HP 64758

70632 Emulator
Softkey Interface

User’'s Guide

A cackarc

HP Part No. 64758-97006
Printed in U.S.A.
March, 1993

Edition 2

Notice

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1990,1993 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett Packard Comapny.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

V700 is trademark of NEC Electronics Inc.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure

by the U.S.A. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for

non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2)

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64758-97002, August 1990

Edition 2 64758-97006, April 1993

Using This manual

This manual introduces you to the HP 64758G/H 70632 Emulator as
used with the Softkey Interface.

This manual:

m Shows you how to use emulation commands by executing
them on a sample program and describing their results.

m Shows you how to use the emulator in-circuit (connected to a
target system).

m Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator to
real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual does not:

m Show you how to use every Softkey Interface command and
option. See th&oftkey Interface Referenfwe further details.

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Introduction. This chapter lists the 70632 emulator features and
describes how they can help you in developing new hardware and
software.

Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. The chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Virtual Mode Emulation Topics. This chapter shows you how to use
emulator in virtual mode. The chapter describes a sample program and
how to: load programs into the emulator, display on-chip MMU

registers, privilege registers and TCB, set software breakpoints, and use
the analyzer in virtual mode.

Configuring the Emulator. You can configure the emulator to adapt

it to your specific development needs. This chapter describes the
options available when configuring the emulator, and how to save and
restore particular configurations.

Using the Emulator. This chapter describes emulation topics that are
not covered in the "Getting Started" and "Virtual Mode Emulation
Topics" chapters (for example, coordinated measurements and storing
memory).

In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Appendix A

Using the Foreground Monitor. This appendix describes the
advantages and disadvantages of foreground and background monitors
and how to use foreground monitors.

Appendix B Using the Format Convertor. This appendix describes the usage of
the file format converter.
Conventions Example commands throughout the manual use the following

conventions:

bold Commands, options, and parts of command
syntax.

bold italic Commands, options, and parts of command
syntax which may be entered by pressing
softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands
which follow the "$" are entered at the HP-UX
prompt.

<RETURN> The carriage return key.

Notes

Contents

Introduction to the 70632 Emulator

Introduction 1-1

Purpose of the 70632 Emulator 1-1

Features of the 70632 Emulator 1-3
Supported Microprocessor e 1-3
ClockSpeeds 1-3
EmulationMemory o 1-3
Analysis 1-4
FPU . . . 1-4
MMU . .o e 1-4
FRM . . e 1-4
Registers e 1-4
Single-Step 1-4
Breakpoints 1-5
ResetSupport 1-5
Software Debugging Lo 1-5
Configurable Target System Interface 1-5
Real-Time Operation 1-5
Foreground or Background Emulation Monitor 1-6
Out-of-Circuit or In-Circuit Emulation 1-6

2 Getting Started

Introduction 2-1
Before YouBegin 2-2
Prerequisites oo 2-2
A Look atthe Sample Program 2-3
Compiling, Assembling and Linking the Program 2-7
Entering the Softkey Interface 2-8
From the "pmon" User Interface 2-8
Fromthe HP-UX Shell 2-9
On-LineHelp 2-10
Softkey DrivenHelp L. 2-10
Pod CommandHelp 2-11
Configuring the Emulator 2-12

Contents-1

2-Contents

Loading Absolute Files Lo 2-13
Displaying Symbols, 2-13
Global 2-13
Local e 2-14
Displaying Memory in Mnemonic Format 2-15
Displaying Memory with Symbols 2-16
Displaying Memory with Source Lines 2-17
Runningthe Program 2-18
FromReset. 2-18
Displaying Memory Repetitively 2-18
ModifyingMemory 2-19
Breaking into the Monitor 2-20
Using Software Breakpoints 2-21
Enabling/Disabling Software Breakpoints 2-21
Setting a Software Breakpoint 2-22
Clearing a Software Breakpoint 2-24
Stepping Through the Program 2-25
Displaying Registers, 2-26
Usingthe Analyzer 2-27
Specifying a Simple Trigger 2-27
Displayingthe Trace 2-28
Displaying the Trace with CompressMode 2-29
Changingthe TraceDepth 2-30
Using the Storage Qualifier 2-30
Triggering the Analyzer at an Instruction Execution State . . . 2-31
70632 Analysis Status Qualifiers 2-33
For a Complete Description 2-33
Exiting the Softkey Interface 2-34
End Release System 2-34
Ending to Continue Later 2-34
Ending Locked from All Windows 2-34
Selecting the Measurement System Display or
AnotherModule 2-34
Virtual Mode Emulation Topics
Introduction 3-1
Sample Program for Virtual Mode Emulation 3-1
Compiling, Assembling and Linking the Sample Program 3-10
Setting Upthe Emulator 3-11
Entering the Softkey Interface 3-12
Configuring the Emulator 3-12

Loading Absolute Files 3-13

Loading the Symbolsforos 3-13
Getting into VirtualMode L. 3-15
Displaying Registers, 3-18
Tracing the Program Execution 3-19
Specifying Virtual Space 3-21

Using the XMMU Function. 3-22

Displaying Address Translation Tables 3-25

Breakpoints 3-25

Displaying TCB i e 3-26

Tracing Virtual Address 3-26
AddressMode Option 3-29

Configuring the Emulator

Introduction 4-1
General Emulator Configuration 4-3
Micro-processor clock source? 4-3
Enter monitor after configuration? 4-4
Restrictto real-timeruns? 4-4
Memory Configuration 4-5
Monitor type? e e e e 4-5
MappingMemory 4-7
Emulator Pod Configuration 4-9
Enable responding to HLDRQ signal? 4-9
Enable /NMI input from target system? 4-10
Respond to target system interrupts? 4-10
Respond to target bus freezesignal? 4-11
Target memory accesssize? oo 4-11
Drive background cycles to target system? 4-12
Value for address bits A31-A8 during background cycles? . . 4-13
Object file address attribute? 4-13
Debug/Trace Configuration 4-13
Break processor on write toROM? 4-14
Trace background or foreground operation? 4-14
Trace HOLDtag? v 4-15
Trace virtual orreal address? 4-15
Enable the execution cyclestrace? 4-16
Simulated I/O Configuration 4-16
Interactive Measurement Configuration 4-16
Saving a Configuration L. 4-17
Loading a Configuration 4-17

Contents-3

4-Contents

5 Using The Emulator

Introduction 5-1
Prerequisites 5-2
Register Manipulation, 5-2
Stack Pointer Modification 5-2
Displaying/Modifying Registers In Floating-Format 5-3
Analyzer TOpIiCS« . . o 5-4
Analyzer Status Qualifiers 5-4
Specifying Trigger Condition at Desired
Instruction Execution L. 5-4
Execution States Location in Trace Listing 5-5
Specifying Data For Trigger Condition or Store Condition . . . 5-5
Analyzer Clock Speed 5-7
Finding Out the Cause of a MonitorBreak 5-7
Hardware Breakpoints 5-8
Example Configuration for Hardware Breakpoints Features. . . 5-8
Software Breakpoints 5-10
Target Memory ACCESS v v v v i e 5-12
Commands Not Allowed when Real-Time Mode is Enabled . 5-12
Breaking out of Real-Time Execution 5-13
FPU Support 5-13
MMU Support 5-14
Making Coordinated Measurements 5-15
Unfamiliar Status 5-15
Waiting for TargetReady 5-16
Halt or MachineFault 5-16
70108/70116 EmulatonMode 5-17
Displaying Memory In 70108/70116 Mnemonic Format 5-17
Tracing StatesInBothMode 5-17
Real-time Emulation Memory Access 5-18
Virtual Address Translation 5-19
Using the Caches of Area Table Register Pairs 5-19
Specifying Virtual Address Space 5-20
Features Available via Pod Commands 5-21
Register NamesandClasses 5-22
Restrictions and Considerations 5-24
6 In-Circuit Emulation Topics
Introduction 6-1
Prerequisites 6-2
Installing the Emulator Probe into a Target System 6-2

PinProtector 6-3
Conductive PinGuard 6-3
Installing the Target SystemProbe 6-5
In-Circuit Configuration Options 6-5
Allowing the Target System to Insert Wait States 6-6
The Usageof IOCommand 6-7
A Using the Foreground Monitor
Comparison of Foreground and Background Monitors A-1
Background Monitors L o A-1
Foreground Monitors A-2
Foreground Monitor Selection A-2
Using Built-in Foreground monitor A-3
Interrupt/Exception Handler A-3
Using Custom Foreground monitor A-5
Interrupt/Exception Handler A-6
Loading Foreground Monitor A-6
Loading User Program A-7
Loading into TargetMemory A-7
Loading into Emulaton Memory A-7
Restrictions and Considerations A-8
An Example Configuration of the Foreground Monitor A-9
Modify Monitor Source Program A-9
Defining System Base Table in Your Program A-9
Defining Address Translation Tables for Monitor Program . . . A-9
Assembling and Linking the Foreground Monitor A-10
Setting Up the Monitor Configuration ltem. A-10
Mapping Memory for Your Program A-10
Loading Foreground Monitor A-10
Loading User Program A-11
B Using the Format Converter
Howto Usethe Converter B-1
Load address locationoptions B-1
File outputcontrol oL B-2
Address Translation TableFile B-3
Absolute file for address translationtables B-3
Command files for specifying virtual space B-3

Index

Contents-5

lllustrations

6-Contents

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 6-1.

HP 64758 Emulator forthe 70632 1-2
CSourceskdemo.c 2-4
init.s Source Program 2-6
Linker Command File 2-6
Softkey Interface Display 2-10
Sample Program Source 0s.S. 3-2
Sample Program Source command.c 3-5
Sample Program Source process.C 3-6
Linker command fileos.Ink 3-7
Linker Command File command.lnk 3-8
Linker Command File process.Ink 3-8
Configurator Command File skdemo2.cfc. 3-8
Installing Emulation Probe Into PGA Socket 6-4

Introduction to the 70632 Emulator

Introduction The topics in this chapter include:
m Purpose of the emulator

m Features of the emulator

Purpose of the The 70632 emulator is designed to replace the NEC uPD70632
microprocessor in your target system to help you integrate target

70632 Emulator system software and hardware. The 70632 emulator performs just like
the NEC uPD70632 microprocessor, but at the same time, it gives you
information about the operation of the processor. The emulator gives
you control over target system execution and allows you to view or
modify the contents of processor registers and, target system memory.

Introduction 1-1

RS—232/RS—-42¢2
Connection

!

Green
Status Right

‘\\\Probe Cable

Power Switch

Target System — p»

(typically contains memory,
CPU, and I/0 circuitry)

Emulator Probe

Figure 1-1. HP 64758 Emulator for the 70632

1-2 Introduction

Features of the
70632 Emulator

Supported
Microprocessor

Clock Speeds

Emulation Memory

The emulator probe has a 132-pin PGA connector. The HP 64758G/H
emulator supports the NEC uPD70632 microprocessor.

Measurements can be made using the emulator’s internal 20 MHz
clock or an external clock from 8 MHz to 20 MHz with no wait states
added to target memory.

Depending on the emulator model number, there are 512K/1M bytes of
emulation memory. Memory mapping configuration maps physical
memory only. If the MMU is enabled, the user is responsible for
knowing user physical memory usage.

Dual-ported memory allows you to display or modify physical

emulation memory without stopping the processor. Flexible memory
mapping lets you define address ranges over the entire 4 Gbyte address
range of the 70632. You can define up to 8 memory ranges (at 4 Kbyte
boundaries and at least 4Kbytes in length). The monitor occupies 4K
bytes leaving 508K or 1020K bytes of emulation memory which you
may use.You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or as
guarded memory. The emulator generates an error message when
accesses are made to guarded memory locations; additionally, you can
configure the emulator so that writes to memory defined as ROM cause
emulator execution to break out of target program execution. You can
select whether the memory accesses honor /READY and /BERR
signals from target system for each emulation memory range.

Introduction 1-3

Analysis

FPU

MMU

FRM

Registers

Single-Step

1-4 Introduction

The integrated emulation bus analyzer provides real-time analysis of all
bus-cycle activity. You can define break conditions based on address
and data bus cycle activity. In addition to hardware break, software
breakpoints can be used for execution breakpoints.

The 70632 microprocessor has on-chip MMU which provides a 4
Giga-byte virtual space for each task. When you use the on-chip MMU,
you will want to analyze either actual or virtual address space. You can
configure which address space should be recognized by the emulation
analyzer. Analysis functions include trigger, storage, count, and
context directives. The analyzer can capture up to 1024 events,
including all address, data, and status lines.

The emulation bus analyzer can capture bus states accessing to a
Floating Point Processor.

The emulator will support development when using the internal
Memory Management Unit.

The emulator supports the master mode of the 70632 FRM function. In
the master mode, you can use the analyzer feature of the emulator. If
signal is asserted by your target system, the emulator bus signals are
held. So the emulator does not work as checker.

You can display or modify the 70632 internal CPU register contents.
This includes the ability to modify the program counter (PC) value so
you can control where the emulator starts a program run. You can also
display or modify the 70632 MMU register contents.

You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints

Reset Support

Software Debugging

Configurable Target
System Interface

Real-Time Operation

You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific st

or states, allowing you to perform post-mortem analysis of the prog
execution. You can also set software breakpoints in your program.
With the 70632 emulator, setting a software breakpoint inserts a 70632
BRK instruction into your program at the desired location.

The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

The HP 64758G/H Real-Time Emulator for 70632 microprocessors is a
powerful tool for both software and hardware designers. Using the HP
64758G/H Emulator’'s emulation memory (up to 512 Kilo/1 Mega
bytes), software debugging can be done without functional target
system memory.

You can configure the emulator so that it honors target system wait and
retry requests when accessing emulation memory. Additionally, the
processor signals /READY, /IBERR, BFREZ, RT/EP, /NMI, INT, and
/HLDRQ may be enabled or disabled independently of the 70632
processor.

Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator needs to break to the monitor to
perform an action you requested, such as displaying target system
memory.) Emulator features performed in real time include: running
and analyzer tracing. Emulator features not performed in real time
include: display or modify of target system memory; load/dump of
target memory, and display or modification of registers and some
virtual related functionality.

Introduction 1-5

Foreground or
Background
Emulation Monitor

Out-of-Circuit or
In-Circuit Emulation

1-6 Introduction

The emulation monitor is a program executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, the
monitor program executes 70632 instructions to read the target
memory locations and send their contents to the emulation controller.

The monitor program can executdaneground the mode in which

the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program also can executbackgroundthe emulator

mode in which foreground operation is suspended so the emulation
processor can access target system resources. The background monitor
does not occupy processor address space.

The 70632 emulator can be used for both out-of-circuit emulation and
in-circuit emulation. The emulation can be used in multiple emulation
systems using other HP 64700 Series emulators/analyzers.

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the HP 64758G/H 70632
emulator with the Softkey Interface.

This chapter will:

m Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

m Describe the sample program used for this chapter’'s example.

This chapter will show you how to:
m Start up the Softkey Interface.
m Load programs into emulation and target system memory.

m Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. HRe64700
Series Installation/Serviamanual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to theHP 64700 Series Installation/Servigahnual for
instructions on installing software.

3. In addition,you should read and understand the concepts of
emulation presented in ti@oncepts of Emulation and
Analysismanual. Thénstallation/Servicananualalso covers
HP 64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read th8oftkey Interface Referenegnual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
70632 emulator.

2-2 Getting Started

A Look at the Sample
Program

The sample program used in this chapter is listed in "C" and assembly
in Figures 2-1 through 2-4. The sample program is skdemo consisting
of source programskdemo.@ndinit.s The program emulates a

primitive command interpreter. The sample program is shipped with
the Softkey Interface and may be copied from the following locatio

/usr/hp64000/demo/emul/hp64758/skdemo.c
/usr/hp64000/demo/emul/hp64758/init.s

The sample program is checking for a new command continually. If a
new command, other than 20 (hex), is entered, the command interpreter
routine ((cmd_processis called. The command interpreter interprets

the command entered and outputs the resulting message and status.

cmd_code and cmd_result

The switch statement evaluates the value of cmd_code with cases
within it. You will change the cmd_code(to 'A’, B’ or 'C’) to match

each of the cases as you progress through the steps in this manual. As
you enter into each branch of the switch statement:

If case CMD_A is satisfied, themd_result(command "A’
entered), is displayed.

If case CMD_B is satisfied, themd_result(command 'B’
entered), is displayed.

If case CMD_C is satisfied, themd_result(command 'C’
entered), is displayed.

If any case statement is not satisfied, tbend_result(invalid
command entered), is displayed.

When the case statement is completed, tmed codewill be
assigned to the value of NO_CMD.
status

Status contains the message "Awaiting command" when the program is
started. Once you enter a command, "Command received" will be
displayed.

Getting Started 2-3

#define TRUE 1
#define FALSE 0
#define CMD_A A
#define CMD_B 'B’
#define CMD_C 'C

#define NO_CMD ”
#define MSG_SIZ 0x20

static char status|[MSG_SIZ];
static char cmd_result [MSG_SIZ];
static char cmd_code;

main ()

init.s

The init.s file defines start-up routine for C program skdemo.c and
70632 breakpoint instruction vector. The start-up routine performs
preparing the stack, setting up stack pointer, and callingh&in

function defined irskdemo.cThe breakpoint instruction vector is
required for the emulator’s software breakpoint feature. The vector has
to point to a memory location where permitted to fetch an instruction.

msgcpy (status, "Awaiting command", MSG_SIZ);

cmd_code = NO_CMD;

msgcpy (cmd_result, "No command entered", MSG_SIZ);

while(TRUE) {
if(cmd_code !'= NO_CMD) {

cmd_process (cmd_code, cmd_result);

cmd_code = NO_CMD;
}
}
}

2-4 Getting Started

Figure 2-1. C Source skdemo.c

int cmd_process (cmd_code, cmd_result)
char cmd_code;
char *cmd_result;

msgcpy (status, "Command received", MSG_SIZ);

switch (cmd_code) {

case CMD_A:
msgcpy (cmd_result, "Command 'A’ entered", MSG_SIZ);
break;

case CMD_B:
msgcpy (cmd_result, "Command 'B’ entered", MSG_SIZ);
break;

case CMD_C:
msgcpy (cmd_result, "Command 'C’ entered", MSG_SIZ);
break;

default :
msgcpy (cmd_result, "Invalid command entered", MSG_SIZ);

msgcpy(msg_dst, msg_src, msg_siz)
char *msg_dst;

char *msg_src;

int msg_siz;

for (; *msg_src !="\0' && msg_siz > 0; --msg_siz)
*msg_dst++ = *msg_src++;

for (; msg_siz > 0; --msg_siz)
*msg_dst++ ="";

Figure 2-1. C Source skdemo.c (Cont'd)

Getting Started 2-5

file "init.s"

.equ Stack_Size, 0x100
.globl _main, Init

.bss "sbt" (RW)

.Icomm Sbt, 0x34, 0x100
.Icomm brkvect, 4, 4

text (RX)

movea.w Dummy_Text, brkvect
mov.w #Stack+Stack_Size, sp
call _main,[sp]

i

Init:

Dummy_Text: halt

.bss (RW)
Icomm Stack, Stack_Size,4

Figure 2-2. init.s Source Program

SECTIONS

sbt 0x00000:
{

}

.text 0x10000:
{

}

.data 0x80000:
{

}

.bss 0xf0000:
{

}

Figure 2-3. Linker Command File

2-6 Getting Started

Compiling, NEC Corporation CC70616 C Compiler Package is used to compile,
: assemble, and link the demo program. The package are available for

A_Ss?mb“ng and use in the HP 9000 300 Series work stations from NEC.

Linking the

Program

Thev70cnvhputility is used to generate the required HP format files.
The fileskdemo.Xontains the absolute code of the program. The file
skdemo.lcontains the list of global symbols. The figslemo.Aand
init.A each contain a list of local symbols for the respective files.

The user interface provides source line referencing if line information
is present in the local symbol file. Line number information is included
if the -g option is used with either the "C" compiler or the assembler.

The following commands are used to compile, assemble, and link the
demo program.

$as70616 -a init.s >init.lis

$cc70616 -cg skdemo.c

$1d70616 skdemo.Ink -m -0 skdemo init.o skdemo.o >skdemo.map

$v70cnvhp skdemo

The linker command filskdemo.Inks listed in figure 2-3.

Getting Started 2-7

Entering the
Softkey Interface

From the "pmon"
User Interface

2-8 Getting Started

If you have installed your emulator and Softkey Interface software as
directed in thedP 64700 Series Emulators Softkey Interface
Installation Notice you are ready to enter the interface. The Softkey
Interface can be entered through pineon User Interface Software or
from the HP-UX shell.

m If you used previous HP 64000-UX emulators (for example,
the HP 64200 Series), you may be more familiar with the
pmon, msinit, andmsconfigcommand method of entering
the emulation interface.

m If you wish to run the Softkey Interface in multiple windows,
you must enter from the HP-UX shell using émeul700
command. Refer to thgoftkey Interface Referenagnual for
more information on running in multiple windows.

If /usr/hp64000/binis specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon<RETURN>
If you have not already created a measurement system for the 70632

emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS _SYS msinit <RETURN>
After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>
To define a measurement system for the 70632 emulator, enter:

make_sys emv70 <RETURN>
Now, to add the emulator to the measurement system, enter:

add <module_number> naming it v70
<RETURN>
Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

Note #

From the HP-UX Shell

If the measurement system and emulation module are named "emv70"
and "v70" as shown above, you can enter the emulation system with
the following command:

emv70 default v70 <RETURN>
If this command is successful, you will see a display similar to figu
2-4. The status message shows that the default configuration file
been loaded. If the command is not successful, you will be given a
error message and returned toheon User Interface. Error
messages are described in $udtkey Interface Referenaenual.

