/A cackars

User’s Guide for the Terminal Interface

MC68040/EC040/LC040
Emulator/Analyzer
(HP 64783A/B)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

Microtec is a registered trademark of Microtec Research, Inc.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 64783-97000, March 1993
Edition 2 64783-97002, October 1993
Edition 3 64783-97004, January 1994

Safety and Certification and Warranty

Safety information, and certification and warranty information can be found at the
end of this manual on the pages before the back cover.

The HP 64783A/B Emulator

Description

The HP 64783A/B emulator supports the Motorola 68040, 68EC040, and 68LC040
microprocessors operating at clock speeds up to 33 MHz (HP 64783A), or 40 MHz
(HP 64783B). Differences between the three microprocessors are shown in the

table below:

Motorola Processor Includes MMU Includes FPU
68040 yes yes
68EC040 no no
68LC040 yes no

The emulator uses an MC68040 microprocessor and is pin-for-pin compatible with
the MC68EC040 and MC68LC040 microprocessors. Refer to the end of the
chapter titled "Using the Emulator" for special considerations when using the
emulator in target systems designed with the MC68EC040 or MC68LC040.

Throughout this manual, the microprocessor will be referred to as the MC68040,
except where the three versions must be discussed separately.

The emulators plug into the modular HP 64700 instrumentation card cage and offer
80 channels of processor bus analysis with the HP 64794A or HP 64704A
emulation-bus analyzer. Flexible memory configurations are offered from zero
through two megabytes of emulation memory. High performance download is
achieved through the use of a LAN or RS-422 interface. An RS-232 port and a
firmware-resident interface allow debugging of a target system at remote locations.

For software development the HP AXCASE environment is available on SUN
SPARCsystems and HP workstations. This environment includes an ANSI standard
C compiler, assembler/linker, a debugger that uses either a software simulator or
the emulator for instruction execution, the HP Software Performance Analyzer that
allows you to optimize your product software, and the HP Branch Validator for test
suite verification.

If your software development platform is a personal computer, support is available
from several third party vendors. This capability is provided through the HP
64700’s ability to consume several industry standard output file formats.

Ada language support is provided on HP 9000 workstations by third party vendors
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive, real-time
debugging in-circuit or out-of-circuit.

Features

HP 64783A/B Emulator

« HP 64783A: 16 to 33 MHz active probe emulator
 HP 64783B: 20 to 40 MHz active probe emulator
* Supports MC68040, MC68EC040, and MC68LC040
e Supports burst and synchronous bus modes
* Symbolic support
* Number of breakpoints available:
— If specified at RAM addresses: unlimited;
— If specified at ROM addresses: eight.
e 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA
package
» Background and foreground monitors
» Simulated I/0O with workstation interfaces
» Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex
File formats directly. (Symbols are available with IEEE-695HReEOMF
formats.)
e Multiprocessor emulation
— synchronous start of 32 emulation sessions
— cross triggerable from another emulator, logic analyzer, or oscilloscope
» Demo board and self test module included

Emulation-bus analyzer

80-channel emulation-bus analyzer, which uses the static deMMUer of the
MC68040 emulator

Post-processed dequeued trace with symbols

Eight events, each consisting of address, status, and data comparators
Events may be sequenced eight levels deep and can be used for complex
trigger qualification and selective store

Emulation memory

256 Kbyte, 512 Kbyte, 1 Mbyte, 1.25 Mbyte and 2 Mbyte memory
configurations available

4 Kbytes of dual-ported memory available if you use the background monitor.
Mapping resolution is 256 bytes

No wait states required by the emulator for processor speeds up to 25 MHz
One wait state required in all accesses above 25 MHz

Vi

vii

In This Book

This manual covers the HP 64783A/B emulator for the MC68040, MC68EC040,
and MC68LC040 microprocessors. It is divided into the following parts:

Part 1, “Quick Start,” shows you how to make some simple measurements with the
emulator, using the built-in demo program. A short chapter in this part shows you
how to fix the most common problems you might encounter when you first use the
emulator.

Part 2, “Using the Emulator,” tells you how to use all the standard emulator
commands to perform various measurement tasks with the emulator. Use this part
of the manual after you have worked through the tutorials in part 1.

Part 3, “Reference Information,” is the place you should turn to when you are
familiar with the emulator and want to make advanced measurements, such as using
the MC68040 MMU, or simply want to look up detailed syntax information for a
command.

Part 4, “Installation and Service,” tells you how to install the emulator, connect it to
the target system, and verify that it works correctly.

You should read the bodkoncepts of Emulation and Analysiien you have the
chance to do so; it contains a good conceptual introduction to the emulation
process, and also describes how an emulation monitor works. ThelBa@k700

Card Cage Installation/Service Guitkdls you more about installation and
configuration of the HP 64700 Card Cage. If you have a problem with the emulator
and don't understand how to fix it, a listing for your local HP Sales and Service
office is in theSupport Services Guide

viii

Contents

Part 1

Quick Start Guide

The Emulation Process 2
Develop Your Programs 2

Configu
Use the

re the Emulator 2
Emulator 2

In This Part 3

Getting Started

The Getting Started Procedure 6

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7.

Log in to the emulator 6

Initialize the emulator 7

Load the demo program 7

See the emulation memory map 8
Display the symbols of the demo program
Display the demo program in memory 10
Start the demo program 11

Step 8. Take a trace of the demo program 12
Step 9. View the status of the trace 12

Step 10
Step 11
Step 12
Step 13
Step 14
Step 15
Step 16

. View the trace list 13

. Use the demo program 14

. Stop (break from) program execution 15
. Display processor registers 15

. Step through program execution 16

. Reset the emulator 17

. If the emulator status character is unfamiliar

17

Contents

The MMU demonstration 18

Step 17.
Step 18.
Step 19.
Step 20.
Step 21.
Step 22.

24

Step 23.
Step 24.
Step 25.
Step 26.
Step 27.

Again, run the demo program from reset 19

See the setup of the MMU 20

Look at the translation table details for a single logical address 21
Look at details of an MMU Table 22

Take another trace of emulation activity 23

Prepare the deMMUer so you can see symbolic addresses in the trace list

Enable the deMMUer 25

Take a new trace 26

Inverse assemble the trace list 27
See the demo help screen 28
Reset the emulator 28

Troubleshooting

If the demo program won’t work 30

If you don't see a prompt 30

If you see an unfamiliar prompt 31

If the emulator displays a prompt, but doesn’t respond to commands 32
If you can't load the demo program 32

If you can't load a program 33

If the emulator won't run the program 33

If you can't break to the monitor 34

If the emulator won't reset 34

Contents

Part 2 Using the MC68040 Emulator/Analyzer

Making Measurements 36
In This Part 36

3 Using the Terminal Interface

Using the Interface 39

To apply power 40

To initialize the emulator 41

To enter commands 42

To recall commands 43

To repeat commands 44

To enable or disable command line editing 45
To editacommand 45

Togeton-line help 46

To display the emulator status 47

To set the date and time 47

To change the prompt 48

To check the version of the Terminal Interface software 49
To print strings on the output device 49

To insert delays in command processing 50

Building and Using Macros 51

To create macros 51
To execute a macro 52
To delete macros 53

Using Command Files 54

Building Command Files 54

Editing Command Files 55

Comments in Command Files 55

To create a command file with a text editor 55

To log a command file from a PC host 56

To log a command file on a UNIX host (emulator on different port) 57
To use a command file on a PC host 58

To use a command file on a UNIX host (emulator on different port) 59

Xi

Contents

4 Using the Emulator

To configure the emulator 62
To build programs 62

Loading and Storing Programs 64

To load a program from a PC host (PC controls emulator) 64
To load programs over the LAN 65
To load a program from a UNIX host (emulator on different port)

Symbols 68

To load program symbols over the LAN 68
To add user symbols 70

To remove symbols 70

To display symbols 71

Accessing Processor Memory Resources 72

To display memory 72

To modify memory 73

To search memory 75

To copy memory blocks 77

To initialize display and set access modes 78

Using Processor Run Controls 79

Torun aprogram 79

To break to monitor 80
To step the processor 81
To reset the processor 84

Viewing and Modifying Processor Registers 85

To display registers 85
To modify registers 86

67

Xii

Contents

Using Execution Breakpoints 88

Setting execution breakpoints in RAM 88

Setting execution breakpoints in ROM 89

Execution breakpoints in ROM when the MMUs manage memory 89
Using temporary and permanent breakpoints 90

To enable or disable the execution breakpoints feature 91
To insert an execution breakpoint 92

To enable a temporary execution breakpoint 93

To set a ROM breakpointin RAM 94

To disable an execution breakpoint 95

To remove an execution breakpoint 96

To display execution breakpoints 96

Using the Emulator In-Circuit 97

To install the emulation probe 98
To power-on the emulator and your system 99
To probe target system sockets 99

Using MC68040 With MMU Enabled 100

To enable the processor memory management unit 100

To view the present logical-to-physical mappings 101

To see translation details for a single logical address 103

To see details of a translation table used to map a logical address 103

Using an FPU with an MC68EC040 or MC68LC040 Target System
104

Using the Analyzer

Making Basic Analyzer Measurements 108

To create an expression 108

To start a trace measurement 109

To stop a trace measurement 109

To display the trace status 110

To display the trace list 110

To define a simple trigger qualifier 110
To define a simple storage qualifier 111
To set the trigger position 112

Xiii

Contents

Displaying the Trace List 113

To define analyzer labels 113

To delete analyzer labels 114

To display the analyzer labels 114

To change the trace format 115

To display the trace list 117

To prevent trace list header display 119

To control symbol and address display in the trace list 120
To control trace list disassembly and dequeueing 122

To obtain a time or state count in the trace list 125

Analyzing Program Execution when the MMU is Enabled 126

To program the deMMUer in a static memory system 126
To trace program execution in physical address space 127

Using the Trace Sequencer 128
To change the trace configuration 128

Using Easy Configuration 129

To create a simple expression 129

To insert a sequence term 130

To remove a sequence term 131

To reset the sequencer 131

To define a primary branch 132

To define a global restart term 133

To display the current sequencer settings 134

To specify trace start with a sequencer term other then term one active 134

Using Complex Configuration 135

To assign the trigger term 135

To reset the sequencer 136

To display the current sequencer settings 137

To define trace patterns 138

To define arange qualifier 139

To create a complex expression 140

To define a primary branch term 142

To define a secondary branch term 144

To define complex storage qualifiers 145

To prevent storage of sequencer-advance states in the trace memory 147
To specify trace start with a sequencer term other then term one active 148

Xiv

Contents

Setting Analyzer Clocks 149

To trace target/background code execution 149
To configure the analyzer clock 150

Using Other Analyzer Features 152

To define a prestore qualifier 152

To count states or time 153

To check trace signal activity 155

To define equates 155

To display equates 156

To delete equates 156

To set trace memory depth in the deep analyzer 157

Making Coordinated Measurements

Basic Elements of Coordinated Measurements 160

To start a simultaneous program run on two emulators 162

To trigger one emulation-bus analyzer from another emulation-bus analyzer 163
To break to the monitor on an analyzer trigger signal 166

To break the emulator to its monitor after the deep emulation-bus analyzer
completes atrace 167

To set up the deep emulation-bus analyzer so its counts are enabled by an external
instrument 168

Configuring the Emulator

Memory 170
Emulation Monitor 170
Other Configuration Items 171

Mapping and Configuring Memory 172

To assign memory map terms 172

To assign the memory map default 177

To check the memory map 177

To delete memory map terms 178

To enable one wait state 178

To enable the memory management unit 179

XV

Contents

To select the emulation monitor 180

To set the monitor base address 182

To interlock monitor and target system cycle termination signals 183
To set foreground monitor interrupt priority 184

To set the background monitor keep-alive address 185

To preset the interrupt stack pointer and PC 186

Setting Other Configuration Iltems 188

To restrict to real-time runs 188

To disable the processor cache memories 189

To disable target system interrupts 190

To enable breakpoint acknowledge cycle termination interlocking 191

Providing MMU Address Translations for the Foreground Monitor

192

Locating the Foreground Monitor using the MMU Address Translation Tables
194

Solving Problems

If the emulator appears to be malfunctioning 196

If the trace listing states column contains "dma long write (retry)" repeatedly
If the analyzer fails to trigger on a program address 197

If the analyzer triggers on a program address when it should not 197

If trace disassembly appears to be partially incorrect 198

If you see unexplained states in the trace list 198

If the analyzer won't trigger 199

If the target processor remains in a wait state 199

If you suspect that the emulator is broken 200

If you have trouble mapping memory 200

If emulation memory behavior is erratic 201

If you're having problems with DMA 201

If you're having problems with emulation reset 202

If the deMMUer runs out of resources during the loading process 202

If "out of deMMUer resources" with less than eight mappings 203

If only physical memory addresses in analyzer measurement results 203
If the deMMUer is loaded but you still get physical addresses 204

If you can't break into the monitor after you enable the MMU 205

If you see exclamation marks "!" in count columns of the trace lists 205
If you see negative time or state counts in trace lists 206

XVi

196

Contents

If you do not see the counter overflow indication "!I" where you expected to see it in
atrace list 206
If your target system looses sync when emulation breakpoints are executed 206

Part 3

Reference

Commands and Expressions 208
In This Part 208

Using Memory Management

Understanding Emulation And Analysis Of The Memory
Management Unit 210

Terms And Conditions You Need To Understand 210

Logical vs Physical 210

What are logical addresses? 211

What are physical addresses? 211

Static and dynamic system architectures 211

Static system example 211

Non-paged dynamic system example 212

Paged dynamic system example 212

Where Is The MMU? 213

Using supervisor and user privilege modes 214

How the MMU is enabled 214

Hardware enable 214

Software enable 215

Restrictions when using the emulator with the MMU turned on 215
How the MMU affects the way you compose your emulation commands 216

Seeing details of the MMU Translations 217

How the emulator helps you see the details of the MMU mappings 217
Supervisor/user address mappings 219

Translation details for a single logical address 220

Address mapping details 220

Status information 221

Table details for a selected logical address 222

XVil

Contents

10

Using the DeMMUer 223

What part of the emulator needs a deMMUer? 223

What would happen if the analyzer didn’t get help from the deMMUer? 223
How does the deMMUer serve the analyzer? 223

Reverse translations are made in real time 224

DeMMUer options 224

What the emulator does when it loads the deMMUer 225

Restrictions when using the deMMUer 226

Keep the deMMUer up to date 226

The target program is interrupted while the deMMUer is being loaded 226
The analyzer must be off 226

Expect strange addresses if you analyze physical memory with multiple logical
mappings 226

Resource limitations 228

Example to show resource limitations 229

The Emulation Memory Map Can Help 229

Dividing the deMMUer table between user and supervisor address space 231

Solving Problems 232

Using the "mmu" command to overcome plug-in problems 232

Use the analyzer with the deMMUer to find MMU mapping problems 233
Failure caused by access to guarded memory 233

Failure due to system halt 234

Execution breakpoint problems 234

A "can't break into monitor" example 235

Emulator Commands

The Command Set 240

b 241

bc 242
bnct 245
Defaults 246
bp 248

cf 253

cl 257
cmb 259
cmbt 261
cp 264
dmmu 266

Xviii

dt 268
dump 269
echo 271
equ 274
es 279
help,? 280
init 282
load 284
m 287
mac 291
map 295
mmu 299
mo 302
po 305

pv 306

r 309

reg 310
rep 312
rst 313

rx 314

s 316

ser 319
stty 322
sym 325

t 330

ta 331
tarm 333
tcf 335
Easy Configuration 337
Complex Configuration 339
Resetting the Analyzer Configuration
tck 342

tcq 346
telif 349
tf 353
tg

356
tgout 359
th 364
tif 366

341

Contents

XiX

Contents

11

12

tinit 370
tt 372
thh 376
tp 378
tpat 381
tpqg 384
tng 386
ts 389
tsck 393
tsq 395
tsto 399
tx 402
ver 404
w 405

x 407

Expressions

ADDRESS 411
ANALYZER_EXPR 413
COMPLEX_EXPR 415
EXPR 420
SIMPLE_EXPR 427
Easy Configuration 427

Emulator Error Messages

Emulator error messages 432
Analyzer Error Messages 472

##IL# in trace list Mnemonic column

484

XX

13 Data File Formats

Binary/Hexadecimal Trace List Format

No Trigger Record 487

Empty Trace Record 487
New State Data Record 488
More State Data Record 490
Trace State Record 492

New Timing Data Record 493
More Timing Data Record 496
Trace Sample Records 497

Symbol Files 499
Symbol file syntax 500

14 Specifications and Characteristics

Processor Compatibility 504

Electrical 504

Motorola JTAG 504

HP 64783A/B Maximum Ratings 505

HP 64783A/B Electrical Specifications 506
HP 64783A/B Clock AC Timing Specifications

HP 64783A/B Output AC Timing Specifications

HP 64783A/B Input AC Timing Specifications
Physical 514

Environmental 515

BNC, labeled TRIGGER IN/JOUT 515
Communications 516

Contents

486

508
509

511

XXi

Contents

Part 4

15

Installation and Service

In This Part 518

Connecting the Emulator to a Target System

Plugging The Emulator Into A Target System 520

Understanding an emulator 520
Equivalent circuits 522
Connecting the emulator to the target system 524

Verifying Operation Of The Emulator In Your Target System 526

Running the emulator configured like the processor 527

To verify operation of the target system 528

Interpreting the trace list 537

Fixing timing problems 539

Installing the emulator in a target system without known good software 540

Installing Emulator Features 542

Evaluating the reset facilities 542

Installing the background monitor 544

Resetting into the background monitor 544

Dealing with keep-alive circuitry while using the background monitor 546
Testing memory accesses with the background monitor 547

Running a program from the background monitor 548

Breaking into the background monitor 551

Exiting the background monitor 552

Software breakpoint entry into the background monitor 553

Stepping with the background monitor 555

Installing the foreground monitor 558

Resetting into the foreground monitor 559

Dealing with keep-alive circuitry by using the custom foreground monitor 561
Testing memory access with the foreground monitor 562

Running a program from the foreground monitor 563

Breaking into the foreground monitor 565

Exiting the foreground monitor 567

Software breakpoint entry into the foreground monitor 567

Stepping with the foreground monitor 570

Installing emulation memory 572

XXii

16

17

Contents

Installation and Service
Installation 576

Installing Hardware 577

Step 1. Install optional memory modules on Deep Analyzer card, if desired 579
Observe antistatic precautions 579

Step 2. Connect the Emulator Probe Cables 581

Step 3. Install Boards into the HP 64700 Card Cage 584

Step 4. Install emulation memory modules on emulator probe 596
Step 5. Connect the emulator probe to the demo target system 600
Step 6. Apply power to the HP 64700 602

To verify the performance of the emulator 606

What is pv doing to the Emulator? 608

Troubleshooting 608

To ensure software compatibility 609

Parts List 611
What is an Exchange Part? 611

Installing/Updating Emulator Firmware
Step 1: Install the firmware update utility 617
Step 2: Run "progflash” to update emulator firmware 618

Glossary

Index

xXxiii

XXiV

Part 1

Quick Start Guide

Part 1: Quick Start Guide

The Emulation Process

The emulator is a powerful tool that can help you debug and integrate your target
system hardware and software. There are three steps to the emulation process:

Develop Your Programs

Before you can use the emulator to debug your target system, you must have a
target program to analyze. This may be developed on a host computer and
downloaded into target system ROM, or you can download programs into
emulation memory, which allows testing, debugging and modification before the
code is committed to hardware.

Configure the Emulator

Each target system has different resource requirements for memory and 1/O
locations. The emulator configuration controls allow you to adapt the emulator to
match the needs of your target system hardware and software. You usually define
this configuration once, then change it only as your target system design definition
changes.

Use the Emulator

After you configure the emulator, you can load the programs you want to test, run
them, and make various measurements to verify their functionality. The emulator
allows you to control program runs, display and modify memory and registers, and
record program execution.

Part 1: Quick Start Guide

In This Part

Chapter 1, “Quick Start Guide,” tells how to set up the emulator and how to be|
making simple measurements. The chapter is organized as a practice tutorial,
that you can use the built-in demo program of the emulator to learn about em
operation.

Chapter 2, “Troubleshooting,” gives you tips on solving the more common
problems that you may find when you begin using the emulator.

If you're looking for more detailed information on emulator operation, see part

Getting Started

Chapter 1: Getting Started
Step 1. Log in to the emulator

The Getting Started Procedure

The first steps of this procedure introduce you to some of the basic features of the
MC68040 emulator. The last steps of this procedure show you how the MC68040
emulator helps you develop your target system and program code in a virtual
memory system managed by the MC68040 memory management unit (MMU).

Step 1. Log in to the emulator

* Type the following command:

$telnet hostname

Where <hostname> is the name of the emulator. You could use the Internet
Protocol (IP) address (or internet address) in place of the emulator name, if desired.
For example:

$telnet 15.35.226.210

Note The "telnet" capability of the HP64700A is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for a particular purpose.

You should see messages similar to:

Trying...

Connected to 15.35.226.210

Escape character is '’

After you connect to the emulator, you should see a prompt similar to:
R>

Chapter 1: Getting Started
Step 2. Initialize the emulator

Step 2. Initialize the emulator .

Make sure you begin an emulation session with the emulator in its default,
power-up state by initializing the emulator. Initialize the emulator by entering the
init command.

R>init
Limited initialization completed

Step 3. Load the demo program

Type in thedemocommand.

R>demo

The command "demo” initializes the configuration of the emulator and loads the
demo program along with its symbols into emulation memory.

Chapter 1: Getting Started
Step 4. See the emulation memory map

Step 4. See the emulation memory map

» See how the emulation memory map was set up to store the demo program. Use
themap command:

R>map

remaining number of terms : 5

remaining emulation memory : 20000h bytes

map 000000000..00000ffff@a eram lock #term 1
map 0ff000000..0ff000fff@a eram dp,lock,tci # term 2
map Offff0000..0ffffffff@a eram lock #term 3
map other tram

R>

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses. You can map up to eight memory ranges with 256-byte
resolution (beginning on 256-byte boundaries and at least 256 bytes in length).

In an emulation memory map, you can characterize memory ranges as emulation
RAM, emulation ROM, target system RAM, target system ROM, or as guarded
memory.

The "lock" attribute requires cycle-termination signals from the target system to
end emulation-memory cycles. The "dp" attribute assigns the associated 4-Kbyte
address space to the dual-port memory. Term 2 is occupied by the emulation
foreground monitor, which always uses dual-port memory. The "tci" attribute
prevents data read by the processor from being stored in the instruction and data
caches when execution is in the emulation monitor.

Chapter 1: Getting Started
Step 5. Display the symbols of the demo program

Step 5. Display the symbols of the demo program

* Type in thesym command:

R>sym
sym __ctype=0000081a6
sym __initcopy=00000809e
sym _alarm=00001c004
sym _clocktic=00001c000
sym _demodisp=000008094
sym _duration=000018000
sym _main=0000100a2
sym _memcpy=0000082e0
sym _memset=0000082a8
sym _outchar=000010000
sym _setalarm=00000808a
sym _sys_demodisp=0000007c8
sym _sys_demointr=0000007e0
sym _sys_intrhdlr=000000812
sym _sys_setalarm=000000874
sym _sys_startup=0000008cc
sym _sysbuf=00001c010
sym _tolower=0000082c8
sym _userbuf=000018004
sym _usermode=000008000
sym dtoi=00000816¢
sym dtoui=000008188
sym entry=000000700

R>

Chapter 1: Getting Started
Step 6. Display the demo program in memory

Step 6. Display the demo program in memory

» Display a partial listing of the demo program by using the following memory
command:

U>m -dm 8000..8050
000008000 _usermode LINK.W A6 #$FFFC

000008004 MOVEM.L D2-D4/A2-A4,-(A7)
000008008 - MOVEA.L ($0008,A6),A2
00000800c - MOVE.L ($000C,A6),D2
000008010 - MOVEA.L ($0010,A6),A3
000008014 - TST.L D2

000008016 - BLE.L $00008074
00000801c - MOVEC USP,DO
000008020 - MOVE.L DO,($FFFC,A6)
000008024 - MOVE.L D2,D0
000008026 - LSL.L #2,D0

000008028 - SUB.L DO,($FFFC,A6)
00000802c - MOVEA.L ($FFFC,A6),A4
000008030 - MOVEQ #$00000000,D3
000008032 - BRA.B $00008066
000008034 - MOVEA.L ($00,A3,D3.L*4),A0
000008038 - MOVEQ #$FFFFFFFF,DO
00000803a - ADDQ.L #1,D0
00000803c - TST.B (A0)+

00000803e - BNE.B $0000803A
000008040 - ADDQ.L #1,D0
000008042 - MOVE.L DO0,D4
000008044 - MOVEQ #$00000002,D0
000008046 - MOVE.L DA4,D1
000008048 - DIVSL.L DO0,D0:D1
00000804c - ADD.L DA4,DO
00000804e - SUB.L DO,($FFFC,A6)
M>

Them command lets you display and modify memory locations. When displaying
memory, thedm option causes the contents of memory locations to be
disassembled (displayed in assembly language mnemonic format).

Note that the prompt changed from R> to M>. This indicates that the emulation
processor changed from the reset state to the state of running in the monitor. The
emulator uses one of the routines in the monitor to read the content of memory.

10

Chapter 1: Getting Started
Step 7. Start the demo program

Step 7. Start the demo program .

Type in the command to run the emulator from reset.
M>r rst

u>

The "U>" prompt indicates that the user program (in this case, the demo program)
is running.

11

Chapter 1: Getting Started
Step 8. Take a trace of the demo program

Step 8. Take a trace of the demo program

Use the trace to see where the demo program is running:

Ust
Emulation trace started

Thet (trace) command tells the analyzer to look at activity on the emulation
processor buses and control signals at each bus cycle. The information available
during a bus cycle is called a state.

When a state matches the "trigger state", which you specify, the analyzer captures it
into its trace memory and identifies it as line 0. The analyzer fills the remainder of
its trace memory with states that occur after the trigger state.

The default trigger state is "any state". With the default specification, the t
command will cause the analyzer to trigger on the first state it finds and store each
new state that occurs until its trace memory is filled.

Step 9. View the status of the trace

Type in thets command:

Usts
--- Emulation Trace Status ---
NEW User trace complete
Arm ignored
Trigger in memory
Arm to trigger ?
States 1024 (1024) 0..1023
Sequence term 2
Occurrence left 1

u>

12

Chapter 1: Getting Started
Step 10. View the trace list

Step 10. View the trace list

List the first twenty states stored in the trace list (-t 20), with instructions
disassembled (-d), and symbols and addresses shown in the addr column (-e), by
entering the followingl command:

Ustl -d -e -t 20
Line addr,H 68040 Mnemonic
0 000008f8 BLE.B $000008E4
=000008fa MOVEQ #$00000050,D0
1 000008fc CMP.L D2,D0
=000008fe BLS.B $000008E4
2 000008e8 TST.B ($00,A2,D2.L)
3 000008ec BEQ.B $000008F6
=000008ee ADDQ.L #1,D2
4 000008f0 MOVEQ #$00000050,D0
=000008f2 CMP.L DO,D2
5 ffffc010 $00------ phy sdata byte read
6 000008f4 BCS.B $000008E8
=000008f6 TST.L D2
7 000008f0 MOVEQ #$00000050,D0
=000008f2 CMP.L DO,D2
8 000008f4 BCS.B $000008E8
=000008f6 TST.L D2
9 000008f8 BLE.B $000008E4
=000008fa MOVEQ #$00000050,D0
10 000008fc CMP.L D2,DO
=000008fe BLS.B $000008E4
11 00000900 MOVE.L #3$0000092A,($FFF8,A6)
12 00000904 $092AFFF8 phy sprog long read
13 000008e0 Unimplemented F-Line Opcode: $FF00
=000008e2 ADDQ.L #4,A7
14 000008e4 MOVEQ #$00000000,D2
=000008e6 BRA.B $000008FO0
15 000008e8 TST.B ($00,A2,D2.L)
16 000008f0 MOVEQ #$00000050,D0
=000008f2 CMP.L DO,D2
17 000008f4 BCS.B $000008ES8
=000008f6 TST.L D2
18 000008f8 BLE.B $000008E4
=000008fa MOVEQ #$00000050,D0
19 000008fc CMP.L D2,DO
=000008fe BLS.B $000008E4

u>

The first column in the trace list contains the line number. The trigger state is
always on line number 0.

The second column contains the address information for each state. Addresses may
be locations of instruction opcodes on fetch cycles, or they may be sources or
destinations of operand cycles. TFe@ption in thel command causes symbols to

be shown in this column (when available) instead of hexadecimal values.

13

Chapter 1: Getting Started
Step 11. Use the demo program

The third column shows mnemonic information about the emulation bus cycle.
The-d option in thel command causes instructions to be disassembled.

Note the equals signs "=" in the addr column. These are equivalent addresses.
These addresses never appeared on the emulation bus. These addresses were
emitted by the disassembler to show actual locations of the associated instructions.

Step 11. Use the demo program

The demo program is designed to write numbers to the seven-segment LED on the
demo board. Have the following numbers written to the LED:
1234567890ABCDEF. Use the following command to modify the "_sysbuf"
symbol:

U>m _sysbuf="1234567890ABCDEF"

The string you entered in the "m" command should write one time on the LED of
the demo board.

14

Chapter 1: Getting Started
Step 12. Stop (break from) program execution

Step 12. Stop (break from) program execution

Theb command causes the emulator to break away from running the target
program to run the emulation monitor program.

The monitor program contains the routines that provide most of the features of the
emulator, such as display of internal registers and target system resources. The
MC68040 emulator has both a background monitor and a foreground monitor (the
foreground monitor is used during this demo procedure).

When the emulator is running your target program, commands that require access
to internal registers or target system resources will cause temporary breaks to the
monitor (except when the emulator is restricted to real time execution).

Break emulator execution away from the demo program and begin execution in the
monitor by entering thb command:

Usb
M>

Notice that the emulation status character becomes "M", which indicates that the
emulator is executing in the monitor.

Step 13. Display processor registers

Type in thereg command:

M>reg

reg pc=0000094e st=2009
reg dO=fffffdff d1=ffffffff d2=00000000 d3=00000000
reg d4=00000000 d5=00000000 d6=00000000 d7=00000000
reg a0=00000002 a1=00018068 a2=0001c010 a3=00000000
reg a4=00000000 a5=00000000 a6=0001fff6 a7=0001ffee
reg usp=0001bffe msp=00000001 isp=0001ffee vbr=00000000
reg cacr=00000000 sfc=00 dfc=04

M>

15

Chapter 1: Getting Started
Step 14. Step through program execution

Each time theeg command is used, the new values of the processor registers are
shown. In the case where the emulator is running your target program, some of the
processor registers will usually have changed each time you enteg the

command. In this case (the emulator is running the monitor), the register values are
not changing.

Step 14. Step through program execution

» Step one instruction in the target program by entering toenmand.

M>s
0000008e4@s - MOVEQ #3$00000000,D2
PC = 0000008e6@s
ISTATUS 155! Vector table modified for single stepping
M>

» Step eight instructions in the target program by entering 8tmmmand

M>s 8

0000008e6@s - BRA.B $000008FO
0000008f0@s - MOVEQ #$00000050,D0
0000008f2@s - CMP.L DO,D2
0000008f4@s - BCS.B $000008E8
0000008e8@s - TST.B ($00,A2,D2.L)
0000008ec@s - BEQ.B $000008F6
0000008f6@s - TST.L D2
0000008f8@s - BLE.B $000008E4
PC = 0000008e4@s

M>

Thes command lets you step through execution of your target program. You can
step single instructions, or several instructions at a time.

16

Chapter 1: Getting Started
Step 15. Reset the emulator

Step 15. Reset the emulator .

Reset the emulator by entering tsecommand.

M>rst
R>

Notice that the emulation status character changes to "R", which shows that the
emulator is being held in the reset state.

Step 16. If the emulator status character is
unfamiliar
The "R", "U", and "M" emulation prompt status characters are described in this

chapter. If you see other emulation status charaters, enesah@mand for more
information about the emulator status.

Display the emulator status information by enteringeb@mmmand.

R>es
M68040--Emulation reset

17

Chapter 1: Getting Started
Step 16. If the emulator status character is unfamiliar

The MMU demonstration

The remainder of this demonstration shows how the M68040 emulator helps you
develop and analyze your target program within a memory system that is managed
by the MMU of the MC68040 processor.

The demo program simulates a real target system that displays hexadecimal
characters on the seven-segment display of the HP64783A demo board (used with
HP 64783A and HP 64783B emulators). A simple operating system uses interrupts
to maintain a system clock and to provide an alarm capability for user mode tasks.
The MMU of the 68040 is used for translating addresses for separate ROM and
RAM areas and to provide memory access protections.

The demo program requires 128 Kbytes of emulation memory. One 64-Kbyte
block of emulation RAM is mapped to lower memory to correspond to system
ROM. The other 64-Kbyte block is mapped to upper memory to correspond to
system RAM. The operating system boot code sets up the MMU with the
following address translations and access protections:

Logical Address Physical Address Attributes

00000000..00007fff 00000000..00007fff@a S W (32K super prog/tables)
00008000..0000ffff 00008000..0000ffff@a W (32K lib/libc prog)
00010000..00017fff ffff000O..ffff7fff@a W (32K user prog)
00010000..0001bfff ffff8000..fff{Bfff@a (16K user data/stack)
0001C000..0001ffff ffffCOO0O0..ffffffff@a S (16K super data/stack)
80000000..80ffffff 80000000..80ffffff@a TT (monitor)

Where:
S = Supervisor access only.
W = Write protected.
TT = Controlled by a transparent translation register.

ROM space is write protected and is divided into two blocks. The first half

contains privileged operating system code and static tables that are only accessible
in supervisor mode. The second half contains shared library functions accessible in
both supervisor and user mode. RAM space is divided into three blocks and is
initialized by the operating system at bootup. The first half is write protected and
contains target program code. The second half is divided into two blocks for user
data/stack space and supervisor data/stack space, respectively.

To run the demo program, run from reset and modify "_sysbuf" to a

NUL-terminated hexascii string (ien -db _sysbuf="0123456789ABCDEF).

The operating system monitors the "_sysbuf" variable and invokes the user mode
task to display each character on the seven-segment display. The user mode task
makes calls to the operating system interface to access the I/O port for the
seven-segment display and to set up an alarm to display each character for one-half

18

Chapter 1: Getting Started
Step 17. Again, run the demo program from reset

second. After all characters in the string have been displayed, control returns
operating system, at which time, "_sysbuf" can be modified again. If the hexa
string ends with "@", the user mode task will display the hexascii string repetit

and will not return to the operating system. In this case, the emulation processor
must be reset to stop the repetition.

Step 17. Again, run the demo program from reset

» Type in the command:

M>r rst
u>

19

Chapter 1: Getting Started
Step 18. See the setup of the MMU

Step 18. See the setup of the MMU

Themmu command lets you see the present setup of the MMU. The MMU was
set up by the demo program when you first started it. Type miitnecommand:

U>mmu

Logical Address Physical Address Attributes
000000000..000007fff 000000000..000007fff@a S W
000008000..00000ffff 000008000..00000ffff@a W
000010000..000017fff Offff0000..0ffff7fff@a W
000018000..00001bfff 0Offff8000..0ffffbfff@a
00001c000..00001ffff Offffc000..0ffffffff@a S
0ff000000..0ffffffff 0ff000000..0ffffffff@a TT

u>

Note that the first and second ranges of logical addresses are translated 1:1 to their
physical addresses. The third, fourth, and fifth ranges of logical addresses are
translated to different physical addresses. The last range of logical addresses is
translated 1:1 to its corresponding range of physical addresses.

The "TT" attribute beside the last range of physical addresses indicates that it is
transparently translated by one of the transparent translation registers. The
emulation monitor occupies the first part of the last address range.

No part of the demo program was placed in the 16-Megabyte range controlled by

the transparent translation register. Transparent translation registers are easy to use
when reserving 1:1 address space for the emulation monitor, which is essential
because the emulator must be able to access the monitor whether or not the MMU

is enabled.

The demo program could have created an appropriate entry in the MMU tables to
reserve memory space for the emulation monitor. The transparent translation
registers were used to store the monitor because they are much easier to use.
Simply define the address space to be translated 1:1 by the transparent translation
registers and load the emulation monitor into it.

20

Chapter 1: Getting Started
Step 19. Look at the translation table details for a single logical address

Step 19. Look at the translation table details for a
single logical address

To see how logical address 18000h is translated by the MMU to its corresponding
physical address, type the following commamdau -t 18000.

U>mmu -t 18000
Logical Address(hex) 0 0 0 1 8 0 0 O
Logical Address (bin) 0000 0000 0000 0001 1000 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

A 000 00000200 0000040b 00000400 y n RESIDENT

B 000 00000400 0000060b 00000600 y n RESIDENT

C 024 00000660 ffff801b ffffBO00 N 00 ncwyy n RESIDENT

Physical Address (hex) = ffff8000
u>

Logical address 18000h is translated to physical address ffff8000h by the MC68040
MMU, using the MMU tables.

When you are developing a virtual memory system, you will need to check the
translations of selected addresses. -Tloption of thanmu command lets you do
this.

21

Chapter 1: Getting Started
Step 20. Look at details of an MMU Table

Step 20. Look at details of an MMU Table

Type the following command to see the details of Table C where it is used to
translate logical address 1800@imu -t -c 18000.

Themmu command with the appropriate options lets you see a listing of the details
of one of the MMU tables where it is used in translating a selected logical address.

