0.400 uS .

Here the trigger is positioned approximately at the center of the trace
list, with roughly 255 states preceding the trigger and 255 states
following the trigger. (Note that not all of the states preceding the
trigger have been filled.) Next, let's position the trigger using the
"after" and "before" parameters. Type:

M> tp -a 10
M> t

Emulation trace started

4 tp

M> m 3000=41
M> tl -d

Line addr,H 68000 Mnemonic count,R seq
0 002018 CMPI.B #**D0O — o+
1 002010 MOVE.B [A2],DO 0.600 uS
2 002012 CMPIL.B #000,DO 0.400 uS
3 003000 00 supr data rd byte 0.400 uS
4 002014 0000 supr prog 0.400 uS
5 002016 BEQ.B 0002010 0.400 uS
6 002018 CMPIL.B #**,DO 0.400 uS
7 002010 MOVE.B [A2],DO 0.600 uS
8 002012 CMPI.B #000,DO 0.400 uS
9 003000 00 supr data rd byte 0.400 uS
10 002014 0000 supr prog 0.400 uS .
11 002016 BEQ.B 0002010 0.400 uS

12

We asked for 10 states after the trigger to the end of trace and got 11.
This is within the specified accuracy of the system. Now try the
"before" parameter. Type:

M>tp-b5
M> t
Emulation trace started
M> m 3000=41
M> tl -d
Line addr,H 68000 Mnemonic count,R seq
-4 002012 CMPI.B #000,DO -—- .
-3 003000 00 suprdatard byte 0.400 uS
-2 002014 0000 supr prog 0.400 uS
-1 002016 BEQ.B 0002010 0.400 uS
0 002018 CMPI.B #**D0 0.400 uS +
1 002010 MOVE.B [A2],DO 0.600 uS
2 002012 CMPIL.B #000,DO 0.400 uS
3 003000 00 supr data rd byte 0.400 uS
4 002014 0000 supr prog 0.400 uS
5 002016 BEQ.B 0002010 0.400 uS
6 002018 CMPIL.B #**,DO 0.400 uS .
7 002010 MOVE.B [A2],DO 0.600 uS
8 002012 CMPI.B #000,DO 0.400 uS
9 003000 00 supr data rd byte 0.400 uS
10 002014 0000 supr prog 0.400 uS .
11 002016 BEQ.B 0002010 0.400 uS
12 002018 CMPI.B #**,D0O 0.400 uS .
13 002010 MOVE.B [A2],DO 0.600 uS
14 002012 CMPI.B #000,D0 0.400 uS
15 003000 00 suprdatard byte 0.400 uS
16 002014 0000 supr prog 0.400 uS

Here we specified five states before the trigger and got 4, which again
is within the system’s positioning accuracy.

tp 5

Related Commands

6 tp

tcq (used to specify the trace count qualifier; affects the number of
states that can be stored by the analyzer)

tg (defines the trigger expression)
tl (used to display the trace list)

tsq (used to specify the trigger position within the trace sequencer;
reference the sequencer operation when deciding where to position the
trigger in the trace list, if you want to capture all of the sequence
conditions)

xtmo (specifies whether the external analyzer acts independently or is
appended to the emulation analyzer)

tpat,xtpat

Summary

Syntax

Specify analyzer complex configuration patterns

COMPLEX CONFIGURATION ONLY

tpat/xtpat L
&

Function

Parameters

p2
p3
p4

p5

il

p7

é

Thetpat (xtpat) command allows you to assign pattern names to
simple emulation (external) analyzer expressions. These pattern names
are then used in building complex expressions for other analyzer

commands.

Thetpat command is only valid in the complex analyzer configuration

(tcf -c).

pl-p8

=(5p)= <SMPLE_EXPR>

The labelpl throughp8 are the names
assigned to each simple expression. (The
the label must be lowercase.)

2 tpat

Note

Defaults

Examples

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a storage
qualifier. For examplesSIMPLE_EXPR>
might consist of the expressiaddr=2000Q
For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

Simple expressions assigned to patterns are restricted from the standard
<SIMPLE_EXPR> definition in that you may not assign a range of
values to a given label; only one value is permitted. (However, in

actual practice, it is sometimes possible to circumvent this restriction

by careful choice of don't care values in the expression.)

Also, patterns can be specified that encompass more bits than the
number of bits defined for the specified label. When this occurs, the
upper bits are truncated.

If no parameters are given, or if the pattern name is givenadiseight
of the current pattern assignments are displayed. If one of the pattern
names is given, the expression assigned to that pattern is displayed.

Upon entering complex configuration after powerup tmi&
initialization, all eight patterns are definedijpat <pattern#> any.

If you're debugging the 68000 assembler program shown in Appendix
A, you might wish to trigger the analyzer upon entering any of the
output message setup routines, COMMAND_A, COMMAND_B, or
UNRECOGNIZED. In addition, you can equate these procedure
names to the address locations so they will be easier to remember.

First, set up the equates by typing:

M> equ commanda=202c
M> equ commandb=203a
M> equ unrecognized=2048

To use the pattern assignment commapat) you must put the
analyzer in complex configuration. Type:

M> tcf -c

Now set up the pattern assignments using the previously defined
equates:

M> tpat p1 addr=commanda
M> tpat p2 addr=commandb
M> tpat p3 addr=unrecognized

To set up a trigger when any one of the above patterns will trigger the
analyzer, type:

M> tg p1|p2|p3

Here, the intraset OR operator (]) is used to relate the patterns. Refer to
the syntax pages for <COMPLEX_EXPR> for details on how patterns
are combined to create complex expressions.

In another instance (still using the 68000 program from Appendix A),
you might want to be able to trigger the analyzer on various commands
received at the command input location (3000 hex). First, set up the
equates by typing:

M> equ inputpointer=3000

M> equ inputa=41

M> equ inputb=42

M> equ notacommand=00

Now set up various pattern combinations:
M> tpat p1 addr=inputpointer and data=inputa
M> tpat p2 addr=inputpointer and data=inputb
M> tpat p3 addr=inputpointer
M> tpat p5 data=inputa
M> tpat p6 data=inputb
M> tpat p7 data!=notacommand
M> tpat p8 data=notacommand

tpat 3

Related Commands

4 tpat

To trigger the analyzer when address=3000 and data=41 (an "A"
command):

M> tg pl

Or, you could trigger on a "B" command:
M> tg p2

If you want to trigger when an unrecognized command is read, type:
M> tg p3 and p5~p6~p8

Or, you could trigger when either command "A" or command "B" is
read:

M> tg p3 and p5|p6

You might want to trigger if any command is read:
M> tg p3 and p7

You should note that it is NOT necessary to use equates to associate
names with numeric patterns. To defirieandp2 above, you could
type the following with the same results:

M> tpat p1 addr=3000 and data=41
M> tpat p2 addr=3000 and data=42

tcf (defines whether the analyzer is in easy configuration or complex
configuration; theépat command is only valid in complex
configuration)

tcq (specifies a trace count qualifigpat patterns may be used in
complex configuration qualifier specification)

telif (specifies a secondary branch qualifier in analyzer complex
configurationipat patterns may be used in qualifier specification)

tg (used to specify a simple trigger in either easy configuration or
complex configurationtpat patterns may be used in complex
configuration trigger specification)

tif (used to specify a primary branch qualifier in either analyzer
configurationtpat patterns may be used in complex configuration
branch specifications)

tpg (specifies a trace prestore qualifigrat patterns may be used in
qualifier specification)

trng (defines a range of values on a set of analyzer input lines; this
range may be used in conjunction with the patterns defingubbyn
setting up complex analysis qualifiers)

tsg (used to manipulate the trace sequencer)

tsto (used to define global storage qualifiers in both analyzer
configurations; may also be used to define storage qualifiers for each
sequencer level in complex configuration. The patterns defingzhby
may be used in complex configuration storage qualifier definition.)

xtmo (determines whether the external analyzer acts as an independent
state or timing analyzer or is appended to the emulation analyzer. If
appended, thetpat command is no longer valithat defines patterns

to be used across both analyzers.)

tpat 5

. Notes

6 tpat

tpg.xtpq

Summary

Syntax

(tpg/xtpq

Function

Specify trace prestore qualifier

&= <RETURN>
,@ = JANALYZER_EXPR>

Thetpqg (xtpg) command allows you to specify a prestore qualifier for
the emulation (external) trace.

During the trace, the analyzer fills a two stage pipe with states that
satisfy the prestore qualifier. Each time a trace state is stored into the
trace buffer, the prestore qualifier is also stored and then cleared.
Therefore, up to two prestore events may be stored for each normal

STATE ON BUS
|

ENABLE

QUALIFIED
BY tsto
?

QUALIFIED STATES
BY tpq IGNORED
FLUSH PRESTORE QUEUE ?
TRACE STCRAGH WHEN
MEMORY FLUSHED
XXXX = XXXX 1 PRESTORE
QUEUE
yyyy - yyyy

777z

tpq 1

store event; the prestore events in the trace buffer will correspond to the
most recent states that satisfied the prestore qualifier immediately prior
to a store event but following the previous store event.

Since the prestore memory shares trace memory with store events, the
number of store events recorded will be reduced by the number of
prestore states recorded.

Parameters

<ANALYZER_ <ANALYZER_EXPR> allows you to specify

EXPR> the expression to be recognized as a prestore
state. This expression consists of a
<SIMPLE_EXPR> in analyzer easy
configuration and &aCOMPLEX_EXPR>
when the analyzer is in complex configuration.
Refer to the syntax pages for expressions for
specific details of analyzer expressions. In
either configuration, the expression may consist
of the stateany (prestore all states) apne
(disable prestore).

Defaults If no parameters are given, the current prestore qualifier setting is
displayed. Upon powerup or aftanit initialization, the prestore
qualifier defaults tapg none

Examples With the example 68000 program given in Appendix A, you might
want to prestore the command input that leads to the output routines.
To do this, you first need to set up a trigger state:

U> tg addr=2000

Then, set up a storage qualifier that will store only the message setup
and output routines:

U> tsto addr=202c..2071

2 tpq

Note ﬂ

Emulation trace started

Specifying a storage qualifier tdfto any will not produce the desired
results; the prestore qualifier will be ignored in favor of the regular
storage event.

Now set up the prestore qualifier by typing:
U> tpg addr=3000

Now you can proceed with the measurement. Type:
U>t

U> r 2000
U> m 3000=21

(This inputs a "command" value to the program.)

uU> tl-d

Line addr,H 68000 Mnemonic count,R seq
002000 MOVEA.L *¥¥¥kkix AD -+
003000 00 supr data rd byte prestore
003000 21 supr data rd byte prestore
002048 MOVE.B #00f,DO 4.800 S
00204a 000f supr prog 0.400 uS .
00204c MOVEA.L #00000102a,A0 0.400 us
00204e 0000 supr prog 0.400 uS
002050 102a supr prog 0.400 uS .
002052 MOVEA.L A3,Al1 0.400 uS
002054 MOVE.B #020,D1 0.400 uS

O©CO~NOUIARWNEFO

The prestore events are shown on lines 1 and 2.

You can make similar measurements within the analyzer's complex
configuration. Using the pattern specification capability, you can
narrow down the prestore selections. For example, you might want to
prestore only those command inputs which are "unrecognized"; that is,
they are neither 41 hex, 42 hex, or 00 hex. First, you must set the
analyzer to complex configuration. Type:

U> tcf -c

tpq 3

Emulation trace started

4 tpq

When the analyzer enters complex configurationtdfeount
qualifier is set toone. If it is not initialized to some other qualifier,
the prestore labels will not be shown in the trace display. For this
example, you can use the count time qualifier. Type:

U> tcqtime

Now you need to define patterns for use in the trigger, store, and
prestore qualifiers. Type:

U> tpat p1 addr=2000

U> tpat p2 addr=3000

U> trng addr=202c..2071

U> tlb lowerdata 40..47

U> tpat p5 lowerdata=41

U> tpat p6 lowerdata=42

U> tpat p7 lowerdata=00

To set up the prestore qualifier so that only "unrecognized" commands
will be prestored, you need to construct an expression where address
=3000 and data is not equal to 41 or 42 or 00. Type:

U> tpg p2 and p5~p6~p7

Next, set up the analyzer trigger condition:

U> tif1pl2
U> tif 2 never
U> tsq-t2

You want the analyzer to store only the output routines. (If you let the
analyzer store all information, the prestore information will be
overridden in favor of the regular store states.) Type:

U> tsto2r

To proceed with the measurement, type:
U> t

U> r 2000
U> m 3000=41

Here, we have input a "command" of 41 -- one of the values that should
NOT result in a prestore state.

U> tl-d

Line addr,H 68000 Mnemonic count,R seq

OCO~NOUITAWNEFO

002000 MOVEA.L *x¥¥¥kdx AD -+
00202c MOVE.B #011,D0 3.054 S
00202e 0011 supr prog 0.400 uS .
002030 MOVEA.L #000001008,A0 0.400 uS
002032 0000 supr prog 0.400 uS
002034 1008 supr prog 0.400 uS
002036 BRA.W 0002052 0.400 us
002038 001a supr prog 0.400 uS
002052 MOVEA.L A3,A1 0.600 usS .
002054 MOVE.B #020,D1 0.400 uS

Since the command input (41 hex) did not satisfy the prestore qualifier,
no prestore states are shown in the trace listing. Now you can try it
again with an "unrecognized" command. Type:

U>t
Emulation trace started
U> r 2000
U> m 3000=21
uU> tl-d
Line addr,H 68000 Mnemonic count,R seq
-1 000004 2000 supr data rd word -
0 002000 MOVEA.L *rxxxisk AD 0.400 usS +
1 003000 21 suprdatard byte prestore
2 002048 MOVE.B #00f,DO 3.527 S
3 00204a 000f supr prog 0.400 uS .
4 00204c MOVEA.L #00000102a,A0 0.400 us
5 00204e 0000 supr prog 0.400 uS
6 002050 102a supr prog 0.400 uS
7 002052 MOVEA.L A3,Al 0.400 uS
8 002054 MOVE.B #020,D1 0.400 uS

The prestore state is shown on line 1 of the trace listing.

Related Commands tcf (specifies whether the analyzer is to operate in easy configuration or

complex configuration)
tsg (used to manipulate the trace sequencer)

tsto (used to specify a global storage qualifier for both easy
configuration and complex configuration; also used to specify
individual sequence term storage qualifiers in complex configuration)

xtmo (specifies whether the external analyzer will act as an
independent state or timing analyzer or whether it will be appended to

tpg 5

the emulation analyzer. If appended to the emulation analyzer, the
xtpg command has no effect; ttgg command sets the prestore
qualifier for both analyzers.)

6 tpq

trng,xtrng

Summary

Syntax

COMPLEX CONFIGURATION ONLY

Specify a complex configuration range qualifier

trng/xtrng \}

Function

Parameters

= <LABEL>

=l <RETURN>

<exPR> ()= <EXPR>

Thetrng (xtrng) command lets you specify a range of acceptable
values for an emulation (external) trace label. This range may then be
used in complex qualifiers for the trace specification. tirige (xtrng)
command is only available in the analyzer's complex configuration (see
tcf syntax pages).

There is no need for a not equals operator in specifying ranges, as the
trace specification commands which allow "range" as a parameter also
accept "not range" in the fortn.

If the optional external analyzer has been appended to the emulation
analyzer via the&tmo command, th&trng command is invalidrng
sets a range pattern to be used by both analyzers.

any When you specifgny, all possible patterns on
all labels will satisfy the range specification.

<LABEL> <LABEL> specifies the group of signal lines to
which arange is assigned. These might be
addr, data, or stat; or, they may be a label that
you have defined. See ttle command syntax
pages for information on defining labels.

trng 1

<EXPR> <EXPR> allows you to specify first the lower,
then upper, boundaries of the range of patterns
to be considered valid range entries. For
example, to define the address range of 2000
through 21ff hex, you would specify the
<EXPR> range a2000..21ff Note the two
periods used as a separator between the lower
and upper range bounds; no additional spaces
are included.

Also, the first boundary specified must be less
than or equal to the second boundary specified
(exampletrng addr=2000..21ffis correct;

trng addr=21ff..2000is incorrect). You may
also specify a single value for the range
(exampletrng addr=2000).

Refer to the <EXPR> syntax pages in this
manual for details on expression syntax.

Ranges can be specified that encompass more
bits than the number of bits defined for the
specified label.

Defaults If no parameters are supplied, the current range definition is displayed.
After powerup ottinit initialization, thetrng command is set tong
any. (Note thatrng is not directly available after analyzer
initialization; the analyzer is set to easy configuration when initialized.
You must then switch to complex configuration to actesg)

Note # Thetcf -e (set trace configuration to easy) command also will reset
trng. In other words, anyng defined when the analyzer was in
complex configuration is destroyed when the analyzer is set to easy
configuration; you cannot return to complex configuration and use the
oldtrng.

2 trng

Examples

With the 68000 sample program in Appendix A, you may want to

trigger the analyzer on any access to the message storage area lo
from 1008 through 1038 hexadecimal. To do this, type the followin

commands:
M> tcf -c
M> trng addr=1008..1038
M>tgr
M> t
Emulation trace started
M> r 2000
U> m 3000=41
uU> tl-d
Line addr,H 68000 Mnemonic count,R seq
0 001008 54 supr data rd byte -+
1 004000 54 suprdata wr byte 0.400 uS .
2 002068 ORI.B #0f8,D1 0.400 uS .
3 00206a 66f8 supr prog 0.400uS .
4 00206C JMP ik 0.400 uS .
5 002064 MOVE.B [A0]+,[Al]+ 0.600 uS .
6 002066 SUBI.W #00001,DO 0.400 uS .
7 001009 48 supr data rd byte 0.400uS .
8 004001 48 supr data wr byte 0.400 uS .
9 002068 0001 supr prog 0.400 uS .

The analyzer is set to complex configuration (it must be in complex
configuration to use theng command); then "range"” is defined as the
addresses from 1008 through 1038 hex. The emulation analyzer trigger
is then defined as the occurrence of range; a trace is started. You can
see that the trigger was found in line number 0 of the trace listing; the
program read the first byte of the message from the data area.

Related Commands

tcf (sets analyzer to complex or easy configuration; analyzer must be in

complex configuration to utilize theng command)

tcq (trace state/time counter; in complex configuration, states can be
counted using the range specification)

telif (specifies the sequencer secondary branch expression; in complex
configuration, this expression can include references to the range)

tg (specifies analyzer trigger; may trigger on references to range)

trng 3

4 trng

tif (specifies the sequencer primary branch expression; in complex
configuration, branch expression may include range qualifier)

tpat (trace pattern definition; assigns pattern names to simple
expressions for later use in analyzer specificatitpet essentially
commits only one pattern to a label; whergag allows a range of
values to be assigned to the range pattern)

tpq (defines trace prestore qualifier; the range specification may be
used in complex configuration prestore qualifier expressions)

tsq (trace sequencer definition)

tsto (defines trace storage qualifier; that is, specifies exactly what states
are actually to be stored by the analyzer. In complex configuration, this
can include states that fall within the specification defineuirigy)

xtmo (specifies the mode of the external analyzer; either an
independent state or timing analyzer or an analyzer appended to the
emulation analyzer)

ts,xts

Summary Display status of analysis trace

Syntax

ts/xts ﬁ <RETURN>

Function Thets (xts) command allows you to determine the current status of the
emulation (external) analyzer.

Trace Status Displays

The emulation and external state trace status is displayed in the
following form:

---[Emulation | External] Trace Status---

(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]

Trigger (not) found

Arm to trigger armcount

States visible (history) first..last

Sequence term term

Count remaining count

The external timing trace status is displayed in the following form:

--- External Timing Trace Status---

(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]

trace status

Arm to trigger armcount

Samples visible (history) first..last

The trace status header indicates whether this status is for the emulation
or external state trace.

ts 1

2 ts

Whether the trace status is displayed as Emulation or External depends
on:

m Presence of the optional external analyzer.

m Whether you entered tl& (emulation trace status) xts
(external trace status) command.

m The current mode setting of the optional external analyzer. If
set as a state analyzgtm(o -s), you can have an external state
trace status. If set as a timing analyzém -t), there is a
different display for timing status (described below). If
appended to the emulation analyzer xtsscommand is
invalid; the external analyzer acts as an extension to the
emulation analyzer and their status is reported under the
Emulation Trace Status.

Status Display Interpretation

The first line of the trace status indicates the initiator of the trace,
whether the trace is completed, running, or halted, and whether or not
this trace has been displayed.

NEW This trace has not been displayed. ietl)
command will clear this flag until the next trace
is started. Halting a trace that is running (as
opposed to complete), marks the trace as being
NEW even though the trace may have been
displayed while running. The nektcommand
with no options will list the trace from the top.

User The operator initiated this trace with ttifet)
command.

CMB This trace was initiated by a [EXECUTE pulse
on the CMB after & command was entered.

complete The trace has found its trigger and completed.

halted The trace was halted in responsetio(ath)
command.

running The trace is still running; either the complete
sequencer specifications have not yet been
satisfied; or not enough qualified store states
have been found to fill trace memory.

The second line of the trace display indicates the analyzer arm status.

ignored The arm condition specified for this trace was
tarm always.

received The arm condition has been satisfied.

not received The arm condition was not satisfied. (If you

specified an arm condition but didn't use it in
trigger qualification, this will be displayed if

the arm condition is not satisfied. However, the
analyzer may still find the correct trigger and
complete the trace.)

The third line of the state trace display indicates the trigger status.
Because of the pipelined analyzer architecture, it is possible that the
trace status may display "not found" when in fact the trigger has been
found. This will occur when not enough states satisfying the storage
specification are found to push the trigger out of the pipeline and into
trace memory. In any case, the trace will not be displayable until the
trigger is in trace memory (unless you halt the analyzer).

found The trigger condition has been found.

not found The trigger condition has not yet been satisfied.

ts 3

For the external timing status, the third line indicates the timing trace
status. This will be one of the following strings:

Tracepoint found

Trigger found - delaying

Pattern found - waiting for edge
Prestore complete - waiting for trigger
Waiting for prestore

Waiting for arm

The fourth line of the trace display indicates the amount of time that
passed between the arm signal and the trigger condition.

armcount This will be from -0.04 usec to 41.94288 ms.
The arm to trigger counter may underflow or
overflow, in which case "<-0.04 uS" or
">41.94288 mS" are reported, respectively. If
the arm signal was ignored, if the trigger was
not found, or if the clock setting (tck/xtck) is
fast (F) or very fast (VF), the character "?"
(unknown) is displayed.

The fifth line of the trace display indicates the number of states
displayable byl. (Number of samples in the case of the external
timing trace.)

visible Number of states which can be displayed by tl
(xtl); this will be a number from 0 to 1024 (or 0
to 512 if tcq is active).

history Number of states which can be displayed if the
current trace is halted; this may include history
states which may be overwritten and thus
unavailable if the current trace runs to
completion.

first Number of the first state stored in trace
memory, relative to the trigger state. This will
be a number from -1024 to 0 (-512 to €cij is

active). The character "?" is displayed if the
trigger state is not yet in memory.

last Number of the last state stored in trace
memory, relative to the trigger state. This will
be a number from -1 to 1023 (-1 to 511ci is
active). The characté&ris displayed if the
trigger state is not yet in memory.

The sixth line of the trace display indicates the current sequencer term
position. (Not used in the external timing trace status.)

term Current sequence term position (1 through 5 in
easy configuration; 1 through 8 in complex
configuration). If the trace is completed or
halted, the last sequence term number is
displayed. A "?"is displayed if the trace is
running and the sequencer is running too
quickly for the current term number to be read.

The seventh line of the trace display indicates the count qualifier status
for the primary branch condition of the current sequence terrtif see
for further details. (Not used in the external timing trace status.)

count Remaining number of occurrences of the
primary branch qualifier needed to satisfy the
qualifier so that the primary branch will be
taken. A "?"is displayed if the trace is running
and the counter is updating too quickly to be
read.

Whisper Mode Trace Display

If the -w option is given, an abbreviated version of the trace status is
given as follows:

Trace run status:
R - trace running
C - trace completed
H - trace halted
Trace arm status:
A - Arm has been received

ts 5

Parameters

Defaults

Examples

tg any

Emulation trace started

Emulation trace halted

6 ts

a- arm has not yet been received
X - arm signal is being ignored
Trace trigger status:
T - trace trigger has been found
t - trace trigger has not yet been found
Trace list status:
* - indicates that this trace has not been displayed

-w The-w option indicates that the trace status
should be printed in whisper mode; this gives
an abbreviated version of the status. See
"Function" above for interpretation of the
whisper status information.

If the whisper option is not specified, the long version of trace status is
displayed.

Let’s first start then halt a trace to look at the status. Type:

M> tg

M> r 2000
U> t

You will see:

Now type:
U> th

You will see:

To view the trace status, type:
U> ts

--- Emulation Trace Status ---
NEW User trace complete
Arm ignored

Trigger found

Arm to trigger ?

States 512 (512) 0..511
Sequence term 2
Occurrence left 1

You will see:

Here, the trace was initiated by the user and has been completed but not
yet displayed. The arm condition is disabled and the trigger was found.
Since no arm was specified, the system cannot determine the amount of
time between the arm and the trigger, so it is displayed as a question
mark?. There are 512 states in trace memory, with 0 being the first
state with respect to the trigger and 511 being the last. (Note that since
there are only 512 states, the trace count qualifier must be enabled).
The sequencer is on the second sequence term (which is the trigger
term for this example); the occurrence count is one (1) since the
sequencer has found the trigger term (remember that the last primary
branch qualifier (the trigger term)ti§ 5 never).

Now, display the trace list by typing:
uU> tl-d

You will see a display such as the following:

Line addr,H 68000 Mnemonic count,R seq
0 003000 00 supr data rd byte -+
1 002014 ORI.B #0f8,D0 0.400 uS
2 002016 67f8 supr prog 0.400uS .
3 002018 CMPI.B #+* D0 0.400 uS
4 002010 MOVE.B [A2],DO 0.600 uS
5 002012 CMPI.B #000,D0 0.400 uS
6 003000 00 suprdata rd byte 0.400 uS
7 002014 0000 supr prog 0.400 uS
8 002016 BEQ.B 0002010 0.400 uS
9 002018 CMPI.B #*DO 0.400 uS
You can also display the short form of the status above by typing:
U> ts -w
You will see:
CxT

ts 7

Emulation trace started

--- Emulation Trace Status ---

NEW User trace running
Arm ignored

Trigger not found

Arm to trigger ?

States ? (512) ?..?
Sequence term 1
Occurrence left 1

Rxt*

8 ts

Note that there is nfosymbol. That is because we just issuéld a
command to display the trace.

Let's look at another example. Set a trace trigger to a value that won't
be found:

U> tg never

Now initiate a trace by typing:
U>t

To obtain the new trace status, type:
U> ts

You will see:

Now, we have a trace in process, initiated by the user; the trace list has
not yet been displayed. The arm condition is disabled; the trigger has
not yet been found. There are 512 states in trace memory; however,
since there is no trigger condition, the states have not been numbered
and will be overwritten by subsequently occurring states. The
sequencer is still on term one, looking for one occurrence of the trigger
pattern.

