
User’s Guide for the Terminal Interface

HP 64767 80186/8/
XL/EA/EB/EC Emulator and
HP 64703/4/6 Analyzer

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1992, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

Advancelink, Vectra, and HP are trademarks of Hewlett-Packard Company.

IBM and PC AT are registered trademarks of International Business Machines
Corporation.

Microtec is a registered trademark of Microtec Research Inc.

MS-DOS is a trademark of Microsoft Corporation.

Torx is a registered trademark of Camcar division of Textron, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

2

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64767-97000, December 1992
64767-97002, February 1992
64767-97004, October 1993
64767-97005, January 1994

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

3

80186/8/XL/EA/EB/EC Emulation and
Analysis

The HP 64767 80186/188 Emulator replaces the microprocessor in your embedded
microprocessor system, also called the target system, so that you can control
execution and view or modify processor and target system resources.

The emulator requires an emulation analyzer that captures 48 channels of emulation
processor bus cycle information synchronously with the processor’s clock signal.
The HP 64706 (48 channel), the HP 64703 (64 channel), the HP 64704 (80
channel), or the HP 64794 (80 channel, deep memory) Emulation Bus Analyzer
meets this requirement.

The HP 64703 Emulation Bus Analyzer also has an an external analyzer that
captures up to 16 channels of data external to the emulator.

With the Emulator, You Can ...

• Plug into 80186/188/XL/EA/EB/EC target systems.
• Download programs into emulation memory or target system RAM.
• Display or modify the contents of processor registers and memory resources.
• Run programs at clock speeds up to 20 MHz (with no wait-states from

emulation memory), set up software breakpoints, step through programs, and
reset the emulation processor.

4

With the Analyzer, You Can ...

• Trigger the analyzer when a particular bus cycle state is captured. States are
stored relative to the trigger state.

• Qualify which states that get stored in the trace.
• Prestore certain states that occur before each normal store state.
• Trigger the analyzer after a sequence of up to 8 events have occurred.
• Capture data on signals of interest in the target system.
• Cause emulator execution to break when the analyzer finds its trigger condition.

With the HP 64700 Card Cage, You Can ...

• Use the RS-422 capability of the serial port and an RS-422 interface card on
the host computer (for example, the HP 98659 for the HP 9000 or the
HP 64037 for the PC) to provide upload/download rates of up to 230.4K baud.

• Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

• Start and stop up to 16 emulators at the same time (up to 32 if modifications
are made).

• Use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

• Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition, or you can allow an external instrument to arm the analyzer or break
emulator execution.

5

In This Book

This book documents the HP 64767 80186/188/XL/EA/EB/EC emulators and the
HP 64703/4/6 analyzer. It is organized into five parts whose chapters are described
below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly shows
you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 shows you how to plug the emulator into target systems.
Chapter 3 shows you how to enter Terminal Interface commands and display
HP 64700 system information.
Chapter 4 shows how to use the emulator.
Chapter 5 shows how to use the analyzer in the "easy" configuration.
Chapter 6 shows how to use the analyzer in the "complex" configuration.
Chapter 7 shows how to use external state analyzer.
Chapter 8 shows how to make coordinated measurements.

Part 3. Reference

Chapter 9 describes Terminal Interface commands.
Chapter 10 describes error messages and provides recovery information.
Chapter 11 lists the emulator and external analyzer specifications and
characteristics.

Part 4. Concept Guide

Chapter 12 contains conceptual (and more detailed) information on various
topics.

Part 5. Installation Guide

Chapter 13 shows you how to install emulator and analyzer boards into the
HP 64700 Card Cage and how to connect the HP 64700 to a host computer or
terminal.
Chapter 14 shows you how to install or update emulator firmware. Follow these
instructions if you have ordered the HP 64767 emulator and the HP 64748C
emulation control card separately.

6

Contents

Part 1 Quick Start Guide

1 Getting Started

The 80186/8/XL/EA/EB/EC Emulator — At a Glance 20
Step 1. Log in to the emulator 22
Step 2. Initialize the emulator 23
Step 3. Map memory for the demo program 24
Step 4. Load the demo program absolute file and symbols 25
Step 4. Display the demo program symbols 28
Step 5. Display the demo program in memory 29
Step 6. Execute the demo program 30
Step 7. Trace demo program execution 31
Step 8. Stop (break from) program execution 33
Step 9. Display processor registers 34
Step 10. Step through program execution 35
Step 11. Reset the emulator 36
If the emulator status character is unfamiliar 36

Part 2 User’s Guide

2 Using the Terminal Interface

Accessing HP 64700 System Information 41
To access on-line help information 41
To display version information 46

7

Entering Commands 47
To enter multiple commands on one command line 47
To recall commands 48
To edit commands 49
To repeat commands 50
To enter multiple commands with macros 51
To use command files over LAN 52

3 Plugging into a Target System

Connecting the Emulator to the Target System 55
Step 1. Turn OFF power 56
Step 2. Unplug probe from demo target system 56
Step 3. Set up the probe for the clock source 57
Step 4. Connect the flying leads 59
Step 5. Plug the 8018x emulator probe into the target system 62
Step 6. Turn ON power 66

Configuring for Operation with Your Target System 67
To set the processor type 68
To restrict to real-time runs 69
To turn OFF the restriction to real-time runs 70
To select the default physical to logical run address conversion 70

Selecting the Emulation Monitor Program 71
To select the background monitor program 72
To select the foreground monitor program 73
To use a custom foreground monitor program 75

Mapping Memory 78
To map memory ranges 78
To display the memory map 80
To characterize unmapped ranges 81
To delete memory map ranges 82

Contents

8

4 Using the Emulator

Initializing the Emulator 85
To initialize the emulator 85
To display emulator status information 87

Loading Absolute Files 88
To load absolute files over the serial port 89
To load absolute files over the LAN 89

Loading and Using Symbols 91
To load symbol files over the serial port 92
To load symbols over the LAN 93
To define user symbols 94
To display symbols 94
To remove symbols 96

Executing User Programs 97
To run (execute) user programs 97
To stop (break from) user program execution 98
To step through user programs 98
To reset the emulation processor 100

Using Software Breakpoints 101
To enable the breakpoints feature 102
To set permanent software breakpoints 103
To set temporary software breakpoints 103
To display software breakpoints 104
To enable software breakpoints 104
To disable software breakpoints 105
To remove software breakpoints 105
To disable the breakpoints feature 106

Using Break Conditions 107
To break on writes to ROM 107
To break on an analyzer trigger 108

Contents

9

Accessing Registers 110
To display register contents 110
To modify register contents 111

Accessing Memory 112
To set the display and access modes 113
To display memory contents 114
To modify memory contents 115
To copy memory contents 116
To search memory 116
To copy a target system memory image 117

5 Using the Emulation Analyzer - Easy Configuration

Initializing the Analyzer 121
To initialize the analyzer 121
To display trace activity 121
To arm the emulation analyzer with the external analyzer trigger 122

Qualifying the Analyzer Clock 123
To trace background cycles 123
To trace execution when an external signal is active 124

Starting and Stopping Traces 126
To start a trace measurement 127
To display the trace status 128
To halt a trace measurement 129

Displaying Traces 130
To display the trace 130
To change the trace display format 133

Qualifying Trigger and Store Conditions 134
To qualify the trigger state 139
To trigger on a number of occurrences of some state 140
To change trigger position in the trace 141
To qualify states stored in the trace 142
To activate and qualify prestore states 142
To change the count qualifier 144

Contents

10

Using the Sequencer 146
To reset the sequencer 148
To display the sequencer specification 149
To specify primary and secondary branch expressions 149
To add or insert sequence terms 153
To delete sequence terms 154

6 Using the Emulation Analyzer - Complex Configuration

Switching into the Complex Configuration 157
To switch into the complex analyzer configuration 157
To switch back into the easy analyzer configuration 157

Using Complex Expressions 158
To assign state qualifiers to trace patterns 158
To assign state qualifiers to the trace range 159
To combine pattern and range resources 160

Using the Sequencer 162
To reset the sequencer 163
To specify a simple trigger condition 165
To specify primary and secondary branch expressions 167
To specify the trigger term 168
To specify storage qualifiers 168
To trace windows of activity 169

7 Using the External State Analyzer

Setting Up the External Analyzer 177
To connect the external analyzer probe to the target system 178
To specify threshold voltages 181
To define external trace labels 182

Using with the Emulation Bus Analyzer 183
To select the "emulation analyzer extension" mode 183

Contents

11

Using as an Independent State Analyzer 184
To select the "independent state" mode 184
To specify the external analyzer clock source 185
To specify the maximum qualified clock speed 186
To qualify clocks 188
To use slave clocks for mixed clock demultiplexing 189
To use slave clocks for true demultiplexing 190
To arm the analyzer with the emulation analyzer trigger 192

8 Making Coordinated Measurements

Setting Up for Coordinated Measurements 197
To connect the Coordinated Measurement Bus (CMB) 197
To connect to the rear panel BNC 199

Starting/Stopping Multiple Emulators 201
To enable synchronous measurements 201
To start synchronous measurements 202
To disable synchronous measurements 202

Using External Trigger Signals 203
To arm analyzers with external trigger signals 204
To break emulator execution with external trigger signals 205
To send analyzer trigger output signals to external lines 206

Contents

12

Part 3 Reference

9 Commands

<addr> - address specification in the 80186/188 emulators 213
b - break emulation processor to monitor 214
bc - set or display break conditions 215
bnct - specify control of rear panel BNC signal 217
bp - set, enable, disable, remove or display software breakpoints 219
cf - display or set emulation configuration 221
cim - copy image of target memory into emulation memory 224
cl - set or display command line editing mode 225
cmb - enable/disable Coordinated Measurement Bus run/break 227
cmbt - specify control of the rear panel CMB trigger signal 229
cp - copy memory block from source to destination 231
dt - display or set current date and/or time 232
dump - upload processor memory in absolute file format 233
echo - evaluate arguments and display results 235
equ - define, display or delete equates 237
es - display current emulation system status 239
<expr> - analyzer state qualifier expressions 240
help, ? - display help information 244
init - reinitialize system 245
io - display or write processor io address 247
lan - set configuration parameters 248
lanpv - performance verification on LAN interface 249
load - download absolute file into processor memory space 250
m - display or modify processor memory space 252
mac - display, define, or delete current macros 254
map - display or modify the processor memory map 256
mo - set or display current default mode settings 259
po - set or display prompt 260
pv - execute the system performance verification diagnostics 261
r - run user code 262
reg - display and set registers 263
rep - repeat execution of the command list multiple times 268
rst - reset emulation processor 269
rx - run at CMB-execute 270
s - step emulation processor 271
ser - search through processor memory for specified data 273
stty - set or display current communications settings 275

Contents

13

sym - define, display or delete symbols 278
t, xt - start a trace 281
ta - current status of analyzer signals is displayed 282
tarm, xtarm - specify the arm condition 283
tcf, xtcf - set or display trace configuration 285
tck, xtck - set or display clock specification for the analyzer 287
tcq, xtcq - set or display the count qualifier specification 290
telif, xtelif - set or display secondary branch specification 292
tf, xtf - specify trace display format 295
tg, xtg - set and display trigger condition 297
tgout, xtgout - specify signals to be driven by the analyzer 299
th, xth - halt the trace 301
tif, xtif - set or display primary sequence branch specifications 303
tinit - initialize emulation and external analyzers to powerup defaults 306
tl, xtl - display trace list 308
tlb, xtlb - define and display trace labels 310
tp, xtp - set and display trigger position within the trace 312
tpat, xtpat - set and display pattern resources 314
tpq, xtpq - set or display prestore specification 316
trng, xtrng - set or display range pattern 317
ts, xts - display status of emulation trace 319
tsck, xtsck - set or display slave clock specification for the analyzer 324
tsq, xtsq - modify or display sequence specification 327
tsto, xtsto - set or display trace storage specification 330
tx, xtx - enable/disable execute condition 332
<value> - values in Terminal Interface commands 333
ver - display system software and hardware version numbers 335
w - wait for specified condition before continuing 336
x - emit a Coordinated Measurement Bus execute signal 337
xteq - set/display external timing edge qualifier 338
xtgq - set/display external timing glitch qualifier 340
xtm - set/display external timing mode 342
xtmo - external analyzer trace mode 343
xtsp - set/display external timing sample period 345
xtt - set/display external timing trigger condition 346
xttd - set/display external timing trigger delay 348
xttq - set/display external timing transition qualifier 349
xtv - threshold voltage for the external analyzer 351

Contents

14

10 Error Messages
Emulator Error Messages 355
80186/8/XL/EA/EB/EC Emulator Messages 357
General Emulator and System Messages 360
Analyzer Messages 386

11 Specifications and Characteristics

Emulator Specifications and Characteristics 402
Electrical 402
Physical 406
Environmental 407

External Analyzer Specifications 408

Part 4 Concept Guide

12 Concepts

Demo Program Description 413
Environmental Control System (ECS) Code 413
Building the Demo Program 425

Contents

15

Part 5 Installation Guide

13 Installation

Installation at a Glance 434
Step 1. Connect the Emulator Probe Cables 437
Step 2. Install Boards into the HP 64700 Card Cage 440
Step 3a. Connect the HP 64700 via RS-232/RS-422 453
Step 3b. Connect the HP 64700 via LAN 457
Step 4. Plug the emulator probe into the demo target system 459
Step 5. Apply power to the HP 64700 461
If the HP 64700 does not provide the Terminal Interface prompt 466
To run PV on the LAN interface 468
Step 6. Verify emulator and analyzer performance 469
If performance verification fails 470

14 Installing/Updating Emulator Firmware

Step 1. Connect the HP 64700 to a PC host computer 473
Step 2: Install the firmware update utility 475
Step 3: Run "progflash" to update emulator firmware 477

Glossary

Index

Contents

16

Part 1

Quick Start Guide

A one-glance overview of the product and a few task instructions to help you get
comfortable.

17

Part 1

18

1

Getting Started

19

The 80186/8/XL/EA/EB/EC Emulator — At a Glance

20

The tutorial examples presented in this chapter make the following assumptions:

• The HP 64700 is connected to the same LAN as an HP 9000 Series 300 host
computer (refer to the "Installation" chapter).

• Networking software is installed on your HP 9000 Series 300 host computer
(primarily telnet and ftp software).

• The emulator demo program (see the description in the "Concepts" chapter) is
compiled, assembled, and linked and an HP 64000 format absolute file is
created.

• A symbols file has been created.

Chapter 1: Getting Started
The 80186/8/XL/EA/EB/EC Emulator — At a Glance

21

Step 1. Log in to the emulator

• Use the telnet command on the host computer to connect to the HP 64700.

$ telnet hostname

Where "hostname" is the name of the emulator. Or, you could use the Internet
Protocol (IP) address (or internat address) in place of the hostname:
$ telnet 15.35.226.210

You should see messages similar to:
Trying...
Connected to 15.35.226.210
Escape character is ’^]’.

After you connect to the emulator, you should see a prompt similar to:
R>

Chapter 1: Getting Started
Step 1. Log in to the emulator

22

Step 2. Initialize the emulator

Make sure you begin this tutorial with the emulator in its default, power-up state by
initializing the emulator.

• Initialize the emulator by entering the init command.

R>init
 # Limited initialization completed

Chapter 1: Getting Started
Step 2. Initialize the emulator

23

Step 3. Map memory for the demo program

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses. You can map up to 16 memory ranges with 1 Kbyte resolution
(beginning on 1 Kbyte boundaries and at least 1 Kbytes in length).

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

Suppose the "ecs" demo program occupies ROM locations from 0 through 3FFH
and 80000H through 845BFH and RAM locations from 10000H through 19551H.
(You can tell this by looking at the linker load map output listing that is generated
when compiling the demo program.)

1 Map emulation memory for the demo program by entering the following map
commands.

R>map 0..3ff erom

R>map 10000..1f3ff eram

R>map 80000..8ffff erom

2 View the resulting memory map by entering the map command with no parameters.

R>map
 # remaining number of terms : 13
 # remaining emulation memory : e0800h bytes
 map 000000..0003ff erom # term 1
 map 010000..01f3ff eram # term 2
 map 080000..08ffff erom # term 3
 map other tram

The "other" term in the memory map specifies that unmapped memory ranges are
treated as target system RAM by default.

Chapter 1: Getting Started
Step 3. Map memory for the demo program

24

Step 4. Load the demo program absolute file and
symbols

The HP AxLS software development tools generate IEEE-695 format or HP format
absolute files. However, the Terminal Interface’s load command only supports the
following formats: HP absolute, Intel hexadecimal, Extended Tektronix
hexadecimal, and Motorola S-records. So, when using the HP AxLS tools, be sure
to generate HP format absolute files.

You can typically create an ASCII symbol file using information from a linker load
map output file; however, the ASCII symbol file must be in the proper format.

Suppose the following "ecs.sym" file exists on the HP 9000 host computer.
#
crt1:entry 0819C:0000A
init_system:_init_system 08150:00002
init_system:_init_val_arr 08150:00050
main:_ascii_old_data 01009:00190
main:_aver_temp 01009:005A0
main:_combsort 08000:002BB
main:_curr_loc 01009:005AA
main:_current_humid 01009:005A6
main:_current_temp 01009:005A4
main:_do_sort 08000:00587
main:_float_humid 01009:0059C
main:_float_temp 01009:00598
main:_func_needed 01009:005AC
main:_gen_ascii_data 08000:00127
main:_hdwr_encode 01009:005AE
main:_humid_dir 01009:005B0
main:_interrupt_sim 08000:00032
main:_main 08000:00000
main:_num_checks 01009:005A8
main:_old_data 01009:0000C
main:_strcpy8 08000:000D9
main:_target_humid 01009:0018E
main:_target_temp 01009:0018C
main:_temp_dir 01009:005B1
update_sys:_get_targets 0815A:0008C
update_sys:_read_conditions 0815A:0013A
update_sys:_save_points 0815A:0031B
update_sys:_set_outputs 0815A:001BD
update_sys:_update_system 0815A:0000C
update_sys:_write_hdwr 0815A:00293
#

Chapter 1: Getting Started
Step 4. Load the demo program absolute file and symbols

25

1 Escape from telnet to the UNIX shell.

R> <CTRL>]
telnet> ! <RETURN>
$

2 Change to the directory that contains the "ecs.X" absolute file and the "ecs.sym"
symbol file.

$ cd 80186/demo <RETURN>

3 Connect to the emulator’s ftp interface by entering the ftp command on your local
host computer (use any name and password).

Note The "ftp" capability of the HP 64700 is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fitness for a particular purpose.

When connecting to the HP 64700’s ftp interface, you can use either the
HP 64700’s hostname or the Internet Protocol (IP) address (or internet address).
When you use the HP 64700’s hostname, the ftp software on your computer will
look up the internet address in the hosts table, or perhaps a name server will return
the internet address.
$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest): <RETURN>
Password (15.35.226.210:guest): <RETURN>

4 Set up ftp for binary file transfers.

ftp> binary
200 Type set to I

Chapter 1: Getting Started
Step 4. Load the demo program absolute file and symbols

26

5 Download the HP 64000 format absolute file into the emulator.

ftp> put ecs.X -h
200 Port ok
150
226-
R>
226 Transfer completed
21190 bytes sent in 0.15 seconds (138.48 Kbytes/sec)

6 Download the symbol file into the emulator.

ftp> put ecs.sym -S
200 Port ok
150
226-
R>
226 Transfer completed
932 bytes sent in 0.03 seconds (30.89 Kbytes/sec)

7 Exit out of the ftp interface:

ftp> quit
221 Goodbye
$

8 Return to the telnet connection.

$ <CTRL>d
[Returning to remote] <RETURN>

R>

Chapter 1: Getting Started
Step 4. Load the demo program absolute file and symbols

27

Step 4. Display the demo program symbols

1 Display the symbols with the sym command.

R>sym
 sym crt1:entry=0819c:0000a
 sym init_system:_init_system=08150:00002
 sym init_system:_init_val_arr=08150:00050
 sym main:_ascii_old_data=01009:00190
 sym main:_aver_temp=01009:005a0
 sym main:_combsort=08000:002bb
 sym main:_curr_loc=01009:005aa
 sym main:_current_humid=01009:005a6
 sym main:_current_temp=01009:005a4
 sym main:_do_sort=08000:00587
 sym main:_float_humid=01009:0059c
 sym main:_float_temp=01009:00598
 sym main:_func_needed=01009:005ac
 sym main:_gen_ascii_data=08000:00127
 sym main:_hdwr_encode=01009:005ae
 sym main:_humid_dir=01009:005b0
 sym main:_interrupt_sim=08000:00032
 sym main:_main=08000:00000
 sym main:_num_checks=01009:005a8
 sym main:_old_data=01009:0000c
 sym main:_strcpy8=08000:000d9
 sym main:_target_humid=01009:0018e
 sym main:_target_temp=01009:0018c
 sym main:_temp_dir=01009:005b1
 sym update_sys:_get_targets=0815a:0008c
 sym update_sys:_read_conditions=0815a:0013a
 sym update_sys:_save_points=0815a:0031b
 sym update_sys:_set_outputs=0815a:001bd
 sym update_sys:_update_system=0815a:0000c
 sym update_sys:_write_hdwr=0815a:00293

Chapter 1: Getting Started
Step 4. Display the demo program symbols

28

Step 5. Display the demo program in memory

The m command lets you display and modify memory locations. When displaying
memory, the -dm option causes the contents of memory locations to be
disassembled and displayed in assembly language mnemonic format.

• Display the demo program in memory by entering the following m -dm command.

R>m -dm main:_main..main:_main+3f
 08000:00000 main:_main PUSH BP
 08000:00001 - MOV BP,SP
 08000:00003 - PUSH DS
 08000:00004 - MOV AX,#1009H
 08000:00007 - MOV DS,AX | CALL FAR PTR init_system
 08000:0000e - NOP
 08000:0000f - CALL FAR PTR update_sys:_update_s
 08000:00014 - INC WORD PTR 05a8H
 08000:00018 - MOV DX,#1009H
 08000:0001b - NOP
 08000:0001c - MOV AX,#05a8H
 08000:0001f - NOP
 08000:00020 - PUSH DX
 08000:00021 - PUSH AX
 08000:00022 - CALL FAR PTR main:_interrupt_sim
 08000:00027 - ADD SP,#0004H
 08000:0002a - NOP
 08000:0002b - JMP SHORT 000fH
 08000:0002d - NOP
 08000:0002e - NOP
 08000:0002f - POP DS | POP BP
 08000:00031 - RET
 08000:00032 :_interrupt_sim PUSH BP
 08000:00033 - MOV BP,SP
 08000:00035 - SUB SP,#0004H
 08000:00038 - PUSH DS
 08000:00039 - MOV AX,#1009H
 08000:0003c - MOV DS,AX | PUSH SI
 08000:0003f - LES DI,DWORD PTR 06H[BP]

Chapter 1: Getting Started
Step 5. Display the demo program in memory

29

Step 6. Execute the demo program

The r <addr> command causes the emulator to run from a particular address. The
entry address of the demo program is at the symbol "crt1:entry".

• Execute the demo program by entering the r <addr> command.

R>r crt1:entry
U>

Before the r command, the emulation status character (in the Terminal Interface
prompt) was "R" indicating that the emulation processor was being held in reset.
After the r command, the emulation status character is "U" which indicates the
emulator is executing the user program.

Chapter 1: Getting Started
Step 6. Execute the demo program

30

Step 7. Trace demo program execution

The t (trace) command tells the analyzer to look at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

The default trigger state specification is any state, so the t command will cause the
analyzer to "trigger" on the first state it sees and store the following states in trace
memory.

1 Specify the trigger state as the starting address (main) of the demo program by
entering the following tg command.

U>tg addr=main:_main

2 Start the trace by entering the t command.

U>t
 Emulation trace started

3 Run the demo program from the demo program’s entry address by entering the
following run command.

U>r crt1:entry

4 View the status of the trace by entering the ts command.

U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) -2..1021
 Sequence term 2
 Occurrence left 1

Chapter 1: Getting Started
Step 7. Trace demo program execution

31

Notice that the trace is complete and that 1024 states have been stored.

5 List the first twenty states stored in the trace (-t 20) and list symbols and addresses
stored in the addr column (-e), by entering the following tl command.

U>tl -e -t 20

 Line addr,H 8018x mnemonic,H count,R
 ----- ------ ------------------------------------ ---------
 -2 19542 6bH, mem write *********
 -1 19543 00H, mem write *********
 0 _main 55H, opcode fetch ROM *********
 1 _main PUSH BP *********
 2 80001 8bH, opcode fetch ROM *********
 3 80002 ecH, opcode fetch ROM *********
 4 19540 00H, mem write *********
 5 19541 00H, mem write *********
 6 80001 MOV BP,SP *********
 7 80003 1eH, opcode fetch ROM *********
 8 80003 PUSH DS *********
 9 80004 b8H, opcode fetch ROM *********
 10 80005 09H, opcode fetch ROM *********
 11 1953e 00H, mem write *********
 12 1953f 10H, mem write *********
 13 80004 MOV AX,#1009H *********
 14 80006 10H, opcode fetch ROM *********
 15 80007 8eH, opcode fetch ROM *********
 16 80007 MOV DS,AX | *********
 17 80008 d8H, opcode fetch ROM *********

The first column in the trace list contains the line number. The trigger state is
always on line number 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles. The -e option in
the tl command causes both addresses and symbols to appear in this column.

The third column shows mnemonic information about the emulation bus cycle.
The right edge of this column shows when ROM or monitor (MON) accesses are
made.

The next column shows the count information. The "R" indicates that each count is
relative to the previous state. If the analyzer’s maximum qualified clock speed is
set to "fast" or if the count qualifier is turned off (the default), time counts cannot
be displayed and this column will contain asterisks (*).

Chapter 1: Getting Started
Step 7. Trace demo program execution

32

Step 8. Stop (break from) program execution

The b command causes emulator execution to break from the user program into the
emulation monitor program.

The emulation monitor program is a program that is executed by the emulation
processor that allows the emulator to access target system resources. For example,
when you display target system memory locations, the monitor program executes
80186 instructions that read the target memory locations and send their contents to
the emulator.

When the emulator is running the user program, commands that require access to
target system resources will cause temporary breaks to the monitor program (unless
the emulator is restricted to real time execution).

When the emulator is running in the monitor program, it executes in a loop that
waits for commands that require access to target system resources.

• Break emulator execution out of the demo program and into the monitor program
by entering the b command.

U>b
M>

Notice that the emulation status character becomes "M" which indicates that the
emulator is running in the monitor program.

Chapter 1: Getting Started
Step 8. Stop (break from) program execution

33

Step 9. Display processor registers

• Display the contents of the basic processor registers by entering the reg command.

M>reg

 reg ax=000d bx=0060 cx=0037 dx=0134 bp=7eae si=0080 di=01f2 ds=1009 es=1009
 reg ss=1165 sp=7e48 ip=04b2 cs=8000 fl=f287

Chapter 1: Getting Started
Step 9. Display processor registers

34

Step 10. Step through program execution

The s command lets you step through user program execution. You can step single
instructions or a number of instructions at a time.

1 Step one instruction in the user program by entering the s command.

M>s
 08000:004b3 - JMP NEAR PTR 03c0H
 PC = 08000:003c0

2 Step eight instructions in the user program by entering the s 8 command.

M>s 8
 08000:003c0 - MOV AX,05b8H
 08000:003c3 - NOP
 08000:003c4 - NOP
 08000:003c5 - NOP
 08000:003c6 - ADD AX,WORD PTR 05c0H
 08000:003ca - NOP
 08000:003cb - NOP
 08000:003cc - MOV 05baH,AX
 PC = 08000:003cf

Chapter 1: Getting Started
Step 10. Step through program execution

35

Step 11. Reset the emulator

• Reset the emulator by entering the rst command.

M>rst
R>

Notice that the emulation status character is "R" which shows that the emulator is
being held in a reset state.

If the emulator status character is unfamiliar

The "R", "U", and "M" emulation prompt status characters are described in this
chapter. If you see other emulation status characters, enter the es command for
more information about the emulator status.

• Display the emulator status information by entering the es command.

R>es
80C188XL: Emulation reset

Chapter 1: Getting Started
Step 11. Reset the emulator

36

Part 2

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

37

Part 2

38

2

Using the Terminal Interface

39

Using the Terminal Interface

This chapter describes general tasks you may wish to perform while using the
Terminal Interface, in other words, tasks that don’t necessarily relate to using the
emulator or the analyzer. These tasks are grouped into two sections:

• Accessing HP 64700 system information.

• Entering commands.

40

Accessing HP 64700 System Information

The HP 64700’s Terminal Interface provides access to two types of system-wide
information:

• Help information for the Terminal Interface commands.

• Software version number information for the products installed in the
HP 64700 Card Cage.

To access on-line help information

• Use the help or ? commands.

The HP 64700’s Terminal Interface provides an on-line help command to provide
you with quick information on the various commands and command syntax. From
any system prompt, you can enter help or ? as shown below.

Commands are grouped into various classes. To see the commands grouped into a
particular class, you can use the help command with that group. Viewing the group
help information in short form will cause the commands or the grammar to be listed
without any description.

Help information exists for each command. Additionally, there is help information
for each of the emulator configuration items. For example, to access the help
information for the rrt configuration item, you can enter the help cf rrt command).

Chapter 2: Using the Terminal Interface
Accessing HP 64700 System Information

41

Examples To display information on the help command:
M>help

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 xtrc - external trace analysis commands
 * - all command groups

To display information on the grammar used in the Terminal Interface:
M>help gram

 gram - system grammar

 --- SPECIAL CHARACTERS ---
 # - comment delimiter ; - command separator Ctl C - abort signal
 {} - command grouping "" - ascii string ‘‘ - ascii string
 Ctl R - command recall Ctl B - recall backwards

 --- EXPRESSION EVALUATOR ---
 number bases: t-ten y-binary q-octal o-octal h-hex
 repetition and time counts default to decimal - all else default to hex
 operators: () ~ * / % + - << <<< >> >>> & ^ | &&

 --- PARAMETER SUBSTITUTION ---
 &token& - pseudo-parameter included in macro definition
 - cannot contain any white space between & pairs
 - performs positional substitution when macro is invoked
 Example
 Macro definition: mac getfile={load -hbs"transfer -t &file&"}
 Macro invocation: getfile MYFILE.o
 Expanded command: load -hbs"transfer -t MYFILE.o"

Chapter 2: Using the Terminal Interface
Accessing HP 64700 System Information

42

To display information specific to the 80186/188 processor:
M>help proc

 --- Address format ---
 Memory addresses--20 bit physical or 16:16 bit (seg:off) logical
 IO addresses--16 bit physical

 --- Emulation Status Characters ---
 R - emulator in reset state c - no target system clock
 U - running user program r - target system reset active
 M - running monitor program h - processor halted
 W - waiting for CMB to become ready g - bus granted
 T - waiting for target system reset b - no bus cycles
 ? - unknown state

 --- Equates for Analyzer Label stat ---
 inta, ior, iow, hlt, of, mr, mw - 80x18x status
 rom, grd - memory map status
 instr, bus - analyzer state status
 dma, proc, coproc - bus controller status
 usr, mon - user code/monitor status

 --- PCB register mnemonics ---
 irmx ints--iv, eoi, msk, pm, isr, irr, ist, tmrX, dmaX
 mstr ints--eoi, poll, psr, msk, pm, isr, irr, ist, tmr, dmaX, intX
 timers --crX, maX, mbX, mcX chip sels--umcs, lmcs, pacs, mmcs, mpcs
 dma --spX, dpX, cntX, ctlX reloc reg--rr
 enhanced mode registers --mdram, cdram, edram, pdcon (CMOS versions only)

Chapter 2: Using the Terminal Interface
Accessing HP 64700 System Information

43

To display information on the emulator commands:
M>help emul

 emul - emulation commands

 b......break to monitor dump...dump memory r......run user code
 bc.....break condition es.....emulation status reg....registers
 bp.....breakpoints io.....input/output rst....reset
 cf.....configuration ldprg..load program rx.....run at CMB execute
 cim....copy target image load...load memory s......step
 cmb....CMB interaction m......memory ser....search memory
 cov....coverage map....memory mapper
 cp.....copy memory mo.....modes

To display information on the cf command:
M>help cf

 cf - display or set emulation configuration

 cf - display current settings for all config items
 cf <item> - display current setting for specified <item>
 cf <item>=<value> - set new <value> for specified <item>
 cf <item> <item>=<value> <item> - set and display can be combined

 help cf <item> - display long help for specified <item>

 --- VALID CONFIGURATION <item> NAMES ---
 proc--set processor type (186EA, 188EA, 188EA, 186XL, 188XL)
 mon--select monitor option (bg, fg, ufg)
 loc--foreground monitor location (any 4K boundary)
 rrt--restrict to real time (en or dis)
 rad--physical run address default (maxseg or minseg)

Chapter 2: Using the Terminal Interface
Accessing HP 64700 System Information

44

To display information on the rrt configuration item:
M>help cf rrt

 restrict to real time

 cf rrt=en #enable
 cf rrt=dis #disable

 When rrt=en and the emulator is running user code, the system
 refuses all commands that cause a break except rst, r and b. (eg.
 reg and memory commands that must access user memory)

 When rrt=dis, the system will accept commands normally.

 The rrt option can be used to prevent accidental breaks that might
 cause target system problems.

Chapter 2: Using the Terminal Interface
Accessing HP 64700 System Information

45

To display version information

• Use the ver command.

The Terminal Interface provides the ver command if you need to check the
software version numbers of the HP 64700 system and other products in the
HP 64700.

Examples To display version information:
M>ver

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700B Series Emulation System
 Version: B.01.00 20Dec93
 Location: Flash
 System RAM:1 Mbyte

 HP64767A (PPN: 64767A) Intel 80C186EA Emulator
 Version: A.00.00 13Nov90
 Control: HP64748C ABG Control Board
 Speed: 20 MHz
 Memory: 1024 Kbytes

 HP64740 Emulation Analyzer with External State/Timing Analyzer
 Version: A.02.02 13Mar91

Chapter 2: Using the Terminal Interface
Accessing HP 64700 System Information

46

Entering Commands

This section describes tasks that are related to entering commands. Entering
commands is easy: use the keyboard to type in the command and press the carriage
return key. However, the Terminal Interface provides other features that make
entering commands even easier. For example, you can:

• Enter multiple commands on one line.

• Recall commands.

• Edit commands.

• Repeat commands.

• Define macros, which save a set of commands for later execution.

• Use command files over LAN.

To enter multiple commands on one command
line

• Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the commands
are separated by semicolons (;).

Examples To step the next instruction and display the registers:
M>s;reg

 081dc:00096 - CMP AL,ES:BYTE PTR [DI]
 PC = 081dc:00099
 reg ax=0220 bx=0160 cx=0039 dx=1009 bp=7e38 si=0007 di=0418 ds=1009 es=1009
 reg ss=1165 sp=7e36 ip=0099 cs=81dc fl=f246

Chapter 2: Using the Terminal Interface
Entering Commands

47

To recall commands

• Press <CTRL>r.

You can press <CTRL>r to recall the commands that have just been entered. If you
go past the command of interest, you can press <CTRL>b to move forward through
the list of saved commands.

Examples To recall and execute the last command press <CTRL>r and then press
<RETURN>.

Chapter 2: Using the Terminal Interface
Entering Commands

48

To edit commands

1 Use the cl -e command to enable the command line editor.

2 Use <CTRL>r to recall previous commands, or if you wish to edit the current
command or search for a previous command, press <ESC> to enter the editing
mode.

The Terminal Interface provides a command line editing feature. The editing mode
commands are as follows.

Command Description

<ESC>
i
a
x
r
dd
D
A
$
0
^
h
l
k
j
/<string>
n
N

enter command editing mode
insert before current character
insert after current character
delete current character
replace current character
delete command line
delete to end of line
append to end of line
move cursor to end of line
move cursor to start of line
move cursor to start of line
move left one character
move right one character
fetch previous command
fetch next command
find previous command in history matching <string>
fetch previous command matching <string>
fetch next command matching <string>

Chapter 2: Using the Terminal Interface
Entering Commands

49

To repeat commands

• Use the rep command.

The rep command is helpful when entering commands repetitively. You can repeat
the execution of macros as well as commands.

Examples To cause the s and reg commands to be executed two times.
M>rep 2 {s;reg}

 081dc:00073 - DEC SI
 PC = 081dc:00074
 reg ax=0220 bx=0160 cx=0039 dx=1009 bp=7e38 si=0006 di=0418 ds=1009 es=1009
 reg ss=1165 sp=7e36 ip=0074 cs=81dc fl=f206
 081dc:00074 - LES DI,DWORD PTR 06H[BP]
 PC = 081dc:00077
 reg ax=0220 bx=0160 cx=0039 dx=1009 bp=7e38 si=0006 di=02f0 ds=1009 es=1009
 reg ss=1165 sp=7e36 ip=0077 cs=81dc fl=f206

Chapter 2: Using the Terminal Interface
Entering Commands

50

To enter multiple commands with macros

1 Define the macro with the mac command.

2 Execute the defined macro.

If you wish to enter the same set of commands at various times while you use the
emulator, you can assign these commands to a macro and enter the macro instead of
the set of commands.

Examples To define a macro that will display registers after every step, enter the following
command.
M>mac st={s;reg}

To execute the macro, enter it as you would any other command.
M>st

 # s ; reg
 081dc:00077 - INC WORD PTR 06H[BP]
 PC = 081dc:0007a
 reg ax=0220 bx=0160 cx=0039 dx=1009 bp=7e38 si=0006 di=02f0 ds=1009 es=1009
 reg ss=1165 sp=7e36 ip=007a cs=81dc fl=f202

Chapter 2: Using the Terminal Interface
Entering Commands

51

To use command files over LAN

1 Using ftp -in and the ftp command "cd <parameter>", copy information from the
HP 64700 to the host computer.

2 Using ftp -in and the ftp command "cd <parameter>", copy information from the
host computer to the HP 64700.

The ftp software in the HP 64700 responds to the ftp command "cd <parameter>"
by executing the parameter as a Terminal Interface command.

By using ftp -in (refer to the ftp documentation for option details), you can send
multiple Terminal Interface commands to a HP 64700 on the LAN.

For example, when entered from a UNIX workstation on the same LAN as the
HP 64700 named hostname, the following command will display emulator version
information:
$ echo "open hostname\nverbose\ncd ver\nquit" | ftp -in

If the Terminal Interface command you wish to execute has arguments, you must
enclose the command and its arguments in quotes. For example:
$ echo "open hostname\nverbose\ncd \"help ver\"\nquit" | ftp -in

In order for these commands to work properly, there must not be an open telnet
connection to the HP 64700.

Examples The following example assumes the HP 64700 is connected to the same LAN as the
UNIX host computer.

To save the emulator configuration, memory map, and other emulator settings,
create a configuration file by entering the following commands on the UNIX
workstation:
$ echo "open hostname" > cfg_file

$ echo "open hostname\nverbose\ncd cf\ncd map\ncd equ\ncd mac\nquit"
| ftp -in | grep ’^ ’ | awk ’{printf "cd \"%s\"\n", $0}’ >> cfg_file

$ echo "quit" >> cfg_file

To restore the emulator configuration information saved in "cfg_file", enter the
following command:
$ ftp -in < cfg_file

Chapter 2: Using the Terminal Interface
Entering Commands

52

3

Plugging into a Target System

53

Plugging the Emulator into a Target
System

This chapter describes the tasks you perform when plugging the emulator into a
target system. These tasks are grouped into the following sections:

• Connecting the emulator to the target system.

• Configuring the emulator for operation with your target system.

• Selecting the emulation monitor.

• Mapping memory.

54

Connecting the Emulator to the Target System

This section describes the steps you must perform when connecting the emulator to
a target system:

1 Turn OFF power.

2 If the emulator is currently connected to the demo target system or a different
target system, unplug the emulator probe.

3 Set up the probe for the clock source.

4 Connect the flying leads.

5 Plug the emulator probe into the target system.

6 Turn ON power (first the HP 64700, then the target system).

CAUTION Possible Damage to the Emulator Probe. The emulation probe contains devices
that are susceptible to damage by static discharge. Therefore, precautionary
measures should be taken before handling the microprocessor connector attached to
the end of the probe cable to avoid damaging the internal components of the probe
by static electricity.

We STRONGLY suggest using a ground strap when handling the emulator
probe. A ground strap is provided with the emulator.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

55

Step 1. Turn OFF power

CAUTION Possible Damage to the Emulator. Make sure target system power is OFF and
make sure HP 64700 power is OFF before removing or installing the emulator
probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target
system whose power is ON.

1 If the emulator is currently plugged into a different target system, turn that target system’s power OFF.

2 Turn emulator power OFF.

Step 2. Unplug probe from demo target system

1 If the emulator is currently connected to a different target system, unplug the emulator probe;
otherwise, disconnect the emulator probe from the demo target system.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

56

Step 3. Set up the probe for the clock source

A 14-pin DIP socket located at the target connector end of the probe is used to
prepare the emulator probe for the type of clock source in the target system. The
figure below shows the connections that are made to the socket.

A jumper that connects the emulation processor OSCOUT and CLKIN pins to the
OSCOUT and CLKIN pins on the target connector is provided. You can use this
jumper if:

• The target system drives CLKIN with an oscillator.
• The target system has a low frequency crystal connected between the

OSCOUT and CLKIN pins.

However, if the target system has a high frequency crystal connected between the
OSCOUT and CLKIN pins, you may have to replace the jumper with either a
standard 14-pin oscillator of the desired frequency or a prototyping socket on which
a crystal and any capacitors or tank circuitry are assembled. (One such prototyping
socket is part number 20314-36-455 from Electronic Molding Corp., 96 Mill Street,
Woonsocket RI.)

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

57

Parasitic circuit parameters in the emulator/target interconnect may cause problems
when the target system uses a high frequency crystal. The frequency limit is very
much dependent on the target system. Under favorable conditions, operation at full
speed may be possible with the jumper.

If you can use the provided jumper, go on to Step 4; otherwise, perform the
following steps.

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and remove the
cover.

2 Replace the jumper with either a standard 14-pin oscillator of the desired frequency or a prototyping
socket on which a crystal and any capacitors or tank circuitry are assembled.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

58

Step 4. Connect the flying leads

CAUTION Damage to the Emulator Probe Will Result if the Flying Leads Are Incorrectly
Installed. When installing the flying leads into the emulator probe, make sure that
the ground pin on the output line (labeled with a white dot) is matched with the
ground receptacle in the emulator probe. The ground receptacle on the probe is
indicated by a white dot on the PC board.

1 If you will be using either the BACKGROUND or RESET flying lead, plug them into the probe and
route them through the 14-pin socket hole in the plastic cover.

If your target system checks for processor execution (for example, it has a
watchdog timer) you can use the BGND auxiliary output to signal the target system
when the emulator is executing in the background monitor. This may be necessary
because the emulator appears idle (no bus status or control signals except ALE)
while running in background mode. The BGND signal is low when the emulator is
running in the background monitor and high in the normal foreground mode. This
signal is labelled "LBG" on the probe board.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

59

2 To connect the emulator in parallel with a soldered-in target processor (ONCE mode), connect the
"LRES" flying lead from the emulator to the target system RESIN circuitry.

This connection will allow the target system processor to see emulation RESETs and to correctly tri-state
itself. The LRES signal from the emulation probe is an open drain output from a 74HCT03 device which
is driven low whenever the emulation processor is RESET (due to an emulation command). This signal
can be connected directly to an RC RESET network as shown, or to a target system open drain/collector
output driving RESIN. The emulator does not provide any pullup on the LRES flying lead signal.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

60

3 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure the cover.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

61

Step 5. Plug the 8018x emulator probe into the
target system

1 (64767A/AL in PGA system) Install the 68-pin double header. Make sure that pin 1 of the connector
aligns with pin 1 of the socket. Damage to the emulator will result if the probe is incorrectly installed.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

62

1 (64767A/AL in PLCC system) Plug the probe into the supplied PGA-PLCC adapter. The angled
corner of the PLCC adapter should be located at the corner of the probe as shown. Make sure that pin 1 of
the connector aligns with pin 1 of the socket. Damage to the emulator will result if the probe is
incorrectly installed.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

63

1 (64767B/BL in PLCC system) Plug the probe into the supplied PGA-PLCC adapter. The angled
corner of the PLCC adapter should be located at the corner of the probe as shown. Make sure that pin 1 of
the connector aligns with pin 1 of the socket. Damage to the emulator will result if the probe is
incorrectly installed.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

64

1 (any 64767 in QFP or PQFP system) Install the adapter according to the instructions supplied with
the adapter. Make sure that pin 1 of the connector aligns with pin 1 of the socket. Damage to the
emulator will result if the probe is incorrectly installed.

Note that when using the QFP adapter with the 64767A/AL it is important to use the 69-pin double
header and to correctly locate the "extra" corner pin of the header. The location of the "extra" pin can be
seen on the emulation probe PGA socket.

2 Plug the flying lead into the target system.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

65

Step 6. Turn ON power

1 Turn emulator power ON.

2 Turn target system power ON.

Chapter 3: Plugging into a Target System
Connecting the Emulator to the Target System

66

Configuring for Operation with Your Target
System

After you plug the emulator into a target system and turn on power to the
HP 64700, you need to configure the emulator so that it operates properly with your
target system.

Before the emulator can operate in your target system, you must:

Map memory. Because the emulator can use target system memory or
emulation memory (or both), it is necessary to map ranges of memory so that
the emulator knows where to direct its accesses. Refer to the "Mapping
Memory" section in this chapter.

Also, the emulator needs to know the following things:

Is there circuitry in the target system that requires programs to run in
real-time? Some emulator commands cause temporary breaks to the monitor
state, typically to access microprocessor register values or target system
memory. If the target system requires that programs run in real-time, you
must restrict the emulator to real-time runs.

Should the emulator respond to target system interrupts when running in
the monitor program? If so, you must use a foreground monitor program
since target system interrupts are always ignored during background operation
(refer to the "Selecting the Emulation Monitor" section later in this chapter). If
it’s not important that the emulator respond to target system interrupts when
running in the monitor, you can use the background monitor.

This section shows you how to:

• Set the processor type.

• Restrict to real-time runs.

• Turn OFF the restriction to real-time runs.

• Select the default physical to logical run address conversion.

Chapter 3: Plugging into a Target System
Configuring for Operation with Your Target System

67

To set the processor type

For the HP 64767A emulator:

• Enter the cf proc=186EA command to emulate the 80C186EA microprocessor.

• Enter the cf proc=188EA command to emulate the 80C188EA microprocessor.

• Enter the cf proc=186XL command to emulate the 80C186XL, 80C186, or 80186
microprocessors.

• Enter the cf proc=188XL command to emulate the 80C188XL, 80C188, or 80188
microprocessors.

For the HP 64767B emulator:

• Enter the cf proc=186EB command to emulate the 80C186EB microprocessor.

• Enter the cf proc=188EB command to emulate the 80C188EB microprocessor.

For the HP 64767C emulator:

• Enter the cf proc=186EC command to emulate the 80C186EC microprocessor.

• Enter the cf proc=188EC command to emulate the 80C188EC microprocessor.

Chapter 3: Plugging into a Target System
Configuring for Operation with Your Target System

68

To restrict to real-time runs

• Enter the cf rrt=en command.

While running programs, temporary breaks to the monitor state are not allowed.
The emulator refuses the following commands:

• reg (register display/modification).

• m (memory display/modification) commands that access target system
memory.

Because the emulator contains dual-port emulation memory, commands which
access emulation memory are allowed while runs are restricted to real-time.

• io (I/O display/modification).

Caution Target system damage could occur! If your target system circuitry is dependent
on constant execution of program code, the following commands still cause breaks
from running programs even when you have restricted the emulator to real-time
runs:

• rst (reset).

• r (run).

• b (break to monitor).

• s (step).

Use caution in executing these commands.

Chapter 3: Plugging into a Target System
Configuring for Operation with Your Target System

69

To turn OFF the restriction to real-time runs

• Enter the cf rrt=dis command.

Temporary breaks to the monitor while running programs are allowed, and the
emulator accepts commands normally.

To select the default physical to logical run
address conversion

• Enter the cf rad=minseg command to cause the conversion to make the segment
part of the logical address as small as possible. For example, 0FFFFF becomes
0F000:0FFFF.

• Enter the cf rad=maxseg command to cause the conversion to make the segment
part of the logical address as large as possible. For example, 0FFFFF becomes
0FFFF:000F.

The run and step commands allow you to enter addresses in either logical form, that
is "segment:offset" (0F000:0FFFF, for example) or physical form (0FFFFF, for
example). When you enter a physical address, the emulator must convert it to a
logical (segment:offset) address. The rad configuration item sets the default
algorithm for this conversion.

If neither of these default algorithms is suitable, you can enter addresses in logical
format.

Chapter 3: Plugging into a Target System
Configuring for Operation with Your Target System

70

Selecting the Emulation Monitor Program

The emulation monitor program is an 8018x program that the emulation
microprocessor executes as directed by the HP 64700 system controller. The
emulation monitor program gives the system controller access to the target system.

For example, when you use the m command to modify target system memory, the
system controller writes a command code to a communications area and switches,
or breaks, emulation processor execution into the monitor program. The monitor
program reads the command code (and any associated parameters) from the
communications area and executes the appropriate machine instructions to modify
the target system locations. After the monitor has performed its task, emulation
processor execution returns to what it was doing before the break.

The emulation monitor program can execute out of a separate, internal memory
system known as background memory. A monitor program executing out of
background memory is known as a background monitor program.

The emulation monitor program can also execute out of the same memory system
as user programs. This memory system is known as foreground memory and is
made up of emulation memory and target system memory. A monitor program
executing out of foreground memory is known as a foreground monitor program.
The emulator only allows foreground monitor programs in emulation memory.

The emulator firmware includes both background and foreground monitor
programs and lets you select either. You can also load and use a customized
foreground monitor if needed.

This section shows you how to:

• Select the background monitor program.

• Select the foreground monitor program.

• Use a customized foreground monitor program.

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

71

Comparison of Background and Foreground Monitor Programs

Monitor Program Characteristic Background Foreground

Takes up processor memory space No Yes

Allows the emulator to respond to target system
interrupts during monitor execution

No Yes

Can be customized No Yes

To select the background monitor program

1 Enter the cf mon=bg command.

2 Re-map memory.

3 Load the user program absolute file.

When you power up the emulator, or when you initialize it, the background monitor
program is selected by default.

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

72

To select the foreground monitor program

1 Enter the cf mon=fg command to select a foreground monitor.

2 Enter the cf loc=<addr>,lock or cf loc=<addr>,nolock command to select the base
address of the monitor program and specify whether to lock foreground monitor
bus cycles to the target RDY line.

3 Re-map memory.

4 Load the user program absolute file.

Selecting the Foreground Monitor

Entering the the cf mon=fg command causes the current memory map to be deleted.

When you select a foreground monitor, the emulator automatically loads the default
program, resident in emulator firmware, into emulation memory. The foreground
monitor is reloaded every time the emulator breaks into the monitor state from the
reset state.

Unlike the background monitor, the foreground monitor runs within the same
address space as the user program, consuming a 4 Kbyte block of the 80186’s
address range. The foreground monitor can run with target interrupts enabled.

When a foreground monitor program is selected, breaks to the monitor program
still cause a few cycles to execute in background.

Selecting the Monitor’s Base Address

The cf loc=<addr> command defines the starting address of the 4 Kbyte block of
emulation memory used for the foreground monitor. The address must reside on a
4 Kbyte boundary (in other words, an address ending in 000H) and must be
specified in hexadecimal.

When you enter the cf loc=<addr> command, the current memory map will be
deleted, and a new map term is added for the monitor.

This configuration item has no meaning when a background monitor is selected.

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

73

Locking Foreground Cycles to Target RDY

If you wish to synchronize monitor cycles to the target system (that is, interlock the
emulation and target system RDY on accesses to the monitor memory block), enter
the cf loc=<addr>,lock command; otherwise, enter the cf loc=<addr>,nolock or
cf loc=<addr> command.

This configuration item has no meaning when a background monitor is selected.

Re-Mapping Memory

When you configure the emulator for a foreground monitor program, the memory
map is reset, and a 4 Kbyte block of emulation memory is automatically mapped
for the monitor program. You must re-map other memory ranges before loading
user programs.

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

74

To use a custom foreground monitor program

1 Edit the monitor program source file.

2 Assemble and link the foreground monitor program.

3 Load the custom foreground monitor program absolute file with the load -f
command.

4 Enter the cf mon=ufg command to select a user foreground monitor.

5 Enter the cf loc=<addr>,lock or cf loc=<addr>,nolock command to select the base
address of the monitor program and specify whether to lock foreground monitor
bus cycles to the target RDY line.

6 Re-map memory.

7 Load the user program absolute file.

When customizing the foreground monitor, you must maintain the basic
communication protocol between the monitor program and the emulation system
controller.

An example foreground monitor is included with the emulator on a MS-DOS
format floppy disk. The file is named FM64767.S.

A custom foreground monitor is downloaded using the load -f command. The
custom foreground monitor is saved in the emulator (until the monitor type is
changed) and reloaded every time the emulator breaks into the monitor state from
the reset state.

Note It is possible for foreground monitors to cause breaks. If these breaks occur
consistently within approximately 10 ms of monitor entry, the emulator will
become unresponsive. An example of this is a foreground monitor that accesses
guarded memory. Each time a break to the monitor occurs, an access of guarded
memory will occur, which in turn causes a break into the monitor, and so on. If this
happens, you must turn off power to the emulator and turn it on again.

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

75

Examples The following examples of how to set up and use a custom foreground monitor
program make the following assumptions:

• The HP 64700 is connected to the same LAN as an HP 9000 Series 300 host
computer.

• The HP AxLS 8086/88/80186/188 Assembler/Linker and the HP 64855
RS-232 Transfer products are installed on the HP 9000 Series 300 host
computer.

• The foreground monitor program source file exists on the host computer.

To assemble and link the monitor program, enter the following commands:

$ as86 -Lh fm64767.s > fm64767.lis <RETURN>

$ ld86 -c fm64767.k -Lh > fm64767.map <RETURN>

Where the "fm64767.k" linker command file contains:
name fm64767
load fm64767.o
end

To load the custom foreground monitor program:
R>load -fhbs "transfer -tb fm64767.X"
#######

To load the monitor program and user program absolute files, enter the following
commands from the host computer:
$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest): <RETURN>
Password (15.35.226.210:guest): <RETURN>
ftp> binary
200 Type set to I
ftp> put fm64767.X -fh
200 Port ok
150
226-
R>
226 Transfer completed
3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)
ftp> quit
221 Goodbye
$

To configure the emulator to use a foreground monitor program:

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

76

R>cf mon=ufg

To specify the monitor’s base address (without locking foreground monitor bus
cycles to target RDY):
R>cf loc=8000

The memory map is reset and a 4 Kbyte block of emulation memory (range 8000H
through 8FFFH) is mapped for the foreground monitor program.

To map memory for the emulator demo program:
R>map 0..03ff erom
R>map 10000..1f3ff eram
R>map 80000..8ffff erom

To load the emulator demo program:
$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest): <RETURN>
Password (15.35.226.210:guest): <RETURN>
ftp> binary
200 Type set to I
ftp> put ecs.X -h
200 Port ok
150
226-
R>
226 Transfer completed
3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)
ftp> quit
221 Goodbye
$

Now, you are ready to use the emulator.

Chapter 3: Plugging into a Target System
Selecting the Emulation Monitor Program

77

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

Up to 16 ranges of memory can be mapped, and the resolution of mapped ranges is
1 Kbytes (that is, the memory ranges must begin on 1 Kbyte boundaries and must
be at least 1 Kbytes in length).

The emulator contains 1 Mbytes of emulation memory.

External direct memory access (DMA) to emulation memory is not permitted. The
emulation processor’s internal DMA modules can access emulation memory.

You should map all memory ranges used by your programs before loading
programs into memory.

To map memory ranges

• Use the map <range> <type> <attrib> command.

The <type> parameter allows you to characterize the memory range as emulation
RAM, emulation ROM, target system RAM, target system ROM, or as guarded
memory.

Guarded memory accesses will cause emulator execution to break into the monitor
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if the rom break condition is enabled (bc -e rom).

Writes to emulation ROM will not modify memory. Writes by user code to target
system memory locations that are mapped as ROM or guarded memory will result
in a break to the monitor but are not inhibited (that is, the write still occurs).

Emulation memory ranges can have an <attrib> parameter. The lock attribute
specifies that emulation memory accesses in the range be synchronized to the target
system RDY signal. The nolock attribute specifies that emulation memory

Chapter 3: Plugging into a Target System
Mapping Memory

78

accesses are not synchronized to the target RDY — it is the same as specifying no
attribute.

Examples Consider the following section summary from the linker load map output listing.

SEGMENT SUMMARY

SEGMENT CLASS START END LENGTH ALIGNMENT COMBINE

prog_main CODE 80000 80638 00639 Word Public
lib CODE 8063A 81500 00EC7 Word Public
prog_init_system CODE 81502 815AB 000AA Word Public
prog_update_sys CODE 815AC 819C4 00419 Word Public
env CODE 819C6 81DCC 00407 Word Public
libm CODE 81DCD 81DCD 00000 Byte Public
libc CODE 81DCE 841E4 02417 Word Public
data 1009C 10651 005B6 Word Public
const 845C2 845F5 00034 Word Public
??SEG 00010 00010 00000 Paragraph Public
mm_check 845C0 845C1 00002 Byte Common
envdata 10000 1000D 0000E Byte Public
libcdata 10012 1009B 0008A Word Public
idata 10652 10652 00000 Byte Public
udata 10652 10652 00000 Byte Public
heap 10652 11651 01000 Word Public
userstack 11652 19551 07F00 Word Public
libmconst 845BD 845BD 00000 Byte Public
interrupt 00000 00003 00004 Abs. segment Private
libcconst 841E6 845BC 003D7 Word Public
libdata 1000E 10011 00004 Word Public
??DATA1 ??INIT 845BD 845BF 00003 Byte Common

Notice the absolute segment occupies locations 0 through 3. Because the contents
of this segments will eventually reside in target system ROM, this area should be
characterized as ROM when mapped.

Notice the data segments occupy locations 10000H through 19551H. Since these
sections are written to, they should be characterized as RAM when mapped.

