
HP 64758

70632 Emulator
Softkey Interface

User’s Guide

HP Part No. 64758-97006
Printed in U.S.A.
March, 1993

Edition 2

NoticeNotice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1990,1993 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett Packard Comapny.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

V70 is trademark of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S.A. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2)

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64758-97002, August 1990

Edition 2 64758-97006, April 1993

Using This manual

This manual introduces you to the HP 64758G/H 70632 Emulator as
used with the Softkey Interface.

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator to
real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual does not:

Show you how to use every Softkey Interface command and
option. See the Softkey Interface Reference for further details.

Organization

Chapter 1 Introduction. This chapter lists the 70632 emulator features and
describes how they can help you in developing new hardware and
software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. The chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 Virtual Mode Emulation Topics. This chapter shows you how to use
emulator in virtual mode. The chapter describes a sample program and
how to: load programs into the emulator, display on-chip MMU
registers, privilege registers and TCB, set software breakpoints, and use
the analyzer in virtual mode.

Chapter 4 Configuring the Emulator. You can configure the emulator to adapt
it to your specific development needs. This chapter describes the
options available when configuring the emulator, and how to save and
restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics that are
not covered in the "Getting Started" and "Virtual Mode Emulation
Topics" chapters (for example, coordinated measurements and storing
memory).

Chapter 6 In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Appendix A Using the Foreground Monitor. This appendix describes the
advantages and disadvantages of foreground and background monitors
and how to use foreground monitors.

Appendix B Using the Format Convertor. This appendix describes the usage of
the file format converter.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command
syntax.

bold italic Commands, options, and parts of command
syntax which may be entered by pressing
softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands
which follow the "$" are entered at the HP-UX
prompt.

<RETURN> The carriage return key.

Notes

Contents

1 Introduction to the 70632 Emulator

Introduction . 1-1
Purpose of the 70632 Emulator . 1-1
Features of the 70632 Emulator 1-3

Supported Microprocessor . 1-3
Clock Speeds . 1-3
Emulation Memory . 1-3
Analysis . 1-4
FPU . 1-4
MMU . 1-4
FRM . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-5
Reset Support . 1-5
Software Debugging . 1-5
Configurable Target System Interface 1-5
Real-Time Operation . 1-5
Foreground or Background Emulation Monitor 1-6
Out-of-Circuit or In-Circuit Emulation 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-3

Compiling, Assembling and Linking the Program 2-7
Entering the Softkey Interface . 2-8

From the "pmon" User Interface 2-8
From the HP-UX Shell . 2-9

On-Line Help . 2-10
Softkey Driven Help . 2-10
Pod Command Help . 2-11

Configuring the Emulator . 2-12

Contents-1

Loading Absolute Files . 2-13
Displaying Symbols . 2-13

Global . 2-13
Local . 2-14

Displaying Memory in Mnemonic Format 2-15
Displaying Memory with Symbols 2-16
Displaying Memory with Source Lines 2-17
Running the Program . 2-18

From Reset . 2-18
Displaying Memory Repetitively 2-18
Modifying Memory . 2-19
Breaking into the Monitor . 2-20
Using Software Breakpoints . 2-21

Enabling/Disabling Software Breakpoints 2-21
Setting a Software Breakpoint 2-22
Clearing a Software Breakpoint 2-24

Stepping Through the Program 2-25
Displaying Registers . 2-26
Using the Analyzer . 2-27

Specifying a Simple Trigger 2-27
Displaying the Trace . 2-28
Displaying the Trace with Compress Mode 2-29
Changing the Trace Depth 2-30
Using the Storage Qualifier 2-30
Triggering the Analyzer at an Instruction Execution State . . . 2-31
70632 Analysis Status Qualifiers 2-33
For a Complete Description 2-33

Exiting the Softkey Interface . 2-34
End Release System . 2-34
Ending to Continue Later . 2-34
Ending Locked from All Windows 2-34
Selecting the Measurement System Display or
 Another Module . 2-34

3 Virtual Mode Emulation Topics

Introduction . 3-1
Sample Program for Virtual Mode Emulation 3-1
Compiling, Assembling and Linking the Sample Program 3-10
Setting Up the Emulator . 3-11

Entering the Softkey Interface 3-12
Configuring the Emulator . 3-12

2-Contents

Loading Absolute Files . 3-13
Loading the Symbols for os 3-13

Getting into Virtual Mode . 3-15
Displaying Registers . 3-18
Tracing the Program Execution 3-19
Specifying Virtual Space . 3-21

Using the XMMU Function. 3-22
Displaying Address Translation Tables 3-25
Breakpoints . 3-25
Displaying TCB . 3-26
Tracing Virtual Address . 3-26

Address Mode Option . 3-29

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-3

Micro-processor clock source? 4-3
Enter monitor after configuration? 4-4
Restrict to real-time runs? . 4-4

Memory Configuration . 4-5
Monitor type? . 4-5
Mapping Memory . 4-7

Emulator Pod Configuration . 4-9
Enable responding to HLDRQ signal? 4-9
Enable /NMI input from target system? 4-10
Respond to target system interrupts? 4-10
Respond to target bus freeze signal? 4-11
Target memory access size? 4-11
Drive background cycles to target system? 4-12
Value for address bits A31-A8 during background cycles? . . 4-13
Object file address attribute? 4-13

Debug/Trace Configuration . 4-13
Break processor on write to ROM? 4-14
Trace background or foreground operation? 4-14
Trace HOLD tag? . 4-15
Trace virtual or real address? 4-15
Enable the execution cycles trace? 4-16

Simulated I/O Configuration . 4-16
Interactive Measurement Configuration 4-16
Saving a Configuration . 4-17
Loading a Configuration . 4-17

Contents-3

5 Using The Emulator

Introduction . 5-1
Prerequisites . 5-2
Register Manipulation . 5-2

Stack Pointer Modification . 5-2
Displaying/Modifying Registers In Floating-Format 5-3

Analyzer Topics . 5-4
Analyzer Status Qualifiers . 5-4
Specifying Trigger Condition at Desired
 Instruction Execution . 5-4
Execution States Location in Trace Listing 5-5
Specifying Data For Trigger Condition or Store Condition . . . 5-5
Analyzer Clock Speed . 5-7
Finding Out the Cause of a Monitor Break 5-7

Hardware Breakpoints . 5-8
Example Configuration for Hardware Breakpoints Features. . . 5-8

Software Breakpoints . 5-10
Target Memory Access . 5-12

Commands Not Allowed when Real-Time Mode is Enabled . 5-12
Breaking out of Real-Time Execution 5-13

FPU Support . 5-13
MMU Support . 5-14
Making Coordinated Measurements 5-15
Unfamiliar Status . 5-15

Waiting for Target Ready . 5-16
Halt or Machine Fault . 5-16

70108/70116 Emulation Mode 5-17
Displaying Memory In 70108/70116 Mnemonic Format 5-17
Tracing States In Both Mode 5-17

Real-time Emulation Memory Access 5-18
Virtual Address Translation . 5-19

Using the Caches of Area Table Register Pairs 5-19
Specifying Virtual Address Space 5-20

Features Available via Pod Commands 5-21
Register Names and Classes . 5-22
Restrictions and Considerations 5-24

6 In-Circuit Emulation Topics

Introduction . 6-1
Prerequisites . 6-2
Installing the Emulator Probe into a Target System 6-2

4-Contents

Pin Protector . 6-3
Conductive Pin Guard . 6-3
Installing the Target System Probe 6-5
In-Circuit Configuration Options 6-5
Allowing the Target System to Insert Wait States 6-6

The Usage of I/O Command . 6-7

A Using the Foreground Monitor

Comparison of Foreground and Background Monitors A-1
Background Monitors . A-1
Foreground Monitors . A-2

Foreground Monitor Selection . A-2
Using Built-in Foreground monitor A-3

Interrupt/Exception Handler A-3
Using Custom Foreground monitor A-5

Interrupt/Exception Handler A-6
Loading Foreground Monitor A-6

Loading User Program . A-7
Loading into Target Memory A-7
Loading into Emulation Memory A-7

Restrictions and Considerations A-8
An Example Configuration of the Foreground Monitor A-9

Modify Monitor Source Program A-9
Defining System Base Table in Your Program A-9
Defining Address Translation Tables for Monitor Program . . . A-9
Assembling and Linking the Foreground Monitor A-10
Setting Up the Monitor Configuration Item A-10
Mapping Memory for Your Program A-10
Loading Foreground Monitor A-10
Loading User Program . A-11

B Using the Format Converter

How to Use the Converter . B-1
Load address location options B-1
File output control . B-2

Address Translation Table File . B-3
Absolute file for address translation tables B-3
Command files for specifying virtual space B-3

Index

Contents-5

Illustrations

Figure 1-1. HP 64758 Emulator for the 70632 1-2
Figure 2-1. C Source skdemo.c . 2-4
Figure 2-2. init.s Source Program 2-6
Figure 2-3. Linker Command File 2-6
Figure 2-4. Softkey Interface Display 2-10
Figure 3-1. Sample Program Source os.s 3-2
Figure 3-2. Sample Program Source command.c 3-5
Figure 3-3. Sample Program Source process.c 3-6
Figure 3-4. Linker command file os.lnk 3-7
Figure 3-5. Linker Command File command.lnk 3-8
Figure 3-6. Linker Command File process.lnk 3-8
Figure 3-7. Configurator Command File skdemo2.cfc 3-8
Figure 6-1. Installing Emulation Probe Into PGA Socket 6-4

6-Contents

1

Introduction to the 70632 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Purpose of the
70632 Emulator

The 70632 emulator is designed to replace the NEC uPD70632
microprocessor in your target system to help you integrate target
system software and hardware. The 70632 emulator performs just like
the NEC uPD70632 microprocessor, but at the same time, it gives you
information about the operation of the processor. The emulator gives
you control over target system execution and allows you to view or
modify the contents of processor registers and, target system memory.

Introduction 1-1

Figure 1-1. HP 64758 Emulator for the 70632

1-2 Introduction

Features of the
70632 Emulator

Supported
Microprocessor

The emulator probe has a 132-pin PGA connector. The HP 64758G/H
emulator supports the NEC uPD70632 microprocessor.

Clock Speeds Measurements can be made using the emulator’s internal 20 MHz
clock or an external clock from 8 MHz to 20 MHz with no wait states
added to target memory.

Emulation Memory Depending on the emulator model number, there are 512K/1M bytes of
emulation memory. Memory mapping configuration maps physical
memory only. If the MMU is enabled, the user is responsible for
knowing user physical memory usage.

Dual-ported memory allows you to display or modify physical
emulation memory without stopping the processor. Flexible memory
mapping lets you define address ranges over the entire 4 Gbyte address
range of the 70632. You can define up to 8 memory ranges (at 4 Kbyte
boundaries and at least 4Kbytes in length). The monitor occupies 4K
bytes leaving 508K or 1020K bytes of emulation memory which you
may use.You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or as
guarded memory. The emulator generates an error message when
accesses are made to guarded memory locations; additionally, you can
configure the emulator so that writes to memory defined as ROM cause
emulator execution to break out of target program execution. You can
select whether the memory accesses honor /READY and /BERR
signals from target system for each emulation memory range.

Introduction 1-3

Analysis The integrated emulation bus analyzer provides real-time analysis of all
bus-cycle activity. You can define break conditions based on address
and data bus cycle activity. In addition to hardware break, software
breakpoints can be used for execution breakpoints.

The 70632 microprocessor has on-chip MMU which provides a 4
Giga-byte virtual space for each task. When you use the on-chip MMU,
you will want to analyze either actual or virtual address space. You can
configure which address space should be recognized by the emulation
analyzer. Analysis functions include trigger, storage, count, and
context directives. The analyzer can capture up to 1024 events,
including all address, data, and status lines.

FPU The emulation bus analyzer can capture bus states accessing to a
Floating Point Processor.

MMU The emulator will support development when using the internal
Memory Management Unit.

FRM The emulator supports the master mode of the 70632 FRM function. In
the master mode, you can use the analyzer feature of the emulator. If
signal is asserted by your target system, the emulator bus signals are
held. So the emulator does not work as checker.

Registers You can display or modify the 70632 internal CPU register contents.
This includes the ability to modify the program counter (PC) value so
you can control where the emulator starts a program run. You can also
display or modify the 70632 MMU register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

1-4 Introduction

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific state
or states, allowing you to perform post-mortem analysis of the program
execution. You can also set software breakpoints in your program.
With the 70632 emulator, setting a software breakpoint inserts a 70632
BRK instruction into your program at the desired location.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Software Debugging The HP 64758G/H Real-Time Emulator for 70632 microprocessors is a
powerful tool for both software and hardware designers. Using the HP
64758G/H Emulator’s emulation memory (up to 512 Kilo/1 Mega
bytes), software debugging can be done without functional target
system memory.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait and
retry requests when accessing emulation memory. Additionally, the
processor signals /READY, /BERR, BFREZ, RT/EP, /NMI, INT, and
/HLDRQ may be enabled or disabled independently of the 70632
processor.

Real-Time Operation Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator needs to break to the monitor to
perform an action you requested, such as displaying target system
memory.) Emulator features performed in real time include: running
and analyzer tracing. Emulator features not performed in real time
include: display or modify of target system memory; load/dump of
target memory, and display or modification of registers and some
virtual related functionality.

Introduction 1-5

Foreground or
Background

Emulation Monitor

The emulation monitor is a program executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, the
monitor program executes 70632 instructions to read the target
memory locations and send their contents to the emulation controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program also can execute in background, the emulator
mode in which foreground operation is suspended so the emulation
processor can access target system resources. The background monitor
does not occupy processor address space.

Out-of-Circuit or
In-Circuit Emulation

The 70632 emulator can be used for both out-of-circuit emulation and
in-circuit emulation. The emulation can be used in multiple emulation
systems using other HP 64700 Series emulators/analyzers.

1-6 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the HP 64758G/H 70632
emulator with the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s example.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Servicel manual for
instructions on installing software.

3. In addition,you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manualalso covers
HP 64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
70632 emulator.

2-2 Getting Started

A Look at the Sample
Program

The sample program used in this chapter is listed in "C" and assembly
in Figures 2-1 through 2-4. The sample program is skdemo consisting
of source programs skdemo.c and init.s The program emulates a
primitive command interpreter. The sample program is shipped with
the Softkey Interface and may be copied from the following location.

/usr/hp64000/demo/emul/hp64758/skdemo.c

/usr/hp64000/demo/emul/hp64758/init.s

The sample program is checking for a new command continually. If a
new command, other than 20 (hex), is entered, the command interpreter
routine (_cmd_process) is called. The command interpreter interprets
the command entered and outputs the resulting message and status.

cmd_code and cmd_result

The switch statement evaluates the value of cmd_code with cases
within it. You will change the _cmd_code (to ’A’, ’B’ or ’C’) to match
each of the cases as you progress through the steps in this manual. As
you enter into each branch of the switch statement:

If case CMD_A is satisfied, the _cmd_result (command ’A’
entered), is displayed.

If case CMD_B is satisfied, the _cmd_result (command ’B’
entered), is displayed.

If case CMD_C is satisfied, the _cmd_result (command ’C’
entered), is displayed.

If any case statement is not satisfied, the _cmd_result (invalid
command entered), is displayed.

When the case statement is completed, the _cmd_code will be
assigned to the value of NO_CMD.

status

Status contains the message "Awaiting command" when the program is
started. Once you enter a command, "Command received" will be
displayed.

Getting Started 2-3

init.s

The init.s file defines start-up routine for C program skdemo.c and
70632 breakpoint instruction vector. The start-up routine performs
preparing the stack, setting up stack pointer, and calling to _main
function defined in skdemo.c. The breakpoint instruction vector is
required for the emulator’s software breakpoint feature. The vector has
to point to a memory location where permitted to fetch an instruction.

#define TRUE 1
#define FALSE 0

#define CMD_A ’A’
#define CMD_B ’B’
#define CMD_C ’C’
#define NO_CMD ’ ’
#define MSG_SIZ 0x20

static char status[MSG_SIZ];
static char cmd_result [MSG_SIZ];
static char cmd_code;

main ()
{
 msgcpy (status, "Awaiting command", MSG_SIZ);

 cmd_code = NO_CMD;
 msgcpy (cmd_result, "No command entered", MSG_SIZ);

 while(TRUE) {
 if(cmd_code != NO_CMD) {
 cmd_process (cmd_code, cmd_result);
 cmd_code = NO_CMD;
 }
 }
}

Figure 2-1. C Source skdemo.c

2-4 Getting Started

int cmd_process (cmd_code, cmd_result)
char cmd_code;
char *cmd_result;
{

 msgcpy (status, "Command received", MSG_SIZ);

 switch (cmd_code) {
 case CMD_A :
 msgcpy (cmd_result, "Command ’A’ entered", MSG_SIZ);
 break;

 case CMD_B :
 msgcpy (cmd_result, "Command ’B’ entered", MSG_SIZ);
 break;

 case CMD_C :
 msgcpy (cmd_result, "Command ’C’ entered", MSG_SIZ);
 break;

 default :
 msgcpy (cmd_result, "Invalid command entered", MSG_SIZ);
 }

}

msgcpy(msg_dst, msg_src, msg_siz)
char *msg_dst;
char *msg_src;
int msg_siz;
{
 for (; *msg_src != ’\0’ && msg_siz > 0; --msg_siz)
 *msg_dst++ = *msg_src++;

 for (; msg_siz > 0; --msg_siz)
 *msg_dst++ = ’ ’;
}

Figure 2-1. C Source skdemo.c (Cont’d)

Getting Started 2-5

 .file "init.s"

 .equ Stack_Size, 0x100

 .globl _main, Init

 .bss "sbt" (RW)
 .lcomm Sbt, 0x34, 0x100
 .lcomm brkvect, 4, 4

 .text (RX)
Init:
 movea.w Dummy_Text, brkvect
 mov.w #Stack+Stack_Size, sp
 call _main,[sp]
 jr .

Dummy_Text: halt

 .bss (RW)
 .lcomm Stack, Stack_Size,4

Figure 2-2. init.s Source Program

SECTIONS
{
 sbt 0x00000:
 {
 }

 .text 0x10000:
 {
 }

 .data 0x80000:
 {
 }

 .bss 0xf0000:
 {
 }

}

Figure 2-3. Linker Command File

2-6 Getting Started

Compiling,
Assembling and
Linking the
Program

NEC Corporation CC70616 C Compiler Package is used to compile,
assemble, and link the demo program. The package are available for
use in the HP 9000 300 Series work stations from NEC.

The v70cnvhp utility is used to generate the required HP format files.
The file skdemo.X contains the absolute code of the program. The file
skdemo.L contains the list of global symbols. The files skdemo.A and
init.A each contain a list of local symbols for the respective files.

The user interface provides source line referencing if line information
is present in the local symbol file. Line number information is included
if the -g option is used with either the "C" compiler or the assembler.

The following commands are used to compile, assemble, and link the
demo program.

$as70616 -a init.s >init.lis

$cc70616 -cg skdemo.c

$ld70616 skdemo.lnk -m -o skdemo init.o skdemo.o >skdemo.map

$v70cnvhp skdemo

The linker command file skdemo.lnk is listed in figure 2-3.

Getting Started 2-7

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

If you used previous HP 64000-UX emulators (for example,
the HP 64200 Series), you may be more familiar with the
pmon, msinit, and msconfig command method of entering
the emulation interface.

If you wish to run the Softkey Interface in multiple windows,
you must enter from the HP-UX shell using the emul700
command. Refer to the Softkey Interface Reference manual for
more information on running in multiple windows.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>
If you have not already created a measurement system for the 70632
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>
After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>
 To define a measurement system for the 70632 emulator, enter:

make_sys emv70 <RETURN>
 Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it v70
<RETURN>

 Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

2-8 Getting Started

If the measurement system and emulation module are named "emv70"
and "v70" as shown above, you can enter the emulation system with
the following command:

emv70 default v70 <RETURN>
 If this command is successful, you will see a display similar to figure
2-4. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

Note The measurement system name emv70 and the emulation module name
v70 are of the user’s choice.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

If this command is successful, you will see a display similar to figure
2-4. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

Getting Started 2-9

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>
The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit

 HP64758-19001 A.02.00 15Jun90 Unreleased
 70632 EMULATION SERIES 64700

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1990

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

STATUS: Loaded configuration file_____________________________________...R....

 run trace step display modify break end ---ETC--

Figure 2-4. Softkey Interface Display

2-10 Getting Started

scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help bp’ <RETURN>

---SYSTEM COMMANDS---

? displays the possible help files
help displays the possible help files
! fork a shell (specified by shell variable SH)
!<shell cmd> fork a shell and execute a shell command
cd <directory> change the working directory
pwd print the working directory
cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic
pws print the working symbol
<FILE> p1 p2 p3 ... execute a command file passing parameters p1, p2, p3

log_commands to <FILE> logs the next sequence of commands to file <FILE>
log_commands off discontinue logging commands
name_of_module get the "logical" name of this module (see 64700tab)
set <ENVVAR> = <VALUE> set and export a shell environment variable
set HP64KPATH = <MYPATH> set and export the shell environment variable that
 specifies the search path for command files
wait pause until <cntrl-c> (SIGINT)
--More--(42%)

Pod Commands
 Time Command

23:09:36 help bp

 bp - set, enable, disable, remove or display software breakpoints
 bp - display current breakpoints
 bp <addr> - set breakpoint at <addr>
 bp -e * - enable all breakpoints
 bp -e <addr> - enable breakpoint at <addr>
 bp -d * - disable all breakpoints
 bp -d <addr> - disable breakpoint at <addr>
 bp -r * - remove all breakpoints
 bp -r <addr> - remove breakpoint at <addr>
 bp <addr> <addr> - more than one <addr> may be given
 --- NOTES ---
 Enable/disable breaking on software breakpoints via the bc command.
 Maximum number of breakpoints available is 32.