Display the short version of the same status by typing:
U> ts -w

You will see:

Note the* which indicates that the current trace list has not been
displayed.

Emulation trace halted

Now halt the trace in process by typing:
U> th

You can display the trace list by typing:

u>tl-d

You will see:
Line addr,H 68000 Mnemonic count,R seq
-512 002014 ORI.B #0f8,D0 - .
-511 002016 67f8 supr prog 0.400 uS
-510 002018 CMPI.B #**,D0 0.400 uS
-509 002010 MOVE.B [A2],DO 0.600 uS
-508 002012 CMPI.B #000,D0 0.400 uS
-507 003000 00 supr data rd byte 0.400 uS
-506 002014 0000 supr prog 0.400 uS
-505 002016 BEQ.B 0002010 0.400 uS
-504 002018 CMPI.B #**,D0 0.400 uS
-503 002010 MOVE.B [A2],DO 0.600 uS

--- Emulation Trace Status ---
User trace halted

Arm ignored

Trigger not found

Arm to trigger ?

States 512 (512) -512..-1
Sequence term 1
Occurrence left 1

Hxt

Now display the new trace status:
U> ts

Now the trace has been halted. The NEW flag is gone; therefore, the
current trace list has been displayed. The trigger was never found. The
"States" list indicates that 512 states are in memory; these are the last
512 states recorded by the analyzer up to the point where the analyzer
was halted.

To display the short form of this status, type:
U> ts -w

You will see:

ts 9

For the external timing analyzer, a typical trace status display might be:

--- External Timing Trace Status ---
NEW User trace complete

Arm ignored

Tracepoint found

Arm to trigger ?

Samples 1024 (1024), -59..964

Related Commands es(allows you to determine general emulator status)

t (starts an emulation trace)
tarm (arm the analyzer based on state of the trigl and trig2 signals)

tcq (specify trace tag counter; affects number of states that the analyzer
can store)

tg (specify the analyzer trigger state)
th (halt the current trace in process)

tif (specify sequencer primary branch condition and number of
occurrences)

tx (specify that trace is to begin upon receiving the CMB /EXECUTE
pulse)

x (begin a synchronous CMB execution)

10 ts

tsck,xtsck .

Summary Specify analyzer slave clocks

Syntax

tsck
L

#= <RETURN>

G o OO IR

xtsck \? 7 = <RETURN>

- 4 "
)
.
S

tsck 1

2 tsck

Function

Parameters

Thetsck (xtsck) command allows you to specify the slave clock edges
used for the emulation (external) analyzer trace.

Each analyzer pod has the capability of latching certain signals with a
slave clock instead of the master clock. (You set up the master clock
with thetck command.)

Thextsck command controls the slave clock for the optional external
analyzer. No pod number is necessary since the external analyzer has
only one pod.

d The-d option allows you to specify that the
slave clock operates in demultiplexed mode. In
this mode, the lower 8 channels of the analyzer
pod (bits 0-7) are latched with the slave clock
and the upper 8 channels (bits 8 through 15) are
replaced with the lower 8 channels. In other
words, the upper 8 bits are identical to the
lower 8 at the pod.

However, the data is not clocked into the
analyzer itself until the next master clock
occurs. Therefore, if no slave clocks have
occurred since the last master clock, the data on
the lower 8 analyzer lines is identical to the
upper 8. If one or more slave clocks have
occurred since the last master clock, the data on
the lower 8 bits is the only data available to the
analyzer.

When using thed option, you must specify one
of the-r, -f, or-x options to indicate the active
edge(s) of the slave clock.

m The-m option specifies that the slave clock
operates in mixed mode. In the mixed mode,
the lower 8 channels of the analyzer pod (bits
0-7) are latched with the slave clock, and the
master clock latches in the entire pod.
Therefore, if no slave clock has occurred since

<POD#>

the last master clock, the data on the lower 8
bits of the pod will be clocked into the analyz
at the same time as the upper 8 bits. If more
than one slave clocks has occurred since the last
master clock, only the first slave clock data will
be available to the analyzer.

When using them option, you must specify
one of ther, -f, or-x options to indicate the
active edge(s) of the slave clock.

Specifies one of 5 groups of analyzer input
lines. These are as follows:

Pod # Analyzer Bits
1 Emulation 0-15
2 Emulation 16 - 31
3 Emulation 32-47
4 Emulation 48 - 63
5 External 0-15

Note that you only need to specify pod 5 if you
are using thésck command to operate on the
optional external analyzer. You would
typically do this only if you had logically

joined the analyzers using tkieno command.

Indicates that the pod should latch data on the
rising edge of the slave clock.

Indicates that the pod should latch data on the
falling edge of the slave clock.

tsck 3

4 tsck

Defaults

Examples

X Indicates that the pod should latch datéoth
edges of the slave clock.

CLOCK SIGNALS Ther, f, andx operators may be used on the
following clock signalsJ, K, L, M or N.
ClocksL, M, andN are generated by the
emulator. Clockg andK are the external
clock inputs on the optional external analyzer’s
probe.

You should only use the external clock signals
in clocking the external state/timing trace; they
should not be used in clocking the emulation
analyzer trace. You may useandM to clock
the external state trace as well as the emulator
trace.

If you specify multiple clocks, any one of the
clock edges (as defined by thd, andx
options) will clock the trace.

o] If you specify-o with a<POD#>, the slave
clock is ignored on that pod. Remember that
you don't need to speciffPOD#>with the
xtsck command; this command operates only
on the single external analyzer pod.

If no parameters are specified, the current slave clock definitions are
displayed. The default for all slave clocksfEafter powerup ofinit
initialization.

To demultiplex pod 5 (external analyzer bits 0-15) with both edges of
the J clock, type:

M> tsck -d 5 -x J

To display the current state of the slave clock specifications, type:
M> tsck

tsck -0 1
tsck -0 2
tsck -0 3
tsck -0 4
tsck -d 5 -x J

Related Commands

You will see:

ta (allows you to display active signals on the analyzer input lines;
useful in verifying that you have selected the correct clock conditions)

tck (used to define master clock signals used by the analyekr;
defines the slave clock signals. Default modédsick is off on all
pods.)

xtv (specifies threshold voltages for external analyzer input lines; must
be set correctly to ensure that thendK clock signals are recognized)

xtmo (specifies mode of operation for the external analyzer; that is,
whether it acts as an independent analyzer or is appended to the
emulation analyzer)

tsck 5

. Notes

6 tsck

tsq,xtsq

Summary

Syntax

EASY CONFIGURATION

Manipulate the trace sequencer

tsq/xtsq L

COMPLEX CONFIGURATION

<RFTURN>

ﬁ <TERM#>

tsq/xtsq \»

Function

> <RFTURN>

G

==

<TERM#>

Thetsq (xtsq) command allows you to manipulate or display the
emulation (external) trace sequencer.

When the analyzer is in easy configuratitaf {€), the sequencer has a
maximum of four sequence terms with a minimum of one term.

If the analyzer is in complex configuratianf(-c), the sequencer
always has eight terms (although the particular sequencer setup may
mean that only two are ever accessed).

tsq 1

2 tsq

Parameters (Easy
Configuration)

If thet option is specified, the trigger term is
displayed. The trace trigger occurs the first
time that this term is entered during a trace.
When in easy configuration, the trigger
condition is always the primary branch
condition for the last term in the defined
sequence.

If you specifyr, the sequencer is reset to a
simple one term sequence which stores all
states and triggers on the first occurrence of any
state. This is equivalent to issuing the
commands:

tg any
tsto any
telif never

Specifyingi in conjunction with & TERM#>
inserts a new sequence terikAERM#>.

The new sequence term will use the default
storage qualifier (which can be modified with
thetsto command). It will also use the
secondary branch qualifier (global restart in
easy configuration) specified by tredif
command.

If there is already a sequence term with number
<TERM#>, terms with numberTERM#>

and above will be renumberedlERM#>
becomesTERM#> + 1) to make room for the
new term.

The primary branch qualifier for the new term
will be defined asif <TERM#> any unless it
is the last term in the sequence (by definition,
the trigger term), in which case the primary
branch qualifier is set tif <TERM#> never.

<TERM#>

Parameters (Complex
Configuration)

<TERM#>

Specifyingd in conjunction with & TERM#>
deletes the term specified and renumbers hig
numbered terms downward to fill the gap.

<TERM#> specifies a term number in the
range 1 through 4 to insert in the sequendgr (
or remove from the sequenced)(You must
insert terms in a contiguous manner; for
example, you cannot insert a term number 4 if
the sequencer only has two terms defined.
Instead, you must next insert a term numbered
1,2o0r3.

If you specify-r, the sequencer is reset to an
eight term sequence with the trigger term at
term number 2. The sequencer will be set to
tsto any(store any state). All secondary
branch qualifiers are turned ofélif

<TERM#> never), and all primary branch
qualifiers will jump to the next higher
numbered term on any statié ¢ TERM#>

any (KTERM#> +1)).

Specifying-t by itself displays the trigger term.
You can define which term is to be the trigger
term by specifyingt along with a<TERM#>.

The analyzer will trigger on the first entrance to
the term from either a primary or secondary
branch.

<TERM#> specifies a term number in the
range 2 through 8 to use as the trigger term.

Defaults If no options are given, all of the sequencer storage and branch
qualifiers are displayed along with the trigger term position. Upon

tsq 3

tif 1 any
tsto all
telif never

tif 1 any
tsto all
telif never

4 tsq

Examples

powerup or aftetinit initialization, the sequencer defaults to the
following state:

In other words, the sequencer powers up with two sequence terms; the
second sequence term is the trigger term. Any state will cause a branch
from the first term to the second term; global restart is set to never and
all states are stored by the analyzer.

Switching analyzer configurations from easy to complex or vice versa
also resets the sequencer (thatcks,c or tcf -€).

To view the state of the sequencer after poweruginitatype:

M> tsq

You will see:

Only one sequence term is used,; it has a primary branch qualifier set to
any; the trigger occurs upon branching out of this term. All states
encountered are stored by the analyzer; the global restart term is
disabled. With this sequencer setup, the analyzer will immediately find
its trigger when a trace is initiated.

Now, let's show how the sequencer may be manipulated using the
analyzer commands and the sequencer commands. Type:

M> telif addr=2020

M> tsq -i 2
M> tsq -i 3
M>tsq -i 4

M> tif 1 addr=2000
M> tif 2 addr=1008
M> tif 3 addr!=2020
M> tif 4 addr!'=2020

Since we are in the easy analyzer configuraticint-€), thetelif
command sets a global restart whenever address 2020 is encount
by the analyzer. In addition, we set the primary branch qualifier for
term number 1 to the address value of 2000 hex and the primary branch
qualifier for term number 2 to the address value of 1008 hex. We've
also added additional terms to fill out the sequencer’s limit of four

terms in easy configuration. When terms are inserted, their primary
branch qualifier is initially set tif <TERM#> any. Now view the

new sequencer arrangement by typing:

M> tsq
You will see:

tif 1 addr=2000
tif 2 addr=1008
tif 3 addr!'=2020
tif 4 addr!'=2020
tsto all

telif addr=2020

GCLOBAL RESTART PRIMARY BRANCHES

ADDRESS = 2000
TERM 2

ADDRESS = 1008
ANY STATE EXCEPT
ADDRESS = 2020

ANY STATE EXCEPT
ADDRESS = 2020
(TRIGGER TERM)

(TRIGGER = BRANCH
OUT OF TERM 4)

ADDRESS = 2020

TERMB

TERM4

With this sequencer arrangement, the analyzer will first look for an
address value of 2000 hex. If found, it will branch to term number 2,
where it will look for an address of 1008 hex. If that value is found, the
analyzer will accept any value to branch through the next two terms
and then will trigger. All values found will be stored. Note that if the
analyzer finds the address 2020 hex while in terms 1 through 4, it will
immediately restart the sequencer at term 1; that is, it will again look
for an address value of 2000 hex.

tsq 5

tif 1 addr=2000
tif 2 addr=1008
tif 3 addr!'=2020
tsto all

telif addr=2020

6 tsq

To delete a sequencer term in easy configuration, type:
M> tsq -d 3

You can verify the deletion by typing:
M> tsq

You will see:

In complex configuration, the full power of the sequencer is available.
There are 8 sequencer terms; any term except term 1 can be the trigger
term; and each term has primary and secondary branch conditions
which dictate progression to other terms in the sequence. Let's set the
analyzer to complex configuration and manipulate the sequencer. Type:

M> tcf -c

This sets the analyzer to complex configuration. Now let’s look at the
default trace sequencer setup. Type:

M> tsq

tif 1 any 2
tif 2 any 3
tif 3any 4
tif 4 any 5
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 2

tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
telif 1 never
telif 2 never
telif 3 never
telif 4 never
telif 5 never
telif 6 never
telif 7 never
telif 8 never

You will see:

Here, the primary branch conditions are set to jump to the next term on
any condition. All of the secondary branch conditions have been
disabled. In addition, any state will be stored by the analyzer for each
term in the sequence, and the analyzer will trigger upon entry to term
number 2.

For the example below, refer to the 68000 program in Appendix A.
Suppose you were having a problem with this program in that the
system intermittently output MESSAGE_B when the command "A"
was input and vice versa. You would like to trigger the analyzer upon
such an occurrence. Type the following commands:

M> tpat p1 addr=2000
M> tpat p2 addr=3000
M> tpat p3 addr=206c
M> tpat p4 addr=1019
M> tpat p5 addr=1008
M> tpat p6 data=00
M> tpat p7 data=41
M> tpat p8 data=42

tsq 7

At this point, you may want to verify that all of your pattern entries are
correct. Type:

M> tpat
You will see:

tpat p1 addr=2000
tpat p2 addr=3000
tpat p3 addr=206¢c
tpat p4 addr=1019
tpat p5 addr=1008
tpat p6 data=00
tpat p7 data=41
tpat p8 data=42

Now, set the trigger term to term 6; then set up the primary and
secondary branch conditions. Type:

M> tsq -t 6

M> tif 1 p1 2

M> tif 2 p2 and p6 3
M> tif 3 p2 and p7 4
M> tif 4 p4 6

M> tif 5 p5 6

M> telif 3 p2 and p8 5
M> telif 4 p3 2

M> telif 5 p3 2

Now, verify all of the sequencer modifications by typing:
M> tsq

8 tsq

tif 1pl2

tif 2 p2 and p6 3
tif 3 p2 and p7 4
tif4p4 6

tif 5p56

tif 6 any 7

tif 7 any 8

tif 8 never

tsq -t 6

tsto 1 all

tsto 2 all

tsto 3 all

tsto 4 all

tsto 5 all

tsto 6 all

tsto 7 all

tsto 8 all

telif 1 never
telif 2 never

telif 3 p2 and p8 5

telif 4 p3 2
telif 5 p3 2
telif 6 never
telif 7 never
telif 8 never

Note

You will see:

Refer to the resulting state diagram. When the program is run, the
sequencer will immediately look for the statiress=2000 If found,

the sequencer branches to term number 2, where it looks for the state
whereaddress=300AND data=0Q This will be the point where the
input register is cleared by the CLEAR routine.

With microprocessors such as the 68000 and the 80186 family that
prefetch instructions, it is often more accurate to set up trace conditions
based upon data movement resulting from an instruction rather than the
instruction itself. When the data pattern is found, it is more likely that
the instruction actually executed. Such methods must be used with
care; in some programs several different routines may execute the same
data movement.

tsq 9

SECONDARY BRANCHES PRIMARY BRANCHES

TERM1

ADDRESS = 2000

ADDRESS = 206C

ADDRESS = 3000 AND DATA = 00

ADDRESS
206C
ADDRESS = 3000 AND DATA = 41

ADDRESS = 3000
AND DATA = 42

ADDRESS =
1018

ADDRESS = 1019
(TRIGGER TERM)
ANY STATE
7

NOT USED

Next, the sequencer will advance to term number 3, where it will
simultaneously search for the pattadudress=300(AND data=41and
the patterraddress=3000AND data=42 Essentially, you are now
looking for command input. Hddress=3000AND data=41is found,
command "A" has been input. To search for incorrect processing, the
sequencer now jumps to term number 4 and begins looking for the
patternaddress=1019meaning that it is searching for an access to the
MESSAGE_B data area. Converselygdidress=3000AND data=42

are found, the sequencer jumps to term number 5 and looks for the
patternaddress=1008which is the MESSAGE_A data space. In
either case, if the patteaddress=206ds found first, the sequencer
restarts at term 1; no error in processing was found.

If either of thetif patterns set up in term number 4 or 5 are satisfied, the
sequencer branches to term number 6, which is the trigger term.
Triggering of the analyzer occurs immediately upon entry to term
number 6. In other words, if the incorrect message area is accessed for
the command value input, the analyzer will trigger. Note that all states
are stored in each sequence term; this will leave a record of the events
leading up to the trigger state (it would be wise, however, to center the
trigger in the trace memory with the comméapna).

Related Commands tcf (defines whether analyzer is operated in complex configuration or
easy configuration)

10 tsq

telif (sets global restart qualifier in easy configuration; secondary
branch qualifier in complex configuration)
tg (defines the trigger qualifier)

tif (sets the primary branch qualifier in both easy and complex
configuration)

tsto (defines the analyzer global storage qualifier)

tsq 11

. Notes

12 tsq

tsto,xtsto

Summary

Syntax

EASY CONFIGURATION

Specify analyzer trace storage qualifiers

tsto/ xtsto - <RETURN>
@- <SIMPLE EXPR>

COMPLEX CONFIGURATION

tsto/xtsto L L "l <RETURN>
Coym{<TERM #> (5o <COMPLEXEXPR>M

Function

Thetsto (xtsto) command allows you to specify a trace storage
qualifier for the emulation (external) analyzers. The expression
parameter, wheth&SIMPLE_EXPR> or <COMPLEX_EXPR>,
specifies the type of data to be stored by the analyzer.

If the analyzer is in easy configuratidof(-€), the expression is
specified by<SIMPLE_EXPR> and this serves as a global storage
qualifier. In other words, the same expression is used as a storage
qualifier regardless of the current sequencer state.

If the analyzer is in complex configuratianf(-c), the expression is
specified byxCOMPLEX_EXPR> and may be assigned to a

sequencer state with tk@ERM#> parameter. When an expression is
assigned to a specific term number, the analyzer will only store states
corresponding to the given expression when at the given sequencer
level. If no<KTERM#> is given, the associated expression is defined as
global; the analyzer stores states satisfying the expression regardless of
the sequencer level.

tsto 1

Note # Remember that the analyzer only stores states for a given sequence
term which satisfy thtsto qualifier for that ternwhile at that
sequencer level If you specify storage of items in a particular term
that occuafter that term has been satisfied, the sequencer will no
longer be at that level and therefore won't store the states you specified.

Parameters (Easy

Configuration)
<SIMPLE_
EXPR>
Parameters (Complex
Configuration)
<TERM#>

2 tsto

<SIMPLE_EXPR> lets you directly specify an
analyzer expression to use as a storage
qualifier. For examplesSIMPLE_EXPR>
might consist of the expressiaddr=2000Q

For detailed information on specification of
simple expressions, refer to the expression
syntax pages.

<TERM#> lets you specify a sequencer term
number to associate with the given
<COMPLEX_EXPR>. When you associate a
term number with a complex expression, that
expression is only used as a storage qualifier at
the sequencer level specified by the term
number. If you specifg TERM#> without an
expression, the complex expression currently
associated with that term number is displayed.
If you specify an expression without including
a<TERM#>, the expression is used as a global
storage qualifier; that is, the storage qualifiers
of all eight sequence terms are set to the same
value as the global storage qualifier you
specified.

Note

Defaults

Examples

If you've specified a global storage qualifier, you can override any
the sequence term storage qualifiers by specifying the term numbe
along with the new qualifier. For example, you might specify a glo
storage qualifier ofsto any; you could override this for term 3 by
specifyingtsto 3 none

<COMPLEX_ <COMPLEX_EXPR> allows you to specify

EXPR> complicated analyzer expressions made up of
relationships between simple analyzer
expressions. When you create a complex
expression, you must first assign pattern names
(p1-p8) to simple expressions using tipat
command. You then use the pattern names and
relational operators to create complex
expressions. For example, if you wish to store
only the states wheseldress=200Gnd
data=20o0r the stateaddress=200&nd
data=42 you would use the following
commands:

U>tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U>tsto pl | p2

The "|" symbol represents an intra-set OR operator. For more
information on complex expressions, operators, and pattern sets, refer
to the expression syntax pages in this manual.

If no parameters are given, the current trace storage qualifier settings
are displayed. Upon powerup or afiieit initialization, the trace
storage qualifier defaults teto all. Using thecf command to switch
from complex configuration to easy configuration or vice versa will
also reset the storage qualifiert$to all.

In the following example, we’ll look at a complex trace specification to
store only certain data moved by the 68000 sample program (see
Appendix A).

tsto 3

4 tsto

Specifically, we want the analyzer to store only the received command
(input at address location 3000 hex) and the written output message
(locations 4000 through 4011 hex). First, let's initialize the analyzer
and set the trace configuration to complex by typing:

M> tinit

M> tcf -c

Next, we'll set up a label to be used in qualifying the data reads and
writes. This label, callebwerdata, will overlap the analyzer’s
pre-defineddata label. Type:

M> tlb lowerdata 40..47

Now we need to set up some patterns for the sequencer and storage
qualifiers. We would like to set up the sequencer so the analyzer must
recognize the program start at address 2000 hex, then an access to
address 3000 with data not equal to a null (00 hex), then trigger on
address 4000 hex with data not equal to a null (00 hex). We also want
to be able to store data during accesses to the address range 4000
through 4011 hex with data not equal to zero.

To do this, we'll identify address patterns at 2000, 3000, and 4000 hex,
a data pattern not equal to zero, and a range pattern encompassing the
addresses 4000 through 4011 hex. Type:

M> tpat p1 addr=2000
M> tpat p2 addr=3000
M> tpat p3 addr=4000
M> tpat p5 lowerdata!=00
M> trng addr=4000..4011

Now you can set up the sequencer. Type:

M> tif 1 p1 2

M> tif 2 p2 and p5 3
M> tif 3 p3 and p5 4
M> tif 4 never

M> tsq -t 4

If you reference these commands with the patterns above, you'll notice
that the sequencer transitions from term 1 to term 2 when the address
bus is equal to 2000 hex. It transitions between terms 2 and 3 when
address equals 3000 but data is not equal to zero (that is, a "command"
has been input). Finally, the sequencer transitions to term 4 (the trigger

term) when address equals 4000 but data does not equal zero (the
message write sequence starts).

SECONDARY BRANCHES PRIMARY BRANCHES

TERM1 (NO STORE)
DADDRESS = 2000
TERM2 T
ADNRESS — 3000 AND
NO SECONDARY DATA £ 0

BRANCHES
(STORE ADDRESS = 3000
< TERMS :’ AND DATA # 0)

ADDRESS = <4000 AND
DATA # D

(TRIGGER TERM) TERMA4 Y (STORE ADDRESS = 4000..4011
AND DATA # Q)

TERMS)
TERMG)
TERM7)
TERMB)

(NO STORE)

NOT USED

Next, set up the storage qualifiers by typing:

M> tsto 1 none

M> tsto 2 none

M> tsto 3 p2 and p5
M> tsto 4 r and p5

While the sequencer is in states 1 and 2, no data will be stored by the
analyzer. When term 3 is reached, the analyzer will store all data
corresponding to address 3000 AND data not equal to zero. Finally, all
of the output message writes will be stored since they are in the range
4000 through 4011 hex with data not equal to zero. You can verify all
of these items by typing:

M> tsq

tsto 5

You will see the following displayed:

tif 1pl2

tif 2 p2 and p5 3
tif 3 p3 and p5 4
tif 4 never

tif 5 any 6

tif 6 any 7

tif 7 any 8

tif 8 never

tsq -t 4

tsto 1 none

tsto 2 none

tsto 3 p2 and p5
tsto 4 r and p5
tsto 5 all

tsto 6 all

tsto 7 all

tsto 8 all

telif 1 never
telif 2 never
telif 3 never
telif 4 never
telif 5 never
telif 6 never
telif 7 never
telif 8 never

Now, set up the trace display format so it will show only the
information of interest by typing:

M> tf addr,H lowerdata,A

Now you can start the measurement. Type:
M> t

Emulation trace started

This begins the trace. Now start the program by typing:
M> r 2000

Input one of the valid "commands" by typing:
U> m 3000=41

The emulation processor will now halt. You can halt the trace by
typing:
h> th

Emulation trace halted

6 tsto

Line addr,H lowerdata,A

B e N
REBoo~vourwNhvrRroRN

13
14
15
16
17

Related Commands

002000 $
003000 A
004000 T
004001 H
004002
004003 S
004004 .
004005
004006 S
004007 .
004008 M
004009 E
00400A S
00400B S
00400C A
00400D G
00400E E
00400F .
004010 A

To display the stored analyzer information, type:
h> tl-2..17

You will see:

The program start address has been stored, along with the command
read in by the program and the data written by the message output
routines.

tcf (used to specify whether the analyzer is in easy configuration or
complex configuration)

telif (used to specify a global restart qualifier in easy configuration;
specifies a secondary branch qualifier for each sequencer level in
complex configuration)

tg (used to specify a trigger condition in either easy configuration or
complex configuration; overrides the current sequencer specification.
Note thattg does not affedsto; therefore, the curremdto

specifications remain in effect whenevegaommand is entered)

tif (used to specify a primary branch qualifier in either analyzer
configuration)

tsto 7

8 tsto

tpat (used to assign pattern names to simple analyzer expressions for
use in constructing complex analyzer expressions; these expressions
can be used in specifying storage qualifiers fotstecommand)

trng (used to specify a range of values of a set of analyzer inputs; this
range information can be used in constructing complex configuration
qualifiers for thetsto command)

tsg (used to manipulate the trace sequencer)

X, XtX

Summary

Syntax

Set analyzer to trace on receipt of CMB /EXECUTE

=

Function

Parameters

Defaults

\ = <RETURN>

G =)

Thetx command allows you to specify that the analyzer will begin a
measurement when the CMB /EXECUTE line is asserted.

If tx -e is given, enabling measurement on execute, the CMB trigger is
immediately driven true upon receiving the /EXECUTE signal. If the
analyzer is not driving either trigl or trig2, it is then started. The CMB
trigger is then disabled and the HP 64700 waits for all other
participants in the measurement to release the CMB trigger. When the
last instrument releases the CMB trigger, the trigger will go false; at
this point any analyzers driving trigl or trig2 will be started.

-e If you specify thee option, this emulator will
start an analysis measurement upon receiving
the CMB /EXECUTE signal.

-d If you specify thed option, the emulation
analyzer will NOT start an analyzer
measurement upon receiving the CMB
/EXECUTE signal.

If no options are specified, the current statexanable/disable is
displayed. Upon powerup or aftefirit , the system defaults te -e.