For more information on creating measurements systems, refer to the
Softkey Interface Referenoe&nual.

The measurement system name emv70 and the emulation module name
v70 are of the user’s choice.

If /usr/hp64000/binis specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

If this command is successful, you will see a display similar to figure
2-4. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in th&oftkey Interface Referencanual.

Getting Started 2-9

STATUS: Loaded configuration file

HP64758-19001 A.02.00 15Jun90 Unreleased
70632 EMULATION SERIES 64700

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1990

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

run trace step display

modify break end ---ETC--

Figure 2-4. Softkey Interface Display

On-Line Help

Softkey Driven Help

2-10 Getting Started

There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>
The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next ling, just as
you do with the HP-UXnore command. After all the information on
the particular topic has been displayed (or after you press "g" to quit

scrolling through information), you are prompted to press <RETURN>

to return to the Softkey Interface.

---SYSTEM COMMANDS---

? displays the possible help files

help displays the possible help files

! fork a shell (specified by shell variable SH)

I<shell cmd> fork a shell and execute a shell command

cd <directory> change the working directory

pwd print the working directory

cws <SYMB> change the working symbol - the working symbol also

gets updated when displaying local symbols and
displaying memory mnemonic
pws print the working symbol
<FILE> pl1 p2 p3 ... execute a command file passing parameters p1, p2, p3

log_commands to <FILE> logs the next sequence of commands to file <FILE>

log_commands off discontinue logging commands

name_of_module get the "logical" name of this module (see 64700tab)

set <ENVVAR> = <VALUE> set and export a shell environment variable

set HP64KPATH = <MYPATH> set and export the shell environment variable that
specifies the search path for command files

wait pause until <cntrl-c> (SIGINT)

--More--(42%)

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod command <RETURN>
pod_command ’help bp’ <RETURN>

Pod Commands
Time Command

23:09:36 help bp

bp - set, enable, disable, remove or display software breakpoints
- display current breakpoints

bp <addr> - set breakpoint at <addr>

bp -e * - enable all breakpoints

bp -e <addr> - enable breakpoint at <addr>

bp -d * - disable all breakpoints

bp -d <addr> - disable breakpoint at <addr>

bp -r * - remove all breakpoints

bp -r <addr> - remove breakpoint at <addr>

bp <addr> <addr> - more than one <addr> may be given
--- NOTES ---

Enable/disable breaking on software breakpoints via the bc command.
Maximum number of breakpoints available is 32.

STATUS: N70632--Running in monitor R
pod_command 'help bp’

pod_cmd set perfinit perfrun perfend ---ETC--

Getting Started 2-11

The command enclosed in string delimiters (", ’, or) is any Terminal
Interface command, and the output of that command is seen in the
pod_commanddisplay. The Terminal Interfa¢elp (or ?) command

may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Configuring the
Emulator

Micro-processor clock source?
Enter monitor after configuration?
Restrict to real-time runs?

Modify memory configuration?
Monitor type? background

You need to configure the emulator for this tutorial. To configure the
emulator, type the following command to get into the configuration
session.

modify configuration <RETURN>
Trace the following answer to configure the emulator. Details of each
question will be described later.

internal
yes

no

yes

Now you should be facing memory mapping screen. The address range
0 through OffffH is mapped as emulation RAM by default. More three
mapper terms must be specified for the sample program. Enter the
following lines to map the program code and constant data areas as
emulation ROM, the variable data area as emulation RAM.

10000h thru 10fffh emulation rom

80000h thru 80fffh emulation rom

0f0000h thru OfOfffh emulation ram
The unmapped area should be defined as "guarded" to detect illegal
accesses to the area.

default guarded
end

Modify emulator pod configuration? no

Modify debug/trace options? no

Modify simulated 1/O configuration? no

Modify interactive measurement specification? no

Configuration file name? skdemo

2-12 Getting Started

Loading Absolute
Files

The 'load" command allows you to load absolute files into emulation
or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use thelbad emul_ment syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as targe
RAM, use the lbad user_meni syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" or
"user_mem". For example:

load skdemo <RETURN>

Dlsplaylng When you load an absolute file into memory (unless you use the
S bol "nosymbols" option), symbol information is loaded. Both global
YMDOIS : X

symbols and symbols that are local to a source file can be displayed.
Global To display global symbols, enter the following command.
display global _symbols <RETURN>
Global symbols in skdemo
Procedure symbols
Procedure name Address range ___ Segment Offset
_cmd_process 000100A8 - 0001016B 0088
“main 00010020 - 000100A6 0000
“msgcpy 0001016C - 000101C6 014C
Static symbols
Symbol name Address range ___ Segment Offset
Init 00010000 0000
_edata 0008008C 0000
“end 000F0144 0000
“esht 00000104 0000
“etext 000101C8 0000
Filename symbols
Filename
init.s

STATUS: N70632--Running in monitor

display global_symbols

run trace step display

modify break end ---ETC--

Getting Started 2-13

Listed are: address ranges associated with a symbol and the offset of
that symbol.

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,
display local_symbols_in skdemo.c:
Symbols in skdemo.c:
Procedure symbols
Procedure name Address range ___ Segment Offset
_cmd_process 000100A8 - 0001016B 0
_main 00010020 - 000100A6 0000
_msgcpy 0001016C - 000101C6 014C
Static symbols
Symbol name Address range ___ Segment Offset
_cmd_code 000F0140 0040
_cmd_result 000F0120 0020
_status 000F0100 0000
Source reference symbols
Line range Address range ___ Segment Offset
#1-#16 0001002C - 00010048 000C
#17-#18 00010049 - 00010051 0029
#19-#19 00010052 - 0001006E 0032
STATUS: cws: skdemo.c: ..R...
display local_symbols_in skdemo.c:
run trace step display modify break end ---ETC--
<RETURN>

Loading a program will by default load the absolute code, global
symbols, and local symbols. Displaying the local symbols will make
the specified set of symbols active.

If source line number information is contained in the local symbol file,
the memory locations may be referenced by source line numbers. Line
number 1 is the first line in a source file, line number 2 is the second
line, ... etc.

2-14 Getting Started

Displaying You can display, in mnemonic format, the absolute code in memory.
Memory in To display memory in mnemonic format from the address of label

) _main, enter the following command:
Mnemonic Format

display memory ~ _main mnemonic
<RETURN>

Memory :mnemonic :file = skdemo.c:

address data

00010020 ECF4000000 PUSHM #0m<>
00010026 DEF4000000 PREPARE #00000000H
0001002C EEF4200000 PUSH #00000020H
00010032 EEF4000008 PUSH #00080000H
00010038 EEF400010F PUSH #000F0100H
0001003E 4980F22E01 CALL 0001016CH,[SP]
00010046 843FEC ADD.W #CH,SP
00010049 0980F420F2 MOV.B #20H,000F0140H
00010052 EEF4200000 PUSH #00000020H
00010058 EEF4110008 PUSH #00080011H
0001005E EEF420010F PUSH #000F0120H
00010064 4980F20801 CALL 0001016CH,[SP]
0001006C 843FEC ADD.W #CH,SP
0001006F B880F420F2 CMP.B #20H,000F0140H
00010078 6424 BE/Z 0001009CH
0001007A EEF420010F PUSH #000F0120H

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE R
display memory _main mnemonic

run trace step display modify break end ---ETC--

Getting Started 2-15

Displaying

You can include symbol information in memory display.

Memory with
Symbols
set symbols on <RETURN>
Memory :mnemonic :file = skdemo.c:
address label data
00010020 :_main ECF4000000 PUSHM #0m<>
00010026 DEF4000000 PREPARE #00000000H
0001002C EEF4200000 PUSH #00000020H
00010032 EEF4000008 PUSH #00080000H
00010038 EEF400010F PUSH #000F0100H
0001003E 4980F22E01 CALL :_msgcpy,[SP]
00010046 843FEC ADD.W #CH,SP
00010049 0980F420F2 MOV.B #20H,skdemo:_cmd_code
00010052 EEF4200000 PUSH #00000020H
00010058 EEF4110008 PUSH #00080011H
0001005E EEF420010F PUSH #000F0120H
00010064 4980F20801 CALL ._msgcpy,[SP]
0001006C 843FEC ADD.W #CH,SP
0001006F B880F420F2 CMP.B #20H,skdemo:_cmd_code
00010078 6424 BE/Z :_main+0000007CH
0001007A EEF420010F PUSH #000F0120H
STATUS: N70632--Running in monitor .R..
set symbols on
pod_cmd set perfinit perfrun perfend ---ETC--

2-16 Getting Started

Displaying You can include source program lines in memory display.

Memory with
Source Lines

set source on <RETURN>

Memory :mnemonic :file = skdemo.c:

address label data
00010020 :_main ECF4000000 PUSHM #0m<>
00010026 DEF4000000 PREPARE #00000000H

12 static char cmd_code;

14 main ()

15

16 msgcpy (status, "Awaiting command", MSG_SIZ);
0001002C EEF4200000 PUSH #00000020H
00010032 EEF4000008 PUSH #00080000H
00010038 EEF400010F PUSH #000F0100H
0001003E 4980F22E01 CALL :_msgcpy,[SP]
00010046 843FEC ADD.W #CH,SP

17

18 cmd_code = NO_CMD;
00010049 0980F420F2 MOV.B #20H,skdemo:_cmd_code

19 msgcpy (cmd_result, "No command entered", MSG_SI2);

STATUS: N70632--Running in monitor R
set source on

pod_cmd set perfinit perfrun perfend ---ETC--
Note # The "set’ command is effective only to the window in which the
command is invoked. You need to use this command at each window.

Getting Started 2-17

Running the
Program

From Reset

The 'run" command lets you execute a program in memory. Entering
the 'fun" command by itself causes the emulator to begin executing at
the current program counter address. Tha from" command

allows you to specify an address at which execution is to start. For
example to run the sample program from the address of Init label,

run from Init <RETURN>
You will see that the status line on your screen is changed to "Running
user program".

The 'run from reset” command specifies that the emulator begin
executing from target system reset.

Displaying
Memory
Repetitively

2-18 Getting Started

You can display memory locations repetitively so that the information
on the screen updates constantly. For example, to display the
_cmd_resultand the _statuslocations of the sample program
repetitively (in blocked byte format), enter the following command.

display memory skdemo.c:_cmd_result

thru +1fh , skdemo.c:_status thru

+1fh blocked bytes <RETURN>
Notice that when using local symbols in expression, the source file in
which the local symbol is defined must be included.

When you display/modify the memory location, you can specify the
data size or type to be displayed/modified. The following data size/type
are allowed.

bytes (one byte integer)

words (two bytes integer)

long (four bytes integer)

real (short) (four bytes floating-point)
real long (eight bytes floating-point)

Memory :bytes :blocked :repetitively

address data :hex :ascii

000F0120-27 4E 6F 20 63 6F 6D 6D 61 No comma
000F0128-2F 6E 64 20 65 6E 74 65 72 nd e nter
000F0130-37 65 64 20 20 20 20 20 20 ed
000F0138-3F 20 20 20 20 20 20 20 20

000F0100-07 41 77 61 69 74 69 6E 67 Awaiting
000F0108-0F 20 63 6F 6D 6D 61 6E 64 com mand
000F0110-17 20 20 20 20 20 20 20 20

000F0118-1F 20 20 20 20 20 20 20 20

STATUS: N70632--Running user program

display memory skdemo.c:_cmd_result thru +1fh, skdemo.c:_status thru +1fh repe
titively blocked bytes

run trace step display modify break end ---ETC--

Modifying Memory The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labeledcmd_code You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following

command.

modify memory _cmd_code bytesto 41h

<RETURN>
Or:

modify memory _cmd_code bytesto A’

<RETURN>

(Single character strings are allowed in expressions.)

Getting Started 2-19

Memory :bytes :blocked :repetitively

address data :hex :ascii

000F0120-27 43 6F 6D 6D 61 6E 64 20 Comm and
000F0128-2F 27 41 27 20 65 6E 74 65 'A’' ente
000F0130-37 72 65 64 20 20 20 20 20 red
000F0138-3F 20 20 20 20 20 20 20 20

000F0100-07 43 6F 6D 6D 61 6E 64 20 Comm and
000F0108-0F 72 65 63 65 69 76 65 64 received
000F0110-17 20 20 20 20 20 20 20 20

000F0118-1F 20 20 20 20 20 20 20 20

STATUS: N70632--Running user program .R....
modify memory _cmd_code bytes to 41h

run trace step display modify break end ---ETC--

As you can see, the memory display is automatically updated, and
shows that the "Command 'A’ entered" message is written to the
destination locations.

Breaking into the The 'break” command allows you to divert emulator execution from
; the user program to the monitor. You can continue user program
Monitor S . .
execution with therin” command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>
You will find that the status line on the screen is changed to "Running

in monitor".

2-20 Getting Started

Using Software
Breakpoints

Note ﬂ

Enabling/Disabling
Software Breakpoints

Software breakpoints are handled by the 70632 BRK instruction.
When you define or enable a software breakpoint (with the bp

command), the emulator will replace the opcode at the software
breakpoint address with a breakpoint interrupt instruction (BRK).

If the BRK interrupt was generated by a software breakpoint, exec
breaks to the monitor, and the breakpoint interrupt instruction (BR
replaced by the original opcode. A subsequent run or step command
will execute from this address.

When using software breakpoints feature of the emulator, you must
define up the BRK instruction vector pointing to an address allowed
instruction fetch; typically in the program code area. In this sample
program, the BRK instruction vector points to a "HALT" instruction.
When a software breakpoint occurs, the emulator reads the BRK
interrupt vector, push the next PC and PSW to stack, fetch one word of
instruction pointed by the vector same as the real CPU. And then,
break occurs but the instruction, "HALT" in this example, will never be
executed.

There are some notices to using the software breakpoints features.
Refer to the "Software Breakpoints" section of the "Using the
Emulator" chapter.

Up to 32 software breakpoints may be defined.

Display the software breakpoints status screen, by entering:

display software _breakpoints
The display shows that no software breakpoint is defined.

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software _breakpoints enable

<RETURN>
The top of the screen indicates that software breakpoint feature is
enabled.

Getting Started 2-21

When software breakpoints are enabled and you set a software
breakpoint, the 70632 BRK instruction will be placed at the address
specified. When the BRK instruction is executed, program execution
will break into the monitor.

Setting a Software To set a software breakpoint at the address ofdhwel_procesdabel,
Breakpoint enter the following command.

modify software _breakpoints set

_cmd_process <RETURN>
Notice that when using local symbols in expressions, the source file in
which the local symbol is defined must be included.

Software breakpoints :enabled
address label status
000100A8 @r :_cmd_proces pending

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE R
modify software_breakpoints set _cmd_process

run trace step display modify break end ---ETC--

After the software breakpoint has been set, enter the following
commands to display memory and see if the software breakpoint was
correctly inserted.

display memory ~ _cmd_process mnemonic
<RETURN>

2-22 Getting Started

Memory :mnemonic :file = skdemo.c:

address label data
* 000100A8 :_cmd_proces C8 BRK

000100A9 F40000 TEST.W O0OH[RO]
000100AC 00 HALT

000100AD 00 HALT

000100AE DEF4000000 PREPARE #00000000H

29 int cmd_process (cmd_code, cmd_result)
30 char cmd_code;
31 char *cmd_result;

32
33 msgcpy (status, "Command received", MSG_SIZ);
000100B4 EEF4200000 PUSH #00000020H
000100BA EEF4240008 PUSH #00080024H
000100CO0 EEF400010F PUSH #000F0100H
000100C6 4980F2A600 CALL :_msgcpy,[SP]
000100CE 843FEC ADD.W #CH,SP
34
STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE R

display memory _cmd_process mnemonic

run trace step display modify break end ---ETC--

As you can see, the software breakpoint is shown in the memory
display with an asterisk, and the instruction at the address is replaced

with a BRK instruction.

Enter the following command to run the sample program again.

run from Init <RETURN>

Now, modify the command input byte to an invalid command for the

sample program.

modify memory _cmd_code bytes to

<RETURN>

You will see the line of the software breakpoint is displayed in
inverse-video. The inverse-video shows that the Program Counter is

now at the address.

A message on the status line shows that the software breakpoint has
been hit. The status line also shows that the emulator is now executing

in the monitor.

Display the software breakpoint status, by entering:

display software breakpoints

<RETURN>

Getting Started 2-23

Software breakpoints :enabled
address label status

display software_breakpoints

run trace step display

000100A8 @r :_cmd_proces inactivated

STATUS: N70632--Running in monitor ~ Software break: 0000100a8@r___...R....

modify break end ---ETC--

Clearing a Software
Breakpoint

2-24 Getting Started

When software breakpoints are hit, they become inactivated. To
reactive the breakpoint so that is "pending", you must reenter the
"modify software_breakpoints set" command.

modify software breakpoints set

<RETURN>
If you display the memory contents in mnemonic format, the contents
of the address you specify the breakpoint is replaced with the BRK
instruction.

display memory <RETURN>

To remove software breakpoint defined above, enter the following
command.

modify software _breakpoints clear

_cmd_process <RETURN>
The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending. To clear all software
breakpoints, you can enter the following command.

modify software _breakpoints clear
<RETURN>

address label data

30 char cmd_code;
31 char *cmd_result;

run trace step display

Memory :mnemonic :file = skdemo.c:

000100A8 :_cmd_proces ECF4000000 PUSHM #0m<>
000100AE DEF4000000 PREPARE #00000000H
29 int cmd_process (cmd_code, cmd_result)

32

33 msgcpy (status, "Command received”, MSG_SIZ);
000100B4 EEF4200000 PUSH #00000020H
000100BA EEF4240008 PUSH #00080024H
000100CO0 EEF400010F PUSH #000F0100H
000100C6 4980F2A600 CALL _msgcpy,[SP]
000100CE 843FEC ADD.W #CH,SP

34

35 switch (cmd_code) {
000100D1 0C207D MOVS.BW [AP],RO
000100D4 6A72 :_cmd_process+0000009EH

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE R
modify software_breakpoints clear _cmd_process

modify break end ---ETC--

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step
from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>,

You will see the inverse-video moves according to the step execution.
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line, it
may be entered by pressing <RETURN>.

You can step program execution by source lines, enter:

step source
Source line stepping is implemented by single stepping assembly
instructions until the next PC is outside of the address range of the
current source line. When source line stepping is attempted on

Getting Started 2-25

assembly code, stepping will complete when a source line is found. To
terminate stepping type <Ctrl>-C.

Registers

Next PC 00010178@r

PC 00010178 SP 000FO0C8 FP 000F00C8 AP 000FO0D4 PSW 10000000

RO-7 000FO013F 00080022 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R24-31 00000000 00000000 00000000 00000000 00000000 000FO0D4 0OOFOOC8 000FO0C8

STATUS: N70632--Stepping complete
display registers

run trace step display

modify break end ---ETC--

Displaying Enter the following command to display registers. You can display the
Registers basic registers class, or an individual register.

display registers <RETURN>

When you enter thesteg' command with registers displayed, the
register display is updated every time you enter the "step" command.

step <RETURN>, <RETURN>, <RETURN>

2-26 Getting Started

Registers

Step_PC 0001017B@r BE/Z : msgcpy+0000003BH

Next PC 0001017D@r

PC 0001017D SP 000FO0CS FP 000FO0C8 AP 000F00D4 PSW 10000000

RO-7 000FO013F 00080022 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R16-23 00000000 00000000 00000000 00000000 60000000 00000000 00000000 00000000
R24-31 00000000 00000000 00000000 00000000 00000000 000FO0D4 G00FO0CS 000F00CS

Step_PC 0001017D@r TEST.W 08H[AP]

Next PC 00010180@r

PC 00010180 SP 000FO0C8 FP 000F00C8 AP 000FO0D4 PSW 10000000

R0O-7 000FO013F 00080022 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R24-31 00000000 00000000 00000000 00000000 00000000 000FO0D4 0OOFOOC8 000FO0C8

STATUS: N70632--Stepping complete

step

run trace step display

modify break end ---ETC--

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

Using the Analyzer

Specifying a Simple
Trigger

HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). The analyzer collects data at each pulse of a clock signal, and

saves the data (a trace state) if it meets a "storage qualification”
condition.

Suppose you want to trace program execution around the point at
which the sample program read the byte value 42H (CMD_B) from the

address cmd_code The following command makes this trace
specification.

trace about skdemo.c:_cmd_code data
Oxxxxxx42h status read <RETURN>

Note that the analyzer is to search for a lowest byte read of 42H
because the address is a multiple of four.

Getting Started 2-27

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "B" with the following
command.

modify memory skdemo.c:_cmd_code
bytesto 42h <RETURN>
The status line now shows "Emulation trace complete".

