
HP 64752

70732 Emulator
Softkey Interface

User’s Guide

HP Part No. 64752-97003
Printed in U.S.A.
July 1994

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

V810 is a trademark of NEC Electronics Inc.

NEC K&R-C is a trademark of NEC Electronics Inc.

Green Hills Software is a trademark of Green Hills Software, Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure by
the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S.Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64752-97001, August 1993

Edition 2 64752-97003, July 1994

Using this Manual

This manual shows you how to use the following emulators with the
Softkey Interface.

HP 64752A 70732 emulator

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.
Shows you how to use the emulator in-circuit (connected to a
demo board/target system).
Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual does not:

Show you how to use every Softkey Interface command and
option; the Softkey Interface is described in the Softkey
Interface Reference manual.

Organization

Chapter 1 Introduction to the 70732 Emulator. This chapter briefly introduces
you to the concept of emulation and lists the basic features of the
70732 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory,display and modify memory, display registers,
step through program, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 "In-Circuit" Emulation. This chapter shows you how to install the
emulator probe into a demo board/target system and how to use
"in-circuit" emulation features.

Chapter 4 Configuring the Emulator. This chapter shows you how to: restrict
the emulator to real-time execution, allow the target system to insert
wait states, and select foreground or background monitor.

Chapter 5 Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter.

Appendix A Using the Foreground. This appendix describes the advantages and
disadvantages of foreground and background monitors and how to use
foreground monitor.

Appendix B Using the Format Converter. This appendix describes the usage of
the file format converter.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax
which may be entered by pressing softkey.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands which
follow the "$" are entered at the HP-UX prompt.

<RETURN> The carriage return key.

Notes

Contents

1 Introduction to the 70732 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70732 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-3
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-4
Reset Support . 1-4
Configurable Target System Interface 1-4
Foreground or Background Emulation Monitor 1-4
Real-Time Operation . 1-5
Coverage . 1-5
Easy Products Upgrades . 1-5

Limitations, Restrictions . 1-6
Reset While in Background Monitor 1-6
User Interrupts While in Background Monitor 1-6
Interrupts While Executing Step Command 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Demo Program 2-2
Compiling the Demo Program 2-3
Linking the Demo Program . 2-3
Generate HP Absolute file . 2-3

Entering the Softkey Interface . 2-4
From the "pmon" User Interface 2-4
From the HP-UX Shell . 2-5
Configure the Emulator for Examples 2-6

Contents - 1

On-Line Help . 2-7
Softkey Driven Help . 2-7
Pod Command Help . 2-8

Loading Absolute Files . 2-9
Displaying Symbols . 2-10

Global . 2-10
Local . 2-11
Source Lines . 2-12

Displaying Memory in Mnemonic Format 2-13
Display Memory with Symbols 2-14
Display Memory with Source Code 2-15

Running the Program . 2-16
From Transfer Address . 2-16
From Reset . 2-16

Displaying Memory . 2-16
Using Symbolic Addresses 2-16

Modifying Memory . 2-17
Breaking into the Monitor . 2-18
Using Software Breakpoints . 2-19

Enabling/Disabling Software Breakpoints 2-20
Setting a Software Breakpoint 2-20
Displaying Software Breakpoints 2-21
Clearing a Software Breakpoint 2-23

Displaying Registers . 2-23
Stepping Through the Program 2-24
Using the Analyzer . 2-25

Source Line Referencing . 2-25
Specifying a Simple Trigger 2-25
Display the Trace . 2-26
Displaying Trace with No Symbol 2-27
Displaying Trace with Compress Mode 2-28
Reducing the Trace Depth . 2-28
Trigger the Analyzer at an Instruction Execution State 2-29
Disassembling trace by memory contents 2-30
Emulator Analysis Status Qualifiers 2-30
For a Complete Description 2-31

Resetting the Emulator . 2-31
Exiting the Softkey Interface . 2-31

End Release System . 2-31
Ending to Continue Later . 2-31
Ending Locked from All Windows 2-31

2 - Contents

Selecting the Measurement System Display
or Another Module . 2-32

3 In-Circuit Emulation Topics

Introduction . 3-1
Prerequisites . 3-1
Installing the Emulation Probe Cable 3-2
Installing the Emulation Memory Module 3-5
Installing into the Demo Target System 3-7
Installing the Emulator Probe into a Target System 3-9

Installing into a PGA Type Socket 3-10
Installing into a QFP Type Socket 3-10

In-Circuit Configuration Options 3-12
Running the Emulator from Target Reset 3-12
Pin State in Background . 3-14
Target System Interface . 3-15

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-4

Enter Monitor After Configuration? 4-4
Restrict to Real-Time Runs? 4-4
Processor data bus width? . 4-5
Enable the instruction cache? 4-6
Keep coherence of the cache? 4-7

Memory Configuration . 4-8
Monitor Type? . 4-8
Mapping Memory . 4-12

Emulator Pod Configuration . 4-14
Inset wait state at BANK0 emulation memory? 4-14
Inset wait state at BANK1 emulation memory? 4-15
Enable NMI input from target system? 4-15
Enable responding to HLDRQ signal? 4-16
Enable RESET input from target system? 4-16
Enable READY input from target system? 4-17
Enable SZRQ input from target system? 4-17
Target memory access size 4-17
Drive background cycles to target system? 4-18

Debug/Trace Configuration . 4-19
Break Processor on Write to ROM? 4-19
Trace Background or Foreground Operation? 4-20

Contents - 3

Trace mode? . 4-20
Trace fetch cycles? . 4-20
Force to trace bus address? 4-21
Emulation analyzer speed? 4-21

Simulated I/O Configuration . 4-22
Interactive Measurement Configuration 4-22
Saving a Configuration . 4-22
Loading a Configuration . 4-23

5 Using the Emulator

Introduction . 5-1
Manipulation in Short-real Format 5-2

Register Manipulation . 5-2
Memory Manipulation . 5-3

REGISTER CLASS and NAME 5-4
Hardware Breakpoints . 5-5
Analyzer Topics . 5-5

Trace actual bus cycles . 5-5
Not trace fetch cycles . 5-8
Trace Bus Address . 5-8
Specify Data for Triger or Store Condition 5-9

Features Available via Pod Commands 5-11
Accessing Emulation Memory 5-12
Storing Memory Contents to an Absolute File 5-12
Coordinated Measurements . 5-13

A Using the Foreground Monitor

Introduction . A-1
Comparison of Foreground and Background Monitors A-1

Background Monitors . A-1
Foreground Monitors . A-2

Foreground Monitor Selection . A-2
Using Built-in Foreground Monitor A-3

Modifying the Emulator Configuration A-3
Using Custom Foreground Monitor A-4

Assemble and Link the Monitor A-4
Modifying the Emulator Configuration A-5

An Example Using the Foreground Monitor A-6
Mapping Memory for the Example A-6
Modifing the Emulator Configuration A-6
Load the Program Code . A-7

4 - Contents

Tracing from Reset to Break A-7
Tracing from Monitor to User Program A-9
Tracing from User Program to Break A-10

Limitations of Foreground Monitors A-11
Synchronized MeasurementsCMB A-11

B Using the Format Converter

Introduction . B-1
How to use the Converter . B-1
Restrictions and Considerations B-4

ELF Format File . B-4
COFF Format File . B-4

Error/Warning Messages . B-4
Error Messages . B-4
Warning Messages . B-9

Illustrations

Figure 1-1 HP 64752A Emulator for uPD70732 1-2
Figure 2-1 Linker Command File 2-3
Figure 2-2 Softkey Interface Display 2-5

Contents - 5

Notes

6 - Contents

1

Introduction to the 70732 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70732 emulator is designed to replace the 70732 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1 HP 64752A Emulator for uPD70732

1-2 Introduction

Features of the
70732 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The 176-pin PGA type of 70732 microprocessor is supported. The HP
64752A emulator probe has a 176-pin PGA connector. When you use
120-pin QFP type microprocessor, you must use with PGA to QFP
adapter; refer to the "In-Circuit Emulation Topics" chapter in this
manual.

Clock Speeds The 70732 emulator runs with a target system clock from 8 to 25 MHz.

Emulation memory The HP 64752A emulator is used with one or two of the following
Emulation Memory Module.

HP 64171A 256K byte Emulation Memory Module(35 ns)
HP 64171B 1M byte Emulation Memory Module(35 ns)
HP 64172A 256K byte Emulation Memory Module(20 ns)
HP 64172B 1M byte Emulation Memory Module(20 ns)

You can define up to 16 memory ranges (at 4K byte boundaries and at
least 4k byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target system
ROM, or guarded memory. HP 64172A/B can be accessed with no
wait. HP64171A/B can be accessed with no wait when clock speed is
less than or equal to 20 MHz, and with one wait when clock speed is
greater than 20 MHz. The emulator generates an error message when
accesses are made to guarded memory locations. You can also
configure the emulator so that writes to memory defined as ROM cause
emulator execution to break out of target program execution.

Introduction 1-3

Analysis The HP 64752A emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP64704A 80-channel Emulation Bus Analyzer
HP64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus.

The emulator can real-time dequeu when analyzer trace execution
states and bus states.

The emulator can real-time trace when analyzer trace only actual bus
states.

Registers You can display or modify the 70732 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
emulation monitor.

You can also define software breakpoints in your program. The
emulator uses the BRKRET instruction to provide software breakpoint.
When you define a software breakpoint, the emulator places a
BRKRET instruction at the specified address; after the BRKRET
instruction causes emulator execution to break out of your program, the
emulator replaces BRKRET with the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory.

1-4 Introduction

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70732 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background. User program
execution is suspended so that emulation processor can be used to
access target system resources. The background monitor does not
occupy any processor address space.

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

When your program is running, the emulator accesses emulation
memory by holding emulation microprocessor for 12 clock cycles, not
breaking to the monitor. You can restrict the emulator to real-time
execution. When the emulator is executing your program under the
real-time restriction, commands which display/modify registers,
display/modify target system memory or I/O are not allowed.

Coverage The 70732 emulator does not support coverage test.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700B Card Cage. This means that you’ll be able to update product
firmware, if desired, without having to call an HP field representative
to your site.

Introduction 1-5

Limitations,
Restrictions

Reset While in
Background Monitor

If you use background monitor, RESET from target system are ignored
while in monitor.

User Interrupts While
in Background

Monitor

If you use the background monitor, NMI from target system are
suspended until the emulator goes into foreground operation. Other
interrupts are ignored.

Interrupts While
Executing Step

Command

While stepping user program with the foreground monitor used,
interrupts are accepted if they are enabled in the foreground monitor
program.

While stepping user program with the background monitor used,
interrupts are ignored.

Note You should not use step command in case the interrupt handler’s
punctuality is critical.

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
70732 Evaluation chip in the emulator.

1-6 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64752A emulator (for the 70732
microprocessor) with the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the demo program used for this chapter’s examples.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the demo
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual for
instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also covers
HP 64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
70732 emulator.

A Look at the Demo
Program

The demo program is spmt_demo consisting of source program
spmt_demo.c and init_spmt.s.

Where is the spmt_demo Software?

The demo program is shipped with the Softkey Interface and may be
copied from the following directory.

/usr/hp64000/demo/emul/hp64752

2-2 Getting Started

Compiling the Demo
Program

The demo program is written for and compiled/linked with the NEC
Corporation CC732 C Compiler Package. The demo program was
compiled with the following command.

$ cc732 -c -g spmt_demo.c <RETURN>

Linking the Demo
Program

The following command was used to generate the absolute file. The
"spmt_demo.d" linker command file is shown in figure 2-2.

$ ld732 -D spmt_demo.d -o spmt_demo.abs
spmt_demo.o <RETURN>

Generate HP
Absolute file

To generate HP absolute file for the Softkey Interface, you need to use
"v810cnv" absolute file format converter. The v810cnv converter is
provided with the Softkey Interface. To generate HP absolute file, enter
the following command:

$ v810cnv spmt_demo <RETURN>

You will see that spmt_demo.X, spmt_demo.L, and spmt_demo.A are
generated. The file spmt_demo.X contains the absolute code of the
program. The file spmt_demo.L contains the list of global symbols.
The files spmt_demo.A contains the list of local symbols for the
respective files.

TEXT1: !LOAD ?RX V0x0 {
 .text = $PROGBITS ?AX .text;
};

DATA: !LOAD ?RW V0x20000 {
 .data = $PROGBITS ?AW;
 .sdata = $PROGBITS ?AWG;
 .sbss = $NOBITS ?AWG;
 .bss = $NOBITS ?AW;
};
TEXT2: !LOAD ?RX V0xfffffff0 {
 Reset_Entry = $PROGBITS ?AX Reset_Entry;
};

__tp_TEXT @ %TP_SYMBOL {TEXT1};
__gp_DATA @ %GP_SYMBOL &__tp_TEXT {DATA};

Figure 2-1 Linker Command File

Getting Started 2-3

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>
If you have not already created a measurement system for the 70732
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>
After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>
To define a measurement system for the 70732 emulator, enter:

make_sys emv810 <RETURN>
Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it n70732 <RETURN>
Enter the following command to exit the measurement system
configuration interface.

end <RETURN>
If the measurement system and emulation module are named "emv810"
and "n70732" as shown above, you can enter the emulation session
with the following command:

emv810 default n70732 <RETURN>
If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

2-4 Getting Started

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab.net).

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

 HPB3069-11001 A.05.10 16Mar93
 N70732 SOFTKEY USER INTERFACE

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

STATUS: Starting new session__...R....

 run trace step display modify break end ---ETC--

Figure 2-2 Softkey Interface Display

#---------+------------+-----------+---
Channel | Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#---------+------------+-----------+---
 lan: v810 n70732 21.17.9.143

Getting Started 2-5

Configure the
Emulator for

Examples

To do operations described in this chapter (loading absolute program
into emulation memory, displaying memory contents, etc), you need to
configure the emulator as below. For detailed description of each
configuration option (question), refer to the "Configuring the
Emulator" chapter.