Notice the code and const segments occupy locations 80000H through 845F5H.
Because the contents of the code and const segments will eventually reside in target
system ROM, this area should be characterized as ROM when mapped. This will
prevent these locations from being written over accidentally. If the rom break
condition is enabled, instructions that attempt to write to these locations will cause
emulator execution to break into the monitor.

To map emulation memory for the above program, you would enter the following
map commands.

Chapter 3: Plugging into a Target System
Mapping Memory

79

R>map 0..3ff erom

R>map 10000..197ff eram

R>map 80000..847ff erom

To display the memory map

• Enter the map command with no parameters.

Examples To view the memory map, enter the map command with no parameters.
R>map
 # remaining number of terms : 13
 # remaining emulation memory : f1c00h bytes
 map 000000..0003ff erom # term 1
 map 010000..0197ff eram # term 2
 map 080000..0847ff erom # term 3
 map other tram

Chapter 3: Plugging into a Target System
Mapping Memory

80

To characterize unmapped ranges

• Enter the map other command.

The default characterization for unmapped memory ranges are treated as target
system RAM.

You can also characterize unmapped ranges as emulation RAM, emulation ROM,
target system ROM, or as guarded memory.

When you characterize unmapped ranges as emulation memory, you can include
the lock attribute, which specifies that emulation memory accesses be synchronized
to the target system RDY signal, or you can include the nolock attribute, which
specifies that emulation memory accesses are not synchronized to the target RDY
(this is the same as specifying no attribute).

Examples To characterize unmapped ranges as target RAM:
R>map other tram

To characterize unmapped ranges as guarded memory:
R>map other grd

To characterize unmapped ranges as emulation RAM:
R>map other eram nolock

Chapter 3: Plugging into a Target System
Mapping Memory

81

To delete memory map ranges

• Enter the map -d command.

Note that programs should be reloaded after deleting mapper terms. The memory
mapper may re-assign blocks of emulation memory after the insertion or deletion of
mapper terms.

Examples To delete term 1 in the memory map:
R>map -d 1

To delete all map terms:
R>map -d *

Chapter 3: Plugging into a Target System
Mapping Memory

82

4

Using the Emulator

83

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

• Initializing the emulator.

• Loading absolute files.

• Loading and using symbols.

• Executing user programs (starting, stopping, stepping, and resetting the
emulator).

• Using software breakpoints.

• Enabling and disabling break conditions.

• Accessing registers.

• Accessing memory.

84

Initializing the Emulator

This section shows you how to:

• Initialize the emulator.

• Display emulator status information.

To initialize the emulator

• To perform a limited initialization, enter the init command.

• To perform a complete initialization without system verification, enter the init -c
command.

• To perform a complete initialization with system verification, enter the init -p
command.

• To perform a complete initialization without optional product verification, enter the
init -r command.

The init command with no options causes a limited initialization. A limited
initialization does not affect system configuration. However, the init command
will reset emulator and analyzer configurations. The init command:

• Resets the memory map.

• Resets the emulator configuration items.

• Resets the break conditions.

• Clears breakpoints.

The init command does not:

• Clear any macros.

Chapter 4: Using the Emulator
Initializing the Emulator

85

• Clear any emulation memory locations; mapper terms are deleted, but if you
re-specify the exact same memory map, you will find that the emulation
memory contents are the same.

The -c option specifies a complete initialization (except system verification tests are
not run).

The -p option specifies a complete initialization with system verification tests. The
-p initialization sequence includes emulator, analyzer, system controller,
communications port, LAN interface, and flash EPROM initialization.

The -r option specifies a complete initialization with system verification tests (as
with -p), but all optional products are ignored. Do not use flash ROM.

Examples To perform a limited initialization:
R>init
 # Limited initialization completed

Chapter 4: Using the Emulator
Initializing the Emulator

86

To display emulator status information

• Enter the es command.

or

• Enter the help proc command.

The Terminal Interface prompt displays an emulator status character. You can find
the meaning of the emulator status character in one of two ways: with the help proc
command or with the es command.

Examples To use the help proc command:

R>help proc
.
.
.

 --- Emulation Status Characters ---
 R - emulator in reset state c - no target system clock
 U - running user program r - target system reset active
 M - running monitor program h - processor halted
 W - waiting for CMB to become ready g - bus granted
 T - waiting for target system reset b - no bus cycles
 ? - unknown state

.

.

.

To use the es command:
R>es
80C188XL: Emulation reset

Chapter 4: Using the Emulator
Initializing the Emulator

87

Loading Absolute Files

This section describes the tasks related to loading absolute files into the emulator.
You can load absolute files when using the serial connection or when using the
LAN connection:

• When using the serial connection, the HP 64700 is connected to a host
computer and accessed via a terminal emulation program. In this
configuration, you can load absolute files by downloading from the same port.

• When using the LAN connection, the HP 64700 is connected to the same LAN
as a computer that has the ARPA Services File Transfer Protocol (ftp)
software. In this configuration, you can use the ftp command to load absolute
files over the LAN.

The Terminal Interface’s load command will accept absolute files in the following
formats:

• HP absolute.

• Intel hexadecimal.

• Extended Tektronix hexadecimal.

• Motorola S-records.

Chapter 4: Using the Emulator
Loading Absolute Files

88

To load absolute files over the serial port

• Load the file over the "command" port.

If the emulator is connected to a host computer, and you are accessing the emulator
from the host computer via a terminal emulation program, you can also download
files with the load command. In this configuration, files are loaded from the same
port that commands are entered from.

Examples To download a Tektronix hexadecimal file from a Vectra personal computer:
R>load -t <RETURN>

After you have entered the load command, exit from the terminal emulation
program to the MS-DOS operating system. Then, copy your hexadecimal file to
the port connected to the emulator, for example:

C:\copy thexfile com1: <RETURN>

Now you can return to the terminal emulation program and verify that the file was
loaded (for example, by displaying memory in mnemonic format).

To load absolute files over the LAN

• Use the ftp command on your local host computer to transfer files to the remote
HP 64700.

When connecting to the HP 64700’s ftp interface, you can use either the
HP 64700’s hostname or the Internet Protocol (IP) address (or internet address).
When you use the HP 64700’s hostname, the ftp software on your computer will
look up the internet address in the hosts table, or perhaps a name server will return
the internet address.

Chapter 4: Using the Emulator
Loading Absolute Files

89

Examples To connect to the emulator’s ftp interface, enter the following command (use any
name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-
 NOTICE

 This utility program is unsupported. It is provided at no cost.
 Hewlett-Packard makes no warranty on its quality or fitness for
 a particular purpose.

 FTP on the HP64700 serves as a means for downloading absolute files to the
 emulation environment. The file transfer can be be performed as follows:

 1. The data mode type must be set to IMAGE (binary)

 2. Store the file using options to indicate the file format. The following
 example uses PUT as the host command for sending the file. This may be
 different for your ftp implementation.

 put <file_name> <options>
 <file_name> - host file to be loaded.
 <options> - The options are preceeded by a minus (-). The available
 options vary for individual emulators. All support HP OLS, Intel hex,
 Motorola S-records, and Extended Tek Hex. Emulator specific options can
 be viewed by issuing a Terminal Mode help for the load command.

 put hpfile.X -h #to download an HP OLS file
 put intelfile -i #to download an Intel Hex file
 put motfile -m #to download a Motorola S-record file
 put tekfile -t #to download an Extended Tek Hex file

230

To set up ftp for binary file transfers:
ftp> binary
200 Type set to I

To download the HP 64000 format absolute file into the emulator:
ftp> put ecs.X -h
200 Port ok
150
226-
R>
226 Transfer completed
3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:
ftp> quit
221 Goodbye
$

Chapter 4: Using the Emulator
Loading Absolute Files

90

Loading and Using Symbols

The emulator supports the use of symbolic references. The symbols can be loaded
from an ASCII text file on a host computer or defined with the sym command.

This section describes the tasks related to loading ASCII symbol files into the
emulator. ASCII symbol files must be loaded from a host computer.

Symbols will be shown when you display memory in mnemonic format. Also, you
can use the -s or -e options to the trace list command (tl) to have symbolic
information included in the trace list.

You can typically use symbol table information from a linker map file when
creating the ASCII symbol file; however, you need to make sure the information is
in the following format.

#
:global_symbol
module:local_symbol
.
.
.
#

This section describes how to:

• Load symbol files over the serial port.

• Load symbol files over the LAN.

• Define user symbols.

• Display symbols.

• Remove symbols.

Chapter 4: Using the Emulator
Loading and Using Symbols

91

To load symbol files over the serial port

• Use the load -S command.

ASCII symbol files are loaded into the emulator with the load -S command.

Examples Suppose the "ecs.sym" file below exists on a Vectra personal computer.
#
crt1:entry 0819C:0000A
init_system:_init_system 08150:00002
init_system:_init_val_arr 08150:00050
main:_ascii_old_data 01009:00190
main:_aver_temp 01009:005A0
main:_combsort 08000:002BB
main:_curr_loc 01009:005AA
main:_current_humid 01009:005A6
main:_current_temp 01009:005A4
main:_do_sort 08000:00587
main:_float_humid 01009:0059C
main:_float_temp 01009:00598
main:_func_needed 01009:005AC
main:_gen_ascii_data 08000:00127
main:_hdwr_encode 01009:005AE
main:_humid_dir 01009:005B0
main:_interrupt_sim 08000:00032
main:_main 08000:00000
main:_num_checks 01009:005A8
main:_old_data 01009:0000C
main:_strcpy8 08000:000D9
main:_target_humid 01009:0018E
main:_target_temp 01009:0018C
main:_temp_dir 01009:005B1
update_sys:_get_targets 0815A:0008C
update_sys:_read_conditions 0815A:0013A
update_sys:_save_points 0815A:0031B
update_sys:_set_outputs 0815A:001BD
update_sys:_update_system 0815A:0000C
update_sys:_write_hdwr 0815A:00293
#

To load symbols from the ASCII file above:
R>load -S <RETURN>

After you have entered the load command, exit from the terminal emulation
program to the MS-DOS operating system. Then, copy your symbols file to the
port connected to the emulator, for example:

C:\copy ecs.sym com1: <RETURN>

Chapter 4: Using the Emulator
Loading and Using Symbols

92

To load symbols over the LAN

• Use the ftp command on your local host computer to transfer files to the remote
HP 64700.

Loading symbol files over the LAN is the same as loading absolute files over the
LAN, except that a different option is used with the "put" command in ftp.

Examples To connect to the emulator’s ftp interface, enter the following command (use any
name and password):
$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-
 NOTICE

 This utility program is unsupported. It is provided at no cost.
 Hewlett-Packard makes no warranty on its quality or fitness for
 a particular purpose.

.

.

.

To set up ftp for binary file transfers:
ftp> binary
200 Type set to I

To download the symbol file into the emulator:
ftp> put ecs.sym -S
200 Port ok
150
226-
R>
226 Transfer completed
1789 bytes sent in 4.78 seconds (0.37 Kbytes/sec)

To exit out of the ftp interface:
ftp> quit
221 Goodbye
$

Chapter 4: Using the Emulator
Loading and Using Symbols

93

To define user symbols

• Use the sym <name>=<addr> command.

You can use the sym command to define new symbols.

Examples To define the symbol "while_statement" for the address 8000:0eH:
R>sym while_statement=8000:0e

To display symbols

• Use the sym command.

After symbols are loaded, you can use the sym command to display and delete
symbols, as well as to define new symbols.

Examples To display all the symbols:
R>sym
 sym while_statement=08000:0000e
 sym crt1:entry=0819c:0000a
 sym init_system:_init_system=08150:00002
 sym init_system:_init_val_arr=08150:00050
 sym main:_ascii_old_data=01009:00190
 sym main:_aver_temp=01009:005a0
 sym main:_combsort=08000:002bb
 sym main:_curr_loc=01009:005aa
 sym main:_current_humid=01009:005a6
 sym main:_current_temp=01009:005a4
 sym main:_do_sort=08000:00587
 sym main:_float_humid=01009:0059c
 sym main:_float_temp=01009:00598
 sym main:_func_needed=01009:005ac
 sym main:_gen_ascii_data=08000:00127
 sym main:_hdwr_encode=01009:005ae
 sym main:_humid_dir=01009:005b0
 sym main:_interrupt_sim=08000:00032
 sym main:_main=08000:00000
 sym main:_num_checks=01009:005a8
 sym main:_old_data=01009:0000c
 sym main:_strcpy8=08000:000d9

Chapter 4: Using the Emulator
Loading and Using Symbols

94

 sym main:_target_humid=01009:0018e
 sym main:_target_temp=01009:0018c
 sym main:_temp_dir=01009:005b1
 sym update_sys:_get_targets=0815a:0008c
 sym update_sys:_read_conditions=0815a:0013a
 sym update_sys:_save_points=0815a:0031b
 sym update_sys:_set_outputs=0815a:001bd
 sym update_sys:_update_system=0815a:0000c
 sym update_sys:_write_hdwr=0815a:00293

To display all the global symbols:
R>sym -g
R>

To display all the local modules:
R>sym -l
 sym crt1:
 sym init_system:
 sym main:
 sym update_sys:

To display all the user-defined symbols:
R>sym -u
 sym while_statement=08000:0000e

Chapter 4: Using the Emulator
Loading and Using Symbols

95

To remove symbols

• Use the sym -d command.

You can use the sym -d command to delete symbols.

Examples To delete all user symbols:
R>sym -du

To delete all global symbols:
R>sym -dg

To delete all local symbols in all modules:
R>sym -dl

To delete all symbols:
R>sym -d

Chapter 4: Using the Emulator
Loading and Using Symbols

96

Executing User Programs

This section describes how to:

• Start the emulator running the user (target system) program.

• Stop (break from) user program execution.

• Step through user programs.

• Reset the emulation processor.

To run (execute) user programs

• Use the r command.

The run command causes the emulator to execute the user program. When the
emulator is executing the user program, the "U" emulator status character is shown
in the Terminal Interface prompt.

The r rst (run from reset) command specifies a run from target system reset. It is
equivalent to entering a rst (reset) command followed by a r (run) command. The
processor will be reset and then allowed to run.

A r rst command can also be entered while the emulator is plugged into a
powered-down target system. In this case, the emulator will run from the normal
reset address (0FFFF0H) when the target system powers up and releases the
RESET input.

Examples To run from address "crt1:entry":
R>r crt1:entry
U>

To run from the current program counter:
M>r
U>

Chapter 4: Using the Emulator
Executing User Programs

97

To stop (break from) user program execution

• Use the b command.

You can use the break command (b) command to generate a break to the
background monitor.

The "Using Software Breakpoints" section of this chapter describes how to stop
execution at particular points in the user program.

Examples To break execution into the monitor:
U>b
M>

To break from reset into the monitor:
R>b
M>

To step through user programs

• Use the s command.

The emulator allows you to step through the user program. You can step from the
current program counter (in other words, instruction pointer) or from a particular
address. You can step a single instruction or a number of instructions.

A step count of 0 will cause the stepping to continue "forever" (until some break
condition, such as "write to ROM", is encountered, or until you enter <CTRL>c).

Chapter 4: Using the Emulator
Executing User Programs

98

Examples To step one instruction from the current program counter:
M>s
 08000:003ca - NOP
 PC = 08000:003cb

To step a number of instructions from the current program counter:
M>s 8
 08000:003cb - NOP
 08000:003cc - MOV 05baH,AX
 08000:003cf - NOP
 08000:003d0 - NOP
 08000:003d1 - NOP
 08000:003d2 - MOV AX,#0007H
 08000:003d5 - PUSH AX
 08000:003d6 - MOV BX,WORD PTR 05baH
 PC = 08000:003da

To step a number of instructions from a specified address:
M>s 16 main:_main
 08000:00000 main:_main PUSH BP
 08000:00001 - MOV BP,SP
 08000:00003 - PUSH DS
 08000:00004 - MOV AX,#1009H
 08000:00007 - MOV DS,AX | CALL FAR PTR init_system
 08150:00002 em:_init_system PUSH BP
 08150:00003 - MOV BP,SP
 08150:00005 - PUSH DS
 08150:00006 - MOV AX,#1009H
 08150:00009 - MOV DS,AX | MOV 018cH,#0049H
 08150:00011 - MOV WORD PTR 018eH,#002dH
 08150:00017 - MOV WORD PTR 05a4H,#0044H
 08150:0001d - MOV WORD PTR 05a6H,#0029H
 08150:00023 - MOV BYTE PTR 05b1H,#00H
 08150:00028 - NOP
 08150:00029 - MOV BYTE PTR 05b0H,#00H
 PC = 08150:0002e

Chapter 4: Using the Emulator
Executing User Programs

99

To step until <CTRL>c:
M>s 0
 08150:0002e - NOP
 08150:0002f - MOV BYTE PTR 05acH,#00H
 08150:00034 - NOP
 08150:00035 - MOV WORD PTR 05aeH,#0000H
 08150:0003b - MOV WORD PTR 05a8H,#0000H
 .
 .
 .

<CTRL>c

 .
 .
 .
 08150:0006a - MOV AX,#000cH
 08150:0006d - MUL SI
 08150:0006f - XCHG AX,BX
 08150:00070 - MOV WORD PTR 000eH[BX],#0029H
 08150:00076 - MOV AX,#000cH
 PC = 08150:0007b
!STATUS 685! Stepping aborted

To reset the emulation processor

• Use the rst command.

The rst command causes the processor to be held in a reset state until a b (break), r
(run), or s (step) command is entered. A CMB execute signal will also cause the
emulator to run if reset. Also, a request to access target memory while reset will
cause a break into the monitor.

The -m option to the rst command specifies that the emulator begin executing in
the monitor after reset.

Examples To reset the emulation processor:
U>rst
R>

To reset the emulation processor and break into the monitor:
U>rst -m
M>

Chapter 4: Using the Emulator
Executing User Programs

100

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations. (Another way is to break user program execution on
the analyzer trigger.)

Note Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

Software breakpoints are handled by the 80186/188 single byte interrupt (SBI)
facility. When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with a breakpoint interrupt
instruction (INT 3).

When the INT 3 instruction executes, the emulator determines whether the SBI was
generated by an enabled software breakpoint or by a single-byte interrupt
instruction in your target program.

If the SBI was generated by a software breakpoint, execution breaks to the monitor,
and the breakpoint interrupt instruction (INT 3) is replaced by the original opcode.
A subsequent run or step command will execute from this address.

If the SBI was generated by a single-byte interrupt instruction in the target system,
execution still breaks to the monitor, and an "undefined breakpoint" status message
is displayed. To continue with program execution, you must run or step from the
target program’s breakpoint interrupt vector address.

A valid user stack must exist to use breakpoints. In other words, SS and SP must
be correctly initialized before a breakpoint is executed.

Execution of the INT 3 instruction will cause an opcode fetch from the address
pointed to by entry 3 (doubleword address at 0CH) in the vector table. Make sure
that this address is mapped as something other than guarded memory.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

Also, in order to successfully set a software breakpoint, the emulator must be able
to write to the memory location specified. Therefore, software breakpoints cannot
be set in target ROM. You can, however, copy target ROM into emulation memory

Chapter 4: Using the Emulator
Using Software Breakpoints

101

(see "To copy a target system memory image" in the "Accessing Memory" section
of this chapter).

This section shows you how to:

• Enable the breakpoints feature.

• Set permanent software breakpoints.

• Set temporary software breakpoints.

• Display software breakpoints.

• Enable software breakpoints.

• Disable software breakpoints.

• Remove software breakpoints.

• Disable the breakpoints feature.

Caution Software breakpoints should not be set, cleared, enabled, or disabled while the
emulator is running user code. If any of these commands are entered while the
emulator is running user code, and the emulator is executing code in the area where
the breakpoint is being modified, program execution may be unreliable.

To enable the breakpoints feature

• Enter the bc -e bp command.

Currently defined breakpoints are not automatically enabled when you enable the
breakpoints feature; you must explicitly enable the software breakpoints.

Chapter 4: Using the Emulator
Using Software Breakpoints

102

To set permanent software breakpoints

• Use the bp -p <addr> command.

Permanent breakpoints are available if your version of HP 64700 system firmware
is A.04.00 or greater.

Permanent breakpoints remain enabled when encountered. You can disable or
remove permanent breakpoints when you no longer want to break program
execution at their addresses.

Examples To set a permanent software breakpoint at address "update_sys:_update_system":
M>bp -p update_sys:_update_system

To set temporary software breakpoints

• Use the bp <addr> or bp -t <addr> <count> commands.

The bp -t <addr> <count> command is available if your version of HP 64700
system firmware is A.04.00 or greater. If no <count> parameter is supplied, 1 is
assumed.

Temporary breakpoints are disabled, or the count is decremented, when the
breakpoint is encountered.

Chapter 4: Using the Emulator
Using Software Breakpoints

103

Examples To set a temporary software breakpoint at address "update_sys:_update_system":
M>bp update_sys:_update_system

To set a temporary software breakpoint at address "update_sys:_update_system"
that becomes disabled after the third occurrence of the address:
M>bp -t update_sys:_update_system 3

To display software breakpoints

• Enter the bp command with no options or enter the bp -v command to display the
breakpoints list verbosely.

The software breakpoints list also shows whether the breakpoint feature is enabled
or disabled.

The bp -v command, available if your version of HP 64700 system firmware is
A.04.00 or greater, shows the command option used when setting the breakpoint
and, for temporary breakpoints, the count remaining.

Examples To display the software breakpoint list:
M>bp
 ### BREAKPOINT FEATURE IS ENABLED ###
 bp 0815a:0000c #enabled

To enable software breakpoints

• Use the bp -e <addr> command.

When a breakpoint is hit, it becomes disabled. You can use the -e option to the bp
command to re-enable the software breakpoint.

Chapter 4: Using the Emulator
Using Software Breakpoints

104

Examples To enable the software breakpoint at "update_sys:_update_system":
M>bp -e update_sys:_update_system

To enable all software breakpoints:
M>bp -e *

To disable software breakpoints

• Use the bp -d <addr> command.

When a breakpoint is hit, it becomes disabled. You can also disable breakpoints
before they are hit (while they are enabled) by using the -d option to the bp
command.

Examples To disable the software breakpoint at "update_sys:_update_system":
M>bp -d update_sys:_update_system

To remove software breakpoints

• Use the bp -r <addr> command.

You can remove existing breakpoints by using the -r option to the bp command.

Examples To remove the software breakpoint at "update_sys:_update_system" from the
breakpoint list:
M>bp -r update_sys:_update_system

Chapter 4: Using the Emulator
Using Software Breakpoints

105

To disable the breakpoints feature

• Enter the bc -d bp command.

All breakpoints are disabled, but they remain defined.

Chapter 4: Using the Emulator
Using Software Breakpoints

106

Using Break Conditions

Break conditions allow you to specify breaks in the user program when certain
events occur during emulation processor execution.

The bc command lets you enable or disable breaks on the following conditions:

• Writes to ROM.

• Analyzer trigger.

(You can also break user program execution when certain events occur in another
HP 64700; these break conditions are described in the "Making Coordinated
Measurements" chapter.)

To break on writes to ROM

• Enter the bc -e rom command.

When the rom break condition is enabled, the emulator will break from user
program execution when a write occurs to a memory location mapped as ROM.

Examples To enable breaks on writes to ROM:
M>bc -e rom

To disable breaks on writes to ROM:
M>bc -d rom

When disabled, the emulator will not break to the monitor upon a write to ROM;
however, it will not modify the memory location if the memory at that location is
emulation ROM.

Chapter 4: Using the Emulator
Using Break Conditions

107

To break on an analyzer trigger

1 Specify internal signal for analyzer to drive.

2 Enable the emulator break on the internal signal.

Use the tgout (trigger output) command to specify which signal is driven when the
emulation analyzer triggers.

Use the xtgout (external trigger output) command to specify which signal is driven
when the external analyzer, configured as an independent state analyzer, triggers.

Either the "trig1" or the "trig2" internal signals can be driven on the trigger.

Note that the actual break may be several cycles after the analyzer trigger.

After the break occurs, the analyzer will stop driving the trig line that caused the
break. Therefore, if trig2 is used both to break and to drive the CMB TRIGGER
(for example), TRIGGER will go true when the trigger is found and then will go
false after the emulator breaks. However, if trig2 is used to cause the break and
trig1 is used to drive the CMB TRIGGER, TRIGGER will stay true after the
trigger until the trace is halted or until the next trace starts.

Examples To break on the emulation analyzer trigger (over the internal trig2) signal:
M>tg any
M>tgout trig2
M>bc -e trig2
M>r crt1:entry
U>t
 Emulation trace started
!ASYNC_STAT 619! trig2 break
M>es
80C188XL: Running in monitor --Last entry type= emulation break
M>

Chapter 4: Using the Emulator
Using Break Conditions

108

To break on the external analyzer trigger (over the internal trig2) signal:
M>xtmo -s
M>xtg any
M>xtgout trig2
M>bc -e trig2
M>r crt1:entry
U>xt
 External trace started
!ASYNC_STAT 619! trig2 break
M>es
80C188XL: Running in monitor --Last entry type= emulation break
M>

To disable breaks on the internal trig2 signal:
M>bc -d trig2

Chapter 4: Using the Emulator
Using Break Conditions

109

Accessing Registers

This section describes tasks related to displaying and modifying emulation
processor registers.

You can display the contents of an individual register or of all the registers.

Refer to the reg command description in the "Commands" chapter for a description
of the 80186 registers.

To display register contents

• Use the reg command.

When displaying registers, you can display classes of registers and individual
registers.

Examples To display the basic register contents:
M>reg

 reg ax=f21b bx=0174 cx=f216 dx=0c12 bp=7ef0 si=0c14 di=a454 ds=b8c0 es=9880
 reg ss=1165 sp=0c00 ip=4000 cs=0000 fl=f086

To display the PCS registers:
M>reg pcs

 reg umcs=fffb lmcs=0038 pacs=0038 mmcs=01f8 mpcs=8038

To display the PIC registers:
M>reg pic

 reg pollsts=0000 imask=00fd primsk=0007 inserv=0000 reqst=0000 intsts=0000
 reg tcucon=000f dma0con=000f dma1con=000f i0con=000f i1con=000f i2con=000f
 reg i3con=000f

Chapter 4: Using the Emulator
Accessing Registers

110

To modify register contents

• Use the reg <reg>=<value> command.

Examples To modify register DX to contain the value 0:
M>reg dx=0

Chapter 4: Using the Emulator
Accessing Registers

111

Accessing Memory

This section describes the tasks related to displaying, modifying, copying, and
searching the contents of memory locations.

You can display and modify the contents of memory in byte, word, and long word
lengths. You can also display the contents of memory in assembly language
mnemonic format.

When displaying memory, the display mode specifies the format of the memory
display. When modifying memory, the display mode specifies the size of the
location to be modified.

When accessing target memory locations, the access mode specifies the type of
microprocessor cycles that are used to read or write the value(s).

This section describes the following tasks:

• Setting the display and access modes.

• Displaying memory contents.

• Modifying memory contents.

• Copying memory contents.

• Searching memory for data.

• Coping a target system memory image into emulation memory.

Chapter 4: Using the Emulator
Accessing Memory

112

To set the display and access modes

• Use the mo command.

When displaying memory, the display mode specifies the format of the memory
display.

When modifying memory, the display mode specifies the size that the data is to be
interpreted as. For example, suppose you modify a memory location with the value
41H; in the byte display mode, the value is 41H, but in the word display mode, the
value is 0041H, and in the long word display mode the value is 00000041H.

When accessing target system memory locations, the access mode specifies the type
of microprocessor cycles that are used to read or write the value(s). For example,
when the access mode is byte and a target system location is modified to contain
the value 12345678H, byte instructions are used to write the byte values 12H, 34H,
56H, and 78H to target system memory.

You can also specify the display and access modes in the m command, which is
used to display and modify memory locations.

Examples To display the display and access mode settings:
M>mo
 mo -ab -dw

To specify the double word display mode:
M>mo -dd

To specify the word access mode:
M>mo -aw

Chapter 4: Using the Emulator
Accessing Memory

113

To display memory contents

• Use the m command.

The m command displays the contents of the address or address range specified.
Also, you can specify display and access modes with the -d and -a options.

For viewing code in memory, the m -dm command displays memory contents in
disassembled mnemonic format.

Examples To display the byte contents of a memory location:
M>m -db main:_ascii_old_data
 01009:00190..01009:00190 20

To display the contents of a range of memory locations:
M>m -dw main:_ascii_old_data..
 01009:00190..01009:0019f 2020 2020 3520 0021 2020 2020 3420 00f7
 01009:001a0..01009:001af 2020 2020 3520 0031 2020 2020 3520 0034
 01009:001b0..01009:001bf 2020 2020 3520 0032 2020 2020 3520 0030
 01009:001c0..01009:001cf 2020 2020 3520 0031 2020 2020 3520 0036
 01009:001d0..01009:001df 2020 2020 3520 0034 2020 2020 3520 0031
 01009:001e0..01009:001ef 2020 2020 3520 0033 2020 2020 3520 0035
 01009:001f0..01009:001ff 2020 2020 3520 0035 2020 2020 3520 0036
 01009:00200..01009:0020f 2020 2020 3520 0034 2020 2020 3620 0037

To display the range "main" through "main+1FH" in mnemonic format:
M>m -dm main:_main..main:_main+1f
 08000:00000 main:_main PUSH BP
 08000:00001 - MOV BP,SP
 08000:00003 - PUSH DS
 08000:00004 - MOV AX,#1009H
 08000:00007 - MOV DS,AX | CALL FAR PTR init_system
 08000:0000e - NOP
 08000:0000f - CALL FAR PTR update_sys:_update_s
 08000:00014 - INC WORD PTR 05a8H
 08000:00018 - MOV DX,#1009H
 08000:0001b - NOP
 08000:0001c - MOV AX,#05a8H
 08000:0001f - NOP

Chapter 4: Using the Emulator
Accessing Memory

114

To modify memory contents

• Use the m <addr>=<value> command.

You can modify the contents of a memory location or a range of memory locations.
Also, you can specify display and access modes with the -d and -a options.

Examples To modify the location "main:_ascii_old_data" with a byte value of 41H:
M>m -db main:_ascii_old_data=41
M>m -db main:_ascii_old_data
 01009:00190..01009:00190 41

To modify the range of locations from "main:_ascii_old_data" through
"main:_ascii_old_data+7FH" with byte values of 41H, 42H, 43H, and 44H:

M>m -db main:_ascii_old_data..=41,42,43,44
M>m -db main:_ascii_old_data..
 01009:00190..01009:0019f 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:001a0..01009:001af 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:001b0..01009:001bf 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:001c0..01009:001cf 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:001d0..01009:001df 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:001e0..01009:001ef 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:001f0..01009:001ff 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44
 01009:00200..01009:0020f 41 42 43 44 41 42 43 44 41 42 43 44 41 42 43 44

Chapter 4: Using the Emulator
Accessing Memory

115

To copy memory contents

• Use the cp command.

The cp (copy memory) command gives you the ability to copy the contents of one
range of memory to another. This is a handy feature to test whether programs are
relocatable, etc.

Examples To copy the range of memory locations from 0H through 7FH to
"main:_ascii_old_data":
M>cp main:_ascii_old_data=0..7f

To search memory

• Use the ser command.

The ser command allows you to search for data in a range of memory locations. If
any part of the data specified in the ser command is not found, no match is
displayed.

Examples To search the range of memory from "main:_ascii_old_data" through
"main:_ascii_old_data+3FFH" for the ASCII string "CLEARED":
M>mo -db
M>ser main:_ascii_old_data..main:_ascii_old_data+3ff="CLEARED"
 pattern match at address: 01009:00438
 pattern match at address: 01009:00440
 pattern match at address: 01009:00448
 .
 .
 .
M>ser main:_ascii_old_data..main:_ascii_old_data+3ff="Cleared"
M>

Notice that if the string is not found, no information is returned.

Chapter 4: Using the Emulator
Accessing Memory

116

To copy a target system memory image

1 Map the range of target memory you want to copy as emulation RAM.

2 Use the cim command to copy the target memory contents into emulation memory.

The cim command allows you to copy target ROM contents into emulation
memory where you can set software breakpoints, perform coverage testing, or patch
code by modifying memory contents.

Note that if the target system hardware requires the 8018x chip select lines to
access the desired memory, the appropriate chip select control registers have to be
initialized before executing the cim command.

Examples To copy the range of target ROM from 10000H through 1FFFFH:
R>map 10000..1ffff erom
R>cim 10000..1ffff

Chapter 4: Using the Emulator
Accessing Memory

117

118

5

Using the Emulation Analyzer - Easy
Configuration

119

Using the Emulation Analyzer - Easy
Configuration

This chapter describes tasks you may wish to perform while using the emulation
analyzer in its "easy" configuration (the "Using the Emulation Analyzer - Complex
Configuration" chapter describes how to access and use the full capability of the
analyzer). These tasks are grouped into the following sections:

• Initializing the analyzer.

• Qualifying the analyzer clock.

• Starting and stopping trace measurements.

• Displaying trace lists.

• Qualifying trigger and store conditions.

• Using the sequencer.

• Using tag memory.

Chapter 5: Using the Emulation Analyzer - Easy Configuration

120

Initializing the Analyzer

This section describes how to:

• Initialize the analyzer.

• Display trace activity.

• Arm (activate) the emulation analyzer when the external analyzer triggers.

To initialize the analyzer

• Enter the tinit command.

The tinit command initializes the analyzer to its default or power-up state.

Examples To initialize the analyzer:
U>tinit

To display trace activity

• Enter the ta command.

The ta (trace activity) command allows you to display the current status of the
analyzer trace signals. The trace activity display shows the status of trace signals at
any time, regardless of whether a pending trace is completed or not.

The trace signals are displayed in sets of sixteen. Pod 1 represents emulation
analyzer trace signals 0 through 15 (the least significant bit is on the right). Pod 2
represents emulation analyzer trace signals 16 through 31, and so on. External Pod
represents the external analyzer trace signals.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Initializing the Analyzer

121

A trace signal is displayed as a low (0), high (1), or moving (?). For the external
analyzer, low means below the threshold voltage (as specified by the xtv
command), and high means above the threshold voltage.

Examples To display the activity on the analyzer trace signals:
U>ta
 Pod 4 = ???????? ????????
 Pod 3 = ???????? ????????
 Pod 2 = ?11?101? 11??????
 Pod 1 = ???????? ????????
 External pod = 00000000 00000000

To arm the emulation analyzer with the external
analyzer trigger

• Use the tarm command.

You can arm (that is, activate) the emulation analyzer when the external analyzer
finds its trigger condition. The connection between the emulation analyzer and the
external analyzer is made over one of the emulator’s internal trigger signals (trig1
or trig2). You set up the external analyzer to drive the internal trigger signal when
it finds its trigger condition, and you use the tarm command to arm the emulation
analyzer when the internal trigger signal appears.

Examples To arm the emulation analyzer with the external analyzer’s trigger output, over the
internal trig2 signal, and trigger when the arm goes true:
M>xtmo -s
M>xtgout trig2
M>tarm =trig2
M>tg arm

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Initializing the Analyzer

122

Qualifying the Analyzer Clock

The emulator/analyzer interface looks at the data on the emulation processor’s bus
and control signals at each clock cycle. This interface generates clocks to the
analyzer. Address, data, and status fields which are then clocked into the analyzer.

You can qualify the analyzer clock so that the analyzer only looks at background
cycles. It’s even possible to qualify the analyzer clock so that the analyzer only
looks at bus cycles when some external signal is active.

This section describes how to:

• Qualify the analyzer clock to trace background execution.

• Qualify the analyzer clock to trace only when an external signal is active.

To trace background cycles

• Enter the tck -b command.

By default, the analyzer traces user (that is, foreground) code; this is specified by
the -u option to the tck command. However, it is possible to trace background
code; this is specified by the -b option to the tck command.

You can trace both user and background code by specifying the -ub option in a
single tck command.

Examples To trace background cycles:
U>tck -b
U>tck
 tck -r L -b -s F

Notice that the user/background option is a switch in the clock specification.
Changing the option as shown above does not affect the rest of the trace clock
specification.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying the Analyzer Clock

123

To trace foreground and background cycles:
U>tck -ub
U>tck
 tck -r L -ub -s F

To return to tracing foreground execution:
U>tck -u
U>tck
 tck -r L -u -s F

To trace execution when an external signal is
active

1 Connect the external analyzer JCL or KCL line to the external signal.

2 Use the tck command to specify the clock qualifier.

It may occasionally be useful to use an external clock signal (either the JCL or KCL
inputs to the external analyzer) to qualify the emulation analyzer clock signal. In
other words, the emulation analyzer clock signal may only clock the analyzer when
the qualifying clock signal is true. (This is how the analyzer provides the capability
of tracing only user program execution or only background execution.)

Clock signals are qualified by using the -l and -h options to the tck command.

The -l option is used to specify a qualifying signal which only allows the trace to
clock when this signal is lower than the threshold voltage.

The -h option is used to specify a qualifying signal which only allows the trace to
clock when this signal is higher than the threshold voltage.

Note that you must specify the external analyzer threshold voltage before
qualifying the emulation analyzer clock with an external signal.

Note also that if several clock qualifiers are specified, the analyzer will be clocked
if any one is true. This means you must turn off the user/background qualifier; in
other words, tck -ub.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying the Analyzer Clock

124

Qualifier setup time is approximately 25 nanoseconds when the external analyzer is
aligned with emulation analyzer, (xtmo -e). Qualifier setup time is approximately
20 nanoseconds when the external analyzer operates as an independent state
analyzer (xtmo -s). Qualifier hold time is approximately 5 nanoseconds.

Examples To trace execution only when there is a TTL high value on the external analyzer’s J
clock input:
U>tinit
U>tck -ub
U>xtv -l TTL
U>tck -h J
U>t

To trace execution only when there is a CMOS low value on the external analyzer’s
K clock input:
U>tinit
U>tck -ub
U>xtv -u CMOS
U>tck -l K
U>t

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying the Analyzer Clock

125

Starting and Stopping Traces

This section describes the tasks that relate to starting and stopping trace
measurements.

When you start a trace measurement, the analyzer begins looking at the data on the
emulation processor’s bus and control signals on each analyzer clock signal. The
information seen on a particular clock is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

The default trigger state specification is "any state," so when you start a trace
measurement after initializing the analyzer, the analyzer will "trigger" on the first
state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the measurement
by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn’t filled trace memory, the trace measurement does not complete. In
these situations, you can halt the trace measurement.

This section describes how to:

• Start trace measurements.

• Display the trace status.

• Halt trace measurements.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Starting and Stopping Traces

126

To start a trace measurement

• Enter the t command.

The t (trace) command tells the analyzer to begin monitoring the states which
appear on the trace signals. You will see a message which confirms that a trace is
started.

After the emulator is powered-up or initialized, the analyzer is in its simplest
configuration. The default condition will trigger on any state, and store all captured
states. You can simply issue a trace command (t) to trace the states currently
executing.

Examples To start a trace measurement after analyzer initialization:
U>tinit
U>t
 Emulation trace started

To trace a program as it starts up:
U>rst
R>t
 Emulation trace started
R>r crt1:entry
U>

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Starting and Stopping Traces

127

To display the trace status

• Enter the ts command.

The ts (trace status) command lets you view what the analyzer is doing (or what the
analyzer has done if the trace has completed).

The first line of the emulation trace status display shows whether the user trace has
been "completed"; other possibilities are that the trace is still "running" or that the
trace has been "halted". The word "NEW" indicates that the most recent trace has
not been displayed. The word "User" indicates that the trace was taken in response
to a t command; the other possibility is that a "CMB" execute signal started the
trace.

The second line of the ts display contains information on the arm condition. If the
tarm condition is specified as always, the message "Arm ignored" is displayed. If
the tarm condition is specified as one of the internal signals, either the message
"Arm not received" or "Arm received" is displayed. The display indicates if the
arm condition happened any time since the most recent trace started, even if it
happened after the trace was halted or became complete.

When an arm condition has been specified with the tarm command, the "Arm to
trigger" line displays the amount of time between the arm condition and the trigger.
The time displayed will be from -0.04 microseconds to 41.943 milliseconds, less
than -0.04 microseconds, or greater than 41.943 milliseconds. If the arm signal is
ignored or the trigger is not in memory, a question mark (?) is displayed.

The "States" line shows the number of states that have been stored (out of the
number that is possible to store) and the line numbers that the stored states occupy.
(The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the term
the sequencer was in when the trace completed. Because a branch out of the last
sequence term constitutes the trigger, the number displayed is what would be the
next term (2 in the example below) even though that term is not defined. If the
trace is halted, the sequence term number just before the halt is displayed;
otherwise, the current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the current

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Starting and Stopping Traces

128

sequence term. If the occurrence left is changing too quickly to be read, a question
mark (?) is displayed.

Examples To display the trace status:
U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) 0..1023
 Sequence term 2
 Occurrence left 1

To halt a trace measurement

• Enter the th command.

The th (trace halt) command allows you to halt a trace measurement. When the th
command is entered, the message "Emulation trace halted" is displayed.

Examples To halt a trace measurement:
U>th
 Emulation trace halted

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Starting and Stopping Traces

129

Displaying Traces

When states are stored in trace memory, you can display these states in the trace
list. Also, you can change the format of the trace list. This section describes how
to:

• Display the trace list.

• Change the format of the trace list.

To display the trace

• Use the tl command.

The tl (trace list) command displays the trace data.

Examples The trace list displayed in the following examples was set up with the following
commands.
U>rst
R>t
 Emulation trace started
R>r crt1:entry
U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) 0..1023
 Sequence term 2
 Occurrence left 1

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Displaying Traces

130

To display the trace list:
U>tl

 Line addr,H 8018x mnemonic,H count,R
 ----- ------ ------------------------------------ ---------
 0 ffff0 ffH, opcode fetch MON *********
 1 819ca eaH, opcode fetch ROM *********
 2 819ca JMP FAR PTR 819cfH *********
 3 819cb 0fH, opcode fetch ROM *********
 4 819cc 00H, opcode fetch ROM *********
 5 819cd 9cH, opcode fetch ROM *********
 6 819ce 81H, opcode fetch ROM *********
 7 819cf b8H, opcode fetch ROM *********
 8 819cf b8H, opcode fetch ROM *********
 9 819cf MOV AX,#1001H *********

The first column in the trace list contains the line number. The trigger is always on
line 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles.

The third column shows mnemonic information about the emulation bus cycle.

The next column shows the count information. The "R" indicates that each count is
relative to the previous state. If the analyzer’s maximum qualified clock speed is
set to "fast" or if the count qualifier is turned off (the default), time counts cannot
be displayed and this column will contain asterisks (*).

The default number of states to display is 10.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Displaying Traces

131

To display the top 10 states with symbols and absolute addresses in the address
column:
U>tl -e -t 10

 Line addr,H 8018x mnemonic,H count,R
 ----- ------ ------------------------------------ ---------
 0 ffff0 ffH, opcode fetch MON *********
 1 entry eaH, opcode fetch ROM *********
 2 entry JMP FAR PTR 819cfH *********
 3 819cb 0fH, opcode fetch ROM *********
 4 819cc 00H, opcode fetch ROM *********
 5 819cd 9cH, opcode fetch ROM *********
 6 819ce 81H, opcode fetch ROM *********
 7 819cf b8H, opcode fetch ROM *********
 8 819cf b8H, opcode fetch ROM *********
 9 819cf MOV AX,#1001H *********

To display the states at line 170:
U>tl 170

 Line addr,H 8018x mnemonic,H count,R
 ----- ------ ------------------------------------ ---------
 170 8064e 1eH, opcode fetch ROM *********
 171 1954c 53H, mem read *********
 172 1954d 00H, mem read *********
 173 1954e 9cH, mem read *********
 174 1954f 81H, mem read *********
 175 81a13 b8H, opcode fetch ROM *********
 176 81a13 MOV AX,#125dH *********
 177 81a14 5dH, opcode fetch ROM *********
 178 81a15 12H, opcode fetch ROM *********
 179 81a16 50H, opcode fetch ROM *********

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Displaying Traces

132

To change the trace display format

• Use the tf command.

You can change the format of the trace information with the tf (trace format)
command.

The tf command primarily allows you to arrange the columns of trace information
in a different manner. However, you can include any trace label in the trace. Also,
the trace label information can be displayed in various number bases, and counts
can be displayed relative or absolute.

You can include information about the sequencer in the trace by including the "seq"
column in the trace format command. The "+" characters in this column identify
states that trigger the analyzer or cause sequencer branches.

If your analyzer card contains external analysis (for example, HP 64703), you can
include external analysis data in the trace by including the "xbits" column in the
trace format command. This column shows the data captured on the external trace
signals.

Examples To view the trace display format:
U>tf
 tf addr,H mne count,R

To change the trace format so that the address column is 14 characters wide and the
sequence information is shown:
U>tf addr,h,14 mne count,r seq
U>tl -e -t

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 0 ffff0 ffH, opcode fetch MON ********* +
 1 crt1:entry eaH, opcode fetch ROM ********* .
 2 crt1:entry JMP FAR PTR 819cfH ********* .
 3 819cb 0fH, opcode fetch ROM ********* .
 4 819cc 00H, opcode fetch ROM ********* .
 5 819cd 9cH, opcode fetch ROM ********* .
 6 819ce 81H, opcode fetch ROM ********* .
 7 819cf b8H, opcode fetch ROM ********* .
 8 819cf b8H, opcode fetch ROM ********* .
 9 819cf MOV AX,#1001H ********* .

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Displaying Traces

133

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you can prestore states. The prestore qualifier is a second storage qualifier
used for storing states that occur before the normally stored states. Prestore is
useful for capturing entry points to procedures or for identifying where global
variables are accessed from.

This section describes how to:

• Qualify the trigger state.

• Trigger on a number of occurrences of some state.

• Change the trigger position in the trace.

• Qualify states stored in the trace.

• Activate and qualify prestore states.

• Change the count qualifier.

Expressions in Trace Commands

Expressions are used in commands which qualify the trace. Expressions may be
specified in the following forms (the pound sign, #, appears before comments):

any/all # special tokens
never/none
arm

label=<value>
label!=<value>
label=<value> and label=<value> ... # this condition
label!=<value> or label!=<value> ... # not this condition
label=<value>..<value> # this range
label!=<value>..<value> # not this range

Note that if you wish to specify an expression such as "label=<value> and
label!=<value>", you must configure the analyzer so that you have access to its full
capability (refer to the "Using the Emulation Analyzer - Complex Configuration"
chapter).

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

134

Note also that only one range resource is available. You can, however, use this
range (or "not this range") in more than one trace command.

Tokens The tokens any or all specify any or all conditions; you can use these
tokens interchangeably. The tokens never or none specify false conditions; they
are used to turn off qualifiers. The never and none tokens may also be used
interchangeably. The arm token represents a condition external to the analyzer.
Arm conditions are described in the "Making Coordinated Measurements" chapter.

Trace Labels Labels may be predefined trace labels or labels which you define
with the tlb (trace label) command. Trace labels can be up to 31 characters long.
When you define a trace label, you assign trace signals to the label name. The
emulation analyzer trace signals are described in the table that follows.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

135

Emulation Analyzer Trace Signals

Trace
Signals

Signal
Name

Signal
Description

0-19 A0-A19 Address Lines 0-19.

20-23 Processor S0-S3
(S3 bond-out
emulation processor
specific)

1011 = Halt acknowledge cycle.
1000 = Interrupt acknowledge cycle.
1001 = I/O port read cycle.
1010 = I/O port write cycle.
1101 = Memory read cycle.
1110 = Memory write cycle.
1100 = Opcode fetch.

24 Processor BHE 0 = Bus High Enable.

25 Bus Grant 0 = Bus granted between previous state and this one.

26 Processor S6 0 = Processor cycle, 1 = DMA cycle.

27 Guarded Memory 0 = Guarded memory access.

28 ROM Access 0 = ROM access.

29 LOCK Asserted 0 = LOCK asserted.

30 Monitor/User 0 = Background, 1 = Foreground.

31 Execution/Bus Cycle 0 = Executed instruction state, 1 = non-instruction states.

32-47 D0-D15 Processor Data 0-15. (Signals 40-47 not used with 8-bit
processors.)

Predefined Trace Labels To see the trace labels which have been predefined,
enter the tlb (trace label) command with no options.
M>tlb
 #### Emulation trace labels
 tlb addr 0..19
 tlb data 32..47
 tlb stat 20..31

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

136

These predefined trace labels represent emulation processor signals as described
below.

addr Represents the trace signals (0 through 19) which monitor the
emulation processor’s address pins.

data Represents the trace signals (32 through 47) which monitor the
emulation processor’s data pins.

stat Represents the trace signals (20 through 31) which monitor
other emulation processor signals.

Values Values can be numeric constants (in several bases), symbols, or equates.
Values can also be constants, symbols, and equates combined with operators.
(Refer to the <value> description in the "Commands" chapter for information on
constants and operators.)

Predefined Equates The equ (specify equates) command allows you to equate
values with names. Equates for common trace label values are predefined. To
view the equates, enter the equ command with no options. (These status equates
are also listed in the help proc information.)
U>equ
 ### Equates ###
 equ bus=01xxxxxxxxxxxy # Bus cycle.
 equ coproc=01xxxxxxxxxxxy # Coprocessor cycle.
 equ dma=01xxxx1xxxxxxy # DMA cycle (for 80186/8/XL/EA/EC).
 equ grd=01xxx0xxxxxxxy # Guarded memory access.
 equ hlt=01xxxxxxx1011y # Halt acknowledge cycle.
 equ instr=00xxxxxxxxxxxy # Executed instruction state.
 equ inta=01xxxxxxx1000y # Interrupt acknowledge cycle.
 equ ior=01xxxxxxx1001y # I/O port read cycle.
 equ iow=01xxxxxxx1010y # I/O port write cycle.
 equ mon=0x0xxxxxxxxxxy # Monitor cycle.
 equ mr=01xxxxxxx1101y # Memory read cycle.
 equ mw=01xxxxxxx1110y # Memory write cycle.
 equ of=01xxxxxxx1100y # Opcode fetch.
 equ proc=01xxxx0xxxxxxy # Processor (not DMA) cycle.
 equ rom=01xx0xxxxxxxxy # Access to ROM cycle.
 equ usr=0x1xxxxxxxxxxy # User (foreground) cycle.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

137

These predefined equates may be used to specify values for the stat trace label
when qualifying trace conditions. For example:

stat=mw

is the same as:

stat=01xxxxxxx1110y

Equates, either predefined or user-defined, are translated to their actual values when
used. Re-defining an equate will not affect commands in which the equate was
previously used. For example, if you enter the commands equ count=100; tg any
count; equ count=5, the occurrence count in the trigger specification is still 100.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

138

To qualify the trigger state

• Use the tg command.

The tg (specify simple trigger) command allows you to specify when the analyzer
should begin storing states.

Examples Suppose you want to look at the execution of the demo program after the
instructions at "main", and, therefore, you would like to begin storing states after
address "main". To do this you could enter the commands shown below.
U>tinit
U>tg addr=main:_main
U>t
 Emulation trace started
U>r crt1:entry
U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) 0..1023
 Sequence term 2
 Occurrence left 1
U>tf addr,h,14 mne count,r seq
U>tl -e

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 0 main:_main 55H, opcode fetch ROM ********* +
 1 main:_main PUSH BP ********* .
 2 80001 8bH, opcode fetch ROM ********* .
 3 80002 ecH, opcode fetch ROM ********* .
 4 19540 00H, mem write ********* .
 5 19541 00H, mem write ********* .
 6 80001 MOV BP,SP ********* .
 7 80003 1eH, opcode fetch ROM ********* .
 8 80003 PUSH DS ********* .
 9 80004 b8H, opcode fetch ROM ********* .

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

139

To trigger on a number of occurrences of some
state

• Use the tg <qualifier> <occurrence count> command.

When specifying a simple trigger, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of some
state.

The default base for an occurrence count is decimal. You may specify occurrence
counts from 1 to 65535.

Examples To trigger on the 100th occurrence of the call to the "update_system" function:
U>tg addr=update_sys:_update_system 100
U>t
 Emulation trace started
U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) -1..1022
 Sequence term 2
 Occurrence left 1

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

140

To change trigger position in the trace

• Use the tp command.

The tp (trigger position) command changes the trigger position in the trace.

The trigger position default is tp s, which specifies that the trigger appears at the
start of the trace. You can also specify that the trigger appear in the center of the
trace with the tp c command, or that the trigger appear at the end of the trace with
the tp e command.

Additionally, you can specify a certain number of states to appear before (tp -b 10)
or after (tp -a 1014) the trigger in the trace.

When the analyzer counts time or states, the actual trigger position is within +/- 1
state of the number specified. When counts are turned OFF, the actual trigger
position is within +/- 3 states of the number specified.

Examples To place the trigger state in the center of the trace:
U>tp c
U>t
 Emulation trace started
U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 1024 (1024) -513..510
 Sequence term 2
 Occurrence left 1

Notice in the trace status information that states are stored before and after the
trigger.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

141

To qualify states stored in the trace

• Use the tsto command.

By default, all captured states are stored; however, you can qualify which states get
stored with the tsto (trace storage qualifier) command.

Examples To store only the states which write to the "target_temp" variable, enter the
following commands.
U>tsto addr=main:_target_temp and stat=mw
U>tg any
U>tp s
U>t
 Emulation trace started
U>tl

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 0 19496 07H, mem read ********* +
 1 n:_target_temp 49H, mem write ********* .
 2 n:_target_temp 48H, mem write ********* .
 3 n:_target_temp 47H, mem write ********* .
 4 n:_target_temp 46H, mem write ********* .
 5 n:_target_temp 45H, mem write ********* .
 6 n:_target_temp 44H, mem write ********* .
 7 n:_target_temp 43H, mem write ********* .
 8 n:_target_temp 42H, mem write ********* .
 9 n:_target_temp 41H, mem write ********* .

Notice that the trigger state (line 0) is included in the trace list; trigger states are
always stored.

To activate and qualify prestore states

• Use the tpq <qualifier> command.

Prestore allows you to save up to two states which precede a normal store state.
Prestore is turned off by default. However, you can use the tpq command to
specify a prestore qualifier.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

142

Prestore is useful when you want to find the cause of a particular state. For
example, if a variable is accessed from many different places in the program, you
can qualify the trace so that only accesses of that variable are stored. Then, you can
turn on prestore to find out where accesses of that variable originate from.

States which satisfy the prestore qualifier and the storage qualifier at the same time
are stored as normal states.

The analyzer uses the same resource to save prestore states as it does to save count
tags. Consequently, the "prestore" string is shown in the "count" column of the
trace list. Notice that the time counts are relative to the previous normal storage
state. Turning off the count qualifier does not turn off prestore: however, the
"prestore" string cannot be seen in the "count" column of the trace list.

Examples To prestore function entries (typically PUSH BP instructions whose opcode is 55H)
on writes to the "target_temp" variable:
U>tsto addr=main:_target_temp and stat=mw
U>tpq data=0xx55 and stat=of
U>tg any
U>t
 Emulation trace started
U>tl -e

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 0 8049e INSTRUCTION--opcode unavailable ********* +
 1 _update_system 55H, opcode fetch ROM ********* .
 2 s:_get_targets 55H, opcode fetch ROM ********* .
 3 n:_target_temp 58H, mem write ********* .
 4 _update_system 55H, opcode fetch ROM ********* .
 5 s:_get_targets 55H, opcode fetch ROM ********* .
 6 n:_target_temp 57H, mem write ********* .
 7 _update_system 55H, opcode fetch ROM ********* .
 8 s:_get_targets 55H, opcode fetch ROM ********* .
 9 n:_target_temp 56H, mem write ********* .

Note that this does not prestore all function entries because only low byte reads of
55H are captured. In the complex mode, you can set up the analyzer to capture
either high or low byte reads of 55H.

To turn off prestore states:
U>tpq none

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

143

To change the count qualifier

• To turn OFF counting, use the tcq none command.

• To count states, use the tcq <qualifier> command.

• To count time, use the tcq time command.

After initializing the analyzer, the default count qualifier is none. When counting
is turned OFF, up to 1024 states can be stored in the trace.

When you count states, the counter is incremented each time the state is captured
(not necessarily stored) by the analyzer. When a state is counted, up to 512 states
can be stored in the trace.

You can only count time if the processor clock speed is less than or equal to
16 MHz. If this is the case, you must enter the tck -s S command before you can
enter the tcq time command. When time is counted, up to 512 states can be stored
in the trace.

Examples Suppose you want to know how many loops of the program occur between calls of
the "do_sort" function. You can use the tcq command to count a state that occurs
once for each loop of the program.

First, set up the analyzer so that only accesses of the "do_sort" address are stored:
U>tsto addr=main:_do_sort and stat=instr

Next, specify the count qualifier as a state that occurs once for each loop of the
program, for example, the "update_system" function:
U>tcq addr=update_sys:_update_system and stat=instr

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

144

Finally, set up to trigger on any state, start the trace, and display the trace:
U>tg any
U>t
 Emulation trace started
U>tl -e

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 0 80111 INSTRUCTION--opcode unavailable --- +
 1 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 2 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 3 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 4 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 5 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 6 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 7 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 8 main:_do_sort INSTRUCTION--opcode unavailable 4 .
 9 main:_do_sort INSTRUCTION--opcode unavailable 4 .

To turn counting OFF:
U>tcq none

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Qualifying Trigger and Store Conditions

145

Using the Sequencer

By using the sequencer, you can trigger after a sequence of states instead of just one
state. The sequencer has several levels, called sequence terms.

Each sequence term can search for two states at a time: a primary state and a
secondary state. The primary state may have an occurrence count specified. If the
primary state occurs the number of times specified, the sequencer branches to the
next term. If the secondary state is found before the primary state occurs the
number of times specified, the sequencer branches back to the first term.

The same secondary branch condition is used for all sequence terms, and secondary
branches are always back to the first term; therefore, the secondary branch is called
the global restart.

The last sequence term defines the trigger state. A branch out of this term
constitutes the trigger.

This section describes how to:

• Reset the sequencer.

• Display the sequencer specification.

• Specify primary and secondary branch conditions.

• Add or insert sequence terms.

• Delete sequence terms.

The Default Sequencer Specification

After power-up, initialization, or sequencer reset, the sequencer consists of one
term.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

146

It may be helpful to think of the tif (primary branch expression) command as a
conditional statement. For example, "If (some state occurs), then branch".

Because sequence term 1 is the last term and a branch out of the last term
constitutes the trigger, the primary branch expression (any) of term 1 specifies the
trigger condition. The expression any says that any captured trace state will cause
a branch. Therefore, the trigger will occur immediately after the t (trace) command
is issued (if instructions are being executed).