U>mmu -t -c 18000
Logical Address(hex) 0 0 0O 1 8 0 O O
Logical Address (bin) 0000 0000 0000 0001 1000 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

000 00000200 0000040b 00000400 y n RESIDENT

000 00000400 0000060b 00000600 y n RESIDENT

000 00000600 0000009f 00000000 N 00y cw nyy RESIDENT
001 00000604 00001087 00001000 n 00y cw nny RESIDENT
002 00000608 00002087 00002000 n 00y cw nny RESIDENT
003 0000060c 00003087 00003000 n 00y cwnny RESIDENT
004 00000610 00004087 00004000 n 00y cw nny RESIDENT
005 00000614 00005087 00005000 n 00y cw nny RESIDENT
006 00000618 00006087 00006000 N 00y cw nny RESIDENT
007 0000061c 00007087 00007000 n 00y cwnny RESIDENT
008 00000620 0000800f 00008000 n 00 ncw nyy RESIDENT
009 00000624 00009007 00009000 n 00 ncw nny RESIDENT
010 00000628 0000a007 0000a000 n 00 ncw nny RESIDENT

00000000000 T >

Occasionally you will need to examine the content of one of the MMU translation
tables at the point where it is used to translate a particular logical address. The
mmu -t -c command and options let you do this.

22

Chapter 1: Getting Started
Step 21. Take another trace of emulation activity

Step 21. Take another trace of emulation activity

Use thet andtl commands to take a new trace as follows:

Ust
Emulation trace started
ustl
Line addr,H 68040 Mnemonic

0000099c $4A826FEA phy sprog long read
00000998 $B48065F2 phy sprog long read
0000099c $4A826FEA phy sprog long read
000009a0 $7050B082 phy sprog long read
000009a4 $63E42F0A phy sprog long read
000009a8 $48790001 phy sprog long read
000009ac $00964EB9 phy sprog long read
00000988 $588F7400 phy sprog long read
0000098c $60084A32 phy sprog long read
00000990 $28006708 phy sprog long read

OCO~NOUITAWNEFO

u>

Note that all of the addresses displayed are physical addresses (denoted by "phy" in
the "68040 Mnemonic" column of the trace list).

When the analyzer receives physical addresses, it can only show hexadecimal
values in the "addr,H" column of the trace list. The analyzer has no way to cross
reference the physical addresses on the emulation bus with the logical addresses
from which they were translated. Therefore, the analyzer cannot show you any
symbol information associated with these addresses.

To see logical addresses in the tracelist, you must use the deMMUer, demonstrated
next in this procedure.

23

Chapter 1: Getting Started
Step 22. Prepare the deMMUer so you can see symbolic addresses in the trace list

Step 22. Prepare the deMMUer so you can see
symbolic addresses in the trace list

* Load the deMMUer so it can supply logical address information to the analyzer
(derived by reverse translating the physical addresses on the emulation bus). Type
the commanddmmu -Iv.

u>dmmu -lv
All physical addresses within the following 32-Mbyte range(s) will be
reverse translated into logical addresses for the analyzer:
000000000..001ffffff@a
0fe000000..0ffffffff@a

The lowest logical address from the translation tables is assumed when
multiple translations reference the same physical address.
u>

The above command loaded the deMMUer with information to reverse translate
two ranges of physical addresses obtained from the MMU. The verbose "v" mode
of this display was selected so we could see which ranges of physical addresses
would be reverse translated by the deMMUer.

Note the message below the list of physical address ranges that will be reverse
translated. This tells you that any physical addresses that might have been derived
from two or more logical addresses will be reverse translated to the lowest logical
address by the deMMUer.

Remember the setup of the MMU. It showed the following:

U>mmu

Logical Address Physical Address Attributes
000000000..000007fff 000000000..000007fff@a S W
000008000..00000ffff 000008000..00000ffff@a W
000010000..000017fff Offff0000..0ffff7fff@a W
000018000..00001bfff 0ffff8000..0ffffbfff@a
00001c000..00001ffff Offffc000..0ffffffff@a S
0ff000000..0ffffffff 0ff000000..0ffffffff@a TT

u>

Physical address 1ffff, for example, might appear when the MMU translates either
logical address 1ffff or logical address fffff. The deMMUer will send 1ffff to the
analyzer because it is the lowest logical address that might have caused physical
address fffff to appear on the emulation bus.

24

Chapter 1: Getting Started
Step 23. Enable the deMMUer

When a physical address maps to two or more logical addresses, the deMMU
normally sends the logical address with the lowest value to the analyzer.

Exceptions to this rule are discussed in the chapter titled, "Using Memory
Management" in this manual.

Step 23. Enable the deMMUer

Enable the deMMUer to supply logical addresses (obtained by reverse translating
physical addresses) to the analyzer. Type the comrdandu -e.

U>dmmu -e

25

Chapter 1: Getting Started
Step 24. Take a new trace

Step 24. Take a new trace

» The purpose of this trace is to see if the analyzer is now capturing logical address
information for each state on the emulation bus. Type ihdhdtl commands
shown below:

Ust
Emulation trace started
U>tl -e
Line addr,H 68040 Mnemonic

0 000008fc $B08263E4 log sprog long read
1 000008e8 $4A322800 log sprog long read
2 000008ec $67085282 log sprog long read
3 000008f0 $7050B480 log sprog long read
4 _sysbuf $00------ log sdata byte read

5 000008f4 $65F24A82 log sprog long read
6 000008f0 $7050B480 log sprog long read
7 000008f4 $65F24A82 log sprog long read
8 000008f8 $6FEA7050 log sprog long read
9 000008fc $B08263E4 log sprog long read
10 00000900 $2D7C0000 log sprog long read
11 00000904 $092AFFF8 log sprog long read
12 000008e0 $FF00588F log sprog long read
13 000008e4 $74006008 log sprog long read
14 000008e8 $4A322800 log sprog long read
15 000008f0 $7050B480 log sprog long read
16 000008f4 $65F24A82 log sprog long read
17 000008f8 $6FEA7050 log sprog long read
18 000008fc $B08263E4 log sprog long read
19 000008e8 $4A322800 log sprog long read

Note that "log" is now shown in the "68040 Mnemonic" column. Because the
deMMUer is supplying logical addresses to the analyzer, the analyzer is able to
replace the address for "_sysbuf"' with the symbol name in the trace list. You told
the analyzer to use symbol names where possible when you includedptien

with thetl command.

26

Chapter 1: Getting Started
Step 25. Inverse assemble the trace list

Step 25. Inverse assemble the trace list

* Now show the trace list inverse assembled into assembly language mnemonics.
Use the followingl command and the options shown:

Ustl -d -e -t 20
Line addr,H 68040 Mnemonic

0 000008fc CMP.L D2,DO
=000008fe BLS.B $000008E4

1 000008e8 TST.B ($00,A2,D2.L)

2 000008ec BEQ.B $000008F6
=000008ee ADDQ.L #1,D2

3 000008f0 MOVEQ #$00000050,D0
=000008f2 CMP.L DO,D2

4 _sysbuf $00------ log sdata byte read

5 000008f4 BCS.B $000008E8
=000008f6 TST.L D2

6 000008f0 MOVEQ #$00000050,D0
=000008f2 CMP.L DO,D2

7 000008f4 BCS.B $000008E8
=000008f6 TST.L D2

8 000008f8 BLE.B $000008E4
=000008fa MOVEQ #$00000050,D0

9 000008fc CMP.L D2,DO
=000008fe BLS.B $000008E4

10 00000900 MOVE.L #$0000092A,($FFF8,A6)

11 00000904 $092AFFF8 log sprog long read

12 000008e0 Unimplemented F-Line Opcode: $FF00
=000008e2 ADDQ.L #4,A7

13 000008e4 MOVEQ #$00000000,D2
=000008e6 BRA.B $000008FO0

14 000008e8 TST.B ($00,A2,D2.L)

15 000008f0 MOVEQ #$00000050,D0
=000008f2 CMP.L DO,D2

16 000008f4 BCS.B $000008ES8
=000008f6 TST.L D2

17 000008f8 BLE.B $000008E4
=000008fa MOVEQ #$00000050,D0

18 000008fc CMP.L D2,DO
=000008fe BLS.B $000008E4

19 000008e8 TST.B ($00,A2,D2.L)

Note that the symbol "_sysbuf" is shown in the trace list instead of the hexadecimal
address value that it represents. You requested that symbols be shown in place of
hexadecimal address values when you included the "-e" optionttactmmand

above.

27

Chapter 1: Getting Started
Step 26. See the demo help screen

Step 26. See the demo help screen

Enter the comman® demo

The display contains a description of the demo program used in this chapter. Other
help screens are available in the emulator. Simply @rtehelp, followed by the

name of the command or topic for which you would like to receive some help. If
you enter? or help alone, the emulator will show you a list of topics on which you
can receive helpful information.

Step 27. Reset the emulator

Sometimes you may want to reset the emulation processor. This may be done from
the emulator or the target system. To reset the emulation processor from the
emulator, typerst

The prompt will change B>.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (Refer to the chapter titled "Configuring the Emulator" for more
information.)

28

Troubleshooting

Finding out what's wrong and fixing it

29

Chapter 2: Troubleshooting
If the demo program won’t work

This chapter explains how to diagnose and solve simple problems you might
encounter when you first get started using the emulator. It doesn't explain how to
solve more complex problems or how to interpret error messages. See Part 2 of this
manual for more comprehensive problem solutions.

If the demo program won'’t work

[J Check to be sure that you have the emulator plugged into the demo board, with
power connected to the demo board from the emulator. (The demo program will not
work with target systems other than the demo board.)

[J Make sure the reset flying lead is connected from the probe to the demo board.
[J Make sure the green power indicator LED on the demo board is on.

[J Make sure you initialized the emulatami{ -p), and then executed themo
command to load the program and configure the emulator.

If you don’t see a prompt

[J Make sure that the power cable is connected to the Card Cage and that the front
panel power switch is ON.

[Make sure that the communications channel settings are correct for the data
communications setup and cabling that you are using.

[J Make sure that you are using the correct data communication cable and that it is
properly connected from your terminal or host computer to the HP 64700 Series
Card Cage.

If you need more information about power or datacomm connnections, see the
HP 64700 Series Card Cage Installation/Service Gufdgu are unable to find

30

Chapter 2: Troubleshooting
If you see an unfamiliar prompt

the source of the problem, contact your local HP Sales and Service Office for
assistance.

If you see an unfamiliar prompt

The emulator uses several different characters before the prompt string to provide
status information (for example, R> means emulator reset). A complete list of these
prompts is in Chapter 3, “Using the Terminal Interface.” If you are unable to find
the problem from that information, check the following items:

To function correctly, the emulator must be plugged into a powered on target
system with a clock signal. (Apply power to the emulator before applying power to
the target system.) You must use the demo board supplied with the emulator for
the demo program.

Make sure your system is not holding the emulator in a wait state, or has not
arbitrated the bus away from the emulation processor. The demo board will not
cause these conditions.

Make sure that the emulator is properly configured for your system requirements.
See Chapter 7, “Configuring the Emulator.” The demo command automatically
configures the emulator for the demo board.

Make sure that the emulation monitor is configured correctly. If you want to use a
background monitor, choosémon=bg If you want to use a foreground monitor,
choosecf mon=fg. Choosecf monaddr=<address>to set the starting address of

the monitor<address>must be on a 4K boundary. The foreground monitor
<address>range cannot be used by your programs. The demo program requires
use of the foreground monitor.

Try running performance verification (pv) to verify that the emulator and emulation
controller are functioning correctly. See Chapter 15, “Installation and Service.”

31

Chapter 2: Troubleshooting
If the emulator displays a prompt, but doesn’t respond to commands

If the emulator displays a prompt, but doesn’t

respond to commands
. [J Make sure that you are using the correct data communications cable.

[J Make sure that the data communications switch settings (or settings made with the
stty command) are correct for the terminal or host computer and cable that you are
using.

If the emulator seems to execute a command but doesn’t echo what you typed,
check the local echo switch setting or the echo setting stttheommand.

[J Make sure that you haven't reassigned port actions with the datacomm switch
settings.

If you need more information about power or datacomm connections, see the
HP 64700 Series Card Cage Installation/Service Gufdgu are unable to find
the source of the problem, contact your local HP Sales and Service Office for
assistance.

If you can’t load the demo program

[J Make sure that the emulator is connected to the demo board, not some other system.

L] Try reinitializing the emulatoiirfit -p), then reenter thdemo command.

32

Chapter 2: Troubleshooting
If you can't load a program

If you can’t load a program

[J Make sure that the configuration is correct. See Chapter 7, “Configuring the
Emulator,” for more information.

[J Make sure that the memory map is defined correctly for your program resource
needs. See Chapter 7, “Configuring the Emulator,” for more information.

[J Make sure that the emulator is properly connected to your target system (the demo
board, in this case) and that the system is powered-on. Also, if the memory map
references target system resources, there must be target system hardware in the
ranges defined by the map.

[J Check thdoad command syntax and the absolute file format to make sure that you
are using the correct options.

[J Make sure that you are using the correct load procedure for the emulator
communications configuration. See Chapter 4, “Using the Emulator,” for examples
of different configurations and the appropriate load procedures.

If the emulator won’t run the program

[J Make sure that you have configured the emulation monitor correctly. If you want to
use a background monitor, cho@$enon=bg If you want to use a foreground
monitor, choosef mon=fg. Choosef monaddr=<address>to set the starting
address of the monitoraddress>must be on a 4K boundary. The foreground
monitor<address>range cannot be used by your programs.

[J Check the general emulator configuration. See Chapter 7, “Configuring the
Emulator,” for more information.

[J Check the emulator memory map to verify that it matches the resource needs of the
program. If the program and map rely on resources in your target system, make
sure that the emulator is properly connected to a powered-on target system.

33

Chapter 2: Troubleshooting
If you can't break to the monitor

[J Check to make sure that you have correctly specified the address for the run
command.

If you can’t break to the monitor

[J Make sure that you have configured the emulation monitor correctly. If you want to
use a background monitor, cho@$enon=bg If you want to use a foreground
monitor, choosef mon=fg. Choosef monaddr=<address>to set the starting
address for the monitor.

[J Try initializing the emulatorikit -p), or cycle power to the emulator.

[J Run performance verificatiopy) to test the emulation controller.

If the emulator won't reset

[J Use theescommand to see if the target system is holding the processor in the reset
state.

[J Make sure the reset flying lead is connected from the probe to the demo board.
[J Try initializing the emulatorifit -p), or cycle power to the emulator.

[J Run performance verificatiopy) to test the emulation controller.

34

Part 2

Using the MC68040
Emulator/Analyzer

35

Part 2: Using the MC68040 Emulator/Analyzer

Making Measurements

When you've become familiar with the basic emulation process (see part 1 of this

manual), you'll want to make specific measurements to analyze your software and
target system. The emulator has many features that allow you to control program

execution, view processor resources, and record program activity.

In This Part

Chapter 3, “Using the Terminal Interface,” tells you how to use the Terminal
Interface commands.

Chapter 4, “Using the Emulator,” shows you how to use the Terminal Interface
commands to control the emulation processor and make simple emulation
measurements.

Chapter 5, “Using the Analyzer,” explains how to use the emulation analyzer to
record program execution for debugging.

Chapter 6, “Making Coordinated Measurements,” shows you how to use multiple
emulators, analyzers, oscilloscopes or other measurement tools to make complex
measurements.

Chapter 7, “Configuring the Emulator,” explains how to use the Terminal Interface
commands to allocate emulation resources such as memory and how to enable and
disable certain emulator features.

Chapter 8, “Solving Problems,” explains some of the problems that you might
encounter when you use the emulator, and how to solve them.

If you're looking for a general introduction to using the emulator, see part 1.
Reference information on the emulator is in part 3.

36

Using the Terminal Interface

How to set up the emulator and enter commands in the terminal interface

37

Chapter 3: Using the Terminal Interface

The Terminal Interface provides all the commands you need to make emulation and
analysis measurements. The interface includes tools for emulator initialization,
command entry and recall, and command help.

The steps in the emulation process are as follows:

1 Develop your program as described in Chapter 4.
2 Set up the emulator hardware and software as described in Chapter 15.

3 Connect the emulator to the demo board or other system. (See Chapter 15 and
Chapter 5).

4 Apply power to the emulator.

5 Configure the emulator as needed for your system and programs. See Chapter
7.

6 Use the Terminal Interface commands to load, run and debug your programs.
See Chapters 3, 4 and 5.

38

Chapter 3: Using the Terminal Interface
Using the Interface

Using the Interface

The Terminal Interface is a command-line interface. By using the Terminal
Interface commands, you can control HP 64700 Card Cage system functions and
the emulator-specific functions.

This section tells you how to enter, recall and edit Terminal Interface comman
also explains a few system commands that you may want to use.

The Terminal Interface displays different prompts to show you the current emulator
status. The prompts are shown in the following table.

Command Prompt Meaning

c> No clock source from the emulated
system.

R> The processor is being reset from the
emulator.

r> The processor is being reset from the
emulated system.

g> The processor has not been granted the
bus by the external arbiteBG is not
asserted).

h> The processor has double bus faulted.

b> No bus cycles are occurring.

u> The processor is executing a target
(user) program.

M> The processor is executing the
emulation monitor.

p> No power from the emulated system.

wW> The emulator is waiting for a CMB
READY signal. See Chapter 6.

w> The processor is waiting for a cycle

termination from the target system.

39

Chapter 3: Using the Terminal Interface

Using the Interface

?> The emulator is in an unknown state.
You will probably need to use thst or
init command or cycle power to
reinitialize the emulator.

Examples

To apply power

Apply power to the emulator by pressing the power ON button located on the front
panel.

Apply power to the MC68040 emulator and do a complete initialization. You will
see a display similar to the following on your terminal screen:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64783 Motorola 68040 Emulator
HP64740 Emulation Analyzer
R>

The emulator executes the initialization procedure, and then presents the Terminal
Interface command prompt. See “To Initialize the Emulator.”

40

Chapter 3: Using the Terminal Interface
Using the Interface

To initialize the emulator

To do a limited initialization of the emulator, typeit

To do a complete initialization of the emulator, without verification of system
controller and memory, typeit -c.

To do a complete initialization of the emulator, with verification of memory and
system controller, typénit -p

Theinit command does the following:

* Resets the memory map.

* Resets the emulation configuration items.
* Resets the break conditions.

» Clears software breakpoints.

* Reloads the background monitor.

The-c and-p options to thénit command allow a more complete initialization of
the emulator, as follows:

» Theinit -c command does a cold-start initialization, except that system
controller performance verification tests are not executed.

* Theinit -p command performs a powerup initialization, which is the same as
cycling power. This includes emulator, analyzer, host controller, and
communications port initialization, and host controller performance
verification. It breaks the LAN connection before reporting the results of the
initialization.

41

Chapter 3: Using the Terminal Interface

Using the Interface

Examples

To enter commands

Enter a command by typing it at the Terminal Interface prompt and pressing

<RETURN?> or<Enter>. (Use the key on your system that sends a carriage return).

Recall commands in the reverse of the order that they were entered by pressing
<Ctrl>R.

Combine multiple commands on one command line by separating them with
semicolonscommandl;command2;command3

Repeat a set of commands a certain number of times by typng:
<repeat_count> {<command_set>}

where<repeat_count>is an integer specifying the number of times to repeat
the set of commands listeddwommand_set>

To load the demo program, enter:

R>demo

To enter a run command, enter:

R>r

To display several memory locations in mnemonic format and display registers,
enter:

R>m -dm 0400..040f;reg

To display the emulator status and analyzer trace status, enter:

R>es;ts

To display various analyzer settings, enter:

R>tcf;tck;tsto;tg;tgout

42

Chapter 3: Using the Terminal Interface
Using the Interface

To load the demo program, then execute the commaregthree times, enter:
R>demo;rep 3 {s 1;reg}
This loads the demo program, and then causes the emulation processor to step and

display registers three times. The first step is from the current program counter
address.

To recall commands

To recall commands in the same order that they were entered<@tdss .

To recall commands in the reverse of the order that they were entered, press
<Ctrl>R.

The command line buffer allows you to recall previously entered commands to the
command line. To execute the command, prEISTURN> or <Enter>.

If you want to edit the commands that you recall from the buffer, it's easiest to use
the command line editing feature of the Terminal Interface. See “To enable
command line editing.” The command line editing feature has different recall
commands. See “To edit a command.”

43

Example

To repeat commands

Repeat a set of commands a certain number of times by tygmg:
<repeat_count> {<command_set>}

where<repeat_count>is an integer specifying the number of times to repeat the
set of commands listed #tommand_set> (A <repeat_count>of 0 continues
repeating the commands until you enteCarl>c .)

Load the demo program, then execute the commadnekgthree times:
R>demo;rep 3 {s 1;reg}
This loads the demo program, then causes the emulation processor to step and

display registers three times. The first step is from the current program counter
address.

44

Chapter 3: Using the Terminal Interface
Using the Interface

To enable or disable command line editing

1 To install the command line editing feature, tygdee

2 To remove the command line editing feature, typbed

The command line editing feature allows you to use a simple set of command
modify the command line. See “To edit a command.”

To edit a command

1 Press<Esc>to enter command editing mode. (Command line editing must be
enabled. See “To enable or disable command line editing.”)

2 Use the commands listed in the following table to edit the command line. You can
either edit an existing command or recall one to the command line<ssog]j or
<Esc>k Or, you can use the commands shown in the table to search for a
command in the buffer.

Command Action

i Insert before current character.

A Append to end of line.
dd Delete command line.
$ Move cursor to end of line.
A Move cursor to start of line.

I Move right one character.

j Fetch next command.
a Insert after current character.
X Delete current character.

Delete to end of line.

45

Chapter 3: Using the Terminal Interface
Using the Interface

Command Action

0 Move cursor to start of line.

h Move left one character.

k Fetch previous command.

r Replace current character.

/<string> Find previous command matching
<string>.

n Fetch previous command matching
<string>.

N Fetch next command matching <string>.

3 When finished editing the command, preEster> to execute the command.

To get on-line help

» Display the mairhelp menu by typinghelp
or

e Type:?

» To display help information for a particular command group, tyek
<group_hame>

» To display help information for a particular command, tyysp
<command_name>

If you need quick reference information about a command or a set of commands,
you can use the built-imelp facilities. You can enter tHesymbol in place of the
word “help.”

Examples To display main help information, enter:

46

Chapter 3: Using the Terminal Interface
Using the Interface

R>help

To display help information for the emulation command group, enter:

R>? emul

To display help information for the load command, enter:
R>help load

To display the emulator status

Display the emulator status by typires

The emulation prompts can usually tell you most information about the emulator’s
status: whether the emulator is reset, running a user program, or running in monitor.
(See “Using the Interface” for information on the different command prompts.) If
you need more information than is given by the prompt, you can use the

command.

To set the date and time

To display the current date and time setting, tdpe:

To set the date, typ <yymmdd>, whereyy is the last two digits of the yeanm
is the month, andd is the day of the month.

To set the time, typét <hh:mm:ss>, wherehh is the hour in 24 hour formatym
is the minute of the hour, asdis the second.

The HP 64700 Card Cage has a system clock that you can set usihg the
command. The clock is reset when power is cycled. You can use the system clock

47

Chapter 3: Using the Terminal Interface

Using the Interface

Examples

for a variety of applications. For example, if you're logging the output of analyzer
traces to a printer, you might want to insertdheommand at intervals so that the
date and time will be printed with the trace listings.

Set the date to September 5, 1991:
R>dt 910905

Set the time to 1:05 P.M.:
R>dt 13:05:00

Display the date and time settings:

R>dt

Examples

To change the prompt

Change the Terminal Interface command prompt to the string givestiryg> by
typing: po -p "<string>"

The standard command prompt is ">." You can change the prompt to suit your
needs. Remember that the prompt is always preceded by a status character that
identifies the emulator state. This character is not affected when you redefine the
prompt.

The emulator prompt appears as follows when the emulator is reset:

R>

Change the prompt string to "<myemulator>":

R>po -p "<myemulator>"
R<myemulator>

48

Chapter 3: Using the Terminal Interface
Using the Interface

To check the version of the Terminal Interface
software

Typever to display the version numbers of the Terminal Interface system software
and emulator software.

The MC68040 emulator firmware must be used with the correct version of the
emulation system and emulation analyzer firmware. See the paragraph titled, "To
ensure software compatibility” in the Installation and Service chapter of this
manual for more information.

Examples

To print strings on the output device

Print a numeric expression or character string on the standard output device by
typing: echo <value>

where<value>may be a character string (enclosed in single or double quotes), a
numeric expression, or a series of hex codes preceded by backslash (\) characters.
(The hex codes are converted to their ASCII equivalents.)

Occasionally, you may want to print a string on the standard output device (usually
your terminal, but may be a printer or another device if you have redirected the
standard output port.) Tle=hocommand allows you to do this.

You can also use this command as a numeric calculator. The hex code character
evaluation is useful for sending control strings to your terminal.

Send the string "Change the switch now" to your terminal:

R>echo "Change the switch now"

For an HP 2392A terminal, send the commands to home the cursor and clear the
screen:

R>echo \1b "H" \1b "J"

49

Chapter 3: Using the Terminal Interface
Using the Interface

Find the result of the bitwise AND operation on 08 hex and 28 hex:
R>echo 08&28

To insert delays in command processing

» To delay execution of the next operation until the next keystroke occurs (on the
standard input port), type:

» To delay execution of the next operation until the current measurement is
completed, typew -m

» To delay execution of the next operation for a time, typeNN>

where<NN> is the number of seconds that you want to delay.

Command delays are especially useful when you're using repeat loops, macros, or
command files, and you need to modify some target system condition or write
down results before the next command begins.

Examples Initialize the emulator, and then load the demo program:
R>init -c

R>demo
R>r rst

Now use a command repeat: start a trace, wait for trace completion, display the
resulting trace list, and then wait for any keystroke before the next iteration of the
loop:

U>rep O {t;w -m;tl;w}

Cancel the repeat by typirgCtri>C .

50

Chapter 3: Using the Terminal Interface
Building and Using Macros

Building and Using Macros

Macros can simplify repetitive command sequences. You can enter the command
sequence once; then use the macro for the command sequence. Macros simpli
trace measurements that require many run and trace commands, or setting u
particular emulator configuration each time you start a new measurement.

Example

To create macros

To create a macro referenceddname>, type:mac <name>={<cmd_list>}
where<cmd_list>is a series of Terminal Interface commands that are separated by
semicolons (;).

You can add parameters to macros. Seendmecommand in Chapter 10,
“Emulator Commands” for more information.

Define a macro that resets the emulator, loads the demo program, runs the demo
program, and then modifies the _sysbuf variable:

R>mac setup={rst;demo;r rst;m -db _sysbuf="1234"}

Execute the set of commands in this macro:

R>setup

List the predefined configuration macros:

R>mac

51

Chapter 3: Using the Terminal Interface
Building and Using Macros

To execute a macro
» To execute a macro, type the macro name at the command prompt.
» To prevent command information display during macro execution, mype:-q

» To have macros execute with complete information on the commands in the macro,
type:mac -v

Example

Execute the "setup" macro defined in the previous section:

R>setup

If you don’t want the commands in the macro displayed, emer-q before
entering the macro command:

R>mac -q

R>setup

Reenable command display during macro execution:

R>mac -v

52

Chapter 3: Using the Terminal Interface
Building and Using Macros

Example

To delete macros

To delete a macro given kyname>, type:mac -d <name>

To delete all macros, typstac -d *

When you're finished using a macro, you should delete it. This frees emulator
system memory for symbols, equates, and new macro definitions.

Delete the macro named setup:

R>mac -d setup

53

Chapter 3: Using the Terminal Interface
Using Command Files

Using Command Files

A command file is an ASCI! file containing Terminal Interface commands. You

can create command files from within the interface by logging commands to a
command file as you execute the commands. You can also create command files
outside the interface with an ASCII text editor. You can send a command file to the
Terminal Interface and have it execute the commands found there as if you typed
them directly at the interface command line.

With a single command file, you can implement a complete test procedure. For
example, you could start the interface and execute your command file. The
command file could load a configuration, load an absolute file, modify registers or
memory, set up a trace specification, start the program, capture the trace, and save
the trace listing to a file. (The ability to capture information from the emulator may
be limited, and depends on the host computer configuration.)

Building Command Files

To build and use a command file in the Terminal Interface, the HP 64700 Series
Card Cage must be connected to a PC, workstation, or other host computer with
secondary storage.

You can build a command file by creating a list of commands with an ASCII editor,
or by logging commands to a file during a work session. If you log commands, the
way in which you build the command file depends on the configuration of the
connection. This section shows how to build and use command files for three of the
possible setups.

Commands to be logged can be classified into two categories: those that take an
action and those that list status. Many commands fit into both categories. For
example, thésq -i <number>command deletes a trace sequence termtsthe
command lists all current trace sequencer settings.

You can use this action-status division to your advantage when logging commands.
For example, if you want to log the configuration of the emulator to a command

file, including the trace settings and so on, it's best to reassign the emulator’s
standard output to a file. Thus, the file will capture the lists output from the various
commands. The lists can be used directly for the command file. If you want to log
several action commands, it's usually best to log only the command inputs and

54

Chapter 3: Using the Terminal Interface
Using Command Files

reassign the standard output to another port so that the output isn’t captured (trace
and memory lists, for example).

Editing Command Files

Because the command file is an ASCII text file, you may use an ASCII editor t
add, modify, or remove commands.

Comments in Command Files

As with any source file, comments in command files help to explain the operation
of the command file and can also contain creation and modification information.
You can put comments in command files by using a text editor or by entering the
comment as a “command” in the interfface command line entry area when logging
commands to a file. The same mechanism that allows you to enter comments
directly into the command line when logging commands also prevents the interface
from trying to execute the comment as an interface command. See “To create a
command file with a text editor” for more information.

To create a command file with a text editor

» Type in a series of commands in a text editor (one to a line or multiple commands
on one line, separated by semicolons) and save the file to disk.

You can create and edit command files with any text editor that will write and edit
ASCII files. To insert a comment in a command file, precede the comment text
with the# character. Anything after that character is ignored by the Terminal
Interface command interpreter.

Example Create the following text file using an editor and save¢bagfile:
demo # loads demo program
rrst # runs program
Now give the program a command
m _sysbuf="1234" # display 1234
execute a trace
t # start a trace
tl-e # list trace with symbols and addresses

55

Chapter 3: Using the Terminal Interface
Using Command Files

b # break
rst # reset the emulation processor

To log a command file from a PC host

1 Start the terminal emulation software on your PC (such as HP AdvanceLink).
2 Enable the file logging capability of your terminal emulation software.

3 Type the series of Terminal Interface commands that you want to save to the
command file.

4 Disable the file logging capability of the terminal emulation software.

5 Edit the disk log file as needed to remove extraneous information such as command
prompts and command responses. Save the file under the name that you want to use
for the command file.

The above procedure allows you to save a series of Terminal Interface commands
in a file that you can later edit into a form suitable for use as a command file.

PERSONAL COMPUTER

(USED BOTH FOR SOFTWARE
DEVELOPMENT AND EMULATOR CONTROL;
RUNS TERMINAL EMULATION SOFTWARE)

HP 64700 CARD
CAGE CONTAINING
EMULATOR

56

Chapter 3: Using the Terminal Interface
Using Command Files

To simplify editing the file, use thgo command to change the standard output
device while logging the commands. Only the prompts and commands will be
logged to the file. The emulator responses will be sent to the standard output device.

To log a command file on a UNIX host (emulator .
on different port)

1 Connect to the emulator using the UNiX command.

2 Begin logging commands to a file namédename> on the host by typing:
~%><filename>

3 Type in the series of commands that you want to save in the command file.

4 End command logging by typing%>

5 Exit cu by typing:~.

PORT A

HP 64720 CARD
CAGE CONTAINING
EMULATOR

TERMINAL

UNIX HOST

57

Chapter 3: Using the Terminal Interface
Using Command Files

Example

6 Edit the file you saved to remove command prompts, add comments or change

commands.

You can use the file redirection capabilitycofto log commands to a file on the
host. Also, you can reassign the emulator’s standard outputp@vit <port> to
eliminate the emulator command responses (memory and trace displays and the
like) that would clutter the command file. However, if you want to log the
responses to configuration commands that you enter without parameters (for
examplecf andtsq), don’t reassign the standard output port.

When you type the character duringu program executiorgu prints the host
name of your system after the tilde.

Connect to the emulator using:

$ cu -l /devitty01

Redirect the command inputs to a command file:

R>%>cfile

Type in the commands that you want to save in the command file. Now end input
redirection:

R>~%>

Edit the command filefile to remove command prompts and other unwanted
information.

To use a command file on a PC host

Use the ASCII upload feature of your terminal emulation software to send the
command file to the HP 64700 Series Card Cage.

By using an ASCI!I or text upload feature built into your terminal emulation
program, you can send a command file on your PC’s disk to the emulator. You
must use an upload feature because it will ship the file out to the serial connection.

58

Chapter 3: Using the Terminal Interface
Using Command Files

Many “disk read” or “file read” functions simply display the file’s contents on the
PC display without sending the data to the serial port.

To use a command file on a UNIX host (emulator
on different port)

1 Connect to the emulator using the UNiX command.

2 Download the command file nametllename>to the emulator by typing:
~%<filename

You can use the input redirection capabilitcotto send a file on the UNIX host to
the emulator.

Example Connect to the emulator:

$ cu -l /devitty01

Initialize the emulator:
R>init -c
Download the command file namefile:

R>~%<cfile

(Note: the name of your host computer will usually be printecliafter you type
the tilde (~).)

59

60

Using the Emulator

How to control the processor and view system resources

61

Chapter 4: Using the Emulator
To configure the emulator

The emulator has many commands and features that allow you to control execution
of your program. It also has facilities for entering and recalling commands.

To configure the emulator

Set up the emulator for use by configuring it as described in Chapter 7,
“Configuring the Emulator.”

The emulator has several configuration items that adapt it to specific system
designs and program requirements. You should check the configuration and modify
it for your needs before using the emulator. This will ensure correct operation of all
emulator functions.

To build programs
Create source files in “C” or MC68040 assembly language using a text editor.

Translate the “C” source files to relocatable object code using a compatible C cross
compiler.

Translate the assembly source files to relocatable object files using a compatible
MC68040 cross assembler.

Link all relocatable object files with the linker/loader to produce an absolute object
file in HP64000 (HP-OMF) format or Motorola S-record file format.

If you're planning to load programs into emulation or target system memory, you
need to have your files in a format acceptable to the emulator Terminal Interface.
Usually, this means that you'll want your files in Motorola S-record or HP64000
(HP-OMF) absolute format. The HP language tools for the HP 9000 can produce
these formats.

62

Chapter 4: Using the Emulator
To build programs

Processor C Compiler Assembler
68040 HP B1463 HP B1465

You may use other language tools, such as the Microtec ReSearch

Intermetric&] compilers and assemblers, if they produce the Motorola S-record
format or HP64000 absolute file format. (These are the preferred formats, but the
Terminal Interface will also accept Intel hex and Tektronix hex file formats.)

63

Chapter 4: Using the Emulator
To load a program from a PC host (PC controls emulator)

Loading and Storing Programs

The Terminal Interface provides commands that allow you to move files into
emulation or target memory from a host computer through the serial ports of the
HP 64700 Card Cage. You can also save a range of memory in an absolute file for
later reuse. (You might do this if you patch a section of code and need to do further
testing.)

Many different absolute file formats are supported. The primary one discussed in
this section is Motorola S-record format. If you have a host computer with the

HP 6400Qransfer utility, you can move files in the HP64000 absolute format.

Theload command has other options that allow you to control the load process.
Seeload in Chapter 10, “Emulator Commands,” for details.

To load a program from a PC host (PC controls
emulator)

1 Build an absolute file in the Motorola S-record format (see “To build programs” in
this chapter).

2 Start the terminal emulation software on the PC (such as HP AdvanceLink).

PERSONAL COMPUTER

(USED BOTH FOR SOFTWARE
DEVELOPMEN AND EMULATOR CONTROL;
RUNS TERMINAL EMULATION SOFTWARE)

HI> 64700 CARD
CAGE CONTANING
EMULATOR

64

Chapter 4: Using the Emulator
To load programs over the LAN

3 At the Terminal Interface prompt, tydead -m
4 Exit the terminal emulation software.

5 Atthe MS-DOS prompt, typeopy <filename> <com_port>

where<filename>is the name of the Motorola S-record file you want to load, and
<com_port>is the name of the PC communications port (COM1..COM4) to which
the emulator is connected.

6 Restart the terminal emulation software.

To load programs over the LAN

» Use thdtp command on your local host computer to transfer files to the remote
HP 64700.

When connecting to the HP 64700's ftp interface, you can use either the

HP 64700's hostname or the Internet Protocol (IP) address (or internet address).
When you use the HP 64700’s hostname, the ftp software on your computer will
look up the internet address in the hosts table, or perhaps a name server will return
the internet address.

Examples To connect to the emulator’s ftp interface, enter the following command (use any
name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for
a particular purpose.

FTP on the HP64700 serves as a means for downloading absolute files to the
emulation environment. The file transfer can be be performed as follows:

65

Chapter 4: Using the Emulator
To load programs over the LAN

1. The data mode type must be set to IMAGE (binary)

2. Store the file using options to indicate the file format. The following
example uses PUT as the host command for sending the file. This may be
different for your ftp implementation.

put <file_name> <options>

230

<file_name> - host file to be loaded.

<options> - The options are preceeded by a minus (-). The available
options vary for individual emulators. All support HP OLS, Intel hex,
Motorola S-records, and Extended Tek Hex. Emulator specific options can
be viewed by issuing a Terminal Mode help for the load command.

put hpfile.X -h #to download an HP OLS file

put intelfile -i #to download an Intel Hex file

put motfile -m #to download a Motorola S-record file
put tekfile -t #to download an Extended Tek Hex file

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the HP 64000 format absolute file into the emulator:

ftp> put program.X -h

200 Port ok

150

226-

R>

226 Transfer completed

3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

66

Chapter 4: Using the Emulator
To load a program from a UNIX host (emulator on different port)

To load a program from a UNIX host (emulator on
different port)

Build an absolute file in the Motorola S-record format (see “To build programs” in
this chapter).

To connect to the emulator, type the command
cu -l /dev/ityXX at the HP-UX prompt .

whereXX is the device number of the UNIX system serial port connected to th
HPC emulator.

Type:load -im
Type:~%< <filename>

where<filename>is the name of the Motorola S-record file that you want to load.

PORT A

TERMINAL

HP 64700 CARD
CAGE CONTAINING
EMULATOR

UNIX HOS|

67

Chapter 4: Using the Emulator
To load program symbols over the LAN

Symbols

Symbol handling adds power to your interaction with the emulator. You can use
symbols in expressions involving addresses, which frees you from memorizing the
addresses associated with the symbols.