To get into the configuration session of the emulator, enter the
following command.

modify configuration <RETURN>

Answer to the series of questions as below.

Enter monitor after configuration? yes <RETURN>

Restrict to real-time runs? no <RETURN>

Processor data bus width? 32 <RETURN>

Enable the instruction cache? no <RETURN>

Modify memory configuration? yes <RETURN>

Monitor type? background <RETURN>

Value for address during background operation? 00000000H

Now you should be facing memory mapping screen. Three mapper
terms must be specified for the demo program. Enter the following
lines to map the program code area as emulation ROM, data area as
emulation RAM.

 0h thru 1fffh emulation rom <RETURN>

 20000h thru 20fffh emulation ram <RETURN>

 0fffff000h thru 0ffffffffh emulation rom <RETURN>

 end <RETURN>

Modify emulator pod configuration? no <RETURN>

Modify debug/trace options? no <RETURN>

Modify simulated I/O configuration? no <RETURN>

Modify interactive measurement specification? no <RETURN>

If you wish to save the configuration specified above, answer this
question as shown.

Configuration file name? spmt_demo <RETURN>

Now you are ready to go ahead. Above configuration is used through
out this chapter.

2-6 Getting Started

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

---SYSTEM COMMANDS & COMMAND FILES---

? displays the possible help files
help displays the possible help files

! fork a shell (specified by shell variable SH)
!<shell command> fork a shell and execute a shell command

pwd print the working directory
cd <directory> change the working directory

pws print the default symbol scope
cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic

forward <UI> "command" send the command in the quoted string from this user
 interface to another one. Replace <UI> with the name
 of the other user interface as shown on the softkeys:

-More--(15%)

Getting Started 2-7

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help cf’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Note If you want to use the Terminal Interface command by entering from
keyboard directly, you can do it after entering the following command.

pod_command keyboard

Pod Commands
 Time Command
 coh - enable/disable restriction to real time runs
 dasms - en/dis access memory to disassemble trace list
 dbc - en/dis drive of background cycles to the target system
 hld - en/dis Target HLDRQ(-) signal
 mon - selection of a foreground or background monitor
 monloc - selection of monitor address
 nmi - en/dis Target NMI(-) signal
 rdy - en/dis READY(-) interlock
 rrt - enable/disable restriction to real time runs
 rst - en/dis Target RESET(-) signal
 szrq - en/dis Target SZRQ(-) signal
 tradr - tracing bus address as data
 trfetch - en/dis tracing fetch cycle
 trmode - select analyzer mode
 waitb0 - determine if insert wait cycle on bank0
 waitb1 - determine if insert wait cycle on bank1

STATUS: N70732--Emulation reset_______________________________________...R....
pod_command ’help cf’

 run trace step display modify break end ---ETC--

2-8 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" or
"user_mem". For example:

load spmt_demo <RETURN>

Note When loading a program if the status line shows

"ERROR: No absolute file, No database:
spmt_demo

, you may NOT be in the directory that your program is in. To find out
what directory you are in, enter:

! pwd <RETURN>
The "!" allows you to use an HP-UX shell command. To move into
the correct directory, enter:

cd <directory path> <RETURN>

You can also specify the pathname where your program resides. For
example, you could enter:

load
/usr/hp64000/demo/emul/hp64752/spmt_demo
<RETURN>

Getting Started 2-9

Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" syntax), symbol information is also loaded. Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are address ranges associated with a symbol, the segment that
the symbol is associated with, and the offset of that symbol within the
segment.

Global symbols in spmt_demo.X
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
apply_controlle 0000073C - 000007F3 071C
apply_productio 000004EC - 000005A7 04CC
calculate_answe 000007F4 - 0000088F 07D4
clear_buffer 000002FC - 00000367 02DC
endcommand 000009FC - 00000A1B 09DC
format_result 000005A8 - 00000613 0588
get_next_token 000006A8 - 0000073B 0688
initialze 00000614 - 000006A7 05F4
input_line 00000020 - 00000073 0000
lookup_token 00000368 - 000003F3 0348
main 00000A1C - 00000A97 09FC
math_library 00000204 - 0000029F 01E4
move_byte 00000074 - 000000C3 0054
outputline 000002A0 - 000002FB 0280
parse_command 000008FC - 00000987 08DC

STATUS: N70732--Running in monitor____________________________________...R....
display global_symbols

 run trace step display modify break end ---ETC--

2-10 Getting Started

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in spmt_demo.c:
<RETURN>

As you can see, the procedure symbols and static symbols in
"spmt_demo.c" are displayed.
To list the next symbols, press the <PGDN> or <Next> key. the source
reference symbols in "spmt_demo.c" will be displayed.

Listed are: address ranges associated with a symbol, the segment that
the symbol is associated with, and the offset of that symbol within the
segment.

Symbols in spmt_demo.c:
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
apply_controlle 0000073C - 000007F3 071C
apply_productio 000004EC - 000005A7 04CC
calculate_answe 000007F4 - 0000088F 07D4
clear_buffer 000002FC - 00000367 02DC
endcommand 000009FC - 00000A1B 09DC
format_result 000005A8 - 00000613 0588
get_next_token 000006A8 - 0000073B 0688
initialze 00000614 - 000006A7 05F4
input_line 00000020 - 00000073 0000
lookup_token 00000368 - 000003F3 0348
main 00000A1C - 00000A97 09FC
math_library 00000204 - 0000029F 01E4
move_byte 00000074 - 000000C3 0054
outputline 000002A0 - 000002FB 0280
parse_command 000008FC - 00000987 08DC

STATUS: cws: spmt_demo.c:___...R....
display local_symbols_in spmt_demo.c:

 run trace step display modify break end ---ETC--

Getting Started 2-11

Source Lines To display the address ranges associated with the program’s source
file, you must display the local symbols in the file. For example:

display local_symbols_in spmt_demo.c:
<RETURN>

And scroll the information down on the display with up arrow,or
<Next> key.

Symbols in spmt_demo.c:
Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#35 00000020 - 0000002B 0000
#36-#37 0000002C - 00000037 000C
#38-#39 00000038 - 0000003B 0018
#40-#40 0000003C - 0000003F 001C
#41-#41 00000040 - 00000045 0020
#42-#42 00000046 - 00000049 0026
#43-#43 0000004A - 0000004F 002A
#44-#44 00000050 - 00000053 0030
#45-#45 00000054 - 0000006F 0034
#46-#46 00000070 - 00000073 0050
#47-#49 00000074 - 0000007F 0054
#50-#51 00000080 - 0000008B 0060
#52-#53 0000008C - 0000008F 006C
#54-#54 00000090 - 00000095 0070
#55-#55 00000096 - 00000099 0076

STATUS: N70732--Running in monitor____________________________________...R....
display local_symbols_in spmt_demo.c:

 run trace step display modify break end ---ETC--

2-12 Getting Started

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example to display the memory of the demo program,

display memory main mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbol main is used in the command above to specify the
starting address of the memory to be displayed.

 Memory :mnemonic :file = spmt_demo.c:
 address data
 00000A1C 20A01800 MOVEA 0x0018,R0,R1
 00000A20 6108 SUB R1,R3
 00000A22 E3DF1400 ST.W R31,0x0014[R3]
 00000A26 6E8A JBR 0x00000A94
 00000A28 4141 MOV 0x01,R10
 00000A2A 43DD1000 ST.W R10,0x0010[R3]
 00000A2E 04DC2803 ST.W R0,0x0328[R4]
 00000A32 508A JBR 0x00000A82
 00000A34 FFAF5CFE JAL 0x00000890
 00000A38 FFAFC4FE JAL 0x000008FC
 00000A3C 44CD2803 LD.W 0x0328[R4],R10
 00000A40 2540 MOV 0x05,R1
 00000A42 4125 DIV R1,R10
 00000A44 5E01 MOV R30,R10
 00000A46 6AA10100 MOVEA 0x0001,R10,R11
 00000A4A 64DD0000 ST.W R11,0x0000[R4]

STATUS: N70732--Running in monitor____________________________________...R....
display memory main mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-13

Display Memory with
Symbols

If you want to see symbol information with displaying memory in
mnemonic format, the emulator Softkey Interface provides "set
symbols" command. To see symbol information, enter the following
command.

set symbols on <RETURN>

As you can see, the memory display shows symbol information.

 Memory :mnemonic :file = spmt_demo.c: address label data 00000A1C
spmt_de:main 20A01800 MOVEA 0x0018,R0,R1
 00000A20 6108 SUB R1,R3
 00000A22 E3DF1400 ST.W R31,0x0014[R3]
 00000A26 6E8A JBR :main+00078
 00000A28 4141 MOV 0x01,R10
 00000A2A 43DD1000 ST.W R10,0x0010[R3]
 00000A2E 04DC2803 ST.W R0,0x0328[R4]
 00000A32 508A JBR :main+00066
 00000A34 FFAF5CFE JAL :request_command
 00000A38 FFAFC4FE JAL sp:parse_command
 00000A3C 44CD2803 LD.W 0x0328[R4],R10
 00000A40 2540 MOV 0x05,R1
 00000A42 4125 DIV R1,R10
 00000A44 5E01 MOV R30,R10
 00000A46 6AA10100 MOVEA 0x0001,R10,R11
 00000A4A 64DD0000 ST.W R11,0x0000[R4]

STATUS: N70732--Running in monitor____________________________________...R....
set symbols on

 run trace step display modify break end ---ETC--

2-14 Getting Started

Display Memory with
Source Code

If you want to reference the source line information with displaying
memory in mnemonic format, the emulator Softkey Interface provides
"set source" command. To reference the source line information in
inverse video, enter the following command:

set source on inverse_video on <RETURN>

To see the memory without source line referencing, enter the following
command:

set source off <RETURN>

 Memory :mnemonic :file = spmt_demo.c:
 address label data
 371
 372 /******************** main program ********************/
 373
 374 main()
 375 {
 00000A1C spmt_de:main 20A01800 MOVEA 0x0018,R0,R1
 00000A20 6108 SUB R1,R3
 00000A22 E3DF1400 ST.W R31,0x0014[R3]
 00000A26 6E8A JBR :main+00078
 376 int dummyv;
 377 dummyv = 1;
 00000A28 4141 MOV 0x01,R10
 00000A2A 43DD1000 ST.W R10,0x0010[R3]
 378 tasknumber = 0;
 00000A2E 04DC2803 ST.W R0,0x0328[R4]
 00000A32 508A JBR :main+00066

STATUS: N70732--Running in monitor____________________________________...R....
set source on inverse_video on

 run trace step display modify break end ---ETC--

Getting Started 2-15

Running the
Program

The "run" command lets you execute a program in memory. Entering
the "run" command by itself causes the emulator to begin executing at
the current program counter address. The "run from" command allows
you to specify an address at which execution is to start.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined
"start address". Transfer addresses are defined in assembly language
source files with the END assembler directive (i.e., pseudo instruction).
Enter:

run from transfer_address <RETURN>

From Reset The "run from reset" command specifies that the emulator begin
executing from reset vector as actual microprocessor does.

(See "Running From Reset" section in the "In-Circuit Emulation"
chapter).

Displaying
Memory

The demo program "spmt_demo.c" alters memory.

Using Symbolic
Addresses

In the following display, the memory range is displayed using symbolic
addresses data.

The memory display window is periodically updated. For example,
enter the following command:

display memory data thru +7fh blocked bytes
<RETURN>

This command string is used to specify the range of memory from data
to data+7fh.

2-16 Getting Started

Modifying Memory You can use the modify memory command to send commands to the
sample program. Memory locations stackarea and stackarea+10h
correspond to memory address 20004 hex and 20014 hex respectivity.
For example, to enter the ’10h’ at address 20004 and enter ’A’ at
address 20014 : use the following commands.

display memory stackarea <RETURN>
modify memory stackarea to 10h <RETURN>
modify memory stackarea+10h string to ’A’
<RETURN>

After the memory location are modified, the memory display shows
the following

 Memory :bytes :access=bytes :blocked :repetitively
 address data :hex :ascii
 0002031C-23 01 00 00 00 00 00 00 00
 00020324-2B 01 00 00 00 55 00 00 00 U . . .
 0002032C-33 FF FF F6 DF FF FF E8 FF
 00020334-3B FB FF F8 DF F7 FF F4 FF
 0002033C-43 62 F7 70 FF E9 FF 7F FF b . p
 00020344-4B FA FB 23 BF 82 FE 00 FF . . #
 0002034C-53 3D FF 00 7F F0 F7 17 EF =
 00020354-5B 16 FF 85 DF B4 F7 80 6F o
 0002035C-63 DD FD 91 BF F3 FF 2B 7F + .
 00020364-6B DA FE 62 6F B5 F3 04 8F . . b o
 0002036C-73 50 7D 02 BF 96 FF 06 9F P }
 00020374-7B 67 FF 64 7E 12 F2 00 7F g . d ~
 0002037C-83 BD FF 90 9F FF FF F0 7E ~
 00020384-8B FF FF F2 7F FF FB F4 DF
 0002038C-93 FF FF F0 CF FF FF F4 7F
 00020394-9B FF FF F0 EF FF FF F8 DF

STATUS: N70732--Running user program__________________________________...R....
display memory data thru data+7fh blocked bytes

 run trace step display modify break end ---ETC--

Getting Started 2-17

Breaking into the
Monitor

The "break" command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the demo program to the monitor, enter the following command.

break <RETURN>

Notice that the current address is pointed out with inverse video in
displaying memory when the execution breaks to the monitor.