The tsto (trace storage qualifier) command specifies that all captured states are
stored. The trace storage qualifier is a global; that is, it applies to all sequence
terms. In addition to states which satisfy the trace storage qualifier, any state which
causes a branch is stored in trace memory. Also, prestore states can be saved before
states which satisfy the trace storage qualifier.

The telif command is used to specify the secondary branch expression for every
sequence term; this expression is called the global restart. It may be helpful to
think of the telif command as an "else if" conditional statement. For example,
"Else if (some state occurs before) then branch to term 1".

The global restart in the default sequencer specification is never. This means no
trace state can cause a secondary branch.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

147

Simple Trigger and the Sequencer

The simple trigger command used previously in this chapter has the following
effect on the sequencer:
U>tinit
U>tg addr=update_sys:_update_system
U>tsq
 tif 1 addr=update_sys:_update_system
 tsto all
 telif never

Notice that only the primary branch expression of the first sequence term (the
trigger condition) is different than the default sequencer specification. An address
value equal to the symbol "update_sys:_update_system" will trigger the analyzer,
causing trace memory to be filled with states and stop.

When the tg command is entered with no options, the primary branch expression of
the first sequence term is displayed. This is the trigger condition only when one
term exists in the sequencer.

To reset the sequencer

• Enter the tsq -r command.

To reset the sequencer to its default, power-up state use the -r option to the tsq
(trace sequencer) command.

Examples To reset the sequencer:
U>tsq -r

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

148

To display the sequencer specification

• Enter the tsq command with no options.

To display the sequencer specification, enter the tsq command with no options.

Examples U>tsq
 tif 1 any
 tsto all
 telif never

The tif 1 any part of the sequencer specification says that any state will cause a
branch out of term 1. The tsto all says all states will be stored, and the telif never
says that the global restart is turned off.

To specify primary and secondary branch
expressions

• Use the tif and telif commands.

The tif command lets you qualify the states searched for by sequence terms.

The telif command lets you qualify the state that will cause a global restart
(sequencer branch back to term 1).

Examples You can use sequence terms to trace a specific combination of events. For
example, the "do_sort" function may or may not be called after the "interrupt_sim"
function. If you triggered on the sequence "interrupt_sim" followed by "do_sort",
several loops of the program could be captured between the two events. Suppose
you want to trace only the situation where "do_sort" is called right after
"interrupt_sim" is called.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

149

Set up the sequencer so that it first searches for the call to "interrupt_sim" as the
primary branch expression of the first sequence term.
U>tif 1 addr=main:_interrupt_sim and stat=instr

After "interrupt_sim" is found, the sequencer should then search for the call to
"do_sort". You can do this by specifying the address "do_sort" as the primary
branch expression of the second sequence term.
U>tif 2 addr=main:_do_sort and stat=instr

However, if the program executes the RET instruction of the "interrupt_sim"
function (address 800D8H) before the call to "do_sort", you know that "do_sort"
was not called this time, and the sequencer should start over. You can specify the
global restart expression to do this.
U>telif addr=800d8 and stat=instr

If the "do_sort" function is called before the program executes the RET instruction
at 800D8H, the sequencer will take a primary branch out of the last term and trigger
the analyzer. Set up the analyzer so that only sequencer branches are stored.
U>tsto never

The resulting sequencer specification is shown below.
U>tsq
 tif 1 addr=main:_interrupt_sim and stat=instr
 tif 2 addr=main:_do_sort and stat=instr
 tsto never
 telif addr=800d8 and stat=instr

The sequencer specification above is represented in the figure below. The primary
branch expression of the first sequence term is the address of the "interrupt_sim"
function. The primary branch expression for the second sequence term is the
address of the "do_sort" function; it is also the trigger condition. The primary
branch out of the second term constitutes the trigger.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

150

The sequencer works like this: After the trace is started, the first sequence term
searches for the call to "interrupt_sim". When the call to "interrupt_sim" is found,
the sequencer branches to term 2. Now, the second sequence term searches for the
address "do_sort". If the address "do_sort" is found before the state which satisfies
the secondary branch expression (the return at address 800D8H), the analyzer is
triggered, causing the analyzer memory to be filled with states before the analyzer
stops. If the RET instruction at address 800D8H is executed before the primary
branch (in either the first or second terms), the sequencer branches back to the first
sequence term.

The following commands position the trigger state in the center of the trace, start
the trace, and display the trace status.
U>t
 Emulation trace started
U>ts
 --- Emulation Trace Status ---
 NEW User trace running
 Arm ignored
 Trigger not in memory
 Arm to trigger ?
 States ? (8) ?..?
 Sequence term 3
 Occurrence left 1

Notice, even though the trigger is not in memory, that 8 states have been stored. It
is possible that the trigger is in the analyzer’s two state pipeline, in which case, you
must halt the trace in order to see the stored states.

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

151

U>th
 Emulation trace halted

The "seq" column in the trace list contains information about the sequencer. A "+"
in the "seq" column indicates the state satisfied a branch condition. To add the
"seq" column to the trace list, enter the following command.
U>tf addr,h,14 mne count,r seq

Listing the trace will result in the following display.
U>tl -e

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 -8 800d8 INSTRUCTION--opcode unavailable ********* +
 -7 _interrupt_sim INSTRUCTION--opcode unavailable ********* +
 -6 800d8 INSTRUCTION--opcode unavailable ********* +
 -5 _interrupt_sim INSTRUCTION--opcode unavailable ********* +
 -4 800d8 INSTRUCTION--opcode unavailable ********* +
 -3 _interrupt_sim INSTRUCTION--opcode unavailable ********* +
 -2 800d8 INSTRUCTION--opcode unavailable ********* +
 -1 _interrupt_sim INSTRUCTION--opcode unavailable ********* +
 0 main:_do_sort INSTRUCTION--opcode unavailable ********* +
 1

Remember, the primary branch out of the last term constitutes the trigger.
Also, a primary branch always advances to the next higher term. A secondary
branch from any term is always made back to the first sequence term (global
restart).

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

152

To add or insert sequence terms

• Use the tsq -i command.

The sequencer may have a total of 4 terms. You can add or insert sequence terms
with the tsq (trace sequencer) command using the -i (insert) option. If the term
number specified already exists, the new sequence term is inserted before the
existing term; otherwise, the new sequence term is added.

Examples To insert a second sequence term:
U>tsq
 tif 1 addr=main:_interrupt_sim and stat=instr
 tif 2 addr=main:_do_sort and stat=instr
 tsto never
 telif addr=800d8 and stat=instr
U>tsq -i 2
U>tsq
 tif 1 addr=main:_interrupt_sim and stat=instr
 tif 2 any
 tif 3 addr=main:_do_sort and stat=instr
 tsto never
 telif addr=800d8 and stat=instr

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

153

To delete sequence terms

• Use the tsq -d command.

You delete sequence terms using the -d option to the tsq (trace sequencer
specification) command.

After a term is deleted, the remaining terms are renumbered.

Examples To delete the second sequence term:
U>tsq
 tif 1 addr=main:_interrupt_sim and stat=instr
 tif 2 any
 tif 3 addr=main:_do_sort and stat=instr
 tsto never
 telif addr=800d8 and stat=instr
U>tsq -d 2
U>tsq
 tif 1 addr=main:_interrupt_sim and stat=instr
 tif 2 addr=main:_do_sort and stat=instr
 tsto never
 telif addr=800d8 and stat=instr

Chapter 5: Using the Emulation Analyzer - Easy Configuration
Using the Sequencer

154

6

Using the Emulation Analyzer -
Complex Configuration

155

Using the Emulation Analyzer -
Complex Configuration

This chapter describes how to use the emulation analyzer in its "complex"
configuration (the "Using the Emulation Analyzer - Easy Configuration" chapter
describes how to use the emulation analyzer in its easy-to-use configuration).

The basic differences between the easy configuration and the complex
configuration are in the sequencer and the expressions used to qualify states.
Therefore, this chapter describes the following tasks:

• Switching into the complex configuration.

• Using complex expressions.

• Using the sequencer.

156

Switching into the Complex Configuration

This section describes how to:

• Switch into the complex configuration

• Switch back into the easy configuration

To switch into the complex analyzer configuration

• Enter the tcf -c command.

To enter the "complex" analyzer configuration, use the -c option to the tcf (trace
configuration) command. This will cause the analyzer to be initialized to its default
"complex" configuration state.

To switch back into the easy analyzer
configuration

• Enter the tcf -e command.

The tcf -e command will place the analyzer back into the "easy" configuration.
Changing the analyzer configuration to "easy" will reset the trace pattern
specifications, the trigger position, and the count and prestore qualifiers.

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Switching into the Complex Configuration

157

Using Complex Expressions

In the "complex" configuration, up to eight pattern resources and one range
resource may be used in trace commands wherever state qualifier expressions were
used in the "easy" configuration. In fact, state qualifiers are assigned to the pattern
and range resources.

The additional capability allowed in the "complex" configuration is that these
patterns may be used in combinations to specify more complex qualifiers. The
pattern and range resources are divided into two sets, and you can combine
resources with the set operators.

This section describes how to:

• Assign state qualifiers to trace patterns.

• Assign state qualifiers to the trace range.

• Combine pattern and range qualifiers.

To assign state qualifiers to trace patterns

• Use the tpat command.

Up to eight trace patterns can be specified with the tpat (trace pattern) command.
The trace pattern names are p1, p2, ..., p8.

The expression associated with a trace pattern can be the keywords all, any, none,
or never, or the expression may be trace labels equated to values (which can be
ANDed together) or trace labels not equal to values (which can be ORed together).

Consider whether or not you will be using global set operators (and or or) with any
of the patterns; if so, make sure those patterns are in different sets.

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using Complex Expressions

158

Examples To assign to pattern p1 the state where the address value equals 520H, the data
value equals 0XXAA1234H, and the status is a memory write:
U>tpat p1 addr=520 and data=0xxaa1234 and stat=write

To assign to pattern p1 any state except where the address value equals 5C2H, the
data value equals 0XX3X5678H, and the status is a memory write:
U>tpat p1 addr!=5c4 or data!=0xx3x5678 or stat!=write

To assign state qualifiers to the trace range

• Use the trng command.

One trace range can be specified with the trng (trace range) command. The range
name is r , and !r specifies "not in range".

The expression associated with a trace range can be the keywords all, any, none, or
never, or the expression may be a trace label equated to a range of values.

Examples To assign the address range 500H through 5FFH to the range resource:
U>trng addr=500..5ff

To assign the data range 80H through 8FH to the range resource:
U>trng data=0080..008f

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using Complex Expressions

159

To combine pattern and range resources

• Use the set operators.

The eight patterns (p1..p8), the range (r for "in range" or !r for "not in range"), and
the arm qualifier (described in the "Making Coordinated Measurements" chapter)
are grouped into the two sets shown below.

Set 1: p1, p2, p3, p4, r , and !r .

Set 2: p5, p6, p7, p8, and arm.

Resources within a set may be combined using one of the intraset operators, | (OR)
or ~ (NOR).

The two sets can be combined with the and and or interset (between set) operators.
Interset operators are also called global set operators.

The intraset (within a set) operators (~, |) are evaluated first; then, the interset
operators are evaluated. You cannot use interset operators on patterns in the same
set.

Though only the OR (|) and NOR (~) logical operators are available as intraset
operators, you can create the AND and NAND operators by applying DeMorgan’s
law (the "/" character is used to represent a logical NOT):

AND A and B = /(/A and /B) NOR
NAND /(A and B) = /A or /B OR

Examples Some valid intraset combinations follow.
U>tsto p1 | p2 | p3 | r
U>tsto p5 ~ p6 ~ arm

The following expression is invalid because you cannot use both | (OR) and ~
(NOR) operators within the same set.
U>tsto p1 | p2 ~ p3
!ERROR 1249! Invalid qualifier expression: ~ p3

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using Complex Expressions

160

The following expression is invalid because you cannot combine resources from
different sets with the | (OR) or ~ (NOR) operators.
U>tsto p1 ~ p2 ~ p5
!ERROR 1249! Invalid qualifier expression: p5

Some valid combinations of the two sets follow.
U>tsto p1 ~ p2 and p5 | p6
U>tsto p3 | p4 | !r or p7
U>tsto p8 ~ arm and p1 ~ p2

The following set combination is invalid because p1 and p2 are in the same set.
U>tsto p1 and p2
!ERROR 1249! Invalid qualifier expression: p2

Note that "p1 ~ p1" is allowed; this type of expression may occasionally be useful
if you are running out of pattern resources and wish to specify a logical NOT of
some existing pattern. For example, consider the following commands:
tpat p1 addr=0
tif 1 p1
tif 2 p1 ~ p1

The primary branch of term 2 will be taken when "addr!=0".

An example of using DeMorgan’s law to create the AND operator follows.

Suppose you want to specify the following storage qualifier:
U>tsto p1 & p2 or p5 & p6
!ERROR 1241! Invalid qualifier resource or operator: &

The error occurs because the & operator is not a valid intraset operator. If the
specifications for the trace patterns are:
tpat p1 addr=5f0
tpat p2 data=39xxxxxx and stat=write
tpat p5 addr=500
tpat p6 data=0xx39xxxx and stat=write

you can enter an equivalent expression to the one which caused the error by making
the following changes to the trace patterns and using the NOR (~) operator in the
tsto command.
U>tpat p1 addr!=5f0
U>tpat p2 data!=39xxxxxx or stat!=write
U>tpat p5 addr!=500
U>tpat p6 data!=0xx39xxxx or stat!=write
U>tsto p1 ~ p2 or p5 ~ p6

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using Complex Expressions

161

Using the Sequencer

This section describes how to use the sequencer in the "complex" configuration.
The differences between using the sequencer in the "easy" configuration and in the
"complex" configuration are summarized in the following table.

Differences Between the "Easy" and "Complex" Analyzer Configurations

Analyzer Feature In the "easy" configuration . . . In the "complex" configuration . . .

sequence terms
and the trigger
(tsq)

You can insert or delete terms from the
sequencer, and the branch out of the last
sequence term constitutes the trigger.

There are always eight terms in the
sequencer. Any of the sequence terms
except the first may be specified as the
trigger term. Entry into the trigger term
constitutes the trigger.

simple trigger
(tg)

The simple trigger command (tg) sets up
a one term sequencer, and the expression
specified with the tg command becomes
the primary branch expression of the first
sequence term.

The simple trigger command (tg) sets the
primary branch expression of sequence
term 1, and specifies the second
sequence term as the trigger term.

primary branch
expressions
(tif)

Primary branches are always made to the
next higher sequence term.

Primary branches may be made to any
sequence term.

secondary branch
expressions
(telif)

The secondary branch expression is a
global restart. In other words, the
secondary branch expression applies to
all sequence terms, and the branch is
always back to the first sequence term.

Secondary branch expressions may be
specified for each sequence term. Also,
secondary branches can be made to any
sequence term.

storage qualifiers
(tsto)

The trace storage qualifier is "global"
and applies to all sequence terms.

A storage qualifier is associated with
each sequence term; however, the tsto
command still allows you to specify
storage qualifiers globally.

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

162

In the complex configuration, you perform the same tasks as are performed in the
easy configuration. However, in the complex configuration, you have more
sequence terms, you can specify destination terms for primary and secondary
branches, and you can specify storage qualifiers for each sequence term.

This section describes how to:

• Reset the sequencer.

• Specify a simple trigger condition.

• Specify primary and secondary branches.

• Specify the trigger term.

• Specify storage qualifiers.

• Trace windows of execution.

To reset the sequencer

• Enter the tsq -r command.

After entering the "complex" analyzer configuration, the sequencer is in its default
reset state.

If the analyzer is already in the "complex" configuration, you can reset the
sequencer to its default state with the tsq -r command.

Examples To reset the sequencer:
U>tsq -r

To display the default sequencer specification:
U>tsq
 tif 1 any 2
 tif 2 any 3
 tif 3 any 4
 tif 4 any 5
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

163

 tif 8 never
 tsq -t 2
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

There are eight terms in the "complex" configuration sequencer. By default, the
primary branch expression for each term (except term 8) is any, the secondary
branch expression for each term is never, and the storage qualifier for each term is
all. The trigger term is the second sequence term. This sequencer specification
will result in the same trace data as the default sequencer specification in the "easy"
configuration (except that there will be more sequencer branches after the trigger).
A diagram of the default sequencer specification is shown in the figure below.

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

164

If the tsq information scrolls off your screen, you may wish to display the
sequencer specifications with a combination of other display commands; for
example, you could enter the tif , telif , tsto, and tsq -t commands to display the
same information.

To specify a simple trigger condition

• Use the tg command.

Using the tg (simple trigger) command in the "complex" configuration will cause
the first two sequence terms to be modified. The pattern specified in the tg
command becomes the primary branch expression of the first sequence term. The
primary and secondary branch expressions of the second sequence term are set to
never, and this term is specified as the trigger term. The secondary branch
expression of the first sequencer term is also set to never.

The result of the tg command in the "complex" configuration is the same as in the
"easy" configuration, and equivalent tg commands (where the pattern is the same as
the "easy" configuration expression, and the storage qualifiers are the same) will
yield identical traces in each of the trace configurations.

As in the "easy" configuration, the tg command with no options will display the
primary branch expression of the first sequence term. This will only be the trigger
condition when the second sequence term is the trigger term.

Examples To set up a simple trigger on the address "update_sys:_update_system":
U>tpat p1 addr=update_sys:_update_system
U>tg p1

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

165

U>tsq
 tif 1 p1 2
 tif 2 never
 tif 3 any 4
 tif 4 any 5
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 2
 tsto 1 all
 tsto 2 all
 tsto 3 all
 tsto 4 all
 tsto 5 all
 tsto 6 all
 tsto 7 all
 tsto 8 all
 telif 1 never
 telif 2 never
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

A diagram of this sequencer specification is shown in the figure below.

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

166

To specify primary and secondary branch
expressions

• Use the tif and telif commands.

In the "easy" configuration, primary branches are always to the next sequence term.
In the "complex" configuration, primary branches may be to any sequence term.
Therefore, the number of the destination term must be specified before the
occurrence count.

In the "easy" configuration, the secondary branch expression is a "global restart". It
applies to all sequence terms and causes branches back to the first sequence term.
In the "complex" configuration, you can specify secondary branch expressions for
each sequence term and the branch may be to any sequence term. Therefore, the
number of the destination term must be specified.

Examples To specify a primary branch from sequence term 2 to sequence term 5 when the
pattern p2 is found:
U>tif 2 p2 5

To specify a secondary branch from sequence term 2 to sequence term 3 when the
pattern p3 is found:
U>telif 2 p3 3

To specify that the sequencer never branch out of term 5:
U>tif 5 never
U>telif 5 never

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

167

To specify the trigger term

• Use the tsq -t command.

In the "easy" configuration, the branch out of the last sequence term constitutes the
trigger. In the "complex" configuration there are always eight terms in the
sequencer, and any of the sequence terms except the first may be specified as the
trigger term. Entry into the trigger term constitutes the trigger. The trigger term is
specified with the tsq -t command.

Examples To specify that entry into the fifth term constitutes the trigger:
U>tsq -t 5

To specify storage qualifiers

• Use the tsto command.

In the "easy" configuration, the trace storage qualifier is global, that is, it applies to
all sequence terms. In the "complex" configuration, storage qualifiers are
associated with each sequence term (though you can specify that one storage
qualifier applies to all terms).

Prestore qualifiers still apply to all normal storage states; however, in the
"complex" configuration, you specify pattern or range resources with the tpq
command.

Examples To store states matching pattern p4 while searching for the branch expressions of
sequence term 7:
U>tsto 7 p4

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

168

To store states matching the range resource while searching for the branch
expressions of sequence term 5:
U>tsto 5 r

To store all states when searching for branch expressions, except when searching
for the branch expressions of sequence term 1:
U>tsto all
U>tsto 1 none

To trace windows of activity

1 Set up one sequence term as the window enable term.

2 Set up one sequence term as the window disable term.

3 Set up a trigger term.

4 Do not store states while searching for the window enable condition.

5 Store all states while searching for the window disable condition.

One common use for the "complex" configuration sequencer is to trace "windows"
of execution or, perhaps, to eliminate "windows" of execution from traces.

For example, suppose you wish to trace only the execution within a certain range of
addresses. These addresses could be a subroutine or perhaps they are just the
addresses of instructions in which you are interested.

A simple windowing sequencer specification would consist of a window enable
term, a window disable term, and perhaps a trigger term (if you wish to trigger on a
condition other than the enable or disable terms). Only the states which occur
between the window enable condition and the window disable condition are stored.

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

169

Examples To trace only the demo program execution from the call of the "update_system"
function to the call of the "get_targets" function, you would set up the sequencer
specification so that the call to the "update_system" function is the window enable
term and the return at the call to the "get_targets" function is the window disable
term.

Suppose also that you wish to trigger on any state in the window of execution. The
diagram of the sequencer to do this is shown in the figure below.

To reset the sequencer:
U>tsq -r

To specify trace patterns:
U>tpat p1 addr=update_sys:_update_system and stat=instr
U>tpat p2 addr=update_sys:_get_targets and stat=instr

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

170

To specify the primary and secondary branch expressions:
U>tif 1 p1 2
U>tif 2 any 3
U>telif 2 p2 1
U>tif 3 p2 4
U>tif 4 p1 3

To specify the trigger term:
U>tsq -t 3

To specify the storage qualifiers so that states are stored only while searching for
the window disable condition (the first command below specifies all storage
qualifiers to be none, and the second command specifies that all states be stored
while searching for the window disable condition):
U>tsto none
U>tsto 2 all
U>tsto 3 all

To place the trigger position at the center of the trace:
U>tp c

To display the sequencer specification.
U>tsq
 tif 1 p1 2
 tif 2 any 3
 tif 3 p2 4
 tif 4 p1 3
 tif 5 any 6
 tif 6 any 7
 tif 7 any 8
 tif 8 never
 tsq -t 3
 tsto 1 none
 tsto 2 all
 tsto 3 all
 tsto 4 none
 tsto 5 none
 tsto 6 none
 tsto 7 none
 tsto 8 none
 telif 1 never
 telif 2 p2 1
 telif 3 never
 telif 4 never
 telif 5 never
 telif 6 never
 telif 7 never
 telif 8 never

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

171

Starting the trace, waiting for the measurement to complete, and displaying the
trace will result in the following information.
U>t
 Emulation trace started
U>ts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm ignored
 Trigger in memory
 Arm to trigger ?
 States 512 (512) -1..510
 Sequence term 4
 Occurrence left 1
U>tf addr,h,14 mne count,r seq
U>tl -et 80

 Line addr,H 8018x mnemonic,H count,R seq
 ----- -------------- ------------------------------------ --------- ---
 -1 _update_system INSTRUCTION--opcode unavailable ********* +
 0 815ad 8bH, opcode fetch ROM ********* +
 1 815ae ecH, opcode fetch ROM ********* .
 2 19538 f0H, mem write ********* .
 3 19539 7eH, mem write ********* .
 4 815ad MOV BP,SP ********* .
 5 815af 1eH, opcode fetch ROM ********* .
 6 815af PUSH DS ********* .
 7 815b0 b8H, opcode fetch ROM ********* .
 8 815b1 09H, opcode fetch ROM ********* .
 9 19536 09H, mem write ********* .
 10 19537 10H, mem write ********* .
 11 815b0 MOV AX,#1009H ********* .
 12 815b2 10H, opcode fetch ROM ********* .
 13 815b3 8eH, opcode fetch ROM ********* .
 14 815b3 MOV DS,AX | ********* .
 15 815b4 d8H, opcode fetch ROM ********* .
 16 815b5 baH, opcode fetch ROM ********* .
 17 815b5 MOV DX,#1009H ********* .
 18 815b6 09H, opcode fetch ROM ********* .
 19 815b7 10H, opcode fetch ROM ********* .
 20 815b8 90H, opcode fetch ROM ********* .
 21 815b8 NOP ********* .
 22 815b9 b8H, opcode fetch ROM ********* .
 23 815b9 MOV AX,#018eH ********* .
 24 815ba 8eH, opcode fetch ROM ********* .
 25 815bb 01H, opcode fetch ROM ********* .
 26 815bc 90H, opcode fetch ROM ********* .
 27 815bc NOP ********* .
 28 815bd 52H, opcode fetch ROM ********* .
 29 815bd PUSH DX ********* .
 30 815be 50H, opcode fetch ROM ********* .
 31 815bf baH, opcode fetch ROM ********* .
 32 19534 09H, mem write ********* .
 33 19535 10H, mem write ********* .
 34 815be PUSH AX ********* .
 35 815c0 09H, opcode fetch ROM ********* .
 36 19532 8eH, mem write ********* .
 37 19533 01H, mem write ********* .

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

172

 38 815bf MOV DX,#1009H ********* .
 39 815c1 10H, opcode fetch ROM ********* .
 40 815c2 90H, opcode fetch ROM ********* .
 41 815c2 NOP ********* .
 42 815c3 b8H, opcode fetch ROM ********* .
 43 815c3 MOV AX,#018cH ********* .
 44 815c4 8cH, opcode fetch ROM ********* .
 45 815c5 01H, opcode fetch ROM ********* .
 46 815c6 90H, opcode fetch ROM ********* .
 47 815c6 NOP ********* .
 48 815c7 52H, opcode fetch ROM ********* .
 49 815c7 PUSH DX ********* .
 50 815c8 50H, opcode fetch ROM ********* .
 51 815c9 9aH, opcode fetch ROM ********* .
 52 19530 09H, mem write ********* .
 53 19531 10H, mem write ********* .
 54 815c8 PUSH AX ********* .
 55 815ca 8cH, opcode fetch ROM ********* .
 56 1952e 8cH, mem write ********* .
 57 1952f 01H, mem write ********* .
 58 815c9 CALL FAR PTR update_sys:_get_targ ********* .
 59 815cb 00H, opcode fetch ROM ********* .
 60 815cc 5aH, opcode fetch ROM ********* .
 61 815cd 81H, opcode fetch ROM ********* .
 62 815ce 83H, opcode fetch ROM ********* .
 63 1952c 5aH, mem write ********* .
 64 1952d 81H, mem write ********* .
 65 1952a 2eH, mem write ********* .
 66 1952b 00H, mem write ********* .
 67 s:_get_targets 55H, opcode fetch ROM ********* .
 68 s:_get_targets PUSH BP ********* +
 69 _update_system INSTRUCTION--opcode unavailable ********* +
 70 815ad 8bH, opcode fetch ROM ********* .
 71 815ae ecH, opcode fetch ROM ********* .
 72 19538 f0H, mem write ********* .
 73 19539 7eH, mem write ********* .
 74 815ad MOV BP,SP ********* .
 75 815af 1eH, opcode fetch ROM ********* .
 76 815af PUSH DS ********* .
 77 815b0 b8H, opcode fetch ROM ********* .
 78 815b1 09H, opcode fetch ROM ********* .

Chapter 6: Using the Emulation Analyzer - Complex Configuration
Using the Sequencer

173

174

7

Using the External State Analyzer

175

Using the External State Analyzer

The HP 64703A analyzer provides 16 external trace signals (in addition to the 64
channels of emulation analysis). These trace lines allow you to analyze additional
target system signals. The external analyzer may be configured as an extension to
the emulation analyzer, as an independent state analyzer, or as an independent
timing analyzer.

Note that the external analyzer’s independent timing mode (xtmo -t) cannot be
used from the Terminal Interface. A host computer interface is necessary to
provide timing analysis. Consequently, independent timing analysis is not
described in this manual. Refer to the appropriate host computer interface manual
(either the 80186/8/XL/EA/EB/EC Emulator User’s Guide for the PC Interface or
the 80186/8/XL/EA/EB/EC Emulator User’s Guide for the Graphical User
Interface).

The tasks you perform with the external analyzer are grouped into the following
sections:

• Setting up the external analyzer.

• Using the external analyzer as part of the emulation analyzer.

• Using the external analyzer as an independent state analyzer.

Chapter 7: Using the External State Analyzer

176

Setting Up the External Analyzer

This section assumes you have already connected the external analyzer probe to the
HP 64700 Card Cage as described in Step 1, panel 13 of the "Installation" chapter.

Before you can use the external analyzer, you must:

• Connect the external analyzer probe to the target system.

• Specify threshold voltages of external trace signals.

• Label the external trace signals.

• Select the external analyzer mode.

Chapter 7: Using the External State Analyzer
Setting Up the External Analyzer

177

To connect the external analyzer probe to the
target system

1 Assemble the Analyzer Probe. The analyzer probe is a two-piece assembly, consisting of ribbon cable
and 18 probe wires (16 data channels and the J and K clock inputs) attached to a connector. Either end of
the ribbon cable may be connected to the 18 wire connector, and the connectors are keyed so they may
only be attached one way. Align the key of the ribbon cable connector with the slot in the 18 wire
connector, and firmly press the connectors together.

Chapter 7: Using the External State Analyzer
Setting Up the External Analyzer

178

2 Attach grabbers to probe wires. Each of the 18 probe wires has a signal and a ground connection.
Each probe wire is labeled for easy identification. Thirty-six grabbers are provided for the signal and
ground connections of each of the 18 probe wires. The signal and ground connections are attached to the
pin in the grabber handle.

Chapter 7: Using the External State Analyzer
Setting Up the External Analyzer

179

CAUTION Turn OFF target system power before connecting analyzer probe wires to the target
system. The probe grabbers are difficult to handle with precision, and it is
extremely easy to short the pins of a chip (or other connectors which are close
together) with the probe wire while trying to connect it.

3 You can connect the grabbers to pins, connectors, wires, etc., in the target system. Pull the hilt of the
grabber towards the back of the grabber handle to uncover the wire hook. When the wire hook is around
the desired pin or connector, release the hilt to allow the grabber spring tension to hold the connection.

Chapter 7: Using the External State Analyzer
Setting Up the External Analyzer

180

To specify threshold voltages

• Use the xtv command.

The external analyzer probe signals are divided into two groups: the lower byte
(channels 0 through 7 and the J clock), and the upper byte (channels 8 through 15
and the K clock). You can specify a threshold voltage for each of these groups.

The default threshold voltages are specified with the keyword TTL which
translates to 1.4 volts.

Use the xtv (threshold voltage for external trace signals) command to specify
different threshold voltages. The -l option to xtv allows you to specify threshold
voltages for the lower group. The -u option allows you to specify threshold
voltages for the upper group.

Voltages may be in the range from -6.4 volts to 6.35 volts (with a 50 mV
resolution); you may also use the keywords TTL , CMOS (which translates to 2.5
volts), or ECL (which translates to -1.3 volts).

Examples To specify CMOS threshold voltages for all external trace signals:
U>xtv -l CMOS -u CMOS

Chapter 7: Using the External State Analyzer
Setting Up the External Analyzer

181

To define external trace labels

• Use the xtlb command.

You may wish to define external trace labels to make specifying qualifiers easier.
External trace labels may be used in any of the external analyzer modes.

One external trace label has been predefined, xbits. This label is associated with all
16 external trace signals. This label appears in the default trace format and listing.

If you wish to define external trace labels to further break down the external
signals, use the xtlb (external trace label) command.

You may change the trace listing format (xtf or tf) to include external labels in the
trace after they have been defined.

Examples To define an external analyzer label, iodata, for external analyzer signals 0 through
7:
U>xtlb iodata 0..7

Chapter 7: Using the External State Analyzer
Setting Up the External Analyzer

182

Using with the Emulation Bus Analyzer

By default, on power-up or after trace initialization (tinit), the external analyzer is
aligned with the emulator. In this mode, you have 16 external trace signals which
are clocked with the same clock signal as the emulation bus analyzer. The external
trace signals may be used to capture target system signals synchronized with the
emulation clock.

When the external analyzer operates as an extension of the emulation analyzer, they
operate as one analyzer. The only external trace commands allowed in this mode
are xtv, xtlb , and xtmo. You can, however, display the help text for the other
external trace commands. The external labels may be referenced in emulation trace
commands in this mode.

External trace signal data is captured on the trace clock specified in the tck (trace
clock source) command. You should not use the external J and K signals to clock
the emulation trace; however, you may wish to use these signals to qualify the
emulation trace clock (refer to the "Qualifying the Analyzer Clock" section of the
"Using the Analyzer — Easy Configuration" chapter.)

To select the "emulation analyzer extension"
mode

• Enter the xtmo -e command.

To re-select the emulation analyzer extension mode, use the xtmo -e command.

Chapter 7: Using the External State Analyzer
Using with the Emulation Bus Analyzer

183

Using as an Independent State Analyzer

The external analyzer may also operate as an independent state analyzer. The
independent state analyzer is identical to the emulation analyzer, except that only
16 bits of analysis are available. The analyzer now acts as two separate state
analyzers; two sets of analyzer resources (trace memory, patterns, qualifiers, etc.)
are available, one for the emulation analyzer and one for the independent state
analyzer.

When the independent state analyzer mode is selected, you can use one analyzer to
arm the other. You can specify the arm condition as a qualifier, perhaps as the
trigger condition (cross-triggering). (Refer to the "Making Coordinated
Measurements" chapter for more information on cross-triggering.)

This section describes how to:

• Select the independent state external analyzer mode.

• Specify the external analyzer clock.

• Specify the maximum qualified clock speed.

• Qualify the external analyzer clock.

• Use slave clocks for mixed clock demultiplexing.

• Use slave clocks for true demultiplexing.

• Arm the external analyzer with the emulation analyzer trigger.

To select the "independent state" mode

• Enter the xtmo -s command.

When you use the external analyzer as an independent state analyzer, a whole new
set of external trace commands become available. Trace commands (except for the
trace activity, ta, and trace initialization, tinit , commands) are duplicated for the
independent state analyzer and prefixed with an x.

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

184

The following commands become available in the independent state mode: xt,
xtarm , xtcf, xtck, xtcq, xtelif , xtg, xth, xtif , xtl , xtlb , xtp, xtpat, xtpq, xtrng , xts,
xtsck, xtsq, and xtsto. These commands operate identically to their counterpart
emulation analyzer commands.

To specify the external analyzer clock source

• Use the xtck -r <clock>, xtck -f <clock>, or xtck -x <clock> commands.

The independent state analyzer is typically clocked with target system clock signals
connected to the J and K external clock inputs.

The independent state analyzer may also be clocked with the L, M, and N clock
signals generated by the emulator. The L clock is the emulation clock derived by
the emulator, the N clock is used as a qualifier to provide the user/background
tracing options (-u and -b) to tck, and the M clock is not used.

Once a clock signal has been selected, you must specify whether the analyzer is to
clock on the rising edge of the signal, the falling edge, or both the rising and falling
edges. The edge is specified by the three following xtck options.

-r Specifies that the clock should take place on the rising edge of
the signal(s) which follow.

-f Specifies that the clock should take place on the falling edge of
the signal(s) which follow.

-x Specifies that the clock should take place on both edges of the
signal(s) which follow.

When several clocks are specified, they are ORed; that is, each signal specified will
clock the analyzer.

Examples To specify that the external analyzer be clocked on the rising edge of the JCL
signal:
U>xtck -r J

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

185

To specify that the external analyzer be clocked on the falling edge of the KCL
signal:
U>xtck -f K

To specify that the external analyzer be clocked on both the rising and falling edges
of the JCL signal:
U>xtck -x J

To specify the maximum qualified clock speed

• Use the xtck -s S, xtck -s F, or xtck -s VF commands.

The maximum qualified clock rate is the repetition rate of all specified clock
signals (see the following figure). You are allowed to select the maximum
qualified clock speed of the analyzer; however, there are tradeoffs involving the
trace count qualifier to be considered:

• Slow (xtck -s S). Slow specifies a maximum qualified clock rate of 16 MHz.
When S is selected, there are no restrictions on the trace count qualifier.

• Fast (xtck -s F). Fast specifies a maximum qualified clock rate of 20 MHz.
When "F" is selected, the trace count qualifier may be used to count states but
not time.

• Very Fast (xtck -s VF). Very fast specifies a maximum qualified clock rate of
25 MHz. When "VF" is selected, the trace count qualifier may not be used at
all (in other words, xtcq none).

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

186

Examples

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

187

To qualify clocks

• Use the xtck -h <clock> or xtck -l <clock> commands.

Independent state analyzer clock signals may be qualified with other clock signals;
that is, the selected signals may only clock the analyzer when the qualifying clock
signal is true. Clock signals are qualified by using the -l and -h options to the xtck
command.

The -l option is used to specify a qualifying signal which only allows the trace to
clock when this signal is lower than the threshold voltage.

The -h option is used to specify a qualifying signal which only allows the trace to
clock when this signal is higher than the threshold voltage.

Any signal, J, K, L, M, or N, may be used to qualify other signals.

Note that if several clock qualifiers are specified, the analyzer will be clocked if
any one is true.

Qualifier setup time is approximately 25 nanoseconds when the external analyzer is
aligned with emulation analyzer (xtmo -e). Qualifier setup time is approximately
20 nanoseconds when the external analyzer operates as an independent state
analyzer (xtmo -s). Qualifier hold time is approximately 5 nanoseconds.

Examples To allow the external analyzer to be clocked when the signal on KCL is high:
U>xtck -h K

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

188

To use slave clocks for mixed clock
demultiplexing

• Use the xtsck -m command.

External analyzer slave clocks are specified with the xtsck (external trace slave
clock) command. (Master clocks are specified by the xtck commands.) By default,
the slave clocks are turned OFF, as may be specified by the -o option to the xtsck
command.

Rising edges (-r), falling edges (-f), or both edges (-x) of clocks J, K, L, M, or N
may be specified as the slave clock.

The mixed clock mode is specified with the -m option to the xtsck command. In
this mode, the lower 8 channels of the pod (bits 0-7) are latched with the slave
clock, and the master clock gates the entire pod (see the figure below).

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

189

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be latched at the same time as the upper 8 bits. If more than one
slave clock has appeared since the last master clock, only the first slave data will be
available to the analyzer (see the figure below).

Examples To specify a slave clock on the rising edge of the KCL signal for mixed clock
demultiplexing:
U>xtsck -m -r K

To use slave clocks for true demultiplexing

• Use the xtsck -d command.

External analyzer slave clocks are specified with the xtsck (external trace slave
clock) command. (Master clocks are specified by the xtck commands.) By default,
the slave clocks are turned OFF, as may be specified by the -o option to the xtsck
command.

Rising edges (-r), falling edges (-f), or both edges (-x) of clocks J, K, L, M, or N
may be specified as the slave clock.

The true demultiplexing mode is specified with the -d option to the xtsck
command. In this mode, the lower 8 channels of the pod (bits 0-7) are latched with

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

190

the slave clock; the upper 8 channels also get data from signals 0-7, but they are
clocked with the master clock. Thus, the analyzer gets two copies of bits 0-7. The
slave clock latches the data for bits 0-7, and the master clock then gates the entire
pod into the analyzer (see the figure below).

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be the same as the upper 8 bits. If more than one slave clock
has appeared since the last master clock, only the first slave data will be available to
the analyzer.

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

191

Examples To specify a slave clock on the rising edge of the KCL signal for true
demultiplexing:
U>xtsck -d -r K

To arm the analyzer with the emulation analyzer
trigger

• Use the xtarm command.

You can arm (that is, activate) the external analyzer when the emulation analyzer
finds its trigger condition. The connection between the emulation analyzer and the
external analyzer is made over one of the emulator’s internal trigger signals (trig1
or trig2). You set up the emulation analyzer to drive the internal trigger signal
when it finds its trigger condition, and you use the xtarm command to arm the
external analyzer when the internal trigger signal appears.

Examples To arm the external analyzer with the emulation analyzer’s trigger output over the
internal trig2 signal:
M>xtarm =trig2
M>xtg arm
M>xt
 External trace started
M>tg any
M>tgout trig2
M>r rst
U>t
 Emulation trace started
U>xts
 --- Emulation Trace Status ---
 NEW User trace complete
 Arm received
 Trigger in memory
 States 512 (512) 0..512
 Sequence term 2
 Occurrence left 1

Chapter 7: Using the External State Analyzer
Using as an Independent State Analyzer

192

8

Making Coordinated Measurements

193

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

• Setting up for coordinated measurements.

• Starting and stopping multiple emulators.

• Using external trigger signals.

194

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

CMB Connector

BNC Connector

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear panel
of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 connected to the CMB. This signal can be used to
trigger an analyzer. It can be used as a break source for the emulator.

READY The CMB READY line is high true. It is an open collector and performs
an ANDing of the ready state of enabled emulators on the CMB. Each emulator on
the CMB releases this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a synchronized start.

When CMB is enabled, each emulator is required to break to background when
CMB READY goes false, and will wait for CMB READY to go true before
returning to the run state. When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

195

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the CMB
can drive this line. It serves as a global interrupt and is processed by both the
emulator and the analyzer. This signal causes an emulator to run from a specified
address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and BNC
trigger lines have the same logical purpose: to provide a means for connecting the
internal trigger signals (trig1 and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used directly as a break
condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

196

Setting Up for Coordinated Measurements

This section describes how to:

• Connect the Coordinated Measurement Bus.

• Connect the rear panel BNC.

To connect the Coordinated Measurement Bus
(CMB)

CAUTION Be careful not to confuse the 9-pin connector used for CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cable for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connectors
and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are using a self-built cable!

Chapter 8: Making Coordinated Measurements
Setting Up for Coordinated Measurements

197

1 Connect the cables to the HP 64700 CMB ports.

Chapter 8: Making Coordinated Measurements
Setting Up for Coordinated Measurements

198

Number of HP 64700 Series
Emulators

Maximum Total Length of
Cable

Restrictions on the CMB
Connection

2 to 8 100 meters None.

9 to 16 50 meters None.

9 to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear
panel pullups connected. *

* A modification must be performed by your HP Customer Engineer.

Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

CAUTION The BNC line on the HP 64700 accepts input and output of TTL levels only. (TTL
levels should not be less than 0 volts or greater than 5 volts.) Failure to observe
these specifications may result in damage to the HP 64700 Card Cage.

Chapter 8: Making Coordinated Measurements
Setting Up for Coordinated Measurements

199

1 Connect one end of a 50 ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising edge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a receiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected and is
protected from TTL level signals when the emulator is powered down.

Chapter 8: Making Coordinated Measurements
Setting Up for Coordinated Measurements

200

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements. This section describes how to:

• Enable synchronous measurements.

• Start synchronous measurements.

• Disable synchronous measurements.

To enable synchronous measurements

• Enter the cmb -e command.

You can enable the emulator’s interaction with the CMB by using the cmb -e
command. When the EXECUTE signal is received, the emulator will run at the
address specified by the rx command. (Specifying an address with the rx
command will automatically enable interaction with the CMB.)

The tx -e command enables the analyzer to start a measurement when the
EXECUTE signal is received. If trace at execute is disabled (tx -d), the analyzer
ignores the CMB EXECUTE signal.

Note that the cmb command does not affect the operation of analyzer
cross-triggering.

Examples To enable synchronous measurements with the cmb -e command:
U>cmb -e

To enable synchronous measurements with the rx <address> command:
U>rx 920

Chapter 8: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

201

To start synchronous measurements

• Enter the x command.

The x command causes the EXECUTE line to be pulsed, thereby initiating a
synchronous measurement. CMB interaction does not have to be enabled (cmb -e)
in order to use the x command. (The cmb -e command only specifies how the
emulator will react to the CMB EXECUTE signal.)

All emulators whose CMB interaction is enabled will break into the monitor when
any one of those emulators breaks into its monitor.

Note that when the CMB is being actively controlled by another emulator, the step
command (s) does not work correctly. The emulator may end up running in user
code (NOT stepping). Disable CMB interaction (cmb -d) while stepping the
processor.
U>x

To disable synchronous measurements

• Enter the cmb -d command.

You can disable the emulator’s interaction with the CMB by using the cmb -d
command. When interaction is disabled, the emulator ignores the CMB EXECUTE
and READY lines.

Chapter 8: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

202

Using External Trigger Signals

External trigger signals come from the CMB and BNC connectors. A diagram of
the internal signals and the commands which may be used to drive them or to arm
an analyzer with them are shown in the figure below. This diagram is only

Chapter 8: Making Coordinated Measurements
Using External Trigger Signals

203

intended to show logical connections, and does not represent actual circuitry inside
the emulator.

This section describes how to:

• Arm analyzers with external trigger signals.

• Break emulator execution with external trigger signals.

• Send analyzers’ trigger output signals to external lines.

To arm analyzers with external trigger signals

1 Use the cmbt -d or bnct -d commands to have the rear panel drive an internal
trigger signal.

2 Use the tarm or xtarm commands to arm the analyzer on the internal signal.

By default, the analyzers are always armed. This means that the analyzers arm
conditions are always true.

The tarm (trace arm condition) command is used to specify or display the
emulation analyzer arm condition.

The xtarm (external trace arm condition) command is used to specify or display the
independent state analyzer arm condition.

There are two internal signals, trig1 and trig2 , which may be specified as the arm
condition. You can specify that the arm condition be true when one of these two
signals is true (=trig1 or =trig2).

By using !=trig1 or !=trig2 , you can specify that the analyzer be armed or never
armed, depending on the state of the internal signal when the trace is started. .

The keyword arm may be used to specify primary and secondary branch qualifiers,
as well as storage or prestore qualifiers.

It is often important to start the analyzer which receives a signal before the analyzer
which drives the signal. For example, if you start the analyzer which drives a
signal first, the signal may already be driven before you start the analyzer which

Chapter 8: Making Coordinated Measurements
Using External Trigger Signals

204

receives the signal. The receiving analyzer will most likely capture states which
execute long after the condition which caused the signal to be driven.

Examples To arm the emulation analyzer when the external CMB trigger signal is true:
M>cmbt -d trig1
M>tarm =trig1

If you enter the following commands:
M>bnct -d trig2
M>tarm !=trig2

If the trig2 signal is asserted when the analyzer is started, the analyzer can never be
armed. If the trig2 signal is not asserted when the analyzer is started, the analyzer
is armed immediately.

To break emulator execution with external trigger
signals

• Use the bc -e cmbt or bc -e bnct commands.

You can use the bc -e cmbt or bc -e bnct commands to enable emulator execution
to break into the monitor when a trigger signal is received.

Examples To enable breaks on the CMB TRIGGER signal:
R>bc -e cmbt

To enable breaks on the BNC TRIGGER signal:
R>bc -e bnct

Chapter 8: Making Coordinated Measurements
Using External Trigger Signals

205

To send analyzer trigger output signals to
external lines

1 Use the cmbt -r or bnct -r commands to have the rear panel receive an internal
trigger signal.

2 Use the tgout or xtgout commands to drive the trigger output to the internal signal.

The default condition of the analyzer specifies that neither the emulation analyzer
nor the external analyzer will drive the internal trig1 or trig2 signals when the
trigger is found.

The tgout command is used to specify that one of the internal signals be driven
when the emulation analyzer trigger is found.

The xtgout command is used to specify that one of the internal signals be driven
when the independent state analyzer trigger is found.

The tgout or xtgout commands with no options will display the signal which is
currently being driven when the trigger is found (or none if no signal is driven
when the trigger is found).

The signals which may be driven when the trigger is found are the internal signals
trig1 and trig2 . The trig1 and trig2 signals may drive the CMB or BNC TRIGGER
lines or the emulator break.

Note that you should not set up an analyzer to both drive and receive the same
trigger signal. For example, if you issue the commands tg arm; tarm =trig1;
tgout trig1; bnct -d trig1 -r trig1 , the analyzer trig1 signal will become latched in
a feedback loop and will remain latched until the loop is broken. To break the loop,
you must first disable the signal’s source, then momentarily disable either the drive
or receive function. In this case, the commands tgout none and bnct -d none will
break the loop.

Examples To send the emulation analyzer trigger output to the CMB trigger line over the
internal trig1 signal:
M>cmbt -r trig1
M>tgout trig1

Chapter 8: Making Coordinated Measurements
Using External Trigger Signals

206

To send the independent state analyzer trigger output to the BNC trigger line over
the internal trig2 signal:
M>bnct -r trig2
M>xtgout trig2

Chapter 8: Making Coordinated Measurements
Using External Trigger Signals

207

208

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

209

Part 3

210

9

Commands

211

Commands

This chapter describes:

• The Terminal Interface commands.

• Analyzer state qualifier expressions.

• Values that that can be specified in commands.

212

<addr> - address specification in the 80186/188
emulators

XXXXX - 20 bit physical address
XXXX:XXXX - 16:16 bit segment:offset address
XXXXX..XXXXX - address range, 20 bit address through 20 bit
 address
XXXX:XXXX..XXXX:XXXX - address range, segment:offset address through
 segment:offset address
XXXXX.. - 128 byte address range
XXXX:XXXX.. - 128 byte address range

You cannot mix physical and segment:offset addresses when specifying address
ranges.

Chapter 9: Commands
<addr> - address specification in the 80186/188 emulators

213

b - break emulation processor to monitor

b

The b command issues a break to the emulator, causing it to stop executing the user
program and begin execution of the monitor program. If the emulator is in the reset
state when a break occurs, it will be released from reset and will begin execution
within the emulation monitor.

See Also r (runs the user program from the current pc or a specified address)

s (steps the user program a number of instructions from the current pc or a specified
address)

Chapter 9: Commands
b - break emulation processor to monitor

214

bc - set or display break conditions

bc - display current setting for all break conditions
bc -e <condition> - enable specified break condition(s)
bc -d <condition> - disable specified break condition(s)
bc -d <condition> <condition> - multiple <condition>s allowed

The bc command allows you to set break conditions for the emulation system. This
allows you to have the emulator break to the monitor upon error conditions (such as
write to ROM), emulation processor trace events, or break to the monitor when a
trigger signal is received.

The parameters are as follows:

-e Enables the indicated break conditions (which must be specified immediately
following the -e on the command line).

-d Disables the indicated break conditions (which must be specified immediately
following the -d on the command line).

<condition> You can enable or disable the following break conditions:

bp Software breakpoints and breakpoint registers. Software
breakpoints and the processor breakpoint registers can not be
configured independently. The "bp" condition enables or
disables them both.

rom Writes to ROM memory locations, as characterized when
mapping memory.

bnct Assertion of the rear panel BNC TRIGGER signal. Note that
this signal may also drive either of the internal trig1 or trig2
signals or both.

cmbt Assertion of the CMB (Coordinated Measurement Bus)
TRIGGER signal. Note that the CMB trigger signal may also
drive either of the internal trig1 or trig2 signals or both.

trig1 Assertion of the internal trig1 signal. Refer to the tgout, bnct,
and cmbt commands for information on specifying drivers and
receivers of the trig1 signal.

Chapter 9: Commands
bc - set or display break conditions

215

trig2 Assertion of the internal trig2 signal. Refer to the tgout, bnct,
and cmbt commands for information on specifying drivers and
receivers of the trig2 signal.

When you use the bc command, the emulator may break into the monitor while
each enable/disable is being executed. If the emulator was executing your program
when the bc command was received, it will return to your program when finished
executing the command. If you request only a display of the current break
conditions, the emulator does not break to the monitor.

When a hardware reset occurs during processing of the bc command, the result may
be that a particular break condition is left in an unknown state. If this occurs, a
display of the break conditions will show a question mark "?" instead of -e or -d
next to the break condition.

Since the 80186/188 emulator prefetches instructions, it is possible that an
additional instruction may execute after the one which originally caused the break
condition. If this does occur, the additional instruction was already in the
processor’s instruction pipeline; the emulator has no way of aborting the execution
of that instruction.

See Also bnct (specify drivers and receivers of the rear panel BNC signal)

cmbt (specify drivers and receivers of the CMB trigger signal)

bp (set/delete software breakpoints)

map (specify whether memory locations are mapped as RAM or ROM)

tgout (specify whether the trig1 and/or trig2 signals are to be driven when the
analyzer finds the trigger condition)

Chapter 9: Commands
bc - set or display break conditions

216

bnct - specify control of rear panel BNC signal

bnct - display current bnct set up
bnct -d <dtype> - rear panel BNC drives trig(1,2) signal(s)
bnct -r <rtype> - rear panel BNC receives trig(1,2) signal(s)

--- NOTES ---
All option combinations are accepted:
’bnct -d trig1,trig2 -r trig1,trig2’ is a valid command

The bnct command allows you to specify which of the internal trig1 or trig2
trigger signals will drive and/or receive the rear panel BNC trigger. You can
specify the signals individually, as an ORed condition for drive, or as an ANDed
condition for receive; or, you can specify that the signals are not to be driven or
received.

Upon powerup, bnct is set to bnct -d none -r none.

The parameters are as follows:

-d Specifies that the rear panel BNC port drives the internal trigger signals, trig1 and
trig2.

-r Specifies that the rear panel BNC port receive the internal trigger signals, trig1 or
trig2, and send them out the BNC port.

<dtype> The valid drive options are:

trig1 When the BNC signal is received, drive trig1 signal.

trig2 When the BNC signal is received, drive trig2 signal.

none When the BNC signal is received, drive neither signal.

<rtype> The valid receive options are:

trig1 When trig1 signal goes true, send out the BNC signal.

trig2 When trig2 signal goes true, send out the BNC signal.

none Neither trig1 or trig2 will send the BNC signal out.

Normally, you would use this command to cross-trigger instruments. For example,
you may wish to trigger a digitizing oscilloscope hooked to various timing signals

Chapter 9: Commands
bnct - specify control of rear panel BNC signal

217

when the emulation analyzer finds a certain state, or, you may wish to do the
converse and trigger the HP 64700’s analyzer when an oscilloscope finds its trigger.

See Also bc (break conditions; can be used to specify that the emulator will break into the
emulation monitor upon receipt of one of the trig1 /trig2 signals)

cmbt (coordinated measurement bus trigger; used to specify which internal signals
will be driven or received by the HP 64700 coordinated measurement bus)

tarm (analyzer trace arm; used to specify arming (begin to search for trigger)
conditions for the analyzer -- trig1/trig2 can be used to arm the analyzer)

tgout (specifies which of the trig1/trig2 signals are to be driven when the analyzer
trigger is found)

Chapter 9: Commands
bnct - specify control of rear panel BNC signal

218

bp - set, enable, disable, remove or display
software breakpoints

bp - display current breakpoints
bp -v - verbosely display current breakpoints
bp <addr> - set breakpoint at <addr>
bp -e * - enable all breakpoints
bp -e <addr> - enable breakpoint at <addr>
bp -d * - disable all breakpoints
bp -d <addr> - disable breakpoint at <addr>
bp -r * - remove all breakpoints
bp -r <addr> - remove breakpoint at <addr>
bp -p <addr> - set permanent breakpoint at <addr>
bp -t <addr> <count> - set temporary breakpoint at <addr>
 with occurrence <count> (default 1)
bp <addr> <addr> - more than one <addr> may be given

Upon powerup or init initialization, the breakpoint table is cleared and the
breakpoint feature is disabled.

The parameters are as follows:

<addr> Specifies the address location where the software breakpoint is to be inserted. If
you specify options -e, -d, or -r , the address specifies the location of the software
breakpoint to be enabled, disabled, or removed.

<count> Specifies the number of times a temporary breakpoint can be hit before it becomes
disabled.

-e Enables (activates) the breakpoint(s) at the address(es) specified. This installs the
necessary breakpoint instruction in memory. If the breakpoint is already enabled,
no action is taken.

-d Disables (deactivates) the software breakpoint(s) at the address(es) specified.
When the software breakpoint is disabled, the original memory contents are
restored if the breakpoint was enabled. The software breakpoint address(es) remain
in the breakpoint definition table and can be reset by using the bp -e <ADDRESS>
command.

-p Sets a permanent breakpoint. Breakpoints set using this option remain active until
disabled by bp -d or bc -d bp commands.

-r Removes the software breakpoint(s) at the addresses specified. When the software
breakpoint is removed, the original memory contents are restored if the breakpoint
was enabled; then, the address is removed from the breakpoint table.

Chapter 9: Commands
bp - set, enable, disable, remove or display software breakpoints

219

-t Sets a temporary breakpoint.

-v Displays the breakpoint list with -p, -t, and <count> parameters.

Note that when the breakpoint table is displayed with the bp command, the
enable/disable status of each breakpoint is tested by reading the memory locations
in question. If a software break instruction is found, the breakpoint is displayed as
"enabled"; if not, the breakpoint is displayed as "disabled". If the software
breakpoint is in target RAM and emulator is running under the real-time restriction,
the breakpoint is displayed as "status unknown".

If the emulator executes an INT 3 instruction that was placed by you (either
through your compiler or via memory modification) and not by the bp command,
an "undefined breakpoint" error message is generated.

If the emulator is executing in the user program when you define or modify
breakpoints, it will break into the monitor for each breakpoint that is defined or
modified. The emulator will return to user program execution after breakpoint
definition or modification.

Remember that any operation which modifies memory or the memory map will
alter the existing breakpoints. For example, if you load a new program in the same
address range where breakpoints reside, the breakpoints will be destroyed.
Changing the memory map will prevent the emulator from placing new breakpoints
or enabling existing breakpoints.

The breakpoint break condition is enabled (bc -e bp) after power-up or
initialization. If you disable the breakpoints break condition with the bc -d bp
command, the software breakpoints currently defined will remain in the breakpoint
table, but will be disabled and will remain in that state until the breakpoint feature
is reenabled and the specified breakpoints are reenabled (bc -e bp and bp -e
<addr>).

See Also bc (enable/disable breakpoint conditions (including bp))

mo (defines memory access and display modes; the bp command uses the currently
defined modes when writing software breakpoints into memory)

Chapter 9: Commands
bp - set, enable, disable, remove or display software breakpoints

220

cf - display or set emulation configuration

cf - display current settings for all config items
cf <item> - display current setting for specified <item>
cf <item>=<value> - set new <value> for specified <item>
cf <item> <item>=<value> <item> - set and display can be combined

The parameters are as follows:

<item> Configuration item. The valid 80186/188 emulator configuration items are:

proc Set processor type. For the HP 64767A:

The cf proc=186EA command causes the emulator to
emulate the 80C186EA processor.

The cf proc=188EA command causes the emulator to
emulate 80C188EA processor.

The cf proc=186XL command causes the emulator to
emulate 80C186XL, 80C186, and 80186 processors.

The cf proc=188XL command causes the emulator to
emulate 80C188XL, 80C188, and 80188 processors.

For the HP 64767B:

The cf proc=186EB command causes the emulator to
emulate the 80C186EB processor.

The cf proc=188EB command causes the emulator to
emulate 80C188EB processor.