Displaying the Trace The trace listings which follow are of program execution on the 70632
emulator. To display the trace, enter:

display trace <RETURN>

Trace List Offset=0

Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols

-003 :_main+00000060 COF2A00C fetch

-002 :_main+00000064 BFOOOEOO fetch

HHHRA#SKkdemo.C - line 20 thru 22 #HHHHHHHHHHHHHHHHH

while(TRUE) {
if(cmd_code !'= NO_CMD) {
-001 :_main+0000004F FFFFFF42 CMP.B #20H,skdemo:_cmd_code

about skdemo:_cmd_code FFFFFF42 ... 42H data read

+001 :_main+00000058 FFFFFF42 BE/Z :_main+0000007CH
+002 :_main+00000068 20F28049 fetch

+003 :_main+0000006C 7F000000 fetch

HHHHHHskdemo.c - line 23 #HHHHHIHHHHIHIHHHHIHIHHHEHHE
cmd_process (cmd_code, cmd_result);
+004 :_main+0000005A 7FO00000 PUSH #000F0120H
+005 :_main+00000070 09E83F84 fetch

STATUS: N70632--Running user program Emulation trace complete R
display trace

run trace step display modify break end ---ETC--

The line labeled "about" in the trace list shows the state which
triggered the analyzer. To list the next lines of the trace, press the
<PGDN> or NEXT > key.

2-28 Getting Started

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines

Base: symbols hex mnemonic w/symbols
+006 skdemo:_cmd_code FFFFFF42 ... 42H data read
+007 :init.:+000000F0 000F0120 000F0120H data write
+008 :_main+00000074 F220F480 fetch

+009 :_main+00000060 F220F480 MOVS.BW skdemo:_cmd_code,[-SP]
+010 :_main+00000078 000EOOAD fetch

+011 :_main+0000007C E4CCD36A fetch

+012 :init.:+000000EC 00000042 00000042H data write
+013 :_cmd_process 0000F4EC fetch aft br
+014 :_cmd_p+00000004 F4ADEO0OOO fetch

+015 :_cmd_p+00000008 00000000 fetch

i HHskdemo.c - line 28 thru 33 #HHIHIHHHHIHIHTH
int cmd_process (cmd_code, cmd_result)

char cmd_code;

char *cmd_result;

STATUS: N70632--Running user program Emulation trace complete R
display trace

run trace step display modify break end ---ETC--

Displaying the Trace At this time you may want to see more executed instructions on a

with Compress Mode display. To see flow of executed instructions, the 70632 emulator
Softkey Interface provides compress mode for analysis display. To see

trace display with compress mode, enter the following command.

display trace compress on <RETURN>
Your analysis trace display should look similar as below. You can see
executions without prefetch cycles.

If you want to see all of cycles including prefetch cycles, enter
"display trace compress off command.

Getting Started 2-29

Trace List Offset=0

+007 :init.:+000000F0 000F0120
+012 :init..+000000EC 00000042
+018 :init.:+000000E4 00010090
+020 :init.:+000000E8 000F0100
+025 :init.:+000000E0 000F00F4

char cmd_code;
char *cmd_result;

display trace compress on

run trace step display

Label: Address Data Opcode or Status w/ Source Lines

Base: symbols hex mnemonic w/symbols

+006 skdemo:_cmd_code FFFFFF42 ... 42H data read

+009 :_main+00000060 F220F480 MOVS.BW skdemo:_cmd_code,[-SP]
+017 :_main+00000068 0020F4EE CALL :_cmd_process,[SP]

+022 :_cmd_process 0100F4EE PUSHM #0m<>

+024 :_cmd_p+00000006 0100F4EE PREPARE #00000000H

i HHskdemo.c - line 28 thru 33 #tHHIHHIHHHHIHIHTH
int cmd_process (cmd_code, cmd_result)

STATUS: N70632--Running user program Emulation trace complete R

modify break end ---ETC--

000F0120H data write
00000042H data write
00010090H data write
000F0100H data write

000FOOF4H data write

Changing the Trace
Depth

Using the Storage
Qualifier

2-30 Getting Started

The trace listing includes source lines and symbols because you issued
"set symbols otiand 'set source oh command in the previous
section. You can cause these source lines highlight by entering the
following command.

set source on inverse_video on

<RETURN>
To list the previous lines of the trace, press tA&YP> or PREV>
key.

The default states displayed in the trace list is 256 states. To change
the number of states, use the "display trace depth" command.

display trace depth 1024 <RETURN>
You can see the states more than 256 by using the above command.

You can use storage qualifier to trace only states with specific
conditions. Suppose that you would like to trace only states which

write the messages to the cmd_result area. To accomplish this, you can

use the trace only' command like following.

trace after _cmd_result only range
_cmd_result thru +1fh status write
<RETURN>
Only write accesses to addressnd_resultthrough_cmd_result+1fh
will be stored in the trace buffer.

Trace List Offset=0

Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
after skde:_cmd_result FFFFFF43 ... 43H data write
+001 :skdem:+00000021 FFFF6FFF6F..H data write
+002 :skdem:+00000022 FF6DFFFF ..6D....H data write
+003 :skdem:+00000023 6DFFFFFF 6D...... H data write
+004 :skdem:+00000024 FFFFFF61 61H data write
+005 :skdem:+00000025 FFFF6EFF6E..H data write
+006 :skdem:+00000026 FF64FFFF ..64....H data write
+007 :skdem:+00000027 20FFFFFF 20...... H data write
+008 :skdem:+00000028 FFFFFF27 27H data write
+009 :skdem:+00000029 FFFF41FF41..H data write
+010 :skdem:+0000002A FF27FFFF ..27....H data write
+011 :skdem:+0000002B 20FFFFFF 20...... H data write
+012 :skdem:+0000002C FFFFFF65 65H data write
+013 :skdem:+0000002D FFFF6EFF6E..H data write
+014 :skdem:+0000002E FF74FFFF ..74....H data write

STATUS: N70632--Running user program Emulation trace started R
modify memory _cmd_code bytes to 41h

run trace step display modify break end ---ETC--

Modify the command input byte with the following command.

modify memory _cmd_code bytesto 41h
<RETURN>

The display shows that the message bytes are written to the location
_cmd_result You will find the status line still shows "Emulation trace
started" because the analyzer trace buffer is not filled up. As the length
of resulting message consists of 32 bytes, only 32 states are stored in

the trace buffer. If you want to stop the trace, enter the following
command.

stop trace <RETURN>
The status line will show "Emulation trace complete”.

Getting Started 2-31

Triggering the The emulation analyzer can capture states of instruction executions. If

Analyzer at an you want to trigger the analyzer when an instruction at a desired
Instruction Execution address is executed, you should not set up the analyzer trigger

State also triggered in case that the address is accessed to prefetch the

instruction, or read the data from the address. You should use the
"exec status qualifier.
Suppose that you want to trace the states of the execution after the
instruction at thdéine 43 of theskdemao.dile, issue the following
command. Théne 43of the fileskdemo.ds executed when the
command "C" is entered.

Trace List Offset=0

Label: Address Data Opcode or Status w/ Source Lines

Base: symbols hex mnemonic w/symbols

i Hskdemo.c - line 43 thru 45 #HiHHHHHHIHIHIHHEHI

case CMD_C:
msgcpy (cmd_result, "Command 'C’ entered", MSG_SIZ);

after :_cmd_p+00000066 0000004F No fetch cycle found
+002 :init.:+000000DC 00000020 00000020H data write
+004 :_cmd_p+0000006C FAEE3B6A No fetch cycle found
+005 :init.:+000000F0 000F0120 000FO0120H data read
+006 :init.:+000000D8 0008005D 0008005DH data write
+008 :_cmd_p+00000072 0071F4EE No fetch cycle found
+010 :init.:+000000D4 000F0120 000F0120H data write
+015 :_cmd_p+00000075 64049DF0 No fetch cycle found
+016 :init.:+000000CC 00010125 00010125H data write
+018 :init.:+000000D0 000FOOEC OOOFOOECH data write
+020 ._msgcpy 202D236A PUSHM #0m<>

STATUS: N70632--Running user program Emulation trace complete R
modify memory skdemo.c:_cmd_code bytes to 43h

run trace step display modify break end ---ETC--

trace after skdemo.c: line 43 status
exec <RETURN>

condition to detect only the address. If you do so, the analyzer will be

The message "Emulation trace started” will appear on the status line.

To trigger the analyzer, send the command "C" by entering:

modify memory skdemo.c:_cmd_code
bytes to 43h <RETURN>
The status line now shows "Emulation trace complete".

2-32 Getting Started

The emulator has disassemble capability in trace listing. When the
emulator disassembles instructions in stored trace information, the
prefetch cycles of each instruction are required.

When you displayed the results of analyzer trace, some lines whic
include "No fetch cycle found" messages were displayed. Each lin
was instruction execution cycle at the address in the left side of the
line. However, the disassembles of these instructions were not
displayed because the prefetch states for the instructions were not
stored by the analyzer.

To display complete disassembles in trace listing, you should modify
location of trigger state in trace list, referred to as the "trigger position",
to "about" instead of after".

70632 Analysis The status qualifiendirite” was used in the example trace command

Status Qualifiers used above. The following analysis status qualifiers may also be used

fetch
brfetch
read
write
data

io

exec
sdata
sysbase
tbl
coproc
fault
halt
intack
grdacc
wrrom
monitor
block
retry
holdtag

with the 70632 emulator.

0xLxxxxxxxxxx011x code fetch
0x1xxxxxxxxxx0111 code fetch after branch
OXLIXXXXXXXXXXXXXX read
OXOXXXXXXXXXXXXXX Write
OxXxXxXxxxxxxxxx0011 data access (read/write)
OXXXXXXXXXxxx1011 /o access (read/write)
Oxxxxxxxxxxxx0000 execution state
Oxxxxxxxxxxxx0010 data access (read/write) with short path
Oxxxxxxxxxxxx0100 system base table access
Oxxxxxxxxxxxx0101 translation table access (read/write)
OXXXXXXXXXXXX1000 co-processor access(read/write)
OXxXxXxxxxxxxxx1100 machine fault acknowledge
OXXXxXXXxXxxxxx1101 halt acknowledge
OXXXXXXXXXXXX1110 interrupt acknowledge
OXXXXXXXXXX0X0XXX guarded memory access
O0XOXXXXXXX0XX0XXX write to ROM
OXXXXXXXXXXXOXxXX background monitor cycle
OXXXXXXXXOXXXXXXX bus lock
OOXXXXXXXXXXXXXXX retry
Oxxxxxxxxxxxx0001 bus hold

For a Complete For a complete description of using the HP 64700 Series analyzer with
Description the Softkey Interface, refer to tAmalyzer Softkey Interface User's
Guide

Getting Started 2-33

Exiting the
Softkey Interface

End Release System

Ending to Continue
Later

Ending Locked from
All Windows

Selecting the
Measurement System
Display or Another
Module

2-34 Getting Started

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release _system <RETURN>

You may also exit the Softkey Interface without specifying any

options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

When using the Softkey Interface from within window systems, the
"end' command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>
This option only appears when you enter the Softkey Interface via the
emul700command. When you enter the Softkey Interfac@rian
andMEAS_SYS only one window is permitted. Refer to theftkey
Interface Referenamanual for more information on using the Softkey
Interface with window systems.

When you enter the Softkey Interface praon andMEAS_SYS you

have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is alsddcked'; that is, you can continue the

emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system

<RETURN>
This option is not available if you have entered the Softkey Interface
via theemul700command.

Virtual Mode Emulation Topics

Introduction

The on-chip Memory Management Unit (MMU) of the 70632
microprocessor translates virtual addresses to physical (actual)
addresses that are placed on the processor address bus. This cha|
shows you how to use the emulator when the 70632 MMU is active:

Sample Program
for Virtual Mode
Emulation

The sample program skdemozonsisting of source programs
command.cprocess.@ndos.s The program emulates a primitive
command interpreter.

The fileos.sis a simple operating system which performs
task-switching, the file is listed in figure 3-1. The filemmand.ds a
command generator, which is listed in figure 3-2. Thepliteess.ds
a command interpreter, which is listed in figure 3-3.

Virtual Mode Emulation Topics 3-1

file "os.s
.globl Sys_SBT, Current_Task, Num_Of_Task, TCB_Entry
.globl Sys_Init, Setup_Task, Sys_Trap, Start_Ini_Task
.globl Switch_Task

.equ isp,0
.equ 10sp,1
.equ I1sp,2
.equ 12sp,3
.equ 13sp,4
.equ sbr,5
.equ tr,6

.equ sycw,7
.equ tkew,8
.equ pir,9
.equ psw2,15
.equ atbr0,16
.equ atlr0,17
.equ atbrl,18
.equ atlr1,19
.equ atbr2,20
.equ atlr2,21
.equ atbr3,22
.equ atlr3,23
.equ trmod,24
.equ adtr0,25
.equ adtrl,26
.equ adtmr0,27
.equ adtmrl,28

.equ Stack_Size,0x1000-16
.equ Dest_Size,0x20

.data "sys_sbt" (RW)
Sys_SBT:
.org 0x34
.word Dummy_Text
.org 0xc0
.word Sys_Trap

.data "sys_tch" (RW)
Current_Task: .word 0
Num_Of Task: .word 2

TCB_Entry: .word TCB_A
.word Ox7fffffff
.word 0x00000000
.word 0x40000000
.word 0x00006000
.word 0

Figure 3-1. Sample Program Source 0s.s

3-2 Virtual Mode Emulation Topics

TCB_A:

TCB_B:

Sys_Init:

.word TCB_B
.word Ox7fffffff
.word 0x00000000
.word 0x40000000
.word 0x00007000
.word 0

.word 0x0000e000
.Space 32*4
.word 0x00009009,0x00000000

.word 0x0000e000
.Space 32*4
.word 0x00009011,0x00000000

.bss "sys_stk" (RW)
comm tmp_area,16,4
Ilcomm Sys_Stack,Stack_Size,4

text "sys_text" (RX)
.align 4

mov.w #Sys_Stack+Stack_Size,sp

Idpr #Sys_SBT #sbr

Idpr #0x9001 #atbrO
Idpr #0x00000000,#atlr0
Idpr #0,#atbrl

Idpr #0,#atbr2

Idpr #0,#atbr3

Idpr #0x2171 #sycw

Setup_Task: mov.w Num_Of_Task,r0

mov.w #TCB_Entry,rl

Setup_Task_0: mov.w rO,tmp_area

mov.w rltmp_areat+4
Idtask 4[r1],[r1]
mov.w tmp_area+4,rl
mov.w tmp_area,r0
mov.w 0x10[r1],r2
mov.w #0,[-r2]
mov.w 8[r1],[-r2]
mov.w 12[r1],[-r2]
mov.w r2,4[[r1]]
add.w #0x18,r1

dbr r0,Setup_Task_0

Idtask TCB_Entry+4,TCB_Entry

Start_Ini_Task: retis #4

Figure 3-1. Sample Program Source 0s.s (Cont'd)

Virtual Mode Emulation Topics 3-3

.align 4
Sys_Trap: mov.w Current_Task,tmp_area
mul.w #24,tmp_area
add.w #TCB_Entry,tmp_area
sttask 4[tmp_area]
mov.w Current_Task,r0
incw r0
cmp.w r0,Num_Of_Task
jnz Sys_Trap_0
xor.w r0,r0
Sys_Trap_0: mov.w r0,Current_Task
mul.w #0x6,r0
mov.w #TCB_Entry,rl
Idtask 4[r1](r0),[r1](r0)
Switch_Task: retis #4

Dummy_Text: halt

.data "sharemem" (RW)

_cmd_sem: .word 0
_command: .byte 0
.align 4
_msg_sem: .word O
_message: .space 0x20

.bss ‘"stack_a" (RW)
Icomm Stack_A,Stack_Size,4

.bss ‘"stack_b" (RW)
Ilcomm Stack_B,Stack_Size,4

Figure 3-1. Sample Program Source 0s.s (Cont'd)

3-4 Virtual Mode Emulation Topics

#define TRUE 1
#define FALSE 0
#define MSG_SIZ 0x20

#define trap(x) asm (" trap #0xa0+(x)")
static char cmd;
static char msg_dest [MSG_SIZ];

main()

clear_dest();
while (TRUE) {
for(cmd ="A’; cmd <="'C’; cmd++) {
write_command (cmd);
read_message (msg_dest);
}
}
}

clear_dest()
inti;

for (i=0;i<MSG_SIZ ; i++)
msg_dest[i] ="";

write_command (cmd)
char cmd;
extern char command;
extern int cmd_sem;

while (cmd_sem)
trap(0);

command = cmd;

cmd_sem-++;

}

read_message (buf)

char *buf;

{
extern char *message;
extern int msg_sem;
int i;

while (!'msg_sem)
trap(0);
for(i=0;i<MSG_SIZ; i++)
buf [i] = message [i];
msg_sem--;

Figure 3-2. Sample Program Source command.c

Virtual Mode Emulation Topics 3-5

#define TRUE 1

#define FALSE 0

#define CMD_A A
#define CMD_B 'B’
#define CMD_C 'C

#define NO_CMD ”
#define MSG_SIZ 0x20

#define trap(x) asm (" trap #0xa0+(x)")

static char status|[MSG_SIZ];
static char cmd_resultfMSG_SIZ];

main ()
char cmd_code;

msgcpy (status, "Awaiting command", MSG_SIZ);
msgcpy (cmd_result, "No command entered", MSG_SIZ);

while(TRUE) {
read_command (&cmd_code);
cmd_process (cmd_code, cmd_result);
write_message (cmd_result);

}
}
int cmd_process (cmd_code, cmd_result)

char cmd_code;
char *cmd_result;

msgcpy (status, "Command received", MSG_SIZ);

switch (cmd_code) {

case CMD_A:
msgcpy (cmd_result, "Command 'A’ entered”, MSG_SIZ);
break;

case CMD_B:
msgcpy (cmd_result, "Command 'B’ entered”, MSG_SIZ);
break;

case CMD_C:
msgcpy (cmd_result, "Command 'C’ entered", MSG_SIZ);
break;

default :
msgcpy (cmd_result, "Invalid command entered”, MSG_SIZ);

Figure 3-3. Sample Program Source process.c

3-6 Virtual Mode Emulation Topics

msgcpy(msg_dst, msg_src, msg_siz)

char *msg_dst;
char *msg_src;
int msg_siz;

for (; *msg_src !="\0' && msg_siz > 0; --msg_siz)

*msg_dst++ = *msg_src++;

for (; msg_siz > 0; --msg_siz)
*msg_dst++="",

read_command (cmd)

char *cmd;

extern char command;
extern int cmd_sem;

while (!cmd_sem)

trap(0);

*cmd = command;

cmd_sem--;

}

write_message (buf)

char *buf;

{

extern char *message;
extern int msg_sem;

inti;

while (msg_sem)

trap(0);

for(i=0;i<MSG_SIZ; i++)
message [i] = buf [i];

msg_sem-++;

SECTIONS

{
sys_sbt
sys_tcb
sys_stk
sys_text
sharemem
stack_a
stack_b

Figure 3-3. Sample Program Source process.c (Cond'd)

0x00000000: {}
0x00001000: {}
0x00002000: {}
0x00003000: {}
0x00004000: {}
0x00005000: {}
0x00006000: {}

Figure 3-4. Linker command file os.Ink

Virtual Mode Emulation Topics 3-7

SECTIONS
{

command 0x40000000: {
command.o (.text)
command.o (.data)
command.o (.bss)
_cmd_sem = 0x00004000;
_command = 0x00004004;
_msg_sem = 0x00004008;
_message = 0x0000400c;

} >(RWX)

Figure 3-5. Linker Command File command.Ink

SECTIONS
{

process 0x40000000: {
process.o (.text)
process.o (.data)
process.o (.bss)
_cmd_sem = 0x00004000;
command = 0x00004004;
msg_sem = 0x00004008;
message = 0x0000400c;

} >(RWX)

Figure 3-6. Linker Command File process.Ink

SPACE(OS) 0x0 < {os}
SPACE(COMMAND) < {command}
SPACE(PROCESS) < {process}

Figure 3-7. Configurator Command File skdemo2.cfc

0S.S

System Base Table The "sys_sbt" section defines the 70632
Break-point instruction trap vector and the Software trap 0 vector. The
break-point instruction vector is required for the software breakpoint
feature of the emulator. The software trap 0 vector is used for aborting
task and transfering execution to the operating system.

3-8 Virtual Mode Emulation Topics

Task Context Block The "sys_tcbh" section defines task context
block. The operating system manages tasks with this block.

The address labelégurrent_ Task contains a task number which is
currently executed. Tasks are numbered from 0. This address initialized
to 0 when the program is started. First, the task numbered 0 will be
executed.

The address labelédim_Of Task contains the number of tasks the
operating system manages. This program has two tasks, which are
alternately executed. So this address contains the value "2".

The address label&dCB_Entry contains task control blocks for each
task. Each block consists of pointer and register list of TCB manag
under the 70632 processor, and the initial values of registers PSW, PC
and SP, and a word of flags.

The address label&CB_A contains the TCB, managed under the
processor, for one of the tasks. This task will be calledaarhand
in this example. The task number mentioned above is "0".

The address labelddCB_B contains the TCB for the other task, which
will be called as process. The task number is "1".

System Stack The "sys_stk" section defines a stack for the
operating system. The stack is pointed by the register ISP.

System Program Code The "sys_text" section defines program
codes for the operating system.

The program instructions from tiSys_Init label to theSetup_Task
perform initialization of the operating system. The privilege registers
are set up and the processor address mode is switched to virtual mode.

The instructions from th8etup_taskto Start_Ini_Task perform
initialization for the tasks. The stack for each task is set up with initial
PC and PSW.

The instructions fronStart_Ini_Task transfer the execution to initial
task commandask).

The instructions fronsys_Trap perform switching task. When a task
aborts the execution, the processor executes from the address labeled
Sys_Trap. The instructions store the task execution environment of the
aborted task to corresponding TCB, updatedheent_Task to the

Virtual Mode Emulation Topics 3-9

command.c

another task number to be switched, load the TCB, and switch the
execution.

