
HP 64774

29000/29050 Emulator

PC Interface User’s Guide

HP Part No. 6 4774-97010
Printed in U.S.A.
June 1992

Edition 4

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1990-1992, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

29K, ADAPT29K, Am29000, Am29027, and Am29050 are
trademarks of Advanced Micro Devices, Inc.
Advancelink, Vectra, and HP are trademarks of Hewlett-Packard
Company.
IBM and PC AT are registered trademarks of International
Business Machines Corporation.
MS-DOS is a trademark of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3

64774-97002, June 1990
64774-97004, August 1990
64774-97007, May 1991

Edition 4 64774-97010, June 1992

Using this Manual

This manual shows you how to use the HP 64774 29000/29050
emulator with the PC Interface.

This manual:

Lists the features of the 29000/29050 emulator.

Shows you how to use emulation commands.

Describes the target system design considerations that you
must make when using the 29000/29050 emulator.

Shows you how to connect the emulator to the target
system.

Shows you how to configure the emulator for your
development needs.

This manual does not show you how to use every PC Interface
command and option. This is done in the HP 64700-Series
Emulators PC Interface Reference.

Organization

Chapter 1 Introduction . This chapter describes the emulator functions and
lists its basic features.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands to view the execution of a sample program.

Chapter 3 Using the Emulator — The Basics. This chapter describes target
system design considerations that you must make when using the
29000/29050 emulator. It also shows you how to connect the
emulator to the target system.

Chapter 4 Using the Emulator — In Depth. This chapter describes some of
the emulation features in more detail. Topics include the memory
mapper and emulation memory, and coordinated measurements.

Chapter 5 Configuring the Emulator. This chapter describes the options
available for configuring the 29000/29050 emulator. It also
describes storing and loading the emulator configuration.

Appendix A Using the HP 64000 Reader. This appendix describes the
HP 64000 reader.

Appendix B Using the IEEE-695 Reader. This appendix describes the
IEEE-695 reader.

Contents

1 Introduction to the 29000/29050 Emulator

Purpose of the Emulator . 1-1
Description . 1-1
Features of the 29000/29050 Emulator 1-4

Full-Featured Operation at 25 MHz 1-4
Active-Probe Technology 1-4
Unbuffered Instruction and Data Busses 1-5
Memory Mapper Bypass Mode 1-5

Single-Step and Disassembly of Instruction Bus 1-5
Product Upgrades . 1-5
Emulation Memory . 1-5

Emulation Memory Size . 1-6
Independent Banks of Emulation Memory 1-6
Memory Mapping . 1-6

Fast Upload/Download with RS-422 Card 1-7
Coverage Measurements . 1-7
Analysis . 1-7
Floating Point Format Displays 1-7
Register Display and Modification 1-7
Breakpoints . 1-8
Reset Support . 1-8
Real-Time Execution . 1-8

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2

Data Declarations . 2-2
Reading Input . 2-5
Processing Commands . 2-6
The Destination Area . 2-6

Assembling the Sample Program 2-7
Linking the Sample Program 2-7

Contents-1

Converting Absolute File Format 2-8
Starting the 29000/29050 PC Interface 2-8

Selecting PC Interface Commands 2-8
Emulator Status . 2-9

Mapping Memory . 2-10
Which Memory Locations Should Be Mapped? 2-10

Loading Programs into Memory 2-14
Using Symbols . 2-15

IEEE-695 or HP 64000 Format Symbols 2-15
Other File Formats . 2-15
Loading Global Symbols . 2-16
Displaying Global Symbols 2-16
Displaying Local Symbols . 2-17
Transferring Symbols to the Emulator 2-18

Removing Symbols from the Emulator 2-18
Displaying Memory in Mnemonic Format 2-19
Stepping Through the Program 2-20

Specifying a Step Count . 2-21
Modifying Memory . 2-23
Running the Program . 2-23
Searching Memory for Data . 2-24
Breaking into the Monitor . 2-24
Using Breakpoints . 2-25

Defining a Breakpoint . 2-25
Displaying Breakpoints . 2-26
Setting a Breakpoint . 2-26
Clearing a Breakpoint . 2-26

Using the Analyzer . 2-27
Predefined Trace Labels . 2-27
Predefined Status Equates 2-29
Resetting the Analysis Specification 2-31
Specifying a Simple Trigger 2-32
Starting the Trace . 2-33
Displaying the Trace . 2-34
Switching the Analysis Mode at the Trigger Point 2-37

Modifying the General Emulator Configuration 2-37
Modifying the Trigger Configuration 2-38
Restarting the Trace . 2-38

Changing the Trace Display Format 2-40
For a Complete Description 2-41

Testing for Coverage . 2-42

2-Contents

Copying Memory . 2-44
Resetting the Emulator . 2-44
Exiting the PC Interface . 2-45

3 Using the Emulator — The Basics

Target System Design Considerations 3-1
Access for Emulator Probe . 3-1
Probe Power Requirements . 3-1
Probe Cooling . 3-1
Disable Target Data Bus Buffers 3-1

When Using Emulation Memory 3-3
When Not Using Emulation Memory 3-5

Processor Signal Considerations 3-5
WARN Line . 3-5
Control Lines Intercepted 3-5
SYSCLK . 3-5
Other Signals . 3-6

Effects of Using Emulation Memory 3-6
Effects of the Background Monitor 3-6

Memory Accesses . 3-7

Plugging the Emulator into a Target System 3-7

4 Using the Emulator — In Depth

Introduction . 4-1
Prerequisites . 4-1
Mapping Memory . 4-2

Address Ranges . 4-3
Address Space Designators 4-3

Types of Memory . 4-5
Attributes . 4-5

Emulation Memory Available 4-5
Emulation Memory Attributes 4-6

Overlaying Ranges in Emulation Memory. 4-6
Displaying Overlaid Ranges. 4-7

Target Memory Attributes 4-8
Ranges with Different I-bus and D-bus Addresses. . . . 4-8

Access Mode Attributes . 4-9
Modifying and Displaying Memory 4-10
Storing Memory Contents to Absolute Files 4-11
Modifying and Displaying Registers 4-12

Contents-3

Register Names and Classes 4-13
Making Coordinated Measurements 4-16

CMB Signals . 4-16
Running the Emulator at /EXECUTE 4-17
Using the Analyzer Trigger to Break into the Monitor . . . 4-17

5 Configuring the Emulator

Introduction . 5-1
Emulator Speed Configuration 5-3

Clock Speed . 5-3
Emulation Memory . 5-4
Clocks for Emulation Memory 5-5
Summary of Configuration Items Related to SYSCLK . . 5-5

Clock Speed and the Analyzer. 5-6
Number of Wait States for Emulation Memory 5-8

Burst Mode. . 5-8
Simple Mode. . 5-8

Wait State Summary . 5-8
Real-Time Mode . 5-10

Emulation Memory Configuration 5-11
Primary Bus for Emulation Memory 5-11
Lock Emulation Ready for Access Type 5-11

Analysis Mode Configuration 5-12
Analysis Mode . 5-12

Analysis Switching Signal 5-13
Emulator Break Configuration 5-14

Software Breakpoints . 5-14
Break on Write to ROM . 5-14
Break on IERR or DERR Signal 5-15
Break on WARN Signal . 5-15

General Emulator Configuration 5-15
Use Coprocessor . 5-15
Byte Ordering for Memory and I/O Ports 5-16
Force Simple Mode . 5-16
Access Width . 5-16
Default Address Space . 5-17
CMB Interaction . 5-18

Storing an Emulator Configuration 5-19
Loading an Emulator Configuration 5-19

4-Contents

A Using the HP 64000 Reader

What the Reader Does . A-1
The Absolute File . A-1
The ASCII Symbol File . A-1

Location of the HP 64000 Reader Program A-3
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-4
If the Reader Won’t Run . A-7
Including RHP64000 in a Make File A-7

B Using the IEEE-695 Reader

What the Reader Does . B-1
The Absolute File . B-1
The ASCII Symbol File . B-1

Location of the IEEE-695 Reader Program B-3
Using the IEEE-695 Reader from MS-DOS B-3
Using the IEEE-695 Reader from the PC Interface B-4
If the IEEE-695 Reader Won’t Run B-6
Including RIEEE695 in a Make File B-6

Index

Contents-5

Illustrations

Figure 1-1. The HP 64774 Emulator for the 29000/29050 1-2
Figure 1-2. 29000/29050 Probe Plugged into Harbor Box 1-3
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linker Load Map for the Sample Program 2-14
Figure 2-3. Symbol Text File for the Sample Program 2-22
Figure 3-1. HP 64774 Emulator Probe Dimensions 3-2
Figure 3-2. ENITRG and ENDTRG Timing 3-4
Figure 3-3. Plugging into a Target System 3-9
Figure 4-1. Addr. Space Designators & Bus Connections 4-4
Figure 4-2. Emulation Memory Example 4-6

Tables

Table 2-1. Trace Signal Assignments 2-37
Table 2-2. Predefined Equates for Analyzer Labels 2-39
Table 2-3. Trace Mnemonics 2-43
Table 5-1. SYSCLK Related Configuration Settings 5-5
Table 5-2. Wait State Summary 5-8

6-Contents

1

Introduction to the 29000/29050 Emulator

Purpose of the
Emulator

The HP 64774 29000/29050 emulator is designed to replace the
Am29000/Am29050 microprocessor in your target system to help
you integrate target system software and hardware. The emulator
acts like the processor that it replaces and gives you information
about the operation of the processor. You can control target
system execution and view or modify the contents of processor
registers, target system memory, and I/O resources.

Description The HP 64774 emulator supports the Am29000 and Am29050
microprocessors. The HP 64774 is a self-contained emulation and
analysis system that can contain up to 4 Mbytes of emulation
memory.

Introduction 1-1

Communications
* RS-232/RS-422 Port A (connects
to host computer or terminal)
* RS-232 Port B
* Coordinated Measurement Bus
* BNC Connector

Emulator (contains):
* Up to 4M of Emulation Memory
* Internal Analyzer
* System Controller
* Power Supply

Green status light

Target System (required)

Harbor Box (simple target shipped
with emulator - provides a clock for
the probe).

Figure 1-1. The HP 6 4774 Emulator for the 29000/29050

1-2 Introduction

Figure 1-2. 2 9000/29050 Probe Pl ugged into Harbor Box

Introduction 1-3

Features of the
29000/29050
Emulator

This section introduces the features of the HP 64774 29000/29050
emulator.

Full-Featured
Operation at 25 MHz

Note The 29000/29050 emulator can execute in a target system at full
clock speed (33 MHz); however, the analyzer may provide incorrect
data above 25 MHz. As a result, Hewlett-Packard only supports
operation of the HP 64774 emulator with analysis at clock speeds
up to 25 MHz.

Operation of the emulator at high clock speeds is achieved with:

Active-probe technology.

Unbuffered instruction and data busses.

A mode that bypasses the memory mapper.

Active-Probe Tech nology

Active-probe technology allows the emulator to closely imitate the
electrical characteristics of the microprocessor, avoiding the timing
problems that can occur with passive probes.

You need a target system clock to use the emulator. The emulator
is shipped with a “harbor box” assembly around the active probe
connector, which provides the target system clock when you are
operating the emulator out-of-circuit. It also suppresses radio
frequency interference (RFI), and cools the processor in the probe.

1-4 Introduction

Unbuffered Instruction and Data Busses

The instruction and data busses at the target system are unbuffered
to achieve high-speed emulator operation in the target system. The
emulator provides control signals to the target system to tell the
target system data bus buffers when one or both of the busses must
be tristated.

Memory Mapper Bypass Mode

Memory mapper circuitry affects signal timing. To allow the
processor to execute in target memory above 25 MHz without wait
states, the emulator has a mode that bypasses the mapper circuitry.
(No emulation memory can be used in the bypass mode.) In this
mode, the emulator must execute out of target memory.

Because large amounts of emulation memory cannot be put in the
probe, and because the probe cabling affects timing, wait-states are
generated when executing out of emulation memory.

Single-Step and
Disassembly of
Instruction Bus

You can direct the emulation processor to execute a single
instruction or a specified number of instructions.

While the 29000/29050 processor will fetch instructions from
memory connected only to its I-bus, it cannot explicitly read it.
However, the HP 64774 emulator has circuitry to read this memory
so that it can both single-step and disassemble instructions without
a D-bus connection.

Product Upgrades Because the HP 64774 contains programmable parts, you can
reprogram the emulator firmware without disassembling the
emulator. This means that you can update product firmware
without having to call an HP field representative to your site.

Emulation Memory Emulation memory is multi-ported memory. This allows the
emulator to run in real-time while you enter emulation commands
that access emulation memory.

Introduction 1-5

Emulation Memory Size

Emulation memory is available in 0.5 Mbyte or 2 Mbyte block with
the HP 64774Y 0.5 Mbyte 29000/29050 Emulation Memory
Module or HP 64774Z 2 Mbyte 29000/29050 Emulation Memory
Module. Zero, one, or two of either module may be plugged into
the 29000/29050 emulator card. The emulator supports the
following configurations:

0.0 M bytes
0.5 M bytes
1.0 M bytes
2.0 M bytes
2.5 M bytes
4.0 M bytes

Memory in the 2 Mbyte memory module has a slower access time
(35 ns) than memory in the 0.5 Mbyte memory module (25 ns).
When you mix these modules, the emulator treats both modules as
the slower memory.

You can see how much memory is installed in your HP 64774 by
executing the Terminal Interface map command.

Independent Banks of Emulation Memory

If the emulator contains two banks of emulation memory, code
space may be mapped in one bank and data space in the other. This
allows simultaneous fetching of both instruction and data bus
information - eliminating the need for instruction/data bus
arbitration that might affect emulator performance.

Memory Mapping

You can map up to 15 memory ranges. Mapped ranges must be at
least 64 Kbytes long. You can characterize memory ranges as
emulation RAM or ROM, target system RAM or ROM, or as
guarded memory. Additionally, you must select the bank and block
of emulation memory into which the address range is mapped.

The emulator issues an error message and breaks execution into
the monitor when guarded memory is accessed.

1-6 Introduction

Also, you can enable a break condition that causes emulator
execution to break out of the user program (into the emulation
monitor program) when writes to memory mapped as ROM occur.

Fast
Upload/Download
with RS-422 Card

The RS-422 capability of the emulator’s A communication port
and an RS-422 interface card on the host computer (for example,
the HP 64037 for the PC) provide upload/download rates of up to
230.4K baud.

Coverage
Measurements

Coverage memory is provided along with emulation memory. This
memory allows you to make code coverage measurements, as well
as measurements that determine maximum stack sizes.

Analysis The analyzer supplied with the emulator, called the emulation
analyzer, captures emulator bus cycle information and bus cycle
states synchronously with the processor clock.

Note No external analysis (capability to probe signals external to the
emulator) is available with the HP 64774 emulator.

See the HP 64700 Emulators PC Interface: Analyzer User’s Guide for
a complete list of analyzer features.

Floating Point Format
Displays

The 29000/29050 emulator has commands that allow you to display
memory and registers in floating point formats.

Register Display and
Modification

You can display or modify the contents of one or more registers in
the 29000/29050. The register display command allows the display
and modification of multiple registers. Also, the bit fields of
various registers are labeled in the default display. An option
allows you to display only the full hex value of the registers.

Introduction 1-7

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break out of
the user program into the emulation monitor. These are called
hardware breakpoints. Note that the analyzer monitors bus activity,
which may not correspond to execution, because the 29000/29050 is
a pipelined processor.

You can also define software breakpoints in your program. When
you define a software breakpoint and the opcode at the breakpoint
address is executed, the emulator breaks into background.

Reset Support You can reset the emulator from the emulation system, or your
target system can reset the emulation processor.

Real-Time Execution Real-time operation means continuous execution of your program
without interference from the emulator. Such interference occurs
when the emulator temporarily breaks into the monitor so that it
can access register contents or target system memory.

You can restrict the emulator to real-time execution. When the
emulator is executing your program in real-time, commands that
display or modify registers or target system memory are not
allowed.

1-8 Introduction

2

Getting Started

Introduction This chapter is a tutorial that shows how to use the HP 64774
29000/29050 emulator with the PC Interface.

This chapter will:

Tell you what to do before you use the emulator in the
tutorial examples.

Describe the sample program used for the examples.

Briefly describe how to enter PC Interface commands and
how emulator status is displayed.

This chapter will show you how to:

Start the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the
sample program.

The commands described in this chapter include:
displaying and modifying memory, stepping, displaying
registers, defining keystroke macros, searching memory,
running, breaking, using breakpoints, tracing program
execution, changing the trace format, copying memory,
and testing coverage.

Getting Started 2-1

Before You Begin The examples in this chapter were performed with the 29000 the
emulator plugged into the harbor box. Also, the emulator
contained 0.5 Mbyte of emulation memory. Your emulator must
have an emulation memory module to run the sample program.

Prerequisites Before beginning the tutorial, you must do the following:

1. Connect the emulator to your computer. The HP 64700
Series Emulators Installation Guide shows you how to do
this.

2. Install the PC Interface software on your computer.
Software installation instructions are shipped with the
media containing the PC Interface software. The HP 64700
Emulators PC Interface Reference manual contains more
information on the installation and setup of the PC
Interface.