For the HP 64767C:

The cf proc=186EC command causes the emulator to
emulate the 80C186EB processor.

The cf proc=188EC command causes the emulator to
emulate 80C188EC processor.

Chapter 9: Commands
cf - display or set emulation configuration

221

mon Select monitor option (bg, fg, ufg).

The cf mon=bg command selects the default background
monitor.

The cf mon=fg command selects the default foreground
monitor.

The cf mon=ufg command selects a user supplied foreground
monitor. Allows use of a foreground monitor that has been
tailored to a specific target system. User code must first be
loaded using the -f option of the load command.

Note that all map terms are deleted when the monitor option is
changed. Also, the single step vector must be loaded when
using a foreground monitor.

loc Foreground monitor location (any 4K boundary) and locking to
target rdy.

The cf loc=<address> command sets the foreground monitor
base address and specifies that foreground monitor bus cycles
are not locked to the target rdy line (no wait states).

The cf loc=<address>,nolock command sets the foreground
monitor base address and specifies that foreground monitor bus
cycles are not locked to the target rdy line (no wait states).

The cf loc=<address>,lock command sets the foreground
monitor base address and specifies that foreground monitor bus
cycles be locked to the target rdy line.

rrt Restrict to real time (en or dis). This option can be used to
prevent accidental breaks that might cause target system
problems.

When cf rrt=en and the emulator is running user code, the
system refuses all commands that cause a break except rst, r ,
and b. (For example, register and memory commands that must
access user memory).

Chapter 9: Commands
cf - display or set emulation configuration

222

When cf rrt=dis , the system will accept commands normally.

rad Physical run address default (maxseg or minseg). When a
physical address (non-segmented) is entered with either a run or
step command, the emulator must convert it to a logical (dword)
address. This option allows you to set the default algorithm for
doing this.

The cf rad=maxseg command specifies that the segment part of
the resulting dword will be made as large as possible.

The cf rad=minseg command specifies that the segment part of
the resulting dword will be made as small as possible.

For example, address 12345H is converted to 1234:0005H
when cf rad=maxseg and to 1000:2345H when cf rad=minseg.

If neither of these options is suitable, the run address may be
entered explicitly in logical (dword) format (segment:offset).

See Also help (you can get an on line display of the configuration items for a particular
emulator by typing help cf. To obtain more information regarding a particular
configuration item, type help cf <config_item>).

Chapter 9: Commands
cf - display or set emulation configuration

223

cim - copy image of target memory into
emulation memory

cim <addr>..<addr> - copy image in specified address
range
cim <addr>..<addr> <addr>..<addr> - copy multiple ranges

The cim command allows you to copy an image of target memory into emulation
memory. Typically, you use this command in order to be able to use the features
associated with emulation memory (for example, software breakpoints, coverage
memory, or the memory tag mode).

Before you use the cim command, you must map emulation memory ranges
corresponding to the target memory ranges you wish to copy.

The parameters are as follows:

<addr> Specifies the lower, and possibly upper, memory address boundaries of the target
memory range to be copied. The default is a hexadecimal number; other bases may
be specified. You can use "<addr>.." to specify a range from the address through
the next 127 bytes.

See Also map (used to define the type and location of memory used by the emulator)

Chapter 9: Commands
cim - copy image of target memory into emulation memory

224

cl - set or display command line editing mode

cl - display command line edit mode
cl -e - enable command line editing
cl -d - disable command line editing
cl -l <columns> - number of columns for command line

The cl command allows you to enable or disable command line editing. Command
line editing has two typing modes. The normal command entry is input mode. The
input mode functions like normal (canonical) command entry. The control mode
allows command modification.

The parameters are as follows:

-e Enables command line editing.

-d Disables command line editing.

-l <columns> This option allows you to set the column length for the command line. The
<columns> value can be from 40 to 132 columns.

Chapter 9: Commands
cl - set or display command line editing mode

225

The editing mode commands are as follows.

Command Description

<ESC>
i
a
x
r
dd
D
A
$
0
^
h
l
k
j
/<string>
n
N

enter command editing mode
insert before current character
insert after current character
delete current character
replace current character
delete command line
delete to end of line
append to end of line
move cursor to end of line
move cursor to start of line
move cursor to start of line
move left one character
move right one character
fetch previous command
fetch next command
find previous command in history matching <string>
fetch previous command matching <string>
fetch next command matching <string>

Chapter 9: Commands
cl - set or display command line editing mode

226

cmb - enable/disable Coordinated Measurement
Bus run/break

cmb - display current setting
cmb -e - enable CMB run/break interaction
cmb -d - disable CMB run/break interaction

The cmb command allows you to enable or disable interaction on the CMB
(Coordinated Measurement Bus). The CMB allows you to make measurements
involving cross-triggering of multiple HP 64700 analyzers, and to synchronously
run and break multiple emulators.

The cmb command only affects the ability for multiple emulators to run or break in
a synchronized fashion. The analyzer trigger capability is unaffected by the cmb
command.

If no options are supplied, the current state of CMB enable/disable is displayed.

The parameters are as follows:

-e Enables interaction between the emulator and the Coordinated Measurement Bus.

-d Disables interaction between the emulator and the Coordinated Measurement Bus.

When interaction is enabled via the cmb -e command, the emulator will run code
beginning at the address specified via the rx command when the CMB /EXECUTE
(/ means active low) pulse is received.

The CMB READY line is driven false while the emulator is running in the monitor.
The line goes to the true state whenever execution switches to the user program.

Notice that if the rx command is given, CMB interaction is enabled just as if a cmb
-e command was issued. Refer to the syntax pages for the rx command for further
information.

When interaction is disabled via the cmb -d command, the emulator ignores the
actions of the /EXECUTE and READY lines. In addition, the emulator does not
drive the READY line.

See Also rx (allows you to specify the starting address for user program execution when the
CMB /EXECUTE line is asserted)

Chapter 9: Commands
cmb - enable/disable Coordinated Measurement Bus run/break

227

tx (controls whether or not the emulation analyzer is started when the /EXECUTE
line is asserted)

x (pulses the /EXECUTE line, initiating a synchronous execution among emulators
connected to the CMB and enabled)

Also, refer to the "Making Coordinated Measurements" for further information on
CMB operation.

Chapter 9: Commands
cmb - enable/disable Coordinated Measurement Bus run/break

228

cmbt - specify control of the rear panel CMB
trigger signal

cmbt - display current cmbt set up
cmbt -d <dtype> - rear panel CMB drives trig(1,2) signal(s)
cmbt -r <rtype> - rear panel CMB receives trig(1,2) signal(s)

--- NOTES ---
All option combinations are accepted:
’cmbt -d trig1,trig2 -r trig1,trig2’ is a valid command

The cmbt command allows you to specify which of the internal trig1/trig2 trigger
signals will drive and/or receive the rear panel CMB (Coordinated Measurement
Bus) trigger. You can specify the signals individually, as an ORed condition for
drive, or as an ANDed condition for receive; or, you can specify that the signals are
not to be driven and/or received.

If no options are specified, the current setting of cmbt is displayed. Upon powerup,
cmbt is set to cmbt -d none -r none.

The parameters are as follows:

-d Specifies that the rear panel CMB TRIGGER line drives the internal trigger signals,
trig1 and trig2.

-r Specifies that the rear panel CMB receive the internal trigger signals, trig1 or trig2,
and send them out on the CMB TRIGGER line.

<dtype> The valid drive options are:

trig1 When the CMB TRIGGER signal is received, drive trig1 signal.

trig2 When the CMB TRIGGER signal is received, drive trig2 signal.

none When the CMB TRIGGER signal is received, drive neither
signal.

<rtype> The valid receive options are:

trig1 When trig1 signal goes true, send out the CMB TRIGGER
signal.

Chapter 9: Commands
cmbt - specify control of the rear panel CMB trigger signal

229

trig2 When trig2 signal goes true, send out the CMB TRIGGER
signal.

none Neither trig1 or trig2 will send the CMB TRIGGER signal out.

You use this command to trigger other HP 64700 analyzers. For example, you may
wish to start a trace on another HP 64700 analyzer when the analyzer in this
emulator finds its trigger; or, you may wish to do the converse and trigger the
analyzer in this emulator when another emulation analyzer finds its trigger.

See Also bc (break conditions; can be used to specify that the emulator will break into the
emulation monitor upon receipt of one of the trig1 /trig2 signals)

bnct (BNC trigger; used to specify which internal signals will be driven or received
by the rear panel BNC connector)

cmb (Used to enable or disable interaction on the CMB. This does not affect
whether measurement instruments can exchange triggers over the CMB; it only
controls run/break interaction between multiple emulators)

tarm (analyzer trace arm; used to specify arming (begin to search for trigger)
conditions for the analyzer -- trig1/trig2 can be used to arm the analyzer)

tgout (specifies which of the trig1/trig2 signals are to be driven when the analyzer
trigger is found)

Chapter 9: Commands
cmbt - specify control of the rear panel CMB trigger signal

230

cp - copy memory block from source to
destination

cp <dest_addr>=<addr>..<addr> - copy range to destination address

The cp command allows you to copy a block of data from one region of memory to
another.

When cp is executed, the data from the specified range is copied to the destination
address, with the lower boundary data going to the destination address, lower
boundary + 1 to destination + 1, and so on until the upper boundary of the source
range is copied.

The parameters are as follows:

<dest_addr> Specifies the lower boundary of the destination range.

<addr> Specifies the lower, and possibly upper, memory address boundaries of the source
range to be copied. The default is a hexadecimal number; other bases may be
specified. You can use "<addr>.." to specify a range from the address through the
next 127 bytes.

If the source or destination addresses reside within the target system, the emulator
will break to the background monitor and will return to foreground after the copy is
completed.

If memory mapped as guarded is encountered in the source or destination range
during the copy, the command is aborted; however, all locations modified prior to
accessing guarded memory are left in the modified state.

See Also m (allows you to display or modify memory locations or ranges)

map (used to define the type and location of memory used by the emulator)

ser (used to search memory ranges for a specific set of data values)

Chapter 9: Commands
cp - copy memory block from source to destination

231

dt - display or set current date and/or time

dt - display current date and time
dt <yymmdd> - set current date
dt <hh:mm:ss> - set current time
dt <yymmdd> <hh:mm:ss> - set current date and time

The dt command allows you to set or display the current date and time stored by
the HP 64700 series emulators.

Note that the emulator system date & time clock is reset when power is cycled.

If no parameters are specified, the current date and time settings are displayed.

The parameters are as follows:

<yymmdd> Current date in year, month, day format.

<hh:mm:ss> Current time in hour:minute:second format.

Examples To display the current date and time settings at emulator powerup:
M>dt
 January 01, 1988 0:00:21

To set the date to August 18, 1987:
M>dt 870818

To set the date to August 18, 1987 and the time to 11:05:00 (the order of the two
arguments is not significant):
M>dt 870818 11:05:00

Note that if yy is greater than 50, the year is assumed to be in the 20th century (in
other words, 19yy). If yy is less than 50, the year is assumed to be in the 21st
century (in other words, 20yy).

Chapter 9: Commands
dt - display or set current date and/or time

232

dump - upload processor memory in absolute file
format

dump -i <addr>..<addr> - upload intel hex format
dump -m <addr>..<addr> - upload motorola S-record format
dump -t <addr>..<addr> - upload extended tek hex format
dump -h <addr>..<addr> - upload hp format (requires transfer protocol)
dump -b <addr>..<addr> - send data in binary (valid with -h option)
dump -x <addr>..<addr> - send data in hex ascii (valid with -h option)
dump -c <hex char> <addr>..<addr> - after uploading a hex ascii
 format file send this character
 to close the file

The dump command allows a host interface program to dump the contents of
emulation and/or target system memory to a host file. The contents can be dumped
in HP, Tektronix hex, Intel hex, and Motorola S-record formats by specifying
various options on the command line.

When uploading the file in HP file format using the HP 64000 transfer software,
record checking is performed automatically by the transfer protocol.

The parameters are as follows:

-i Specifies in Intel hex record format. Note that the various options for HP file
format transfer (such as -x, -b, and -e) are invalid with this format.

-m Specifies the Motorola S-record format.

-t Specifies the Tektronix extended hexadecimal format.

-h Indicates that the memory contents will be dumped in HP absolute file format.

-b Indicates that the records will be sent in binary; this is only valid with -h (HP file
format).

-x The records will be sent in hexadecimal; this is only valid with the -h option (HP
file format).

-c <hex char> Indicates that the ASCII hexadecimal character specified should be sent to the host
at the end of the file upload.

<addr> Specifies the lower, then upper, address boundaries of the memory range to be
dumped. The default is a hexadecimal number; other bases may be supplied.

Chapter 9: Commands
dump - upload processor memory in absolute file format

233

Note that the HP 64000 format ".X" file created with a "dump -hx" command has
records that contain 136 fewer bytes of data than the file format standard allows.
Because of this, HP 64000 format ".X" files which are created with the dump
command may take longer to be processed by consumers of the ".X" file
(depending on how the consumer processes sequential records).

See Also load (used to load emulation memory from a host computer file)

Chapter 9: Commands
dump - upload processor memory in absolute file format

234

echo - evaluate arguments and display results

echo "string" - echo string to output
echo ‘string‘ - echo string to output
echo expression - evaluate expression and display results in
 hex
echo \<value> - echo character equal to value
echo expression \<value> - multiple arguments may be evaluated

The echo command allows you to display ASCII strings or the results of evaluated
expressions on the standard output device. You must enclose strings in single open
quote marks (‘) (ASCII 60 hex) or double quotation marks (") (ASCII 22 hex). A
string not enclosed in delimiters will be evaluated as an expression and the result
will be echoed. In addition, you may supply a backslash with a two digit hex
constant; the corresponding ASCII character(s) will be echoed.

Echoing strings or ASCII characters is particularly useful within macros, command
files, and repeats where you wish to prompt the user to perform some action during
a "wait for any keystroke" command (see description for w). The expression
capability is useful as a quick calculator.

Note that all options may combined within the same echo command as long as they
are separated by spaces.

The parameters are as follows:

string Any set of ASCII characters enclosed between single open quote marks (‘), or
double quotes ("). Since the command buffer is limited to 256 characters, the
maximum number of characters in a string is 248.

Note that many keyboards (and printers) represent the single open quote mark as an
accent grave mark. In any case, the correct character is ASCII 60 hexadecimal.
The correct double quote character is ASCII 22 hexadecimal.

Note that a character which is used as a delimiter cannot be used within the string.
For example, the string "Type "C"" is incorrect and will return an error. The
string ‘Type "C"‘ is correct.

expression A valid expression. The expression will be evaluated and the result will be echoed.

<value> Is the hex code for any valid ASCII character. More than one character can be
echoed with a single command; each "nn" must be preceded by a backslash. A total
of 62 ASCII characters can be represented within a single echo command.

Chapter 9: Commands
echo - evaluate arguments and display results

235

This capability is particularly useful for sending non-displaying control characters
to a terminal; refer to the examples below.

Examples To echo the string "Set S1 to OFF" to the standard output, type the following:
M>echo "Set S1 to OFF"
Set S1 to OFF

A useful application of the backslash option is to send a terminal control characters:

M>echo \1b "H" \1b "J" \1b "&dBSet S1 to OFF"

The above command sends "<ESC>H<ESC>J<ESC>&dB Set S1 to OFF" to the
terminal. On an HP 2392A terminal this homes the cursor, clears the screen, sets
the video mode to inverse video, and writes the message "Set S1 to OFF".
Therefore, the user would see the message "Set S1 to OFF" in inverse video at the
upper left hand corner of an otherwise blank screen.

You might combine this with a macro command as part of a procedure. For
example, type:
M>mac PROMPT={echo "Set S1 to OFF";w}
M>PROMPT

You will see:
Set S1 to OFF
Waiting for any keystroke...

To calculate the value of the expression (1f + 1e), type:
M>echo 1f+1e
03dh

See Also mac (grouping a set of commands under a label for later execution)

rep (grouping a set of commands for immediate repetition)

w (wait command, allows user specified delays)

Chapter 9: Commands
echo - evaluate arguments and display results

236

equ - define, display or delete equates

equ name=<value> - equate name to number or pattern
equ name - display named equate
equ -d name - delete named equate
equ -d * - delete all equates
equ * - list all equates
equ - list all equates
equ name1=<value> name2 - multiple operands allowed

The equ command allows you to equate arithmetic values with names that you can
easily remember; these names can then be used in other commands to reference the
value.

A number of equates have been predefined for common analyzer status values. The
equates are present after the emulator is powered up or initialized.

The parameters are as follows:

name A character string that names the equate to be displayed, deleted, or assigned a
value. The name must be an alphanumeric designator no greater than 31 characters
in length, beginning with an alpha character or underscore and including only
alphanumeric characters or underscores thereafter.

<value> An arithmetic expression to be assigned to the equate name.

-d Deletes the named.

Note that each equate is translated to its actual value at the time of command entry.
For example, if you specify an equate count=21h; and an expression start=2000h,
then the command tg addr=start count will be entered into the system as tg
addr=start 33. At this point, redefining the value of addr or count would not
change the address expression or the occurrence counter for the trigger.

Note that the combination of a single equ command with all names and expressions
cannot exceed 255 characters. The number of equates and symbols that may be
defined is limited only by available system memory; thus, it is dependent on the
number of equates, symbols, macros, etc. defined.

Chapter 9: Commands
equ - define, display or delete equates

237

See Also tg, tpat, tif, telif, and others. (equ provides an easy way to name expressions to
use in setting up trigger or branch conditions)

r, m, bp (equates may be used to specify run addresses, memory addresses, or
breakpoint addresses)

Chapter 9: Commands
equ - define, display or delete equates

238

es - display current emulation system status

es

The es command displays the current status of emulation activity. The following
types of information may be displayed:

R - emulator in reset state
U - running user program
M - running monitor program
W - waiting for CMB to become ready
T - waiting for target system reset
c - no target system clock
r - target system reset active
h - processor halted
g - bus granted
b - no bus cycles
? - unknown state

The emulator will not break to the monitor to obtain information. Therefore, any
information that can only be obtained while in the monitor will not be displayed if
the emulator is not in the monitor.

See Also ta (allows you to display activity on emulation and external analyzer lines)

ts (allows you to display the current status of the emulation analyzer)

Chapter 9: Commands
es - display current emulation system status

239

<expr> - analyzer state qualifier expressions

In the easy configuration:
any/all - always true set
none/never - always false set
arm - external qualifier
<label>=<value> - define state qualifier
<label>!=<value> - define state qualifier
<label>=<value> and <label>=<value> ... - state and state
<label>!=<value> or <label>!=<value> ... - state or state
<label>=<value>..<value> - define state range
<label>!=<value>..<value> - define notstate range

In the complex configuration:
any/all - always true set
none/never - always false set
<set1> - single set
<set2> - single set
<set1> and <set2> - set global and set
<set1> or <set2> - set global or set

Analyzer state qualifier expressions are used in specifying triggers, time qualifiers,
primary and secondary branch conditions, prestore qualifiers, and other analyzer
setup items.

There are two types of analyzer expressions, simple and complex.

The parameters are as follows:

<label> A trace label that is currently defined via either the tlb or xtlb commands.

<value> Values are numeric constants, equates, or symbols. Also, values can be the result
of constants, equates, and symbols combined with operators. Refer to the <value>
description.

<set1> Consists of: p1, p2, p3, p4, r, !r. The pattern resources are assigned values with the
tpat command and the range resource is assigned a value with the trng command.

<set2> Consists of: p5, p6, p7, p8, arm. The pattern resources are assigned values with the
tpat command. The "arm" keyword specifies the arm condition as specified in the
tarm or xtarm commands.

Resources within a set can be combined with intraset operators. Resources between
the two sets can be combined with the interset operators.

Chapter 9: Commands
<expr> - analyzer state qualifier expressions

240

Intraset Operators

You use intraset operators to form relational expressions between members of the
same set. The operators are:

~ (intraset logical NOR)

| (intraset logical OR)

The operators must remain the same throughout a given intraset expression.

Interset Operators

You use interset operators to form relational expressions between members of set 1
and set 2. The operators are:

and (interset logical AND)

or (interset logical OR)

You can then form the following types of expressions:

(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:

(set 2 expression) and (set 1 expression)

Combining Intraset and Interset Operators

You can use both the intraset and interset operators to form very powerful
expressions. For example:
p1~p2 and p5|arm
p3 or p6~p7~p8

However, you cannot repeat different sets to extend the expression. The following
is invalid:
p1~p2 and p5 and p3 and p7

DeMorgan’s Theorem and Complex Expressions

At first glance, it seems that you only have a few operators to form logical
expressions. However, using the combination of the simple and complex
expression operators, along with a knowledge of DeMorgan’s Theorem, you can

Chapter 9: Commands
<expr> - analyzer state qualifier expressions

241

form virtually any expression you might need in setting up an analyzer
specification.

DeMorgan’s theorem in brief says that

A NOR B = (NOT A) AND (NOT B)

and

A NAND B = (NOT A) OR (NOT B)

The NOR function is provided as an intraset operator. However, the NAND
function is not provided directly. Suppose you wanted to set up an analyzer trace
of the condition

(addr=2000) NAND (data=23)

This can be done easily using the simple and complex expression capabilities.
First, you would define the simple expressions as the inverse of the values you
wanted to NAND:
tpat p1 addr!=2000
tpat p2 data!=23

Then you would OR these together using the intraset operators:
p1|p2

This is effectively the same as:

(NOT addr=2000) OR (NOT data=23) = (addr=2000) NAND (data=23)

If you need an intraset AND operator, you can use the same theory. Suppose you
actually wanted:

(addr=2000) AND (data=23)

First, define the simple expressions as the inverse values:
tpat p1 addr!=2000
tpat p2 data!=23

Then you would NOR these together using the intraset operators:
p1~p2

This is effectively the same as:

(NOT addr=2000) NOR (NOT data=23) = (addr=2000) AND (data=23)

Examples Some easy configuration examples include:
tg addr=2000

Chapter 9: Commands
<expr> - analyzer state qualifier expressions

242

tif 1 data=20..30

telif addr!=3000 or data!=5

Some complex configuration examples include:

First, to assign values to pattern names:
tpat p1 addr=2000

tpat p2 addr!=3000

tpat p5 data!=5

trng data=20..30

Next, to create complex expressions within the analyzer commands:
tg p1

tif 1 r

telif 1 p2 or p5 3

To use intraset operators:

To store pattern 1 NOR pattern 2 NOR range:
tsto p1~p2~r

To trigger on pattern 2 OR (NOT range):
tg p2 | !r

Chapter 9: Commands
<expr> - analyzer state qualifier expressions

243

help, ? - display help information

help <group> - print help for desired group
help -s <group> - print short help for desired group
help <command> - print help for desired command
help - print this help screen

The help (?) command lets you display syntax, description and examples for any
HP 64700 emulator Terminal Interface command. You may display a brief
description for anything from a single command to command groups or the entire
command set. Detailed information is available for single commands.

You may enter a question mark ? instead of typing help; it performs the same
function.

The parameters are as follows:

<group> The valid group names are:

gram System grammar.

proc Processor specific grammar.

sys System commands.

emul Emulation commands.

trc Analyzer trace commands.

xtrc External trace analysis commands.

* All command groups.

-s Switches to the abbreviated help mode; only the expanded name of each command
is displayed next to the command.

<command> Detailed help information is displayed for the named command.

Note that if you specify "*" for <command> or <group>, information for all
commands will be displayed.

Chapter 9: Commands
help, ? - display help information

244

init - reinitialize system

init - limited initialization; resets emulation and analysis
 products
 but not environment (macros, equates, date & time, etc..)
init -c - complete initialization; does not run system memory
 integrity tests
init -p - powerup initialization; run from reset with complete
 system verification tests
init -r - powerup initialization; run from reset with complete
 system verification tests
 ignore all optional products
 do not use flash ROM

The init command allows you to re-initialize the emulator. Powerup, complete, and
limited initializations are available through various options. In most cases you
should only use this command if the emulator is not responsive to other commands.

If no options are specified, a limited initialization sequence is performed. The
operating system and data communications are not affected but all of the emulation
and analysis boards are reset. For example, a limited initialization would not
change macro definitions, system date and time, or the data communications
parameters, but the emulation memory map and breakpoint list would be reset to
their default states.

The parameters are as follows:

-p Specifies a powerup initialization sequence. This initializes the operating system,
data communications, emulation and analyzer boards, and runs extensive
performance verification.

-c Specifies a complete initialization sequence. Everything is initialized as defined by
the powerup sequence with the exception of the performance verification.

-r Specifies a complete initialization with system verification tests (as with -p), but
optional products and the flash ROM are ignored.

Note that the init -c, init -p , or init -r commands cause a loss of system memory.
If these commands are used in macros, commands that follow them will not be
executed.

See Also cf (change emulation configuration)

Chapter 9: Commands
init - reinitialize system

245

dt (set system date and time)

map (define the emulation memory map)

stty (set data communications parameters)

tinit (reset the analyzer to powerup defaults)

Chapter 9: Commands
init - reinitialize system

246

io - display or write processor io address

io <addr> - display io at address
io -d<dtype> <addr> - display io at address with display option
io <addr>=<value> - set io at address to <value>
io <addr> <addr>=<value> - multiple arguments accepted

The parameters are as follows:

-d<dtype> The -d option allows you to set the display mode for memory accesses. The valid
display modes are:

b display size is 1 byte(s)

w display size is 2 byte(s)

d display size is 4 byte(s)

m display processor mnemonics

<addr> Specifies the I/O address to be displayed or modified. The address default
representation is a hexadecimal number.

<value> Data value to which a particular I/O location is to be modified. Note that data may
be specified in decimal, octal, or binary in addition to the hexadecimal default.

Chapter 9: Commands
io - display or write processor io address

247

lan - set configuration parameters

lan - display the current lan configuration
lan -l - startup lan if not already started
lan -b - enable BNC
lan -a - enable AUI
lan -i <ip_addr> - set Internet Protocol address
lan -g <ip_addr> - set Internet Protocol Gateway address
lan -p <port> - set TCP service port number

The parameters are as follows:

-l Selects the LAN interface without having to change the HP 64700 configuration
switch settings. Note that the serial interface is always active.

-b Selects the LAN interface’s BNC connector without having to change the
HP 64700 configuration switch settings.

-a Selects the LAN interface’s AUI connector without having to change the HP 64700
configuration switch settings.

-i <ip_addr> Internet Address in dot notation (for example, 192.6.94.2).

-g <ip_addr> Gateway Address in dot notation (for example, 192.6.94.2).

-p <port> Any number that is likely to be unused (for example, 6470).

Chapter 9: Commands
lan - set configuration parameters

248

lanpv - performance verification on LAN interface

lanpv -b - testing performed through BNC connector
lanpv -a - testing performed through AUI connector
lanpv -v - print the error code value

To run performance verification, the connector under test must be removed from
the network and capped with a terminator.

The parameters are as follows:

-b Tests the LAN interface through its BNC connector.

-a Tests the LAN interface through its 15-pin AUI connector.

-v Prints the error code value. The error codes and their meanings are:

Chapter 9: Commands
lanpv - performance verification on LAN interface

249

load - download absolute file into processor
memory space

load -i - download intel hex format
load -m - download motorola S-record format
load -t - download extended tek hex format
load -S - download symbol file
load -h - download hp format (requires transfer protocol)
load -a - reserved for internal hp use
load -e - write only to emulation memory
load -u - write only to target memory
load -f - download foreground monitor code
load -b - data sent in binary (valid with -h option)
load -x - data sent in hex ascii (valid with -h option)
load -q - quiet mode
load -p - record ACK/NAK protocol (valid with -imt options)

The load command lets you load program code into emulation or target memory.
Various file formats are supported via options to the load command. The
destination of the program code is determined by the information contained in the
program file. Additional options allow you to load only target memory or
emulation memory as desired.

If a load error occurs, the current load procedure is aborted. However, records
which were successfully loaded will remain in memory.

Note that at least one dash (-) must be included before any parameters are specified.
It is optional to include or omit dashes for succeeding parameters. At least one file
format option must be specified.

The parameters are as follows:

-i Specifies that the program code will be in Intel hex file format.

-m Specifies that the program code will be in Motorola S-record file format.

-t Specifies that the program code will be in extended Tektronix hexadecimal file
format.

-h Specifies that the program code will be in HP file format. In this case, the file is
expected to be transferred using the HP 64000 Hosted Development System
transfer protocol.

-e Load only those portions of program code which would reside in memory mapped
to emulation memory space. (Refer to the map command.)

Chapter 9: Commands
load - download absolute file into processor memory space

250

-u Load only those portions of program code which would reside in memory mapped
to target memory space. (Refer to the map command.)

-f Download custom foreground monitor code. After you download the code, you
must configure the emulator to use the custom foreground monitor by entering the
cf mon=ufg command.

-q The program code will be transferred in quiet mode. If -q is not specified, the
emulator controller will write a "#" for each record successfully received and
processed.

S This allows you to download a symbol file from the host computer into the
emulator.

-b When using the HP file format, the program is expected to be in binary.

-x When using the HP file format, the program is expected to be in hex.

-p When using Intel, Motorola or Tektronix file formats, this option sets up a protocol
checking scheme using ASCII ACK /NAK characters. If using this option, the host
should send one record at a time and wait for the emulator to return an ASCII ACK
character between records. If the emulator returns an ASCII NAK instead, there
has been an error in data transmission. When the emulator receives the EOF
character, it will return only the normal emulator prompt since data transmission is
complete.

If, during the transfer, the host receives a NAK for a record, it should retransmit the
record until an ACK is received or until a timeout value is reached, whichever
occurs first.

Note that when you load an absolute file, the incoming data is examined for valid
records (in the specified format). If the data being sent does not contain any valid
records, the emulator will wait forever looking for valid records. The process must
be terminated be entering a <CTRL>c.

See Also dump (allows you to transfer emulation memory contents to a host)

Chapter 9: Commands
load - download absolute file into processor memory space

251

m - display or modify processor memory space

m <addr> - display memory at address
m -d<dtype> <addr> - display memory at address with display option
m <addr>..<addr> - display memory in specified address range
m -dm <addr>..<addr> - display memory mnemonics in specified range
m <addr>.. - display 128 byte block starting at address A
m <addr>=<value> - modify memory at address to <value>
m -d<dtype> <addr>=<value> - modify memory with display option
m <addr>=<value>,<value> - modify memory to data sequence
m <addr>..<addr>=<value>,<value> - fill range with repeating sequence

The m command allows you to display and modify emulation and target system
memory. Options allow you to specify the display mode, specific address or
addresses for display or modification, and the data values to be inserted.

At least one address must be specified. If no display mode is specified the display
mode set by the mo command is used. Data items specified in memory
modification are repeated as a group to fill the address range specified. The
memory display defaults to the last value specified, or the default format for the
emulator in use upon powerup initialization (varies dependent on the
microprocessor being emulated).

If the selected address range for display or modification includes memory within
the user’s target system, emulator execution must break to the monitor in order to
perform the access. After the command is complete, the processor will be returned
to foreground execution if no errors occurred.

The parameters are as follows:

-d<dtype> The -d option allows you to set the display mode for memory accesses. The valid
display modes are:

b display size is 1 byte(s)

w display size is 2 byte(s)

d display size is 4 byte(s)

m display processor mnemonics

<addr> Specifies the address to be displayed or modified. As noted in the syntax, an
address followed by two periods and another address specifies a range of addresses
to display or modify. The address default representation is a hexadecimal number.

Chapter 9: Commands
m - display or modify processor memory space

252

<value> Data value to which a particular location is to be modified. If a range of locations
is to be modified to a sequence of data values, the values must be separated by
commas. Note that data may be specified in decimal, octal, or binary in addition to
the hexadecimal default.

Note that the way the data item is handled depends on the display mode in effect.
For example, if the display mode is byte, and the value entered is 1a3f66, the
location specified will be modified to 66 hex. If the display mode is short, the
location will be modified to 3f66 hex. And if the display mode is word, the
location will be modified to 1a3f66.

Conversely, if you specify the value 33 hex for modification in byte mode, the
value 33 is entered; in word mode, the value 0033 is entered; in long word mode,
the value 000033 is entered. In other words, if the value supplied is shorter than the
mode in effect, it is padded with leading zeros.

See Also map (specify mapping of memory to emulation or user memory and to RAM or
ROM)

mo (specify global access and display modes)

Chapter 9: Commands
m - display or modify processor memory space

253

mac - display, define, or delete current macros

mac - display currently defined macros
mac <name> - display macro <name>
mac <name>={<cmd_list>} - define macro <name> as list of commands
mac -d <name> - delete macro <name>
mac -d * - delete all macros
mac -q - set expansion echo to quiet mode
mac -v - set expansion echo to verbose mode

The mac command allows you to save a group of commands under a name of your
choice. This allows you to instantly recall that command group by typing in the
assigned name. The emulator will then preprocess the macro to expand the
commands stored in it to a normal command line. Then, the command line is then
executed.

The parameters are as follows:

-d The -d parameter, in conjunction with the macro <NAME>, deletes the macro
defined by <NAME>. If <NAME> is given as the character "*" then all macros are
deleted.

<name> This represents the name you assign to the macro definition. Names can be any
combination of alphanumeric characters; however, you cannot define a macro that
has a name identical to that of another HP 64700 Terminal Interface command.

If you specify a name which is the same as a currently defined macro, that macro
will be overwritten by the new macro you define.

<cmd_list> This represents one or more emulator commands, including names which are used
to define other macros. Commands in <cmd_list> must be separated from other
commands by a semicolon (;).

When using command substitution, you can include pseudo-parameters in the form
of "&token&" in the macro definition. Do not include any white space between the
two "&" symbols. When you execute the macro, include the string to be substituted
for &token& as a parameter on the command line. The macro will execute using
the command expanded with the string you substituted.

-q Sets the macro expansion echo to quiet mode. In this mode, any macro that you run
will be executed without displaying the expanded command string.

-v Sets the macro expansion echo to verbose mode. In this mode, any macro that you
run will first display the expanded command string as a comment, and then will
execute the macro.

Chapter 9: Commands
mac - display, define, or delete current macros

254

Nested macro calls are permitted and limited only by constraints of system memory.

The commands within the macro definition are not checked for correct syntax until
the macro is executed; therefore, it is advisable to test the command string before
defining the macro.

The number of macros that can be created is limited to 100, but may be less
depending on the complexity of the macros defined.

The length of the macro name combined with the macro definition is limited only
by the maximum HP 64700 command length of 255 characters; thus, the macro
name and definition can be a maximum of 251 characters.

A command within a macro definition cannot contain the pound sign character (#)
unless the command is enclosed in a quoted string. (Otherwise, text following the #
is interpreted as a comment.) This means there can be no matching brace at the end
of the command. Use the echo command to place comments in a macro definition.

Command line substitution is possible when invoking a macro. During the macro
definition, you may include pseudo-parameters which allow you to substitute
parameters, such as file names, when invoking the macro.

See Also rep (repeat; allows you to repeat any command, including macros)

Chapter 9: Commands
mac - display, define, or delete current macros

255

map - display or modify the processor memory
map

map - display current map structure
map <addr>..<addr> <type> <attrib> - map address range as memory type
map other <type> - map other range as memory type
map -d <term #> - delete specified map term
map -d * - delete all map terms

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

Up to 16 ranges of memory can be mapped, and the resolution of mapped ranges is
1 Kbytes (that is, the memory ranges must begin on 1 Kbyte boundaries and must
be at least 1 Kbytes in length).

The parameters are as follows:

<addr> Specifies the address range to be mapped.

other Specifies unmapped address ranges. The trom , tram , erom, eram, or grd types
can be specified for unmapped memory. When you specify an emulation memory
type, you can include the <attribute> parameter.

The "other" range is unaffected when all mapper terms are deleted with the map -d
* command.

<type> The valid types are:

eram Indicates that the given address range is to reside in emulation
address space and act as RAM (read/write).

erom Indicates that the given address range resides in emulation
address space; it is to act as ROM (read only).

tram Indicates that the given address range lies within target system
RAM space. When the emulation processor accesses an address
within this range, the target system data buffers will be enabled
by a mapper signal to complete the transaction.

trom Indicates that the given address range lies within target system
ROM space.

Chapter 9: Commands
map - display or modify the processor memory map

256

grd The grd parameter indicates the given address range is to be
"guarded". An emulation system break will be generated upon
accesses to guarded memory.

<attrib> The valid emulation memory attributes are:

lock Specifies that accesses in a range of emulation memory be
synchronized with the target system RDY. This means the
termination of accesses in the range will not occur until the
target system provides a ARDY or SRDY.

nolock Specifies that accesses in a range of emulation memory are not
synchronized with the target system RDY. This attribute, or no
attribute, means emulation memory accesses are terminated by
a RDY signal generated by the emulator.

-d <term #> Delete the mapped address range. The emulation system assigns a term number to
each mapped address range. Term numbers are assigned in ascending order of
address range.

When any map term is added or deleted the emulation processor will be reset and
held in the reset state until a break or run command is issued. The processor
remains reset in recognition of the fact that returning to execution directly after
mapper modification is most likely invalid.

Be sure to disable all software breakpoints (bc -d bp) before changing the map.
Software breakpoints are not cleared when the memory map is changed. After the
new map and the program are set up, you can re-enable the breakpoints break
condition (bc -e bp) and enter the bp -e * command to reenable the defined
software breakpoints.

Note that the memory mapper re-assigns blocks of emulation memory after the
insertion or deletion of mapper terms.

Chapter 9: Commands
map - display or modify the processor memory map

257

See Also bc (break conditions; determines whether emulator breaks to monitor upon write to
space mapped as ROM)

m (memory display/modify)

bp (set/delete software breakpoints)

Chapter 9: Commands
map - display or modify the processor memory map

258

mo - set or display current default mode settings

mo - display current mode settings
mo -d<dtype> - set display mode to specified type
mo -a<atype> - set access mode to specified type

The mo command allows you to modify the global access and display modes.
Access mode is defined as the type of processor data cycles used by the emulation
monitor to access a portion of user memory. Display mode is defined as the
method used to display or modify data resident in memory.

The parameters are as follows:

-a<atype> The -a option allows you to set the access mode. The valid access modes are:

d the same as the display mode

b byte, display size is 1 byte(s)

w word, display size is 2 byte(s)

-d<dtype> The -d option allows you to set the display mode. The valid display modes are:

b byte, display size is 1 byte(s)

w word, display size is 2 byte(s)

d double word, display size is 4 byte(s)

m display processor mnemonics

At powerup or after init , the default access mode is set to b (byte) and the default
display mode is set to w (word).

See Also m (memory display/modify)

Chapter 9: Commands
mo - set or display current default mode settings

259

po - set or display prompt

po - display the current port settings
po -p "string" - change the prompt string

The po command allows you to change the system prompt characters.

The parameters are as follows:

-p Allows you to change the emulator’s command prompt to one specified by
<STRING>.

string Any group of ASCII characters enclosed by single open quotes (‘) or double (")
quote marks.

Chapter 9: Commands
po - set or display prompt

260

pv - execute the system performance verification
diagnostics

pv - display pv warning message
pv <repeat_count> - execute diagnostics <repeat_count> number of times

CAUTION The pv command performs a system powerup initialization after all pv execution is
completed. Therefore, all equates, macros, memory map, configuration settings,
system clock, software breakpoints, trace specifications, and other configuration
items you have altered will be cleared.

The pv command runs performance verification on the emulator and analyzer. The
performance verification exercises all the emulator hardware and software to high
confidence level.

You should only run performance verification when the emulation probe is plugged
into the demo board.

The parameters are as follows:

<repeat_count> Specifies the number of times to repeat the performance verification.

If pv reports failures, first check your hardware installation as described in the
"Installation" chapter. If the failures persist, call your local HP Sales and Service
office for assistance. A list of offices is provided in the Support Services guide.

Note that providing multiple commands such as pv 1;r is invalid; the second
command will not execute due to the system reset.

Typing in <CTRL>c to abort the pv command may result in incorrect failure
messages.

See Also init (reinitializes the emulator)

Chapter 9: Commands
pv - execute the system performance verification diagnostics

261

r - run user code

r - run from current Program Counter
r $ - run from current Program Counter
r <addr> - run from address <addr>
r rst - run from processor reset

The r command starts an emulation run. Execution begins at the address specified
by the <addr> parameter; if no address is specified, execution begins at the address
currently present in the program counter.

The parameters are as follows:

<addr> Specifies the address where execution is to begin. If you specify $, the processor
runs from the current program counter value.

rst Specifies that the emulation processor runs from reset.

See Also s (step; allows controlled stepping through program instructions)

rx (run only when CMB (Coordinated Measurement Bus) execute pulse is received)

x (pulse the CMB execute line if resident on the CMB)

Chapter 9: Commands
r - run user code

262

reg - display and set registers

reg - display all basic register contents
reg * - display all basic register contents
reg <reg> - display contents of the named reg
reg <regclass> - display contents of the named reg class
reg <reg>=<value> - modify contents of the named reg
reg <reg> <reg>=<value> <regclass> - display and set may be combined

The reg command allows you to display and modify emulation processor register
contents. Individual registers may be displayed or modified; related groups of
registers may be displayed; combinations of display and modify are permitted on
the same command line.

The parameters are as follows:

<reg>
<regclass> Refer to the following table.

<value> A numeric value.

Register Class Register Description

* ah, al, ax, bh, bl,
bx, ch, cl, cx, dh,
dl, dx, bp, si, di,
ds, es, ss, sp, ip,
cs, fl

All Basic Registers

gen ax, bx, cx, dx General Registers

seg ds, es, ss, cs Segment Registers

ptr bx, bp, si, di, ds,
es

Pointer Registers

pcs
(80186/8/XL/EA
Peripheral chip
select registers)

umcs
lmcs
pacs
mmcs
mpcs

Upper Memory Chip Select
Lower Memory Chip Select
Address of Peripheral Chip Select Block
Mid-Range Memory Chip Select
Mode of Peripheral Chip Selects

Chapter 9: Commands
reg - display and set registers

263

Register Class Register Description

pcs
(80186/8/EB/EC
Peripheral chip
select registers)

gcs0-7st
gcs0-7sp
lcsst
lcssp
ucsst
ucssp

Generic Chip-Select 0-7 Start
Generic Chip-Select 0-7 Stop
Lower Chip-Select Start
Lower Chip-Select Stop
Upper Chip-Select Start
Upper Chip-Select Stop

rf
(Refresh
controller
registers)

rfbase
rftime
rfcon
rfaddr

Refresh Base
Refresh Timer
Refresh Control
Refresh Address (80186/8/EB Only)

pic
(Programmable
interrupt
controller
registers,
80186/8/XL/
EA/EB)

pollsts
imask
primsk
inserv
reqst
intsts
tcucon
dma0con
dma1con
scucon
i0con
i1con
i2con
i3con
i4con

Poll Status
Interrupt Mask
Priority Mask
In-Service
Interrupt Request
Interrupt Status
Timer Control
DMA 0 Control (80186/8/XL/EA Only)
DMA 1 Control (80186/8/XL/EA Only)
Serial Control Unit (SCU) Control (80186/8/EB Only)
INT0 Control
INT1 Control
INT2 Control
INT3 Control
INT4 Control (80186/8/EB Only)

pic
(80186EC)

mpicp0
mpicp1
spicp0
spicp1
scuirl
dmairl
timirl

Master Programmable Interrupt Controller "acces port" 0
Master Programmable Interrupt Controller "acces port" 1
Slave Programmable Interrupt Controller "acces port" 0
Slave Programmable Interrupt Controller "acces port" 1
Serial Communications Interrupt Request Latch
DMA Interrupt Request Latch
Timer Interrupt Request Latch

t0
(Timer 0
mode/control
registers)

t0cnt
t0cmpa
t0cmpb
t0con

Count
Max Count A
Max Count B
Mode/Control

Chapter 9: Commands
reg - display and set registers

264

Register Class Register Description

t1
(Timer 1
mode/control
registers)

t1cnt
t1cmpa
t1cmpb
t1con

Count
Max Count A
Max Count B
Mode/Control

t2
(Timer 2
mode/control
registers)

t2cnt
t2cmpa
t2cmpb
t2con

Count
Max Count A
Max Count B
Mode/Control

d0
(DMA Channel
0 registers -
80186/8/XL/EA/
EC Only)

d0srcl
d0srch
d0dstl
d0dsth
d0tc
d0con
dmapri
dmahlt

Source Pointer Low
Source Pointer High
Destination Pointer Low
Destination Pointer High
Transfer Count
Control Word
DMA Module Priority (80186/8/EC only)
DMA Halt (80186/8/EC only)

d1
(DMA Channel
1 registers -
80186/8/XL/EA/
EC Only)

d1srcl
d1srch
d1dstl
d1dsth
d1tc
d1con
dmapri
dmahlt

Source Pointer Low
Source Pointer High
Destination Pointer Low
Destination Pointer High
Transfer Count
Control Word
DMA Module Priority (80186/8/EC only)
DMA Halt (80186/8/EC only)

d2
(DMA Channel
2 registers -
80186/8/EC
Only)

d2srcl
d2srch
d2dstl
d2dsth
d2tc
d2con
dmapri
dmahlt

Source Pointer Low
Source Pointer High
Destination Pointer Low
Destination Pointer High
Transfer Count
Control Word
DMA Module Priority
DMA Halt

Chapter 9: Commands
reg - display and set registers

265

Register Class Register Description

d3
(DMA Channel
3 registers -
80186/8/EC
Only)

d3srcl
d3srch
d3dstl
d3dsth
d3tc
d3con
dmapri
dmahlt

Source Pointer Low
Source Pointer High
Destination Pointer Low
Destination Pointer High
Transfer Count
Control Word
DMA Module Priority
DMA Halt

s0
(Serial
Controller
Channel 0
registers -
80186/8/EB/EC
Only)

b0cmp
b0cnt
s0con
s0sts

Channel 0 Baud Rate Select
Channel 0 Baud Rate Count
Channel 0 Control
Channel 0 Status

s1
(Serial
Controller
Channel 1
registers -
80186/8/EB/EC
Only)

b1cmp
b1cnt
s1con
s1sts

Channel 1 Baud Rate Select
Channel 1 Baud Rate Count
Channel 1 Control
Channel 1 Status

wdt
(Watchdog
Timer registers-
80186/8/EC
Only)

wdtrldh
wdtrldl
wdtcnth
wdtcntl

Watchdog Timer Reload Value High
Watchdog Timer Reload Value Low
Watchdog Timer Count Value High
Watchdog Timer Count Value Low

p1
(I/O Port 1
registers -
80186/8/EB/EC
Only)

p1dir
p1pin
p1con
p1ltch

Port 1 Pin Direction
Port 1 Pin Value
Port 1 Pin Control
Port 1 Pin Latch

Chapter 9: Commands
reg - display and set registers

266

Register Class Register Description

p2
(I/O Port 2
registers -
80186/8/EB/EC
Only)

p2dir
p2pin
p2con
p2ltch

Port 2 Pin Direction
Port 2 Pin Value
Port 2 Pin Control
Port 2 Pin Latch

p3
(I/O Port 3
registers -
80186/8/EC
Only)

p3dir
p3pin
p3con
p3ltch

Port 3 Pin Direction
Port 3 Pin Value
Port 3 Pin Control
Port 3 Pin Latch

See Also s (step; allows you to step through program execution — combination with the reg
command is useful in debugging)

Chapter 9: Commands
reg - display and set registers

267

rep - repeat execution of the command list
multiple times

rep <value> {<cmd_list>} - execute the command list <value> number
 of times
rep 0 {<cmd_list>} - execute the command list forever

<cmd_list> - list of valid commands separated by semicolons

The rep command allows you to repeat a group of commands and macros a
specified number of times.

No other command input will be accepted until the command group has executed
the indicated number of repetitions.

The parameters are as follows:

<value> An integer value specifying how many times the command list should be executed.
A count of zero is a special case, meaning "repeat forever" (the repetition can be
terminated by entering <CTRL>c, which issues a break signal to the emulator).

<cmd_list> Any valid HP 64700 command, including previously defined macros, may be
specified with the options appropriate to the command. The list of commands must
be preceded by an opening brace and followed by a closing brace. Also, the
commands must be separated by semicolons. The commands will be executed in
the same order as they are specified on the command line.

See Also mac (allows assignment of a name to a command group for easy recall of a
specified command sequence)

Chapter 9: Commands
rep - repeat execution of the command list multiple times

268

rst - reset emulation processor

rst - reset and stay in reset state
rst -m - reset, then enter monitor

The rst command resets the emulation microprocessor. An option allows you to
specify that the processor should begin executing the emulation monitor code
immediately after the reset. If -m is not specified, the emulation processor remains
in the reset state. Note that any commands which require the emulation processor
to execute the monitor code for command processing will not execute while the
processor is in the reset state; these include commands such as reg.

Commands or hardware signals which will take the emulator out of a reset state
include b, r , s, and the CMB /EXECUTE pulse.

The parameters are as follows:

-m Causes the emulator to begin executing monitor code immediately after the reset.

Chapter 9: Commands
rst - reset emulation processor

269

rx - run at CMB-execute

rx - display run-at-CMB-execute address
rx $ - when CMB-execute occurs, use the PC value at that time
rx <addr> - set run-at-CMB-execute address

The rx command allows you to set the starting address for synchronous CMB
(Coordinated Measurement Bus) execution.

The parameters are as follows:

<addr> Specifies where to start program execution when the CMB EXECUTE pulse is
detected. If $ is specified for address, the current program counter value is used
(default).

If the HP 64700 emulator is connected to the CMB, and the CMB-EXECUTE pulse
is detected, followed by the CMB-READY line in the true state, the emulator will
begin execution at the address specified by the rx command. If no rx command
has been issued, execution begins at the current program counter value (same as rx
$).

Execution will begin at the address specified by rx every time the conditions listed
above are met. For example, if you type the command rx 100, the emulator will
start executing at address 100 hex every time the CMB-EXECUTE line is pulsed.

The rx command automatically turns on CMB interaction by effectively
performing the equivalent of a cmb -e command whether or not you have done so.

See Also cmb (enables or disables CMB interaction)

x (initiates a synchronous CMB interaction by pulsing the CMB-EXECUTE line)

Chapter 9: Commands
rx - run at CMB-execute

270

s - step emulation processor

s - step one from current PC
s <count> - step <count> from current PC
s <count> $ - step <count> from current PC
s <count> <addr> - step <count> from <addr>
s -q <count> <addr> - step <count> from <addr>, quiet mode
s -w <count> <addr> - step <count> from <addr>, whisper mode

The s command allows you to single-step the emulation processor through a
program. You can specify the number of steps to execute at a single time; or, you
can direct the emulator to step continuously. In addition, you may specify the
starting address for stepping.

The parameters are as follows:

<count> Specifies the number of steps to execute in sequence before returning command
control.

The default base for <decimal> is decimal; however, other number bases may be
specified.

If you do not specify a value for <count>, then a value of one (1) is assumed. If
you specify a step count of zero (0), the emulator interprets this as "step
continuously". Continuous stepping can be aborted with the <CTRL>c command;
or, it will be terminated upon receipt of an emulation break condition such as a
write-to ROM.

<addr> Specifies the starting address for stepping. If you substitute $ for the <addr>
parameter, the current program counter value will be used as the <addr> value. The
same will occur if no address parameter is specified.

Note that if you specify a value for <addr>, then you must specify a value for
<count>. Otherwise, the address value will be interpreted as a step count; the
emulator will step the number of locations specified.

-q Stepping will occur in quiet mode; that is, the instructions and program counter are
not displayed upon execution of each step.

-w Stepping will be done in whisper mode; only the final program counter value is
displayed after the step is executed.

Chapter 9: Commands
s - step emulation processor

271

If the emulator was in the run state (U> prompt) executing a user program when
you request the step, it will break to the monitor program before executing the step.

Note that when the Coordinated Measurement Bus (CMB) is being actively
controlled by another emulator, the step command (s) does not work correctly. The
emulator may end up running in user code (NOT stepping). Disable CMB
interaction (cmb -d) while stepping the processor.

See Also r (run emulation processor from a specified address)

reg (view or modify processor register contents)

Chapter 9: Commands
s - step emulation processor

272

ser - search through processor memory for
specified data

ser <addr>..<addr>=<value> - search for data value in range
ser -d<dtype> <addr>..<addr>=<value> - search with display option
ser <addr>..<addr>=<value>,<value> - search for data sequence in
 range
ser <addr>..<addr>="CDE" - search for string "CDE" in
 range

The ser command allows you to search memory for a data value, a character string,
or a combination of both. For every pattern match, the starting address of the
match is displayed.

Using the -d (display mode) option, the method of interpreting the pattern supplied
by the user can be altered. If no option is given, the display mode used is taken
from global default set by the mo command.

The parameters are as follows:

<addr> Specifies first the lower, and possibly the upper, address boundaries of the memory
range to search for the given data pattern. You can use "<addr>.." to specify the
range from the address through the next 127 bytes.

<value> Either a numeric expression or a string to be used as a reference pattern in the
search.

Strings must be bounded by single open quote marks (‘) or double quotes (").

Note that many keyboards (and printers) represent the single open quote mark as an
accent grave mark. In any case, the correct character is ASCII 60 hexadecimal.
The correct double quote character is ASCII 22 hexadecimal.

Note that if the character string you are searching for contains double quotes, you
must delimit the string with single open quotes and vice versa. For example, the
string "Type "C"" will return an error; the string ‘Type "C"‘ is correct.

-d<dtype> Allows you to specify the display mode used for the search. The valid display
modes are:

b display size is 1 byte(s)

w display size is 2 byte(s)

Chapter 9: Commands
ser - search through processor memory for specified data

273

d display size is 4 byte(s)

If addresses specified in the search reside in target system memory, the emulator is
broken to the monitor and returned to the user program when the command is
completed.

Note that you can concatenate various combinations of values to form more
complex search patterns by separating the parameters with commas (,).

See Also cp (used to copy the contents of one memory range to another)

m (used to display/modify memory locations)

Chapter 9: Commands
ser - search through processor memory for specified data

274

stty - set or display current communications
settings

stty <port> <options>

Parameter <options>

Parity noparity, evenp, onep, zerop

Character Size cs7, cs8

Baud 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, 115200, 230400, 460800

Protocol rs232, rs422

Stop Bits 1stopb, 2stopb

Request/Clear to Send crts, -crts

Data Set/Terminal Rdy cdsr, -cdsr

Start/Stop xon, -xon

Line Terminator onlcr, ocrnl, ocr, onl

Echo echo, -echo

Data Term/Comm Equip dte, dce

The stty command allows you to modify the parameters of the serial data
communications port without changing the configuration switch settings.

The serial port, port A, may be modified by stty.

The powerup default configuration for the serial port is determined by the rear
panel configuration switches; refer to the "Installation" chapter for more
information.

The parameters are as follows:

Chapter 9: Commands
stty - set or display current communications settings

275

rs232
rs422

RS-422 utilizes balanced transmission lines and therefore can achieve much higher
data rates with reliability over long distances than RS-232. Otherwise, the
interfaces are similar.

dte
dce

The serial port may be set to operate either as Data Communications Equipment
(DCE) or as Data Terminal Equipment (DTE). This configures the handshake lines
and transmit/receive lines for the proper signal to pin relationships on the interface.

onlcr Generate new-line and carriage-return on output.

ocrnl Generate carriage-return and new-line on output.

ocr Generate carriage-return on output.

onl Generate new-line on output.

crts
-crts

The option crts enables the Request To Send/Clear To Send handshake. Specifying
-crts disables this handshake.

cdsr
-cdsr

The option cdsr enables exchange and recognition of the Data Set Ready/Data
Terminal Ready status lines. Specifying -cdsr disables the exchange.

xon
-xon

If you specify xon, the system generates XON/XOFF (DC1/DC3 characters)
software handshaking to control the amount of data received at a given time.
Specifying -xon disables this handshake sequence.

(When the emulator’s receive buffer is full, it will send a DC3 (XOFF) character to
the host to stop transmission; when it is ready for more data, it will send a DC1
(XON) character to restart transmission.)

Note that if you toggle the xon parameter when running at 1200 baud and below,
the stty command will return invalid characters. The PC Interface attempts to do
this when starting up and fails with a datacomm error. To get around this problem,
set switch 13 on the emulator’s back panel (enable xon) to allow the PC Interface to
start up successfully. In the Terminal Interface, just enter another carriage return to
regain proper communications.

echo
-echo

If you specify echo, all characters received by the emulator datacomm are echoed
back to the sending system. Specifying -echo means the system will not echo back
characters received.

You will normally use this in conjunction with the echo settings required by your
host computer and your terminal. Most Hewlett-Packard systems will require that
you enable the echo feature, as HP host computers automatically echo characters
back to data terminal devices.

Chapter 9: Commands
stty - set or display current communications settings

276

For further information on the meanings of various data communications
parameters, you may refer to the book entitled Touring Datacomm: A Data
Communications Primer. This book is orderable from HP’s Direct Marketing
Division under the part number 5957-4622. Another book which may be helpful is
The RS-232 Solution, orderable from HP under the product number 92234X. You
also may need to refer to the hardware and software reference manuals that are
supplied with your terminal and/or host computer for further information on
required data communications parameters for links to those devices.

Examples To display the current data communications settings:
M>stty

stty A 9600 cs8 1stopb noparity dce rs232 -crts cdsr -xon onlcr echo

To set the baud rate to 1200 baud:
M>stty 1200
M>stty

stty A 1200 cs8 1stopb noparity dce rs232 -crts cdsr -xon onlcr echo

Chapter 9: Commands
stty - set or display current communications settings

277

sym - define, display or delete symbols

sym <name> - display all or named symbols
sym -g <name> - display all or named global symbol
sym -u <name> - display all or named user symbol
sym -l - display all local modules
sym -l <name> - display symbols in local module
sym <name>=<addr> - define user symbol
sym -d - delete all symbols
sym -du - delete all user symbols
sym -du <name> - delete named user symbol
sym -dg - delete all global symbols
sym -dl - delete all local symbols in all modules
sym -dl <name> - delete all local symbols in module

The sym command defines, displays, or deletes symbols in the emulator. The sym
command without any parameters displays all of the symbols currently defined.

Three types of symbols are supported: global, local, and user. Global symbols
reference addresses anywhere in memory using an absolute reference. Local
symbols also use absolute addressing but are grouped within a "module." User
symbols are defined at the command line. Global and local symbols cannot be
defined at the command line.