Common Area The "sharemem" section defines common area for
bothcommandask angrocesgask. The common area is private
buffer between these tasks.

The filecommand.@efines a command generatBommandask
generates commandspmcesgask. A command is an ASCII byte,
and 'A’ through 'C’ are generated sequentially. Commands are
delivered tgprocesgask via the common area.

When a command byte is interpretedpogcesgask, resulting

message is written in the common area. After the message is written,
commandask reads the message from the common area. The message
is transferred tonsg_destiocation.

The fileprocess.defines a command interpretBrocessask checks
whether a command is send freammmandask. When a command is
generated bgommandask,procesgask interprets the command and
output a message into the common area. If the command is one of the
correct command ('A’ through 'C’), the corresponded message is
written.

process.c
Compiling,
Assembling and
Linking the

Sample Program

NEC Corporation CC70616 C Compiler Package is used to compile,
assemble, and link the demo program. The package are available for
use in the HP 9000 300 Series work stations from NEC.

The v70cnvhp utility is used to generate the required HP format files.
Each file which has ".X" suffix contains the absolute code of the
program. Each file which has ".L" suffix contains the list of global
symbols. Each file which has ".A" suffix contains the list of local
symbols. The symbol files fars.scontain real addresses of the
symbols. The symbol files fmommand.@ndprocess.contain virtual

3-10 Virtual Mode Emulation Topics

addresses of the symbols. All the absolute files are generated for real
address location.

The following commands are used to compile, assemble, and link the
demo program.

$as70616 -a 0s.s >0s.lis

$cc70616 -cg command.c

$cc70616 -cg process.c

$1d70616 -m -0 os 0s.0 0s.Ink >0s.map

$1d70616 -m -0 command command.o command.lnk >command.map

$1d70616 -m -0 process process.o process.Ink >process.map

$cf70616 -m -0 skdemo2.cfo skdemo2.cfc >skdemo2.cfm

$ar70616 -x skdemo2.cfo

$v70cnvhp -r os.cf

$v70cnvhp -rx command.cf

$v70cnvhp -vla command.cf

$v70cnvhp -rx process.cf

$v70cnvhp -vla process.cf
The linker command filess.Ink command.Inlandprocess.Inkused in
the above command are shown in figure 3-4 through 3-6.

The configurator command fikkdemo2.cfés listed in figure 3-7.

The sample programs used in this chapter can be found in the following
path:

/usr/hp64000/demo/emul/hp64758/*

Setting Up the Before debugging, you have to set up the emulator by typing some
Emulator commands. The details of these commands used below are mentioned
in chapter 2.

Virtual Mode Emulation Topics 3-11

Entering the Softkey
Interface

From the "pmon" User Interface

If /Jusr/hp64000/binis specified in your PATH environment variable,
you can enter themon User Interface with the following command.

$ pmon<RETURN>
If the measurement system and emulation module are named "emv70"
and "v70", you can enter the emulation system with the following
command:

If you have not set up the measurement system or emulation module,
set up the system or module. Refer to the "Entering the Softkey
Interface" section of chapter 2.

emv70 default v70 <RETURN>

From the HP-UX Shell

If /Jusr/hp64000/binis specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

Configuring the To entering the emulator configuration session, enter the following
Emulator ~ command.

modify configuration <RETURN>
Trace the following answer to configure the emulator. Details of each
question will be described later.

Micro-processor clock source? internal
Enter monitor after configuration? yes
Restrict to real-time runs? no

Modify memory configuration? yes

Monitor type? background

Now you should be facing memory mapping screen. The sample
program occupies address range 0 through 9fffh of actual memory.

3-12 Virtual Mode Emulation Topics

Delete the default mapping, and map the address range as emulation

ram.
delete all
0 thru 9fffth emulation ram
default guarded
end
Modify emulator pod configuration? no
Modify debug/trace options? no
Modify simulated 1/O configuration? no

Modify interactive measurement specification? no
Configuration file name? skdemo?2 .

Loading Absolute Enter the following command to load the absolute files.
Files

load os <RETURN>
load command <RETURN>

load process <RETURN>
Thev70cnvhpconverter also generated an absolute file which contains
address translation tables for the sample program. The absolute file
name isaptable.X To load the file, specifgosymbolsoption because
symbol files foraptable.Xare not generated.

load aptable nosymbols <RETURN>

Loading the Symbols The sample program is executed from the ad@gssinit. Load the
for os symbols foros because the files.sincludes this label.

load symbols os <RETURN>
After loading symbol file, display the global symbols.

display global _symbols <RETURN>

Virtual Mode Emulation Topics 3-13

Global symbols in os
Static symbols
Symbol name Address range ___ Segment Offset
Current_Task 00001000 0000
Num_Of_Task 00001004 0000
Setup_Task 00003043 0000
Start_Ini_Task 000030A0 0000
Switch_Task 000030FF 0000
Sys_Init 00003000 0000
Sys_SBT 00000000 0000
Sys_Trap 000030A4 0000
TCB_Entry 00001008 0000
esharemem 0000402C 0000
_estack_a 00005FF0 0000
_estack_b 00006FFO0 0000
_esys_sbt 000000C4 0000
_esys_stk 00003000 0000
_esys_tcb 00001150 0000
STATUS: Build successful; no warnings were issued R
display global_symbols

run trace step display modify break end ---ETC--

Display the local symbols, include the source file name in which the
symbols are defined.

display local_symbols_in
0S.S:<RETURN>

Symbols in o0s.s:

Static symbols

Symbol name Address range ___ Segment Offset

Dummy_Text 00003101 1101

Setup_Task_0 00003051 1051

Stack_A 00005000 0000

Stack_B 00006000 0000

Sys_Stack 00002010 0010

Sys_Trap_0 000030E7 10E7

TCB_A 00001038 0038

TCB_B 000010C4 00C4

_cmd_sem 00004000 0000

_command 00004004 0004

_message 0000400C 0ooC

_msg_sem 00004008 0008

tmp_area 00002000 0000

STATUS: cws: 0s.s: R
display local_symbols_in os.s:
run trace step display modify break end ---ETC--

3-14 Virtual Mode Emulation Topics

Getting into Before starting the program, define software breakpoint at the address
Virtual Mode Start_Ini_Task. This address is the exit of the operating system.

modify software breakpoints enable
<RETURN>

modify software breakpoints set
Start_Ini_Task <RETURN>
Then start the program from the addi®gs_Init.

run from Sys_Init <RETURN>
You will see the following in the status line.
Software break: 00000030a0@v
Display memory in mnemonic format from the current PC.
display memory mnemonic <RETURN>

The next instruction to be executed is high-lighted. You can include
symbols in the display.

Memory :mnemonic :file = o0s.s:

address label data

000030A0 :Start_Ini_T FAE4 RETIS #4H

000030A2 00 HALT

000030A3 00 HALT

000030A4 :Sys_Trap 2D80F25CDF MOV.W :Current_Task,sk/os.s:tmp_area
000030B0 8580F41800 MUL.W #00000018H,sk/os.s:tmp_area
000030BC 8480F40810 ADD.W #00001008H,sk/os.s:tmp_area
000030C8 FCFE38EFFF STTASK 00000004H[sk/os.s:tmp_area]
000030D2 2D20F22EDF MOV.W :Current_Task,RO

000030D9 DD60 INCW RO

000030DB BCOOF229DF CMP.W RO,:Num_Of_Task

000030E2 6505 BNE/NZ /os.s:Sys_Trap_0

000030E4 B44060 XOR.W RO,RO

000030E7 0:Sys_Trap_0 2D0O0F219DF MOV.W RO,:Current_Task
000030EE 8520E6 MUL.W #6H,RO

000030F1 2D21F40810 MOV.W #00001008H,R1

000030F8 01E0C00104 LDTASK 04H[R1](RO),[R1](RO)
STATUS: N70632--Running in monitor ~ Software break: 0000030a0@v___...R....
set symbols on
pod_cmd set perfinit perfrun perfend ---ETC--

set symbols on <RETURN>

Virtual Mode Emulation Topics 3-15

The processor executed the following tasks f&ys_Init to
Start_Ini_Task.

m [nitializing privilege registers (stack pointer and area table
registers)
m [nitializing Task Context Blocks farommandask and
procesgask.
m Switching tocommandask.
The emulator broke just before the transition from operating system to
commandask. Step one instruction to enter toenmandask.

step <RETURN>
The display is updated to disassemble from the current PC. The
symbols for these addresses are included in the symbol file for
commandask. Load the symbols foommandask.

load symbols command <RETURN>
The display will come to include the symbols.

Enter the following command to include source file in the display.
set source on <RETURN>

Memory :mnemonic :file = command.c:
address label data

40000000

40000006 DEF4000000 PREPARE #00000000H
7 static char msg_dest [MSG_SIZ];
8
9 main()
10

11 clear_dest();

4000000C

12 while (TRUE){

13 for(cmd ="A’; cmd <="C’; cmd++) {
40000014 0980F441F2 MOV.B #41H,s/command.c:_cmd
4000001D B880F443F2 CMP.B #43H,s/command.c:_cmd
40000026 6F37 BGT :_main+0000005DH
14 write_command (cmd);
40000028 0CAOF20C01 MOVS.BW s/command.c:_cmd,[-SP]
40000030 4980F27C00 CALL :_write_command,[SP]
STATUS: N70632--Stepping complete R
set source on
pod_cmd set perfinit perfrun perfend ---ETC--

:_main ECF4000000 PUSHM #0m<>

4980F25C00 CALL :_clear_dest,[SP]

Define software breakpoint at the addr8sstch_Task This address
is the exit of the task dispatcher. The syntweltch_Taskin included
in os

3-16 Virtual Mode Emulation Topics

Since you have loaded the symbolsdommangdyou must reload the
symbols foros

load symbols 0os <RETURN>
Define software breakpoint 8twitch_Task and continue the
execution.

modify software breakpoints set
Switch_Task <RETURN>

run <RETURN>
You will see the following in the status line.

Software break: 00000030ff@v
The processor executed the following tasks.

m Generating the command 'A’.

Sending the command into the common area.
Aborting the execution afommand

Storing the Task Context faommand

Loading the Task Context fprocess

Switching toprocess

The emulator broke just before the transition from task dispatcher to
process Step one instruction to enter {rcesgask.

step <RETURN>
The display is updated to disassemble from the current PC. The
symbols for these addresses are included in the symbol fgedcess
task. Load the symbols fprocessask.

load symbols process <RETURN>

Virtual Mode Emulation Topics 3-17

Memory :mnemonic :file = process.c:

address label data
40000000 :_main ECF4000000 PUSHM #0m<>
40000006 DEF4040000 PREPARE #00000004H

15 main ()

16

17 char cmd_code;

18

19 msgcpy (status, "Awaiting command", MSG_SIZ);
4000000C EEF4200000 PUSH #00000020H
40000012 EEF4380200 PUSH #40000238H
40000018 EEF4C40200 PUSH #400002C4H
4000001E 4980F22E01 CALL _msgcpy,[SP]
40000026 843FEC ADD.W #CH,SP

20 msgcpy (cmd_result, "No command entered", MSG_SIZ);
40000029 EEF4200000 PUSH #00000020H
4000002F EEF4490200 PUSH #40000249H
40000035 EEF4E40200 PUSH #400002E4H
STATUS: cws: process.c: .R....

load symbols process

load store stop_trc copy reset specify cmb_exec ---ETC--
Displaying Display basic registers by entering:
Registers
display registers <RETURN>
You can also display privilege and on-chip MMU registers, enter:
display registers PRIV <RETURN>
display registers MMU <RETURN>

3-18 Virtual Mode Emulation Topics

Registers

Next PC 40000000@v

PC 40000000 SP 00007000 FP 00000000 AP 00000000 PSW 00000000

R0O-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00007000

SBR 00000000 TR 000010C4 SYCW 00002171 TKCW 0000E000 PIR 00007006

ISP 00003000 LOSP 00007000 L1SP 00000000 L2SP 00000000 L3SP 00000000
PSW2 0000F002

ATBRO 00009001 ATBR1 00009011 ATBR2 00000000 ATBR3 00000000
ATLRO 00000000 ATLR1 00000000 ATLR2 00000000 ATLR3 00000000

STATUS: N70632--Stepping complete R
display registers MMU

run trace step display modify break end ---ETC--

Tracing the
Program
Execution

Suppose that you wish to trace the program from the current address.

The default trace specification triggers the analyzer as soon as possible,
if the program is running user program. The emulator is running in
monitor because the software breakpoint has hit. To trace the program
execution from the current address, you do not have to specify any
trace specifications. Start the trace and continue the program.

trace <RETURN>

run <RETURN>
The status line shows that the emulation trace is completed.

To display the trace listing without fetch cycles, enter:

display trace compress on <RETURN>

Virtual Mode Emulation Topics 3-19

The resulting trace is similar to the following display.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols

after 00009010 0000903B 0000903BH trans table read
+001 00009014 000000FC 000000FCH trans table read
+002 00009038 00008E05 O00008EO5H trans table read
+003 00009038 00008E85 00008ES85H trans table write
+011 00009000 0000901B 0000901BH trans table read
+012 00009004 000006FC 000006FCH trans table read
+013 00009030 00006F85 00006F85H trans table read
+014 00008000 00006F85 PUSHM #0m<>

+015 00008006 00006F85 PREPARE #00000004H
+016 00006FFC 00000000 00000000H data write

+019 0000800C 3F847F00 PUSH #00000020H

+021 00006FF4 00000020 00000020H data write

+022 00008012 00000020 PUSH #40000238H

+024 00006FF0 40000238 40000238H data write

+026 00008018 000249F4 PUSH #400002C4H

STATUS: N70632--Running user program Emulation trace complete R
display trace compress on

run trace step display modify break end ---ETC--

The trace listing shows the beginning of the executigmarfessask,
and now you can find that the address fields of the trace are displayed
in real address. Regardless of address mode, addresses which the

analyzer captures are real addresses by default.

Note # Since the symbols f@rocessare generated in virtual address, you can
not include the symbols in the trace listing even if you load the
symbols foprocess To include the symbols, you must trace virtual

address or generate the symbol file in real address.

3-20 Virtual Mode Emulation Topics

Specifying Virtual The program executeemmandindprocessalternately. Suppose that
Space you wish to note tprocesdask. In this case, you should load the
P symbols foprocessand use the XMMU function.

Since you have loaded the symbolsgarcessn previous section, you
do not have to reload the symbols. Display the global symbols, enter:

display global _symbols <RETURN>
The global symbols fgorocessare displayed.

Global symbols in process
Procedure symbols

Procedure name Address range ___ Segment Offset
_cmd_process 40000088 - 4000014B 0088

_main 40000000 - 40000087 0000

_msgcpy 4000014C - 400001A6 014C

_read_command 400001A8 - 400001D8 01A8

_write_message 400001DC - 40000234 01DC

Static symbols

Symbol name Address range ___ Segment Offset
_cmd_sem 00004000 0000

_command 00004004 0000

_eprocess 40000304 0000

_message 0000400C 0000

_msg_sem 00004008 0000

Filename symbols

STATUS: N70632--Running user program Emulation trace complete R
display global_symbols

run trace step display modify break end ---ETC--

To display local symbols, select:

display local_symbols_in process.c:
<RETURN>
The resulting display follows.

Virtual Mode Emulation Topics 3-21

Symbols in process.c:
Procedure symbols

Procedure name Address range ___ Segment Offset
_cmd_process 40000088 - 4000014B 0088

_main 40000000 - 40000087 0000

_msgcpy 4000014C - 400001A6 014C

_read_command 400001A8 - 400001D8 01A8

_write_message 400001DC - 40000234 01DC

Static symbols

Symbol name Address range ___ Segment Offset
_cmd_result 400002E4 02E4

_status 400002C4 02C4

Source reference symbols

Line range Address range __ Segment Offset
#1-#19 4000000C - 40000028 0ooC

#20-#20 40000029 - 40000045 0029

STATUS: cws: process.c: .R....

display local_symbols_in process.c:

run trace step display modify break end ---ETC--

Using the XMMU The emulator uses the current value of the 70632 address table register
Function. pairs by default when you specify an address in virtual address in a

command.

Suppose that you would like to debug a certain task executed in
multiple virtual space without stopping the execution. You will be
unable to specify the virtual address in desired virtual space, because

the address space is dynamically changed.

The XMMU function provides you to specify a desired virtual address
space. Regardless of the current virtual space, you can specify the
address space you want to note to. The emulator has the optional

XMMU class registers. These registers consist of eight XMMU register
pairs and one XMMU mode register. The XMMU register pairs
correspond to the actual 70632 area table register pairs. You can

specify a virtual address space by modifying the XMMU class

registers. These registers are not actual registers of the 70632 processor.

When you set the contents of the XMMU class registers and activate
the XMMU function, the XMMU class registers are used for the
address translation of the virtual address you specify in a command,
instead of the actual area table register pairs of the 70632

microprocessor.

3-22 Virtual Mode Emulation Topics

The XMMU class registers consist of the following registers.

XMMU class registers corresponded actual registers
XATBRO

XATLRO ATLRO

XATBR1 ATBR1

XATLR1 ATLR1

XATBR2 ATBR2

XATLR2 ATLR2

XATBR3 ATBR3

XATLR3 ATLR3

MMUMOD --None--

If you set the value of tHdMUMOD register in the above table to

"1", the emulator translates the virtual address in a command line

the contents of the XMMU class registers instead of the actual are
table register pairs. Oppositely, if you want to make the emulator to
translate the virtual address in a command line with the actual table
register pairs, in other words the virtual address in the current address
space, reset the value of MMUMOD register to "0".

To display the XMMU class registers, enter:
display registers XMMU<RETURN>

The resulting display shows the contents of XMMU class registers. The
display also includes the contents of on-chip MMU registers, you

Registers

PC 40000000 SP 00007000 FP 00000000 AP 00000000 PSW 00000000

R0O-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00007000

SBR 00000000 TR 000010C4 SYCW 00002171 TKCW 0000E000 PIR 00007006
ISP 00003000 LOSP 00007000 L1SP 00000000 L2SP 00000000 L3SP 00000000
PSW2 0000F002

ATBRO 00009001 ATBR1 00009011 ATBR2 00000000 ATBR3 00000000
ATLRO 00000000 ATLR1 00000000 ATLR2 00000000 ATLR3 00000000

MMUMOD 00000000
XATBRO 00000000 XATBR1 00000000 XATBR2 00000000 XATBR3 00000000
XATLRO 00000000 XATLR1 00000000 XATLR2 00000000 XATLR3 00000000

STATUS: N70632--Running user program Emulation trace complete R
display registers XMMU

run trace step display modify break end ---ETC--

Virtual Mode Emulation Topics 3-23

displayed in previous section, and these values define virtual space for
process

Since you want to note fwrocess modify the XMMU class registers
with the same value as the value of on-chip MMU registers in the
display. Enter:

modify register XMMU XATBRO to 9001h
<RETURN>
modify register XMMU XATBR1 to 9011h
<RETURN>
To make the emulator use the configured address space you entered,
enter:
modify register XMMU MMUMOD to 1
<RETURN>
To display the contents of memory at address fromain.
Enter:
Memory :mnemonic :file = process.c:
address label data
40000000 :_main ECF4000000 PUSHM #0m<>
40000006 DEF4040000 PREPARE #00000004H
15 main ()
16
17 char cmd_code;
18
19 msgcpy (status, "Awaiting command", MSG_SIZ);
4000000C EEF4200000 PUSH #00000020H
40000012 EEF4380200 PUSH #40000238H
40000018 EEF4C40200 PUSH #400002C4H
4000001E 4980F22E01 CALL :_msgcpy,[SP]
40000026 843FEC ADD.W #CH,SP
20 msgcpy (cmd_result, "No command entered", MSG_SIZ);
40000029 EEF4200000 PUSH #00000020H
4000002F EEF4490200 PUSH #40000249H
40000035 EEF4E40200 PUSH #400002E4H
STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE R
display memory _main mnemonic
run trace step display modify break end ---ETC--

display memory _main mnemonic
<RETURN>

3-24 Virtual Mode Emulation Topics

Displaying Address You can display the 70632 Area Table Entry (ATE) and Page Table
Translation Tables Entry (PTE). These features are provided with Terminal Interface. Use

thepod_commandto issue the Terminal Interface command.

To display the ATE corresponding with addressin (address
40000000H), use thete command of the Terminal Interface.

Note that the Terminal Interface cannot accept any symbols.

display pod command <RETURN>

pod _command 'ate 40000000h’ <RETURN>
To display the PTE corresponding with addressin (address
40000000H), use thete command of the Terminal Interface.

pod _command 'pte 40000000H’ <RETURN>

Pod Commands

Time Command
wait - do not use, will tie up the pod, blocking access
init, pv - will reset pod and force end release_system
t - do not use, will confuse trace status polling and unload

10:24:39 ate 40000000h

1:000 at 000009010 Present
PTB=000009038 Limit=000 Growth=positive
Execute level=3 Write level=3 Read level=3

10:24:44 pte 40000000h

1:000:000 at 000009038 Present
Page base=000008000 Executable Writable Readable
Modified Accessed User=0 Not locked

STATUS: N70632--Running user program Emulation trace complete R
pod_command 'pte 40000000h’

Breakpoints Before defining the breakpoint, break the emulator by entering:

break <RETURN>
To define a breakpoint at the addressahd_processselect:

modify software breakpoints set
_cmd_process <RETURN>
Now that the software breakpoint is set, start the execution.

run <RETURN>

Virtual Mode Emulation Topics 3-25

The status line shows as follows.