3. You should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. Understanding these concepts may help
you avoid problems later.

4. You should read the HP 64700 Emulators PC Interface
Reference manual to learn general PC Interface operation.
It contains information specific to the 29000/29050
emulator.

A Look at the Sample
Program

Figure 2-1 shows the sample program used in this chapter. The
program is a primitive command interpreter.

Data Declarations

The first two lines in the “cmd_rdr.src” source file define the Msgs,
Init , Cmd_Input , and Msg_Dest labels as global symbols.

2-2 Getting Started

Advanced Micro Devices, Inc. Am29000 Assembler - Version 2.0-5
Copyright (c) 1987, 1988 Microtec Research Inc.
ALL RIGHTS RESERVED. Serial Number AS2002563

Advanced Micro Devices, Inc. ASM29K Assembler Rel. 2.0-5 Sat Mar 03 19:20:26 1990
Page 1

Cmdline - \USR\C29K\BIN\AS29.EXE -l -fgosx cmd_rdr.src
Line Address
1 .global Init,Msgs,Cmd_Input
2 .global Msg_Dest
3
4 .data
5 Msgs:
6 00000000 43 6F 6D 6D Msg_A: .ascii "Command A entered "
 61 6E 64 20
 41 20 65 6E
 74 65 72 65
 64 20
7 .align 4
8 00000014 45 6E 74 65 Msg_B: .ascii "Entered B command "
 72 65 64 20
 42 20 63 6F
 6D 6D 61 6E
 64 20
9 .align 4
10 00000028 49 6E 76 61 Msg_I: .ascii "Invalid Command "
 6C 69 64 20
 43 6F 6D 6D
 61 6E 64 20
11 .align 4
12 End_Msgs:
13
14
15 .text
16 ;**
17 ;* Clear previous command.
18 ;**
19 00000000 03 00 41 00 Init: const gr65,0
20 00000004 03 00 40 00 R const gr64,Cmd_Input
21 00000008 02 00 40 00 R consth gr64,Cmd_Input
22 0000000C 1E 00 41 40 store 0,0,gr65,gr64
23 ;**
24 ;* Read command input byte. If no command has
25 ;* been entered, continue to scan for input.
26 ;**
27 00000010 16 00 41 40 Scan: load 0,0,gr65,gr64
28 00000014 61 42 41 00 cpeq gr66,gr65,0
29 00000018 AC FF 42 FE jmpt gr66,Scan
30 ;**
31 ;* A command has been entered. Check if it is
32 ;* command A, command B, or invalid.
33 ;**
34 0000001C 61 42 41 41 Exe_Cmd: cpeq gr66,gr65,0x41
35 00000020 AC 00 42 05 jmpt gr66,Cmd_A

Figure 2-1. Sample Program Listing

Getting Started 2-3

36 00000024 61 42 41 42 cpeq gr66,gr65,0x42
37 00000028 AC 00 42 08 jmpt gr66,Cmd_B
38 0000002C 70 40 01 01 aseq 0x40,gr1,gr1 ; NOP
39 00000030 A0 00 00 0B jmp Cmd_I
40 ;**
41 ;* Command A is entered. gr65 = the number of
42 ;* bytes in message A divided by 4.
43 ;* gr66 = location of the message. Jump to the
44 ;* routine which writes the messages.
45 ;**
46 00000034 03 00 41 04 Cmd_A: const gr65,((Msg_B-Msg_A)/4)-1
47 00000038 03 00 42 00 R const gr66,Msg_A
48 0000003C 02 00 42 00 R consth gr66,Msg_A
49 00000040 A0 00 00 0A jmp Write_Msg
50 00000044 70 40 01 01 aseq 0x40,gr1,gr1 ; NOP
51 ;**
52 ;* Command B is entered.
53 ;**
54 00000048 03 00 41 04 Cmd_B: const gr65,((Msg_I-Msg_B)/4)-1
55 0000004C 03 00 42 14 R const gr66,Msg_B
56 00000050 02 00 42 00 R consth gr66,Msg_B
57 00000054 A0 00 00 05 jmp Write_Msg
58 00000058 70 40 01 01 aseq 0x40,gr1,gr1 ; NOP
59 ;**
60 ;* An invalid command is entered.
61 ;**
62 0000005C 03 00 41 03 Cmd_I: const gr65,((End_Msgs-Msg_I)/4)-1
63 00000060 03 00 42 28 R const gr66,Msg_I
64 00000064 02 00 42 00 R consth gr66,Msg_I
65 ;**
66 ;* Message is written to the destination.
67 ;**
68 00000068 03 00 43 04 R Write_Msg: const gr67,Msg_Dest
69 0000006C 02 00 43 00 R consth gr67,Msg_Dest
70 00000070 CE 00 87 41 mtsr cr,gr65
71 00000074 36 00 48 42 loadm 0,0,gr72,gr66
72 00000078 CE 00 87 41 mtsr cr,gr65
73 0000007C 3E 00 48 43 storem 0,0,gr72,gr67
74 ;**
75 ;* The rest of the destination area is filled
76 ;* with zeros.
77 ;**
78 00000080 03 00 40 00 const gr64,0
79 00000084 03 00 42 24 R const gr66,Msg_Dest+0x20
80 00000088 02 00 42 00 R consth gr66,Msg_Dest+0x20
81 0000008C 15 41 41 01 add gr65,gr65,1
82 00000090 81 41 41 02 sll gr65,gr65,2
83 00000094 14 43 43 41 add gr67,gr67,gr65
84 00000098 1E 00 40 43 Fill_Dest: store 0,0,gr64,gr67
85 0000009C 15 43 43 04 add gr67,gr67,4
86 000000A0 60 41 42 43 cpeq gr65,gr66,gr67
87 000000A4 A4 FF 41 FD jmpf gr65,Fill_Dest
88 000000A8 70 40 01 01 aseq 0x40,gr1,gr1 ; NOP
89 ;**
90 ;* Go back and scan for next command.
91 ;**

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

The “.data” area defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

Reading Input

The instructions that follow the Read_Cmd label clear any random
data or previous commands from the Cmd_Input word. The Scan
loop continually reads the Cmd_Input word to see if a command is
entered (a value other than 0H).

92 000000AC A0 FF 00 D5 jmp Init
93 000000B0 70 40 01 01 aseq 0x40,gr1,gr1 ; NOP
94
95 .bss
96 ;**
97 ;* Command input byte.
98 ;**
99 00000000 Cmd_Input: .block 4
100 ;**
101 ;* Destination of the command messages.
102 ;**
103 00000004 Msg_Dest: .block 0xfb
104 .end

Advanced Micro Devices, Inc. ASM29K Assembler Rel. 2.0-5 Sat Mar 03 19:20:26 1990
Page 4

 Cross Reference

Label Value References

Cmd_A .text:00000034 35 -46
Cmd_B .text:00000048 37 -54
Cmd_I .text:0000005C 39 -62
Cmd_Input .bss :00000000 1 20 21 -98
End_Msgs .data:00000038 -12 62
Exe_Cmd .text:0000001C -34
Fill_Dest .text:00000098 -84 87
Init .text:00000000 1 -19 92
Msg_A .data:00000000 -6 46 47 48
Msg_B .data:00000014 -8 46 54 55 56
Msg_Dest .bss :00000004 2 68 69 79 80 -102
Msg_I .data:00000028 -10 54 62 63 64
Msgs .data:00000000 1 -5
Scan .text:00000010 -27 29
Write_Msg .text:00000068 49 57 -68

Figure 2-1. Sample Program Listing (Cont’d)

Getting Started 2-5

Processing Commands

When a command is entered, the instructions after Exe_Cmd
determine whether the command was “A”, “B”, or an invalid
command.

If the command input word is “A” (ASCII 41H), execution jumps
to the Cmd_A label where the length of the “Command A entered”
message is loaded into register gr65, the location of Msg_A is
loaded into register gr66, and execution is transferred to the
instructions at Write_Msg. Similar operations are performed when
the command input word is “B” or when there is an invalid
command.

The instructions at Write_Msg load a word from the appropriate
message location, store the word into the destination area,
increment the source and destination addresses, decrement the
message length counter, and perform these instructions again until
all words are transferred.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The destination area is
20H bytes long.) Then, the program returns to read the next
command.

The Destination Area

The “.bss” area declares storage for the command input byte and
the destination area.

2-6 Getting Started

Assembling the
Sample Program

You can use several PC hosted software development tools to
generate absolute files. However, your compiler/assembler/linker
must be able to generate files in one of the following formats:

IEEE-695 MUFOM (Microprocessor Universal Format
for Object Modules).

HP absolute (either with associated symbol files or just
raw absolute file).

Intel hexadecimal.

Motorola S-records.

Tektronix hexadecimal.

The sample program was written for and assembled with AMD’s
PC hosted assembler for the 29000/29050. The following command
was used to assemble the sample program.

C> as29 -l -fgosx cmd_rdr.src > cmd_rdr.lis
<RETURN>

In addition to the assembler listing (cmd_rdr.lis), the
“cmd_rdr.obj” relocatable file is created. Relocatable files are
linked together to form the absolute file, which is loaded into the
emulator.

Linking the Sample
Program

The linker command file (cmd_rdr.lnk) shown in figure 2-2 and the
following linker command were used to generate the absolute file.

C> ld29 -c cmd_rdr.lnk -o cmd_rdr.abs -m -e
Init > cmd_rdr.map <RETURN>

In addition to the linker load map listing (cmd_rdr.map), the
“cmd_rdr.abs” absolute file is created. This file contains the COFF
format absolute code.

ORDER .data=0x10000,.text=0x2000,.bss=0x20000
LOAD cmd_rdr.obj

Figure 2-2. The "cmd_rdr.lnk" Linker Command File

Getting Started 2-7

Converting Absolute
File Format

Because the COFF absolute file format created by the “ld29” linker
is not accepted by the HP 64774 emulator, the absolute file must be
converted to a format that is acceptable. The AMD software
development tools contain a utility that converts COFF format
files. The following command uses this utility to create a Motorola
S-record format absolute file.

C> coff2hex -m -o cmd_rdr.hex cmd_rdr.abs
<RETURN>

Starting the
29000/29050 PC
Interface

If you have set up the emulator device table and the HPTABLES
shell environment variable as shown in the HP 64700 Emulators PC
Interface Reference, you can start up the 29000/29050 PC Interface
by entering the following command from the MS-DOS prompt:

C> pcam29k <emulname>

In the command above, pcam29k is the command to start the PC
Interface; “< emulname> ” is the logical emulator name given in
the emulator device table.

The processor type in the emulator device table should be
“am29000”.

You should see the display shown in figure 2-3. If this command is
not successful, you will see an error message and will ret urn to the
MS-DOS prompt.

Selecting PC
Interface Commands

You can select command options by either using the left and right
arrow keys to highlight the option and press the < Enter> key, or
you can type the first letter of that option. If you select the wrong
option, you can press the < ESC> key to retrace up the command
tree.

When a command option is highlighted, either the next level of
options or a short message describing that option is shown on the
bottom line of the display.

2-8 Getting Started

Emulator Status The status of the emulator is shown on the line above the
command options. The PC Interface periodically checks the status
of the emulator and updates the status line. Error messages are
saved in the “Error Log” window. Status messages include the
following:

Status Messages Description of Message

Emulator in reset state
Running user program
No target system clock

Monitor is accepting commands
No bus cycles

Waiting for CMB to become ready
Processor halted

Waiting for target reset
Target system reset active

Unknown state

The emulation processor is reset.
The emulator is running a program.
The emulator is expecting, but not receiving, a clock from
the target system.
The monitor is allowing commands to be executed.
Activity on the bus cannot be processed.
The emulator is waiting for a READY signal on the CMB.
The emulation processor was stopped.
The emulator is waiting for a reset from the target system.
A reset has been executed in the target system.
The state of the emulation processor is unknown.

Figure 2-3. PC Interface Display

Getting Started 2-9

Mapping Memory The memory mapper tells the emulator how to access memory
locations in a particular range.

The emulator needs to know whether memory is located in
the emulator or in the target system.

The emulator also needs to know whether the memory is
RAM or ROM, which locations of physical emulation
memory are used for a particular address range, which
ranges are overlaid, and whether word, half-word, or byte
accesses should be used for particular ranges in target
memory.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers
combine relocatable files to form the absolute file. The linker load
map listing will show what memory locations your program will
occupy in memory. Figure 2-4 shows an Advanced Micro Devices
linker load map listing for the sample program.

Advanced Micro Devices, Inc. Am29000 Loader - Version 2.0-9
Copyright (c) 1987 - 1989 Microtec Research Inc.
ALL RIGHTS RESERVED. Serial Number AS2002563
Advanced Micro Devices, Inc. ASM29K Linker Rel. 2.0-9 Sat Mar 03 19:20:29 1990
Page 1

Command line: \USR\C29K\BIN\LD29.EXE -c cmd_rdr.lnk -o cmd_rdr.abs -m -e Init

ORDER .data=0x10000,.text=0x2000,.bss=0x20000
LOAD cmd_rdr.obj

OUTPUT MODULE NAME: cmd_rdr.abs
OUTPUT MODULE FORMAT: ABSOLUTE

SECTION SUMMARY

SECTION TYPE START END SIZE ALIGN MODULE

.text TEXT 00002000 000020B3 000000B4 4 BYTES cmd_rdr.obj

.data DATA 00010000 00010037 00000038 8 BYTES cmd_rdr.obj

.bss BSS 00020000 000200FF 00000100 8 BYTES cmd_rdr.obj

Figure 2-4. Linker Load Map for the Sample Program

2-10 Getting Started

LOCAL SYMBOL TABLE * (DEBUG) - Special symbolic debugging symbol
------------------ * (ABSOLUTE) - Absolute symbol

SYMBOL SECTION VALUE MODULE

.file (DEBUG) 00000013 cmd_rdr.obj

.text .text 00002000 cmd_rdr.obj

.data .data 00010000 cmd_rdr.obj

.bss .bss 00020000 cmd_rdr.obj
Write_Msg .text 00002068 cmd_rdr.obj
End_Msgs .data 00010038 cmd_rdr.obj
Scan .text 00002010 cmd_rdr.obj
Exe_Cmd .text 0000201C cmd_rdr.obj
Cmd_A .text 00002034 cmd_rdr.obj
Cmd_B .text 00002048 cmd_rdr.obj
Msg_I .data 00010028 cmd_rdr.obj
Fill_Dest .text 00002098 cmd_rdr.obj
Cmd_I .text 0000205C cmd_rdr.obj
Msg_A .data 00010000 cmd_rdr.obj
Msg_B .data 00010014 cmd_rdr.obj

GLOBAL SYMBOL TABLE

SYMBOL SECTION VALUE

Init .text 00002000
Msgs .data 00010000
Cmd_Input .bss 00020000
Msg_Dest .bss 00020004
edata (ABSOLUTE) 00010038
end (ABSOLUTE) 00020100
etext (ABSOLUTE) 000020B0

CROSS REFERENCE TABLE * - - Defined Module

SYMBOL SECTION REFERENCED

Init .text - cmd_rdr.obj
Msgs .data - cmd_rdr.obj
Cmd_Input .bss - cmd_rdr.obj
Msg_Dest .bss - cmd_rdr.obj
edata (ABSOLUTE) LINKER-DEFINED
end (ABSOLUTE) LINKER-DEFINED
etext (ABSOLUTE) LINKER-DEFINED

START ADDRESS: 00002000

Figure 2-4. Linker Load Map for Sample Program (Cont’d)

Getting Started 2-11

From the load map listing, you can see that the sample program
occupies code segment locations in three address ranges. The
“.text” area, which contains the opcodes and operands of the
sample program, occupies locations 2000H through 20B3H. The
“.data” area, which contains the ASCII values of the messages the
program displays, occupies locations 10000H through 10037H. The
“.bss” segment in the sample program, which contains the
command input byte and the destination area, occupies locations
20000H through 200FFH.

The minimum size of a block of emulation memory is 64 Kbytes.
When mapping memory, you can specify a range smaller than 64
Kbytes, but the mapper will automatically map the entire 64 Kbyte
block in which that range resides.

Two mapper terms are specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

To map memory for the sample program, select:

Config Map Modify

Using the arrow keys, move the cursor to the “address range” field
of term 1. Enter:

0..0ffff@r

The “@r” appended to the address range above is an address space
designator; it specifies that the range be mapped to instruction
ROM address space. Address space designators are described in
more detail in the chapter “Using the Emulator — In Depth”.

Move the cursor to the “memory type” field of term 1, and press
the < Tab> key to select the “erom” (emulation ROM) type. Move
the cursor to the “attribute” field of term 1, and press the < Tab>
key to select “bnka1”. Move the cursor to the “address range” field
of term 2, and enter:

10000..2ffff@d

The “@d” address space designator maps the range to data
memory address space.

2-12 Getting Started

Move the cursor to the “memory type” field of term 2, and press
the < Tab> key to select the “eram” (emulation RAM) type. Move
the cursor to the “attribute” field of term 2, and press the < Tab>
key to select “bnka2”.