The symbols you enter and the corresponding address information is stored in an
emulator system table. When you display memory in mnemonic form, step the
processor, or display trace results, the emulator retrieves the symbol information
from the table and displays it. This makes the measurement results easier to read.

In the Terminal Interface, you can only define global and local symbols by
downloading a symbol file from a host computer (see “To load program symbols”).
Otherwise, you can define your own (user) symbols by adding them within the
Terminal Interface (see “To add user symbols”).

To load program symbols over the LAN

Use thdtp command on your local host computer to transfer files to the remote
HP 64700.

Loading symbol files over the LAN is the same as loading absolute files over the
LAN, except that a different option is used with the "put" command in ftp.

Symbol files are ASCII files in a special format. Chapter 13, “Data File Formats,”
describes the symbol file format.

68

Chapter 4: Using the Emulator
To load program symbols over the LAN

Examples To connect to the emulator’s ftp interface, enter the following command (use any
name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for
a particular purpose.

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the symbol file into the emulator:

ftp> put program.sym -S

200 Port ok

150

226-

R>

226 Transfer completed

1789 bytes sent in 4.78 seconds (0.37 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

69

Chapter 4: Using the Emulator

To add user symbols

To add user symbols

Add a user symbol by typingym <name>=<address>

You can define user symbols to help you while you're making measurements. For
example, you might find that you're repeatedly entering a particular address for
memory display commands. If you define this address as a symbol, you can use the
symbol in the memory display command. Also, the symbol will be displayed in
analyzer measurements and memory mnemonic displays.

Examples

To remove symbols

To delete all symbols in the emulator’s symbol table, typet -d
To delete all user symbols, tymsym -du

To delete a specific user symbol, typgm -du <symbolname>
To delete all global symbols, typsym -dg

To delete all local symbols for all modules, typgm -dI

To delete all local symbols for a specific module, tygyen -dl <modname>:

The emulator symbol table uses system memory so you might need to delete
symbols or sets of symbols to free memory while you'’re using the emulator. You
also might want to delete symbol sets that you're no longer using so they don’t
clutter the symbol display.

To delete all global symbols, enter:

R>sym -dg

70

Chapter 4: Using the Emulator
To display symbols

To display symbols
» To display all symbols in the emulator’'s symbol table, tggen
» To display all user symbols, typgym - u
» To display a specific user symbol, tysgm -u <symbolname>

» To display all global symbols, typgym -g .

» To display a specific global symbol, type:
sym -g :<symbolname>

» To display all local symbols for all modules, typgm -I
» To display all local symbols for a specific module, tygen -I| <modname>:

» To display a specific local symbol, tymym -| <modname>:<symbolname>

Examples To display the symbols for the demo program, enter:
R>demo
R>sym
To display the value of all global symbols in a program that has both local and

global symbols, enter:

R>sym -g

71

Chapter 4: Using the Emulator

To display memory

Accessing Processor Memory
Resources

While you are debugging your system, you may want to examine memory
resources. For example, you may need to verify that the correct data is loaded, or
check to see if a sequence of values was written correctly. Also, you may need to
modify one or more memory locations to test different data sets for a program. The
emulator has flexible memory commands that allow you to view and modify
memory as needed.

To display memory

To display a range of memory in the format set by the mode commandntype:
<address_range>

To display a range of memory in byte format, typedb <address_range>
To display a range of memory in word format, type:dw <address_range>
To display a range of memory in long word format, typed| <address_range>

To display memory in MC68040 mnemonic format, typedm <address_range>

The display mode is initialized by th& (mode) command. You can change the
display mode setting using the options shown above.

When you use thalm option, the emulator disassembles the memory locations
beginning with the first address you specify. If this address is not the starting
address of an instruction, the display will be incorrect.

Only emulation memory mapped with ite (dual-port) attribute may be displayed

or modified while a user program is running without interrupting it. Dual-port
memory may also be displayed while the emulator is reset. For other memory, the
emulator must use the monitor to access it.

72

Chapter 4: Using the Emulator
To modify memory

Examples Before using the following examples, reload the demo program:
R>demo
To display program memory for the part of the demo program from the setalarm
address to the demodisp address in the current display mode, enter:

R>m _setalarm.._demodisp

To display the processor’s interrupt vector table in long word format, enter:
R>m -dl 0..3ff

To display a portion of the demo program’s sysbuf variable in byte format, enter:

R>m -db _sysbuf

To display the usermode portion of the demo program in mnemonic format, enter:

R>m -dm _usermode.._demodisp

To modify memory

* Modify a single memory location to a single value by typing:
<address>=<value>

» Modify a range of memory locations to a single value by typing:
<lower>..<upper>=<value>

» Modify a range of memory locations with a list of values by typing:
<lower>..<upper>=<valuel><value2>,. ..

» Change whethetrvalue>is interpreted as a byte, word, or long word data type by
adding thed<mode>parameter before the address range.

73

Chapter 4: Using the Emulator

To modify memory

Examples

The<address>parameter is an expression representing a single address location.
The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be accessfue> represents the

data value to which the contents of memory are to be modified.

If you don't use thed<mode>parameter, the current display mode is used to
interpret the data type efvalue>. Otherwise, the display mode you specify is used
to interpret the data type. See the examples and “To Initialize Display and Set
Access Modes” for more information.

To modify the byte at elf hex to 43, enter:

R>m 0Oelf=43

The above example assumes that byte mode was in effect. If not, you can add the
mode parameter:

R>m -db 0elf=43

To modify the _sysbuf variable of the demo program to 1234 ascii, enter:

R>m -db _sysbuf="1234"

To modify the range of locations from e00 through e38 to zero, enter:

R>m 0e00..0e38=0

To modify the range of locations from 0e00 through 0e38 to "ABC", enter:

R>m -db 0e00..0e38=41,42,43

Remember that the memory modification is affected by the display mode. Suppose
that locations f00 and fO1 each contain 01. If you enter the command:

R>m -db 0f01=03

Then location fOO contains 01 and location fO1 contains 03. But, if you entered:

R>m -dw 0f00=03

74

Chapter 4: Using the Emulator
To search memory

Then location fOO will contain 00, and location fO1 will contain 03. Notice that you
refer to a word by an even address, which is the address of its most significant byte
(this is defined by the MC68040 processor architecture).

To search memory

To search a memory range for a particular expression,dgpe:
<lower>..<upper>=<expr>

To search a memory range for a character string, $gpe:
<lower>..<upper>=<string>

To change the mode that determines matching characteristics for the search, add the
-d<mode>parameter before the address range.

Searching memory for values or character strings can help you determine whether a
program is functioning correctly. For example, in the emulator demo program, you
can enter a command, then search memory for the output message to see if the
program responded correctly.

Sometimes you expect a data value to be written to a particular memory location
during a program run. But, the program may accidentally write the value to the
wrong location. You can search memory for expression to see if the value was
written to another location.

The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be searched.

If you're searching for character stringstring> is an ASCII string delimited by *
(accent grave) or " (double quote). Remember that if one of the characters is part of
the string, you should use the other character as a delimiter.

If you don’t use thed<mode>parameter, the current display mode is used.
Otherwise, the display mode you specify is used to determine how data is matched
during the search. See “To initialize display and set access modes” in this chapter
for more information.

75

Chapter 4: Using the Emulator

To search memory

Examples

Suppose that memory location fOO contains 03 and fO1 contains 00 hex. Then the
word spanning both locations contains 0300 hex.

To search these locations for 3 hex by words, enter:

R>ser -dw 0f00..0f01=3

The search will fail since the value 3 hex doesn’t lie on a word boundary. To search
for the same value by bytes, enter:

R>ser -db 0f00..0f01=3

The match is found at address 0f00.
To search a message area in a program for the string “ommand,” enter:

R>ser -db <beginning symbol>..<ending symbol>="ommand"

76

Chapter 4: Using the Emulator
To copy memory blocks

Examples

To copy memory blocks

Copy a memory block from an address range specifiediduyer> and<upper> to
the destination address range having lower beuedtination> by typing:cp
<destination>=<lower>..<upper>

Thecp command allows you to move blocks of code or data to different locations
in memory.

<lower> and<upper> specify the lower and upper address ranges of the block
you want to move, while thedestination>address is the starting address of the
range for the destination memory block.

Suppose you need to modify the exception vector table located in your target
system ROM. The following are the initial conditions for the memory map:

R>map

map 0000..0ffffh # 64 Kbytes target ROM; vector table/program code
map 10000..18fff # 32 Kbytes target RAM;program data

map 19000..19fff # Other guarded memory

map 80000..80fff # Emulation RAM (foreground monitor)

To modify the vector table, first create a new emulation memory term:

map 20000..203ff eram # Emulation RAM (1K block for
exception vector table)

Copy the exception table from target ROM to emulation RAM:

R>b

M>cp 20000=0..3ff

Now you can modify the table. To have the processor use the new table in
emulation RAM, enter:

M>reg vbr=20000

77

Chapter 4: Using the Emulator
To initialize display and set access modes

To initialize display and set access modes

Initialize the global display mode by typingo -d<disp_mode>

where<disp_mode>is b for byte,w for word, | for long word, om for mnemonic.

Set the global access mode by typimg: -a<access_mode>

where<access_modesis b for byte,w for word,| for long word, o for letting
the emulator select the optimum access size. The default is

Check the mode settings by typimgo

The display mode setting affects your interaction with memory displays,
modifications, and searches. The display mode determines whether the emulator
interprets data values as bytes, words, or long words. You can use the mode
command to set the mode that you need initially. If you use the mode parameters to
the individual commands, the global display mode is changed.

The access mode has a different function. When you display or modify target
system memory or emulation memory that is not dual-port, the emulator uses the
monitor to read or write target memory locations. The access mode determines
whether the emulator uses byte, word, or longword sizing for the memory accesses.

If set tox, the size you include in your "display memory" or "modify memory"
command will be used for the access. It will temporarily overridr thesignation
for the access. If setpw, orl, the size selected in your "display memory" or
"modify memory" commands will have no effect on the actual memory access; it
will be what you specified for the memory access size.

If you chooséb, w, orl for your access size, only the selected size will be used. In
cases where access is made to misaligned addresses or memory content having an
insufficient number of bytes, the emulator will perform read-modify-write
transactions to complete the access using only the size you specified.

78

Chapter 4: Using the Emulator
To run a program

Using Processor Run Controls

When you don’t use an emulator, run control can be difficult. Usually, you're
limited to starting the processor from reset, and then entering data values that
vector program execution to the routines you want to test. Reaching those routines
may be difficult or impossible if the data values are boundary conditions or the
program logic is faulty.

By using the emulator, you can run the processor from the current program co

or any desired address. If you want to examine your system after each progral
instruction, you can use tis&ommand to step through the program. You can brea
to the monitor program to examine on-chip resources such as registers. You can
also reset the processor from the emulator.

To run a program

To run a program from the current program counter (PC) value,rtypetyper $
To run a program from a specific address, typaddress>

To run a program from reset, typest

When you're ready to start a program run, either to test target system operation or
make an analyzer measurement, use {nen) command.

<address>is a 32-bit address expression. You can includ@ther @sfunction
code to specify the privilege level for the run command.

Ther rst command pulses the processor reset line. The processor fetches the values
at addresses 0 and 4 and loads these values into the interrupt stack pointer and
program counter registers. It then begins running from the program counter address
value.

79

Chapter 4: Using the Emulator

To break to monitor

Examples

If the emulator is in the reset state (R> prompt)r tbemmand (with no
parameters) acts the same est. Otherwiser runs from the current program
counter value.

However, if you reset the emulator, break to the monitor, and then run the emulator,
the stack pointer and program counter values will not be initialized. Therefore, the
run will fail. Thecf rv configuration item allows you to define initial values for the
program counter and stack pointer in this instance. See Chapter 7, “Configuring the
Emulator,” for more information. Typically, you will want to use the values found

at memory locations 0 and 4.

To run from the demo program’s starting location, select:
R>r rst

or to run a program from a known address, such as 400h, enter:

R>r 400

To break to monitor

Break the emulation processor into the monitor by tyging:

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. If the emulator is
reset, it will enter the monitor before executing certain emulation commands, such
as those accessing registers, emulation memory that is not dual-port, or target
system memory. (The emulator breaks to the monitor temporarily if you enter these
commands during user program execution, unless you restrict the emulator to
real-time runs. See Chapter 7, “Configuring the Emulator,” for more information.)
You also can use the break command to pause execution of your user program.

The prompt changes to M> to show that the processor is running in the monitor.

You can use either a foreground or background monitor. See Chapter 7,
“Configuring the Emulator,” for more information.

80

Chapter 4: Using the Emulator
To step the processor

If you enter & command while the processor is in a wait state (hung bus cycle),
the emulator may terminate hung target bus cycles in an attempt to transition into
the monitor. A bus cycle is considered hung when the target system has not
provided the required termination within 300 ms. The emulator never attempts to
terminate hung bus cycles in program space. The emulator will generate a status
message for each address where it forcefully terminates a bus cycle. You can
determine emulator statusy(to get information about a hung bus cycle before
initiating a break (and accept the termination side effect) or ussttbemmand.

To step the processor

To step the processor one instruction from the current program counter value, type:
s

To step the processor <count> number of times from the current program counter
value, types <count>

To step the processor one instruction from an address given by <address>1type:
<address>

To step the processecount>number of times from an address given by
<address> type:s <count> <address>

To inhibit display of information about the steps, add-thearameter before the
<count>and<address>

To display only the next program counter value when the step is complete, add the
-w parameter before theeount> and<address>

Thes(step) command lets you single-step the processor through program code.
You can display registers after each step to help you locate the source of problems
or verify correct operation. You might want to modify a register, and then step the
processor to check the result.

81

Chapter 4: Using the Emulator
To step the processor

You can specify a step courtcpunt>) to step the processor more than one
instruction. The default base is decimal. You must supply a step count if you supply
an address. Otherwise, the emulator will interpret the address as a step count.

The default base feraddress>is hex. If you omit the address, the current program
counter value is used. You can ¢ mean the same thing as the current program
counter value.

The emulator uses the built-in tracing capability of the MC68040 processor to

single step assembly instructions. The emulator needs the trace exception vector
(located at offset 0x24 in the vector table) to be set properly in order to single step
instructions. When a step command is given to the emulator, the emulator reads the
trace exception vector and attempts to change one or more vector table entries if the
trace exception vector is not set correctly. As long as the vector table is located in
emulation memory or target RAM, stepping should always succeed. Upon
completion of single stepping, the emulator restores modified vector table entries
and issues a status message the first time the vector table is modified.

If the trace exception vector does not contain the correct value and the vector table
is located in target ROM, the emulator will issue an error message and not perform
the single step. There are two ways to deal with this situation. Either alter the
ROM-based code so the trace vector contains the correct value, or copy/relocate the
vector table into emulation memory or target RAM.

The correct value of the trace exception vector differs, depending on whether you
are using a background or foreground monitor. The foreground monitor requires
that the trace exception vector point to the TRACE_ENTRY address in the monitor
(located at offset 0x680 from the start of the monitor). If the trace exception vector
already contains the correct value, the emulator performs the single step without
modifying the vector table. Otherwise, the emulator attempts to change the trace
a-line and f-line exception vectors to the TRACE_ENTRY address in the
foreground monitor.

The background monitor only requires that the trace exception vector be an even
value and point to readable memory. This allows the processor to complete trace
exception processing, including initial prefetches from the trace exception handler,
during transition into the background monitor. After reading the trace exception
vector, the emulator attempts to read from the address it points to. If the read
succeeds, the emulator single steps without modifying the vector table. Otherwise,
the emulator attempts to write the current value of VBR into the trace exception
vector (because the vector table is readable).

There are some limitations when single stepping. A step may fail when single
stepping an instruction that changes the address of the vector table (modifies the

82

Examples

Chapter 4: Using the Emulator
To step the processor

VBR register). With the background monitor, instructions that can be interrupted
(ie: floating-point operations) may not complete because the emulator generates an
interrupt after a finite amount of time after the single step is initiated.

To step the processor one instruction, enter:

M>s

To step the processor three instructions from the current program counter, ent
M>s 3

To step the processor five instructions from the _usermode symbol in the demo
program, enter:

M>s 5 usermode

To step once and disable step display, enter:

M>s -q

To step twice and display only the resulting program counter value, enter:

M>s -w 2

83

Chapter 4: Using the Emulator
To reset the processor

To reset the processor

» To reset the emulation processor from the emulator, tgpe:

» To reset the emulation processor, and then begin running in the emulation monitor,

type:rst -m

To reset the emulator from the target system, assert the RESET signal in your target
system.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (See Chapter 7, “Configuring the Emulator,” for more information.)

Sometimes you may want to reset the emulation processor prior to a program run.
Therst command allows you to do this. You can also reset the emulation
processor from the target system.

The MC68040 emulator will respond to a target system reset. A target system reset
does not reset the entire emulator. It resets only the emulation processor.

If the emulator is running a user program when the target system reset occurs, it
will behave as if arst command were issued.

If the MC68040 emulator is in the monitor when the target reset occurs, it will
reenter the monitor when the reset is released. (Asif-en command were given.)

84

Chapter 4: Using the Emulator
To display registers

Viewing and Modifying Processor
Registers

The emulator allows you to display registers to determine the results of program
execution. You can display a single register, or you can display groups of related
registers.

Sometimes, you may want to modify a register, and then run a segment of pro.

code to test the results.

To display registers
To display an individual register, typeg and the register name.

To display all registers in a class, typeg <reg_class_name>

Register Class

Register Names

* (basic) pc, st, usp, isp, msp, cacr,d0..d7, a0..a7, vbr, dfc, sfc
fpu fpcr, fpsr, fpiar, fp0..fp7
mmu dtto, dtt1, ittO, ittl, mmusr, tc, srp, urp

where<reg_class_namess the name of a class of registers. The available
registers and register classes are shown in the following table:

The processor must be running to allow register displays. If it's running in the
monitor, the emulator does the display directly. If it's running the target system
program, the emulator forces a break to the monitor, gets the register data, and then
returns to the user program. (If you restrict the emulator to real-time rumsgthe

85

Chapter 4: Using the Emulator
To modify registers

command isn’t allowed while you're running a user program. See Chapter 7,
“Configuring the Emulator,” for more information.)

You can combine displays of multiple registers and register classes by listing all the
arguments on the same command line.

The mmu register class of the MC68EC040 is different from the mmu register class
of the MC68040 and MC68LC040. The MC68EC040 uses registers dacr0O/iacr0,
dacrl/iacrl, which are nearly identical to dtt0/ittO, dttl/ittl. These MC68EC040
registers are displayed in the dttO/itt0, dtt1/ittl registers, respectively

Examples To display the processor’s AO register, enter:

M>reg a0

To display the D5 and USP registers, enter:
M>reg d5 usp

To display the PC and the CCR register, enter:
M>reg pc st

(The CCR register is part of the status register st).

To modify registers

* To modify a register to a new value, typsg <regname>=<value>

where<regname>is the name of a processor register, evalue>is an
expression matching the data type of the register (byte, word, or longword). (You
can't use symbols in the expression.)

Modifying a register’s contents can help you test the effects of different program
values without the trouble of rebuilding your program code. For example, you
might stop the processor at a certain point (use a software breakpoint), and then
modify a register, and run from that point to test the result.

86

Examples

Chapter 4: Using the Emulator
To modify registers

The processor must be running to allow modifying registers. See “To Display
Registers” above for more information.

You can modify several registers on the same command line. You can also display
and modify registers on the same command line.

You can enter values into the three fpu control registers, and into the eight
floating-point registers, in the hexadecimal number base.

To modify the PC register to the _usermode address of the demo program, en

M>reg pc=8000

Notice that you can’t use a symbol in the expression when modifying a register.

To modify the D3 register to 0 and the A6 register to 80a5, enter:
M>reg d3=0 a6=80a5

To modify the A4 register to 4a and display the CACR register, enter:

M>reg a4=4a cacr

To modify the ittO register of the MC68040 to 00000110, enter:
M>reg itt0=110

87

Chapter 4: Using the Emulator
Setting execution breakpoints in RAM

Using Execution Breakpoints

Breakpoints allow you to stop target program execution at a particular address and
transfer control to the emulation monitor. Suppose your system crashes when it
executes in a certain area of your program. You can set a breakpoint in your
program at a location just before the crash occurs. When the processor executes the
breakpoint, the emulator will force a break to the monitor. You can display registers
or memory to understand the state of the system before the crash occurs. Then you
can step through the program instructions and examine changes in the system
registers that lead up to the system crash.

Execution breakpoints are implemented using the BKPT instruction of the
MC68040. Before you use execution breakpoints, you must enable the execution
breakpoints feature (with the -e bpcommand). Then you can insert, enable,
disable, or remove execution breakpoints.

Set execution breakpoints at the first word of program instructions. Otherwise,
your BKPT may be interpreted as data and no breakpoint cycle will occur. When
the BKPT instruction is executed, target program execution stops immediately
(unlike using the analyzer to cause a break into the monitor, which may allow
several additional bus cycles to execute before the break finally occurs).

Setting execution breakpoints in RAM

When you set an execution breakpoint in RAM, the emulator will place a
breakpoint instruction (BKPT) at the address you specified, and then read that
address to ensure that the BKPT instruction is there. The program instruction that
was replaced by BKPT is saved by the emulator.

When the breakpoint instruction is executed, the BKPT acknowledge cycle is
detected by the emulator, and the emulator causes a break to the monitor. At this
point, the emulator replaces the BKPT instruction with the original instruction it
saved. Italso replaces the BKPT instruction with the original instruction whenever
you disable or remove the breakpoint.

The emulator allows an unlimited number of breakpoints to be set in RAM.

88

Chapter 4: Using the Emulator
Setting execution breakpoints in ROM

Setting execution breakpoints in ROM

If you try to set an execution breakpoint at a location in ROM, the emulator will
attempt to set the breakpoint as it does in RAM, but it will fail because the
instruction in ROM will not change. Then the emulator will set up a hardware
resource to "jam" the BKPT instruction onto the data bus when the processor
attempts to fetch the normal instruction from the breakpoint address.

There are only enough resources in hardware to specify eight ROM breakpoin-
one time.

To determine if an active breakpoint uses one of the eight hardware resources,
display the address in memory. Breakpoints implemented in software will show a
BKPT #7 instruction at the breakpoint address. Breakpoints implemented using
one of the eight hardware resources will show the original instruction at the
breakpoint address.

Execution breakpoints in ROM when the MMUs
manage memory

If the MMU is enabled when setting an execution breakpoint in ROM, the emulator
translates the logical breakpoint address and uses the physical address to set up the
emulation hardware resource.

In the unlikely event that multiple logical addresses translate to the same physical
address in ROM, or that ROM address translations change while the breakpoint is
set, it is possible for the breakpoint to be jammed onto the data bus for the wrong
logical address.

89

Chapter 4: Using the Emulator
Using temporary and permanent breakpoints

Using temporary and permanent breakpoints

When you set a temporary execution breakpoint, the emulator creates the
breakpoint as described in the preceding paragraphs. When the breakpoint
instruction is executed, the emulator breaks to the monitor and disables the
breakpoint. Now you can execute that portion of program code as often as you like
and the breakpoint will not occur again, unless you enable it again.

When you set a permanent breakpoint, the emulator will process it the same as a
temporary breakpoint, but when the breakpoint instruction is executed, the original
instruction will only replace the breakpoint instruction during its next execution.
This allows you to step through the original instruction one time. After your first
step, the BKPT instruction will replace the original instruction again so that the
breakpoint will occur the next time the breakpoint address is hit.

Permanent breakpoints remain in effect until you explicitly disable or remove them.

Permanent breakpoints are available when using version A.04.00 or greater of the
emulation system firmware.

90

Chapter 4: Using the Emulator
To enable or disable the execution breakpoints feature

To enable or disable the execution breakpoints
feature

* To enable a type of break condition, type:-e <cond>

» To disable a type of break condition, type:-d <cond>

» To check the states of the break conditions, tgpe: .

* Where<cond> can be any of the followingom, bp, bnct, cmbt, trigl, andtrig2.
All break conditions are enabled when the emulator is initialized.

You can choose to enable or disable individual types of breakpoints. For example,
you might want to temporarily disable breaks on writes to ROM. (Perhaps you
need to see the next few bus cycles after the write to ROM in the trace list.) Or you
might want to enable a break when the analyzer finds its trigger condition.

Note thatbc -e romwill not protect data at addresses mapped as ROM. Emulation
memory or RAM memory in the target system will be changed by processor writes
even if that memory has been mapped as ROM.

Examples To enable execution breakpoints, enter:

R>bc -e bp

To disable execution breakpoints and breaks on writes to ROM:

R>bc -d bp rom

To generate an analyzer output trigger signal when the analyzer finds its trigger
event, and cause the emulator to break to the monitor when the trigger is generated:

R>tgout trigl
R>bc -e trigl

91

Chapter 4: Using the Emulator
To insert an execution breakpoint

Examples

To insert an execution breakpoint

Insert an execution breakpoint at a location giverdnydress>by typing:
bp <address>

When you set an execution breakpoint, the emulator uses the monitor to insert the
breakpoint instruction. Therefore, you can’t enable a breakpoint when the emulator
is reset. Use thie command to begin running in the monitor.

To insert a breakpoint at address 42a, enter:
M>bp 42a

To insert a permanent breakpoint at the symbol _sys_intrhdlr, enter:

M>bp -p _sys_intrhdir

To insert a temporary breakpoint at _main, enter:

M>bp -t _main

92

Chapter 4: Using the Emulator
To enable a temporary execution breakpoint

Examples

To enable a temporary execution breakpoint

To enable an existing execution breakpoint at a location giveadigress> type:
bp -e <address>

To enable all existing execution breakpoints, type:e *

When a temporary breakpoint is executed, it is disabled. If you want to reenab
temporary breakpoint, use theoption to thebp command. The emulator will
search the breakpoint table for the address you specify. If there is a breakpoin
for that location, the entry will be marked “enabled”. If the breakpointis in RAM,
the BKPT instruction will be written to memory at that location.

The emulator uses the monitor to enable the breakpoint. Therefore, you can't
enable a breakpoint when the emulator is reset. Usedbemand to begin
running in the monitor.

To enable an existing breakpoint at address 42a hex, enter:
M>bp -e 42a
To enable existing breakpoints at _sys_intrhdlr and _main, enter:

M>bp -e _sys_intrhdlr _main

93

Chapter 4: Using the Emulator
To set a ROM breakpoint in RAM

Examples

To set a ROM breakpoint in RAM

To have the emulator treat a particular breakpoint address as if it were in ROM
hardwaretype: bp -h <address>

There may be times when you want to have the emulator use one of its eight
hardware resources to ensure an emulation break at a RAM address. For example,
you may know that the program in ROM will overwrite the RAM address before

the breakpoint is executed. Normally, this will eliminate the breakpoint instruction.
The above commands ensure that the breakpoint will be executed at the specified
address, regardless of how the software at that address may change during
execution.

Force a hardware breakpoint to be executed on address 1000h:
M>bp -h 1000h
Force a temporary hardware breakpoint to be executed at address 2000h:

M>bp -t -h 2000h

94

Chapter 4: Using the Emulator
To disable an execution breakpoint

Examples

To disable an execution breakpoint

To disable an existing execution breakpoint at a location giveradigress> type:
bp -d <address>

To disable all existing execution breakpoints, tyge:d *
Sometimes you will want to temporarily disable a breakpoint without removing
The-d option to théop command lets you do this.

When you disable an execution breakpoint, the emulator replaces the BKPT
instruction at the breakpoint address with the original instruction. It marks the
breakpoint table entry as “disabled.” The processor won't break to the monitor
when the instruction at that location is executed.

The emulator uses the monitor to disable the breakpoint. Therefore, you can't
disable a breakpoint when the emulator is reset. Uded¢hemand to begin
running in the monitor.

To disable an existing execution breakpoint at _sys_intrhdlr, enter:
M>bp -d _sys_intrhdlr

To disable existing breakpoints at _sys_intrhdIr and _main, enter:

M>bp -d _sys_intrhdlr _main

To disable an existing breakpoint at address 42a, enter:

M>bp -d 42a

95

Chapter 4: Using the Emulator
To remove an execution breakpoint

Examples

To remove an execution breakpoint

To remove an existing execution breakpoint at a location giveladigress>
type:bp -r <address>

To remove all existing execution breakpoints, tygee:r *

When you're finished using a particular breakpoint, you should remove the
breakpoint table entry. The option to théop command lets you do this. In RAM,
the original instruction is restored to memory, and the breakpoint table entry is
removed.

The emulator uses the monitor to remove the breakpoint.
To remove an existing execution breakpoint at _sys_intrhdlr, enter:
M>bp -r _sys_intrhdIr

To remove existing breakpoints at _sys_intrhdir and _main, enter:

M>bp -r _sys_intrhdIr _main

To remove an existing breakpoint at address 42a hex, enter:

M>bp -r 42a

To display execution breakpoints

To display all existing execution breakpoints, tyme:

96

Chapter 4: Using the Emulator
To display execution breakpoints

Using the Emulator In-Circuit

Out-of-circuit emulation is useful for debugging your program code. You can use
the emulation-bus analyzer and other emulator features to test and evaluate your
code.

As the design of your target system progresses, you will want to test features of
your program that interact with your target system hardware instead of the
emulation memory.

You must connect the emulator probe to your target system to do in-circuit
emulation. Then you can make analyzer measurements and use the memory display
and other capabilities of the emulator to debug system problems.

To prepare the emulator for in-circuit emulation, take the following steps:

1 Study the chapter titled "Connecting the Emulator to a Target System" later in
this manual. It discusses things you need to know to successfully connect the
emulator to a target system and overcome problems you may encounter.

2 Study your system design, especially its memory configuration.
3 Study the chapter titled “Configuring the Emulator” in this manual to
determine how to set configuration items for the best results with your target

system.

4 Install the emulation probe in your target system by following the results of
step 1.

5 Set configuration items as determined by the results of step 3.

97

Chapter 4: Using the Emulator
To install the emulation probe

Caution

Caution

Caution

To install the emulation probe

Possible damage to the emulator problee emulation probe contains devices that
are susceptible to damage by static discharge. You should take precautions before
handling the probe, to avoid damaging the internal components of the probe with
static electricity.

Possible damage to the emulatibtake sure both your target system and emulator
power are OFF before installing the emulator probe into your target system.

The emulator probe will be damaged if incorrectly instalMeke sure to align pin
Al of the probe connector with pin Al of the socket.

Remove the processor from your target system socket. Note the location of pin A1
on the processor and on your target system socket. Store the processor in a
protected environment (such as antistatic foam).

MEMORY SLOT O

FLYING LEAD

MEMORY SLOT 1 N 68040

EMULATOR
PROBE

TARGET SYST=M

PGA SOCKET

PIN A1

64783E04

98

Chapter 4: Using the Emulator
To power-on the emulator and your system

2 Insert the emulator probe into your target system socket. Make sure to align pin Al
of the emulator probe and your system socket.

To power-on the emulator and your system

you apply power to your target system. Otherwise, the emulator may be dama

Caution Possible damage to the emulat¥idu must apply power to the emulator before .

1 Apply power to the emulator.

2 Apply power to your target system.

To probe target system sockets

» Aflexible adapter is available from Hewlett-Packard for special target system
probing needs. ltis listed in the following table:

Probe type HP part number
68040 PGA to PGA flexible adapter E3429A

99

Chapter 4: Using the Emulator
To enable the processor memory management unit

Using MC68040 With MMU Enabled

When you enable memory management in the MC68040 emulator, many
capabilities and features become available that are not otherwise offered. Also,
some of the features of the emulator behave differently. The following paragraphs
will help you when you are using the MC68040 emulator with the MMU enabled.
Chapter 9 will help you use the MC68040 MMU efficiently.

Disable the MMU unless you are using it for address translation. You will still be
able to use the transparent translation registers for defining cache modes, etc.

To enable the processor memory management
unit

To turn on the MMU in the MC68040 emulation processor, ecftenmu=en

Once enabled, the MMU of the MC68040 can be set up by the operating system to
manage logical (virtual) memory in physical address space. The selection of a root
pointer and the value in the translation control register determine how the MMU of
the MC68040 will manage memory. The MMU of the MC68040 must be enabled
by this configuration question before the operating system can establish those
control values.

The target system may control the MMU during program execution by using the
MDIS signal. The target system can disable the MMU even if it is enabled via the
configuration question.

You must use a foreground monitor when the MMU is enabled. If the background
monitor is selected when you typemmu=en, the emulator will give you an error
message telling you to select a foreground monitor.

100

Chapter 4: Using the Emulator
To view the present logical-to-physical mappings

Note Make sure the foreground monitor is mapped to memory space that has a 1:1
translation and is not write protected. Refer to Chapter 7 for instructions on how to
map the foreground monitor to 1:1 address space in the MMU.

Examples To enable the MC68040 MMU so that the operating system can set it up to manage
memory, enter the command:

M>cf mmu=en

To disable the MC68040 MMU, enter the command:

M>cf mmu=dis

To see the present state of the MMU, enter the command:

M>cf mmu

To obtain additional information about the MMU, enter the command:

M>help cf mmu

To view the present logical-to-physical mappings

¢ Enter the commandnmu

The display will show the logical-to-physical address translations defined by the
current MMU registers and translation tables.

Examples To see all of the logical-to-physical mappings (one display line for each mapped
page), enter the command:

U>mmu

This will display translations for all function codes.

101

Chapter 4: Using the Emulator
To view the present logical-to-physical mappings

To see all of the logical-to-physical mappings for logical addresses from 0 through
Offff, enter the command:

U>mmu 0..0ffff

By default, the list of mappings you get when you include an address witimthe
command shows all mappings available through the supervisor function code. The
first command in this set of examples did not include an address; it showed all
logical-to-physical mappings for all address spaces.

To see the logical-to-physical mapping for the page that contains logical address
40F0, enter the command:

U>mmu 40f0

To see only the mappings for supervisor space in the address range from 0 through
Offff, enter the command:

U>mmu 0..0ffff@s

To see only the mappings under user space in the address range from 0 through
Offff, enter the command:

U>mmu 0..0ffff@u
Note that the valid address spacesuamads.

To show all of the valid mappings in the mapping tables for selected values of the
TC, SRP, and URP registers, ignoring the present values of those registers, enter a
command, such as:

U>mmu tc=0C000 srp=80006000 urp=80002000

102

Chapter 4: Using the Emulator
To see translation details for a single logical address

Examples

To see translation details for a single logical
address

Enter the commandnmu -t <address>

To see how logical address 40FO0 (in supervisor space) is mapped through the
translation tables to its corresponding physical address, enter the command:

U>mmu -t 40f0

To see how logical address 1000 in user space is mapped through the translation
tables, enter the command:

U>mmu -t 1000@u

Examples

To see details of a translation table used to map
a logical address

Enter the commandnmu -t<table> <address>

Where<table> is the table level you want to see (eithad, orc), and<address>
is the logical address that uses the table at the point to be shown.

Table a may be accessed at several base addresses, depending on which logical
address is being translated. This command ensures you see Table a where you want
to see it.

To see the details of Table a used to map logical address 1250, enter the command:

M>mmu -ta 1250

103

Chapter 4: Using the Emulator
To see details of a translation table used to map a logical address

Using an FPU with an MC68EC040 or
MC68LC040 Target System

The MC68EC040 and MC68LC040 processors do not have an on-chip FPU. When
floating-point functionality is required, all floating-point operations must be
implemented in software using integer instructions. Language systems usually
provide a floating-point software library for this purpose.

The HP 64783A/B emulator uses an MC68040 processor with an on-chip FPU.
Because there is no way to disable the FPU, floating-point operations may execute
differently, depending on the language system used. If your language system
generates calls directly to the floating-point software library and does not emit any
opcodes for floating-point instructions, then there should be no difference in
floating-point operations whether you are using the emulator or the
MC68EC040/LC040 processor plugged into your target system.

If your language system emits opcodes for floating-point instructions and relies on
an F-Line exception handler to call the floating-point software library when the
instruction is executed, then your target system will operate differently when the
emulator is plugged in. When using the emulator, most floating-point instructions
will be executed on the FPU in hardware instead of generating an F-Line exception
and allowing the floating-point operations to be implemented in software. For this
scenario, the following three points should be taken into consideration:

» Floating-point software libraries cannot be tested while the emulator is plugged
in. Floating-point instructions are always executed on-chip, not by your
floating-point libraries. This will definitely cause a problem for anyone trying
to develop floating-point software libraries.

e Target programs containing FPU instructions will run faster when the emulator
is plugged into the target system because they are executed in the hardware of
the MC68040 instead of by the floating-point software libraries, as they will be
when the MC68EC040/LC040 processor is plugged in. This will cause
performance measurements to show much better results when using the
emulator than you will actually obtain when you use the MC68EC040/LC040
processor.

» If you are unaware that your language tools use floating-point instructions (and
you do not actively provide floating-point libraries and F-Line exception

104

Chapter 4: Using the Emulator
To see details of a translation table used to map a logical add ress

handling), you may find that your target system does not work when you
unplug the emulator and plug in your MC68EC040/LC040 target processor.

105

106

Using the Analyzer

How to view program execution in real-time

107

Chapter 5: Using the Analyzer
To create an expression

Making Basic Analyzer Measurements

Theemulation-bus analyzes a powerful tool that allows you to view the

execution of your program in real-time. Powerful triggering and sequencing
capability ensures that the analyzer captures only the information you need, so you
don't spend time searching through detailed trace lists for the information that's of
interest.

You can use just a few analyzer commands to make most measurements, such as
these:

» Start or stop a trace measurement.

» Display the trace status.

» Display the trace list.

» Define a simple trigger qualifier.

» Define a simple storage qualifier.

» Set the trigger position in trace memory.

The analyzer has powerful triggering, storage and trace list display capability.
These features are described in other sections of this chapter.

To create an expression

Form logical expressions by combining numeric values and logical operators to
produce a numeric result.