STATUS: N70632--Running in monitor____________________________________...R....
 pod_command ’help bp’

pod_cmd set perfinit perfrun perfend ---ETC--

Getting Started 2-11

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Configuring the
Emulator

You need to configure the emulator for this tutorial. To configure the
emulator, type the following command to get into the configuration
session.

modify configuration <RETURN>
Trace the following answer to configure the emulator. Details of each
question will be described later.

Micro-processor clock source? internal
Enter monitor after configuration? yes
Restrict to real-time runs? no
Modify memory configuration? yes
Monitor type? background

Now you should be facing memory mapping screen. The address range
0 through 0ffffH is mapped as emulation RAM by default. More three
mapper terms must be specified for the sample program. Enter the
following lines to map the program code and constant data areas as
emulation ROM, the variable data area as emulation RAM.

10000h thru 10fffh emulation rom
80000h thru 80fffh emulation rom
0f0000h thru 0f0fffh emulation ram

The unmapped area should be defined as "guarded" to detect illegal
accesses to the area.

default guarded
end

Modify emulator pod configuration? no
Modify debug/trace options? no
Modify simulated I/O configuration? no
Modify interactive measurement specification? no
Configuration file name? skdemo

2-12 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" or
"user_mem". For example:

load skdemo <RETURN>

Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" option), symbol information is loaded. Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Global symbols in skdemo
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
_cmd_process 000100A8 - 0001016B 0088
_main 00010020 - 000100A6 0000
_msgcpy 0001016C - 000101C6 014C

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Init 00010000 0000
_edata 0008008C 0000
_end 000F0144 0000
_esbt 00000104 0000
_etext 000101C8 0000

Filename symbols
Filename __
init.s

STATUS: N70632--Running in monitor____________________________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

Getting Started 2-13

Listed are: address ranges associated with a symbol and the offset of
that symbol.

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in skdemo.c:

<RETURN>

Loading a program will by default load the absolute code, global
symbols, and local symbols. Displaying the local symbols will make
the specified set of symbols active.

If source line number information is contained in the local symbol file,
the memory locations may be referenced by source line numbers. Line
number 1 is the first line in a source file, line number 2 is the second
line, . . . etc.

Symbols in skdemo.c:
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
_cmd_process 000100A8 - 0001016B 0088
_main 00010020 - 000100A6 0000
_msgcpy 0001016C - 000101C6 014C

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
_cmd_code 000F0140 0040
_cmd_result 000F0120 0020
_status 000F0100 0000

Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#16 0001002C - 00010048 000C
#17-#18 00010049 - 00010051 0029
#19-#19 00010052 - 0001006E 0032

STATUS: cws: skdemo.c:__...R....
 display local_symbols_in skdemo.c:

 run trace step display modify break end ---ETC--

2-14 Getting Started

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
To display memory in mnemonic format from the address of label
_main, enter the following command:

display memory _main mnemonic
<RETURN>

 Memory :mnemonic :file = skdemo.c:
 address data
 00010020 ECF4000000 PUSHM #0m<>
 00010026 DEF4000000 PREPARE #00000000H
 0001002C EEF4200000 PUSH #00000020H
 00010032 EEF4000008 PUSH #00080000H
 00010038 EEF400010F PUSH #000F0100H
 0001003E 4980F22E01 CALL 0001016CH,[SP]
 00010046 843FEC ADD.W #CH,SP
 00010049 0980F420F2 MOV.B #20H,000F0140H
 00010052 EEF4200000 PUSH #00000020H
 00010058 EEF4110008 PUSH #00080011H
 0001005E EEF420010F PUSH #000F0120H
 00010064 4980F20801 CALL 0001016CH,[SP]
 0001006C 843FEC ADD.W #CH,SP
 0001006F B880F420F2 CMP.B #20H,000F0140H
 00010078 6424 BE/Z 0001009CH
 0001007A EEF420010F PUSH #000F0120H

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE________________...R....
 display memory _main mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-15

Displaying
Memory with
Symbols

You can include symbol information in memory display.

set symbols on <RETURN>

 Memory :mnemonic :file = skdemo.c:
 address label data
 00010020 :_main ECF4000000 PUSHM #0m<>
 00010026 DEF4000000 PREPARE #00000000H
 0001002C EEF4200000 PUSH #00000020H
 00010032 EEF4000008 PUSH #00080000H
 00010038 EEF400010F PUSH #000F0100H
 0001003E 4980F22E01 CALL :_msgcpy,[SP]
 00010046 843FEC ADD.W #CH,SP
 00010049 0980F420F2 MOV.B #20H,skdemo:_cmd_code
 00010052 EEF4200000 PUSH #00000020H
 00010058 EEF4110008 PUSH #00080011H
 0001005E EEF420010F PUSH #000F0120H
 00010064 4980F20801 CALL :_msgcpy,[SP]
 0001006C 843FEC ADD.W #CH,SP
 0001006F B880F420F2 CMP.B #20H,skdemo:_cmd_code
 00010078 6424 BE/Z :_main+0000007CH
 0001007A EEF420010F PUSH #000F0120H

STATUS: N70632--Running in monitor____________________________________...R....
 set symbols on

pod_cmd set perfinit perfrun perfend ---ETC--

2-16 Getting Started

Displaying
Memory with
Source Lines

You can include source program lines in memory display.

set source on <RETURN>

Note The "set" command is effective only to the window in which the
command is invoked. You need to use this command at each window.

 Memory :mnemonic :file = skdemo.c:
 address label data
 00010020 :_main ECF4000000 PUSHM #0m<>
 00010026 DEF4000000 PREPARE #00000000H
 12 static char cmd_code;
 13
 14 main ()
 15 {
 16 msgcpy (status, "Awaiting command", MSG_SIZ);
 0001002C EEF4200000 PUSH #00000020H
 00010032 EEF4000008 PUSH #00080000H
 00010038 EEF400010F PUSH #000F0100H
 0001003E 4980F22E01 CALL :_msgcpy,[SP]
 00010046 843FEC ADD.W #CH,SP
 17
 18 cmd_code = NO_CMD;
 00010049 0980F420F2 MOV.B #20H,skdemo:_cmd_code
 19 msgcpy (cmd_result, "No command entered", MSG_SIZ);

STATUS: N70632--Running in monitor____________________________________...R....
 set source on

pod_cmd set perfinit perfrun perfend ---ETC--

Getting Started 2-17

Running the
Program

The "run " command lets you execute a program in memory. Entering
the "run " command by itself causes the emulator to begin executing at
the current program counter address. The "run from " command
allows you to specify an address at which execution is to start. For
example to run the sample program from the address of Init label,

run from Init <RETURN>
You will see that the status line on your screen is changed to "Running
user program".

From Reset The "run from reset" command specifies that the emulator begin
executing from target system reset.

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the information
on the screen updates constantly. For example, to display the
_cmd_result and the _status locations of the sample program
repetitively (in blocked byte format), enter the following command.

display memory skdemo.c:_cmd_result
thru +1fh , skdemo.c:_status thru
+1fh blocked bytes <RETURN>

 Notice that when using local symbols in expression, the source file in
which the local symbol is defined must be included.

When you display/modify the memory location, you can specify the
data size or type to be displayed/modified. The following data size/type
are allowed.

bytes
words
long
real (short)
real long

(one byte integer)
(two bytes integer)
(four bytes integer)
(four bytes floating-point)
(eight bytes floating-point)

2-18 Getting Started

Modifying Memory The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labeled _cmd_code. You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory _cmd_code bytes to 41h
<RETURN>

Or:

modify memory _cmd_code bytes to ’A’
<RETURN>

(Single character strings are allowed in expressions.)

 Memory :bytes :blocked :repetitively
 address data :hex :ascii
 000F0120-27 4E 6F 20 63 6F 6D 6D 61 N o c o m m a
 000F0128-2F 6E 64 20 65 6E 74 65 72 n d e n t e r
 000F0130-37 65 64 20 20 20 20 20 20 e d
 000F0138-3F 20 20 20 20 20 20 20 20
 000F0100-07 41 77 61 69 74 69 6E 67 A w a i t i n g
 000F0108-0F 20 63 6F 6D 6D 61 6E 64 c o m m a n d
 000F0110-17 20 20 20 20 20 20 20 20
 000F0118-1F 20 20 20 20 20 20 20 20

STATUS: N70632--Running user program__________________________________...R....
 display memory skdemo.c:_cmd_result thru +1fh, skdemo.c:_status thru +1fh repe
titively blocked bytes

 run trace step display modify break end ---ETC--

Getting Started 2-19

As you can see, the memory display is automatically updated, and
shows that the "Command ’A’ entered" message is written to the
destination locations.

Breaking into the
Monitor

The "break" command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the "run " command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>
You will find that the status line on the screen is changed to "Running
in monitor".

 Memory :bytes :blocked :repetitively
 address data :hex :ascii
 000F0120-27 43 6F 6D 6D 61 6E 64 20 C o m m a n d
 000F0128-2F 27 41 27 20 65 6E 74 65 ’ A ’ e n t e
 000F0130-37 72 65 64 20 20 20 20 20 r e d
 000F0138-3F 20 20 20 20 20 20 20 20
 000F0100-07 43 6F 6D 6D 61 6E 64 20 C o m m a n d
 000F0108-0F 72 65 63 65 69 76 65 64 r e c e i v e d
 000F0110-17 20 20 20 20 20 20 20 20
 000F0118-1F 20 20 20 20 20 20 20 20

STATUS: N70632--Running user program__________________________________...R....
 modify memory _cmd_code bytes to 41h

 run trace step display modify break end ---ETC--

2-20 Getting Started

Using Software
Breakpoints

Software breakpoints are handled by the 70632 BRK instruction.
When you define or enable a software breakpoint (with the bp
command), the emulator will replace the opcode at the software
breakpoint address with a breakpoint interrupt instruction (BRK).

If the BRK interrupt was generated by a software breakpoint, execution
breaks to the monitor, and the breakpoint interrupt instruction (BRK) is
replaced by the original opcode. A subsequent run or step command
will execute from this address.

Note When using software breakpoints feature of the emulator, you must
define up the BRK instruction vector pointing to an address allowed
instruction fetch; typically in the program code area. In this sample
program, the BRK instruction vector points to a "HALT" instruction.
When a software breakpoint occurs, the emulator reads the BRK
interrupt vector, push the next PC and PSW to stack, fetch one word of
instruction pointed by the vector same as the real CPU. And then,
break occurs but the instruction, "HALT" in this example, will never be
executed.

There are some notices to using the software breakpoints features.
Refer to the "Software Breakpoints" section of the "Using the
Emulator" chapter.

Up to 32 software breakpoints may be defined.

Display the software breakpoints status screen, by entering:

display software_breakpoints
The display shows that no software breakpoint is defined.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable
<RETURN>

The top of the screen indicates that software breakpoint feature is
enabled.

Getting Started 2-21

When software breakpoints are enabled and you set a software
breakpoint, the 70632 BRK instruction will be placed at the address
specified. When the BRK instruction is executed, program execution
will break into the monitor.

Setting a Software
Breakpoint

To set a software breakpoint at the address of the _cmd_process label,
enter the following command.

modify software_breakpoints set
_cmd_process <RETURN>

Notice that when using local symbols in expressions, the source file in
which the local symbol is defined must be included.

After the software breakpoint has been set, enter the following
commands to display memory and see if the software breakpoint was
correctly inserted.

display memory _cmd_process mnemonic
<RETURN>

Software breakpoints :enabled
 address label status
 000100A8 @r :_cmd_proces pending

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE________________...R....
 modify software_breakpoints set _cmd_process

 run trace step display modify break end ---ETC--

2-22 Getting Started

As you can see, the software breakpoint is shown in the memory
display with an asterisk, and the instruction at the address is replaced
with a BRK instruction.

Enter the following command to run the sample program again.

run from Init <RETURN>
Now, modify the command input byte to an invalid command for the
sample program.

modify memory _cmd_code bytes to 75h
<RETURN>

You will see the line of the software breakpoint is displayed in
inverse-video. The inverse-video shows that the Program Counter is
now at the address.

A message on the status line shows that the software breakpoint has
been hit. The status line also shows that the emulator is now executing
in the monitor.

Display the software breakpoint status, by entering:

display software_breakpoints <RETURN>

 Memory :mnemonic :file = skdemo.c:
 address label data
* 000100A8 :_cmd_proces C8 BRK
 000100A9 F40000 TEST.W 00H[R0]
 000100AC 00 HALT
 000100AD 00 HALT
 000100AE DEF4000000 PREPARE #00000000H
 29 int cmd_process (cmd_code, cmd_result)
 30 char cmd_code;
 31 char *cmd_result;
 32 {
 33 msgcpy (status, "Command received", MSG_SIZ);
 000100B4 EEF4200000 PUSH #00000020H
 000100BA EEF4240008 PUSH #00080024H
 000100C0 EEF400010F PUSH #000F0100H
 000100C6 4980F2A600 CALL :_msgcpy,[SP]
 000100CE 843FEC ADD.W #CH,SP
 34

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE________________...R....
 display memory _cmd_process mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-23

When software breakpoints are hit, they become inactivated. To
reactive the breakpoint so that is "pending", you must reenter the
"modify software_breakpoints set" command.

modify software_breakpoints set
<RETURN>

If you display the memory contents in mnemonic format, the contents
of the address you specify the breakpoint is replaced with the BRK
instruction.

display memory <RETURN>

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear
_cmd_process <RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending. To clear all software
breakpoints, you can enter the following command.

modify software_breakpoints clear
<RETURN>

Software breakpoints :enabled
 address label status
 000100A8 @r :_cmd_proces inactivated

STATUS: N70632--Running in monitor Software break: 0000100a8@r___...R....
 display software_breakpoints

 run trace step display modify break end ---ETC--

2-24 Getting Started

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step
from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>,
...

You will see the inverse-video moves according to the step execution.
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line, it
may be entered by pressing <RETURN>.

You can step program execution by source lines, enter:

step source
Source line stepping is implemented by single stepping assembly
instructions until the next PC is outside of the address range of the
current source line. When source line stepping is attempted on

 Memory :mnemonic :file = skdemo.c:
 address label data
 000100A8 :_cmd_proces ECF4000000 PUSHM #0m<>
 000100AE DEF4000000 PREPARE #00000000H
 29 int cmd_process (cmd_code, cmd_result)
 30 char cmd_code;
 31 char *cmd_result;
 32 {
 33 msgcpy (status, "Command received", MSG_SIZ);
 000100B4 EEF4200000 PUSH #00000020H
 000100BA EEF4240008 PUSH #00080024H
 000100C0 EEF400010F PUSH #000F0100H
 000100C6 4980F2A600 CALL :_msgcpy,[SP]
 000100CE 843FEC ADD.W #CH,SP
 34
 35 switch (cmd_code) {
 000100D1 0C207D MOVS.BW [AP],R0
 000100D4 6A72 BR :_cmd_process+0000009EH

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE________________...R....
 modify software_breakpoints clear _cmd_process

 run trace step display modify break end ---ETC--

Getting Started 2-25

assembly code, stepping will complete when a source line is found. To
terminate stepping type <Ctrl>-C.

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers class, or an individual register.

display registers <RETURN>

When you enter the "step" command with registers displayed, the
register display is updated every time you enter the "step" command.

step <RETURN>, <RETURN>, <RETURN>

Registers

Next PC 00010178@r
 PC 00010178 SP 000F00C8 FP 000F00C8 AP 000F00D4 PSW 10000000
 R0-7 000F013F 00080022 00000000 00000000 00000000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 000F00D4 000F00C8 000F00C8

STATUS: N70632--Stepping complete_____________________________________...R....
 display registers

 run trace step display modify break end ---ETC--

2-26 Getting Started

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). The analyzer collects data at each pulse of a clock signal, and
saves the data (a trace state) if it meets a "storage qualification"
condition.

Specifying a Simple
Trigger

Suppose you want to trace program execution around the point at
which the sample program read the byte value 42H (CMD_B) from the
address _cmd_code. The following command makes this trace
specification.

trace about skdemo.c:_cmd_code data
0xxxxxx42h status read <RETURN>

Note that the analyzer is to search for a lowest byte read of 42H
because the address is a multiple of four.

Registers

Step_PC 0001017B@r BE/Z :_msgcpy+0000003BH
Next PC 0001017D@r
 PC 0001017D SP 000F00C8 FP 000F00C8 AP 000F00D4 PSW 10000000
 R0-7 000F013F 00080022 00000000 00000000 00000000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 000F00D4 000F00C8 000F00C8

Step_PC 0001017D@r TEST.W 08H[AP]
Next PC 00010180@r
 PC 00010180 SP 000F00C8 FP 000F00C8 AP 000F00D4 PSW 10000000
 R0-7 000F013F 00080022 00000000 00000000 00000000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 000F00D4 000F00C8 000F00C8

STATUS: N70632--Stepping complete_____________________________________...R....
 step

 run trace step display modify break end ---ETC--

Getting Started 2-27

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "B" with the following
command.

modify memory skdemo.c:_cmd_code
bytes to 42h <RETURN>

The status line now shows "Emulation trace complete".

Displaying the Trace The trace listings which follow are of program execution on the 70632
emulator. To display the trace, enter:

display trace <RETURN>

The line labeled "about" in the trace list shows the state which
triggered the analyzer. To list the next lines of the trace, press the
<PGDN> or <NEXT> key.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
-003 :_main+00000060 C0F2A00C fetch
-002 :_main+00000064 BF000E00 fetch
 ##########skdemo.c - line 20 thru 22 ##################

 while(TRUE) {
 if(cmd_code != NO_CMD) {
-001 :_main+0000004F FFFFFF42 CMP.B #20H,skdemo:_cmd_code
about skdemo:_cmd_code FFFFFF42 42H data read
+001 :_main+00000058 FFFFFF42 BE/Z :_main+0000007CH
+002 :_main+00000068 20F28049 fetch
+003 :_main+0000006C 7F000000 fetch
 ##########skdemo.c - line 23 #############################
 cmd_process (cmd_code, cmd_result);
+004 :_main+0000005A 7F000000 PUSH #000F0120H
+005 :_main+00000070 09E83F84 fetch

STATUS: N70632--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

2-28 Getting Started

Displaying the Trace
with Compress Mode

At this time you may want to see more executed instructions on a
display. To see flow of executed instructions, the 70632 emulator
Softkey Interface provides compress mode for analysis display. To see
trace display with compress mode, enter the following command.

display trace compress on <RETURN>
Your analysis trace display should look similar as below. You can see
executions without prefetch cycles.

If you want to see all of cycles including prefetch cycles, enter
"display trace compress off" command.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
+006 skdemo:_cmd_code FFFFFF42 42H data read
+007 :init.:+000000F0 000F0120 000F0120H data write
+008 :_main+00000074 F220F480 fetch
+009 :_main+00000060 F220F480 MOVS.BW skdemo:_cmd_code,[-SP]
+010 :_main+00000078 000E00AD fetch
+011 :_main+0000007C E4CCD36A fetch
+012 :init.:+000000EC 00000042 00000042H data write
+013 :_cmd_process 0000F4EC fetch aft br
+014 :_cmd_p+00000004 F4DE0000 fetch
+015 :_cmd_p+00000008 00000000 fetch
 ##########skdemo.c - line 28 thru 33 ##################
 int cmd_process (cmd_code, cmd_result)
 char cmd_code;
 char *cmd_result;
 {

STATUS: N70632--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

Getting Started 2-29

The trace listing includes source lines and symbols because you issued
"set symbols on" and "set source on" command in the previous
section. You can cause these source lines highlight by entering the
following command.

set source on inverse_video on
<RETURN>

To list the previous lines of the trace, press the <PGUP> or <PREV>
key.