Software break: 040000088@v

Displaying TCB You can display TCB contents of current task by usingctne
Terminal Interface command. Specify the register list witption.
The register list specifies registers to be stored to or loaded from TCB

when the task is switched. The format of the register list is same as the

70632 processor's LDTASK or STTASK instruction operand. Since

the

register list of current tasprocesy is 7fffffffH, enter:

pod_command 'tcb -| 7ffffffth’
<RETURN>

Pod Commands
Time Command
1:000:000 at 000009038 Present
Page base=000008000 Executable

10:26:12 tcb -| 7ffffffth

tkew ATT=7 OTM=0 FIT=0 FZT=0 FVT=0
10sp=00006fdc

r30=00006fe8

STATUS: N70632--Running in monitor
pod_command 'tcb -1 7fffffffh’

Modified Accessed User=0 Not locked

r0=00000000 r1=0000001f r2=00000000 r3=00000000 r4=00000000
r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00006ff4

atrpl ATB=000009010 Limit=000 Growth=positive Valid

pod_cmd set perfinit perfrun perfend ---ETC--

Writable Readable

FUT=0 FPT=0 RDI=0 RD=0

Software break: 040000088@v___...R....

Tracing Virtual The analyzer can capture virtual address by modifying configuration.

Address

To configure to make the analyzer capture the virtual address, enter:

modify configuration <RETURN>

PressReturn key until the "Modify debug/trace option?" question is
displayed. Answeyesto entering the debug/trace configuration
session. Pred@eturn key until the "Trace virtual or real address?"
question is displayed. Answeirtual to trace virtual address.

3-26 Virtual Mode Emulation Topics

PressReturn several times to exit the configuration session.

Specifying Trigger

To trace the program states after the execution of the address
_read_command

trace after _read_command status
exec <RETURN>
The status line shows that the trace is started.

To continue the execution, enter:

run <RETURN>
The trace status changes to "Emulation trace complete”.

To display the trace, enter:

display trace compress on <RETURN>
The resulting display shows the execution of the function
_read_command

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols

after :_read_command F28009F7 No fetch cycle found
+002 :_read_+00000006 F28009F7 No fetch cycle found
+003 00006FE8 00006FFC 00006FFCH data write
i HHHprocess.c - line 65 thru 68 #ttHHHIHHHHIHIRH T

read_command (cmd)
char *cmd;

{
+005 :_read_+0000000C 64CO003E No fetch cycle found
+010 :_cmd_sem 00000000 0OOOOOOOH data read
+011 :_read_+00000011 00000000 TEST.W :_cmd_sem
+012 :_read_+00000017 00000000 BE/Z :_read_command+0000000
R HHHprocess.c - line 69 thru 73 #HHHIHIHHEHIHIRHHTE
extern char command;
extern int cmd_sem;

STATUS: N70632--Running user program Emulation trace complete R
display trace compress on

run trace step display modify break end ---ETC--

Press the&PGDN> or <NEXT> key to see more lines. Then you will
see the transition froprocesstask to the task dispatcher. Press the
<PGDN>or <NEXT> key several times until teommandask
execution is displayed (The statexofmmandask will be stored from
line 175).

Virtual Mode Emulation Topics 3-27

As you can see, some addresses are replaced with the symbols for
procesgask (in this case,cmd_process You may confuse the states
with the states gfrocesgask. The reason is becagsenmandand
processoccupy the same virtual address (not the same virtual space)
each other.

Trace List Offset=0

STATUS: N70632--Running user program
display trace compress on

run trace step display modify

Label: Address Data Opcode or Status w/ Source Lines

Base: symbols hex mnemonic w/symbols

+166 00009008 00009037 00009037H trans table read

+167 0000900C 000000FC 000000FCH trans table read

+168 00009034 00007F85 00007F85H trans table read

+174 :_msg_sem 00000001 0OO00001H data read

+175 :_cmd_p+00000065 00000001 TEST.W :_msg_sem

+177 :_cmd_p+0000006B 1E202D22 BE/Z :_cmd_process+00000062
+180 :_cmd_p+0000006D CO003F03 MOV.W #0H,-04H[FP]

+182 00005FE8 00000000 00000000H data write

+184 :_cmd_p+00000072 00000000 CMP.W #00000020H,-04H[FP]
+185 00005FE8 00000000 00000000H data read

+186 :_cmd_p+0000007B 00000000 BGE :_cmd_process+0000009D
+189 :_cmd_p+0000007D 00000000 MOV.W -04H[FP],RO

+190 00005FE8 00000000 00000000H data read

+191 :_message 00000000 000O00OOH data read

+193 :_cmd_p+00000081 000020F4 MOV.W :_message,R1

Emulation trace complete R

break end ---ETC--

Load the suitable symbols for displaying the accurate symbols in the
display.

3-28 Virtual Mode Emulation Topics

load symbols command <RETURN>

Trace List
Label:
Base:
+166
+167
+168
+174

+182
+185

Address
symbols
00009008
0000900C
00009034

._msg_sem
+175 :_read_+00000011 00000001 TEST.W :_msg_sem
+177 :_read_+00000017 1E202D22 BE/Z :_read_message+0000000
H#HHIHH#command.c - line 49 #HiHIHHHHIHIHHHHEHEHIHHEHEHE
for(i=0;i<MSG_SIZ; i++)
+180 :_read_+00000019 CO003F03 MOV.W #0OH,-04H[FP]

00005FE8

+184 :_read_+0000001E 00000000 CMP.W #00000020H,-04H[FP]

00005FE8

+186 :_read_+00000027 00000000 BGE :_read_message+0000004
H#HHHH#command.c - line 50 #HHHHHHEHIHHHHEHEHEHHEHEH
buf [i] = message [i];

STATUS: Loaded symbol data base R
load symbols command

load store stop_trc copy reset specify cmb_exec ---ETC--

Offset=0
Data Opcode or Status w/ Source Lines
hex mnemonic w/symbols
00009037 00009037H trans table read
000000FC 00000OFCH trans table read
00007F85 00007F85H trans table read
00000001 00000001H data read

00000000 00000000H data write
00000000 00000000H data read

Address Mode When you issue a command, the emulator displays the result of the

Option

command. According to circumstance, the resulting display includes
address information such as "00004000@r" or "00008000@V".

The suffix "@r" indicates that the address is displayed in real address
mode. The suffix "@v" indicates that the address is displayed in virtual
address. When the emulator displays an address information, the
address mode will be different as the case may be.

Specifying An Address Mode

When you designate addresses, you can select either real or virtual
address by using thé&cbde' option. To specify an address mode, add
this option just before an address expression. The following options are

allowed.
m "fcoder" real address
m "fcode V' virtual address

Virtual Mode Emulation Topics 3-29

The following is an example usage of the fcode option.

display memory fcode v 4000000h
mnemonic <RETURN>
You can also designate addresses with no suffix. In this case, the
address mode which is lastly specified byftteele option is used to
evaluate the addresses.

Until you specify an address mode by using the fcode option, the
emulator use default address mode. The default address mode is
determined as follows.

1. When the processor is reset, the addresses are evaluated as
real address.

2. When the processor never runs in virtual mode after reset, the
addresses are evaluated as real address.

3. Once the processor has run in virtual mode after reset, the
addresses are evaluated as virtual address.

Note # If the processor has ever run in virtual mode since the processor was
reset, the address expression without suffix is evaluated as virtual
address, even if the processor is running in real mode.

After you use the fcode option, if you wish to make the emulator to
evaluate addresses in the default address mode, use the
"fcode noné option.

If you specify a virtual address in a command, the emulator has to
translate the virtual address, which you have specified, to the real
address. The method of the address translation is same as the actual
70632 microprocessor. In this case, the emulator use the current value
of the 70632 address table register pairs, ATBRO, ATLRO, ATBR1,

to translate the address by default. The details of the address translation
are shown in chapter 4.

3-30 Virtual Mode Emulation Topics

Configuring the Emulator

Introduction

Your 70632 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing your target system software, or you can use the
emulator in-circuit when integrating software with target system
hardware. You can use the emulator’s internal clock or the target
system clock. Emulation memory can be used in place of, or along
with, target system memory. You can execute target programs in
real-time or allow emulator execution to be diverted into the monito
when commands request access of target system resources (targe
system memory, register contents, etc).

The emulator is a flexible instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the HP 64758
emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>
After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

General Emulator Configuration:

— Specifying the emulator clock source (internal/external).
— Selecting monitor entry after configuration.

— Restricting to real-time execution.

Configuring the Emulator 4-1

4-2 Configuring the Emulator

Memory Configuration:

Selecting the background or foreground emulation
monitor.

Mapping memory.

Emulator Pod Configuration:

Responding to /HLDRQ signal from target system.
Responding to /NMI signal from target system.
Responding to INT signal from target system.

Responding to BFREZ signal from target system.
Selecting target memory access data size.

Driving background cycles to target system.

Selecting value for address bus during background cycles.

Selecting object file address attribute.

Debug/Trace Configuration:

Enabling breaks on writes to ROM.

Selecting tracing of foreground/background cycles.
Enabling tracing bus hold cycles.

Selecting tracing of real/virtual address.

Enabling tracing execution cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

General Emulator
Configuration

Micro-processor
clock source?

Note #

The configuration questions described in this section involve general
emulator operation.

This configuration question allows you to select whether the emula
will be clocked by the internal clock source or by a target system cl
source.

internal

Selects the emulator’s internal 20 MHz oscillator as the emulator clock
source.

external

Selects the clock input to the emulator probe from the target system.
You must use a clock input conforming to the specifications for the
70632 microprocessor. The maximum clock speed is 20 MHz.

Changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the
following "Enter monitor after configuration?" question is answered.

Configuring the Emulator 4-3

Enter monitor after
configuration?

Restrict to real-time
runs?

4-4 Configuring the Emulator

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail. When an external clock source is
specified, this question becomes

"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

yes

When reset to monitor is selected, the emulator will be running in the
monitor after configuration is complete. If the reset to monitor fails,
the previous configuration will be restored.

no

After the configuration is complete, the emulator will be held in the
reset state.

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

no

All commands, regardless of whether or not they require a break to the
emulation monitor, are accepted by the emulator.

yes

When runs are restricted to real-time and the emulator is running the
user program, all commands that cause a break (except "reset",
"break”, "run", and "step") are refused. For example, the following
commands are not allowed when runs are restricted to real-time:

m Display/modify registers.
m Display/modify target system memory.
m Load/store target system memory

Caution '

Refer to the "Target Memory Access" section of chapter 4, for more
information.

If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute thesét', "break”, and 'steg’
commands; you should use caution in executing these commands.

Memory
Configuration

Monitor type?

The memory configuration questions allow you to select the monito
type and to map memory. To access the memory configuration
guestions, you must answer “yes” to the following question.

Modify memory configuration?

The monitor type configuration question allows you to choose between
a foreground monitor (supplied with the emulation software but must
be assembled, linked, and loaded into emulation memory) or the
background monitor (which resides in the emulator).

Theemulation monitois a program executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, you may enter a command to display
target system memory. This requires access to target system resources.
The system controller writes a command code to the monitor
communications area, breaking execution of the emulation processor
from the user program into the monitor program. The monitor program
then reads the command from the communications area and executes
the 70632 instructions that read the contents of the target system
memory locations. After the monitor has completed its task, execution
returns to the user program.

Thebackground monitgrresident in the emulator, offers the greatest
degree of transparency to your target system (that is, your target system
shouldn't be affected by monitor execution). In some cases, you may

Configuring the Emulator 4-5

4-6 Configuring the Emulator

require an emulation monitor tailored to the requirements of your
system. Here, you will need to use a foreground monitor linked into
your program modules. See the “Using the Foreground Monitor”
appendix for more information on foreground monitors.

background

Selects the use of the built-in background monitor. A memory overlay

is created and the background monitor is loaded into that area. You can
use the emulator pod configuration questions listed below to specify
how the emulator will drive the target system during background
monitor execution.

m “Drive background cycles to target system?”

m “Value for address bits A31-A8 during background cycles?”
When you select the background monitor and the current monitor type
is “foreground”, you are asked the following question.

Reset map (change of monitor type requires map reset)?

This question must be answered “yes” to change the monitor type.

foreground

Specifies that a foreground monitor will be used. Foreground monitor
programs are shipped with the Softkey Interface (refer to the “Using
the Foreground Monitor” appendix). When you select a foreground
monitor, you are asked additional questions.

Reset map (change of monitor type requires map reset)?

This question must be answered “yes” or else the foreground monitor is
not selected. This question is asked any time the foreground monitor is
selected.

Mapping Memory

Monitor location for real address?

The default configuration specifies a monitor address of 00000000H.
The monitor base address must be located on a 4 Kbyte boundary;
otherwise, configuration will fail. Specify the real memory location of
foreground monitor.

When using the foreground monitor in virtual mode, you must also
answer the next question ("Monitor location for the virtual address").

Monitor location for virtual address?

Specify the virtual memory location of the foreground monitor. The
default configuration specifies a monitor virtual address of 00000000H.
The monitor base address must be located on a 4 Kbyte boundary;
otherwise, configuration will fail.

When using the foreground monitor only in real mode, you may not|
answer this question.

Refer to the "Using the Foreground Monitor" appendix for more
information.

The default emulator configuration maps locations 0-OFFFFH as
emulation RAM. If your programs occupy locations outside this
address range or in target system memory, you must modify the
memory map.

The memory map specifies the location and type of various memory
regions used by your programs and your target system (whether or not
it exists). The memory map is necessary for several reasons:

m The emulator must know whether a given memory location
resides in emulation memory or in target system memory. The
emulator then orients the buffers for the data transfer.

m The emulator needs to know the size of any emulation
memory blocks so it can properly reserve emulation memory
space for those blocks.

m The emulator must know if a given space is RAM
(read/write), ROM (read only), or does not exist. This allows
the emulator to decide if certain actions taken by the

Configuring the Emulator 4-7

4-8 Configuring the Emulator

emulation processor are proper for the memory type accessed.
For example, if the processor tries to write to an emulation
memory location mapped as ROM, the emulator will not
permit the write (though the memory at the given location is
RAM). You can optionally configure the emulator to break to
the monitor upon such occurrence. See the “Break processor
on write to ROM?” debug/trace configuration question. Target
memory locations will be overwritten if they are actually

RAM but mapped as ROM. Also, if the emulation processor
attempts to access a non-existent location (known as
“guarded”), the emulator will break to the monitor.

The HP 64758G emulator contains 510 kilobytes of emulation
memory, which can be mapped at a resolution of 4 Kbytes.

The HP 64758H emulator contains 1020 kilobytes of emulation
memory, which can be mapped at a resolution of 4 Kbytes.

The memory mapper allows you to define up to 8 different map terms.
You can specify one of five different memory types (target rom, target
ram, emulation rom, emulation ram, or guarded).

For example, to map memory location 10000H through 1FFFFH as
emulation ram, enter the following command.

10000h thru 1ffffh emulation ram
<RETURN>

If you wish to remove a mapper term, use the "delete” command. You
can delete the mapper term numbered "1", enter the following
command.

delete 1 <RETURN>

If you want to remove all memory mappings, enter the following
command.

delete all <RETURN>

By default, the emulation memory access operated with no-wait-state.
If you are using the emulator in in-circuit mode, you can configure
emulation memory location to honor target system ready signals. To

respond to the target system ready signals while emulation memory is
being accessed, adibek” attribute as follows.

10000h thru 1ffffh emulation ram
lock <RETURN>

When accessing the emulation memory located at address 10000h thru
1ffffh, the target system ready signals will be referred in order to insert
the wait states.

loading programs into memory. This helps safeguard against loads that

accidentally overwrite earlier loads if you followreap/load

procedure for each memory range.
Emulator Pod To access the emulator pod configuration questions, you must answer
Configuration “yes” to the following question.

Note # You should map all memory ranges used by your progbefose

Modify emulator pod configuration?

Enable responding to You can specify whether the emulator accepts or ignores the /HLDRQ
HLDRQ signal? signal from your target system. By default, the emulator accepts the
/HLDRQ signals from the target system.

yes

Accept Hold Request from target system. The /[HLDRQ signals are
driven from the target system to the emulator. The emulator will
respond in the same manner as they would respond if the CPU were
present.

Configuring the Emulator 4-9

Enable /NMI input
from target system?

Respond to target
system interrupts?

4-10 Configuring the Emulator

no

Ignore Hold Request from target system. The /HLDRQ signals are not
driven from the target system to the emulator. The emulator will not
drive an active level on the address, data and control signals will not be
placed in a tristate condition.

This configuration allows you to specify whether or not the emulator
responds to NMI signals from the target system during foreground
operation.

yes

The emulator will respond to NMI signals from the target system.

no
The emulator will not respond to NMI signals from the target system.
This configuration allows you to specify whether or not the emulator

responds to interrupt signals from the target system during foreground
operation.

yes

The emulator will respond to interrupt signals from the target system.

no

The emulator will not respond to interrupt signals from the target
system.

Respond to target
bus freeze signal?

Target memory
access size?

You can specify whether the emulator accepts or ignores the BFREZ
signal from your target system. By default, the emulator accepts the
BFREZ signals from the target system.

yes

Accept Bus Freeze Signals from target system. The BFREZ signals are
driven from the target system to the emulator. The emulator will
respond in the same manner as they would respond if the CPU were
present.

no

Ignore Bus Freeze Signals from target system. The BFREZ signals are
not driven from the target system to the emulator. The emulator will
not drive an active level on the address, data and control signals w

not be placed in a tristate condition.

This question allows you to specify the types of cycles that the
emulation monitor use when accessing target system memory. When
an emulation command requests the monitor to read or write target
system memory locations, the monitor will either use byte or word
instructions to accomplish the read/write.

bytes

Specifies that the emulator will access target system memory by byte
accesses.

half_words

Specifies that the emulator will access target system memory by half
word (2 bytes) accesses.

words

Specifies that the emulator will access target system memory by word
(4 bytes) accesses.

Configuring the Emulator 4-11

Drive background
cycles to target
system?

4-12 Configuring the Emulator

This question allows you to specify whether the emulator will drive the
target system bus on all background monitor cycles.

If you have chosen to use a foreground monitor, emulator foreground
monitor cycles will appear at the target interface exactly as if they were
bus cycles caused by any target system program.

yes

Specifies that background cycles are driven to the target system. The
emulation processor’s address, data and control strobes are driven
during background cycles.

The value driven on the upper 24 bits (A31-A8) of the address bus is
selected by the “Value for address bits A31-A8 during background
cycles?” question.

When background cycles are driven to the target system, background
write cycles appear as read cycles to the target system.

Use the “drive background cycles” option to avoid target system
interaction problems. For example, your target system memory refresh
scheme may depend on the constant repetition of bus cycles. Or, you
may be using a watchdog timer in your target system, which resets the
system when no bus cycles occur in a specified period. Driving
background cycles to the target system will help avoid problems in
either case.

no

Background monitor cycles are not driven to the target system. The
emulator will appear to the target system as if it is between bus cycles
while it is operating in the background monitor.

Value for address
bits A31-A8 during
background cycles?

Object file address
attribute?

This configuration question allows you to specify what memory
address will be driven to the target system on address lines A31-A8
during emulation background monitor accesses. These lines will only
be driven if you have specified that the emulator drive background
cycles to the target system. See the previous “Drive background cycles
to target system” question.

If you choose to use a foreground monitor, this configuration option is
still valid. The emulation processor executes a few bus cycles in the
background monitor before the transition to the foreground monitor.

This configuration item allows you to specify whether the emulator
should load absolute files into virtual address or real address when you
use the load command. In other words, you can specify that in which
address space the address location information are recorded in th
absolute files. The default virtual address are used to translate the
location address to actual memory address.

real

The emulator interprets the location address information in the absolute
files as real address.

vir

The emulator interprets the location address information in the absolute
files as virtual address.

Debug/Trace
Configuration

The debug/trace configuration questions allow you to specify breaks on
writes to ROM and whether the analyzer should trace foreground or
background execution. To access the trace/debug configuration
guestions, you must answer “yes” to the following question.

Modify debug/trace options?

Configuring the Emulator 4-13

Break processor on
write to ROM?

Note #

Trace background or
foreground
operation?

4-14 Configuring the Emulator

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM. The
emulator will prevent the processor from actually writing to memory
mapped as emulation ROM. It cannot prevent writes to target system
RAM locations mapped as ROM, though the write to ROM break is
enabled.

yes

Causes the emulator to break into the emulation monitor whenever the
user program attempts to write to a memory region mapped as ROM.

no

The emulator will not break to the monitor upon a write to ROM. The
emulator will not modify the memory location if it is in emulation
ROM.

Thewrrom trace command status option allows you to use “write to
ROM” cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to ROM:

trace about status wrrom <RETURN>

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles. When background cycles are
stored in the trace, all but mnemonic lines are tagged as background
cycles.

Trace HOLD tag?

Trace virtual or real
address?

foreground

Specifies that the analyzer trace only foreground cycles. This option is
specified by the default emulator configuration.

background

Specifies that the analyzer trace only background cycles. This is rarely
a useful setting for user program debugging.

both

Specifies that the analyzer trace both foreground and background
cycles. You may wish to specify this option so that all emulation
processor cycles may be viewed in the trace display.

You can direct the emulator to send HOLD cycle data to emulation
analyzer or not to send it.

yes

When you enable tracing HOLD cycles, these cycles will appear as one
analysis trace line.

no

HOLD cycles will not appear on analysis trace list.