Examples

You may want to set up a CMB measurement such that this emulator
starts running and an analyzer measurement begins at address location
2000 hex whenever the CMB /EXECUTE pulse is received. Type the
following commands:

M> cmbt -d none
M> tx -e
M> tx

You will see:

tx -e # start a measurement on the execute signal

tx -d # ignore the execute signal

Related Commands

2 tx

M> tg addr=2000
M> rx 2000

The commandmbt -d noneensures that neither the trigl or trig2
signals will be driving the CMB trigger line when the CMB

/EXECUTE pulse is received; thus, the measurement will start
immediately. Next, we enable trace on execute, and also exdrute a
command with no parameters to verify that it is enabled. A trigger and
a run at execute parameter is picked. Note thatla-eis not given;

rx effectively accomplishes the same thing.

To verify the powerup default statetaf simply type:
M> tx

You will see:

cmbt (specifies whether the CMB trigger signal is driven or received
by the internal trigl and trig2 signals)

tarm (specifies the arm condition for the analyzer)

tg (specifies a trigger condition for the analyzer)

ver

Summary

Syntax

Function

Parameters

Defaults

Examples

Display Terminal Interface software version number

= <RETURN>

Thever command instructs the emulator to return the current emulator
Terminal Interface software version numbers. You should use this
command when you need to know the version number of your emulator
Terminal Interface software to compare it to Hirenware/Software
Compatibility Notefor the HP 64700 PC Interface or Softkey Interface
software versions.

None.
Not applicable.

To determine the current emulator Terminal Interface software version
numbers, type:

M> ver

The system returns a display similar to the following:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700 Series Emulation System

Version: A.00.00 20Nov87

HP64742 Motorola 68000 emulator

Version: A.00.00 20Nov87
Speed: 12.5 MHz
Memory: 126 KBytes

ver 1

HP64740 Emulation Analyzer
Version: A.00.00 20Nov87

Related Commands None.

2 ver

Summary

Syntax

Function

Parameters

Defaults

Examples

Wait for specified event

= <RETURN>

Thew command is used to program automatic waits into macros,
repeats, and command files. Normal operation is to wait for any
keystroke before executing the next operation; optionally, the wait can
be programmed for a specific time period or for completion of a
measurement in process (such as a trace).

<NN> Wait for NN number of seconds before
proceeding.
-m Wait for completion of the current

measurement before proceeding.

Wait for any keystroke on the command port before proceeding.

To cause the emulator to wait for any keystroke before proceeding to
the next command, type:

U>w

Related Commands

You might use this in a situation where you wish the operator to make a
judgement regarding some other condition before proceeding with the
next measurement. For example, if some LEDs in the target system
should reach a certain state before a measurement is made, use the
basic form of the wait commanar), which will allow the operator to

verify that the LEDs have reached the proper state; then proceed with
the next command by pressing any key.

To cause the emulator to wait for 32 seconds or for any keystroke, type:
U> w32

This might be used where you know the desired system state will be
reached in a definite amount of time (or should be reached within that
time).

To have the emulator wait until another measurement is completed or
for any keystroke entry, type:

U> w-m

Note that the above examples, taken exactly as shown, don't provide
you with a useful function -- they are provided only to show correct
examples of command line syntax. To use the wait command
effectively, it should be applied within macros, repeat commands, or
command files. Refer to tliep andmac commands for further
examples.

None.

Summary

Syntax

Start synchronous CMB execution

X ?‘J <RETURN>

Function

Parameters

Defaults

Examples

Thex command allows you to initiate a synchronous CMB
(Coordinated Measurement Bus) measurement execution.

Whenx is performed, the CMB /EXECUTE line is pulsedixifitrace
at execute) is enabled, an analyzer measurement will begin. If the
CMB is enabled via themb -ecommand, a break will occur, followed
by a run at execute as specified byrtheommand.

Thex command is available whether CMB and trace at execute are
enabled or not. Specifically, tkenb andtx commands control how
this HP 64700 emulator will respond when an /EXECUTE or READY
is detected. The command only controls when this emulator will
issue an /EXECUTE signal.

None.

Does not apply.

To initiate a synchronous CMB measurement and have this HP 64700
emulator participate in the measurement, type the following commands:

M> rx 2000

M> tcf -e

M> tg addr=2000
M> tx

M> x

Related Commands

This enables the CMB and sets the run at execute address to 2000. The
analyzer trigger is also set to 2000 hex and trace at execute is enabled.
Finally, thex command is issued, initiating the coordinated execution.

All other emulators connected to the CMB will respond as defined by
theirrx, tx, andcmb commands.

cmb (used to enable or disable interaction with the CMB)

rx (used to specify an address to start a program run when the
/EXECUTE pulse is received from the CMB)

tx (used to specify that an analyzer measurement should begin when
the [EXECUTEpulse is received from the CMB)

xteq

Summary Specify external timing analyzer edge trigger

Syntax

()
p S

(.l <BIT#>
f
&)

Function Thexteq command allows you to specify the channels which will
cause an edge trigger.

The trigger will occur following a valid duration of a pattern specified
by xtt when a transition occurs on any of the lines specifiatkn

Note thatxteq allows you to qualify the transitions to trigger only on
the rising edge or the falling edge of the given input lines.

Note that the timing trace information is only accessible through the
binary trace list optiorti(-b).

xteq 1

. Parameters
-r If you specify-r, the trigger will occur on the

rising edge of any signal on the input lines
specified by<BIT#> and<LABEL> .

-f If you specify-f, the trigger will occur on the
falling edge of any signal on the input lines
specified by<BIT#> and<LABEL> .

<BIT#> <BIT#> specifies the bit which will cause an
edge trigger. I&BIT#> is followed by.. and a
seconkBIT#>, they specify the range of bits
which will cause a edge trigger.

<LABEL> <LABEL>, when specified with a bit range
(see<BIT#> above), specifies the bits to be
used within that label which will cause a edge
trigger. If<LABEL> is specified without a bit
range, all of the bits assigned to that label will
cause a edge trigger. Setb for information
on specifying labels.

Note Multiple combinations okLABEL> and<BIT#> may be used,
separated by spaces. The combinations are ORed together to form a
single pattern. See the examples for details.

Note # When specifying a range of bits to use within a label, notice that the bit
range specified is relative to the label, not to the input bit. For
example, if you define a label named STATUS with input bits 8..11,
then want to specify the least significant two bits of STATUS in a
trigger specification, you can use eit&arATUS:0..1or simply the
ranges..9

2 xteq

Defaults

Examples

xteq -r 8..11 -f none

any, all If you specifyany or all, any of the external
analyzer lines will cause an edge trigger for t
specified edge.

none, never If you specifyoneor never, none of the
external analyzer lines will cause an edge
trigger for the specified edge.

If no parameters are specified, the current edge qualifier is displayed.
Upon powerup ofinit initialization, the default setting ideq -r any
-f any.

Let's specify some labels for a set of status bits and a set of timer
output bits to be viewed by the timing analyzer. Type:

M> xtlb STATUS 0..3
M> xtlb TIMER 8..11

Now we can set various edge qualifiers. For example, we may wish to
trigger when rising edges occur on timer bits 0 through 3, when the
analyzer finds the data pattern 1001 for more than 150 nanoseconds.
First, set up the analyzer by typing:

M> xtmo -t
M> xtm -s
M> xtt STATUS=1001 > 150 n

Now, we can set up the edge qualifier. This can be done in two ways.
Type:
M> xteq -r 8..11 -f none

To verify your choice, type:
M> xteq

You will see:

Or, you could type:
M> xteq -r TIMER:0..3 -f none

xteq 3

xteq -r TIMER:0..3 -f none

Related Commands

4 xteq

Again, to verify, type:
M> xteq

You will see:

The latter form of the command may be more useful in remembering
what your motives were in assigning various bit ranges; that is, it may
be helpful to remember that bits 0 through 3 were associated with the
TIMER label.

If you want to trigger whenever rising or falling edges occur on any of
the STATUS lines or TIMER lines, type:

M> xteq -r STATUS TIMER -f STATUS TIMER

Notice that this could alternately be specified as:
M> xteq -r 0..3 8..11 -f0..3 8..11

Or as:

M> xteq -r STATUS:0..3 TIMER:0..3 -f
STATUS:0..3 TIMER:0..3

The last form of the command requires you to type more information.
All three versions will produce the same result.
tlb,xtlb (specifies labels assigned to input lines for the emulation

(external) analyzer)

xtgq (specifies an glitch qualifier used in conjunction withto
determine a valid trigger state)

xtm (specifies timing analyzer mode)

xtt (specifies timing analyzer trigger pattern and duration)

xtgq

< xtgq

Summary Specify external timing analyzer glitch trigger

Syntax

(s
w0/

QS\»

\\> S, o all

O]

- <RETURN>

Function Thextgg command allows you to specify the channels which will

cause a glitch trigger.

A glitch trigger will occur following a valid duration of a pattern as
specified in thextt command while the pattern is still present. A less
than duration specified ixtt, or a timing mode other thaitm -g will

cause thatgq command to be ignored.

You might use this command to look for glitch occurrences related to a

specific bit pattern.

Note that the timing information is only accessible through the binary

trace list optiont(-b).

xtgq 1

2 xtgq

Parameters

Note #

Note #

<BIT#>

<LABEL>

<BIT#> specifies the bit which will cause a
glitch trigger. If<BIT#> is followed by.. and

a second&BIT#>, they specify the range of bits
which will cause a glitch trigger.

<LABEL> , when specified with a bit range
(see<BIT#> above), specifies the bits to be
used within that label which will cause a glitch
trigger. If<LABEL> is specified without a bit
range, all of the bits assigned to that label will
cause a glitch trigger. Sgt#b for information
on specifying labels.

Multiple combinations okLABEL> and<BIT#> may be used,
separated by spaces. The combinations are ORed together to form a
single pattern. See the examples for details.

When specifying bit positions within a particular label, notice that the

bit position specified are relative to the label and not the given analyzer

input line. For example, if you define a label named DATA with the
input bit range 8 through 15, then want to specify the two least
significant bits of DATA in a trigger qualifier, you can either specify
DATA:0..1 or simply the rang8..9

any, all

none, never

If you specifyany or all, any of the external
analyzer lines will cause a glitch trigger.

If you specifyoneor never, none of the
external analyzer lines will cause a glitch
trigger.

xtgq 0..4

xtgq DATA:0..4

Defaults

Examples

If no parameters are specified, the current glitch qualifier is display
Upon powerup ofinit initialization, the default setting i¢gq none

Let's specify some labels for a set of data bits and a set of control bits
to be viewed by the timing analyzer. Type:

M> xtlb DATA 0..7
M> xtlb FC 8..10

Now we can set various glitch qualifiers. For example, we may wish to

trigger when glitches occur on data bits 0 through 4, when the analyzer

finds the data pattern 01101110 for more than three milliseconds. First,
set up the analyzer by typing:

M> xtmo -t
M> xtm -g
M> xtt DATA=01101110Y >3 m

Now, we can set up the glitch qualifier. This can be done in two ways.
Type:
M> xtgq 0..4

To verify your choice, type:
M> xtgq

You will see:

Or, you could type:
M> xtgq DATA:0..4

Again, to verify, type:
M> xtgq

You will see:

The latter form of the command may be more useful in remembering
what your motives were in assigning various bit ranges; that is, it may
be helpful to remember that bits 0 through 4 were associated with the
DATA label.

xtgq 3

Related Commands

4 xtgq

If you want to trigger whenever glitches occur on any of the DATA
lines or on the FC lines, type:

M> xtgq DATA FC

Notice that this could alternately be specified as:
M> xtgq 0..10

Or as:
M> xtgq DATA:0..7 FC:0..3

The last form of the command requires you to type more information.
All three versions will produce the same result.

tlb,xtlb (specifies labels assigned to input lines for the emulation
(external) analyzer)

xteq (specifies an edge qualifier used in conjunction witho
determine a valid trigger state)

xtm (specifies timing analyzer mode; must be in mxide-g for xtgq
use)

xtt (specifies timing analyzer trigger pattern and duration)

xXtm

Summary

Syntax

(xtm

Function

Parameters

Specify external timing analyzer mode

E—
= <RETURN>

i it

Thextm command allows you to specify the mode of operation for the
timing analyzer.

This command is only available if the HP 64700 emulator is equipped
with the external state/timing analyzer option.

-S If -sis specified, the timing analyzer is in
standard mode and samples data at the period
selected bytsp; up to 1024 samples can be
stored during a single trace.

-g If -g is specified, the timing analyzer is
operated in standard mode with glitch detection
added. Again, the sample rate is selected by
xtsp. When glitch mode is selected, the
maximum number of samples per trace is
reduced to 512.

xtm 1

-t When-t is specified, the timing analyzer is
operated in transitional mode. Data is only
stored when an input transition is detected. For
the analyzer to record these transitions
accurately, some trace memory must be
dedicated to storing the delta time between
transitions, so the number of state transitions
that can be stored is reduced to a maximum of
512.

Defaults If no parameters are supplied, the current mode setting for the timing
analyzer is displayed. Upon powerugioit, the timing analyzer
mode is set tatm -t.

Examples To set up the external analyzer as an independent timing analyzer in
transitional mode, type:

M> xtmo -t
M> xtm -t

Related Commands xtmo (specifies whether to use the external analyzer as a separate state
analyzer, separate timing analyzer, or append the lines to the emulation
analyzer)

xtsp (defines the timing sample period)

2 Xtm

xtmo

Note

Summary

Syntax

Specify external analyzer mode

xtmo

Function

Thextmo command allows you to specify the mode of operation for
the external analyzer. The analyzer can be configured to run as an
independent state or timing analyzer; or, the external analyzer can be
associated with the emulation analyzer to synchronize measurements
made by the two analyzers.

If the emulation and external analyzers are clocking data off of the

same clock, the setup/hold times of the data on the external analyzer
probe inputs may not be met properly. The timing relationship between
a target system processor signal and the setup/hold time of the external
probe signals must be specified for each emulator. This is because each
emulator has unique circuitry that generates the emulation analyzer
clock and each processor has different timing requirements. Therefore,
each emulator must specify the setup/hold time requirements of the
external probe inputs with respect to a target processor signal.

xtmo 1

Parameters

Defaults

Examples

xtmo -e

Related Commands

2 Xtmo

If the external analyzer has been associated with the internal analyzer
with thextmo -ecommand, and trace specifications have been defined
referencing lines present on the external analyzer, the analyzer cannot
be reconfigured as an independent state or timing analyzer with the
xtmo -sorxtmo -t commands until the trace specifications referencing
the external analyzer lines are removed.

If the external analyzer is in the independent state or timing mode, and
anxtmo -e command is issued to append it to the emulation analyzer,
the trace specifications for the external analyzer lines are reinitialized.

-S If you specify thes parameter, the external
analyzer acts as an independent state analyzer.

-t If you specify thet parameter, the external
analyzer acts as an independent timing analyzer.

-e If you specify thee parameter, the external
analyzer is appended to the emulation analyzer.

If no parameters are specified, the current operation mode of the
external analyzer is displayed. Upon powerup, the default operation
mode isxtmo -e

To display the current operation mode of the external analyzer, type:

M> xtmo

You will see:

If you want the external analyzer to function as an independent state
analyzer, type:

M> xtmo -s

bnct (specifies whether trigl and/or trig2 are to be driven or received
by the rear panel BNC connector)

cmbt (specifies whether the trigl and/or trig2 signals are to be driv
or received by the CMB trigger line)

tarm (specifies the arm condition for the analyzer)

tgout (specifies whether or not the trigl and/or trig2 signals are to be
driven when the analyzer finds its trigger)

tx (specifies that the analyzer is to commence a trace upon receiving
the CMB execute pulse)

xtmo 3

. Notes

4 xtmo

Xtsp

Summary

Syntax

Define external timing analyzer sample period

(xtsp N
<SAMPLE_PERIOD>

Function

Parameters

&= <RETURN>

Thextsp command allows you to define the sample period for timing
analyzer measurements.

Larger sample periods enable coverage of more events; however, there
is the danger that some transitions may be missed if they change during
the sample period. Conversely, small sample periods virtually
guarantee recording of all transitions but allow the measurement of

only a small total number of events in time.

<SAMPLE_
PERIOD>

<SAMPLE_PERIOD>, along with then,u or

m parameters, defines the sample period for the
analyzer. Thisis an a integer value; the valid
range foSAMPLE_PERIOD> is between

10 nsand 50 msin a 1,2,5 sequence (that is, 10
ns, 20 ns, 50 ns,..., 50 ms) for standard timing
modes. For glitch mode valid periods are
between 20 ns and 50 ms in the same step
sequence. For transitional timing mode, the
only valid sample period is 10 ns.

Then suffix indicates that the given sample
period is in nanoseconds.

xtsp 1

u Theu suffix indicates that the given sample
period is in microseconds.

m Them suffix indicates that the given sample
period is in millseconds.

Defaults If no parameters are given, the current setting of the sample period is
displayed. Upon powerup tinit initialization, the sample period
setting isxtsp 10 n

Examples To set the timing analyzer sample period to 50 ns type:

M> xtm 50 n

To set the sample period to 200 us type:
M> xtm 200 u

And, to set the sample period to 50 ms, type:
M> xtm 50 m

You can display the current sample period setting after initialization by
typing:

M> tinit

M> xtm

You will see:

xtm 20 n

Related Commands xtm (defines the timing analyzer run mode; if modetiis -s or xtm
-g, thenxtsp defines the amount of time between samples; if mode is
xtm -t, the timing analyzer runs in transitional mode; the sample period
(10 nanoseconds only) is used as a clock to measure the delta time
between transitions)

2 Xxtsp

xtt

Summary Specify external timing analyzer trigger condition

Syntax

xtt L ﬁ <RETURN>

&= <SIMPLE EXPR>

o0
5

Function Thextt command lets you specify the timing analyzer trigger. The
trigger specification includes the trigger pattern and the duration of that
pattern.

If <SIMPLE_EXPR> is found buk DURATION> is not satisfied,
there is a 20 ns reset time before the analyzer will search for another
pattern.

Parameters

<SIMPLE_EXPR> <SIMPLE_EXPR> defines a simple
expression of the general fotabel=pattern.
Other expressions may be supplied also. Refer
to the syntax pages feSIMPLE_EXPR> for
complete details on the types of simple analyzer
expressions that may be defined. Refer to the
tlb,xtlb syntax pages for information on
defining labels.

xtt 1

2 Xtt

Defaults

<DURATION>

The<DURATION> parameter, in conjunction
with the greater tharr{ and less tharx]
operators, and thgu andm designators,

define a duration for which the trigger must be
present to satisfy the trigger condition.
<DURATION> is always expressed as an
integer value.

If > <DURATION> is specified,

<DURATION> must fall within the range of

30 nsto 10 ms in 10 ns increments. The trigger
will occur at the end of the specified duration.

If < <DURATION> is specified,

<DURATION> must fall within the range of

40 ns to 10 ms in 10 ns increments. The pattern
must remain stable for at least 20 ns; the trigger
will occur after the pattern changes states from
the designated pattern.

Then suffix indicates that the duration is
specified in nanoseconds.

Theu suffix indicates that the duration is
specified in microseconds.

Them suffix indicates that the duration is
specified in milliseconds.

If no parameters are specified, the current timing analyzer trigger
expression and duration are displayed. Upon powertipitor
initialization, the timing trigger is set tdt any.

Examples

Related Commands

To define two external analyzer labels named ATN and DATA, the
trigger on a certain pattern of those signals with a duration greater
8 milliseconds, type the following commands:

M> xtmo -t

M> xtm -s

M> xtlo ATN 8

M> xtlo DATA 0..7

M> xtt ATN=1 and DATA=IXXXXXXXY >8 m
M> xt

xteq (specifies that certain timing channels will qualify the trace trigger
specified byxtt; the pattern and duration are specifiecthythe
trigger occurs when the signal transition specifiedtby occurs)

xtgq (specifies a glitch qualifier fodtt; the trigger occurs after the
pattern and duration specified ki is satisfied when the glitch
specified byxtgq occurs)

xtlb (defines labels for external analyzer input lines)

xtm (sets the timing mode for the analyzer to standard, glitch, or
transitional)

xtt 3

. Notes

4 xtt

xttd

Summary Specify external timing analyzer trigger delay

Syntax

xttd

% <RETURN>

Function Thexttd command allows you to specify the amount of time to delay
the timing analyzer trigger after a valid trigger condition has occurred.

Parameters

<DELAY> <DELAY>, along with then,u orm
parameters, defines the trigger delay period for
the analyzer. This is an a integer value; the
valid range foxkDELAY> is between 0 and 10
ms in 10 ns increments.

n Then suffix indicates that the given delay is in
nanoseconds.
u Theu suffix indicates that the given delay is in

microseconds.

m Them suffix indicates that the given delay is in
milliseconds.

Defaults If no parameters are given, the current setting of the delay is displayed.
Upon powerup ofinit initialization, the delay setting xdtd 0.

xttd 1

Examples To set the timing analyzer delay to 30 ns type:

M> xttd 30 n

To set the delay to 10 ms type:
M> xttd 10 m

Note that the delay period must be specified as an integer value; real
number values are not accepted (a syntax error message will be
displayed).

And, to set the delay to 3 ms, type:
M> xttd 3 m

You can display the current delay setting after initialization by typing:
M> tinit
M> xttd

You will see:

xttd 20 n

Related Commands xtt (specifies the timing analyzer trigger pattern and duration)

2 xttd

xttq

Summary Specify external timing analyzer transition trigger

Syntax

< xttg

% <RETURN>

-
-0/ |

/\% <BIT#>

o=t

Function Thexttg command allows you to specify the channels which will cause
a transition record when the timing analyzer mode is set to transitional

(xtm -t).

Parameters

<BIT#>

<BIT#> specifies the bit which will cause a
timing transition record. KBIT#> is followed
by .. and a secondBIT#>, they specify the
range of bits which will cause a timing
transition.

xttq 1

2 Xxttq

Note

Note

Defaults

<LABEL> <LABEL> , when specified with a bit range
(see<BIT#> above), specifies the bits to be
used within that label which will cause a timing
transition record. IKLABEL> is specified
without a bit range, all of the bits assigned to
that label will cause a timing transition record.
Seextlb for information on specifying labels.

Multiple combinations okLABEL> and<BIT#> may be used,
separated by spaces. The combinations are ORed together to form a
single pattern. See the examples for details.

When specifying bit positions within a given label using the
constructiork LABEL>:<BIT#>..<BIT#> , notice that the bit positions
given are relative to the label and not to the analyzer input bit position.
For example, if you define a label callBlMER with bit positions3
throughll, and if you then want to set up a qualifier using the two
most significant bits of IMER , you may either speciffIMER:2..3

or simply the rang&0..11

any, all If you specifyany or all, any of the external
analyzer lines will cause a timing transition
record.

none, never If you specifyoneor never, none of the

external analyzer lines will cause a timing
transition record.

If no parameters are specified, the current transition qualifier is
displayed. Upon powerup tinit initialization, the default setting is
xttg any.

xttq 0..4

M> xttq

Examples

Let’s specify some labels for a set of data bits and a set of control
to be viewed by the timing analyzer. Type:

M> xtlb DATA 0..7
M> xtlb FC 8..10

Now we can set various transition qualifiers. For example, we may
wish to store when transitions occur on data bits 0 through 4. This can
be done in two ways. Type:

M> xttq 0..4

To verify your choice, type:
M> xttq

You will see:

Or, you could type:
M> xttq DATA:0..4

Again, to verify, type:

You will see:
xttq DATA:0..4

The latter form of the command may be more useful in remembering
what your motives were in assigning various bit ranges; that is, it may
be helpful to remember that bits 0 through 4 were associated with the
DATA label.

If you want to store information whenever transitions occur on the
DATA lines or on the FC lines, type:

M> xttq DATA FC

Notice that this could alternately be specified with either of the
following:

M> xttq 0..10
M> xttq DATA:0..7 FC:0..2

The last form of the command requires you to type unneeded
information. All three versions will produce the same result.

xttq 3

Related Commands

4 xttq

tlb,xtlb (specifies labels assigned to input lines for the emulation
(external) analyzer)

xteq (specifies an edge qualifier used in conjunction witto
determine a valid trigger state)

xtgq (specifies a glitch qualifier used in conjunction withto
determine a valid trigger state)

xtm (specifies timing analyzer mode; must be in mxitlet
(transitional mode) foxttq to be useful)

xtt (specifies timing analyzer trigger pattern and duration)

xtv

Summary Set threshold voltages for external analyzer probes

Syntax

) % <RETURN>

= <VOLTS>

Function Thextv command allows you to set the logic threshold voltages for the
external trace probes.

Parameters

-l The -1 parameter indicates that the threshold
voltage specified is to be used for the lower 8
bits of the analyzer probe. These are bits 0
through 7 and thé clock.

-u The-u parameter indicates that the threshold
voltage specified is to be used for the upper 8
bits of the analyzer probe. These are bits 8
through 15 and thi clock.

<VOLTS> <VOLTS> is a number in the range of -9.9 to

9.9 which will set the specified bit range to that
threshold voltage.

xtv 1

xtv -u ECL -1 ECL

2 Xtv

Defaults

Examples

TTL SpecifyingTTL sets the indicated probe’s
threshold voltage to a TTL
(transistor-transistor-logic) level; the specific
voltage used is 1.4 volts.

CMOS SpecifyingCMOS sets the indicated probe’s
threshold voltage to a CMOS logic level; the
specific voltage used is 2.5 volts.

ECL SpecifyingeCL sets the indicated probe’s
threshold voltage to ECL levels; the specific
voltage used is -1.3 volts.

If no parameters are specified, the current threshold voltage settings are
printed. Upon powerup dinit initialization, the threshold voltage
settings are set tdv -u TTL - TTL .

To set the threshold voltages for all external probes to ECL levels, type:

M> xtv -u ECL -| ECL

You can verify the setting by typing:
M> xtv

You will see:

If you need to make measurements on dual threshold voltages where
the upper threshold is -1.5 volts and the lower threshold is -3.2 volts,
you can double probe the signals (bit 0 and bit 8 connected to the same
line, and so on through bit 15) and type the following command:

M> xtv -u -1.5 -1 -3.2

Note that this will require you to carefully interpret #iletrace list
display, astl does not provide options for logical operations between
input signals. (That is, there are no provisions for only displaying one
bit and having that bit represent the output of some logical operation
between two input bits.)

Related Commands ta (allows you to view trace input signal activity; useful in verifying t
correct threshold levels)

xtv 3

. Notes

4 xtv

Expressions

This chapter includes information about these expression types:
m ANALYZER_EXPR (expressions in trace specifications)
m COMPLEX_EXPR (complex configuration expressions)

m EXPR (numeric expressions)

m SIMPLE_EXPR (easy configuration expressions)

The syntax, functional description, and related information is included
for each expression type.