The simplest numeric expressions consist of numbers and radix indicators. The
radix indicators are:

Y y (binary)
Q g O o (octal)
T t (decimal)

H h (hexadecimal (default))

108

Chapter 5: Using the Analyzer
To start a trace measurement

See Chapter 11, “Expressions,” for more details on numeric expressions and the
available logic operators.

Example The following are valid numeric expressions:

1XXX0Y<<3
(340q*7)/2
0ffa"32T
52T*7a

To start a trace measurement

» Begin an emulation-bus analyzer trace by typing:

When you start a trace, the analyzer begins recording data according to your trigger
and storage specifications. When the trace is complete, or halted, you can display
the data.

To stop a trace measurement

» Halt an emulation-bus analyzer measurement by tyging:

Sometimes you need to halt a trace because an examination of the analyzer status
shows that the trace isn’'t capturing the data you expect. Then, you'll want to halt
the analyzer and reconfigure your trigger and storage terms to capture data.

109

Chapter 5: Using the Analyzer
To display the trace status

To display the trace status

Display the emulation-bus analyzer trace status by tyfsng:

The trace status display shows whether the trace is running or complete. It also
shows the current sequencer state (whether triggered or still looking for the next
sequence term) and shows the number of states captured. You will usually use this
command if you can’t display the trace because no data has been captured. The
trace status will help you find the problem.

To display the trace list

Display the trace list using the default parameters by typing:

You can selectively display portions of the buffer usinglttemmand.

If you are using the deep analyzer, the depth of the trace list buffer depends on
whether or not you installed memory modules on the analyzer card, and the
capacity of the memory modules installed. Refer to Chapter 16, "Installation and
Service", for details. If you are using the 1K analyzer, the trace list buffer is 512 or
1024 states deep (depending on whether or not you turn on the state/time count).

To define a simple trigger qualifier
Define a simple trigger on an address value, by typghgddr=<value>

Define a simple trigger when a particular type of cycle is executing, by tyging:
status=<execution status>

Many times, you will want to specify a trigger for the analyzer (define a reference
state) within the trace. You may want to start the trace when the trigger location is

110

Chapter 5: Using the Analyzer
To define a simple storage qualifier

reached. You may want to end the trace when the trigger state occurs so that you
can see activity leading up to the trigger event.

You can use either a simple address expression, or one that includes symbols. You
can specify data events and/or bus status types. Referemutpage in the

commands chapter to see all of the status equates that are predefined for use in
trigger specifications that include status types.

Example To trigger the analyzer when a program performs a write cycle at address 1000h.

M>tg addr=1000h and stat=write

To define a simple storage qualifier

» Store only the bus cycles that reference a particular address by tgfung:
addr=<value>

If you want to store only the accesses to a certain location, you can use the trace
storage qualifier. More complex patterns of data and status qualification can be
made, as well as range specifications.

Example To see only accesses to the system clock counter in the demo program:

M>demo

M>tsto addr=_clocktic
Mt

M>r rst

Mxtl

111

Chapter 5: Using the Analyzer
To set the trigger position

Example

To set the trigger position

To position the trigger term at the start of the trace list, tgpe:
To position the trigger term at the end of the trace list, type:
To position the trigger term at the center of the trace list, tgpe:

To position the trigger in the trace list with N number of states before it tpyge:
N

To position the trigger in the trace list with N number of states after it,ttypa:N

The trigger position can help make the trace list more readable. For example, you
might want to see all the program events leading to a particular access. You can
define that access as the trigger term, and then position the trigger at the end of the
trace {p e).

The way the analyzer processes a trigger-position specification is by adding a count
to trigger recognition. For example, if you spetife, the analyzer sets up to

capture trigger plus zero states. If you spegpify, the analyzer sets up to capture
trigger plus 511 or 1023 states (depending on whether or not you turn on state/time
count). When trigger plus count is captured, "trace complete" is shown, state
capture stops, and you can view the content of trace memory.

To position the trigger 10 states after the beginning of the trace, enter:

Mstp -b 10

112

Chapter 5: Using the Analyzer
To define analyzer labels

Displaying the Trace List

The Terminal Interface allows you to present the analysis trace buffer in the manner
most useful to you. You can rearrange the display columns or change their width.
Also, you can create custom columns that represent certain groups of analyzer
signal lines.

You can add various options to tthétrace list) command to show specific state
ranges or to specify disassembly modes.

To define analyzer labels

» To define a new analyzer trace label giverxbgme> type:tlb <name>
<lower>..<upper>

where<lower> and<upper> represent the lower and upper boundaries of the
group of analyzer signals that are to be included in the label definition.

» To define an analyzer trace label with negative polarity, tjfpen <name>
<lower>..<upper>

You can define analyzer signal labels to focus on signals of interest. Labels can be
used in trace specifications or you can uséfttemmand to add those columns to
the trace list. See “To change the trace format.”

Example Suppose that you want to see the individual bytes of the data bus.

M>tlb byte0 32..39
M>tlb bytel 40..47
M>tlb byte2 48..56
M>tlb byte3 57..63

113

Chapter 5: Using the Analyzer
To delete analyzer labels

Example

To delete analyzer labels

Delete the analyzer label given dgame>by typing:tlb -d <name>

If a label is in use (in the trace specification or trace format), it won't be removed
until the specification or format is deleted or redefined without the label.

Delete the analyzertsyte Olabel (defined in the previous section):

Mstlb -d byte0

Examples

To display the analyzer labels

To display the definition of a label given kpame>, type:tlb <name>

To display the definition of all labels, typéo

Display the default analyzer labels:

Ustlb

You will see:

Emulation trace labels
tlb addr 0..31

tlb data 32..63

tlb stat 64..79

114

Chapter 5: Using the Analyzer
To change the trace format

To change the trace format

» To display the analyzer input lines designateelb&BEL> , use the commant:
<LABEL>, <BASE> [<WIDTH>]

where<BASE> specifies the radix for display (see “To Create an Expression”).

<WIDTH> is an optional parameter that is valid only for the addr field. It specifies
the width in characters (in the range 4..50) for the field.

* To display disassembled processor instruction mnemonicspeltb thetf
command line.

» To display count information (state or time) in relative format, adddbat,r
option to the command line; or display the count in absolute format by adding the
count,aformat to the command line. The count you can make is affected by the
analyzer clock rate. See "To configure the analyzer clock" in this chapter.

» To display sequencer state change information, adsktigption to thef
command line.

» To display the current trace format, tyffe:

Thetf command options specify how data is arranged on the screen when you
display the trace list with thte command. You can specify multiple options on the
command line. The sequence of the options on the command line determines the
sequence of the columns in the trace list display.

When you enter command with a new set of options, the previous trace format
is destroyed and the options for the new command set the format.

Examples The default trace format is the same as that obtained by entering the command:

R>tf addr,h mne

115

Chapter 5: Using the Analyzer
To change the trace format

View the resulting trace format:

R>init -c
R>demo
R>t
R>r
Us>tl 0..5

You will see:
Line addr,H 68040 Mnemonic

0 00000000 $FFFFFFFE log sdata long read

1 00000004 $00000700 log sdata long read

2 00000700 $203CFFO00 log sprog long read
3 00000704 $CO004E7B log sprog long read
4
5

00000708 $00064E7B log sprog long read
0000070c $000441F8 log sprog long read

To display the addresses in decimal, data in binary, count absolute, and omit the
sequencer information, enter the command:

U>tf addr,t data,y
U>tl 0.5

Line addr, T data,Y
000 111111212112112211211211121111110
1 04 00000000000000000000011100000000
2 92 00100000001111001111111100000000
3 96 11000000000000000100111001111011
4 00 00000000000001100100111001111011
5 04 00000000000001000100000111111000

You can also change the column order. For example, enter the commands:

U>tf data,y addr,t
uU>tl 0..5

Line data,Y addr, T
0 11111111221121122122112112111110 00
1 00000000000000000000011100000000 04
2 00100000001111001111111100000000 92
3 11000000000000000100111001111011 96
4 00000000000001100100111001111011 00
5 00000000000001000100000111111000 04

116

Chapter 5: Using the Analyzer
To display the trace list

To display the trace list

» To display the trace from the top of the list, tythet [KCOUNT>]

where<COUNT> is an optional parameter specifying the number of states to be
displayed. The default is to the [a&&OUNT> value.

» To display the next group of states from the trace (those previously undisplayed),
type:tl -n [KCOUNT>]

» To display the trace list beginning with the state numbet€&WER>, type:tl
<LOWER>

» To display the trace list states beginning with the state numbe@&/ER> and
ending with the state numbered PPER>, type:tl <LOWER>..<UPPER>

» To display the complete trace buffer, typé:

Thetl command has many options that allow you to control trace display so that
you can view only the states of interest. Many trace list options can be combined to
increase the usefulness of the display.

Examples To see how the trace list options are used, you need to capture a trace in the
analyzer’'s memory. You can easily capture a trace by entering the following
commands:

R>demo
R>t
R>r

Display the trace starting at state 11 by entering:

Ustl 11

117

Chapter 5: Using the Analyzer
To display the trace list

You will see:
Line addr,H 68040 Mnemonic

11 00000714 $0298FFFF log sprog long read
12 00000718 $FFFB51C8 log sprog long read
13 00000708 $00064E7B log sprog long read
14 0000070c $000441F8 log sprog long read

15 00000710 $06407007 log sprog long read

16 00000714 $0298FFFF log sprog long read
17 00000718 $FFFB51C8 log sprog long read
18 0000071c $FFF841F8 log sprog long read
19 00000720 $02004E7B log sprog long read
20 00000640 $FFFF0007 log sdata long read

Display three more states from the next states available by entering the command:

U>tl-n 3

You will see:
Line addr,H 68040 Mnemonic

21 00000724 $88074E7B log sprog long read
22 00000640 $FFFF0003 log sdata long write
23 00000710 $06407007 log sprog long read

Display the trace from the top by entering the command:

Ustl -t

You will see:
Line addr,H 68040 Mnemonic

0 00000000 $FFFFFFFE log sdata long read
1 00000004 $00000700 log sdata long read
2 00000700 $203CFFO0O0 log sprog long read

Notice that only three states are displayed. This is because you reset the count
parameter when you entered the commntanu3.

Display states 27 through 35 with the command:
U>tl 27..35

118

Chapter 5: Using the Analyzer
To prevent trace list header display

You will see:
Line addr,H 68040 Mnemonic

27 00000720 $02004E7B log sprog long read
28 00000644 $FFFF1007 log sdata long read
29 00000724 $88074E7B log sprog long read
30 00000644 $FFFF1003 log sdata long write
31 00000710 $06407007 log sprog long read

32 00000714 $0298FFFF log sprog long read
33 00000718 $FFFB51C8 log sprog long read
34 0000071c $FFF841F8 log sprog long read
35 00000720 $02004E7B log sprog long read

To prevent trace list header display

» Disable the display of the column headers in the trace list by tytpihg:
<trace_opts>

where<trace_opts>are the other options you want for trace display.

Disabling the column headers may be useful if you are saving the display output in
a file on a host computer. Then the trace list displays can be concatenated to
produce a continuous listing without interrupting headers.

Example Capture a trace, then display it without headers:

R>demo
R>t

R>r

Ustl -h 0.5

You will see:

00000000 $FFFFFFFE log sdata long read
00000004 $00000700 log sdata long read
00000700 $203CFF00 log sprog long read
00000704 $CO004E7B log sprog long read
00000708 $00064E7B log sprog long read
0000070c $000441F8 log sprog long read

abhwWNEFO

119

Chapter 5: Using the Analyzer
To control symbol and address display in the trace list

Example

To control symbol and address display in the
trace list

To display only symbols in the address column of the trace list,ttype:
<list_opts>

To display only hexadecimal values in the address column of the trace list| type:
-a <list_opts>

To display both symbols and hexadecimal values for addresses in the address
column of the trace list, typ#:-e <list_opts>

<list_opts>above are the other trace list options that you might select.

Display of symbols in the trace list's address column makes the list much easier to
read and interpret. You must first download a symbol file to the emulator (see
Chapter 1, “Quick Start”), or define some user symbols.

When you use thee or s options, symbols are also displayed inriinmee
disassembly field for operands.

Capture a trace for the examples:

R>demo
R>t
R>r rst

Display only symbols:
U>tl -s 160..170

120

Chapter 5: Using the Analyzer

To control symbol and address display in the trace list

You will see:
Line addr,H 68040 Mnemonic

164
165
166
167
168
169
170

Display only hexadecimal values for addresses:

$0000---- phy sdata word write
$4CDF040C phy sprog long read
$----0000 phy sdata word write
$4ESEAET5 phy sprog long read
$0000---- phy sdata word write
dtoi $F200B000 phy sprog long read
$----0000 phy sdata word write
$0195---- phy sdata word write
$----0000 phy sdata word read
$0195---- phy sdata word read
$246EFFFC phy sprog long read

M=l -a 160..170

You will see:

Line

168
169
170

Display both symbols and hexadecimal values for addresses:

addr,H 68040 Mnemonic

ffffffe4 $0000---- phy sdata word write
00008164 $4CDFO040C phy sprog long read
ffffffde $----0000 phy sdata word write
00008168 $4E5E4ET75 phy sprog long read
ffffffe0 $0000---- phy sdata word write
0000816¢c $F200B000 phy sprog long read
ffffffea $----0000 phy sdata word write
ffffffec $0195---- phy sdata word write
ffffffea $----0000 phy sdata word read
ffffffec $0195---- phy sdata word read
000080c0 $246EFFFC phy sprog long read

Ml -e 160..170

121

Chapter 5: Using the Analyzer
To control trace list disassembly and dequeueing

You will see:
Line addr,H 68040 Mnemonic

160 ffffffe4 $0000---- phy sdata word write

161 00008164 $4CDF040C phy sprog long read
162 ffffffde $----0000 phy sdata word write

163 00008168 $4E5E4ET75 phy sprog long read
164 ffffffe0 $0000---- phy sdata word write

165 dtoi $F200B000 phy sprog long read
166 ffffffea $----0000 phy sdata word write

167 ffffffec $0195---- phy sdata word write

168 ffffffea $----0000 phy sdata word read

169 ffffffec $0195---- phy sdata word read

170 000080cO0 $246EFFFC phy sprog long read

To control trace list disassembly and dequeueing

» To disassemble the trace list, tyfed <list_opts>
» To display all bus cycles in the disassembled trace list, thyoe <list_opts>

» To display only instruction cycles in the disassembled trace list,ttypée:
<list_opts>

» To dequeue the trace list, typle:od <list_opts>
» To display the non-dequeued trace list, typean <list_opts>

» To disassemble the trace list from the lower word of a starting statetl tide:
<list_opts>

» To tell the analyzer software which operand belongs with a particular starting state,

type:
tl <list_opts> <instruction_state> <operand_state>

where<instruction state>is an instruction state in the trace list and
<operand_state>is the first operand cycle for that instruction.

<list_opts>above are the other trace list options that you might select.

122

Example

Chapter 5: Using the Analyzer
To control trace list disassembly and dequeueing

The MC68040 trace lists display states in the order they were captured by the
analyzer. Thed option causes disassembly of the trace-list content. The
-o<options> control how the trace list is disassembled. Opti@shows all bus
cycles (instructions and operands). Optimrshows only the instruction cycles.
Option-ol starts disassembly with the low word of the specified trace list line
number. Optionod dequeues the disassembled trace-andalls for the
non-dequeued trace list.

A captured state must be a long word (having a high word and a low word. An
opcode can appear in either word (or both words). The disassembler starts with the
high word in the trace list line number you specify in your command. If the
disassembled trace list isn’'t what you expected, try usinglloption to force
disassembly to begin with the low word.

A dequeued trace list (optiend) shows operand cycles immediately following t
instructions that caused them, and suppresses unexecuted instructions. If yo
choose a non-dequeued trace list (optton), all emulation-bus activity is shown
in the order it occurred, whether or not it was executed.

To help the dequeuer select the correct operand cycles to align with a particular
opcode, use a command suchtiesl -od 50 62 which means align the operand
cycles on line 62 with the instruction on line 50. You can resynchronize the
dequeuer at any point in the display if you see a problem.

Capture a trace for the example:

R>demo
R>t
R>r rst

Display disassembled:

U>tl -d 160..170

123

Chapter 5: Using the Analyzer
To control trace list disassembly and dequeueing

You will see:
Line addr,H 68040 Mnemonic

160 ffffffe4 $0000---- phy sdata word write
161 00008164 MOVEM.L (A7)+,D2-D3/A2
162 ffffffde $----0000 phy sdata word write
163 00008168 UNLK A6

=0000816a RTS
164 ffffffe0 $0000---- phy sdata word write
165 dtoi FMOVE.L FPCR,DO
166 ffffffea $----0000 phy sdata word write
167 ffffffec $0195---- phy sdata word write
168 ffffffea $----0000 phy sdata word read
169 ffffffec $0195---- phy sdata word read
170 000080c0 MOVEA.L ($FFFC,A6),A2

The default is all cycles displayed (-0a).

Display only instructions:

U>tl -0i 160..170

Line addr,H 68040 Mnemonic
161 00008164 MOVEM.L (A7)+,D2-D3/A2
163 00008168 UNLK A6

=0000816a RTS
165 dtoi FMOVE.L FPCR,DO
170 000080cO MOVEA.L ($FFFC,A6),A2

Display part of the trace with all cycles shown and instructions dequeued:
U>tl -oda 165..175

Line addr,H 68040 Mnemonic
165 dtoi FMOVE.L FPCR,DO
166 ffffffea $----0000 phy sdata word write
167 ffffffec $0195---- phy sdata word write
168 ffffffea $----0000 phy sdata word read
169 ffffffec $0195---- phy sdata word read
170 000080c0 MOVEA.L ($FFFC,A6),A2
=ffffffea src sdata read: $00000930
171 000080c4 CMPI.B #$53,(A2)
172 000080c8 BEQ.B $000080DO (branch taken)
173 ffffffea $----0000 phy sdata word write
175 ffffffec $0930---- phy sdata word write

?branch taken? means the dequeuer was not able to determine whether or not the
branch was taken. If you read down the trace list and decide that the branch was
taken, use thi -d -od <Line number> command to restart disassembly at the

124

Chapter 5: Using the Analyzer
To obtain a time or state count in the trace list

trace list line number of the branch destination. You will need to includelthe

option if the destination opcode is in the low word at the destination address. You
may need to resynchronize alignment of operand cycles with the instruction at the
branch address, as described just before the examples. The "branch taken" notation
would have been shown beside the branch if the dequeuer had determined that the
branch was taken. The "branch not taken" notation would have been shown if the
dequeuer had definitely determined that the branch was not taken.

To obtain a time or state count in the trace list

You can have the analyzer show you a count of time between each of the stat
the trace list by typingcq time.

You can have the analyzer show you a count of the occurrences of a selected state
in the trace list by typingcq <EXPRESSION>

You can turn off the analyzer's count of time or states by typoagaone

If you are using the deep analyzer, counts of states or counts of time can be made at
full clock speeds of the system under test. No tradeoff of analyzer state memory
resources are required when the deep analyzer makes state or time counts.

If you are using the 1K analyzer, counts of states or counts of time are only
available with reduced clock speeds of the system under test. Refer to the
explanation of théck command to understand how the clock speed affects the
ability of the 1K analyzer to count.

The 1K analyzer's state/time counter uses half of the analyzer’'s state memory
resources. Therefore, when you require a time cacoptitne) or state countgq
<EXPRESSION>, etc.) during the trace, the 1K analyzer’s trace depth is reduced
to 512 states. You can obtain the full the trace depth (1024 states) by disabling
state/time counting.

125

Chapter 5: Using the Analyzer
To program the deMMUer in a static memory system

Analyzing Program Execution when
the MMU is Enabled

Most emulation and analysis commands that require an address as part of the
command use logical addresses. When the MC68040 MMU is enabled, physical
addresses are placed on the emulation bus. The physical addresses may not be the
same as the logical addresses. The deMMUer reverse translates the physical
addresses back to logical addresses and supplies these to the analyzer so that the
analyzer can:

» accept commands expressed in source file symbols.
» display trace lists with addresses expressed in source file symbols.
» display appropriate portions of source code preceding lists of trace data.

Refer to the chapter titled "Using Memory Management" for detailed information
to help you use the deMMUer more efficiently.

To program the deMMUer in a static memory
system

Run your program to the point where you are sure the MMU is set up.
Break to the monitor program with the commamnd:

Load the deMMUer with the commaraginmu -I ordmmu -Iv.

Enable the deMMUer with the commamtinmu -e

Continue execution of your target program with the command:
or restart the program with the commantkt.

126

Chapter 5: Using the Analyzer
To trace program execution in physical address space

To pick the place to load the deMMUer, you might set an execution breakpoint in
your code at a point where you are sure your MMU will be set up to translate the

address space you want to analyze. After the breakpoint has executed (emulator
running in foreground monitor), you can load the deMMUer.

Whether you continue your program or restart it, the deMMUer will have the
ability to reverse translate the physical addresses according to the MMU setup at
the time you issued the load-deMMUer command. The deMMUer will remain
loaded even if you reset the emulation processor.

If you restart your program, you can use the analyzer to see how the MMU tables
are created and how the program operates.

Address ranges will be reverse translated correctly if they are translated by th
setup of the MMU that existed when you issueddtimenu -lv command. If

context switches cause the MMU to access logical memory that was not
represented in the MMU tables when you loaded the deMMUer, incorrect logical
addresses will be provided by the deMMUer.

Note that you can add a reverse-translation range of addresses to the present content
of the deMMUer by entering a command, such as:
dmmu -t <logical address> <physical_address>

To trace program execution in physical address
space

Disable the deMMUer with the commarbinmu -d.

Now the analyzer will get its address information directly from the emulation
address bus. This information is useful when you want to see behavior of your
operating system.

127

Chapter 5: Using the Analyzer
To change the trace configuration

Using the Trace Sequencer

The analyzer trace sequencer is the key to powerful analyzer measurements. You
define a series of states that lead to the trigger condition and a set of conditions for
analyzer storage of bus cycles. The trace sequencer hardware uses these definitions
to control analyzer storage. Thus, you can capture only bus cycles that are relevant
to your problem. The sequencer defines a filter, effectively removing bus cycles

from the trace storage that aren’t important to the current measurement.

The sequencer operates in either easy or complex configuration. The easy
configuration has simpler setup but less power than the complex configuration.
These configurations are described in later sections.

To change the trace configuration

To change the trace configuration to easy, tigiee

To change the trace configuration to complex, tygfec

After you initialize the emulator (by cycling power, or by usingitiitecommand),
or the analyzer (witkinit), the analyzer is reset to easy configuration.

Change the trace configuration to complex if you need to specify a trigger sequence
that includes more than four sequence states with multiway branches, or if you need
different storage qualifiers at each level of the sequence. Change the trace
configuration to easy if you need only one storage qualifier and have a simple
trigger sequence (less than four sequence terms with global restart).

128

Chapter 5: Using the Analyzer
To create a simple expression

Using Easy Configuration

You use easy configuration to set up slightly more complex trigger specifications
than theg command will allow. You don't have access to the full power of the
analyzer, but the command set is simplified.

In easy configuration, the analyzer has four sequence terms, a global restart term,
and a global storage qualifier. The branch out of the last sequence term is the
trigger.

Expressions in easy configuration are limited to simple (in)equalities of analyz
integer values. The analyzer does allow you to count states or time and specif
prestore qualifiers.

To create a simple expression

To define a simple expression, create one or more equalities of the form
<label>=<expr>joined by the operat@nd or one or more inequalities of the form
<label>!=<expr>joined by the operatar.

To define a range expression, create an equality of the form:
<label>=<expr>..<expr>

Simple expressions allow you to build qualifiers that have multiple conditions.
Notice that the conditions must use the same logical operators; you caatidnix
andor in an expression.

There is only one range expression available. If you try to define a second range
expression, you will see an error message.

See “To create an expression” earlier in this chapter for more information on the
<expr> parameter. See “To create analyzer labels” for more aboglaihel>
parameter.

129

Chapter 5: Using the Analyzer
To insert a sequence term

Example

Here are some valid simple expressions (using the demo program symbols and the
predefined equates):

addr=_sys_demodisp

data=41

addr=_sys_demointr and stat=read
addr!'=_sys_demointr or stat'=ack

You can’t combine thand andor logical operators, nor can you mix tued
operator with + or theor operator with=. Here are some invalid simple
expressions:

addr!'=_sys_demointr and stat!=read
data=3e or stat=write

To build these types of expressions, you must use the analyzer's complex
configuration.

Examples

To insert a sequence term

Insert a new sequence term number€ERM#> by typing:tsq -i <TERM#>

There are only four sequence terms available in easy configuration. Therefore,
<TERM#> must be in the range 1..4. If you specify a number that is already in use,
that term and succeeding terms are incremented.

Initialize the analyzer and insert a new sequence term before term 1:
R>tinit

R>tsq -i 1

Now add a term after term 2:

R>tsq -i 3

130

Chapter 5: Using the Analyzer
To remove a sequence term

Example

To remove a sequence term

Delete an existing sequence term numbefdeRM#> by typing:tsq -d
<TERM#>

You may want to delete sequence terms to remove unneeded qualifications from
the sequence specification. When you delete a sequence term, any terms above it
are decremented to fill the gap.

Suppose that you have inserted the sequence terms as given for the example
insert a sequence term” above. There are now three sequence terms, and you
to remove terms 1 and 3. Enter the commands:

R>tsq -d 1
R>tsq -d 2

Notice that you remove term 2 in the second command. This was term 3 until
removal of term 1 caused the terms to be rennumbered.

To reset the sequencer

Reset the trace sequencer by typtsq:-r

When you reset the sequencer, it is reduced to a one-term sequence that stores all
states and triggers on the first occurrence of any state. This is equivalent to the
command sequencig any;tsto any;telif never.

131

Chapter 5: Using the Analyzer
To define a primary branch

Example

handle msg: Cmd |

To define a primary branch

To set the primary branch qualifier for a term giverxBERM#>, type:tif
<TERM#> <simple_expr> <count>

where<count> is an optional parameter that specifies the number of times that
<expr> must occur to satisfy the branch qualifier.

To display the primary branch qualifier for a term giverxBERM#>, type:tif
<TERM#>

To display all primary branch qualifiers, typié:

You use the primary branch qualifiers to set the sequence of conditions that must be
satisfied to reach the trigger term and trigger the analyzer. For example, you might
want to have the analyzer find a certain address value, then a data read, and then
trigger on another address value. This would require three sequence terms.

Suppose you want to trace the sequence of code from Call_Int through Print_Msg

in a program that sends messages in response to commands it receives. Normally, a
command that causes the message handler to call a routine called Cmd_| is found,
and you don’t want the analyzer to store data if Cmd_|I is found. You only want the
analyzer to capture a trace if some other symbol (other than Cmd_1I) causes the
Print_Msg routine to be called.

The analyzer sequencer state diagram for this measurement looks like the following:
==

2

demo: Call Int

jvhcmdemsg: Print Msg

(TRICGER = BRANCH
OUl OF TERM 2)

132

Chapter 5: Using the Analyzer
To define a global restart term

Set up the measurement:

R>tif 1 addr=Call_Int
R>tif 2 addr=Print_Msg
R>telif addr=Cmd_|
R>tp -b 20

R>t

R>r

ustl

The symbol Call_Int will be at the top of the trace list because each event that
causes the sequencer to advance to the next stage will be captured in trace memory.
The trace will show up to 20 states of activity that occurred before the trigger

then the trigger, and then the activity that occurred after the trigger was recog

Example

To define a global restart term

To set the sequencer’s global restart term, tighé <label>=<simple_expr>

To display the sequencer’s global restart term, tigdié:

You use the global restart term to restart the trace measurement when a certain
condition occurs. This can be useful to filter out bus activity that isn’t relevant to
the problem. For example, you might have a hashing routine that fails for one key
value. You could define the restart term to be “not this data value,” which will
restart the analyzer for every other key except the one of interest.

See Chapter 11, “Expressions,” for more information on simple expressions.

See the example given in the section “To define a primary branch.”

133

Chapter 5: Using the Analyzer
To display the current sequencer settings

. Example

To display the current sequencer settings

Display the current sequencer settings by typisgy:

When you use thisq command without any parameters, the emulator displays all
branch and storage qualifiers and the trigger term position.

This command is especially useful for checking your work after you define a
complicated trace specification.

The section “To define a primary branch” gives an example of a sequencer setup
for a particular measurement problem. To display that sequencer definition, enter
the command:

U>tsq

You will see:

tif 1 addr=Call_Int
tif 2 addr=Print_Msg
tsto all

telif addr=Cmd_|

To specify trace start with a sequencer term
other then term one active

Specify any sequence term to be the first active term at trace start by tyging:
-init <TERM#> (trace segencer initial term = <TERM#>)

Where <TERM#> is the sequence term you want to be the first active term at trace
start.

This feature is only available in the deep analyzer (HP 64794). There may be times
when you want an elaborate sequencer setup to begin with a term other than term 1
as the first active term.

134

Chapter 5: Using the Analyzer
To assign the trigger term

Using Complex Configuration

Enter the commandcf -c¢

Complex configuration allows you to make analyzer measurements that require
more powerful trigger logic or need multiple storage specifications.

There are eight sequence terms in complex configuration. Each term has a primary
and secondary branch qualifier that allow branching to any other term when that
qualifier is matched. Also, each sequencer term has a unique storage qualifier.

The sequence terms are always available in complex configuration. You don’t
to insert them as you do with easy configuration.

To build expressions in complex configuration, you first assign combinations o
simple expressions to one of eight pattern variables. There is also a range variable
to specify address or data ranges. Then you assign combinations of the pattern
variables and range to a branch or storage qualifier. The expressions can include
various logical operators. For example, you may want to specify a condition
involving a specific data value, but you want to exclude that data value if it is found
within a particular address range. The complex configuration allows this.

To assign the trigger term
To assign the trigger term t0 ERM#>, type:tsq -t <TERM#>
where<TERM#> is a sequencer term number.

To display the current trigger term assignment, tigup:t

The trigger term may be any one of terms 2..8 (it cannot be term 1). The analyzer
will trigger on entry to the trigger term.

135

Chapter 5: Using the Analyzer
To reset the sequencer

Example

Move the trigger from term 2 to term 6:
R>init -c

R>tcf -

R>tsq -t 6

Capture a simple trace and display it with this trigger specification:

R>demo
R>tp ¢
R>t

R>r rst
uU>tl -5..5

You will see:
Line addr,H 68040 Mnemonic seq

-4 00000000 $FFFFFFFE log sdata long read
-3 00000004 $00000700 log sdata long read

-2 00000700 $203CFF00 log sprog long read
-1 00000704 $COO004E7B log sprog long read
0 00000708 $00064E7B log sprog long read
1 0000070c $000441F8 log sprog long read

2 00000710 $06407007 log sprog long read

3 00000714 $0298FFFF log sprog long read
4
5

vty

00000708 $00064E7B log sprog long read
0000070c $000441F8 log sprog long read

Notice that the sequencer changes states 7 times, one for each sequence level plus
the trigger.

To reset the sequencer

Reset the trace sequencer by typtsq:-r

When you reset the sequencer, all primary branch qualifiers are set to jump to the
next term on any condition (except for term 8, which is set to never). All secondary
branch qualifiers are disabled. The trigger term is set to term 2, and the storage
qualifier for all sequence terms is set to all states.

136

Chapter 5: Using the Analyzer
To display the current sequencer settings

Example To reset the sequencer, enter:

M>tsq -r

To view the new trace sequence, enter:

M>tsq

The sequencer setup looks like:

tif 1 any 2
tif 2 any 3
tif 3any 4
tif 4 any 5
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 2

tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
telif 1 never
telif 2 never
telif 3 never
telif 4 never
telif 5 never
telif 6 never
telif 7 never
telif 8 never

To display the current sequencer settings

» Display the current sequencer settings by typisuy:

When you use thisq command without any parameters, the emulator displays all
branch and storage qualifiers and the trigger term position.

This command is especially useful for checking your work after you define a
complicated trace specification.

137

Chapter 5: Using the Analyzer
To define trace patterns

Example

To define trace patterns

» To define a trace pattern, tygpat <PATTERN#> <simple_expr>
» To display the expression for a given trace pattern, tppe<PATTERN#>

» To display the expressions for all trace patterns, tyae:

In complex configuration, the analyzer provides eight pattern variables to which
you assign simple expressions. Then you use these patterns to build more
complicated expressions for the primary and secondary branch qualifiers.

See Chapter 11, “Expressions,” for more information on expressions.

Suppose you are testing a program with three locations that should never be
reached under conditions you are testing. You want to trace and trigger on any
access to any of the three locations (called locationl, location2, and location3).
Enter the commands:

R>tcf -

R>tpat p1 addr=locationl
R>tpat p2 addr=location2
R>tpat p3 addr=location3
R>tg p1|p2|p3

R>t

Now you can run you tests. If there is ever an access to locationl, location2, or
location3 during your tests, the analyzer will capure the access and all activity
related to the access so you can examine the details of the access.

138

Chapter 5: Using the Analyzer
To define a range qualifier

To define a range qualifier

» To define the range patterrio be the set of states including two expressions, type:
trng <label>=<expr>..<expr>

* To define the range patterro be all states, typemg any

The range qualifier can be used in analyzer storage and complex branch
qualifiers. For example, you might have a lookup table in your program, and want

to record accesses to that table in the trace list. You can define the range qualifier as
the set from the lower to upper boundaries of the lookup table.

You can create ranges for either address or data.

Example Suppose that you want to trigger a trace on any read cycle from a range of
addresses in a message-storage area (called Msg_A through End_Msgs). You want
the analyzer to store only the message read cycles. Enter the following commands:

R>tcf -

R>trng addr=Msg_A..End_Msgs
R>tpat p5 stat=read

R>tg r and p5

R>tsto r and p5

R>t

R>r

139

Chapter 5: Using the Analyzer
To create a complex expression

Example

To create a complex expression

» Create a complex expression by combining trace pagérns8and the range

qualifierr using intraset and interset operators.

The rules for combining patterns and ranges are as follows:
The patterns, range and arm qualifier are divided into two disjoint sets.

<SET1>={pl,p2,p3,p4r,!r}
<SET2>={p5,p6,p7,p8,arm}

(Thearm qualifier is discussed in the section on coordinated measurements.)

You can form expressions by inserting intraset operators between members of

the same set. The operators are:

~ (intraset logical NOR)
| (intraset logical OR)

If you form an expression using these operators, the operator must remain the

same for all members of the same set. (See the examples).

You can form expressions by inserting interset operators between members of

<SET1>and<SET2>. The operators are:

and (logical and)
or (logical or)

The order in which you put the sets does not matter.

Complex expressions allow you to build more complicated trace qualifiers with

multiple conditions. Since the complex expressions are built from the trace patterns,

which contain simple expressions, you can build qualifiers with multiple logical
operators.

See Chapter 11, “Expressions,” for more information.

Here are some valid complex expressions:

pl~p2~r

rand p5

p5 or pl
p2|pl|r

pl|p2 or p5~p6

140

Chapter 5: Using the Analyzer
To create a complex expression

The following expressions are invalid:

p1~p2|r
pl and p2
pl~p2 and p3 and p5 and p7

The last expression is invalid because you can't repeat different sets to extend the
expression.

If you're having trouble achieving the necessary expression, try using DeMorgan’s
Theorem. Suppose you want to trace on:
(addr=2000) NAND (data=23)
There is no NAND function in the expression syntax. But, the above is equival
to:
(addr'=2000) OR (data!=23)

141

Chapter 5: Using the Analyzer
To define a primary branch term

Example

To define a primary branch term

To define a primary branch qualifier for the term givexBERM#>, typetif
<TERM#> <complex_expr> [<branch_term> <count>]

where<branch_term> is an optional term number indicating the term to branch to
when the<complex_expr>is satisfied. The default is to branch to the next
higher-numbered term, except for term 8, which branches to itself.

<count>is an optional parameter that specifies the number of times that
<complex_expe must occur to satisfy the branch qualifier.

To display the primary branch qualifier for the term giverrBERM#>, type:tif
<TERM#>

To display all primary branch qualifiers, typi:

The primary branch qualifier defines the main path from a given sequencer term to
another term (or the same term). If both the primary and secondary branch
gualifiers are satisfied simultaneously, the primary branch is taken.

Usually, you'll use the primary branch qualifiers to define a sequence of states that
must be satisfied to reach the trigger condition.

Suppose the following intermittent problem occurs in a program you are

developing: the message for command A is sometimes output when command B is
entered, and vice versa. The state diagram shows how the sequencer can be set up
to trigger a trace on the first occurrence of this intermittent problem.

If a state is found that is a command input of "A", the sequencer transitions to term
2. If astate is found that is a command input of "B", the sequencer transitions to
term 3. If any other state is found, the sequencer simply waits for the next state.

It sequence term 2 is active (command A was recognized by sequence term 1), then
sequence term 2 waits for an access to the message area. If message B appears,
term 2 transitions to term 4, triggering a trace. Sequence term 3 makes the same
sort of test for command B and message A.

142

Chapter 5: Using the Analyzer
To define a primary branch term

SECONDARY PRIMARY
BRANCHES SEQUENCE TERMS BRANCHES
(tolif) (+if)

READ "A" FROM
Cmd_Input

READ
"B" FROM
Cmd_Input

ACCESSED
Fill_Dest
ACCESSED
Msg_A

ACCESSED
Msg_B

TRIGGER TERM

> > QUALIFIER
(BRANCH ON ANY)

Here is how the analyzer can be set up to match this state diagram:

R>tcf -

R>tp e

R>tsq -t 4

R>tpat p1 addr=Cmd_Input and stat=read
R>tlb byte3 56..63
R>tpat p5 byte 3

R>tpat p6 byte3

R>tpat p2 addr=Msg_B
R>tpat p3 addr=Msg_A
R>tpat p4 addr=Fill_Dest
R>tif 1 p1 and p5 2
R>telif 1 p1 and p6 3
R>tif 2 p2 4

R>tif 3 p3 4

R>telif 2 p4 1

R>telif 3 p4 1

143

Chapter 5: Using the Analyzer
To define a secondary branch term

Thetpat commands assign the simple expressions needed. Notice that the address
condition was assigned pd and the data conditions p& andp6—this is done so

theand qualifier can be used between the patternstdtheommand sets the

trigger term to be the exit from sequencer term 4 tiftendtelif commands

define the branch conditions through the sequencer. Finallyg tenmand sets

the trigger position to the end of the trace. This allows you to see the states that lead
to an incorrect message being printed. To begin testing for the error condition, you
would start a trace with thecommand, then run the program and begin entering
various combinations of command A and command B.