The definition of a module for grouping local symbols depends on the environment
being used. For local symbols created by a high-level language, a module might be
a function, a procedure, or a separately compilable source file. When you define
local symbols through the use of a symbol file, a module, in effect, becomes a
technique to manage the symbols. It can be a mnemonic device to refer to modules,
or it can be a simple way to group local symbols into a set for display and deletion
purposes since the sym command facilitates manipulation of local symbols by their
module name.

Symbols are used like equated variables. When using symbols in expressions, only
the + and - operators can be used immediately before and after the symbol name.
The expression can contain literals and equated (equ) labels, but not other symbols.

When using symbols, if a symbol and an equated value have the same name, the
equated value will be used.

The symbol table can be updated in three ways:

• You can enter user symbols at the command line.

• You can update it from an external "symbol file" using the load -So command.

Chapter 9: Commands
sym - define, display or delete symbols

278

• You can load an absolute file (such as an IEEE-695 file) which can contain
symbols as well as program code.

A "symbol file" is a text file containing user-specified symbols.

The parameters are as follows:

<name> This represents the symbol label to be defined or referenced. The format of the
symbol name reference is determined by the type of symbol, where:

name Is a user symbol or module name.

:name Is a global symbol name.

name: Is a local module name.

module:name Is a symbol name in a local module.

In addition, symbols can be referenced using a "wild card" expression when
displaying and deleting names. Only one wildcard character can appear in a
symbol name. An asterisk ("*") character is used to represent zero or more
characters at the end of a symbol name. A wildcard can be used in any of the
following symbol types:

name* Represents a user symbol name followed by zero or more of
any character or characters.

:name* Represents a global symbol name followed by zero or more of
any character or characters.

module:name* Represents a local module:symbol followed by zero or more of
any character or characters.

<addr> Specifies the value to assign to a user symbol.

-d Deletes all symbols.

-du Deletes user symbols. If a <name> parameter is not included, all user symbols are
deleted. If a <name> parameter is included, only user symbols matching the
entered name are deleted.

-dg Deletes all global symbols. No option exists to delete one global symbol.

Chapter 9: Commands
sym - define, display or delete symbols

279

-dl Deletes local symbols in a module. If a <name> parameter is not included, all local
symbols are deleted for all modules. If a <name> parameter is included to specify a
module name, only local symbols in the module matching the entered name are
deleted.

-g Specifies the display of global symbols. If a <name> parameter is not included, all
global symbols are displayed. If a <name> parameter is included, only global
symbols matching the entered name are displayed.

-l This option allows you to display local modules and symbols. If a <name>
parameter is not included, all local modules are displayed. If a <name> parameter is
included, only local symbols matching the symbol name or module are displayed.

-u This option allows you to display user symbols. If a <name> parameter is not
included, all user symbols are displayed. If a <name> parameter is included, only
user symbols matching the entered name are displayed.

See Also equ (used to equate names to expressions)

load (used to load a program file with symbols, or a symbol text file)

Chapter 9: Commands
sym - define, display or delete symbols

280

t, xt - start a trace

t - start an emulation trace

xt - start an external trace

The t and xt commands start emulation and external traces, respectively. These
commands (or tx if making a synchronous CMB execution) must be entered to
actually begin a measurement; most other trace commands are used only for
specification of triggering, sequencer, and storage parameters; or to display trace
results or status.

If the external analyzer has been linked to the emulation analyzer via the xtmo
command, the xt command is invalid and both analyzers begin a trace when the t
command is entered.

See Also r (starts a user program run; normally will be specified after entering the t
command)

th (halts a trace in process)

ts (allows you to determine the current status of the emulation analyzer)

tx (specifies whether a trace is to begin upon start of CMB execution)

x (begins synchronous CMB execution)

xtmo (specifies whether or not the external analyzer bits are to be treated as a
separate analyzer or integrated with the emulation analyzer. If associated with the
emulation analyzer, the xt command is invalid; the t command starts the trace on
both analyzers.)

Chapter 9: Commands
t, xt - start a trace

281

ta - current status of analyzer signals is displayed

ta

The ta command allows you to display the activity on each of the analyzer input
lines. Each signal may be low (0), high (1), or moving (?).

Each pod (group of 16 lines) is displayed on a single line with bit 0 (LSB) at the far
right and bit 15 (MSB) on the far left.

See Also xtv (used to set the threshold voltages for the optional external analyzer inputs;
incorrect specification may show up as lack of activity in a ta display)

Chapter 9: Commands
ta - current status of analyzer signals is displayed

282

tarm, xtarm - specify the arm condition

tarm <signal> - arm the emulation analyzer

xtarm <signal> - arm the external analyzer

The tarm (xtarm) command allows you to specify an arming condition for the
emulation and external analyzers. You can specify the arm condition as the
assertion of the trig1 or trig2 signals or as tarm always.

The trig1 or trig2 signals can be asserted from many sources including the analyzer
itself or the rear panel BNC connector or the CMB. See bnct, cmbt, and tgout for
examples.

The arm condition may be used in specifying the analyzer trigger or in specifying
branch conditions for the sequencer, as well as count or prestore qualifiers.

If the analyzers are connected through use of the xtmo command, then the xtarm
command is invalid. In this case, the tarm command will set the arming condition
for the analyzer combination.

If no parameters are supplied, the current tarm condition is displayed. The default
setting after powerup or tinit is tarm always.

The parameters are as follows:

=trig1 The assertion of the trig1 signal will arm the analyzer.

=trig2 The assertion of the trig2 signal will arm the analyzer.

!=trig1 If the trig1 signal is asserted when the analyzer is started, the analyzer can never be
armed.

If the trig1 signal is not asserted when the analyzer is started, the analyzer is armed
immediately.

!=trig2 If the trig2 signal is asserted when the analyzer is started, the analyzer can never be
armed.

If the trig2 signal is not asserted when the analyzer is started, the analyzer is armed
immediately.

always The analyzer is always armed.

Chapter 9: Commands
tarm, xtarm - specify the arm condition

283

Note that if the external analyzer is configured to operate as a timing analyzer
(xtmo -t) then the != operator is invalid when used in the xtarm command as given
to the external analyzer. Only the = operator will be recognized.

See Also bc (can be used to cause the emulator to break to monitor execution upon receipt of
the trig1 and/or trig2 signals)

bnct (used to define connections between the internal trig1 and trig2 signals and the
rear panel BNC connector)

cmbt (used to define connections between the internal trig1 and trig2 signals and
the CMB trigger signal)

tgout (defines whether or not the trig1 or trig2 signals are driven when the analyzer
finds the trigger state)

Chapter 9: Commands
tarm, xtarm - specify the arm condition

284

tcf, xtcf - set or display trace configuration

tcf - display trace configuration
tcf -c - set complex trace configuration
tcf -e - set easy trace configuration

xtcf - display trace configuration
xtcf -c - set complex trace configuration
xtcf -e - set easy trace configuration

The tcf (xtcf) commands are used to set the configuration for the emulation
(external) analyzer. There are two possible configurations for the analyzer, an easy
configuration (tcf -e) and a complex configuration (tcf -c).

The easy configuration hides some of the complexity of the analyzer sequencer and
makes it easy to use. The complex configuration gives you greater capability when
using the sequencer and gives you greater flexibility when using expressions to
qualify states.

In the easy configuration, you can insert up to five sequence terms in the sequencer.
The branch out of the last sequence term constitutes the trigger.

In the complex configuration, there are always eight terms in the sequencer. Any
of the sequence terms except the first may be specified as the trigger term. Entry
into the trigger term constitutes the trigger.

In the complex configuration, up to eight pattern resources and one range resource
may be used in trace commands wherever state qualifier expressions are used in the
easy configuration. These patterns are grouped in to sets and may be combined with
set operators to specify more complex qualifiers.

If no parameters are supplied, the current analyzer configuration is displayed. After
powerup or tinit , the default analyzer configuration is tcf -e.

The parameters are as follows:

-e Sets the analyzer to the easy configuration.

-c Sets the analyzer to the complex configuration.

See Also tarm (used to set the analyzer arm specification; this specification can only be used
in analyzer expressions in complex configuration)

Chapter 9: Commands
tcf, xtcf - set or display trace configuration

285

telif (sets the global restart in easy configuration, secondary branch condition in
complex configuration)

tg (used to set a trigger expression in either analyzer configuration)

tif (sets primary branch specification in either analyzer configuration)

tpat (used to label complex analyzer expressions with a pattern name; the pattern
name is then used by the analyzer setup commands. Only valid in complex
configuration)

tpq (specifies trace prestore qualifier in either analyzer configuration)

trng (defines a range of values to be used in complex analyzer expressions)

tsto (specifies a qualifier to be used when storing analyzer states)

tsq (used to modify the trace sequencer’s number of terms and trigger term)

xtmo (used to append or disconnect the external analyzer to/from the emulation
analyzer)

Chapter 9: Commands
tcf, xtcf - set or display trace configuration

286

tck, xtck - set or display clock specification for
the analyzer

tck -r <clock> - clock analyzer on rising edge of clock
tck -f <clock> - clock analyzer on falling edge of clock
tck -x <clock> - clock analyzer on either edge of clock
tck -l <clock> - qualify on low level of clock
tck -h <clock> - qualify on high level of clock
tck -b - qualify when emulation in background
tck -u - qualify when emulation in user
tck -s <speed> - define the clock speed

xtck -r <clock> - clock analyzer on rising edge of clock
xtck -f <clock> - clock analyzer on falling edge of clock
xtck -x <clock> - clock analyzer on either edge of clock
xtck -l <clock> - qualify on low level of clock
xtck -h <clock> - qualify on high level of clock
xtck -b - qualify when emulation in background
xtck -u - qualify when emulation in user
xtck -s <speed> - define the clock speed

The tck (xtck) command allows specification of clock qualifiers and master edges
of the master clocks used for the emulation and external analyzers.

The tck command is included with the system for the purpose of internal system
initialization and system control through high-level software interfaces.

You should ONLY use the tck command when you wish to trace background
execution or perhaps to qualify the emulation analyzer clock on some external
signal. In other words, do not change the the "tck -r L" setting.

If you are using the external analyzer as an independent state analyzer, you will use
the xtck command to specify and qualify the clock signal for the external analyzer.

The parameters are as follows:

<clock> Five clock signals are defined: J, K, L, M, and N.

The L, M, and N clocks are generated by the emulator. The L clock is the
emulation clock derived by the emulator, the N clock is used as a qualifier to
provide the user/background tracing options (-u and -b) to tck, and the M clock is
not used. The L and N clocks may also be used to clock and qualify the external
analyzer as well as the emulation analyzer.

The J and K clocks are the clock inputs on the external trace probe (if one is
present). These clock signals should only be used to clock the external trace; they

Chapter 9: Commands
tck, xtck - set or display clock specification for the analyzer

287

should not be used to clock the emulation trace although it may occasionally be
useful to use the external clock signals as qualifiers for the emulation trace.

r The analyzer is clocked on the rising edge of the indicated clock signal.

f The analyzer is clocked on the falling edge of the indicated clock signal.

x The analyzer is clocked on both the rising and falling edges of the indicated clock
signal.

l Qualifies the analyzer clock so that the analyzer is only clocked when this clock
signal is low (less positive/more negative voltage).

h Qualifies the analyzer clock so that the analyzer is only clocked when this clock
signal is high (more positive/less negative voltage).

-b The analyzer is only clocked when the emulator is executing in background (in
other words, the background monitor).

-u The analyzer is only clocked when the emulator is executing in foreground (in other
words, the user program). This is the default.

-s <speed> Specifies the maximum qualified clock speed. The <speed> parameter can be:

S SLOW, less than or equal to 16 MHz.

F FAST, between 16 MHz and 20 MHz.

VF VERY FAST, between 20 MHz and 25 MHz.

Changing the clock speed affects the tcq command parameters. When speed is set
to S (slow), the tcq command may either count states or time. When speed is set to
F (fast), the tcq command may be used to count states but not time. If clock speed
is set to VF (very fast), tcq cannot count either state or time and should be set to
tcq none.

If no parameters are specified, the current clock definitions are displayed. After
powerup or tinit , the -u option is always set.

When several clock edges are specified with the -r , -f, or -x options, any one of the
edges clocks the given trace. If several qualifiers are specified with the -l or -h
options, they are ORed so that the trace is clocked when any of the qualifiers are
met.

Chapter 9: Commands
tck, xtck - set or display clock specification for the analyzer

288

Note that the -u and -b qualifiers are ORed with all of the other qualifiers specified.

See Also ta (display current trace signal activity. This can be useful after you have modified
the clocks for the external analyzer; you can issue a ta command and verify that
you are seeing activity on the signals of interest.)

tcq (specifies the trace count qualifier as states, time, or none. The maximum
qualified clock speed set by tck -s affect which tcq parameters are valid.)

tsck (used to define slave clock signals used by the analyzer; tck defines the master
clock signals. Default mode for tsck is off on all pods.)

xtv (specifies threshold voltages for external analyzer input lines; must be set
correctly to ensure that the J and K clock signals are recognized)

xtmo (specifies mode of operation for the external analyzer; that is, whether it acts
as an independent analyzer or is appended to the emulation analyzer)

Chapter 9: Commands
tck, xtck - set or display clock specification for the analyzer

289

tcq, xtcq - set or display the count qualifier
specification

tcq - display count qualifier specification
tcq time - define count on time
tcq <expr> - define count on state

xtcq - display count qualifier specification
xtcq time - define count on time
xtcq <expr> - define count on state

The tcq (xtcq) command allows you to specify a qualifier for the emulation
(external) trace tag counter.

When the tag counter is active, the analyzer counts occurrences of the expression
you specify (which may include simple or complex expressions (depending on
analyzer configuration), time, or none). Each time a trace state is stored, the value
of the counter is also stored and the counter is reset. The tag counter shares trace
memory with stored states, so only half as many states can be captured by the
analyzer when the tag counter is active. (The analyzer can store 1024 states with
tcq none, 512 states otherwise.)

If no parameters are given, the current count qualifier is displayed. Upon powerup
or after tinit initialization, the clock qualifier defaults to the state tcq time.

The parameters are as follows:

time If you specify time rather than an analyzer expression, the trace tag counter
measures the amount of time between stored states.

Note that the tcq time qualifier is only available when the analyzer clock speed is
set to the slow (S) speed setting (default). If the clock speed is set to very fast
(VF), then trace tag counting must be turned off by specifying tcq none. Refer to
the tck command (analyzer clock specification) for further information.

<expr> State qualifier expression. Refer to the <expr> description in this chapter.

Note that the count qualifier tcq arm is not permitted in any configuration.

See Also tck (used to specify the clock source and clock parameters for the analyzer)

tp (specifies position of the trigger within the trace; note that tcq affects the
number of states the analyzer can store and therefore may affect trigger positioning)

Chapter 9: Commands
tcq, xtcq - set or display the count qualifier specification

290

tpat (assigns analyzer expressions to pattern names in complex configuration; the
pattern names are then used to specify qualifiers in other analyzer commands such
as tcq)

trng (specifies a range of values to be used as a complex mode qualifier; this range
definition can be used as a count qualifier by tcq)

tsq (used to manipulate the trace sequencer)

xtmo (used to choose the external analyzer mode; the external analyzer can operate
as an independent state or timing analyzer, or it may be appended to the emulation
analyzer. If appended, the xtcq command has no effect and the tcq command
specifies the count qualifier for both analyzers.)

Chapter 9: Commands
tcq, xtcq - set or display the count qualifier specification

291

telif, xtelif - set or display secondary branch
specification

In the easy configuration:
telif - display global restart specification
telif <expr> - define global restart specification

xtelif - display global restart specification
xtelif <expr> - define global restart specification

In the complex configuration:
telif - display all secondary branch specifications
telif X - display secondary branch specification X
telif X <expr> - define secondary branch specification X
telif X <expr> Y - secondary branch X will jump to Y (default next
 term)

xtelif - display all secondary branch specifications
xtelif X - display secondary branch specification X
xtelif X <expr> - define secondary branch specification X
xtelif X <expr> Y - secondary branch X will jump to Y (default next
 term)

The telif (xtelif) command allows you to set the global restart qualifier (in easy
configuration) for the emulation (external) analyzer sequencer. In complex
configuration, telif (xtelif) lets you set the secondary branch qualifier for each term
of the emulation (external) analyzer sequencer.

Note that the telif command is used as a global restart qualifier in easy
configuration and a secondary branch qualifier in complex configuration. The
hierarchy of the tif and telif commands is such that either branch will be taken if
found before the other; however, if both branches are found simultaneously, the tif
branch is always taken over the telif branch.

When in easy configuration, the sequencer will restart by jumping to sequencer
term number one (1) when the expression specified by telif occurs.

When in complex configuration, the sequencer will branch to the sequencer level
specified by the Y parameter when the expression specified is found. There are
always eight sequencer terms available. Position of the trigger term is defined with
the tsq command. If both the tif and telif expressions are satisfied simultaneously,
the tif branch is taken; otherwise, branching occurs according to which expression
is first satisfied.

Chapter 9: Commands
telif, xtelif - set or display secondary branch specification

292

The parameters are as follows:

<expr> State qualifier expression. Refer to the <expr> description in this chapter.

X Specifies a sequence term number to associate with the given <expr>. When you
associate a term number with a complex expression, that expression is only used as
a secondary branch qualifier at the sequencer level specified by the term number. If
you specify X without an expression, the secondary branch qualifier currently
associated with that term number is displayed.

Y Specifies the branch destination when <expr> is found. For example, if you wish to
have the sequencer branch from term 1 to term 3 after the expression is found you
would be specified as telif 1 <expr> 3. If you do not specify a term number, the
default is to increment the sequencer level (telif X <expr> (X+1)).

If telif is entered with no parameters, the global restart qualifier or secondary
branch qualifiers (depending on analyzer configuration) for all sequencer levels are
displayed. If telif is entered with only an X parameter in complex configuration,
the secondary branch qualifier for only that term number is displayed.

Upon initialization via a powerup sequence or the tinit command, the secondary
branch specifiers are set to telif never.

Note that the default branch to condition for sequence term 8 is 8; that is, branch to
the same term.

Note that if the tif expression for the given sequence term X has a <count>
parameter other than one (1), the counter is reset to zero (0) if the telif branch is
taken before the occurrence counter parameter is satisfied. For example, if the tif
counter parameter is 7, and the tif expression has been found 5 times, then the telif
expression is satisfied, the telif branch will be taken and the tif counter will be reset
from 5 to 0. This might cause you difficulty if you happen to have telif branching
back to the same term; your occurrence condition may or may not be satisfied.

See Also tarm (allows you to specify that the trig1 or trig2 signal will arm the analyzer.
This arm condition can then be used as part of the secondary branch qualifier)

tcf (used to select whether the analyzer is operated in easy configuration or
complex configuration)

tif (used to specify a primary branch specification for the analyzer)

Chapter 9: Commands
telif, xtelif - set or display secondary branch specification

293

tg (used to set up a simple trigger qualifier in either analyzer configuration.
Specifying the tg command overrides the current sequencer specification and will
modify the existing telif qualifier stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in specifying
complex expressions. These complex expressions are used to specify telif
qualifiers in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a range
variable. This range information may be used in specifying complex telif qualifiers)

tsto (specifies a global trace storage qualifier in both easy & complex
configurations; also specifies a trace storage qualifier for each sequencer term in
complex configuration. Used to control the types of information stored by the
analyzer)

tsq (used to manipulate the trace sequencer)

xtmo (specifies whether the external analyzer operates as an independent state or
timing analyzer or is appended to the emulation analyzer. If appended to the
emulation analyzer, the xtelif command is invalid; all secondary branch qualifiers
are specified with the telif command)

Chapter 9: Commands
telif, xtelif - set or display secondary branch specification

294

tf, xtf - specify trace display format

tf - display current format
tf <label>,<base> - display the label in the specified base
tf mne - disassembled mnemonic
tf count - count, absolute (relative to trigger)
tf count,a - count, absolute (relative to trigger)
tf count,r - count, relative to preceding state
tf seq - sequencer state change
tf mne <label>,<base> count count,r seq
 - multiple fields may be specified
tf addr,H mne count,r seq - default format
tf addr,<base>,<width> - column width (addr column only)

xtf - display current format
xtf <label>,<base> - display the label in the specified base
xtf count - count, absolute (relative to trigger)
xtf count,a - count, absolute (relative to trigger)
xtf count,r - count, relative to preceding state
xtf seq - sequencer state change
xtf <label>,<base> <label>,<base> count seq
 - multiple fields may be specified
xtf xbits count,r seq - default format

The tf (xtf) command allows you to specify which pieces of information from the
emulation (external) analyzer trace will be displayed by tl (xtl) (trace list)
commands. Each label represents a column in the trace list display.

The parameters are as follows:

<label> A label defined via the tlb or xtlb commands. The analyzer bits associated with
that label will be displayed in a column of the trace listing.

<base> Specifies the numeric base in which <label> is to be displayed. The choices are Y
(binary), Q or O (octal), T (decimal), H (hexadecimal), or A (ASCII). The
specifiers are not case sensitive. In ASCII mode, non printing characters are
displayed as periods (.). If <base> is not specified, the default base is hexadecimal.

mne Displays mnemonic information about a state. Depending on the trace list
disassembler options (see tl -o), disassembled instructions may be displayed in this
column. To ensure correct operation of mne, the predefined labels addr, data, and
stat must not be redefined. The mne column is only allowed with the tf command,
and not with xtf .

count
count,a

Absolute time counts are displayed. That is, the the time shown for each state is
relative to the trigger state.

Chapter 9: Commands
tf, xtf - specify trace display format

295

count,r Relative time counts are displayed. That is, the time count shown for each state is
relative to the previous state.

seq If you specify seq, a "+" is displayed in the seq column for each state that causes
the sequencer to branch from one term to another.

<width> This option allows you to set the width of the column for the "addr" predefined
trace label to values from 4 to 50. A wider address field is useful when displaying
symbols in the trace list.

The minimum width is really defined by the base of the "addr" column. For
example, if the 24-bit address is displayed in binary, the minimum width is 24.

Note that changing the trace format DOES NOT change the type of information
captured by the analyzer; it only specifies how the captured data should be
displayed.

See Also tl,xtl (displays the current data in emulation (external) trace memory according to
the specifications set up by tf)

tlb,xtlb (define labels which represent groups of emulation (external) analyzer
input lines; these labels may be used to create special trace list displays by
including the labels in the tf definition)

xtmo (defines whether the external analyzer acts as an independent state/timing
analyzer or is appended to the emulation analyzer)

Chapter 9: Commands
tf, xtf - specify trace display format

296

tg, xtg - set and display trigger condition

tg - display sequence term 1 primary branch
tg <expr> - define trigger
tg <expr> <count> - define trigger and occurrence count

xtg - display sequence term 1 primary branch
xtg <expr> - define trigger
xtg <expr> <count> - define trigger and occurrence count

The tg (xtg) command sets a trigger condition for the emulation (external) analyzer.
When the expression specified occurs the number of times specified, the analyzer
triggers.

The parameters are as follows:

<expr> State qualifier expression. Refer to the <expr> description in this chapter.

<count> Specifies the number of times the expression must occur before the trigger
condition is satisfied. The <count> value specified must be from 1 to 65535. The
default number base for <count> is decimal. If <count> is not specified, the
occurrence count is 1.

If no parameters are specified, the current primary branch condition for sequencer
term 1 is displayed. Note that this is not necessarily the trigger condition if other
sequence terms are used. After powerup or tinit initialization, tg is set to tg any.

The tg command modifies the current analyzer sequence specification. The manner
in which the sequencer is modified is dependent upon the analyzer configuration.

If the analyzer is in easy configuration (tcf -e), the sequencer is reduced to a one
term sequence triggering upon exit from term 1. The global restart qualifier is set
to never (telif never); the primary branch condition is set to the specified trigger
expression (tif 1 <expr> <count>).

If the analyzer is in complex configuration (tcf -c), the sequencer is modified to
trigger upon entrance to the second sequence term (tsq -t 2), the secondary branch
qualifier is set to never (telif 2 never), and the primary branch qualifier for term
number 1 is set to the specified expression (tif 1 <expr> 2 <count>).

The analyzer storage qualifier (tsto) is not affected in either configuration;
therefore, the analyzer uses the storage qualifier from the most recent tsto
command.

Chapter 9: Commands
tg, xtg - set and display trigger condition

297

See Also bc (allows you to break the emulator to the monitor when various conditions occur;
you can have the emulator break upon analyzer trigger by specifying tgout trig1
and bc -e trig1 (or you could use the trig2 signal to perform the same function))

t (starts an emulation trace)

tarm (used to specify an analyzer arm condition; the analyzer will not trigger until
the arm condition is received if you specify tg arm)

tcf (used to specify whether the analyzer is operated in easy or complex
configuration)

tpat (used to assign pattern names to simple analyzer expressions; the pattern
names are then used in creating complex analyzer expressions which could be used
with the tg command to trigger the analyzer)

trng (used to specify a range of values for a particular group of analyzer lines; this
range may be used in specifying complex analyzer expressions for triggering the
analyzer)

tsto (specifies which states encountered by the analyzer should be stored in trace
memory)

tsq (used to manipulate the trace sequencer. Note that the sequencer’s current
status is affected by the tg command.)

xtmo (specifies whether the external analyzer is treated as a separate state or timing
analyzer or is appended to the emulation analyzer. If appended to the emulation
analyzer, the xtg command is no longer valid; tg sets the trigger condition for both
analyzers.)

Chapter 9: Commands
tg, xtg - set and display trigger condition

298

tgout, xtgout - specify signals to be driven by the
analyzer

tgout <signal> - find trigger then drive signal

xtgout <signal> - find trigger then drive signal

The tgout (xtgout) command allows you to specify which of the internal trig1
and/or trig2 signals will be driven when the emulation analyzer (external analyzer)
finds its trigger condition.

The parameters are as follows:

<signal> Specifies the internal signal to drive when the trigger is found. This signal can be:

trig1 The trig1 signal is driven by the analyzer when the trigger state
is found.

trig2 The trig2 signal is driven by the analyzer when the trigger state
is found.

trig1,trig2 Both trig1 and trig2 should are driven when the analyzer trigger
is found.

none Neither the trig1 nor trig2 signals are driven when the analyzer
finds its trigger state.

If no parameters are specified, the current state of tgout is displayed. Upon
powerup or tinit , the default state is tgout none.

Note that if the analyzer is receiving trig1 or trig 2 via the tarm command, then that
signal cannot be driven, although no error message will be issued to that effect.

If the external analyzer has been appended to the emulation analyzer via the xtmo
command, then the xtgout command is invalid and the tgout command specifies
the trigger signals to be driven when either analyzer finds its trigger.

See Also bc (allows you to specify a break to emulation monitor when the tgout condition is
satisfied)

Chapter 9: Commands
tgout, xtgout - specify signals to be driven by the analyzer

299

bnct (specifies whether or not trig1 and trig2 are used to drive and/or receive the
rear panel BNC connector signal line)

cmbt (specifies whether or not trig1 and trig2 are used to drive and/or receive the
CMB trigger signal)

tarm (used to specify that the analyzer will be armed upon assertion or negation of
trig1 or trig2)

Chapter 9: Commands
tgout, xtgout - specify signals to be driven by the analyzer

300

th, xth - halt the trace

th - halt the emulation trace
th -w - suppress output and errors

xth - halt the external trace
xth -w - suppress output and errors

The th (xth) command stops an emulation (external) trace.

The parameters are as follows:

-w Suppresses the output and errors. In other words, "Emulation trace halted" is not
shown.

If the external analyzer has been appended to the emulation analyzer with the xtmo
command, the xth command is invalid and th halts both the emulation and external
trace in process.

The analyzer will stop driving the trig1 and trig2 signals when the trace is halted.
This may cause you difficulty in making measurements with instruments connected
to the BNC. For example, if you set the analyzer to drive trig1 (tgout trig1) when
the trigger condition is found, then drive this to the BNC connector with bnct -d
trig1 , the BNC signal will be driven high when the analyzer finds its trigger while a
trace is in progress; it will fall low when the trace finishes.

You should start the trace after you have begun the external instrument’s
measurement. Otherwise, the following measurement errors may occur, depending
on the type of external instrument you are using:

• With an edge sensitive instrument, starting the instrument after the analyzer
trigger is found will mean that the instrument never sees the transition of the
trig1 line and therefore never triggers.

• With a level sensitive instrument, starting the instrument after the analyzer
trigger is found will mean that the instrument triggers immediately; although
many states of interest have probably already passed.

Note that if the analyzer trigger specification has not been found, you will need to
use the th command to halt the analyzer before you can display the trace list.

Chapter 9: Commands
th, xth - halt the t race

301

See Also t (used to start an analyzer trace)

ts (allows you to determine the current status of the emulation analyzer)

tx (starts an analyzer trace upon receipt of the CMB execute signal)

x (starts a synchronous CMB execution)

Chapter 9: Commands
th, xth - halt the trace

302

tif, xtif - set or display primary sequence branch
specifications

In the easy configuration:
tif - display all primary branch specifications
tif X - display primary branch X specification
tif X <expr> - define primary sequence branch X
tif X <expr> <count> - branch X jump to next term after count times

xtif - display all primary branch specifications
xtif X - display primary branch X specification
xtif X <expr> - define primary sequence branch X
xtif X <expr> <count> - branch X jump to next term after count times

In the complex configuration:
tif - display all primary branch specifications
tif X - display primary branch X specification
tif X <expr> - define primary sequence branch X
tif X <expr> Y - define primary sequence branch X jump to Y
tif X <expr> Y <count> - define branch X jump to Y after count times

xtif - display all primary branch specifications
xtif X - display primary branch X specification
xtif X <expr> - define primary sequence branch X
xtif X <expr> Y - define primary sequence branch X jump to Y
xtif X <expr> Y <count> - define branch X jump to Y after count times

The tif (xtif) command allows you to set the primary branch qualifier for each term
of the emulation (external) analyzer sequencer.

The parameters are as follows:

X Specifies the sequence term whose primary branch qualifier is to be modified with
the <expr> state qualifier. If you specify X without an expression, the tif qualifier
for that term number is displayed.

<expr> State qualifier expression. Refer to the <expr> description in this chapter.

<count> Specifies the number of times the expression must occur before the trigger
condition is satisfied. The <count> value specified must be from 1 to 65535. The
default number base for <count> is decimal. If <count> is not specified, the
occurrence count is 1.

Note that, in the complex configuration, if you specify the <count> parameter, you
must also specify a Y parameter. If you omit the Y parameter when specifying
<count>, the system will interpret the count as "branch to term" information; if

Chapter 9: Commands
tif, xtif - set or display primary sequence branch specifications

303

greater than eight (8), an error will be returned; otherwise, you will have just
specified an incorrect branch.

Y Specifies the branch destination when the state qualifier is found. For example, if
you wish to have the sequencer branch from term 1 to term 3 after the expression is
found, this would be specified as tif 1 <expr> 3. If you do not specify a term
number, the default is to increment the sequencer level (tif X <expr> (X+1)).

If tif is entered with no parameters, the primary branch qualifiers for all sequencer
levels are displayed. If tif is entered with only an X parameter, the primary branch
qualifier for only that term number is displayed.

Upon initialization via a powerup sequence or the tinit command, the primary
branch specifiers are set to tif X any (X+1).

Note that the telif command is used as a global restart qualifier in easy
configuration and a secondary branch qualifier in complex configuration. The
hierarchy of the tif and telif commands is such that either branch will be taken if
found before the other; however, if both branches are found simultaneously, the tif
branch is always taken over the telif branch.

When in easy configuration, the sequencer will increment to the next sequencer
level when the expression specified by tif occurs the number of times specified by
the <count> parameter. There is a maximum of five sequence levels; only one is
available at initialization. If you require more sequencer levels, you must insert
them with the tsq command. (The term you are specifying a primary branch for
with the tif command must be present in the sequence.) The branch out of the last
sequencer term constitutes the trigger.

When in complex configuration, the sequencer will branch to the sequencer level
specified by the Y parameter when the expression specified occurs the number of
times indicated in the <count> parameter. There are always eight sequencer terms
available. Position of the trigger term is defined with the tsq command.

Note that, in the complex configuration, at sequencer term number 8, the default
branch to condition is also term 8; that is, branch to the same term.

See Also tarm (allows you to specify that the trig1 or trig2 signal will arm the analyzer.
This arm condition can then be used as part of the primary branch qualifier)

tcf (used to select whether the analyzer is operated in easy configuration or
complex configuration)

Chapter 9: Commands
tif, xtif - set or display primary sequence branch specifications

304

telif (used to specify a secondary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer mode. Specifying the
tg command overrides the current sequencer specification and will modify the
existing tif qualifier stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in specifying
complex expressions. These complex expressions are used to specify tif qualifiers
in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a range
variable. This range information may be used in specifying complex tif qualifiers)

tsto (specifies a global trace storage qualifier in both easy and complex
configurations; also specifies a trace storage qualifier for each sequencer term in
complex configuration. Used to control the types of information stored by the
analyzer)

tsq (used to manipulate the trace sequencer)

xtmo (specifies whether the external analyzer operates as an independent state or
timing analyzer or is appended to the emulation analyzer. If appended to the
emulation analyzer, the xtif command is invalid; all primary branch qualifiers are
specified with the tif command)

Chapter 9: Commands
tif, xtif - set or display primary sequence branch specifications

305

tinit - initialize emulation and external analyzers
to powerup defaults

tinit

The tinit command restores all trace specification items to their powerup default
values which are as follows:

Trace Specification Default Value

Analyzer arm tarm always

Trace Configuration tcf -e

Analyzer master clocks tck -r L -u -s F

Trace format tf addr,H mne count,R

Trace trigger tg any

tgout none

Analyzer signal line labels #### Emulation trace labels

tlb addr 0..19

tlb data 32..47

tlb stat 20..31

Trigger Position tp s

Trace Prestore Qualifier tpq none

Trace sequencer (includes branch and
store conditions)

tif 1 any

tsto all

telif never

Trace slave clocks tsck -o 1

tsck -o 2

tsck -o 3

tsck -o 4

Trace Upon Execute? tx -d # ignore the execute signal

Chapter 9: Commands
tinit - initialize emulation and external analyzers to powerup defaults

306

See Also init (used to initialize selected portions of the emulator or the entire emulator,
dependent on the options given)

Chapter 9: Commands
tinit - initialize emulation and external analyzers to powerup defaults

307

tl, xtl - display trace list

tl - display next states
tl * - display all states
tl -d -15..3 - display states -15 through 3, disassembled
tl -s 20..30 - display symbols only in addr column
tl -a 50..60 - display absolute addresses only in addr column
tl -e 12..25 - display symbols and absolutes in addr column
tl -h - display next states, no header
tl -n 3 - display next 3 states
tl -t 123 - display top 123 states
tl 10..20 - display states 10 through 20
tl -b - upload binary trace list
tl -h -n -d 15 - some options may be combined

xtl - display next states
xtl * - display all states
xtl -h - display next states, no header
xtl -n 3 - display next 3 states
xtl -t 123 - display top 123 states
xtl 10..20 - display states 10 through 20
xtl -b - upload binary trace list
xtl -h -n -d 15 - some options may be combined

The tl (xtl) command allows you to display the current emulation (external)
analyzer trace list information.

If the trigger specification has not yet been satisfied, the trace list cannot be
displayed until the trace in progress is halted with the th command. Entering the tl
command before the trace is halted results in the message "** Trigger not in
memory ** ."

If the analyzer was halted before any states were captured, the message "** No
trace data **" is displayed upon entry of the tl command.

The parameters are as follows:

-d Disassemble instructions in the trace.

-s Display symbols in the address column.

-a Display absolute addresses in the address column. This is the default.

-e Display symbols and absolute addresses in the address column.

-h Suppresses the display of column headers.

Chapter 9: Commands
tl, xtl - display trace list

308

-n Display the next number of states of the trace. If you do not specify a number, the
same number of states will be displayed as the last time you used tl to display part
(but not all) of the trace.

-t Displays the top number of states of the trace. If you do not specify a number, the
number of states displayed is the same number as the last time tl was invoked to
display part (but not all) of the trace.

-b Dumps the trace list in binary format using the HP 64000 transfer protocol.

Note that the -h and -d options cannot be used with the -b option.

If no parameters are given, the trace list is displayed starting with the first state that
has not yet been displayed. The number of states displayed is identical to the
number of states displayed by the last tl command. For example, if the last trace
list display was tl -t 5, then the next tl command will start the display at state 6 and
display a total of five states.

Note that the HP 64700 remembers the last option specified for the address field
(-s, -a, or -e), and uses it for the next tl command if no other option is specified.

See Also t (starts an analyzer trace)

tf (specifies the display format for the trace)

th (halts a trace in process)

tlb (defines analyzer signal line labels; these may be used by tf in specifying the
trace list display format)

ts (allows you to determine the current status of the emulation analyzer)

Chapter 9: Commands
tl, xtl - display trace list

309

tlb, xtlb - define and display trace labels

tlb addr 0..15 - define addr, positive polarity, bits
 0 through 15
tlb data 16..23 - define data, positive polarity, bits
 16 through 23
tlb stat 24..31 - define stat, bits 24 through 31
tlb stat 31..24 - define stat, bits 24 through 31;
 31..24 is the same bit range as 24..31
tlb -n LRESET 25 - define LRESET, negative polarity, bit 25
tlb -d LRESET - delete named label
tlb -d * - delete all labels
tlb addr - display named label
tlb - display all labels

xtlb MYLABEL 8..12 - define MYLABEL, positive polarity,
 external analyzer bits 8 through 12
xtlb myStatus 3 - define myStatus, positive polarity,
 external analyzer bit 3
xtlb -n AuxBits 2..11 - define AuxBits, negative polarity,
 external analyzer bits 2 through 11
xtlb -n AuxBits 11..2 - define AuxBits, negative polarity,
 external analyzer bits 2 through 11;
 11..2 is the same bit range as 2..11
xtlb -n LRESET16 7 - define LRESET16, negative polarity,
 external analyzer bit 7
xtlb -d myStatus - delete named external analyzer label
xtlb -d * - delete all external analyzer labels
xtlb LRESET16 - display named external analyzer label
xtlb - display all external analyzer labels

The tlb (xtlb) command allows you to define new labels for emulation (external)
analyzer lines, as well as display or delete previously defined analyzer labels.
Since labels are pre-defined for the address, data, and status lines of the emulation
analyzer, xtlb will be the more frequently used command.

The parameters are as follows:

-d Delete the named label. If the label is currently used in a trace specification or in
the trace display format (tf command), it will not be deleted until removed from all
of the specifications. If * is used, all labels are deleted.

-n Defines the named label with negative polarity. That is, after label definition, bits
that are a one (1) refer to a signal lower than the threshold voltage and bits that are
a zero (0) refer to a signal higher than the threshold voltage. If -n is not specified,
the named label defaults to positive polarity.

Chapter 9: Commands
tlb, xtlb - define and display trace labels

310

If no parameters are specified, the current label definitions are displayed. Upon
emulator powerup, or after a tinit command, the following labels are defined:
M>tlb
 #### Emulation trace labels
 tlb addr 0..19
 tlb data 32..47
 tlb stat 20..31

M>xtlb
 #### External trace labels
 xtlb xbits 0..15

Note that the predefined emulation trace labels are special labels, used for trace list
disassembly. They should not be changed or deleted.

The external analyzer has 16 lines that may be assigned to labels, numbered 0
through 15, where 0 is the least significant bit. The emulation analyzer has 48
lines, where 0 is the least significant bit.

In emulation analyzer labels, no more than 32 signal lines may be assigned to a
given label. Also, an emulation analyzer label may not cross more than a multiple
of 16 boundary. For example, a label cannot be defined for emulation analyzer
lines 15..32 since one multiple of 16 boundary is crossed from 15 to 16 and another
boundary is crossed from 31 to 32.

Labels are made up of alphanumeric characters; upper and lower case are
distinguished. Labels can be up to 31 characters in length.

Labels can be made to overlap; for example, you may wish to define a label for a
particular status line or data bit so that you can easily track its state in the trace list.

The number of labels that can be defined is limited only by system memory.

See Also tf (used to specify the trace list format; tlb <LABEL> definitions can be specified
as output columns in the trace listing through the tf command)

tpat (trace pattern definition; labels defined in tlb can be used in pattern definitions)

trng (trace range, used to specify a range of valid values to be used in a trace
specification; labels defined by tlb may be used in defining the trace range)

xtv (threshold voltage setting for analyzer lines; tlb can be used to define positive
and negative logic for labels encompassing those lines)

Chapter 9: Commands
tlb, xtlb - define and display trace labels

311

tp, xtp - set and display trigger position within
the trace

tp - display trigger position
tp s - trigger position start of the trace
tp c - trigger position center of the trace
tp e - trigger position end of the trace
tp -b <offset> - trigger is offset states from beginning of trace
tp -a <offset> - trigger has offset states after the trigger

xtp - display trigger position
xtp s - trigger position start of the trace
xtp c - trigger position center of the trace
xtp e - trigger position end of the trace
xtp -b <offset> - trigger is offset states from beginning of trace
xtp -a <offset> - trigger has offset states after the trigger

The tp (xtp) command allows you to specify where the trigger state will be
positioned within the emulation (external) trace list.

The position number specified has an accuracy of +/- 1 state when counting states
or time; when counts are turned off, the accuracy is +/- 3 states.

The parameters are as follows:

s The trigger is positioned at the start of the trace list.

c The trigger is positioned at the center of the trace list.

e The trigger is positioned at the end of the trace list.

-b Indicates that the trigger is to be placed in the trace list with <offset> number of
states before the trigger position to the beginning of the trace.

-a Indicates that the trigger is to be placed in the trace list with <offset> number of
states after the trigger position to the end of the trace.

<offset> A decimal value from 0 to 1023.

If no parameters are supplied, the current trigger position setting is displayed.
Upon powerup or after tinit , the trigger position is tp s.

Note that the s, c, and e options are the only position parameters that are valid for
the optional external analyzer set to timing mode (xtmo -t).

Chapter 9: Commands
tp, xtp - set and display trigger position within the trace

312

See Also tg (defines the trigger expression)

tl (used to display the trace list)

tsq (used to specify the trigger position within the trace sequencer; reference the
sequencer operation when deciding where to position the trigger in the trace list, if
you want to capture all of the sequence conditions)

xtmo (specifies whether the external analyzer acts independently or is appended to
the emulation analyzer)

Chapter 9: Commands
tp, xtp - set and display trigger position within the t race

313

tpat, xtpat - set and display pattern resources

tpat - display all patterns
tpat <pattern> - display named patterns
tpat <pattern> <label>=<value> - equals pattern
tpat <pattern> <label>!=<value> - not equals pattern
tpat <pattern> <label>=<value> and <label>=<value>
tpat <pattern> <label>!=<value> or <label>!=<value>

xtpat - display all patterns
xtpat <pattern> - display named patterns
xtpat <pattern> <label>=<value> - equals pattern
xtpat <pattern> <label>!=<value> - not equals pattern
xtpat <pattern> <label>=<value> and <label>=<value>
xtpat <pattern> <label>!=<value> or <label>!=<value>

The tpat (xtpat) command allows you to assign pattern names to simple emulation
(external) analyzer expressions. These pattern names are then used in building
complex expressions for other analyzer commands.

The tpat command is only valid in the complex analyzer configuration (tcf -c).

The parameters are as follows:

<pattern> One of the pattern names p1 through p8.

<label> A trace label that is currently defined via either the tlb or xtlb commands.

<value> Values are numeric constants, equates, or symbols. Also, values can be the result
of constants, equates, and symbols combined with operators. Refer to the <value>
description.

If no parameters are given, or if the pattern name is given as * , all eight of the
current pattern assignments are displayed. If one of the pattern names is given, the
expression assigned to that pattern is displayed.

Upon entering complex configuration after powerup or a tinit initialization, all
eight patterns are defined as tpat <pattern> any.

See Also tcf (defines whether the analyzer is in easy configuration or complex configuration;
the tpat command is only valid in complex configuration)

telif (specifies a secondary branch qualifier in analyzer complex configuration; tpat
patterns may be used in qualifier specification)

Chapter 9: Commands
tpat, xtpat - set and display pattern resources

314

tg (used to specify a simple trigger in either easy configuration or complex
configuration; tpat patterns may be used in complex configuration trigger
specification)

tif (used to specify a primary branch qualifier in either analyzer configuration; tpat
patterns may be used in complex configuration branch specifications)

tpq (specifies a trace prestore qualifier; tpat patterns may be used in qualifier
specification)

trng (defines a range of values on a set of analyzer input lines; this range may be
used in conjunction with the patterns defined by tpat in setting up complex analysis
qualifiers)

tsq (used to manipulate the trace sequencer)

tsto (used to define global storage qualifiers in both analyzer configurations; may
also be used to define storage qualifiers for each sequencer level in complex
configuration. The patterns defined by tpat may be used in complex configuration
storage qualifier definition.)

xtmo (determines whether the external analyzer acts as an independent state or
timing analyzer or is appended to the emulation analyzer. If appended, the xtpat
command is no longer valid; tpat defines patterns to be used across both analyzers.)

Chapter 9: Commands
tpat, xtpat - set and display pattern resources

315

tpq, xtpq - set or display prestore specification

tpq - display prestore specification
tpq <expr> - set prestore specification

xtpq - display prestore specification
xtpq <expr> - set prestore specification

The tpq (xtpq) command allows you to specify a prestore qualifier for the
emulation (external) trace.

During the trace, the analyzer fills a two stage pipe with states that satisfy the
prestore qualifier. Each time a trace state is stored into the trace buffer, the prestore
qualifier is also stored and then cleared. Therefore, up to two prestore events may
be stored for each normal store event; the prestore events in the trace buffer will
correspond to the most recent states that satisfied the prestore qualifier immediately
prior to a store event but following the previous store event.

The parameters are as follows:

<expr> State qualifier expression. Refer to the <expr> description in this chapter.

If no parameters are given, the current prestore qualifier setting is displayed. Upon
powerup or after tinit initialization, the prestore qualifier defaults to tpq none.

See Also tcf (specifies whether the analyzer is to operate in easy configuration or complex
configuration)

tsq (used to manipulate the trace sequencer)

tsto (used to specify a global storage qualifier for both easy configuration and
complex configuration; also used to specify individual sequence term storage
qualifiers in complex configuration)

xtmo (specifies whether the external analyzer will act as an independent state or
timing analyzer or whether it will be appended to the emulation analyzer. If
appended to the emulation analyzer, the xtpq command has no effect; the tpq
command sets the prestore qualifier for both analyzers.)

Chapter 9: Commands
tpq, xtpq - set or display prestore specification

316

trng, xtrng - set or display range pattern

trng - display range
trng <label>=<value>..<value> - define range

xtrng - display range
xtrng <label>=<value>..<value> - define range

The trng (xtrng) command lets you specify a range of acceptable values for an
emulation (external) trace label. This range may then be used in complex qualifiers
for the trace specification. The trng (xtrng) command is only available in the
analyzer’s complex configuration (see tcf syntax pages).

There is no need for a not equals operator in specifying ranges, as the trace
specification commands which allow "range" as a parameter also accept "not
range" in the form !r .

If the optional external analyzer has been appended to the emulation analyzer via
the xtmo command, the xtrng command is invalid; trng sets a range pattern to be
used by both analyzers.

The parameters are as follows:

<label> A trace label that is currently defined via either the tlb or xtlb commands.

<value> Values are numeric constants, equates, or symbols. Also, values can be the result
of constants, equates, and symbols combined with operators. Refer to the <value>
description.

If no parameters are supplied, the current range definition is displayed. After
powerup or tinit initialization, the trng command is set to trng any. (Note that
trng is not directly available after analyzer initialization; the analyzer is set to easy
configuration when initialized. You must then switch to complex configuration to
access trng .)

Ranges can be specified that encompass more bits than the number of bits defined
for the specified label.

Note that the tcf -e (set trace configuration to easy) command also will reset trng .
In other words, any trng defined when the analyzer was in complex configuration
is destroyed when the analyzer is set to easy configuration; you cannot return to
complex configuration and use the old trng .

Chapter 9: Commands
trng, xtrng - set or display range pattern

317

See Also tcf (sets analyzer to complex or easy configuration; analyzer must be in complex
configuration to utilize the trng command)

telif (specifies the sequencer secondary branch expression; in complex
configuration, this expression can include references to the range)

tg (specifies analyzer trigger; may trigger on references to range)

tif (specifies the sequencer primary branch expression; in complex configuration,
branch expression may include range qualifier)

tpat (trace pattern definition; assigns pattern names to simple expressions for later
use in analyzer specifications. tpat essentially commits only one pattern to a label;
whereas trng allows a range of values to be assigned to the range pattern)

tpq (defines trace prestore qualifier; the range specification may be used in
complex configuration prestore qualifier expressions)

tsq (trace sequencer definition)

tsto (defines trace storage qualifier; that is, specifies exactly what states are actually
to be stored by the analyzer. In complex configuration, this can include states that
fall within the specification defined by trng)

xtmo (specifies the mode of the external analyzer; either an independent state or
timing analyzer or an analyzer appended to the emulation analyzer)

Chapter 9: Commands
trng, xtrng - set or display range pattern

318

ts, xts - display status of emulation trace

ts - display complete emulation trace status
ts -w - display short status

xts - display complete emulation trace status
xts -w - display short status

The ts (xts) command allows you to determine the current status of the emulation
(external) analyzer.

The parameters are as follows:

-w The -w option indicates that the trace status should be printed in whisper mode; this
gives an abbreviated version of the status. See "Whisper Mode Trace Display"
below for interpretation of the whisper status information.

Trace Status Displays

The emulation and external state trace status is displayed in the following form:

---[Emulation | External] Trace Status---
(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]
Trigger (not) found
Arm to trigger armcount
States visible (history) first..last
Sequence term term
Count remaining count

The external timing trace status is displayed in the following form:

--- External Timing Trace Status---
(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]
trace status
Arm to trigger armcount
Samples visible (history) first..last

The trace status header indicates whether this status is for the emulation or external
state trace.

Whether the trace status is displayed as Emulation or External depends on:

• Presence of the optional external analyzer.

Chapter 9: Commands
ts, xts - display status of emulation t race

319

• Whether you entered the ts (emulation trace status) or xts (external trace
status) command.

• The current mode setting of the optional external analyzer. If set as a state
analyzer (xtmo -s), you can have an external state trace status. If set as a
timing analyzer (xtmo -t), there is a different display for timing status
(described below). If appended to the emulation analyzer, the xts command is
invalid; the external analyzer acts as an extension to the emulation analyzer
and their status is reported under the Emulation Trace Status.

Status Display Interpretation

The first line of the trace status indicates the initiator of the trace, whether the trace
is completed, running, or halted, and whether or not this trace has been displayed.

NEW This trace has not been displayed. The tl (xtl) command will clear this flag until
the next trace is started. Halting a trace that is running (as opposed to complete),
marks the trace as being NEW even though the trace may have been displayed
while running. The next tl command with no options will list the trace from the top.

User The operator initiated this trace with the t (xt) command.

CMB This trace was initiated by a /EXECUTE pulse on the CMB after a tx command
was entered.

complete The trace has found its trigger and completed.

halted The trace was halted in response to a th (xth) command.

running The trace is still running; either the complete sequencer specifications have not yet
been satisfied; or not enough qualified store states have been found to fill trace
memory.

The second line of the trace display indicates the analyzer arm status.

ignored The arm condition specified for this trace was tarm always.

received The arm condition has been satisfied.

not received The arm condition was not satisfied. (If you specified an arm condition but didn’t
use it in trigger qualification, this will be displayed if the arm condition is not
satisfied. However, the analyzer may still find the correct trigger and complete the
trace.)

Chapter 9: Commands
ts, xts - display status of emulation trace

320

The third line of the state trace display indicates the trigger status. Because of the
pipelined analyzer architecture, it is possible that the trace status may display "not
found" when in fact the trigger has been found. This will occur when not enough
states satisfying the storage specification are found to push the trigger out of the
pipeline and into trace memory. In any case, the trace will not be displayable until
the trigger is in trace memory (unless you halt the analyzer).

found The trigger condition has been found.

not found The trigger condition has not yet been satisfied.

For the external timing status, the third line indicates the timing trace status. This
will be one of the following strings:

Tracepoint found

Trigger found - delaying

Pattern found - waiting for edge

Prestore complete - waiting for trigger

Waiting for prestore

Waiting for arm

The fourth line of the trace display indicates the amount of time that passed
between the arm signal and the trigger condition.

armcount This will be from -0.04 microseconds to 41.943 milliseconds. The arm to trigger
counter may underflow or overflow, in which case "<-0.04 microseconds" or
">41.943 milliseconds" are reported, respectively. If the arm signal was ignored or
if the trigger was not found, the character "?" (unknown) is displayed.

The fifth line of the trace display indicates the number of states displayable by tl .
(Number of samples in the case of the external timing trace.)

visible Number of states which can be displayed by tl (xtl); this will be a number from 0 to
1024 (or 0 to 512 if tcq is active).

history Number of states which can be displayed if the current trace is halted; this may
include history states which may be overwritten and thus unavailable if the current
trace runs to completion.

Chapter 9: Commands
ts, xts - display status of emulation t race

321

first Number of the first state stored in trace memory, relative to the trigger state. This
will be a number from -1024 to 0. The character "?" is displayed if the trigger state
is not yet in memory.

last Number of the last state stored in trace memory, relative to the trigger state. This
will be a number from -1 to 1023. The character ? is displayed if the trigger state is
not yet in memory.

The sixth line of the trace display indicates the current sequencer term position.
(Not used in the external timing trace status.)

term Current sequence term position (1 through 5 in easy configuration; 1 through 8 in
complex configuration). If the trace is completed or halted, the last sequence term
number is displayed. A "?" is displayed if the trace is running and the sequencer is
running too quickly for the current term number to be read.

The seventh line of the trace display indicates the count qualifier status for the
primary branch condition of the current sequence term, see tif for further details.
(Not used in the external timing trace status.)

count Remaining number of occurrences of the primary branch qualifier needed to satisfy
the qualifier so that the primary branch will be taken. A "?" is displayed if the trace
is running and the counter is updating too quickly to be read.

Whisper Mode Trace Display

If the -w option is given, an abbreviated version of the trace status is given as
follows:

Trace run status:

R - trace running

C - trace completed

H - trace halted

Trace arm status:

A - Arm has been received

a - arm has not yet been received

x - arm signal is being ignored

Trace trigger status:

T - trace trigger has been found

t - trace trigger has not yet been found

Chapter 9: Commands
ts, xts - display status of emulation trace

322

Trace list status:

* - indicates that this trace has not been displayed

See Also es (allows you to determine general emulator status)

t (starts an emulation trace)

tarm (arm the analyzer based on state of the trig1 and trig2 signals)

tg (specify the analyzer trigger state)

th (halt the current trace in process)

tif (specify sequencer primary branch condition and number of occurrences)

tx (specify that trace is to begin upon receiving the CMB /EXECUTE pulse)

x (begin a synchronous CMB execution)

Chapter 9: Commands
ts, xts - display status of emulation t race

323

tsck, xtsck - set or display slave clock
specification for the analyzer

tsck -o <pod number> - turn slave clock off in pod
tsck -d <pod number> -r <clock> - demux pod, rising edge of clock(s)
tsck -d <pod number> -f <clock> - demux pod, falling edge of clock(s)
tsck -d <pod number> -x <clock> - demux pod, both edges of clock(s)
tsck -m <pod number> -r <clock> - mix pod clocks, rising edge of
 clock(s)
tsck -m <pod number> -f <clock> - mix pod clocks, falling edge of
 clock(s)
tsck -m <pod number> -x <clock> - mix pod clocks, both edges of
 clock(s)

xtsck -o - turn slave clock off in external pod
xtsck -d -r <clock> - demux pod, rising edge of clock(s)
xtsck -d -f <clock> - demux pod, falling edge of clock(s)
xtsck -d -x <clock> - demux pod, both edges of clock(s)
xtsck -m -r <clock> - mix pod clocks, rising edge of clock(s)
xtsck -m -f <clock> - mix pod clocks, falling edge of clock(s)
xtsck -m -x <clock> - mix pod clocks, both edges of clock(s)

The tsck (xtsck) command allows you to specify the slave clock edges used for the
emulation (external) analyzer trace.

Each analyzer pod has the capability of latching certain signals with a slave clock
instead of the master clock. (You set up the master clock with the tck command.)

The xtsck command controls the slave clock for the optional external analyzer. No
pod number is necessary since the external analyzer has only one pod.

The parameters are as follows:

<pod number> Specifies one of 4 groups of analyzer input lines. These are as follows:

Pod # Bits

1 0-15

2 16-31

3 32-47

4 0-15 of the external analyzer

Chapter 9: Commands
tsck, xtsck - set or display slave clock specification for the analyzer

324

Note that you only need to specify pod 4 if you are using the tsck command to
operate on the optional external analyzer. You would typically do this only if you
had logically joined the analyzers using the xtmo command.

-d Specifies that the slave clock operates in demultiplexed mode. In this mode, the
lower 8 channels of the analyzer pod (bits 0-7) are latched with the slave clock and
the upper 8 channels (bits 8 through 15) are replaced with the lower 8 channels. In
other words, the upper 8 bits are identical to the lower 8 at the pod.

However, the data is not clocked into the analyzer itself until the next master clock
occurs. Therefore, if no slave clocks have occurred since the last master clock, the
data on the lower 8 analyzer lines is identical to the upper 8. If one or more slave
clocks have occurred since the last master clock, the data on the lower 8 bits is the
only data available to the analyzer.

When using the -d option, you must specify one of the -r , -f, or -x options to
indicate the active edge(s) of the slave clock.

-m Specifies that the slave clock operates in mixed mode. In the mixed mode, the
lower 8 channels of the analyzer pod (bits 0-7) are latched with the slave clock, and
the master clock latches in the entire pod. Therefore, if no slave clock has occurred
since the last master clock, the data on the lower 8 bits of the pod will be clocked
into the analyzer at the same time as the upper 8 bits. If more than one slave clocks
has occurred since the last master clock, only the first slave clock data will be
available to the analyzer.

When using the -m option, you must specify one of the -r , -f, or -x options to
indicate the active edge(s) of the slave clock.

-r Indicates that the pod should latch data on the rising edge of the slave clock.

-f Indicates that the pod should latch data on the falling edge of the slave clock.

-x Indicates that the pod should latch data on both edges of the slave clock.

<clock> Five clock signals are defined: J, K, L, M, and N.