Expressions 2-1

Notes

2-2 Expressions

ANALYZER_EXPR

Summary

Syntax

Description

Expressions in trace specifications

= <SIMPLE EXPR> =
= <COMPLEX EXPR>

Analyzer expressions are used in specifying triggers, time qualifiers,
primary and secondary branch conditions, prestore qualifiers, and other
analyzer setup items. There are two types of analyzer expressions,
simple and complex.

In asimple expressionthe analyzer label is related to a numeric
expression within an analyzer command. These expressions are
required when the analyzer is in easy configuraticin€).

Some examples include:
tg addr=2000
tif 1 data=20..30
telif addr!=3000 or data!=5

In acomplex expressionthe relationship between an analyzer label

and an expression is assigned one of 8 pattern identifiers or a range
label. These patterns and the range are then used to create the actual
expressions. Complex expressions are required when the analyzer is in
complex configurationt¢f -c).

Some examples include:

First we assign a pattern name:
tpat p1 addr=2000
tpat p2 addr!'=3000
tpat p5 data!=5
trng data=20..30

ANALYZER_EXPR 1

Related Information

2 ANALYZER_EXPR

Then we create the actual complex expressions within the analyzer
commands:

tg p1

tif 1 r

(r specifies the range defined with theg command)
telif 1 p2 or p5 3

Any syntax diagram in this manual which indicates
<ANALYZER_EXPR> means that a simple expression is required

when the analyzer is in easy configuration, and a complex expression is
required when the analyzer is in complex configuration.

See the <SIMPLE_EXPR> and <COMPLEX_EXPR> syntax pages for
complete details on each expression.

COMPLEX_EXPR

Summary Complex configuration expressions

Syntax

<COMPLEX _EXPR>

<SET1>

<SkT2>

<SET2>

and J‘

or

and *J‘ <SFT1>
SO

<SET1>

(restricted to one operator type in the set)

<SET2>

(restricted to one operator type in the set)

COMPLEX_EXPR 1

Description In analyzer complex configuratiotcf -c) you use pattern labels, which
have been assigned to various simple expressions, to form complex
expressions.

Pattern Labels and Ranges

You assign pattern labels to simple expression usingéte
command. For example:

tpat p1 addr=2000

tpat p2 data!=00

tpat p3 stat=dma

tpat p4 addr=2000 and data=23
tpat p5 addr!'=2105 and data!=0fc

You use thérng command to provide assign the range label:
trng data=42..44

Sets
The pattern labels, along with the range and arm specifications, are
divided into two sets.
Set 1:
pl,p2,p3,p4,r,!r
Set 2:
p5,p6,p7,p8,arm

Intraset Operations

You use intraset operators to form relational expressions between
members of the same set. The operators are:

~ (intraset logical NOR)
| (intraset logical OR)

The operators must remain the same throughout a given intraset
expression. So, you could form the following types of intraset
expressions:

pl~p2~r

(Pattern 1 NOR pattern 2 NOR range.)

2 COMPLEX_EXPR

p2|'r

(Pattern 2 OR (NOT range).)
p5 | arm

(Pattern 5 OR arm.)
p6 ~ p8
(Pattern 6 NOR pattern8.)

You cannotuse the intraset operators to form expressions between set
1 and set 2. Also, remember that the intraset operator must remain the
same throughout the set. Therefore, the following examples are
invalid:

p2~p3|p4

(This is incorrect because the operator must remain the same
throughout the set.)

p2~p5

(You cannot use intraset operators for interset operations.)

Interset Operations

You use interset operators to form relational expressions between
members of set 1 and set 2. The operators are:

and (interset logical AND)
or (interset logical OR)

You can then form the following types of expressions:
(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:
(set 2 expression) and (set 1 expression)

COMPLEX_EXPR 3

4 COMPLEX_EXPR

Combination

You can use both the intraset and interset operators to form very
powerful expressions.

pl~p2 and p5|arm

p3 or p6~p7~p8
However, you cannot repeat different sets to extend the expression.
The following isinvalid:

pl~p2 and p5 and p3 and p7

DeMorgan’s Theorem and Complex Expressions

At first glance, it seems that you only have a few operators to form
logical expressions. However, using the combination of the simple and
complex expression operators, along with a knowledge of DeMorgan’s
Theorem, you can form virtually any expression you might need in
setting up an analyzer specification.

DeMorgan’s theorem in brief says that
A NOR B = (NOT A) AND (NOT B)

and
A NAND B = (NOT A) OR (NOT B)

The NOR function is provided as an intraset operator. However, the
NAND function is not provided directly. Suppose you wanted to set up
an analyzer trace of the condition

(addr=2000) NAND (data=23)

This can be done easily using the simple and complex expression
capabilities. First, you would define the simple expressions as the
inverse of the values you wanted to NAND:

tpat p1 addr!=2000
tpat p2 data!=23

Then you would OR these together using the intraset operators:
p1|p2

This is effectively the same as:

(NOT addr=2000) OR (NOT data=23) = (addr=2000)
NAND (data=23)

If you need an intraset AND operator, you can use the same theory
Suppose you actually wanted:

(addr=2000) AND (data=23)

First, define the simple expressions as the inverse values:

tpat p1 addr!'=2000
tpat p2 data!=23

Then you would NOR these together using the intraset operators:
pl~p2

This is effectively the same as:

(NOT addr=2000) NOR (NOT data=23) = (addr=2000)
AND (data=23)

Related Information See the <EXPR> syntax pages for information on numeric expression
specifications. See the <SIMPLE_EXPR> syntax pages for
information on the types of simple expressions that may be assigned
pattern names. Also, refer to tBmulator User’'s Guidéor your
emulator for information on address specifications.

COMPLEX_EXPR 5

Notes

6 COMPLEX_EXPR

EXPR

Summary

Syntax

Numeric expressions

C

<OPERATOR> ~)

= <EXPR>

L~]
o) === o/

Description

Numeric expressions are the root of all HP 64700 Terminal Interface
expression types, including analyzer expressions, address
specifications, equates, and expressions you might want to calculate
using theechocommand.

The expression capability in the Terminal Interface is very powerful;
you may specify numbers in one of four different bases and use many
different arithmetic and logical operators to form more complex
expressions.

Terminal Interface expressions consist of othgaressiongrecursion)
andvalues which may be modified by varioagperators. You may
change the precedence of operators by enclosing expressions within
parentheses.

Values

Values consist aiumbers (in one of four basegatterns
(hexadecimal, octal, or binary numbers that also include don't care
values)/abels(only labels pointing to other numbers or patterns,
assigned by thequ command), and symbols.

<VALUE>

<NUMBER>

<PATTERN>

<LABEL>

i

EXPR 1

2 EXPR

Numbers are in hexadecimal, decimal, octal, or binary. You specify the
base as follows:

Yy Binary (example: 10010y)

QgOo Octal (example: 3770 or 377Q)

Tt Decimal (example: 197T)

Hh Hexadecimal (example: 0A7fH) (Note that

hexadecimal numbers starting with any one of
the letter digits A-F must be prefixed with a
zero; otherwise the system will return an error
message)

If you do not specify a base, numbers default to hexadecimal or
decimal, depending on the context.

All numbers used in equates, echo, address specification, analyzer
expressions, and any other specification relating to a microprocessor
address, data or status value defaults to hexadecimal.

Numbers used to specify repeat count values, such as in the sequence
branch commands, trigger, step, repeat command, and so on, default to
decimal.

Patterns are hexadecimal, octal, or binary numbers which include don’t
care digits, specified by the lettétrx. The characte? represents a
pattern of all don't care digits. For example:

1011xx1ly
0A7Xh (equivalent to 000010100111xxxXxy)
2x5Q (equivalent to 010xxx101y)

You will generally use patterns only in analyzer expressions. A place
where you might want to use don'’t care values is to simulate a second
range variable in complex mode specifications. For example, you
might have:

trng addr=4000..4020

And you need a second rangedata from 11 through 14 hex.
Although it isn't perfect, you can simulate a second range by assigning
a pattern label as follows:

tpat p1 data=00010XXXy

(This actually gives a range from 10 to 17 hex.)

Note # Don't care values are not allowed in expressions foe¢thecommand.

Labels refer to names equated to numbers, patterns, or other
expressions using theu command.

Operators

The expression capability includes a powerful set of operators, freeing
you from the need to calculate expressions before entering them into
other expressions. All operations are carried out on 32 bit two’s
complement signed integers (values which are not 32 bit will be padded
out with zeros when expression evaluation occurs).

The operators are listed in the following diagram and described in order
of evaluation precedence. As mentioned above, you may use
parentheses in the expression to change the order of evaluation.

Note # If your emulator supports symbols, and you are using a symbol in an
expression, only the and- operators are valid before and after the
symbol. For examplem -dm 100h+main-5

EXPR 3

4 EXPR

<OPERATOR>

(Two's Complement)

(One's Complement)

(Integer Multiply)

(Integer Divide)

(Modulo)

(Addition)

(Subtraction)

(Shift _eft)

(Rotate Left)

(Shift Right)

>>>

(Rotate Right)

(Bit—wisc And)

(Bit—wisc Exclusive Or)

(Bit—wisc 0r)

&&

(Logical And (Bit-wise Merge))

Iy Yoo

Unary two’s complement, unary one’s
complement. Two’s complement is not
allowed on patterns containing don’t care bits.
This is the truth table for one’s complement:

0=>1
1=>0
X=>X
Examples:

~1x0y = Ox1Y

-1101Y = 0011Y

*| % Integer multiply, integer divide, integer
modulo. These operations are not allowed on
patterns containing don't care bits.

Examples:
30afH*21 = 06468fH
23T%4T=3

0fa6/2 = 07d3h

+ - Addition, subtraction. Not allowed on patterns
containing don't care bits.

Examples:

03dh+03fh = 07ch

1110Y-101Y = 1001Y
<< <<< Shift left, rotate left, shift right, rotate right
>> >>> (you must specify the number of locations to

shift or rotate after the operator).

Examples:

1x0Y<<1 = 1x00Y

1x0Y>>1 = 01xY

1x01Y>>>1 =
100000000000000000000000000001x0Y

OxxfOabcdH>>>4 = 0dxxfOabcH

EXPR 5

This symbol (&) represents a bit-wise AND
operation. The truth table resembles:

& 0 1 |X

For example:
10xxy&11x1Y = 10xxY

This symbol (*) represents a bit-wise exclusive
OR operation. The truth table resembles:

For example:

10xxY”11x1Y = 01xxY

6 EXPR

&&

This symbol (]) represents a bit-wise inclusive
OR operation. The truth table resembles:

For example:
10xxY|11x1Y = 11x1Y

This symbol (&&) represents a bit-wise merge
operation. The truth table resembles:

& 0 1 X

o (0 |* |0

An overlap, indicated byain the merge truth
table, may occur if two patterns specify
different values for a pattern bit. If an overlap
occurs, the first pattern’s value for that bit
overrides the second pattern’s value.

For example:

10xxY&&11x1Y = 10x1Y

EXPR 7

Related Information

8 EXPR

Using Expressions in Addressing and Analyzer Expressions

You can use the expression evaluation capability to form more

powerful expressions for use in specifying addressing and analyzer
expressions. For example, suppose you want to trigger the analyzer on
the access to trap vector 13. Instead of calculating the address, since
you know the base address is 080 hex and each vector is 4 address
bytes, you can specify this as:

tg addr=(080h+(13T*4))
You could simplify the above even further using the equate command
to assign names to some of the values. For example:

equ trapvectorbase=080h

equ trapvectorlength=4

Then:
tg addr=(trapvectorbase+(13*trapvectorlength))

Refer to the <ANALYZER_EXPR>, <SIMPLE_EXPR>, and
<COMPLEX_EXPR> pages for information on the use of expressions
in forming analyzer expressions.

Refer to theechoandequ command syntax pages for information on
use of expressions in expression calculation and equates.

Refer to the <ADDRESS> syntax pages inEneulator User’s Guide
for information on use of expressions in addressing.

SIMPLE_EXPR

Summary Easy configuration expressions

Syntax

EASY CONFIGURATION ONLY

<LABEL> w <EXPR> -
-2 (O] <exr>

EASY AND COMPLEX CONFIGURATION

Description

Easy Configuration

When the analyzer is in easy configuratitaf {€), simple expressions
are used to set up trace qualifiers for sequencer branches, triggers, state
counting, and so on. These expressions can take the following forms:

label=expression
Examples addr=2000h
data=25h+20h

stat=0110xxxxY

label!'=expression

SIMPLE_EXPR 1

Examples stat!=suprdata (notice that the expression can
also be an equate label)

data!=00

label=expression..expression
Examples addr=4000..401

data=41..42

label!=expression..expression

Examples addr!'=1000..1038
data!=00..40
Note # No more than one simple expression can exist at any given time which

is in the form of a range (expr..expr).

label=expression and label=expression
Examples addr=3000 and data=41

addr=start and data=00

label'=expression or label!=expression

Examples addr!=3000 or data!=41

2 SIMPLE_EXPR

Complex Configuration

In analyzer complex configuratiotef -c), you assign each simple
expression a pattern name usingtgied command. These pattern
names are then combined to form complex expressions involving
relationships between multiple simple expressions.

With the exception of these two expressions:
label=expression..expression
label!=expression..expression

all of the simple expression types can be assigned pattern names by
tpat in complex configuration. To form ranges of expressions in
complex configuration, you use thhag command.

Examples tpat p1 addr!=3000 or data!=41
tpat p2 data=23

trng addr=1000..1038
(You don't need thé= relation in ranges because all complex
expressions provide for the logicadt of the range specifier.)
Invalid Simple Expressions

The following simple expressions are invalid in either analyzer
configuration. If you need expressions of these types, you must switch
to complex configuration, assign pattern names to subparts of these
expressions, then combine them using the complex expression
capability.

label=expression and label!'=expression

This is incorrect because you must use only=thedation with theand
operator. To represent this, switch to complex configuration and do the
following:

tpat p1 label=expression

tpat p5 label'=expression

SIMPLE_EXPR 3

Related Information

4 SIMPLE_EXPR

Now, you would represent the above (incorrect) simple expression as a
complex expression of the form:

pland p5
label!=expression or label=expression

A similar problem exists here. You must use onlyltheelation with
theor operator. To represent this, switch to complex configuration and
do one of the following.

tpat p1 label'=expression

tpat p2 label=expression

You would represent the above (incorrect) simple expression as a
complex expression of the form:

pl|p2

You could also do this:
tpat p1 label'=expression

tpat p5 label=expression

Represent this in complex form as:

pl or p5

Refer to the <COMPLEX_EXPR> syntax pages for more details on
forming complex expressions.

See the <EXPR> syntax pages for information on numeric expression
specifications. Also, refer to tfemulator User's Guidéor your
emulator for information on address specifications.

Sample Programs

m A copy of the 68000 sample program used in the examples in
this manual is included, along with brief instructions for
loading the program.

m An 80186 version of the same program is included. Label
names and address locations of the routines vary from the
68000 version. You can modify the examples accordingly.

m Information about loading and using symbol files for HP
64700-Series Emulators that support symbols is included.

m An 8051 sample program is included. The 8051 Emulator
supports symbols, so this program allows you to become
familiar with using symbols.

68000 Sample
Program

FILE: ~/68kcode/newprog HEWLETT-PACKARD: 68000 Assembler
Sat Dec 12 11:15:27 1987 PAGE 1

LOCATION OBJECT CODE LINE SOURCE LINE

1 "68000"
2 DATA
3
4
000000 0000 3000 5 INPUT_POINTER DC.L 00003000H
000004 0000 4000 6 OUTPUT_POINTER DC.L 00004000H
7
000008 5448495320 8 MESSAGE_A ASCIl "THIS IS MESSAGE A"
00000D 4953204D45
000012 5353414745
000017 2041

Sample Programs A-1

9
000019 5448495320 10 MESSAGE_B ASCIll "THIS IS MESSAGE B"
00001E 4953204D45
000023 5353414745
000028 2042

11
00002A 494E56414C 12 INVALID_INPUT ASCII "INVALID COMMAND"
00002F 494420434F

000034 4D4D414E44
13
14 PROG
15
000000 2479 16 INIT MOVE.L INPUT_POINTER,A2
000002 00000000
000006 2679 17 MOVE.L OUTPUT_POINTER,A3

000008 00000004
18

00000C 14BC 0000 19 CLEAR MOVE.B #00H,[A2]
20

000010 1012 21 READ_INPUT MOVE.B [A2],DO

000012 0CO0 0000 22 CMP.B #00h,DO
000016 67F8 23 BEQ READ_INPUT

24
000018 0C0O0 0041 25 PROCESS_COMM CMP.B #41H,D0
00001C 6700 O0OE 26 BEQ COMMAND_A
000020 0CO0 0042 27 CMP.B #42H,D0
000024 6700 0014 28 BEQ COMMAND_B
000028 6000 001E 29 BRA UNRECOGNIZED

30
00002C 103C 0011 31 COMMAND_A MOVE.B #11H,D0
000030 207C 32 MOVE.L #MESSAGE_A,A0
000032 00000008
000036 6000 001A 33 BRA OUTPUT
00003A 103C 0011 34 COMMAND_B MOVE.B #11H,D0
00003E 207C 35 MOVE.L #MESSAGE_B,A0
000040 00000019
000044 6000 000C 36 BRA OUTPUT
000048 103C 000F 37 UNRECOGNIZED MOVE.B #0FH,DO0
00004C 207C 38 MOVE.L #INVALID_INPUT,AO
00004E 0000002A

39

40
000052 224B 41 OUTPUT MOVE.L A3,Al1
42
000054 123C 0020 43 CLEAR_OLD MOVE.B #20H,D1

FILE: ~/68kcode/newprog HEWLETT-PACKARD: 68000 Assembler
Sat Dec 12 11:15:27 1987 PAGE 2

LOCATION OBJECT CODE LINE SOURCE LINE

000058 2A4B a4 MOVE.L A3,A5
00005A 1AFC 0000 45 CLEAR_LOOP MOVE.B #00H,[A5]+
00005E 0441 0001 46 SUBI #01H,D1
000062 66F6 47 BNE CLEAR_LOOP

48
000064 12D8 49 LOOP MOVE.B [AO]+,[AL]+
000066 0440 0001 50 SUBI #01H,D0
00006A 66F8 51 BNE LOOP
00006C 4EF9 52 JMP CLEAR
00006E 0000000C

53

54

A-2 Sample Programs

55 END

Errors= 0
FILE: ~/68kcode/newprog CROSS REFERENCE TABLE PAGE 3

LINE# SYMBOL TYPE REFERENCES

19 CLEAR P 52

45 CLEAR_LOOP P 47
43 CLEAR_OLD P

31 COMMAND_A P 26
34 COMMAND_B P 28
16 INIT P

5 INPUT_POINTER D 16
12 INVALID_INPUT D 38
49 LOOP P 51

8 MESSAGE_A D 32
10 MESSAGE_B D 35
41 OUTPUT P 33, 36
6 OUTPUT_POINTER D 17
25 PROCESS_COMM P

21 READ_INPUT P 23
37 UNRECOGNIZED P 29

Loading the 68000
Sample Program

Set up Memory Map and the Stack Pointer

Before you load the program, you must map memory and set up the
stack pointer. Here are the necessary commands:

M> map 1000..1fff eram
M> map 2000..2fff erom
M> map 3000..5fff eram
M> reg ssp=5000

Transferring Code from Computer Using ftp

To connect to the emulator’s ftp interface, enter the following
command (use any name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

Sample Programs A-3

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fitness for
a particular purpose.

FTP on the HP64700 serves as a means for downloading absolute files to the
emulation environment. The file transfer can be be performed as follows:

1. The data mode type must be set to IMAGE (binary)

2. Store the file using options to indicate the file format. The following
example uses PUT as the host command for sending the file. This may be
different for your ftp implementation.

put <file_name> <options>
<file_name> - host file to be loaded.
<options> - The options are preceeded by a minus (-). The available
options vary for individual emulators. All support HP OLS, Intel hex,
Motorola S-records, and Extended Tek Hex. Emulator specific options can
be viewed by issuing a Terminal Mode help for the load command.

put hpfile.X -h #to download an HP OLS file

put intelfile -i #to download an Intel Hex file

put motfile -m #to download a Motorola S-record file
put tekfile -t #to download an Extended Tek Hex file

230

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the HP 64000 format absolute file into the emulator:

ftp> put cmd_rdr.X -h

200 Port ok

150

226-

R>

226 Transfer completed

3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

A-4 Sample Programs

80186 Sample
Program

FILE: cmd_rdr.S HEWLETT-PACKARD: 80186 Assembler
LOCATION OBJECT CODE LINE SOURCE LINE

1"80186"
2 ORG 500H
0500 3 Msgs
0500 436F6D6D61 4 Msg_A DB "Command A entered "
0505 6E64204120
050A 656E746572
050F 656420
0512 456E746572 5 Msg_B DB "Entered B command "

0517 6564204220

051C 636F6D6D61

0521 6E6420

0524 496E76616C 6 Msg_| DB "Invalid Command "
0529 696420436F

052E 6D6D616E64

0533 20
0534 7 End_Msgs
8
9 ORG 400H
10 ASSUME DS:ORG,ES:ORG
12 * The following instructions initialize segment
13 * registers and set up the stack pointer.
14
0400 B80000 15 Init MOV AX,SEG Msg_A
0403 8ED8 16 MOV DS,AX
0405 B80000 17 MOV AX,SEG Cmd_Input
0408 8ECO 18 MOV ES,AX
040A 8EDO 19 MOV SS,AX
040C BCF906 20 MOV SP,OFFSET Stk
21
22 * Clear previous command.
23
040F 26C6060006 24 Read_Cmd MOV Cmd_Input,#0
0414 0090
25
26 * Read command input byte. If no command has been
27 * entered, continue to scan for command input.
28
0416 26A00006 29 Scan MOV AL,Cmd_Input
041A 3C00 30 CMP AL#0
041C 74F8 31 JE Scan
32
33 * A command has been entered. Check if it is
34 * command A, command B, or invalid.
35
041E 3C41 36 Exe_Cmd CMP AL #41H
0420 7407 37 JE Cmd_A
0422 3C42 38 CMP AL,#42H
0424 740C 39 JE Cmd_B
0426 E91200 40 JMP Cmd_|

Sample Programs A-5

41
42 * Command A is entered. CX = the number of bytes in
43 * message A. Sl = location of the message. Jump to
44 * the routine which writes the messages.

45
0429 B91200 46 Cmd_A MOV CX#Msg_B-Msg_A
042C BE0005 47 MOV SI,OFFSET Msg_A
042F E90F00 48 JMP Write_Msg

49

50 * Command B is entered.

51
0432 B91200 52 Cmd_B MOV CX#Msg_|-Msg_B
0435 BE1205 53 MOV SI,OFFSET Msg_B
0438 E90600 54 JMP Write_Msg

55

56 * An invalid command is entered.
043B B91000 58 Cmd_| MOV CX#End_Msgs-Msg_|
043E BE2405 59 MOV SI,OFFSET Msg_|

60

61 * Message is written to the destination.
62

0441 8D3E0106 63 Write_Msg LEA DI,Msg_Dest
0445 F3A4 64 REP MOVSB
65
66 * The rest of the destination area is filled
67 * with zeros.

68
0447 C60500 69 Fill_Dest MOV BYTE PTR [DI],#0
044A 47 70 INC DI
044B 81FF2106 71 CMP DI #Msg_Dest+20H
044F 75F6 72 JNE Fill_Dest
73
74 * Go back and scan for next command.
75
0451 EBBC 76 JMP Read_Cmd
77
78 ORG 600H
79
80 * Command input byte.
81
0600 82 Cmd_Input DBS 1
83
84 * Destination of the command messages.
85
0601 86 Msg_Dest DDS 3EH
06F9 87 Stk Dws 1 ; Stack area.
88 END

Errors= 0

A-6 Sample Programs

Symbol Files

Versions of HP 64700-Series emulator firmware that support symbol
files can load an ASCII text file containing symbol definitions.

Three types of symbols can be defined: local, global, and user. Only
local and global symbols can be loaded from a symbol file; user
symbols can only be created with §yen command.

Global symbols are general memory references. They represent th
equivalent of "GLOBAL" or "PUBLIC" variables in compiled
programs.

Local symbols are grouped by "module." The primary purpose of a
module is to group local symbols, but can represent any arrangement of
local symbols desired. Local symbols created by a higher level
language processor are defined by implementation.

A module is usually a source file name, and symbols are function or
procedure names. In a symbol file, any organizational scheme can be
used to manage local symbols. While the module name can be
equivalent to a source file name, or some other physical or logical
entity, it is not necessary. Therefore, if memory is in short supply, you
can organize the "local" symbols to allow for easy deletion of old
symbols, and loading of new symbols that reference locations of
interest.

Address references for all symbol types are absolute addresses.

Sample Programs A-7

Note # Thesym command presently applies to some HP 64700-Series
emulators, and may apply to all HP 64700-Series emulators in the
future. If you are using an emulator that does not presently support
symbols, when you try to execute gygn command, a message will be
displayed indicating that symbols are not supported on your emulator.

If your emulator firmware is less than version A.02.00, you will not be
able to use theym command because your emulator will not support
symbols. To verify the version number of your emulator firmware,
execute "ver" at the Terminal Interface prompt.

Even if your emulator firmware version is A.02.00 or greater, your
HP 64700-Series emulator may not necessarily support symbols.

Syntax A symbol file is an ASCII text file. The format of this file is
represented by:

symbol file # <RETURN>
<WHITESPACE>
<WHITESPACE>

<MODULE> O

<RETURN>
[<WHITESPACE>

<WH\TESPACE>H <ADDRESS> D

<LOCAL SYMBOL>

L'@ -{<RETURN> }—{end symbol ﬁ\e)
<WHITESPACE>

A-8 Sample Programs

<WHITESPACE>

<RETURN>

<ADDRESS>

<MODULE>

<LOCAL SYMBOL>

<GLOBAL SYMBOL>

<QUALIFIER>

This is one or more <SP> (space) or <HT>
(horizontal tab) characters or a
combination of these characters.

This is a <LF> (line feed) or <CR><LF>
(carriage return, line feed pair); a <CR>
(carriage return) alone is not recognized.

This is a valid address specification for the
emulator being used.

This defines a module name.

This is a local symbol reference. A local
symbol definition line must include, or
follow, a module name, or an error will
occur when loading the file.

This is a global symbol reference.

This allows you to specify label
hierarchies. Its use is dependent on the
implementation.

This is the literal colon (":").

This is the literal period (".").

This is the literal pound sign ("#").

Sample Programs A-9

Examples

#

‘main 0@p
GetAittrib:
Buffer 100@p
Pointer 120@p
#

#

‘main 0@p
GetAttrib:Buffer 100@p
GetAttrib:Pointer 120@p
#

sym main=00000@p
sym GetAttrib:Buffer=00100@p
sym GetAttrib:Pointer=00120@p

A-10 Sample Programs

The examples presented are for the 8051 family emulators. Other
emulators will use a different address format. Refer to Fowslator
Terminal Interface User’s Guider specific address format definitions.