To define a secondary branch term

To define a secondary branch qualifier for the term giverlisRM#>, type:telif
<TERM#> <complex_expr> [<branch_term>]

where<branch_term> is an optional term number indicating the term to branch to
when the<complex_expr>is satisfied. The default is to branch to the next
higher-numbered term, except for term 8, which branches to itself.

To display the secondary branch qualifier for the term giverltBRM#>, type:
telif <TERM#>

To display all secondary branch qualifiers, tyipéf

The secondary branch qualifier defines an alternate path from a given sequencer
term to another term (or the same term). If both the primary and secondary branch
qualifiers are satisfied simultaneously, the primary branch is taken.

Since the secondary branch qualifier is unique for each sequence term, it is more
flexible than the global restart qualifier in easy configuration. You can use it as a
global restart by making all secondary branch qualifiers identical, and having them
restart the trace sequence, or you can use the secondary branch as an alternate path
to the trigger if more than one sequence of conditions is acceptable.

144

Chapter 5: Using the Analyzer
To define complex storage qualifiers

To define complex storage qualifiers

To define a storage qualifier for the term giverkBYERM#>, type:tsto
<TERM#> <complex_expr>

To define a global storage qualifier (applied to all states), tgfe:
<complex_expr>

To display the storage qualifier for the term giverxB¥ERM#>, type:tsto
<TERM#>

To display the storage qualifier for all terms, tyjs&o

In complex mode, there are eight storage qualifiers, one for each sequencer term.
This allows you to store only the states of interest at each level of the sequence,
which uses the trace memory more efficiently and makes the trace display easier to
read.

You can use the storage specifications with the primary and secondary branch
qualifiers to trace on “windows” of activity, such as certain program subroutines.

145

Chapter 5: Using the Analyzer
To define complex storage qualifiers

Example Suppose you wanted to capture a trace that shows only the ASCII data writes to a
message destination address range, and the commands that caused them to occur. A
state diagram for the analyzer might look like the following:

STORAGE PRIMARY

QUALIFIER SEQUENCE TERMS SRANCHES

Cmd_Input and
TRIGGER TERM

byte 3
Msg Dest...Msg dest+1F
Msg_ Dest... and write
Msg Dest+1F
and write Msg Dest+1F and write

Cmd _Input and

byte 3 Msc Dest...Msg_Desl+1F

and write
Msg Dest...Msg Dest+1F
and write Msg Dest+1F and write

You might implement the above diagram by using the following commands:

R>tcf -

R>tpat p1 addr=Cmd_Input
R>tpat p2 addr=Msg_Dest+1f
R>tlb byte3 56..63

R>tpat p5 byte3!=0

R>tpat p6 stat=write

R>trng addr=Msg_Dest..Msg_Dest+1f
R>tsto 1 p1 and p5

R>tsto 2 r and p6

R>tsto 3 p1 and p5

R>tsto 4 r and p6

R>tif 1 r and p6 2

R>tif 2 p2 and p6 3

R>tf byte3,a seq

The above commands set the sequencer to store the reads of non-zero values from
Cmd_Input (when in terms 1 and 3) and the writes of data to the message
destination area (when in terms 2 and 4). The sequencer toggles from term 1 to

term 2 (or from 3 to 4) when writes to the message destination area occur, and from
terms 2 to 3 (or 4 to 3) when the last byte is written to the destination area. Also,

the trace format is set to show only the lower byte of the data bus and the sequencer

146

Chapter 5: Using the Analyzer
To prevent storage of sequencer-advance states in the trace memory

activity (a “+” is shown in theeqcolumn in the trace list when the sequencer
changes states).

To prevent storage of sequencer-advance states
in the trace memory

Prevent storage of the states that cause the sequencer to advance from one sequence
state to another by typintgsq -inc dis (trace sequencer "include" disabled).

Restore the default specification that causes the analyzer to store all
sequencer-advance states by typieg:-inc en(trace sequencer "include" enabled).

This feature is only available in the deep analyzer (HP 64794).

The default setup causes the deep analyzer to store all states that advance the
sequencer from one sequence state to another. These sequence-advance states are
stored regardless of whether they are qualified by your store-qualifier specification
(tsto) or not. There may be times when you are using an elaborate sequence to
identify one or two trace lines that you want to capture in memory. This selection
allows you to prevent storage of the series of sequence-advance states.

147

Chapter 5: Using the Analyzer
To specify trace start with a sequencer term other then term one active

To specify trace start with a sequencer term
other then term one active

Specify any sequence term to be the first active term at trace start by tyging:
-init <TERM#> (trace segencer initial term = <TERM#>)

Where <TERM#> is the sequence term you want to be the first active term at trace
start.

This feature is only available in the deep analyzer (HP 64794).

There may be times when you want an elaborate sequencer setup to begin with a
term other than term 1 as the first active term.

148

Chapter 5: Using the Analyzer
To trace target/background code execution

Setting Analyzer Clocks

The HP 64700 Series emulator design allows up to five clock signals for emulation
and external analysis. These are J, K, L, M, and N clocks. The HP 64783 emulator
generates the L clock to drive the emulation-bus analyzer. The other clocks are not
used.

The Terminal Interface provides ttek andtsck commands to configure the clock
signals. For the emulation analyzek andtsck are provided primarily for system
initialization and control through higher-level interfaces. You can ugekhe
command to qualify capture of either target program execution (which include
execution of the foreground monitor), or execution of the background monitor.
also use this command to specify the maximum data rate that the analyzer wil
which affects the state/time counter.

To trace target/background code execution

To trace only target program (user) code execution, tgkeu
To trace only background monitor code execution, tighe:b

To trace both target and background code execution,ttkpeaib

The emulation-bus analyzer has built-in qualifiers that allow you to select whether
the analyzer captures execution of the target program (which includes execution of
the foreground monitor), background monitor code, or both. Usually, you'll want to
trace only your target program. If you're trying to solve a problem with emulator
and target system interaction, you may want to trace both the target program and
background monitor code.

149

Chapter 5: Using the Analyzer
To configure the analyzer clock

To configure the analyzer clock

 Ignore the procedure on this page and the next page if you are using the deep
analyzer (HP 64794). If you are using the 1K analyzer, you must configure the
analyzer clock as described on this page and the next.

» To set the analyzer for a slow data rate (less than or equal to 16 MHz)ckyze:
S

» To set the analyzer for a fast data rate (between 16 and 20 MHz}ckypeF

» To set the analyzer for a very fast data rate (greater than 20 MHz), type:
tck -s VF

The MC68040 analyzer clock is setttl -s VF by default. The analyzer can
capture all types of bus cycles correctly up to the maximum clock rate of 40 MHz,
but cannot correctly count states or time at higher speeds for certain bus cycle types.

The worst-case situation is one where a zero-wait state burst cycle is performed.
The analyzer clock rate for burst cycles is given by the equation:

Processor Clock Ra{BCLK)
(1 + number of wait statgs

Analyzer Clock Rate

To determine the correct setting for thke -s command in the MC68040 emulator,
calculate the maximum data rate by using the above equation. Remember that the
emulator requires one wait state for all accesses when the external clock is greater
than or equal to 25 MHz. (See the chapter titled “Configuring the Emulator” for
more information.) Then choose the data rate option according to the data rate.

If no burst cycles are performed, the analyzer clock speed can be setklag)(

150

Example

Chapter 5: Using the Analyzer
To configure the analyzer clock

The trace state and time count qualifiers are limited by the analyzer clock rate
settings as follows:

Analyzer clock rate tck setting Valid tcq options
clock< 16 MHz tck -s S tcq <state>

tcq time
clock< 20 MHz tck -s F tcq <state>
clock= 20 MHz tck -s VF tcq none

Suppose you are running the MC68040 processor at 40 MHz. You have set
cf wait=en since target memory requires one wait state for synchronous/burst
accesses over 25 MHz. The resulting data rate is 20 MHz, so you enter the
following commands:

R>tcq none
R>tck -s F

Note that you sdtq none Since the clock rate is between 16 and 20 MHz, you
could choose to count states by choosing the approfoépéptions. However, you
cannot usécq time.

151

Chapter 5: Using the Analyzer
To define a prestore qualifier

Using Other Analyzer Features

The analyzer has other features that can be used in all configurations to make trace
measurements easier to interpret or capture additional information.

» Prestore allows you to save specific trace states that are related to other events
in your trace list. For example, you might want to save the caller of a
subroutine.

e Count qualifiers allow you to count states or time.

» Trace activity measurements allow you to see whether a particular analyzer
signal is high, low or moving.

» Equates save keystrokes by allowing you to assign names to commonly used
values. The names can be used in analyzer specifications.

To define a prestore qualifier

To define a prestore qualifier when you’re using easy configuration,tpgpe:
<simple_expr>

To define a prestore qualifier when you're using complex configuration,tpge:
<complex_expr>

You use the prestore qualifier to save states that are related to other routines that
you're tracing. For example, you might be tracing a subprogram, and want to see
which program called it. You specify a set of possible callers as a prestore
specification. It you don’t know the set of possible callers, you can specify that the
last read cycle be prestored before entry into the subroutine.

152

Chapter 5: Using the Analyzer
To count states or time

Example Suppose you want to trigger a trace on a call to Print_Msg and prestore the
command that called Print_Msg. The following example assumes you know the
only possible callers to Print_Msg are Cmd_A, Cmd_B, and Cmd_|I.

Enter the commands:

R>tcf -

R>trng addr=Mst_Dest..Msg_Dest+1f
R>tpat p1 addr=Print_Msg
R>tpat p5 addr=Cmd_A
R>tpat p6 addr=Cmd_B
R>tpat p7 addr=Cmd_|
R>tpq p5|p6|p7

R>tg p1

R>tsto r

R>t

R>r

To count states or time

» To measure the amount of time for each analyzer storage statécdytime

» To measure the number of occurrences of a particular bus state in easy
configuration, typetcq <simple_expr>

» To measure the number of occurrences of a particular bus state in complex
configuration, type:
tcq <complex_expr>

» To disable analyzer state/time counting, ttpg:none

» To check the current setting of the count qualifier, tyqzg:

The trace count qualifier can be used to measure time for each storage state or
occurrence counts of a particular bus state. You can display these values either

153

Chapter 5: Using the Analyzer
To count states or time

Example

relative to the last stored state (relative mode) or relate to the trigger state (absolute
mode). You change this using tificommand. See “To Change the Trace Format”
earlier in this chapter.

The MC68040 emulator defaultsttm never. See “To configure the analyzer
clock.”

Suppose you want to count the number of write transactions to a message
destination area in a program. Enter the commands:

R>tcf -

R>trng addr=Msg_Dest..Msg_Dest+1f
R>tpat p5 stat=write

R>tcq r and p5

R>tsto r and p5

R>tg r and p5

The above commands trigger the analyzer when a nonzero command is input and
interpreted by the command interpreter routine. The analyzer stores and counts only
write cycles to the message destination area.

Enter the commands:

R>t

R>r

These commands start a trace, and then run the program and provide input.

When you display the trace list, the count will show the total number of writes to
the message destination area.

154

Chapter 5: Using the Analyzer
To check trace signal activity

To check trace signal activity

» Display analyzer trace signal activity by typimtay:

Theta command can help you check target system operation. For each analyzer
signal line, thea command will display:

» 0Oifthe signalis low.
« 1lifthe signalis high.
« ?if the signal is moving.

The trace signal display is not available in the deep analyzer (HP 64794). Int
analyzer, you can display trace signal activity as described above.

To define equates

» Define an equate with the namBAME> by typing:equ <NAME>=<expr>

Equates allow you to type an expression once and recall it for later use. Some
values for which you may want to define an equate include occurrence counts,
status values, and table offsets.

Because the emulator has symbol-handling capability, you usually won't define
equates for address values. It's usually better to download symbols from your host
computer or use theym command to define user symbols instead. That way, the
symbols will appear in the trace list. Equates can’t be shown in the trace list.

Example Suppose you have a two-dimensional matrix, and you often want to specify a
particular row in an analyzer command. If the matrix is 10 bytes square, you can
define an equate as follows:

M>equ rown=10

155

Chapter 5: Using the Analyzer

To display equates

Suppose that the base address of the matrix is in the symbol mymatrix. Then, you
can specify the 22nd location in the matrix as mymatrix+22 or as
mymatrix+2*rown+2.

To display equates
To display the definition of an equate nam@®AME>, type:equ <NAME>

To display the definition of all equates, typegu

To delete equates

To delete an equate given fNAME>, type:equ -d <NAME>

To delete all equates, typsgqu -d *

Equates use system memory, so you may want to delete equates you are no longer
using. This frees memory and makes the equate display easier to read.

Be sure that you want to delete all equates before usimgjthel * command.
System-defined equates are deleted if you use this command, but they will be
redefined if you initialize the emulator (with thét command or by cycling
power).

156

Chapter 5: Using the Analyzer
To set trace memory depth in the deep analyzer

Examples

To set trace memory depth in the deep analyzer

Set the depth of the analyzer trace memory by tyigingleep <DEPTH> (trace
configure deep <DEPTH>).

<DEPTH> is the portion of the trace memory that the deep analyzer will use to
store captured data during a trace. Unspecified depth will be ignored.
<DEPTH> can be any depth from 1 state to the maximum number of states that
can be stored in the trace memory of your deep analyzer.

Maximum trace memory depth can be obtained by omittingEHePTH>

parameter from your command, or by specify#fiEPTH> as 0.

The memory depth you specify will affect the analyzer response tore(wait for
measurement complete) command. The analyzer detects measurement com

after the trigger has been captured and the trace memory depth you specify has been
filled.

To obtain a 4K memory depth in your deep analyzer, enter:

tcf -deep 4096

To obtain the full memory depth in your deep analyzer, enter:

tcf -deep

or

tcf -deep 0

or
tcf-deep <full memory depth available in your analyzer>
Enteringtcf -deepor tcf -deep0 allows you to achieve maximum trace memory

depth even if you are unsure of exactly how much depth is available on the analyzer
card.

157

158

Making Coordinated Measurements

Use the Coordinated Measurement Bus to start and stop multiple emulators and
analyzers

159

Chapter 6: Making Coordinated Measurements
Basic Elements of Coordinated Measurements

Basic Elements of Coordinated Measurements

The Coordinated Measurement Bus (CMB) connects multiple emulators and allows
you to make synchronous measurements between those emulators.

For example, you might have a target system that contains an MC68040 processor
and another processor. You use HP 64700 Series emulators to replace both target
system processors, and connect the emulators using the CMB. You can run a
program simultaneously on both emulators, or you can start a trace on one
emulation analyzer when the other emulator reaches a certain program address.
These measurements are possible with the CMB.

Three signal lines are used to control interaction over the CMB.

TRIGGER The CMB TRIGGER line is low true. This signal can be driven
or received by any HP 64700 connected to the CMB. This
signal can be used to trigger an analyzer. It can be used as a
break source for the emulator.

READY The CMB READY line is high true. It is an open-collector
circuit and performs an ANDing of the ready state of enabled
emulators on the CMB. Each emulator on the CMB releases
this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a
synchronized start.

When CMB is enabled, each emulator is required to break to
background when CMB READY goes false, and will wait for
CMB READY to go true before returning to the run state.
When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume
running. When an emulator is reset, it also drives CMB
READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the
CMB can drive this line. It serves as a global interrupt and is
processed by both the emulator and the analyzer. This signal
causes an emulator to run from a specified address when CMB
READY returns true.

160

Chapter 6: Making Coordinated Measurements
Basic Elements of Coordinated Measurements
There are two lines internal to the emulator that are used for coordinated analyzer
measurements. These are TRIG1 and TRIG2. The analyzer can drive or receive
either of these signals. Also, the rear-panel BNC and the CMB TRIGGER signal
can drive or receive either of these signals.

Several different commands control and respond to these signals. By using these
commands, you can make the following types of measurements:

e Start a program run or analyzer trace when the CMB EXECUTE signal is
driven.

* Use either the BNC trigger or CMB TRIGGER to arm (and potentially trigger)
the analyzer.

» Have the analyzer drive the BNC trigger or CMB TRIGGER to trigger other
instruments or emulators.

» Break the emulator into the monitor when a BNC trigger, CMB TRIGGER
analyzer trigger occurs.

The commands used to make coordinated measurements are as follows:

Command Function

bnct Sets drivers and receivers of BNC trigger

cmb Enables/disables CMB interaction

cmbt Sets drivers and receivers of CMB trigger

rx Sets run at CMB EXECUTE address

tarm Specifies which trigger signals arm analyzer
tgout Specifies whether analyzer drives trigger signals
tx Enables/disables trace on CMB EXECUTE

X Starts a coordinated CMB measurement

This chapter shows some of the common measurements that you may want to
make. By combining the above commands in different ways, you can make more
complex measurements involving several test instruments. This can be useful for
troubleshooting multiprocessor systems or problems where the emulator isn’t
capable of making the whole measurement.

Many HP 64700 Series emulators support CMB interaction only when configured
to use a background monitor. However, the MC68040 emulator supports the use of
the CMB when configured with either a background or foreground monitor.

161

Chapter 6: Making Coordinated Measurements
To start a simultaneous program run on two emulators

To connect emulators using the CMB, seeHRe64700 Card Cage
Installation/Service Guide

To start a simultaneous program run on two
emulators

Enable the CMB on each emulator usingdimbd -ecommand.
Reset each emulator using tsecommand.

Set the run address for the first emulator by typixngaddress>
Set the run address for the second emulator by typirgddress>

Start program execution on both emulators by typing:

Before you do this procedure, both emulators must be connected via the CMB. To
connect the CMB, see titPP 64700 Series Card Cage Installation/Service Guide

The procedure for starting a simultaneous trace on two emulators is similar. For
each emulator, you should set up the trigger specification before enabling the CMB.
Then add théx -e command to enable trace on execute for each emulator. When
the EXECUTE signal is received, both emulators will begin running as specified by
therx command, and will start a trace according to the given trigger specification.

162

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer from another emulation-bus analyzer

To trigger one emulation-bus analyzer from
another emulation-bus analyzer

1 Connect a CMB cable (coordinated measurement bus) between the two
instrumentation card cages.

2 In the first analyzer, specify the analyzer trigger by typiggrstate>(trigger on
<state>

where<state>is a unique state to be recognized by the analyzer (such as,
addr=1000 and data=44 and stat=writg

specification by typingtgout trig1 trigger or tgout trigl (trigger output on trigl
when trigger specification satisfied). Note thiiger is the default. It is offered

3 Set the first analyzer to drive trigl when it captures a state that meets the trigg.
on the deep analyzer, but not on the 1K analyzer.

4 Set the second analyzer to trigger its trace when it receives trigl from the first
analyzer by typingtarm =trigl; tg arm (trace arm signal is on trigl, trigger when
arm switches to true)

5 Establish interaction through the rear panel CMB connection on each card cage, as
follows: In the interface of the first analyzer, set the rear panel CMB connection to
receive trigger by typingzmbt -r trigl (CMB trigger line receives trigl). Inthe
interface othe second analyzer, set the rear panel CMB connection to drive trigger
to the second analyzer by typingnlat -d trigl (CMB trigger line drives trigl).

6 Make sure the first (driving) analyzer is not driving trigl by issuinghth{&ace
halt) command.

7 Start the second (receiving) analyzer using {ftiace) command.

8 Start the first (driving) analyzer using thérace) command.

With this coordination, you can effectively widen your analysis bus to any number
of channels, limited only by the number of analyzers available in your system.

163

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer from another emulation-bus analyzer

Example

Trigl and trig2 are used to coordinate measurements between instruments in the
instrumentation card cage. An analyzer can drive or receive either or both of these
lines. Also, the rear-panel BNC and the CMB trigger signal can drive or receive
either of these signals.

When you use trigl and/or trig2 to coordinate actions in associated equipment,
there is delay in the coordination. In the example above, several states may be
executed between the time the first analyzer recognizes its trigger and the time the
second analyzer recognizes its trigger.

The 1K analyzer can be set up to generate a trigger output pulse on trigl and/or
trig2 when the analyzer recognizes its trigger. The deep analyzer can be set up to
generate a trigger output pulse on trigl and/or trig2 on any of the following events:

» Recognition of the analyzer triggeégdut trig1 trigger).

» Completion of a trace, the trigger captured and trace memory filled
(tgout trig1,trig2 complete).

» Capture of a state that is <DELAY> number of states after the trigger was
captured tgout trig2 -t 20).

» Capture of a state that occurs after the trigger state and is <DELAY> number
of states before the end of trace memtggut trigl,trig2 -c 10).

» Recognition of a specific statigyéut trigl addr=100).

» Recognition of a pattern when a particular sequence term is active in the
complex modetgout 1 p1)

Assume you have two MC68040 emulators, running out-of-circuit. The demo
program is loaded in each emulator. The following example will trigger the
analyzers in both emulators when _sys_demodisp is detected in the first emulator.

Set up the first emulator by entering the commands:

R>init -c

R>demo

R>cmb -e

R>tg addr=_sys_demodisp
R>tgout trigl

R>cmbt -r trigl

R>tp ¢

R>t

R>b

M>

164

Chapter 6: Making Coordinated Measurements
To trigger one emulation-bus analyzer from another emulation-bus analyzer

Set up the second emulator:
R>init -c
R>demo
R>cmb -e
R>cmbt -d trigl
R>tarm =trigl
R>tg arm

R>tp ¢

R>t

R>r

W>

Start the first emulator:

M>r

uU>

On the second emulator, pregsnter>. Note that the second emulator is now
running:

wW>

u>

On the first emulator, type:

U>m -db _sysbuf="ABC"

Display the trace on the first emulator:

U>tl -e -10..10

Display the trace on the second emulator:

Ustl -e -10..10

165

Chapter 6: Making Coordinated Measurements
To break to the monitor on an analyzer trigger signal

To break to the monitor on an analyzer trigger
signal

Set the analyzer to drive a trigger signal by typiggut <signal>

where<signal>is eithertrigl ortrig2.

Set the emulator to break to monitor on receipt of the same trigger signal by typing:
bc -e <signal>

where<signal>is the same one specified in step 1.

Specify the trigger conditions for the trace. (See the chapter titled “Using the
Analyzer” for more information).

Start the trace by typing:

Start a run by typing:

The trigger signals and the analyzer trigger capabilities allow you to specify
hardware breakpoints. You can use the trigger specification to specify complex
sequences of address, data and status, and then break the program to the monitor
when the sequence is found. This is useful when you want to examine memory
locations and registers after the trigger condition but before further program
execution.

You can use a similar process to break to monitor when a BNC trigger or CMB
trigger is received. See thact andcmbt commands in the chapter titled
“Emulator Commands.”

166

Chapter 6: Making Coordinated Measurements
To break the emulator to its monitor after the deep emulation-bus analyzer completes a t race

To break the emulator to its monitor after the
deep emulation-bus analyzer completes a trace

1 Set the analyzer to drive trigl when the analyzer completes its trace (captures
trigger plus enough states to fill its trace memory) by tydgmit trigl complete
(trigger output on trigl when measurement complete).

2 Set the emulator to break to its monitor program on receipt of the trig1 signal by
typing: bc -e trigl (break condition enabled on trigl).

This feature is available on the deep analyzer, but not on the 1K analyzer.

You may use this setup to stop your program at some point in its execution so vou
can single step through a portion of your target program after a complex set o
conditions have been established in your target system.

Trigl and trig2 are used to coordinate measurements between instruments in the
instrumentation card cage. The analyzer can drive or receive either or both of these
lines. Also, the rear-panel BNC and the CMB trigger signal can drive or receive
either of these signals.

The above steps cause the emulator to break to its monitor program when the
emulation-bus analyzer completes its trace. When you use trigl and/or trig2 to
coordinate actions in associated equipment there is delay in the coordination. In the
example above, the emulator may execute several states between the time the
analyzer completes its trace and the emulator breaks to its monitor program.

The analyzer can be set up to generate a trigger output on trigl and/or trig2 on the
following events:

» Recognition of the analyzer triggeégdut trig1 trigger).

» Completion of a trace, the trigger captured and trace memory filled
(tgout trig1,trig2 complete).

» Capture of a state that is <DELAY> number of states after the trigger was
captured tgout trig2 -t 20).

» Capture of a state that occurs after the trigger state and is <DELAY> number
of states before the end of trace memtggut trigl,trig2 -c 10).

» Recognition of a specific statigyéut trigl addr=100).

Recognition of a pattern when a particular sequence term is active in the complex
mode {gout 1 pJ)

167

Chapter 6: Making Coordinated Measurements
To set up the deep emulation-bus analyzer so its counts are enabled by an external

To set up the deep emulation-bus analyzer so its
counts are enabled by an external instrument

Connect the rear panel BNC to deliver trigl to the analyzer by typing:
bnct -d trigl (BNC input drives trigl).

Set the emulation-bus analyzer to be armed when it receives trigl by tgping:
=trigl (trace analyzer arm signal supplied on trigl). The first time that the trigl
signal goes from false to true after the trace is started, the arm signal will switch to
true and remain true for the rest of the measurement.

Set the emulation-bus analyzer to perform its count only when it is armed by
typing:tcq arm (trace tag counter armed (enabled) by the arm signal).

Thetcq arm feature is available on the deep analyzer, but not on the 1K analyzer.

You can connect a logic analyzer to the rear panel BNC and give it the power to
control when the emulation-bus analyzer counts states. Perhaps you would like to
have the emulation-bus analyzer count the number of calls to a particular routine,
but only after execution of an external event. You could set up the logic analyzer to
monitor that event, and to supply a TTL level to the rear panel BNC when the event
occurs. Then the emulation-bus analyzer could be set up to count calls to the
routine of interest, but only after the TTL-true is supplied from the logic analyzer.

168

Configuring the Emulator

How to adapt the emulator to your system

169

Chapter 7: Configuring the Emulator

Each target system differs in the way it configures the processor, uses memory, and
memory mapped I/O devices. During system development, your needs for emulator
resources may change as your system design matures. You can allocate emulator
resources using Terminal Interface commands. This resource allocation is called the
emulator configuration.

Memory

The emulator must know how your system memory resources are allocated. You
can use emulation memory for some memory ranges. This is useful in the early
stages of system debugging.

To ensure that timing of accesses to emulation memory are the same as accesses to
target system memory, you can lock termination of emulation memory cycles and
monitor bus cycles to the target sysfEAandTEA signals. If your target system
termination signals are not available, you can allow termination of the
emulation-memory cycles to be done by signals within the emulator.

Emulation Monitor

The emulation monitor is used to implement some emulator features. For example,
display or modification of your target system memory or emulation memory that
isn't dual-port is done by the monitor. You can choose either a foreground or
background monitor, and the base address at which the monitor resides. (See the
bookConcepts of Emulation and Analy&is more information on foreground and
background monitors.)

You can set a “keep-alive address” from which the background monitor will
periodically read a byte. This can be used by your system to update a watchdog
timer during monitor operation.

If you select a foreground monitor, you can choose the default monitor that is
resident in the emulator, or you can design a custom foreground monitor that
supports special target system needs. You can specify the interrupt priority mask to
use during foreground monitor execution in a configuration question.

A foreground monitor must be used when the MMU of the MC68040 is enabled, or
the caches are enabled, or the target system does dma activity.

If you initialize the emulator, then break to monitor, and then try to run the
processor, the run will fail because the processor’s stack pointer and program

170

Chapter 7: Configuring the Emulator

counter aren't initialized. A configuration item allows you to specify values for
these registers so that the above sequence will work correctly.

Other Configuration Items

The emulator allows you to restrict commands to those that won’t temporarily
interrupt user execution to perform monitor functions. This is important for some
systems that require non-stop, real-time code execution.

You can disable the data and instruction cache memories. The emulation-bus
analyzer can't trace instructions (or data) that are fetched from cache. This can
make trace displays difficult to interpret. When you disable the caches, all
instructions and data are fetched on the external processor buses, and therefore will
appear in the trace list.

You can block your target system interrupts from the processor. This can help you
troubleshoot problems with interrupts or allow you to delay testing of interrupt
service routines.

171

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

Mapping and Configuring Memory

Every system allocates memory and /O differently, as needed by the application.
As the system design matures, memory locations and requirements may change.
For example, the initial target system design may not support external memory, but
a change in application definition may need more program code, requiring external
memory. While the design is being changed, you can develop the program using
the emulator’'s emulation memory to simulate your target system memory.

The emulator has flexible memory resources that allow you to configure the
emulator to support your needs.

To assign memory map terms

» Assign memory to a specific address range by typing:
map <range> <memory_type> <attribute>

<range>is an address range aligned on 256-byte boundaries (resolution is 256
bytes).

<memory_type>is as follows:

Type value Memory Assigned
eram Emulation RAM
erom Emulation ROM
tram Target System RAM
trom Target System ROM
grd Guarded memory

172

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

<attribute> can be:

dp to indicate that this block is to reside in the special 4-Kbyte block of dual-ported
emulation memory. (Dual-ported memory can be accessed by the host controller
without the emulation monitor program, which means that your program executes
uninterrupted during the access.)

lock indicates that accesses to emulation memory are terminated by target system
TA andTEA instead of the internal termination signals of the emulator.

tci asserts th&Cl line to the MC68040 for all addresses in this memory block,
indicating that accesses to this block should not be cached.

(Combine multiple attributes by separating them with commas, for example:
dp,lock.)

You need to specify the location and type of various memory regions used by your
programs and your target system. The emulator needs this information to:

» Orient buffers for data transactions with emulation memory and your target
system memory.

* Reserve emulation memory blocks.

» Set the type of memory blocks so that configuration items such as write to
ROM break will operate correctly.

The MC68040 emulator has seven map terms. Your address specifications must
begin and end on 256-byte boundaries. To specify an address beginning on a
256-byte boundary, enter an address ending in 00. To specify an address ending on
a 256-byte boundary, enter an address ending in ff. Because of the way the
emulation memory system is designed, the amount of memory used by each map
term corresponds to the nearest block size available, not the amount of memory
needed by the absolute address range to be stored.

There is one 4-Kbyte block of dual-ported emulation memory. (Dual-ported means
that the emulation controller can access memory locations without interfering with
program execution). This block can be mapped by specifyindptiagtribute after

the map address and memory type specification. If you use a foreground monitor,
the emulator reserves this block for the monitor code.

If you specify an address range less than 4 Kbytes witliptlagtribute, all
4 Kbytes are allocated because that is the minimum block size for that memory. If
you specify a block size less than 4 Kbytes and the dual-port memory is unmapped,

173

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

the emulator uses that memory to more closely match the requested address range
to the block size.

There are also two memory sockets on the probe. This memory is not dual-ported,;
the monitor is used to read and write the locations when you display or modify
memory. You can install 256-Kbyte, 1-Mbyte, or 4-Mbyte emulator memory
modules in these sockets in the following configurations.

Installation Memory slot 0** Memory slot 1** Blocks Available
1 256K 256K 4-64K, 2-128K
0% 256K M 4-64K, 2-512K
3 1M 256K 4-256K, 2-128K
4 1M 1M 4-256K, 2-512K
5 256K Empty 4-64K

6 M Empty 4-256K

7 4M 4M 4-1M, 2-2M

8 4M M 4-1M, 2-512K

9 4M 256K 4-1M, 2-128K
10 4M Empty 4-1M

* |Installation 2 is not recommended because it does not allocate blocks as well as Installation 3.

** Memory Slot 0 and Memory Slot 1 are marked on the probe board as BANK 0 and BANK 1. Their
locations are also shown in illustrations in the Installation and Service Chapter of this manual.

Your selection of wait states may be affected if you install 4M memory modules. See "To enable one wait
state" later in this chapter.

For each configuration, the “Blocks Available” indicate the minimum amount of
memory that will be allocated if you specify a map term with that block size or less.
If you need to use emulation memory, you should examine your memory usage and
install memory in the way that will maximize block usage. (See the examples on

the next page.)

174

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

If you specify thdock attribute, the emulator waits for your target systeror

TEA signal to terminate an emulation memory cycle. This makes the bus cycle
length identical to that of your target system so that timing will be the same. If your
target system does not retlirA or TEA in the address range mapped to emulation
memory, don’t use thleck attribute because the system will hang while waiting

for yourTA or TEA. (See “To interlock monitor cycles with your target system
termination signals" for more information.)

If you don't specify théock attribute when you map a memory block, your target
systeml'A andTEA signals are ignored on accesses to that block.

If you specify thdci attribute, thé Cl (transfer cache inhibit) line is asserted for
accesses to that memory block. This prevents instructions or data from that memory
block from being loaded into the processor cache memory. If you need to disable
caching for all memory accesses, usecfteacheconfiguration item. See “To

disable the processor cache memory” in this chapter.

If you want to add a term that overlaps address ranges with an existing term, you
must either redefine or delete the existing term.

Some commands reset the memory mapper. These commandagré:*, cf
mon, cf monaddr. You should configure the monitor before you map memory.
Otherwise, you may need to reenter the map commands.

Example Suppose you are using the emulator in-circuit, and there is a 12-byte 1/0O port at
1c000 hex in your target system. You have ROM in your system from 0 through
ffff hex. Also, you want to use the dual-port emulation memory at 20000 hex:

R>map 1c000..1cOff tram
R>map 0..0ffff trom
R>map 20000..20fff eram dp

Remember you must use the background monitor if you want to use the dual-port
emulation memory to store your program.

175

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

The relationship between memory ranges and the block sizes of memory is easier to
understand by looking at an example. Suppose you have Installation 1 from the
table above. Then you enter the following map commands:

R>map 0..7fff eram
R>map 20000..3f0ff eram
R>map 40000..4ffff eram
R>map 50000..500ff eram

If you haven't used the dual-port emulation RAM, the first map term that will fit is
assigned to that memory. In this example, that is the last term you defined (the
range from 50000..500ff). The entire 4-Kbyte block is reserved even though you
specified only a 256-byte range. Two 64-Kbyte blocks and one 128-Kbyte block
are used from the other emulation memory, leaving two 64-Kbyte blocks and one
128-Kbyte block. One of the 64-Kbyte blocks is used for the first map term, but 32
Kbytes of that block are unused and unavailable. The third term uses the other
64-Kbyte block. The second term uses part of the 128-Kbyte block, leaving the rest
unavailable.

The mapper’s resolution is independent of the block allocation. In the above
example, if you hadhap other grd and your program accessed 8000h, the
emulator would do a break on access to guarded memory.

176

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

To assign the memory map default

» To map all remaining memory to your target system RAM, tygzg other tram
» To map all remaining memory to your target system ROM, tyag: other trom

» To assign all remaining memory as guarded memory spacentgpedther grd

The other map term specifies all address ranges not otherwise covered by existing
memory map terms. This can save you time in memory mapping.

Often you will want to be notified when the processor accesses a nonexistent
memory location during a program run. Usedkha (quarded) term to do this. The
emulator will break to monitor and display a message when a guarded memory
access occurs.

You can include attributes suchtasandlock with yourmap other ...command

to inhibit read data from being written to the caches when unmapped address

on the emulation bus, and to allow the emulator to terminate bus cycles witho
waiting for the target system termination signals in unmapped ranges of addresses.

To check the memory map

» To check the current memory map, typap

177

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

To delete memory map terms

To delete a particular memory map term, typap -d <term#>

Where<term#> is in the range 1-8.

To remove all memory map terms and reset the map,mygge:d *

To enable one wait state

If your external bus clock (BCLK) frequency is greater than 25 MHz, type:
cf wait=en

If your external bus clock (BCLK) frequency is less than 25 MHz, type:
cf wait=dis

To check the wait state setting, typewait

When the clock speed of BCLK is above 25 MHz, the emulator requires one wait
state for all accesses to memory, including burst mode accesses. Without this wait
state, emulator operation is erratic. No wait states are required for memory
accesses, including burst mode accesses, when the clock rate of BCLK is below 25
MHz.

When operating above 25 MHz, the target system is responsible for adding a wait
state to its accesses. The emulator will not attempt to add a wait state to target
accesses, other than to ignore cycle terminations until a wait state has passed. The
target system is responsible for making sure cycle terminations and data are valid
after the wait state.

The 4-Mbyte memory modules (HP 64173A) are not as fast as the 256-Kbyte and
1-Mbyte memory modules. The emulator always adds one wait state to accessess
to emulation memory when it detects the presence of any of these 4-Mbyte memory
modules on the emulation probe.

178

Chapter 7: Configuring the Emulator
Mapping and Configuring Memory

Note

Examples

To enable the memory management unit

To turn on the MMUs in the emulation processor, ecfanmu=en
To turn off the MMUs in the emulation processor, tygfanmu=dis
To see the present state of the MMU, tygfenmu

To obtain additional information about the MMU, typelp cf mmu

Once enabled, the MMU of the MC68040 can be set up by the operating system to
manage logical (virtual) memory in physical address space. The selection of a root
pointer and the value in the translation control register determine how the MMU
will manage memory. The MMU must be enabled by this configuration question
before the operating system can establish those control values.

Your target system may enable the MMU during program execution by using t
MDIS signal. The target system can disable the MMU even if it is enabled via
configuration question.

A foreground monitor must be used when the MMU of the MC68040 is enabled. If
the background monitor is selected when you type iefthemu=en command, a
message will advise you to select the foreground monitor first.

Make sure the foreground monitor is mapped to memory space that has a 1:1
translation, and is not write protected. Refer to the end of this chapter for
instructions on how to map the foreground monitor to 1:1 address space when using
the MMU.

To enable the MMU so that the operating system can set it up to manage memory,
enter the command:

M>cf mmu=en

179

Chapter 7: Configuring the Emulator
To select the emulation monitor

To select the emulation monitor

To select the background monitor, typemon=bg
To select the foreground monitor, tygémon=fg
To use the emulator without a monitor, typemon=none

To see which monitor is currently selected, tygfenon

The emulation monitor is used to perform emulation functions such as display and
modification of your target system memory, emulation memory that is not
dual-port, and processor resources such as registers.