To save the memory map, use the < Enter> key to exit the field in
the lower right corner. (The < End> key on Vectra keyboards
moves the cursor directly to the last field.) Figure 2-5 shows the
memory configuration display.

When mapping memory for your target system programs, you may
want to map emulation memory locations containing programs and
constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do
so.

For more information on the memory mapper and emulation
memory, refer to the “Mapping Memory” section in the chapter
“Using the Emulator — In Depth”.

Figure 2-5. Memory Map Configuration

Getting Started 2-13

Loading Programs
into Memory

Because two address spaces were mapped (instruction ROM with
@r, and data memory with @d), you must load the absolute file
twice. First, load the instruction ROM address space by selecting:

Memory Load

Enter the format of your absolute file. The emulator accepts
absolute files in the following formats:

IEEE-695 MUFOM (Microprocessor Universal Format
for Object Modules).
HP absolute (either with associated symbol files or just
raw absolute file).
Intel hexadecimal.
Motorola S-records.
Tektronix hexadecimal.

The “cmd_rdr.hex” absolute file is in Motorola S-record format, so
use the < Tab> key to select “Motorola_Hex”.

The next field allows you to selectively load the portions of the
absolute file which reside the following:

emulation memory
target system memory
both emulation and target system memory
background monitor

Because emulation memory is mapped for sample program
locations, you can enter either “emulation” or “both”.

Next, you select the address space designator for the load
operation. You will load the sample program into instruction
ROM address space with the “r” designator.

Finally, enter the name of your absolute file (“cmd_rdr.hex” in this
example) in the last field, and press < Enter> to start the memory
download.

Now, to load the absolute file into data memory, select:

Memory Load

2-14 Getting Started

Use all the same options except for the address space designator.
Move the cursor to the “address space designator” field and use the
< Tab> key to select “d” for data memory designator.

Press the < End> key to move the cursor to the last field, and press
< Enter> to start the memory download.

Using Symbols

IEEE-695 or
HP 64000 Format

Symbols

Symbols are part of the IEEE-695 and HP 64000 file format
definitions. That is, symbols can be contained in these file formats.
When you load IEEE-695 or HP 64000 format files, the PC
Interface uses a reader program to create files with the extensions
“.HPA” and “.HPS” (whose base names are the same as the
absolute file). The “.HPA” file is in a binary format that is
compatible with the HP 64700-Series firmware. The “.HPS” file is
an ASCII source file that contains the symbol to address mappings
used by the PC Interface. See the appendices “Using the HP 64000
Reader” and “Using the IEEE-695 Reader” for more information.

Other File Formats When your absolute file is not an IEEE-695 or HP 64000 format
file, the PC Interface does not create “.HPA” or “.HPS” files.
However, you can use an editor create a “.HPS” file using symbol
information from the linker load map output listing. Figure 2-6
shows the “.HPS” file for the sample program.

Note The format of a “.HPS” file requires
module names to be preceded by a single space,
symbols and addresses to be separated by a single < Tab>
character, and
the lines in the file that you will sort (you can use the
MS-DOS sort command to do this).

Getting Started 2-15

Loading Global
Symbols

When you load memory with IEEE-695 format absolute files,
global symbols are automatically loaded.

When you load memory with non-IEEE-695 format absolute files
and create the “.HPS” file, you must load the symbols in the
“.HPS” file by selecting the following command:

System Symbols Global Load

Enter the name of the “.HPS” file, and press < Enter> to load the
symbols.

Displaying Global
Symbols

After global symbols are loaded, both global and local symbols can
be used when entering expressions. Global symbols are entered as
they appear in the source file or in the global symbols display.

To display global symbols, select:

System Symbols Global Display

The symbols window automatically becomes active. You can press
< CTRL> Z to zoom the window. The resulting display follows.

 cmd_rdr
Cmd_Input 00020000@d
Init 00002000@r
Msg_Dest 00020004@d
Msgs 00010000@d
|cmd_rdr|Cmd_A 00002034@r
|cmd_rdr|Cmd_B 00002048@r
|cmd_rdr|Cmd_I 0000205C@r
|cmd_rdr|End_Msgs 00010038@d
|cmd_rdr|Exe_Cmd 0000201C@r
|cmd_rdr|Fill_Dest 00002098@r
|cmd_rdr|Msg_A 00010000@d
|cmd_rdr|Msg_B 00010014@d
|cmd_rdr|Msg_I 00010028@d
|cmd_rdr|Scan 00002010@r
|cmd_rdr|Write_Msg 00002068@r

Figure 2-6. The "cmd_rdr.hps" Symbol File

2-16 Getting Started

Displaying Local
Symbols

To load and display local symbols, select:

System Symbols Local, Display

Enter the name of the module in which the local symbols appear
(for example, “cmd_rdr”). Press < Enter> . The resulting display
follows.

After you load and display local symbols with the System Symbols
Local command, you can use local symbols as they appear in the
source file or local symbol display.

Figure 2-7. Global Symbols Display

Getting Started 2-17

Transferring Symbols
to the Emulator

Before you can view symbols in mnemonic memory and trace
displays, you must transfer them to the emulator.

After global symbols are loaded, you can transfer them to the
emulator by selecting:

System Symbols Global Transfer

To transfer local symbols for the module “cmd_rdr” to the
emulator, select:

System Symbols Local Transfer Group “cmd_rdr”

Removing Symbols from the Emulator

If you transferred many symbols to the emulator, you can fill the
memory used to store them. You can remove global and local
symbols from the emulator by using the Remove option in place of
the Transfer option in the symbols commands.

Figure 2-8. Local Symbols Display

2-18 Getting Started

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify
that the program was loaded by displaying memory in mnemonic
format. To do this, select:

Memory Display Mnemonic

Enter the address range Init.. . The two periods indicate you are
specifying an address range. The range size is 128 bytes when no
second address in the range is specified. The emulation window
automatically becomes active. You can press < CTRL> Z to zoom
the window and < PgUp> to see the beginning of the range.

As with any window, you can use the < PgUp> and < PgDn> keys
to scroll the information in the window.

Figure 2-9. Memory Mnemonic Display

Getting Started 2-19

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with the step command. To begin stepping through the
sample program, select:

Processor Step Address

Enter a step count of 1, enter the symbol “Init” (defined as a global
symbol in the source file), and press < Enter> to step from the
program’s first address, 2000H in instruction ROM. The executed
instruction, the program counter address, and the resulting register
contents are displayed. Figure 2-10 shows the resulting display.

Figure 2-10. Register Contents

2-20 Getting Started

Note You cannot display registers if the processor is reset. Use the
Processor Break command to cause the emulator to start executing
in the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time). Emulator
execution will temporarily break to the monitor.

To continue stepping through the program, you can select:

Processor Step Pc

After selecting the command above, you can change the previous
step count. If you want to step the same number of times, press
< Enter> to start the step.

To repeat the previous command, press < CTRL> R .

You can also step 1 time from the current program counter by
pressing the < F1> key. The sequence of keystrokes for a single
step command is assigned to the < F1> key by default. You can
modify this keystroke macro or define other keystroke macros with
the Config Key_macro command. For more information on
function key macros, see the PC Interface Reference.

Specifying a Step
Count

If you want to continue to step from the current program counter,
select:

Processor Step Pc

The previous step count is displayed in the “number of
instructions” field. You can enter a number from 1 through 99 to
specify the number of times to step. Type 5 into the field, and press
< Enter> . Figure 2-11 shows the resulting display.

Getting Started 2-21

When you specify step counts greater than one, all the instructions
that are executed are displayed, but the register contents are only
displayed after the last instruction.

Figure 2-11. Stepping the Processor

2-22 Getting Started

Modifying Memory The preceding step commands show the sample program executing
in the Scan loop, where it continually reads the command input
word to see whether if a command was entered. To simulate entry
of a sample program command, you can modify the command input
word by selecting:

Memory Modify Word

Now enter the address of the memory location to be modified, an
equal sign, and the new value of that location, for example,
“Cmd_Input= ’A’”. (The Cmd_Input label was defined as a global
symbol in the source file.)

To verify that 41H was written to Cmd_Input (20000H), select:

Memory Display Word

Type the symbol “Cmd_Input”, and press < Enter> .

You can continue to step through the program as shown earlier in
this chapter to view the instructions that are executed when an “A”
(41H) command is entered.

Running the
Program

To start the emulator executing the sample program, select:

Processor Go Pc

The status line will show that the emulator is “Running user
program”.

Getting Started 2-23

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages. The command
“A” (41H) was entered above, so the “Command A entered ”
message should have been written to the Msg_Dest locations. To
search the destination memory location for this sequence of
characters select:

Memory Find

Enter the range of the memory locations to be searched,
“Msg_Dest..”, and enter the data “’Command A entered ’”. The
resulting information shows that the message was written:

pattern match at address: 000020004@d

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to “B” and
search for “’Entered B command ’”, or you can modify the
command input byte to “C” and search for “’Invalid Command ’”.

Breaking into the
Monitor

To break emulator execution from the sample program to the
monitor program, select:

Processor Break

The status line shows that the emulator is “Running in monitor”.

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request (due to the speed
of the processor).

A break is achieved by transferring the processor from the normal
operating mode to the halt mode. See the topic “Effects of the
Background Monitor” in the “Using the Emulator — the Basics”
chapter. Also see the Am29000/Am29050 microprocessor data
book for more information about how a break is implemented.

2-24 Getting Started

Using Breakpoints You can define breakpoints at opcode locations in the user
program. When the breakpoint is hit, execution of the emulator is
diverted from the user program to the monitor.

Note Breakpoints can only be set at opcode locations; that is, the address
of the breakpoint must be on a 4 byte boundary.

Commands that define, set, or clear breakpoints cause emulator
execution to break into the monitor.

Defining a Breakpoint Defining a breakpoint enables the “breakpoints” feature. To define
a breakpoint at the address of the Cmd_I label of the sample
program (205c@r), select:

Breakpoints Add

Enter the local symbol “cmd_rdr:Cmd_I”. After the breakpoint is
added, it appears in the emulation window and is shown as set.

Run the program by selecting:

Processor Go Pc

The status line shows that the emulator is running the user
program. Modify the command input word to an invalid command:

Memory Modify Word

Enter an invalid command, such as “Cmd_Input=75”. The
following messages result:

ALERT: Software Breakpoint: 205c@r
STATUS: Am29000--Running in monitor

Getting Started 2-25

Displaying
Breakpoints

To view the status of the breakpoint, select:

Breakpoints Display

The information displayed shows that the breakpoint has been
cleared.

Setting a Breakpoint When a breakpoint is hit, it becomes disabled. To reenable the
software breakpoint, you can select:

Breakpoints Set Single

As with the Breakpoints Add command, the breakpoint is shown as
set in the emulation window.

Clearing a Breakpoint If you want to clear a software breakpoint (that does not get hit
during program execution, for example) you can select:

Breakpoints Clear Single

You are given a field in which to specify the breakpoint to be
cleared. Type in the symbol or address of the breakpoint, and press
< Enter> to clear the breakpoint.

2-26 Getting Started

Using the Analyzer The emulation analyzer has 80 trace signals which monitor internal
emulation lines (instruction bus, data bus, and status lines).
Because 80 trace signals are not enough to monitor all the signals
associated with the 29000/29050, the analyzer has three modes:

Instruction/Data bus mode. All instruction accesses are
recorded, and data accesses are recorded if they don’t
occur on the same clock cycle as instruction accesses.
States in which instruction and data accesses occur on the
same cycle are marked in the trace.

Data/Instruction bus mode. All data accesses are
recorded, and instruction accesses are recorded if they
don’t occur on the same clock cycle data accesses. States in
which instruction and data accesses occur on the same
cycle are marked in the trace.

Status mode. Status information for all transactions is
stored.

The “Getting Started” chapter describes how to modify the analysis
mode in the general emulator configuration. The “Configuring the
Emulator” chapter describes the analyzer modes.

The analyzer collects data at each pulse of a clock signal, and saves
the data (a trace state) if it meets a “storage qualification”
condition.

Note External analysis (capability to probe signals external to the
emulator) is not available with the HP 64774 emulator.

Predefined Trace
Labels

Four trace labels are predefined in the 29000/29050 analyzer: addr,
data, stat, and extra. Table 2-1 shows the trace label names and
emulation processor lines associated with the trace signals.

Getting Started 2-27

Trace Labels
and associated
Trace Signals

Assignment (depends on analyzer mode)

Instruction Bus Mode Data Bus Mode Status Mode

addr 0..31 A0-A31 A0-A31 A0-A31

data 32..63
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56..63

I0-I31 D0-D31 BGRT
BREQ
BINV
CDA
DBACK
DBREQ
DERR
DRDY
DREQ
DREQT0
DREQT1
IBACK
IBREQ
IERR
INTR0
INTR1
INTR2
INTR3
IRDY
IREQ
IREQT
LOCK
MPGM0
MPGM1
I24-I31

Table 2-1. Trace Signal Assignments

2-28 Getting Started

A collision indicates that either the instruction or data was taken;
the other is lost.

Predefined Status
Equates

Common values for the status trace signals have been predefined.
These equates may be used to specify values for the “stat” trace
labels when qualifying trace conditions.

Predefined status equates can’t be used wehn specifying values
under the “data” trace label while in “status” analyzer mode.
Instead, you can specify the actual binary value associated with a
particular status.

Table 2-2 shows how the equates are used in the different analyzer
modes.

Trace Labels
and associated
Trace Signals

Assignment (depends on analyzer mode)

Instruction Bus Mode Data Bus Mode Status Mode

stat 64..78
65
66
67
68
69
70
71
72
73
74
75
76
77
78

SUP/US
MPGM0
MPGM1
STAT0
STAT1
STAT2
LOCK
IREQT
IERR

(collision)
= 0

SUP/US
MPGM0
MPGM1
STAT0
STAT1
STAT2
DREQT0
DREQT1
R/W
OPT0
OPT1
OPT2
DERR
(collision)
= 1

STAT0
STAT1
STAT2
SUP/US
TRAP0
TRAP1
WARN
OPT0
OPT1
OPT2
PDA
PEN
PIA

R/W

extra 79 = 1 = 1 = 0

Table 2-1. Trace Signal Assignments (Cont’d)

Getting Started 2-29

Instruction or Data Bus Mode

Trace Label Equate Description

stat byte
cpx
dbus
derr
dind
drom
exec
hfwd
ibus
ierr
iind
inout
inttrp
iret
irom
nonseq
rd
run
sup
usr
word
wr

Byte access.
Coprocessor transfer.
D-bus access.
Data bus error.
Data bus instruction/data access.
Data bus instruction ROM access.
Normal execution.
Half-word access.
I-bus access.
Instruction bus error.
Instruction bus instruction/data access.
Data bus I/O read access.
Interrupt or trap.
Interrupt return.
Instruction bus instruction ROM access.
Non-sequential instruction fetch.
Data bus read.
Processor is running.
Supervisor mode.
User mode.
Word access.
Data bus write.

Table 2-2. Predefined Equates for Analyzer Labels

2-30 Getting Started

Resetting the
Analysis Specification

To be sure that the analyzer is in its default or power-up state,
select:

Analysis Trace Reset

Status Mode

Trace Label Equate (or binary value) Description

data 0xxxxxxxx xxxxxxxx xxxxxxxx

xxxx0xxxY

0xxxxxxxx xxxxxxxx xxxx1xxx

xxxxxxxxY

0xxxxxxxx xxxxxxxx xxxxxxxx

x0xxxxxxY

0xxxxxxxx xxxxxxxx xx0xxxxx

xxxxxxxxY

0xxxxxxxx xxxxxxxx xxxxx00x

xxxxxxxxY

0xxxxxxxx xxx0xxxx xxxxxxxx

xxxxxxxxY

0xxxxxxxx xxxxxxxx xxxxx01x

xxxxxxxxY

0xxxxxxxx xxx1xxxx xxxxxxxx

xxxxxxxxY

Coprocessor data accept.
Coprocessor transfer.
Data bus error.
Instruction bus error.
Data bus instruction/data access.
Instruction bus instruction/data access.
Data bus I/O access.
Instruction bus instruction ROM access.

Table 2-2. Predefined Equates for Analyzer Labels (Cont’d)

Getting Started 2-31

Specifying a Simple
Trigger

Suppose you want to trace the states of the sample program that
follow the read of a “B” (42H) command from the command input
word. You must modify the trace specification by selecting:

Analysis Trace Modify

Move the cursor to the “Trigger on” field, use the < Tab> key to
select pattern “a”, and press < Enter> .

You are now given a screen in which you assign values to patterns.
Move the cursor to the “addr” column associated with pattern “a”.
You will notice an expanded field in the lower portion of the
screen in which you may specify the address value to be associated
with pattern “a”. Type in “Cmd_Input”, and press < Enter> .

The cursor is now in the data field associated with pattern “a”.
Type in “42” in the entry field at the bottom of the display, and
press < Enter> . The cursor is now in the “stat” column associated
with pattern “a”.

Enter “rd” and press < Enter> . Figure 2-12 shows the final
patterns and expressions screen.