Defining Local Symbols

Local symbols must include, or be preceded by, a module name
reference. Therefore, the files

and

will produce the same result when loaded.

After loading either symbol file, enter:
M> sym

You will see:

Naming Array Elements

You may wish to load symbols that name elements of an array to make
referring to the array elements more explicit. If your array has four
elements, each element is 10h bytes long, and begins at 2000h, the
symbol file would contain the following:

#

ARRAY:
E1=2000@d
E2=2010@d
E3=2020@d
E4=2030@d
#

After loading the symbol file, enter:
M> sym

You will see, at least in part:

sym ARRAY:E1=2000@d
sym ARRAY:E2=2010@d
sym ARRAY:E3=2020@d
sym ARRAY:E3=2030@d

If you no longer need the references to ARRAY elements, you can

remove the symbols with the command:
M> sym -dl ARRAY

Sample Programs A-11

Loading a Symbol Loading symbol files over the LAN is the same as loading absolute

File files over the LAN, except that a different option is used with the "put"
command in ftp.

To connect to the emulator’s ftp interface, enter the following
command (use any name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for
a particular purpose.

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the symbol file into the emulator:

ftp> put cmd_rdr.sym -S

200 Port ok

150

226-

R>

226 Transfer completed

1789 bytes sent in 4.78 seconds (0.37 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

A-12 Sample Programs

8051 Sample The HP 64700-Series 8051 Emulator supports the use of symbols. If
you are using an 8051 Emulator, you can use the following program to

Program become familiar with using symbols.
"8051"
DPS DATA 86H
GLB Msgs,Init,Cmd_Input
CSEG
COMN
Msgs
Msg_A DB "Command A entered "
Msg_B DB "Entered B command "
Msg_| DB "Invalid Command "
End_Msgs
PROG

* The following instructions initialize segment
* registers and set up the stack pointer.

Init MOV SP.#Stk
Read_Cmd MOV DPTR,#Cmd_Input

* Clear previous command.

MOV A#0
MOVX @DPTR,A

* Read command input byte. If no command has been
* entered, continue to scan for command input.

Scan MOVX A,@DPTR
JZ Scan

* A command has been entered. Check if it is
* command A, command B, or invalid.

CINE A#41H,Cmd_B

* Command A is entered. Set up registers R2 and
* DPTRO with the parameters expected by the
* "Write_Msg" routine. Call the routine. After
* return, go back and scan for next command.

MOV R2#Msg_B-Msg_A
MOV DPTR,#Msg_A
SIMP Write_Msg

Cmd_B CINE A#42H,Cmd_|

* Command B is entered.

MOV R2#Msg_I-Msg_B
MOV DPTR,#Msg_B
SIMP Write_Msg

* An invalid command is entered.

Cmd_lI MOV R2#End_Msgs-Msg_|
MOV DPTR,#Msg_|

Sample Programs A-13

* The "Write_Msg" routine writes a message to the

* destination. The parameter passed in register

* R2 = the number of bytes in the message. The

* parameter passed in register DPTRO = the location
* of the message.

Write_Msg MOV AR2
XRL A#OFFH
ADD A#21H
MOV R3A
INC DPS
MOV DPTR,#Msg_Dest
Again INC DPS
MOVX A,@DPTR
INC DPTR
INC DPS
MOVX @DPTR,A
INC DPTR
DIJNZ R2,Again

* The rest of the destination area is filled
* with zeros.

MOV A#0

Fill_Dest MOVX @DPTR,A
INC DPTR
DINZ R3,Fill_Dest
INC DPS

SIJMP Read_Cmd
XSEG

* Command input byte.

Cmd_Input DS 1

* Destination of the command messages.

Msg_Dest DS OFDH
Stk DS 1 ; Stack area.
END Init

A-14 Sample Programs

Binary/Hexadecimal Trace List Format

Thetl command supports two optionb,(binary) andx

(hexadecimal) which allow you to dump the trace list to your host f
post processing. This is, in fact, the only way you can obtain timin
trace information from the optional external analyzer, as the Terminal
Interface does not currently provide support for translating timing data
to ASCII characters.

Transfer Protocol When you request a binary trace list dump from the HP 64700
Emulator (b option), the emulator sends the data using the HP 64000
transfer protocol. You must use an 8-bit communications channel to
successfully transfer the data (HP 64700 and the host device must both
be configured to send and receive 8 bits).

The hexadecimal trace list dumg pption) also uses the HP 64000
transfer protocol, but does not require an 8-bit communications
channel. However, twice as many characters will be transmitted as
would be in the binary format.

Trace List Records Six primary trace list records may be transferred. These are:

= No Trigger Record
m Empty Trace Record

m New State Data Record

Binary/Hexadecimal Trace List Format B-1

m More State Data Record
m New Timing Data Record

m More Timing Data Record
Each record has at least one byte. The first byte identifies the record
type.

Other fields in the record, containing one or more bytes of information,
provide additional information about the trace.

The Data Records contain secondary record structures which hold the
actual trace information. For the State Data Records, the secondary
record is the Trace State record; for the Timing Data Records, the
secondary record is the Trace Sample record.

Each record structure is accompanied by a diagram. Note that line
breaks in the diagram are not EOL characters in the record.

No Trigger Record

record type = 10000000

One byte indicating that the trigger condition of the current trace is not
in memory. Trace data cannot be displayed until the trigger condition
occurs and is placed in trace memory or until the trace is halted.
Therefore, this is the only record that will be sent when the trace list is
requested, since no others are available.

NO TRIGGER RECORD

10000000

BYTE 1

B-2 Binary/Hexadecimal Trace List Format

Empty Trace Record

record type = 01000000

One byte indicating that the most recent trace was halted before any
states were stored. Therefore, this will be the only record sent.

EMPTY TRACE RECORD

01000000

BYTE 1

New State Data
Record

record type = 00000LH1

One byte indicating that this is the first trace list data displayed for the
current or most recent trace.

If L=1, this is the only record being sent. Otherwise, one or more More
Data Records follow.

If H=1, this record contains the highest numbered state this trace can
have. Therefore, this is the end of the trace list. If the state count for
this record is zero, the highest numbered state can be computed by
subtracting 1 from the start state.

State count

One byte indicating how many trace states are contained in this record.
This will be zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range -1024
through 1023), most significant byte first.

Binary/Hexadecimal Trace List Format B-3

lowest state

Two bytes containing the lowest state number in the entire trace list,
MSB first. Note that if the trace is halted after this record is sent,
lower-numbered states may be valid.

NEW STATE DATA RECORD

[00000LH1 [STATE COUNT| START STATE #
BYTE 1 2 3-4

| LOWEST STATE # | STATE SIZE |
5-6 7

‘T\ME VALID FLAGS | ARM TIME ‘ COUNT TYPE
8—10 11

‘ TRACE STATE RECORDS

12 AND UP

(EACH IS MULTIBYTE)

state size

One byte indicating how many bytes of trace data will be in each trace
state. This does not include the store cause or count data bytes.

arm time

Three bytes containing the time from arm to trigger, MSB first. The
lower 20 bits contain the absolute value of the actual time, in 40 ns
units.

Note # The time alignment between HP 64700-Series emulators has a large
margin of error (+/- 100 ns) due to delay variances in the trigger paths.

B-4 Binary/Hexadecimal Trace List Format

count

FFFFh

time

The correlation between the arm time counter value and the value
displayed on screen should be as follows:

Arm occured an unknown amount of time after the trigger
Arm occured an unknown amount of time after the trigger
-40 ns - Arm input actually came after trigger was sampled but
still caused arm state to occur before trigger

internal to the elan chip.
0ns
40 ns

80 ns

2.621280 ms This is now the maximum arm to trigger interval

that can be displayed.

The highest 4 bits contain status flags as follows:
high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was
ignored (e.g., "tarm always"), or because the state analyzer clock speed
was fast or very fast (e.g., "xtck -s F"). The 20 bits of time value will

be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S =

1). For overflow, the 20 bits of time value contain the maximum time
value, (1°20)-4, representing 41.94288 ms. For underflow, the S flag is
set (see below), and the 20 bits of time value contain the absolute value
of the minimum count, -1, representing -40 ns.

If S =1, the arm time is negative. The 20 bits of time value contain the
absolute value of the actual count.
count type

One ASCII character indicating the type of count data contained in
each trace state.

"T" indicates each trace state contains a time count.
"S" indicates each trace state contains a state count.

"N" indicates that no count data is available.

Binary/Hexadecimal Trace List Format B-5

first trace state..last trace state

Each of these records is in the trace state format described below. Each
record is n bytes in length; n is the state size value (described above)
plus one byte indicating the reason for storage of this state and an
optional two bytes with count data information.

More State Data
Record

record type = 0O0O0OONLHO

One byte indicating this is more data from the same trace as the most
recent New State Data Record.

If L=1, this is the last record sent. Otherwise additional More Data
Records follow.

If H=1, this record contains the highest numbered state in the trace; this
is the end of the trace list. If the state count for this record is zero (0),
the highest numbered state can be computed by subtracting one (1)
from the start state.

If N=1, this record contains a new lowest state. The starting state
number can change if the trace is halted; if it changes, it will always
become more negative. It can change a maximum of one time for a
given trace list. N=1 will never occur unless L=1.

MORE STATE DATA RECORD

[000ONLHD | STATE COUNT]| START STATF # |
BYTE 1 2 3—4

| LOWEST STATE # (OPTIONAL) | Trace stare mecoros |
5-6 7 AND UP

(5 AND UP IF NO LOWEST
STATE FIELD)
(EACH IS MULTIBYTE)

B-6 Binary/Hexadecimal Trace List Format

state count

One byte indicating the number of trace states contained in this record.
This will be zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range
-1024..1023), most significant byte (MSB) first.

lowest state

Optional two bytes containing the lowest state number in the entire
trace list, most significant byte (MSB) first. These bytes are only
present if the record type has N=1.

first trace state..last trace state

Each of these records is in the trace state format described below. Each
record is a variable number of bytes in length. The length is the state
size value (described above) plus one byte indicating the reason for
storage of this state and an optional two bytes with count data
information.

Trace State Record

state type
One ASCII character indicating the reason this state was stored.

"Q" indicates this state satisfied a sequence branch qualifier (defined by
tif ortelif).

"S" indicates this state satisfied the store qualifier (definadtby

"P" indicates this state satisfied the prestore qualifier. The count data
field bytes below will be omitted for this state. Prestore states are
marked as such only if a state or time count was specified for the trace
(defined bytcq).

Binary/Hexadecimal Trace List Format B-7

TRACE STATE RECORD

| STORE REASON | STATE/TIME COUNT |
BYTC 1 2—3

IRACE DATA |
4 AND UP

(2 AND UP IF
NO COUNT DATA FIELD)
(EACH IS MULTIBYTE)

count data

Optional two bytes containing the state or time count for this state. The
count value is relative to the previous non-prestore state. These bytes
are omitted if the count type field in the New State Data Record was
"N", or if this state is a prestore state (state type field in this record is
"P"). The count data is encoded as follows (first byte is on the left):

eeeeemmm mmmmmmmm
e represents 5 bits of exponent.

m represents 11 bits of mantissa.

The value represented is (m*(27e)) + (2*(11+e)) - (2711)

Time counts are in 40 nanosecond units.

trace data

Trace data for this state, most significant byte (MSB) first. The length
of this trace data is given by the state size field in the New State Data
Record. Data from the optional external analyzer (provided only if the
analyzer is present) will be in the most significant 16 bits (two bytes).

New Timing Data
Record

record type = 00100LH1

One byte indicating this is the first trace list data displayed for the
current or most recent trace.

B-8 Binary/Hexadecimal Trace List Format

If L=1, this is the only record sent. Otherwise, one (1) or more More
Timing Data Records follow.

If H=1, this record contains the highest numbered sample in the trace;
this is the end of the trace list. If the sample count field for this record
is zero (0), the highest numbered sample can be computed by
subtracting one (1) from the start sample field.

sample count

One byte indicating how many trace samples are contained in this
record. This will be zero if no samples are present.

NEW TIMING DATA RECCRD

‘@@W@@LHW SAMPLE COUNT ‘START SAMPLE #
BYTE 1 2 S—4

[LOWCST SAMPLE # | STATE SIZE
5-6 7

|we v Faes | ARM. TIME | COUNT TYPE |
8—10 1

\ SAMIPLE PERIOD \
12-15

‘ TRACE SAMPLE RECORDS

16 AND UP

(EACH IS MULTIBYTE)

start sample

Two bytes containing the starting sample number (-1024..1023), most
significant byte (MSB) first.

lowest sample

Two bytes containing the lowest sample number in the entire trace list,
MSB first. Note that if the trace is halted after this record is sent,
lower-numbered samples may become valid.

Binary/Hexadecimal Trace List Format B-9

state size

One byte indicating the number of bytes of trace data in each trace
sample. Note the relationship to the count type field.

arm time

Three bytes containing the time from arm to trigger, MSB first. The
lower 20 bits contain the absolute value of the actual time, in 40 ns
units.

Note # The time alignment between HP 64700-Series emulators has a large
margin of error (+/- 100 ns) due to delay variances in the trigger paths.

B-10 Binary/Hexadecimal Trace List Format

FFFFh

time

The correlation between the arm time counter value and the value
displayed on screen should be as follows:

Arm occured an unknown amount of time after the trigger
Arm occured an unknown amount of time after the trigger

-40 ns - Arm input actually came after trigger was sampled but

still caused arm state to occur before trigger

internal to the elan chip.
0ns
40 ns
80 ns

2.621280 ms This is now the maximum arm to trigger interval

that can be displayed.

The highest 4 bits contain status flags as follows:
high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was
ignored (e.g., "tarm always"), or because the state analyzer clock speed
was fast or very fast (e.g., "xtck -s F"). The 20 bits of time value will

be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S =

1). For overflow, the 20 bits of time value contain the maximum time
value, (1°20)-4, representing 41.94288 ms. For underflow, the S flag is
set (see below), and the 20 bits of time value contain the absolute value
of the minimum count, -1, representing -40 ns.

If S =1, the arm time is negative. The 20 bits of time value contain the
absolute value of the actual count.

count type

One ASCII character indicating the type of count data contained in
each Trace Sample record.

"T" indicates the timing analyzer was set to transitional mode. Each
Trace Sample record contains a six byte field which contains the delta
time (in nanoseconds) since the last transition. A two-byte field
containing the trace data taken at the delta time interval is also in the
Trace Sample record.

Binary/Hexadecimal Trace List Format B-11

"S" indicates the timing analyzer was set to standard mode. Each Trace
Sample record contains only the two bytes of trace data.

"G" indicates the timing analyzer was set to glitch mode. Each trace
sample consists of a two-byte trace data field and a two-byte glitch data
field.

sample period

Four bytes containing the number of nanoseconds (ns) between
samples.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note
relationship to the count type field).

More Timing Data
Record

record type = 0010NLHO

One byte indicating this is more data from the same trace as the most
recent New Timing Data Record.

If L=1, this is the last record sent. Otherwise, additional More Timing
Data Records follow.

If H=1, this record contains the highest-numbered sample in the trace;
this is the end of the trace list. If the sample count field for this record
is zero (0), the highest numbered sample can be computed by
subtracting one (1) from the start sample field.

If N=1, this record contains a new lowest sample. The starting sample
number can change if the trace is halted; if it changes, it will always
become more negative. It can only change once for a given trace list.
N=1 will only occur if L=1.

B-12 Binary/Hexadecimal Trace List Format

MORE TIMING DATA RECORD

[0010NLHO | SAMPLE COUNT | START SAMPLE #]
BYTE 1 2 3-4

[LOWEST SAMPLE # (OPTIONAL) | TRacE saPLE RECORDS |
5-6 7 AND UP

(5 AND UP IF NO LOWEST
SAMPLE FIELD)
(EACH IS MULTIBYTE)

sample count

One byte indicating the number of Trace Sample records in this record.
This will be zero (0) if no Trace Samples are present (the analyzer did
not find the requested data in the last trace.)

start sample
Two bytes containing the starting sample number (in the range
-1024..1023), most significant byte (MSB) first.

lowest sample

Optional two bytes containing the lowest sample number in the entire
trace list, most significant byte (MSB) first. These two bytes are
present only if the record type has N=1.

first trace sample..last trace sample
Trace Sample records of the size defined in the sample size field (note

relationship to the count type field).

Trace Sample Trace Sample records are variant records which are components of the
Records New Timing Data Record and More Timing Data Record. The
structure of the Trace Sample Record depends on the count type field in
the Timing Data Records.

Binary/Hexadecimal Trace List Format B-13

Transitional Mode (count type ="T")
delta time

Six bytes of data defining the delta time (elapsed time) since the last
transition, in nanoseconds (ns).

trace data

Two bytes of trace data sampled at the delta time value given.

TRACE SAMPLE RECORD

TRANSITIONAL MODE
\ DELTA TIME
BYTE 1-6

TRACE DATA

7-8

STANDARD MODE

TRACE DATA

BYTE 1-2

GLITCH MODE

TRACE DATA | GLITCH DATA

BYTE 1-2 5—4

Standard Mode (count type ="S")

trace data

Two bytes of trace data sampled at the standard sampling period (see
thextsp command).

Glitch Mode (count type ="G")

trace data

Two bytes of trace data sampled at the standard sampling period (see
thextsp command).

glitch

Two bytes indicating the occurrences of glitches on any channel.

B-14 Binary/Hexadecimal Trace List Format

Error Messages

This appendix contains descriptions of error messages that can occur
while using the Terminal Interface. The error messages are listed in
numerical order, and each description includes the cause of the error
and the action you should take to remedy the situation.

Error messages described in this appendix are "generic"; that is, th
can occur in any of the HP 64700-Series emulators. Errors specifi
particular emulator are described in Eraulator User’s Guide

The HP 64700-Series emulators can return messages to the display only
when they are prompted to do so. Situations may occur where an error
is generated as the result of some command, but the error message is
not displayed until the next command (or a carriage return) is entered.

A maximum number of 8 error messages can be displayed at one time.
If more than 8 errors are generated, only the last 8 are displayed.

Emulator Error
Messages

The following messages are used by most, but not all, of the HP
64700-Series Emulators. Some emulators may supplement or replace
these with messages of their own.

Error Messages C-1

Message 0 : Software breakpoints not supported

Cause

You attempted to enable software breakpoints lagthe bpon an
emulator whose processor does not support a software breakpoint
instruction.

Action

Do not attempt to use software breakpoints. Instead, set the analyzer to
drive thetrigl ortrig2 line upon finding trigger, specify the trigger

state as the address you wish to break on, trace, then run the emulator.
The emulator will break to monitor when the analyzer finds the trigger
state.

Message 1: /O port access not supported

Cause

You attempted to use thecommand for an emulator whose processor
does not support separate 1/0 (such as the 68000).

Action

Use then command to modify I/O ports on these emulators.

Message 20 : Attempt to change foreground monitor map term

Cause

The cf mon=fg command that sets up use of a foreground monitor also
maps a memory range for the monitor’'s use. You attempted to alter
that term using thenap command.

Action

Try using another memory range for the new map term. If you need to
have the range used by the foreground monitor, then switch to a
background monitor, delete the old foreground monitor map term, and

C-2 Error Messages

Message

Message

Message

add the new term. Now you can return to using a foreground monitor;
remember you will need to reload the monitor code.

40 : Restricted to real time runs

Cause

Thecf rrt=en option is set (restrict to real time runs) and you have
entered a command which requires a temporary break to the monitor
for processing (such as a request to display target system memory
locations).

Action

Break to the monitor using thiecommand, then execute the desired
command. If your target system depends on continuous bus cycles to
avoid damage, then power it down before breaking to the monitor.

61 : Emulator is in the reset state

Cause

This message is displayed if you request an operation that requires
entry into the emulation monitor, such as display of target system
memory locations.

Action

If the prompt is R>, indicating an emulation system reset, break to the
monitor using thé command, then retry the command. Otherwise,
release the target system reset, then retry the command.

80 : Stack pointer is odd

Cause

You have attempted to modify the stack pointer to an odd value for a
processor that expects the stack to be aligned on a word boundary (such
as the 68000).

Error Messages C-3

Message

Message

C-4 Error Messages

Action

Modify the stack pointer to an even value.

81 : Stack is in guarded memory

Cause

Your stack pointer pointed to a location in memory mapped as guarded;
you then attempted to run or step the emulation processor. The
emulator was unable to access the stack to complete the transition from
the monitor to the user program or vice versa.

Action

Either remap memory so the stack pointer points to a location in RAM,
or change the stack pointer value (either with your program or with the
cf command options, if available) to point to a location in RAM.

82 : Stack is in target ROM

Cause

Your stack pointer pointed to a location in memory mapped as target
ROM; you then attempted to run or step the emulation processor. The
emulator was unable to access the stack to complete the transition from
the monitor to the user program or vice versa.

Action

Either remap memory so the stack pointer points to a location in RAM,
or change the stack pointer value (either with your program or with the
cf command options, if available) to point to a location in RAM.

Message

Message

Message

83 : Stack is in emulation ROM

Cause

Your stack pointer pointed to a location in memory mapped as

emulation ROM; you then attempted to run or step the emulation
processor. The emulator was unable to access the stack to complete the
transition from the monitor to the user program or vice versa.

Action

Either remap memory so the stack pointer points to a location in RAM
or change the stack pointer value (either with your program or with
cf command options, if available) to point to a location in RAM.

84 : Program counter is odd

Cause

You attempted to modify the program counter to an odd value using the
reg command on a processor which expects even alignment of opcodes.

Action

Modify the program counter only to even numbered values.

102 : Monitor failure; no clock input

Cause

The monitor is unable to run because no emulation processor clock is
available.

Action

If running out of circuit, choose configuration opticfrclk=int; if

running in-circuit, choose configuration opticihclk=ext and make

sure a clock meeting the microprocessor's specifications is input to the
clock pin of the target system probe.

Error Messages C-5

Message 103 : Monitor failure; no processor cycles

Cause

The monitor is unable to run since the processor is not running. The
monitor is unable to determine the cause of the failure.

Action

If running in-circuit, troubleshoot the target system. If running out of
circuit, reinitialize the emulator and try the procedure again.

Message 104 : Monitor failure; bus grant

Cause

The monitor is unable to run. The emulation processor is not running
because it has granted the bus to another device.

Action

Wait until the processor has regained bus control, then retry the
operation.

Message 105 : Monitor failure; halted

Cause

The monitor is unable to run because the processor is halted (due to an
external halt line or a halt instruction).

Action

Release the external halt and retry the operation. If the processor halted
due to a halt instruction, try thst command, then retry the operation.

C-6 Error Messages

Message 106 : Monitor failure; wait state

Cause

The monitor is unable to run because the processor is in a continuous
wait state.

Action

A continuous wait state may indicate target system problems.
Troubleshoot the wait line. If you were running out of circuit, try
initializing the emulator witlnit, then retry the procedure.

Message 107 : Monitor failure; bus error

Cause

The monitor is unable to run because the processor has encountered a
bus fault (such as the 68000 /BERR line).

Action

Release the /BERR line and determine why it was activated.

General Emulator
and System
Error/Status
Messages

Message 201 : Out of system memory

Cause

Macros and equates that you have defined have used all of the available
system memory.

Error Messages C-7

Message

Message

C-8 Error Messages

Action

Delete some of the existing macrasa -d <NAME>) and equates
(equ -d <NAME>), which will free additional memory.

204 : FATAL SYSTEM SOFTWARE ERROR

205 : FATAL SYSTEM SOFTWARE ERROR

208 : FATAL SYSTEM SOFTWARE ERROR

Cause

The system has encountered an error from which it cannot recover.

Action

Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats,
call your local HP Sales and Service office for assistance.

206 : Incompatible compatibility table entry.

Cause

The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 emulation system.

Action

The ROMs in your emulator must be compatible with each other for
your emulation system to work correctly. Refer to the HP 64700-Series
Emulators Firmware/Software Compatibility Note supplied with your
HP 64700-Series documentation to determine the current ROM kit
number for your emulator. All emulation, analysis, and system ROMs
in the HP 64700 must be installed from the most current firmware kit
for that emulator. For more information contact your Hewlett-Packard
Representative.

Message 300 : Invalid option or operand

305 : Invalid option or operand: %s

Cause

You have specified incorrect option(s) to a command. %s, if printed,
indicates the incorrect option(s).

Action
Reenter the command with the correct syntax. Refer to the syntax
pages in this example for information.

Message 307 : Invalid expression: %s

Cause

You have entered an expression with incorrect syntax; therefore, it
cannot be evaluated. %s is the bad expression.

Action

Reenter the expression, following the syntax rules for that type of
expression. Refer to the command syntax pages to determine the
expression type; then refer to the expression syntax pages to determine
the correct syntax for that type.

Message 308 : Invalid number of arguments

Cause

You have either entered too many options to a command or an
insufficient number of options.

Action

Re-enter the command with correct syntax. Refer to the command
syntax pages in this manual for information.

Error Messages C-9

Message

Message

C-10 Error Messages

310 : Invalid address: %s

Cause

You specified an invalid address value as an argument to a command
(other than an analyzer command). For example, you may have
specified digits that don’t correspond to the base specified, or you
forgot to precede a hexadecimal letter digit with a number (even zero

(0)).

Action

Re-enter the command and the address specification. See the
<ADDRESS> syntax pages in tRenulator User’s Guidend the
<EXPRESSION> syntax pages in this manual for information on
address specifications.

311 : Invalid address range: %s

Cause

You specified an invalid address range as an argument to a command
(other than an analyzer command). For example, you may have
specified digits that don’t correspond to the base specified, or you
forgot to precede a hexadecimal letter digit with a number, or the upper
boundary of the range you specified is less than the lower boundary.

Action

Re-enter the command and the address specification. See the
<ADDRESS> syntax pages in tRenulator User’s Guidend the
<EXPRESSION> syntax pages in this manual for information on
address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower
boundary must always precede the upper boundary on the command
line).

Message 312 : Ambiguous address: %s

Cause

Certain emulators support segmentation or function code information in
addressing. The emulator is unable to determine which of two or more
address ranges you are referring to, based upon the information you
entered.

Action
Re-enter the command and fully specify the address, including
segmentation or function code information.

Message 313 : Missing option or operand

Cause

You have omitted a required option to the command.

Action
Re-enter the command with the correct syntax. Refer to the command
syntax pages in this manual for further information on required syntax.

Message 314 : Option conflict: %s

Cause

You have entered a command with two options which cannot be used
together. For example, you might have entérduk; you cannot ask
for both a binary and hexadecimal trace list dump.

Action

Reenter the command, specifying only non-conflicting options. Refer
to the syntax pages for the command in this manual to determine which
options may be used together.

Error Messages C-11

Message 315 : Invalid count: %s

Cause

This error occurs when the emulation system expects a certain number
(of arguments, for example), but you specify a different number.

Action

Enter the number the system expects to receive.

Message 316 : Invalid range expression: %s

Cause

In thetl command, you specified an illegal range. For example, you
might have specified -10..a

Action

Use only legitimate range numbers in theommand (-1024..1023);
the second range value must be greater than the first.