 Memory :bytes :access=bytes :blocked :update
 address data :hex :ascii
 00020004-0B 10 FF FF FF FF FF FF FF
 0002000C-13 FF FF FF FF FF FF FF FF
 00020014-1B 41 FF FF FF FF FF FF FF A
 0002001C-23 FF FF FE FF FF F7 FF FF
 00020024-2B FF FE FF FF FF FF FF FF
 0002002C-33 FF FF FF FF F7 FF FF FF
 00020034-3B FF FF FF FF FF FF FF FF
 0002003C-43 FF FF FF FF FF FF F8 FF
 00020044-4B FF FF F0 FF FF FF F3 FF
 0002004C-53 FF FF FF FF FF FF FC FF
 00020054-5B FF FF FD FF FF FF F2 FF
 0002005C-63 FF FF F1 FF FF FF F3 FF
 00020064-6B FF FF F3 FF FF FF FD FF
 0002006C-73 FF FF FD FF FF FF F0 FF
 00020074-7B FF FF FD FF FF FF F8 FF
 0002007C-83 FF FF FF FF FF FF FF FF

STATUS: N70732--Running user program__________________________________...R....
modify memory stackarea+10h string to ’A’

 run trace step display modify break end ---ETC--

2-18 Getting Started

Using Software
Breakpoints

Software breakpoints are handled by the 70732 BRKRET instruction.
When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with a breakpoint
interrupt instruction(BRKRET).

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed.
Further, your program won’t work correctly.

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Note Because software breakpoints are implemented by replacing opcodes
with the breakpoint interrupt instruction, you cannot define software
breakpoints in target ROM. Them you can use software breakpoints.

Getting Started 2-19

When software breakpoints are enabled and the emulator detects the
BRKRET interrupt instruction, it generates a break into the monitor.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the BRKRET instruction in your
target program.

If the BRKRET interrupt was generated by a software breakpoint,
execution breaks to the monitor, and the breakpoint interrupt
instruction(BRKRET) is replaced by original opcode. A subsequent run
or step command will execute from this address.

If the BRKRET interrupt was generated by a BRKRET interrupt
instruction in the target program, execution still breaks to the monitor,
and an "undefined breakpoint" status message is displayed. To continue
program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the 70732 breakpoint interrupt instruction (BRKRET) will
be placed at the address specified. When the breakpoint interrupt
instruction is executed, program execution will break into the monitor.

Setting a Software
Breakpoint

To set a software breakpoint at line 68 of "spmt_demo.c", enter the
following command.

modify software_breakpoints set line 77
<RETURN>

To see the address where the software breakpoint has been set, enter
the following command:

display memory line 77 mnemonic <RETURN>
set source on inverse_video on <RETURN>

2-20 Getting Started

The asterisk (*) in left side of the address lists points out that the
software breakpoint has been set. The opcode at the software
breakpoint address was replaced to the software breakpoint instruction
(BRKRET).

Displaying Software
Breakpoints

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

 Memory :mnemonic :file = spmt_demo.c:
 address label data
 76 int i;
 77 for (i = 0; i 8; i++)
* 00000120 006C BRKRET 0x00
 00000122 1000 MOV R16,R0
 00000124 43CD1000 LD.W 0x0010[R3],R10
 00000128 484D CMP 0x08,R10
 0000012A 229C JGE :scan_number+00038
 78 {
 79 data = 0;
 0000012C 04DC1C03 ST.W R0,0x031C[R4]
 80 data = 1;
 00000130 4141 MOV 0x01,R10
 00000132 44DD1C03 ST.W R10,0x031C[R4]
 81 stack = 0;
 00000136 04DC2003 ST.W R0,0x0320[R4]
 82 }

STATUS: N70732--Running in monitor____________________________________...R....
set source on inverse_video on

 run trace step display modify break end ---ETC--

Getting Started 2-21

The software breakpoints display shows that the breakpoint is pending.
When breakpoints are hit they become inactivated. To reactivate the
breakpoint so that is "pending", you must reenter the "modify
software_breakpoints set" command.

After the software breakpoint has been set, enter the following
command to cause the emulator to continue executing the demo
program.

run <RETURN>
A message on the status line shows that the software breakpoint has
been hit. The status line also shows that the emulator is now executing
in the monitor.

The software breakpoint address is pointed out with inverse video in
displaying memory in mnemonic format. To see the software
breakpoint with memory, enter the following command.

display memory line 77 mnemonic <RETURN>

Notice that the original opcode was replaced at the address that the
software breakpoint has been set.

Software breakpoints :enabled
 address label status
 00000120 spmt_demo.c: line 77 pending

STATUS: N70732--Running in monitor____________________________________...R....
display software_breakpoints

 run trace step display modify break end ---ETC--

2-22 Getting Started

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear line 77
<RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers, or an individual register. Refer to "REGISTER CLASS
and NAME" section in "Using the Emulator" chapter .

display registers <RETURN>

Registers

Next PC 00000120
 PC 00000120 PSW 00008000
 R0-7 00000000 00000018 00000000 000203CC 00020000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000714

STATUS: N70732--Running in monitor Software break: 000000120_____...R....
display registers

 run trace step display modify break end ---ETC--

Getting Started 2-23

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step
from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...

You will see the inverse-video moves according to the step execution.
You can continue to step through the program just by pressing the
<RETURN> key.

You can step program execution by source lines, enter:

step source <RETURN>

Source line stepping is implemented by single stepping assembly
instructions until the next PC is outside of the address range of the
current source line. When source line stepping is attempted on
assembly code, stepping will complete when a source line is found. To
terminate stepping type <Ctrl>-C.

Registers

Next PC 00000120
 PC 00000120 PSW 00008000
 R0-7 00000000 00000018 00000000 000203CC 00020000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000714

Step_PC 00000120 ST.W R0,0x0010[R3]
Next PC 00000124
 PC 00000124 PSW 00008000
 R0-7 00000000 00000018 00000000 000203CC 00020000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000714

STATUS: N70732--Stepping complete_____________________________________...R....
step

 run trace step display modify break end ---ETC--

2-24 Getting Started

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse
of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Source Line
Referencing

A trace may be taken and displayed using source line referencing.
Also, lines of the source program can be displayed with the trace list
where the trace occurred.

To display the trace with source code in inverse video, enter the
following command:

set source on inverse_video on <RETURN>

Specifying a Simple
Trigger

Suppose you want you trace program execution after the point at
address semantic_check. The following command make this trace
specification.

trace after semantic_check <RETURN>

The STATUS message shows "Emulation trace started.".

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

The STATUS message shows "Emulation trace complete.".

Getting Started 2-25

Display the Trace The trace listings which following are of program execution on the
70732 emulator. To see the trace list, enter the following command:

display trace <RETURN>

The trace list shows the trace after line
(semantic_check()).

To list the next lines of the trace, press the <PGDN> or <NEXT> key.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
after s:semantic_check 0018A020 0018A020 fetch after branch
 ##########spmt_demo.c - line 201 thru 203 #####################

 semantic_check()
 {
+001 s:semantic_check DFE30861 MOVEA 0x0018,R0,R1
 DFE30861 fetch
+002 :semant+00000004 8A800014 SUB R1,R3 G
 8A800014 fetch
+003 :semant+00000006 0010DC03 ST.W R31,0x0014[R3] G
 0010DC03 fetch
+004 :semant+0000000A 0010CD43 JBR .Rsemantic_check G
 0010CD43 fetch
+005 000203E0 000007A0 000007A0 data write word
+006 :semant+00000088 8B82181F 8B82181F fetch after branch

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

2-26 Getting Started

Displaying Trace with
No Symbol

The trace listing shown above has symbol information because of the
"set symbols on" setting before in this chapter. To see the trace listing
with no symbol information, enter the following command.

set symbols off <RETURN>

As you can see, the analysis trace display shows the trace list without
symbol information.

Note The character displayed in the right side of trace list specifies the
following information.

 +------------+--+
 | Character | Information |
 +------------+--+
 | GSS | Emulator guessed execution address |
 | ADR | Processor masked low bit of address bus by 0 |
 | BGM | Background monitor cycles |
 +------------+--+

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: hex hex mnemonic
after 00000460 0018A020 0018A020 fetch after branch
 ##########spmt_demo.c - line 201 thru 203 ############################

 semantic_check()
 {
+001 00000460 DFE30861 MOVEA 0x0018,R0,R1
 DFE30861 fetch
+002 00000464 8A800014 SUB R1,R3 GSS
 8A800014 fetch
+003 00000466 0010DC03 ST.W R31,0x0014[R3] GSS
 0010DC03 fetch
+004 0000046A 0010CD43 JBR 0x000004EA GSS
 0010CD43 fetch
+005 000203E0 000007A0 000007A0 data write word
+006 000004E8 8B82181F 8B82181F fetch after branch

STATUS: N70732--Running user program Emulation trace complete______...R....
set symbols off

 run trace step display modify break end ---ETC--

Getting Started 2-27

Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the 70732
emulator Softkey Interface provides compress mode for analysis
display. To see trace display with compress mode, enter the following
command:

display trace compress on <RETURN>

As you can see, the analysis trace display shows the analysis trace lists
without fetch cycles. With this command you can examine program
execution easily.

If you want to see all of cycles including fetch cycles, enter following
command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: hex hex mnemonic
 ##########spmt_demo.c - line 201 thru 203 ############################

 semantic_check()
 {
+001 00000460 DFE30861 MOVEA 0x0018,R0,R1
+002 00000464 8A800014 SUB R1,R3 GSS
+003 00000466 0010DC03 ST.W R31,0x0014[R3] GSS
+004 0000046A 0010CD43 JBR 0x000004EA GSS
+005 000203E0 000007A0 000007A0 data write word
 ##########spmt_demo.c - line 216 #######################################
 }
+007 000004EA 0018A020 JBR 0x0000046C
 ##########spmt_demo.c - line 204 thru 205 ############################
 int i;
 for (i = 0; i 4; i++)
+009 0000046C 0010CD43 ST.W R0,0x0010[R3]

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace compress on

 run trace step display modify break end ---ETC--

2-28 Getting Started

Trigger the Analyzer
at an Instruction
Execution State

The emulator analyzer can capture states of instruction execution. If
you want to trigger the analyzer when an instruction at a desired
address is executed, you should not set up the analyzer trigger
condition to detect only the address. If you do so, the analyzer will be
also triggered in case that the address is accessed to fetch the
instruction, or read the data from address. You should use the "exec"
status qualifier.Suppose that you want to trace the states of the
execution after the instruction at clear_bufferof the spmt_demo.c file,
enter the following command.

trace after clear_buffer status exec <RETURN>

The message "Emulation trace started" will appear on the status line,
and the status line now shows "Emulation trace complete".

The emulator has disassemble capability in trace listing. When the
emulator disassembles instructions in stored trace information, the
fetch cycles of each instruction are required. When you displayed the
results of analyzer trace, some lines which include
"INSTRUCTION--opcode unavailable" message may be displayed.
Each line is instruction execution cycle at the address in the left side of
the displayed because the fetch states for the instructions were not
stored by the analyzer.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: hex hex mnemonic
 ##########spmt_demo.c - line 153 thru 157 ############################

 /******************** level three ********************/

 clear_buffer()
 {
after 000002FC DFE30861 MOVEA 0x0018,R0,R1
 DFE30861 fetch
+001 00000300 8A5E0014 SUB R1,R3 GSS
 8A5E0014 fetch
+002 00000302 0010DC03 ST.W R31,0x0014[R3] GSS
 0010DC03 fetch
+003 00000306 0010CD43 JBR 0x00000364 GSS
 0010CD43 fetch
+004 000203E0 00000680 00000680 data write word

STATUS: N70732--Running user program Emulation trace complete______...R....
trace after clear_buffer status exec

 run trace step display modify break end ---ETC--

Getting Started 2-29

To display complete disassembles in the trace listing, you should
modify location of trigger state in trace list, referred to as the "trigger
position", to "about" instead of "after".

Disassembling trace
by memory contents

You can specify whether the 70732 emulator read data from memory
or from trace memory when the emulator display trace list. To specify,
the 70732 emulator Softkey Interface provides display option. To read
data from memory, enter the following command:

display trace mnemonic option
disassemble_by_memory_contents <RETURN>

As you can see, "GSS" in the right side of trace list disappears. If
"INSTRUCTION--opcode unavailable" messages were displayed on
some lines, these line can be disassembled.

If you want the 70732 emulator to read data from trace list to
disassemble, enter the following command:

display trace mnemonic option
disassemble_by_trace_data <RETURN>

Emulator Analysis
Status Qualifiers

The following analysis status qualifiers may also be used with the
70732 emulator.

backgrnd 0xxxxxxxxxxxxxxxy background
addrerr 0xx1xxxx1xxxxxxxxy bus lock
byte 0xx1xxxxxxxxxx0xxy byte access
data 0xx1xxxxxxx010xxxy data access
exec 0xxx1xxxxxxxxxxxxy execute instruction
fault 0xx1xxxxxxx101xxxy machine fault acknowledge
fetch 0xx1xxxxxx1011xxxy code fetch
fetchbr 0xx1xxxxxx1001xxxy code fetch after branch
foregrnd 01xxxxxxxxxxxxxxxy foreground
grdacc 0xx1xx0xxxx0xxxxxy guarded memory access
halt 0xx1xxxxxxx111xxxy halt acknowledge
hold 0xx00xxxxxxxxxxxxy hold acknowledge
halfwd 0xx1xxxxxxxxxx10xy half word access
io 0xx1xxxxxxx110xxxy I/O access
mem 0xx1xxxxxxx0xxxxxy memory access
read 0xx1xxxxxx1xxxxxxy read cycle
word 0xx1xxxxxxxxxx110y word access
write 0xx1xxxxxx0xxxxxxy write cycle
wrrom 0xx1x0xxxx00xxxxxy write to ROM

2-30 Getting Started

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

Resetting the
Emulator

To reset the emulator, enter the following command.

reset <RETURN>

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

Getting Started 2-31

This option only appears when you enter the Softkey Interface via the
emul700 command. When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display
or Another Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

2-32 Getting Started

3

In-Circuit Emulation Topics

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation and to
installation.