Changing the Trace
Depth

The default states displayed in the trace list is 256 states. To change
the number of states, use the "display trace depth" command.

display trace depth 1024 <RETURN>
You can see the states more than 256 by using the above command.

Using the Storage
Qualifier

You can use storage qualifier to trace only states with specific
conditions. Suppose that you would like to trace only states which
write the messages to the cmd_result area. To accomplish this, you can
use the "trace only" command like following.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
+006 skdemo:_cmd_code FFFFFF42 42H data read
+007 :init.:+000000F0 000F0120 000F0120H data write
+009 :_main+00000060 F220F480 MOVS.BW skdemo:_cmd_code,[-SP]
+012 :init.:+000000EC 00000042 00000042H data write
+017 :_main+00000068 0020F4EE CALL :_cmd_process,[SP]
+018 :init.:+000000E4 00010090 00010090H data write
+020 :init.:+000000E8 000F0100 000F0100H data write
+022 :_cmd_process 0100F4EE PUSHM #0m<>
+024 :_cmd_p+00000006 0100F4EE PREPARE #00000000H
+025 :init.:+000000E0 000F00F4 000F00F4H data write
 ##########skdemo.c - line 28 thru 33 ##################
 int cmd_process (cmd_code, cmd_result)
 char cmd_code;
 char *cmd_result;
 {

STATUS: N70632--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

2-30 Getting Started

trace after _cmd_result only range
_cmd_result thru +1fh status write
<RETURN>

Only write accesses to address _cmd_result through _cmd_result+1fh
will be stored in the trace buffer.

Modify the command input byte with the following command.

modify memory _cmd_code bytes to 41h
<RETURN>

The display shows that the message bytes are written to the location
_cmd_result. You will find the status line still shows "Emulation trace
started" because the analyzer trace buffer is not filled up. As the length
of resulting message consists of 32 bytes, only 32 states are stored in
the trace buffer. If you want to stop the trace, enter the following
command.

stop_trace <RETURN>
The status line will show "Emulation trace complete".

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
after skde:_cmd_result FFFFFF43 43H data write
+001 :skdem:+00000021 FFFF6FFF 6F..H data write
+002 :skdem:+00000022 FF6DFFFF ..6D....H data write
+003 :skdem:+00000023 6DFFFFFF 6D......H data write
+004 :skdem:+00000024 FFFFFF61 61H data write
+005 :skdem:+00000025 FFFF6EFF 6E..H data write
+006 :skdem:+00000026 FF64FFFF ..64....H data write
+007 :skdem:+00000027 20FFFFFF 20......H data write
+008 :skdem:+00000028 FFFFFF27 27H data write
+009 :skdem:+00000029 FFFF41FF 41..H data write
+010 :skdem:+0000002A FF27FFFF ..27....H data write
+011 :skdem:+0000002B 20FFFFFF 20......H data write
+012 :skdem:+0000002C FFFFFF65 65H data write
+013 :skdem:+0000002D FFFF6EFF 6E..H data write
+014 :skdem:+0000002E FF74FFFF ..74....H data write

STATUS: N70632--Running user program Emulation trace started_______...R....
 modify memory _cmd_code bytes to 41h

 run trace step display modify break end ---ETC--

Getting Started 2-31

Triggering the
Analyzer at an

Instruction Execution
State

The emulation analyzer can capture states of instruction executions. If
you want to trigger the analyzer when an instruction at a desired
address is executed, you should not set up the analyzer trigger
condition to detect only the address. If you do so, the analyzer will be
also triggered in case that the address is accessed to prefetch the
instruction, or read the data from the address. You should use the
"exec" status qualifier.

Suppose that you want to trace the states of the execution after the
instruction at the line 43 of the skdemo.c file, issue the following
command. The line 43 of the file skdemo.c is executed when the
command "C" is entered.

trace after skdemo.c: line 43 status
exec <RETURN>

The message "Emulation trace started" will appear on the status line.
To trigger the analyzer, send the command "C" by entering:

modify memory skdemo.c:_cmd_code
 bytes to 43h <RETURN>

The status line now shows "Emulation trace complete".

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
 ##########skdemo.c - line 43 thru 45 ##################

 case CMD_C :
 msgcpy (cmd_result, "Command ’C’ entered", MSG_SIZ);
after :_cmd_p+00000066 0000004F No fetch cycle found
+002 :init.:+000000DC 00000020 00000020H data write
+004 :_cmd_p+0000006C F4EE3B6A No fetch cycle found
+005 :init.:+000000F0 000F0120 000F0120H data read
+006 :init.:+000000D8 0008005D 0008005DH data write
+008 :_cmd_p+00000072 0071F4EE No fetch cycle found
+010 :init.:+000000D4 000F0120 000F0120H data write
+015 :_cmd_p+00000075 64049DF0 No fetch cycle found
+016 :init.:+000000CC 00010125 00010125H data write
+018 :init.:+000000D0 000F00EC 000F00ECH data write
+020 :_msgcpy 202D236A PUSHM #0m<>

STATUS: N70632--Running user program Emulation trace complete______...R....
 modify memory skdemo.c:_cmd_code bytes to 43h

 run trace step display modify break end ---ETC--

2-32 Getting Started

The emulator has disassemble capability in trace listing. When the
emulator disassembles instructions in stored trace information, the
prefetch cycles of each instruction are required.

When you displayed the results of analyzer trace, some lines which
include "No fetch cycle found" messages were displayed. Each line
was instruction execution cycle at the address in the left side of the
line. However, the disassembles of these instructions were not
displayed because the prefetch states for the instructions were not
stored by the analyzer.

To display complete disassembles in trace listing, you should modify
location of trigger state in trace list, referred to as the "trigger position",
to "about" instead of "after".

70632 Analysis
Status Qualifiers

The status qualifier "write" was used in the example trace command
used above. The following analysis status qualifiers may also be used
with the 70632 emulator.

 fetch 0x1xxxxxxxxxx011x code fetch
 brfetch 0x1xxxxxxxxxx0111 code fetch after branch
 read 0x1xxxxxxxxxxxxxx read
 write 0x0xxxxxxxxxxxxxx write
 data 0xxxxxxxxxxxx0011 data access (read/write)
 io 0xxxxxxxxxxxx1011 i/o access (read/write)
 exec 0xxxxxxxxxxxx0000 execution state
 sdata 0xxxxxxxxxxxx0010 data access (read/write) with short path
 sysbase 0xxxxxxxxxxxx0100 system base table access
 tbl 0xxxxxxxxxxxx0101 translation table access (read/write)
 coproc 0xxxxxxxxxxxx1000 co-processor access(read/write)
 fault 0xxxxxxxxxxxx1100 machine fault acknowledge
 halt 0xxxxxxxxxxxx1101 halt acknowledge
 intack 0xxxxxxxxxxxx1110 interrupt acknowledge
 grdacc 0xxxxxxxxxx0x0xxx guarded memory access
 wrrom 0x0xxxxxxx0xx0xxx write to ROM
 monitor 0xxxxxxxxxxx0xxxx background monitor cycle
 block 0xxxxxxxx0xxxxxxx bus lock
 retry 00xxxxxxxxxxxxxxx retry
 holdtag 0xxxxxxxxxxxx0001 bus hold

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

Getting Started 2-33

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>
This option only appears when you enter the Softkey Interface via the
emul700 command. When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted. Refer to the Softkey
Interface Reference manual for more information on using the Softkey
Interface with window systems.

Selecting the
Measurement System

Display or Another
Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system
<RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

2-34 Getting Started

3

Virtual Mode Emulation Topics

Introduction The on-chip Memory Management Unit (MMU) of the 70632
microprocessor translates virtual addresses to physical (actual)
addresses that are placed on the processor address bus. This chapter
shows you how to use the emulator when the 70632 MMU is active.

Sample Program
for Virtual Mode
Emulation

The sample program is skdemo2 consisting of source programs
command.c, process.c and os.s. The program emulates a primitive
command interpreter.

The file os.s is a simple operating system which performs
task-switching, the file is listed in figure 3-1. The file command.c is a
command generator, which is listed in figure 3-2. The file process.c is
a command interpreter, which is listed in figure 3-3.

Virtual Mode Emulation Topics 3-1

 .file "os.s"

 .globl Sys_SBT, Current_Task, Num_Of_Task, TCB_Entry
 .globl Sys_Init, Setup_Task, Sys_Trap, Start_Ini_Task
 .globl Switch_Task

 .equ isp,0
 .equ l0sp,1
 .equ l1sp,2
 .equ l2sp,3
 .equ l3sp,4
 .equ sbr,5
 .equ tr,6
 .equ sycw,7
 .equ tkcw,8
 .equ pir,9
 .equ psw2,15
 .equ atbr0,16
 .equ atlr0,17
 .equ atbr1,18
 .equ atlr1,19
 .equ atbr2,20
 .equ atlr2,21
 .equ atbr3,22
 .equ atlr3,23
 .equ trmod,24
 .equ adtr0,25
 .equ adtr1,26
 .equ adtmr0,27
 .equ adtmr1,28

 .equ Stack_Size,0x1000-16
 .equ Dest_Size,0x20

 .data "sys_sbt" (RW)
Sys_SBT:
 .org 0x34
 .word Dummy_Text
 .org 0xc0
 .word Sys_Trap

 .data "sys_tcb" (RW)
Current_Task: .word 0
Num_Of_Task: .word 2

TCB_Entry: .word TCB_A
 .word 0x7fffffff
 .word 0x00000000
 .word 0x40000000
 .word 0x00006000
 .word 0

Figure 3-1. Sample Program Source os.s

3-2 Virtual Mode Emulation Topics

 .word TCB_B
 .word 0x7fffffff
 .word 0x00000000
 .word 0x40000000
 .word 0x00007000
 .word 0

TCB_A: .word 0x0000e000
 .space 32*4
 .word 0x00009009,0x00000000

TCB_B: .word 0x0000e000
 .space 32*4
 .word 0x00009011,0x00000000

 .bss "sys_stk" (RW)
 .lcomm tmp_area,16,4
 .lcomm Sys_Stack,Stack_Size,4

 .text "sys_text" (RX)
 .align 4

Sys_Init: mov.w #Sys_Stack+Stack_Size,sp
 ldpr #Sys_SBT,#sbr

 ldpr #0x9001,#atbr0
 ldpr #0x00000000,#atlr0
 ldpr #0,#atbr1
 ldpr #0,#atbr2
 ldpr #0,#atbr3

 ldpr #0x2171,#sycw

Setup_Task: mov.w Num_Of_Task,r0
 mov.w #TCB_Entry,r1
Setup_Task_0: mov.w r0,tmp_area
 mov.w r1,tmp_area+4
 ldtask 4[r1],[r1]
 mov.w tmp_area+4,r1
 mov.w tmp_area,r0
 mov.w 0x10[r1],r2
 mov.w #0,[-r2]
 mov.w 8[r1],[-r2]
 mov.w 12[r1],[-r2]
 mov.w r2,4[[r1]]
 add.w #0x18,r1
 dbr r0,Setup_Task_0

 ldtask TCB_Entry+4,TCB_Entry
Start_Ini_Task: retis #4

Figure 3-1. Sample Program Source os.s (Cont’d)

Virtual Mode Emulation Topics 3-3

 .align 4
Sys_Trap: mov.w Current_Task,tmp_area
 mul.w #24,tmp_area
 add.w #TCB_Entry,tmp_area
 sttask 4[tmp_area]
 mov.w Current_Task,r0
 inc.w r0
 cmp.w r0,Num_Of_Task
 jnz Sys_Trap_0
 xor.w r0,r0
Sys_Trap_0: mov.w r0,Current_Task
 mul.w #0x6,r0
 mov.w #TCB_Entry,r1
 ldtask 4[r1](r0),[r1](r0)
Switch_Task: retis #4

Dummy_Text: halt

 .data "sharemem" (RW)
_cmd_sem: .word 0
_command: .byte 0
 .align 4
_msg_sem: .word 0
_message: .space 0x20

 .bss "stack_a" (RW)
 .lcomm Stack_A,Stack_Size,4

 .bss "stack_b" (RW)
 .lcomm Stack_B,Stack_Size,4

Figure 3-1. Sample Program Source os.s (Cont’d)

3-4 Virtual Mode Emulation Topics

#define TRUE 1
#define FALSE 0
#define MSG_SIZ 0x20

#define trap(x) asm (" trap #0xa0+(x)")
static char cmd;
static char msg_dest [MSG_SIZ];

main()
{
 clear_dest();
 while (TRUE) {
 for(cmd = ’A’; cmd <= ’C’; cmd++) {
 write_command (cmd);
 read_message (msg_dest);
 }
 }
}

clear_dest()
{
 int i;

 for (i = 0; i < MSG_SIZ ; i++)
 msg_dest[i] = ’ ’;
}

write_command (cmd)
char cmd;
{
 extern char command;
 extern int cmd_sem;

 while (cmd_sem)
 trap(0);
 command = cmd;
 cmd_sem++;
}

read_message (buf)
char *buf;
{
 extern char *message;
 extern int msg_sem;
 int i;

 while (!msg_sem)
 trap(0);
 for(i = 0; i < MSG_SIZ; i++)
 buf [i] = message [i];
 msg_sem--;
}

Figure 3-2. Sample Program Source command.c

Virtual Mode Emulation Topics 3-5

#define TRUE 1
#define FALSE 0

#define CMD_A ’A’
#define CMD_B ’B’
#define CMD_C ’C’
#define NO_CMD ’ ’
#define MSG_SIZ 0x20

#define trap(x) asm (" trap #0xa0+(x)")

static char status[MSG_SIZ];
static char cmd_result[MSG_SIZ];

main ()
{
 char cmd_code;

 msgcpy (status, "Awaiting command", MSG_SIZ);
 msgcpy (cmd_result, "No command entered", MSG_SIZ);

 while(TRUE) {
 read_command (&cmd_code);
 cmd_process (cmd_code, cmd_result);
 write_message (cmd_result);
 }
}

int cmd_process (cmd_code, cmd_result)
char cmd_code;
char *cmd_result;
{
 msgcpy (status, "Command received", MSG_SIZ);

 switch (cmd_code) {
 case CMD_A :
 msgcpy (cmd_result, "Command ’A’ entered", MSG_SIZ);
 break;

 case CMD_B :
 msgcpy (cmd_result, "Command ’B’ entered", MSG_SIZ);
 break;

 case CMD_C :
 msgcpy (cmd_result, "Command ’C’ entered", MSG_SIZ);
 break;

 default :
 msgcpy (cmd_result, "Invalid command entered", MSG_SIZ);
 }
}

Figure 3-3. Sample Program Source process.c

3-6 Virtual Mode Emulation Topics

msgcpy(msg_dst, msg_src, msg_siz)
char *msg_dst;
char *msg_src;
int msg_siz;
{
 for (; *msg_src != ’\0’ && msg_siz > 0; --msg_siz)
 *msg_dst++ = *msg_src++;

 for (; msg_siz > 0; --msg_siz)
 *msg_dst++ = ’ ’;
}

read_command (cmd)
char *cmd;
{
 extern char command;
 extern int cmd_sem;

 while (!cmd_sem)
 trap(0);
 *cmd = command;
 cmd_sem--;
}

write_message (buf)
char *buf;
{
 extern char *message;
 extern int msg_sem;
 int i;

 while (msg_sem)
 trap(0);
 for(i = 0; i < MSG_SIZ; i++)
 message [i] = buf [i];
 msg_sem++;
}

Figure 3-3. Sample Program Source process.c (Cond’d)

SECTIONS
{
 sys_sbt 0x00000000: {}
 sys_tcb 0x00001000: {}
 sys_stk 0x00002000: {}
 sys_text 0x00003000: {}
 sharemem 0x00004000: {}
 stack_a 0x00005000: {}
 stack_b 0x00006000: {}
}

Figure 3-4. Linker command file os.lnk

Virtual Mode Emulation Topics 3-7

os.s

System Base Table The "sys_sbt" section defines the 70632
Break-point instruction trap vector and the Software trap 0 vector. The
break-point instruction vector is required for the software breakpoint
feature of the emulator. The software trap 0 vector is used for aborting
task and transfering execution to the operating system.

SECTIONS
{
 command 0x40000000: {
 command.o (.text)
 command.o (.data)
 command.o (.bss)
 _cmd_sem = 0x00004000;
 _command = 0x00004004;
 _msg_sem = 0x00004008;
 _message = 0x0000400c;
 } >(RWX)

}

Figure 3-5. Linker Command File command.lnk

SECTIONS
{
 process 0x40000000: {
 process.o (.text)
 process.o (.data)
 process.o (.bss)
 _cmd_sem = 0x00004000;
 _command = 0x00004004;
 _msg_sem = 0x00004008;
 _message = 0x0000400c;
 } >(RWX)

}

Figure 3-6. Linker Command File process.lnk

SPACE(OS) 0x0 < {os}
SPACE(COMMAND) < {command}
SPACE(PROCESS) < {process}

Figure 3-7. Configurator Command File skdemo2.cfc

3-8 Virtual Mode Emulation Topics

Task Context Block The "sys_tcb" section defines task context
block. The operating system manages tasks with this block.

The address labeled Current_Task contains a task number which is
currently executed. Tasks are numbered from 0. This address initialized
to 0 when the program is started. First, the task numbered 0 will be
executed.

The address labeled Num_Of_Task contains the number of tasks the
operating system manages. This program has two tasks, which are
alternately executed. So this address contains the value "2".

The address labeled TCB_Entry contains task control blocks for each
task. Each block consists of pointer and register list of TCB managed
under the 70632 processor, and the initial values of registers PSW, PC
and SP, and a word of flags.

The address labeled TCB_A contains the TCB, managed under the
processor, for one of the tasks. This task will be called as "command "
in this example. The task number mentioned above is "0".

The address labeled TCB_B contains the TCB for the other task, which
will be called as "process". The task number is "1".

System Stack The "sys_stk" section defines a stack for the
operating system. The stack is pointed by the register ISP.

System Program Code The "sys_text" section defines program
codes for the operating system.

The program instructions from the Sys_Init label to the Setup_Task
perform initialization of the operating system. The privilege registers
are set up and the processor address mode is switched to virtual mode.

The instructions from the Setup_task to Start_Ini_Task perform
initialization for the tasks. The stack for each task is set up with initial
PC and PSW.

The instructions from Start_Ini_Task transfer the execution to initial
task (command task).

The instructions from Sys_Trap perform switching task. When a task
aborts the execution, the processor executes from the address labeled
Sys_Trap. The instructions store the task execution environment of the
aborted task to corresponding TCB, update the Current_Task to the

Virtual Mode Emulation Topics 3-9

another task number to be switched, load the TCB, and switch the
execution.

Common Area The "sharemem" section defines common area for
both command task and process task. The common area is private
buffer between these tasks.

command.c The file command.c defines a command generator. Command task
generates commands to process task. A command is an ASCII byte,
and ’A’ through ’C’ are generated sequentially. Commands are
delivered to process task via the common area.

When a command byte is interpreted by process task, resulting
message is written in the common area. After the message is written,
command task reads the message from the common area. The message
is transferred to msg_dest location.

process.c The file process.c defines a command interpreter. Process task checks
whether a command is send from command task. When a command is
generated by command task, process task interprets the command and
output a message into the common area. If the command is one of the
correct command (’A’ through ’C’), the corresponded message is
written.

Compiling,
Assembling and
Linking the
Sample Program

NEC Corporation CC70616 C Compiler Package is used to compile,
assemble, and link the demo program. The package are available for
use in the HP 9000 300 Series work stations from NEC.

The v70cnvhp utility is used to generate the required HP format files.
Each file which has ".X" suffix contains the absolute code of the
program. Each file which has ".L" suffix contains the list of global
symbols. Each file which has ".A" suffix contains the list of local
symbols. The symbol files for os.s contain real addresses of the
symbols. The symbol files for command.c and process.c contain virtual

3-10 Virtual Mode Emulation Topics

addresses of the symbols. All the absolute files are generated for real
address location.

The following commands are used to compile, assemble, and link the
demo program.

$as70616 -a os.s >os.lis

$cc70616 -cg command.c

$cc70616 -cg process.c

$ld70616 -m -o os os.o os.lnk >os.map

$ld70616 -m -o command command.o command.lnk >command.map

$ld70616 -m -o process process.o process.lnk >process.map

$cf70616 -m -o skdemo2.cfo skdemo2.cfc >skdemo2.cfm

$ar70616 -x skdemo2.cfo

$v70cnvhp -r os.cf

$v70cnvhp -rx command.cf

$v70cnvhp -vla command.cf

$v70cnvhp -rx process.cf

$v70cnvhp -vla process.cf

The linker command files os.lnk, command.lnk and process.lnk used in
the above command are shown in figure 3-4 through 3-6.

The configurator command file skdemo2.cfc is listed in figure 3-7.