The background monitor overlays processor address space and doesn’t use any
processor memory resources. However, the MMU, caches, and dma cannot be used
with the background monitor. Also, interrupts are disabled (including level 7)

when the emulator is running in background. These conditions may not be tolerable
to some target system designs.

If you select the foreground monitor, interrupts can be enabled during monitor
execution, which may make the emulator more transparent in some applications.
See “To set foreground monitor interrupt priority” in this chapter.

A foreground monitor must be used when the MMU of the MC68040 is enabled, or
the caches are enabled, or the target system does dma activity. If the background
monitor is selected when you try to enable the MMU, a message will appear to tell
you that you must change to use of a foreground monitor before you can enable the
MMU.

When you select the foreground monitor, the emulator maps the 4-Kbyte block of
dual-port memory for the monitor. You can't use any portion of the range allocated
to the foreground monitor for any other purpose.

You may have two types of foreground monitors: one default, and the other
custom. The default foreground monitor is resident in the emulator, and is
automatically loaded whenever the processor leaves emulation reset. If this monitor
doesn’t meet your needs, you can modify the monitor source code (supplied with
the emulator) to create a custom monitor, and load it using ¢tiption to thdoad
command.

180

Chapter 7: Configuring the Emulator
To select the emulation monitor

When you select a different monitor, the memory map (and the emulation
processor) is reset. First select the monitor type. Then map memory.

If you have trouble with emulation monitor functions, you can reload the monitor.
The monitor (either foreground or background) will be loaded when the processor
transitions out of emulator reset.

The following table summarizes the implementation of the monitor configuration.

Background monitor Foreground monitor

(cf mon=bg) (cf mon=fg)
monaddr, monlock, monintr—not monaddr—sets address block that will
available contain monitor in dual port memory
monkaa—sets address from which to monlock—interlocks target system
periodically read a byte during cycle termination signals to terminate
background monitor operation emulation monitor cycles instead of

using internal emulation cycle
termination signals

monintr —allows lowering of interrupt
mask to this level during foreground
monitor execution

monkaa—not available

The special optionone specifies that no monitor will be used. This option is

useful when you are first connecting the emulator to a target system (refer to the
chapter on plugging in the emulator to a target system). Sometimes the task of
connecting an emulator to a target system can be complicated by characteristics of
the emulation monitor. For example, foreground monitor bus cycles are visible to
the target system. By selectingne you eliminate the question "am | having

trouble connecting to my target system because of something the monitor is doing?"

When you chooseone, you will be able to run the emulator from reset (assuming
you loaded a program earlier), and you will be able to take a trace with the analyzer
to see what activity is being executed by your emulator. You will not be able to use
any of the other emulator capabilities and features, such as loading programs or
displaying memory. When your system is running successfully withathe

selection, then select one of the other monitor options to see if your target system
will operate with an emulation monitor.

More information on emulation monitors is given in the b@okcepts of
Emulation and Analysis.

181

Chapter 7: Configuring the Emulator
To select the emulation monitor

To set the monitor base address

To set the base address for the foreground monitor, type:
cf monaddr=<ADDRESS>

where<ADDRESS>is a hexadecimal address on a 4-Kbyte boundary
(XXXXX000h).

To check the monitor base address, tgperonaddr

This configuration item sets the base address where the monitor is loaded. When
you select the foreground monitor, the emulator uses the 4-Kbyte block of dual-port
emulation memory to load the monitor. It resets the memory map, and then creates
a map term at the address you specifynfonaddr. You can't delete or alter this

map term by using thmap command. Instead, you must change the monitor
configuration by using theon, monaddr, and/omonlock configuration items.

If the memory management feature of the MC68040 emulator is enabled, be sure
the foreground monitor is mapped in an area that is translated 1:1, and it is not write
protected. Refer to the end of this chapter for instructions on how to map the
foreground monitor to appropriate address space.

182

Chapter 7: Configuring the Emulator
To select the emulation monitor

To interlock monitor and target system cycle
termination signals

To interlock the emulator and your target system cycle termination signals for
monitor accesses, typef: monlock=en

To terminate monitor accesses with the emulator-generated cycle termination
signals, typecf monlock=dis

To check the interlock setting for monitor accesses, tfpaonlock

When you enable interlockingf(monlock=er), emulation monitor cycles aren’t
terminated until your target system ass€As If the monitor is in an address
range where your target system does not asgethe emulator will stop
functioning. You will see a w> prompt indicating that the CPU is in a wait state.
Use the'st command to reset the processor, and then disable the interlock.

If you disable interlockingof monlock=dis), the emulator-generated termination
signals will terminate monitor cycles. Your target system cycle termination sig
(such ag’A andTEA) will be ignored during monitor accesses.

Bus cycles will be visible to your target system during foreground monitor
operation. If interlocking is disabled, these cycles may cause erratic system
operation if your target system isn't expecting them.

This configuration item determines whether or notdick memory attribute is
used in the foreground monitor memory map term.

183

Chapter 7: Configuring the Emulator
To select the emulation monitor

Examples

To set foreground monitor interrupt priority

To select the interrupt priority level for general foreground monitor execution, type:
cf monintr=<level>

where<level>is in the range 0..7.

To check the interrupt priority level, typef: monintr

During background monitor execution, interrupts are always disabled. This may
cause problems for some systems when you are using the monitor, especially
systems using real-time control where interrupt servicing must be done
immediately.

To solve this problem, you can select the foreground monitor and lower the
interrupt priority to a level that allows your system to function correctly, yet avoids
excessive interrupt processing during use of the monitor routines. The emulator is
reset when you change the settingnohintr .

When using this configuration item, enable target system interruptsfutitien.
Otherwise, interrupts from your target system will be blocked. See “To disable
target system interrupts.”

If the processor’s interrupt priority level is greater than the value sabhintr at
monitor entry, the processor’s priority level (nobnintr) will be used. Otherwise,
the interrupt priority is lowered to the settingnadnintr.

The foreground monitor only lowers the interrupt priority to the level specified by
monintr when it is executing non-critical code. When the foreground monitor is
executing critical code (for example, on monitor entry and exit), all interrupts are
disabled.

Suppose your system has a disk device driver that uses interrupt level 5, and the
service routine must be run to prevent system damage. To allow interrupts of higher
priority than level 4 to be serviced during foreground monitor execution, enter:

R>cf monintr=4

184

Chapter 7: Configuring the Emulator
To select the emulation monitor

To set the background monitor keep-alive
address

» To enable the background monitor keep-alive function, type:
cf monkaa=<ADDRESS>

where<ADDRESS>is a hexadecimal address with an optional function code
(OXXXXXXXXh@fc).

» To disable the background monitor keep-alive function, tyfperonkaa=none

» To check the setting of the background monitor keep-alive function, type:
cf monkaa

The background monitor of the MC68040 emulator does not drive monitor cycles
to your target system. Some target systems need to receive cycles during mo
operation. For example, your target system may have a watchdog timer that
time out if its keep-alive address isn't read periodically.

In this situation, you can set tbbmonkaa configuration item to the address that
must be accessed. Then, when the emulator is in the background monitor, it will
periodically read a byte from the specified address.

Example To select the background monitor and have it periodically read a byte from address
ffff hex in user space, enter the commands:

R>cf mon=bg
R>cf monkaa=0000ffff@u

185

Chapter 7: Configuring the Emulator
To select the emulation monitor

To preset the interrupt stack pointer and PC

» To define initial values for the interrupt stack pointer and the program counter
when the emulator is reset, enter the monitor, and then attempt to run the target
program, typecf rv=<RESET_ISP><RESET_PC>

where<RESET_ISP>and<RESET_PC>are both 32-bit address values in
hexadecimal. Both values must be word aligned. These values usually should
correspond to the values loaded into offsets 0 and 4 of your vector table.

» To set the emulator to obtain the initial values for the interrupt stack pointer and
program counter from the target system exception vector tablecfypeauto

» To check the reset interrupt stack pointer and pc settings cfype:

Normally, if you run the emulator from reset, the processor fetches the values at
offsets 0 and 4 from the vector table and loads these values into the interrupt stack
pointer and program counter registers. It then begins running from the program
counter address value. (You run from reset by either entering the commsaid

by entering the commanidat the R> prompt.)

However, if you reset the emulator, break to the monitor, and then run the emulator,
the stack pointer and program counter values are not initialized. Therefore, the run
will fail.

Thecf rv configuration item is provided as a convenience to initialize the stack
pointer and program counter to predefined values when the emulator enters the
monitor after a reset. You can either specify values of your own choice, or allow
the emulator to obtain the present values in the reset vector from the target systems
exception tableguto). This allows you to reset, break, and then run without errors.
(You can accomplish the same thing by usingdéigecommand to set the PC and

ISP values while in the monitor.)

If entering specific values for the interrupt stack pointer and program counter, you
will normally set the interrupt stack pointer to the value contained at offset 0 of

your vector table, and the program counter to the value contained at offset 4 in your
vector table. Because the monitor does not duplicate the reset exception processing
sequence to access the reset vectogutwoption may not be suitable for all

target systems.

186

Chapter 7: Configuring the Emulator
To select the emulation monitor

Example Assume the memory range 7000..7fff is mappeeras and reserved as stack
space. To set the interrupt stack pointer to 7ff0 and the initial PC to 400h:

R>cf rv=71f0,400

If you now use thé command to break to the monitor, the isp will be set to 7ff0
and the pc will be set to 400.

187

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

Setting Other Configuration Items

The emulator has a few miscellaneous configuration items:
* Restrict the emulator to real-time runs.

» Disable the processor’'s cache memory.

» Disable target system interrupts.

» Interlocking breakpoint cycle termination.

To restrict to real-time runs

To restrict the emulator to real-time runs, tygfart=en
To enable all emulator functions, typérrt=dis

To check the current setting of the real-time runs configuration item,diype:

The emulator uses its monitor program to implement features, such as register
displays. When the processor executes the monitor, it is not executing your system
program. This may cause problems in systems that need real-time program
execution.

If you set theef rrt configuration item ten, the emulator will stop running user

code only with thest (reset)pb (break)r (run), ands (step) commands.

Commands such asg (registers) that require a break to monitor are rejected. Also,
them (memory) command will be rejected if the address argument specifies
standard emulation memory (not dual-ported) or target memory.

While this configuration item affects which commands will be accepted, it does not
affect hardware breakpoints such as write to ROM, break on analyzer trigger or
guarded memory access breaks. It also doesn’t affect the emulator’s response to
software breakpoints. When you set this configuration itesiist@ll commands

are accepted.

188

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

To disable the processor cache memories

To disable the processor caches, tgbeache=dis
To enable the processor caches, tgpeache=en

To check the cache enable/disable setting, tfpsache

The MC68040 processor has a cache that stores recently used instructions and
another cache that stores recently used data.

By using the cache memory, processor performance is improved, but the
emulation-bus analyzer can't trace processor accesses that are completed in an
internal cache. This may cause confusing trace displays or failure to trigger,
especially if the code being analyzed is a small loop where all the instructions and
operands fit into cache and registers.

When you disable the caches, the processor will always access external mem
Then the analyzer will see all bus cycles, which will improve the trace list, but
processor performance will be reduced.

When you’re more concerned about measuring processor performance, you should
enable the caches. If you are making analyzer measurements at the same time, you
may need to experiment to find suitable trigger combinations.

This configuration item enables or disables the on-chip caches by controlling the
CDIS signal. To disable the caches, the emulator will asseC® signal to

prevent your target system from enabling the cachebctcheis enabled, the

CDIS signal from your target system and the cache control register (CACR) enable
bits determine whether the caches are enabled.

If you need to disable caching only for accesses to a specific memory block, use the
tci memory map attribute. This allows you to capture analysis information for
specific memory ranges without dramatically affecting overall system performance.
See “To assign memory map terms” in this chapter.

189

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

To disable target system interrupts
Disable your system interrupts by typirfti=dis
Enable your system interrupts by typiefjti=en

Check the interrupt enable setting by typicigt

When target system interrupts are enabled, the emulator will respond to interrupts
generated by the target system. When target system interrupts are disabled, the
emulator will ignore all interrupts generated by the target system, including level 7
NMI interrupts.

Regardless of the selection you make here, the foreground monitor blocks all
interrupts during certain critical routines, such as monitor entry. The foreground
monitor can be configured to lower the interrupt priority mask after monitor entry.
See “To set the foreground monitor interrupt priority.”

When the background monitor is used, all interrupts, including level 7 NMI
interrupts, are ignored while executing in the monitor.

You may want to disable system interrupts if your system interrupt logic doesn'’t
work correctly or isn’t finished, or you may want to disable these interrupts if the
service routines and vectors are not assigned. You can enable the interrupts when
you're ready to test the interrupt handling routines.

190

Chapter 7: Configuring the Emulator
Setting Other Configuration Items

To enable breakpoint acknowledge cycle
termination interlocking

To interlock the emulator and your target system cycle-termination signals for
breakpoint acknowledge cycles, typébplock=en

To terminate breakpoint acknowledge cycles with the emulator-generated
cycle-termination signals, typef bplock=dis

Check if breakpoint acknowledge cycles are interlocked by typfrigplock

When a software breakpoint instruction (BKPT) is executed, the processor
generates a breakpoint acknowledge cycle as part of the instruction. As long as
software breakpoints are enabled e bp, the emulator will terminate the
breakpoint acknowledge cycle and initiate a transition into the monitor. If your
target system cannot tolerate this behavior, the emulator can be configured to
for the target system to terminate the breakpoint acknowledge cycle.

When interlocking is disabled (default), the emulator will terminate breakpoint
acknowledge cycles with tHEEA signal. Any termination signals generated by
the target system will be ignored.

When interlocking is enabled, the target system is responsible for terminating
breakpoint acknowledge cycles by asserfidgor TEA. If the target system fails

to provide the required cycle termination, the processor will remain in a wait state
indefinitely.

Modifying this configuration item will reset the processor.

191

Chapter 7: Configuring the Emulator
Providing MMU Address Translations for the Foreground Monitor

Providing MMU Address Translations
for the Foreground Monitor

When using the memory management unit (MMU) of the MC68040, the target
system must provide correct address translations for the foreground monitor. To
ensure correct address translations, you will need to understand your target
system’s memory map and MMU address translation structure. You may need to
modify your mapping scheme or some of its mapping protections. If you do not
obtain correct address translation for the foreground monitor, any attempt to break
into the monitor after the MMU has been enabled may result in a target system bus
error or undefined execution.

The foreground monitor will reside in the 4-Kbyte block of dual-port emulation
memory. The dual-port memory can be mapped to begin on any 4-Kbyte address
boundary. Simply specify an address ending in 000h when you answer the monitor
address question when you set up the emulation configuration.

In order for the monitor to operate after the MMU is turned on, the target system
must provide 1:1 address translation (logical address = physical address) for the
block of memory occupied by the monitor. For example, if the monitor code
begins at logical address 0ffffL000h, then the MMU must translate that address to
physical address 0ffff1000h, logical address 0ffff1004h to physical address
0ffffL004h, etc.

Do not write protect the address range occupied by the foreground monitor.

There are two ways to provide the proper address translation for the memory space
occupied by the foreground monitor:

e Locate the foreground monitor in a block of memory that is transparently
translated via ITTx and DTTx transparent translation registers (TTRs). The
monitor contains both code and data so two TTRs are needed to provide
translations: one for instructions, and the other for data. When the MMU
processes translations, it first compares the logical address with the parameters
of the TTRs. Ifit finds a match, the MMU uses the logical address as the
physical address for the access (obtaining the needed 1:1 translation).

The minimum block size that can be transparently translated by the TTRs is 16
Mbytes. If your target system already sets up one pair of data and instruction
TTRs for supervisor, or both supervisor and user, access and no write

192

Example

Chapter 7: Configuring the Emulator
Providing MMU Address Translations for the Foreground Monitor

protection, then you may be able to find an unused 4-Kbyte block within this
16-Mbyte range where the monitor can reside.

If your target system does not use a pair of TTRs, then you may want to
modify your MMU boot code to configure an instruction and data TTR
specifically for the monitor.

This example shows how to modify boot code to use a pair of TTRs. Assume
your target system does not access any physical addresses in the 16-Mbyte
range 02000000..02ffffffh, and DTTO/ITTO are unused. By locating the
monitor at address 02000000 and adding the following code fragment to your
boot code, you should be able to break into the monitor while the MMU is
turned on:

* configure ITTO/DTTO for emulation monitor
MOVE.L #$0200C000,DO

MOVEC DO,ITTO

MOVEC DO,DTTO

Without these transparent translations for the monitor, the MMU will prob
generate an access fault when you attempt to break into the monitor. The
access fault would occur because addresses in the 02000000 range would have
no valid translations (they would be on a non-resident page).

If you cannot modify your boot code, you may be able to use an execution
breakpoint to break into the monitor before the MMU is enabled and use the
monitor to configure the TTRs. Do this only as a last resort because the
MC68040 processor automatically disables all TTRs whenever an emulation or
target reset occurs.

Locate the monitor within a page that is controlled by the MMU address
translation tables; one that is always resident, writeable, supervisor accessible,
and translated 1:1. The monitor occupies one 4-Kbyte page of emulation
memory. It will be stored in the 4-Kbyte range of the dual-port memory.

193

Chapter 7: Configuring the Emulator
Providing MMU Address Translations for the Foreground Monitor

Locating the Foreground Monitor using the MMU
Address Translation Tables

Locate the foreground monitor at a specific page address and add the proper
address translation for this page in your supervisor address translation tables. The
minimum page size is 4 Kbytes so the monitor only requires a single translation.
The page that contains the foreground monitor must always be resident, translated
1:1 (logical address = physical address), and never be write protected.

The most direct way to do this is to modify the address translation tables in your
source code, rebuild your executable file, and download the executable into RAM,
or reprogram the executable into ROM. For systems that use an operating system
to manage dynamic translation tables in RAM, the page allocated to the monitor
must not be allowed to be swapped out by the operating system. This may require
that the page selected for the monitor reside in unused space within the operating
system (assuming the operating system is translated 1:1). The easiest way to create
unused space is to globally define an 8-Kbyte array of data that is never referenced
by your software. After rebuilding your operating system software, refer to the

linker symbol map file to determine the address range of this array. Use the lowest
address that resides on a 4-Kbyte boundary within this range as the starting address
for the monitor.

As a last resort, if your target system software cannot be rebuilt, you can use the
emulator to modify your translation tables directly.

The emulator provides a command to display individual address translations in
detail, including address, value, and mnemonic information about each descriptor
from the translation tables. You may be able to provide the proper address
translation for the monitor by simply modifying a single descriptor (long word) to
convert an invalid page into a resident page.

If the translation tables are located in ROM, you will need to copy them into
emulation memory before you attempt to modify them. This is done by storing all
or part of your ROM to a file, and then mapping emulation memory over the ROM
address range and reloading the file.

194

Solving Problems

What to do when the emulator does not behave as expected

195

Chapter 8: Solving Problems
If the emulator appears to be malfunctioning

Sometime during your use of the emulator, you'll encounter a problem that isn’t
adequately explained by an error message or obvious target system symptoms. This
chapter explains how to solve some of these problems.

If the emulator appears to be malfunctioning

Check to make sure that the cables connecting the Emulation Control Board to the
Emulation Probe are connected correctly. Refer to the Installation and Service
chapter in this manual for details.

Run the performance verification procedure as described in the Installation and
Service Chapter of this manual. If the emulator fails this test, contact your
Hewlett-Packard representative.

If the emulator passes the performance verification procedure, look for other
reasons for the problem. Performance Verification is a thorough test, but it cannot
find every hardware failure in the emulator. Itis a good indication that the
emulator is functioning correctly, but if you are still convinced the emulator is
malfunctioning, contact your local Hewlett-Packard representative.

If the trace listing states column contains "dma
long write (retry)" repeatedly

Check to see if the internal ribbon cable that connects the last sixteen channels of
the 80-channel internal analyzer to the HP 64783 emulator control board is missing.
If it is, locate the supplied ribbon cable and connect one end to the slot in the
analyzer board and the other end to the slot in the 68040 control board. Refer to the
Installation and Service Chapter in this manual to see the proper location of this
cable.

196

Chapter 8: Solving Problems
If the analyzer fails to trigger on a program address

If the analyzer fails to trigger on a program
address

[J Check to make sure that the program address is a long-word address (an address
ending in 0, 4, 8, or C hex). The MC68040 fetches instructions on long-word
addresses. Other instruction addresses never appear on the processor bus, and
therefore are never seen by the analyzer. Modify the trigger address so that the two
least significant binary digits of your trigger address are zeroes. For example, to
trigger a trace on address 2316H, specify your trigger to occur on address 2314H.
Note that this only applies to instruction fetches; data reads and writes are made
directly to the destination address, regardless of whether it is a long-word address
or not.

If the analyzer triggers on a program address
when it should not

[J Check to see if the analyzer is triggering on an instruction prefetch. The analy.

cannot distinguish between prefetch and execution because the processor do
provide that information. Usually your actual trigger address is within 16 words of
the address where trigger is occurring.

[J Try to pad the program code with NOP instructions to move the trigger address
away from the other code so that it won't be prefetched until it is time to trigger.

[J You may be able to insert a write instruction to a meaningless variable in your code
immediately following the trigger address. Then you can trigger on a write to the
address of the variable. Write transactions never appear in instruction prefetches.

197

Chapter 8: Solving Problems
If trace disassembly appears to be partially incorrect

If trace disassembly appears to be partially
incorrect

[] Check to see if the analyzer began disassembly of the trace on a long-word
boundary but the instruction started on the low word within the long word. This
will make disassembly incorrect. You can start disassembly on the low word
within the long word by use df -d -ol <trace list line number>.

L] If the trace list seems correct for a few states after disassembly starts, and then it
seems incorrect, restart disassembly of the trace at the low word where disassembly
first becomes incorrett-ol <trace list line number>.

L] If an instruction seems to have incorrect data associated with it, you can read down
the trace list to see if you can find correct data for the instruction on another line.
You can cause the disassembler to realign the instruction with the correct data by
entering a command likk-d -ol <trace list line number containing instruction>
<trace list line number containing data> For examplet| -d -0l 38 47.

If you see unexplained states in the trace list

[J Check to see that the sequence, storage and trigger specifications are set up to
exclude the states that you don't need.

[] Try using thel <instruction_state> <operand_statescommand to inform the
dequeuer which operand state belongs with the named instruction state.

[J Try using the-ol option to thel command to begin disassembly from the low word
of the starting state, instead of the high word.

[J Check to see if instruction or operand accesses in the range covered by the trace
could be filled from cache memory. If so, these cycles won't appear in the trace list,
which will confuse the disassembler. Either disable the cache memory entirely or
disable caching for those address ranges by addimg @teche inhibit) attribute to
those ranges in the memory map. (See the chapter titled “Configuring the
Emulator.”)

198

Chapter 8: Solving Problems
If the analyzer won't trigger

If the analyzer won't trigger

L] Instruction fetches from cache memory aren't visible to the analyzer. You can
disable the cache while using the analyzer by enteringf ttes=discommand.
Reenable the cache to improve performance when you are finished using the
analyzer.

[J When the MC68040 fetches instructions from program memory, it addresses 32-bit
longwords. These addresses are always multiples of 4 (ending in Oh, 4h, 8h, and
Ch). The instruction you are trying to trigger on may be in the high word or the
low word of the long word. If you specify trigger on a symbolic address without
knowing whether that symbol is in the high word or low word, the address may not
appear on the address bus. If you think this may be the problem, try specifying
your trigger symbol as "<symbol>-2H". This long-word correction is not necessary
when you are trying to trigger on data fetches; data is always fetched from the
absolute address of the data location.

If the target processor remains in a wait state .

[J When you enable interlocking of the breakpoint acknowledge cycle terminzttion (
bplock=en), the target system is responsible for terminating breakpoint
acknowledge cycles by asserting or TEA. If the target system fails to provide
the required cycle termination signal, the processor will remain in a wait state
indefinitely. Make sure your target system is providing the required cycle
termination signal.

199

Chapter 8: Solving Problems
If you suspect that the emulator is broken

If you suspect that the emulator is broken

1 Shut off power to your target system, and then the emulator.
2 Disconnect the emulator from your target system.

3 Connect the emulator to the demo board. Also connect the power cable from the

emulator to the demo board, and reconnect the reset flying lead (See Chapter 15,
“Installation and Service”).

4 Apply power to the emulator.

5 Typepv 1to run performance verification.

If either the emulator or analyzer fail the performance verification, check the
installation of those modules. See Chapter 15 for details. If the installation is
correct, contact your local HP Sales and Service office for assistance.

If you have trouble mapping memory

The emulator uses a best fit algorithm to assign memory blocks to map requests.
Since the memory block sizes available depend on the emulation memory module
installations and the use of the dual-port memory, it's possible that a 256 byte map
request may use 512 Kbytes. (The map term will be only 256 bytes.) Most systems
won't have such differences between memory block size requirements and
available memory. However, certain emulation memory module installations will
aggravate the problem.

Also, use of the dual-port memory is controlled first by monitor selection and next
by explicit selection of a dual-port term in the map. If you choose a foreground
monitor, the dual-port memory block is reserved for that purpose. If you choose a
background monitor, and don’t explicitly map a term withdpettribute, the

dual-port memory may be used to satisfy another map request. For example, if you
request a 256 byte map term and this memory block is available, it will be used to
satisfy the request since it is closest to the needed size. Or, if you request a term

200

Chapter 8: Solving Problems
If emulation memory behavior is erratic

that is slightly larger than another available block, the dual-port memory will be
used with another map term to satisfy the request. (For example, a 260 Kbyte
request may use one 256 Kbyte block and the 4 Kbyte dual port memory.)

See the section “Mapping and Configuring Memory” in Chapter 7 for more
information on memory allocation.

If emulation memory behavior is erratic

Check to see if you have installed HP 64171A or HP 64171B memory modules on
the emulation probe board. These memory modules are too slow to work with the
MC68040 emulator. Use HP 64172A, HP 64172B, and/or HP 64173A memory
modules.

Ensure that you have answered the configuration question correctly for the memory
modules in use. The configuration question establishes the required number of wait
states to be used within the emulator.

If you're having problems with DMA

Check to make sure that your DMA process doesn’t access memory ranges mapped
to emulation RAM ¢ram) or emulation ROMdrom). DMA to emulation memory
resources is not supported.

201

Chapter 8: Solving Problems
If you're having problems with emulation reset

If you're having problems with emulation reset

[J Connect the reset flying lead to some point in your target system that distributes the
reset signal to components that need to be reset when the processor is reset. This
will make sure that all critical components in your target system are reset by the
emulator. Suppose your system reset circuit drives several critical system
components as well as the processor. Suppose also that the critical components are
memory-mapping circuits that locate ROM containing the vector table at address
zero for startup, then move it to a high address range after system initialization. An
emulator reset cannot drive your reset line directly. Therefore, an attempt to run
after emulation reset will fail because the vector table is not located in the correct
place. For further information, refer to the chapter on plugging the emulator into a
target system.

If the deMMUer runs out of resources during the
loading process

[J Check the physical address ranges that will be reverse translated by the present
setup of the deMMUer. Entdmmu -lv to see a list of those physical address
ranges. If all of the physical spaces where you have code under development are
listed, ignore the "out of resources" message.

[J Check to ensure that you have placed sufficient restrictions in the MMU mapping
paths to prevent reverse translating physical address space where you have no
memory.

[J Check your emulation memory map to make sure you have entries to support each
of the address spaces where you have code under development. Make sure those
spaces are no larger than they need to be to accommodate your program code.

Read "Using the deMMUer" in Chapter 9 for ways to make more efficient use of
deMMUer resources.

202

Chapter 8: Solving Problems
If "out of deMMUer resources” with less than eight mappings

If "out of deMMUer resources" with less than
eight mappings

[J Check if you are using both root pointers in your memory mapping scheme? The
deMMUer may have run out of resources for only one of the root pointers.

[J Read "Using the deMMUer" in Chapter 9 to understand how deMMUer resources
are allocated when using different root pointers or when using function-code
mappings.

If only physical memory addresses in analyzer
measurement results

[J Check to see if you enabled the deMMUer with the comnadmehu -e

[J Check to see if you loaded the deMMUer with the information needed to rever
translations made by the MMU with the commashtimu -Iv.

[J Read "Using the deMMUer" in Chapter 9 to understand how the deMMUer selects
physical address ranges to reverse translate for the analyzer.

203

Chapter 8: Solving Problems
If the deMMUer is loaded but you still get physical addresses

If the deMMUer is loaded but you still get
physical addresses

[J Some physical accesses are normal, especially accesses to the MMU tables.

[J Check to see which physical memory spaces are being reverse translated by the
deMMUer. Enter themmu -lv command to see a list of the physical address
spaces that will be deMMUed.

[J Check the setup of the MMU mapping tables. Make sure that unused address
spaces are marked with invalid descriptors in the mapping tables.

[J Check the emulation memory map. Make sure you have allocated only the memory
spaces needed to accommodate code you are developing in your map. Make sure
you have mapped the smallest spaces that you can for the code you are developing.

[J Check that the MMU had the setup you wanted to analyze when you loaded the
deMMUer. [f it was managing memory for some other MMU setup, break to the
monitor and issue tldmmu -I command again.

[J Check to see if there was a context change in the MMU during execution of your
program. If there was, the content of the root pointer may have changed for
execution of the new context. The deMMUer tables were set up to reverse translate
the MMU tables under the root pointer values that existed when you entered the
dmmu -l command. If those root pointer values change (pointing to other
translation tables), there is no way to automatically update the deMMUer. It will
continue to provide reverse translations for the setup that existed at the time you
issued thelmmu -| command. Issue thtdnmu -l command again.

Read "Using the deMMUer" in Chapter 9 to understand how the deMMUer selects
the physical addresses it will translate.

204

Chapter 8: Solving Problems
If you can’t break into the monitor after you enable the MMU

If you can’t break into the monitor after you
enable the MMU

Enter the commanadst -m. If your MC68040 is now running in the monitor, look

at your MMU Tables or the transparent translation register that maintains 1:1
mapping for your foreground monitor. The mapping has failed. Modify your

MMU tables or the transparent translation register to obtain the 1:1 mapping for the
address space occupied by the foreground monitor.

Refer to the end of the chapter titled, "Using Memory Management" for a detailed
example that discusses how to solve a "can't break into monitor" problem.

If you see exclamation marks "!" in count
columns of the trace lists

This is a normal condition. It indicates the counter overflowed (began again a
before the present state was captured. The exclamation mark warns you that
counter value may not be accurate because the analyzer is unable to determi
many times the counter overflowed between the preceding state and the state where
the exclamation mark is shown.

If you were to scroll through a trace list of the entire trace memory in relative count
mode, a "!" would be seen beside the first state after each occurrence of counter
overflow (each 22.9 minutes). If you were to scroll through the entire trace
memory in absolute count, the "!" would be seen beside every state after the first
occurrence of counter overflow. Refer to the last illustrations in this chapter for an
example of a terminal interface trace list with exclamation marks.

205

Chapter 8: Solving Problems
If you see negative time or state counts in trace lists

If you see negative time or state counts in trace
lists

L] If counter overflow occurs during a trace measurement, you may see a count of
negative time or negative states in trace lists using the absolute time count mode.
This indicates that the counter value stored with the trigger state was greater than
the counter value stored with the present state. In absolute time counts, negative
times will continue to be seen until a state is captured whose counter value is
greater than the trigger state counter value. In relative time counts, the counter
value is corrected so no negative time is seen.

If you do not see the counter overflow indication
"I"'where you expected to see it in a trace list

[J This may be a normal indication. If you scroll through a reduced portion of the
trace memory, one that contains no counter overflow, no counter overflow
indication will be seen, even if counter overflow occurred before the line range you
specified in youdisplay/store/copycommand. The routine that reads trace
memory to compose a trace list only reads the portion of the trace memory you
specify in youdisplay/store/copycommand.

If your target system looses sync when
emulation breakpoints are executed

[J Try the configuration specificatiarf bplock=en This option causes the emulator
to walit for cycle termination signals to arrive from the target system when a
breakpoint is executed. Normally, the target system is ignored when the emulator
executes a breakpoint. On rare occasions, your target system may loose sync with
the emulator during breakpoint cycles.

206

Part 3

Reference

207

Part 3: Reference

Commands and Expressions

The Terminal Interface command set is a complete operating environment for the
emulator. The command interpreter includes a rich expression-handler that allows
you to specify measurement values in terms that make sense in the domain of the
problem.

In This Part

Chapter 9, "Using Memory Management,” explains how the emulator supports
development of a virtual memory system. This chapter describes considerations
you need to understand when developing a system that uses the MMU of the 68040.

Chapter 10, “Emulator Commands,” lists all the Terminal Interface commands.
This chapter describes the syntax and operation of each command and includes
examples of command usage.

Chapter 11, “Expressions,” describes the different types of expressions used in
Terminal Interface commands.

Chapter 12, “Messages,” lists the error and status messages you may see while
operating the Terminal Interface. Each message describes the reason why you got
that message and how to recover from the error.

Chapter 13, “Data Formats,” lists the file format for the binary trace list and the
symbol files.

Chapter 14, “Specifications,” gives the physical, electrical, environmental, and
timing specifications for the MC68040 emulator.

If you're looking for a general introduction to the emulator, see Part 1. Part 2
describes how to use the emulator to make measurements.

208

Using Memory Management

Understanding logical and physical emulation and analysis

209

Chapter 9: Using Memory Management
Terms And Conditions You Need To Understand

Understanding Emulation And
Analysis Of The Memory Management
Unit

You only need to read this chapter if you are using the on-chip MMU (Memory
Management Unit) of the MC68040 or MC68LC040 microprocessor. If you are
using an MC68ECO040, or if you are using an MC68040 or MC68LC040 with its
MMU disabled, you won't need the information in this chapter.

This chapter begins with a discussion of terms and conditions you need to
understand when you are using the MC68040 or MC68LC040 emulator/analyzer
with the MMU enabled. Under these conditions, many capabilities and features
become available that are not otherwise offered. Also, some of the features you
have been using behave differently. These are discussed in this chapter.

Terms And Conditions You Need To Understand

The following paragraphs explain the differences between logical and physical
memory, and between static and dynamic virtual memory systems.

Logical vs Physical

When you develop a program, compile it or assemble it, and link it, addresses are
assigned to contain each of the bytes of the program. These addresses are logical
addresses. When the program is loaded into hardware memory so that it can be
executed by the microprocessor, it is loaded into physical address space. When you
are not using an MMU, the program is loaded into physical memory hardware at

the logical addresses assigned in the linker load map. Under these conditions, there
is no need to differentiate between logical addresses and physical addresses because
they are the same (simply addresses). When you use the MMU, it becomes
necessary to understand the difference between logical addresses and physical
addresses.

210

Chapter 9: Using Memory Management
Static and dynamic system architectures

Most emulation and analysis commands that require an address as part of the
command use logical addresses. Some emulation and analysis commands will
accept either logical or physical addresses.

What are logical addresses?

Logical addresses are the addresses that are assigned to your program code when
you develop your program. They are the addresses represented by symbols in your
symbols data base (the symbol "Main" represents a logical address).

What are physical addresses?

Physical addresses are the addresses assigned by the MMU to contain your

program. Physical addresses identify locations where you actually have memory
hardware in your target system. Physical addresses appear on the processor address
bus instead of logical addresses.

Static and dynamic system architectures

There are several design strategies where memory management can help in
developing a system or product. Three of these are described in the following
paragraphs. One shows memory management used in a static memory syste
other two show memory management used in different dynamic memory syst
The MC68040 emulator is designed to work in any of these system types; however,
the deMMUer which provides reverse translations to the analyzer is primarily
intended for use in static systems.

Static system example

A static system design may use the MMU simply to protect supervisor code and 1/0
space against accesses from a user program. Once a static system is initialized, it
never changes. Your HP emulator and analyzer can give you complete support for
a static memory management system. After the MMU has been set up to manage

memory in a static system, the deMMUer can be loaded with information to reverse
the MMU translations over the entire range managed by the MMU.

211

Chapter 9: Using Memory Management
Static and dynamic system architectures

Non-paged dynamic system example

Assume three programmers are developing separate programs to run in a real-time
operating system environment. The programmers each write their programs to
begin at address Oh. The operating system accepts the responsibility to know where
in physical memory space each of these programs will be located. The
programmers don’'t have to worry that some additional code they write in their
programs might overwrite some of the code that was written by another
programmer. The operating system will place all of the code in available memory
space and place appropriate translation mappings in the MMU to ensure that when
the logical address for one of the programs (tasks) is present in the program
counter, the appropriate physical address will appear on the bus to access the
desired physical memory location.

Your HP emulator/analyzer can give you partial support for a non-paged, dynamic
system. When the MMU has been set up to manage memory during execution of
one of the above tasks, you can update the deMMUer to translate addresses for that
task. When that task is executing, the analyzer will be able to make trace
measurements and provide correct results. When any of the other tasks are
executing, trace measurement results will be invalid because the other tasks will
depend on different translation tables in the MMU and there is no way to
automatically update the deMMUer when execution switches from one task to
another.

Paged dynamic system example

Assume you have developed a program that occupies 10 megabytes of logical
address space. Perhaps you have only 2 megabytes of physical address space in
your system. Sitill, you want to be able to run the entire program. You set up a
specification in the MMU translation control register to divide the address space

into pages (the 68040 lets you divide the memory space into one of two page sizes:
either 4Kbytes, or 8Kbytes). Assume you set up the MMU to divide the memory
into 4-Kbyte pages. Your program will occupy 2,500 pages of code, and 500 of
these pages can be contained within your physical memory space at any given time.

As your program executes, the operating system moves pages of your program code
into address space in physical memory. When execution goes beyond the addresses
contained on the presently active page, the MMU checks to see if the next logical
address is on a page that has already been placed in physical memory. Ifitis, the
MMU performs the appropriate translation for the next logical address, placing the
appropriate physical address on the bus, and execution continues. Ifitis not, the
operating system moves the page that has the next address to be executed up from

212

Chapter 9: Using Memory Management
Where Is The MMU?

an external storage device to physical memory space, overwriting one of the pages
that had occupied physical space before. The operating system updates the
translation tables to identify the new logical address space that now occupies that 4
Kbyte of physical memory, and program execution continues.