This chapter will:

Show you how to install the emulator probe cable

Show you how to install the emulation memory module.

Show you how to install the emulator probe to demo target
board.

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation Topics 3-1

Installing the
Emulation Probe
Cable

The probe cables consist of three ribbon cables. The longest cable
connects to J1 of the emulation control card, and to J1 of the probe.
The shortest cable connects to J3 of the emulation control card and J3
of the probe. The ribbon cables are held in place on the emulation
control card by a cable clamp attached with two screws. No clamp
holds the ribbon cables in the probe.

1. Secure the cable on the emulation control card with cable
clamp and two screws.

3-2 In-Circuit Emulation Topics

2. When insert the ribbon cables into the appropriate sockets,
press inward on the connector clops so that they into the
sockets as shown.

In-Circuit Emulation Topics 3-3

3. Connect the other ends of the cables to the emulation probe.

3-4 In-Circuit Emulation Topics

Installing the
Emulation
Memory Module

There are four types of emulation memory modules that can be inserted
into sockets on the probe.

1. Remove plastic rivets that secure the plastic cover on the top
of the emulator probe, and remove the cover. The bottom
cover is only removed when you need to replace a defective
active probe on the exchange program.

In-Circuit Emulation Topics 3-5

2. Insert emulation memory module on the emulation probe.
There is a cutout on one side of the memory modules so that
they can only be installed one way.

To install memory modules, place the memory module into
the socket groove at an angle. Firmly press the memory
module into the socket to make sure it is completely seated.
Once the memory module is seated in the connector groove,
pull the memory module forward so that the notches on the
socket fit into the holes on the memory module. There are two
latches on the sides of the socket that hold the memory
module in place.

3. Replace the plastic cover, and insert new plastic rivets to
secure the cover.

3-6 In-Circuit Emulation Topics

Installing into the
Demo Target
Board

To connect the microprocessor connector to the demo target board,
proceeded with the following instructions.

1. Remove front bezel and connect the power cable to connector
the HP 64700B front panel. Refer to HP 64700 Series
Installation/Service manual.

2. With HP 64700B power OFF, connect the emulator probe to
the demo target board. When you install the probe into the
demo target board, be careful not to bend any of the pins.

After connecting the probe to the demo target board, set the
TEST/NORMAL MODE jumper. Use TEST MODE position when
you run performance verification tests, and use NORMAL MODE
position when you use emulator normally.

In-Circuit Emulation Topics 3-7

1. Connect the power cable supply wires from the emulator to
demo target board. When attaching the wire cable to the demo
target board, make sure the connector is aligned properly so
that all three pins are connected.

3-8 In-Circuit Emulation Topics

Installing the
Emulator Probe
into a Target
System

The 70732 emulator probe has a 176-pin PGA connector;
The emulator probe is also provided with a conductive pin protector to
protect the delicate gold-plated pins of the probe connector from
damage due to impact. Since the protector is non-conductive, you may
run performance verification with no adverse effects when the emulator
is out-of-circuit.

Caution Protect against electrostatic discharge. The emulator probe contains
devices that are susceptible to damage by electrostatic discharge.
Therefore, precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by electrostatic
electricity.

Caution Make sure target system power is OFF. Do not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

Caution Make sure pin 1 of probe connector is aligned with pin 1 of the
socket. When installing the emulation probe, be sure that probe is
inserted into the processor socket so that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator probe will result if the
probe is incorrectly installed.

In-Circuit Emulation Topics 3-9

Installing into a PGA
Type Socket

To connect the emulator probe to the target system, proceeded with the
following instructions.

1. Remove the 70732 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic form).

3. Install the emulator probe into the target system
microprocessor socket.

Caution DO NOT use the emulator probe without using a pin protector.
The pin protector is provided to prevent damage to the emulator probe
when connecting and removing the emulator probe from the target
system PGA socket.

Note PGA-PGA flexible extender.You can use PGA-PGA flexible
extender. When you want to use PGA-PGA flexible extender, you must
order E3426A.

Installing into a QFP
Type Socket

To connect the 70732 emulator probe to the to the QFP socket on the
target system, use the NEC EV-9503-GD-120.

1. Attach the QPF socket to your target system.

2. Connect the NEC EV-9503-GD-120 to QPF socket on your
target system.

3. Connect the IC-Socket(1200-1710) to the ZIP socket on NEC
EV-9503-GD-120.

4. Place the 70732 emulator probe to the NEC EV-9503-GD-120
with IC-Socket.

3-10 In-Circuit Emulation Topics

Note Contact NEC Electronics Inc. to purchase QFP socket.

In-Circuit Emulation Topics 3-11

In-Circuit
Configuration
Options

The 70732 emulator provide configuration options for the following
in-circuit emulation issues. Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Allowing the Target System to Insert Wait State

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

Enabling SZRQ, NMI, HLDRQ and RESET Input from the
Target System

You can configure whether the emulator should accept or ignore the
SZRQ, NMI, HLDRQ and RESET signals from the target system.

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET inputs from target system?"
configuration in "Configuring the Emulator" chapter of this manual).

To specify a run from target system reset, enter the following
command:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

3-12 In-Circuit Emulation Topics

Note In the "Awaiting target reset" status, you can not break into the
monitor. If you enter "run from reset" in the configuration that
emulator does not accepted target system reset, you must reset the
emulator.

The 70732 emulator supports power on reset. If you want program to
be executed by power on reset, execute the following process.

1) Enter "run from reset"

2) Turn OFF your target system

3) Turn ON your target system

Note When you turn OFF your target system, RESET signal must become
low level before voltage become lower than 4V. When you turn ON
your target system, RESET signal must be continued in low level for
20 clock cycles after voltage become upper than 4V.

In-Circuit Emulation Topics 3-13

Pin State in
Background

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance otherwise you direct the
emulator to access target memory. When accessing
target memory, I/O by background monitor, same
as foreground.

DA When you specify that the emulator drives
background cycles to target system, same as
foreground.

When you specify that the emulator does not drive
background cycles to target system, always high
impedance otherwise you direct the emulator to
access target memory. When accessing target
memory, I/O by background monitor, same as
foreground.

R/W Always high level, except accessing target memory,
I/O by background monitor.

BCYST When you specify that the emulator drives
background cycles to target system, same as
foreground.

When you specify that the emulator does not drive
background cycles to target system, always high
level, except accessing target memory, I/O by
background monitor.

Other Same as foreground

3-14 In-Circuit Emulation Topics

Target System
Interface

D0-D31 These signals are connected to 74ABT16245.

A(1:31)
BE(0:3) BCYST
DA ST(0:1)
R/W MRQ

These signals are connected to 70732 emulation
processor through 10k ohm pull-up register.

HLDAK BLOCK
ADRSERR

These signals are connected to 74ABT16244.

In-Circuit Emulation Topics 3-15

INT
INTV(0:3)

These signals are connected to 70732 emulation
processor through 10k ohm pull-up register.

SZRQ
READY

These signals are connected to P16L8 through
10k ohm pull-up register.

HLDRQ NMI
RESET

These signals are connected to P20V8R
through 10k ohm pull-up register.

3-16 In-Circuit Emulation Topics

4

Configuring the Emulator

Introduction Your 70732 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the 70732 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

Configuring the Emulator 4-1

General Emulator Configuration:

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

– Selecting processor data bus width.

– Enabling the instruction cache.

– Keeping coherence of the cache.

Memory Configuration:

– Selecting the emulation monitor type.

– Specifying value for address during background operation.

– Mapping memory.

Emulator Pod Configuration:

– Inserting wait state at BANK0 emulation memory.

– Inserting wait state at BANK1 emulation memory.

– Enabling NMI input from target system.

– Enabling HLDRQ input from target system.

– Enabling RESET input from target system.

– Enabling READY input from target system.

– Enabling SZRQ input from target system.

– Selecting target memory access size.

– Driving background cycles to target system.

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Specifying tracing of foreground/background cycles.

–

4-2 Configuring the Emulator

– Selecting trace mode.

– Specifying tracing of fetch cycles.

– Specifying forcing to trace bus address.

– Selecting emulation analyzer speed.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

Configuring the Emulator 4-3

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Enter Monitor After
Configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
completed. If the reset to monitor fails, the
previous configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Restrict to Real-Time
Runs?

This configuration allows to you specify whether program execution
should take place in real-time or whether commands should be allowed
to cause breaks to the monitor during program execution.

no All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "reset",
"break", "run", and "step") are refused. For
example, the following commands are not allowed
when runs are restricted to real-time:

Display/modify registers.

Display/modify target system memory.

Display/modify I/O.

4-4 Configuring the Emulator

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

Processor data bus
width?

This configuration allows to you specify whether data bus width is
16bits or 32bits.

32 Data bus width will be 32 bits.

16 Data bus width will be 16 bits.

Note The 70732 emulator operates in accordance with this configuration
instead of SZ16B signal from target system. SZ16B signal from target
system is ignored.

Note Changing this configuration setting will drive the emulator into a reset
state.

Configuring the Emulator 4-5

Enable the
instruction cache?

This configuration allows you to specify whether enable or disable the
instruction cache memory.

yes When the instruction cache is enable, the Cache
Control Word Register(CHCW) determines
whether the cache is ultimately enabled. Enabling
the on-chip instruction cache memory improves
performance of the processor and can greatly
reduce the activity on the processor’s external bus.

no When the instruction cache is disabled, the
emulator will prevent enabling the cache.
Disabling the on-chip instruction cache memory
will force the processor to always access external
memory. The cache should be disabled whenever
tracing program execution to force all external
memory accesses to be visible to the analyzer.

Note The 70732 emulator operates in accordance with this configuration
instead of ICHEEN signal from target system. ICHEEN signal from
target system is ignored.

Note Changing this configuration setting will drive the emulator into a reset
state.

4-6 Configuring the Emulator

Keep coherence of
the cache?

This configuration allow you to specify whether or not memory is
coherent with instruction cache when the emulator modify memory.
You must answer this question, when you answered "yes" at the
"Enable the instruction cache?" question.

yes When keeping cache coherence is enabled, the
emulator breaks into the monitor to keep cache
coherence whenever the emulator writes to the
memory. The monitor checks the cache contents
and update both cache and memory when the
emulator tried to write the same address that has
been cached.

no When keeping cache coherence is disabled, the
emulator does not check the cache contents when
the emulator writes to the memory. Therefore, the
cache contents may different from the memory
contents when they were modified by the emulator.

Note When the monitor is restricted to real time and keeping cache
coherence is enabled, the emulator can not modify emulation memory
while the emulator is running the user program.

Configuring the Emulator 4-7

Memory
Configuration

The memory configuration questions allows you to select the monitor
type, to select the location of the monitor, and to map memory. To
access the memory configuration questions, you must answer "yes" to
the following question.

Modify memory configuration?

Monitor Type? The monitor is a program which is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the processor
instructions which access the target system. After the monitor has
performed its task, execution returns to the user program. Monitor
program execution can take place in the "background" or "foreground"
emulator modes.

In the foreground emulator mode, the emulator operates as would the
target system processor.
 In the background emulator mode, foreground execution is suspended
so that the emulation processor may be used for communication with
the system controller, typically to perform tasks which access target
system resources.

A background monitor program operates entirely in the background
emulator mode; that is, the monitor program does not execute as if it
were part of the target program. The background monitor does not take
up any processor address space and does not need to be linked to the
target program. The monitor resides in dedicated background memory.

A foreground monitor program performs its tasks in the foreground
emulator mode; that is, the monitor program executes as if it were part
of the target program. Breaks into the monitor always put the emulator
in the background mode; however, foreground monitors switch back to
the foreground mode before performing monitor functions.

4-8 Configuring the Emulator

Note All memory mapper terms are deleted when the monitor type is
changed!

background The default emulator configuration selects the
background monitor. A memory overlay is created
and the background monitor is loaded into that area.

Note While running in background monitor, the 70732 emulator ignores
target system reset.

When the background monitor is selected, the execution of the monitor
is hidden from the target system (except for background cycles). When
you select the background monitor and the current monitor type is
"foreground" or "user_foreground", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "foreground" to
"background"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Value for address during background operation?

You can select the value that will be driven to the target system on
A31-A13 during background monitor operation. The value should be
32 bit address and must be multiple of 8K(2000H).

Configuring the Emulator 4-9

foreground When you select the build_in foreground monitor,
processor address space is taken up. The
foreground monitor takes up 8K bytes of memory.
When the foreground monitor is selected, breaking
into the monitor still occurs in a brief background
state, but the rest of the monitor program, the
saving of registers and the dispatching of emulation
commands, is executed in foreground.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

When you select the foreground monitor and the current monitor type
is "background", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "background" to
"foreground"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Monitor location?

You can relocate the monitor to any 8K byte boundary. The location
of a foreground monitor is important because it will occupy part of the
processor address space. Foreground monitor locations must not
overlap the locations of target system programs. When entering
monitor block addresses, you must only specify addresses on 8K byte
boundaries; otherwise, the configuration will be invalid, and the
previous configuration will be restored.