Message 317 : Range out of bounds: %s

Cause

In thetl command, you specified a range number which was greater
than the number of states available in the analyzer. For example, you
might have specifiet -2048..2048the analyzer only has 1024 states.

Action

Specify range numbers between -1024 and 1023.

C-12 Error Messages

Message 318 : Count out of bounds: %s

Cause

You specified an occurrence count less than 1 or greater than 65 535
for tg ortif. For example, you might have entetiéd any 2 69234

Action

Re-enter the command, specifying a count value from 1 to 65535. For
exampletif 1 any 2 65535

Message 319 : Invalid base: %s.

Cause

This error occurs if you have specified an invalid base itf tbextf
commands.

Action

Enter thehelp tf or help xtf command to view the valid base options.

Message 320 : Invalid label: %s

Cause

You tried to define a label with characters other than letters, digits, or
underscores.

Action

Re-enter thédb command with a label consisting only of letters, digits,
or underscores.

Error Messages C-13

Message

Message

Message

C-14 Error Messages

321 : Label not defined: %s

Cause

You entered an analyzer expression in which the label was not present
in the analyzer label list. For example, if the label list incladieks,

data, andstat, you might have entered something suctgas
lowerdata=24t This error also occurs if you try to delete a label that
does not exist.

Action

You can re-enter the command, using one of the previously defined
labels and adjust the expression as necessary to accommodate the fit of
that label to the analyzer input lines. Or, you can define a new label
using thetlb command, then re-enter the analyzer command using the
newly defined label.

400 : Record checksum failure

Cause

During atransfer operation, the checksum specified in a file did not
agree with that calculated by the HP 64700.

Action

Retry thetransfer operation. If the failure is repeated, make sure that
both your host and the HP 64700 data communications parameters are
configured correctly.

401 : Records expected: %s; records received: %s

Cause

The HP 64700 received a different number of records than it expected
to receive during &ransfer operation.

Action

Retry thetransfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP
64700. Refer to thelardware Installation and Configuratiomanual

for details.

Message 410 : File transfer aborted

Cause

A transfer operation was aborted due to a break received, most likely a
<CTRL> c from the keyboard.

Action

If you typed <CTRL> c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the
correct command options. If you are unsuccessful, make sure that the
data communications parameters are set correctly on the host and on
the HP 64700, then retry the operation.

Message 411 : Severe error detected, file transfer failed

Cause

An unrecoverable error occurred duringansfer operation.

Action

Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP
64700. Also make sure that you are using the correct command
options, both on the HP 64700 and on the host.

Error Messages C-15

Message

Message

Message

C-16 Error Messages

412 : Retry limit exceeded, transfer failed

Cause

The limit for repeated attempts to send a record durirenafer
operation was exceeded, therefore the transfer was aborted.

Action

Retry the transfer. Make sure you are using the correct command
options for both the host and the HP 64700. The data communications
parameters need to be set correctly for both devices. Also, if you are in
a remote location from the host, it is possible that line noise may cause
the failure.

413 : Transfer failed to start.

Cause

Communication link or transfer protocal incorrect.

Action

Check link and transfer options.

415 : Timeout, receiver failed to respond.

Cause

Communication link or transfer protocal incorrect.

Action

Check link and transfer options.

Message 420 : Unknown mode: %s.

Cause

This error occurs when you have specified an unknown option in the
stty command.

Action

Enter thehelp stty command to view the valid options.

Message 425 : Load option conflict: %s and option: %s.

Cause

Two or more options in the load command cannot be used together.

Action

Enter thehelp load command to view the options that cannot be used
together.

Message 520 : Equate not defined: %s

Cause

You tried to delete an equate that did not exist in the equate table. For
example suppose the equaded andb=2 were in the equate table. If
you typedequ -d ¢ you would receive the above error message.

Action

Useequto display the list of named equates before deleting equates.

Error Messages C-17

Message

Message

Message

C-18 Error Messages

600 : Adjust PC failed during break.

Cause

System failure or target condition.

Action

Run performance verificatiopy command), and check target system.
602 : Break failed

Cause

Theb command was unable to break the emulator to the monitor.

Action

Determine why the break failed, then correct the condition and retry the
command. See message 608.

603 : Read PC failed during break.

Cause

System failure or target condition.

Action

Try again.

Message

Message

Message

604 : Disable breakpoint failed: %s.

Cause

System failure or target condition.

Action

Run performance verificatiopy command), and check target system.

605 : Undefined software breakpoint: %s

Cause

The emulator has encountered a software breakpoint in your progr
that was not inserted with the command.

Action

If your processor allows different software breakpoint instructions,
either modify the ones you inserted in your code, or modify the ones
inserted bybp using your emulator’s configuration optioms (
command). If only one instruction is available, remove those inserted
in your code before assembly and link, then reinsert them usibg the
command.

606 : Unable to run after CMB break.

Cause

System failure or target condition.

Action

Run performance verificatiopy command), and check target system.

Error Messages C-19

Message

Message

C-20 Error Messages

608 : Unable to break

Cause

This message is displayed if the emulator is unable to break to the
monitor because the emulation processor is reset, halted, or is otherwise
disabled.

Action

First, look at the emulation prompt and other status messages displayed
to determine why the processor is stopped. If reset by the emulation
controller, use thb command to break to the monitor. If reset by the
emulation system, release that reset. If haltedstym to get to the
monitor. If there is a bus grant, wait for the requesting device to
release the bus before retrying the command. If there is no clock input,
perhaps your target system is faulty or you have configured the clock
wrong withcf clk. It's also possible that you have configured the
emulator to restrict to real time runs, which will prohibit temporary
breaks to the monitor. Refer to Appendix D of this manual for a list of
emulation prompts and their meanings.

610 : Unable to run.

Cause

System failure or target condition.

Action

Run performance verificatiopy command), and check target system.

Message 611 : Break caused by CMB not ready

Cause

This status message is printed during coordinated measurements if the
CMB READY line goes false. The emulator breaks to the monitor.
When CMB READY is false, it indicates that one or more of the
instruments participating in the measurement is running in the monitor.

Action

None, information only.

Message 612 : Write to ROM break

Cause

This status message will be printed if you havdsee romand the
emulation processor attempted a write to a memory location mapped as
ROM.

Action

None (except troubleshooting your program!)

Message 613 : Analyzer Break.

Cause

Status message.

Action

None.

Error Messages C-21

Message 614 : Guarded memory access break

Cause

This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action
Troubleshoot your program; or, you may have mapped memory
incorrectly.

Message 615 : Software breakpoint: %s

Cause

This status message will be displayed if a software breakpoint entered
with bp and enabled withc -e bpis encountered during a program

run. The emulator is broken to the monitor. The string %s indicates
the address where the breakpoint was encountered.

Action

None.

Message 616 : BNC trigger break

Cause

This status message will be displayed if you havbset bnctand the
BNC trigger line is activated during a program run. The emulator is
broken to the monitor.

Action

None.

C-22 Error Messages

Message 617 : CMB trigger break

Cause

This status message will be displayed if you haveset cmbtand
the CMB trigger line is activated during a program run. The emulator
is broken to the monitor.

Action

None.

Message 618 :trigl break

Cause

This status message will be displayed if you have set the analyzer to
drivetrigl upon finding the triggeic -e triglis set, and the analyzer
has found the trigger condition while tracing a program run. The
emulator is broken to the monitor.

Action

None.

Message 619 : trig2 break

Cause

This status message will be displayed if you have set the analyzer to
drivetrig2 upon finding the triggeihc -e trig2 is set, and the analyzer
has found the trigger condition while tracing a program run. The
emulator is broken to the monitor.

Action

None.

Error Messages C-23

Message

Message

Message

C-24 Error Messages

620 : Unexpected software breakpoint

Cause

If you have enabled software breakpoints with-e bp this message is
displayed if a software breakpoint instruction is encountered in your
program that was not inserted flgy and is therefore not in the
breakpoint table.

Action

If your processor allows different software breakpoint instructions,
either modify the ones you inserted in your code, or modify the ones
inserted bybp using your emulator’s configuration optiom$ (
command). If only one instruction is available, remove those inserted
in your code before assembly and link, then reinsert them usibg the
command.

621 : Unexpected step break.

Cause

System failure.

Action

Run performance verificatiopy command).
622 : %s.

Cause

Monitor specific message.

Action

Refer to youEmulator User’s Guidéor these message descriptions.

Message 623 : CMB execute break.

Cause

This message occurs when coordinated measurements are enabled and
an EXECUTE pulse causes the emulator to run; the emulator must
break before running.

Action

This is a status message; no action is required.

Message 624 : Configuration aborted.

Cause

Occurs when a <CTRL> c is entered durahgisplay command.

Action

None.

Message 625 : Invalid configuration value: %s

Cause

You have entered a configuration option incorrectly, such as tgping
clk=ex instead off clk=ext.

Action

Re-enter the configuration command, specifying only the correct
options. Refer to thEmulator User's Guidéor a description of the
configuration options for your emulator.

Error Messages C-25

Message

Message

Message

C-26 Error Messages

626 : Configuration failed; setting unknown: %s=%s.

Cause

Target condition or system failure.

Action

Check target system, and run performance verificaiercgmmand).

627 : Invalid configuration item: %s

Cause

You specified a non-existent configuration item indcheommand.

For example, if your emulator only supports a background monitor,
you would see this message if you tried to ecftenon=fg since there
is nomon configuration item for your emulator.

Action

Re-enter the command, specifying only configuration items that are
supported by your emulator. Refer to the <CONFIG_ITEMS> syntax
pages in youEmulator User’s Guidéor further information.

630 : Register access aborted.

Cause

Occurs when a <CTRL> c is entered during register display.

Action

None.

Message 631 : Unable to read registers in class: %s

Cause

The emulator was unable to read the registers you requested.

Action

To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform
the register read. See message 608.

Message 632 : Unable to modify register: %s=%s

Cause

The emulator was unable to modify the register you requested.

Action

To resolve this, you must look at the other status messages displayed.
It's likely that emulator was unable to break to the monitor to perform
the register modification. See message 608.

Message 634 : Display register failed: %s

Cause

The emulator was unable to display the register you requested.

Action

To resolve this, you must look at the other status messages displayed.
It's likely that emulator was unable to break to the monitor to perform
the register display. See message 608.

Error Messages C-27

Message

Message

Message

C-28 Error Messages

636 : Register not writable: %s.

Cause

This error occurs when you attempt to modify a read only register.

Action

If this error occurs, you cannot modify the contents of the register with
thereg command.

637 : Register class cannot be modified: %s

Cause

You tried to modify a register class instead of an individual register.

Action

You can only modify individual registers. Refer to the <REGISTERS>
syntax pages in themulator User’s Guidéor a list of register names.

640 : Unable to reset.

Cause

Target condition or system failure.

Action

Check target system, and run performance verificaiercgmmand).

Message 641 : Unable to reset into monitor.

Cause

You have enteredrat -m command and the emulator is unable to
break into the monitor.

Action

Reload monitorrét for background).

Message 650 : Unable to configure break on write to ROM

Cause

The emulator controller is unable to executelhhee romcommand
correctly, possibly because the emulator was left in an unknown state
or because of a hardware failure.

Action
Initialize the emulator or cycle power. Then reenter the command. If
the same failure occurs, call your HP sales and service office.

Message 651 : Unable to configure break on software breakpoints

Cause

The emulator controller is unable to executehbihee bpcommand,
possibly because the emulator is in an unknown state or because of a
hardware failure.

Action

Initialize the emulator or cycle power, then re-enter the command. If
the same failure occurs, call your HP sales and service office.

Error Messages C-29

Message 652 : Break condition must be specified

Cause

You enteredc -eor bc -d without specifying a break condition to
enable or disable.

Action

Re-enter thoc command along with the enable/disable flag and the
break condition you wish to modify.

Message 653 : Break condition configuration aborted.

Cause

Occurs when <CTRL> c is entered durbgdisplay.

Action

None.

Message 661 : Software breakpoint break condition is disabled

Cause

You entered thbp command and options; however, the software
breakpoint break condition is disabled.

Action

Enable the software breakpoint feature vbith-e bp then enter the
desired breakpoints withp.

C-30 Error Messages

Message 663 : Specified breakpoint not in list: %s

Cause

You tried to enable a software breakpoby (e <ADDRESS? that
was not previously defined. The string %s prints the address of the
breakpoint you attempted to enable.

Action

Insert the breakpoint into the table and memory by tybmg
<ADDRESS>

Message 664 : Breakpoint list full; not added: %s

Cause

The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address %s, was
not inserted.

Action

Remove breakpoints that are no longer in use bytkr
<ADDRESS> Then insert the new breakpoint.

Message 665 : Enable breakpoint failed: %s.

Cause

System failure or target condition.

Action

Check memory mapping and configuration questions.

Error Messages C-31

Message

Message

Message

C-32 Error Messages

666 : Disable breakpoint failed: %s.

Cause

System failure or target condition.

Action

Check memory mapping and configuration questions.

667 : Breakpoint code already exists: %s

Cause

You attempted to insert a breakpoint wofh <ADDRESS> however,
there was already a software breakpoint instruction at that location
which was not already in the breakpoint table.

Action

Your program code is apparently using the same breakpoint instruction
asbp. If multiple breakpoint instructions are available on your
processor, either change those in your program code or modify the one
bp uses with your emulator’s configuration optioosdommand). If

only one instruction is available, remove the breakpoints from your
program code and ubg to insert breakpoints.

668 : Breakpoint not added: %s

Cause

You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action

Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Message 669 : Breakpoint remove aborted.

Cause

Occurs when <CTRL> c is entered durinigpa-r command.

Action

None.

Message 670 : Breakpoint enable aborted.

Cause

Occurs when <CTRL> c is entered durinigpa-e command.

Action

None.

Message 671 : Breakpoint disable aborted.

Cause

Occurs when <CTRL> c is entered durinigpe-d command.

Action

None.

Error Messages C-33

Message

Message

Message

C-34 Error Messages

680 : Stepping failed.

Cause

Stepping has failed for some reason. For example in the HP 64742
68000 emulator, this message appears if the stack pointer is odd and
you enter a step command.

Action

Usually, this error message will occur with other error messages. Refer
to the descriptions of the accompanying error messages to find out
more about why stepping failed.

682 : Invalid step count: %s

Cause

You specified an non-cardinal value for a step count iis teenmand
(such as entering 22.).

Action

Reenter the step command, using only cardinal values (positive
integers) for the step count.

684 : Failed to disable step mode.

Cause

System failure.

Action

Run performance verificatiopy command).

Message 685 : Stepping aborted

Cause

This message is displayed if a break was received dusigiep)
command with a stepcount of zero (0). The break could have been due
to any of the break conditionslit or a <CTRL> ¢ break.

Action

None.

Message 686 : Stepping aborted; number steps completed: %d

Cause

This message is displayed if a break was received dusigiep)
command with a stepcount greater than zero. The break could have
been due to any of the break conditionbdror a <CTRL> ¢ break.

The number of steps completed is displayed.

Action

None.

Message 688 : Step display failed.

Cause

System failure or target condition.

Action

Check memory mapping and configuration questions.

Error Messages C-35

Message

Message

Message

C-36 Error Messages

689 : Break due to cause other than step.

Cause

An activity other than atepcommand caused the emulator to break.
This could include any of the break conditions btaommand or a
<CTRL> c break.

Action

None.

692 : Trace error during CMB execute.

Cause

System failure.

Action

Run performance verificatiopy command).

693 : CMB execute; run started

Cause

This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the
emulation processor started running at the address specifiedriay the
command.

Action

None; information only.

Message

Message

Message

694 : Run failed during CMB execute.

Cause

System failure or target condition.

Action

Run performance verificatiopy command), and check target system.

700 : Target memory access failed

Cause

This message is displayed if the emulator was unable to perform th
requested operation on memory mapped to the target system.

Action

In most cases, the problem results from the emulator’s inability to
break to the monitor to perform the operation. See message 608.

702 : Emulation memory access failed.

Cause

System failure.

Action

Run performance verificatiopy command).

Error Messages C-37

Message

Message

C-38 Error Messages

707 : Request access to guarded memory: %s

Cause

The address or address range specified in the command included
addresses within a range mapped as guarded memory. When the
emulator attempts to access these during command processing, the
above message is printed, along with the specific address or addresses
accessed.

Action

Re-enter the command and specify only addresses or address ranges
within emulation or target RAM or ROM. Or, you can remap memory
so that the desired addresses are no longer mapped as guarded.

710 : Memory range overflow.

Cause

On a word machine, typingr’-dw Offff" will cause a rounding error
that overflows physical memory.

Action

Reduce memory display request.

Message 720 : Invalid map term number: %s

Cause

You attempted to delete a mapper term that does not exist. For
example, you may have triesap -d 8on the 68000 emulator, which
only has seven map terms. Or you may have il -d 2 when
only one mapper term has been defined.

Action

Use themap command to determine the numbers of the terms currentl
mapped. Then delete the appropriate mapper term.

Message 721 :No map terms available; maximum number already defined

Cause

You tried to add more mapper terms than are available for this
emulator. For example, with the 68000 emulator, there are only 7
terms. If you had already defined memory types for these terms, then
tried to map another term, you would see the above error message.

Action

Either combine map ranges to conserve on the number of terms or
delete mapper terms that aren’t really needed to free another mapper
term.

Error Messages C-39

Message 723 :Invalid map address range: %s

Message

C-40 Error Messages

Cause

You specified an invalid address range as an argumenttaejne
command. For example, you may have specified digits that don't
correspond to the base specified, or you forgot to precede a
hexadecimal letter digit with a number, or the upper boundary of the
range you specified is less than the lower boundary.

Action

Re-enter thenap command and the address specification. See the
<ADDRESS> syntax pages in tRenulator User’s Guidend the
<EXPRESSION> syntax pages in this manual for information on
address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower
boundary must always precede the upper boundary on the command
line).

724 : Address not mappable: %s.

Cause

Trying to map an address that has a non-mappable function code. On
80C196, tnap 0..40@I erani is not mappable.

Action

Refer to theEmulator User’s Guidéor information on addresses which
may have function codes.

Message 725 : Unable to load new memory map; old map reloaded.

Cause

There is not enough emulation memory left for this request.

Action

Reduce the amount of emulation memory requested.

Message 726 : Unable to reload old memory map; hardware state unknown.

Cause

System failure.

Action

Run performance verificatiopy command).

Message 730 : Invalid memory map type: %s

Cause

You specified a memory type while mapping that is not one of the
supported typegram, erom, tram, trom, orgrd.

Action

Re-enter thenap command, specifying only one of the five types listed
above.

Error Messages C-41

Message 731 :Invalid memory map attribute: %s.

Cause

Newer HP 64700 emulators may use a feature called memory map
attributes where an emulator specific item can be specified for any map
term. If the item is not recognized it is an error. For example, the
following command will cause the error: "map 0..100 eram bad_item".

Action
Refer to theemulator User’s Guidéor information on valid memory
map attributes.

Message 732 :Invalid memory type for 'other’ range: %s

Cause

Most emulators restrict the memory typesrf@p other <type>to
tram, trom, orgrd. If you see the above message, you have tried to
map the "other" range &ram or erom.

Action

Map the "other" range tivtam, trom, orgrd. Refer to th&mulator
User’s Guidefor particular restrictions regarding the "other" type for
your emulator.

Message 734 : Map range overlaps with term: %d

Cause

You entered a map term whose address range overlaps with one already
mapped. For example, you may have entered anteqonl 000..2fff
eram, then tried to enter a teimap 2000..3fff erom

Action

Re-enter the map term so that ranges do not overlap, or combine terms
and change the memory type. If you are using an emulator whose
processor supports segmentation or function codes, it is possible that

C-42 Error Messages

Message

Message

you did intend an overlap. If so, you need to more fully specify the
correct segment or function code for each memory range. Refer to the
<ADDRESS> syntax pages in tBenulator User’s Guidéor

information.

736 : Memory not mapped as emulation: %s.

Cause

This error occurs when a feature available only for emulation memory
is attempted with target memory. For example, this error occurs when
you attempt to perform coverage measurements (seett®mmand)

on target memory.

Action

You must remap the address range as emulation memory.

738 : Unable to reset coverage bit data.

Cause

System failure.

Action

Run performance verificatiopy command).

Error Messages C-43

Message

Message

C-44 Error Messages

740 : 1/0O port access failed

Cause

The emulator was unable to read or write the port specified ia the
command. This message is also printed if your processor does not
support separate 1/0.

Action

If your processor does not support separate 1/0O, usa ttenmand to
modify 1/0 ports. Otherwise, retry the operation, and make sure that
you are specifying a valid I/O address.

750 : Copy image aborted; next destination: %s

752 : Copy memory aborted; next destination: %s

754 : Memory modify aborted; next address: %s

756 : Memory search aborted; next address: %s

758 : Coverage aborted; next address: %s

Cause

One of these message is displayed if a break occurs during processing
of thecim, cp, m, ser, orcovcommands, respectively. The break

could result from any of the break conditions (ex&gptor could have
resulted from a <CTRL> c break.

Action

Retry the operation. If breaks are occurring continuously, you may
wish to disable some of the break conditions withbitieommand.

Message 800 : Invalid command: %s

Cause

You have entered a command which is not part of the standard
Terminal Interface command set (documented in this manual) and was
not found in the currently defined macros.

Action

Enter only commands defined in this manual or in the macro set. You
can display the macro set usimgc. You can rename commands or
name command groups using thac command.

Message 801 : Invalid command group: %s.

Cause

This error occurs when you specify an invalid group name ihete
-s <group>command.

Action

Enter thehelp command with no options for a listing of the valid group
names.

Message 802 : Invalid command format.

Cause

This error occurs when an invalid macro is entered, for exampte,
{help:{}.

Action

Refer to thanac command description.

Error Messages C-45

Message

Message

Message

C-46 Error Messages

807 : Macro list full; macro not added.

Cause

The maximum number of macros have been defined.

Action

You must delete macros before adding any new macros.

809 : Macro buffer full; macro not added.

Cause

This error occurs when the memory reserved for macros is all used up.

Action

You must delete macros to reclaim memory in the macro buffer.

812 : Invalid macro name: %s

Cause

You tried to delete a macro that did not exist; or you tried to define a
new macro with a name containing characters other than letters, digits,
or underscores.

Action

Use themac command to display the names of macros in the macro
table before deleting them withac -d <NAME>. Define new macro
names using only letters, digits, and underscore characters.

Message 813 : Command line too long; maximum line length: %d.

Cause

This error occurs when the command line exceeds the maximum
number of characters.

Action

Split the command line into two command lines.

Message 814 : Command line too complex.

Cause

There was not enough memory for the expressions in the command line.

Action

Split up the command line, or use fewer expressions.

Message 815 : Missing macro parameter: %s

Cause

This error occurred because you did not include a parameter with the
specifiedmac command for macro expansion.

Action

Enter the command again, and include the appropriate parameter for the
macro expansion.

Message 816 : Command line too complex.

Cause

Too many expression operators are used.

Error Messages C-47

Message

Message

Message

C-48 Error Messages

Action

Split up the command line, or use fewer expressions.

818 : Command line too complex.

Cause

A maximum nesting level has been exceeded for nested command
execution.

Action

Reduce the number of nesting levels.
820 : Unmatched quote encountered

Cause

In entering a string, such as with gthocommand, you didn’t
properly match the string delimiters (eittieor™). For example, you
might have entered

echo "set S1 to off

Action

Re-enter the command and string, making sure to properly match
opening and closing delimiters. Note that both delimiters must be the
same character. For exammeho "set S1 to off"

822 : Unmatched command group encountered

Cause

You entered thenac or rep command group without matching braces
{}. For examplemac test={rst -m;cf orrep 2 {rst -m;map.

Action

Re-enter the command, making sure to match braces around commands
you want grouped into the macro or repeat. For examgle:
test={rst -m;cf}.

Message 824 : Maximum number of arguments exceeded.

Cause

Exceeding the limit of 100 arguments per command.

Action

Reduce the number of arguments in the command.
Message 826 : Maximum argument buffer space exceeded.

Cause

Exceeding space limits for argument lists.

Action

Reduce request.

Message 840 : Invalid date: %s

Cause

You have specified the date format incorrectly indheommand.

Action

Re-enter the command with the correct date format. Refer tth the
command syntax pages in this manual for the correct format.

Error Messages C-49

Message

Message

Message

C-50 Error Messages

842 : Invalid time: %s

Cause

You have incorrectly specified the time format in cthe&eommand.

Action
Re-enter the command with the correct time format. Refer ut the
command syntax pages in this manual for the correct format.

844 : Invalid repeat count: %s

Cause

You entered a non cardinal value for the repeat count rethe
command, such asp 22.1 <command_group>

Action
Re-enter theep command, specifying only a cardinal number (positive
integer) for the repeat count.

850 : Attempt to load code outside of allocated bounds.

Cause

This error occurs when thed command attempts to load an absolute
file that contains code or data outside the range allocated for system
code.

Action

Generally, you will not use tHed command. Th&d command is
intended to be used by high-level interfaces to the HP 64700.

Message 875 : Invalid syntax for global or user symbol name: %s

Cause

This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action

Make sure that you enter the global or user symbol name using the
correct syntax. When specifying a global symbol, make sure that you
precede the global symbol with a colon (for example, :glb_sym).
When specifying a user symbol (created withstyra command), make
sure that you enter the name correctly without a colon.

Message 876 : Invalid syntax for local symbol or module: %s

Cause

This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action

When entering a local symbol name usingsym command, make

sure that you specify the module name, followed by a colon, then the
symbol name (for example module:loc_sym). Make sure that you
specify the module name correctly.

Message 877 : Symbol not found: %s

Cause

This occurs when you try to enter a symbol name that doesn't exist.

Action

Enter a valid symbol name.

Error Messages C-51

Message

Message

Message

C-52 Error Messages

878 : Symbol cannot contain wildcard in this context.

Cause

You tried to enter a global, local, or user symbol name using the
wildcard (*) incorrectly.

Action
When you enter the symbol name again, include the wildcard (*) at the
end of the symbol.

879 : Symbol cannot contain text after the wildcard.

Cause

You tried to include text after the wildcard specified in the symbol
name (for example, sym*text).

Action

Enter the symbol again, but don't include text after the wildcard (*).

880 : Conflict between expected and received symbol information.

Cause

The information you supplied in a symbol definition is not what the HP
64700 expected to receive.

Action

Make sure that all symbols in the symbol file are defined correctly.
Verify that there are no spaces in the address definitions for the
symbols in the symbol file being downloaded.

Message 881 : Ascii symbol download failed.

Cause

This error occurs because the system is out of memory.

Action
You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

Message 882 : No module specified for local symbol.

Cause

This error occurs because you tried to specify a local symbol name
without specifying the module name where the symbol is located.

Action
Enter the module name where the local symbol is located, followed by
a colon, then the local symbol name.

Message 901 : Invalid firmware for emulation subsystem.

Cause

This error occurs when the HP 64700 system controller determines that
the emulation firmware (ROM) is invalid.