As pages are swapped back and forth between an external storage storage device
and the physical memory, the relationship between any one logical address and its
corresponding physical address may change many times.

Your HP emulator will let you run a paged, dynamic system, but the analyzer will

not be able to provide support for such features as symbolic addresses, or display of
corresponding source files. The deMMUer cannot detect changes in the MMU
mappings. The longer the system runs, the further out of date the deMMUer will
become. Of course, the analyzer will still be able to show activity captured at
physical addresses. By experimenting with several starting points for the inverse
assembler, you can obtain a trace list with activity inverse assembled into an
equivalent assembly language listitigq).

Where Is The MMU?

The MMU is located between the CPU core and the external address bus. The
program counter always contains logical address values. When the MMU is t
off, the program counter value is placed directly on the address bus to access
address in physical memory. When the MMU is turned on, the MMU accepts
logical address value and translates it (by using its translation tables) to a physical
address. The physical address from the MMU is placed on the processor address
bus.

213

Chapter 9: Using Memory Management
Using supervisor and user privilege modes

Using supervisor and user privilege modes

The MMU allows separate tables to be set up for supervisor and user access. For
example, you can create one set of mapping tables to translate addresses in
supervisor space and another set of mapping tables to translate addresses in user
space. The supervisor space uses the SRP (supervisor root pointer). The user space
uses the URP (user root pointer). The supervisor address space can begin at
supervisor address 0 and the user address space can begin at user address 0. The
MMU must ensure that these addresses are placed in different physical spaces.

You can use the MMU to protect your program space from unauthorized accesses.
If you map a portion of your program through the MMU and identify it as
supervisor space, the MMU will not allow any access to that program space unless
the privilege mode is supervisor at the time the access is attempted. Take care to
ensure that supervisor or user is specified with addresses if the MMU will be
making the distinction (example: <address>@s).

How the MMU is enabled

The MMU depends on a hardware enable and a software enable. Both of these
enables must agree to enable the MMU before it can translate logical addresses to
physical addresses. If either one (or both) of these enables fail to enable the MMU,
it will remain disabled.

Hardware enable

The hardware enable is performed byMi2IS signal. WherMDIS is asserted,
the MMU is disabled. WheWIDIS is negated, the MMU is enabled to translate
addresses. The emulator controlskti2lS line according to the way you set the
"mmu" configuration parameter.

If you entercf mmu=dis, theMDIS line is held asserted. If you eneémmu=en
the MDIS line is directly controlled by your target system. His tondition, your
target system can hold the line high or low to enable or disable the MMU.

214

Chapter 9: Using Memory Management
Restrictions when using the emulator with the MMU turned on

Software enable

The software enable is performed when the operating system loads an enable value
into the translation control register (TC). If the enable bit of the TC register is

"e=1", the MMU will be enabled. If the enable bit in the TC register is "e=0", the
MMU will be disabled.

Caution

Restrictions when using the emulator with the
MMU turned on

There are only three restrictions: you must use a foreground monitor, it must not be
write protected, and you must map it to address space that the MMU translates 1:1
(logical=physical) for supervisor accesses.

You must use a foreground monitor. The background monitor does not have the
capabilities to support the MMU functions. The foreground monitor can operate
with the MMU turned on.

You must map the monitor code to address space that the MMU translates 1:1 for

supervisor accesses. The emulator executes monitor code to implement many of its
emulation features. The emulator must be able to find the monitor code whet
the MMU is turned on or off. By mapping the monitor into address space that
1:1 translation, the monitor stays within known address space at all times, and
emulator can always find it when it needs to use it.

Be sure that no write protection exists in the MMU mapping for the monitor.

Make sure your translation tables are valid. Turning on the MMU can cause your
program or emulator to fail if the MMU tables are not set up correctly. The address
space where the program is executing can change when the MMU is turned on or
turned off. Stack space or other data spaces can move. Breakpoints that have been
set can be lost.

215

Chapter 9: Using Memory Management
How the MMU affects the way you compose your emulation commands

How the MMU affects the way you compose your
emulation commands

When you display registers, the address registers, stack pointers, and PC always
contain logical address values, even when the MMU is turned on.

If you enter a "run from address" commangdddressy, the address you enter
must be the logical address. The program counter will accept it and supply it to the
MMU for translation before it places the address on the processor bus.

Breakpoint addresses in RAM space are always logical addresses. When you set a
breakpoint at an address, that address is translated by the MMU and the BKPT
instruction replaces the instruction at the appropriate physical address. When the
breakpoint is executed, the emulator restores the original instruction to the physical
address, by first translating the logical address through the MMU.

Consider what happens if you set a breakpoint at a particular address, and before
the breakpoint is hit, you update the translation tables in the MMU, changing the
mapping to the location where the breakpoint is set. This is discussed in detall
under "Solving Problems" at the end of this chapter.

If you enter a command to display memory or modify memory, your command is
directed to logical address space. If you want to display memory at a physical
address, you have to change your command. For example, the command to display
memory at address 100kh (LOOH will show you the memory content at logical
address 100H (which might be a different physical address). If you want to see the
content at physical memory address 100H, you will have to enter the command
100@a(where "a" = "absolute" = "physical").

Addresses expressed using symbols are always logical addresses. In the case of
symbols, the emulator looks in the symbol data base and finds the logical address
that corresponds to the symbol you used in your command, and it loads that logical
address into the program counter.

If you attempt to modify a memory location that is write protected by the MMU,
the emulator will temporarily modify the translation tables to allow the access.

216

Chapter 9: Using Memory Management
How the emulator helps you see the details of the MMU mappings

Seeing details of the MMU
Translations

The following paragraphs discuss emulator displays that help you understand
translations made by your MMU. There are three displays, each giving a different
level of detail of the MMU translations.

* The present address mappings in your MMU tables.
» The translation table entries for a single logical address.

» The contents of a single level of the translation tables pointed to by a selected
logical address.

How the emulator helps you see the details of the
MMU mappings

To see all of the logical-to-physical translations presently mapped, enter the
commandnmu. The emulator will read the present state of the translation tabl

M>mmu

Logical Address Physical Address Attributes
000089000..000089fff@s 0fff89000..0fff89fff@sa S W
00008a000..00008afff@s 0fff8a000..0fff8afff@sa S W
00008b000..00008bfff@s 0fff8b000..0fff8bfff@sa S W
00008c000..00008cfff@s 0fff8c000..0fff8cfff@sa S W
00008d000..00008dfff@s 0fff8d000..0fff8dfff@sa S W
00008e000..00008efff@s 0fff8e000..0fff8efff@sa S W
00008f000..00008ffff@s 0fff8f000..0fff8ffff@sa S W
000090000..000090fff@s 0fff90000..0fffo0fff@sa S W
000091000..000091fff@s 0fff91000..0fff9lfff@sa S W
000092000..000092fff@s 0fff92000..0fffo2fff@sa S W
000093000..000093fff@s 0fff93000..0fffo3fff@sa S W
000094000..000094fff@s 0fff94000..0fffo4fff@sa S W
000095000..000095fff@s 0fff95000..0fffo5fff@sa S W
M>

217

Chapter 9: Using Memory Management
How the emulator helps you see the details of the MMU mappings

and show all of the valid mappings in those tables. The display will be similar to
the following:

The above listing shows privilege modes were included in the mapping scheme.
The logical and physical addresses are shown in supervisor space. Notice that the
physical addresses also show "a" beside the privilege mode indication. The "a"
indicates physical address space.

Note that the emulator enters the monitor to obtain the information it shows in the
MMU displays. Execution of your target program is suspended while the emulator
gathers information for an MMU display. If there are portions of your program that
should not be interrupted during execution, insert an execution breakpoint in some
safe area of your program code and run until the breakpoint is executed. Then you
can safely view the MMU mappings.

The display you get with tmmu command can show as much as one line per

page of mapped logical address space. Contiguous entries are shown on one line to
make the display more readable. Early terminations (which result in contiguous
translation of multiple pages) will also be shown on a single display line.

The display of MMU mappings will only show pages for which the system has
valid mappings. No information is given in the defaufhu display for paths
designated invalid, or for paths containing illegal entries.

To avoid a list of mappings that scrolls for a long time, include an address or
address range in yoormu command. The commamamu O..0ffff instructs the
emulator to show the valid mappings for only the logical addresses in the range of 0
through Offff, instead of all possible mappings.

Another way to limit the number of address ranges shown in an mmu mappings
display is to limit the listing to only user or supervisor address space. The
commandnmu 0..0ffff@u will show all of the mappings for addresses from 0
through Offff in user address space.

The display shows TT beside address ranges that are overridden by the transparent
translation registers. In these ranges, logical-to-physical address translation will be
1:1. The MC68040 always compares logical addresses to the content of the
transparent translation registers before it attempts a translation. If it finds a match
in the transparent translation registers, it accepts the logical address as the physical
address and performs no translation.

218

Chapter 9: Using Memory Management
Supervisor/user address mappings

Supervisor/user address mappings

If you are using separate supervisor and user mappings, the emulator will support
this choice and show appropriate information.

* To see only the mappings in supervisor address space, use the command:
<address>[..[<address>]|@s The "@s" tells the emulator to show the
supervisor mapping for the associated logical address or address range.

» To see only the mappings in user address space, use the commmand:
<address>[..[<address>]|@u

The MC68040 uses the URP as the root pointer for user address space, and the SRP
as the root pointer for supervisor address space.

No distinction is made between program and data space.

219

Chapter 9: Using Memory Management
Translation details for a single logical address

Translation details for a single logical address

To see translation details for a logical address, enter a command suchuas:
<address>. The-t option tells the emulator to show the translation details for the
specified address. The display will show the way the logical address is mapped
through the tables to reach its corresponding physical address.

M>mmu -t 40f8H
Logical Address(hex) O 0 0 O 4 0 F 8
Logical Address (bin) 0000 0000 0000 0000 0100 0000 1111 1000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G Ux S CM M U W UDT/PDT
SRP 02028200 02028200 RESIDENT

A 000 02028200 ffffifff fffife00 y 'y RESIDENT

B 000 fffffle00 fifffiff fififO0 yy RESIDENT

C 004 fiffff10 fffiffff ffiff000y 11y inyyy RESIDENT

Physical Address (hex) = fffffOf8
M>

Address mapping details
The example display shows:

» The translation mapping for logical address 40f8H in supervisor space. Both
the hexadecimal and binary values are shown for the logical address.

* The Table Level line shows how each address bit is mapped. The first seven
bits are used as an offset into Table A. The next seven bits offset into Table B.
The next six bits offset into Table C. The example display was made with
4-Kbyte pages selected; only five bits index into Table C when 8-Kbyte pages
are selected. The lowest-order 12 bits contain the offset into the physical page.

* Theindex used in Table A is 0 which points to physical address 2028200. The
content of this address is ffffffff, indicating a B level table located at base
address fffffe00. The status also indicates that this table has been used "U",
and the address is write protected.

» The physical address is finally calculated by adding the physical page offset to
the base address of the physical page.

220

Chapter 9: Using Memory Management
Translation details for a single logical address

Status information

Status can be assigned to an address at any point in its mapping. To interpret
status, you must OR the status information at each level of the mapping. For
example: the "M" bit shows that the content of the page indicated by Table C has
been modified (by a write or read-modify-write). This applies only to addresses in
this page. A"y" might have been shown under the "S" status bit in the A line. It
would indicate that only supervisor accesses are allowed for pages under the A
table. This restriction would apply to all addresses of this table, even though S=1
only appeared at the upper level of the table.

Note that the address shown in the example display was mapped through the
supervisor root pointer. If you wanted to see the mapping through the tables under
the user root pointer, you would use a commandhikeu -t 40f8@u You can

add the desired function code table index to your command to see how any address
is mapped through the tables under the selected root pointer ¢eg).

The specific status bits shown beside each table entry are defined as follows:
+ TBL/PAGE indicates the base address of the next table.
* G means the entry is global.

* Ux shows the values of the user programmable attributes (signals UPAO and
UPA1).

e S means supervisor mode protection.

« CMidentifies the cache mode: cw (cachable, writethrough), cc (cachable,
copyback), is (inhibited, serialized), or in (inhibited, nonserialized).

M means the page has been modified.
* U means the page (or pages) has been used, or previously accessed.
W means the page is (or pages are) write protected.

UDT/PDT indicates whether the page at the next level is RESIDENT or INVALID.

221

Chapter 9: Using Memory Management
Table details for a selected logical address

Table details for a selected logical address

The lowest level of detail you might like to see is the content of one of the tables
used to map a particular logical address. You might enter a command such as:
mmu -tc 40F8 The emulator would interpret this as a command to show the
detalils of Table C where it is used to map logical address 40F8. There might be a
great many Table C’s, but this command will only show the Table C that is used to
map the logical address you specified in your command.

In the example display of table details:

» The LOCATION column shows the physical address of each indexed location
in Table C.

» The TBL/PAGE column shows the base addresses of physical pages indicated
by each location in Table C.

» The firstindexed location in Table C shows that its associated physical page
has been accessed, but not modified ("U" bit = "y", and "M" bit = "n").

U>mmu -tc 408
Logical Address(hex) O 0 0 O 4 0 F 8
Logical Address (bin) 0000 0000 0000 0000 0100 0000 1111 1000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

000 00000200 0000040b 00000400 y n RESIDENT

000 00000400 0000060b 00000600 y n RESIDENT

000 00000600 0000008f 00000000 N 00y cw nyy RESIDENT
001 00000604 00001087 00001000 n 00y cw nny RESIDENT
002 00000608 00002087 00002000 n 00y cw nny RESIDENT
003 0000060c 00003087 00003000 nNn 00y cwnnyRESIDENT
004 00000610 00004087 00004000 n 00y cw nny RESIDENT
005 00000614 00005087 00005000 n 00y cw nny RESIDENT
006 00000618 00006087 00006000 N 00y cw nny RESIDENT

0000000 m>

222

Chapter 9: Using Memory Management
What part of the emulator needs a deMMUer?

Using the DeMMUer

The deMMUer circuitry reverses the translations made by the MMU (translates the
physical addresses it finds on the processor buses back to their corresponding
logical addresses) before sending the addresses to the analyzer.

What part of the emulator needs a deMMUer?

Actually, the emulator doesn’t need the deMMUer; the analyzer does. It can’t

provide its full symbolic features unless it has help from the deMMUer. The

analyzer normally receives its address information directly from the processor
address bus. It uses the symbols data base created for the program loaded in
memory to cross reference the addresses it receives to the symbols and
corresponding code in your source files. When the MMU is used, logical addresses
are translated to physical addresses before they are placed on the processor address
bus. Therefore, they no longer match the symbols data base.

What would happen if the analyzer didn't get help from

the deMMUer? .
The analyzer would get its address information directly from the address bus

emulation processor. It would have no way to know what translation had occurred
in the MMU. Therefore, it could not trigger or qualify its trace on any symbol

defined in the symbols data base. Further, its trace list could only show you the
physical address value it found on the address bus; it would not be able to show any
symbols associated with that physical address, or any corresponding source file
lines. You would have to figure out for yourself what portion of your program
address space was executing when that physical address appeared on the bus.

How does the deMMUer serve the analyzer?

The analyer does not get its information directly from the processor address bus
when the deMMUer is turned on. Instead, the deMMUer accepts the physical
address from the processor address bus, reverse-translates it to its logical address
value, and supplies it to the analyzer. By having the logical address corresponding

223

Chapter 9: Using Memory Management
Reverse translations are made in real time

to the transactions on the processor address bus, the analyzer can accept trace
specifications expressed in source file symbols, show symbols in its trace lists, and
show the regions of the source files that were executing when the bus activity
occurred.

Reverse translations are made in real time

The deMMUer performs its reverse translations without slowing down the
measurement. For this reason, the analyzer that obtains its information from the
deMMUer is able to provide its full feature set.

DeMMUer options

-d disables the deMMUer. Your analyzer receives physical addresses if the
MMU is disabled. The analyzer can only show hexadecimal values for those
physical addresses. They may not correspond to the logical addresses of your
program code. Note that until the MMU is enabled in hardware and software,
addresses will be logical. Only after the MMU is enabled is there a distinction.

-eenables the deMMUer. Your analyzer receives logical addresses translated
by the deMMUer according to the tables in place when you last loaded the
deMMUer.

-| loads the deMMUer. The emulator will read the MMU registers and
interpret the translation tables to load the deMMUer. The deMMUer will be
enabled as soon as it is loaded.

-v sets verbose mode for the deMMUer load function. A list is displayed of
the physical address ranges that will be reverse-translated by the deMMUer.

-c clears all reverse translations in the deMMUer.

-r prepares the deMMUer to receive a register name and value. The value is to
be used instead of the present register value when loading the deMMUer. For
exampledmmu -l -r srp=02028308

224

Chapter 9: Using Memory Management
What the emulator does when it loads the deMMUer

-t prepares the deMMUer to receive your entry of a reverse translation from
the command line. For examptemmu -t 0..1fffh 8000000..8001fffhThe
logical address is first, followed by the corresponding physical address.

What the emulator does when it loads the
deMMUer

When the emulator loads the deMMUer from memory, it does the following:

Temporarily breaks into the monitor.

Reads the MMU registers and translation tables from memory to determine all
logical-to-physical address translations.

Loads the reverse translations into the deMMUer hardware.

If the accessible physical memory exceeds the 256-Mbyte limitation of the
deMMUer, the emulator reads the emulation memory map for help in selecting
appropriate address ranges to reverse translate.

When the emulator loads the deMMUer from a file, the only difference in the above

algorithm is that the address translations are obtained from the file instead of
reading MMU registers and translation tables from memory.

See Resource Limitations later in this chapter.

225

Chapter 9: Using Memory Management
Restrictions when using the deMMUer

Restrictions when using the deMMUer

Keep the deMMUer up to date

When you load the deMMUedihmu -1), the emulator reads the present value of

the TC, SRP, and URP registers in the MMU, and the present translation tables, and
calculates the address translations that can be performed (all possible
physical-to-logical translations are determined during this process). Then the
emulator loads the deMMUer to reverse those translations. After the deMMUer is
loaded, any change to the MMU, its registers, or its translation tables will make the
deMMUer out of date. The only way to update the deMMUer for changes in the
translation setup is to load the deMMUgémfnu -I) again.

The target program is interrupted while the deMMUer is
being loaded

The emulator uses the foreground monitor to load reverse translations into the
deMMUer. Depending on the complexity of your tables, this process can take a
long time. If there are portions of your target program that must not be interrupted
for long periods of time, make sure your code is executing in safe regions before
you load the deMMUer. You might set a breakpoint in a region of your target
program that is outside of the time-critical regions and perform the load of the
deMMUer after the breakpoint is executed.

The analyzer must be off

Your analyzer must not be making a trace when you load the deMMUer.
Otherwise, part of the trace will be based on physical addresses and the other part
will be based on logical addresses.

Expect strange addresses if you analyze physical
memory with multiple logical mappings

The deMMUer can only translate a physical address into one logical address. If

two programs both use the same physical space (such as when two programs use a
single data location), they might refer to that space by two different logical address
values (and two different logical address symbols). The deMMUer translation

RAM will be loaded with only one of the logical addresses. This means that you

226

Chapter 9: Using Memory Management
Restrictions when using the deMMUer

might be analyzing execution of your program and find it accesses a data space at
an address you don'’t recognize, even though the data may be what you expect to
see. The unexpected address will be the logical address known to the other
program that also uses this location.

The way the deMMUer selects a logical address for a physical address when two or
more logical addresses are available is as follows:

» The deMMUer selects the logical address with the lowest address value.

» If one of the addresses is controlled by the MMU tables and one by a
transparent translation register, the deMMUer sends the address defined in the
MMU tables.

» If one of the logical addresses is within a range defined in the emulation
configuration memory map and another is not, the logical address defined in
the memory map is sent.

227

Chapter 9: Using Memory Management
Resource limitations

Resource limitations

If you enter the commardinmu -I and your emulator performs its task and returns

a prompt to the screen, you won't need to know about the deMMUer resource
limitations. When the deMMUer is loaded without any problems, the prompt

simply shows on screen and you can proceed with your measurement. The

following information will help you deal with problems when you try to load the
deMMUer and receive a message such as "Out of deMMUer resources". Note that
when you see one error message, there may have been other messages generated at
the same time. Display the error log to see all of the error messages that were
generated. This will give you additional information about the error that caused the
message to appear.

The deMMUer has a table where it records ranges of physical addresses that it can
reverse translate to logical addresses. This table has eight entries, and each entry
contains a single physical address range. Each address range in the table is 32
Mbytes. Up to 256 Mbytes of physical addresses can be reverse translated.
Normally, entries in this table are allocated automatically, without intervention.

address..address

address..address

address..address

address..address

address..address

address..address

address..address

address..address

228

Chapter 9: Using Memory Management
Resource limitations

Example to show resource limitations

Consider the following program arrangement:

4M RAM

Unused 2M Peripherals | Unused 4M ROM Unused

0 4aM

256M 258M 512M 514M

Assume a system contains memory and peripherals at three different ranges: one
from O to 4 Mbytes, one from 256 to 258 Mbytes, and one from 512 to 514 Mbytes.
The rest of the physical address space is unused.

If your MMU mapping tables are set up to only allow access to memory in these
ranges, your deMMUer will load properly and you can proceed with your
measurements. If you failed to restrict your MMU mappings to these physical
ranges (instead you provided valid address translations for the entire 4-Gbyte
address space), the deMMUer will allocate all eight of its resource blocks in the
first 256-Mbyte range, and no deMMUing will be provided for the peripherals and
ROM space in the above program.

The Emulation Memory Map Can Help

When the emulator tries to load the deMMUer and finds more physical memory
identified in the MMU mapping tables than it can translate in its deMMUer tabl
will assign resources to terms defined in the emulation memory map. If the
emulation memory map is arranged as follows, the deMMUer will load in a wa
that ensures the physical ranges of interest will be in the deMMUer.

00000000..003fffff eram
10000000..101fffff tram
20000000..203fffff trom
other tram

When the emulator reads the emulation memory map for help in loading the
deMMUer, it sorts the entries: first by size, and second by address range. The
smallest address range (256M to 258M) will occupy the first resource block in the
deMMUer translation table. Address range (0 to 4M) will occupy the second
resource block, and address range (512M to 514M) will occupy the third resource
block. The remaining five resource blocks will be assigned to other physical ranges
found in the MMU tables, beginning with the lowest

229

Chapter 9: Using Memory Management

Resource limitations

addresses. You may see a message indicating some physical addresses will not be
translated by the deMMUer, or Out of DeMMUer resources, because the deMMUer
might run out of resource blocks before all of the physical addresses have been
assigned reverse translations, but the program spaces you care about will all be
reverse translated. You can useubmoseoption of the deMMUer load

command to make sure the program spaces you care about will be reverse
translated.

If you map a space greater than 256 Mbytes in the emulation memory map, you
will run out of resource blocks before you satisfy the map.

The best way to ensure that all of the address ranges you care about will be reverse
translated is to compose an emulation memory map that allocates blocks of

physical memory only large enough to accommodate the address space occupied by
code you are trying to develop. The deMMUer algorithm will allocate resource
blocks in its eight-entry table to reverse translate only those physical address ranges.

With the above example, you could have avoided running out of resources. If you
had placed invalid descriptors in your MMU tables in the paths that lead to unused
physical address ranges, the deMMUer would have had more than enough resource
blocks in its eight-entry table to reverse translate the valid address ranges.

Finally, you can store the present setup of the MMU to a file, and then use an editor
to eliminate address ranges that do not need to be reverse translated. This only
leaves address ranges that need to be reverse translated in the file. Then you can
load this file into the deMMUer. When this file is loaded, the deMMUer creates a
set of reverse translations for it, ignoring the MMU setup in the emulator. Refer to
"Saving and Restoring DeMMUer Setup Files" in the chapter titled "Using the
Emulation-Bus Analyzer" for how to store and load a deMMUer file.

230

Chapter 9: Using Memory Management
Dividing the deMMUer table between user and supervisor address space

Dividing the deMMUer table between user and
supervisor address space

You can have two sets of MMU translation tables, one under each root pointer

(URP and SRP). In this case, the emulator divides the deMMUer table into two
equal address spaces. The first four resource blocks provide reverse translations for
user physical address ranges, and the last four resource blocks provide reverse
translations for supervisor physical address ranges.

There are cases where the deMMUer table will not be divided into two sets of four
resource blocks each, even if you are using both root pointers (URP and SRP). If
the values of your user root pointer and supervisor root pointer are the same

(URP = SRP), and if the user and supervisor function codes are ignored in all of the
transparent translation registers, then the deMMUer table will not be divided. It

will make its eight resource blocks available to reverse translate either user or
supervisor space.

If the user root pointer and supervisor root pointer contain different values, or if
function-code mapping is used in any of the transparent translation registers, the
deMMUer table will be divided into two 4-block tables as shown below.

address..addres@u

address..addres@u

address..addres@u

address..addres@u

address..addres@s

address..addres@s

address..addres@s

address..addres@s

231

Chapter 9: Using Memory Management
Using the "mmu" command to overcome plug-in problems

Solving Problems

Your program and emulator may be running fine until you turn on the MMU. Then
program execution may fail. You may not be able to use features of your emulator.
How can this happen? It can happen if the MMU mapping tables are incorrect.
When the MMU turns on and starts managing memory by performing tablewalks in
tables that are invalid, pages of logical memory may overwrite your stack space,
your emulation monitor, or any other address space, making your entire system
unusable. If this happens, note where the program is executing. The stack may be
inaccessible. The monitor (with its emulation feature set) may be inaccessible. The
vector table may be placed in guarded memory. Program data space may become
inaccessible.

Using the "mmu" command to overcome plug-in
problems

Plug-in problems involving the MMU are often caused by incorrect mappings in
your translation tables. If your logical address is translated to an incorrect physical
address, themmu command can show you the details of how your logical
addresses are mapped to the wrong physical addresses.

You can also use thremu command to test your mappings before you enable the
MMU. Simply enter the commandmu.

Themmu command by itself reads all present translations in your MMU tables.

No invalid or illegal paths are shown in the listing. You can read through the

display on screen to see if all of your address ranges are represented, and if they are
mapped to appropriate space in physical memory.

When you enter theamu command, the emulator reads the MMU registers (TC,
URP, and SRP) and MMU tables, even if the enable bit in the TC register is in the
"disable" state. If you do not have correct values in the TC, URP, and SRP
registers, the emulator will let you specify correct values to be used when
composing the display of translations by using-thaption withtc, urp, and/or

srp register names in themu command.

232

Chapter 9: Using Memory Management
Use the analyzer with the deMMUer to find MMU mapping problems

Use the analyzer with the deMMUer to find MMU
mapping problems

If your system operates properly until you turn on the MMU, and then it fails, the
problem is most likely in the mappings used by the MMU to translate logical
addresses to physical addresses. You could go down the list of logical-to-physical
translations to see the mapping scheme used to translate each logical address to its
corresponding physical address, but normally that would take too much time. The
analyzer can help you identify the one, or few, logical addresses that are being
mapped incorrectly by the MMU. Then you can use the "mmu -t <address>"
command to look at the mapping tables used to translate those addresses.

Failure caused by access to guarded memory

If the problem is an access to guarded memory, remember that guarded memory is
guarded physical memory. You need to find the logical address that the MMU
improperly translated to guarded physical memory and then investigate the
mappings the MMU used to perform the translation.

Begin by looking at the registers display (typedg) to see the value of the logical
address in the program counter. Then use the "mmu -t <address>" command to see
the path through the tables that the MMU took when it translated that logical
address to a guarded address in physical memory. Note that the value of the

program counter may have changed after the guarded access occurred. In thi
the present address in the program counter may map to proper physical mem

If the present program counter address does not translate to an address in guarded
physical memory, the access to guarded memory may have been caused when your
program read or wrote to data memory before the present program counter address
appeared. Set up the analyzer to make a trace (with the deMMUer turned on) and
trigger at the logical program counter addrégs{ldr=<pc address}. Select a

center trigger so you can see activity preceding and following the triggertpoint (

c). In order to capture every transaction on the emulation bus, qualify all states for
capture {sto any).

233

Chapter 9: Using Memory Management
Execution breakpoint problems

If the access occurs again just before the program counter address you used as your
trigger specification, you should be able to read back in the trace list and find one

or more addresses that could be causing the problem. Then you can try those
suspected addresses in commantsay -t <suspect_addresspto see how each of

them is mapped through the MMU tables. This should identify the error in the

MMU mapping tables.

If you find a particular address that is mapped to guarded memory, and if the
problem seems to be in Table B, you can look at the details of Table B for that
address by using a command, suchmaw -tb <address>

Failure due to system halt

If the emulator and/or target system simply stops operating, set up the analyzer to
trace with a trigger-never specificatidg (ever so that the trace will run

continuously until the system stops again. After the system halt occurs again, read
the trace list to find the addresses preceding the system halt. Use the addresses in
mmu -t <address>commands to see how the MMU maps each one to physical
memory.

Execution breakpoint problems

If you set a breakpoint in RAM, the emulator modifies memory using a logical
address. If you set a breakpoint in ROM, the emulator translates a logical address
into a physical address and remembers the physical address as the address where it
will jam the breakpoint instruction when it is fetched. If your MMU address
translations change while breakpoints are activated, you can get the "undefined
software breakpoint" message when you run your program or or the "breakpoint
code already exists" message when you attempt to modify the breakpoints.

You set a breakpoint. Then the MMU changes its mappings. Now the logical
address where the breakpoint is to occur is translated to a different physical address.
No emulation break occurs when the logical address is translated to the new
physical address. Some different logical address is translated through the MMU to
reach the physical breakpoint address, and the emulator jams the BKPT instruction.
When the BKPT instruction is executed, it is at a point in your program where you
never set a breakpoint.

234

Chapter 9: Using Memory Management
A "can’t break into monitor" example

You should disable any hardware breakpoints before changing the MMU address
translations. Reenable the hardware breakpoints after the MMU address
translations have been modified.

A "can’t break into monitor" example

The following example assumes you mapped your foreground monitor beginning at
address 4000H. You connected your emulator into your target system and ran your
target program (which set up the MC68040 MMU). You tried to break into the
emulation monitor and got the message, "Can't break into monitor."

The emulator can’t break into the monitor because it can't find the monitor. The
MMU mapped the foreground monitor to physical address space that is not a 1:1
translation from logical address space.

A variety of failure modes can happen at this point. Your emulation system may
execute unknown code, or it may simply halt.

To analyze this problem, reset into the monitor with the comnmandn.

Therst command does not change the content of the MMU mapping tables or
registers. It only disables the "enable bit" in the TC register of the MMU. Now
you can look at the translations that are performed by the MMU to find the

translation that was applied to your foreground monitor. Enter the command:

The display will show a list of the logical-to-physical address translations that will
be performed when the MMU is enabled. Find the logical address range that
contains your foreground monitor and see the physical address where it is mapped.
The physical address range needs to be the same as the logical address range for the
emulator to be able to find the monitor.

235

Chapter 9: Using Memory Management
A "can’'t break into monitor" example

The display you get with youtmmu command might show the logical address
range of your foreground monitor mapped to physical addresses beginning at
COO0O0H, as follows:

Logical Address Physical Address

00004000..00004fff 0000C000..0000cfff@a

The next step in this analysis is to display the MMU mapping table for the logical
base address of the foreground monitor. You might enter the commawud:t
400Q In this example, you would see the following display of mappings:

Mmmu -t 4000
U>mmu -t 00004000
Logical Address(hex) 0 0 0O O 4 0 0 O

Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

A 000 00000200 0000040b 00000400 y n RESIDENT

B 000 00000400 0000060b 00000600 y n RESIDENT

C 016 00000640 0000c01f 0000CO00 N 00y cwyynRESIDENT

Physical Address (hex) = 0000c000
u>

In the example display, the foreground monitor whose logical address is 4000 was
placed in physical address C000. Table C points to the page containing the
foreground monitor. The base address of Table C is 00000600, and the content
used by logical address 4000 is at index 016 whose physical address is 00000640.

The content of this address is 0000CO00H (the address of the page containing the
monitor).

To solve the problem in this example, you can obtain the needed 1:1 mapping by
modifying the content of the MMU table directly with the following command:
M>m -dl 00000640=0000401f

236

Chapter 9: Using Memory Management
A "can’t break into monitor" example

After this modification, you can get a new display of the mapping tables for logical
address 4000 to see if your modified MMU tables now map your foreground
monitor correctly. Enter the command>mmu -t 4000

U>mmu -t 00004000
Logical Address(hex) 0 0 0 O 4 0 0 O
Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
Table Level AAAA AAAB BBBB BBCC CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS TBL/PAGE G UxSCM M U W UDT/PDT
SRP 00000200 00000200 RESIDENT

A 000 00000200 0000040b 00000400 y n RESIDENT

B 000 00000400 0000060b 00000600 y n RESIDENT

C 016 00000640 0000401f 00004000 n 00y cwyyn RESIDENT

Physical Address (hex) = 00004000
u>

The above modifications will provide the proper mapping for your system until you
rerun the portion of your target program that sets up the MMU. Then the same
problem will occur again. To fix the problem permanently, you need to modify
your target program so it provides a 1:1 mapping for the address space where the
foreground monitor is located.

237

238

10

Emulator Commands

Syntax and options for Terminal Interface commands

239

Chapter 10: Emulator Commands

The Command Set

This chapter describes all the commands in the HP 64783 Terminal Interface. Each
command description includes syntax and parameter information, along with a
description of command operation and a list of other commands that are often used
with a particular command.

240

Chapter 10: Emulator Commands
b

b = <RETURN>

Theb command issues a break to the emulator, causing it to stop executing your
target (user) program and begin execution of the monitor program.

There are no parameters to this command.

Examples Break the emulation microprocessor into the monitor by typing:

U>b

If the emulator is in the reset state when a break occurs, it will be released from
reset and will begin execution within the emulation monitor.

See Also r (runs the user program from the current pc or a specified address)

s (steps the user program a number of instructions from the current pc or a specified
address)

241

Chapter 10: Emulator Commands

bc

bc

rom

bp

bnct

OO -

I =J <RETURN>

rom

trigl
trig2

bnet

cmbt

o /

ok

Thebc command allows you to set break conditions for the emulation system. If
no parameters are specified, the enable/disable status of all six break conditions is
displayed.

The parameters are as follows:

Enables the indicated break conditions (which must be specified immediately
following the-e on the command line).

Disables the indicated break conditions (which must be specified immediately
following the-d on the command line).

The optionse and-d cannot both be specified within the sameeeommand.

Enable/disable emulator breaks to monitor on occurrence of a write to ROM by the
target (user) program. Several program instructions may execute after a write to
ROM occurs before the emulator enters the monitor.

Enable/disable recognition of execution breakpoints inserted witiptbemmand.
When a breakpoint instruction is executed in the emulation microprocessor, the
monitor is entered immediately.

Enable/disable breaks generated by assertion bhittgrear panel BNC) signal.
Note that this signal may also drive eitherttliggl ortrig2 signals; or, it may drive

242

Chapter 10: Emulator Commands
bc
both. Several instructions may execute between occurrence of the event that
initiated this break and the emulator’s entry into the monitor.

cmbt Enable/disable breaks upon assertion of the CMB (Coordinated Measurement Bus)
trigger signal. Note that the CMB trigger signal may also drive eitherigtieor
trig2 signals; or, it may drive neither or both. Several instructions may execute
between occurrence of the event that initiated this break and the emulator’s entry
into the monitor.

trigl Enable/disable breaks generated by assertion afigtie(trace trigger one) signal.
Refer to thagout, bnct, andcmbt commands for information on specifying drivers
and receivers of thieigl signal. Several instructions may execute between
occurrence of the event that initiated this break and the emulator’s entry into the
monitor.

trig2 Enable/disable breaks generated by assertion ¢rigl2e(trace trigger two) signal.
Refer to thegout, bnct, andcmbt commands for information on specifying drivers
and receivers of thieig2 signal. Several instructions may execute between
occurrence of the event that initiated this break and the emulator’s entry into the
monitor.

Examples Display the status of all six break conditions:
M> bc
Enable breaks on writes to ROM and upon assertion éfigiiesignal, and disable
execution breakpoints and breaks generated hyigf2esignal:

M> bc -e rom trigl
M> bc -d bp trig2

You can independently enable or disable the six different break conditions: write to
ROM, execution breakpoints, breaks due to assertion of the BNC or CMB trigger
signals, and breaks due to the assertion of the inteigtalandtrig2 signals. This

allows you to have the emulator break to the monitor upon error conditions (such as
write to ROM or execution of a breakpoint instruction in a piece of code it never
should have reached), or break to the monitor when an analyzer measurement has
completed.

When you use thiec command, the emulator may break into the monitor while
each enable/disable is being executed. If the emulator was executing your program

243

Chapter 10: Emulator Commands

bc

See Also

when thebc command was received, it will return to your program when finished
executing the command. If you request only a display of the current break
conditions, the emulator does not break to the monitor.

If an error occurs during processing of biecommand, a particular break
condition may be left in an unknown state. If this occurs, a display of the break
conditions will show a question mark “?” instead@br -d next to the break
condition.

bnct (specify drivers and receivers of the rear panel BNC signal)

cmbt (specify drivers and receivers of the CMB trigger signal)

bp (set/delete execution breakpoints)

map (specify whether memory locations are mapped as RAM or ROM)

tgout (specify whether thizigl and/ortrig2 signals are to be driven when the
analyzer finds the trigger condition)

244

Chapter 10: Emulator Commands
bnct

none

trigl

trig2

bnct

) =|| <RETURN>

-G
[oVars

Thebnct command allows you to specify which of the intetrigll/trig2 trigger
signals will drive and/or receive the rear panel BNC trigger. You can specify the
signals individually, as an ORed condition for drive, or as an ANDed condition for
receive; or, you can specify that the signals are not to be driven or received.

The parameters are as follows:

The-d parameter indicates that the BNC port will drive the triggers, trigl and trig2,
to the emulator’s internal analyzer.