The sample programs used in this chapter can be found in the following
path:

/usr/hp64000/demo/emul/hp64758/*

Setting Up the
Emulator

Before debugging, you have to set up the emulator by typing some
commands. The details of these commands used below are mentioned
in chapter 2.

Virtual Mode Emulation Topics 3-11

Entering the Softkey
Interface

From the "pmon" User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>
If the measurement system and emulation module are named "emv70"
and "v70", you can enter the emulation system with the following
command:

If you have not set up the measurement system or emulation module,
set up the system or module. Refer to the "Entering the Softkey
Interface" section of chapter 2.

emv70 default v70 <RETURN>

From the HP-UX Shell

If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

Configuring the
Emulator

To entering the emulator configuration session, enter the following
command.

modify configuration <RETURN>
Trace the following answer to configure the emulator. Details of each
question will be described later.

Micro-processor clock source? internal
Enter monitor after configuration? yes
Restrict to real-time runs? no
Modify memory configuration? yes
Monitor type? background

Now you should be facing memory mapping screen. The sample
program occupies address range 0 through 9fffh of actual memory.

3-12 Virtual Mode Emulation Topics

Delete the default mapping, and map the address range as emulation
ram.

delete all
0 thru 9fffh emulation ram
default guarded
end

Modify emulator pod configuration? no
Modify debug/trace options? no
Modify simulated I/O configuration? no
Modify interactive measurement specification? no
Configuration file name? skdemo2

Loading Absolute
Files

Enter the following command to load the absolute files.

load os <RETURN>
load command <RETURN>
load process <RETURN>

The v70cnvhp converter also generated an absolute file which contains
address translation tables for the sample program. The absolute file
name is aptable.X. To load the file, specify nosymbols option because
symbol files for aptable.X are not generated.

load aptable nosymbols <RETURN>

Loading the Symbols
for os

The sample program is executed from the address Sys_Init. Load the
symbols for os because the file os.s includes this label.

load symbols os <RETURN>
After loading symbol file, display the global symbols.

display global_symbols <RETURN>

Virtual Mode Emulation Topics 3-13

Display the local symbols, include the source file name in which the
symbols are defined.

display local_symbols_in
os.s:<RETURN>

Global symbols in os
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Current_Task 00001000 0000
Num_Of_Task 00001004 0000
Setup_Task 00003043 0000
Start_Ini_Task 000030A0 0000
Switch_Task 000030FF 0000
Sys_Init 00003000 0000
Sys_SBT 00000000 0000
Sys_Trap 000030A4 0000
TCB_Entry 00001008 0000
esharemem 0000402C 0000
_estack_a 00005FF0 0000
_estack_b 00006FF0 0000
_esys_sbt 000000C4 0000
_esys_stk 00003000 0000
_esys_tcb 00001150 0000

STATUS: Build successful; no warnings were issued_____________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

Symbols in os.s:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Dummy_Text 00003101 1101
Setup_Task_0 00003051 1051
Stack_A 00005000 0000
Stack_B 00006000 0000
Sys_Stack 00002010 0010
Sys_Trap_0 000030E7 10E7
TCB_A 00001038 0038
TCB_B 000010C4 00C4
_cmd_sem 00004000 0000
_command 00004004 0004
_message 0000400C 000C
_msg_sem 00004008 0008
tmp_area 00002000 0000

STATUS: cws: os.s:__...R....
 display local_symbols_in os.s:

 run trace step display modify break end ---ETC--

3-14 Virtual Mode Emulation Topics

Getting into
Virtual Mode

Before starting the program, define software breakpoint at the address
Start_Ini_Task. This address is the exit of the operating system.

modify software_breakpoints enable
<RETURN>
modify software_breakpoints set
Start_Ini_Task <RETURN>

Then start the program from the address Sys_Init.

run from Sys_Init <RETURN>
You will see the following in the status line.

Software break: 00000030a0@v

Display memory in mnemonic format from the current PC.

display memory mnemonic <RETURN>
The next instruction to be executed is high-lighted. You can include
symbols in the display.

set symbols on <RETURN>

 Memory :mnemonic :file = os.s:
 address label data
 000030A0 :Start_Ini_T FAE4 RETIS #4H
 000030A2 00 HALT
 000030A3 00 HALT
 000030A4 :Sys_Trap 2D80F25CDF MOV.W :Current_Task,sk/os.s:tmp_area
 000030B0 8580F41800 MUL.W #00000018H,sk/os.s:tmp_area
 000030BC 8480F40810 ADD.W #00001008H,sk/os.s:tmp_area
 000030C8 FCFE38EFFF STTASK 00000004H[sk/os.s:tmp_area]
 000030D2 2D20F22EDF MOV.W :Current_Task,R0
 000030D9 DD60 INC.W R0
 000030DB BC00F229DF CMP.W R0,:Num_Of_Task
 000030E2 6505 BNE/NZ /os.s:Sys_Trap_0
 000030E4 B44060 XOR.W R0,R0
 000030E7 o:Sys_Trap_0 2D00F219DF MOV.W R0,:Current_Task
 000030EE 8520E6 MUL.W #6H,R0
 000030F1 2D21F40810 MOV.W #00001008H,R1
 000030F8 01E0C00104 LDTASK 04H[R1](R0),[R1](R0)

STATUS: N70632--Running in monitor Software break: 0000030a0@v___...R....
 set symbols on

pod_cmd set perfinit perfrun perfend ---ETC--

Virtual Mode Emulation Topics 3-15

The processor executed the following tasks from Sys_Init to
Start_Ini_Task.

Initializing privilege registers (stack pointer and area table
registers)
Initializing Task Context Blocks for command task and
process task.
Switching to command task.

The emulator broke just before the transition from operating system to
command task. Step one instruction to enter the command task.

step <RETURN>
The display is updated to disassemble from the current PC. The
symbols for these addresses are included in the symbol file for
command task. Load the symbols for command task.

load symbols command <RETURN>
The display will come to include the symbols.

Enter the following command to include source file in the display.

set source on <RETURN>

Define software breakpoint at the address Switch_Task. This address
is the exit of the task dispatcher. The symbol Switch_Task in included
in os.

 Memory :mnemonic :file = command.c:
 address label data
 40000000 :_main ECF4000000 PUSHM #0m<>
 40000006 DEF4000000 PREPARE #00000000H
 7 static char msg_dest [MSG_SIZ];
 8
 9 main()
 10 {
 11 clear_dest();
 4000000C 4980F25C00 CALL :_clear_dest,[SP]
 12 while (TRUE) {
 13 for(cmd = ’A’; cmd <= ’C’; cmd++) {
 40000014 0980F441F2 MOV.B #41H,s/command.c:_cmd
 4000001D B880F443F2 CMP.B #43H,s/command.c:_cmd
 40000026 6F37 BGT :_main+0000005DH
 14 write_command (cmd);
 40000028 0CA0F20C01 MOVS.BW s/command.c:_cmd,[-SP]
 40000030 4980F27C00 CALL :_write_command,[SP]

STATUS: N70632--Stepping complete_____________________________________...R....
 set source on

pod_cmd set perfinit perfrun perfend ---ETC--

3-16 Virtual Mode Emulation Topics

Since you have loaded the symbols for command, you must reload the
symbols for os.

load symbols os <RETURN>
Define software breakpoint at Switch_Task, and continue the
execution.

modify software_breakpoints set
Switch_Task <RETURN>
run <RETURN>

You will see the following in the status line.

Software break: 00000030ff@v

The processor executed the following tasks.

Generating the command ’A’.
Sending the command into the common area.
Aborting the execution of command
Storing the Task Context for command
Loading the Task Context for process
Switching to process

The emulator broke just before the transition from task dispatcher to
process. Step one instruction to enter the process task.

step <RETURN>
The display is updated to disassemble from the current PC. The
symbols for these addresses are included in the symbol file for process
task. Load the symbols for process task.

load symbols process <RETURN>

Virtual Mode Emulation Topics 3-17

Displaying
Registers

Display basic registers by entering:

display registers <RETURN>
You can also display privilege and on-chip MMU registers, enter:

display registers PRIV <RETURN>
display registers MMU <RETURN>

 Memory :mnemonic :file = process.c:
 address label data
 40000000 :_main ECF4000000 PUSHM #0m<>
 40000006 DEF4040000 PREPARE #00000004H
 15 main ()
 16 {
 17 char cmd_code;
 18
 19 msgcpy (status, "Awaiting command", MSG_SIZ);
 4000000C EEF4200000 PUSH #00000020H
 40000012 EEF4380200 PUSH #40000238H
 40000018 EEF4C40200 PUSH #400002C4H
 4000001E 4980F22E01 CALL :_msgcpy,[SP]
 40000026 843FEC ADD.W #CH,SP
 20 msgcpy (cmd_result, "No command entered", MSG_SIZ);
 40000029 EEF4200000 PUSH #00000020H
 4000002F EEF4490200 PUSH #40000249H
 40000035 EEF4E40200 PUSH #400002E4H

STATUS: cws: process.c:___...R....
 load symbols process

 load store stop_trc copy reset specify cmb_exec ---ETC--

3-18 Virtual Mode Emulation Topics

Tracing the
Program
Execution

Suppose that you wish to trace the program from the current address.

The default trace specification triggers the analyzer as soon as possible,
if the program is running user program. The emulator is running in
monitor because the software breakpoint has hit. To trace the program
execution from the current address, you do not have to specify any
trace specifications. Start the trace and continue the program.

trace <RETURN>
run <RETURN>

The status line shows that the emulation trace is completed.

To display the trace listing without fetch cycles, enter:

display trace compress on <RETURN>

Registers

Next PC 40000000@v
 PC 40000000 SP 00007000 FP 00000000 AP 00000000 PSW 00000000
 R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00007000

 SBR 00000000 TR 000010C4 SYCW 00002171 TKCW 0000E000 PIR 00007006
 ISP 00003000 L0SP 00007000 L1SP 00000000 L2SP 00000000 L3SP 00000000
 PSW2 0000F002

 ATBR0 00009001 ATBR1 00009011 ATBR2 00000000 ATBR3 00000000
 ATLR0 00000000 ATLR1 00000000 ATLR2 00000000 ATLR3 00000000

STATUS: N70632--Stepping complete_____________________________________...R....
 display registers MMU

 run trace step display modify break end ---ETC--

Virtual Mode Emulation Topics 3-19

The resulting trace is similar to the following display.

The trace listing shows the beginning of the execution of process task,
and now you can find that the address fields of the trace are displayed
in real address. Regardless of address mode, addresses which the
analyzer captures are real addresses by default.

Note Since the symbols for process are generated in virtual address, you can
not include the symbols in the trace listing even if you load the
symbols for process. To include the symbols, you must trace virtual
address or generate the symbol file in real address.

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
after 00009010 0000903B 0000903BH trans table read
+001 00009014 000000FC 000000FCH trans table read
+002 00009038 00008E05 00008E05H trans table read
+003 00009038 00008E85 00008E85H trans table write
+011 00009000 0000901B 0000901BH trans table read
+012 00009004 000006FC 000006FCH trans table read
+013 00009030 00006F85 00006F85H trans table read
+014 00008000 00006F85 PUSHM #0m<>
+015 00008006 00006F85 PREPARE #00000004H
+016 00006FFC 00000000 00000000H data write
+019 0000800C 3F847F00 PUSH #00000020H
+021 00006FF4 00000020 00000020H data write
+022 00008012 00000020 PUSH #40000238H
+024 00006FF0 40000238 40000238H data write
+026 00008018 000249F4 PUSH #400002C4H

STATUS: N70632--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

3-20 Virtual Mode Emulation Topics

Specifying Virtual
Space

The program executes command and process alternately. Suppose that
you wish to note to process task. In this case, you should load the
symbols for process and use the XMMU function.

Since you have loaded the symbols for process in previous section, you
do not have to reload the symbols. Display the global symbols, enter:

display global_symbols <RETURN>
The global symbols for process are displayed.

To display local symbols, select:

display local_symbols_in process.c:
<RETURN>

The resulting display follows.

Global symbols in process
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
_cmd_process 40000088 - 4000014B 0088
_main 40000000 - 40000087 0000
_msgcpy 4000014C - 400001A6 014C
_read_command 400001A8 - 400001D8 01A8
_write_message 400001DC - 40000234 01DC

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
_cmd_sem 00004000 0000
_command 00004004 0000
_eprocess 40000304 0000
_message 0000400C 0000
_msg_sem 00004008 0000

Filename symbols

STATUS: N70632--Running user program Emulation trace complete______...R....
 display global_symbols

 run trace step display modify break end ---ETC--

Virtual Mode Emulation Topics 3-21

Using the XMMU
Function.

The emulator uses the current value of the 70632 address table register
pairs by default when you specify an address in virtual address in a
command.

Suppose that you would like to debug a certain task executed in
multiple virtual space without stopping the execution. You will be
unable to specify the virtual address in desired virtual space, because
the address space is dynamically changed.

The XMMU function provides you to specify a desired virtual address
space. Regardless of the current virtual space, you can specify the
address space you want to note to. The emulator has the optional
XMMU class registers. These registers consist of eight XMMU register
pairs and one XMMU mode register. The XMMU register pairs
correspond to the actual 70632 area table register pairs. You can
specify a virtual address space by modifying the XMMU class
registers. These registers are not actual registers of the 70632 processor.

When you set the contents of the XMMU class registers and activate
the XMMU function, the XMMU class registers are used for the
address translation of the virtual address you specify in a command,
instead of the actual area table register pairs of the 70632
microprocessor.

Symbols in process.c:
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
_cmd_process 40000088 - 4000014B 0088
_main 40000000 - 40000087 0000
_msgcpy 4000014C - 400001A6 014C
_read_command 400001A8 - 400001D8 01A8
_write_message 400001DC - 40000234 01DC

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
_cmd_result 400002E4 02E4
_status 400002C4 02C4

Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#19 4000000C - 40000028 000C
#20-#20 40000029 - 40000045 0029

STATUS: cws: process.c:___...R....
 display local_symbols_in process.c:

 run trace step display modify break end ---ETC--

3-22 Virtual Mode Emulation Topics

The XMMU class registers consist of the following registers.

XMMU class registers corresponded actual registers
XATBR0 ATBR0
XATLR0 ATLR0
XATBR1 ATBR1
XATLR1 ATLR1
XATBR2 ATBR2
XATLR2 ATLR2
XATBR3 ATBR3
XATLR3 ATLR3

MMUMOD --None--

If you set the value of the MMUMOD register in the above table to
"1", the emulator translates the virtual address in a command line with
the contents of the XMMU class registers instead of the actual area
table register pairs. Oppositely, if you want to make the emulator to
translate the virtual address in a command line with the actual table
register pairs, in other words the virtual address in the current address
space, reset the value of the MMUMOD register to "0".

To display the XMMU class registers, enter:

display registers XMMU <RETURN>

The resulting display shows the contents of XMMU class registers. The
display also includes the contents of on-chip MMU registers, you

Registers

 PC 40000000 SP 00007000 FP 00000000 AP 00000000 PSW 00000000
 R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R16-23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 R24-31 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00007000

 SBR 00000000 TR 000010C4 SYCW 00002171 TKCW 0000E000 PIR 00007006
 ISP 00003000 L0SP 00007000 L1SP 00000000 L2SP 00000000 L3SP 00000000
 PSW2 0000F002

 ATBR0 00009001 ATBR1 00009011 ATBR2 00000000 ATBR3 00000000
 ATLR0 00000000 ATLR1 00000000 ATLR2 00000000 ATLR3 00000000

 MMUMOD 00000000
 XATBR0 00000000 XATBR1 00000000 XATBR2 00000000 XATBR3 00000000
 XATLR0 00000000 XATLR1 00000000 XATLR2 00000000 XATLR3 00000000

STATUS: N70632--Running user program Emulation trace complete______...R....
 display registers XMMU

 run trace step display modify break end ---ETC--

Virtual Mode Emulation Topics 3-23

displayed in previous section, and these values define virtual space for
process.

Since you want to note to process, modify the XMMU class registers
with the same value as the value of on-chip MMU registers in the
display. Enter:

modify register XMMU XATBR0 to 9001h
<RETURN>
modify register XMMU XATBR1 to 9011h
<RETURN>

To make the emulator use the configured address space you entered,
enter:

modify register XMMU MMUMOD to 1
<RETURN>

To display the contents of memory at address from _main.

Enter:

display memory _main mnemonic
<RETURN>

 Memory :mnemonic :file = process.c:
 address label data
 40000000 :_main ECF4000000 PUSHM #0m<>
 40000006 DEF4040000 PREPARE #00000004H
 15 main ()
 16 {
 17 char cmd_code;
 18
 19 msgcpy (status, "Awaiting command", MSG_SIZ);
 4000000C EEF4200000 PUSH #00000020H
 40000012 EEF4380200 PUSH #40000238H
 40000018 EEF4C40200 PUSH #400002C4H
 4000001E 4980F22E01 CALL :_msgcpy,[SP]
 40000026 843FEC ADD.W #CH,SP
 20 msgcpy (cmd_result, "No command entered", MSG_SIZ);
 40000029 EEF4200000 PUSH #00000020H
 4000002F EEF4490200 PUSH #40000249H
 40000035 EEF4E40200 PUSH #400002E4H

STATUS: Warning: no ENTRY/EXIT symbol; using TEXTRANGE________________...R....
 display memory _main mnemonic

 run trace step display modify break end ---ETC--

3-24 Virtual Mode Emulation Topics

Displaying Address
Translation Tables

You can display the 70632 Area Table Entry (ATE) and Page Table
Entry (PTE). These features are provided with Terminal Interface. Use
the pod_command to issue the Terminal Interface command.

To display the ATE corresponding with address _main (address
40000000H), use the ate command of the Terminal Interface.

Note that the Terminal Interface cannot accept any symbols.

display pod_command <RETURN>
pod_command ’ate 40000000h’ <RETURN>

To display the PTE corresponding with address _main (address
40000000H), use the pte command of the Terminal Interface.

pod_command ’pte 40000000H’ <RETURN>

Breakpoints Before defining the breakpoint, break the emulator by entering:

break <RETURN>
To define a breakpoint at the address of _cmd_process, select:

modify software_breakpoints set
_cmd_process <RETURN>

Now that the software breakpoint is set, start the execution.

run <RETURN>

Pod Commands
 Time Command
 wait - do not use, will tie up the pod, blocking access
 init, pv - will reset pod and force end release_system
 t - do not use, will confuse trace status polling and unload

10:24:39 ate 40000000h

1:000 at 000009010 Present
 PTB=000009038 Limit=000 Growth=positive
 Execute level=3 Write level=3 Read level=3

10:24:44 pte 40000000h

1:000:000 at 000009038 Present
 Page base=000008000 Executable Writable Readable
 Modified Accessed User=0 Not locked

STATUS: N70632--Running user program Emulation trace complete______...R....
 pod_command ’pte 40000000h’

Virtual Mode Emulation Topics 3-25

The status line shows as follows.

Software break: 040000088@v

Displaying TCB You can display TCB contents of current task by using the tcb
Terminal Interface command. Specify the register list with -l option.
The register list specifies registers to be stored to or loaded from TCB
when the task is switched. The format of the register list is same as the
70632 processor’s LDTASK or STTASK instruction operand. Since
the register list of current task (process) is 7fffffffH, enter:

pod_command ’tcb -l 7fffffffh’
<RETURN>

Tracing Virtual
Address

The analyzer can capture virtual address by modifying configuration.

To configure to make the analyzer capture the virtual address, enter:

modify configuration <RETURN>
Press Return key until the "Modify debug/trace option?" question is
displayed. Answer yes to entering the debug/trace configuration
session. Press Return key until the "Trace virtual or real address?"
question is displayed. Answer virtual to trace virtual address.

Pod Commands
 Time Command
1:000:000 at 000009038 Present
 Page base=000008000 Executable Writable Readable
 Modified Accessed User=0 Not locked

10:26:12 tcb -l 7fffffffh

 tkcw ATT=7 OTM=0 FIT=0 FZT=0 FVT=0 FUT=0 FPT=0 RDI=0 RD=0
 l0sp=00006fdc
 r0=00000000 r1=0000001f r2=00000000 r3=00000000 r4=00000000
 r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00006ff4
 r30=00006fe8
 atrp1 ATB=000009010 Limit=000 Growth=positive Valid

STATUS: N70632--Running in monitor Software break: 040000088@v___...R....
 pod_command ’tcb -l 7fffffffh’

pod_cmd set perfinit perfrun perfend ---ETC--

3-26 Virtual Mode Emulation Topics

Press Return several times to exit the configuration session.

Specifying Trigger

To trace the program states after the execution of the address
_read_command.

trace after _read_command status
exec <RETURN>

The status line shows that the trace is started.

To continue the execution, enter:

run <RETURN>
The trace status changes to "Emulation trace complete".