Action

This message is not likely to occur unless you have upgraded the
ROMSs in your emulator. Be sure that the correct ROM is installed in
the emulation controller.

Error Messages C-53

Message 902 : Invalid analysis subsystem; product address: %s.

Cause

This error occurs when the HP 64700 system controller determines that
the analysis firmware (ROM) is invalid.

Action

This message is not likely to occur unless you have upgraded the
ROMs in your emulator. Be sure that the correct ROMs are installed in
the analyzer board.

Message 903 : Invalid ET subsystem; product address: %s.

Cause

Detects an invalid ET. Used only internally.

Action

None.

Message 904 : Invalid auxiliary subsystem; product address: %s.

Cause

For future products.

Action

None.

Message 911 : Lab firmware for emulation subsystem.

Cause

This message should never occur. It shows that you have an unreleased
version of emulation firmware.

C-54 Error Messages

Action

None.

Message 912 : Lab firmware analysis subsystem; product address: %s.

Cause

This message should never occur. It shows that you have an unreleased
version of analysis firmware.

Action

None.

Message 913 : Lab firmware subsystem; product address: %s.

Cause

This message should never occur. It shows that you have an unreleased
version of system controller firmware.

Action

None.

Message 914 : Lab firmware auxiliary subsystem; product address: %s.

Cause

This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Action

None.

Error Messages C-55

Analyzer Error
Messages

Message

Message

Message

C-56 Error Messages

1000 : Conflicting disassembler option: <option>.

Cause

This error occurs when you attempt to specify inverse assembly options
(tl -o<ialopts>) which are not allowed with each other.

Action
You must not use conflicting inverse assembly options in the same
trace list command.

1001 : Invalid disassembler option: <option>.

Cause

The <ialopts> option specified with thé -0" command is not valid.

Action
Refer to the appropriattmulator User’s Guidéor a list of the valid
options.

1102 : Invalid bit range; crosses two multiples of 16: <sig#>..<sig#>.

Cause

This error occurs when defining trace labels. A trace label may not
contain trace signals crossing two 16-bit boundaries. For example, the
command tlb name 1..32 will cause this error because "name"
contains signals which cross the 15-16 and 31-32 16-bit boundaries.

Message

Message

Action

Redefine your trace label so that no more than one 16-bit boundary is
crossed.

1103 : Invalid bit range; out of bounds: <sig#>..<sig#>.

Cause

This error occurs when defining trace labels, and you have attempted to
assign non-existent trace signals to a label.

Action

Enter the trace activity command to view the trace signals present,
use only these signals when defining trace labels.

1104 : Invalid bit range; too wide: <sig#>..<sig#>

Cause

This error occurs when defining trace labels, and you have attempted to
assign more than 32 trace signals to a label.

Action

Use more than one trace label to define over 32 trace signals.

Error Messages C-57

Message

Message

C-58 Error Messages

1105 : Unable to delete label; used by emulation analyzer: <label>.

Cause

This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace
specification or is currently specified in the emulation trace format.

Action

Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex
configuration, or display the trace format to see where the label is used.
Also, you should chedicq andtpq for uses of that label. You must
change the pattern or format specification to remove the label before
you can delete it.

1106 : Unable to delete label; used by external state analyzer: <label>.

Cause

This error occurs when you attempt to delete an external trace label
which is currently being used as a qualifier in the external state trace
specification or is currently specified in the external trace format.

Action

Display the external trace sequencer specification in the easy
configuration, display the external trace patterns in the complex
configuration, or display the external trace format to see where the
label is used. Also, chet&q andtpq for uses of that labelyou must
change the pattern or format specification to remove the label before
you can delete it.

Message

Message

1107 : Unable to delete label; used by external timing analyzer: <label>.

Cause

This error occurs when you attempt to delete an external trace label
which is currently being used as a qualifier in the external timing trace
specification.

Action
Remove the label from the external timing analyzer specifications, and

then delete the label.

1108 : Unable to redefine label; used by emulation analyzer: <label

Cause

This error occurs when you attempt to redefine an emulation trace label
which is currently used as a qualifier in the emulation trace
specification.

Action

Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex
configuration, or display the emulation trace format to see where the
label is used. You must change the pattern or format specification to
remove the label before you can redefine it.

Error Messages C-59

Message

Message

Message

C-60 Error Messages

1109 : Unable to redefine label; used by external state analyzer: <label>.

Cause

This error occurs when you attempt to redefine an external trace label
which is currently used as a qualifier in the external state trace
specification.

Action

Display the external trace sequencer specification in the easy
configuration, or display the external trace patterns in the complex
configuration to see where the label is used. You must change the
pattern or format specification to remove the label before you can
redefine it.

1110 : Unable to redefine label; used by external timing analyzer:
<label>.

Cause

This error occurs when you attempt to redefine an emulation or external
trace label which is currently being used as a qualifier in the external
timing trace specification.

Action
Remove the label from the external timing analyzer specifications, and
then redefine the label.

1111 : Unable to redefine label; belongs to external analyzer: <label>.

Cause

This error occurs when you attempt to redefine an external analyzer
label with the emulation trace label command (for example, tlb xbits
0..16).

Action
Either use a different label name, or delete the external analyzer label
before defining a label of the same name for the emulation analyzer.

Message 1112 : Unable to redefine label; belongs to emulation analyzer: <label>.

Cause

This error occurs when you attempt to redefine an emulation analyzer
label with the external trace label command (for example, xtlb addr
0..19).

Action
Either use a different label name, or delete the emulation analyzer label
before defining a label of the same name for the external analyzer.

Message 1114 : Label belongs to external analyzer: <label>.

Cause

When the external analyzer is in an independent mode, this error occurs
when you attempt to use an external analyzer label in an emulation
trace command (for example, tg xlabel=0).

Action

Only use external trace labels in external trace commands (when the
external analyzer is in an independent mode).

Error Messages C-61

Message 1115 : Label belongs to emulation analyzer: <label>.

Cause

When the external analyzer is in an independent mode, this error occurs
when you attempt to use an emulation analyzer label in an external
trace command (for example, xtg addr=5).

Action
Only use emulation trace labels in emulation trace commands (when
the external analyzer is in an independent mode).

Message 1130 : lllegal base for count display.

Cause

When specifying the trace format, counts may only be displayed
relative or absolute. When counting states, the count is always
displayed as a decimal number.

Action

Respecify the trace format without using a base for the count column.
Also, you can useA" to specify that counts be displayed absolute, or
you can use,R" to specify that counts be displayed relative.

Message 1131 : lllegal base for mnemonic disassembly display.

Cause

When specifying the trace format, you cannot specify a number base
for the column containing mnemonic information.

Action

Respecify the trace format without using a base for the mnemonic
column.

C-62 Error Messages

Message 1132 : lllegal base for sequencer display.

Cause

When specifying the trace format, you cannot specify a number base
for the column containing sequencer information.

Action

Respecify the trace format without using a base for the sequencer
column.

Message 1133 : Trace format command failed; using old format.

Cause

This error occurs when the trace format command fails for some
reason. This error message always occurs with another error message.

Action

Refer to the "Action" description for the other error message displayed.

Message 1137 : Mnemonic disassembly not supported for external trace.

Cause

This error occurs when you attempt to specify a mnemonic information
column in the external trace format. There is no mnemonic
disassembly for the external trace.

Action

Respecify the trace format without the mnemonic column.

Error Messages C-63

Message

Message

Message

Message

C-64 Error Messages

1138 : lllegal width for symbol display: %s

Cause

This error occurs when the value specified for the trace format address
field width is not valid.

Action

Enter thef command again, and specify the width of the address field
for symbol display within the range of 4 to 55.

1139 : lllegal width for addr display, mne not specified.

Cause

This error occurs when you specify a width for the address field in the
tf command, but do not include thme option.

Action

Enter the command again, and includerttme option.

1140 : Symbol display unsupported.

Cause

This error occurs when you try to display symbols in the trace list, but
the emulator you are using doesn'’t support symbols.

Action

Enter thel command again, but don't try to display symbols.
1141 : Symbol display unavailable without mne field.

Cause

This error occurs when you try to display symbols, but have not
included themne option to thdéf command.

Action
Don't try to display symbols unless thmne field has already been
specified.

Message 1202 : Trigger position out of bounds: <bounds>.

Cause

This error occurs when you attempt to specify a number of lines to
appear either before or after the trigger which is greater than the

number of lines allowed. The <bounds> string indicates the incorrect
range that you typed (not the correct limits on the range).

Action
Be sure that the trigger position specified is within the range -1024 to
1023.

Message 1207 : Invalid clock channel: <name>.

Cause

Valid clock channels are L, M, and N. If you have an external
analyzer, the J and K channels are also valid.

Action

Respecify the command using valid clock channels.

Message 1209 : Operator must be "and" or "or": <expression>.

Cause

When combining trace labels to specify trace patterns (in simple
expressions or with thpat command), an operator of either "and" or
"or" must appear between the label qualifiers.

Error Messages C-65

Message

Message

C-66 Error Messages

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of thénalyzer User’s Guidéor information on valid
patterns. Also refer to the "Expressions” chapter oRéference

manual.

1210 : lllegal mix of = and !=.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), all labels must either be equal to values or
not equal to values.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of thénalyzer User's Guidéor information on valid
patterns. Also refer to the "Expressions" chapter oRéference

manual.

1211 : lllegal mix of and/or.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), all label qualifiers must either be ANDed
together or ORed together. You cannot mix these operators.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of thénalyzer User's Guidéor information on valid
patterns. Also refer to the "Expressions" chapter oRéference

manual.

Message

Message

1212 : Conflict with overlapping label: <label>.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), you cannot combine labels which are
defined for common trace signals. For example, the following easy
configuration commands will result in this error: tlb low8 0..7; tlb

lowl16 0..15; tg low8=0 and low16=1.

Action

Either omit one of the overlapping labels, or redefine your labels so
they do not contain common trace signals. You could also circumv
this error by using don'’t cares in the appropriate places; for the
example shown in cause, you could specify patterfmv8=0xx0xY
and low16=1

1213 : lllegal mix of !=/and.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), labels which are not equal to values must be
ORed together so that the entire pattern specifies a "not equals”
condition.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of thénalyzer User's Guidéor information on valid
patterns. Also refer to the "Expressions" chapter oRéiference

manual.

Error Messages C-67

Message

Message

Message

C-68 Error Messages

1214 : lllegal mix of =/or.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), labels which are equal to values must be
ANDed together so that the entire pattern specifies an "equals"
condition.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of thénalyzer User's Guidéor information on valid
patterns. Also refer to the "Expressions" chapter oRéiference

manual.

1215 : Comparator must be = or !=: <label>.

Cause

When combining trace labels to specify patterns (in simple expressions
or with the tpat command), the value of the label can only be specified
with the "=" or "I=" operators.

Action

Refer to the "Expressions in Trace Commands" section of the "Getting
Started" chapter of thénalyzer User's Guidéor information on valid
patterns. Also refer to the "Expressions" chapter oRéference

manual.

1217 : lllegal pattern name: <name>.

Cause

Valid pattern names are p1 through p8.

Action

Use only valid pattern names.

Message 1218 : lllegal comparator for range qualifier: !=.

Cause

When specifying a range with the trng command, you cannot use
the"!=" operator.

Action

Use the "Ir" range name.

Message 1219 : Range cannot be combined with any other qualifier.

Cause

For example, the following easy configuration command will result in
this error: tsto addr=400..4ff and data=40.

Action

Do not attempt to combine labels when using range qualifiers.

Message 1221 : Range resource in use.

Cause

This error occurs when you attempt to use two different range
expressions in the "easy" configuration trace specification or when you
attempt to redefine the "complex" configuration range resource while it
is currently being used as a qualifier in the trace specification.

Action

Only one range expression may be used in the "easy" configuration
trace specification. In the "complex" configuration, display the
sequencer specification to see where the range resource is being used
and remove it; then, you can redefine the range resource.

Error Messages C-69

Message

Message

Message

C-70 Error Messages

1224 : Sequence term number out of range: <term>.

Cause

This error occurs when a sequencer qualification comniginte(if,
tsq, ortsto) specifies a non-existent sequence term. The easy
configuration sequencer may have a maximum of 4 sequence terms.
Eight sequence terms exist in the complex configuration sequencer.

Action

Re-enter the command using an existing sequence term.

1225 : Sequence term not contiguous: <term>.

Cause

This error occurs when you attempt to insert a sequence term which is
not between existing terms or after the last term. For example, the
following easy configuration commands will result in this error: tg any;
tsq -i 4.

Action

Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

1226 : Too many sequence terms.

Cause

This error occurs when you attempt to insert more than 4 sequence
terms.

Action

Do not attempt to insert more than 4 sequence terms.

Message 1227 : Sequence term not defined: <term>.

Cause

This error occurs when you attempt to delete, or specify a primary
branch expression for, a sequence term number which is possible, but
which is not currently defined.

Action

Insert the sequence term, and respecify the primary branch expression
for that term.

Message 1228 : One sequence term required.

Cause

This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action

At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

Message 1234 : Invalid occurrence count: <number>.

Cause

Occurrence counts may be from 1 to 65535.

Action

Re-enter the command with a valid occurrence count.

Error Messages C-71

Message 1235: lllegal threshold value: <value>.

Cause

Threshold voltage specifications may be from -6.4 V to +6.35 V in
increments of 0.05 V.

Action

Re-enter the command with a valid threshold voltage.

Message 1237 : Option specified more than once: <option>.

Cause

When specifying external threshold voltages, this error occurs when
you attempt to specify the threshold voltage for either the upper or
lower byte twice.

Action
You must re-enter the command so that the threshold voltage is only
specified once for each option (upper or lower byte).

Message 1239 : Clock speed not available with current count qualifier.

Cause

This error occurs when you attempt to specify a fast (F) or very fast
(VF) maximum qualified clock speed when counting time (tcq time).
This error also occurs when you attempt to specify a very fast (VF)
maximum qualified clock speed when counting states (for example, tcq
addr=400).

Action

Change the count qualifier; then, re-enter the command.

C-72 Error Messages

Message 1240 : Count qualifier not available with current clock speed.

Cause

This error occurs when you attempt to specify the "time" count
qualifier when the current maximum qualified clock speed is fast (F) or
very fast (VF). This error also occurs when you attempt to specify a
"state" count qualifier when the maximum qualified clock speed is fast

(F).
Action

Change the clock speed; then, change the count qualifier.

Message 1241 : Invalid qualifier resource or operator: <expression>.

Cause

When specifying complex expressions, you have either specified an
illegal pattern or used an illegal operator.

Action

Refer to the "Complex Expressions" section of the "Accessing Full
Analyzer Capability" chapter in thenalyzer User's Guidéor
information on valid patterns and operators. Also refer to the
"Expressions" chapter in ttieferencenanual.

Error Messages C-73

Message

Message

Message

C-74 Error Messages

1245 : Range qualifier not accessible in easy configuration.

Cause

This error occurs when you attempt to use the trng command in the
easy configuration.

Action

Changing into the complex configuration will allow you to use the trng
command; otherwise, specify the range in easy configuration command
expressions.

1246 : Pattern qualifiers not accessible in easy configuration.

Cause

This error occurs when you attempt to use the tpat command in the easy
configuration.

Action

Changing into the complex configuration will allow you to use the tpat
command; otherwise, specify the patterns in easy configuration
command expressions.

1248 : Range term used more than once

Cause

This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action

You cannot use the range resource more than once in a sequencer
branch expression.

Message

Message

Message

1249 : Invalid qualifier expression: <expression>.

Cause

This error message is shown with the errors that occur when patterns,
the range, or the arm condition is used more than once within a set.
This error message also occurs when intraset operators are not the
same. For example, the following complex expression will result in
this error: p1 ~ p2 | p3.

Action

Refer to the "Complex Expressions" section of the "Accessing Full
Analyzer Capability" chapter in thnalyzer User's Guidéor
information on valid patterns and operators. Also refer to the
"Expressions" chapter in ttieferencenanual.

1250 : Arm term used more than once

Cause

This error occurs when you attempt to use the "arm" qualifier more
than once in a sequencer branch expression.

Action

You cannot use the "arm" qualifier more than once in a sequencer
branch expression.

1251 : Trigger term cannot be term 1.

Cause

This error occurs when to attempt to specify the first sequence term as
the trigger term. The trigger term may be any term but the first.

Action

Respecify the trigger term as any other sequence term.

Error Messages C-75

Message

Message

Message

C-76 Error Messages

1253 : Invalid pod number: <pod#>.

Cause

This error message occurs when you attempt to specify a slave clock
for a non-existent analyzer pod.

Action
Use the trace activity command to display the valid pod numbers, and
use only these numbers when entering commands.

1257 : Pod belongs to external analyzer: <pod#>.

Cause

This error occurs when you attempt to specify a slave clock for the
external analyzer pod with the emulation analyzer’s trace slave clock
command. This error only occurs when the external analyzer is in its
independent state mode.

Action
Use the external trace slave clock command to specify a slave clock for
the external analyzer pod.

1300 : Incompatible external trace mode.

Cause

This error message occurs when you attempt to use an external trace
command (other thaxtv, xtlb, orxtmo) while the external analyzer is
aligned with the emulation analyzer. The message is also display if you
attempt to use external state trace commands when the external
analyzer is in timing mode; or if you attempt to use external timing

trace commands when the external analyzer is in state mode.

Action

Change the external trace mode, and re-enter the command.

Message 1301 : External label in use: <label>.

Cause

This error occurs when you attempt to select the external analyzer's
independent state mode while an external trace label is currently used
as a qualifier in the emulation analyzer trace specification.

Action

Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’'s independent state
mode.

Message 1302 : Trigl signal cannot be driven and received.

Cause

This error occurs when you attempt to specify the internal trig1 signal
as the trace arm condition while the same analyzer’s trigger output is
currently driving the trig1 signal. This error also occurs if you attempt
to specify that the trigger output drive the internal trigl signal while
that signal is currently specified as the arm condition for the same
analyzer.

Action

You can either change the arm or the trigger output specification; in
either case, make sure that they do not use the same internal signal.

Message 1303 : Trig2 signal cannot be driven and received.

Cause

This error occurs when you attempt to specify the internal trig2 signal
as the trace arm condition while the same analyzer’s trigger output is
currently driving the trig2 signal. This error also occurs if you attempt
to specify that the trigger output drive the internal trig2 signal while
that signal is currently specified as the arm condition for the same
analyzer.

Error Messages C-77

Action

You can either change the arm or the trigger output specification; in
either case, make sure that they do not use the same internal signal.

Message 1304 : Analyzer trace running.

Cause

This error occurs when you attempt to change the external analyzer
mode while a trace is in progress.

Action

Halt the trace before changing the external analyzer mode.
Message 1305 : CMB execute; emulation trace started.

Cause

This status message informs you that an emulation trace measurement
has started as a result of a CMB execute signal (as specified Iby the "
-€' command).

Message 1306 : CMB execute; external trace started.

Cause

This status message informs you that an emulation trace measurement
has started as a result of a CMB execute signal (as specified yxthe "
-€' command).

C-78 Error Messages

Message 2021 : Period not in 1/2/5 sequence: <period>.

Cause

This error message occurs when the external timing sample period is
notin a 1/2/5 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns,
500ns, 1us, 2us, 5us, etc. Some examples of invalid sample period
specifications are: 12ns, 18ns, 25ns, 60ns, 80ns, etc.

Action
Use a number in the 1/2/5 sequence when specifying the external
timing sample period.

Message 2022 : Sample period out of bounds: <bounds>.

Cause

The external timing sample period must be between 10 ns and 50 ms
(in a 1/2/5 sequence).

Action
Re-enter the command with the sample period between the bounds
shown.

Message 2030 : Negated patterns not allowed in timing.

Cause

This error occurs when you attempt to specify a "not equals" expression
when defining the external timing trigger. You can only specify labels
which equal patterns (of 1's, 0’s, or X's).

Action

Do not attempt to specify negated timing patterns.

Error Messages C-79

Message

Message

Message

C-80 Error Messages

2031 : Invalid trigger duration: <duration>.

Cause

This error occurs when you attempt to specify an external timing
trigger duration which is in the valid range but is not a multiple of 10
ns.

Action

Re-enter the command with the trigger duration as a multiple of 10 ns.

2032 : Trigger duration out of bounds: <bounds>.

Cause

This error occurs when you attempt to specify an external timing
trigger duration outside the valid range. A "greater than" duration must
fall within the range of 30 ns to 10 ms (and must be a multiple of 10
ns). A "less than" duration must fall within the range 40 ns to 10ms
(and must be a multiple of 10 ns).

Action

Re-enter the command with the trigger duration within the bounds
shown.

2042 : Trigger delay out of bounds: <bounds>.

Cause

This error occurs when you attempt to specify an external timing
trigger delay outside the valid range. The external timing trigger delay
must be between 0 and 10 ms (in 10 ns increments).

Action

Re-enter the command with the trigger delay within the bounds shown.

Command Entry

Note #

The HP 64700-Series Emulators Terminal Interface provides several
features to ease command entry and simplify recognition of the current
emulator state.

The backspace key (or <CTRL> h, or DEL) will only backspace to the
start of the current line; this is true even if the command wraps to
than one line.

Prompts

The HP 64700-Series Emulators use a variety of prompt characters to
describe the current emulation status. These are:

R Reset state from emulation system, resulted
from therst command or another emulator
command which resets the emulatbiot a
target system reset.

U Running user program, resulted either from the
r command or /EXECUTE line asserted on the
CMB during a synchronized measurement.

M Running monitor program.

w Waiting for CMB to become READY. (See the

CMB User’s Guidg

Command Entry D-1

D-2 Command Entry

T Waiting for target system reset to complete a
rst command. (Will be shown onlyiifrst is
supported, see yoamulator User’'s Guidg

? Unknown state.

The following prompt characters may or may not be used by your
emulator:

c Slow or no clock input from target system
(displayed only itlk=ext in configuration).

r Emulator is reset by target system.

h Processor halted (by program or target system).
[Processor in idle state.

g Bus grant to target system device.

b Slow or no emulation processor bus cycles.

If multiple conditions occur which would call for more than one

prompt character, the priority of characters is as follows:
cCRrhighUMWT?

Note that the prompt character is unrelated to the prompt string, which

is set to> at powerup and may be modified using pbecommand.
The current prompt string is concatenated after the prompt character.

Command Line

Editing

Input Mode

Note ﬂ

Control Mode

You can enable command line editing to include the ability to
manipulate command text lines. When command line editing is
enabled, a subset of the Korn shell (kahgditing mode features is
implemented.

Command line editing has two typing modes. The normal command
entry is input mode. The input mode functions like normal (canonical)
command entry. The control mode allows command modification.

The input mode allows for the use of the following:

 This deletes the previous character.
<CTRL>Tr This recalls the commands in the order last to fir
<CTRL>Db This recalls the commands in the order first to la

The recalkCTRL> r and<CTRL> b functions are the same as in
standard (non-command line editing) mode except that the cursor is
positioned at the start of the line instead of the end of the line.

Enter the control mode by entering 888C (033 octal) character.

Command Search

You can locate previously entered commands using the following:

k This option allows you to retrieve the previous
command. Each successkyieommand accesses
the next earlier command in the history list.

j This retrieves the next command. Each succegsive

command accesses the next later command in the
history list.

Command Entry D-3

D-4 Command Entry

/<string>

This allows you to find a previous command in the
history list matching <string>.

This repeats a previous match search for matches
earlier in the history list.

This repeats a previous match search for matches
later in the history list.

Cursor Movement

You can move the cursor using control mode commands

I
h

$

0 or™

This moves the cursor forward (right) one character.
This moves the cursor back (left) one character.
This moves the cursor to the end of the line.

This moves the cursor to the start of the line.

Command Modification

You edit the command using the control mode commands

dd

This inserts the cursor before the current position.
This inserts the cursor after the current position.
This allows you to append text to the end of the line.
This allows you to replace the current character.
This deletes the current character.

This deletes the current line.

This deletes text from the current character to the
end of the line.

Changing Modes Use thecl command to display and change the command line editing
mode. The command

cl-e

enables command line editing, while
cl-d

disables command line editing. The default condition is commmand
line editing disabled.

Command Entry D-5

Command Abort

You can abort any command’s execution by typing:

<CTRL>c

You will generally use this to stapp 0 <COMMAND> repeats.

Command Recall

D-6 Command Entry

The Terminal Interface provides you with two methods to recall up to
16 previous commands, which will save you typing time.

<CTRL> r recalls the previous command (last entered is recalled first,
as in a stack).

<CTRL> b recalls commands in backwards order (first entered is
recalled first, as in a queue).

For example, assume you entered the following equates:
R> equ b=1
R> equ c=2

PressingcCTRL> r would display
R> equ c=2

PressingcCTRL> b would display
R> equ b=1

Multiple You may issue multiple commands on the same command line by
Commands separating them with thg'semicolon) character. For example:

R> rst -m; map; cf

If you are using multiple commands in thac (macro) orep (repeat)
commands, they need to be enclosed in brggesr(they will be
misinterpreted. For example, using the sequence above:

M> rep 2 {rst -m;map;cf}
This sequence will repeat the command sequence in the braces twice.
Now look at the following:

M> rep 2 rst -m;map;cf

Here, only thest -m command will be repeated; then thap
command will execute once and ttfeommand will execute once.