The L, M, and N clocks are generated by the emulator. The L clock is the
emulation clock derived by the emulator, the N clock is used as a qualifier to
provide the user/background tracing options (-u and -b) to tck, and the M clock is
not used. The L and N clocks may also be used to clock and qualify the external
analyzer as well as the emulation analyzer.

The J and K clocks are the clock inputs on the external trace probe (if one is
present). These clock signals should only be used to clock the external trace; they

Chapter 9: Commands
tsck, xtsck - set or display slave clock specification for the analyzer

325

should not be used to clock the emulation trace although it may occasionally be
useful to use the external clock signals as qualifiers for the emulation trace.

-o If you specify -o with a <pod number>, the slave clock is ignored on that pod.
Remember that you don’t need to specify <pod number> with the xtsck command;
this command operates only on the single external analyzer pod.

If no parameters are specified, the current slave clock definitions are displayed.
The default for all slave clocks is off after powerup or tinit initialization.

See Also ta (allows you to display active signals on the analyzer input lines; useful in
verifying that you have selected the correct clock conditions)

tck (used to define master clock signals used by the analyzer; tsck defines the slave
clock signals. Default mode for tsck is off on all pods.)

xtv (specifies threshold voltages for external analyzer input lines; must be set
correctly to ensure that the J and K clock signals are recognized)

xtmo (specifies mode of operation for the external analyzer; that is, whether it acts
as an independent analyzer or is appended to the emulation analyzer)

Chapter 9: Commands
tsck, xtsck - set or display slave clock specification for the analyzer

326

tsq, xtsq - modify or display sequence
specification

In the easy configuration:
tsq - display entire sequence specification
tsq -r - reset the sequence specification
tsq -i X - insert sequence term X into sequence
tsq -d X - delete sequence term X from sequence

xtsq - display entire sequence specification
xtsq -r - reset the sequence specification
xtsq -i X - insert sequence term X into sequence
xtsq -d X - delete sequence term X from sequence

In the complex configuration:
tsq - display entire sequence specification
tsq -t - display sequence trigger specification
tsq -t X - set the sequence to trigger on entrance to term X
tsq -r - reset the sequence specification

xtsq - display entire sequence specification
xtsq -t - display sequence trigger specification
xtsq -t X - set the sequence to trigger on entrance to term X
xtsq -r - reset the sequence specification

The tsq (xtsq) command allows you to manipulate or display the emulation
(external) trace sequencer.

When the analyzer is in easy configuration (tcf -e), the sequencer has a maximum
of four sequence terms with a minimum of one term.

If the analyzer is in complex configuration (tcf -c), the sequencer always has eight
terms (although the particular sequencer setup may mean that only two are ever
accessed).

The parameters are as follows:

-r Resets the sequencer.

In the easy configuration, the result is a simple one term sequence which stores all
states and triggers on the first occurrence of any state. This is equivalent to issuing
the commands:

In the complex configuration, the result is an eight term sequence with the trigger
term at term number 2. The sequencer will be set to tsto any (store any state). All
secondary branch qualifiers are turned off (telif X never), and all primary branch

Chapter 9: Commands
tsq, xtsq - modify or display sequence specification

327

qualifiers will jump to the next higher numbered term on any state (tif X any
(X+1)).

-i Inserts a new sequence term at X. The new sequence term will use the default
storage qualifier (which can be modified with the tsto command). It will also use
the secondary branch qualifier (global restart in easy configuration) specified by the
telif command.

If there is already a sequence term with number X, terms with number X and above
will be renumbered (X becomes X+1) to make room for the new term.

You must insert terms in a contiguous manner; for example, you cannot insert a
term number 4 if the sequencer only has two terms defined. Instead, you must next
insert a term numbered 1, 2 or 3.

The primary branch qualifier for the new term will be defined as tif X any unless it
is the last term in the sequence (by definition, the trigger term), in which case the
primary branch qualifier is set to tif X never.

-d Deletes the term specified and renumbers higher numbered terms downward to fill
the gap.

X Specifies a sequence term number.

In the easy configuration, X is in the range from 1 through 4 when inserting or
deleting terms.

In the complex configuration, X is in the range 2 through 8 to use as the trigger
term.

-t Specifies the trigger term when a sequence term number is included. When no
sequence term number is included, the trigger term is displayed. The analyzer
triggers on a sequencer branch to the trigger term.

If no options are given, all of the sequencer storage and branch qualifiers are
displayed along with the trigger term position. Upon powerup or after tinit
initialization, the sequencer defaults to the following state:
tif 1 any
tsto all
telif never

In other words, the sequencer powers up with two sequence terms; the second
sequence term is the trigger term. Any state will cause a branch from the first term

Chapter 9: Commands
tsq, xtsq - modify or display sequence specification

328

to the second term; global restart is set to never and all states are stored by the
analyzer.

Switching analyzer configurations from easy to complex or vice versa also resets
the sequencer (that is, tcf -c or tcf -e).

See Also tcf (defines whether analyzer is operated in complex configuration or easy
configuration)

telif (sets global restart qualifier in easy configuration; secondary branch qualifier
in complex configuration)

tg (defines the trigger qualifier)

tif (sets the primary branch qualifier in both easy and complex configuration)

tsto (defines the analyzer global storage qualifier)

Chapter 9: Commands
tsq, xtsq - modify or display sequence specification

329

tsto, xtsto - set or display trace storage
specification

In the easy configuration:
tsto - display storage specification
tsto <expr> - define storage specification

xtsto - display storage specification
xtsto <expr> - define storage specification

In the complex configuration:
tsto - display all storage specifications
tsto X - display storage qualifier X specification
tsto <expr> - define global storage specification
tsto X <expr> - define storage qualifier X specification

xtsto - display all storage specifications
xtsto X - display storage qualifier X specification
xtsto <expr> - define global storage specification
xtsto X <expr> - define storage qualifier X specification

The tsto (xtsto) command allows you to specify a trace storage qualifier for the
emulation (external) analyzers. The expression parameter qualifies the states to be
stored by the analyzer.

The parameters are as follows:

<expr> State qualifier expression. Refer to the <expr> description in this chapter.

X Specifies the sequence term number whose storage qualifier is either displayed or
assigned as <expr>.

If no parameters are given, the current trace storage qualifier settings are displayed.
Upon powerup or after tinit initialization, the trace storage qualifier defaults to tsto
all. Using the tcf command to switch from complex configuration to easy
configuration or vice versa will also reset the storage qualifier to tsto all.

If the analyzer is in easy configuration (tcf -e), the expression is specified by
<expr> and this serves as a global storage qualifier. In other words, the same
expression is used as a storage qualifier regardless of the current sequencer state.

If the analyzer is in complex configuration (tcf -c), the expression is specified by
<expr> and may be assigned to a sequencer state with the X parameter. When an

Chapter 9: Commands
tsto, xtsto - set or display trace storage specification

330

expression is assigned to a specific term number, the analyzer will only store states
corresponding to the given expression when at the given sequencer level. If no
sequence term number is used, the associated expression is defined as global; the
analyzer stores states satisfying the expression regardless of the sequencer level.

See Also tcf (used to specify whether the analyzer is in easy configuration or complex
configuration)

telif (used to specify a global restart qualifier in easy configuration; specifies a
secondary branch qualifier for each sequencer level in complex configuration)

tg (used to specify a trigger condition in either easy configuration or complex
configuration; overrides the current sequencer specification. Note that tg does not
affect tsto; therefore, the current tsto specifications remain in effect whenever a tg
command is entered)

tif (used to specify a primary branch qualifier in either analyzer configuration)

tpat (used to assign pattern names to simple analyzer expressions for use in
constructing complex analyzer expressions; these expressions can be used in
specifying storage qualifiers for the tsto command)

trng (used to specify a range of values of a set of analyzer inputs; this range
information can be used in constructing complex configuration qualifiers for the
tsto command)

tsq (used to manipulate the trace sequencer)

Chapter 9: Commands
tsto, xtsto - set or display trace storage specification

331

tx, xtx - enable/disable execute condition

tx -e - start a measurement when the execute signal is received
tx -d - ignore the execute signal

xtx -e - start a measurement when the execute signal is received
xtx -d - ignore the execute signal

The tx command allows you to specify that the analyzer will begin a measurement
when the CMB /EXECUTE line is asserted.

The parameters are as follows:

-e Specifies that the analyzer will start a measurement upon receiving the CMB
/EXECUTE signal.

-d The analyzer will NOT start a measurement upon receiving the CMB /EXECUTE
signal.

If no options are specified, the current state of tx enable/disable is displayed. Upon
powerup or after a tinit , the system defaults to tx -d.

If tx -e is given, enabling measurement on execute, the CMB trigger is immediately
driven true upon receiving the /EXECUTE signal. If the analyzer is not driving
either trig1 or trig2, it is then started. The CMB trigger is then disabled and the
HP 64700 waits for all other participants in the measurement to release the CMB
trigger. When the last instrument releases the CMB trigger, the trigger will go
false; at this point any analyzers driving trig1 or trig2 will be started.

See Also cmbt (specifies whether the CMB trigger signal is driven or received by the
internal trig1 and trig2 signals)

tarm (specifies the arm condition for the analyzer)

tg (specifies a trigger condition for the analyzer)

Chapter 9: Commands
tx, xtx - enable/disable execute condition

332

<value> - values in Terminal Interface commands

Values are numeric constants, equates, or symbols. Also, values can be the result
of constants, equates, and symbols combined with operators. Equates are defined
with the equ command. Symbols can be loaded with the load command or defined
with the sym command.

Constants

A value may be specified as a constant in any of the following number bases.
(Constants with no base specified are assumed to be hexadecimal numbers.)

• Hexadecimal (base H or h). For example: 6eh, 9xH, 0f3, or 0cfh. (The
leading digit of a hexadecimal constant must be 0-9.)

• Decimal (base T or t, for base "ten"). For example: 27t or 99T. (Don’t cares
are not allowed in decimal numbers.)

• Binary (base Y or y). For example: 1101y, 01011Y, or 0xx10xx11y. (The
leading digit of a binary constant must be 0 or 1. Do not use the characters "B"
or "b" to specify the base of binary numbers because they will be interpreted as
hexadecimal numbers; for example, 1B equals 27 decimal.)

• Octal (base Q, q, O, or o). For example: 777o, 6432q, or 7xx3Q. (The leading
digit of an octal constant must be 0-7.)

Don’t cares are not allowed in ranges or decimal numbers. A value of all don’t
cares may be represented by a question mark (?).

Operators. When specifying values, constants can be combined with the
following operators (in descending order of precedence):

-, ~ Unary two’s complement, unary one’s complement. The
unary two’s complement operator is not allowed on
constants containing don’t care bits.

* , /, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don’t care bits.

+, - Addition, subtraction. These are not allowed on constants
containing don’t care bits.

Chapter 9: Commands
<value> - values in Terminal Interface commands

333

<<, <<<,
>>, >>>

Shift left, rotate left, shift right, rotate right.

& Bitwise AND.

^ Bitwise exclusive or, XOR.

| Bitwise inclusive OR.

&& Logical AND/bit-wise merge. When bits are different, the
first value overrides the second; e.g., 10xxy && 11x1y ==
10x1y.

Note that all operations are carried out on 32-bit numbers.

Chapter 9: Commands
<value> - values in Terminal Interface commands

334

ver - display system software and hardware
version numbers

ver

The ver command instructs the emulator to return the current emulator Terminal
Interface software version numbers.

Chapter 9: Commands
ver - display system software and hardware version numbers

335

w - wait for specified condition before continuing

w - wait for any keystroke
w <value> - wait for <value> number of seconds or any keystroke
w -m - wait for measurement complete or any keystroke

The w command is used to program automatic waits into macros, repeats, and
command files. Normal operation is to wait for any keystroke before executing the
next operation; optionally, the wait can be programmed for a specific time period or
for completion of a measurement in process (such as a trace).

The parameters are as follows:

<value> The number of seconds before proceeding.

-m Wait for completion of the current measurement before proceeding.

Examples To cause the emulator to wait for any keystroke before proceeding to the next
command, type:
U>w

You might use this in a situation where you wish the operator to make a judgment
regarding some other condition before proceeding with the next measurement.

To cause the emulator to wait for 32 seconds or for any keystroke, type:
U> w 32

This might be used where you know the desired system state will be reached in a
definite amount of time (or should be reached within that time).

To have the emulator wait until another measurement is completed or for any
keystroke entry, type:
U> w -m

Note that the above examples, taken exactly as shown, don’t provide you with a
useful function -- they are provided only to show correct examples of command
line syntax. To use the wait command effectively, it should be applied within
macros, repeat commands, or command files. Refer to the rep and mac commands
for further examples.

Chapter 9: Commands
w - wait for specified condition before continuing

336

x - emit a Coordinated Measurement Bus execute
signal

x

The x command allows you to initiate a synchronous CMB (Coordinated
Measurement Bus) measurement execution.

When x is performed, the CMB /EXECUTE line is pulsed. If tx (trace at execute)
is enabled, an analyzer measurement will begin. If the CMB is enabled via the cmb
-e command, a break will occur, followed by a run at execute as specified by the rx
command.

The x command is available whether CMB and trace at execute are enabled or not.
Specifically, the cmb and tx commands control how this HP 64700 emulator will
respond when an /EXECUTE or READY is detected. The x command only
controls when this emulator will issue an /EXECUTE signal.

See Also cmb (used to enable or disable interaction with the CMB)

rx (used to specify an address to start a program run when the /EXECUTE pulse is
received from the CMB)

tx (used to specify that an analyzer measurement should begin when the
/EXECUTE pulse is received from the CMB)

Chapter 9: Commands
x - emit a Coordinated Measurement Bus execute signal

337

xteq - set/display external timing edge qualifier

xteq - display current channels which will cause
 a trigger on a rising or falling edge
xteq -f <rangelist> - set falling edge channels to <rangelist>
xteq -r <rangelist> - set rising edge channels to <rangelist>
xteq -f <unarypat> - set falling edge channels to <unarypat>
xteq -r <unarypat> - set rising edge channels to <unarypat>
xteq -r <rangelist> -f <unarypat> - multiple arguments accepted

The xteq command allows you to specify the channels which will cause an edge
trigger.

The trigger will occur following a valid duration of a pattern specified by xtt when
a transition occurs on any of the lines specified in xteq. Note that xteq allows you
to qualify the transitions to trigger only on the rising edge or the falling edge of the
given input lines.

Note that the timing trace information is only accessible through the binary trace
list option (tl -b).

The parameters are as follows:

-r The trigger will occur on the rising edge of any signal on the input lines specified.

-f The trigger will occur on the falling edge of any signal on the input lines specified.

<unarypat> Valid unary pattern values are:

all
any

Set qualifier to all 16 channels.

none
never

Set qualifier to 0 channels.

<rangelist> This parameter can be one or more of the following range arguments:

<num> Channel identifier (0 to 16). This specifies the bit which will
cause an edge trigger.

<num>..<num> Channel range (0 to 16). This specifies the range of bits which
will cause an edge trigger.

Chapter 9: Commands
xteq - set/display external timing edge qualifier

338

<label> Use full range of <label>. All of the bits assigned to the label
will cause an edge trigger. Refer to the tlb, xtlb description for
information on defining labels.

<label>:<num> Use <num> as offset into <label>.

<label>:<num>..<num>

Specifies a subrange of <label>. This specifies the bits to be
used within that label which will cause an edge trigger.

Note that when specifying a range of bits to use within a label,
the bit range specified is relative to the label, not to the input
bit. For example, if you define a label named STATUS with
input bits 8..11, then want to specify the least significant two
bits of STATUS in a trigger specification, you can use either
STATUS:0..1 or simply the range 8..9.

If no parameters are specified, the current edge qualifier is displayed. Upon
powerup or tinit initialization, the default setting is xteq -r any -f any.

When multiple arguments are used, the combinations are ORed together to form a
single pattern.

See Also tlb,xtlb (specifies labels assigned to input lines for the emulation (external)
analyzer)

xtgq (specifies an glitch qualifier used in conjunction with xtt to determine a valid
trigger state)

xtm (specifies timing analyzer mode)

xtt (specifies timing analyzer trigger pattern and duration)

Chapter 9: Commands
xteq - set/display external timing edge qualifier

339

xtgq - set/display external timing glitch qualifier

xtgq - display current channels which will
 cause a glitch trigger
xtgq <rangelist> - set glitch channels to <rangelist>
xtgq <unarypat> - set glitch channels to <unarypat>

The xtgq command allows you to specify the channels which will cause a glitch
trigger.

A glitch trigger will occur following a valid duration of a pattern as specified in the
xtt command while the pattern is still present. A less than duration specified in xtt ,
or a timing mode other than xtm -g will cause the xtgq command to be ignored.

You might use this command to look for glitch occurrences related to a specific bit
pattern.

Note that the timing information is only accessible through the binary trace list
option (tl -b).

The parameters are as follows:

<unarypat> Valid unary pattern values are:

all
any

Set qualifier to all 16 channels.

none
never

Set qualifier to 0 channels.

<rangelist> This parameter can be one or more of the following range arguments:

<num> Channel identifier (0 to 16). This specifies the bit which will
cause a glitch trigger.

<num>..<num> Channel range (0 to 16). This specifies the range of bits which
will cause a glitch trigger.

<label> Use full range of <label>. All of the bits assigned to the label
will cause a glitch trigger. Refer to the tlb, xtlb description for
information on defining labels.

<label>:<num> Use <num> as offset into <label>.

Chapter 9: Commands
xtgq - set/display external timing glitch qualifier

340

<label>:<num>..<num>

Specifies a subrange of <label>. This specifies the bits to be
used within that label which will cause a glitch trigger.

Note that when specifying a range of bits to use within a label,
the bit range specified is relative to the label, not to the input
bit. For example, if you define a label named STATUS with
input bits 8..11, then want to specify the least significant two
bits of STATUS in a trigger specification, you can use either
STATUS:0..1 or simply the range 8..9.

If no parameters are specified, the current glitch qualifier is displayed. Upon
powerup or tinit initialization, the default setting is xtgq none.

When multiple arguments are used, the combinations are ORed together to form a
single pattern.

See Also tlb,xtlb (specifies labels assigned to input lines for the emulation (external)
analyzer)

xteq (specifies an edge qualifier used in conjunction with xtt to determine a valid
trigger state)

xtm (specifies timing analyzer mode; must be in mode xtm -g for xtgq use)

xtt (specifies timing analyzer trigger pattern and duration)

Chapter 9: Commands
xtgq - set/display external timing glitch qualifier

341

xtm - set/display external timing mode

xtm - display current timing mode
xtm -s - turn on standard timing mode
xtm -g - turn on glitch timing mode
xtm -t - turn on transitional timing mode

The xtm command allows you to specify the mode of operation for the timing
analyzer.

This command is only available if the HP 64700 emulator is equipped with the
external state/timing analyzer option.

The parameters are as follows:

-s Selects the standard timing analyzer mode and samples data at the period selected
by xtsp; up to 1024 samples can be stored during a single trace.

-g The timing analyzer operates in standard mode with glitch detection added. Again,
the sample rate is selected by xtsp. When glitch mode is selected, the maximum
number of samples per trace is reduced to 512.

-t Selects the transitional timing analyzer mode. Data is only stored when an input
transition is detected. For the analyzer to record these transitions accurately, some
trace memory must be dedicated to storing the delta time between transitions, so the
number of state transitions that can be stored is reduced to a maximum of 512.

If no parameters are supplied, the current mode setting for the timing analyzer is
displayed. Upon powerup or tinit , the timing analyzer mode is set to xtm -t.

See Also xtmo (specifies whether to use the external analyzer as a separate state analyzer,
separate timing analyzer, or append the lines to the emulation analyzer)

xtsp (defines the timing sample period)

Chapter 9: Commands
xtm - set/display external timing mode

342

xtmo - external analyzer trace mode

xtmo -e - emulation analyzer has external bits
xtmo -s - external state analyzer
xtmo -t - external timing analyzer

The xtmo command allows you to specify the mode of operation for the external
analyzer. The analyzer can be configured to run as an independent state or timing
analyzer; or, the external analyzer can be associated with the emulation analyzer to
synchronize measurements made by the two analyzers.

The parameters are as follows:

-s The external analyzer acts as an independent state analyzer.

-t The external analyzer acts as an independent timing analyzer.

-e The external analyzer is appended to the emulation analyzer.

If no parameters are specified, the current operation mode of the external analyzer
is displayed. Upon powerup, the default operation mode is xtmo -e.

Note that if the emulation and external analyzers are clocking data off of the same
clock, the setup/hold times of the data on the external analyzer probe inputs may
not be met properly. The timing relationship between a target system processor
signal and the setup/hold time of the external probe signals must be specified for
each emulator. This is because each emulator has unique circuitry that generates
the emulation analyzer clock and each processor has different timing requirements.
Therefore, each emulator must specify the setup/hold time requirements of the
external probe inputs with respect to a target processor signal.

If the external analyzer has been associated with the internal analyzer with the
xtmo -e command, and trace specifications have been defined referencing lines
present on the external analyzer, the analyzer cannot be reconfigured as an
independent state or timing analyzer with the xtmo -s or xtmo -t commands until
the trace specifications referencing the external analyzer lines are removed.

If the external analyzer is in the independent state or timing mode, and an xtmo -e
command is issued to append it to the emulation analyzer, the trace specifications
for the external analyzer lines are reinitialized.

Chapter 9: Commands
xtmo - external analyzer trace mode

343

See Also bnct (specifies whether trig1 and/or trig2 are to be driven or received by the rear
panel BNC connector)

cmbt (specifies whether the trig1 and/or trig2 signals are to be driven or received
by the CMB trigger line)

tarm (specifies the arm condition for the analyzer)

tgout (specifies whether or not the trig1 and/or trig2 signals are to be driven when
the analyzer finds its trigger)

tx (specifies that the analyzer is to commence a trace upon receiving the CMB
execute pulse)

Chapter 9: Commands
xtmo - external analyzer trace mode

344

xtsp - set/display external timing sample period

xtsp - display current timing sample period
xtsp <period> n - set timing sample period to <period> nanoseconds
xtsp <period> u - set timing sample period to <period> microseconds
xtsp <period> m - set timing sample period to <period> milliseconds

The xtsp command allows you to define the sample period for timing analyzer
measurements.

Larger sample periods enable coverage of more events; however, there is the
danger that some transitions may be missed if they change during the sample
period. Conversely, small sample periods virtually guarantee recording of all
transitions but allow the measurement of only a small total number of events in
time.

The parameters are as follows:

<period> Defines the sample period for the analyzer. This is an a integer value.

The valid range for <period> is between 10 ns and 50 ms in a 1,2,5 sequence (that
is, 10 ns, 20 ns, 50 ns,..., 50 ms) for standard timing modes.

For glitch mode valid periods are between 20 ns and 50 ms in the same step
sequence.

For transitional timing mode, the only valid sample period is 10 ns.

n Indicates that the given sample period is in nanoseconds.

u Indicates that the given sample period is in microseconds.

m Indicates that the given sample period is in milliseconds.

If no parameters are given, the current setting of the sample period is displayed.
Upon powerup or tinit initialization, the sample period setting is xtsp 10 n.

See Also xtm (defines the timing analyzer run mode; if mode is xtm -s or xtm -g, then xtsp
defines the amount of time between samples; if mode is xtm -t, the timing analyzer
runs in transitional mode; the sample period (10 nanoseconds only) is used as a
clock to measure the delta time between transitions)

Chapter 9: Commands
xtsp - set/display external timing sample period

345

xtt - set/display external timing trigger condition

xtt - display current timing trigger setting
xtt <expr> < <period> n - trigger when <expr> is true
 - for less than <period> ns
xtt <expr> > <period> u - trigger when <expr> is true
 - for greater than <period> us
xtt <expr> > <period> m - trigger when <expr> is true
 - for greater than <period> ms

The xtt command lets you specify the timing analyzer trigger. The trigger
specification includes the trigger pattern and the duration of that pattern.

If <expr> is found but <period> is not satisfied, there is a 20 ns reset time before
the analyzer will search for another pattern.

The parameters are as follows:

<expr> Defines a simple expression of the general form label=pattern or label=pattern
and label=pattern Also, any, all, none, and never may be used as the
expression.

Refer to the tlb, xtlb description for information on defining labels.

<period> Specifies, in conjunction with the greater than (>) and less than (<) operators, and
the n, u and m designators, define a duration for which the trigger must be present
to satisfy the trigger condition. The <period> is always expressed as an integer
value.

If > <period> is specified, <period> must fall within the range of 30 ns to 10 ms in
10 ns increments. The trigger will occur at the end of the specified duration.

If < <period> is specified, <DURATION> must fall within the range of 40 ns to 10
ms in 10 ns increments. The pattern must remain stable for at least 20 ns; the
trigger will occur after the pattern changes states from the designated pattern.

n Indicates that the duration is specified in nanoseconds.

u Indicates that the duration is specified in microseconds.

m Indicates that the duration is specified in milliseconds.

Chapter 9: Commands
xtt - set/display external timing trigger condition

346

If no parameters are specified, the current timing analyzer trigger expression and
duration are displayed. Upon powerup or tinit initialization, the timing trigger is
set to xtt any.

See Also xteq (specifies that certain timing channels will qualify the trace trigger specified
by xtt ; the pattern and duration are specified by xtt , the trigger occurs when the
signal transition specified by xteq occurs)

xtgq (specifies a glitch qualifier for xtt ; the trigger occurs after the pattern and
duration specified by xtt is satisfied when the glitch specified by xtgq occurs)

xtlb (defines labels for external analyzer input lines)

xtm (sets the timing mode for the analyzer to standard, glitch, or transitional)

Chapter 9: Commands
xtt - set/display external timing trigger condition

347

xttd - set/display external timing trigger delay

xttd - display current timing trigger delay
xttd <period> n - set timing trigger delay to <period> nanoseconds
xttd <period> u - set timing trigger delay to <period> microseconds
xttd <period> m - set timing trigger delay to <period> milliseconds

The xttd command allows you to specify the amount of time to delay the timing
analyzer trigger after a valid trigger condition has occurred.

The parameters are as follows:

<period> Specifies, along with the n, u, or m parameters, the trigger delay period for the
analyzer. This is an a integer value; the valid range for <period> is between 0 and
10 ms in 10 ns increments.

n Indicates that the given delay is in nanoseconds.

u Indicates that the given delay is in microseconds.

m Indicates that the given delay is in milliseconds.

If no parameters are given, the current setting of the delay is displayed. Upon
powerup or tinit initialization, the delay setting is xttd 0.

See Also xtt (specifies the timing analyzer trigger pattern and duration)

Chapter 9: Commands
xttd - set/display external timing trigger delay

348

xttq - set/display external timing transition
qualifier

xttq - display current channels which will
 cause a transition in transitional mode
xttq <rangelist> - set transition channels to <rangelist>
xttq <unarypat> - set transition channels to <unarypat>

The xttq command allows you to specify the channels which will cause a transition
record when the timing analyzer mode is set to transitional (xtm -t).

The parameters are as follows:

<unarypat> Valid unary pattern values are:

all
any

Set qualifier to all 16 channels.

none
never

Set qualifier to 0 channels.

<rangelist> This parameter can be one or more of the following range arguments:

<num> Channel identifier (0 to 16). This specifies the bit which will
cause a timing transition record.

<num>..<num> Channel range (0 to 16). This specifies the range of bits which
will cause a timing transition record.

<label> Use full range of <label>. All of the bits assigned to the label
will cause a timing transition record. Refer to the tlb, xtlb
description for information on defining labels.

<label>:<num> Use <num> as offset into <label>.

<label>:<num>..<num>

Specifies a subrange of <label>. This specifies the bits to be
used within that label which will cause a timing transition
record.

Chapter 9: Commands
xttq - set/display external timing transition qualifier

349

Note that when specifying a range of bits to use within a label,
the bit range specified is relative to the label, not to the input
bit. For example, if you define a label named STATUS with
input bits 8..11, then want to specify the least significant two
bits of STATUS in a trigger specification, you can use either
STATUS:0..1 or simply the range 8..9.

If no parameters are specified, the current transition qualifier is displayed. Upon
powerup or tinit initialization, the default setting is xttq any.

See Also tlb,xtlb (specifies labels assigned to input lines for the emulation (external)
analyzer)

xteq (specifies an edge qualifier used in conjunction with xtt to determine a valid
trigger state)

xtgq (specifies a glitch qualifier used in conjunction with xtt to determine a valid
trigger state)

xtm (specifies timing analyzer mode; must be in mode xtt -t (transitional mode) for
xttq to be useful)

xtt (specifies timing analyzer trigger pattern and duration)

Chapter 9: Commands
xttq - set/display external timing transition qualifier

350

xtv - threshold voltage for the external analyzer

xtv - display current threshold voltage
xtv -l<level> - set lower byte and J clock
xtv -u<level> - set upper byte and K clock
xtv -u<level> -l<level> - multiple arguments accepted

The xtv command allows you to set the logic threshold voltages for the external
trace probes.

The parameters are as follows:

-l Specifies the threshold voltage that is to be used for the lower 8 bits of the analyzer
probe. These are bits 0 through 7 and the J clock.

-u Specifies the threshold voltage specified that is to be used for the upper 8 bits of the
analyzer probe. These are bits 8 through 15 and the K clock.

<level> Specifies the voltage level. Valid options for <level> are:

ECL Voltage levels for ECL logic, -1.3 volts.

TTL Voltage levels for TTL logic, +1.4 volts.

CMOS Voltage levels for CMOS logic, +2.5 volts.

+/-x.xx User definable levels -6.40 to +6.35 volts.

If no parameters are specified, the current threshold voltage settings are printed.
Upon powerup or tinit initialization, the threshold voltage settings are set to xtv -u
TTL -l TTL .

See Also ta (allows you to view trace input signal activity; useful in verifying the correct
threshold levels)

Chapter 9: Commands
xtv - threshold voltage for the external analyzer

351

352

10

Error Messages

353

Error Messages

This chapter contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order, and each
description includes the cause of the error and the action you should take to remedy
the situation.

The emulator can return messages to the display only when it is prompted to do so.
Situations may occur where an error is generated as the result of some command,
but the error message is not displayed until the next command (or a carriage return)
is entered.

A maximum number of 8 error messages can be displayed at one time. If more
than 8 errors are generated, only the last 8 are displayed.

354

Emulator Error Messages

4 Coverage measurement not supported

Cause: You attempted to use the cov command for an emulator that does not
provide coverage memory.

40 Restricted to real time runs

Cause: While the emulator is restricted to real-time execution, you have attempted
to use a command that requires a temporary break in execution to the monitor. The
emulator does not permit the command and issues this error message.

Action: You must break the emulator’s execution into the monitor before you can
enter the command.

61 Emulator is in the reset state

Cause: You have entered a command that requires the emulator to be running in
the monitor (for example, displaying registers).

Action: Enter the b (break) command to cause the emulator to run in the monitor,
and enter the command that caused the error again.

100 No response from monitor

Cause: The main cause of this error message is when the target system does not
assert RDY for target memory and I/O accesses.

Action: Do not attempt to access target locations that don’t return RDY.

102 Monitor failure; no clock input

Cause: The monitor is unable to run because no emulation processor clock is
available.

Action: Make sure a clock meeting the microprocessor’s specifications is input to
the clock pin of the target system probe.

Chapter 10: Error Messages
Emulator Error Messages

355

103 Monitor failure; no processor cycles

Cause: The monitor is unable to run since the processor is not running. The
monitor is unable to determine the cause of the failure.

Action: If running in-circuit, troubleshoot the target system.

104 Monitor failure; bus grant

Cause: The monitor is unable to run. The emulation processor is not running
because it has granted the bus to another device.

Action: Wait until the processor has regained bus control, then retry the operation.

105 Monitor failure; halted

Cause: The monitor is unable to run because the processor is halted (due to an
external halt line or a halt instruction).

Action: Release the external halt and retry the operation. If the processor halted
due to a halt instruction, try the rst command, then retry the operation.

106 Monitor failure; wait state

Cause: The monitor is unable to run because the processor is in a continuous wait
state.

Action: A continuous wait state may indicate target system problems.
Troubleshoot the wait line.

107 Monitor failure; bus error

Cause: The monitor is unable to run because the processor has encountered a bus
fault.

Action: Determine why the bus error was activated.

Chapter 10: Error Messages
Emulator Error Messages

356

80186/8/XL/EA/EB/EC Emulator Messages

The following error messages are unique to the HP 64767 emulator.

140 User code load module too big

Cause: This error occurs when the size of the user program absolute code is greater
than 1 Mbyte.

Action: Modify the user program so that the absolute code generated takes up less
than 1 Mbyte.

141 Foreground monitor load module too big

Cause: This error occurs when the size of the user foreground monitor program
absolute code is greater than 4 Kbytes.

Action: Modify the user foreground monitor program so that the absolute code
generated takes up less than 4 Kbytes.

150 User foreground monitor required

Cause: This error occurs when the cf mon=ufg command is entered before the user
foreground monitor code has been loaded with the load -f command.

Action: Load the user foreground monitor program before configuring the
emulator for a user foreground monitor.

152 Attempt to map address range occupied by foreground monitor

Cause: This error occurs when part of the address range in the map command
overlaps the 4 Kbyte long address range of the foreground monitor program.

Action: Either change the address range you are trying to map, or relocate the
foreground monitor program with the cf loc=<addr> command.

153 Second term physically smaller than first term

Cause: This error occurs when specifying an address range (<addr>..<addr>) and
the first address is higher than the second address.

Chapter 10: Error Messages
80186/8/XL/EA/EB/EC Emulator Messages

357

Action: Make sure the first address is lower than the second address when
specifying address ranges.

154 Range terms must be same type (physical or logical)

Cause: This error occurs when specifying an address range (<addr>..<addr>) and
one address is specified as a logical address (segment:offset) while the other
address is specified as a physical address.

Action: Make sure that both addresses in the range are either logical or physical
addresses.

155 Range terms must be in same segment

Cause: This error occurs when specifying an address range
(<segment:offset>..<segment:offset>) and the two segment values are different.

Action: Make sure the segment values are the same when specifying address
ranges using logical values.

156 I/O accesses not allowed in dword display mode

Cause: An io command has been entered while the display mode is set to dword
(either by a m -dd or mo -dd command).

Action: Change the display mode by entering a mo -db or mo -dw command.

157 Display and access modes must be the same for I/O

Cause: An io command has been entered while the display and access modes are
different (for example, mo -ab -dw or mo -aw -db).

Action: Make the display modes the same by entering a mo -ab -db or
mo -aw -dw command.

161 IRET stack conflicts with Peripheral Control Block Location

Cause: An IRET instruction (which pops the IP, CS, and flag values from the
stack) is used when running or stepping user code. This error occurs when the
segment stack pointer points to the Peripheral Control Block.

Action: Either change the value of the segment stack pointer or relocate the
Peripheral Control Block.

Chapter 10: Error Messages
80186/8/XL/EA/EB/EC Emulator Messages

358

193 i80C186/8Ex firmware not compatible with emulation probe

Cause: This status message indicates that the i80C186/8Ex emulator probe is not
properly connected to the cable coming from the emulator control card in the
frame. This renders the emulator completely unuseable.

Chapter 10: Error Messages
80186/8/XL/EA/EB/EC Emulator Messages

359

General Emulator and System Messages

201 Out of system memory

Cause: Macros and equates that you have defined have used all of the available
system memory.

Action: Delete some of the existing macros (mac -d <NAME>) and equates (equ
-d <NAME>), which will free additional memory.

204 FATAL SYSTEM SOFTWARE ERROR

205 FATAL SYSTEM SOFTWARE ERROR

208 FATAL SYSTEM SOFTWARE ERROR

Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats, call your
local HP Sales and Service office for assistance.

206 Incompatible compatibility table entry

Cause: The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 system.

Action: The ROMs in your emulator must be compatible with each other for your
emulation system to work correctly. Contact your Hewlett-Packard Representative.

300 Invalid option or operand

305 Invalid option or operand: %s

Cause: You have specified incorrect option(s) to a command. %s, if printed,
indicates the incorrect option(s).

Action: Reenter the command with the correct syntax. Refer to the on-line help
information.

Chapter 10: Error Messages
General Emulator and System Messages

360

307 Invalid expression: %s

Cause: You have entered an expression with incorrect syntax; therefore, it cannot
be evaluated. %s is the bad expression.

Action: Reenter the expression, following the syntax rules for that type of
expression. Refer to the command description to determine the expression type;
then refer to the expression syntax pages to determine the correct syntax for that
type.

308 Invalid number of arguments

Cause: You have either entered too many options to a command or an insufficient
number of options.

Action: Re-enter the command with correct syntax. Refer to the command syntax
pages in this manual for information.

310 Invalid address: %s

Cause: You specified an invalid address value as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number (even zero (0)).

Action: Re-enter the command and the address specification. See the
<ADDRESS> and <EXPRESSION> syntax pages in the "Commands" chapter for
information on address specifications.

311 Invalid address range: %s

Cause: You specified an invalid address range as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number, or the upper boundary of the range you specified is less than the
lower boundary.

Action: Re-enter the command and the address specification. See the
<ADDRESS> and <EXPRESSION> syntax pages in the "Commands" chapter for
information on address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower boundary
must always precede the upper boundary on the command line).

Chapter 10: Error Messages
General Emulator and System Messages

361

312 Ambiguous address: %s

Cause: Certain emulators support segmentation or function code information in
addressing. The emulator is unable to determine which of two or more address
ranges you are referring to, based upon the information you entered.

Action: Re-enter the command and fully specify the address, including
segmentation or function code information.

313 Missing option or operand

Cause: You have omitted a required option to the command.

Action: Re-enter the command with the correct syntax. Refer to the "Commands"
chapter for further information on required syntax.

314 Option conflict: %s

Cause: You have entered a command with two options which cannot be used
together. For example, you might have entered tl -bx; you cannot ask for both a
binary and hexadecimal trace list dump.

Action: Reenter the command, specifying only non-conflicting options. Refer to
the command description to determine which options may be used together.

315 Invalid count: %s

Cause: This error occurs when the emulation system expects a certain number (of
arguments, for example), but you specify a different number.

Action: Enter the number the system expects to receive.

316 Invalid range expression: %s

Cause: In the tl command, you specified an illegal range. For example, you might
have specified tl -10..a.

Action: Use only legitimate range numbers in the tl command (-1024..1023); the
second range value must be greater than the first.

Chapter 10: Error Messages
General Emulator and System Messages

362

317 Range out of bounds: %s

Cause: In the tl command, you specified a range number which was greater than
the number of states available in the analyzer. For example, you might have
specified tl -2048..2048; the analyzer only has 1024 states.

Action: Specify range numbers between -1024 and 1023.

318 Count out of bounds: %s

Cause: You specified an occurrence count less than 1 or greater than 65535 for tg
or tif . For example, you might have entered tif 1 any 2 69234.

Action: Re-enter the command, specifying a count value from 1 to 65535. For
example: tif 1 any 2 65535.

319 Invalid base: %s

Cause: This error occurs if you have specified an invalid base in the tf or xtf
commands.

Action: Enter the help tf or help xtf command to view the valid base options.

320 Invalid label: %s

Cause: You tried to define a label with characters other than letters, digits, or
underscores.

Action: Re-enter the tlb command with a label consisting only of letters, digits, or
underscores.

321 Label not defined: %s

Cause: You entered an analyzer expression in which the label was not present in
the analyzer label list. For example, if the label list includes addr, data, and stat,
you might have entered something such as tg lowerdata=24t. This error also
occurs if you try to delete a label that does not exist.

Action: You can re-enter the command, using one of the previously defined labels
and adjust the expression as necessary to accommodate the fit of that label to the
analyzer input lines. Or, you can define a new label using the tlb command, then
re-enter the analyzer command using the newly defined label.

Chapter 10: Error Messages
General Emulator and System Messages

363

400 Record checksum failure

Cause: During a transfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry the transfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

401 Records expected: %s; records received: %s

Cause: The HP 64700 received a different number of records than it expected to
receive during a transfer operation.

Action: Retry the transfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Refer to the "Installation" chapter for details.

410 File transfer aborted

Cause: A transfer operation was aborted due to a break received, most likely a
<CTRL>c from the keyboard.

Action: If you typed <CTRL>c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the correct
command options. If you are unsuccessful, make sure that the data
communications parameters are set correctly on the host and on the HP 64700, then
retry the operation.

411 Severe error detected, file transfer failed

Cause: An unrecoverable error occurred during a transfer operation.

Action: Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Also make sure that you are using the correct command options, both on the
HP 64700 and on the host.

412 Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record during a transfer operation
was exceeded, therefore the transfer was aborted.

Chapter 10: Error Messages
General Emulator and System Messages

364

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the
host, it is possible that line noise may cause the failure.

413 Transfer failed to start

Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

415 Timeout, receiver failed to respond

Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

420 Unknown mode: %s

Cause: This error occurs when you have specified an unknown option in the stty
command.

Action: Enter the help stty command to view the valid options.

425 Load option conflict: %s and option: %s

Cause: Two or more options in the load command cannot be used together.

Action: Enter the help load command to view the options that cannot be used
together.

520 Equate not defined: %s

Cause: You tried to delete an equate that did not exist in the equate table. For
example suppose the equates a=1 and b=2 were in the equate table. If you typed
equ -d c, you would receive the above error message.

Action: Use equ to display the list of named equates before deleting equates.

600 Adjust PC failed during break

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

Chapter 10: Error Messages
General Emulator and System Messages

365

602 Break failed

Cause: The b command was unable to break the emulator to the monitor.

Action: Determine why the break failed, then correct the condition and retry the
command. See message 608.

603 Read PC failed during break

Cause: System failure or target condition.

Action: Try again.

604 Disable breakpoint failed: %s

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

605 Undefined software breakpoint: %s

Cause: The emulator has encountered a software breakpoint in your program that
was not inserted with the bp command.

Action: If your processor allows different software breakpoint instructions, either
modify the ones you inserted in your code, or modify the ones inserted by bp using
your emulator’s configuration options (cf command). If only one instruction is
available, remove those inserted in your code before assembly and link, then
reinsert them using the bp command.

606 Unable to run after CMB break

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

608 Unable to break

Cause: This message is displayed if the emulator is unable to break to the monitor
because the emulation processor is reset, halted, or is otherwise disabled.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use
the b command to break to the monitor. If reset by the emulation system, release

Chapter 10: Error Messages
General Emulator and System Messages

366

that reset. If halted, try rst -m to get to the monitor. If there is a bus grant, wait for
the requesting device to release the bus before retrying the command. If there is no
clock input, perhaps your target system is faulty. It’s also possible that you have
configured the emulator to restrict to real time runs, which will prohibit temporary
breaks to the monitor.

610 Unable to run

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

611 Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if the
CMB READY line goes false. The emulator breaks to the monitor. When CMB
READY is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor.

Action: None, information only.

612 Write to ROM break

Cause: This status message will be printed if you have set bc -e rom and the
emulation processor attempted a write to a memory location mapped as ROM.

Action: None (except troubleshooting your program).

613 Analyzer Break

Cause: Status message.

Action: None.

614 Guarded memory access break

Cause: This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action: Troubleshoot your program; or, you may have mapped memory incorrectly.

Chapter 10: Error Messages
General Emulator and System Messages

367

615 Software breakpoint: %s

Cause: This status message will be displayed if a software breakpoint entered with
bp and enabled with bc -e bp is encountered during a program run. The emulator
is broken to the monitor. The string %s indicates the address where the breakpoint
was encountered.

Action: None.

616 BNC trigger break

Cause: This status message will be displayed if you have set bc -e bnct and the
BNC trigger line is activated during a program run. The emulator is broken to the
monitor.

Action: None.

617 CMB trigger break

Cause: This status message will be displayed if you have set bc -e cmbt and the
CMB trigger line is activated during a program run. The emulator is broken to the
monitor.

Action: None.

618 trig1 break

Cause: This status message will be displayed if you have set the analyzer to drive
trig1 upon finding the trigger, bc -e trig1 is set, and the analyzer has found the
trigger condition while tracing a program run. The emulator is broken to the
monitor.

Action: None.

619 trig2 break

Cause: This status message will be displayed if you have set the analyzer to drive
trig2 upon finding the trigger, bc -e trig2 is set, and the analyzer has found the
trigger condition while tracing a program run. The emulator is broken to the
monitor.

Action: None.

Chapter 10: Error Messages
General Emulator and System Messages

368

620 Unexpected software breakpoint

Cause: If you have enabled software breakpoints with bc -e bp, this message is
displayed if a software breakpoint instruction is encountered in your program that
was not inserted by bp and is therefore not in the breakpoint table.

Action: If your processor allows different software breakpoint instructions, either
modify the ones you inserted in your code, or modify the ones inserted by bp using
your emulator’s configuration options (cf command). If only one instruction is
available, remove those inserted in your code before assembly and link, then
reinsert them using the bp command.

621 Unexpected step break

Cause: System failure.

Action: Run performance verification (pv command).

622 %s

Cause: Monitor specific message.

Action: None.

623 CMB execute break

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run; the emulator must break before
running.

Action: This is a status message; no action is required.

624 Configuration aborted

Cause: Occurs when a <CTRL>c is entered during cf display command.

Action: None.

625 Invalid configuration value: %s

Cause: You have entered a configuration option incorrectly, such as typing cf
rrt=onn instead of cf rrt=on .

Chapter 10: Error Messages
General Emulator and System Messages

369

Action: Re-enter the configuration command, specifying only the correct options.
Enter the help cf command for a description of the configuration options for your
emulator.

626 Configuration failed; setting unknown: %s=%s

Cause: Target condition or system failure.

Action: Check target system, and run performance verification (pv command).

627 Invalid configuration item: %s

Cause: You specified a non-existent configuration item in the cf command. For
example, you would see this message if you tried to enter cf clk=int since there is
no clk configuration item for the emulator.

Action: Re-enter the command, specifying only configuration items that are
supported by your emulator. Enter the help cf command for a description of the
configuration options for your emulator.

628 Guarded memory break: %s"

Cause: A memory access to a location mapped as guarded memory has occurred
during execution of the user program.

Action: Investigate the cause of the guarded memory access by the user program.

628 Write to ROM break: %s"

Cause: When the rom break condition is enabled, a memory write access to a
location mapped as ROM has occurred during execution of the user program.

Action: Investigate the cause of the write to ROM by the user program. You can
disable the break condition with the bc -d rom command.

630 Register access aborted

Cause: Occurs when a <CTRL>c is entered during register display.

Action: None.

631 Unable to read registers in class: %s

Cause: The emulator was unable to read the registers you requested.

Chapter 10: Error Messages
General Emulator and System Messages

370

Action: To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform the register
read. See message 608.

632 Unable to modify register: %s=%s

Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It’s
likely that emulator was unable to break to the monitor to perform the register
modification. See message 608.

634 Display register failed: %s

Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It’s
likely that emulator was unable to break to the monitor to perform the register
display. See message 608.

636 Register not writable: %s

Cause: This error occurs when you attempt to modify a read only register.

Action: If this error occurs, you cannot modify the contents of the register with the
reg command.

637 Register class cannot be modified: %s

Cause: You tried to modify a register class instead of an individual register.

Action: You can only modify individual registers. Refer to the reg command
description for a list of register names.

640 Unable to reset

Cause: Target condition or system failure.

Action: Check target system, and run performance verification (pv command).

641 Unable to reset into monitor

Cause: You have entered a rst -m command and the emulator is unable to break
into the monitor.

Chapter 10: Error Messages
General Emulator and System Messages

371

Action: Reload monitor (rst for background).

650 Unable to configure break on write to ROM

Cause: The emulator controller is unable to execute the bc -e rom command
correctly, possibly because the emulator was left in an unknown state or because of
a hardware failure.

Action: Initialize the emulator or cycle power. Then reenter the command. If the
same failure occurs, call your HP sales and service office.

651 Unable to configure break on software breakpoints

Cause: The emulator controller is unable to execute the bc -e bp command,
possibly because the emulator is in an unknown state or because of a hardware
failure.

Action: Initialize the emulator or cycle power, then re-enter the command. If the
same failure occurs, call your HP sales and service office.

652 Break condition must be specified

Cause: You entered bc -e or bc -d without specifying a break condition to enable
or disable.

Action: Re-enter the bc command along with the enable/disable flag and the break
condition you wish to modify.

653 Break condition configuration aborted

Cause: Occurs when <CTRL>c is entered during bc display.

Action: None.

661 Software breakpoint break condition is disabled

Cause: You entered the bp command and options; however, the software
breakpoint break condition is disabled.

Action: Enable the software breakpoint feature with bc -e bp, then enter the
desired breakpoints with bp.

Chapter 10: Error Messages
General Emulator and System Messages

372

663 Specified breakpoint not in list: %s

Cause: You tried to enable a software breakpoint (bp -e <ADDRESS>) that was
not previously defined. The string %s prints the address of the breakpoint you
attempted to enable.

Action: Insert the breakpoint into the table and memory by typing bp
<ADDRESS>.

664 Breakpoint list full; not added: %s

Cause: The software breakpoint table is full. The breakpoint you just requested,
with address %s, was not inserted.

Action: Remove breakpoints that are no longer in use with bp -r <ADDRESS>.
Then insert the new breakpoint.

665 Enable breakpoint failed: %s

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

666 Disable breakpoint failed: %s

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

667 Breakpoint code already exists: %s

Cause: You attempted to insert a breakpoint with bp <ADDRESS>; however,
there was already a software breakpoint instruction at that location which was not
already in the breakpoint table.

Action: Your program code is apparently using the same breakpoint instruction as
bp. If multiple breakpoint instructions are available on your processor, either
change those in your program code or modify the one bp uses with your emulator’s
configuration options (cf command). If only one instruction is available, remove
the breakpoints from your program code and use bp to insert breakpoints.

Chapter 10: Error Messages
General Emulator and System Messages

373

668 Breakpoint not added: %s

Cause: You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

669 Breakpoint remove aborted

Cause: Occurs when <CTRL>c is entered during a bp -r command.

Action: None.

670 Breakpoint enable aborted

Cause: Occurs when <CTRL>c is entered during a bp -e command.

Action: None.

671 Breakpoint disable aborted

Cause: Occurs when <CTRL>c is entered during a bp -d command.

Action: None.

680 Stepping failed

Cause: Stepping has failed for some reason.

Action: Usually, this error message will occur with other error messages. Refer to
the descriptions of the accompanying error messages to find out more about why
stepping failed.

682 Invalid step count: %s

Cause: You specified an non-cardinal value for a step count in the s command
(such as entering s 22.1).

Action: Reenter the step command, using only cardinal values (positive integers)
for the step count.

684 Failed to disable step mode

Cause: System failure.

Chapter 10: Error Messages
General Emulator and System Messages

374

Action: Run performance verification (pv command).

685 Stepping aborted

Cause: This message is displayed if a break was received during a s (step)
command with a stepcount of zero (0). The break could have been due to any of
the break conditions in bc or a <CTRL>c break.

Action: None.

686 Stepping aborted; number steps completed: %d

Cause: This message is displayed if a break was received during a s (step)
command with a stepcount greater than zero. The break could have been due to
any of the break conditions in bc or a <CTRL>c break. The number of steps
completed is displayed.

Action: None.

688 Step display failed

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

689 Break due to cause other than step

Cause: An activity other than a step command caused the emulator to break. This
could include any of the break conditions in a bc command or a <CTRL>c break.

Action: None.

692 Trace error during CMB execute

Cause: System failure.

Action: Run performance verification (pv command).

693 CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified by the rx command.

Chapter 10: Error Messages
General Emulator and System Messages

375

Action: None; information only.

694 Run failed during CMB execute

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

700 Target memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

Action: In most cases, the problem results from the emulator’s inability to break to
the monitor to perform the operation. See message 608.

702 Emulation memory access failed

Cause: System failure.

Action: Run performance verification (pv command).

707 Request access to guarded memory: %s

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Re-enter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. Or, you can remap memory so that the desired
addresses are no longer mapped as guarded.

710 Memory range overflow

Cause: Accessing a word or short word, for example "m -dw 0fffff " will cause a
rounding error that overflows physical memory.

Action: Reduce memory display request.

Chapter 10: Error Messages
General Emulator and System Messages

376

720 Invalid map term number: %s

Cause: You attempted to delete a mapper term that does not exist. For example,
you may have tried map -d 17 (there are a maximum of 16 mapper terms). Or you
may have tried map -d 2, when only one mapper term has been defined.

Action: Use the map command to determine the numbers of the terms currently
mapped. Then delete the appropriate mapper term.

721 No map terms available; maximum number already defined

Cause: You tried to add more than 16 mapper terms.

Action: Either combine map ranges to conserve on the number of terms or delete
mapper terms that aren’t needed to free another mapper term.

723 Invalid map address range: %s

Cause: You specified an invalid address range as an argument to the map
command. For example, you may have specified digits that don’t correspond to the
base specified, or you forgot to precede a hexadecimal letter digit with a number, or
the upper boundary of the range you specified is less than the lower boundary.

Action: Re-enter the map command and the address specification. See the
<ADDRESS> and <EXPRESSION> syntax pages in the "Commands" chapter for
information on address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower boundary
must always precede the upper boundary on the command line).

725 Unable to load new memory map; old map reloaded

Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

726 Unable to reload old memory map; hardware state unknown

Cause: System failure.

Action: Run performance verification (pv command).

Chapter 10: Error Messages
General Emulator and System Messages

377

730 Invalid memory map type: %s

Cause: You specified a memory type while mapping that is not one of the
supported types: eram, erom, tram , trom , or grd.

Action: Re-enter the map command, specifying only one of the five types listed
above.

731 Invalid memory map attribute: %s

Cause: You have entered an unknown attribute when mapping a range of memory.

Action: Only the dti attribute is available, and they are only valid for emulation
memory ranges.

732 Invalid memory type for ’other’ range: %s

Cause: The unmapped memory type must be tram , trom , or grd. If you see the
above message, you have tried to map the "other" range to eram or erom.

Action: Map the "other" range to tram , trom , or grd.

734 Map range overlaps with term: %d

Cause: You entered a map term whose address range overlaps with one already
mapped. For example, you may have entered a term map 1000..2fff eram, then
tried to enter a term map 2000..3fff erom.

Action: Re-enter the map term so that ranges do not overlap, or combine terms and
change the memory type.

736 Memory not mapped as emulation: %s

Cause: This error occurs when a feature available only for emulation memory is
attempted with target memory. For example, this error occurs when you attempt to
perform coverage measurements (see the cov command) on target memory.

Action: You must remap the address range as emulation memory.

738 Unable to reset coverage bit data

Cause: System failure.

Action: Run performance verification (pv command).

Chapter 10: Error Messages
General Emulator and System Messages

378

740 I/O port access failed

Cause: The emulator was unable to read or write the port specified in the io
command. This message is also printed if your processor does not support separate
I/O.

Action: If your processor does not support separate I/O, use the m command to
modify I/O ports. Otherwise, retry the operation, and make sure that you are
specifying a valid I/O address.

752 Copy memory aborted; next destination: %s

754 Memory modify aborted; next address: %s

756 Memory search aborted; next address: %s

Cause: One of these message is displayed if a break occurs during processing of
the cp, m, or ser commands, respectively. The break could result from any of the
break conditions (except bp) or could have resulted from a <CTRL>c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions with the bc command.

800 Invalid command: %s

Cause: You have entered a command which is not part of the standard Terminal
Interface command set (documented in this manual) and was not found in the
currently defined macros.

Action: Enter only commands defined in this manual or in the macro set. You can
display the macro set using mac. You can rename commands or name command
groups using the mac command.

801 Invalid command group: %s

Cause: This error occurs when you specify an invalid group name in the help -s
<group> command.

Action: Enter the help command with no options for a listing of the valid group
names.

Chapter 10: Error Messages
General Emulator and System Messages

379

802 Invalid command format

Cause: This error occurs when an invalid macro is entered, for example, mac
{help;{} .

Action: Refer to the mac command description.

807 Macro list full; macro not added

Cause: The maximum number of macros have been defined.

Action: You must delete macros before adding any new macros.

809 Macro buffer full; macro not added

Cause: This error occurs when the memory reserved for macros is all used up.

Action: You must delete macros to reclaim memory in the macro buffer.

812 Invalid macro name: %s

Cause: You tried to delete a macro that did not exist; or you tried to define a new
macro with a name containing characters other than letters, digits, or underscores.

Action: Use the mac command to display the names of macros in the macro table
before deleting them with mac -d <NAME>. Define new macro names using only
letters, digits, and underscore characters.

813 Command line too long; maximum line length: %d

Cause: This error occurs when the command line exceeds the maximum number of
characters.

Action: Split the command line into two command lines.

814 Command line too complex

Cause: There was not enough memory for the expressions in the command line.

Action: Split up the command line, or use fewer expressions.

815 Missing macro parameter: %s

Cause: This error occurred because you did not include a parameter with the
specified mac command for macro expansion.

Chapter 10: Error Messages
General Emulator and System Messages

380

Action: Enter the command again, and include the appropriate parameter for the
macro expansion.

816 Command line too complex

Cause: Too many expression operators are used.

Action: Split up the command line, or use fewer expressions.

818 Command line too complex

Cause: A maximum nesting level has been exceeded for nested command
execution.

Action: Reduce the number of nesting levels.

820 Unmatched quote encountered

Cause: In entering a string, such as with the echo command, you didn’t properly
match the string delimiters (either ‘‘ or ""). For example, you might have entered

echo "set S1 to off

Action: Re-enter the command and string, making sure to properly match opening
and closing delimiters. Note that both delimiters must be the same character. For
example: echo "set S1 to off".

822 Unmatched command group encountered

Cause: You entered the mac or rep command group without matching braces {} .
For example: mac test={rst -m;cf or rep 2 {rst -m;map.

Action: Re-enter the command, making sure to match braces around commands
you want grouped into the macro or repeat. For example: mac test={rst -m;cf}.

824 Maximum number of arguments exceeded

Cause: Exceeding the limit of 100 arguments per command.

Action: Reduce the number of arguments in the command.

826 Maximum argument buffer space exceeded

Cause: Exceeding space limits for argument lists.

Chapter 10: Error Messages
General Emulator and System Messages

381

Action: Reduce request.

840 Invalid date: %s

Cause: You have specified the date format incorrectly in the dt command.

Action: Re-enter the command with the correct date format. Refer to the dt
command description for the correct format.

842 Invalid time: %s

Cause: You have incorrectly specified the time format in the dt command.

Action: Re-enter the command with the correct time format. Refer to the dt
command description for the correct format.