To display the trace, enter:

display trace compress on <RETURN>
The resulting display shows the execution of the function
_read_command.

Press the <PGDN> or <NEXT> key to see more lines. Then you will
see the transition from process task to the task dispatcher. Press the
<PGDN> or <NEXT> key several times until the command task
execution is displayed (The states of command task will be stored from
line 175).

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
after :_read_command F28009F7 No fetch cycle found
+002 :_read_+00000006 F28009F7 No fetch cycle found
+003 00006FE8 00006FFC 00006FFCH data write
 ##########process.c - line 65 thru 68 #################

 read_command (cmd)
 char *cmd;
 {
+005 :_read_+0000000C 64C0003E No fetch cycle found
+010 :_cmd_sem 00000000 00000000H data read
+011 :_read_+00000011 00000000 TEST.W :_cmd_sem
+012 :_read_+00000017 00000000 BE/Z :_read_command+0000000
 ##########process.c - line 69 thru 73 #################
 extern char command;
 extern int cmd_sem;

STATUS: N70632--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

Virtual Mode Emulation Topics 3-27

As you can see, some addresses are replaced with the symbols for
process task (in this case, _cmd_process). You may confuse the states
with the states of process task. The reason is because command and
process occupy the same virtual address (not the same virtual space)
each other.

Load the suitable symbols for displaying the accurate symbols in the
display.

load symbols command <RETURN>

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
+166 00009008 00009037 00009037H trans table read
+167 0000900C 000000FC 000000FCH trans table read
+168 00009034 00007F85 00007F85H trans table read
+174 :_msg_sem 00000001 00000001H data read
+175 :_cmd_p+00000065 00000001 TEST.W :_msg_sem
+177 :_cmd_p+0000006B 1E202D22 BE/Z :_cmd_process+00000062
+180 :_cmd_p+0000006D C0003F03 MOV.W #0H,-04H[FP]
+182 00005FE8 00000000 00000000H data write
+184 :_cmd_p+00000072 00000000 CMP.W #00000020H,-04H[FP]
+185 00005FE8 00000000 00000000H data read
+186 :_cmd_p+0000007B 00000000 BGE :_cmd_process+0000009D
+189 :_cmd_p+0000007D 00000000 MOV.W -04H[FP],R0
+190 00005FE8 00000000 00000000H data read
+191 :_message 00000000 00000000H data read
+193 :_cmd_p+00000081 000020F4 MOV.W :_message,R1

STATUS: N70632--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

3-28 Virtual Mode Emulation Topics

Address Mode
Option

When you issue a command, the emulator displays the result of the
command. According to circumstance, the resulting display includes
address information such as "00004000@r" or "00008000@v".

The suffix "@r" indicates that the address is displayed in real address
mode. The suffix "@v" indicates that the address is displayed in virtual
address. When the emulator displays an address information, the
address mode will be different as the case may be.

Specifying An Address Mode

When you designate addresses, you can select either real or virtual
address by using the "fcode" option. To specify an address mode, add
this option just before an address expression. The following options are
allowed.

"fcode r" real address

"fcode v" virtual address

Trace List Offset=0
Label: Address Data Opcode or Status w/ Source Lines
Base: symbols hex mnemonic w/symbols
+166 00009008 00009037 00009037H trans table read
+167 0000900C 000000FC 000000FCH trans table read
+168 00009034 00007F85 00007F85H trans table read
+174 :_msg_sem 00000001 00000001H data read
+175 :_read_+00000011 00000001 TEST.W :_msg_sem
+177 :_read_+00000017 1E202D22 BE/Z :_read_message+0000000
 ##########command.c - line 49 ############################
 for(i = 0; i < MSG_SIZ; i++)
+180 :_read_+00000019 C0003F03 MOV.W #0H,-04H[FP]
+182 00005FE8 00000000 00000000H data write
+184 :_read_+0000001E 00000000 CMP.W #00000020H,-04H[FP]
+185 00005FE8 00000000 00000000H data read
+186 :_read_+00000027 00000000 BGE :_read_message+0000004
 ##########command.c - line 50 ############################
 buf [i] = message [i];

STATUS: Loaded symbol data base_______________________________________...R....
 load symbols command

 load store stop_trc copy reset specify cmb_exec ---ETC--

Virtual Mode Emulation Topics 3-29

The following is an example usage of the fcode option.

display memory fcode v 4000000h
mnemonic <RETURN>

You can also designate addresses with no suffix. In this case, the
address mode which is lastly specified by the fcode option is used to
evaluate the addresses.

Until you specify an address mode by using the fcode option, the
emulator use default address mode. The default address mode is
determined as follows.

1. When the processor is reset, the addresses are evaluated as
real address.

2. When the processor never runs in virtual mode after reset, the
addresses are evaluated as real address.

3. Once the processor has run in virtual mode after reset, the
addresses are evaluated as virtual address.

Note If the processor has ever run in virtual mode since the processor was
reset, the address expression without suffix is evaluated as virtual
address, even if the processor is running in real mode.

After you use the fcode option, if you wish to make the emulator to
evaluate addresses in the default address mode, use the
"fcode none" option.

If you specify a virtual address in a command, the emulator has to
translate the virtual address, which you have specified, to the real
address. The method of the address translation is same as the actual
70632 microprocessor. In this case, the emulator use the current value
of the 70632 address table register pairs, ATBR0, ATLR0, ATBR1,
to translate the address by default. The details of the address translation
are shown in chapter 4.

3-30 Virtual Mode Emulation Topics

4

Configuring the Emulator

Introduction Your 70632 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing your target system software, or you can use the
emulator in-circuit when integrating software with target system
hardware. You can use the emulator’s internal clock or the target
system clock. Emulation memory can be used in place of, or along
with, target system memory. You can execute target programs in
real-time or allow emulator execution to be diverted into the monitor
when commands request access of target system resources (target
system memory, register contents, etc).

The emulator is a flexible instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the HP 64758
emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>
After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

General Emulator Configuration:

– Specifying the emulator clock source (internal/external).

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

Configuring the Emulator 4-1

Memory Configuration:

– Selecting the background or foreground emulation
monitor.

– Mapping memory.

Emulator Pod Configuration:

– Responding to /HLDRQ signal from target system.

– Responding to /NMI signal from target system.

– Responding to INT signal from target system.

– Responding to BFREZ signal from target system.

– Selecting target memory access data size.

– Driving background cycles to target system.

– Selecting value for address bus during background cycles.

– Selecting object file address attribute.

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Selecting tracing of foreground/background cycles.

– Enabling tracing bus hold cycles.

– Selecting tracing of real/virtual address.

– Enabling tracing execution cycles.

4-2 Configuring the Emulator

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
clock source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal

Selects the emulator’s internal 20 MHz oscillator as the emulator clock
source.

external

Selects the clock input to the emulator probe from the target system.
You must use a clock input conforming to the specifications for the
70632 microprocessor. The maximum clock speed is 20 MHz.

Note Changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the
following "Enter monitor after configuration?" question is answered.

Configuring the Emulator 4-3

Enter monitor after
configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail. When an external clock source is
specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

yes

When reset to monitor is selected, the emulator will be running in the
monitor after configuration is complete. If the reset to monitor fails,
the previous configuration will be restored.

no

After the configuration is complete, the emulator will be held in the
reset state.

Restrict to real-time
runs?

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

no

All commands, regardless of whether or not they require a break to the
emulation monitor, are accepted by the emulator.

yes

When runs are restricted to real-time and the emulator is running the
user program, all commands that cause a break (except "reset",
"break", "run", and "step") are refused. For example, the following
commands are not allowed when runs are restricted to real-time:

Display/modify registers.
Display/modify target system memory.
Load/store target system memory

4-4 Configuring the Emulator

Refer to the "Target Memory Access" section of chapter 4, for more
information.

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

Memory
Configuration

The memory configuration questions allow you to select the monitor
type and to map memory. To access the memory configuration
questions, you must answer “yes” to the following question.

Modify memory configuration?

Monitor type? The monitor type configuration question allows you to choose between
a foreground monitor (supplied with the emulation software but must
be assembled, linked, and loaded into emulation memory) or the
background monitor (which resides in the emulator).

The emulation monitor is a program executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, you may enter a command to display
target system memory. This requires access to target system resources.
The system controller writes a command code to the monitor
communications area, breaking execution of the emulation processor
from the user program into the monitor program. The monitor program
then reads the command from the communications area and executes
the 70632 instructions that read the contents of the target system
memory locations. After the monitor has completed its task, execution
returns to the user program.

The background monitor, resident in the emulator, offers the greatest
degree of transparency to your target system (that is, your target system
shouldn’t be affected by monitor execution). In some cases, you may

Configuring the Emulator 4-5

require an emulation monitor tailored to the requirements of your
system. Here, you will need to use a foreground monitor linked into
your program modules. See the “Using the Foreground Monitor”
appendix for more information on foreground monitors.

background

Selects the use of the built-in background monitor. A memory overlay
is created and the background monitor is loaded into that area. You can
use the emulator pod configuration questions listed below to specify
how the emulator will drive the target system during background
monitor execution.

“Drive background cycles to target system?”
“Value for address bits A31-A8 during background cycles?”

When you select the background monitor and the current monitor type
is “foreground”, you are asked the following question.

Reset map (change of monitor type requires map reset)?

This question must be answered “yes” to change the monitor type.

foreground

Specifies that a foreground monitor will be used. Foreground monitor
programs are shipped with the Softkey Interface (refer to the “Using
the Foreground Monitor” appendix). When you select a foreground
monitor, you are asked additional questions.

Reset map (change of monitor type requires map reset)?

This question must be answered “yes” or else the foreground monitor is
not selected. This question is asked any time the foreground monitor is
selected.

4-6 Configuring the Emulator

Monitor location for real address?

The default configuration specifies a monitor address of 00000000H.
The monitor base address must be located on a 4 Kbyte boundary;
otherwise, configuration will fail. Specify the real memory location of
foreground monitor.

When using the foreground monitor in virtual mode, you must also
answer the next question ("Monitor location for the virtual address").

Monitor location for virtual address?

Specify the virtual memory location of the foreground monitor. The
default configuration specifies a monitor virtual address of 00000000H.
The monitor base address must be located on a 4 Kbyte boundary;
otherwise, configuration will fail.

When using the foreground monitor only in real mode, you may not
answer this question.

Refer to the "Using the Foreground Monitor" appendix for more
information.

Mapping Memory The default emulator configuration maps locations 0-0FFFFH as
emulation RAM. If your programs occupy locations outside this
address range or in target system memory, you must modify the
memory map.

The memory map specifies the location and type of various memory
regions used by your programs and your target system (whether or not
it exists). The memory map is necessary for several reasons:

The emulator must know whether a given memory location
resides in emulation memory or in target system memory. The
emulator then orients the buffers for the data transfer.

The emulator needs to know the size of any emulation
memory blocks so it can properly reserve emulation memory
space for those blocks.

The emulator must know if a given space is RAM
(read/write), ROM (read only), or does not exist. This allows
the emulator to decide if certain actions taken by the

Configuring the Emulator 4-7

emulation processor are proper for the memory type accessed.
For example, if the processor tries to write to an emulation
memory location mapped as ROM, the emulator will not
permit the write (though the memory at the given location is
RAM). You can optionally configure the emulator to break to
the monitor upon such occurrence. See the “Break processor
on write to ROM?” debug/trace configuration question. Target
memory locations will be overwritten if they are actually
RAM but mapped as ROM. Also, if the emulation processor
attempts to access a non–existent location (known as
“guarded”), the emulator will break to the monitor.

The HP 64758G emulator contains 510 kilobytes of emulation
memory, which can be mapped at a resolution of 4 Kbytes.

The HP 64758H emulator contains 1020 kilobytes of emulation
memory, which can be mapped at a resolution of 4 Kbytes.

The memory mapper allows you to define up to 8 different map terms.
You can specify one of five different memory types (target rom, target
ram, emulation rom, emulation ram, or guarded).

For example, to map memory location 10000H through 1FFFFH as
emulation ram, enter the following command.

10000h thru 1ffffh emulation ram
<RETURN>

If you wish to remove a mapper term, use the "delete" command. You
can delete the mapper term numbered "1", enter the following
command.

delete 1 <RETURN>

If you want to remove all memory mappings, enter the following
command.

delete all <RETURN>

By default, the emulation memory access operated with no-wait-state.
If you are using the emulator in in-circuit mode, you can configure
emulation memory location to honor target system ready signals. To

4-8 Configuring the Emulator

respond to the target system ready signals while emulation memory is
being accessed, add "lock" attribute as follows.

10000h thru 1ffffh emulation ram
lock <RETURN>

When accessing the emulation memory located at address 10000h thru
1ffffh, the target system ready signals will be referred in order to insert
the wait states.

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads that
accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
“yes” to the following question.

Modify emulator pod configuration?

Enable responding to
HLDRQ signal?

You can specify whether the emulator accepts or ignores the /HLDRQ
signal from your target system. By default, the emulator accepts the
/HLDRQ signals from the target system.

yes

Accept Hold Request from target system. The /HLDRQ signals are
driven from the target system to the emulator. The emulator will
respond in the same manner as they would respond if the CPU were
present.

Configuring the Emulator 4-9

no

Ignore Hold Request from target system. The /HLDRQ signals are not
driven from the target system to the emulator. The emulator will not
drive an active level on the address, data and control signals will not be
placed in a tristate condition.

Enable /NMI input
from target system?

This configuration allows you to specify whether or not the emulator
responds to NMI signals from the target system during foreground
operation.

yes

The emulator will respond to NMI signals from the target system.

no

The emulator will not respond to NMI signals from the target system.

Respond to target
system interrupts?

This configuration allows you to specify whether or not the emulator
responds to interrupt signals from the target system during foreground
operation.

yes

The emulator will respond to interrupt signals from the target system.

no

The emulator will not respond to interrupt signals from the target
system.

4-10 Configuring the Emulator

Respond to target
bus freeze signal?

You can specify whether the emulator accepts or ignores the BFREZ
signal from your target system. By default, the emulator accepts the
BFREZ signals from the target system.

yes

Accept Bus Freeze Signals from target system. The BFREZ signals are
driven from the target system to the emulator. The emulator will
respond in the same manner as they would respond if the CPU were
present.

no

Ignore Bus Freeze Signals from target system. The BFREZ signals are
not driven from the target system to the emulator. The emulator will
not drive an active level on the address, data and control signals will
not be placed in a tristate condition.

Target memory
access size?

This question allows you to specify the types of cycles that the
emulation monitor use when accessing target system memory. When
an emulation command requests the monitor to read or write target
system memory locations, the monitor will either use byte or word
instructions to accomplish the read/write.

 bytes

Specifies that the emulator will access target system memory by byte
accesses.

half_words

Specifies that the emulator will access target system memory by half
word (2 bytes) accesses.

words

Specifies that the emulator will access target system memory by word
(4 bytes) accesses.

Configuring the Emulator 4-11

Drive background
cycles to target

system?

This question allows you to specify whether the emulator will drive the
target system bus on all background monitor cycles.

If you have chosen to use a foreground monitor, emulator foreground
monitor cycles will appear at the target interface exactly as if they were
bus cycles caused by any target system program.

yes

Specifies that background cycles are driven to the target system. The
emulation processor’s address, data and control strobes are driven
during background cycles.

The value driven on the upper 24 bits (A31-A8) of the address bus is
selected by the “Value for address bits A31-A8 during background
cycles?” question.

When background cycles are driven to the target system, background
write cycles appear as read cycles to the target system.

Use the “drive background cycles” option to avoid target system
interaction problems. For example, your target system memory refresh
scheme may depend on the constant repetition of bus cycles. Or, you
may be using a watchdog timer in your target system, which resets the
system when no bus cycles occur in a specified period. Driving
background cycles to the target system will help avoid problems in
either case.

no

Background monitor cycles are not driven to the target system. The
emulator will appear to the target system as if it is between bus cycles
while it is operating in the background monitor.

4-12 Configuring the Emulator

Value for address
bits A31-A8 during

background cycles?

This configuration question allows you to specify what memory
address will be driven to the target system on address lines A31-A8
during emulation background monitor accesses. These lines will only
be driven if you have specified that the emulator drive background
cycles to the target system. See the previous “Drive background cycles
to target system” question.

If you choose to use a foreground monitor, this configuration option is
still valid. The emulation processor executes a few bus cycles in the
background monitor before the transition to the foreground monitor.

Object file address
attribute?

This configuration item allows you to specify whether the emulator
should load absolute files into virtual address or real address when you
use the load command. In other words, you can specify that in which
address space the address location information are recorded in the
absolute files. The default virtual address are used to translate the
location address to actual memory address.

real

The emulator interprets the location address information in the absolute
files as real address.

vir

The emulator interprets the location address information in the absolute
files as virtual address.

Debug/Trace
Configuration

The debug/trace configuration questions allow you to specify breaks on
writes to ROM and whether the analyzer should trace foreground or
background execution. To access the trace/debug configuration
questions, you must answer “yes” to the following question.

Modify debug/trace options?

Configuring the Emulator 4-13

Break processor on
write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM. The
emulator will prevent the processor from actually writing to memory
mapped as emulation ROM. It cannot prevent writes to target system
RAM locations mapped as ROM, though the write to ROM break is
enabled.

yes

Causes the emulator to break into the emulation monitor whenever the
user program attempts to write to a memory region mapped as ROM.

no

The emulator will not break to the monitor upon a write to ROM. The
emulator will not modify the memory location if it is in emulation
ROM.

Note The wrrom trace command status option allows you to use “write to
ROM” cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to ROM:

trace about status wrrom <RETURN>

Trace background or
foreground
operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles. When background cycles are
stored in the trace, all but mnemonic lines are tagged as background
cycles.

4-14 Configuring the Emulator

foreground

Specifies that the analyzer trace only foreground cycles. This option is
specified by the default emulator configuration.

background

Specifies that the analyzer trace only background cycles. This is rarely
a useful setting for user program debugging.

both

Specifies that the analyzer trace both foreground and background
cycles. You may wish to specify this option so that all emulation
processor cycles may be viewed in the trace display.

Trace HOLD tag? You can direct the emulator to send HOLD cycle data to emulation
analyzer or not to send it.

yes

When you enable tracing HOLD cycles, these cycles will appear as one
analysis trace line.

no

HOLD cycles will not appear on analysis trace list.

Trace virtual or real
address?

This configuration item allows you to specify whether analyzer should
trace virtual address or real address.

real

The analyzer captures real address bus which is the same that the actual
microprocessor outputs to.

vir

The analyzer captures virtual address. The trace listing shows the
logical addresses executed by the processor.

Configuring the Emulator 4-15

Enable the execution
cycles trace?

The emulation analyzer can capture states of instruction executions in
addition to processor bus activity. By default, the emulation analyzer
captures execution states. In this case, the analyzer can count neither
time between states nor occurrence of bus states.

yes

Both exec states and bus states are captured by the emulation analyzer.
You will see the disassembles of executed instructions in trace listing.
Lines with disassembles indicate exec states of the instructions

no

Only bus states are captured by the emulation analyzer. When you
display trace listing, the emulator disassembles with "fetch" states, and
their disassembled processor mnemonics is displayed at the "fetch"
states which are the first byte of the instructions. In this mode, the
analyzer can trace with time tagging or # of states counter. The
maximum trace depth is 512 because of counting time or states.

Refer to the "Using the Emulator" chapter for more details of the
analyzer features.

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual.

4-16 Configuring the Emulator

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file, which can be loaded into the
emulator later.

Configuration file name? <FILE>

The name of the last configuration file is shown. No filename is shown
if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when you
exit the Softkey Interface with the end release_system command.

When you specify a filename, the configuration is saved in two files.
The file with the “.EA” extension is the “source” copy of the file, and
the file with the “.EB” extension is the “binary” or loadable copy of the
file.

Exiting emulation (with the end command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a “continue” file. The continue file is not
normally accessed.

Loading a
Configuration

Previously saved configuration files may be loaded with the following
Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the end release_system command. You won’t have to
modify the default configuration and answer all the questions again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 4-17

Notes

4-18 Configuring the Emulator

5

Using The Emulator

Introduction Many of the important topics described in this chapter involve the
commands or features which relate to using the emulator. The "Getting
Started" and "Virtual Mode Emulation Topics" chapters shows you
how to use the basic features of the 70632 emulator. This chapter
describes more information or notices of the 70632 emulator.

This chapter contains the following topics.

Register Manipulation
– Stack Pointer and Program Status Word Modification.
– Floating-Point Format Display or Modification

Analyzer Topics
– Analyzer Status Labels
– Analyzer Trigger Condition
– Trace Listing Disassembler
– Execution States
– Analyzer Data Bus Condition
– Analyzer Clock Speed
– Cause of Monitor Break

Hardware Breakpoints
Software Breakpoints
Target Memory Access
FPU Support
MMU Support
Coordinated Measurement
Unfamiliar Prompts
70118/70116 Emulation Mode
FRM Support
Real-time Emulation Memory Access
Virtual Address Translation
Features available via "pod_command"
Register names and classes
Restrictions and Considerations

Using the Emulator 5-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
and "Virtual Mode Emulation Topics" chapters of this manual.