Figure 2-12. Analyzer Patterns and Expressions

2-32 Getting Started

To save the pattern assignment, press < End> to move the cursor
to the field in the lower right corner, and press < Enter> .

To save the trace specification (see figure 2-13), press < End> to
move the cursor to the field in the lower right corner, and press
< Enter> .

Starting the Trace First, make sure that the program is running by selecting:

Processor Go Address

Enter the starting address, “Init”, and press < Enter> .

To start the trace, select:

Analysis Begin

A message on the status line shows that the trace is running.

Figure 2-13. Trace Specification

Getting Started 2-33

You do not expect the trigger to be found because no commands
have been entered. Modify the command input word to “B” by
selecting:

Memory Modify Word

Enter “Cmd_Input= ’B’”. The status line now shows that the
emulation trace is complete.

Displaying the Trace To display the trace, select:

Analysis Display

There are two fields in which to specify the states to display. Use
the right arrow key to move the cursor to the “Ending state to
display” field. Type the number of the starting state plus 15 into
the ending state field, press < Enter> , and use < CTRL> Z to zoom
the trace window. A display similar to figure 2-14 will be shown.

Figure 2-14. Displayed States

2-34 Getting Started

Mnemonic Processor Lines Description An. Modes

ad
bq
bus grant
bus invalid
by
cc
cda
cpx
dba
dbq
de
dq
dr
ex
hlt
hw
i/d
i/d
i/o
i/t
i0
i1
i2
i3
iba
ibq
ie
iq
ir
irt
lck
lti
mp:< val.>
ns
pd

OPT2..OPT1 = 110
BREQ = 0
BGRT = 0
BINV = 0
OPT2..OPT1 = 001
OPT2..OPT1 = 101
CDA = 0
DREQT1..DREQT0 = 1x
DBACK = 0
DBREQ = 0
DERR = 0
DREQ = 0
DRDY = 0
STAT2..STAT0 = 111
STAT2..STAT0 = 000
OPT2..OPT1 = 010
IREQT = 0
DREQT1..DREQT0 = 00
DREQT1..DREQT0 = 01
STAT2..STAT0 = 101
INTR0 = 0
INTR1 = 0
INTR2 = 0
INTR3 = 0
IBACK = 0
IBREQ = 0
IERR = 0
IREQ = 0
IRDY = 0
STAT2..STAT0 = 100
LOCK = 0
STAT2..STAT0 = 010
MPGM1..MPGM0
STAT2..STAT0 = 110
PDA = 0

ADAPT29K accesses.
Bus Request active.
Bus Grant active.
Bus Invalid active.
Byte access.
Cache control.
Coprocessor Data Accept active.
Coprocessor transfer.
Data Burst Acknowledge active.
Data Burst Request active.
Data Error active.
Data Request active.
Data Ready active.
Executing Mode.
Halt or Step Modes.
Half-word access.
Instruction/data memory access.
Instruction/data memory access.
Input/output access.
Taking Interrupt or Trap.
Interrupt Request 0 active.
Interrupt Request 1 active.
Interrupt Request 2 active.
Interrupt Request 3 active.
Instruction Burst Acknowledge active.
Instruction Burst Request active.
Instruction Error active.
Instruction Request active.
Instruction Ready active.
Interrupt Return.
Lock active.
Load Test Instruction Mode.
MMU Programmable.
Non-sequential Instruction Fetch.
Pipelined Data Access active.

D, S
S
S
S
D, S
D, S
S
D, S
S
S
D, S
S
S
S
S
D, S
I, S
D, S
D, S
S
S
S
S
S
S
S
I, S
S
S
S
I, S
S
I, D, S
S
S

Table 2-3. Trace Mnemonics

Getting Started 2-35

Line 0 in the previous trace list shows the state that triggered the
analyzer. The trigger state is always on line 0.

For each captured state, there is additional mnemonic informtaion
(enclosed in brackets) next to the data/instruction information in
the mnemonic column. Table 2-3 shows the definitions of the
bracketed mnemonics.

For example, the trigger state in the previous trace shows that the
processor was in the supervisor mode, that it was an
instruction/data memory word read access, and that the MMU
programmable outputs were zeros. The bracketed mnemonics are
from the stat trace signals in the Instruction/Data and
Data/Instruction analyzer modes and from the data and stat trace
signals in the Status analyzer mode.

Mnemonic Processor Lines Description An. Modes

pe
ph
pi
rd
rm
rom
rs
su
tr0
tr1
us
wd
wr
wrn
wt
*

PEN = 0
STAT2..STAT0 = 001
PIA = 0
R/W = 1
OPT2..OPT1 = 100
IREQT = 1
OPT2..OPT1 = 011, 111
SUP/US = 1
TRAP0 = 0
TRAP1 = 0
SUP/US = 0
OPT2..OPT1 = 000
R/W = 0
WARN = 0
STAT2..STAT0 = 011
DREQ = 0 and IREQ = 0

Pipeline Enable active.
Pipeline Hold Mode.
Pipelined Instruction Access active.
Read access.
Instruction ROM access (as data).
Instruction Read-only Memory access.
Reserved.
Supervisor Mode.
Trap Request 0 active.
Trap Request 1 active.
User Mode.
Word-length access.
Write access.
Warn active.
Wait Mode.
Collision, I-bus and D-bus request on
same cycle.

S
S
S
D, S
D, S
I, S
D, S
I, D, S
S
S
I, D, S
D, S
D, S
S
S
I, D

Table 2-3. Trace Mnemonics (Cont’d)

2-36 Getting Started

Switching the
Analysis Mode at the

Trigger Point

The “Analysis mode” and “Analysis switching signal” configuration
items let you switch the analysis mode at the trigger point. For
example, if you want to trigger on the same state as in the previous
example, but switch to the status analysis mode at the trigger point,
you would do the following:

1. Modify the general emulator configuration.

2. Modify the trigger configuration.

3. Restart the trace.

Note When using analysis mode, the trigger condition switching must be
specified in terms of the analysis mode before the trigger.

Modifying the General Emulator Configuration

To modify the “Analysis mode” and “Analysis switching signal”
configuration items, select:

Config General

Move the cursor to the “Analysis mode” field and use the < Tab>
key to select “ds”, which means data/instruction mode before
trigger and status mode after trigger. The “Configuring the
Emulator” chapter describes the analyzer modes.

Move the cursor to the “Analysis switching signal” field and if the
value “TRIG1” is not shown, use the < Tab> key to select it. This
specifies that the internal TRIG1 signal is used to do the mode
switching.

To save the general configuration, press < End> to move the
cursor to the field in the lower right corner, and press < Enter> .
Notice that changing values in the general configuration causes
emulator execution to break into the monitor.

Getting Started 2-37

Modifying the Trigger Configuration

To modify the trigger configuration so that the analyzer drives the
internal TRIG1 signal, select:

Config Trigger

Move the cursor to the “Analyzer” field in the TRIG1 portion of
the display and use the < Tab> key to select the arrow pointing
from the analyzer to the TRIG1 line. This tells the analyzer to
drive TRIG1 when the trigger is found.

To save the trigger configuration, press < End> to move the cursor
to the field in the lower right corner, and press < Enter> .

Restarting the Trace

Again, make sure that the program is running by selecting:

Processor Go Address

Enter the starting address, “Init”, and press < Enter> . To restart
the trace, select:

Analysis Begin

Modify the command input word to “B” by selecting:

Memory Modify Word

Enter “Cmd_Input= ’B’”. The status line now shows that the
emulation trace is complete. Enter the following command to
display the resulting trace.

Analysis Display

Press < Enter> three times to select the defaults. A display similar
to figure 2-15 will be shown.

2-38 Getting Started

Notice that it takes several states after the trigger start for the
status analyzer mode to become active.

Notice also that there is no right bracket for states captured in the
status analysis mode. This shows that all of the appropriate status
mnemonics could not be shown. You cannot increase the width of
the mnemonic column. However, you can display the signals
associated with the “data” and “stat” trace labels in binary form by
changing the trace display format, which allows more information
to fit on the display. The next section explains how to do this.

Figure 2-15. Resulting Analysis Trace

Getting Started 2-39

Changing the
Trace Display
Format

To change the trace display format so that it shows the binary
values of the signals associated with the “data” and “stat” trace
labels, select:

Analysis Format

Move the cursor to the “mne” label, and use the < Tab> key to
select the “data” label instead. Press < Enter> . The cursor is now
in a field that specifies the number base to be used for the “data”
signals in the trace display. Use the < Tab> key to select “bin”, and
press < Enter> .

The cursor is now in the field for the next trace label. Use the
< Tab> key to select the “stat” label. Press < Enter> . Again, use
the < Tab> key to select the “bin” number base, and press
< Enter> . The resulting analysis format is shown in figure 2-16.

To save the analysis format changes, press < End> to move the
cursor to the field in the lower right corner, and press < Enter> .

Figure 2-16. Analysis Format Specification

2-40 Getting Started

To display the trace using the new format, select:

Analysis Display

Move the cursor to the “address disassembly mode” field and select
“address”. This field specifies whether address information, symbol
information, or both types of information should appear in the
“addr” column of the trace. When symbol information is shown, it
also appears in the “mne” column of the trace. Because you want
to display the “data” and “stat” labels as binary numbers (in other
words, they contain no symbol information), the “address”
selection is appropriate.

Type the number of the first available state into the starting state
field and the number of the starting state plus 15 into the ending
state field, and press < Enter> . A display similar to figure 2-17 will
be shown.

For a Complete
Description

For a complete description of the HP 64700-Series analyzer, see
the HP 64700 Emulators PC Interface: Analyzer User’s Guide.

Figure 2-17. Resulting Analysis Display

Getting Started 2-41

Testing for
Coverage

For each byte of emulation memory, there is an additional bit of
RAM used by the emulator to provide coverage testing. When the
emulator is executing the target program and accesses a byte in
emulation memory, the corresponding bit of coverage memory is
set. With the Memory Report command, you can see which bytes in
a range of emulation memory have (or have not) been accessed.
Beware that the results of the coverage test may be inaccurate because
the Am29000/Am29050 is a pipelined processor.

For example, suppose you want to determine how extensively some
test input exercises a program (in other words, how much of the
program is covered by using the test input). You can run the
program with the test input and then use the Memory Report
command to see which locations in the program range were
accessed.

The following commands break the processor, reset all coverage
bits to “non-accessed”, and perform coverage testing on the sample
program.

Processor Break

Memory Report Reset

Processor Go Address

Enter the starting address of the program, “Init”, and press
< Enter> . To display how much of the sample program is accessed
by initialization and scanning for input, select:

Memory Report Accessed

Enter the address range of the sample program, 2000..20b3@r,
press < Enter> , and press < CTRL> Z to zoom the emulation
window.

Now, enter the sample program command A by selecting:

Memory Modify Word

Enter Cmd_Input= ’A’ , press < Enter> , and run the memory
report command again by selecting:

Memory Report Accessed

2-42 Getting Started

Enter the sample program command B by selecting:

Memory Modify Word

Enter Cmd_Input= ’B’ , press < Enter> , and run the memory
report command again by selecting:

Memory Report Accessed

Finally, enter an invalid command by selecting:

Memory Modify Word

Enter Cmd_Input= ’C’ , press < Enter> , and run the memory
report command again by selecting:

Memory Report Accessed

Notice, in figure 2-18, that more of the sample program address
range is covered after each command is entered.

Figure 2-18. Results of Memory Coverage Report

Getting Started 2-43

Copying Memory You can copy the contents of one range of memory to another.
This is a useful feature to test things like the relocatability of
programs. To test whether the sample program is relocatable
within the same segment, copy the program to an unused, but
mapped, area of emulation memory. For example, select:

Memory Copy

Enter 2000..20b3@r as the source memory range to be copied, and
enter 3000@r as the destination address.

To verify that the program is relocatable, run it from its new
address by selecting:

Processor Go Address

Enter 3000@r. The status line shows that the emulator is
“Running user program“. You may want to trace program
execution or enter valid and invalid commands and search the
message destination area (as shown earlier in this chapter) to verify
that the program is working correctly from its new address.

Resetting the
Emulator

To reset the emulator, select:

Processor Reset Hold

The emulator is held in a reset state (suspended) until a Processor
Break, Processor Go, or Processor Step command is entered. If
there was a previous Processor CMB Go command, a CMB execute
signal will also cause the emulator to run.

You can also specify that the emulator begin executing in the
monitor after reset instead of remaining in the suspended state. To
do this, select:

Processor Reset Monitor

2-44 Getting Started

Exiting the PC
Interface

There are several different ways to exit the PC Interface. You can
exit the PC Interface using the “locked” option which specifies that
the current configuration will be present next time you start up the
PC Interface. You can select this option as follows.

System Exit Locked

Another way to exit the PC Interface is with the “unlocked” option
which specifies that the default configuration will be present the
next time you start up the PC Interface. You can select this option
with the following command.

System Exit Unlocked

The last way you can exit the PC Interface is the with the “no save”
option. This option is similar to the “locked” option except that it
specifies that the configuration present when you entered the PC
Interface will be present the next time you start the PC Interface.
You can select this option with the following command.

System Exit No_save

For more information on exiting the PC Interface see the PC
Interface Reference manual.

Getting Started 2-45

Notes

2-46 Getting Started

3

Using the Emulator — The Basics

Target System
Design
Considerations

The HP 64774 29000/29050 emulator requires a target system to
operate. In other words, the emulator must always be “in-circuit”.
The target system may be the harbor box that is shipped with the
emulator or your own target system. Specifically, you must provide
+ 5V and a clock signal must be provided. If these are not present,
the emulator cannot access emulation memory.

When the emulator is connected to your target system, you can
power up the emulator when the target system is powered down.
This is not possible when using the harbor box as the target system.

Access for Emulator
Probe

The target system must be able to accept a 169 pin PGA (Pin Grid
Array) processor package.

There must be enough clearance in the target system to allow the
HP 64774 emulation probe to be plugged in and the cable routed
from the target system to the emulator control box. See figure 3-1
for probe and cable dimensions and pin orientation.

Probe Power
Requirements

An additional 750 mA of + 5V must be available at the processor
socket to power the HP 64774 probe. This guards against latch-up
problems in the HP 64774 probe circuitry.

Probe Cooling We recommend that you provide 100 lfm of forced air cooling for
the HP 64774 probe, especially at higher system clock rates where
power dissipation is greater.

Disable Target Data
Bus Buffers

To provide maximum performance, there are no buffers between
the target system’s I and D busses and the emulation processor.

Using the Emulator — The Basics 3-1

Figure 3-1. HP 6 4774 Emulator Probe Dimensions

3-2 Using the Emulator — The Basics

Provisions must be made in the target system to disable the target
system data buffers on both the I (instruction) and D (data) busses.

When Using Emulation Memory

If you need to use the emulation memory (sometimes referred to as
overlay memory) of the HP 64774, then you must connect two
control signals from the HP 64774 probe to the target system to
selectively disable the I and D data bus buffers. These two signals,
ENITRG (Enable Instruction Target data buffers) and ENDTRG
(Enable Data Target data buffers) are TTL level signals that are
driven low to tell the target system that it must disable the buffers
on that bus. These signals remain low until the emulator no longer
needs the bus. ENDTRG is asserted for all emulation memory data
accesses, of whatever type [(opt 110, 000, 001, 010)], in addition to
ADAPT cycles.

The leads provided for the ENITRG and ENDTRG signals will
plug on to a standard IC clip with the following characteristics:

Pin diameters of 0.024 to 0.029 inches.

Minimum pin spacing of 0.100 inches.

Pin length of 0.200 to 0.300 inches.

These outputs can sink 20 mA of current in the low state, and the
leads have an electrical impedance of about 90 Ω. For best
performance you should terminate these leads in the target system
by about 150 Ω to 2.7V (this can be done with a resistive divider of
270 Ω to + 5V and 330 Ω to ground). See figure 3-1 for lead
dimensions and connector specifications.

Figure 3-2 shows the timing requirements of the ENITRG and
ENDTRG signals. These signals are synchronous with the positive
edge of SYSCLK and are valid 10 ns after that edge. Notice that
the emulator drives only the last half of each cycle that ENITRG is
held false. Also note that while the emulator may drive data during
a cycle, it is only guaranteed to be valid when xRDY is true.

The ENITRG and ENDTRG signals may also be used to terminate
burst transfers to/from the target system for the bus in question.

Using the Emulator — The Basics 3-3

Figure 3-2. ENITRG and ENDTRG Timing

3-4 Using the Emulator — The Basics

When Not Using Emulation Memory

If you don’t need emulation memory, then the target system buffers
may be disabled by monitoring the alignment pin (pin D4 or 169)
on the Am290xx socket and disabling the buffers on both the I and
D busses when this signal goes LOW. The target system must
respond within 100 ns to the assertion/de-assertion of the
alignment pin. If the buffers will be disabled, as outlined in the
previous “When Using Emulation Memory” section (using the
ENITRG and ENDTRG signal wires from the probe) then
monitoring the alignment pin is not needed.

Processor Signal
Considerations

The HP 64774 emulator uses some of the processor signals to
provide emulation features. So, these signals are affected by the
emulator.