Commenting You may include comments at the end of any command line usi#g the
character. Although these comments are not saved with the command
status, they can be useful to you in building a command file to be saved
on a host and downloaded to the emulator at a later time. For example,
you might want to comment some equates in a command file. Your file
could look like this:

equ start=2000 #beginning of program

equ clear=200c #clears input port

equ readinput=2010 #routine reading input port

equ messagelength=17T #length in bytes of each output message

Command Entry D-7

Notes

D-8 Command Entry

Index

A abbreviated help modbeelp 1

absolute count (in trace listpq 4, tf 3

absolute file
formats,dump 1, load 1
loading into memorylpad 1

accent grave mark characteer 3

access modeno 1

access to guarded memomyap 4

accuracy of trigger positiotp 1

active edges (slave clock¥ck 2/tsck 3

activity, analyzer lineta 1

addition operatoizXPR 5

ADDRESS syntax
See your Emulator User’s Guide

all (analyzer keyword}g 2, xteq 3, xtgqg 2, xttq 2

analyzer
analyzer initializationtinit 1
clock (master) specificatiotgk 1
complex config. pattern qualifigipat 1
complex config. range qualifieirng 1
complex configurationtcf 3
configuration;tcf 1
count qualifiertcf 3, tcf 5, tcq 1
easy configuratiortcf 1
expressionsANALYZER_EXPR 1, EXPR 8
expressions in complex confi€ OMPLEX EXPR 1
expressions in easy confi§IMPLE_EXPR 1
expressions in the complex configuratitef,3
expressions in the easy configuratitmf,1
See alsoexternal analyzer
halt traceth 1
labels tlb 1
line activity,ta 1
master clock specificatiobgk 1
performance verificatiorpv 1
prestore qualifiertcf 3, tcf 5, tpg 1

Index-1

2-Index

primary branches (sequencdif),1
sequencelitsq 1
sequencer secondary branch qualifiter, 1
sequencing in the complex configuratitef,4
sequencing in the easy configuratitof,2
slave clockstsck 1
start,t 1
storage qualifiergsto 1
storage specification in the complex configuratiohb
storage specification in the easy configuratioh3
trace configuration resetf 5
trace listtl 1
trace list formattf 1
trace statuds 1
tracing background operatiaick 2
tracing foreground operatiottk 2
trigger conditiontg 1
trigger in feedback loofianct 3, cmbt 4
trigger outputtgout 1
trigger positiontp 1
ANALYZER_EXPR syntaxANALYZER_EXPR 1
AND (bit-wise) operator=XPR 6
and operator (analyzer expressios8MPLE_EXPR 3
and, interset logical AND operat@ OMPLEX_EXPR 3
any (analyzer keyword)g 2, tpg 2, xteq 3, xtgq 2, xttq 2
arm condition
analyzer statuss 3
complex expression§ OMPLEX_EXPR 2
cross-armingbnct 3, cmbt 3
specifying,tarm 1
time until triggerts 4, B-4, B-10
arming the analyzetarm 1
array labelsequ 3
ASCII strings, displaying on standard outpadho 1

b (break) command, 1
b, slow (or no) bus cycles emulation pronipt2
background operation, tracirigk 2
bases (hnumbergEXPR 2
default for step couns, 2
labels in trace listf 2
baud rate, communication porssty 2

bc (break conditions) commarut; 1
binary number base specifi&XPR 2
binary trace list format) 3, xteq 1, B-1
bit-wise operators
AND, EXPR 6
exclusive OREXPR 6
inclusive OREXPR 7
merge EXPR 7
block (memory mapper)
re-assignment of emulation memanyap 2
sizesmap 2
BNC trigger signalbc 1, bnct 1
bnct (BNC trigger drivers and receivers) commédamtt 1
bp (breakpoint modify) commanip 1
branch qualifiers (sequencer)
primary,tif 1
secondarytelif 1
breakb 1
break conditions
BNC or CMB trigger signaldic 1
software breakpointdc 1, bp 3
trigl or trig2 internal signalfic 1
write to ROM,bc 1
breakpoints
disabling,bp 2
enablingpp 2
inserting,bp 1
removing,bp 3
breaks
guarded memory accessap 4
synchronousgmb 1
bus cycles, sloves 1, D-2
bus grant
emulation prompt (glp-2
emulation statu€)-2

¢, slow (or no) target clock emulation pronipt2
calculator for expressionscho 1
cf (emulator configuration) commaraf,1
channels (analyzer)

demultiplexed slave clock modsgck 2

edge triggenxteq 1

Index-3

4-Index

glitch trigger xtgq 1

mixed slave clock modésck 2

transition recordxttq 1
cim (copy target memory image) commacid) 1, cov 1
¢l (command line control) commara,1
clocks

specifying analyzer masteack 1

specifying analyzer slaviesck 1
cmb (coord. meas. bus enable/disable) comnanh,1
CMB (Coordinated Measurement Bus)

enable/disableemb 1

start synchronous executionl

trace at [EXECUTEx 1

trigger signalpc 1, cmbt 1, tx 1
cmbt (CMB trigger drivers/receivers) commanahbt 1
column headers in trace list

adding new columnsf 2

suppressing] 2
commands

abort,D-6

commentsp-7

entry,D-1

help,help 1

help for grouphelp 1

macrosmac 1

maximum length of command linmac 2

multiple on same liné)-7

recall,D-6

repeating a group ofep 1

sym,sym 1
comments in commandd;7
communications (data)

initialization, init 1

setting parameterstty 1
complex analyzer configuratiottf 3

pattern specificationgpat 1

range specificatiortrng 1
complex expression§ OMPLEX_EXPR 4
COMPLEX_EXPR syntaxCOMPLEX_EXPR 1
configuration

analyzertcf 1

data communications switchesty 2, stty 5
emulatorcf 1
control (CTRL) characters
b, command recalD-6
¢, command abortpad 4, pv 2, rep 1, s 2, D-6
non-displayingecho 2
r, command recalD-6
Coordinated Measurement Bus
SeeCMB
coordinated measurements
enable/disableemb 1
copy memoryep 1
target memory image into emulation meaim 1
count (occurrencejcf 2, tcf 4, tg 1/tg 2, tif 3,ts 5
reset if secondary branch takeslif 2
count qualifiertcf 3, tcf 5, tcq 1
counter, analyzer tagrq 1
cov (coverage measurements) command,1
coverage measurementsn 1
cp (copy memory) commandp 1
cross-triggeringbnct 1, cmb 1, cmbt 3

data communications

configuration switchestty 2, stty 5

initialization, init 1

setting port parametersity 1
data cycles

monitor access to target memanmgo 1
date, setting emulation systedt,1
decimal number base specifielXPR 2
delay (trigger), external timing analyzettd 1
deleting sequencer terntsg 3
delimiters (string)echo 1/echo 2, ser 3
delta time

binary/hexadecimal trace listtm 2, B-11, B-14
DeMorgan'’s theoremCOMPLEX_EXPR 4
demultiplexed (slave clock) modsck 2
disassembly

memory displaym 5

trace listtf 2, tl 2
display modemo 1
divide (integer) operatoEXPR 5

Index-5

download

user programdopad 1
drivers and receivers

BNC trigger signalbnct 1

CMB trigger signalcmbt 1

See alsotrigl and trig2 internal signals
dt (set or display system date/time) commaitd,
dual threshold measurementy 2
dual-port emulation memorkp 3
dump (upload memory) commardymp 1
duration (external timing triggenjit 2

E easy analyzer configuratiotef 1

echo (display to standard output) commauho 1, EXPR 1
edge trigger (external timing analyzedeq 1
edges (analyzer clock), rising, falling, baitk 3
edges (analyzer slave clock), actiteek 2/tsck 3
emulation brealh 1
emulation monitor

background, loading user code intmd 4

break command 1

breaks to thehc 1

cycles used to access target memony,1

execute after resast 1

foreground, loadingpad 4

running in (emulator statugs 1

searching target memorser 1
emulation RAM, mapping address rangeap 1
emulation ROM, mapping address rangeap 1
emulator

initialization, init 1

performance verificatiorpv 1

prompt, changing theo 1

statuses 1
entry, command)-1
equ (equate names to expressions) comnenadl
equatesequ 1
eram, mapper parameter for emulation RAhp 3
erom, mapper parameter for emulation ROMp 3
error message§;-1

analyzerC-56

emulator,C-1

6-Index

general and system error/statds/
es (emulator status) commased,1
exclusive OR (bit-wise) operatd&EXPR 6
EXECUTE (CMB signal)emb 1, ts 2,tx 1, x 1, D-1
EXPR (expressions) syntaxXPR 1
expression calculatoecho 1
expressionsEXPR 1
analyzerANALYZER_EXPR 1
analyzer, complex configuratiottf 3, COMPLEX_EXPR 4
analyzer, easy configuratioief 1, SIMPLE_EXPR 1
equating names tequ 1
operatorseXPR 3
external analyzer
See alsoanalyzer
See alsoexternal timing analyzer
mode xtmo 1
probe threshold voltagetv 1
timing analyzer mode¢tm 1
external timing analyzer
edge triggenxteq 1
glitch modextm 1, B-12, B-14
glitch trigger xtgq 1
mode xtm 1
sample periodktsp 1
standard modextm 1, B-12, B-14
transition triggerxttq 1
transitional modextm 2, xttq 1, B-11, B-14
trigger conditionxtt 1
trigger delayxttd 1

fast (F) analyzer clock speddf 5, tck 2
file formats
absolutedump 1, load 1
foreground operation, tracingek 2
formats
absolute filedump 1, load 1
binary trace listil 3, B-1
hexadecimal trace lis, 3, B-1
memory displaym 2
trace listtf 1
function codeslpad 1, m 2

Index-7

G g, bus grant emulation promfi;2
glitch (external timing analyzer) modeém 1, B-12, B-14
glitch trigger (external timing analyzertgq 1
global access and display modes, 1
global restart qualifieitcf 2, telif 1, tg 1, tif 2, tsq 2
global storage qualifiet¢f 3, tsto 1
grave mark characteser 3
grd, mapper parameter for guarded memaap 4
group (commandhelp 1
guarded memory accessap 4

H h, processor halted emulation pronipt?
H,h, hexadecimal number base specifiPR 2
halt

emulation promptD-2

emulation statuss 1

traceth 1

trace statuds 2
handshaking (data communicatiorst)y 3
headers in trace list

adding new columnsf 2

suppressing] 2
help (on-line help) commantbelp 1
help, abbreviated modeelp 1
hexadecimal number base specifieXPR 2
hexadecimal trace list format3, B-1
history, trace statuss 4

I i, idle state emulation promd;-2
idle state emulation prompt (Ip-2
image (target memory), copying to emulation RAln 1
inclusive OR (bit-wise) operatdEXPR 7
independent state mode of external analyderp 1
information (help)help 1
init (initialize the emulator) commanihjt 1
initialization
analyzertinit 1
emulator,init 1
inserting sequencer terntsg 2
internal signals, trigl and trigB¢ 1, bnct 1, cmbt 1, tarm 1,th 1, tx 1
interset operator§OMPLEX_EXPR 3
intraset operator§OMPLEX_EXPR 2

8-Index

inverse assembler optiortk3
inverse assemblyn 5
inverse values (complex analyzer expressiddOMPLEX_EXPR 4

J clock (analyzer}ck 2
K clock (analyzer)ick 2

L clock (analyzer)tck 2
labels (trace)
defining analyzertlb 1
predefinedilb 1
line activity (analyzer)}a 1
load (download user programs) commdodd 1
loading the sample programy;3
logical operators
See operators

m (memory display/modify) commanah, 1
M clock (analyzer)tck 2
M, running monitor program emulation prompt1
mac (macro definition/display) commamdac 1
macros

limitations,mac 1
map (memory mapper) commamaap 1
mapping memorymap 1
master clocks (analyzetgk 1
maximum

analyzer clock speettk 2

command line lengthmac 2

mapper termsnap 3

sequence levels in easy configuratitifri

sequence terms in easy configuratisqg, 1

trace state storagetm 1/xtm 2
measurements

analyzer, starting, 1

coordinatedemb 1

coveragecov 1

dual thresholdxtv 2
memory

assess modejo 1

coverage/usagepv 1

display modemo 1

Index-9

displayingm 1
loading programs intdoad 1
mapper block sizesap 2
mapping,map 1
modifying,m 1
searchser 1
upload to host filegump 1
merge (bit-wise) operatoEXPR 7
messages
error,C-1
statusC-7
mixed (slave clock) modesck 2
mnemonic
information in the trace listf 2
memory display moden 2, mo 2
mo (set access and display modes) comnrand,
mode
abbreviated helghelp 1
demultiplexed slave clocksck 2
external analyzextmo 1
external timing analyzextm 1
glitch (external timing analyzemytm 1, B-12, B-14
memory accessno 1
memory displaymo 1
mixed slave clockisck 2
quiet,load 2,s 1
standard (external timing analyzedmn 1, B-12, B-14
transitional (external timing analyzexm 2, xttq 1, B-11, B-14
whisper,s 2, ts 6
modulo (integer) operatdEXPR 5
monitor (emulation)
background, loading user code intmad 4
break command 1
breaks to thehc 1
cycles used to access target memony,1
execute after resast 1
foreground, loadingpad 4
running in (emulator statugs 1
searching target memorser 1
multiple traces, numberinggu 8
multiply (integer) operatoEXPR 5

10-Index

N clock (analyzer)ck 2
names
patterntpat 1
valuesequ 1
NAND operator COMPLEX_EXPR 4
never (analyzer keywordy 2, xteq 3, xtgq 2, xttq 2
no bus cycles emulation prompt (B)2
no target clock emulation prompt (E);2
No trace data (messag#)2
none (analyzer keywordyq 1, tg 2, tpg 2, xteq 3, xtgq 2, xttg 2
NOR, intraset logical operatd@OMPLEX_EXPR 2
notes
absolute files, loading in the wrong formiagd 4
access mode for writing breakpoirtig, 5
address followed by two periods as a rangé,
address specificatiom 2, r 1
addresses default to hexadecimal bbpey
analyzer count qualifier cannot be arm condittoq,2
analyzer range expressi®MPLE_EXPR 2
analyzer should not drive and receive same signat,3, cmbt 4
analyzer, "tcq time" only if "tck -s Stgq 2
arm to trigger time alignment between emulatBrd, B-10
asterisk (*) in help commantglp 2
bc command, cannot enable and disable in sho2,
bit range is relative to labelteq 2, xtgq 2, xttq 2
breakpoint display status checkitog, 2
breakpoints, disabling while running user cdue3
cim command and memory mappicgn 3
coverage bits, reset before performing measure mavs
coverage ranges that overlapy 2
dashes (-) when specifying command paramdtad,2
data communications referencetty 2
date and time are reset when power is cydet,
date assumes year is in 20th centdty,
display mode and memory modification,3
don't care values are not allowed in echo commBXiPR 3
dump creates non-standard HP absolute files)p 3
emulation memory block re-assignmenmgp 2
equate limitsequ 2
equates, new values not updated in commagis1
equates, predefinedgu 2

Index-11

12-Index

notes (continued)

external analyzer probe setup/hold timesjo 1

extra instruction executed on brebk,2

init -c, -r, or -p cause system memory lasg,2

macros allowed within rep commandsp 1

macros, predefinedpac 2

map change requires breakpoint disatvap 2

master clock qualifiers: tck -u, tck 4ok 2

memory display is not updated, 6

memory map modification causes emulator resaf 2
memory ranges modified by a sequence of values,
memory, disassembling for mnemonic display5
occurrence counts in complex analyzer configuratmps,
occurrence counts in complex configuratitihy
operations are on thirty-two-hit signed integero 4
primary and secondary branch qualifiers satisfied,1, tif 2
pv command re-initializes emulatgy 1

range not allowed in pattern specificaticipst 2

range reset when trace configuration reset to ¢agy2
run from reset function varies with emulatarg,

rx command enables CMB interactiamb 2

search patterns, specifying complsar 3

sequence term count regetif 2

sequencer term 8 defaukif 4, tif 5

single open quote, ASCII charactecho 2, ser 3
software breakpoint modification while runnirgp 3
software breakpoints, not all emulators suppapt]
step count must be specified with addres3,

step does not work correctly while CMB enabked,
storage qualifiers and the sequentstg 2

storage qualifiers, globakto 3

string delimiter character should not be in stregxho 2
strings should not contain string delimiter charaster 3
trace format does not affect information captuted,
trace list command options, mutually exclusivé,
trace list from a specific statit4

trace states, displaying when trigger not fouhd

trace states, storing all defeats prestipe 3

tracing states in processors that prefasin9

trigl and trig2 can both drive/receive BNSRict 2

trigl and trig2 can both drive/receive CMB triggembt 2

notes (continued)
xon toggling with baud rates of 1200 or belsity 4
xtarm does not allow "'=" when in timing modarm 2
xteq command, multiple labels and biteq 2
xtgg command, multiple labels and bigq 2
xttqg command, multiple labels and bitttg 2
numbering multiple traceegu 8
numbers, software versiover 1
numeric expressionEXPR 1
numeric search in memorsger 2

0,0, octal number base specifieXPR 2
occurrence countef 2, tcf 4, tg 1/tg 2, tif 3, ts 5
reset if secondary branch takéeslif 2
octal number base specifi&XPR 2
one’s complement (unary) operatBXPR 4
operatorsEXPR 3
combining intraset and inters€@OMPLEX_EXPR 4
interset COMPLEX_ EXPR 3
intra-set OR (analyzersto 3
intraset COMPLEX_ EXPR 2
precedenceEXPR 3
OR (bit-wise) operatoEEXPR 7
or operator (analyzer expressiorSlVIPLE_EXPR 4
or, interset logical OR operat@OMPLEX_EXPR 3
OR, intraset logical operataOMPLEX_ EXPR 2
other, mapper parameter for unmapped menmoayp 3
overlap
bit-wise mergeEXPR 7
trace labelstlb 2

pl - p8, trace pattern labelpat 1
parameters, data communicatiostty 1
pattern

expressionsdEXPR 1

labels, COMPLEX_EXPR 2

namesipat 1

qualifier (complex analyzer configtpat 1
percent of memory usagegv 1
performance verificatiorpv 1
pipeline

analyzer architecturés 3

Index-13

analyzer prestorécf 3
po (specify port control) commanab 1
polarity, trace labeldlb 2
ports (data communications)
setting parameterstty 1
position of trigger state in tracg, 1
powerup initializationjnit 1
precedence, operat@XPR 3
predefined macrospac 2
predefined trace labelgh 1
prestore qualifiercf 3, tcf 5, tpg 1
primary branches (analyzer sequenddr},
probe
emulatorpv 1
external analyzer, clock channdts 2, tsck 4
external analyzer, setup/hold timgsno 1
external analyzer, threshold voltages, 1
processor halted emulation prompt (®)2
program counter symbol ($)1
prompt (emulator), changing thmg 1
promptsD-1
priority, D-2
protocol (transfer)dump 1, load 2, tl 3, B-1
protocol checkingpoad 3
pv (performance verification) commarmi; 1

Q Q,q, octal number base specifieXPR 2
qualifiers
analyzer countcq 1
analyzer master cloclkgk 1
analyzer patterripat 1
analyzer prestorépq 1
analyzer rangerng 1
analyzer storagésto 1
external timing edge triggexteq 1
external timing glitch triggextgq 1
global restarticf 2, telif 1, tg 1, tif 2, tsq 2
sequencer primary brandif,1
sequencer secondary brantehif 1
question mark (?)
arm to trigger timets 7
break conditions displapc 2

14-Index

on-line help commandhelp 1
unknown state emulation prompt;2
quiet modeload 2,s 1
guote marksecho 2, po 1, ser 3

r (run user program) commarrdl,
r, reset by target system emulation prorbpg,
R, reset emulation promid; 1
range qualifier (complex analyzer configrhg 1
rangesCOMPLEX_EXPR 2
READY (CMB signal),cmb 1, x 1, D-1
recall, command)-6
receivers and drivers
BNC trigger signalbnct 1
CMB trigger signalcmbt 1
See alsotrigl and trig2 internal signals
record checkingdump 1
record, transitionxttq 1
reg (register display/modify) commandg 1
relational expression§ OMPLEX_EXPR 2/COMPLEX_EXPR 3
relational operatorselif 3, tif 3, tsto 3
relative counts in trace listq 4, tf 3
rep (repeat commands) commarep 1
repeating commandsep 1
reset
break duringb 1
breakpointsbp 5
coveragecov 1
emulation microprocessast 1
emulation prompt (RD-1
emulator, due to mapper modificationap 2
init commandjnit 2
occurrence countelif 2
range qualifier and trace configuratibmg 2
run from,r 1
sequencelitsq 2
system date and timet 1
trace configuratiortcf 5
trace specificatiortjnit 1
trace tag countetcq 1
reset by target system emulation prompt3rR,
restart (global) qualifiettef 2, telif 1, tg 1, tif 2, tsq 2

Index-15

ROM, break on writes tdyc 1

rotate left/right operatoEXPR 5

RS-232 (data communicationsjty 2

RS-422, data communicatiorssty 2

rst (reset emulation processor) commastll
running monitor program emulation prompt (ND}1
running user program emulation prompt (Dj1
runs, synchronousmb 1

S s (step the emulation processor) commarid,
sample period (external timing analyzetsp 1, B-12
sample programg-1

68000,A-1
80186,A-5
semicolon (command separatorgc 3, rep 1, D-7
sequencer (analyzet}yq 1
complex configuratiortcf 4
easy configuratiortcf 2
primary branchegif 1
secondary branch qualifietg]if 1
sequencer terms
deletingtsq 2/tsq 3
ser (search memory for values) commaset,1
sets (complex config. trace spe€PMPLEX EXPR 2
shift left/right operatofEXPR 5
short helphelp 2
signals
analyzer clocksck 2, tsck 4
analyzer, defining labels faih 1
arm,ts 4
BNC trigger,bc 1, bnct 1
CMB /EXECUTE,cmb 1,rst1,ts2,tx 1, x 1, D-1
CMB READY,cmb 1, x 1, D-1
CMB trigger,bc 1, cmbt 1
external analyzer, threshold voltages, 1
internal trigl and trig2yc 1, tarm 1,th 1, tx 1
trigger outputtgout 1
SIMPLE_EXPR syntax§SIMPLE_EXPR 1
single-step emulation processei,
slave clocks (analyzersck 1
demultiplexed modesck 2
mixed modefsck 2

16-Index

slow (S) analyzer clock speeadk 2, tcq 2
slow bus cycles emulation prompt (D)2
slow clock emulator statuss 1
slow target clock emulation prompt (£);2
software breakpointdp 1
break condition enable/disabhs; 1
disabling,bp 2
enablingbp 2
inserting,bp 1
programs in ROMgim 1
pv command effect oy 1
removing,bp 3
software version numbenger 1
standard (external timing analyzer) moden 1, B-12, B-14
states (trace)
maximum with/without countcq 1
prestoreipq 1
statusis 4
visible,ts 4
status
analyzerts 1
emulatores 1
storage (trace) specificatiaisio 1
complex configurationtcf 5
easy configuratiortcf 3
string delimitersecho 1/echo 2, ser 3
string search in memorger 3
stty (set data communications parameters) comnsatyd],
subtraction operatoEXPR 5
switches, data communications configuratigtty 2, stty 5
sym (symbol) commandym 1
symbol names, creatinggu 1
symbols
$, program counter,1
*, trace statuds 6, ts 8
?, help commandhelp 2
[, intraset ontelif 3, tif 4, tsto 3
synchronous emulator executionl
synchronous runs and brea&sib 1
system clockdt 1, pv 1
system date/timeit 1

Index-17

18-Index

t (start trace) commantl
T, waiting for target reset emulation promipt2
T,t, decimal number base specifieXxPR 2
ta (trace activity display) command, 1
tag counter (analyzerzq 1
target system RAM, mapping address rangeg 1
target system ROM, mapping address ranges, 1
tarm (specify arm condition) commartdim 1
tcf (set easy/complex configuration) commateéi 1
tck (specify master clock) commaridk 1
tcq (specify count qualifier) commartdg 1
telif (specify secondary branch qualifiers) commaaiif, 1
terms, analyzer sequenctrf, 2, tcf 4, tsq 1
terms, memory mappenap 1
tf (specify trace list format) commartfi,1
tg (specify trigger condition) commarnd, 1
tgout (specify signal driven on trigger) commatgghut 1
th (trace halt) commanth 1

listing tracestl 2
threshold voltages (external analyzaty, 1
tif (specify primary branch qualifiers) commariéi,L
time (analyzer keywordjcq 1
time, setting emulation systeunit, 1
timing analyzer

See external timing analyzer
tinit (trace initialization) commandinit 1
tl (trace list) commandi 1
tlb (define labels for analyzer lines) commaittial 1
tp (trigger position in trace list) commarg,1
tpat (complex config. trace patterns) commapat; 1
tpqg (specify prestore qualifier) commaituly 1
trace configuration resetf 5
trace labelstlb 1

predefinedtlb 1
trace listtl 1

header suppressiath2
trace list formatif 1

binary/hexadecimaB-1
trace statuds 1
tram, mapper parameter for target RAkgp 4
transfer memory to host fildump 1

transfer, HP 64000 utilitydump 1, load 2, tl 3, B-1
transition record (external timing analyzedjq 1
transitional (external timing analyzer) modem 2, xttq 1, B-11, B-14
trigl and trig2 internal signalb¢c 1, bnct 1, cmbt 1, tarm 1, th 1, tx 1
trigger

condition,tg 1

cross-triggeringemb 1

delay (external timing analyzeritd 1

edge (external timing analyzexjeq 1

external timing analyzexit 1

glitch (external timing analyzentgq 1

"not in memory" messag#,2

position,tp 1
trng (specify complex config. range) commaimdg 1
trom, mapper parameter for target RONgp 4
truth tables for logical operatoifSXPR 3
ts (display trace status) commarsd]l
tsck (specify slave clocks) commanstk 1
tsg (manipulate trace sequencer) commestdl
tsto (specify trace storage qualifier) commasth 1
two's complement (unary) operat@XPR 4
tx (trace on CMB /EXECUTE) commanitt, 1

U, running user program emulation proniptl
unary ones’s complement operateXPR 4
unary two’s complement operat&XPR 4
undefined breakpoint errdop 3

unknown state emulation prompt (R)2
upload memory to hosdump 1

value expression§XPR 1

values, equating with namesqqu 1

variant recordsB-13

ver (display software version numbers) commaed,1
verifying performancepv 1

very fast (VF) analyzer clock speédf 5, tck 2, tcq 2
voltages, thresholdtv 1

w (wait for specified event) command,1

W, waiting for CMB READY emulation prompB-1
wait (in command sequence),1

waiting for CMB READY emulation prompt (WR-1

Index-19

20-Index

waiting for target reset emulation prompt (D}2
whisper modes 2, ts 6

write to emulation ROMmap 4

write to target ROMmap 4

X (start synchronous CMB execution) commant,
XOR (bit-wise) operatoiEXPR 6

xt (start trace) commantl

xtarm (specify arm condition) commarndim 1

xtcf (set easy/complex configuration) commatefi,L
xtck (specify master clock) commaridk 1

xtcq (specify count qualifier) commartdg 1

xtelif (specify secondary branch qualifiers) commaabif, 1
xteq (external timing edge trigger) commaxigg 1

xtf (specify trace list format) commartfi,1

xtg (specify trigger condition) commartd, 1

xtgout (specify signal driven on trigger) commatgaut 1
xtgq (external timing glitch trigger) commandgq 1
xth (trace halt) commanth 1

xtif (specify primary branch qualifiers) commanifi,L
xtl (trace list) command| 1

xtlb (define labels for analyzer lines) commaitial 1
xtm (external timing analyzer mode) commaxtdy 1
xtmo (specify external analyzer mode) commaaitio 1
xtp (trigger position in trace list) commartd,1

xtpat (complex config. trace patterns) commapalt 1
xtpq (specify prestore qualifier) commanuly 1

xtrng (specify complex config. range) commaindg 1
xts (display trace status) commatsi]l

xtsck (specify slave clocks) commarstk 1

xtsp (external timing sample period) commaxtdp 1
xtsq (manipulate trace sequencer) commestdl

xtsto (specify trace storage qualifier) commaath 1
xtt (external timing trigger condition) commarxdk, 1
xttd (external timing trigger delay) commandttd 1

xttq (external timing transition trigger) commamttg 1
xtv (external analyzer threshold voltages) commatadl
xtx (trace on CMB /EXECUTE) commanid, 1

Y.y, binary number base specifieiXPR 2

	Using this Manual
	Contents
	Emulator Commands
	Expressions
	Sample Programs
	Binary/Hexadecimal Trace List Format
	Error Messages
	Command Entry
	Index