Register
Manipulation

Stack Pointer
Modification

In the 70632 microprocessor, one of the five privileged registers
(L0SP, L1SP, L2SP, L3SP, ISP) is selected as stack pointer according
to the EL and IS flags of the PSW, and the stack pointer is cached by
SP. The contents of the stack pointer corresponding to the execution
level are not always the same as the stack pointer (SP). The stack
pointer corresponding to the execution level is updated only when the
execution level is changed.

The emulation monitor is executed in execution level 0. When the
emulator returns from emulation monitor to user program, for example
when you issue r (run) command, the emulator changes execution level
from 0 to user program’s execution level which is determined by the IS
flag and EL field in the program status word (PSW).

For this reason, in emulation monitor, the stack pointer (SP) and the
stack pointer corresponding to the execution level need to have the
same value. The monitor intends to keep the stack pointer (SP) and the
current level stack pointer to have the same value.

When breaking into monitor, the current level stack pointer is modified
to the value of SP.

5-2 Using the Emulator

If you modify registers PSW, L0SP, L1SP, L2SP, L3SP or SP in
monitor as follows.

When you modify the EL or IS flag of the PSW, the SP is
modified to the value of the stack pointer corresponding to the
execution level which is determined by the EL or IS flag of
the PSW you have modified.

When you modify the stack pointer corresponding to the
current execution level (L0SP, L1SP, L2SP, L3SP, ISP), the
stack pointer SP is modified to the same value.

When you modify the stack pointer SP, the stack pointer
corresponding to the execution level (L0SP, L1SP, L2SP,
L3SP or ISP; the one selected depends on the contents of the
PSW) is modified with the same value.

Displaying/Modifying
Registers In

Floating-Format

You can display/modify general purpose registers (R0 through R31) in
floating-point format with freg command. The IEEE-754 standard data
type is supported. To access to the general purpose registers in floating
point format, use the folowing register names with the FLOAT
attribute.

FR0 thru FR31 for short real (32 bits floating point)

FRP0 thru FRP30 for long real (64bits floating point)

To display all general purpose registers in short real format, enter:

display registers FLOAT <RETURN>
You can specify register to be displayed (for example, display R0 in
short float format).

display registers FLOAT FR0 <RETURN>
To display two consecutive registers R0 and R1 in long real format,
enter:

display registers FLOAT FRP0 <RETURN>
Modify register R0 to the value 12345.678, by typing:

modify register FLOAT FR0 to
12345.678 <RETURN>

Using the Emulator 5-3

Analyzer Topics

Analyzer Status
Qualifiers

The following are the analyzer status labels which may be used in the
"trace" commands.

 fetch 0x1xxxxxxxxxx011x code fetch
 brfetch 0x1xxxxxxxxxx0111 code fetch after branch
 read 0x1xxxxxxxxxxxxxx read
 write 0x0xxxxxxxxxxxxxx write
 data 0xxxxxxxxxxxx0011 data access (read/write)
 io 0xxxxxxxxxxxx1011 i/o access (read/write)
 exec 0xxxxxxxxxxxx0000 execution state
 sdata 0xxxxxxxxxxxx0010 data access (read/write) with short path
 sysbase 0xxxxxxxxxxxx0100 system base table access
 tbl 0xxxxxxxxxxxx0101 translation table access (read/write)
 coproc 0xxxxxxxxxxxx1000 co-processor access(read/write)
 fault 0xxxxxxxxxxxx1100 machine fault acknowledge
 halt 0xxxxxxxxxxxx1101 halt acknowledge
 intack 0xxxxxxxxxxxx1110 interrupt acknowledge
 grdacc 0xxxxxxxxxx0x0xxx guarded memory access
 wrrom 0x0xxxxxxx0xx0xxx write to ROM
 monitor 0xxxxxxxxxxx0xxxx background monitor cycle
 block 0xxxxxxxx0xxxxxxx bus lock
 retry 00xxxxxxxxxxxxxxx retry
 holdtag 0xxxxxxxxxxxx0001 bus hold

Specifying Trigger
Condition at Desired

Instruction Execution

In the "Using the Analyzer" section of the "Getting Started" chapter,
you used the analyzer to trace the states of the program after that the
instruction corresponded to line 43 of the program skdemo.c was
executed. Then the following command was issued to specify trigger
condition.

trace after skdemo.c: line 43 status
exec <RETURN>

As you know, the 70632 processor has the prefetch unit (PFU) to
prefetch the instruction string to be executed.

If you had issued the following command instead, unexpected trigger
would have occurred at the prefetch state of the instruction.

trace after skdemo.c: line 43<RETURN>
This discussion is significant when you specify the trigger condition at
the execution of the instruction which follows a branch instruction like:

 000020012@r - CMP.B #00H,R2
 000020016@r - BZ 00020000H
 000020018@r - MOV.W #0000000fH,R0

5-4 Using the Emulator

Assume that the processor executes instructions at address range
20000H through 20016H normally, and the instruction at address
20018H is executed at long intervals.

If you wish to trigger the analyzer at the execution of the address
20018H, you should specify trigger condition as follows.

trace about 20018h status exec
<RETURN>

If you would type the following, the trigger will always occur at the
prefetch of the address 20018H whether or not the branch condition at
address 20016H is satisfied.

trace about 20018h <RETURN>

Execution States
Location in Trace

Listing

The emulation analyzer stores execution states of the program in
addition to actual bus cycles, if configuration "Enable the execution
cycles trace?" question is answered "yes" (default).

When the processor executes an instruction, the execution state of the
instruction is generated before its bus state(s) by the execution of the
instruction.

However, it is possible that the execution states are inserted after or
between the actual bus states of these activities, since the clock rate of
bus sampling is high-speed.

The following trace listing shows the examples that the execution
states, numbered 64, fall behind its bus activity.

 +061 00003004 00001e05 00001e05H trans table read
 +062 00003004 00001e85 00001e85H trans table write
 +063 00001004 00000002 00000002H data read
 +064 00005043 00000002 MOV.W 00001004H,R0
 +065 0000504a 00000002 MOV.W #00001008H,R1
 +066 00005060 2da20801 fetch

Specifying Data For
Trigger Condition or

Store Condition

The analyzer captures the data bus of the 70632 microprocessor. When
you specify a data in the analyzer trigger condition or store condition,
the ways of the analyzer data specifications differ according to the data
size and the address. Suppose that you wish to trigger the analyzer
when the processor accesses to the byte data 41H in the address 1000H.
You should not specify the trigger condition like this.

trace after 1000h data 41h<RETURN>

Using the Emulator 5-5

The data condition will be considered as 00000041H. The bit 31
through bit 8 of data bus is unpredictable because of the byte data. You
will unable to trigger as you desire. You should have entered as follows.

trace after 1000h data
0xxxxxx41h <RETURN>

Where x’s are "don’t care" bits.

When the address that you want to trigger is not a multiple of 4, the
data bus specification is different from the above. If you trigger the
analyzer at the address 1001H instead of the address 1000H, the data
41H will be output to the bit 7 through bit 4 of the data bus. You
should enter:

trace after 1001h data
0xxxx41xxh<RETURN>

In case of halfword or word access to the data bus, it will be more
complex, if two bus states are required to access the data because the
data is across 4 byte boundary.

In this case, you need to use the analyzer sequential trigger capabilities.
We do not describe the detail about the sequential trigger feature. Only
how to trigger the analyzer at some example cases is described in this
section.

To trigger the analyzer when the processor accesses the word data
12345678H at the address 1003H. The data bus activity of this cycles
will be as follows.

Sequencer level Address bus Data bus
 1 00001003 78xxxxxx
 2 00001004 xx123456

To specify the trigger condition, enter:

trace find_sequence 1003h data
78xxxxxxh restart status exec
trigger after 1004h data
0xx123456h<RETURN>

The "restart" condition is specified to restart sequencer when any states
except for exec state are generated between sequencer level 1 and 2.

5-6 Using the Emulator

Analyzer Clock
Speed

The emulation analyzer can capture both the exec states and bus states.

Bus states show actual processor’s bus activity.

Exec states indicate the address of the first byte of an executed opcode.
Only the address and processor status fields are valid during these
states.

The analyzer has a counter which allows to count either time or
occurrence of bus states. Tracing both bus cycles and exec states,
effectively doubles the clock rate to the analyzer.

By default, the analyzer time counter is turned off because the analyzer
time counter cannot be used at high-speed clock rate. If it is desired to
use the analyzer counter, configure the analyzer to trace only bus
cycles. The clock speed can be effectively halved if execution states
are NOT traced. To do this, you should answer "no" at the "Enable the
execution cycles trace?" question of the Debug/Trace configuration.
Refer to the "" of the "Configuring the Emulator" chapter for more
information.

Finding Out the
Cause of a Monitor

Break

If the emulator breaks into monitor unwillingly, you can examine the
cause of the break by using the analyzer. When you issue the following
commands, you can capture the behavior of the program just before the
monitor break.

Specify the trigger condition that the analyzer is never triggered.

trace before not range 0 thru
0ffffffffh<RETURN>

After starting your program, the unexpected break will occur. To show
the cause of the break, stop the trace and display the trace listing.

stop_trace <RETURN>
display trace <RETURN>

The trace listing displays will show the cause of the break. If you
cannot find the cause of the break, display the previous states. If the
trace listing does not include the fundamental problem, you need to
change the trigger condition to capture the problem, and then restart the
trace and the program.

Using the Emulator 5-7

This is also useful to detect the causes other than monitor breaks like a
processor halt.

Hardware
Breakpoints

The analyzer may generate a break request to the emulation processor.
To break when the analyzer trigger condition is satisfied, use the
"break_on_trigger" trace option.

Additionally, you can see the program states before the breakpoint in
trace listing. Specify the trigger position at the end of trace listing by
using "before" option.

When the trigger condition is found, emulator execution will break into
the emulation monitor. Then you can also see the trace listing
mentioned above, enter the following commands.

trace before <QUALIFIER>
break_on_trigger <RETURN>

Without the trigger condition, the trigger will never occur and will
never break.

Example
Configuration for

Hardware
Breakpoints Features.

The following are example configurations for typical break conditions
you will use.

Breaks on Executing an Instruction

If you wish to break the execution when an instruction is executed. To
specify the breakpoint when the instruction at address 12345678H is
executed.

trace before 12345678h status exec
break_on_trigger <RETURN>

5-8 Using the Emulator

Breaks on Accessing an Address

If you wish to break the execution when a certain data is written to a
certain memory location. To specify the breakpoint when the halfword
data 0abcdH is written to the address 87654321H.

trace before 87654321h data
0xxabcdxxh status write
break_on_trigger <RETURN>

The detail of analyzer data specification in the trigger condition is
described in "Specifying Data for Trigger Condition or Store
Condition" part of this section.

Breaks on 70632 Exceptions

In case that you test a simple program which does not have exception
handler, you want to break the emulator on a 70632 exception. It is
useful to specify the breakpoint when a 70632 exception is occurred.

There are two way to detect the 70632 exceptions as follows.

Detect the states of the System Base Table Access at Events.

To specify the breakpoint when the system base table access
occurs by an event (exception or interrupt), enter:

trace before status sysbase
break_on_trigger <RETURN>

Detect the states of the Address Range of System Base Table.

To specify the breakpoint when the address range of the
system base table access occurs (except for Software Trap and
Maskable Interrupt), enter:

trace before range 0 thru 0bfh
break_on_trigger <RETURN>

If the program to be tested uses the 70632 Software Trap or Maskable
Interrupt or any other trap or exceptions on purpose, use the method of
"Detect the System Base Table Access".

If the program to be tested accesses the 70632 system base tables
which pointed at the SBR register on purpose, use the method of
"Detect the Address Range of System Base Table".

Using the Emulator 5-9

Software
Breakpoints

Software breakpoints are realized by the 70632 BRK instruction. When
you define or enable a software breakpoint, the emulator will replace
the opcode at the software breakpoint address with a breakpoint
interrupt instruction (BRK). When the BRK instruction is executed, the
emulator breaks into monitor and compares the address that the break
occurred.

If the address is defined as software breakpoint, the emulator displays
that the breakpoint hit. The emulator disable the breakpoint and replace
the BRK instruction with the original opcode.

If the BRK interrupt was generated by a BRK interrupt instruction in
the target system, execution still breaks to the monitor, and an
"undefined breakpoint" status message is displayed. To continue with
program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

There are some attentions when you use the software breakpoint
features.

Software breakpoints should be set at only locations which
contain instruction opcodes.

You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Software breakpoints should be set when the emulator is
running in monitor.

Software breakpoints should not be set, enabled, disabled, or removed
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

5-10 Using the Emulator

Software breakpoints cannot be set in target ROM.

Because software breakpoints are implemented by replacing opcodes
with the BRK instructions, you cannot define software breakpoints in
target ROM.
You can, however, copy target ROM into emulation memory (see the
"Target ROM Debug Topics" section of the
"In-Circuit Emulation" chapter).

BRK instruction vector must be set up

You must define the 70632 break-point instruction trap vector to point
to an address which is allowed instruction fetch; typically in the
program code area.

When a software breakpoint occurred, the emulator breaks into the
monitor after the BRK instruction has been executed. However the
instruction which is pointed by the BRK instruction vector is never
executed.

If you didn’t set up the vector and a software break has occurred, an
access to the address pointed by the vector may drive the emulator into
unpredictable state. The 70632 break-point instruction vector is defined
in the 70632 system base table. The vector is located at
0XXXXXX34H; where "XXXXXX" is determined by the contents of
the privilege register SBR (defaults is "000000").

This table location depends on the content of 70632 SBR register.

More three words of the stack area must be prepared.

When the BRK instruction is executed, the emulator stores the
exception information to stack as the same as the 70632
microprocessor does.

So, you should prepare more three words (12 bytes) for stack in
addition. The stack, which is used when the breakpoint occurs, is
normally the level 0 stack which is pointed by L0SP. When the
software breakpoint occurs, if the program uses interrupt stack, the
three words of the interrupt stack pointed by ISP is modified by the
emulator instead of level 0 stack.

Using the Emulator 5-11

Software Breakpoint Manipulation In Virtual Mode

When you enable disable or remove a software breakpoint which you
have set by using virtual address, you must issue its command in same
virtual space when you have set.

The notices related to software breakpoint manipulation in virtual
mode are described in chapter 3.

Target Memory
Access

Commands Not
Allowed when

Real-Time Mode is
Enabled

When emulator execution is restricted to real-time and the emulator is
running in user code, the system refuses all commands that require
access to processor registers or target system memory or I/O. The
following commands are not allowed when runs are restricted to
real-time:

Register display/modification (except for XMMU class
registers).

Target system memory display/modification. Because the
emulator contains dual-port emulation memory, commands
which access emulation memory do not require breaks and are
allowed while runs are restricted to real-time.

I/O display/modification.

Step.

Area Table Entry display (which is in target system memory).

Page Table Entry display (when the PTE or the dependent
ATE is/are in target system memory).

Any other commands with virtual address designation (which
cause target system memory accesses for address translation).

5-12 Using the Emulator

When you specifies virtual addresses in commands, the
emulator will refer to the address translation tables to translate
the virtual addresses to the corresponded real addresses. If the
address translation tables which are required to translate the
specified virtual addresses is in target system memory, the
address translation will be failed.

If the real-time mode is enabled, these resources can only be displayed
or modified while running in the monitor.

Breaking out of
Real-Time Execution

The only commands which are allowed to break real-time execution
are:

reset , run , break

FPU Support The emulation analyzer can capture co-processor cycles. FPU register
display and modification are not supported.

There are following considerations to display co-processor mnemonics
in trace or memory display.

FMOVCR instruction

FMOVCR instruction will be displayed as follows:

FMOVCTW instead of FMOVCR OP1,
FCTW
FMOVPTW instead of FMOVCR OP1,
FPTW
FMOVSTW instead of FMOVCR OP1,
FSTW

Instructions with no operand

Dummy operands are displayed when dis-assembling instructions
without any operand. As a sign, "#" is displayed just after Opcode
mnemonics as follows.

0000fe86a@r - FRPUSH # FR0,FR0

Using the Emulator 5-13

Two "FR0"s are dummy operands. The following instructions relate
this.

FADD3M.S FADD3M.L FADD4M.S FADD4M.L
FSUB3M.S FSUB3M.L FSUB4M.S FSUB4M.L
FMUL3M.S FMUL3M.L FMUL4M.S FMUL4M.L
FRPUSH FRPOP FAFFECT

Instructions with one operand

Dummy operand is displayed when dis-assembling instructions with
only one operand. As a sign, "* " is displayed just after Opcode
mnemonics as follows.

0000fe87a@r - FRREL * /00000100H,FR0

The "FR0" is a dummy operand. The following instructions relate this.

FIPV.S FIPV.L FRPINC FRREL

MMU Support Displaying Area Table Entry and Page Table Entry is supported via
Terminal Interface ate and pte commands. These commands are useful
to examine in which address space the program are executed, and
detect the address translation error of the program. Refer to the
"Features Available via Pod Commands" section in this chapter for
using Terminal Interface commands. Refer to the "70632 Emulator
Terminal Interface User’s Guide" for these commands.

5-14 Using the Emulator

Making
Coordinated
Measurements

Coordinated measurements are measurements made between multiple
HP 64700 Series emulators which communicate via the Coordinated
Measurement Bus (CMB). Coordinated measurements can also include
other instruments which communicate via the BNC connector. A
trigger signal from the CMB or BNC can break emulator execution into
the monitor, or it can arm the analyzer. An analyzer can send a signal
out on the CMB or BNC when it is triggered. The emulator can send an
EXECUTE signal out on the CMB when you enter the x (execute)
command.

Coordinated measurements can be used to start or stop multiple
emulators, start multiple trace measurements, or to arm multiple
analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or
BNC trigger signals are interpreted as a "request to break". The
emulator looks at the state of the CMB READY (active high) line to
determine if it should break. It does not interact with the EXECUTE
(active low) or TRIGGER (active low) signals.

For information on how to make coordinated measurements, refer to
the HP 64700 Emulators Terminal Interface: Coordinated
Measurement Bus User’s Guide manual.

Unfamiliar Status When you are using the emulator, one of the following message is
displayed in the status line normally.

N70632--Emulation reset
N70632--Running user program
N70632--Running in monitor

If your target system has a defect or you does not configure the
emulator appropriately, the following prompts may be displayed.

N70632--Waiting for ready

N70632--Halted

Using the Emulator 5-15

Waiting for Target
Ready

The status "Waiting for ready" indicates that the emulator is waiting for
target ready signal.

If you map the unused memory locations as target memory and your
program accesses to these locations by a defect (in case of in-circuit,
also if a target memory is accessed by an emulation command), the
emulator is waiting for an impossible ready signal infinitely because
the /READY signal is internally pulled up. When you encounter this
status, the emulator cannot break into monitor. All you can do is to
reset the processor.

If you are using the emulator in in-circuit mode, the reason is that the
emulator intends to access to a memory location for which your target
system does not generate ready signal.

If you are using the emulator in out-of-circuit mode, the reason is that
the emulator intends to access to a target memory location by your
program. To prevent this, all of memory locations, which are not used,
should be mapped as guarded memory. When you direct the emulator
to access a target memory location, the emulator will return an error
message.

Halt or Machine Fault The status "Halted" indicates that the emulator is halted or in machine
fault.

In case of machine fault, all you can do will be to reset the processor
because the emulator cannot break into monitor.

One of the causes is the exception by a address translation failure. In
this case, one of the solution is to use the analyzer. The analyzer will
capture states which causes the emulator to halt. Refer to the "Finding
out the Cause of a Monitor Break" description of the "Analyzer
Topics" section in this chapter, for the analyzer configuration.

5-16 Using the Emulator

70108/70116
Emulation Mode

The 70632 microprocessor has the 70108/70116 emulation mode. In
this mode, the 70632 executes instructions as 70108/70116
microprocessor’s ones.

The emulator provides the following functions for both 70108/70116
and 70632.

Display memory contents in processor mnemonic format.
Analyzer trace

Displaying Memory
In 70108/70116

Mnemonic Format

The emulator can display contents of memory in mnemonic format for
both 70108/70116 and 70632. The emulator provides both inverse
assemblers for 70108/70116 and 70632. You can select one of the
inverse assemblers to display memory contents.

To display memory contents in 70108/70116 mnemonic, add the
"options v20_30" option as follows.

display memory 1000h mnemonic
options v20_30 <RETURN>

To display memory contents in 70632 mnemonic, add the
"options default" option.