This configuration item allows you to specify whether analyzer should
trace virtual address or real address.

real

The analyzer captures real address bus which is the same that the actual
microprocessor outputs to.

vir

The analyzer captures virtual address. The trace listing shows the
logical addresses executed by the processor.

Configuring the Emulator 4-15

Enable the execution
cycles trace?

The emulation analyzer can capture states of instruction executions in
addition to processor bus activity. By default, the emulation analyzer
captures execution states. In this case, the analyzer can count neither
time between states nor occurrence of bus states.

yes

Both exec states and bus states are captured by the emulation analyzer.
You will see the disassembles of executed instructions in trace listing.
Lines with disassembles indicate exec states of the instructions

no

Only bus states are captured by the emulation analyzer. When you
display trace listing, the emulator disassembles with "fetch” states, and
their disassembled processor mnemonics is displayed at the "fetch”
states which are the first byte of the instructions. In this mode, the
analyzer can trace with time tagging or # of states counter. The
maximum trace depth is 512 because of counting time or states.

Refer to the "Using the Emulator” chapter for more details of the
analyzer features.

Simulated I/O
Configuration

The simulated 1/O feature and configuration options are described in
the Simulated I/CGreference manual.

Interactive
Measurement
Configuration

4-16 Configuring the Emulator

The interactive measurement configuration questions are described in
the chapter on coordinated measurements iSdfitzey Interface
Referencenanual.

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file, which can be loaded into the
emulator later.

Configuration file name? <FILE>

The name of the last configuration file is shown. No filename is shown
if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when you
exit the Softkey Interface with thend release_systernommand.

When you specify a filename, the configuration is saved in two files.
The file with the “.EA” extension is the “source” copy of the file, and
the file with the “.EB” extension is the “binary” or loadable copy of t

file.

Exiting emulation (with thend command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a “continue” file. The continue file is not
normally accessed.

Loading a
Configuration

Previously saved configuration files may be loaded with the following
Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with thend release_systermommand. You won't have to
modify the default configuration and answer all the questions again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 4-17

Notes

4-18 Configuring the Emulator

Using The Emulator

Introduction Many of the important topics described in this chapter involve the
commands or features which relate to using the emulator. The "Getting
Started" and "Virtual Mode Emulation Topics" chapters shows you
how to use the basic features of the 70632 emulator. This chapter
describes more information or notices of the 70632 emulator.

This chapter contains the following topics.

m Register Manipulation
— Stack Pointer and Program Status Word Modification.
— Floating-Point Format Display or Modification
m Analyzer Topics
— Analyzer Status Labels
Analyzer Trigger Condition
Trace Listing Disassembler
Execution States
Analyzer Data Bus Condition
Analyzer Clock Speed
Cause of Monitor Break
Hardware Breakpoints
Software Breakpoints
Target Memory Access
FPU Support
MMU Support
Coordinated Measurement
Unfamiliar Prompts
70118/70116 Emulation Mode
FRM Support
Real-time Emulation Memory Access
Virtual Address Translation
Features available via "pod_command"
Register names and classes
Restrictions and Considerations

Using the Emulator 5-1

Prerequisites

Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysisnual and the "Getting Started"
and "Virtual Mode Emulation Topics" chapters of this manual.

Register
Manipulation

Stack Pointer
Modification

5-2 Using the Emulator

In the 70632 microprocessor, one of the five privileged registers
(LOSP, L1SP, L2SP, L3SP, ISP) is selected as stack pointer according
to the EL and IS flags of the PSW, and the stack pointer is cached by
SP. The contents of the stack pointer corresponding to the execution
level are not always the same as the stack pointer (SP). The stack
pointer corresponding to the execution level is updated only when the
execution level is changed.

The emulation monitor is executed in execution level 0. When the
emulator returns from emulation monitor to user program, for example
when you issue (run) command, the emulator changes execution level
from O to user program’s execution level which is determined by the IS
flag and EL field in the program status word (PSW).

For this reason, in emulation monitor, the stack pointer (SP) and the
stack pointer corresponding to the execution level need to have the
same value. The monitor intends to keep the stack pointer (SP) and the
current level stack pointer to have the same value.

When breaking into monitor, the current level stack pointer is modified
to the value of SP.

Displaying/Modifying
Registers In
Floating-Format

If you modify registers PSW, LOSP, L1SP, L2SP, L3SP or SP in
monitor as follows.

m When you modify the EL or IS flag of the PSW, the SP is
modified to the value of the stack pointer corresponding to the
execution level which is determined by the EL or IS flag of
the PSW you have modified.

m When you modify the stack pointer corresponding to the
current execution level (LOSP, L1SP, L2SP, L3SP, ISP), the
stack pointer SP is modified to the same value.

m When you modify the stack pointer SP, the stack pointer
corresponding to the execution level (LOSP, L1SP, L2SP,
L3SP or ISP; the one selected depends on the contents of the
PSW) is modified with the same value.

You can display/modify general purpose registers (RO through R31) in
floating-point format witHfreg command. The IEEE-754 standard data

type is supported. To access to the general purpose registers in fl
point format, use the folowing register names withRh®AT
attribute.

m FROthruFR31for short real (32 bits floating point)

m FRPOthruFRP30for long real (64bits floating point)

To display all general purpose registers in short real format, enter:

display registers FLOAT <RETURN>
You can specify register to be displayed (for example, display RO in
short float format).

display registers FLOAT FRO <RETURN>
To display two consecutive registers RO and R1 in long real format,
enter:

display registers FLOAT FRPO <RETURN>
Modify register RO to the value 12345.678, by typing:
modify register FLOAT FRO to

12345.678 <RETURN>

Using the Emulator 5-3

Analyzer Topics

Analyzer Status The following are the analyzer status labels which may be used in the

Qualifiers "trace" commands.

fetch 0xLxxxxxxxxxx011x code fetch
brfetch 0x1xxxxxxxxxx0111 code fetch after branch
read OXLXXXXXXXXXXXXXX ~ read
write OXOXXXXXXXXXXXXXX — Write
data Oxxxxxxxxxxxx0011 data access (read/write)
io OXXXXXXXXXxxx1011 /o access (read/write)
exec Oxxxxxxxxxxxx0000 execution state
sdata Oxxxxxxxxxxxx0010 data access (read/write) with short path
sysbase Oxxxxxxxxxxxx0100 system base table access
tbl Oxxxxxxxxxxxx0101 translation table access (read/write)
coproc OXXXXXXXXXXXX1000 co-processor access(read/write)
fault Oxxxxxxxxxxxx1100 machine fault acknowledge
halt OXXXxXXXxXxxxxx1101 halt acknowledge
intack OXXXXXXXXXXXx1110 interrupt acknowledge
grdacc OXXXXXXXXXX0X0XXX guarded memory access
wrrom O0XOXXXXXXX0XX0XXX write to ROM
monitor OXXXXXXXXXXXOXxXX background monitor cycle
block OXXXXXXXXOXXXXXXX bus lock
retry OOXXXXXXXXXXXXXXX retry
holdtag OXXXXXXXXXXXX0001 bus hold
Specifying Trigger In the "Using the Analyzer" section of the "Getting Started" chapter,
Condition at Desired you used the analyzer to trace the states of the program after that the
Instruction Execution instruction corresponded to line 43 of the program skdemo.c was
executed. Then the following command was issued to specify trigger
condition.
trace after skdemo.c: line 43 status
exec <RETURN>
As you know, the 70632 processor has the prefetch unit (PFU) to
prefetch the instruction string to be executed.
If you had issued the following command instead, unexpected trigger
would have occurred at the prefetch state of the instruction.
trace after skdemo.c: line 43<RETURN>
This discussion is significant when you specify the trigger condition at
the execution of the instruction which follows a branch instruction like:
000020012@r - CMP.B #00H,R2
000020016@r - BZ 00020000H
000020018@r - MOV.W #0000000fH,RO

5-4 Using the Emulator

Execution States

Location in Trace

+061
+062
+063
+064
+065
+066

Listing

00003004 00001e05
00003004 00001e85
00001004 00000002

Assume that the processor executes instructions at address range
20000H through 20016H normally, and the instruction at address
20018H is executed at long intervals.

If you wish to trigger the analyzer at the execution of the address
20018H, you should specify trigger condition as follows.

trace about ~ 20018h status exec

<RETURN>
If you would type the following, the trigger will always occur at the
prefetch of the address 20018H whether or not the branch condition at
address 20016H is satisfied.

trace about 20018h <RETURN>

The emulation analyzer stores execution states of the program in
addition to actual bus cycles, if configuration "Enable the execution
cycles trace?" question is answered "yes" (default).

When the processor executes an instruction, the execution state of the
instruction is generated before its bus state(s) by the execution of t
instruction.

However, it is possible that the execution states are inserted after or
between the actual bus states of these activities, since the clock rate of
bus sampling is high-speed.

The following trace listing shows the examples that the execution
states, numbered 64, fall behind its bus activity.

00001e05H trans table read
00001e85H trans table write
00000002H data read

00005043 00000002 MOV.W 00001004H,RO
0000504a 00000002 MOV.W #00001008H,R1

00005060 2da20801

Specifying Data For
Trigger Condition or

Store Condition

fetch

The analyzer captures the data bus of the 70632 microprocessor. When
you specify a data in the analyzer trigger condition or store condition,

the ways of the analyzer data specifications differ according to the data
size and the address. Suppose that you wish to trigger the analyzer
when the processor accesses to the byte data 41H in the address 1000H.
You should not specify the trigger condition like this.

trace after 1000h data 41h<RETURN>

Using the Emulator 5-5

The data condition will be considered as 00000041H. The bit 31
through bit 8 of data bus is unpredictable because of the byte data. You
will unable to trigger as you desire. You should have entered as follows.

trace after 1000h data
Oxxxxxx41lh <RETURN>
Where x's are "don’t care" bits.

When the address that you want to trigger is not a multiple of 4, the
data bus specification is different from the above. If you trigger the
analyzer at the address 1001H instead of the address 1000H, the data
41H will be output to the bit 7 through bit 4 of the data bus. You
should enter:

trace after 1001h data

Oxxxx41xxh<RETURN>
In case of halfword or word access to the data bus, it will be more
complex, if two bus states are required to access the data because the
data is across 4 byte boundary.

In this case, you need to use the analyzer sequential trigger capabilities.
We do not describe the detail about the sequential trigger feature. Only
how to trigger the analyzer at some example cases is described in this
section.

To trigger the analyzer when the processor accesses the word data
12345678H at the address 1003H. The data bus activity of this cycles
will be as follows.

Sequencer level Address bus Data bus
1 00001003 78XXXXXX
2 00001004 xx123456
To specify the trigger condition, enter:

trace find_sequence 1003h data
78xxxxxxh restart status exec
trigger after 1004h data
0xx123456h<RETURN>

The "restart" condition is specified to restart sequencer when any states
except for exec state are generated between sequencer level 1 and 2.

5-6 Using the Emulator

Analyzer Clock
Speed

Finding Out the
Cause of a Monitor
Break

The emulation analyzer can capture both the exec states and bus states.

Bus states show actual processor’s bus activity.

Exec states indicate the address of the first byte of an executed opcode.
Only the address and processor status fields are valid during these
states.

The analyzer has a counter which allows to count either time or
occurrence of bus states. Tracing both bus cycles and exec states,
effectively doubles the clock rate to the analyzer.

By default, the analyzer time counter is turned off because the analyzer
time counter cannot be used at high-speed clock rate. If it is desired to
use the analyzer counter, configure the analyzer to trace only bus
cycles. The clock speed can be effectively halved if execution states
are NOT traced. To do this, you should answer "no" at the "Enable the
execution cycles trace?" question of the Debug/Trace configuration.
Refer to the " of the "Configuring the Emulator" chapter for more
information.

If the emulator breaks into monitor unwillingly, you can examine the
cause of the break by using the analyzer. When you issue the following
commands, you can capture the behavior of the program just before the
monitor break.

Specify the trigger condition that the analyzer is never triggered.

trace before not range 0 thru
Offffffffh<RETURN>
After starting your program, the unexpected break will occur. To show
the cause of the break, stop the trace and display the trace listing.

stop _trace <RETURN>

display trace <RETURN>
The trace listing displays will show the cause of the break. If you
cannot find the cause of the break, display the previous states. If the
trace listing does not include the fundamental problem, you need to
change the trigger condition to capture the problem, and then restart the
trace and the program.

Using the Emulator 5-7

This is also useful to detect the causes other than monitor breaks like a
processor halt.

Hardware The analyzer may generate a break request to the emulation processor.
Breakpoints "ll'o break whgn the.). analyzer.trlgger condition is satisfied, use the
break _on_trigger" trace option.

Additionally, you can see the program states before the breakpoint in
trace listing. Specify the trigger position at the end of trace listing by
using "before" option.

When the trigger condition is found, emulator execution will break into
the emulation monitor. Then you can also see the trace listing
mentioned above, enter the following commands.

trace before <QUALIFIER>

break _on_trigger <RETURN>
Without the trigger condition, the trigger will never occur and will
never break.

Example The following are example configurations for typical break conditions
Configuration for you will use.
Hardware
Breakpoints Features.

Breaks on Executing an Instruction

If you wish to break the execution when an instruction is executed. To
specify the breakpoint when the instruction at address 12345678H is
executed.

trace before 12345678h status exec
break _on_trigger <RETURN>

5-8 Using the Emulator

Breaks on Accessing an Address

If you wish to break the execution when a certain data is written to a
certain memory location. To specify the breakpoint when the halfword
data OabcdH is written to the address 87654321H.

trace before 87654321h data

Oxxabcdxxh status write

break _on_trigger <RETURN>
The detail of analyzer data specification in the trigger condition is
described in "Specifying Data for Trigger Condition or Store
Condition" part of this section.

Breaks on 70632 Exceptions

In case that you test a simple program which does not have exception
handler, you want to break the emulator on a 70632 exception. It is
useful to specify the breakpoint when a 70632 exception is occurred.

There are two way to detect the 70632 exceptions as follows.

m Detect the states of the System Base Table Access at Eve

To specify the breakpoint when the system base table acc
occurs by an event (exception or interrupt), enter:

trace before status sysbase
break_on_trigger <RETURN>

m Detect the states of the Address Range of System Base Table.

To specify the breakpoint when the address range of the
system base table access occurs (except for Software Trap and
Maskable Interrupt), enter:

trace before range 0 thru Obfh

break _on_trigger <RETURN>
If the program to be tested uses the 70632 Software Trap or Maskable
Interrupt or any other trap or exceptions on purpose, use the method of
"Detect the System Base Table Access".

If the program to be tested accesses the 70632 system base tables
which pointed at the SBR register on purpose, use the method of
"Detect the Address Range of System Base Table".

Using the Emulator 5-9

Software
Breakpoints

5-10 Using the Emulator

Software breakpoints are realized by the 70632 BRK instruction. When
you define or enable a software breakpoint, the emulator will replace
the opcode at the software breakpoint address with a breakpoint
interrupt instruction (BRK). When the BRK instruction is executed, the
emulator breaks into monitor and compares the address that the break
occurred.

If the address is defined as software breakpoint, the emulator displays
that the breakpoint hit. The emulator disable the breakpoint and replace
the BRK instruction with the original opcode.

If the BRK interrupt was generated by a BRK interrupt instruction in
the target system, execution still breaks to the monitor, and an
"undefined breakpoint" status message is displayed. To continue with
program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

There are some attentions when you use the software breakpoint
features.

Software breakpoints should be set at only locations which
contain instruction opcodes.

You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Software breakpoints should be set when the emulator is
running in monitor.

Software breakpoints should not be set, enabled, disabled, or removed
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Software breakpoints cannot be set in target ROM.

Because software breakpoints are implemented by replacing opcodes
with the BRK instructions, you cannot define software breakpoints in
target ROM.

You can, however, copy target ROM into emulation memory (see the
"Target ROM Debug Topics" section of the

"In-Circuit Emulation" chapter).

BRK instruction vector must be set up

You must define the 70632 break-point instruction trap vector to point
to an address which is allowed instruction fetch; typically in the
program code area.

When a software breakpoint occurred, the emulator breaks into the
monitor after the BRK instruction has been executed. However the
instruction which is pointed by the BRK instruction vector is never
executed.

If you didn't set up the vector and a software break has occurred, aj
access to the address pointed by the vector may drive the emulato
unpredictable state. The 70632 break-point instruction vector is def
in the 70632 system base table. The vector is located at
OXXXXXX34H; where "XXXXXX" is determined by the contents of
the privilege register SBR (defaults is "000000").

This table location depends on the content of 70632 SBR register.

More three words of the stack area must be prepared.

When the BRK instruction is executed, the emulator stores the
exception information to stack as the same as the 70632
microprocessor does.

So, you should prepare more three words (12 bytes) for stack in
addition. The stack, which is used when the breakpoint occurs, is
normally the level O stack which is pointed by LOSP. When the
software breakpoint occurs, if the program uses interrupt stack, the
three words of the interrupt stack pointed by ISP is modified by the
emulator instead of level O stack.

Using the Emulator 5-11

Software Breakpoint Manipulation In Virtual Mode

When you enable disable or remove a software breakpoint which you
have set by using virtual address, you must issue its command in same
virtual space when you have set.

The notices related to software breakpoint manipulation in virtual
mode are described in chapter 3.

Target Memory
Access

Commands Not
Allowed when
Real-Time Mode is
Enabled

5-12 Using the Emulator

When emulator execution is restricted to real-time and the emulator is
running in user code, the system refuses all commands that require
access to processor registers or target system memory or I/O. The
following commands are not allowed when runs are restricted to
real-time:

m Register display/modification (except for XMMU class
registers).

m Target system memory display/modification. Because the
emulator contains dual-port emulation memory, commands
which access emulation memory do not require breaks and are
allowed while runs are restricted to real-time.

m |/O display/modification.

m Step.

m Area Table Entry display (which is in target system memory).

m Page Table Entry display (when the PTE or the dependent
ATE is/are in target system memory).

m Any other commands with virtual address designation (which
cause target system memory accesses for address translation).

Breaking out of
Real-Time Execution

When you specifies virtual addresses in commands, the
emulator will refer to the address translation tables to translate
the virtual addresses to the corresponded real addresses. If the
address translation tables which are required to translate the
specified virtual addresses is in target system memory, the
address translation will be failed.

If the real-time mode is enabled, these resources can only be displayed

or modified while running in the monitor.

The only commands which are allowed to break real-time execution
are:

reset , run, break

FPU Support

The emulation analyzer can capture co-processor cycles. FPU register
display and modification are not supported.

There are following considerations to display co-processor mnemo

in trace or memory display.

FMOVCR instruction

FMOVCR instruction will be displayed as follows:

FMOVCTW instead of FMOVCR OP1,
FCTW
FMOVPTW instead of FMOVCR OP1,
FPTW
FMOVSTW instead of FMOVCR OP1,
FSTW

Instructions with no operand

Dummy operands are displayed when dis-assembling instructions
without any operand. As a sigr"'is displayed just after Opcode
mnemonics as follows.

0000fe86a@r - FRPUSH # FRO,FRO

Using the Emulator 5-13

0000fe87a@r - FRREL *

Two "FRO0"s are dummy operands. The following instructions relate
this.
FADD3M.S FADD3M.L FADD4M.S FADD4M.L
FSUB3M.S FSUB3M.L FSUB4M.S FSUB4M.L
FMUL3M.S FMUL3M.L FMUL4M.S FMUL4M.L
FRPUSH FRPOP FAFFECT

Instructions with one operand

Dummy operand is displayed when dis-assembling instructions with
only one operand. As a sigri,"is displayed just after Opcode
mnemonics as follows.

/00000100H,FRO
The "FRO" is a dummy operand. The following instructions relate this.

FIPV.S FIPV.L FRPINC FRREL

. MMU Support

5-14 Using the Emulator

Displaying Area Table Entry and Page Table Entry is supported via
Terminal Interfacete andpte commands. These commands are useful
to examine in which address space the program are executed, and
detect the address translation error of the program. Refer to the
"Features Available via Pod Commands" section in this chapter for
using Terminal Interface commands. Refer to the "70632 Emulator
Terminal Interface User's Guide" for these commands.

Making
Coordinated
Measurements

Coordinated measurements are measurements made between multiple
HP 64700 Series emulators which communicate via the Coordinated
Measurement Bus (CMB). Coordinated measurements can also include
other instruments which communicate via the BNC connector. A

trigger signal from the CMB or BNC can break emulator execution into
the monitor, or it can arm the analyzer. An analyzer can send a signal
out on the CMB or BNC when it is triggered. The emulator can send an
EXECUTE signal out on the CMB when you enterxhexecute)
command.

Coordinated measurements can be used to start or stop multiple
emulators, start multiple trace measurements, or to arm multiple
analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or
BNC trigger signals are interpreted as a "request to break". The
emulator looks at the state of the CMB READY (active high) line to
determine if it should break. It does not interact with the EXECUTE
(active low) or TRIGGER (active low) signals.

For information on how to make coordinated measurements, refer
theHP 64700 Emulators Terminal Interface: Coordinated
Measurement Bus User’s Guid@nual.

Unfamiliar Status

When you are using the emulator, one of the following message is
displayed in the status line normally.

N70632--Emulation reset
N70632--Running user program
N70632--Running in monitor
If your target system has a defect or you does not configure the
emulator appropriately, the following prompts may be displayed.
m N70632--Waiting for ready

m N70632--Halted

Using the Emulator 5-15

Waiting for Target
Ready

Halt or Machine Fault

5-16 Using the Emulator

The status "Waiting for ready" indicates that the emulator is waiting for
target ready signal.