4-10 Configuring the Emulator

user_foreground When you select the custom foreground monitor,
processor address space is taken up. The
foreground monitor takes up 8K bytes of memory.
When the foreground monitor is selected, breaking
into the monitor still occurs in a brief background
state, but the rest of the monitor program, the
saving of registers and the dispatching of emulation
commands, is executed in foreground.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

When you select the foreground monitor and the current monitor type
is "background", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "background" to
"foreground"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Monitor location?

You can relocate the monitor to any 8K byte boundary. The location
of a foreground monitor is important because it will occupy part of the
processor address space. Foreground monitor locations must not
overlap the locations of target system programs. When entering
monitor block addresses, you must only specify addresses on 8K byte
boundaries; otherwise, the configuration will be invalid, and the
previous configuration will be restored.

Configuring the Emulator 4-11

3. Monitor filename?

This question allows you to specify the name of the custom foreground
monitor program absolute file. Remember that you must assemble and
link your foreground monitor starting at the 8K byte boundary
specified for the previous "Monitor location?" question.

The monitor program will loaded after you have answered all the
configuration questions.

Only the 8k bytes of memory reserved for the monitor are loaded at the
end of configuration; therefore, you should not link the foreground
monitor to the user program. If it is important that the symbol database
contain both monitor and user program symbols, you can create a
different absolute file in which the monitor and user program are
linked. Then, you can load this file after configuration.

Mapping Memory The emulation memory consists of 256k, 512k 1M, 1.25M or 2Mbytes,
mappable in 4k byte blocks. The emulator distinguish left side memory
module(BANK 0) and right side ones(BANK 1) because you can select
memory modules whose access speed is different on each bank. If you
will use HP64712A/B, the emulation memory system does not
introduce wait states. If you will use HP64171A/B and clock speed is
less than 20MHz, the emulation memory system does not introduce
wait state. If you will use HP64171A/B and clock speed is greater than
20MHz, the emulation memory system introduce one wait state.

Note You can insert wait states on accessing emulation memory. Refer to
the "Enable READY input from the target system?" section in this
chapter.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory

4-12 Configuring the Emulator

is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

When you characterize memory ranges as emulation RAM/ROM, you
can specify whether bank number is to be BANK 0(b0) or BANK
1(b1) and whether data bus size is to be 16(d16) or 32(d32) as
attributes. When you do not specify bank number, the emulator
interprets that bank number is "b0". If you do no specify data bus size,
the emulator interprets that data bus size is "32".

Attributes control specific functionality on a term-by-term basic.
Attributes can be the following.

b0_d32 Using emulation memory of bank 0 and data bus
width is 32 bits.

b0_d16 Using emulation memory of bank 0 and data bus
width is 16 bits.

b1_d32 Using emulation memory of bank 1 and data bus
width is 32 bits.

b1_d16 Using emulation memory of bank 1 and data bus
width is 16 bits.

b0 Using emulation memory of bank 0 and data bus
width is 32 bits.

b1 Using emulation memory of bank 1 and data bus
width is 32 bits.

When a foreground monitor selected, a 8k byte block is automatically
mapped at the address specified by the "Monitor location?" question.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Configuring the Emulator 4-13

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

Determining the Locations to be Mapped

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory.

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Inset wait state at
BANK0 emulation

memory?

This configuration allows you to specify whether or not the emulator
insert wait state when BANK0 emulation memory is accessed.

yes Inserting one wait state at BANK0 emulation
memory.

no Inserting no wait state at BANK0 emulation
memory.

4-14 Configuring the Emulator

Inset wait state at
BANK1 emulation

memory?

This configuration allows you to specify whether or not the emulator
insert wait state when BANK1 emulation memory is accessed.

yes Inserting one wait state at BANK1 emulation
memory.

no Inserting no wait state at BANK1 emulation
memory.

Note Accesses to emulation memory require 0 or 1 wait state depending
upon the speed of the target system’s clock and the memory module.
The following table shows whether you need to insert 1 wait on
emulation memory accesses.

 +-----------------+--+
 | frequency of the| Memory Module |
 | external clock | HP64171A/B (35ns) | HP64172A/B (20ns) |
 |==|
 | 20MHz or less | no-wait | no-wait |
 |-----------------+--------------------+---------------------|
 | above 20MHz | 1-wait | no-wait |
 +-----------------+--------------------+---------------------+

Enable NMI input
from target system?

This question allows you to specify whether or not the emulation
processor accepts NMI signal generated by the target system.

yes The emulator accepts NMI signal generated by the
target system. When the NMI is accepted, the
emulator calls the NMI procedure as actual
microprocessor. Therefore, you need to set up the
NMI vector table, if you want to use the NMI
interrupt.

no The emulator ignores NMI signal from target
system completely.

Configuring the Emulator 4-15

Note
When target NMI signal is enabled, it is in effect while the emulator is
running the target program. While the emulator is running background
monitor, NMI will be suspended until the emulator goes into
foreground operation.

Enable responding to
HLDRQ signal?

This configuration allows you to specify whether or not the emulator
accepts HLDRQ(Bus Hold Request) signal generated by the target
system.

yes The emulator accepts HLDRQ signal. When the
HLDRQ is accepted, the emulator will respond as
actual microprocessor.

no The emulator ignore HLDRQ signal from target
system completely.

Enable RESET input
from target system?

The 70732 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to "run
from reset" command in the Softkey Interface Reference manual).
While running in background monitor, the 70732 emulator ignores
target system reset completely independent on this setting.

yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (0FFFF0 hex) as same
manner as actual microprocessor after reset is
inactivated.

no The emulator ignores reset signal from target
system completely, even while in foreground
(executing user program).

4-16 Configuring the Emulator

Enable READY input
from target system?

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

yes When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested).

no When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted).

Enable SZRQ input
from target system?

This configuration allow you specify whether or not the emulator
accepts SZRQ(Size Request) signal generated by the target system.

yes The emulator accepts SZRQ signal while accessing
to emulation memory.

no The emulator ignores SZRQ signal while accessing
to emulation memory. The emulator will determine
the bus width of emulation memory by the attribute
setting specified in the mapping process.

Target memory
access size

This configuration specifies the type of microprocessor cycles that are
used by the monitor program to access target memory or I/O locations.
When a command requests the monitor to read or write to target system
memory or I/O, the monitor program will look at the access mode
setting to determine whether byte or word instructions should be used.

bytes Selecting the byte access mode specifies that the
emulator will access target memory using byte
cycles (one byte at a time).

half_words Selecting the half_word access mode specifies that
the emulator will access target memory using
half_word cycles (one half_word at a time).

Configuring the Emulator 4-17

words Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at a time).

any Selecting the any access mode specifies that the
emulator will access target memory using a
display/modify target memory command option. If
option "words" is specified, access size will be set
to "words". Other target memory commands such
as "load" and "store" will use an access size of
"bytes".

Drive background
cycles to target

system?

This configuration allows you specify whether or not the emulator
drives background cycles to target system.

yes The emulator will drive address,and control strobes
to the target system during background monitor
operation. No write cycles will occur except those
needed for modify target memory commands.

no The emulator will not drive BCYST and DA
signals during background monitor operation. Other
strobes and address are driven to the target system.

4-18 Configuring the Emulator

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, enable/disable the software breakpoints feature, and
specify that the analyzer trace foreground/background execution. To
access the debug/trace configuration questions, you must answer "yes"
to the following question.

Modify debug/trace options?

Break Processor on
Write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom trace command status option allows you to use "write to
ROM" cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to ROM:

trace about status wrrom <RETURN>

Configuring the Emulator 4-19

Trace Background or
Foreground
Operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles.

foreground Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

Trace mode? This question allows you to specify whether or not the analyzer trace
execution cycles. You must answer this question, when you answered
"no" at the "Enable the instruction cache" question.

exe Specifies that the analyzer will trace execution
cycles. A single emulation analyzer state will be
generated at each time the processor executes an
instruction. Mnemonic will be displayed only on
these execution cycles. If the execution and the bus
cycles are generated simultaneously, no bus
addresses are captured by the analyzer.

bus Specifies that the analyzer will trace only actual bus
cycles. You must answer this question, when you
answered "exe" at the "Trace mode?" question.

4-20 Configuring the Emulator

Trace fetch cycles? This question allows you to specify whether or not the analyzer trace
the 70732 emulation processor’s refresh cycles. You must answer this
question, when you answered "exe" at the "Trace mode?" question.

yes Specifies that the analyzer will trace fetch cycles.

no Specifies that the analyzer will not trace fetch
cycles. Fetch data needed to mnemonic display will
be read from the emulation or the target memory
depending on the executed address. If the emulator
failed to read memory, an error(s) is generated
during mnemonic displaying and no mnemonic will
be displayed.

Note If you specify that the analyzer will trace only actual bus cycles, the
analyzer will trace fetch cycles regardless of this configuration.

Force to trace bus
address?

This question allows you specify whether or not forcing the analyzer to
trace the address of bus cycles as its data. You must answer this
question, when you answered "exe" at the "Trace mode?" question.

yes Specifies bus cycle addresses are traced as their
data. In this mode, both execution and bus cycle
addresses are shown and no data are available on
the trace list.

no Specifies bus cycle addresses are available only
when no execution was generated simultaneously.

Configuring the Emulator 4-21

Emulation analyzer
speed?

This question allows you specify the emulation processor clock speed.
The analyzer capabilities of time and state count are affected by the
processor clock speed. You must answer this question, when you
answered "exe" at the "Trace mode?" question, or when you use HP
64704A emulation bus analyzer.

slow Specifies the processor clock speed is less than or
equal to 16.00 MHz. Both state and time counting
are available.

fast Specifies the processor clock speed is less than or
equal to 20.00 MHz. Only state counting are
available.

veryfast Specifies the processor clock speed is greater than
20.00 MHz. Neither state or time counting are
available.

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the "Using the Emulator" chapter.

4-22 Configuring the Emulator

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

Loading a
Configuration

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>

This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again. To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 4-23

Notes

4-24 Configuring the Emulator

5

Using the Emulator

Introduction The "Getting Started" chapter shows you how to use the basic

This chapter discuss:

Manipulation in floating-point form
– Register manipulation
– Memory manipulation

Register names and classes

Hardware breakpoint

Analyzer topics
– Specifying trace configuration
– Specifying data for trigger or store condition

Features available via "pod_command"

This chapter shows you how to:

Emulation memory access

Store the contents of memory into absolute files

Make coordinated measurements

Using the Emulator 5-1

Manipulation in
Short-real Format

You can display/modify register and memory in short-real format.

Register
Manipulation

You can display/modify general purpose registers as
32-bit(single-precision) real numbers. The IEEE-754 standard data type
is supported. To display/modify the general purpose registers as
32-bit(single-precision) real numbers, use the following register names
with the FLOAT attribute.

FR0 thru FR31 for short real(32-bit single-precision)

To display register R0 32-bit(single-precision) real numbers, enter;

display register FLOAT FR1 <RETURN>

To modify register R2 to the value 12345.678, enter;

modify register FLOAT FR2 to 12345.678
<RETURN>

Registers

 FR1 +5.4823596E+002

STATUS: N70732--Running in monitor____________________________________...R....
display registers FLOAT FR1

 run trace step display modify break end ---ETC--

5-2 Using the Emulator

Memory Manipulation You can display/modify memory value as 32-bit(single-precision) real
numbers. The IEEE-754 standard data type is supported. To access to
the memory as 32-bit(single-precision) real numbers, use the following
commands.

To display memory at 1000H as 32-bit(single-precision) real numbers,
enter;

display memory 1000h real short <RETURN>

To modify memory at 1004h to 123.456, enter;

modify memory 1004h real short to 123.456
<RETURN>

 Memory :short real :update
 address data :real
 00001000 3.65837E+003
 00001004 6.58637E+003
 00001008 1.23699E+003
 0000100C -6.36223E+003
 00001010 3.33654E-001
 00001014 2.54100E-004
 00001018 -2.54100E-004
 0000101C 3.43657E-001
 00001020 -3.40277E+038
 00001024 9.83237E+002
 00001028 -8.32367E+001
 0000102C 6.98743E-001
 00001030 1.58790E+004
 00001034 1.63215E+002
 00001038 1.96022E+005
 0000103C -6.53000E-003

STATUS: N70732--Running in monitor____________________________________...R....
display memory 1000h real short

 run trace step display modify break end ---ETC--

Using the Emulator 5-3

REGISTER CLASS
and NAME

Summary 70732 register designator. All available register class names and
register names are listed below.

<REG_CLASS>

<REG_NAME> Description

*(All basic registers)

PC PCW
R0 R1 R2 R3 R4
R5 R6 R7 R8 R9
R10 R11 R12 R13
R14 R15 R16 R17
R18 R19 R20 R21
R22 R23 R24 R25
R26 R27 R28 R29
R30 R31

BASIC registers.

SYS(System Control registers)

EIPC
EIPSW
FEPC
FEPSW
ECR
PIR
TKEW
CHCW
SDTRE

Exception/Interrupt PC
Exception/Interrupt PSW
Fatal error PC
Fatal error PSW
Exception cause (Read Only)
Processor ID (Read Only)
Task control word (Read Only)
Cache control word
Address trap

5-4 Using the Emulator

Hardware
Breakpoints

The analyzer may generate a break request to the emulation processor.
To break when the analyzer trigger condition is satisfied, use the
"break_on_trigger" trace option.

Additionally, you can see the program states before the breakpoint in
trace listing. Specify the trigger position at the end of trace listing by
using "before" option.

When the trigger condition is found. the emulator execution will break
into the emulation monitor. Then you can also see the trace listing
mentioned above, enter the following commands.

trace before <QUALIFIER>
break_on_trigger <RETURN>

Without the trigger condition, the trigger will never occur and will
never break.