When you specify the disassembler by using one of these options, the
specified disassembler becomes the current disassembler.

If you do not specify neither option, the current disassembler is used to
disassemble the memory.

Note When you single-step an instruction, the current disassembler is used to
display the mnemonic of the instruction which has been single-stepped
in the register window.

Tracing States In
Both Mode

You can also trace the bus states and exec states in the 70108/70116
emulation mode. When tracing the execution of the program,
mnemonics of the executed instructions are included in trace listing.
The corresponded processor mnemonics are displayed automatically.

Using the Emulator 5-17

Real-time
Emulation
Memory Access

The dual-port memory for the emulation memory allows emulation
displays and modifications of emulation memory without breaking the
processor into the monitor during emulation.

This is referred to as the Real-time Emulation Memory Access
capability.

If you issue emulation memory display/modification command while
the emulation program is running, HP 64700 emulation controller, not
the emulation processor, intends to access the dual-port emulation
memory with the cycle-stealing method. The emulation memory
accesses without breaking the processor into the monitor are
accomplished for this reason.

When cycle-stealing to access to the emulation memory, the emulation
controller watches for idle cycles in the 70632 bus cycles. When the
idle cycles are found, the emulation controller can access to the
emulation memory at the interval of the 70632 bus cycles with
cycle-stealing.

However the emulation controller cannot find any idle cycles, the
emulation controller holds the 70632 bus cycles (not but breaking into
the monitor) in order to access to the emulation memory.

If your target system inserts some wait states to access to memory, no
idle cycle may be generated. It is depended on WHAT instructions are
executed when the emulation memory access command is issued, or
HOW much wait states are inserted.

When there is no idle cycle within 160 mS, the hold request will be
generated to the emulation processor except that the emulator is held,
bus-frozen or reset.

5-18 Using the Emulator

Virtual Address
Translation

When you specify virtual addresses in emulation commands, the
emulator intends to translate these virtual addresses to actual memory
addresses in order to manipulate contents of these memory locations.

For the address translation, the 70632 microprocessor uses its area
table register pairs, which define a virtual address space. Similarly, the
emulator requires values which corresponds to the 70632 area table
register pairs.

Using the Caches of
Area Table Register

Pairs

The emulator has the caches of the area table register pairs, which
allow the emulator to refer the corresponded area table for the address
translations even if the emulator cannot to or is not allowed to break
into the monitor.

Each time the emulator breaks into monitor, the caches are updated by
the contents of the 70632 area table register pairs.

By default, the emulator uses the caches to translate the addresses
which you specify in emulation commands. The caches contain the
base addresses and the lengths of the area tables as the same as the
70632 area table register pairs. The emulator refers to the corresponded
area table and page table by using the caches.

If the emulator is restricted to real-time runs by the "Restrict to
real-time runs?" configuration, the caches will keep the values while
you do not break the emulator into the monitor intentionally. Only
when you issue break, step or reset command or a break condition
(such as software breakpoint) is satisfied, the caches are updated.

If the emulator is not restricted to real-time runs (default), the caches
are updated by the contents of the area table register pairs every time
the emulator breaks into monitor whether with or without your
intention. When you issue commands with virtual addresses, the
emulator breaks into the monitor to access the area table register if
possible. As the result, the emulator will use the current virtual address
space for address translations.

In the both cases, when the emulator cannot break into monitor, for
example the processor is reset, the emulator uses the caches for the
address translation.

Using the Emulator 5-19

Specifying Virtual
Address Space

When you specify virtual addresses in emulation commands, the
emulator translates the virtual address to corresponded real addresses.
The translated real addresses depends on a virtual address space. The
virtual address space can be defined by the values of area table base
and length for each section. In 70632 microprocessor, these
informations are stored in its area table register pairs.

In case that the caches mentioned above are used for the address
translation, it is difficult to specify an virtual address in your desirable
virtual address space during running user program. If your program
performs in multiple virtual space, you may want to specify a virtual
address space for address translations in order to watch for the
execution of a certain task.

This is accomplished by using the XMMU function. The XMMU
function allows you to fix a virtual address space for address
translations. The emulator has the optional XMMU class registers.
These registers consist of eight XMMU register pairs and one XMMU
mode register. The XMMU register pairs correspond to the actual
70632 area table register pairs. You can specify a virtual address space
by modifying the XMMU class registers. The format of the XMMU
class registers is the same as the 70632 actual area table register pairs.
The XMMU class registers also include the XMMU mode register
(MMUMOD), which determines whether the caches or the contents of
the XMMU register pairs are used for address translations. By default,
the caches are selected.

If you activate the XMMU function, the emulator uses the contents of
the XMMU register pairs for address translations whether or not the
emulator is restricted to real-time runs.

The XMMU class registers consist of the following registers.

XMMU class registers corresponded actual registers
XATBR0 ATBR0
XATLR0 ATLR0
XATBR1 ATBR1
XATLR1 ATLR1
XATBR2 ATBR2
XATLR2 ATLR2
XATBR3 ATBR3
XATLR3 ATLR3

MMUMOD --None--

To specify a virtual address space which is used for address
translations, modify the contents of the XMMU register pairs
corresponded to the area table registers by using the register command

5-20 Using the Emulator

or the Terminal Interface cpmmu (copy current virtual address space to
XMMU registers) command. See also the "Using the XMMU function"
section of chapter 3. For the "cpmmu" command, refer to the "Features
Available via Pod Commands" section in this chapter and cpmmu
syntax in the 70632 Emulator Terminal Interface User’s Guide"
manual.

After you have modify the contents of the XMMU register pairs,
activate the XMMU function by changing the contents of XMMU
mode register (MMUMOD) to the value 1.

modify register MMUMOD to 1<RETURN>
To use the caches of the area table register pairs for address
translations, modify MMUMOD register to 0 (default).

modify register MMUMOD to 0<RETURN>

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface, but not
in the Softkey Interface, may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface
command>’ <RETURN>

Some notable Terminal Interface features not available in the softkey
Interface are:

Copying memory.
Searching memory for strings or numeric expressions.
Sequencing in the analyzer.
Performing coverage analysis.
Displaying Address Translation Tables (ate and pte).
Displaying TCB (tcb).
Fixing Virtual Space (cpmmu).

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Using the Emulator 5-21

Note Be careful when using pod_command. The Softkey Interface, and the
configuration files in particular, assume that the configuration of the
HP 64700 pod is NOT changed except by the Softkey Interface. What
you see when using modify configuration will not reflect the HP
64700 pod’s configuration if you change the pod’s configuration with
pod_command. Also, commands that affect the communications
channel should not be used at all. Other commands may confuse the
protocol depending upon how they are used. The following commands
are not recommended for use with pod_command:

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac - Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.
init , pv - Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

Register Names
and Classes

The following register names and classes may be used with the
"display/modify registers" commands.

BASIC

Register Name Description

R0 thru R31
AP FP SP PC
PSW SYCW

All basic registers.
The AP and R29, FP and R30, SP and R31 have
same values because of only difference of their
register mnemonics.

5-22 Using the Emulator

PRIV (Privilege
registers)

ISP L0SP L1SP
L2SP L3SP
SBR TR SYCW
TKCW PIR PSW2

MMU (MMU registers)

ATBR0 ATLR0
ATBR1 ATLR1
ATBR2 ATLR2
ATBR3 ATLR3

Area Table Register Pairs

DEBUG (Debug
registers)

TRMOD ADTR0
ADTR1 ADTMR0
ADTMR1

XMMU (XMMU function
registers)

MMUMOD
XATBR0
XATLR0
XATBR1
XATLR1
XATBR2
XATLR2
XATBR3
XATLR3

XMMU function registers. These registers are not
actual 70632 registers. Refer to the XMMU
function section of the "Using the Emulator"
chapter for the detail.

Using the Emulator 5-23

OTHER

FR0 thru FR31
FRP0 thru
FRP30

These register names are for display/modification
of the registers in floating-point format. Each
register name FRPn is corresponded to the two
consecutive register (FRn and FRn+1). You can
specify the "FLOAT " attribute to display/modify
the registers in floating-point format. If you do not
specify the "FLOAT " attribute, the contents of the
registers are displayed or modified in hexadecimal
format.

Restrictions and
Considerations

When the microprocessor accesses data which are not aligned, the
microprocessor generates more than twice memory access cycles.
If the microprocessor accepts interrupt while microprocessor reads the
data which are not aligned, the microprocessor stop accessing the data
and generates invalid memory write cycle.
But, memory is not changed because bus enable signals(BS0-BS3) are
inactive, and stopped memory read cycles are reexecuted after interrupt
routine.

If you specify that the emulator break into the monitor upon attempts to
write to memory mapped as ROM and if microproccessor generates
invalid memory write cycle described above in user’s program, the
emulator break into the monitor.

5-24 Using the Emulator

6

In-Circuit Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

In-Circuit Emulation Topics 6-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

Installing the
Emulator Probe
into a Target
System

The emulator probe has a PGA connector. The emulator probe is also
provided with a conductive pin protector to protect the delicate
gold-plated pins of the probe connector from damage due to impact.

Caution Protect against static discharge. The emulation probe contains
devices that are susceptible to damage by static discharge. Therefore,
precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by static
electricity.

Caution Make sure target system power is OFF. Do not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

6-2 In-Circuit Emulation Topics

Caution Make sure pin 1 of probe connector is aligned with pin 1 of the
socket. When installing the emulation probe, be sure that the probe is
inserted into the processor socket so that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator probe will result if the
probe is incorrectly installed.

Caution Protect your target system CMOS components. If you target system
contains any CMOS components, turn ON the target system first, then
turn ON the emulator. Likewise, turn OFF your emulator first, then
turn OFF the target system.

Pin Protector The target system probe has a pin protector that prevents damage to the
prove when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room to accommodate the
plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

Conductive Pin Guard HP emulators are shipped with a conductive plastic or conductive foam
pin guard over the target system probe pins. This guard is designed to
prevent impact damage to the pins and should be left in place while
you are not using the emulator. However, when you do use the
emulator, either for normal emulation tasks, or to run performance
verification on the emulator, you must remove this conductive pin
guard to avoid intermittent failures due to the target system probe lines
being shorted together.

In-Circuit Emulation Topics 6-3

Caution Always use the pin protectors and guards as described above.
Failure to use these devices may result in damage to the target system
probe pins. Replacing the target system probe is expensive; the entire
probe and cable assembly must be replaced because of the wiring
technology employed.

Figure 6-1. Installing Emulation Probe Into PGA Socket

6-4 In-Circuit Emulation Topics

Installing the Target
System Probe 1. Remove the 70632 microprocessor from the target system

socket. Note the location of pin 1 on the processor and on the
target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket. Remember to use the pin protector!

In-Circuit
Configuration

Options

The 70632 emulator provides configuration options for the following
in-circuit emulation issues. Refer to the "Configuring the Emulator"
chapter for the configuration.

Selecting the Emulator Clock Source

The default emulator configuration selects the internal 20 MHz clock
as the emulator clock source. You can configure the emulator to select
an external target system clock source in the range of 8-20 MHz.

Driving Background Cycles to the Target System

You can choose whether emulator bus cycles are driven to your target
system bus when the emulator is in background cycle. If your target
system requires bus cycle activities constantly, such as /BCYST, will
need to drive the emulation bus cycles to your target system bus. By
default, no bus cycles are driven to the target system in background
operation.

Selecting Memory Block during Background Cycles

You can select the value of the 70632 address bus which should be
driven to your target system. Pin A31 through A8 of the address bus is
configurable. This configuration is meaningful when the "Driving
Background Cycles to Target System" configuration mentioned above
is activated.

In-Circuit Emulation Topics 6-5

Allowing /HLDRQ Signal from Target System

You can specify whether the emulator accepts or ignores the /HLDRQ
signal from your target system. By default, the emulator accepts the
/HLDRQ signal from the target system.

Allowing BFREZ Signal from Target System

You can specify whether the emulator accepts or ignores the BFREZ
signal from your target system. By default, the emulator accepts the
BFREZ signal from the target system.

Allowing INT Signal from Target System

You can specify whether the emulator accepts or ignores the INT
signal from your target system. By default, the emulator accepts the
INT signal from the target system.

Allowing /NMI Signal from Target System

You can specify whether the emulator accepts or ignores the /NMI
signal from your target system. By default, the emulator accepts the
/NMI signal from the target system.

Allowing the Target
System to Insert Wait

States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
/READY, /BERR, RT/EP lines while emulation memory is being
accessed.

You can specify whether the emulation memory accesses are honored
by these target system signals or not, in a memory mapping term.
When you map emulation memory, if you would like to cause the
emulation memory to honor these target system signals, add the "lock"
attribute for emulation memory type.

When the ready relationship is locked to the target system by using the
"lock" attribute, the emulation memory accesses honor /READY,
/BERR, RT/EP signals from the target system (wait states or retry
cycles are inserted if requested).

6-6 In-Circuit Emulation Topics

If you do not specify the "lock" attribute, the ready relationship is not
locked to the target system, and the emulation memory accesses ignore
these signals from the target system (no wait states are inserted).

The Usage of I/O
Command

The emulator has "display/modify io_port" command, you can
manipulate an I/O address by using this command. You can specify an
I/O address in either virtual or real address space as well as the
"display/modify memory" command.

There are two I/O spaces according to methods for accessing to I/O in
the 70632 microprocessor.

The first I/O space can be accessed by using an IN/OUT instruction. In
this section, this I/O space is referred as "Isolated I/O space"
distinguish from Memory Mapped I/O described below.

The second I/O space can be accessed by simply reading from or
writing to the memory. The I/O space can be mapped to the virtual
address space and known as Memory Mapped I/O.

How to Access an Isolated I/O space

If you would like to manipulate an Isolated I/O space which is accessed
by using an IN/OUT instruction of the microprocessor, designate the
I/O address in real address.

How to Access a Memory Mapped I/O space

If you would like to manipulate a Memory Mapped I/O space which is
accessed by reading from or writing to a memory. designate the I/O
address in virtual address. The I/O mapped bit of the page table entry
which includes the I/O address must be set to 1, in other word, the
address is mapped as I/O.

In-Circuit Emulation Topics 6-7

Notes

6-8 In-Circuit Emulation Topics

A

Using the Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. Usually, a
background monitor will be easier to work with in starting a new
design. The monitor is immediately available upon powerup, and you
don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,

Using the Foreground Monitor A-1

non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. You link this
monitor with your code so that when control is passed to your program,
the emulator can still service real-time events, such as interrupts or
watchdog timers. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor.

Foreground
Monitor Selection

The HP 64758 emulator provides two kinds of foreground monitor.
One is included in the emulator, the other is provided with assembler
source file.

The foreground monitor included in the emulator allows you to use the
foreground monitor quickly. When you use this built-in foreground
monitor, you do not have to assemble, link and load the monitor
program.

The foreground monitor provided with assembler source file allows
you to customize the foreground monitor as you desire. When you use
this custom foreground monitor, you need to assemble, link and load
the monitor program.

Using Built-in
Foreground
monitor

The 70632 emulator includes foreground monitor. The built-in
foreground monitor saves your tasks for assembling, linking and
loading the monitor. To use the built-in foreground monitor, all you

A-2 Using the Foreground Monitor

have to do is to specify the location of the monitor. The location is
specified by the "Monitor Location for real address?" configuration.

Specify the monitor location (real address) as follows.

modify configuration <RETURN>
Modify memory configuration ? yes
Monitor type? foreground
Reset map (change monitor type requires map reset)? yes
Monitor location for real address? <real_address>

When your application is executed in virtual mode, you should also
specify the virtual memory location for the monitor. The address
translation tables for the monitor must be set up.

Monitor location for virtual address? <virtual_address>

If you do not use the emulator in virtual mode, you do not have to
answer the "Monitor location for virtual address?" configuration
question.

After you issued the configuration command, the built-in foreground
monitor is set up automatically.

Interrupt/Exception
Handler

The foreground monitor supports interrupt/exception handler. The
interrupt/exception handler allows you to break the emulator into
monitor when a certain interrupt or exception is generated.

After you exit the configuration session, six equation label pairs are
defined in the Terminal Interface. These equation label pairs contain
the entry addresses of the handlers, which are included in the
foreground monitor. One of each equation label pair contains real
address of the entry, the other (which has "V" prefix) contains virtual
address of the entry. The description of these equation label pairs are as
follows.

real address entry, virtual address entry, description

NMI_ENTRY VNMI_ENTRY NMI handler entry
INT_ENTRY VINT_ENTRY INT handler entry
EXC1_ENTRY VEXC1_ENTRY 3 words stacking Exception handler entry
EXC2_ENTRY VEXC2_ENTRY 4 words stacking Exception handler entry
STEP_ENTRY VSTEP_ENTRY Single-Step Trap handler entry
BRK_ENTRY VBRK_ENTRY Breakpoint Instruction Trap handler entry

Either of each equation label pair can be used so that vectors in system
base table point to the corresponded handlers, if desired. The system
base table must be defined in your program. For using single-step and
software breakpoint features the single-step trap and breakpoint
instruction trap handler entries must be set up.

Using the Foreground Monitor A-3

For example, if you wish to use the emulator’s single-step feature, you
must define the single-step trap handler entry in the corresponded
vector table.

pod_command ’m -dd 30=STEP_ENTRY’
<RETURN>

If you use the single-step feature in virtual mode, you should have
entered the following command instead.

pod_command ’m -dd 30=VSTEP_ENTRY’
<RETURN>

Refer to the HP64758 70632 Emulator Terminal Interface User’s
Guide.

According to the system base table location, you may have to change
the address (in this case, 30H) to be modified.

A-4 Using the Foreground Monitor

Using Custom
Foreground
monitor

The custom foreground monitor allows you to customize the monitor
for your target system. To use the monitor, you need to assemble, link
and load the monitor program into emulator.

The foreground monitor is supplied with the emulation software and
can be found in the following path:

/usr/hp64700/monitor/*

The monitor program is named Nfmon70632.s

The monitor program is provided with HP 64758 emulator. You should
modify the following statement of the monitor program to specify the
monitor location.

 .text "FG_MON" > 0x000000000

The default monitor location is defined at address 000000000 (hex).

To tell the monitor location to the emulator, you should specify the
monitor location (real address) by entering the configuration session.

modify configuration <RETURN>

In the configuration session, answer as follows.

Modify memory configuration ? yes
Monitor type? foreground
Reset map (change monitor type requires map reset)? yes
Monitor location for real address? <real_address>

When your application is executed in virtual mode, you should also
specify the virtual memory location for the monitor. The address
translation tables for the monitor must be set up.

Monitor location for virtual address? <virtual_address>

If you do not use the emulator in virtual mode, you do not have to
answer the "Monitor location for virtual address?" configuration
question.

After you exit the configuration session, you must load the monitor
program into the emulator. The memory for the foreground monitor is
already mapped when configuring the monitor location.

Using the Foreground Monitor A-5

Interrupt/Exception
Handler

The foreground monitor supports interrupt/exception handler. The
interrupt/exception handler allows you to break the emulator into
monitor when a certain interrupt or exception is generated.

In the foreground monitor program, some entry labels of the handlers
are defined. See the monitor program for these entry labels. Write these
labels in your program’s system base table description. When you link
the foreground monitor with your program, these labels will be referred
by your program. The system base table must be defined in your
program.

To use the single-stepping and/or software breakpoints feature(s), you
must define the single step trap vector and/or the breakpoint instruction
trap vector into the system base table. When you use these features in
virtual mode, you must set up these vectors to point to their handler’s
entry in the foreground monitor in virtual address.

Even if you link the monitor with your program, you should also
prepare the absolute file separated from user program to load the
monitor program.

Loading Foreground
Monitor

To load the monitor program, enter the following command; whether
or not the monitor program is linked with your program.

load fg_mon <foreground_monitor>
<RETURN>

The "fg_mon" option was used to load the foreground monitor
program. You should specify the file name of the foreground monitor
absolute separated from your program. After loading the monitor, map
the memory for your program and load your program into the emulator.

A-6 Using the Foreground Monitor

Loading User
Program

To load your program into target memory and emulation memory, do
the following.

Loading into Target
Memory

To load the program into target memory, enter the following
commands.

break <RETURN>
load user_mem <user_program> <RETURN>

The break command causes the emulator to break into the monitor.
For loading into target memory, the emulator must be running in
monitor.

The "user_mem" option specify to load only target memory portion of
the program.

Loading into
Emulation Memory

To load the program into emulation memory, enter the following
commands.

reset <RETURN>
load emul_mem <user_program> <RETURN>

The reset command causes the emulator to reset. For loading into
emulation memory (which includes monitor program portion), the
emulator must be reset.

The "emul_mem" option specifies to load only emulation memory
portion of the program.

Using the Foreground Monitor A-7

Restrictions and
Considerations

When using the foreground monitor, there are some restrictions and
considerations.