WARN Line

The WARN line is intercepted by the HP 64774 and not driven to
the emulation processor. The HP 64774 can be configured to break
processor execution when the WARN signal is driven true.

Control Lines Intercepted

To control the processor, the emulator intercepts the following
signals:

IRDY, DRDY , BREQ , IBACK, DBACK , PEN, IERR ,
DERR , RESET , INCLK

AND/OR arrays of very fast logic are used to minimize the delays.
These delays are typically 1 ns, and about 1.5 ns in the worst case.

SYSCLK

SYSCLK is more heavily loaded than other signals — about 3 TTL
loads and 50 pF.

Using the Emulator — The Basics 3-5

Other Signals

All signals except the intercepted control lines and SYSCLK are
loaded with 1 FCT load, and 30 pF, and are pulled up to + 3.5V
through a 100K Ω resistor. Capacitance is about 30 pF.

Effects of Using
Emulation Memory

Using emulation memory has the following effects:

Effects of emulation memory has when disabling target
data bus buffers (see the previous section “Disable Target
Data Bus Buffers”).
Pipelined access mode is disabled (PEN line is blocked).
Single clock cycle accesses on the initial access (xREQ
true) are not supported at clock rates above 25 MHz.

Effects of the
Background Monitor

Emulator execution temporarily breaks into the background
monitor when you use emulation commands to display processor
registers or target system memory. The background monitor affects
the emulation processor in these ways:

Interrupts are not serviced while the emulator is in the
background monitor.
Bus requests may be held off for about 100 us while in the
background monitor.

The HP 64774 29000/29050 emulator does not have a monitor
program, as is common with other HP 64700 Series Emulators.
The HP 64774 utilizes an 80186 microprocessor to accomplish the
duties associated with a background monitor. Therefore, no
emulation or target memory resources are required. You do not
have to be concerned about overlaying target memory or emulation
memory on top of a monitor program.

The on-board 80186 accomplishes the “monitor” functions by
controlling the CNTL0 and CNTL1 signals. By asserting different
combinations of the two signals, the 29000/29050 can be placed in
one of four states: RUN, HALT, STEP, and LOAD TEST
INSTRUCTION. It is by means of the LOAD TEST
INSTRUCTION that the emulator can examine and modify the
internal state of the processor without altering the processor’s
instruction stream.

3-6 Using the Emulator — The Basics

Advanced Micro Devices, Inc., provides a tool called the MON29K
Target Resident Monitor. The 64774 emulator does not use the
MON29K monitor.

Memory Accesses Depending on how the emulator is configured (the clock speed and
whether emulation memory is being used) the emulator may insert
wait states on emulation memory and target memory accesses. See
the “Emulator Speed Configuration” section of the “Configuring
the Emulator” chapter for complete details of how memory
accesses are affected by the emulator.

Plugging the
Emulator into a
Target System

The emulator probe has a 169-pin Pin Grid Array (PGA)
connector.

Caution Possible Damage to the Emulator Probe. The emulator probe comes
with a pin extender. Do not use the probe without a pin extender
installed. Replacing a broken pin extender is much less expensive
than replacing the emulator probe.

Don’t use more than one pin extender, unless it is needed for
mechanical clearance, because pin extenders degrade signal quality.

The emulator probe is also provided with a foam pin protector to:
(1) protect the probe from damage due to electrostatic discharge
(ESD), and (2) protect the delicate gold-plated pins of the probe
connector from impact damage.

Using the Emulator — The Basics 3-7

Caution Possible Damage to the Emulator Probe. The emulation probe
contains devices that can be damaged by static discharge. You
should take precautions before handling the microprocessor
connector attached to the end of the probe cable to avoid
damaging the internal components of the probe.

Caution Possible Damage to the Emulator. Make sure target system power
is OFF before installing the emulator probe into the target system.
Do not install the emulator probe into the processor socket with
power applied to the target system.

Caution Damage to the Emulator Probe will Result if the Probe is Incorrectly
Installed. Make sure pin 1 of the probe connector is aligned with
pin 1 of the socket. When installing the emulation probe, be sure
that the probe is inserted into the processor socket so that the
alignment pin, D4, of the connector aligns with that pin of the
socket (as shown in the figure below).

3-8 Using the Emulator — The Basics

There are two extra rows of holes on top of the emulator probe
microprocessor socket (see figure 3-3), and two extra rows of pins
on the bottom of the probe. When attaching the emulator probe to
a target system microprocessor socket, make sure you connect the
forwardmost rows of pins, toward the tip of the probe, to the
microprocessor socket.

Figure 3-3. Plugging into a Target System

Using the Emulator — The Basics 3-9

Notes

3-10 Using the Emulator — The Basics

4

Using the Emulator — In Depth

Introduction The “Getting Started” chapter shows you how to use the basic
features of the 29000/29050 emulator. This chapter describes some
of those features in more detail. Also, this chapter describes
features of the emulator that were not covered in the “Getting
Started” chapter.

This chapter contains information on the following topics:

Mapping memory.
Modifying and displaying memory in mnemonic format.
Storing the contents of memory into absolute files.
Modifying and displaying registers.
Making coordinated measurements.

Prerequisites Before performing the tasks described in this chapter, you should
be familiar with general emulator operation. See the Concepts of
Emulation and Analysis manual and the “Getting Started” chapter
of this manual.

Using the Emulator — In Depth 4-1

Mapping Memory The memory mapper tells the emulator how to access memory
locations in a particular range.

The emulator needs to know whether memory is located in
the emulator or in the target system.

The emulator also needs to know whether the memory is
RAM or ROM, which locations of physical emulation
memory are used for a particular address range, which
ranges are overlaid, and whether word, half-word, or byte
accesses should be used for particular ranges in target
memory.

A total of 15 ranges can be mapped. Each range that you map is
associated with a mapper term. To enter the memory mapper,
select:

Config Map Modify

Figure 4-1 shows the memory map configuration display. Notice
that there are three fields associated with each mapper term:
address range, memory type, and attribute.

Figure 4-1. Memory Map Configuration

4-2 Using the Emulator — In Depth

Address Ranges The range specified when defining a mapper term may be any valid
subrange of the processor address space. The starting address will
always be masked to be the beginning of a 64K byte block. The
ending address will always be modified to be the end of a 64K byte
block.

Address Space Designators

Because separate blocks of memory can be connected to the I-bus
and D-bus of the 29000/29050 and because memory can be accessed
differently depending on whether it’s ROM or RAM, an address
space designator must be supplied with address ranges. If an
address space designator is not supplied with an address range, the
default address space designator (see the “Default address space”
configuration item) will be used. The address space designators are:

@i Instruction bus address space (IREQT = 0).

@d Data bus address space (DREQT = 00,
OPT = 000,001,010).

@id Instruction and data bus address space
(combination of “@i” and “@d”).

@r Instruction ROM on the instruction bus
(IREQT = 1).

@a Instruction ROM on the data bus
(DREQT = 00, OPT = 100).

@ra Instruction ROM on instruction and data bus
(combination of “@r” and “@a”).

(The IREQT signal is a reflection of the ROM Enable bit (8) in
the CPS register. DREQT = 00 means an instruction/data access,
as opposed to I/O or coprocessor accesses. OPT is taken from bits
18..16 of the load or store instruction opcode.)

A maximum of 8 I-bus connections and 7 D-bus connections are
allowed. I-bus connections are made when the “@i” or “@r”
designators are used. D-bus connections are made when the “@d”
or “@a” designators are used.

Using the Emulator — In Depth 4-3

When the “@id” or “@ra” designators are used, two connections
are made, one to the I-bus and one to the D-bus (see figure 4-2).

Figure 4-2. 2 9000/29050 Addresses & Bus Connections

4-4 Using the Emulator — In Depth

If, while operating the emulator, you see the status message
“Slow I-bus cycles”, it simply means that the emulator does not see
any activity on the instruction bus.

Types of Memory When mapping an address range, you must classify the type of
memory as either emulation RAM (eram), emulation ROM
(erom), target RAM (tram), target ROM (trom), or guarded
memory (grd).

Accesses to guarded memory locations will cause emulator
execution to break to the monitor. Writes to ROM will cause
emulator execution to break to the monitor if the “Brk on write to
ROM” general configuration item is “on”.

Attributes When mapping emulation memory ranges, you must include an
attribute that names the bank and block of memory into which that
range should be mapped.

When mapping ranges of target memory, attributes can be included
to specify locations that have different I-bus and D-bus addresses.
Also, attributes can be used to specify the access mode to be used
with a range of target memory.

Emulation Memory Available

The HP 64774 emulator can have 0, 1, or 2 banks of emulation
memory. There are two blocks of memory in each bank. Emulation
memory is mapped in ranges of at least 64 Kbytes, beginning on 64
Kbyte boundaries (see figure 4-3).

If the banks have 64Kx4 static RAMs, each bank contains 512
Kbytes, and each block contains 256 Kbytes (40000H).

If the banks have 256Kx4 static RAMs, each bank contains 2
Mbytes, and each block contains 1 Mbytes (100000H). Though
there is four times as much memory when 256Kx4 RAMs are used,
ranges can still be mapped at a resolution of 64 Kbytes.

Because each bank has its own memory arbiter, the I-bus and
D-bus can be configured to operate independently. You can
optimize each bank for I-bus or D-bus accesses (see the “bnka” and
“bnkb” configuration items).

Using the Emulator — In Depth 4-5

Emulation Memory Attributes

The “bnka1”, “bnka2”, “bnkb1”, and “bnkb2” attributes assign
ranges to a particular bank and block of emulation memory. These
attributes allow you to map ranges into banks optimized for either
I-bus or D-bus accesses, and they allow you to overlay memory
ranges.

Overlaying Ranges in Emulation Memory. Suppose your
emulator contains one bank of memory loaded with 64Kx4 RAMs
(0.5 Mbyte, 256 Kbytes per block). This means that a block of
emulation memory contains 40000H bytes (0 through 3FFFFH)

Figure 4-3. Emulation Memory Example

4-6 Using the Emulator — In Depth

and there are 18 significant address lines to that memory.
Therefore, all ranges (mapped to that block) whose 18 least
significant bits are the same will be overlaid. For example, consider
the following memory map configuration:

Parts of the first three ranges above are overlaid because their 18
least significant bits are the same. While the 18 least significant bits
of the last range are the same as those of the first three ranges, the
last range is not overlaid because it is mapped to a different block
of emulation memory.

Displaying Overlaid Ranges. You can display the ranges that
are overlaid in the 64 Kbyte regions of emulation memory, by
selecting:

Config, Map, Display

Figure 4-4. Example Memory Map Configuration

Using the Emulator — In Depth 4-7

The display corresponding to the previous memory map
configuration is shown below.

Target Memory Attributes

While the emulator can assume that all ranges not mapped to
emulation memory are in the target system (by mapping all other
memory as target system emulation ram), there is still information
that the emulator must know about accessing particular ranges in
the target system.

Ranges with Different I-bus and D-bus Addresses. The
“blk1” through “blk8” attributes are for use with target RAM
ranges where the same physical memory is assigned to different
I-bus and D-bus addresses. Up to eight of these ranges can be
mapped. The following memory map configuration shows how
these attributes can be used.

All ranges mapped using the same bus target memory attribute
must be the same size.

Figure 4-5. Memory Map Display

4-8 Using the Emulator — In Depth

Access Mode Attributes

The memory mapper allows you to specify an access mode for
individual ranges of memory. The access mode tells the emulator
whether to use word, half-word, or byte accesses when reading or
writing memory. For example, the access mode is used, when you
display or modify target memory locations or when you load
absolute files into target memory.

Access mode attributes for emulation memory are needed only if
little endian byte ordering is used. The access mode is used to
ensure proper loading and dumping of the memory.

The letter “w”, “h”, or “b” may be used as an attribute or appended
to a “blk” or “bnk” attribute to indicate that the memory should
always be accessed as words, half-words, or bytes. This will override
the access mode set in the “Access width” field of the general
emulator configuration. Access mode attributes are useful if
loading a file containing several data areas whose memory should
be accessed differently.

Memory mapped as instruction ROM, or instruction memory
connected only to the I-bus cannot have an access size attribute.

Also, memory mapped as “other” will always use the access size set
in the “Access width” field of the general emulator configuration.

Using the Emulator — In Depth 4-9

Modifying and
Displaying Memory

You modify or display memory by selecting the following
commands:

Memory Modify ...

Memory Display ...

When you select these commands, you can display or modify the
following size memory locations:

Byte 8 bits

Half 16 bits

Word 32 bits

Also, 29000/29050 emulator allows you to display or modify
processor memory space using floating-point values.
Floating-point values must be displayed or modified at addresses
that are multiples of four bytes.

Float 32-bit float format

Double 64-bit double format

Extended 80-bit extended format

Quad 128-bit quad format

Note When modifying memory with floating point values of type
“extended” or “quad”, expressions should not contain or evaluate
to values outside the range of type “double”. Single values (not in
an expression) can have any legal value for that type.

When displaying memory, you have the following options:

Mnemonic Assembly language mnemonics.

Repetitively Performs last memory command
repetitively.

4-10 Using the Emulator — In Depth

After you have chosen from the options above, you are given a field
in which to specify the addresses to be displayed or the addresses
and the new values of the locations to be modified.

Storing Memory
Contents to
Absolute Files

The “Getting Started” chapter shows you how to load absolute files
into emulation or target system memory. You can also store
emulation or target system memory to an absolute file with the
following command.

Memory Store

Note You can name the absolute file with a total of eight alphanumeric
characters, and include an extension of up to three alphanumeric
characters.

Caution File may be overwritten! The Memory Store command writes over
an existing file if it has the same name that is specified with the
command. You may want to verify beforehand that the specified
filename does not already exist.

Using the Emulator — In Depth 4-11

Modifying and
Displaying
Registers

You modify or display registers by selecting the following
commands:

Registers Display ...

Registers Modify ...

When you select those commands, you have the following options:

Verbose Using this option in register
commands causes bit fields of the
special-purpose registers to be
separated and labeled.

Terse Using this option in register
commands causes only
hexadecimal contents of the
registers to be shown.

The 29000/29050 emulator allows you to display or modify
processor registers using floating point values.

Float 32-bit float format

Double 64-bit double format

Extended 80-bit extended format

Quad 128-bit quad format

After you specify the type of register access, you can specify which
registers to display or modify.

Basic Selects the basic registers. These
registers include the current
processor status register, the
configuration register, and
program counter registers 0 and
1.

Class Selects a class of registers (see
table 4-1).

4-12 Using the Emulator — In Depth

Range Allows you to display or modify a
range of the general purpose
registers.

Register Names and
Classes

Table 4-1 lists the register names and classes that may be used with
the display/modify register commands. Registers that apply only to
the 29050 are marked with “*”. Commands that display the execute
and decode addresses are shown at the end of this table.

< REGCLASS> < REGNAME> Description

glob gr1, gr2*, gr3*, gr64..gr127 Global Registers

loc lr0..lr127 Local Registers

gen r1, r2*, r3*, r64..r255
(combination of glob and loc
register classes, used when
accessing absolute register
numbers)

General-Purpose Registers

prot (Protected
Special-Purpose Registers)

vab
ops
cps
cfg
cha
chd
chc
rbp
tmc
tmr
pc0, pc1, pc2
mmu
lru

Vector Area Base Address
Old Processor Status
Current Processor Status
Configuration
Channel Address
Channel Data
Channel Control
Register Bank Protect
Timer Counter
Timer Reload
Program Counter 0, 1, 2
MMU Configuration
LRU Recommendation

Table 4-1. Register Names and Classes

Using the Emulator — In Depth 4-13

< REGCLASS> < REGNAME> Description

* prot (Protected
Special-Purpose Registers)

rsn
rma0
rmc0
rma1
rmc1
spc0
spc1
spc2
iba0
ibc0
iba1
ibc1

Reason Vector
Region Mapping Address 0
Region Mapping Control 0
Region Mapping Address 1
Region Mapping Control 1
Shadow Program Counter 0
Shadow Program Counter 1
Shadow Program Counter 2
Instruction Breakpoint Address 0
Instruction Breakpoint Control 0
Instruction Breakpoint Address 1
Instruction Breakpoint Control 1

unprot (Unprotected
Special-Purpose Registers)

ipc, ipa, ipb
q
alu
bp
fc
cr
fpe *
inte *
fps *
exop *

Indirect Pointer C, A, B
Q
ALU Status
Byte Pointer
Funnel Shift Count
Load/Store Count Remaining
Floating-Point Environment
Integer Environment
Floating-Point Status
Exception Opcode

spec (combination of prot and unprot
register classes)

Special-Purpose Registers

tlb tlb0..tlb127 Translation Look-Aside Buffer

Table 4-1. Register Names and Classes (Cont’d)

4-14 Using the Emulator — In Depth

When an interrupt or trap is taken, the freeze bit is set (thus the
processor is frozen), and PCO and PC1 contain the addresses of
the instructions in the decode and execute stages of the pipeline.