If you map the unused memory locations as target memory and your
program accesses to these locations by a defect (in case of in-circuit,
also if a target memory is accessed by an emulation command), the
emulator is waiting for an impossible ready signal infinitely because
the /READY signal is internally pulled up. When you encounter this
status, the emulator cannot break into monitor. All you can do is to
reset the processor.

If you are using the emulator in in-circuit mode, the reason is that the
emulator intends to access to a memory location for which your target
system does not generate ready signal.

If you are using the emulator in out-of-circuit mode, the reason is that
the emulator intends to access to a target memory location by your
program. To prevent this, all of memory locations, which are not used,
should be mapped as guarded memory. When you direct the emulator
to access a target memory location, the emulator will return an error
message.

The status "Halted" indicates that the emulator is halted or in machine
fault.

In case of machine fault, all you can do will be to reset the processor
because the emulator cannot break into monitor.

One of the causes is the exception by a address translation failure. In
this case, one of the solution is to use the analyzer. The analyzer will
capture states which causes the emulator to halt. Refer to the "Finding
out the Cause of a Monitor Break" description of the "Analyzer
Topics" section in this chapter, for the analyzer configuration.

70108/70116 The 70632 microprocessor has the 70108/70116 emulation mode. In
Emulation Mode th!s mode, the 7'0632 executes instructions as 70108/70116
microprocessor’s ones.

The emulator provides the following functions for both 70108/70116
and 70632.

m Display memory contents in processor mnemonic format.
m Analyzer trace

Displaying Memory The emulator can display contents of memory in mnemonic format for
In 70108/70116 both 70108/70116 and 70632. The emulator provides both inverse
Mnemonic Format assemblers for 70108/70116 and 70632. You can select one of the
inverse assemblers to display memory contents.

To display memory contents in 70108/70116 mnemonic, add the
"options v20_30 option as follows.

display memory 1000h mnemonic
options v20_30 <RETURN>
To display memory contents in 70632 mnemonic, add the
"options default' option.

When you specify the disassembler by using one of these options, the
specified disassembler becomes the current disassembler.

If you do not specify neither option, the current disassembiler is used to
disassemble the memory.

Note # When you single-step an instruction, the current disassembler is used to
display the mnemonic of the instruction which has been single-stepped
in the register window.

Tracing States In You can also trace the bus states and exec states in the 70108/70116
Both Mode emulation mode. When tracing the execution of the program,
mnemonics of the executed instructions are included in trace listing.
The corresponded processor mnemonics are displayed automatically.

Using the Emulator 5-17

Real-time
Emulation
Memory Access

5-18 Using the Emulator

The dual-port memory for the emulation memory allows emulation
displays and modifications of emulation memory without breaking the
processor into the monitor during emulation.

This is referred to as the Real-time Emulation Memory Access
capability.

If you issue emulation memory display/modification command while
the emulation program is running, HP 64700 emulation controller, not
the emulation processor, intends to access the dual-port emulation
memory with the cycle-stealing method. The emulation memory
accesses without breaking the processor into the monitor are
accomplished for this reason.

When cycle-stealing to access to the emulation memory, the emulation
controller watches for idle cycles in the 70632 bus cycles. When the
idle cycles are found, the emulation controller can access to the
emulation memory at the interval of the 70632 bus cycles with
cycle-stealing.

However the emulation controller cannot find any idle cycles, the
emulation controller holds the 70632 bus cycles (not but breaking into
the monitor) in order to access to the emulation memory.

If your target system inserts some wait states to access to memory, no
idle cycle may be generated. It is depended on WHAT instructions are
executed when the emulation memory access command is issued, or
HOW much wait states are inserted.

When there is no idle cycle within 160 mS, the hold request will be
generated to the emulation processor except that the emulator is held,
bus-frozen or reset.

Virtual Address
Translation

Using the Caches of
Area Table Register
Pairs

When you specify virtual addresses in emulation commands, the
emulator intends to translate these virtual addresses to actual memory
addresses in order to manipulate contents of these memory locations.

For the address translation, the 70632 microprocessor uses its area
table register pairs, which define a virtual address space. Similarly, the
emulator requires values which corresponds to the 70632 area table
register pairs.

The emulator has the caches of the area table register pairs, which
allow the emulator to refer the corresponded area table for the address
translations even if the emulator cannot to or is not allowed to break
into the monitor.

Each time the emulator breaks into monitor, the caches are updated by
the contents of the 70632 area table register pairs.

By default, the emulator uses the caches to translate the addresses
which you specify in emulation commands. The caches contain the|
base addresses and the lengths of the area tables as the same as
70632 area table register pairs. The emulator refers to the corresp
area table and page table by using the caches.

If the emulator is restricted to real-time runs by tRestrict to

real-time runs?' configuration, the caches will keep the values while
you do not break the emulator into the monitor intentionally. Only
when you issubreak, step or resetcommand or a break condition
(such as software breakpoint) is satisfied, the caches are updated.

If the emulator is not restricted to real-time runs (default), the caches
are updated by the contents of the area table register pairs every time
the emulator breaks into monitor whether with or without your
intention. When you issue commands with virtual addresses, the
emulator breaks into the monitor to access the area table register if
possible. As the result, the emulator will use the current virtual address
space for address translations.

In the both cases, when the emulator cannot break into monitor, for
example the processor is reset, the emulator uses the caches for the
address translation.

Using the Emulator 5-19

Specifying Virtual When you specify virtual addresses in emulation commands, the
Address Space emulator translates the virtual address to corresponded real addresses.
The translated real addresses depends on a virtual address space. The
virtual address space can be defined by the values of area table base
and length for each section. In 70632 microprocessor, these
informations are stored in its area table register pairs.

In case that the caches mentioned above are used for the address
translation, it is difficult to specify an virtual address in your desirable
virtual address space during running user program. If your program
performs in multiple virtual space, you may want to specify a virtual
address space for address translations in order to watch for the
execution of a certain task.

This is accomplished by using the XMMU function. The XMMU

function allows you to fix a virtual address space for address
translations. The emulator has the optional XMMU class registers.
These registers consist of eight XMMU register pairs andkdAldU

mode register. The XMMU register pairs correspond to the actual
70632 area table register pairs. You can specify a virtual address space
by modifying the XMMU class registers. The format of XidMU

class registers is the same as the 70632 actual area table register pairs.
The XMMU class registers also include the XMMU mode register
(MMUMOD), which determines whether the caches or the contents of
the XMMU register pairs are used for address translations. By default,
the caches are selected.

If you activate the XMMU function, the emulator uses the contents of
the XMMU register pairs for address translations whether or not the
emulator is restricted to real-time runs.

The XMMU class registers consist of the following registers.

XMMU class registers corresponded actual registers
XATBRO

XATLRO ATLRO

XATBR1 ATBR1

XATLR1 ATLR1

XATBR2 ATBR2

XATLR2 ATLR2

XATBR3 ATBR3

XATLR3 ATLR3

MMUMOD --None--

To specify a virtual address space which is used for address
translations, modify the contents of the XMMU register pairs
corresponded to the area table registers by usimggfeter command

5-20 Using the Emulator

or the Terminal Interfacepmmu (copy current virtual address space to
XMMU registers) command. See also the "Using the XMMU function"
section of chapter 3. For thegmmu" command, refer to the "Features
Available via Pod Commands" section in this chaptercamnamu

syntax in the70632 Emulator Terminal Interface User's Guide"
manual.

After you have modify the contents of the XMMU register pairs,
activate the XMMU function by changing the contents of XMMU
mode register (MMUMOD) to the value 1.

modify register MMUMOD to 1<RETURN>
To use the caches of the area table register pairs for address
translations, modify MMUMOD register to 0 (default).

modify register MMUMOD to O<RETURN>

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface, but
in the Softkey Interface, may be accessed via the following emulati
commands.

display pod command <RETURN>

pod_command ’'<Terminal Interface

command> <RETURN>
Some notable Terminal Interface features not available in the softkey
Interface are:

m Copying memory.

Searching memory for strings or numeric expressions.
Sequencing in the analyzer.

Performing coverage analysis.

Displaying Address Translation Tablesg andpte).
Displaying TCB {cb).

Fixing Virtual Spaceqpmmu).

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Using the Emulator 5-21

Note #

Be careful when usingod_command The Softkey Interface, and the
configuration files in particular, assume that the configuration of the
HP 64700 pod is NOT changed except by the Softkey Interface. What
you see when usingodify configuration will notreflect the HP

64700 pod's configuration if you change the pod’s configuration with
pod_command Also, commands that affect the communications
channel shouldot be used at all. Other commands may confuse the
protocol depending upon how they are used. The following commands
arenot recommendefbr use withpod_command

stty, po, xp - Do not use, will change channel operation and hang.
echqg mac- Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.

init, pv - Will reset pod and force end release_system.

t - Do not use, will confuse trace status polling and unload.

Register Names
and Classes

BASIC

5-22 Using the Emulator

The following register names and classes may be used with the
"display/modify registers' commands.

Register Name Description

RO thru R31 All basic registers.

AP FP SPPC TheAP andR29, FP andR30, SPandR31 have

PSW SYCW same values because of only difference of their
register mnemonics.

PRIV (Privilege
registers)

ISP LOSP L1SP
L2SP L3SP

SBR TR SYCW
TKCW PIR PSW2

MMU (MMU registers)

ATBRO ATLRO Area Table Register Pairs
ATBR1 ATLR1
ATBR2 ATLR2
ATBR3 ATLR3

DEBUG (Debug
registers)

TRMOD ADTRO
ADTR1 ADTMRO
ADTMR1

XMMU (XMMU function
registers)

MMUMOD XMMU function registers. These registers ao¢
XATBRO actual 70632 registersRefer to the XMMU
XATLRO function section of the "Using the Emulator"
XATBR1 chapter for the detail.

XATLR1

XATBR2

XATLR2

XATBR3

XATLR3

Using the Emulator 5-23

OTHER

FRO thru FR31 These register names are for display/modification

FRPO thru of the registers in floating-point format. Each

FRP30 register name FRPn is corresponded to the two
consecutive register (FRn and FRn+1). You can
specify the FLOAT " attribute to display/modify
the registers in floating-point format. If you do not
specify the FLOAT " attribute, the contents of the
registers are displayed or modified in hexadecimal
format.

Restrictions and
Considerations

5-24 Using the Emulator

When the microprocessor accesses data which are not aligned, the
microprocessor generates more than twice memory access cycles.

If the microprocessor accepts interrupt while microprocessor reads the
data which are not aligned, the microprocessor stop accessing the data
and generates invalid memory write cycle.

But, memory is not changed because bus enable signals(BS0-BS3) are
inactive, and stopped memory read cycles are reexecuted after interrupt
routine.

If you specify that the emulator break into the monitor upon attempts to
write to memory mapped as ROM and if microproccessor generates
invalid memory write cycle described above in user’s program, the
emulator break into the monitor.

In-Circuit Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

m Describe the issues concerning the installation of the emulator
probe into target systems.

m Show you how to install the emulator probe.

m Show you how to use features related to in-circuit emulation.

In-Circuit Emulation Topics 6-1

Prerequisites

Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysisnual and the "Getting Started"
chapter of this manual.

Installing the
Emulator Probe
into a Target
System

Caution '

Caution '

6-2 In-Circuit Emulation Topics

The emulator probe has a PGA connector. The emulator probe is also
provided with a conductive pin protector to protect the delicate
gold-plated pins of the probe connector from damage due to impact.

Protect against static dischargeThe emulation probe contains

devices that are susceptible to damage by static discharge. Therefore,
precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by static
electricity.

Make sure target system power is OFFDo not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

Caution '

Caution '

Pin Protector

Conductive Pin Guard

Make sure pin 1 of probe connector is aligned with pin 1 of the

socket. When installing the emulation probe, be sure that the probe is

inserted into the processor socket so that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator probe will result if the
probe is incorrectly installed.

Protect your target system CMOS componentdf you target system
contains any CMOS components, turn ON the target system first, then
turn ON the emulator. Likewise, turn OFF your emulator first, then
turn OFF the target system.

The target system probe has a pin protector that prevents damage to the
prove when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room to accommodate the
plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

HP emulators are shipped with a conductive plastic or conductive f

pin guard over the target system probe pins. This guard is designe
prevent impact damage to the pins and should be left in place while
you are not using the emulator. However, when you do use the
emulator, either for normal emulation tasks, or to run performance
verification on the emulator, you must remove this conductive pin
guard to avoid intermittent failures due to the target system probe lines
being shorted together.

In-Circuit Emulation Topics 6-3

Caution ' Always use the pin protectors and guards as described above.
Failure to use these devices may result in damage to the target system
probe pins. Replacing the target system probe is expensive; the entire
probe and cable assembly must be replaced because of the wiring
technology employed.

PROBE CHBLE

MICROPROCESSOR
CONNECTOR

PIN 1 OF
- MICROPROCESSOR

CONNECTOR
TARGET SYSTEM

MICROPROCESSOR
SOCKET

PIN | OF
TARGET SYSTEM
MICROPROCESSOR
SOCKET

Figure 6-1. Installing Emulation Probe Into PGA Socket

6-4 In-Circuit Emulation Topics

Installing the Target
System Probe

In-Circuit
Configuration
Options

1. Remove the 70632 microprocessor from the target system
socket. Note the location of pin 1 on the processor and on the
target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket. Remember to use the pin protector!

The 70632 emulator provides configuration options for the following
in-circuit emulation issues. Refer to the "Configuring the Emulator"
chapter for the configuration.

Selecting the Emulator Clock Source

The default emulator configuration selects the internal 20 MHz clock
as the emulator clock source. You can configure the emulator to select
an external target system clock source in the range of 8-20 MHz.

Driving Background Cycles to the Target System

You can choose whether emulator bus cycles are driven to your ta
system bus when the emulator is in background cycle. If your targe
system requires bus cycle activities constantly, such as /BCYST, will
need to drive the emulation bus cycles to your target system bus. By
default, no bus cycles are driven to the target system in background
operation.

Selecting Memory Block during Background Cycles

You can select the value of the 70632 address bus which should be
driven to your target system. Pin A31 through A8 of the address bus is
configurable. This configuration is meaningful when the "Driving
Background Cycles to Target System" configuration mentioned above
is activated.

In-Circuit Emulation Topics 6-5

Allowing the Target
System to Insert Wait
States

6-6 In-Circuit Emulation Topics

Allowing /HLDRQ Signal from Target System

You can specify whether the emulator accepts or ignores the /HLDRQ
signal from your target system. By default, the emulator accepts the
/HLDRQ signal from the target system.

Allowing BFREZ Signal from Target System

You can specify whether the emulator accepts or ignores the BFREZ
signal from your target system. By default, the emulator accepts the
BFREZ signal from the target system.

Allowing INT Signal from Target System

You can specify whether the emulator accepts or ignores the INT
signal from your target system. By default, the emulator accepts the
INT signal from the target system.

Allowing /NMI Signal from Target System

You can specify whether the emulator accepts or ignores the /NMI
signal from your target system. By default, the emulator accepts the
/NMI signal from the target system.

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
/READY, /IBERR, RT/EP lines while emulation memory is being
accessed.

You can specify whether the emulation memory accesses are honored
by these target system signals or not, in a memory mapping term.
When you map emulation memory, if you would like to cause the
emulation memory to honor these target system signals, adddke "
attribute for emulation memory type.

When the ready relationship is locked to the target system by using the
"lock" attribute, the emulation memory accesses honor /READY,
/BERR, RT/EP signals from the target system (wait states or retry
cycles are inserted if requested).

If you do not specify theldck" attribute, the ready relationship is not
locked to the target system, and the emulation memory accesses ignore
these signals from the target system (no wait states are inserted).

The Usage of I/O
Command

The emulator hadisplay/modify io_port" command, you can
manipulate an 1/0 address by using this command. You can specify an
I/O address in either virtual or real address space as well as the
"display/modify memory' command.

There are two I/O spaces according to methods for accessing to I/O in
the 70632 microprocessor.

The first I/O space can be accessed by using an IN/OUT instruction. In
this section, this 1/0 space is referred as "Isolated 1/O space"
distinguish from Memory Mapped I/O described below.

The second I/O space can be accessed by simply reading from or
writing to the memory. The 1/O space can be mapped to the virtual
address space and known as Memory Mapped /0.

How to Access an Isolated I/O space

If you would like to manipulate an Isolated 1/0O space which is acce
by using an IN/OUT instruction of the microprocessor, designate th

I/0 address in real address.

How to Access a Memory Mapped I/O space

If you would like to manipulate a Memory Mapped I/O space which is
accessed by reading from or writing to a memory. designate the 1/O
address in virtual address. The 1/0 mapped bit of the page table entry
which includes the I/O address must be set to 1, in other word, the
address is mapped as /0.

In-Circuit Emulation Topics 6-7

Notes

6-8 In-Circuit Emulation Topics

Using the Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

Comparison of
Foreground and
Background
Monitors

Background Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

A background monitois an emulation monitor which overlays the
processor's memory space with a separate memory region. Usually, a
background monitor will be easier to work with in starting a new
design. The monitor is immediately available upon powerup, and you
don't have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are m
about the target system environment; therefore, you can test and d
hardware before any target system code has been written. All of t
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,

Using the Foreground Monitor A-1

Foreground Monitors

non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

A foreground monitomay be required for more complex debugging

and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. You link this
monitor with your code so that when control is passed to your program,
the emulator can still service real-time events, such as interrupts or
watchdog timers. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor.

Foreground
Monitor Selection

The HP 64758 emulator provides two kinds of foreground monitor.
One is included in the emulator, the other is provided with assembler
source file.

The foreground monitor included in the emulator allows you to use the
foreground monitor quickly. When you use this built-in foreground
monitor, you do not have to assemble, link and load the monitor
program.

The foreground monitor provided with assembler source file allows
you to customize the foreground monitor as you desire. When you use
this custom foreground monitor, you need to assemble, link and load
the monitor program.

Using Built-in
Foreground
monitor

The 70632 emulator includes foreground monitor. The built-in
foreground monitor saves your tasks for assembling, linking and
loading the monitor. To use the built-in foreground monitor, all you

A-2 Using the Foreground Monitor

have to do is to specify the location of the monitor. The location is
specified by the "Monitor Location for real address?" configuration.

Specify the monitor location (real address) as follows.

modify configuration <RETURN>
Modify memory configuration ? yes
Monitor type? foreground
Reset map (change monitor type requires map reset)? yes

Monitor location for real address?

Monitor location for virtual address?

Interrupt/Exception

real address entry, virtual address entry, description

NMI_ENTRY
INT_ENTRY
EXC1_ENTRY
EXC2_ENTRY
STEP_ENTRY
BRK_ENTRY

Handler

VNMI_ENTRY
VINT_ENTRY

VEXC1_ENTRY
VEXC2_ENTRY
VSTEP_ENTRY

VBRK_ENTRY

<real_address>

When your application is executed in virtual mode, you should also
specify the virtual memory location for the monitor. The address
translation tables for the monitor must be set up.

<virtual_address>

If you do not use the emulator in virtual mode, you do not have to
answer the "Monitor location for virtual address?" configuration
guestion.

After you issued the configuration command, the built-in foreground
monitor is set up automatically.

The foreground monitor supports interrupt/exception handler. The
interrupt/exception handler allows you to break the emulator into
monitor when a certain interrupt or exception is generated.

After you exit the configuration session, six equation label pairs are
defined in the Terminal Interface. These equation label pairs contain
the entry addresses of the handlers, which are included in the
foreground monitor. One of each equation label pair contains real
address of the entry, the other (which has "V" prefix) contains virtual
address of the entry. The description of these equation label pairs
follows.

NMI handler entry
INT handler entry
3 words stacking Exception handler entry
4 words stacking Exception handler entry
Single-Step Trap handler entry
Breakpoint Instruction Trap handler entry
Either of each equation label pair can be used so that vectors in system
base table point to the corresponded handlers, if desired. The system
base table must be defined in your program. For using single-step and
software breakpoint features the single-step trap and breakpoint

instruction trap handler entries must be set up.

Using the Foreground Monitor A-3

For example, if you wish to use the emulator’s single-step feature, you
must define the single-step trap handler entry in the corresponded
vector table.

pod command 'm -dd 30=STEP_ENTRY’
<RETURN>
If you use the single-step feature in virtual mode, you should have

entered the following command instead.

pod _command’'m -dd 30=VSTEP_ENTRY’
<RETURN>
Refer to thedP64758 70632 Emulator Terminal Interface User’s

Guide

According to the system base table location, you may have to change
the address (in this case, 30H) to be modified.

A-4 Using the Foreground Monitor

Using Custom The custom foreground monitor allows you to customize the monitor
for your target system. To use the monitor, you need to assemble, link

Fore.g round and load the monitor program into emulator.

monitor

The foreground monitor is supplied with the emulation software and
can be found in the following path:

/usr/hp64700/monitor/*
The monitor program is namé&fmon70632.s

The monitor program is provided with HP 64758 emulator. You should
modify the following statement of the monitor program to specify the
monitor location.

text "FG_MON" > 0x000000000
The default monitor location is defined at address 000000000 (hex).

To tell the monitor location to the emulator, you should specify the
monitor location (real address) by entering the configuration session.

modify configuration <RETURN>

In the configuration session, answer as follows.