Cannot Single-step the Instruction RETIS and RETIU

The foreground monitor cannot step the RETIS and RETIU instruction.
If you step either the RETIS or RETIU instruction, the emulator cannot
break into monitor. As a result, the emulator runs your program
without stepping.

Two Pages for the Monitor Program Must be Set Up

When you use the foreground monitor in virtual mode, the address
translation tables for the foreground monitor must be set up. The
monitor occupies one page (4 Kbytes memory), and further, one more
page is required for accessing to target memory. In virtual mode, when
accessing to target memory, the monitor modifies the page table to
point to the target memory to be accessed to. The page must follows
the foreground monitor page. For this reason, you must set up the
address translation tables of two pages for the foreground monitor.

Monitor Must be Located at the Same Virtual Address
Always.

The foreground monitor must be located at the same virtual address
whenever virtual space is changed. This allows the emulator to break
into monitor in any virtual space.

A-8 Using the Foreground Monitor

An Example
Configuration of
the Foreground
Monitor

In the following example, we will illustrate how to set up the emulator
to use the custom foreground monitor in virtual mode.

For this example, we will locate the monitor at 400000000h (virtual)
and 1000h (real).

Modify Monitor
Source Program

To use the monitor, you must modify the following statement near the
top of the monitor program. In this example, the monitor will be
located at 40000000h in virtual.

 .text "FG_MON" > 0x40000000

Defining System
Base Table in Your

Program

To use the single-step and software breakpoint feature of the emulator,
you must define the single-step trap and breakpoint instruction trap
vector into the system base table. Assuming that the system table
description in your program as follows.

 .data "sys_base"
 .word -- + 00
 .word -- + 04
 .word NMI_ENTRY -- + 08
 .word -- + 0C
 :
 :
 .word STEP_ENTRY -- + 30
 .word BRK_ENTRY -- + 34
 :
 :

The NMI_ENTRY label is also defined to break the emulator into
monitor when NMI signal is generated.

Defining Address
Translation Tables

for Monitor Program

The following statements define two page tables for monitor program.
The real address location of label PTE_FGMON must be pointed by
the Area Table Entry of Section 1, Area 0 because the monitor location
is 40000000h (virtual).

PTE_FGMON: .word 0x00001e05 -- for foreground monitor location
 .word 0x00001e05 -- for accessing to target memory by monitor

The PTE in the second line must be defined to access to target memory
by monitor program. The monitor modifies the PTE to point to target

Using the Foreground Monitor A-9

memory location to be accessed. Initially, the PTE had better point to
the foreground monitor location.

Note that the foreground monitor must be reside in the fixed virtual
address, even if virtual space is changed. This allows the emulator to
break into monitor in any virtual space.

Assembling and
Linking the

Foreground Monitor

To refer to these labels (in this example, NMI_ENTRY,
STEP_ENTRY and BRK_ENTRY), the foreground monitor program
and your program should be linked together. Suppose that the
generated absolute file name is "usr_prog.X".

You must prepare another absolute file which contains only foreground
monitor program. The absolute file will be used to load the monitor
program into the emulator. Suppose that the generated absolute file
name is "Nfmon70632.X".

Setting Up the
Monitor

Configuration Item

The following configuration should be required to tell the use of
foreground monitor and the location of the monitor to the emulator.

modify configuration <RETURN>

In the configuration session, answer as follows.

Modify memory configuration ? yes
Monitor type? foreground
Reset map (change monitor type requires map reset)? yes
Monitor location for real address? 1000h
Monitor location for virtual address? 40000000h

Mapping Memory for
Your Program

Map memory for your program in the mapping memory configuration
session. The monitor location is already mapped as emulation RAM
("MONITOR" is displayed in the "type" field).

Loading Foreground
Monitor

Load the foreground monitor program.

load fg_mon Nfmon70632.X <RETURN>
The linked monitor program (Nfmon70632.X) is separated from user
program. In this example, the Intel hexadecimal format and transparent
configuration are assumed.

A-10 Using the Foreground Monitor

Loading User
Program

Load the target memory portion of your program. To load the program
into target memory, the emulator must be running in monitor.

break <RETURN>
load user_mem usr_prog.X <RETURN>

Next, load the emulation portion of your program. Since the portion
includes the foreground monitor program, which is linked to refer to
the symbols (in this example, STEP_ENTRY, BRK_ENTRY and
NMI_ENTRY), the monitor program should not be running. Therefore,
reset the emulator.

reset <RETURN>
load emul_mem usr_prog.X <RETURN>

Using the Foreground Monitor A-11

Notes

A-12 Using the Foreground Monitor

B

Using the Format Converter

The 70632 Softkey Interface provides with the NEC COFF converter.

How to Use the
Converter

The format converter is a program that generates HP format files from
COFF format files for the 70632 (or the 70616). This means you can
use available language tools to create the COFF format file, then load
the file into the emulator using the format converter.

To execute the converter program, use the following command:

$v70cnvhp [options] <file_name>
<file_name> is the name of COFF format file (for the 70632 or the
70616) which is created by the 70632 linker (ld70616) or retrieved
from the archive file created by the 70632 configurator (cf70616). The
converter program will read the COFF format file. It will generate the
following HP format files:

HP Absolute file (with .X suffix)
HP Linker symbol file (with .L suffix)
HP Assembler symbol files (with .A suffix)

The converter accepts the following options.

Load address
location options

You can select address mode (real or virtual) for the load address
location of the HP absolute file, and for address symbols in the HP
symbol files.

-v generates load address location and symbols in
virtual address.

Using the Format Converter B-1

-r generates load address location and symbols in real
address.

The HP 64758 emulator can load a program in real address or virtual
address. It is determined by configuration question "Object file address
attribute ?" in the "Pod configuration".

If neither option is specified, -v option is assumed.

In case of real mode application, this option is senseless because the
address is the same between real address and virtual address.

File output control The converter generates HP format files; Absolute file (with .X suffix),
Linker symbol file (with .L suffix) and Assembler symbol files (with
.A suffix).

You can specify which HP format file(s) should be generated by the
converter.

-x generates absolute file (with .X suffix).

-l generates linker symbol file (with .L suffix).

-a generates assembler symbol files (with .A suffix).

If no option is specified, the converter generates all HP format files.

Note For generating local symbols:
specify "-g" option when you invoke the 70632 C Compiler
(cc70616) from NEC.
specify file name by using ".file" directive in the assembly
source file.

B-2 Using the Format Converter

Note If you want to refer to global symbls in the assembly source file, you
must specify file name by using ".file" directive. Othewise, global
symbol can not be displayed by "display memory" commands.

Address
Translation Table
File

When the converter reads an address translation table file (aptable)
generated by the configurator (cf70616), the converter generates the
following files.

Absolute file for address translation tables (aptable.X)
Command files for specifying virtual space (files with .regs
suffix)

Absolute file for
address translation

tables

The configurator can generate the file for the address translation tables
(aptable). The converter converts this file to HP format absolute file
(aptable.X). You can load the file aptable.X into emulator.

Command files for
specifying virtual

space

The converter generates command files to specify a virtual space. The
command files contain emulator commands for modifying the XMMU
class registers to specify a virtual space. The command files are
generated for each virtual space which you specify to the configurator.
The file name of each command file is its virtual space name for the
base name and ".regs" for the suffix.

For example, to specify the virtual space for process task described in
the "Virtual Mode Emulation Topics" chapter, enter the following
commands.

load symbols process <RETURN>
PROCESS.regs <RETURN>

The "PROCESS", which is the base name of the command file, is the
virtual space name specified in the configurator command file
skdemo2.cfc.

Using the Format Converter B-3

Notes

B-4 Using the Format Converter

Index

A absolute file, loading, 2-13, 3-13
access

emulation memory, 5-18
target memory, 5-12

address lines driven during background, 4-13
address mode options (fcode), 3-29
address translation, 5-19
address translation tables

displaying, 3-25
analyzer, 1-4

70632 status qualifiers, 2-33
cause of break, 5-7
clock speed, 5-7
data trigger, 5-5
emulation mode, 5-17
execution state, 5-4, 5-5
hardware break, 5-8
qualifiers, 5-4
sequencing, 5-21
state count, 5-7
status label, 5-4
storage qualifier, 2-30
time tagging, 5-7
tracing virtual address, 3-26
using the, 2-27

area table entry
displaying, 3-25

assembling
sample program, 3-10

assembling and linking foreground monitor, A-10

B background, 1-6
address driven, 4-13
driving target system during, 4-12
tracing, 4-14

background monitor, 4-6, A-1

Index-1

selecting, 4-5
BERR

from target system, 6-6
BFREZ signal

from target system, 4-11
blocked byte memory display, 2-18
BNC connector, 5-15
break

monitor, 5-7
target memory access, 5-12
write to ROM, 4-14

breakpoints, 1-5
hardware, 5-8
software, 5-10

breaks
break command, 2-20

BRK instruction, 2-21
built-in foreground monitor, A-3
bus arbitration

configure emulator’s response, 4-9, 4-11

C cautions
installing the probe into socket, 6-3
protect against static discharge, 6-2
protect your target system CMOS components, 6-3
real-time dependent target system circuitry, 4-5
target system power must be off when installing the probe, 6-2
use the pin protectors, 6-4

clearing software breakpoints, 2-24
clock source

external, 4-3
internal, 4-3

clock speed, 1-3
CMB (coordinated measurement bus), 5-15
CMOS target system components, protecting, 6-3
Comparison of foreground/background monitors, A-1
compiling the getting started sample program, 2-7
compiling the sample program, 3-10
compiling, assembling and linking the sample program, 2-7
compress mode (trace display), 2-29
configuration

for sample program, 2-12, 3-12

2-Index

trace virtual or real address, 3-27
configuring the emulator

for sample program, 2-12, 3-12
converter

address translation tables (aptable), 3-13, B-3
NEC COFF format, B-1
v70cnvhp, 2-7

converting sample program, 2-7, 3-10
convertor

v70cnvhp, B-1
coordinated measurements, 4-16, 5-15
copy memory, 5-21
coverage analysis, 5-21
custom foreground monitor, A-5

D data bus
trace, 5-5

device table file, 2-9, 3-12
disassemble

FPU, 5-13
display command

memory blocked, 2-18
memory mnemonic, 2-15
registers, 2-26, 3-18
software breakpoints, 2-21
symbols, 2-13
trace, 2-28
trace compress off, 2-29
trace compress on, 2-29

displaying
address translation tables, 3-25
I/O, 6-7
memory emulation mode, 5-17
mmu register, 3-18
privilege register, 3-18
TCB, 3-26

driving background cycles to target system, 4-12

E emul700, command to enter the Softkey Interface, 2-9, 2-34, 3-12
emulation analyzer, 2-27
emulation feature

foreground or background monitor, 1-6

Index-3

out-of-circuit or in-circuit emulation, 1-6
emulation memory, 1-3

loading absolute files, 2-13
real time access, 5-18

emulation mode, 5-17
emulation monitor, 4-5

background, 4-6
foreground or background, 1-6
monitor, 1-6

emulator
before using, 2-2
configuration, 4-1
device table file, 2-9, 3-12
feature, 1-3
prerequisites, 2-2
purpose, 1-1
usage, 5-1

emulator configuration
address driven during background, 4-13
background cycles driven to target, 4-12
break processor on write to ROM, 4-14
clock selection, 4-3
enable execution cycles trace, 4-16
enable interrupt inputs, 4-10
enable target NMI, 4-10
loading, 4-17
memory mapping, 4-7
monitor entry after, 4-4
monitor type selection, 4-5
object file address attribute, 4-13
respond to HLDRQ signal, 4-9
respond to target BFREZ signal, 4-11
respond to target system interrupts, 4-10
restrict to real-time runs, 4-4
saving, 4-17
target memory access size, 4-11
trace background/foreground operation, 4-14
trace HOLD cycles, 4-15
trace virtual or read address, 4-15

emulator feature
analyzer, 1-4

4-Index

breakpoints, 1-5
clock speed, 1-3
emulation memory, 1-3
FPU, 1-4
FRM, 1-4
MMU, 1-4
processor reset control, 1-5
register display/modify, 1-4
restrict to real-time runs, 1-5
single-step processor, 1-4
software debugging, 1-5
target interface, 1-5

emulator probe
installing, 6-2

end command, 2-34, 4-17
exception handler

foreground monitor, A-3, A-6
EXECUTE (CMB signal), 5-15
execution state

analyzer, 5-4
trace, 5-5
tracing, 4-16

exit, Softkey Interface, 2-34
external clock source, 4-3

F fcode, 3-29
feature of the emulator, 1-3
file extensions

.EA and .EB, configuration files, 4-17

.regs, xmmu registers command files, B-3

.X, .L and .A, HP format files, B-1
floating point

register, 5-3
foreground, 1-6
foreground monitor, A-2

assembling and linking, A-10
built-in monitor, A-3
configuration, A-10
custom monitor, A-5
interrupt/exception handler, A-3, A-6
loading the, A-10
location, A-3, A-9

Index-5

selecting, 4-5, A-2
transition to, 4-13

foreground operation, tracing, 4-14
FPU, 1-4

disassemble, 5-13
FRM, 1-4

G getting started, 2-1
prerequisites, 2-2

global symbols
displaying, 2-13

H halted, 5-15
hardware breakpoints, 5-8
hardware installation, 2-2
help

on-line, 2-10
pod command information, 2-11
softkey driven information, 2-10

highlight source display, 2-30
HLDRQ signal

from target system, 4-9

I I/O
display/modify, 6-7

in-circuit
READY, BERR, RT/EP, 6-6

in-circuit emulation, 6-1
inserting wait state, 6-6
installation

hardware, 2-2
software, 2-2

instruction execution
triggering analyzer, 5-4

INT
from target system, 4-10

interactive measurements, 4-16
internal clock source, 4-3
interrupt (INT)

from target system, 4-10
interrupt (NMI)

from target system, 4-10
interrupt handler

6-Index

foreground monitor, A-3, A-6
inverse assemble in trace listing, 2-32
inverse_video source display, 2-30

L linking foreground monitor, A-10
linking sample program, 3-10
linking the getting started sample program, 2-7
load address mode, 4-13
loading absolute files, 2-13, 3-13
loading emulator configurations, 4-17
loading foreground monitor, A-10
loading symbols, 3-13
local symbols, 2-22

-g compiler option, B-2
.file assembler directive, B-2

local symbols, displaying, 2-14
location of foreground monitor, A-3, A-9
locked, end command option, 2-34

M mapping memory, 2-12, 3-13
measurement system, 2-34

creating, 2-8
initialization, 2-8

memory
blocked display, 2-18
copying, 5-21
emulation mode, 5-17
mapping, 2-12, 3-13
mnemonic display, 2-15
mnemonic display with source lines, 2-17
mnemonic display with symbols, 2-16
modifying, 2-19
searching for strings or expressions, 5-21

memory mapping, 4-7
defining memory type to emulator, 4-7
maximum number of terms, 4-8
sequence of map/load commands, 4-9

MMU, 1-4, 5-14
mmu register

displaying, 3-18
mnemonic memory display, 2-15

with source lines, 2-17

Index-7

with symbols, 2-16
modify command

configuration, 4-1
io_port, 6-7
memory, 2-19
software breakpoints clear, 2-24
software breakpoints set, 2-22

modifying
stack pointer, 5-2

module, 2-34
module, emulation, 2-9, 3-12
monitor

background, A-1
breaking into, 2-20
comparison of foreground/background, A-1

monitor (emulation), 4-5
address of, 4-7
background, 4-6
background/foreground selection, 4-5

monitor break
cause, 5-7

N NEC COFF converter, B-1
NMI

from target system, 4-10
no fetch cycle found in trace display, 2-32
nosymbols, 2-13
notes

-g compiler option should be specified, B-2
.file assembler directive for local symbols, B-2
default address evaluation in real mode, 3-30
map all ranges before loading programs into memory, 4-9
pod commands that should not be executed, 5-22
selecting internal clock forces reset, 4-3
set command and its effect, 2-17
single-stepping in emulation mode, 5-17
software breakpoints, 2-21
symbol address attributes, 3-20
write to ROM analyzer status, 4-14

O object file address attribute, 4-13
on-line help, 2-10

8-Index

options
address mode, 3-29

P page table entry
displaying, 3-25

PATH, HP-UX environment variable, 2-8, 2-9, 3-12
pmon, User Interface Software, 2-8, 2-34, 3-12
pod_command, 2-11

ate, 3-25
features available with, 5-21
help information, 2-11
pte, 3-25
tcb, 3-26

prerequisites for using the emulator, 2-2
privilege register

displaying, 3-18
purpose of the emulator, 1-1

Q qualifiers
analyzer, 5-4

R READY
from target system, 6-6

READY (CMB signal), 5-15
real address

tracing, 4-15
real time access

emulation memory, 5-18
real-time execution

restricting the emulator to, 4-4
real-time runs, 1-5, 5-12
register

classes, 2-26
displaying (privilege, mmu), 3-18
floating-point, 5-3
modification, 5-2
names and classes, 5-22
xmmu, 3-21, 5-19

register display/modify, 1-4, 2-26
release_system

end command option, 2-34, 4-17
repetitively

memory display, 2-18

Index-9

reset control, 1-5
reset(emulator), running from target reset, 2-18
respond to target system interrupts

emulator configuration, 4-10
restrict to real-time runs, 1-5, 5-12

emulator configuration, 4-4
permissible commands, 4-4
target system dependency, 4-5

RT/EP
from target system, 6-6

run command, 2-18

S sample program
assembling, 2-7, 3-10
compiling, 2-7, 3-10
converting, 2-7, 3-11
description, 2-3
linking, 2-7, 3-10
virtual mode, 3-1

saving the emulator configuration, 4-17
selecting the emulation monitor type, 4-5
sequencer, analyzer, 5-21
set command

source on, 2-17
source on inverse_video on, 2-30
symbols on, 2-16

simulated I/O, 4-16
single-step

emulation mode, 5-17
single-step processor, 1-4
softkey driven help information, 2-10
Softkey Interface

entering, 2-8, 3-12
exiting, 2-34
on-line help, 2-10

software breakpoints, 1-5, 2-21, 5-10
clearing, 2-24
displaying, 2-21
enabling/disabling, 2-21
note on BRK instruction vector, 2-21
setting, 2-22

software debugging, 1-5

10-Index

software installation, 2-2
source line step, 2-25
source lines

in memory display, 2-17
in trace display, 2-30

specifing virtual address space, 5-20
specifying virtual space, 3-21
stack pointer

modification, 5-2
state count, 5-7
static discharge, protecting the emulator probe against, 6-2
status

halted, 5-15
machine fault, 5-15
waiting for ready, 5-15

status label, 2-33
analyzer, 5-4

status qualifiers (70632), 2-33
step

emulation mode, 5-17
step command, 2-25

source, 2-25
stop_trace command, 2-31
storage qualifier, 2-30
string delimiters, 2-12
symbols

generating local symbols, B-2
in memory display, 2-16
loading, 3-13

symbols, displaying, 2-13
system overview, 2-2

T target interface, 1-5
target memory access, 5-12
target memory access size

emulator configuration, 4-11
target memory, loading absolute files, 2-13
target system

dependency on executing code, 4-5
TCB

displaying, 3-26
Terminal Interface, 2-11, 5-21

Index-11

time tagging, 5-7
trace

cause of break, 5-7
clock speed, 5-7
compress mode display, 2-29
data trigger, 5-5
display with source lines (highlight), 2-30
emulation mode, 5-17
execution cycles, 4-16
execution state, 5-5
from current address, 3-19
no fetch cycle found, 2-32
state count, 5-7
time tagging, 5-7
trigger position, 2-33
virtual address, 3-26
virtual or real address, 4-15

trace depth, 2-30
trace HOLD cycles

emulator configuration, 4-15
trace, displaying the, 2-28
tracing background operation, 4-14
translation table

displaying, 3-25
TRIGGER (CMB signal), 5-15
trigger condition

instruction execution, 5-4
trigger position, 2-33
trigger, specifying, 2-27

U user (target) memory, loading absolute files, 2-13
using the emulator, 5-1

V v70cnvhp converter, 2-7, B-1
virtual address

tracing, 3-26, 4-15
virtual address translation, 5-19
virtual space

specifying, 3-21, 5-20

W wait state
target ready signal, 6-6

waiting for ready, 5-15

12-Index

window systems, 2-34
write to ROM break, 4-14

X x (execute) command, 5-15
xmmu function, 3-21, 5-19
xmmu registers, 3-21

Index-13

Notes

14-Index

	Using This manual
	Contents
	Introduction to the 70632 Emulator
	Getting Started
	Virtual Mode Emulation Topics
	Configuring the Emulator
	Using The Emulator
	In-Circuit Emulation Topics
	Using the Foreground Monitor
	Using the Format Converter
	Index