< REGCLASS> < REGNAME> Description

coproc (Coprocessor
Registers - only available if
coprocessor is present and
the "Use coprocessor"
configuration item is set to
"on".)

instr
i_temp
r
s
r_temp
s_temp
status
precis
rf0-rf7
mode
mode_hi
mode_lo
f
flags

Instruction
I-Temp
R
S
R-Temp
S-Temp
Status Register
Precision Register
RF0-RF7 (register file)
Mode
Mode - high 32 bits
Mode - low 32 bits
F (display only)
Flag Register (display only)

* acc (for 29050 only) acc0, acc1, acc2, acc3 Floating point accumulator
registers

all (combination of glob, loc, spec,
tlb , coproc, and acc register
classes)

All Registers

(no class specified) gr1, gr64..gr111, lr0..lr47 and
selected special registers,

Commands The da command displays the
decode address value.

The ea command displays the
execute address value.

True decode address (may be
different from pc0 if processor is
frozen)
True execute address (may be
different from pc1 if processor is
frozen)

Table 4-1. Register Names and Classes (Cont’d)

Using the Emulator — In Depth 4-15

Making
Coordinated
Measurements

Coordinated measurements are synchronous measurements
between multiple emulators or analyzers. Coordinated
measurements can be made between HP 64700-Series emulators
that communicate over the Coordinated Measurement Bus (CMB).
Coordinated measurements can also be made between an emulator
and some other instrument connected to the BNC connector.

This section describes coordinated measurements made from the
PC Interface. These types of coordinated measurements are:

Running the emulator on receipt of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution
into the monitor.

CMB Signals Three signal lines on the CMB are active and serve the following
functions:

/TRIGGER Active low. The analyzer trigger line on the
CMB and on the BNC serve the same logical
purpose. They provide a way for the analyzer to
drive its trigger signal out of the system or for
external trigger signals to arm the analyzer or
break the emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When CMB run
control interaction is enabled, all emulators
must break to background on receipt of a false
READY signal and will not return to
foreground until this line is true.

/EXECUTE Active low. This line serves as a global interrupt
signal. On receipt of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it
is doing and execute a previously defined
process. This process might run the emulator or
start a trace measurement.

4-16 Using the Emulator — In Depth

Running the Emulator
at /EXECUTE

Before you can have the emulator respond to the /EXECUTE
signal, you must enable CMB interaction. To do this, select:

Config General

Use the arrow keys to move the cursor to the “CMB Interaction”
field, and use the < Tab> key to select “on”. Use the < Enter> key
to exit out of the lower right-hand field in the configuration display.

To specify that the emulator begin executing a program on receipt
of the /EXECUTE signal, select:

Processor CMB Go

Now you may either select the current program counter, or you
may select a specific address.

The command you enter is saved and is executed when the
/EXECUTE signal becomes active. Also, you will see the message
“ALERT: CMB execute; run started”.

Using the Analyzer
Trigger to Break into

the Monitor

To cause emulator execution to break into the monitor when the
analyzer trigger condition is found, you must modify the trigger
configuration. To access the trigger configuration, select:

Config Trigger

The trigger configuration display contains two diagrams, one for
each of the internal TRIG1 and TRIG2 signals.

To use the internal TRIG1 signal to connect the analyzer trigger to
the emulator break line, move the cursor to the highlighted
“Analyzer” field in the TRIG1 portion of the display, and use the
< Tab> key to select the arrow that points away from the analyzer
and towards TRIG1. This causes the analyzer to drive TRIG1 when
the trigger is found.

Next, move the cursor to the highlighted “Emulator” field and use
the < Tab> key to select the arrow pointing towards the emulator.
This specifies that emulator execution will break into the monitor
when the TRIG1 signal is driven. Figure 4-6 shows the trigger
configuration display.

Using the Emulator — In Depth 4-17

Figure 4-6. Trigger Configuration

4-18 Using the Emulator — In Depth

5

Configuring the Emulator

Introduction This chapter describes the HP 64774 emulator configuration
options. To access the emulator configuration options, select:

Config General

Figure 5-1. General Emulator Configuration

Configuring the Emulator 5-1

These configuration items are described in this chapter.

Emulator Speed Configuration
– Target clock speed selection

Emulation memory selection
Clock cycles for emulation memory accesses
Wait-states for emulation memory

– Restrict to real-time runs
Emulation Memory Configuration
– Primary bus selection
– Lock ready for bus accesses selections

Analysis Mode Configuration
– Analysis mode

Analysis mode switching signal
Emulator Break Configuration
– Software breakpoints
– Break on writes to ROM selection
– Break on IERR or DERR signals selection
– Break on WARN signal selection

General Emulator Configuration
– Coprocessor access
– Byte ordering for memory and I/O ports
– Force simple mode accesses
– Access width selection
– Default address space
– CMB interaction

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Note You could use the System Terminal window to modify the
emulator configuration. However, if you do this, some PC Interface
features may no longer work properly. You should only modify the
emulator configuration by using the options presented in the PC
Interface.

5-2 Configuring the Emulator

Emulator Speed
Configuration

Note The 29000/29050 emulator can execute in a target system at full
clock speed (33 MHz); however, the analyzer may provide incorrect
data above 25 MHz. As a result, Hewlett-Packard only supports
operation of the HP 64774 emulator with analysis at clock speeds
up to 25 MHz.

The emulator makes adjustments based on the speed of the target
system clock, whether emulation memory is used or not, and, if
emulation memory is used, the access time of the emulation
memory modules installed. (The 2 Mbyte memory modules have a
slower access time than the 0.5 Mbyte memory modules.) See table
5-1 to determine the correct settings for the “clock speed”,
“emulation memory”, and “clocks for emulation memory”
configuration items. These settings determine the minimum
number of clocks required for any given cycle type (see table 5-2).
Additional clock cycles (wait states) can be inserted using the
“number of wait states for emulation memory” configuration items.

You can also specify whether or not the emulator should be
restricted to real-time execution.

Clock Speed The emulator will adjust the number of wait states based on
whether the target system clock speed is less than or equal to
25 MHz or greater than 25 MHz. The wait states are inserted for
mapper address translation (when the “emulation memory”
configuration item is set to “on”).

normal
(emulation
memory = on)

Use this setting when the target clock speed
is less than or equal to 25 MHz. No wait
states are required for mapper address
translation of emulation or target memory
accesses.

Configuring the Emulator 5-3

fast
(emulation
memory = on)

Use this setting when the target clock speed
is greater than 25 MHz. One wait state is
required for mapper address translation of
emulation or target memory accesses.

When emulation memory is disabled (the “emulation memory”
configuration item is set to “off”), this configuration item does not
affect the emulator.

Emulation Memory

The “emulation memory” configuration item allows you to enable
or disable emulation memory and the memory mapper.

At or below 25 MHz (the “clock speed” configuration item is set to
“normal”), the emulator will operate out of emulation memory
without requiring any wait states for mapper address translation. In
this case, there is no need to disable emulation memory.

When the clock speed is above 25 MHz (the “clock speed”
configuration item is set to “fast”), mapper address translation
requires one wait state when operating out of emulation or target
memory.

If the emulator is operating out of target memory only, it can run at
clock speeds above 25 MHz without any wait states when
emulation memory and the memory mapper are disabled.

off
(clock speed =
fast)

High speed, without mapper. In this mode,
no wait states are inserted, but all accesses
are directed to the target system.

No breaks on memory type (guarded, write
to ROM, etc.) are available.

Pipelined accesses are supported.

on
(clock speed =
fast, clocks for
emulation
memory = 2)

High speed, with mapper. In this mode, any
new request (assertion of IREQ or DREQ
causing a new access) will result in one clock
cycle of dead time on that bus to allow for
mapper address translation. This means that

5-4 Configuring the Emulator

the target system must insert at least one
wait state during this type of access. Dead
time only applies to the first access;
subsequent burst cycles may operate with
zero wait states.

Pipelined accesses are not allowed (the PEN
signal is not driven to the emulation
processor) because each access requires a
separate cycle. The PEN (Pipeline Enable)
signal allows devices that can support
pipelined accesses to signal that a second
access may begin while the first completes.
The target system can drive the pipeline
enable signal, but it will not reach the
processor. See the Am29000/Am29050
microprocessor data book for more
information.

When emulation memory is enabled, the
most recently entered map is used.

Clocks for Emulat ion Memory

This configuration item specifies the number of clock cycles to use
when accessing emulation memory. The valid settings for this
configuration item are 1 and 2.

This configuration item is useful for slower emulation memory (for
example, 256K x 4 RAMs in emulation memory may not be as fast
as 64K x 4 RAMs).

Summary of Configuration Items Related to SYSCLK

Configuration items “clock speed”, “emulation memory”, “clocks
for emulation memory ” interact (as described above) and must be
set depending on SYSCLK, whether or not emulation memory is to
be used, and, if emulation memory is being used, the access time of
the emulation memory modules installed. (The 2 Mbyte memory
modules have a slower access time than the 0.5 Mbyte memory
modules.) Figure 5-1 shows the appropriate settings.

Configuring the Emulator 5-5

Clock Speed and the Analyzer. The analyzer must be informed
of the SYSCLK rate via the “Clock Speed” field of the “Analysis
Format” screen.

To configure the analyzer clock select Analysis Format.

Use the arrow keys to move the cursor to the field next to the label
“Clock Speed.” Tab to select slow if the analyzer data rate is less
than or equal to 16.67 MHz. Select fast if the analyzer data rate is
between 16.67 and 20 MHz. Select very fast if the analyzer data
rate is between 20 and 25 MHz.

Press < End> , then < Enter> , to save your changes and exit the
format form. Press < Esc> if you want to discard your changes and
exit the format form.

The emulation analyzer can capture bus cycles at data rates up to
25 MHz. However, the trace state and time counters are limited to

Emulation memory usage Target system clock speed
(in MHz)

Configuration settings

Are you
going to use
emulation
overlay
memory?

Do you have
any 2 Mbyte
memory
modules
installed?

< = 20 > 20
and

< = 25

> 25
and

< = 33

emulation
memory

clock speed clocks for
emulation
memory

no X X X X off X X

yes X yes on normal 1

yes no yes on normal 1

yes yes yes on normal 2

yes X yes on fast 2

Table 5-1. SYSCLK Related Configuration Settings

5-6 Configuring the Emulator

lower speeds. The 29000/29050 processor is set to very fast by
default to ensure correct analyzer operation up to 25 MHz.

The analyzer can capture all types of bus cycles correctly up to the
maximum clock rate of 25 MHz, but cannot correctly count states
or time at higher speeds for certain bus cycle types.

The worst-case situation is one where a zero-wait state burst cycle
is performed. The analyzer clock rate for burst cycles is given by the
equation:

Analyzer Clock Rate = Processor Clock Rate
(1 + number of wait states)

To determine the correct setting for the “Clock Speed” field in the
29000/29050 emulator, calculate the maximum data rate by using
the above equation. Remember that the emulator always inserts
one wait state for all synchronous and burst accesses to emulation
memory, and also must insert one wait state for synchronous and
burst accesses to target memory when the external clock is greater
than or equal to 25 MHz. Then choose the data rate option
according to the data rate.

The trace state and time count qualifiers are limited by the analyzer
clock rate settings as follows:

Analyzer clock rate Clock Speed setting Valid Count Qualifier
options

clock ≤ 16.67 MHz slow Count < state>
Count time

clock ≤ 20 MHz fast Count < state>

clock ≤ 25 MHz very fast Count none

Suppose that you are running the 29000/29050 processor at 30
MHz. You have enabled a wait state for target memory since target
memory requires one wait state for synchronous/burst accesses
over 25 MHz. The resulting data rate is 20 MHz, so you modify the
“Clock Speed” field in the Analysis Format form to fast. You are
limited to counting states in the trace specification.

See the PC Interface: Analyzer User’s Guide for more information.

Configuring the Emulator 5-7

Number of Wait States for Emulation Memory

The “number of wait states for emulation memory” configuration
items specify the minimum number of wait states on emulation
memory accesses in burst mode and in simple mode.

Burst Mode. Specifies the minimum number of wait states for
burst mode accesses (acceptable values are 1 through 4).

Simple Mode. Specifies the minimum number of wait states for
simple mode access (acceptable values are 2 through 9).

The “clock speed” configuration items affect the number of clock
cycles required for an emulation memory access. Also, an
additional clock cycle is required for an access if there is a collision
between I-bus and D-bus accesses and priority was given to the
other access. See the “primary bus for emulation memory”
configuration items.

The number of wait states required by an emulation memory access
(clock cycles - 1) is compared to the number specified in the
“number of wait states for emulation memory” configuration items.
If the access doesn’t take the minimum number of wait states, then
additional wait states are inserted.

For example, if “clock speed” is set to “fast” and “clocks for
emulation memory” is set to “2”, a first access of emulation
memory requires 4 clock cycles (1 for mapper address translation, 2
for the emulation memory access if there was no conflicting access
from the other bus, and 1 resynchronization cycle). In other words,
the access requires 3 wait states. Now, if “number of wait states for
emulation memory: simple mode” is set to “5”, 2 wait states are
inserted so that the minimum of 5 is met.

Wait State Summary

The minimum number of wait states depends on the settings for the
configuration items “emulation memory”, “clock speed”, and
“clocks for emulation memory”. Table 5-2 shows the minimum
number of wait states generated for valid settings of these
configuration items.

5-8 Configuring the Emulator

The actual number of wait states for target accesses will be the
greater of:

The minimum wait states from the table above, or

The number of wait states inserted by the target.

The actual number of wait states for emulation memory accesses
will be the greater of:

The minimum wait states from the table above, or

The number of wait states specified by the “number of wait
states for emulation memory” configuration items, or

The number of wait states inserted by the target if
emulation accesses are locked to the target (in other
words, if the “lock emulation ready for access type”
configuration items are set to “on”).

Configuration settings Number of wait states for cycle type

emulation
memory

clock speed clocks for
emulation
memory

Target Memory Emulation Memory

Initial Burst Initial Burst B-rsm *

on
on
on
off

normal
normal

fast
X

1
2
2
X

0
0
1
0

0
0
0
0

2
3
4

N/A

1
2
2

N/A

2
3
3

N/A

Note: If “clock speed” is set to “fast” and the target system attempts to respond with no wait states
on an initial cycle (xREQ true) data may be lost.

* B-rsm - This is the number of wait states to resume burst mode to/from emulation memory after
it has been suspended by the master (normally the Am29000 or Am29050).

Table 5-2. Wait State Summary

Configuring the Emulator 5-9

Note If a bank of emulation memory is shared by both the I and D busses
and a simultaneous access occurs, the minimum number of wait
states for the lower priority bus will be increased by the number of
clock cycles for an emulation memory access. See the “Primary bus
for emulation memory bank A/B?” memory configuration
questions and the “Number of clocks for emulation memory
accesses?” emulator configuration question for more information.

Real-Time Mode You may want to restrict emulator execution to real-time to
prevent accidental breaks that might cause target system problems.

off Disables the real-time restriction, and allows the
system to accept commands normally.

on Restricts the emulator to real-time execution.

When you restrict runs to real-time and the emulator is running
user code, the system refuses all commands that require access to
processor registers or target system memory.

These commands include:

Register display/modification.

Memory display/modification commands that access target
system memory.

Memory copy.

Memory store.

Memory find.

Note Because the emulator contains multi-port emulation memory,
commands which access emulation memory are allowed while runs
are restricted to real-time.

5-10 Configuring the Emulator

Emulation
Memory
Configuration

In addition to the memory mapper and emulation memory wait
state configuration described previously in the “Emulator Speed
Configuration” section, there are options to configure the “primary
bus selection” for the banks of emulation memory and the “lock
ready” for the bus access selections.

Primary Bus for
Emulation Memory

When a block of emulation memory is mapped with both I-bus and
D-bus connections, the instruction bus and data bus could access
the same memory location at the same time.

This configuration item lets you tell the emulation memory arbiter
to give priority to either instruction bus accesses or data bus
accesses. (Accesses to emulation memory made by the emulator
have a lower priority than either the instruction or data bus.)

bank A = i
bank B = i

Instruction bus accesses to emulation
memory are given priority over data bus
accesses.

bank A = d
bank B = d

Data bus accesses to emulation memory are
given priority over instruction bus accesses.

Lock Emulation
Ready for Access

Type

This configuration item lets you lock the emulation memory ready
signal to that of the target system, in case other target system
circuitry needs to be synchronized with emulation memory accesses.

data = on The emulation ready signal for data bus
accesses is locked with the target system
ready.

data = off Disables locking of the emulation ready
signal for data bus accesses with the target
system ready.

instruction = on The emulation ready signal for instruction
bus accesses is locked with the target system
ready.

Configuring the Emulator 5-11

instruction = off Disables locking of the emulation ready
signal for instruction bus accesses with the
target system ready.

When locked, the emulator will access emulation memory as
configured. It will then wait until the target system signals ready
before terminating the cycle. Target ready signals that occur before
the emulation access is completed will be ignored.

Analysis Mode
Configuration

In the HP 64774 emulator, the analyzer may operate in one of
three different modes: instruction bus mode, data bus mode, and
status bus mode. Also, you can have the analyzer switch modes at
the trigger point. For example, you could capture information in
data mode prior to the trigger and capture information in status
mode after the trigger.