844 Invalid repeat count: %s

Cause: You entered a non cardinal value for the repeat count in the rep command,
such as rep 22.1 <command_group>.

Action: Re-enter the rep command, specifying only a cardinal number (positive
integer) for the repeat count.

850 Attempt to load code outside of allocated bounds

Cause: This error occurs when the lcd command attempts to load an absolute file
that contains code or data outside the range allocated for system code.

Action: Generally, you will not use the lcd command. The lcd command is
intended to be used by high-level interfaces to the HP 64700.

875 Invalid syntax for global or user symbol name: %s

Cause: This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action: Make sure that you enter the global or user symbol name using the correct
syntax. When specifying a global symbol, make sure that you precede the global
symbol with a colon (for example, :glb_sym). When specifying a user symbol
(created with the sym command), make sure that you enter the name correctly
without a colon.

Chapter 10: Error Messages
General Emulator and System Messages

382

876 Invalid syntax for local symbol or module: %s

Cause: This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action: When entering a local symbol name using the sym command, make sure
that you specify the module name, followed by a colon, then the symbol name (for
example module:loc_sym). Make sure that you specify the module name correctly.

877 Symbol not found: %s

Cause: This occurs when you try to enter a symbol name that doesn’t exist.

Action: Enter a valid symbol name.

878 Symbol cannot contain wildcard in this context

Cause: You tried to enter a global, local, or user symbol name using the wildcard
(*) incorrectly.

Action: When you enter the symbol name again, include the wildcard (*) at the end
of the symbol.

879 Symbol cannot contain text after the wildcard

Cause: You tried to include text after the wildcard specified in the symbol name
(for example, sym*text).

Action: Enter the symbol again, but don’t include text after the wildcard (*).

880 Conflict between expected and received symbol information

Cause: The information you supplied in a symbol definition is not what the
HP 64700 expected to receive.

Action: Make sure that all symbols in the symbol file are defined correctly. Verify
that there are no spaces in the address definitions for the symbols in the symbol file
being downloaded.

881 Ascii symbol download failed

Cause: This error occurs because the system is out of memory.

Chapter 10: Error Messages
General Emulator and System Messages

383

Action: You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

882 No module specified for local symbol

Cause: This error occurs because you tried to specify a local symbol name without
specifying the module name where the symbol is located.

Action: Enter the module name where the local symbol is located, followed by a
colon, then the local symbol name.

901 Invalid firmware for emulation subsystem

Cause: This error occurs when the HP 64700 system controller determines that the
emulation firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROM is installed in the emulation controller.

902 Invalid analysis subsystem; product address: %s

Cause: This error occurs when the HP 64700 system controller determines that the
analysis firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROMs are installed in the analyzer board.

903 Invalid ET subsystem; product address: %s

Cause: Detects an invalid ET. Used only internally.

Action: None.

904 Invalid auxiliary subsystem; product address: %s

Cause: For future products.

Action: None.

911 Lab firmware for emulation subsystem

Cause: This message should never occur. It shows that you have an unreleased
version of emulation firmware.

Chapter 10: Error Messages
General Emulator and System Messages

384

Action: None.

912 Lab firmware analysis subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of analysis firmware.

Action: None.

913 Lab firmware subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of system controller firmware.

Action: None.

914 Lab firmware auxiliary subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Action: None.

Chapter 10: Error Messages
General Emulator and System Messages

385

Analyzer Messages

1102 Invalid bit range; crosses two multiples of 16: <sig#>..<sig#>

Cause: This error occurs when defining trace labels. A trace label may not contain
trace signals crossing two 16-bit boundaries. For example, the command "tlb
name 1..32" will cause this error because "name" contains signals which cross the
15-16 and 31-32 16-bit boundaries.

Action: Redefine your trace label so that no more than one 16-bit boundary is
crossed.

1103 Invalid bit range; out of bounds: <sig#>..<sig#>

Cause: This error occurs when defining trace labels, and you have attempted to
assign non-existent trace signals to a label.

Action: Enter the trace activity command to view the trace signals present, and use
only these signals when defining trace labels.

1104 Invalid bit range; too wide: <sig#>..<sig#>

Cause: This error occurs when defining trace labels, and you have attempted to
assign more than 32 trace signals to a label.

Action: Use more than one trace label to define over 32 trace signals.

1105 Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex configuration, or
display the trace format to see where the label is used. Also, you should check tpq
for uses of that label. You must change the pattern or format specification to
remove the label before you can delete it.

Chapter 10: Error Messages
Analyzer Messages

386

1106 Unable to delete label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external state trace specification or is
currently specified in the external trace format.

Action: Display the external trace sequencer specification in the easy
configuration, display the external trace patterns in the complex configuration, or
display the external trace format to see where the label is used. Also, check tpq for
uses of that label. You must change the pattern or format specification to remove
the label before you can delete it.

1107 Unable to delete label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external timing trace specification.

Action: Remove the label from the external timing analyzer specifications, and
then delete the label.

1108 Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace label
which is currently used as a qualifier in the emulation trace specification.

Action: Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex configuration, or
display the emulation trace format to see where the label is used. You must change
the pattern or format specification to remove the label before you can redefine it.

1109 Unable to redefine label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to redefine an external trace label
which is currently used as a qualifier in the external state trace specification.

Action: Display the external trace sequencer specification in the easy
configuration, or display the external trace patterns in the complex configuration to
see where the label is used. You must change the pattern or format specification to
remove the label before you can redefine it.

Chapter 10: Error Messages
Analyzer Messages

387

1110 Unable to redefine label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation or external
trace label which is currently being used as a qualifier in the external timing trace
specification.

Action: Remove the label from the external timing analyzer specifications, and
then redefine the label.

1111 Unable to redefine label; belongs to external analyzer: <label>

Cause: This error occurs when you attempt to redefine an external analyzer label
with the emulation trace label command (for example, tlb xbits 0..16).

Action: Either use a different label name, or delete the external analyzer label
before defining a label of the same name for the emulation analyzer.

1112 Unable to redefine label; belongs to emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation analyzer label
with the external trace label command (for example, xtlb addr 0..19).

Action: Either use a different label name, or delete the emulation analyzer label
before defining a label of the same name for the external analyzer.

1114 Label belongs to external analyzer: <label>

Cause: When the external analyzer is in an independent mode, this error occurs
when you attempt to use an external analyzer label in an emulation trace command
(for example, tg xlabel=0).

Action: Only use external trace labels in external trace commands (when the
external analyzer is in an independent mode).

1115 Label belongs to emulation analyzer: <label>

Cause: When the external analyzer is in an independent mode, this error occurs
when you attempt to use an emulation analyzer label in an external trace command
(for example, xtg addr=5).

Action: Only use emulation trace labels in emulation trace commands (when the
external analyzer is in an independent mode).

Chapter 10: Error Messages
Analyzer Messages

388

1130 Illegal base for count display

Cause: When specifying the trace format, counts may only be displayed relative or
absolute. When counting states, the count is always displayed as a decimal number.

Action: Respecify the trace format without using a base for the count column.
Also, you can use ",A" to specify that counts be displayed absolute, or you can use
",R" to specify that counts be displayed relative.

1131 Illegal base for mnemonic disassembly display

Cause: When specifying the trace format, you cannot specify a number base for the
column containing mnemonic information.

Action: Respecify the trace format without using a base for the mnemonic column.

1132 Illegal base for sequencer display

Cause: When specifying the trace format, you cannot specify a number base for the
column containing sequencer information.

Action: Respecify the trace format without using a base for the sequencer column.

1133 Trace format command failed; using old format

Cause: This error occurs when the trace format command fails for some reason.
This error message always occurs with another error message.

Action: Refer to the "Action" description for the other error message displayed.

1137 Mnemonic disassembly not supported for external trace

Cause: This error occurs when you attempt to specify a mnemonic information
column in the external trace format. There is no mnemonic disassembly for the
external trace.

Action: Respecify the trace format without the mnemonic column.

1138 Illegal width for symbol display: %s

Cause: This error occurs when the value specified for the trace format address field
width is not valid.

Chapter 10: Error Messages
Analyzer Messages

389

Action: Enter the tf command again, and specify the width of the address field for
symbol display within the range of 4 to 55.

1139 Illegal width for addr display, mne not specified

Cause: This error occurs when you specify a width for the address field in the tf
command, but do not include the mne option.

Action: Enter the command again, and include the mne option.

1140 Symbol display unsupported

Cause: This error occurs when you try to display symbols in the trace list, but the
emulator you are using doesn’t support symbols.

Action: Enter the tl command again, but don’t try to display symbols.

1141 Symbol display unavailable without mne field

Cause: This error occurs when you try to display symbols, but have not included
the mne option to the tf command.

Action: Don’t try to display symbols unless the mne field has already been
specified.

1202 Trigger position out of bounds: <bounds>

Cause: This error occurs when you attempt to specify a number of lines to appear
either before or after the trigger which is greater than the number of lines allowed.
The <bounds> string indicates the incorrect range that you typed (not the correct
limits on the range).

Action: Be sure that the trigger position specified is within the range -1024 to 1023.

1207 Invalid clock channel: <name>

Cause: Valid clock channels are L, M, and N. If you have an external analyzer, the
J and K channels are also valid.

Action: Respecify the command using valid clock channels.

Chapter 10: Error Messages
Analyzer Messages

390

1209 Operator must be "and" or "or": <expression>

Cause: When combining trace labels to specify trace patterns (in simple
expressions or with the tpat command), an operator of either "and" or "or" must
appear between the label qualifiers.

Action: Refer to the "Qualifying Trigger and Store Conditions" section of the
"Using the Emulation Analyzer - Easy Configuration" chapter.

1210 Illegal mix of = and !=

Cause: When combining trace labels to specify patterns (in simple expressions or
with the tpat command), all labels must either be equal to values or not equal to
values.

Action: Refer to the "Qualifying Trigger and Store Conditions" section of the
"Using the Emulation Analyzer - Easy Configuration" chapter.

1211 Illegal mix of and/or

Cause: When combining trace labels to specify patterns (in simple expressions or
with the tpat command), all label qualifiers must either be ANDed together or
ORed together. You cannot mix these operators.

Action: Refer to the "Qualifying Trigger and Store Conditions" section of the
"Using the Emulation Analyzer - Easy Configuration" chapter.

1212 Conflict with overlapping label: <label>

Cause: When combining trace labels to specify patterns (in simple expressions or
with the tpat command), you cannot combine labels which are defined for common
trace signals. For example, the following easy configuration commands will result
in this error: tlb low8 0..7; tlb low16 0..15; tg low8=0 and low16=1.

Action: Either omit one of the overlapping labels, or redefine your labels so that
they do not contain common trace signals. You could also circumvent this error by
using don’t cares in the appropriate places; for the example shown in cause, you
could specify patterns tg low8=0xx0xY and low16=1.

1213 Illegal mix of !=/and

Cause: When combining trace labels to specify patterns (in simple expressions or
with the tpat command), labels which are not equal to values must be ORed
together so that the entire pattern specifies a "not equals" condition.

Chapter 10: Error Messages
Analyzer Messages

391

Action: Refer to the "Qualifying Trigger and Store Conditions" section of the
"Using the Emulation Analyzer - Easy Configuration" chapter.

1214 Illegal mix of =/or

Cause: When combining trace labels to specify patterns (in simple expressions or
with the tpat command), labels which are equal to values must be ANDed together
so that the entire pattern specifies an "equals" condition.

Action: Refer to the "Qualifying Trigger and Store Conditions" section of the
"Using the Emulation Analyzer - Easy Configuration" chapter.

1215 Comparator must be = or !=: <label>

Cause: When combining trace labels to specify patterns (in simple expressions or
with the tpat command), the value of the label can only be specified with the "=" or
"!=" operators.

Action: Refer to the "Qualifying Trigger and Store Conditions" section of the
"Using the Emulation Analyzer - Easy Configuration" chapter.

1217 Illegal pattern name: <name>

Cause: Valid pattern names are p1 through p8.

Action: Use only valid pattern names.

1218 Illegal comparator for range qualifier: !=

Cause: When specifying a range with the trng command, you cannot use the"!="
operator.

Action: Use the "!r" range name.

1219 Range cannot be combined with any other qualifier

Cause: For example, the following easy configuration command will result in this
error: tsto addr=400..4ff and data=40.

Action: Do not attempt to combine labels when using range qualifiers.

Chapter 10: Error Messages
Analyzer Messages

392

1221 Range resource in use

Cause: This error occurs when you attempt to use two different range expressions
in the "easy" configuration trace specification or when you attempt to redefine the
"complex" configuration range resource while it is currently being used as a
qualifier in the trace specification.

Action: Only one range expression may be used in the "easy" configuration trace
specification. In the "complex" configuration, display the sequencer specification
to see where the range resource is being used and remove it; then, you can redefine
the range resource.

1224 Sequence term number out of range: <term>

Cause: This error occurs when a sequencer qualification command (tif , telif , tsq,
or tsto) specifies a non-existent sequence term. The easy configuration sequencer
may have a maximum of 4 sequence terms. Eight sequence terms exist in the
complex configuration sequencer.

Action: Re-enter the command using an existing sequence term.

1225 Sequence term not contiguous: <term>

Cause: This error occurs when you attempt to insert a sequence term which is not
between existing terms or after the last term. For example, the following easy
configuration commands will result in this error: tg any; tsq -i 4.

Action: Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

1226 Too many sequence terms

Cause: This error occurs when you attempt to insert more than 4 sequence terms.

Action: Do not attempt to insert more than 4 sequence terms.

1227 Sequence term not defined: <term>

Cause: This error occurs when you attempt to delete, or specify a primary branch
expression for, a sequence term number which is possible, but which is not
currently defined.

Action: Insert the sequence term, and respecify the primary branch expression for
that term.

Chapter 10: Error Messages
Analyzer Messages

393

1228 One sequence term required

Cause: This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action: At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

1234 Invalid occurrence count: <number>

Cause: Occurrence counts may be from 1 to 65535.

Action: Re-enter the command with a valid occurrence count.

1235 Illegal threshold value: <value>

Cause: Threshold voltage specifications may be from -6.4 V to +6.35 V in
increments of 0.05 V.

Action: Re-enter the command with a valid threshold voltage.

1237 Option specified more than once: <option>

Cause: When specifying external threshold voltages, this error occurs when you
attempt to specify the threshold voltage for either the upper or lower byte twice.

Action: You must re-enter the command so that the threshold voltage is only
specified once for each option (upper or lower byte).

1239 Clock speed not available with current count qualifier.

Cause: This error occurs when you attempt to specify a fast (F) or very fast (VF)
maximum qualified clock speed when counting time (tcq time). This error also
occurs when you attempt to specify a very fast (VF) maximum qualified clock
speed when counting states (for example, tcq addr=400).

Action: Change the count qualifier; then, re-enter the command.

1240 Count qualifier not available with current clock speed.

Cause: This error occurs when you attempt to specify the "time" count qualifier
when the current maximum qualified clock speed is fast (F) or very fast (VF). This
error also occurs when you attempt to specify a "state" count qualifier when the
maximum qualified clock speed is fast (F).

Chapter 10: Error Messages
Analyzer Messages

394

Action: Change the clock speed; then, change the count qualifier.

1241 Invalid qualifier resource or operator: <expression>

Cause: When specifying complex expressions, you have either specified an illegal
pattern or used an illegal operator.

Action: Refer to the "Using Complex Expressions" section of the "Using the
Emulation Analyzer - Complex Configuration" chapter for information on valid
patterns and operators.

1245 Range qualifier not accessible in easy configuration

Cause: This error occurs when you attempt to use the trng command in the easy
configuration.

Action: Changing into the complex configuration will allow you to use the trng
command; otherwise, specify the range in easy configuration command expressions.

1246 Pattern qualifiers not accessible in easy configuration

Cause: This error occurs when you attempt to use the tpat command in the easy
configuration.

Action: Changing into the complex configuration will allow you to use the tpat
command; otherwise, specify the patterns in easy configuration command
expressions.

1248 Range term used more than once

Cause: This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action: You cannot use the range resource more than once in a sequencer branch
expression.

1249 Invalid qualifier expression: <expression>

Cause: This error message is shown with the errors that occur when patterns, the
range, or the arm condition is used more than once within a set. This error message
also occurs when intraset operators are not the same. For example, the following
complex expression will result in this error: p1 ~ p2 | p3.

Chapter 10: Error Messages
Analyzer Messages

395

Action: Refer to the "Using Complex Expressions" section of the "Using the
Emulation Analyzer - Complex Configuration" chapter for information on valid
patterns and operators.

1250 Arm term used more than once

Cause: This error occurs when you attempt to use the "arm" qualifier more than
once in a sequencer branch expression.

Action: You cannot use the "arm" qualifier more than once in a sequencer branch
expression.

1251 Trigger term cannot be term 1

Cause: This error occurs when to attempt to specify the first sequence term as the
trigger term. The trigger term may be any term but the first.

Action: Respecify the trigger term as any other sequence term.

1253 Invalid pod number: <pod#>

Cause: This error message occurs when you attempt to specify a slave clock for a
non-existent analyzer pod.

Action: Use the trace activity command to display the valid pod numbers, and use
only these numbers when entering commands.

1257 Pod belongs to external analyzer: <pod#>

Cause: This error occurs when you attempt to specify a slave clock for the external
analyzer pod with the emulation analyzer’s trace slave clock command. This error
only occurs when the external analyzer is in its independent state mode.

Action: Use the external trace slave clock command to specify a slave clock for the
external analyzer pod.

1300 Incompatible external trace mode

Cause: This error message occurs when you attempt to use an external trace
command (other than xtv, xtlb , or xtmo) while the external analyzer is aligned with
the emulation analyzer. The message is also display if you attempt to use external
state trace commands when the external analyzer is in timing mode; or if you

Chapter 10: Error Messages
Analyzer Messages

396

attempt to use external timing trace commands when the external analyzer is in
state mode.

Action: Change the external trace mode, and re-enter the command.

1301 External label in use: <label>

Cause: This error occurs when you attempt to select the external analyzer’s
independent state mode while an external trace label is currently used as a qualifier
in the emulation analyzer trace specification.

Action: Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’s independent state mode.

1302 Trig1 signal cannot be driven and received

Cause: This error occurs when you attempt to specify the internal trig1 signal as
the trace arm condition while the same analyzer’s trigger output is currently driving
the trig1 signal. This error also occurs if you attempt to specify that the trigger
output drive the internal trig1 signal while that signal is currently specified as the
arm condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure that they do not use the same internal signal.

1303 Trig2 signal cannot be driven and received

Cause: This error occurs when you attempt to specify the internal trig2 signal as
the trace arm condition while the same analyzer’s trigger output is currently driving
the trig2 signal. This error also occurs if you attempt to specify that the trigger
output drive the internal trig2 signal while that signal is currently specified as the
arm condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure that they do not use the same internal signal.

1304 Analyzer trace running

Cause: This error occurs when you attempt to change the external analyzer mode
while a trace is in progress.

Action: Halt the trace before changing the external analyzer mode.

Chapter 10: Error Messages
Analyzer Messages

397

1305 CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified by the "tx -e" command).

1306 CMB execute; external trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified by the "xtx -e" command).

2021 Period not in 1/2/5 sequence: <period>

Cause: This error message occurs when the external timing sample period is not in
a 1/2/5 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns, 500ns, 1us, 2us,
5us, etc. Some examples of invalid sample period specifications are: 12ns, 18ns,
25ns, 60ns, 80ns, etc.

Action: Use a number in the 1/2/5 sequence when specifying the external timing
sample period.

2022 Sample period out of bounds: <bounds>

Cause: The external timing sample period must be between 10 ns and 50 ms (in a
1/2/5 sequence).

Action: Re-enter the command with the sample period between the bounds shown.

2030 Negated patterns not allowed in timing

Cause: This error occurs when you attempt to specify a "not equals" expression
when defining the external timing trigger. You can only specify labels which equal
patterns (of 1’s, 0’s, or X’s).

Action: Do not attempt to specify negated timing patterns.

2031 Invalid trigger duration: <duration>

Cause: This error occurs when you attempt to specify an external timing trigger
duration which is in the valid range but is not a multiple of 10 ns.

Action: Re-enter the command with the trigger duration as a multiple of 10 ns.

Chapter 10: Error Messages
Analyzer Messages

398

2032 Trigger duration out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
duration outside the valid range. A "greater than" duration must fall within the
range of 30 ns to 10 ms (and must be a multiple of 10 ns). A "less than" duration
must fall within the range 40 ns to 10ms (and must be a multiple of 10 ns).

Action: Re-enter the command with the trigger duration within the bounds shown.

2042 Trigger delay out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
delay outside the valid range. The external timing trigger delay must be between 0
and 10 ms (in 10 ns increments).

Action: Re-enter the command with the trigger delay within the bounds shown.

Chapter 10: Error Messages
Analyzer Messages

399

400

11

Specifications and Characteristics

401

Emulator Specifications and Characteristics

This section contains the following types of emulator specifications and
characteristics:

• Electrical characteristics (including emulator timing).

• Physical characteristics.

• Environmental characteristics.

Electrical

This section describes the electrical characteristics of the HP 64767
80186/8/XL/EA/EB/EC Emulator and the HP 64700 Card Cage.

Electrical Characteristics of the HP 64767 Emulator

Except as noted in the specifications, all electrical differences defined by Intel
between the 80C186 and XL processors also apply to the HP 64767 emulator as far
as compatibility with processors is concerned. Refer to Intel compatibility
documentation for differences between the processors.

Maximum clock speed: 20 MHz with no wait states required for emulation or
target memory.

Minimum clock speed: 1 MHz.

Power: 250 mA maximum from target system, all other power supplied by
card cage.

Chapter 11: Specifications and Characteristics
Emulator Specifications and Characteristics

402

Below are specifications for the HP 64767A/B/C that differ from the specifications
for the Intel 80C186EA/EB/EC/XL processors.

DC Specifications (at Vcc = 5V): Min Max

Input low voltage -0.5V 0.8V

Input high voltage (HP 64767A) 2.0V Vcc + 0.5V

Input high voltage (HP 64767B/C) 0.7 * Vcc Vcc + 0.5V

Output high voltage
(AD pins 15 through 0: -15 mA) 2.4V

Output high voltage
(AD pins 15 through 0: -300 µA) Vcc - 0.2V

Output high voltage
(HP 64767A - other pins: -200 µA) Vcc - 0.5V

Output high voltage
(HP 64767A - other pins: -2.4 mA) 2.4V

Output high voltage
(HP 64767B/C - other pins: -2 mA) Vcc - 0.5V

Low level input current (HOLD) -250 µA

High level input current (HOLD) 100 µA

Pin capacitance approx 30 pF

Chapter 11: Specifications and Characteristics
Emulator Specifications and Characteristics

403

AC Specifications (at Vcc = 5V): Min Max

Read data setup time (Tdvcl) 15 ns

Read data hold time (Tcldx) 8 ns

Address valid delay (Tclav) 4 ns 32 ns

Data valid delay (Tcldv) 4 ns 32 ns

Address valid to ALE low (Tavll) (Tclch - 15 ns)

Address valid to clock high (Tavch) -5 ns

Address float delay (Tclaz) 30 ns

Address float to LRD active (Tazrl) -10 ns

Data valid delay (Tcldv) 4 ns 32 ns

CLKOUT frequency 1 MHz 20 MHz

AC Specifications for
HP 64767AL/BL/CL (at Vcc = 3V): Min Max

Read data setup time (Tdvcl) 25 ns

Read data hold time (Tcldx) 8 ns

Address valid delay (Tclav) 4 ns 35 ns

Data valid delay (Tcldv) 4 ns 35 ns

Address valid to ALE low (Tavll) (Tclch - 15 ns)

Address valid to clock high (Tavch) -5 ns

Address float delay (Tclaz) 30 ns

Address float to LRD active (Tazrl) -10 ns

Data valid delay (Tcldv) 4 ns 35 ns

CLKOUT frequency 1 MHz 13 MHz

Chapter 11: Specifications and Characteristics
Emulator Specifications and Characteristics

404

Electrical Notes

A target system NMI request may be delayed by three clock cycles while running
user code or indefinitely while running in the background monitor. NMI requests
recieved while in the background monitor are latched and delivered to the
emulation processor after exiting the monitor. Other external interrupts will not be
serviced while in the background monitor and are not latched by emulation
hardware. These interrupts must remain asserted until acknowledged by the
emulation processor.

The RESIN signal is delayed by approximately 500 ns between the target system
and the emulation processor.

ALE will continue to be asserted to the target system during background monitor
cycles although no other bus status or control signals will be asserted.

Electrical Characteristics of the HP 64700

The electrical characteristics of the HP 64700 communication ports are as follows.

Communications

Serial Port RS-232-C DCE or DTE to 38.4 Kbaud.
RS-422 DCE to 460.8 Kbaud.

BNC (labeled
TRIGGER IN/OUT)

Input. The signal must drive approximately 4 mA at 2 V. Edge
Sensitive. Minimum pulse width is approximately 25 ns.
Output. Driven active high only; equals +2.4V into a 50 ohm
load.

Chapter 11: Specifications and Characteristics
Emulator Specifications and Characteristics

405

Physical

Emulator Dimensions

Width
Height
Length

325 mm (12.8 in.)
173 mm (6.8 in.)
389 mm (15.3 in.)

Emulator Weight

HP 64749 8.2 kg (18 lb)

Cable Length

Probe to
 card cage

approximately 914 mm (36 in.)

Communications

Serial Port 25-pin female type "D" subminiature connector.

CMB Port 9-pin female type "D" subminiature connector.

CAUTION Possible damage to emulator. Any component used in suspending the emulator
must be rated for 30 kg (65 lb) capacity.

Chapter 11: Specifications and Characteristics
Emulator Specifications and Characteristics

406

Environmental

Temperature

Operating 0°C to +40°C
(+32°F to 104°F)

Non-operating -40°C to +70°C
(-40°F to 158°F)

Altitude

Operating/
Non-operating

4 600m
(15 000 ft)

Chapter 11: Specifications and Characteristics
Emulator Specifications and Characteristics

407

External Analyzer Specifications

• Threshold Accuracy = +/- 50 mV.

• Dynamic Range = +/- 10 V about threshold setting.

• Minimum Input Swing = 600 mV pp.

• Minimum Input Overdrive = 250 mV or 30% of threshold setting, whichever is
greater.

• Absolute Maximum Input Voltage = +/- 40 V.

• Probe Input Resistance = 100K ohms +/- 2%.

• Probe Input Capacitance = approximately 8 pF.

• Maximum +5 Probe Current = 0.650 A.

• +5 Probe Voltage Accuracy = +5.0 +/- 5%.

External State Analyzer Specifications

• Data Setup Time = 10 ns min.

• Data Hold Time = 0 ns, typical.

• Qualifier Setup Time = 20 ns min.

• Qualifier Hold Time = 10 ns, typical.

• Minimum Clock Width = 10 ns

• Minimum Clock Period:

– No Tagging Mode = 40 ns (25 Mhz clock).

– Event Tagging Mode = 50 ns (20 MHz clock).

– Time Tagging Mode = 60 ns (16 MHz clock).

• Minimum Time from Slave Clock to Master Clock = 10 ns.

• Minimum Time from Master Clock to Slave Clock = 50 ns.

408

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

409

Part 4

410

12

Concepts

411

Concepts

This chapter provides conceptual information on the following topics:

• Demo program descriptions.

412

Demo Program Description

A simple environmental control system demonstration program has been used to
generate examples throughout this manual. The program controls the temperature
and humidity of a room requiring accurate environmental control.

This demo program is a simple C language program and is linked with startup and
initialization code.

Environmental Control System (ECS) Code

The "demo.h" File
/**
 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.
 **/
typedef enum {false, true} boolean;
typedef enum {up,down} direction;

typedef struct
{
 short temp;
 short humid;
 float ave_temp;
 float ave_humid;
} old_el;

/********************
 * Global Variables
 ********************/
extern short target_temp; /* Target temperature. */
extern short target_humid; /* Target humidity. */

extern short current_temp; /* Current temperature. */
extern short current_humid; /* Current humidity. */

extern int num_checks; /* Number of times update_state_of_system */
 /* has been called. */
extern old_el old_data[NUM_OF_OLD]; /* temp and humid history */

extern char func_needed; /* Function needed by system (humidify, */
 /* dehumidify, heat, cool). See main.c for */
 /* information. */

Chapter 12: Concepts
Demo Program Description

413

extern unsigned short hdwr_encode; /* Encoded 16-bit quantity used to */
 /* communicate with */
 /* hardware and indicate what external devices */
 /* need to do to implement the needed function */
 /* to the environment. See main.c for more */
 /* information. */

extern int curr_loc; /* location to write old temp and humid */
extern direction humid_dir,temp_dir; /* direction for current_vars */

The "main.c" Module
/**
 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.
 **/
#include <stdio.h>
#include <string.h>
#include "update_sys.h"
/**
* This typedef is also found in demo.h but since demo.h is not included in
* this file, this declaration appears here by itself.
***/
#define SHRINKFACTOR 1.3
#define LISTLEN NUM_OF_OLD*4+1
typedef enum {false, true} boolean;
typedef enum {up,down} direction;

typedef struct
{
 short temp;
 short humid;
 float ave_temp;
 float ave_humid;
} old_el;

/********************************
 * Global Variable Declarations
 *******************************/

old_el old_data[NUM_OF_OLD]; /* History of temp and humid data. */
short target_temp; /* Target temperature. */
short target_humid; /* Target humidity. */
char ascii_old_data[LISTLEN][8]; /* ASCII history of temp and humid data. */

float float_temp;
float float_humid;
float aver_temp;
short current_temp; /* Current temperature. */
short current_humid; /* Current humidity. */

int num_checks; /* Counts the number of times */
 /* update_state_of_system() is called */

Chapter 12: Concepts
Demo Program Description

414

int curr_loc; /* location to write old temp and humid */

/**
 * func_needed is the byte that indicates what the environment control system
 * needs to do to the environment. The following specifies the values it
 * may have:
 *
 * <bit>: bit #3 bit #2 bit #1 bit #0
 * <function
 * needed>: dehumidify humidify cool heat
 *
 * The only valid values for this char are:
 * (hex) (binary)
 * (1) 0001 heat
 * (2) 0010 cool
 * (4) 0100 humidify
 * (8) 1000 dehumidify
 * (9) 1001 dehumidify and heat
 * (A) 1010 dehumidify and cool
 * (5) 0101 humidify and heat
 * (6) 0110 humidify and cool
 ***/
 char func_needed;

/**
 * hdwr_encode is the encoded 16-bit quantity output by the system which is
 * interpreted by external devices. It tells the external devices what to do,
 * for example, turning the air conditioner on (indicated by hdwr_encode =
 * 0010). There are four sets of four bits within the 16 bit quantity
 * hdwr_encode. These sets of bits are encoded as follows:
 *
 * Value of Value of Value of Value of
 * bits 15 - 12 bits 11 - 8 bits 7 - 4 bits 3 - 0
 * Dehumidifier Humidifier Air Conditioner Heater
 * 0 = off 0 = off 0 = off 0 = off
 * 1 = on 1 = on 1 = on 1 = on
 ***/
unsigned short hdwr_encode;

direction humid_dir,temp_dir; /* direction for current_vars */

extern void init_system(); /* initialize system */
extern void update_system(); /* update system variables */
extern void interrupt_sim(); /* simulate an interrupt */
extern void do_sort(); /* sets up ascii array and calls combsort */

main()
{
 init_system();

 while (true)
 {
 update_system();
 num_checks++;
 interrupt_sim(&num_checks);
 }
}

Chapter 12: Concepts
Demo Program Description

415

/**
 * FUNCTION: interrupt_sim
 * PARMS: counter -- loop counter passed in from main
 * DESCRIPTION:
 * create a simulation of a (usually) long interrupt service routine that
 * also has a duration profile to use with a SPA duration trigger.
 *
 **/
void
interrupt_sim(counter)
int *counter;
{
 short outer;
 short inner;
 short limit;

 limit = (*counter % 10) * (*counter % 10) / 3;

 for (outer = 0; outer < limit; outer++)
 for (inner = 0; inner < 270; inner++)
 inner++;

 if (! ((*counter) % 4))
 do_sort(old_data, ascii_old_data, limit % NUM_OF_OLD);
}

/**
 * FUNCTION: strcpy8
 * DESCRIPTION:
 * Copy only 7 chars (8 with NULL)
 *
 **/
int strcpy8(dest, src)
char *dest;
char *src;
{
 int i;

 /* Copy it */
 for (i=0; i < 7 && *src; i++)
 *dest++ = *src++;
 *dest = ’\0’;
}

/**
 * FUNCTION: gen_ascii_data
 * DESCRIPTION:
 * Generate ascii data from binary data
 *
 **/
int gen_ascii_data(data, ascii_data, size)
old_el data[];
char ascii_data[][8];
int size;
{
 int i, j; /* counters */
 char buf[16];

Chapter 12: Concepts
Demo Program Description

416

 /* Place ascii data in the ascii array */
 for (j=0, i=0; i < size; i++)
 {
 sprintf(buf, "%7d", data[i].temp);
 strcpy8(ascii_data[j++], buf);

 sprintf(buf, "%7d", data[i].humid);
 strcpy8(ascii_data[j++], buf);

 sprintf(buf, "%7.2f", data[i].ave_temp);
 strcpy8(ascii_data[j++], buf);

 sprintf(buf, "%7.2f", data[i].ave_temp);
 strcpy8(ascii_data[j++], buf);
 }
 strcpy8(ascii_data[j++], "\0");
}

/**
 These variables made static for debugging purposes
 (used by combsort function)
 **/
static int len, /* number of strings to sort */
 switches, /* any element switches this pass? */
 switch_total, /* total number of switches performed in sort */
 i, j, /* loop counters */
 top, /* top of current passes in len */
 passes, /* number of passes for sort */
 gap; /* current gap size */

/**
 * FUNCTION: combsort
 * DESCRIPTION:
 * A combsort(11) for arrays of ascii data 8 chars wide
 *
 **/
int combsort(array)
char array[][8];
{
 char hold[100]; /* temp var for element swap */

 /* Determine length of array */
 for (len=0; *array[len] != ’\0’;)
 len++;

 /* Main sort loop */
 gap = len; /* set comb gap to len to start */
 passes = 0; /* pass counter */
 switch_total = 0; /* total switches */
 do
 {
 passes++; /* ran another pass */
 gap = (int)((float)gap / SHRINKFACTOR);
 switches = 0; /* dirty pass flag */

 /* Force gap to conform to comb11 */
 switch (gap)
 {

Chapter 12: Concepts
Demo Program Description

417

 case 0: gap = 1; /* smallest gap is 1 = bubble */
 break;
 case 9:
 case 10:
 case 11: gap = 11; /* force comb sort 11 */
 break;
 default: break;
 }

 /* Do the comb sort loop for this comb gap */
 for (top=len-gap,i=0; i < top; i++)
 {
 j = i + gap; /* j is higher than i by gap */
 if (strncmp(array[i], array[j], 7) > 0)
 { /* swap elements if required */
 switches++;
 switch_total++;
 /* strncpy(hold, array[i], 7);
 strncpy(array[i], array[j], 7);
 strncpy(array[j], hold, 7); */
 strcpy8(hold, array[i]);
 strcpy8(array[i], array[j]);
 strcpy8(array[j], hold);
 }
 }
 } while (switches || (gap > 1));

 /* Show sort performance summary data in elements 1, 2, 3 */
 /* for display memory blocked repetitive */
 sprintf(hold, "#Pas%3d", passes);
 strcpy8(array[1], hold);
 sprintf(hold, "#Swi%3d", switch_total);
 strcpy8(array[3], hold);
 sprintf(hold, "Len%4d", switch_total);
 strcpy8(array[5], hold);

 /* NOTE: This has been an example of how to monitor complex C variables
 while your program is running. If you issue a ’Mem Bloc ()’
 action key with ’ascii_old_data’ in the entry buffer you will
 see a snapshot of your sprintf results. You may also add a
 Display->Memory->Repetitively command to see this dynamically! */
}

/**
 * FUNCTION: do_sort
 * DESCRIPTION:
 * Generate ascii data from binary data and sort it
 *
 **/
void do_sort(data, ascii_data, size)
old_el data[];
char ascii_data[][8];
int size;
{
 int i=0; /* counter */
 char buf[16];

 /* Clear the array first */
 for (i=0; i < NUM_OF_OLD*4; i++)

Chapter 12: Concepts
Demo Program Description

418

 strcpy8(ascii_data[i], "CLEARED");

 /* Generate the array to sort */
 gen_ascii_data(data, ascii_data, size);

 /* Sort the array */
 combsort(ascii_data);

 /* Print the floating point average temp also */
 sprintf(buf, "Ave%5.2f", aver_temp);
 strcpy8(ascii_data[7], buf);
}

The "init_system.c" Module
/**
 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.
 **/
/***
 * Function: init_system()
 *
 * Description: Initializes the environmental control system.
 * It is called by main after power up. The variables are
 * initialized within this procedure so that the system can
 * reboot without being reloaded.
 *
 * Parameters: None.
 *
 * References: None.
 *
 * Returns: Nothing.
 *
 * copyright Hewlett-Packard Company 1988
 ***/
#include "update_sys.h"
#include "demo.h"

void init_val_arr();

void
init_system()
{ /* FUNCTION init_system() */
 /* Initialize the target values for temperature and humidity */
 target_temp = 73;
 target_humid = 45;

 /* Intialize the variables indicating the current environment */
 /* conditions */
 current_temp = 68;
 current_humid = 41;

 /* Set starting directions for temp and humid */
 temp_dir = up;

Chapter 12: Concepts
Demo Program Description

419

 humid_dir = up;

 /* Initialize the variables that depict the current status of the */
 /* computer room and what hardware needs to be on or off in the room */
 func_needed = 0;
 hdwr_encode = 0;

 /*Initialize the count of calls to update_state_of_system() */
 num_checks = 0;

 /* Initialize writing location in old_array */
 curr_loc = 0;

 /*Initialize the array that save the last cur_temp & cur_humid values*/
 init_val_arr();

}

/**
 * Function: init_val_arr()
 *
 * Description: This code initializes the val_arr data structure.
 *
 * Parameters: none
 *
 * References: None.
 *
 * Returns: Nothing.
 ***/
void
init_val_arr()
{
 int cur_el;
 for (cur_el = 0; cur_el < NUM_OF_OLD; cur_el++)
 {
 old_data[cur_el].temp = MIN_TEMP;
 old_data[cur_el].humid = MIN_HUMID;
 old_data[cur_el].ave_temp = 0.0;
 old_data[cur_el].ave_humid = 0.0;
 }
}

The "update_sys.h" File
/**
 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.
 **/
#define HEAT 0x1 /* 0001 */
#define COOL 0x2 /* 0010 */
#define HUMIDIFY 0x4 /* 0100 */
#define DEHUMIDIFY 0x8 /* 1000 */

Chapter 12: Concepts
Demo Program Description

420

#define FURNACE_ON 0x0001
#define AIR_COND_ON 0x0010
#define HUMID_ON 0x0100
#define DE_HUMID_ON 0x1000

#define MAX_TEMP 90
#define MIN_TEMP 65
#define MAX_HUMID 64
#define MIN_HUMID 41
#define NUM_OF_OLD 32
#define NUM_TO_AVE 16

void get_targets(short *temperature, short *humidity);
void read_conditions(short *temperature, short *humidity);
void set_outputs(char *function, short temperature, short humidity);
void write_hdwr(char change, unsigned short hdwr_val);
void save_points();

The "update_sys.c" Module
/**
 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.
 **/
/**
 * Function: update_system()
 *
 * Description: update_system() is the service routine which
 * alters the state of the entire environmental control system.
 * It calls several functions, each of which have a particular part
 * of the system which they alter or update. The following action
 * is taken when this routine is called.
 *
 * 1) New temperature and humidity targets are read in.
 * 2) New environment conditions are read.
 * 3) The func_needed is modified based on the actual state of the
 * environment versus the desired state to indicate what needs to
 * happen in the current environment.
 * 4) func_needed is used to derive hdwr_encode (the 16-bit quantity that
 * indicates what the hardware needs to do to achieve the correct
 * change in the environment).
 * 5) The environment conditions are saved for posterity.
 * THERE IS A BUG IN THIS ROUTINE (ON PURPOSE!!!)
 *
 * Parameters: None.
 *
 * References:
 * get_targets()
 * read_conditions()
 * save_points()
 * set_outputs()
 * update_system()
 * write_hdwr()
 *
 ***/
#include "update_sys.h"

Chapter 12: Concepts
Demo Program Description

421

#include "demo.h"
#include <stdio.h>

void
update_system()
{
 /* get new targets */
 get_targets(&target_temp, &target_humid);

 /* Read the environment conditions. */
 read_conditions(¤t_temp, ¤t_humid);

 /* Set the func_needed based on the actual environment condition
 versus the desired environment condition. */
 set_outputs(&func_needed, current_temp, current_humid);

 /* Update the hdwr_encode value so the external devices can react
 to modify the environment.*/
 write_hdwr(func_needed, hdwr_encode);

 /* Save the current temp and humid for later processing */
 save_points();

}

/**
 * Function: get_targets()
 *
 * Description: Ramp target temperature and humidity up and down
 *
 * Parameters:
 * temperature - Pointer to target temperature.
 * humidity - Pointer to target humidity.
 *
 * References: None.
 *
 * Returns: Nothing.
 ***/
void
get_targets(short *temperature, short *humidity)
{

 /* Ramp the temperature and humidity targets up and down */

 if (temp_dir == up){
 (*temperature) +=2;
 if (*temperature >= MAX_TEMP) temp_dir = down;
 }
 else {
 (*temperature)--;
 if (*temperature <= MIN_TEMP) temp_dir = up;
 }

 if (humid_dir == up){
 (*humidity)++;
 if (*humidity >= MAX_HUMID) humid_dir = down;
 }

Chapter 12: Concepts
Demo Program Description

422

 else {
 (*humidity)--;
 if (*humidity <= MIN_HUMID) humid_dir = up;
 }
}

/**
 * Function: read_conditions()
 *
 * Description: Come up with new temperature and humidity values
 * Uses the last NUM_OF_OLD values and the current target
 * to create the new values.
 *
 * Parameters:
 * temperature - Pointer to current temperature.
 * humidity - Pointer to current humidity.
 *
 * References: None.
 *
 * Returns: Nothing.
 ***/
void
read_conditions(short *temperature, short *humidity)
{
 int i,temp_tot,humid_tot;

 temp_tot=0;
 humid_tot=0;
 for (i=0;i<NUM_TO_AVE;i++)
 {
 temp_tot += old_data[i].temp;
 humid_tot += old_data[i].humid;
 }
 *temperature = (temp_tot/NUM_TO_AVE + target_temp)/2;
 *humidity = (humid_tot/NUM_TO_AVE + target_humid)/2;
}

/***
 * Function: set_outputs()
 *
 * Description: Analyzes the environment and is set to indicate what needs
 * to happen in the current environment to get the environment backk
 * to target conditions. It uses a simple algorithm which simply
 * compares the actual temperature/humidity against the desired
 * temp/humid. If the temperature/humidity is too high or low then
 * the appropriate external device will either be turned on or off.
 *
 * Parameters:
 * function - Pointer to byte indicating how the environment
 * needs to change
 * temperature - Current temperature.
 * humidity - Current humidity.
 *
 * References: None.
 *
 * Returns: Nothing.
 ***/
void
set_outputs(char *function, short temperature, short humidity)
{

Chapter 12: Concepts
Demo Program Description

423

 if (temperature <= target_temp)
 function &= ~COOL; / Cooling off */
 if (temperature > target_temp)
 function |= COOL; / Cooling on */
 if (temperature >= target_temp)
 function &= ~HEAT; / Heating off */
 if (temperature < target_temp)
 function |= HEAT; / Heating on */

 if (humidity <= target_humid)
 function &= ~DEHUMIDIFY; / Dehumidify off */
 if (humidity > target_humid)
 function |= DEHUMIDIFY; / Dehumidify on */
 if (humidity >= target_humid)
 function &= ~HUMIDIFY; / Humidify off */
 if (humidity < target_humid)
 function |= HUMIDIFY; / Humidify on */

}

/**
 * Function: write_hdwr()
 *
 * Description: Sets the hardware encoded 16-bit quantity to indicate what the
 * hardware needs to do to achieve the changes in the environment
 * that ’change’ indicates are needed.
 *
 * Parameters:
 * change - change needed in environment
 * hdwr_val - value of hardware encoded quantity.
 *
 * References: None.
 *
 * Returns: Nothing.
 ***/
void
write_hdwr(char change, unsigned short hdwr_val)
{

 if (change & HEAT)
 hdwr_val |= FURNACE_ON;
 if (change & COOL)
 hdwr_val |= AIR_COND_ON;
 if (change & HUMIDIFY)
 hdwr_val |= HUMID_ON;
 if (change & DEHUMIDIFY)
 hdwr_val |= DE_HUMID_ON;

 /* If the value of hdwr_encode should change, change it */
 if (hdwr_encode != hdwr_val)
 hdwr_encode = hdwr_val;

}

/**
 * Function: save_points()
 *
 * Description: This code saves the current values of the temperature and

Chapter 12: Concepts
Demo Program Description

424

 * humidity into an array of structures of integers defined to
 * be NUM_OF_OLD in size. The current_temp and current_humid values
 * are then inserted into the array in the next position using
 * curr_loc. Note there is a bug inserted on purpose in this code.
 * "curr_loc" takes on values between 0 and NUM_OF_OLD, which
 * causes writes beyond the end of the array. This causes
 * "target_temp" and "target_humid" to be overwritten every
 * (NUM_OF_OLD+1) times the routine is called.
 *
 *
 * Parameters: none
 *
 * References: None.
 *
 * Returns: Nothing.
 ***/
void
save_points()
{
 short i;
 short temp_tot,humid_tot;

 old_data[curr_loc].temp = current_temp;
 old_data[curr_loc].humid = current_humid;
 curr_loc++;
 if (curr_loc > NUM_OF_OLD) curr_loc = 0; /*BUG!!!!!*/

 temp_tot=0;
 for (i=0;i<NUM_OF_OLD;i++)
 temp_tot += old_data[i].temp;

 old_data[curr_loc].ave_temp = (float)temp_tot/(float)(NUM_OF_OLD);

 humid_tot=0;
 for (i=0;i<NUM_OF_OLD;i++)
 humid_tot += old_data[i].humid;

 old_data[curr_loc].ave_humid = (float)humid_tot/(float)(NUM_OF_OLD);

}

Building the Demo Program

The demo program was built using the Hewlett-Packard 8086/186 Advanced C
Cross Compiler on the HP 9000 Series 300 host computer with the following UNIX
make file.

Chapter 12: Concepts
Demo Program Description

425

The "Makefile" File
##

This Makefile is used to build the demonstration software for the
Hewlett-Packard i8086 Debug Environment.
#
Before initiating a make in the installation demo directory:
$HP64000/demo/debug_env/hp6476x, the contents of this directory should
be moved to a local directory to keep the installation directory intact.
#
#--
.SUFFIXES: .x

#--
The compiler used is the Hewlett-Packard i8086 Advanced C Cross Compiler.
#--
CC = $(HP64000)/bin/cc8086
AS = $(HP64000)/bin/as86
LD = $(HP64000)/bin/ld86

SHELL=/bin/sh
CFLAGS = -I. -LM -hN
ASFLAGS = -f mod086
LDFLAGS = -c Linkcom.k -L -h

#--
If the command "make" is given with no target, the default will make
ecs.X using HP language tools
#--
TARGET = ecs.X

C_SRC = main.c init_system.c update_sys.c
C_OBJ = $(C_SRC:.c=.o)

TEST_OBJ = $(C_OBJ) $(ASM_OBJ)

default:
 make $(TARGET)

#--
Targets of Makefile
#--
help:
 @echo "" ; \
 echo "Targets for Makefile:"; \
 echo "" ; \
 echo " ecs.X - create demo program executable ecs.X, using HP"; \
 echo " language tools"; \
 echo " clean - remove all object files"; \
 echo "" ; \
 echo "You must execute \"make clean\" before switching ecs.* targets"; \
 echo ""

#----------- Basic Rules --
.c.o:
 $(CC) $(CFLAGS) -c $*.c
.s.o:
 $(AS) $(ASFLAGS) $*.s

Chapter 12: Concepts
Demo Program Description

426

#----------- Other Entry Points ---
clean:
 rm -rf *.o *.L *.X *.A *.Y *.O *.M *.Ys *.MAP *.x

#--
ecs.X: $(TEST_OBJ)
 $(LD) $(LDFLAGS) -o ecs.X $(TEST_OBJ) >ecs.MAP

init_system.o: update_sys.h demo.h
main.o: update_sys.h
update_sys.o: update_sys.h demo.h

The "Linkcom.k" Linker Command File
;***
;
; This is a linker command file for the HP i80x8x C Cross Compiler. It
; may be used in conjunction with the emulation configuration files
; in this directory:
; Config.EA and Configall.EA
;
; LARGE MEMORY MODEL with I/O using emulator hp6476x
;***
*
* To initialize data in segment "idata" at run-time remove the comment
* character (*) before INITDATA and comment out (or remove) the
* "LOAD ... init_stub.o" line.
*INITDATA idata
list x
LOAD /usr/hp64000/env/hp6476x/large/init_stub.o
LOAD /usr/hp64000/env/hp6476x/large/crt1.o
LOAD /usr/hp64000/env/hp6476x/large/div_by_0.o
LOAD /usr/hp64000/lib/8086/large/libm.a
LOAD /usr/hp64000/lib/8086/large/libc.a
LOAD /usr/hp64000/lib/8086/large/lib.a
LOAD /usr/hp64000/env/hp6476x/large/env.a
LOAD /usr/hp64000/lib/8086/large/libc.a
LOAD /usr/hp64000/lib/8086/large/lib.a
LOAD /usr/hp64000/env/hp6476x/large/env.a
SEG envdata=010000H
SEG /CODE=080000H
ORDER
envdata,libdata,libcdata,data,idata,udata,heap,userstack,/CODE,libcconst,libmconst,/??INI
T,mm_check,const
END

To build the demo program:
$ make <RETURN>

Chapter 12: Concepts
Demo Program Description

427

Creating a Symbol File

You can typically use symbol table information from a linker map file when
creating the ASCII symbol file. For example, you can edit the "ecs.MAP" file to
create the following "ecs.awk" file.

DIV_F32A_L fdiv01 lib 08063:00076
DIV_F64A_L ddiv01 lib 08063:00708
DIV_I32A_L ldiv03 lib 08063:005E0
DIV_I32B_L ldiv04 lib 08063:00529
DIV_UI32A_L ldiv01 lib 08063:00585
DPADD_L dpopns lib 08063:00A68
DPDIV_L dpopns lib 08063:00731
DPMUL_L dpopns lib 08063:008FB
DPRDIV_L dpopns lib 08063:00724
Err_Handler ErrHndlr lib 08063:0005B
F32_TO_F64_L cast08 lib 08063:00E70
F32_TO_I32_L cast02 lib 08063:00631
F32_TO_UI32_L cast02 lib 08063:0060D
F64_TO_I16_L cast02 lib 08063:00654
F64_TO_I32_L cast02 lib 08063:0063F
F64_TO_UI16_L cast02 lib 08063:00626
F64_TO_UI32_L cast02 lib 08063:0061B
FPADD_L fpopns lib 08063:00286
FPDIV_L fpopns lib 08063:00099
FPMUL_L fpopns lib 08063:001D4
FPRDIV_L fpopns lib 08063:00092
I16_TO_F32_L cast03 lib 08063:00E40
MM_CHECK_L crt1 envdata 01000:00000
MM_CHECK_X crt1 envdata 01000:00000
MOD_I32A_L lmod03 lib 08063:0053F
MOD_UI32A_L lmod01 lib 08063:00568
MONITOR_MESSAGE mon_stub envdata 01000:0000A
MON_STK_PTR crt1 envdata 01000:00000
MUL_I32A_L lmul01 lib 08063:0051B
MUL_I32B_L lmul02 lib 08063:00505
TOP_OF_STACK stackheap userstack 01165:07F00
UI16_TO_F32_L cast03 lib 08063:00E3C
USER_ENTRY mon_stub env 0819C:0013F
USR_STACK stackheap userstack 01165:00002
XEnv_86_except disp_msg envdata 01000:00008
__HEAP_PTR crt1 envdata 01000:00004
__TOP_OF_HEAP stackheap heap 01065:01001
__USR_HEAP stackheap heap 01065:00002
__clear_fp_status set_get lib 08063:00034
__ctype ctype libcconst 0841E:002DC
__dbl_to_str dbl_to_str libc 081DC:018F5
__display_message disp_msg env 0819C:000C3
__div_by_0_trap div_by_0 env 0819C:0008E
__doprnt doprnt libc 081DC:0017F
__err_handler ErrHndlr lib 08063:00055
__exec_funcs atexit libc 081DC:00048
__exit crt1 env 0819C:00083
__exit_msg exit_msg env 0819C:002B4

Chapter 12: Concepts
Demo Program Description

428

__fp_control ErrHndlr libdata 01000:00010
__fp_status ErrHndlr libdata 01000:0000E
__fp_trap fp_trap env 0819C:00142
__get_fp_control set_get lib 08063:00029
__get_fp_status set_get lib 08063:0001E
__infinity data_gen libcconst 0841E:00006
__init_fp set_get lib 08063:0000A
__initdata init_stub env 0819C:00006
__malloc_init data_gen libcdata 01001:00008
__rand_seed data_gen libcdata 01001:00002
__set_fp_control set_get lib 08063:00042
__swrite swrite libc 081DC:023DA
__top_of_func_stack atexit libcdata 01001:0008A
_ascii_old_data main data 01009:00190
_atexit atexit libc 081DC:0000E
_aver_temp main data 01009:005A0
_combsort main prog_main 08000:002BB
_curr_loc main data 01009:005AA
_current_humid main data 01009:005A6
_current_temp main data 01009:005A4
_do_sort main prog_main 08000:00587
_errno data_gen libcdata 01001:00006
_exit crt1 env 0819C:00074
_float_humid main data 01009:0059C
_float_temp main data 01009:00598
_func_needed main data 01009:005AC
_gen_ascii_data main prog_main 08000:00127
_get_targets update_sys prog_update_sys 0815A:0008C
_hdwr_encode main data 01009:005AE
_humid_dir main data 01009:005B0
_init_system init_system prog_init_system 08150:00002
_init_val_arr init_system prog_init_system 08150:00050
_interrupt_sim main prog_main 08000:00032
_main main prog_main 08000:00000
_num_checks main data 01009:005A8
_old_data main data 01009:0000C
_read_conditions update_sys prog_update_sys 0815A:0013A
_save_points update_sys prog_update_sys 0815A:0031B
_set_outputs update_sys prog_update_sys 0815A:001BD
_sprintf sprintf libc 081DC:000C4
_strcpy8 main prog_main 08000:000D9
_strlen strlen libc 081DC:023AA
_strncmp strncmp libc 081DC:0006A
_target_humid main data 01009:0018E
_target_temp main data 01009:0018C
_temp_dir main data 01009:005B1
_update_system update_sys prog_update_sys 0815A:0000C
_write_hdwr update_sys prog_update_sys 0815A:00293
entry crt1 env 0819C:0000A

Chapter 12: Concepts
Demo Program Description

429

You can use the UNIX awk programming language to reformat the information in
the symbol table so that it’s in the proper format:

#
:global_symbol
module:local_symbol
.
.
.
#

To generate a file close to being in the proper symbol file format:
$ awk ’{printf "%s:%s %s\n", $2, $1, $4}’ ecs.awk | sort > ecs.sym
<RETURN>

You must edit the resulting "ecs.sym" file to make some minor formatting
corrections, like adding the "#" lines to the top and bottom of the file.

Chapter 12: Concepts
Demo Program Description

430

Part 5

Installation Guide

Instructions for installing and configuring the product.

431

Part 5

432

13

Installation

433

Installation at a Glance

Chapter 13: Installation
Installation at a Glance

434

Equipment supplied

The minimum system contains:

• HP 64767A/B/C PGA Emulator Probe (which includes the demo target
system).

• HP 64748C Emulation Control card.
• HP 64706A 48-Channel Emulation Bus Analyzer card.
• HP 64700 Card Cage.

Optional parts are:

• HP 64703A 64-Channel Emulation Bus Analyzer and 16-Channel External
State/Timing Analyzer (instead of HP 64706A).

• HP 64704A 80-Channel Emulation Bus Analyzer (instead of HP 64706A).
• HP 64794A 80-Channel Deep Memory Emulation Bus Analyzer (instead of

HP 64706A).

Equipment and tools needed

In order to install and use the 80186 emulation system, you need:

• Host computer or terminal with RS-232/RS-422 port.
• RS-232/RS-422 cable.
• Flat-blade screwdriver.

Installation overview

The following steps in the installation process are described in this chapter:

1 Connect the emulator probe cables.
2 Install emulation control and analyzer boards into the HP 64700 Card Cage.
3 Connect the HP 64700 Card Cage to a host computer or terminal.
4 Connect the emulator probe to the demo target system.
5 Apply power to the HP 64700.
6 Verify emulator and analyzer performance.

Your emulation and analysis system may already be assembled (depending on how
parts of the system were ordered), and you may only need to connect the HP 64700
to a host computer or terminal and the target microprocessor system.

Chapter 13: Installation
Installation at a Glance

435

Antistatic precautions

Integrated-circuit boards contain electrical components that are easily damaged by
small amounts of static electricity. To avoid damage to the emulator cards, follow
these guidelines:

• If possible, work at a static-free workstation.
• Handle the boards only by the edges; do not touch components or traces.
• Use a grounding wrist strap that is connected to the HP 64700’s chassis.

The probe is shipped with a block of anti-static foam. This foam should be
removed from the probe before use.

Chapter 13: Installation
Installation at a Glance

436

Step 1. Connect the Emulator Probe Cables

Three ribbon cables connect the HP 64748C emulation control card to the HP 64767 80186/8 emulator
probe.

The shortest cable connects from J1 of the emulation control card to J3 of the emulator probe. The
medium length cable connects from J2 of the emulation control card to J2 of the emulator probe. The
longest cable connects from J3 of the emulation control card to J1 of the emulator probe.

1 Connect the emulator probe cables to the emulation control card.

Chapter 13: Installation
Step 1. Connect the Emulator Probe Cables

437

2 When inserting cable connectors into the sockets, press inward on the connector clips so that they hook
into the sockets as shown.