Analyzer Topics You can specify trace configuration, To do this, you should answer
question of the Debug/Trace configuration. Refer to the "Debug/Trace
Configuration" section of the "Configuration the Emulator" chapter.

Trace actual bus
cycles

You can specify that the analyzer trace only actual bus cycles. In this
case, analyzer can not trace execution state. When you display trace
list, the emulator disassembles with "fetch" states, and their
disassembled processor mnemonics is displayed at the "fetch" states
which are the first byte of the instruction. To trace actual bus cycles,
you answer "bus" at the "Trace mode?" question of the Debug/Trace
configuration. In this case, you will see trace list like following.

Using the Emulator 5-5

Disassembling from the higher half-word

When the analyzer trace actual bus states, you can force disassembly to
begin with higher half-word of first trace state. If the disassembled
trace list is not what you expected, enter the command as following.

display trace disassemble_from_line_number
<LINE_NUMBER> high_half_word <RETURN>

Using the Storage Qualifier

You can use storage qualifier to trace only states with specific
condition. When you specify states to be stored in the trace memory,
you use the "only" option. To save states selectively, enter the
command as following.

trace only <QUALIFIER> <RETURN>

Trace List Offset=0
Label: Address Data Opcode or Status
Base: hex hex mnemonic
after 0000008C 031CDC04 ST.W R0,0x031C[R4]
+001 00000090 DD444141 MOV 0x01,R10
 =00000092 ST.W R10,0x031C[R4]
+002 00000094 DC04031C DC04031C fetch
 =00000096 ST.W R0,0x0320[R4]
+003 0002031C 00000000 00000000 data write word
+004 00000098 CD430320 CD430320 fetch
 =0000009A LD.W 0x0010[R3],R10
+005 0002031C 00000001 00000001 data write word
+006 0000009C 45410010 45410010 fetch
 =0000009E ADD 0x01,R10
+007 00020320 00000000 00000000 data write word
+008 0002031C 00000001 00000001 data read word
+009 000000A0 0010DD43 ST.W R10,0x0010[R3]
+010 000000A4 0010CD43 LD.W 0x0010[R3],R10

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

5-6 Using the Emulator

Using analyzer counter

When you specify that the analyzer trace actual bus cycles, you can use
the analyzer counter because the clock speed can be effectively halved
even if clock speed is greater than 20MHz. Refer to "Debug/Trace
Configuration" section in the "Configuring the Emulator" chapter. To
count time, enter the command as following:

trace after <QUALIFIER> counting time
<RETURN>

When you use the analyzer counter, you will see trace list like
following.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after 00000000 0002BC20 MOVHI 0x0002,R0,R1 ------------
+001 00000004 042CA061 MOVEA 0x042C,R1,R3 120 nS
+002 00000008 0000BC20 MOVHI 0x0000,R0,R1 120 nS
+003 0000000C 0000A0A1 MOVEA 0x0000,R1,R5 120 nS
+004 00000010 0002BC20 MOVHI 0x0002,R0,R1 120 nS
+005 00000014 0000A081 MOVEA 0x0000,R1,R4 120 nS
+006 00000018 AC000485 ADD R5,R4 120 nS
 =0000001A JAL 0x00000A1C
+007 0000001C 68000A02 68000A02 fetch 120 nS
 =0000001E HALT
+008 00000020 0018A020 MOVEA 0x0018,R0,R1 120 nS
+009 00000A1C 0018A020 MOVEA 0x0018,R0,R1 120 nS
+010 00000A20 DFE30861 SUB R1,R3 120 nS
 =00000A22 ST.W R31,0x0014[R3]
+011 00000A24 8A6E0014 8A6E0014 fetch 120 nS

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Using the Emulator 5-7

Not trace fetch cycles You can specify that the analyzer does not trace fetch cycles. Not to
trace fetch cycles, you answer "no" at the "Trace fetch cycle?" question
of the Debug/Trace configuration. In this case, the emulator read data
from memory when the emulator disassembles trace list and you will
see trace list like following.

Trace Bus Address The 70732 emulator transfer execution address to analyzer
preferentially and address of bus cycles may be missing on the trace list
when execution state is generated simultaneously. You can specify that
the analyzer trace address of bus cycles as its data. To force the
analyzer to trace the address of bus cycles, you must answer "yes" at
the "Force to trace bus address?" question of the Debug/Trace
configuration. When you set this configuration, you will see trace list
like following.

Trace List Offset=0
Label: Address Data Opcode or Status
Base: hex hex mnemonic
after 00000254 DD444147 ST.W R10,0x031C[R4]
+001 00000258 00000005 MOV 0x07,R10
 00000005 data write word
+002 0002031C 00000006 00000006 data write word
+003 0000025A 41410320 ST.W R10,0x031C[R4]
+004 0000025E 0320DD44 ST.W R0,0x0320[R4]
+005 00000262 00000007 MOV 0x01,R10
 00000007 data write word
+006 00000264 00000007 ST.W R10,0x0320[R4]
+007 00020320 00000000 00000000 data write word
+008 00020320 00000001 00000001 data write word
+009 00000268 41430320 MOV 0x02,R10
+010 0000026A 0320DD44 ST.W R10,0x0320[R4]
+011 0000026E 0010CD43 MOV 0x03,R10
+012 00000270 0010CD43 ST.W R10,0x0320[R4]

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

5-8 Using the Emulator

Specify Data for
Trigger or Store

Condition

The analyzer captures the data bus of the 70732 microprocessor. When
you specify a data in the analyzer trigger condition or store condition,
the ways of the analyzer data specification differ according to the data
size and address. Suppose that you wish to trigger the analyzer when
the processor accesses to the byte data 41H in the address 1000H. You
should not specify the trigger condition like this.

trace after 1000h data 41h <RETURN>

The data condition will be considered as 00000041H. The bit 3 through
bit 8 of data bus is unpredictable because of the byte data. You will
unable to trigger as you desire. You should have entered as follows.

trace after 1000h data 0xxxxxx41h <RETURN>

Where x’ are "don’t care" bits.

When the address that you want to trigger is not a multiple of 4, the
data bus specification is different from above. If you wish trigger the
analyzer at address 1001H instead of the address 1000H, the bit 0
through bit 1 of address are masked by 0 and the data 41H will be
output to bit 4 through bit 7 of data bus. You should enter:

trace after 1000h data 0xxxx41xxh <RETURN>

Trace List Offset=0
Label: Address Data Opcode or Status
Base: hex hex mnemonic
after 0002031C 0002031C ******** data write word
+001 0002031C 0002031C ******** data read word
+002 000000A8 0002031C CMP 0x06,R10
+003 000000AC 000000AC ******** fetch
+004 000000AA 000000B0 JLT 0x0000008C
 =000000B0 ******** fetch
+005 0000008C 0000008C ******** fetch after branch
+006 0000008C 00000090 ST.W R0,0x031C[R4]
 =00000090 ******** fetch
+007 00000090 00000094 MOV 0x01,R10
 =00000094 ******** fetch
+008 00000092 0002031C ST.W R10,0x031C[R4]
 =0002031C ******** data write word
+009 00000098 00000098 ******** fetch
+010 00000096 0002031C ST.W R0,0x0320[R4]

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Using the Emulator 5-9

In case of halfword or word access to data bus, it will be the same.

If user’s program access word or halfword data which are not aligned,
the 70732 microprocessor mask low bit of address(bit 0,1:word data,
bit0 :halfword data) by 0. Assume that the processor accesses to the
half-word data 1234H in the address 1001H. In this case the following
trace list is shown.

The "ADR"s in the trace list indicate that the 70732 microprocessor
masked low bit of address bus by 0.

To trigger the analyzer when the 70732 microprocessor accesses the
word data 12345678H at address 1002H in 16 data bus size. The data
bus activity of this cycles will be as follows.

Sequencer level Address bus Data bus
 1 00001000 xxxx5678
 2 00001002 xxxx1234

In this case, you need to use the analyzer sequential trigger capabilities.
We do not describe the detail about the sequential trigger feature. Only
how to trigger the analyzer at this example case is described. To
specify the condition of sequencer level 1, enter:

trace find_sequence 1000h data 0xxxx5678
trigger after 1002h data 0xxxx1234h <RETURN>

Trace List Offset=0
Label: Address Data Opcode or Status
Base: hex hex mnemonic
after 00010500 1001A080 MOVEA 0x1001,R0,R4
+001 00010504 1234A0A0 MOVEA 0x1234,R0,R5
+002 00010508 0000D4A4 ST.H R5,0x0000[R4]
+003 0001050C 0000C4C4 LD.H 0x0000[R4],R6
+004 00010510 FFF0ABFF JR 0x00010500
+005 00001000 00001234 1234 data write hword ADR
+006 00001000 00001234 1234 data read hword ADR
+007 00010500 1001A080 MOVEA 0x1001,R0,R4
+008 00010504 1234A0A0 MOVEA 0x1234,R0,R5
+009 00010508 0000D4A4 ST.H R5,0x0000[R4]
+010 0001050C 0000C4C4 LD.H 0x0000[R4],R6
+011 00010510 FFF0ABFF JR 0x00010500
+012 00001000 00001234 1234 data write hword ADR
+013 00001000 00001234 1234 data read hword ADR
+014 00010500 1001A080 MOVEA 0x1001,R0,R4

STATUS: N70732--Running user program Emulation trace complete______...R....
trace

 run trace step display modify break end ---ETC--

5-10 Using the Emulator

Note When you trigger/store the analyzer, you should note follows:

1) When you specify that the analyzer does not trace address of bus,
you can not specify address in the analyzer trigger or store condition.
2) When you specify that the analyzer trace address of bus as its data,
what you specify data in the analyzer trigger or store condition means
that you specify address.
3) When execution state and bus state simultaneously, both states are
stored in case that both states satisfy store condition.

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available in
the Softkey Interface are:

Copying memory

Searching memory for strings or numeric expressions.

Sequencing in the analyzer.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Using the Emulator 5-11

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in "modify configuration" will NOT reflect
the HP 64700 pod’s configuration if you change the pod’s
configuration with this command. Also, commands which affect the
communications channel should NOT be used at all. Other commands
may confuse the protocol depending upon how they are used. The
following commands are not recommended for use with
"pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac - Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.
init , pv - Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.0h)0

 Accessing
Emulation
Memory

If you enter emulation memory display/modification commands while
the user’s program running, the 70732 emulation controller, not the
emulation processor, holds the 70732 bus cycles for 12 clock
cycles(not breaking into the monitor) in order to access to the
emulation memory.

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory 800h thru 84fh to absfile
<RETURN>

5-12 Using the Emulator

The command above causes the contents of memory locations
800H-84FH to be stored in the absolute file "absfile.X". Notice that
the ".X" extension is appended to the specified filename.

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

Using the Emulator 5-13

Notes

5-14 Using the Emulator

A

Using the Foreground Monitor

Introduction By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The HP 64752A emulator provides two kinds of foreground monitor.
One is include in the emulator, the other is supplied with the emulation
software and can be found in the following path:

/usr/hp64000/monitor/

The monitor program is named fm70732.s.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region.

Usually, a background monitor is easier to work with. The monitor is
immediately available upon powerup, and you don’t have to worry
about linking in the monitor code or allocating space for the monitor.
No assumptions are made about the target system environment;
therefore, you can test and debug hardware before any target system
code has been written. All of the processor’s address space is available
for target system use, since the monitor memory is overlaid on
processor memory, rather than subtracted from processor memory.

Using the Foreground Monitor A-1

Processor resources such as interrupts are not fully taken by the
background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modifyed to handle special conditions.

Foreground Monitors A foreground monitor may be required for more interrupt intensive
applications. A foreground monitor is a block of code that runs in the
same memory space as your program. Foreground monitors allow the
emulator to service real-time events, such as interrupts, while executing
in the monitor. For most multitasking, you will need to use a
foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some applications. You must also properly configure the
emulator to use a foreground monitor (see the "Configuring the
Emulator" chapter and the examples in this appendix).

Foreground
Monitor Selection

Then HP 64752A emulator provides two kinds of foreground monitor.
One is included in the emulator, the other is provided with assemble
source file.

The foreground monitor included in the emulator allows you to use the
foreground monitor quickly. When you use this built-in foreground
monitor, you do not have to assemble, link and load the monitor
program.

A-2 Using the Foreground Monitor

The foreground monitor provided with assembler source file allows
you to customize the foreground monitor as you desire. When you use
this custom foreground monitor, you need to assemble, link and load
the monitor program.

 Using Built-in
Foreground
Monitor

The 70732 emulator includes foreground monitor. The built-in
foreground monitor saves your tasks for assembling, linking and
loading the monitor. To use the built-in foreground monitor, all you
have to do is to specify the location of the monitor.

Modifying the
Emulator

Configuration

The following assumes you are modifing the default emulator
configuration(that is, the configuration present after initial entry into
the emulator or entry after a previous exit using "end release_system").
Enter all the default answers except those shown below.

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Monitor address? 1000h

Specifies that the monitor will reside in the 8K byte block from 1000H
through 2FFFH.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

After you issued the configuration commands, the built-in foreground
monitor is set up automatically.

Using the Foreground Monitor A-3

Using Custom
Foreground
Monitor

The custom foreground monitor allows you to customize the monitor
for your target system. To use the monitor, you need to assemble,link
and load the monitor program into emulator.

The foreground monitor is supplied with the emulation software and
can be found in the following path:

usr/hp64700/monitor/*

The monitor program is named fm70732.s gfm70732.s

If you use NEC K&R-C Compiler, you must modify the link directive
file("fm70732.d") to use the custom foreground monitor.

.TEXT : !LOAD ?RX V0x00006000 {
 .text = $PROGBITS ?AX;
};

If you use Green Hills Software C-Compiler, you must modify the
following statement of e monitor program("gfm70732.s") to use the
custom foreground monitor.