Analysis Mode This configuration item lets you specify the analysis mode. You can
also specify different capture modes before and after the trigger.

ii Instruction/Data bus mode. All instruction
accesses are recorded. Data accesses are
recorded if they don’t occur on the same clock
cycle as instruction bus accesses.

dd Data/Instruction bus mode. All data accesses are
recorded. Instruction accesses are recorded if
they don’t occur on the same clock cycle as data
bus accesses.

ss Status mode. Status information for all
transactions is stored.

id Instruction/Data bus mode before trigger.
Data/Instruction bus mode after trigger.

is Instruction/Data bus mode before trigger. Status
mode after trigger.

5-12 Configuring the Emulator

di Data/Instruction bus mode before trigger.
Instruction/Data bus mode after trigger.

ds Data/Instruction bus mode before trigger. Status
mode after trigger.

si Status mode before trigger. Instruction/Data bus
mode after trigger.

sd Status mode before trigger. Data/Instruction bus
mode after trigger.

Analysis Switching Signal

This configuration item specifies which one of the internal TRIG1
or TRIG2 signals is used when you have selected an analysis mode
that switches at the trigger point.

TRIG1 The internal TRIG1 signal is used.

TRIG2 The internal TRIG2 signal is used.

Once this configuration item is set, you need only to modify the
trigger configuration to specify that the selected signal be driven
when the trigger occurs.

Configuring the Emulator 5-13

Emulator Break
Configuration

There are a number of different ways that the emulator can break
out of user program execution into the monitor. The following
emulator configuration items allow you to enable or disable these
types of emulator break conditions.

Software Breakpoints This configuration option allows you to use the breakpoints
feature. See the “Getting Started” chapter for information on using
breakpoints.

on The breakpoints feature is enabled by default.
When you define or set a software breakpoint,
the emulator replaces the opcode at the software
breakpoint address with a HALT instruction.
When the HALT instruction is executed,
emulator execution breaks into the monitor, and
the original opcode is restored. A subsequent
Processor Go Pc” or Processor Step Pc
command will execute from the breakpoint
address.

off The breakpoints feature is disabled. When you
add or set a software breakpoint, this feature is
automatically enabled and correctly reflected in
the configuration display. When choosing this
item, any existing breakpoints are cleared.

Break on Write to
ROM

Emulator execution can break into the monitor when the target
(user) program writes data to a location mapped as ROM.

on By default, emulator execution will break into
the monitor when the target program writes to
ROM locations.

off Target program writes to ROM locations will
not cause emulator execution to break into the
monitor.

5-14 Configuring the Emulator

Break on IERR or
DERR Signal

This configuration item specifies whether IERR or DERR signals
during instruction/data fetches should break emulator execution
into the monitor. You can enable a break on these signals as an
alternative to the normal Instruction Access Exception or Data
Access Exception traps.

on Breaking into the monitor on IERR or DERR
signals is enabled.

off Disable breaking.

Break on WARN
Signal

This configuration item specifies whether WARN signals should
break emulator execution into the monitor. The emulator ignores
WARN unless this break is enabled.

on Breaking into the monitor on the WARN signal
is enabled.

off Disable breaking.

General Emulator
Configuration

This section describes additional emulator configuration items not
mentioned above.

Use Coprocessor If there is a coprocessor in the target system, this configuration
item specifies whether the emulator is allowed to access it for
register displays. (The Am29027 coprocessor is supported.)

on The emulator can access the target system
coprocessor.

off The emulator can’t access the target system
coprocessor.

Configuring the Emulator 5-15

Byte Ordering for
Memory and I/O Ports

The byte ordering configuration items specify the type of ordering
(big endian or little endian) that is used when displaying memory
or I/O port locations. This configuration selection does not affect
the Byte Order bit in the processor’s configuration register.

l-> r Bytes are numbered from left to right within a
word (big endian).

r-> l Bytes are numbered from right to left within a
word (little endian).

Force Simple Mode Normally, the emulator will use burst mode operation for its
memory operations. You can force it to stay in simple mode by
using the “force simple mode” configuration item. This will inhibit
the IBACK and DBACK signals during emulation memory access
cycles.

off Allow burst mode operation.

on Prevent burst mode operation.

This can be useful to prevent collisions between requests for the I
bus and D bus, as they can never happen simultaneously when
burst mode is disabled.

Access Width This configuration item specifies the type of microprocessor cycles
that are used by the monitor program to access target memory
locations. When a command asks the monitor to read or write
target system memory, the monitor program uses the access width
setting to decide whether byte, half-word, or word instructions
should be used.

byte Byte accesses are used when the emulator
accesses target memory. Target memory must
support byte accesses for this option to work.

half Half-word accesses are used when the emulator
accesses target memory. Target memory must
support half-word accesses for this option to
work.

5-16 Configuring the Emulator

word Word accesses are used when the emulator
accesses target memory.

Default Address
Space

This configuration item assigns the default address space
designator. This allows you to refer to memory locations without
having to specify the address space designator (for example, if the
“default address space” configuration item is set to “i”, entering
the address “3000” really means “3000@i”). The options for this
configuration item and the address spaces assumed when no
designator is given are:

i Instruction space.

d Data space.

id Instruction/data space.

r Instruction ROM space.

a Instruction ROM on data bus space.

ra Instruction ROM (both busses) space.

Configuring the Emulator 5-17

CMB Interaction Coordinated measurements are synchronous measurements
between multiple emulators or analyzers. Coordinated
measurements can be made between HP 64700-Series emulators
that communicate over the Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated
measurement. The CMB signals READY and /EXECUTE are
used to perform multiple emulator start/stop.

This configuration item allows you to enable/disable interaction
over the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

on Multiple emulator start/stop is enabled. If the

 Processor CMB Go ...

command is entered, the emulator will start
executing code when a pulse on the /EXECUTE
line is received. The READY line is driven false
while the emulator is running in the monitor. It
goes true whenever execution switches to the
user program.

off The emulator ignores the /EXECUTE and
READY lines, and the READY line is not
driven.

Note CMB interaction will also be enabled when the

Processor CMB Execute

command is entered.

For more information, see the chapter “Using the Emulator — In
Depth”.

5-18 Configuring the Emulator

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration
so that it may be re-loaded later. The following information is
saved in the emulator configuration.

Emulator configuration items.

Memory map.

Break conditions.

Trigger configuration.

Window specifications.

To store the current emulator configuration, select:

Config Store

Enter the name of a file to which the emulator configuration will
be saved.

Loading an
Emulator
Configuration

If you have previously stored an emulator configuration and want
to reload it into the emulator, select:

Config Load

Enter the configuration file name and press < Enter> . The
emulator will be reconfigured with the values specified in the
configuration file.

Configuring the Emulator 5-19

Notes

5-20 Configuring the Emulator

A

Using the HP 64000 Reader

An HP 64000 “reader” is provided with the PC Interface. The
HP 64000 reader converts the files into two files that are usable
with your emulator. This means that you can use available language
tools to create HP 64000 absolute files, then load those files into
the emulator using the PC Interface.

The HP 64000 reader can operate from within the PC Interface or
as a separate process. When operating the HP 64000 reader, you
may need to execute it as a separate process if there is not enough
memory on your computer to operate the PC Interface and
HP 64000 reader simultaneously. You can also operate the reader
as part of a “make file.”

What the Reader
Does

Using the HP 64000 files (< file.X> , < file.L> , < scr1.A> ,
< scr2.A> , ...) the HP 64000 reader will produce two new files, an
“absolute” file and an ASCII symbol file, that will be used by the
PC Interface. These new files are named: “< file> .hpa” and
“< file> .hps.”

The Absolute File During execution of the HP 64000 reader, an absolute file
(< file> .hpa) is created. This absolute file is a binary memory
image that is optimized for efficient downloading into the emulator.

The ASCII Symbol File The ASCII symbol file (< file> .hps) produced by the HP 64000
reader contains global symbols, module names, local symbols, and,
when using applicable development tools such as a “C” compiler,
program line numbers. Local symbols evaluate to a fixed (static,
not stack relative) address.

Using the HP 64000 Reader A-1

Note You must use the required options for your specific language tools
to include symbolic (“debug”) information in the HP 64000 symbol
files. The HP 64000 reader will only convert the symbol
information present in the HP 64000 symbol files (< file.L> ,
< src1.A> , < src2.A> , ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address@designator
global_symbol2 address@designator
...
global_symbolN address@designator
|module_name1|# 1234 address@designator
|module_name1|local_symbol1 address@designator
|module_name1|local_symbol2 address@designator
...
|module_name1|local_symbolN address@designator

The space preceding module names is required. A single tab
separates symbol and address.

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers look like a local symbol except that “local_symbolX”
will be replaced by “#NNNNN” where NNNNN is a five digit
decimal line number. The addresses associated with global and
local symbols are specific to the processor for which the HP 64000
files were generated.

Note Because the 29000/29050 emulator can store symbols internally,
symbols will appear in disassembly. When the line number symbol
is displayed in the emulator, it appears in brackets. Therefore, the
symbol “MODNAME: line 345” will be displayed as
“MODNAME: [345]” in mnemonic memory and trace list displays.

A-2 Using the HP 64000 Reader

Local symbols are scoped. To access a variable named “COUNT”
in a source file module named “MAIN.C”, you would enter
“MAIN.C:COUNT”. Because variables are case-sensitive, you
must enter either upper- or lower-case letters, or use a
combination of both to match the actual variable stored in the
.HPS file. You can also display symbols to examine the variable.

Line number symbols are accessed by entering the following on one
line in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

MAIN.C: line 23

Location of the
HP 64000 Reader
Program

The HP 64000 reader is located in the directory named
\hp64700\bin by default, along with the PC Interface. This directory
must be in the environment variable PATH for the HP 64000
reader and PC Interface to operate properly. This is usually defined
in the “\autoexec.bat” file. The following examples assume that you
have “\hp64000\bin” included in your PATH variable. If not, you must
supply the directory name when executing the reader program.

Module Name Variable Name You Enter:

MAIN.C COUNT MAIN.C:COUNT

MAIN.C line number 23 MAIN.C: line 23

Table A-1. How to Access Variables

Using the HP 64000 Reader A-3

Using the Reader
from MS-DOS

The command name for the HP 64000 reader is RHP64000.EXE.
To execute the reader from the command line, for example, enter:

RHP64000 [-q] [-f@fc] <filename>

-q This option specifies the “quiet” mode, and
suppresses the display of messages.

-f@fc For emulators supporting function codes, this
allows a function code to be supplied for the
load addresses of data in the absolute file. This
function code is not applied to symbols. For
example, if your emulator supports a function
code for program space (1000@p is a legal
address), the option to load all absolute code
into program space would be -f@p. For the
complete list of applicable function codes, see
the PC Interface Memory Load command. If no
function code override is desired, leave this
option out of the command line and absolute
data will be loaded into the default address space.

< filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be
loaded.

The following command will create the files “TESTPROG.HPA”
and “TESTPROG.HPS”:

RHP64000 TESTPROG.L

Using the Reader
from the PC
Interface

The PC Interface has a file format option under the Memory Load
command. After you select HP64000 as the file format, the
HP 64000 reader will operate on the file you specify. After this
completes successfully, the PC Interface will accept the absolute
and symbol files produced by the reader.

A-4 Using the HP 64000 Reader

To use the reader from the PC Interface:

1. Start the PC Interface.

2. Check to make sure that you have mapped memory as
appropriate for your system design. See the “Getting
Started” chapter for information about mapping memory.

3. Select Memory, Load. The memory load menu will appear.

4. The default file format will appear as “HP64000.” This is
the file format you will use.

5. Use Tab and Shift-Tab to select the whether to load
emulation memory, target system memory, or both. Press
< Enter> to accept your choice.

6. Use Tab and Shift-Tab to select the function code space to
be loaded. Press < Enter> to accept your choice.

7. Use Tab to select yes if you want the reader to re-read the
absolute file and produce new .HPA and .HPS files. You
would want to do this if you had changed any of the load
options and needed to re-load the program in order to
have the changes take effect. Press < Enter> to accept
your choice.

8. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

9. Press < Enter> to load the file, or press < Esc> to discard
your entries and return to the PC Interface command line.

Using the HP 64000 Reader A-5

Using the HP 64000 file that you specify (TESTFILE.L,
for example), the PC Interface does the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the
HP 64000 reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the create dates and times are earlier than the HP 64000
linker symbol file creation date/time, the HP 64000 reader
recreates them. The new absolute file, TESTFILE.HPA, is
then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the dates and times are later than the creation date and
time for the HP 64000 linker symbol file, the HP 64000
reader will not recreate TESTFILE.HPA. The current
absolute file, TESTFILE.HPA, is then loaded into the
emulator.

Note Date/time checking is done only within the PC Interface. When
running the HP 64000 reader at the MS-DOS command line
prompt, the HP 64000 reader will always update the absolute and
symbol files.

When the HP 64000 reader operates on a file, a status message will
be displayed indicating that it is reading an HP 64000 file. When
the HP 64000 reader completes its processing, another message
will be displayed indicating the absolute file is being loaded.

The PC Interface executes the reader with the -q (quiet) option by
default. A field is supplied on the form allowing specification of the
-f@fc option.

A-6 Using the HP 64000 Reader

The memory type and function parameters work with your memory
map. Each memory map term has a memory type and function code
associated with it. Based on what you enter here as the memory
type and function code, the PC Interface selects all memory map
terms that match the specified type and function code, and comes
up with a set of addresses that are eligible for loading. The PC
Interface then reads your absolute file and loads only those
addresses that are eligible. Addresses in your absolute file that are
not eligible for loading are simply ignored.

If the Reader
Won’t Run

If your program is very large, the PC Interface may run out of
memory while attempting to create the database file. If this
happens, you will need to exit the PC Interface and execute the
program at the MS-DOS command prompt.

Including
RHP64000 in a
Make File

You may want to incorporate the “RHP64000” process as the last
step in your “make file”, or as a step in your construction process,
so as to eliminate the possibility of having to exit the PC Interface
due to space limitations describe above. If the files with “.HPA”
and “.HPS” extensions are not current, the process of loading an
HP 64000 file will automatically create them.

Using the HP 64000 Reader A-7

Notes

A-8 Using the HP 64000 Reader

B

Using the IEEE-695 Reader

An IEEE-695 MUFOM (Microprocessor Universal Format for
Object Modules) “reader” is provided with the PC Interface. The
IEEE-695 reader converts an IEEE-695 format file into two files
that are usable with the HP 64774 emulator. This means you can
use available language tools to create IEEE-695 absolute files, then
load those files into the emulator from the PC Interface.

The IEEE-695 reader can operate from within the PC Interface or
as a separate process. You may need to execute the reader as a
separate process if there is not enough memory on your personal
computer to run the PC Interface and the reader simultaneously.

You can also run the reader as part of a “make file.”

What the Reader
Does

The IEEE-695 reader accepts an IEEE-695 format absolute file in
the form “< file> .< ext> ” and creates two new files that are used
by the PC Interface: an “absolute” file, and an ASCII symbol file.

The Absolute File During execution of the IEEE-695 reader, an absolute file
(< file> .HPA) is created. This absolute file is a binary memory
image which is optimized for efficient downloading into the
emulator.

The ASCII Symbol File The ASCII symbol file (< file> .HPS) produced by the IEEE-695
reader contains global symbols, module names, local symbols, and,
when using applicable development tools like a “C” compiler,
program line numbers. Local symbols evaluate to a fixed (static,
not stack relative) address.

Using the IEEE-695 Reader B-1

Note You must use the required options for your specific language tools
to include symbolic (“debug”) information in the IEEE-695
absolute file.

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address@designator
global_symbol2 address@designator
...
global_symbolN address@designator
|module_name|local_symbol1 address@designator
|module_name|local_symbol2 address@designator
...
|module_name|local_symbolN address@designator
|module_name|# 1234 address@designator

The space preceding module names is required. A single tab
separates symbol and address.

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

The local symbols are scoped. This means that to access a variable
named “count” in a function named “foo” in a source file module
named “main.c”, you would enter “main.c:foo.count”. See table B-1.

Line numbers look like a local symbol except that “local_symbolX”
is replaced by “# NNNNN” where NNNNN is a five digit decimal
line number. Line numbers should appear in ascending order.

Module Name Function Name Variable Name You Enter

main.c foo count main.c:foo.count

main.c bar count main.c:bar.count

Table B-1. The Scope of Symbol Names

B-2 Using the IEEE-695 Reader

Note When the line number symbol is displayed in the emulator, it
appears as a bracketed number. Therefore, the symbol “modname:
line 345” will be displayed as “modname:[345]” in mnemonic
memory and trace list displays.

Location of the
IEEE-695 Reader
Program

The IEEE-695 reader is located in the directory named
\hp64700\bin by default, along with the PC Interface. This directory
must be in the environment variable PATH for the IEEE-695
reader and PC Interface to operate properly. This is usually defined
in the “\autoexec.bat” file.