Modify memory configuration ? yes

Monitor type? foreground

Reset map (change monitor type requires map reset)? yes
Monitor location for real address? <real_address>

When your application is executed in virtual mode, you should also
specify the virtual memory location for the monitor. The address
translation tables for the monitor must be set up.

Monitor location for virtual address? <virtual_address>
If you do not use the emulator in virtual mode, you do not have to

answer the "Monitor location for virtual address?" configuration
guestion.

After you exit the configuration session, you must load the monitor
program into the emulator. The memory for the foreground monitor is
already mapped when configuring the monitor location.

Using the Foreground Monitor A-5

Interrupt/Exception The foreground monitor supports interrupt/exception handler. The
Handler interrupt/exception handler allows you to break the emulator into
monitor when a certain interrupt or exception is generated.

In the foreground monitor program, some entry labels of the handlers
are defined. See the monitor program for these entry labels. Write these
labels in your program’s system base table description. When you link
the foreground monitor with your program, these labels will be referred
by your program. The system base table must be defined in your
program.

To use the single-stepping and/or software breakpoints feature(s), you
must define the single step trap vector and/or the breakpoint instruction
trap vector into the system base table. When you use these features in
virtual mode, you must set up these vectors to point to their handler's
entry in the foreground monitor in virtual address.

Even if you link the monitor with your program, you should also
prepare the absolute file separated from user program to load the
monitor program.

Loading Foreground To load the monitor program, enter the following command; whether
Monitor or not the monitor program is linked with your program.

load fg_mon <foreground_monitor>

<RETURN>
The 'fg_mon" option was used to load the foreground monitor
program. You should specify the file name of the foreground monitor
absolute separated from your program. After loading the monitor, map
the memory for your program and load your program into the emulator.

A-6 Using the Foreground Monitor

Loading User To load your program into target memory and emulation memory, do
Program the following.

Loading into Target To load the program into target memory, enter the following
Memory commands.

break <RETURN>

load user_mem <user_program> <RETURN>
Thebreak command causes the emulator to break into the monitor.
For loading into target memory, the emulator must be running in
monitor.

The 'user_ment option specify to load only target memory portion of
the program.

Loading into To load the program into emulation memory, enter the following
Emulation Memory ~ commands.

reset <RETURN>

load emul_mem <user_program> <RETURN>
Theresetcommand causes the emulator to reset. For loading into
emulation memory (which includes monitor program portion), the
emulator must be reset.

The "emul_men' option specifies to load only emulation memory
portion of the program.

Using the Foreground Monitor A-7

Restrictions and
Considerations

When using the foreground monitor, there are some restrictions and
considerations.

Cannot Single-step the Instruction RETIS and RETIU

The foreground monitor cannot step the RETIS and RETIU instruction.
If you step either the RETIS or RETIU instruction, the emulator cannot
break into monitor. As a result, the emulator runs your program
without stepping.

Two Pages for the Monitor Program Must be Set Up

When you use the foreground monitor in virtual mode, the address
translation tables for the foreground monitor must be set up. The
monitor occupies one page (4 Kbytes memory), and further, one more
page is required for accessing to target memory. In virtual mode, when
accessing to target memory, the monitor modifies the page table to
point to the target memory to be accessed to. The page must follows
the foreground monitor page. For this reason, you must set up the
address translation tables of two pages for the foreground monitor.

Monitor Must be Located at the Same Virtual Address
Always.

The foreground monitor must be located at the same virtual address
whenever virtual space is changed. This allows the emulator to break
into monitor in any virtual space.

A-8 Using the Foreground Monitor

In the following example, we will illustrate how to set up the emulator
An Example he followi | illill h h |
Configuration of to use the custom foreground monitor in virtual mode.

the Foreground
Monitor

For this example, we will locate the monitor at 400000000h (virtual)
and 1000h (real).

Modify Monitor To use the monitor, you must modify the following statement near the
Source Program top of the monitor program. In this example, the monitor will be
located at 40000000h in virtual.

text "FG_MON" > 0x40000000

Defining System To use the single-step and software breakpoint feature of the emulator,
Base Table in Your you must define the single-step trap and breakpoint instruction trap
Program vector into the system base table. Assuming that the system table
description inyour program as follows.

.data "sys_base"

.word --+00
.word --+04
.word NMI_ENTRY --+ 08

.word --+0C

word STEP_ENTRY -- + 30
word BRK_ENTRY -- + 34

The NMI_ENTRY label is also defined to break the emulator into
monitor when NMI signal is generated.

Defining Address The following statements define two page tables for monitor program.
Translation Tables The real address location of label PTE_FGMON must be pointed by
for Monitor Proaram Fhe Area Table I_Entry of Section 1, Area 0 because the monitor location

9 is 40000000h (virtual).

PTE_FGMON: .word 0x00001e05 -- for foreground monitor location
.word 0x00001e05 -- for accessing to target memory by monitor

The PTE in the second line must be defined to access to target memory
by monitor program. The monitor modifies the PTE to point to target

Using the Foreground Monitor A-9

memory location to be accessed. Initially, the PTE had better point to
the foreground monitor location.

Note that the foreground monitor must be reside in the fixed virtual
address, even if virtual space is changed. This allows the emulator to
break into monitor in any virtual space.

Assembling and To refer to these labels (in this example, NMI_ENTRY,
Linking the STEP_ENTRY and BRK_ENTRY), the foreground monitor program
Foreground Monitor and your program should be linked together. Suppose that the
generated absolute file name is "usr_prog.X".

You must prepare another absolute file which contains only foreground
monitor program. The absolute file will be used to load the monitor
program into the emulator. Suppose that the generated absolute file
name is "Nfmon70632.X".

Setting Up the The following configuration should be required to tell the use of
Monitor foreground monitor and the location of the monitor to the emulator.

Configuration Item

modify configuration <RETURN>
In the configuration session, answer as follows.
Modify memory configuration ? yes
Monitor type? foreground
Reset map (change monitor type requires map reset)? yes
Monitor location for real address? 1000h
Monitor location for virtual address? 40000000h

Mapping Memory for Map memory for your program in the mapping memory configuration
Your Program session. The monitor location is already mapped as emulation RAM
("MONITOR" is displayed in the "type" field).

Loading Foreground Load the foreground monitor program.
Monitor

load fg_mon Nfmon70632.X <RETURN>
The linked monitor program (Nfmon70632.X) is separated from user
program. In this example, the Intel hexadecimal format and transparent
configuration are assumed.

A-10 Using the Foreground Monitor

Loading User Load the target memory portion of your program. To load the program
Program into target memory, the emulator must be running in monitor.

break <RETURN>

load user_mem usr_prog.X <RETURN>
Next, load the emulation portion of your program. Since the portion
includes the foreground monitor program, which is linked to refer to
the symbols (in this example, STEP_ENTRY, BRK_ENTRY and
NMI_ENTRY), the monitor program should not be running. Therefore,
reset the emulator.

reset <RETURN>
load emul_mem usr_prog.X <RETURN>

Using the Foreground Monitor A-11

Notes

A-12 Using the Foreground Monitor

Using the Format Converter

The 70632 Softkey Interface provides with the NEC COFF converter.

How to Use the
Converter

Load address
location options

The format converter is a program that generates HP format files from
COFF format files for the 70632 (or the 70616). This means you can
use available language tools to create the COFF format file, then load
the file into the emulator using the format converter.

To execute the converter program, use the following command:

$v70cnvhp [options] <file_name>
<file_name> is the name of COFF format file (for the 70632 or the
70616) which is created by the 70632 linkd7 0616 or retrieved
from the archive file created by the 70632 configuratf#061§. The
converter program will read the COFF format file. It will generate the
following HP format files:

m HP Absolute file (with .X suffix)
m HP Linker symbol file (with .L suffix)
m HP Assembler symbol files (with .A suffix)

The converter accepts the following options.

You can select address mode (real or virtual) for the load address
location of the HP absolute file, and for address symbols in the HP
symbol files.

-v generates load address location and symbols in
virtual address.

Using the Format Converter B-1

File output control

Note #

B-2 Using the Format Converter

-r generates load address location and symbaoésain
address.

The HP 64758 emulator can load a program in real address or virtual
address. It is determined by configuration question "Object file address
attribute ?" in the "Pod configuration”.

If neither option is specifiedy option is assumed.
In case of real mode application, this option is senseless because the

address is the same between real address and virtual address.

The converter generates HP format files; Absolute file (with .X suffix),
Linker symbol file (with .L suffix) and Assembler symbol files (with
A suffix).

You can specify which HP format file(s) should be generated by the
converter.

-X generates absolute file (with .X suffix).
-l generates linker symbol file (with .L suffix).

-a generates assembler symbol files (with .A suffix).

If no option is specified, the converter generates all HP format files.

For generating local symbols:
m specify “g" option when you invoke the 70632 C Compiler
(cc70616 from NEC.
m specify file name by usingfile" directive in the assembly
source file.

Note ﬂ

If you want to refer to global symbils in the assembly source file, you
must specify file name by usindile" directive. Othewise, global
symbol can not be displayed by "display memory" commands.

Address
Translation Table
File

Absolute file for
address translation
tables

Command files for
specifying virtual
space

When the converter reads an address translation table file (aptable)
generated by the configurataf{061§, the converter generates the
following files.

m Absolute file for address translation tables (aptable.X)
m Command files for specifying virtual space (files with .regs
suffix)

The configurator can generate the file for the address translation tables
(aptable). The converter converts this file to HP format absolute file
(aptable.X). You can load the fistable.Xinto emulator.

The converter generates command files to specify a virtual space. The
command files contain emulator commands for modifying<t&uU

class registers to specify a virtual space. The command files are
generated for each virtual space which you specify to the configurator.
The file name of each command file is its virtual space name for the
base name and ".regs" for the suffix.

For example, to specify the virtual spacefmcesdask described in
the "Virtual Mode Emulation Topics" chapter, enter the following
commands.

load symbols process <RETURN>

PROCESS.regs <RETURN>
The "PROCESS", which is the base name of the command file, is the
virtual space name specified in the configurator command file
skdemo?2.cfc

Using the Format Converter B-3

Notes

B-4 Using the Format Converter

Index

A absolute file, loading?-13, 3-13
access
emulation memory5-18
target memory5-12
address lines driven during backgroufd,3
address mode options (fcod&)29
address translatiob;19
address translation tables
displaying,3-25
analyzerl-4
70632 status qualifier@;33
cause of brealg-7
clock speed5-7
data triggers-5
emulation modes-17
execution statey-4, 5-5
hardware brealg-8
qualifiers,5-4
sequencing5-21
state count5-7
status label5-4
storage qualifier2-30
time tagging5-7
tracing virtual addres8;26
using thep-27
area table entry
displaying,3-25
assembling
sample prograng-10
assembling and linking foreground monitar10

B backgroundl-6
address drivert}-13
driving target system during;12
tracing,4-14
background monitog-6, A-1

Index-1

selecting4-5
BERR
from target systen§-6
BFREZ signal
from target systens-11
blocked byte memory displag;18
BNC connector$-15
break
monitor,5-7
target memory access;12
write to ROM,4-14
breakpoints1-5
hardware5-8
software5-10
breaks
break comman®-20
BRK instruction,2-21
built-in foreground monitorA-3
bus arbitration
configure emulator’s responsk9, 4-11

C cautions
installing the probe into sockeét;3
protect against static dischar§e?
protect your target system CMOS componesi3,
real-time dependent target system circuirp,
target system power must be off when installing the p®e,
use the pin protectors;4
clearing software breakpoints,24
clock source
external4-3
internal,4-3
clock speed]-3
CMB (coordinated measurement budsi5
CMOS target system components, protectig,
Comparison of foreground/background monitérs,
compiling the getting started sample progras,
compiling the sample progra®;10
compiling, assembling and linking the sample program,
compress mode (trace displag)29
configuration
for sample progran®-12, 3-12

2-Index

trace virtual or real addres®27
configuring the emulator
for sample progran2-12, 3-12
converter
address translation tables (aptat#e)3, B-3
NEC COFF formatB-1
v70cnvhp 2-7
converting sample prograr;7, 3-10
convertor
v70cnvhp B-1
coordinated measuremems16, 5-15
copy memorys-21
coverage analysis;21
custom foreground monitof-5

data bus
trace,5-5
device table file2-9, 3-12
disassemble
FPU,5-13
display command
memory blocked?2-18
memory mnemoni@-15
registers2-26, 3-18
software breakpoint®2-21
symbols 2-13
trace,2-28
trace compress of£-29
trace compress 08;29
displaying
address translation tabl&s25
I/0, 6-7
memory emulation modé;17
mmu register3-18
privilege register3-18
TCB, 3-26
driving background cycles to target systdni2

emul700, command to enter the Softkey Interfae®, 2-34, 3-12
emulation analyzeg-27
emulation feature

foreground or background monitdr6

Index-3

4-Index

out-of-circuit or in-circuit emulatiori -6
emulation memoryl-3
loading absolute file2-13
real time acces$;18
emulation modes-17
emulation monitor4-5
background4-6
foreground or background;6
monitor,1-6
emulator
before using2-2
configuration4-1
device table file2-9, 3-12
feature 1-3
prerequisites2-2
purpose]l-1
usageb-1
emulator configuration
address driven during backgroude] 3
background cycles driven to targét]12
break processor on write to ROM,14
clock selection4-3
enable execution cycles tradel6
enable interrupt inputg;10
enable target NMK-10
loading,4-17
memory mapping4-7
monitor entry after4-4
monitor type selectior-5
object file address attributé;13
respond to HLDRQ signad-9
respond to target BFREZ signdi11
respond to target system interruptsl,0
restrict to real-time rung-4
saving4-17
target memory access siZell
trace background/foreground operatiéi,4
trace HOLD cycles4-15
trace virtual or read addregs15
emulator feature
analyzer1-4

breakpoints1-5
clock speed]-3
emulation memoryl-3
FPU,1-4
FRM, 1-4
MMU, 1-4
processor reset contrdk5
register display/modifyl-4
restrict to real-time rung,-5
single-step processdr;4
software debuggind,-5
target interfacel-5
emulator probe
installing,6-2
end command?-34, 4-17
exception handler
foreground monitorA-3, A-6
EXECUTE (CMB signal)5-15
execution state
analyzer5-4
trace,5-5
tracing,4-16
exit, Softkey Interface?-34
external clock sourcd;3

fcode,3-29
feature of the emulatot;3
file extensions
.EA and .EB, configuration fileg-17
.regs, xmmu registers command filBs3
X, .Land .A, HP format fileB-1
floating point
register5-3
foreground,1-6
foreground monitorA-2
assembling and linkingy-10
built-in monitor,A-3
configuration A-10
custom monitorA-5
interrupt/exception handlei-3, A-6
loading the A-10
location,A-3, A-9

Index-5

selecting4-5, A-2

transition to4-13
foreground operation, tracing;14
FPU,1-4

disassembles-13
FRM, 1-4

G getting started2-1
prerequisites?-2
global symbols
displaying,2-13

H halted5-15
hardware breakpoints;8
hardware installatior2-2
help
on-line,2-10
pod command informatio2;11
softkey driven informatior2-10
highlight source display-30
HLDRQ signal
from target systen-9

I I/O

display/modify,6-7
in-circuit

READY, BERR, RT/EP6-6
in-circuit emulationg-1
inserting wait stateg-6
installation

hardware2-2

software 2-2
instruction execution

triggering analyzeis-4
INT

from target systen#-10
interactive measurements;16
internal clock sourcel-3
interrupt (INT)

from target systen#-10
interrupt (NMI)

from target systen#-10
interrupt handler

6-Index

foreground monitorA-3, A-6
inverse assemble in trace listidg32
inverse_video source displé3+30

linking foreground monitorA-10
linking sample prograng-10
linking the getting started sample prograsy,
load address mod4;13
loading absolute file®-13, 3-13
loading emulator configurationd;17
loading foreground monitoA-10
loading symbols3-13
local symbols2-22

-g compiler optionB-2

file assembler directivé3-2
local symbols, displaying-14
location of foreground monitoA-3, A-9
locked, end command optio2+34

mapping memory2-12, 3-13
measurement syste234
creating2-8
initialization, 2-8
memory
blocked display2-18
copying,5-21
emulation modes-17
mapping2-12, 3-13
mnemonic display2-15
mnemonic display with source lings17
mnemonic display with symbol2;16
modifying, 2-19
searching for strings or expressios1
memory mapping-7
defining memory type to emulatet;7
maximum number of term4;8
sequence of map/load commantts,
MMU, 1-4, 5-14
mmu register
displaying,3-18
mnemonic memory displag;15
with source lines2-17

Index-7

with symbols2-16
modify command
configuration4-1
io_port,6-7
memory,2-19
software breakpoints cleds24
software breakpoints s&;22
modifying
stack pointers-2
module,2-34
module, emulatior2-9, 3-12
monitor
backgroundA-1
breaking into2-20
comparison of foreground/backgrourd]
monitor (emulation)4-5
address of4-7
background4-6
background/foreground selectiaghb
monitor break
causep-7

N NEC COFF converteB-1

NMI
from target systen#-10

no fetch cycle found in trace displd&¢32

nosymbols2-13

notes
-g compiler option should be specifid2
file assembler directive for local symbds2
default address evaluation in real maig0
map all ranges before loading programs into menb#y,
pod commands that should not be exectiezl
selecting internal clock forces resg{3
set command and its effegt17
single-stepping in emulation mode 17
software breakpoint2-21
symbol address attribute®20
write to ROM analyzer statu4;14

O object file address attributé;13
on-line help2-10

8-Index

options
address mod&-29

page table entry

displaying,3-25
PATH, HP-UX environment variabl@;8, 2-9, 3-12
pmon, User Interface Softwa2 8, 2-34, 3-12
pod_command?-11

ate,3-25

features available wits-21

help information2-11

pte,3-25

tch, 3-26
prerequisites for using the emulat®r2
privilege register

displaying,3-18
purpose of the emulatdt;1

qualifiers
analyzerp-4

READY
from target systen-6
READY (CMB signal),5-15
real address
tracing,4-15
real time access
emulation memory5-18
real-time execution
restricting the emulator td;4
real-time runsl-5, 5-12
register
classes?2-26
displaying (privilege, mmuj3-18
floating-point,5-3
modification,5-2
names and classés22
xmmu,3-21, 5-19
register display/modifyl-4, 2-26
release_system
end command optio2-34, 4-17
repetitively
memory display2-18

Index-9

reset controll-5
reset(emulator), running from target reet,8
respond to target system interrupts
emulator configuratiord-10
restrict to real-time run4-5, 5-12
emulator configuratiord-4
permissible command4;4
target system dependendy5
RT/EP
from target systeng-6
run command2-18

S sample program
assembling2-7, 3-10
compiling,2-7, 3-10
converting2-7, 3-11
description2-3
linking, 2-7, 3-10
virtual mode3-1
saving the emulator configuratiof,17
selecting the emulation monitor type5
sequencer, analyzéy;21
set command
source on2-17
source on inverse_video di30
symbols on2-16
simulated 1/04-16
single-step
emulation modes-17
single-step processdr;4
softkey driven help informatior2-10
Softkey Interface
entering,2-8, 3-12
exiting,2-34
on-line help2-10
software breakpoint4;-5, 2-21, 5-10
clearing,2-24
displaying,2-21
enabling/disabling?2-21
note on BRK instruction vecto?;21
setting,2-22
software debuggind,-5

10-Index

software installatior?-2
source line ste-25
source lines
in memory display2-17
in trace display2-30
specifing virtual address spa&e20
specifying virtual space-21
stack pointer
modification,5-2
state counts-7
static discharge, protecting the emulator probe agéiist,
status
halted 5-15
machine faults-15
waiting for ready5-15
status labe2-33
analyzer5-4
status qualifiers (70632);33
step
emulation modes-17
step comman®-25
source2-25
stop_trace commang;31
storage qualifier2-30
string delimiters2-12
symbols
generating local symbolB;2
in memory display2-16
loading,3-13
symbols, displaying2-13
system overviewz-2

target interfacel-5
target memory access;12
target memory access size
emulator configuratiord-11
target memory, loading absolute fil@s]13
target system
dependency on executing code;
TCB
displaying,3-26
Terminal Interface2-11, 5-21

Index-11

time taggings-7
trace
cause of brealg-7
clock speed5-7
compress mode displag;29
data triggers-5
display with source lines (highligh§;30
emulation modes-17
execution cycle}-16
execution statey-5
from current addres8;19
no fetch cycle found2-32
state count5-7
time tagging5-7
trigger position2-33
virtual address3-26
virtual or real addresg:15
trace depth2-30
trace HOLD cycles
emulator configuratior}-15
trace, displaying th&-28
tracing background operatiof,14
translation table
displaying,3-25
TRIGGER (CMB signal)5-15
trigger condition
instruction executiorh-4
trigger position2-33
trigger, specifying2-27

U user (target) memory, loading absolute fiz4,3
using the emulatob-1

V v70cnvhp converte@-7, B-1
virtual address
tracing,3-26, 4-15
virtual address translatiob;19
virtual space
specifying,3-21, 5-20

W wait state
target ready signab-6
waiting for readyp-15

12-Index

window systems?2-34
write to ROM break4-14

X (execute) comman8;15
xmmu function3-21, 5-19
Xmmu registers3-21

Index-13

Notes

14-Index

	Using This manual
	Contents
	Introduction to the 70632 Emulator
	Getting Started
	Virtual Mode Emulation Topics
	Configuring the Emulator
	Using The Emulator
	In-Circuit Emulation Topics
	Using the Foreground Monitor
	Using the Format Converter
	Index