MON_ADDR = 0x000020000

The default monitor location is defined at address 0000H. You can load
the monitor at any base address on a 8K byte boundary.

Assemble and Link
the Monitor

If you use NEC K&R-C Compiler, you can assemble, link and convert
the foreground monitor program with the following commands :

$ as732 -w fm70723.s <RETURN>
$ ld732 -D fm70732.d -o fm70732.abs
 fm70732.o<RETURN>
$ v810cnv -x fm70732 <RETURN>

If you use Green Hills Software C-Compiler, you can assemble and
link the foreground monitor program with the following commands:

$ as810 gfm70732.s -o gfm70732.o <RETURN>
$ lx -sec @gfm70732.d -o gfm70732.x
 gfm70732.o <RETURN>
$ v810cnv -x gfm70732.x <RETURN>

A-4 Using the Foreground Monitor

You may link the foreground monitor with your code. However, if
possible, linking the monitor separately is preferred. This allows the
monitor to be downloaded before the rest of your program. Linking
monitor programs separately is more work initially, but it should prove
worthwhile overall, since the monitor can then be loaded efficiently
during the configuration process at the beginning of a session.

Modifying the
Emulator

Configuration

The following assumes you are modifying the default emulator
configuration (that is, the configuration present after initial entry into
the emulator or entry after a previous exit using "end release_system").
Enter all the default answers except those shown below.

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? user_foreground

Specifies that you will be using a foreground monitor program.

Monitor address? 6000h

Specifies that the monitor will reside in the 8K byte block from 6000H
through 7FFFH.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

Monitor file name? fm70732

Enter the name of the foreground monitor absolute file. This file will
be loaded at the end of configuration.

Using the Foreground Monitor A-5

An Example Using
the Foreground
Monitor

In the following example, we will show you how to use a foreground
monitor with the demo program from the "Getting Started" chapter. By
using the analyzer, we will also show how the emulator switches from
state to state using the foreground monitor by using the analyzer.

Mapping Memory for
the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added. Add the additional term to map memory
for the demo program, and "end" out of the memory mapper.

Modifing the
Emulator

Configuration

The following assumes that you have set up the foreground monitor
and mapped for demo program. Answer as following.

Modify debug/trace options? yes

You must answer this question as shown to access and modify the
question below.

Trace background or foreground operation? both

Later in this chapter, trace examples show transitions from reset into
the foreground monitor, from the monitor to the user program, and
from the user program back into the monitor. Since the foreground
monitor is actually entered via a few cycles in the emulator’s built-in
background monitor, we need to be able to view the background states.
Answering this configuration question as shown allows both
foreground and background emulation processor cycles to appear in the
trace.

Configuration file name? fmoncfg

If you wish to save the configuration specified above, answer this
question as shown.

A-6 Using the Foreground Monitor

Load the Program
Code

Now it’s time to load the demo program. You can load the demo
program with the following command:

load spmt_demo <RETURN>

Tracing from Reset
to Break

We want to see the monitor’s transition from the reset state to running
in the foreground monitor. First, put the emulator into its reset state
with the command:

reset <RETURN>

The 70732 emulator breaks to the foreground monitor via a few
background cycles. You can see the transition between reset and
foreground monitor execution. Enter following command.

trace <RETURN>

After entering the command above, the "Emulation trace started"
message appears on the status line. Enter the following command to
break into the monitor.

break <RETURN>

The status line now shows that the emulator is "Running in monitor"
and that the "Emulation trace complete". Enter the following
command to display the trace.

display trace <RETURN>

Using the Foreground Monitor A-7

The trace listing shows that the processor began executing code; it
executed in background monitor. The "BGM"s in the trace listing
indicate the background monitor cycles.

To see the transition from background monitor to the foreground
monitor, press the <NEXT> key to page down until the background
cycles go.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
after 00000000 00008000 00008000 data write word BGM ------------
+001 00000004 FFFFFFF0 FFFFFFF0 data write word BGM 80. nS
+002 FFFFFFE0 00ACDFE0 ST.W R31,0x00AC[R0] BGM 440 nS
+003 FFFFFFE4 00A4DFA0 ST.W R29,0x00A4[R0] BGM 80. nS
+004 FFFFFFE8 0200CFA0 LD.W 0x0200[R0],R29 BGM 80. nS
+005 FFFFFFEC 9A00181D JMP [R29] BGM 80. nS
 =FFFFFFEE NOP BGM
+006 000000AC 00009000 00009000 data write word BGM 80. nS
+007 000000A4 00000000 00000000 data write word BGM 80. nS
+008 00000200 00006300 00006300 data read word BGM 80. nS
+009 FFFFFFF0 9A009A00 NOP BGM 80. nS
 =FFFFFFF2 NOP BGM
+010 FFFFFFF4 9A009A00 NOP BGM 80. nS
 =FFFFFFF6 NOP BGM
+011 00006300 0300A3E0 MOVEA 0x0300,R0,R31 BGM 80. nS

STATUS: N70732--Running in monitor Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
+021 00007A10 6C019A00 NOP BGM 80. nS
 =00007A12 BRKRET 0x01 BGM
+022 00007A14 00000000 MOV R0,R0 BGM 80. nS
 =00007A16 MOV R0,R0 BGM
+023 00007A18 00000000 MOV R0,R0 BGM 80. nS
 =00007A1A MOV R0,R0 BGM
+024 00000000 00008000 00008000 data read word BGM 360 nS
+025 00000004 00006380 00006380 data read word BGM 80. nS
+026 00006380 00F8C3FD LD.B 0x00F8[R29],R31 280 nS
+027 00006384 94984FE0 CMP 0x00,R31 80. nS
 =00006386 JNZ/JNE 0x0000641E
+028 00006388 0030DC1D ST.W R0,0x0030[R29] 80. nS
+029 000060F8 0030DC01 01 data read byte 80. nS
+030 0000638C 0034DC3D ST.W R1,0x0034[R29] 80. nS
+031 0000641C DC1D0010 DC1D0010 unused fetch 200 nS

STATUS: N70732--Running in monitor Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

A-8 Using the Foreground Monitor

You will see the transition from the background monitor to the
foreground monitor in the display.

Tracing from Monitor
to User Program

We can look at the transition from the foreground monitor to running
the user program by triggering the trace on a user program address.
Enter:

trace about __start <RETURN>

Because you’d like to see the states leading up to the transition from
monitor to user program, trace "about" so that states before the trigger
are captured.

Now, run the demo program:

run from transfer_address <RETURN>

The user program began execution at state 0. Now, you will know the
processor executed the BRKRET instruction to transfer execution to
the user program at state 0.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
-007 00007A0C 00A4CFBD 00A4CFBD fetch 80. nS
-006 00007A10 6C019A00 6C019A00 fetch 80. nS
-005 00006020 00000004 04 data write byte 80. nS
-004 00006038 00000000 00000000 data read word 80. nS
-003 000060A4 00000000 00000000 data read word 80. nS
-002 00007A14 00000000 00000000 fetch 80. nS
-001 00007A18 00000000 00000000 fetch 80. nS
about 00000000 00008000 00008000 data read word 360 nS
+001 00000004 00000000 00000000 data read word 80. nS
+002 00000000 0002BC20 MOVHI 0x0002,R0,R1 320 nS
+003 00000004 042CA061 MOVEA 0x042C,R1,R3 120 nS
+004 00000008 0000BC20 MOVHI 0x0000,R0,R1 120 nS
+005 0000000C 0000A0A1 MOVEA 0x0000,R1,R5 120 nS
+006 00000010 0002BC20 MOVHI 0x0002,R0,R1 120 nS
+007 00000014 0000A081 MOVEA 0x0000,R1,R4 120 nS

STATUS: N70732--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Using the Foreground Monitor A-9

Tracing from User
Program to Break

You can trace the execution from the user program to the foreground
monitor due to a break condition. Since the foreground monitor
occupies the address range from 6000h through 7fffh, we can simply
trigger on any access to that range.

trace about range 6000h thru 7fffh <RETURN>

Satisfy the trigger condition by breaking the emulator into the monitor:

break <RETURN>

Now, the trace listing shows that the processor entered the background
state to make the transition.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: hex hex mnemonic relative
-007 FFFFFFE8 0200CFA0 0200CFA0 fetch BGM 80. nS
-006 FFFFFFEC 9A00181D 9A00181D fetch BGM 80. nS
-005 000000AC 0000033E 0000033E data write word BGM 80. nS
-004 000000A4 00000000 00000000 data write word BGM 80. nS
-003 00000200 00006300 00006300 data read word BGM 80. nS
-002 FFFFFFF0 9A009A00 9A009A00 fetch BGM 80. nS
-001 FFFFFFF4 9A009A00 9A009A00 fetch BGM 80. nS
about 00006300 0300A3E0 MOVEA 0x0300,R0,R31 BGM 80. nS
+001 00006304 CFFD0BBF SUB R31,R29 BGM 80. nS
 =00006306 LD.W 0x0004[R29],R31 BGM
+002 00006308 DFFD0004 DFFD0004 fetch BGM 80. nS
 =0000630A ST.W R31,0x00B0[R29] BGM
+003 0000630C A3FD00B0 A3FD00B0 fetch BGM 80. nS
 =0000630E MOVEA 0x0380,R29,R31 BGM
+004 00006310 DFFD0380 DFFD0380 fetch BGM 80. nS

STATUS: N70732--Running in monitor Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

A-10 Using the Foreground Monitor

Limitations of
Foreground
Monitors

Listed below are limitations or restrictions present when using a
foreground monitor.

Synchronized
MeasurementsCMB

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
use the background monitor.

Using the Foreground Monitor A-11

Notes

A-12 Using the Foreground Monitor

B

Using the Format Converter

Introduction Absolute files generated by NEC K&R-C Compiler, or Green Hills
Software C-Compiler can not be loaded into the 70732 emulator
directly. Therefore, the 70732 Softkey Interface provides a format
converter.

How to use the
Converter

The format converter generates HP format files from ELF or COFF
format files for 70732.

To execute the converter program, use the following command:

$v810cnv [options] <file_name>

<file_name> is the name of ELF or COFF format file. The converter
program will read the ELF or COFF format file. It will generate the
following HP format files:

HP Absolute file(with .X suffix)

HP Linker symbol file(with .L suffix)

HP Assembler symbol file(with .A suffix)

The converter accepts the following options.

-x This option specifies to generate HP format
absolute file (with .X suffix).

-l This option specifies to generate HP format linker
symbol file (with .L suffix).

Using the Format Converter B-1

-a This option specifies to generate HP format
assembler symbol file for all of source module
information available in the <file_name>. (with .A
suffix).

-A module This option specifies to generate HP assembler
symbol file specified. This option may appear as
many as required. If option -a, described above, is
used simultaneously, specifications by this option
takes precedence so that assembler symbols for
modules specified by this option are generated.

-f module_list_fileThis option specifies to read a list of modules to
generate HP OMF assembler symbol files from
module_list_file. Assembler symbol files associated
to modules listed in module_list_file are generated.
No other assembler symbol files are not generated.
If option -a is used simultaneously, specifications
by this option takes precedence so that assembler
symbols for modules listed in module_list_file are
generated.

-q Suppress warning messages.

-m anonymous This option specifies anonymous source module
name used. Default anonymous module name is
"anonymous". This module name does not have
actual effect, however this should not overlap any
of source module names in the input absolute load
module. Normally the anonymous module name
need not to be altered by this option, unless an
anonymous module name overlaps to one of source
module name in an input absolute load module file.

B-2 Using the Format Converter

-T symbol_name This option specifies text pointer symbol name.
Default text pointer symbol name is
"__tp__TEXT". If you change text pointer symbol
name in linker directive file, you must specify text
pointer symbol name with this option. This option
is effect when you convert ELF format file.

-G symbol_name This option specifies global pointer symbol name.
Default global pointer symbol name
is"__gp__TEXT". If you change global pointer
symbol name in linker directive file, you must
specify global pointer symbol name with this
option. This option is effect when you convert ELF
format file.

Note When you use NEC K&R-C Compiler, you must not specify the
following options.
"-o"(cc732)
"-r", "-s"(ld732)

When you use Green Hills Software C-Compiler, you must not specify
the following options.
"-O* "(cc810)
"-s", "-srec", "-X", "-x"(lx)

You must specify "-g" option when you compile your program

Using the Format Converter B-3

Restrictions and
Considerations

Listed below are restrictions or considerations present when using the
format converter.

You can use the [a-z],[A-Z],[0-9],[_](underscore) characters to indicate
symbols. Any other characters will be replaced by "_". Symbols are
truncated to 15 characters.

ELF Format File Global symbols which are defined in assembler source files are
included in "anonymous.A".
The symbols which are defined with "EQU" directive in assembler
source files are not generated.
You can not define plural text pointer symbol nor global pointer
symbol.

COFF Format File The local symbols which are defined in assembler source files are not
generated.

 Error/Warning
Messages

The following is error/warning messages which are specific to using
format converter. The cause of the errors is described.

Error Messages

ELF/COFF format common

object file name is too long:

Cause: This error occurs when you attempt to specify
the object file whose name is too long.

Action: You must specify the object file name in 511
characters.

B-4 Using the Format Converter

object file format is unknown:

Cause: This error occurs when you attempt to specify
unknown format file

Action: You must specify ELF/COFF format file.

can’t read input load module:

Cause: This error occures when the object file is not
found.

fine unexpected eof in object file:

Cause: This error occures when the converter finds
unexpected end of file in the object file.

can’t open input load module

Cause: This error occures when the converter can not
open object file.

memory space over lapped

Cause: This error occures when you attempt to specify
the object file whose memory space is over
lapped.