Using the
IEEE-695 Reader
from MS-DOS

The command name for the IEEE-695 reader is RIEEE695.EXE.
You can execute the IEEE-695 reader from the command line with
the following command syntax:

C:\HP64700\BIN\RIEEE695 [-u] [-q] [-f@fc]
<filename> <RETURN>

[-u] Specifies that the first leading underscore of a
symbol is not removed.

[-q] Specifies the “quiet” mode. This option
suppresses the display of messages.

[-f@fc] Where “fc” specifies the address space
designator for the absolute and symbol files (“i”,
“d”, “id”, “r”, “a”, or “ra”). Only one of the
options can be selected. The default is no
address space designator.

Using the IEEE-695 Reader B-3

< filename> Specifies the name of the file containing the
IEEE-695 absolute program.

Using the
IEEE-695 Reader
from the PC
Interface

The 29000/29050 PC Interface has a file format option under the
“Memory, Load” command. After you select this option, the
IEEE-695 reader will operate on the file you specify. After the
reader completes successfully, the 29000/29050 PC Interface will
load the absolute and symbol files produced by the Reader.

To use the reader from the PC Interface:

1. Start the PC Interface.

2. Check to make sure that you have mapped memory as
appropriate for your system design. See the “Getting
Started” chapter for information about mapping memory.

3. Select Memory, Load. The memory load menu will appear.

4. Use Tab and Shift-Tab to select “IEEE-695.”

5. Use Tab and Shift-Tab to select the whether to load
emulation memory, target system memory, or both. Press
< Enter> to accept your choice.

6. Use Tab and Shift-Tab to select the function code space to
be loaded. Press < Enter> to accept your choice.

7. Use Tab to select yes if you want the reader to re-read the
absolute file and produce new .HPA and .HPS files. You
would want to do this if you had changed any of the load
options and needed to re-load the program in order to
have the changes take effect (for example, deleting leading
underscore characters). Press < Enter> to accept your
choice.

B-4 Using the IEEE-695 Reader

8. Use Tab and Shift-Tab to select whether to delete a
leading underscore character from the symbol name.

9. Use Tab and Shift-Tab to specify the name of an IEEE-695
linker symbol file (TESTFILE.ABS for example).

Note The file extension can be something other than “.ABS”, but cannot
be “.HPA”, “.HPT”, or “.HPS”. The “< filename> .HPT” file is a
temporary file used by the IEEE-695 reader to process the symbols.

10. Press < Enter> to load the file, or press < Esc> to discard
your entries and return to the PC Interface command line.

Using the IEEE-695 file that you specify (for example,
TESTFILE.ABS), the PC Interface performs the following:

Checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the
IEEE-695 reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the create dates and times are earlier than the IEEE-695
file creation date/time, the IEEE-695 reader re-creates
them. The new absolute file, TESTFILE.HPA, is then
loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but
the dates and times are later than the creation date/time
for the IEEE-695 file, the current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Using the IEEE-695 Reader B-5

Note Date/time checking is done only within the PC Interface. When
running the IEEE-695 reader at the MS-DOS command line
prompt, the reader will always update the absolute and symbol files.

When the IEEE-695 reader operates on a file, a status message will
be displayed indicating that it is reading an IEEE-695 file. When
the reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

The memory type and function parameters work with your memory
map. Each memory map term has a memory type and function code
associated with it. Based on what you enter here as the memory
type and function code, the PC Interface selects all memory map
terms that match the specified type and function code, and comes
up with a set of addresses that are eligible for loading. The PC
Interface then reads your absolute file and loads only those
addresses that are eligible. Addresses in your absolute file that are
not eligible for loading are simply ignored.

If the IEEE-695
Reader Won’t Run

If your program is very large, then the PC Interface may run out of
memory while attempting to create the database file. If this
happens, you will need to exit the PC Interface and execute the
program at the command prompt.

Including
RIEEE695 in a
Make File

You may want to incorporate the “RIEEE695” process as the last
step in your “make” file, or as a step in your construction process,
to eliminate the possibility of having to exit the PC Interface due to
space limitations. If the “-.HPA” and “-.HPS” files are not current,
the process of loading an IEEE-695 file will automatically create
them.

B-6 Using the IEEE-695 Reader

Index

A absolute files, 2-7
.HPA created by IEEE-695 reader, B-1
< file> .hpa created by HP 64000 reader, A-1
loading, 2-14
storing, 4-11

access width, 5-16
address space designators, 2-12, 4-3, 5-17

default address space, 5-17
alignment pin, 3-5
analysis begin, 2-33
analysis display, 2-34
analysis mode configuration, 5-12
analysis mode switching, 2-37, 5-13
analysis specification

resetting the, 2-31
trigger condition, 2-32

analyzer, 1-7
features of, 1-7
predefined status equates, 2-29
speed settings, 5-6
using, 2-27

arbitration, 5-10
ASCII symbol file (file.HPS), A-1, B-1
assemblers, 2-10
assembling the getting started sample program, 2-7
attributes of mapped memory ranges

access mode attributes, 4-9
emulation memory, 4-6
target memory, 4-8

B background monitor
effects of using, 3-6
functions controlled by CNTL0 and CNTL1, 3-6
functions performed by 80186, 3-7

big endian byte ordering, 5-16
BNC connector, 4-16

Index-1

break command, 2-21, 2-24, 2-44
break conditions, 5-19
breakpoints, 1-8, 2-25

clearing, 2-26
defining (adding), 2-25
displaying, 2-26
enabling, 5-14
setting, 2-26

breaks, 1-8
emulator configuration, 5-14
IERR and DERR signals, 5-15
on analyzer trigger, 4-17
WARN signal, 5-15
writes to ROM, 5-14

BREQ signal, 3-5
burst mode accesses, 5-16
bus accesses, lock ready for, 5-11
bus arbitration, 5-10
bus requests while in background, 3-6
bus selection, primary, 5-11
byte ordering, 5-16

little endian, 4-9

C cable dimensions (emulator probe), 3-1
cautions

do not use probe without pin extender, 3-7
filenames in the memory store command, 4-11
pin alignment of probe must be correct, 3-8
protect emulator against static discharge, 3-8
target power must be OFF before installing probe, 3-8

clock cycles used to access emulation memory, 5-5
clock source, 1-4, 3-1
clock speed

analyzer speed settings, 5-6
configuration items related to, 5-5

CMB (coordinated measurement bus), 4-16
enabling interaction, 5-18
execute signal while emulator is reset, 2-44
signals, 4-16

commands (PC Interface), selecting, 2-8

2-Index

configuration (emulator)
loading, 5-19
storing, 5-19

configuring the emulator, 5-1
control lines intercepted, 3-5
cooling for emulator probe, 3-1
coordinated measurements

break on analyzer trigger, 4-17
definition, 4-16
multiple emulator start/stop, 5-18
run at /EXECUTE, 4-17

coprocessor access, 5-15
copy memory command, 2-44
count, step command, 2-21
coverage testing, 1-7, 2-42

D Data Access Exception trap, 5-15
data bus buffer disabling, 3-1
data bus memory space, 4-3, 5-17
data bus priority, 5-11
data/instruction bus analyzer mode, 2-27, 5-12
DBACK signal, 3-5
decode address in 4-stage pipeline

different from pc0 if processor is frozen, 4-15
default address space configuration, 5-17
DERR signal, 3-5

break on, 5-15
design considerations (target system), 3-1
designators, address space, 4-3
device table, emulator, 2-8
disassembly, 1-5
displaying the trace, 2-34
displays, floating point format, 1-7
downloading absolute code into memory, 1-7
DRDY signal, 3-5
dual-port emulation memory, 5-10
dumping memory, 4-9

Index-3

E electrostatic discharge, 3-7
emulation analyzer, 1-7
emulation memory, 1-5, 4-5

arbiter, 5-11
clock cycles used in accesses, 5-5
configuration, 5-11
data bus buffer disabling when using, 3-3
disabling/enabling, 5-4
dual-port, 5-10
effects of using, 3-6
independent banks, 1-6
ready signal, 5-11
size, 1-6
size of, 4-5
speed considerations, 5-8

emulation memory mapper, speed considerations, 5-4
emulator

device table, 2-8
features of, 1-4
purpose of, 1-1
reset, 2-44
status, 2-9

emulator configuration, 5-1
speed, 5-3

emulator configuration items
access width, 5-16
analysis mode, 5-12
analysis switching signal, 5-13
break on IERR or DERR signal, 5-15
break on WARN signal, 5-15
break on writes to ROM, 5-14
byte ordering for I/O port, 5-16
byte ordering for memory, 5-16
clock speed, 5-3/5-5
clocks for emulation memory, 5-5
CMB interaction, 5-18
default address space, 5-17
emulation memory, 5-3/5-5
force simple mode, 5-16
lock emulation ready for access type, 5-11
number of wait states for emulation memory, 5-8

4-Index

primary bus for emulation memory, 5-8, 5-11
real-time mode, 5-10
software breakpoints, 5-14
use coprocessor, 5-15

emulator probe
access to target system, 3-1
cable dimensions, 3-1
cooling for, 3-1
ENDTRG, ENITRG signals, 3-3
pin orientation, 3-1
power requirements, 3-1

emulator requirements, 3-1
emulator speed configuration, 5-3
ENDTRG (Enable Data Target data buffers) probe signal, 3-3
ENITRG (Enable Instruction Target data buffers) probe signal, 3-3
equates predefined for analyzer status, 2-29
eram, memory type, 4-5
erom, memory type, 4-5
EXECUTE

CMB signal, 4-16
run at, 4-17

execute address in 4-stage pipeline
different from pc1 if processor is frozen, 4-15

executing programs, 2-23
exiting the PC Interface, 2-45
external analysis, 1-7, 2-27
external clock speed, 5-3

F features of the emulator, 1-4
file formats, absolute, 2-7, 2-14

converting, 2-8
HP64000, A-4

files
absolute, 2-7
linker command, 2-7
relocatable, 2-7
symbol to address map (IEEE-695), 2-15

find data in memory, 2-24
floating point format displays, 1-7
floating point values

memory display/modify, 4-10

Index-5

G getting started, 2-1
prerequisites, 2-2

global symbols
displaying, 2-16
loading, 2-16

grd, memory type, 4-5
guarded memory accesses, 4-5

H harbor box, 3-1
HP 64000 reader, A-1

 using with PC Interface, A-4
HP 64000 reader command (RHP64000.EXE), A-4
HP64000 file format, A-4
HPS (symbol) file format requirements, 2-15
HPT (temporary) file used by IEEE-695 reader, B-5
HPTABLES environment variable, 2-8

I IBACK signal, 3-5
IEEE-695 reader, B-1

 using with PC Interface, B-4
IEEE-695 reader command (RIEEE695.EXE), B-3
IERR signal, 3-5

break on, 5-15
in-circuit emulation, 3-1
INCLK signal, 3-5
Instruction Access Exception trap, 5-15
instruction bus memory space, 4-3, 5-17
instruction bus priority, 5-11
instruction ROM (both busses) memory space, 4-3, 5-17
instruction ROM memory space, 4-3, 5-17
instruction ROM on the data bus memory space, 4-3, 5-17
instruction/data bus analyzer mode, 2-27, 5-12
instruction/data bus memory space, 4-3, 5-17
interrupts while in background, 3-6
IRDY signal, 3-5

K keystroke macros, 2-21

L labels (trace), 2-27
latch-up problems, 3-1
linkers, 2-10
linking the getting started sample program, 2-7
little endian byte ordering, 4-9, 5-16

6-Index

load map, 2-10
loading absolute files, 2-14
loading memory, 4-9
local symbols, A-3, B-2

displaying, 2-17
lock ready for bus accesses, 5-11
locked, PC Interface exit option, 2-45

M make file, A-1, B-1
mapper address translation, 5-3/5-4
mapper, speed considerations, 5-4
mapping memory, 1-6, 2-10, 4-2

attributes of mapped ranges, 4-6
memory

attributes of mapped ranges, 4-6
copy, 5-10
copy range, 2-44
display, 5-10
displaying, 4-10
displaying in mnemonic format, 2-19
displaying overlaid ranges, 4-7
dual-port emulation, 5-10
find, 5-10
floating point display/modify, 4-10
mapping, 1-6, 2-10, 4-2
modify, 5-10
modifying, 2-23, 4-10
overlaying ranges in the mapper, 4-6
searching for data, 2-24
store, 5-10
types of, 4-5

memory accesses, 3-7, 5-8
memory mapper, speed considerations, 5-4
messages

Slow I-bus cycles, 4-5
mixed analysis modes, 5-13
mnemonic memory display, 4-10
MON29K Target Resident Monitor

not used by 64774, 3-7
monitor

functions performed by 80186, 3-7

Index-7

monitor functions
controlled by CNTL0 and CNTL1, 3-6

multi-ported emulation memory, 1-5

N no save, PC Interface exit option, 2-45
notes

absolute file names for stored memory, 4-11
breakpoint locations must contain opcodes, 2-25
clock speeds up to 25 MHz are supported, 1-4, 5-3
CMB interaction enabled on execute command, 5-18
date checking only in PC Interface, A-6, B-6
emulator contains dual-port memory, 5-10
extended or quad floating-point expressions, 4-10
external analysis NOT available with HP 64774 emulator, 1-7, 2-27
HPS (symbol) file format requirements, 2-15
HPT (temporary) file used by IEEE-695 reader, B-5
register command, 2-21
symbols in mnemonic memory and trace displays, A-2, B-3
terminal window to modify emul. config., 5-2
trigger when using analysis mode switching, 2-37
use required options to include symbols, A-2, B-2

O overlaid memory ranges, displaying, 4-7
overlaying emulation memory ranges, 4-6

P PC Interface
exiting the, 2-45
HP 64000 reader, A-4
IEEE-695 reader, B-4
selecting commands, 2-8
starting the, 2-8

PEN signal, 3-5/3-6
pin extender, 3-7
pin orientation (emulator probe), 3-1
pipelined access mode, 3-6
power requirements of emulator probe, 3-1
predefined equates, 2-29
prerequisites for getting started, 2-2
primary bus selection, 5-10/5-11
probe

control lines intercepted, 3-5
cooling, 3-1
See emulator probe

8-Index

installing into a target system, 3-7
probe signals, 3-6
processor type, 2-8
purpose of the emulator, 1-1

R READY, CMB signal, 4-16
real-time execution, 1-8

commands not allowed during, 5-10
commands which will cause break, 5-10
restricting the emulator to, 5-10

registers, 1-7
display, 5-10
display/modify command, 2-21
displaying, 4-12
modify, 4-12, 5-10
names and classes, 4-13

relocatable files, 2-7, 2-10
removing symbols, 2-18
repetitive memory display, 4-10
requirements, 3-1
reset (emulator), 1-8, 2-44
RESET signal, 3-5
resetting the analyzer specifications, 2-31
ROM

writes to, 4-5
run at /EXECUTE, 4-17
running programs, 2-23

S sample program
description, 2-2

searching for data in memory, 2-24
selecting PC Interface commands, 2-8
signal considerations, 3-5
simple mode accesses, 5-16
simple trigger, specifying, 2-32
single clock cycle accesses, 3-6
single-step, 1-5
Slow I-bus cycles status message, 4-5
software breakpoints, enabling, 5-14
specifications

See analysis specification
speed (emulator) configuration, 5-3

Index-9

speed considerations
emulation memory, 5-8
memory mapper, 5-4

starting the trace, 2-33
stat, trace label, 2-29
static discharge, protecting the emulator probe against, 3-8
status analyzer mode, 2-27, 5-12
status line, 2-9
step

count specification, 2-21
stepping through instructions, 2-20
symbol file format requirements, 2-15
symbols, 2-15

.HPS file format, A-2, B-2
local, A-1, B-1
removing from the emulator, 2-18
transferring to the emulator, 2-18

SYSCLK rate, 5-5
SYSCLK signal

loading of, 3-5

T target clock speed, 5-3
target system

access for emulator probe, 3-1
cooling for emulator probe, 3-1
data bus buffer disabling, 3-1
design considerations, 3-1
probe power requirements, 3-1
processor signal considerations, 3-5
RAM and ROM, 4-5

temporary file used by IEEE-695 reader, B-5
trace

displaying the, 2-34
starting the, 2-33

trace labels, 2-27
trace signals, 2-27
tram, memory type, 4-5
transferring symbols, 2-18
TRIG1 and TRIG2 internal signals, 4-17, 5-13
trigger, 2-32

breaking into monitor on, 4-17
specifying a simple, 2-32

10-Index

trigger selection for analysis mode switching, 5-13
TRIGGER, CMB signal, 4-16
trom, memory type, 4-5
types of memory, 4-5

U unlocked, PC Interface exit option, 2-45
uploading memory, 1-7
using the HP 64000 file reader, A-1

W wait states, 5-4, 5-8
minimum number of, 5-8
summary, 5-8

WARN signal, 3-5
break on, 5-15

Z zoom, window, 2-16, 2-19

Index-11

12-Index

	Using this Manual
	Contents
	Introduction to the 29000/29050 Emulator
	Getting Started
	Using the Emulator — The Basics
	Using the Emulator — In Depth
	Configuring the Emulator
	Using the HP 64000 Reader
	Using the IEEE-695 Reader
	Index