Chapter 13: Installation
Step 1. Connect the Emulator Probe Cables

438

3 Connect the other ends of the cables to the emulator probe.

Chapter 13: Installation
Step 1. Connect the Emulator Probe Cables

439

Step 2. Install Boards into the HP 64700 Card
Cage

WARNING Before removing or installing parts in the HP 64700 Card Cage, make sure
that the card cage power is off and that the power cord is disconnected.

CAUTION Do NOT stand the HP 64700 on the rear panel. You could damage the rear panel
ports and connectors.

If your emulator and analyzer boards are already installed in the HP 64700 Card Cage, go to "Step 3a.
Connect the HP 64700 via RS-232/RS-422" or "Step 3b. Connect the HP 64700 via LAN".

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

440

1 Use a ground strap when removing or installing boards into the HP 64700 Card Cage to reduce the
chances of damage to the circuit cards from static discharge. A jack on the rear panel of the HP 64700
Card Cage is provided for this purpose.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

441

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

442

3 Remove the side cover by unsnapping the two latches and lifting off.

4 Remove the card supports.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

443

5 First, completely loosen the four egress thumb screws.

To remove emulator cards, insert a flat blade screwdriver in the access hole and eject the emulator cards
by rotating the screwdriver.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

444

6 Insert a screw driver into the third slot of the right side of the front bezel, push to release catch, and
pull the right side of the bezel about one half inch away from the front of the HP 64700. Then, do the
same thing on the left side of the bezel. When both sides are released, pull the bezel toward you
approximately 2 inches.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

445

7 Lift the bezel panel to remove. Be careful not to put stress on the power switch extender.

8 If you’re removing an existing analyzer card that provides external analysis, remove the right angle
adapter board by turning the thumb screws counter-clockwise.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

446

9 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the analyzer
card by rotating the screwdriver.

Do not remove the system control board. This board is used in all HP 64700 emulation and analysis
systems.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

447

10 Install Emulation Bus Analyzer and HP 64748C boards. The Emulation Bus Analyzer is installed in
the slot next to the system controller board. The HP 64748C is installed in the second slot from the
bottom of the HP 64700. These boards are identified with labels that show the model number and the
serial number.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned; then,
press the card into mother board sockets. Check to ensure that the cards are seated all the way into the
sockets. If the cards can be removed with your fingers, the cards are NOT seated all the way into the
mother board socket.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

448

11 Connect the +5 V power cable to the connector in the HP 64700 front panel.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

449

12 To reinstall the front bezel, be sure that the bottom rear groove of the front bezel is aligned with the
lip as shown below.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

450

13 Install the card supports.

14 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

451

15 Install the top cover in reverse order of its removal, but make sure that the side panels of the top cover
are attached to the side clips on the frame.

Chapter 13: Installation
Step 2. Install Boards into the HP 64700 Card Cage

452

Step 3a. Connect the HP 64700 via RS-232/RS-422

If you wish to connect the HP 64700 to a host computer via the LAN interface, go to "Step 3b. Connect
the HP 64700 via LAN".

1 Set the data communications configuration switches so that the HP 64700 port will have characteristics
compatible with the terminal or host computer interface to which it will be connected (see the following
switch summary tables). Note that the configuration switch settings are only read when the HP 64700 is
powered ON or when the init -p command is entered.

The locations of the data communications ports and configuration switches are shown below.

Chapter 13: Installation
Step 3a. Connect the HP 64700 via RS-232/RS-422

453

HP 64700B Configuration Switch Su mmary

The information in the following table is also on an adhesive label attached to each
HP 64700B.

Configuration Switches S1-S8

S1 S2 S3 S4 S5 S6 S7 S8

RS-232/RS-422 Baud Rate
 1 1 1 = 230400
 1 1 0 = 115200
 1 0 1 = 38400
 1 0 0 = 57600
 0 1 1 = 1200
 0 1 0 = 2400
 0 0 1 = 19200
 0 0 0 = 9600

1 =

DTE

1 =

RS-422

1 =

Service

1 =

Service

1 =

Reserved
for future

use

0 =

DCE

0 =

RS-232

0 =

Normal

0 =

Normal

0 =

Normal

NOTES:

S1 - S3: Asynchronous baud rates include 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and
115200. The rear panel switches can be used to initialize at 1200, 2400, 9600, 19200,
38400, or 115200 baud. Rates of 300 baud and 4800 baud are only selectable through the
Terminal Interface stty command. This entire range of rates are supported at RS-422 signal
levels. The EIA-RS232-D standard only covers data rates up to 20,000 bits per second
(actual 19200). Asynchronous connections using RS-232 signal levels above this rate can
be used but cannot be guaranteed.

Isosynchronous rates of 230400 baud and 460800 baud are supported at RS-422 signal
levels using a 1X clock. The rate of 230400 can be selected through the rear panel switches
but 460800 is only selectable through the stty command.

S4: DCE = Data Communications Equipment, DTE = Data Terminal Equipment. This switch is
ignored if S5 sets the serial port to be an RS-422 device (which is always DCE).

S6: When this switch is set to "1", self diagnostic information is displayed by a flashing LED
on the control board during the powerup cycle. This information is intended to be used by a
qualified service technician only.

S7: When this switch is set to "1", the HP 64700B firmware is forced to execute from ROM
instead of Flash EPROM. This mode is intended to be used by a qualified service
technician only.

Chapter 13: Installation
Step 3a. Connect the HP 64700 via RS-232/RS-422

454

Configuration Switches S9-S16

S9 S10 S11 S12 S13 S14 S15 S16

1 =

7 Bit
character

size

1 =

Parity
enabled

1 =

Parity even

1 =

RTS/CTS
DSR/DTR

1 =

XON/
XOFF

1 =

LAN
BOOTP
enabled

1 =

15 pin AUI

1 =

LAN

0 =

8 Bit
character

size

0 =

Parity
disabled

0 =

Parity odd

0 =

No HW
handshake

0 =

No SW
handshake

0 =

LAN
BOOTP
disabled

0 =

BNC
ThinLAN

0 =

Serial

NOTES:

S12: Hardware pacing uses a modified handshake. When hardware handshake is enabled, the
DTE uses Clear to Send (CTS) to control its output. When CTS is true, data may be output,
when CTS is false, data output will stop at the end of the current character. The DCE is
expected to negate CTS during receipt of a character if the internal hardware buffer is full.
Once a position is available in the internal hardware buffer, CTS is to be set true.

A modification is made in the use of Request to Send (RTS) as a reverse channel Clear to
Send to control the output of the DCE. The DTE sets RTS false during the receipt of a
character if there is no room in its hardware buffer. The DCE must stop transmission of
data at the conclusion of the current character and wait until the DTE sets RTS true before
resuming transmission.

This modified RTS/CTS handshake protocol provides full bi-directional hardware
handshaking of the data streams. The HP 64700B can support baud rates up to 460800
using this protocol.

S13: Software pacing uses XON/XOFF protocols (DC1/DC3). Upon receipt of an XOFF, the
HP 64700B can continue to transmit up to 3 additional characters. The HP 64700B sends
an XOFF when its internal buffer can accept only 64 additional bytes before overflow.
Software pacing is only valid on the transmission of ASCII data streams. It is not supported
for binary transfers. It will support a maximum baud rate of 57600. Above this rate
hardware handshaking must be used to prevent data loss.

Chapter 13: Installation
Step 3a. Connect the HP 64700 via RS-232/RS-422

455

2 Select and connect the RS-232/RS-422 cable.

To connect cables to the HP 64700, simply align the cable with the serial port and insert the 25-pin male
connector of the cable until it is firmly seated. You should then tighten the holding screws on each side
of the cable with a small flat blade screwdriver. This will ensure that the cable pins and shield hood
make good contact with the HP 64700 connector and will also guard against accidental disconnection of
the cable.

Chapter 13: Installation
Step 3a. Connect the HP 64700 via RS-232/RS-422

456

Step 3b. Connect the HP 64700 via LAN

1 Enable the LAN interface. If you are using the HP 64700’s LAN interface, you must enable it by
setting switch S16 is set to one (1). Set all other switches (S1 through S13) to zero.

2 Select the BNC or 15-pin AUI port. S15 is used to select which of the HP 64700’s LAN connectors
will be used: either the BNC connector (S15 = 0) or the 15-pin AUI connector (S15 = 1).

Chapter 13: Installation
Step 3b. Connect the HP 64700 via LAN

457

3 Enable or disable BOOTP.

BOOTP is a network service running on a host computer that allows the HP 64700’s LAN parameters to
be set automatically when the emulator is powered up.

When S14 is set to (1) and the host computer’s "bootptab" table file has been modified to include
information for the HP 64700, BOOTP will be used to set the HP 64700’s LAN parameters when the
emulator is powered up.

When S14 is set to zero (0), BOOTP is disabled and LAN parameters must be set by connecting the
HP 64700 to a terminal or host computer via the serial port (as described in the previous Step 3a) and use
the Terminal Interface lan command to set the HP 64700’s LAN parameters. Once the LAN parameters
are set (they are saved in EEPROM), you can change the configuration switch settings and connect the
HP 64700 to the LAN.

Chapter 13: Installation
Step 3b. Connect the HP 64700 via LAN

458

Step 4. Plug the emulator probe into the demo
target system

1 With HP 64700 power OFF, connect the emulator probe cables to the demo target system. You may
need to remove the foam block from the pins of the probe.

Take care to locate the "extra" corner pin of the header at the corresponding pin of the emulator probe.

The flying lead(s) must be correctly installed or damage to the emulator probe will result. Match the
white dot on the flying lead cable plug with the white dot on the probe (ground). Match the "signal"
(undetachable) side of the cable with the *BG or *RST pin on the demo board.

Chapter 13: Installation
Step 4. Plug the emulator probe into the demo target system

459

2 Connect the power supply wires from the emulator to the demo target system. The 3-wire cable has 1
power wire and 2 ground wires. When attaching the 3-wire cable to the demo target system, make
sure the connector is aligned properly so that all three pins are connected.

Chapter 13: Installation
Step 4. Plug the emulator probe into the demo target system

460

Step 5. Apply power to the HP 64700

The HP 64700B automatically selects the 115 Vac or 220 Vac range. In the 115 Vac range, the
HP 64700B will draw a maximum of 345 W and 520 VA. In the 220 Vac range, the HP 64700B will
draw a maximum of 335 W and 600 VA.

The HP 64700 is shipped from the factory with a power cord appropriate for your country. You should
verify that you have the correct power cable for installation by comparing the power cord you received
with the HP 64700 with the drawings under the "Plug Type" column of the following table.

If the cable you received is not appropriate for your electrical power outlet type, contact your
Hewlett-Packard sales and service office.

Chapter 13: Installation
Step 5. Apply power to the HP 64700

461

Plug Type Cable Part No. Plug Description Length in/cm Color

Opt 903
124V **

8120-1378

8120-1521

Straight
 * NEMA5-15P
90o

90/228

90/228

Jade Gray

Jade Gray

Opt 900
250V

8120-1351

8120-1703

Straight
 * BS136A
90o

90/228

90/228

Gray

Mint Gray

Opt 901
250V

8120-1369

8120-0696

Straight
 * NZSS198/ASC
90o

79/200

87/221

Gray

Mint Gray

Opt 902
250V

812001689

8120-1692

8120-2857

Straight
 * CEE7-Y11
90o

Straight
(Shielded)

79/200

79/200

79/200

Mint Gray

Mint Gray

Coco
Brown

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

Power Cord Configurations

Chapter 13: Installation
Step 5. Apply power to the HP 64700

462

Plug Type Cable Part No. Plug Description Length in/cm Color

Opt 906
250V

8120-2104

8120-2296

Straight
* SEV1011
1959-24507
Type 12
90o

79/20

79/200

Mint Gray

Mint Gray

Opt 912
220V

8120-2957

Straight
*DHCK107
90o

79/200

79/200

Mint Gray

Mint Gray

Opt 917
250V

8120-4600

8120-4211

Straight
SABS164
90o

79/200

79/200

Jade Gray

Opt 918
100V

8120-4753

8120-4754

Straight Miti

90o

90/230

90/230

Dark Gray

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

Power Cord Configurations (Cont’d)

Chapter 13: Installation
Step 5. Apply power to the HP 64700

463

1 Connect the power cord and turn on the HP 64700.

The line switch is a push button located at the lower left hand corner of the front panel. To turn ON
power to the HP 64700, push the line switch button in to the ON (1) position. The power light at the
lower right hand corner of the front panel will be illuminated.

Chapter 13: Installation
Step 5. Apply power to the HP 64700

464

When the emulator powers up, it sends a message (similar to the one that follows) to the selected
command port and then displays the Terminal Interface prompt. You can verify that your data
communications configuration is at least partially functional by looking for the message and prompt on
the controlling device (terminal or terminal emulation program running on a host computer).

 Copyright (c) Hewlett-Packard Co. 1987

All Rights Reserved. Reproduction, adaptation, or translation without prior

written permission is prohibited, except as allowed under copyright laws.

 HP64700B Series Emulation System

 Version: B.01.00 20Dec93

 Location: Flash

 System RAM:1 Mbyte

 HP64767A (PPN: 64767A) Intel 80C186EA Emulator

 HP64740 Emulation Analyzer

R>

Chapter 13: Installation
Step 5. Apply power to the HP 64700

465

If the HP 64700 does not provide the Terminal
Interface prompt

When using the RS-232/RS-422 interface:

If the HP 64700 does not provide the Terminal Interface prompt to the controlling
device when power is applied:

Make sure that you have connected the emulator to the proper power source and
that the power light is lit.

Make sure that you have properly configured the data communications switches on
the emulator and the data communications parameters on your controlling device.
You should also verify that you are using the correct cable.

The most common type of data communications configuration problem involves
the configuration of the HP 64700 as a DCE or DTE device and the selection of the
RS-232 cable. If you are using the wrong type of cable for the device selected, no
prompt will be displayed.

When the serial port is configured as a DCE device, a modem cable should be used
to connect the HP 64700 to the host computer of terminal. Pins 2 and 3 at one end
of a modem cable are tied to pins 2 and 3 at the other end of the cable.

When the serial port is configured as a DTE device, a printer cable should be used
to connect the HP 64700 to the host computer of terminal. Pins 2 and 3 at one end
of a printer cable are swapped and tied to pins 3 and 2, respectively, at the other end
of the cable.

If you suspect that you may have the wrong type of cable, try changing the S4
setting and cycling power.

Chapter 13: Installation
If the HP 64700 does not provide the Terminal Interface prompt

466

When using the LAN interface:

You must use the telnet command on the host computer to access the HP 64700.
After powering up the HP 64700, it takes a minute before the HP 64700 can be
recognized on the network. After a minute, try the telnet <internet address>
command.

If telnet does not make the connection:

Make sure that you have connected the emulator to the proper power source and
that the power light is lit.

Make sure that the LAN cable is connected. Refer to your LAN documentation for
testing connectivity.

Make sure that the HP 64700’s Internet Address is set up correctly. You must use
the RS-232/RS-422 port to verify this that the Internet Address is set up correctly.
While accessing the emulator via the RS-232/RS-422 port, run performance
verification on the LAN interface with the lanpv command. See "To run PV on the
LAN interface".

If telnet makes the connection, but no Terminal Interface prompt is supplied:

It’s possible that the HP 64000 software is in the process of running a command
(for example, if a repetitive command was initiated from telnet in another window).
You can use <CTRL>c to interrupt the repetitive command and get the Terminal
Interface prompt.

It’s also possible for there to be a problem with the HP 64700 firmware while the
LAN interface is still up and running. In this case, you must cycle power on the
HP 64700.

Chapter 13: Installation
If the HP 64700 does not provide the Terminal Interface prompt

467

To run PV on the LAN interface

1 Connect a host computer or terminal to the HP 64700 using the RS-232 interface.

The HP 64700 LAN interface can be tested through a Terminal Interface command
called lanpv. You can only use this command when communicating with the
HP 64700 over an RS-232 connection. Do not use this command when
communicating with the HP 64700 over the LAN.

2 Disconnect the HP 64700 from the LAN and terminate the HP 64700’s LAN port
you want to test.

Before you run the test, the HP 64700 must be disconnected from the network.

The connector you wish to test must be completely terminated, and the other
connector must not be terminated. Only one connector can be tested at a time.

To properly terminate the BNC port, place a BNC "T" connector on the port and
place 50 ohm terminators on each end of the T-connector.

To properly terminate the 15-pin AUI port, leave the MAU attached to the port and,
using the appropriate loopback hood or loopback connector, terminate the end of
the MAU that is normally connected to the LAN.

3 Access the Terminal Interface and enter the lan -va command to test the 15-pin
AUI connector or the lan -vb command to test the BNC connector.

This command will return "PASSED" or "FAILED" before issuing a prompt. For
example, to test the BNC connector:
R>lanpv -vb
 Testing: HP 64700B LAN interface (BNC connector)
 PASSED

Chapter 13: Installation
To run PV on the LAN interface

468

Step 6. Verify emulator and analyzer performance

The emulator probe must be plugged into to the demo target system when you run
the performance verification tests.

After the emulator probe is plugged into the demo target system (make sure the
power lines from the emulator are connected to the demo target system), power has
been applied to the HP 64700, and the HP 64700 has supplied the Terminal
Interface prompt to the controlling device, you can run performance verification
tests on the emulator and analyzer.

1 Type the "pv" command, along with the number of times you want to execute the
command.

For example:
R>pv 1

 Testing: HP64767A (PPN: 64767A) Intel 80C186EA Emulator
 PASSED
 Number of tests: 1 Number of failures: 0
 Testing: HP64740 Emulation Analyzer
 PASSED
 Number of tests: 1 Number of failures: 0

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700B Series Emulation System
 Version: B.01.00 20Dec93
 Location: Flash
 System RAM:1 Mbyte

 HP64767A (PPN: 64767A) Intel 80C186EA Emulator
 HP64740 Emulation Analyzer
R>

Chapter 13: Installation
Step 6. Verify emulator and analyzer performance

469

If performance verification fails

Make sure the emulator probe cables are connected to the demo target system
correctly (see Step 4) and that the power lines from the emulator are connected to
the demo target system.

• You must use the 69-pin double header between the emulator and the demo
board.

• Both flying leads (LBG and LRES) from the probe must be connected to the
demo board. (On some older boards, only the LBG lead is available.)

Make sure the emulator and analyzer boards have been installed into the HP 64700
Card Cage correctly (see Step 2) and that there are no bent or broken pins on any of
the connectors.

If this does not seem to solve the problem, call the nearest Hewlett-Packard Sales
and Service office listed in the Support Services manual.

Chapter 13: Installation
If performance verification fails

470

14

Installing/Updating Emulator
Firmware

471

Installing/Updating Emulator Firmware

If you ordered the HP 64767 80186/8/XL/EA/EB/EC emulator probe and the
HP 64748C emulation control card together, the control card contains the correct
firmware for the HP 64767.

However, if you ordered the HP 64767 and the HP 64748C separately, or if you are
using a HP 64748C that has been previously used with a different emulator probe,
you must download the firmware for the HP 64767 into the emulation control card.

The firmware, and the program that downloads it into the control card, are included
with the 80186/8 emulator probe on the following MS-DOS format floppy disks:

• 80186/8/XL/EA/EB/EC EMULATION FIRMWARE 64767

• 64700 SW UTIL

The steps to install or update the emulator firmware are:

1 Connect the HP 64700 card cage to an IBM PC AT compatible computer’s
RS-232 serial port.

2 Install the firmware update utility and the 64767 emulator firmware.

3 Run "progflash" to update emulator firmware.

Chapter 14: Installing/Updating Emulator Firmware

472

Step 1. Connect the HP 64700 to a PC host
computer

1 Set the HP 64700 data communications configuration switches.

Set all "COMM CONFIG" (communications configuration) switches on the rear panel of the HP 64700
to the zero or open position.

Note that switch settings are read ONLY after the HP 64700 is powered up. Any changes made to the
switches after power-up will not be read until you turn the HP 64700 off and back on again.

Chapter 14: Installing/Updating Emulator Firmware
Step 1. Connect the HP 64700 to a PC host computer

473

2 Connect the RS-232 cable.

Recommended cables are HP 13242N (25-pin male to 25-pin male) or HP 24542M (9-pin female to
25-pin male) which are equivalent to a MODEM cable.

To connect cables to the HP 64700, simply align the cable with port A and insert the 25-pin male
connector of the cable until it is firmly seated. You should then tighten the holding screws on each side
of the cable with a small flat blade screwdriver. This will ensure that the cable pins and shield hood
make good contact with the HP 64700 connector and will also guard against accidental disconnection of
the cable.

Chapter 14: Installing/Updating Emulator Firmware
Step 1. Connect the HP 64700 to a PC host computer

474

Step 2: Install the firmware update utility

Your HP Vectra PC or IBM PC AT compatible computer must have MS-DOS 3.1
or greater and a fixed disk drive. The firmware update utility and the 64767
firmware require about 300 Kbytes of disk space.

1 Insert the 64700 SW UTIL disk into drive A.

2 Change MS-DOS prompt to drive A: by typing "A:" at the MS-DOS prompt.

For example:

C> A: <RETURN>
A>

3 Type "INSTALL" at the MS-DOS prompt.

For example:

A> INSTALL <RETURN>

After confirming that you want to continue with the installation, the install program
will give you the option of changing the default drive and/or subdirectory where the
software will reside. The defaults are:

Drive = C:
Directory Path = C:\HP64700

Follow the remaining instructions to install the firmware update utility and the
64767 firmware. These instructions include editing your CONFIG.SYS and
AUTOEXEC.BAT files. Details follow in the next steps.

4 After completing the install program, use the PC editor of your choice and edit the
\CONFIG.SYS file to include these lines:

BREAK=ON
FILES=20

Chapter 14: Installing/Updating Emulator Firmware
Step 2: Install the firmware update utility

475

BREAK=ON allows the system to check for two break conditions:
<CTRL><Break>, and <CTRL>c.

FILES=20 allows 20 files to be accessed concurrently. This number must be at
LEAST 20 to allow the firmware update utility to operate properly.

5 Edit the AUTOEXEC.BAT file to add:

C:\HP64700\BIN (to the end of the PATH variable)
SET HPTABLES=C:\HP64700\TABLES (as a new line)
SET HPBIN=C:\HP64700\BIN (as a new line)

Part of an example AUTOEXEC.BAT file resembles:

ECHO OFF
SET HPTABLES=C:\HP64700\TABLES
PATH=C:\DOS;C:\HP64700\BIN

6 If you are using the COM3 or COM4 ports, you will need to edit the
\HP64700\TABLES\64700TAB file. The default file contains entries to establish
the communications connection for COM1 and COM2. The content of this file is:

EMUL_COM1 unknown COM1 OFF 9600 NONE ON 1 8
EMUL_COM2 unknown COM2 OFF 9600 NONE ON 1 8

Either add another line or modify one of the existing lines. For example:

EMUL_COM3 unknown COM3 OFF 9600 NONE ON 1 8
EMUL_COM4 unknown COM4 OFF 9600 NONE ON 1 8

The "unknown" field usually specifies the processor type (which is "i80186" for the
HP 64767 emulator), but you don’t need to change this field in order to update the
emulator firmware.

Software installation is now complete. The PC will need to be rebooted to enable
the changes made to the CONFIG.SYS and AUTOEXEC.BAT files. To reboot,
press the <CTRL><ALT> keys simultaneously.

Chapter 14: Installing/Updating Emulator Firmware
Step 2: Install the firmware update utility

476

Step 3: Run "progflash" to update emulator
firmware

• Enter the PROGFLAS [-V] [EMUL_NAME] [PRODUCTS ...] command.

The PROGFLAS command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The -V option means "verbose". It causes progress status messages to be displayed
during operation.

The EMUL_NAME option is the logical emulator name as specified in the
\HP64700\TABLES\64700TAB file.

The PRODUCTS option names the products whose firmware is to be updated.

If you enter the PROGFLAS command without options, it becomes interactive. If
you don’t include the EMUL_NAME option, PROGFLAS displays the logical
names in the \HP64700\TABLES\64700TAB file and asks you to choose one. If
you don’t include the PRODUCTS option, PROGFLAS displays the products
which have firmware update files on the system and asks you to choose one. (In
the interactive mode, only one product at a time can be updated.) You can abort the
interactive PROGFLAS command by pressing <CTRL>c.

PROGFLAS will print "Flash programming SUCCEEDED" and return 0 if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

Chapter 14: Installing/Updating Emulator Firmware
Step 3: Run "progflash" to update emulator firmware

477

Examples To install or update the HP 64767 emulator firmware in the HP 64700 that is
connected to the COM1 port:

C> PROGFLAS <RETURN>

 HP64700S006 A.00.04 24Feb92
 64700 SW UTIL

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1991

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

 Logical Name Processor
 1 EMUL_COM1 unknown
 2 EMUL_COM2 unknown

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that is connected to the COM1 port, enter "1".

 Product
 1 64767

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64767 80186/8 emulator firmware, enter "1".
Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

Chapter 14: Installing/Updating Emulator Firmware
Step 3: Run "progflash" to update emulator firmware

478

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from ’/hp64700/update/64767.cfg’
ROM identifier address = 2FFFF0H
Required hardware identifier = 1FFFH,1FF4H
Control ROM start address = 280000H
Control ROM size = 40000H
Control ROM width = 16
Programming voltage control address = 2FFFFEH
Programming voltage control value = FFFFH
Programming voltage control mask = 0H

Rebooting HP64700...
Checking Hardware id code...
Erasing Flash ROM
Downloading ROM code: /hp64700/update/64767.X
 Code start 280000H (should equal control ROM start)
 Code size 27BF4H (must be less than control ROM size)
Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
C>

You could perform the same update as in the previous example with the following
command:

C> PROGFLAS -V EMUL_COM1 64767 <RETURN>

Chapter 14: Installing/Updating Emulator Firmware
Step 3: Run "progflash" to update emulator firmware

479

480

Glossary

access mode Specifies the types of cycles used to access target system memory
locations. For example a "byte" access mode tells the monitor program to use
load/store byte instructions to access target memory.

active emulator probe An emulator probe that contains circuitry that allows the
emulator to more closely imitate the electrical characteristics of the microprocessor
thereby avoiding the timing problems that can occur with passive probes.

analyzer An instrument that captures data on signals of interest at discreet
periods.

background The emulator mode in which foreground operation is suspended so
the emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor address space.

background emulation monitor An emulation monitor program that does not
execute as part of the user program, and therefore, operates in the emulator’s
background mode.

background memory Memory space reserved for the emulation processor
when it is operating in the background mode. Background memory does not take
up any of the processor’s address space.

display mode When displaying memory, this mode tells the emulator the size of
the memory locations to display. When modifying memory, the display mode tells
the emulator the size of the values to be written to memory.

embedded microprocessor system The microprocessor system that the
emulator plugs into.

emulation bus analyzer The internal analyzer that captures emulator bus cycle
information synchronously with the processor’s clock signal.

emulation monitor program A program that is executed by the emulation
processor which allows the emulation controller to access target system resources.

481

For example, when you display target system memory locations, the monitor
program executes microprocessor instructions that read the target memory locations
and send their contents to the emulation controller.

emulator An instrument that performs just like the microprocessor it replaces, but
at the same time, it gives you information about the operation of the processor. An
emulator gives you control over target system execution and allows you to view or
modify the contents of processor registers, target system memory, and I/O
resources.

foreground The mode in which the emulator is executing the user program. In
other words, the mode in which the emulator operates as the target microprocessor
would.

foreground emulation monitor An emulation monitor program that operates
in the foreground emulator mode, and therefore, executes as if it were part of the
user program.

global restart When the same secondary branch condition is used for all terms in
the analyzer’s sequencer, and secondary branches are always back to the first term.

prestore The analyzer feature that allows up to two states to be stored before
normally stored states. This feature is useful when you want to find the cause of a
particular state. For example, if a variable is accessed from many different places in
the program, you can qualify the trace so that only accesses of that variable are
stored and turn on prestore to find out where accesses of that variable originate
from.

primary sequencer branch Occurs when the analyzer finds the primary branch
state specified at a certain level and begins searching for the states specified at the
primary branch’s destination level.

real-time Refers to continuous execution of the user program without
interference from the emulator. (Such interference occurs when the emulator
temporarily breaks into the monitor so that it can access register contents or target
system memory or I/O.)

secondary sequencer branch Occurs when the analyzer finds the secondary
branch state specified at a certain level before it found the primary branch state and
begins searching for the states specified at the secondary branch’s destination level.

Glossary

482

sequence terms Individual levels of the sequencer. The analyzer provides 8
sequence terms.

sequencer The part of the analyzer that allows it to search for a certain sequence
of states before triggering.

sequencer branch Occurs when the analyzer finds the primary or secondary
branch state specified at a certain level and begins searching for the states specified
at another level.

target system The microprocessor system that the emulator plugs into.

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the external
analyzer) and stored in trace memory.

trigger The captured analyzer state about which other captured states are stored.
The trigger state specifies when the trace measurement is taken.

Glossary

483

484

Index

A abbreviated help mode, 244
absolute count (in trace list), 133, 295
absolute file

formats, 233, 250
loading into memory, 88, 250-251
loading via ftp, 89

accent grave mark character, 235, 273
access mode, 259, 481
access to guarded memory, 257
accuracy of trigger position, 312
active edges (slave clock), 325
activity, analyzer line, 282
addr (predefined trace label), 137
all (analyzer keyword), 338, 340, 349
altitude, operating and non-operating environments, 407
analyzer, 481

analyzer initialization, 306-307
arming other HP 64700 Series analyzers, 5
breaking emulator execution into the monitor, 5
breaking execution of other HP 64700 Series emulators, 5
clock (master) specification, 287-289
complex config. pattern qualifier, 314-315
complex config. range qualifier, 317-318
configuration, 285-286
count qualifier, 290-291
definition, 4
general description, 4
halt trace, 301-302
labels, 310-311
line activity, 282
master clock specification, 287-289
performance verification, 261
prestore qualifier, 316
primary branches (sequencer), 303-305
sequencer, 327-329

485

sequencer secondary branch qualifiers, 292-294
slave clocks, 324-326
start, 281
storage qualifiers, 330-331
trace labels, predefined equates for, 137
trace list, 308-309
trace list format, 295-296
trace status, 319-323
tracing background operation, 288
tracing foreground operation, 288
trigger condition, 297-298
trigger output, 299-300
trigger position, 312-313
using the, 120

analyzer input lines and signal names, 135
analyzer probe

assembling, 178
connecting to the target system, 180

and, interset logical AND operator, 241
any (analyzer keyword), 338, 340, 349
arm condition

analyzer status, 320
specifying, 204, 283-284
time until trigger, 321

arming the analyzer, 283-284
ASCII strings, displaying on standard output, 235
AUTOEXEC.BAT file, 475-476

B b (break execution into monitor) command, 33, 98, 214
background, 481

cycles, tracing, 123
emulation monitor, 481
execution, tracing, 288
memory, 71, 481

background monitor, 71
selecting, 72-73

bases (number), 333
default for step count, 271
labels in trace list, 295

baud rates, serial port, 454
bc (break conditions) command, 107-109, 215-216
BGND output line, 59

Index

486

binary trace list format, 309, 338
block, re-assignment of emulation memory, 257
BNC

connector, 5, 194
trigger signal, 196, 215, 217-218

bnct (BNC trigger drivers and receivers) command, 217-218
BOOTP, 458
bootptab file, 458
bp (breakpoint modify) command, 103, 219-220
branch qualifiers (sequencer)

primary, 147, 149, 162, 303-305
secondary, 147, 150, 162, 292-294

break, 214
effect of processor prefetch, 216
write to ROM, 107

break conditions, 107-109
after initialization, 85
analyzer trigger, 108
BNC or CMB trigger signals, 215
guarded memory access, 257
software breakpoints, 215
synchronous, 227
trig1 or trig2 internal signals, 215
write to ROM, 215

breakpoints
after initialization, 85
software, 101-106

C cables
data communications, 456, 474
emulator probe, length, 406
power, 461

calculator for expressions, 235
cautions

antistatic precautions, 436
BNC accepts only TTL voltage levels, 199
CMB 9-pin port is NOT for RS-232C, 197
emulator suspension rating of 29.5 kg, 406
make sure of BGND output pin alignment, 59
powering OFF the HP 64700, 56
protect emulator against static discharge, 55
pv command re-initializes emulator, 261

Index

487

rear panel, do not stand HP 64700 on, 440
cf (emulator configuration) command, 221-223
cf mon command, 73
cf rrt command, 69
channels (analyzer)

demultiplexed slave clock mode, 325
edge trigger, 338
glitch trigger, 340
mixed slave clock mode, 325
transition record, 349

character length, 455
characteristics, emulator, 402-407
characterization of memory, 24, 78
cim (copy target system memory image) command, 117, 224
cl (command line editing) command, 49, 225-226
clock speed, maximum qualified, 186
clocks

master, 189
qualifying, 188
See also slave clocks
specification, 185
specifying analyzer master, 287-289
specifying analyzer slave, 324-326

CMB (coordinated measurement bus), 194
enable/disable, 227
EXECUTE line, 196
HP 64700 connection, 197
READY line, 195
signals, 195
start synchronous execution, 337
trace at /EXECUTE, 332
TRIGGER line, 195
trigger signal, 215, 229-230, 332

cmb (enable/disable CMB interaction) command, 201, 227-228
cmbt (CMB trigger drivers/receivers) command, 229-230
CMOS (keyword for specifying threshold voltages), 181
column headers in trace list

adding new columns, 295
suppressing, 308

command files
LAN, using over, 52

Index

488

command syntax, 41
commands

cf mon, 73
cf rrt, 69
combining on a single command line, 47
command line editing, 49
groups, viewing help for, 41
help, 244
help for group, 244
macros, 254-255
maximum length of command line, 255
recall, 48
repeating a group of, 268
repetitive execution, 50
sym, 278-280

communications (data)
initialization, 245
setting parameters, 275-277

communications configuration switch summary, 454
communications ports, 453-456, 473-474

electrical characteristics, 405
physical characteristics, 406

complex analyzer configuration
definition, 162
pattern specifications, 314-315
range specification, 317-318

complex expressions, 241
CONFIG.SYS file, 475-476
configuration

analyzer, 285-286
background monitor selection, 72
data communications switches, 275
emulator, 221-223
See emulator configuration
foreground monitor selection, 75
monitor selection, 73
restrict to real-time runs, 69

configuration switches, HP 64700B
summary, 454

constants, 333
control (CTRL) characters

Index

489

c, command abort, 251, 261, 268, 271
non-displaying, 236

coordinated measurements
definition, 194
enable/disable, 227-228

copy memory, 231
count (occurrence), 297, 303, 322

reset if secondary branch taken, 293
count qualifier, 144, 290-291
counter, analyzer tag, 290
counts, displaying relative or absolute, 133
cp (copy memory) command, 116, 231
cross-triggering, 217, 227
customized foreground monitors, 75

D data (predefined trace label), 137
data communications

cable selection, 456, 474
configuration switches, 275
initialization, 245
location of ports, 453
setting port parameters, 275-277
switch settings, 453
switch summary, 454

data cycles, monitor access to target memory, 259
date, setting emulation system, 232
DCE device, setting serial port as a, 454
delay (trigger), external timing analyzer, 348
deleting sequencer terms, 328
delimiters (string), 235, 273
delta time, binary/hexadecimal trace list, 342
demo program

emulator, 21
DeMorgan’s law, 160, 241
demultiplexing

mixed clocks mode, 189
true demultiplexing mode, 190
using slave clocks for, 189-190, 325

dimensions, emulator, 406
disassembly, trace list, 32, 295
display mode, 259, 481
downloading absolute files, 5, 88, 250-251

Index

490

drivers and receivers
BNC trigger signal, 217-218
CMB trigger signal, 229-230
See also trig1 and trig2 internal signals

dt (set or display system date/time) command, 232
DTE device, setting serial port as a, 454
dual-port emulation memory, 69
dump (upload memory) command, 233-234
duration (external timing trigger), 346

E easy configuration, definition, 162
echo (display to standard output) command, 235-236
ECL (keyword for specifying threshold voltages), 181
edge trigger (external timing analyzer), 338-339
edges (analyzer clock), rising, falling, both, 288
edges (analyzer slave clock), active, 325
electrical characteristics of the emulator, 402
embedded microprocessor system, 481
emulation break, 214
emulation bus analyzer, 481
emulation memory

after initialization, 86
dual-port, 69

emulation monitor, 33, 481
break command, 214
breaks to the, 215
cycles used to access target memory, 259
execute after reset, 269
foreground or background, 71-77
function of, 71
searching target memory, 274

emulator, 482
dimensions, 406
electrical characteristics, 402
environmental characteristics of, 407
error messages, 355-356
general description, 4
initialization, 245-246
multiple start/stop, 5, 201-202
performance verification, 261
physical characteristics, 406
plugging into a target system, 54

Index

491

probe cable length, 406
prompt, changing the, 260
specifications and characteristics, 402-407
status, 239
status characters, 87
using the, 84
weight, 406

emulator configuration
after initialization, 85
on-line help for, 41

emulator configuration items
loc, 73-74
mon, 72-73
proc, 68
rad, 70
rrt, 69

emulator features
breakpoints, 101-106
restrict to real-time runs, 69
single-step processor, 98

emulator limitations, external DMA support, 78
emulator probe

active, 481
cable length, 406
pin alignment, 62-65
target system connection, 55-66

environment variables
HPBIN, 476
HPTABLES, 476
PATH, 476

environmental characteristics of the emulator, 407
equ (equate names to expressions) command, 137, 237-238
equates, 237-238

predefined for trace labels, 137
eram, mapper parameter for emulation RAM, 24, 78, 256
erom, mapper parameter for emulation ROM, 24, 78, 256
error messages, 354

analyzer, 386-399
emulator, 355-356
general and system error/status, 360-385

es (emulator status) command, 36, 87, 239

Index

492

EXECUTE (CMB signal), 196, 227, 320, 332, 337
expression calculator, 235
expression operators, 333
expressions, 134

analyzer, complex configuration, 241
equating names to, 237-238
in the complex configuration, 158-161

external analyzer, 133
clock specification, 185
extension to emulation analyzer, 183
general description, 4
independent state analyzer, 184-192
independent state commands, 184
independent timing analyzer, 176
mode, 343-344
probe threshold voltage, 351
selecting the mode, 183-184
setup and hold times, 125, 188
slave clocks, 189-190
specifications, 408
timing analyzer mode, 342
timing mode unavailable in Terminal Interface, 176
using, 176

external timing analyzer
edge trigger, 338-339
glitch mode, 342
glitch trigger, 340-341
mode, 342
sample period, 345
standard mode, 342
transition trigger, 349-350
transitional mode, 342, 349
trigger condition, 346-347
trigger delay, 348

F fast (F) analyzer clock speed, 288
file formats, absolute, 25, 88, 233, 250
firmware update utility

installation, 475-476
firmware updates, 5
foreground, 482

emulation monitor, 482

Index

493

execution, tracing, 288
memory, 71

foreground monitor, 71
advantages/disadvantages, 72
customizing, 75
example of using, 76
selecting, 73, 75
using a customized, 75

formats
absolute file, 233, 250
binary trace list, 309
memory display, 247, 252
trace list, 133, 295-296

ftp
loading absolute files, 89
loading symbol files, 93

G glitch (external timing analyzer) mode, 342
glitch trigger (external timing analyzer), 340-341
global access and display modes, 259
global restart qualifier, 146-147, 292, 297, 304, 328, 482
global set operators, 160
global storage qualifier, 330
grabbers, connecting to analyzer probe, 179
grave mark character, 235, 273
grd, mapper parameter for guarded memory, 78, 257
ground strap, 55
group (command), 244
guarded memory access, 78, 257

H halt
trace, 129, 301-302
trace status, 320

handshake mode, 276
headers in trace list

adding new columns, 295
suppressing, 308

help, 244
abbreviated mode, 244
information on system prompts, 87
using, 41

history, trace status, 321

Index

494

hold times for external analyzer, 125, 188
HP 64037 RS-422 Interface Card, 5
HP 98659 RS-422 Interface Card, 5
HPBIN environment variable, 476
HPTABLES environment variable, 476

I independent state mode of external analyzer, 343-344
information (help), 244
init (emulator initialization) command, 23, 85, 245-246
initialization

analyzer, 121, 306-307
emulator, 85, 245-246
emulator, -c option, 86
emulator, -p option, 86
emulator, -r option, 86
emulator, limited, 85

input lines and signal names for analyzer, 135
inserting sequencer terms, 328
installation, 433
internal signals, trig1 and trig2, 215, 217, 229, 283, 301, 332
interrupts, 72
interset operators, 160, 241
intraset operators, 160, 241
inverse values (complex analyzer expressions), 242
IP address, 26, 89

J J clock (analyzer), 287, 325

K K clock (analyzer), 287, 325

L L clock (analyzer), 287, 325
labels (trace)

defining analyzer, 310-311
predefined, 310

LAN connection, 457-458
loading absolute files, 89
loading symbol files, 93

LAN interface, 457-458, 468
BOOTP enable/disable, 458
enabling, 457
port selection, 457

limited initialization, 85
line activity (analyzer), 282

Index

495

list, trace, 130
load (load absolute file) command, 250-251

user monitor, 75
load symbols command, 92
loc (monitor location) emulator configuration item, 73
locating the monitor program, 73
logical run address, conversion from physical address to, 70

M m (memory display/modify) command, 29, 115, 252-253
M clock (analyzer), 287, 325
mac (macro definition/display) command, 254-255
macros

after initialization, 85
limitations, 255
using, 51

map (memory mapper) command, 24, 79, 256-258
mapping memory, 24, 78-82, 256-258
master clocks (analyzer), 189, 287-289
maximum

command line length, 255
sequence levels in easy configuration, 304
sequence terms in easy configuration, 327
trace state storage, 342

measurements
analyzer, starting, 281
coordinated, 227-228

memory
assess mode, 259
characterization of, 24, 78
display mode, 259
displaying, 252-253
dual-port emulation, 69
loading programs into, 88, 250-251
map after initialization, 85
mapping, 24, 78-82, 256-258
mnemonic format display, 114
modifying, 252-253
re-assignment of emulation memory blocks in mapper, 82
search, 273-274
upload to host file, 233-234

memory mapper
block size, 78

Index

496

resolution, 78
memory mapper, resolution, 256
messages

error, 354
status, 360-385

mixed (slave clock) mode, 189, 325
mnemonic, information in the trace list, 295
mo (set access and display modes) command, 259
mode

abbreviated help, 244
demultiplexed slave clock, 325
external analyzer, 343-344
external timing analyzer, 342
glitch (external timing analyzer), 342
memory access, 259
memory display, 259
mixed slave clock, 325
quiet, 251, 271
standard (external timing analyzer), 342
transitional (external timing analyzer), 342, 349
whisper, 271, 319

monitor (emulation)
break command, 214
breaks to the, 215
comparison of foreground/background, 72
cycles used to access target memory, 259
execute after reset, 269
foreground monitor location, 73
foreground or background, 71-77
function of, 71
searching target memory, 274
selecting, 73
selecting background, 72
selecting foreground, 75

multiple emulator start/stop, 5

N N clock (analyzer), 287, 325
names

pattern, 314
values, 237-238

NAND operator, 242
never (analyzer keyword), 338, 340, 349

Index

497

no trace data (message), 308
none (analyzer keyword), 290, 338, 340, 349
NOR, intraset logical operator, 241
notes

absolute files, loading in the wrong format, 251
analyzer count qualifier cannot be arm condition, 290
analyzer drives and receives same signal, 206
analyzer range resource, only one available, 135
analyzer, "tcq time" only if "tck -s S", 290
asterisk (*) in help command, 244
bit range is relative to label, 339, 341, 350
breakpoint display status checking, 220
breakpoint locations must contain opcodes, 101
CMB EXECUTE and TRIGGER signals, 196
dashes (-) when specifying command parameters, 250
data communications references, 277
date and time are reset when power is cycled, 232
date assumes year is in 20th century, 232
display mode and memory modification, 253
dump creates non-standard HP absolute files, 234
emulation memory block re-assignment, 257
equate limits, 237
equates, new values not updated in commands, 237
equates, when values are assigned, 138
external analyzer probe setup/hold times, 343
foreground monitors that cause breaks, 75
init -c, -r, or -p cause system memory loss, 245
map change requires breakpoint disable, 257
master clock qualifiers: tck -u, tck -b, 289
memory map modification causes emulator reset, 257
occurrence counts in complex configuration, 303
operations carried out on 32-bit numbers, 334
primary and secondary branch qualifiers satisfied, 292, 304
range reset when trace configuration reset to easy, 317
re-assignment of emulation memory blocks by mapper, 82
rx command enables CMB interaction, 227
search patterns, specifying complex, 274
sequence term count reset, 293
sequencer term 8 default, 293, 304
single open quote, ASCII character, 235, 273
step command doesn’t work when CMB enabled, 202

Index

498

step count must be specified with address, 271
step does not work correctly while CMB enabled, 272
string delimiter character should not be in string, 235
strings should not contain string delimiter character, 273
trace format does not affect information captured, 296
trace list command options, mutually exclusive, 309
trace states, displaying when trigger not found, 301
xon toggling with baud rates of 1200 or below, 276
xtarm does not allow "!=" when in timing mode, 284

number bases, 333
numbers, software version, 335
numeric search in memory, 273

O occurrence count, 140, 297, 303, 322
reset if secondary branch taken, 293

on-line help, using the, 41
operators

combining intraset and interset, 241
expression, 333
interset, 160, 241
intraset, 160, 241

or, interset logical OR operator, 241
OR, intraset logical operator, 241
other, mapper parameter for unmapped memory, 256
output line, BGND, 59
overlap, trace labels, 311

P p1 - p8, trace pattern labels, 314
parameters, data communications, 275-277
parity

error detection, 455
reasons for setting, 455
switch settings for, 455
types of (odd/even), 455

PATH environment variable, 476
patterns (trace), 158

limitations of combining, 160
names, 314
qualifying, 158, 314-315

performance verification, 261, 469
failure, what to do in case of, 470
LAN interface, 468

Index

499

physical characteristics of the emulator, 406
physical run address, conversion to logical run address, 70
pipeline, analyzer architecture, 321
plug-in, 54
po (set or display prompt) command, 260
polarity, trace labels, 310
ports (data communications)

setting parameters, 275-277
position of trigger state in trace, 312-313
power cables

connecting, 461
correct type, 461

powerup initialization, 245
predefined equates for trace labels, 137
predefined trace labels, 136, 310
prefetch, effect on break, 216
prestore qualifier, 142, 316, 482
prestore string, 143
primary branches (analyzer sequencer), 147, 149, 303-305, 482

difference between easy and complex configuration, 162
probe

emulator, 261
external analyzer, clock channels, 287, 325
external analyzer, setup/hold times, 343
external analyzer, threshold voltages, 351

progflash example, 478
program counter symbol ($), 262
prompts, 87

changing, 260
es (emulator status) command, 87
help information on, 87

protocol (transfer), 233, 250, 309
protocol checking, 251
pv (performance verification) command, 261

Q qualified clock speed, maximum, 186
qualifiers

analyzer clock, 185
analyzer count, 144, 290-291
analyzer master clock, 287-289
analyzer pattern, 314-315
analyzer prestore, 142, 316

Index

500

analyzer range, 317-318
analyzer slave clock, 189-190
analyzer storage, 142, 330-331
external timing edge trigger, 338-339
external timing glitch trigger, 340-341
global restart, 292, 297, 304, 328
sequencer primary branch, 147, 303-305
sequencer secondary branch, 147, 292-294
simple trigger, 139

question mark (?)
break conditions display, 216
on-line help command, 244

quick start information, 19
quiet mode, 251, 271
quote marks, 235, 260, 273

R r (run user program) command, 30-31, 97, 262
rad (physical run address default) emulator config. item, 70
RAM, mapping emulation or target, 78
range (trace), 159
range qualifier (complex analyzer config.), 317-318
READY (CMB signal), 195, 227, 337
real-time runs, 482

commands not allowed during, 69
commands which will cause break, 69
restricting the emulator to, 69

recall, command, 48
receivers and drivers

BNC trigger signal, 217-218
CMB trigger signal, 229-230
See also trig1 and trig2 internal signals

record checking, 233
record, transition, 349
reg (register display/modify) command, 34, 110-111, 263-267
registers, displaying, 110-111
relational expressions, 241
relative counts in trace list, 133, 296
rep (repeat commands) command, 50, 268
repeating commands, 268
reset

break during, 214
breakpoints, 219

Index

501

commands which cause exit from, 100
emulation microprocessor, 269
emulator, due to mapper modification, 257
init command, 245
occurrence count, 293
range qualifier and trace configuration, 317
run from, 97, 262
sequencer, 327
system date and time, 232
trace specification, 306-307
trace tag counter, 290

resolution, memory mapper, 78, 256
restart (global) qualifier, 292, 297, 304, 328
restrict to real time runs, 69

target system dependency, 69
ROM

debug of target, 117
mapping emulation or target, 78
writes to, 78, 215

rrt (restrict to real-time) emulator configuration item, 69
RS-232

serial port as RS-232 device, 454
RS-232 (data communications), 277
RS-422

host computer interface card, 5
serial port as RS-422 device, 454

rst (reset emulation processor) command, 36, 269
run address, conversion from physical address, 70
run from reset, 97
rx (run at execute) command, 201

S s (step the emulation processor) command, 35, 98, 271-272
sample period (external timing analyzer), 345
secondary branch expression, 147, 150, 482

difference between easy and complex configuration, 162
selecting background emulation monitor, 72
selecting emulation monitor, 73
selecting foreground emulation monitor, 75
semicolon (command separator), 254
sequencer (analyzer), 327-329, 483

adding or inserting terms, 153
branch, 483

Index

502

complex configuration, 162-173
default specification, 146
default specification in the complex configuration, 163
deleting terms, 154, 328
difference between easy and complex configuration, 162
primary branches, 303-305
resetting, 148, 163
secondary branch qualifiers, 292-294
simple trigger specification, 148
terms, 146, 483
terms, deleting, 328
using, 146-154

ser (search memory for values) command, 116, 273-274
serial port

DCE device, 454
DTE device, 454
RS-422 device, 454

setup times for external analyzer, 125, 188
signal considerations, 402
signal names and input lines for analyzer, 135
signals

analyzer clocks, 287, 325
analyzer, defining labels for, 310-311
arm, 321
BNC trigger, 215, 217-218
CMB, 195
CMB /EXECUTE, 227, 269, 320, 332, 337
CMB READY, 227, 337
CMB trigger, 215, 229-230
external analyzer, threshold voltages, 351
internal trig1 and trig2, 215, 283, 301, 332
trigger output, 299-300

simple trigger
in the complex configuration, 165
in the easy configuration, 139

single-byte interrupt (SBI), 101
single-step emulation processor, 271-272
slave clocks (analyzer), 189-190, 324-326

demultiplexed mode, 325
mixed mode, 325

slow (S) analyzer clock speed, 288, 290

Index

503

software breakpoints, 101-106, 219-220
break condition enable/disable, 215
permanent, 103
pv command effect on, 261
temporary, 103

software version numbers, 335
specifications

emulator, 402-407
external analyzer, 408

standard (external timing analyzer) mode, 342
startup, tracing a program on, 127
stat (predefined trace label), 137
states (trace)

maximum with/without count, 290
prestore, 316
status, 321
visible, 321

static discharge, protecting the emulator probe against, 55
status

analyzer, 31, 319-323
characters (emulation), 87
emulator, 30, 33, 36, 239

status, trace, 128
storage qualifier, 142, 330-331

difference between easy and complex configuration, 162
string delimiters, 235, 273
string search in memory, 273
stty (set data communications parameters) command, 275-277, 454
summary of data communication switches, 454
switch (data communications configuration) setting, 275, 453

baud rate, 454
character length, 455
LAN interface, 457-458
parity checking, 455
parity type, 455
serial port as DCE/DTE device, 454
serial port as RS-232/RS-422 device, 454

switches, data communications configuration, 275
sym (define/display/delete symbols) command, 91, 94, 96, 278-280
symbol file

loading, 91

Index

504

loading via ftp, 93
symbol names, creating, 237-238
symbols, 91

$, program counter, 262
*, trace status, 323

synchronous runs and breaks, 227, 337
system clock, 232, 261
system date/time, 232

T t (start trace) command, 31, 127, 281
ta (trace activity display) command, 121, 282
tag counter (analyzer), 290
target system, 483

plugging the emulator into, 54
processor signal considerations, 402
RAM and ROM, 24, 78
reset, running from, 97

target system dependency on executing code, 69
tarm (trace arm condition) command, 204, 283-284
tcf (set easy/complex configuration) command, 157, 285-286
tck (specify master clock) command, 287-289
tcq (specify count qualifier) command, 290-291
tcq (trace count qualifier) command, 144
telif (secondary branch expression) command, 147, 150, 292-294

in the complex configuration, 162
telnet, LAN connection, 467
temperatures, operating and non-operating environments, 407
Terminal Interface, 454
terms

analyzer sequencer, 327
memory mapper, 257

tf (specify trace list format) command, 295-296
tf (trace format) command, 133
tg (simple trigger) command, 31, 139, 297-298

in the complex configuration, 165
tgout (trigger output) command, 108, 206, 299-300
th (trace halt) command, 129, 301-302

listing traces, 308
threshold voltages (external analyzer), 181, 351
tif (primary branch expression) command, 147, 149, 303-305

in the complex configuration, 162
time (analyzer keyword), 290

Index

505

time, setting emulation system, 232
timing analyzer

See external timing analyzer
tinit (trace initialization) command, 121, 306-307
tl (trace list) command, 32, 130, 308-309
tlb (define labels for analyzer lines) command, 310-311
tokens, 135
tp (trigger position) command, 141, 312-313
tpat (trace patterns) command, 158, 314-315
tpq (trace prestore qualifier) command, 142, 316

in the complex configuration, 168
trace, 483

clock specification, 185
count qualifier, 144
displaying activity, 121
halting the, 129
listing format, 133
listing the, 130
patterns (in complex configuration), 158
prestore qualifier, 142
range (in complex configuration), 159
starting the, 127
storage qualifier, 142
trigger output, 206
trigger position, 141

trace configuration
complex or easy, 162
selecting complex, 157
selecting easy, 157

trace labels, 135, 310-311
defining external, 182
predefined, 136, 310
predefined equates for, 137

trace list, 308-309
format, 295-296
header suppression, 308

trace status, 128, 319-323
tram, mapper parameter for target RAM, 24, 78, 256
transfer memory to host file, 233-234
transfer utility, 233, 250, 309
transition record (external timing analyzer), 349

Index

506

transitional (external timing analyzer) mode, 342, 349
trig1 and trig2 internal signals, 108, 204, 215, 217, 229, 283, 301, 332
trigger, 31, 483

analyzer, break on, 108
condition, 147, 297-298
cross-triggering, 227
delay (external timing analyzer), 348
difference between easy and complex configuration, 162
driving signals when found, 206
easy configuration, 147
edge (external timing analyzer), 338-339
external timing analyzer, 346-347
glitch (external timing analyzer), 340-341
not in memory, 308
position, 141, 312-313
position, accuracy of, 141
sequence term, 285
simple complex configuration specification, 165
specifying a simple, 139

trigger term, 162, 168
TRIGGER, CMB signal, 195
trng (trace range) command, 159, 317-318

trom, mapper parameter for target ROM, 24, 78, 256
ts (trace status) command, 31, 128, 319-323

arm information, 128
occurrence left information, 128
sequence term information, 128

tsck (specify slave clocks) command, 324-326
tsq (trace sequencer specification) command, 327-329

in the complex configuration, 162
tsto (trace storage qualifier) command, 142, 330-331

in the complex configuration, 162
TTL (keyword for specifying threshold voltages), 181
tx (trace on CMB /EXECUTE) command, 201, 332

U undefined breakpoint error, 220
upload memory to host, 233-234
uploading memory, 5
user program, 482

Index

507

V values, 333-334
equating with names, 237-238
in trace expressions, 137

ver (display software version numbers) command, 46, 335
verifying performance, 261
very fast (VF) analyzer clock speed, 288, 290
voltages, threshold, 181, 351

W w (wait) command, 336
wait (in command sequence), 336
warnings, power must be OFF during installation, 440
weight of the emulator, 406
whisper mode, 271, 319
windows of activity, using the analyzer to trace, 169

X x (start synchronous CMB execution) command, 202, 337
xt (start trace) command, 281
xtarm (specify arm condition) command, 283-284
xtcf (set easy/complex configuration) command, 285-286
xtck (external analyzer clock) command, 185, 287-289
xtcq (specify count qualifier) command, 290-291
xtelif (specify secondary branch qualifiers) command, 292-294
xteq (external timing edge trigger) command, 338-339
xtf (specify trace list format) command, 295-296
xtg (specify trigger condition) command, 297-298
xtgout (external trigger output) command, 108, 299-300
xtgq (external timing glitch trigger) command, 340-341
xth (trace halt) command, 301-302
xtif (specify primary branch qualifiers) command, 303-305
xtl (trace list) command, 308-309
xtlb (external trace label) command, 182, 310-311
xtm (external timing analyzer mode) command, 342
xtmo (external analyzer mode) command, 183, 343-344
xtmo (external trace mode) command, 184
xtp (trigger position in trace list) command, 312-313
xtpat (complex config. trace patterns) command, 314-315
xtpq (specify prestore qualifier) command, 316
xtrng (specify complex config. range) command, 317-318
xts (display trace status) command, 319-323
xtsck (external trace slave clock) command, 189-190, 324-326
xtsp (external timing sample period) command, 345
xtsq (manipulate trace sequencer) command, 327-329

Index

508

xtsto (specify trace storage qualifier) command, 330-331
xtt (external timing trigger condition) command, 346-347
xttd (external timing trigger delay) command, 348
xttq (external timing transition trigger) command, 349-350
xtv (threshold voltage for external trace signals), 181, 351
xtx (trace on CMB /EXECUTE) command, 332

Index

509

510

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

WARNING Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	80186/8/XL/EA/EB/EC Emulation and Analysis
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Using the Terminal Interface
	Plugging into a Target System
	Using the Emulator
	Using the Emulation Analyzer - Easy Configuration
	Using the Emulation Analyzer - Complex Configuration
	Using the External State Analyzer
	Making Coordinated Measurements

	Reference
	Commands
	Error Messages
	Specifications and Characteristics

	Concept Guide
	Concepts

	Installation Guide
	Installation
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