Action: You must link correctly not to over lap.

can’t open module list file

Cause: This error occurs when you attempt to specify
module list file that does not exist with "-f"
option.

can’t allocate memory

Cause: Memory is short

can’t open for output

Cause: This error occurs when the converter can’t open
output file.

Using the Format Converter B-5

can’t close file

Cause: This error occurs when the converter can’t
close file.

can’t write to file

Cause: The converter can’t write to output file.

pathname too long

Cause: This error occurs when you attempt to specify
the pathname whose length is to long.

Action: You must specify pathname in 511 characters.

no valid filename in

Cause: This error occurs when the converter can’t
write source file name in output file. This
occurs when source files or directory which
includes source files do not exist.

can’t get current directory

Cause: This error occurs the other process remove the
current directory when the converter running.

ELF Format

object file is illegal ELF format

Cause: This error occurs when you attempt to specify
the illegal ELF format file.

can’t find ELF header

Cause: This error occurs when you attempt to specify
the object file that does not have ELF header.

B-6 Using the Format Converter

can’t find program header

Cause: This error occurs when you attempt to specify
the object file that does not have program
header.

can’t find section header

Cause: This error occurs when you attempt to specify
the object file that does not have section
header.

can’t find section header string table

Cause: This error occurs when you attempt to specify
the object file that does not have section header
string table.

can’t find symbol table

Cause: This error occurs when you attempt to specify
the object file that does not have symbol table.

can’t find symbol string table

Cause: This error occurs when you attempt to spcify
the object file that does not have symbol string
table.

find illegal debug section

Cause: This error occurs when you attempt to specify
the object file that has illegal debug section.

object file is not v810’s

Cause: This error occurs when you attempt to specify
the object file that is not ELF format for v810.

Using the Format Converter B-7

COFF Format

object file is illegal COFF format file.

Cause: The error occurs when you attempt to specify
the illegal COFF format object file.

can’t find COFF file header

Cause: This error occurs when you attempt to specify
the object file that does not have header.

can’t find COFF option header

Cause: This error occurs when attempt to specify the
object file that does not have option header.

can’t find COFF section header

Cause: This error occurs when you attempt to specify
the object file that does not have section header.

object file is not executable

Cause: This error occurs when you attempt to specify
the relocatable file.

Action: Link the relocatable file to generate executable
file.

B-8 Using the Format Converter

Warning Messages

ELF/COFF Format Common

symbol ’sym1’ truncated and converted to ’sym2’
symbol ’sym1’ truncated to ’sym2’
symbol ’sym1’ converted to ’sym2’

Cause: This warning occurs when symbol name’s
length longer than 15 character or/and symbol
name includes illegal character. ELF Format

can’t find Debug Table Section
can’t find Line number Table Section

Cause: This warning occurs when you attempt to
specify the ELF format file that does not have
Debug information

Action: When you link object files, you should specify
"-s" option

can’t find TP symbol : ’sym’

Cause: This warning occurs when you does not attempt
to specify text pointer symbol with "-T" option
though you define "sym" as text pointer symbol
in linker directive file. Or, you define plural
text pointer symbols.

Action: When you convert object file, you should
specify text pointer symbol with "-T" option.

Using the Format Converter B-9

can’t find GP symbol : ’sym’

Cause: This warning occurs when you does not attempt
to specify global pointer symbol with "-G"
option though you define "sym" as global
pointer symbol in linker directive file. Or, you
define plural global pointer symbols.

Action: When you convert object file, you should
specify global pointer symbol with "-G" option.

COFF Format

line number stripped from the file.
local symbol stripped from the file.

Cause: This warning occurs when you link files with
option that strip the line number information
or/and local symbols information.

Action: When you link files, you should not specify the
option that strip the line number information
or/and local symbols information.

object file has no symbol table object file has no global symbol

Cause: This warning occurs when you generate the
object file from assemble source files only, or
you link with option that strip all symbols
information.

B-10 Using the Format Converter

Index

A absolute files
loading, 2-9
storing, 5-12

access emulation memory, 5-12
address

symbolic, 2-16
analyzer

features of, 1-4
sequencing, 5-11
status qualifiers, 2-30

analyzer counter, 5-7
analyzer, using the, 2-25
assemblers, 4-14
assembling foreground monitor, A-4

B background, 1-5, 4-8
background cycles

tracing, 4-20
background monitor, 4-8, 4-9, A-1

pin state, 3-15
things to be aware of, 4-9

breaks
break command, 2-18
guarded memory accesses, 4-14
software breakpoints, 2-19
write to ROM, 4-19

build_in foreground monitor, 4-10
byte data

trace, 5-9

C caution statements
real-time dependent target system circuitry, 4-5
software breakpoint cmds. while running user code, 2-19

cautions
installing the target system probe, 3-9

characterization of memory, 4-12
Clearing software breakpoints, 2-23

Index - 1

COFF format
error messages, B-4, B-8
warning messages, B-9, B-10

comparison of foreground/background monitors, A-1
compiling the demo program, 2-3
compress mode,trace display, 2-28
configuration

example of using foreground monitor, A-5
for running example program, 2-6

configuration option
wait state at emulation memory, 4-14

configuration options
accept HLDRQ, 4-16
accept target NMI, 4-15
break processor on write to ROM, 4-19
drive background cycles, 4-18
emulation analyzer speed, 4-22
enable READY input, 4-17
enable SZRQ input, 4-17
force to trace bus address, 4-21
foreground monitor location, 4-10, 4-11
honor target reset, 4-16
in-circuit, 3-13
monitor filename, 4-12
monitor type, 4-8
target memory access, 4-17
trace background/foreground operation, 4-20
trace fetch cycles, 4-21
trace mode, 4-20

coordinated measurements, 4-22, 5-13
copy memory, 5-11
coverage analysis, 5-11
custom foreground monitor, 4-11

D demo program
description, 2-2

demo target board
installing, 3-7

device table file, 2-5
display command

memory mnemonic, 2-13
memory mnemonic with symbols, 2-14

2 - Index

registers, 2-23
software breakpoints, 2-21
symbols, 2-10
with source code, 2-15

DMA
external, 4-13

E ELF format
error messages, B-4, B-6
warning messages, B-9

emul700, command to enter the Softkey Interface, 2-5, 2-32
emulation analyzer, 1-4
emulation analyzer speed, 4-22
emulation configuration

emulation analyzer speed, 4-22
emulation memory

installing, 3-5
loading absolute files, 2-9
note on target accesses, 4-13
RAM and ROM characterization, 4-12
size of, 4-12

emulation monitor
foreground or background, 1-5

emulation probe cable
installing, 3-2

emulator
before using, 2-2
configuration, 4-1
configure the emulator for example, 2-6
device table file, 2-5
feature list, 1-3
prerequisites, 2-2
purpose of, 1-1
running from target reset, 3-13
supported, 1-3

emulator configuration
break processor on write to ROM, 4-19
enable the instruction cache, 4-6
for example, 2-6
force to trace bus address, 4-21
keep coherence of the cache, 4-7
loading, 4-23

Index - 3

monitor entry after, 4-4
processor data bus width, 4-5
restrict to real-time runs, 4-4
saving, 4-23
trace background/foreground operation, 4-20
trace fetch cycles, 4-21
trace mode, 4-20

Emulator features
emulation memory, 1-3

emulator probe
installing, 3-9

enable the instruction cache
emulator configuration, 4-6

END assembler directive (pseudo instruction), 2-16
end command, 2-31, 4-23
error messages, B-4
evaluation chip, 1-6
execution state, 2-29
exit, Softkey Interface, 2-31

F file extensions
.EA and .EB, configuration files, 4-23

files
spmt_demo.A, 2-3
spmt_demo.L, 2-3

foreground, 1-5, 4-8
foreground monitor, 4-8, 4-10, 4-11, A-2

assembling/linking, A-4
built-in, A-3
configuration, A-3
configuration for demo program, A-5
example of using, A-4
location, 4-10, 4-11
location of shipped files, A-1
monitor program, 4-12
relocating, A-4
transition from monitor to user program, A-9
transition from reset to break, A-7
transition from user program to break, A-10
using the, A-1

foreground operation, tracing, 4-20

4 - Index

G generate HP absolute file, 2-3
getting started, 2-1
global symbols, 2-13

displaying, 2-10
guarded memory accesses, 4-14

H hardware breakpoints, 5-5
help

on-line, 2-7
pod command information, 2-8
softkey driven information, 2-7

HLDRQ signal, 4-16
from target system, 3-13

hold request
during background monitor, 1-6

I in-circuit configuration options, 3-13
in-circuit emulation, 3-1
installation, 2-2

software, 2-2
interactive measurements, 4-22
interrupt

accepting NMI from target system, 4-15
during background monitor, 1-6
from target system, 1-6, 3-13
while stepping, 1-6

K keep coherence of the cache
emulator configuration, 4-7

L link directive file, A-4
linkers, 4-14
linking foreground monitor, A-4
linking the demo program, 2-3
load map, 4-14
loading absolute files, 2-9
loading emulator configurations, 4-23
local symbols

displaying, 2-11
locked, end command option, 2-31

M mapping memory, 4-12
measurement system, 2-32

Index - 5

creating, 2-4
memory

characterization, 4-12
copying, 5-11
floating point number form, 5-3
mapping, 4-12
mnemonic display, 2-13
mnemonic display with symbols, 2-14
modifying, 2-17
searching for strings or expressions, 5-11
with source code, 2-15

memory manipulation, 5-3
mnemonic memory display, 2-13
modify command

configuration, 4-1
memory, 2-17
software breakpoints clear, 2-23
software breakpoints set, 2-20

module, 2-32
module, emulation, 2-4
monitor

background, 4-8, 4-9, A-1
breaking into, 2-18
build_in foreground, 4-10
comparison of foreground/background, A-1
custom foreground, 4-11
description, 4-8
foreground, 4-8, 4-10, 4-11, A-2
foreground monitor file, 4-12
foreground monitor location, 4-10, 4-11
selecting entry after configuration, 4-4
using the foreground monitor, A-1

monitor selection, A-2

N no fetch cycle in trace display, 2-29
nosymbols, 2-10
note

pod command from keyboard, 2-8
status line error, 2-9

notes
coordinated measurements require background. monitor, 4-10, 4-11
mapper terms deleted when monitor type is changed, 4-9

6 - Index

pod commands that should not be executed, 5-12
software breakpoints not allowed in target ROM, 2-19
software breakpoints only at opcode addresses, 2-19
target accesses to emulation memory, 4-13
write to ROM analyzer status, 4-19

O on-line help, 2-7

P PATH, HP-UX environment variable, 2-4, 2-5
Pin guard

target system probe, 3-9
pmon, User Interface Software, 2-32
pod_command, 2-8

features available with, 5-11
help information, 2-8

prerequisites for using the emulator, 2-2
processor data bus width

emulator configuration, 4-5

R RAM, mapping emulation or target, 4-14
READY signal, 4-17

form target system, 3-13
READY signals on accesses to emulation memory, 4-12
real-time execution

restricting the emulator to, 4-4
register

floating point number form, 5-2
register commands, 1-4
register manipulation, 5-2
registers

display/modify, 2-23
release_system

end command option, 2-31, 4-23
relocatable files, 4-14
relocating foreground monitor, A-4
reset

during background monitor, 1-6
reset (emulator)

running from target reset, 2-16, 3-13
reset (reset emulator) command, 2-31
RESET signal, 4-16

from target system, 3-13
restrict to real-time runs

Index - 7

emulator configuration, 4-4
permissible commands, 4-4
target system dependency, 4-5

restrictions
COFF format file, B-4
ELF format file, B-4

ROM
mapping emulation or target, 4-14
writes to, 4-14

run command, 2-16
run from target reset, 3-13, 4-16

S saving the emulator configuration, 4-23
sequencer, analyzer, 5-11
set

source on inverse video, 2-25
simulated I/O, 4-22
softkey driven help information, 2-7
Softkey Interface

entering, 2-4
exiting, 2-31
on-line help, 2-7

software breakpoints, 2-19
and NMI, 2-19
clearing, 2-23
displaying, 2-21
enabling/disabling, 2-20
setting, 2-20

software installation, 2-2
source line referencing, 2-25
source lines

displaying, 2-12
status qualifiers, 2-30
step command, 2-24
string delimiters, 2-8
symbolic

addresses, 2-16
symbols

displaying, 2-10
synchronized measurement, A-11
system overview, 2-2
SZRQ input, 4-17

8 - Index

SZRQ signal
from target system, 3-13

T target memory
loading absolute files, 2-9
RAM and ROM characterization, 4-14

target reset
running from, 3-13

target system
dependency on executing code, 4-5
interface, 3-17

Target system probe
pin guard, 3-9

terminal interface, 2-8
trace

no fetch cycle, 2-29
simple trigger, 2-25

trace actual bus cycles, 5-5
trace bus address, 5-8
trace fetch cycles, 5-8
trace,displaying with compress mode, 2-28
tracing background operation, 4-20
tracing bus address, 4-21
tracing execution cycles, 4-20
tracing fetch cycles, 4-21
transfer address, running from, 2-16
trigger position, 2-30

U user (target) memory
 loading absolute files, 2-9

W wait state
inserting, 3-13

wait state at emulation memory, 4-14
wait states, allowing the target system to insert, 4-17
waring messages, B-9
window systems, 2-31
write to ROM break, 4-19

Index - 9

Notes

10 - Index

	Using this Manual
	Contents
	Introduction to the 70732 Emulator
	Getting Started
	In-Circuit Emulation Topics
	Configuring the Emulator
	Using the Emulator
	Using the Foreground Monitor
	Using the Format Converter
	Index