The-r parameter causes the BNC port to receive the triggers, trigl and trig2, from
the analyzer, and send them out the BNC port.

If you specifynonewith the-d option, then the rear panel BNC signal will not
drive either of the analyzer triggers. If you specibne with the-r option, the rear
panel BNC will not receive trigl or trig2 from the internal analyzer.

If trigl is specified, then the internal “trig1” signal will drive or receive the BNC
signal, depending on whether you specified-ther -r option.

If you specifytrig2, then the internal “trig2” signal will drive or receive the BNC
signal, depending on whether you specified-ther -r option.

You can also specify that both tiigl andtrig2 signals are to drive or receive
the BNC signal. To do this, place a comma between the two signals on the
command line.

245

Chapter 10: Emulator Commands
bnct

Defaults

If no options are specified, the current settingradt is displayed. Upon powerup,
bnct is set tdbnct -d none -r none

If you specify one of thed or-r options without the other, the other option is left
in the same state it was in before the command was entered.

Examples To view the currenbnct setting, type:

M> bnct

To trigger an instrument hooked to the BNC when the HP 64700 analyzer finds its
trigger, you might do the following:

M> tcf -e

M> tg addr=2000

M> tgout trigl

M> bnct -d none -r trigl

By specifying this command sequence, the external instrument will be triggered
when the emulation processor reaches the trigger pattern of address=2000.

The reverse situation is where you want to trigger the HP 64700 analyzer when an
external instrument finds its trigger. Type:

M> bnct -d trigl -r none
M> tarm =trig1l
M> tg arm

Normally, you would use this command to cross-trigger instruments. For example,
you may wish to trigger a digitizing oscilloscope connected to various timing
signals when the emulation-bus analyzer finds a certain state, or you may wish to
do the converse and trigger the HP 64700’s analyzer when an oscilloscope finds its
trigger.

You should not set up an analyzer in an emulator to both drive and receive the same
trigger signal. For example, if you issued the commépdsm, tarm =trig1,

tgout trigl, andbnct -d trigl -r trigl , then the analyzeérigl signal will become

latched in a feedback loop and will remain latched until the loop is broken. To

break the loop, you must first disable the source of the signal, and then

246

Chapter 10: Emulator Commands
bnct
momentarily disable either the drive or receive function. In this case, the commands
tgout noneandbnct -d nonewill break the loop.

See Also bc (break conditions; can be used to specify that the emulator will break into the
emulation monitor upon receipt of one of thigl/trig2 signals)

cmbt (coordinated measurement bus trigger; used to specify which internal signals
will be driven or received by the HP 64700 coordinated measurement bus)

tarm (analyzer trace arm; used to specify arming (begin to search for trigger)
conditions for the analyzer trig1/trig2 can be used to arm the analyzer)

tgout (specifies which of thgigl/trig2 signals are to be driven when the analyzer
trigger is found)

247

Chapter 10: Emulator Commands

bp
bp
bp <RETURN=>
Co) .
e
(59 fhooress-
@ 64783508
Thebp command is used to insert, delete, display, or modify the status of execution
breakpoints. Upon powerup imit initialization, the breakpoint table is cleared and
the breakpoint feature is enabled. If no parameters are specified, the current status
of all breakpoints is displayed.
The parameters are as follows:
<ADDRESS> The<ADDRESS>parameter allows you to specify the address where the

execution breakpoint is to be inserted. If you specify options, or-r, then the
address specifies the location of the breakpoint to be deleted, enabled, or removed.
For these options, you may specify the addrest"indicate the operation is to be
performed on all addresses in the breakpoint table.

The default for theeADDRESS>parameter is a hexadecimal expression, however,
other numeric bases may be specified. SegARDRESS>syntax pages in
Chapter 11 for information on specifying address information.

The memory access mode for writing breakpoints is set bydh@node)
command; if the mode is set to byte access and an odd address location is specified,
the breakpoint instruction will be placed in the word-aligned address.

Deletes the execution breakpoint(s) at the software addresses specified. If the
address specified does not contain a breakpoint instruction, an error will be
returned. When the breakpoint is deleted, the original memory contents are restored

248

Chapter 10: Emulator Commands
bp
in software (if in RAM memory), and then the address is removed from the
breakpoint table.

-h Specifies treatment of the breakpoint as if it is for a ROM address.

-e Enables (activates) the breakpoint(s) at the address(es) specified. This installs the
necessary breakpoint instruction in memory. If the breakpoint is already enabled,
no action is taken.

-p Identifies the associated breakpoint as permanent. When the breakpoint instruction
is executed, the original instruction is replaced in memory so that the program can
run when you return from the break. Immediately after you start the program
again, the BKPT instruction is again placed at the breakpoint address so that when
the breakpoint address is hit again, another break will occur. This will continue
until you disable the breakpoint.

-t Identifies the associated breakpoint as temporary. When the breakpoint is
executed, the original instruction is restored to the memory address so that the
program will run without breaking. If you want to break at the temporary address
again, you will need to reenable the breakpoint.

-v Requests a verbose display of existing breakpoints.

-d Disables (deactivates) the execution breakpoint(s) at the software address(es)
specified. The breakpoints remain in the breakpoint definition table and can be
enabled again by using thp -e <ADDRESS>command. If the breakpoint is
already disabled, no action is taken.

Examples The following examples use the demo program.

Assume you must verify the processor is reaching the _clocktic, _alarm, and
_userbuf addresses in the demo program. You can insert execution breakpoints at
these addresses and run to each successive breakpoint. First, enable the execution
breakpoint feature.

M> bc -e bp

Now define temporary breakpoints at each address by typing:

M> bp -t _clocktic _alarm _userbuf

249

Chapter 10: Emulator Commands
bp
View the current breakpoint settings:

M> bp

With each run of the demo program, one of the breakpoints will be executed by the
processor and will be disabled. You can reenable the breakpoints:

M> bp -e _clocktic _alarm _userbuf

You could also typép -e * to reenable all breakpoints in the table. Also, you can
define each breakpoint to be permanept-p <ADDRESS>.

To disable the breakpoint at _clocktic:

M> bp -d _clocktic

To remove the breakpoint at _alarm from the breakpoint table:

M> bp -r _alarm

To disable all breakpoints in the table:

M> bp -d *

To remove all breakpoints in the table:

M> bp -r *

To disable the breakpoint feature,

M>bc -d bp

The MC68040 emulator uses the BKPT instruction to implement execution
breakpoints. There are four different operations to maintain the execution
breakpoint table.

Inserting Breakpoints

Specifying only an address inserts the breakpoint instruction in memory (if the
memory is writeable RAM) and makes a breakpoint table entry corresponding to
that address. If a software break instruction (BKPT) already exists at the address
specified, no change occurs. If the breakpoint instruction cannot be written, the

250

Chapter 10: Emulator Commands
bp
emulator uses one of its eight hardware resources to remember the breakpoint
address so that it can jam a BKPT instruction on the data bus when that address is
read.

Enabling Breakpoints

Enabling a breakpoint at a specified software address causes the system to search
the breakpoint table for that address; if it exists in the table, the breakpoint
instruction is written to memory at the corresponding address. If the breakpoint
instruction cannot be written, the emulator uses one of its eight hardware resources
to remember the breakpoint address so that it can jam a BKPT instruction on the
data bus when that address is read.

Disabling Breakpoints

Disabling the breakpoint for a specified address again causes a search for a
breakpoint table entry; if found, the original contents of the address (before the
breakpoint was defined) are written to the specified memory location. The contents
of the breakpoint table are unchanged, except to indicate that the particular
breakpoint is now inactivated.

When the breakpoint table is displayed withtpeor bp -v command, the
enable/disable status of each breakpoint is tested by reading the memory locations
in question. If a break instruction is found in software or if one of the eight
hardware resources contains a ROM address on which to break, the breakpoint is
displayed agnabled if not, the breakpoint is displayeddisabled

Removing Breakpoints

Removing a breakpoint causes a search of the breakpoint table for a correspo
entry; if found, the original memory contents are written to the specified addre
in RAM, and the entry is removed from the breakpoint table.

When a breakpoint instruction that was insertetis executed by your

program, it is removed from memory and marleshbledin the breakpoint table.

If the breakpoint was specified to be permanent, then it will be restored to memory
and marked enabled again as soon as the breakpoint address is read for an
instruction fetch.

A status message is issuedstdout (see thggo command) indicating that a
breakpoint was found.

251

Chapter 10: Emulator Commands

bp

See Also

If the emulator executes a break instruction that was placed by you (either through
your compiler or via memory modification) and not by tipecommand, an
“undefined breakpoint” error message is generated.

If the emulator is executing in the target program when you define or modify
breakpoints, it will break into the monitor for each breakpoint defined or modified.
The emulator will return to execution of your target program after breakpoint
definition or modification is complete.

In general, you should only define execution breakpoints at addresses that contain
program instructions. If you set breakpoints at other locations, it is likely they will
be treated as operands, never executed. The only exception to this might be when
you suspect your program is jumping into a data block and attempting to execute
code; setting an execution breakpoint in this area will let you verify the problem
(and stop a runaway program).

Remember that any operation that modifies memory or the memory map will alter
the existing breakpoints. For example, if you load a new program in the same
address range where breakpoints reside, the breakpoints will be destroyed.
Changing the memory map will prevent the emulator from placing new breakpoints
or enabling existing breakpoints.

You cannot define breakpoints until you have enabled them withcthebp

command. If you disable the execution breakpoint feature withcthe bp

command, the breakpoints currently defined will remain in the breakpoint table, but
will be disabled and will remain in that state until the breakpoint feature is
reenabled and the specified breakpoints are reendigled bpandbp -e

<ADDRESS>.

You may define an unlimited number of execution breakpoints in software
contained in RAM. You may also define up to eight execution breakpoints in
software contained in ROM (or RAM that is write protected). When the emulator
tries to write the BKPT instruction in ROM hardware and finds, as it test-reads the
breakpoint address, that the BKPT instruction is not written there, the emulator will
use one of its eight hardware resources to store the breakpoint address. When that
address is read during an instruction fetch, the hardware resource will jam the
breakpoint instruction on the data bus so that the BKPT will be fetched by the
processor.

bc (enable/disable breakpoint conditions (includipg)

mo (defines memory access and display modedygteommand uses the currently
defined modes when writing execution breakpoints into software)

252

Chapter 10: Emulator Commands

cf

cf

|

&@+ <ADDRESS=> . <ADDRESS=>

fg

<PRIORITY=>

o
o e

,,,,,,,,,,,,,,,,,,,,,,,,,,, -
\>< mankaa |
I

<ADDRESS> I

I

none)— |

ONLY WHEN cf mon = bg J‘

<RETURN>

64783502

253

Chapter 10: Emulator Commands

cf

cache

bplock

wait

monlock

rrt
ti
mmu

mon

monaddr

rv

monintr

Thecf command allows you to modify various emulator specific configuration
parameters. The MC68040 configuration items allow you to set up the emulator in
a way that best suits your system needs. Many configuration items allow you to
configure the emulator to work properly with your target system. If you enter the
configuration item name without a setting, the current setting is displayed.

The parameters are as follows.
Enable/disable the instruction cache and data cache.

Enable/disable interlocking of breakpoint acknowledge cycle termination. When
enabled, the target system is responsible for terminating breakpoint acknowledge
cycles by assertinA or TEA. Default is disabled.

Enable this if you are using a BCLK clock speed greater than 25 MHz. Disable this
configuration item of you are using a BCLK clock speed less than 25 MHz and you
are not using 25-ns memory modules in the emulation probe. A special "cf
wait=dis,en" must be used if you are using a BCLK clock speed less than 25 MHz
and you are using HP 64173A (25-ns) memory modules in the emulation probe.

EnablesTA andTEA interlocking between the emulator and target system for
foreground emulation monitor bus cycles.

Restricts the emulator to real time runs.
Enable/disable target system interrupts.

Enables or disables the MMU. If enabled, @IS line and TC register
determine whether or not logical-to-physical address translations are performed. If
disabled, the emulator assertsMiBIS line to prevent address translations.

Chooses a foreground or background monitor. Before you can enable the MMU, or
the caches, or do dma activity in your target system, you must select a foreground
monitor.

Sets the base address for the foreground monitor (and maps a corresponding
memory block). Not available when the background monitor is selected.

Sets the initial interrupt stack pointer and PC values when the emulator enters the
monitor from reset. Allows the emulator to run correctly if you break to monitor
after reset, and then start a run.

Lowers the interrupt priority mask during foreground monitor execution so that
target system interrupts above that level will be serviced. Not available when the
background monitor is selected.

254

Chapter 10: Emulator Commands
cf
monkaa Defines an address from which the background monitor periodically reads a byte.
Used to “keep-alive” circuits that depend on constant bus activity, such as
watchdog timers.

Examples To block interrupt requests from the target system, enter:

M> cf ti=dis

To select a foreground monitor and put it at address 4000 hex, enter:

M>cf mon=fg

R>cf monaddr=4000

The default configuration of the MC68040 emulator after initialization is as follows:
» Configuration items:

R>cf

cf cache=en
cf bplock=dis
cf mmu=en

cf mon=fg

cf monaddr=0
cf monintr=0
cf monlock=en
cf rrt=dis

cf rv=auto

cf tizen

cf wait=dis

* One memory map term assigned to contain the emulation monitor. All other
memory mapped to target RANtgmM).
» All break conditionslgc) are enabled.

When you connect the emulator to a target system, you may want to modify all
configuration items. The modifications you make depend on your target system
requirements.

255

Chapter 10: Emulator Commands

cf

See Also help (you can get an on line display of the configuration items for a particular
emulator by typindnelp cf. To obtain more information regarding a particular

configuration item, typéelp cf <config_item>.

Also see the chapter titled "Configuring the Emulator" in this manual.

256

Chapter 10: Emulator Commands
cl

o <RETURN>

= <EXPR>

You can enable command line editing to include the ability to manipulate command
text lines.

The parameters are as follows:
-d This option disables command line editing.
-e This option enables command line editing.

-l This option allows you to set the column length for the command line. This value
can be from 40 to 132 columns.

Command line editing is disabled by default.

Examples Set the number of columns in the command line to 80:

cl-180

Enable command line editing:

cl-e

Add text to the previously executed command:

<ESC> k A <additional text>

Command line editing has two typing modes. The normal command entry is input
mode. The input mode functions like normal (canonical) command entry. The
control mode allows command modification.

257

Chapter 10: Emulator Commands

cl

The commands in control mode are as follows:

Command Action

i Insert before current character.

A Append to end of line.

dd Delete command line.

$ Move cursor to end of line.

A Move cursor to start of line.

I Move right one character.

i Fetch next command.

a Insert after current character.

X Delete current character.

D Delete to end of line.

0 Move cursor to start of line.

h Move left one character.

k Fetch previous command.

r Replace current character.
/<string> Find previous command matching

<string>.
n Fetch previous command matching
<string>.
N Fetch next command matching <string>.
See Also See Chapter 3 of this manual for more information on command entry.

258

Chapter 10: Emulator Commands
cmb

;‘ <RETURN>

Thecmb command allows you to enable or disable interaction on the CMB
(Coordinated Measurement Bus). The CMB allows you to make complex
measurements involving cross-triggering of multiple HP 64700 analyzers and other
HP 64000 system instruments, and synchronous emulator runs and breaks .

The parameters are as follows:

-e The-e option enables interaction between the emulator and the Coordinated
Measurement Bus.

-d The-d option disables interaction between the emulator and the Coordinated
Measurement Bus.

If no options are supplied, the current state of CMB enable/disable is displayed.

Examples View the current state of CMB interaction:

M> cmb

Enable CMB interaction:

M> cmb -e

Disable CMB interaction:

M> cmb -d

Thecmb command only affects the ability for multiple emulators to run or break in
a synchronized fashion; the analyzer trigger capability is unaffected bynthe
command.

259

Chapter 10: Emulator Commands

cmb

See Also

Interaction Enabled

When interaction is enabled via ttrab -e command, the emulator will run code
beginning at the address specified viartheommand when the CMB /EXECUTE
(/ means active low) pulse is received.

The CMB READY line is driven false while the emulator is running in the monitor.
The line goes to the true state whenever execution switches to the user program.

Notice that if thex command is given, CMB interaction is enabled just as if a
cmb -ecommand was issued. Refer to the syntax pages fox ¢t@mmand for
further information.

Interaction Disabled

When interaction is disabled via tbeb -d command, the emulator ignores the
actions of the /IEXECUTE and READY lines. In addition, the emulator does not
drive the READY line.

rx (allows you to specify the starting address for user program execution when the
CMB /EXECUTE line is asserted)

tx (controls whether or not the emulation analyzer is started when the [EXECUTE
line is asserted)

X (pulses the /EXECUTE line, initiating a synchronous execution among emulators
connected to the CMB and enabled)

Also, see Chapter 6, “Coordinated Measurements,” for more information on CMB
operation.

260

Chapter 10: Emulator Commands
cmbt

=L
ey

none

trigl

trig2

cmbt

) =J| <RETURN>

=

LoD

ovars

Thecmbt command allows you to specify which of the intetrigfl/trig2 trigger
signals will drive and/or receive the rear panel CMB (Coordinated Measurement
Bus) trigger. You can specify the signals individually, as an ORed condition for
drive, or as an ANDed condition for receive; or, you can specify that the signals are
not to be driven and/or received.

The parameters are as follows:

The-d parameter causes the CMB to drive the trigger signals, trigl and trig2, to the
emulator’s internal analyzer.

The-r parameter causes the CMB to receive the trigger signals, trigl and trig2,
from the analyzer.

If you specifynonewith the-d option, then the CMB trigger signal will not drive
either of the analyzer triggers. If you specifynewith the-r option, the rear panel
CMB will not receive trigl or trig2 from the emulation-bus analyzer.

If trigl is specified, then the internal “trigl” signal will drive or receive the CMB
trigger signal, depending on whether you specifieddha -r option.

If you specifytrig2, then the internal “trig2” signal will drive or receive the CMB
trigger signal, depending on whether you specifieddha -r option.

You can also specify that both ttiggl andtrig2 signals are to be driven and/or
received. To do this, place a comma between the two signals on the command line.

If no options are specified, the current settingrabt is displayed. Upon powerup,
cmbt is set tacmbt -d none -r none

261

Chapter 10: Emulator Commands

cmbt

Examples

To view the currentmbt setting, type:

M> cmbt

Trigger the analyzer in another 68040 emulator connected to the CMB:

M> tcf -e

M> tg addr=100

M> tgout trigl

M> cmbt -d none -r trigl

Set the other HP 64700 analyzer to break to monitor upon receiving the CMB
trigger:

M> cmbt -r trigl
M> bc -e cmbt

You might want to have an external instrument arm the analyzer in one emulator
which then arms a second analyzer attached through the CMB. The second
emulator then breaks to monitor when it finds its trigger condition. Use the
following command sequence in the first emulator:

M> bnct -d trigl -r none
M> tarm =trigl

M> tsq -i 3

M> tif 1 arm

M> tif 2 addr=100

M> tgout trig2

M> cmbt -d trig2 -r none

On the second emulator, type:

M> cmbt -d trigl -r none
M> tarm =trigl

M> tsq -i 3

M> tif 1 arm

M> tif 2 addr=200

M> tgout trig2

M> bc -e trig2

262

Chapter 10: Emulator Commands
cmbt
You use this command to trigger other HP 64700 analyzers and possibly HP 64000
system instruments. For example, you may wish to start a trace on another HP
64700 analyzer when the analyzer in this emulator finds its trigger; or, you may
wish to do the converse and trigger the analyzer in this emulator when another
emulation analyzer finds its trigger.

You should not set up an analyzer in an emulator to both drive and receive the same
trigger signal. For example, if you issued the commépdsm, tarm =trig1,

tgout trigl, andcmbt -d trigl -r trigl , then the analyzérigl signal will become

latched in a feedback loop and will remain latched until the loop is broken. To

break the loop, you must first disable the signal’s source, and then momentarily
disable either the drive or receive function. In this case, the comitggndsione

andcmbt -d nonewill break the loop.

See Also bc (break conditions; can be used to specify that the emulator will break into the
emulation monitor upon receipt of one of thigl/trig2 signals)

bnct (BNC trigger; used to specify which internal signals will be driven or received
by the rear panel BNC connector)

cmb (Used to enable or disable interaction on the CMB. This does not affect
whether measurement instruments can exchange triggers over the CMB; it only
controls run/break interaction between multiple emulators)

tarm (analyzer trace arm; used to specify arming (begin to search for trigger)
conditions for the analyzertrigl/trig2 can be used to arm the analyzer)

tgout (specifies which of thixrigl/trig2 signals are to be driven when the analyzer
trigger is found)

263

Chapter 10: Emulator Commands
cp

cp

<DEST_ADDR> [+(=)+ <ADDRESS> Q =||<RETURN>
<ADDRESS>

Thecp command allows you to copy a block of data from one region of memory to
another. For example, you might want copy a data table in your program to a buffer
space so you can try some of your algorithms for processing data in that buffer.

The parameters are as follows:

<DEST_ADDR> Specifies the lower boundary of the destination range. The processor specific
conventions for <ADDRESS> can be used for complete address specification
including function codes or segmentation. Refer tdeelator User's Guidéor
your particular emulator for details.

<ADDRESS> Specifies the lower, and possibly upper, memory address boundaries of the source
range to be copied. The default is a hexadecimal number; other bases may be
specified. Certain emulators allow additional processor specific addressing
information for <ADDRESS>; refer to themulator User’s Guidéor your
particular emulator for further information.

The separator between the lower and upper address boundaries is two periods (..).
Notice that no additional spaces are inserted. You can use “<ADDRESS>..” to
specify a range from the address through the next 127 bytes."

Exactly one address range must be specified.

Examples Copy the vector table to a base address of 20000:

M>cp 20000=0..3ff

Whencp is executed, the data from the specified range is copied to the destination
address, with the lower boundary data going to the destination address, lower
boundary + 1 to destination + 1, and so on until the upper boundary of the source
range is copied. If the source or destination addresses

264

Chapter 10: Emulator Commands

reside within the target system, the emulator will break to the background monitor
and will return to foreground after the copy is completed.

If memory mapped as guarded is encountered in the source or destination range
during the copy, the command is aborted; however, all locations modified prior to
accessing guarded memory are left in the modified state.

See Also m (allows you to display or modify memory locations or ranges)
map (used to define the type and location of memory used by the emulator)

ser (used to search memory ranges for a specific set of data values)

265

Chapter 10: Emulator Commands

dmmu

dmmu

dmmu

=l <RETURN>

H<REG\STER> :G = <VALUE=> ~
-1 H<LOG\CAL ADDRESS>M <PHYSICAL ADDRESS>}-/ 64783503

Thedmmu command is used to enable or disable the deMMUer so it can translate
physical addresses it receives from the emulation bus and deliver corresponding
logical addresses to the analyzer. This command can also be used to load the
deMMUer with appropriate information to reverse the MMU translations; this is
done by reading the present MMU register values and the present MMU translation
tables in memory. Finally, you can see the present state of the deMMUer by simply
typingdmmu and pressing RETURN.

The deMMUer can translate up to 256 Mbytes of physical address space.
The parameters are as follows:
Clears all reverse translation information in the deMMUer.

Turns off the deMMUer. Addresses on the emulation bus will be supplied directly
to the analyzer without translation.

Turns on the deMMUer. Addresses on the emulation bus will be translated
(physical to logical) before being supplied to the analyzer. Reverse translations
will be made according to the setup that was present in the MMU at the time you
entered your lastmmu -I command.

Reads the MMU registers and MMU tables, and loads the deMMUer.

266

Chapter 10: Emulator Commands
dmmu
r Allows you to specify a value for one or more of the MMU registers. The value is
to be used instead of the register’'s present value when loading the deMMUer with
information to reverse MMU translations.

t Prepares the deMMUer to accept reverse-translation information from the
command line. This allows you to enter desired reverse translations on the
command line.

% Sets the verbose mode for the deMMUer load function. The verbose mode shows a
list of the physical addresses that can be translated by the deMMUer after loading
the deMMUer. If these address translations include address qualifications, they are
shown beside the addresses (example: 000000000..003ffffff@s).

Examples To enable the deMMUer to translate addresses for the analyzer:
M> dmmu -e

To load the deMMUer to reverse translate addresses using the current translation
tables:

M> dmmu -

See Also mmu (display MMU translations or table information).

267

Chapter 10: Emulator Commands

dt

<yymmdd>

<hh:mm:ss>

Examples

dt

dt j <RETURN>

. <yymmdd> '

<hh:mm:ss>

Thedt command allows you to set or display the current date and time stored by
the HP 64700 series emulators.

The parameters are as follows.

This variable sets the datgy. are the last two digits of the current yeam specify
the current month, ardtl specify the day of the month.

If yy is greater than 50, the year is assumed to be in the 20th cddyy)y (If yy
is less than 50, the year is assumed to be in the 21st cettiyyy. (

This variable sets the time in 24 hour forndit specify the hounnm specify the
minutes, andsspecify the seconds. Notice that the only difference between the
date and time variables is the presence of colons; therefore, if you forget the colons
while trying to reset the time, you will change the date setting.

If no parameters are specified, the current date and time settings are displayed.
Display the current date and time settings:
M> dt

Set the date to August 18, 1991:
M> dt 910818

To set the date to August 18, 1991 and the time to 11:05:00, type:
M> dt 910818 11:05:00

The emulator system date & time clock is reset when power is cycled.

268

Chapter 10: Emulator Commands
dump

dumpsynt

dump

@ ’) <ADDRESS> <ADDRESS> H <RETURN>

~C 2 N
)
~C
D

\>< c H <HEX_CHAR> }

Thedump command allows you to dump the contents of emulation and/or target
system memory to a host file. The contents can be dumped in HP, Tektronix hex,
Intel hex, and Motorola S-record formats by specifying various options on the
command line.

The parameters are as follows.

The-h option indicates that the memory contents will be dumped in HP absolute
file format.

Specifying theb option indicates that the records will be sent in binary; this is only
valid with-h (HP file format).

If you specify-x, the records will be sent in hexadecimal; this is only valid with
-h option (HP file format).

Specify thei option if you need to have the file transferred in Intel hex record
format. Note that the various options for HP file format transfer (suet) 45 and
-e) are invalid with this format.

Specify them option if you need to have the file transferred in Motorola S-record
format.

Specify thet option if you need to have the file transferred in Tektronix hex format.

Specifying -c along with an ASCII hexadecimal character indicates that the
character specified should be sent to the host at the end of the file upload.

269

Chapter 10: Emulator Commands

dump

<HEX_CHAR> <HEX_CHAR> is an ASCII character to be sent to the host at the end of the upload
process. The character is used to close the host file which is receiving the uploaded
data.

<ADDRESS> Specifies the lower, then upper, address boundaries of the memory range to be
dumped. The default is a hexadecimal number; other bases and expressions may be
supplied. Refer to the <EXPR> syntax pages for detalils. In addition, many
microprocessors allow special address information such as segmentation or
function codes to be specified; see the <ADDRESS> syntax pages in Chapter 11
for details.

There are no defaults; a file format and address range must be specified.

If you are uploading the file in HP file format using the HP 64g@dsfer
software, record checking is performed automatically byrémesfer protocol.

The HP 64000 format “.X” file created with a “dump -hox” command has records
that contain 136 fewer bytes of data than the file format standard allows. Because
of this, HP 64000 format “.X" files which are created withdiaenp command

may take longer to be processed by consumers of the “.X” file (depending on how
the consumer processes sequential records).

See Also load (used to load emulation memory from a host computer file)

270

Chapter 10: Emulator Commands
echo

echo

) = <RETURN>

Theechocommand allows you to display ASCII strings or the results of evaluated
expressions on the standard output device.

The parameters are as follows.

<STRING> Any set of ASCII characters enclosed between single open quote marks (*), or
double quotes ("). Because the command buffer is limited to 256 characters, the
maximum number of characters in a string is 248.

Many keyboards (and printers) actually represent the single open quote mark
(ASCII 60 hexadecimal) as an accent grave mark. The correct character in any case
is the one encoded as ASCII 60 hexadecimal. The correct double quotation mark is
ASCII 22 hexadecimal.

A character which is used as a delimiter cannot be used within the string. For
example, the stringType "C"™ is incorrect and will return an error. The string
‘Type "C" s correct.

<EXPR> A valid expression (refer to the expression syntax pages for descriptions of valid
expressions). The expression will be evaluated and the result will be echoed. Note
that no delimiters are used to define the start and end of the expression.

<nn> “nn” is the hex code for any valid ASCII character. More than one character can be
echoed with a single command; each “nn” must be preceded by a backslash. A total
of 62 ASCII characters can be represented within a séofflecommand.

This capability is particularly useful for sending non-displaying control characters
to a terminal; see the examples below.

The default is to echo nothing.

271

Chapter 10: Emulator Commands

echo

Examples

To echo the string “Set S1 to OFF” to the standard output, type the following:
M> echo "Set S1 to OFF"

Alternatively, you could use the ASCII character evaluation capability to do the
same thing by typing the following:

M> echo \53 \65 \74 \20 \53 \31 \20 \74 \6f \20 \4f \46 \46

A more useful application of the backslash option is to send terminal control
characters:

M> echo \1b"H" \1b"J* \1b"&dBSet S1to OFF"

The above command sends “<ESC>H<ESC>J<ESC>&dB Set S1 to OFF” to the
terminal. On an HP 2392A this homes the cursor, clears the screen, sets the video
mode to inverse video, and writes the message “Set S1 to OFF.” Therefore, the user
would see the message “Set S1 to OFF” in inverse video at the upper left hand
corner of an otherwise blank screen. You might combine this with a macro
command as part of a procedure. For example:

M> mac PROMPT={echo "Set S1 to OFF";w}
M> PROMPT

Calculate the value of the expression (1f + 1e):

M> echo 1f+1e

You must enclose strings in single open quote marks (*) (ASCII 60 hex) or double
quotation marks (") (ASCII 22 hex).A string not enclosed in delimiters will be
evaluated as an expression and the result will be echoed. In addition, you may
supply a backslash with a two digit hex constant; the corresponding ASCII
character(s) will be echoed.

Echoing strings or ASCII characters is particularly useful within macros, command
files, and repeats where you wish to prompt the user to perform some action during
a “wait for any keystroke” command (see syntaxwipr The expression capability

is useful as a quick calculator.

Note that all options may combined within the same echo command as long as they
are separated by spaces.

272

Chapter 10: Emulator Commands
echo
When usingechoto calculate results of expressions, remember that all operations
are carried out on 32-bit two’s complement signed integers. Results greater than 32
bits are truncated.

See Also expr (details on what constitutes valid expressions)
mac (grouping a set of commands under a label for later execution)
rep (grouping a set of commands for immediate repetition)

w (wait command, allows user specified delays)

273

Chapter 10: Emulator Commands
equ

equ

-

<L), [t

Gore(-0 = <Name> |

Theequcommand allows you to equate arithmetic values with names that you can
easily remember; these names can then be used in other commands to reference the
value. This is useful in defining trigger patterns for the analyzer and in other
applications.

The parameters are as follows.

<NAME> You use <NAME> to assign a character string to the expression. <NAME> must
be an alphanumeric designator no greater than 31 characters in length, beginning
with an alpha character or underscore and including only alphanumeric characters
or underscores thereafter. If <NAME> is specified without an expression, then the
existing definition for that name is displayed. If <NAME> is specifiet], and the
-d option is not given, then the definitions for all equates is displayed. However, if
-d is supplied, then the equate table is cleared.

<EXPR> An arithmetic expression to be assigned to <NAME>. The default is a hexadecimal
number. See the <EXPR> syntax pages in this manual for further details.

-d The-d option allows you to delete an existing equate. If you spetigynd
<NAME>, then the named equate is deleted. If <NAME> is given ten all
equates are deleted.

274

Name
ack

alto

alt3

alt4

alt7
burst
byte
cpush
d_tblwk
data
dma
itblwk
line
logical
long
physical
prog
read
retry
snp_hitl
snhp_hit2
snp_inhb
snp_miss
sup
supdata
supprog
ta

tea

Value
TIXXXXXXXXLIXXXXXY
10xxxxxxxx1x001xy
10xxxxxxxx1x011xy
10xxxxxxxx1x100xy
10xxXxXXxXxXxx1x111xy
OXXXXXOXXXXXXXXXXY
OXXXXXXO LXXXXXXXXY
OXXXXXXXXX1x000xy
OXXXXXXXXX1X011xy
OXXXXXXXXX1XX01XyY
OXXXXXXXXXXOXXXXXY
OXXXXXXXXX1X100xy
OXXXXXX L IXXXXXXXXY
OXXOXXXXXXXXXXXXXY
OXXXXXXOOXXXXXXXXY
OXXLXXXXXXXXXXXXXY
OXXXXXXXXXIXX1O0XY
OXXXXXXXXXXX LXXXXY
OXXXXXXXXOOXXXXXXY
OXXOLXXXXXOXXXXXY
OXXTLOXXXXXOXXXXXY
OXXOOXXXXXOXXXXXY
OXXLIXXXXXOXXXXXY
OXXXXXXXXX LXIXXXY
OXXXXXXXXX1X101xy
OXXXXXXXXX1X110xy
OXXXXXXXX LOXXXXXXY
OXXXXXXXXO LXXXXXXY

Chapter 10: Emulator Commands
equ

MC68040 Equates

Description
Acknowledge access.
Alternate logical function code O.
Alternate logical function code 3.
Alternate logical function code 4.
Alternate logical function code 7.
Burst cycle.
Byte transfer request (S1Z21/S120=01).
Data cache push access.
Data translation table access.
Data space access.
Direct memory access.
Instruction translation table access.
Line transfer request (S121/S1Z0=11).
Logical memory address.
Longword transfer request (S121/S120=00).
Physical memory address.
Program space access.
Read cycle.
Retrying a previous bus cycle.
Snoop operation 1 (SC1/SC0=01)
Snoop operation 2 (SC1/SC0=10)
Snooping inhibited.
Snoop miss.
Supervisor space.
Supervisor data space.
Supervisor program space.
Transfer acknowledge.
Transfer error acknowledge.

275

Chapter 10: Emulator Commands

equ
upa0 OXXOOXXXXXXXXXXY User prog attributes UPA[1:0]=00.
upal OXXOLXXXXXXXXXXY User prog attributes UPA[1:0]=01.
upa2 OXXLOXXXXXXXXXXY User prog attributes UPA[1:0]=10.
upa3 OXXLIXXXXXXXXXXY User prog attributes UPA[1:0]=11.
user OXXXXXXXXXLXOXXXY User space.

userdata OXXXXXXXXX1X001xy User data space.

userprog OXXXXXXXXX1X010xy User program space.

word OXXXXXXLOXXXXXXXXY Word transfer request (S121/S120=10).
write OXXXXXXXXXXXOXXXXY Write cycle.

If no parameters are specified, then the current table of all equates is displayed. If
<NAME> is specified, then only the equate for that particular name is displayed.

276

Examples

Chapter 10: Emulator Commands
equ

You can predefine some equates to make it easier to set up the analyzer and run
specifications. For example, suppose you want to take five traces of the demo
program, with the trigger at address update_sys:write_hdwr. You would like to
have each trace numbered.

Enter the following commands:

M> tg addr=update_sys:write_hdwr

M> equ c=0

M> mac numtrclist={t;w -m;equ c=c+1;echo "trace # "
c;tl}

M> r

M> rep 5 numtrclist

You will see five trace lists, each sequentially numbered, displayed on screen. You
could use this feature in combination with a host logging program or redirection of
your terminal display to printer to continuously monitor operation of a system. (To
further aid your troubleshooting, you could also display the date and time of each
trace sample using tlik command.)

You can remove equates from the table either individually or all at once:
M> equ -d ¢

M> equ

Notice that the equatehas been removed. Now type:

M> equ -d *

This removes all equates, including the system-defined equates. You can res
the system-defined equates by initializing the emuladn (

Multiple equates may be defined on the same command line, separated by a space.

Each equate is translated to its actual value at the time of command entry. For
example, if you specify an equateunt=21h and an expressi®@tart=2000h then
the commandg addr=start count will be entered into the systemtgsaddr=start
33. At this point, redefining the value afldr or count would not change the
address expression or the occurrence counter for the trigger.

277

Chapter 10: Emulator Commands

equ

See Also

The HP 64783A/B emulator predefines some equates that equate names to certain
processor status bit patterns. You should be careful not to delete these equates
because they are useful in specifying analyzer trace qualifiers.

The combination of a singlxju command with all names and expressions cannot
exceed 255 characters. The number of equates and symbols that may be defined is
limited only by available system memory; thus, it is dependent on the number of
macros defined and on any emulator control code loaded by a high level software
interface for the emulator (such as the HP 64700 PC Interface).

tg, tpat, tif, telif, and others.ggu provides an easy way to hame expressions to use
in setting up trigger or branch conditions)

r, m, bp (equates may be used to specify run addresses, memory addresses, or
breakpoint addresses)

278

Chapter 10: Emulator Commands
es

Examples

See Also

es

es = <RETURN>

Theescommand displays the current status of emulation activity. It has no
parameters.

View the emulator status:

M> es

The following types of information may be displayed:

e processor status—running/in monitor/reset

» slow bus cycle

* slow clock

» emulation halted due to halt input from target system or output from processor
» emulation in “wait” state due to input sigﬂa from target system

* bus grant to the target system

The exact messages and information displayed varies slightly, depending on t
emulator in use.

The emulator will not break to the monitor to obtain information. Therefore, any
information that can only be obtained while in the monitor will not be displayed if
the emulator is not in the monitor.

ta (allows you to display activity on emulation-bus analyzer lines)

ts (allows you to display the current trace status of the emulation-bus analyzer)

279

Chapter 10: Emulator Commands

help,?

help,?

help)

<COMMAND _
NAME>

<COMMAND _
GROUP>

Examples

=]| T
~ <RETURN>

<COMMAND_GROUP> |/

<COMMAND_NAME> | /

<COMMAND _ GROUP> I /

Thehelp (?)command lets you display syntax, description and examples for any
HP 64700 emulator Terminal Interface command. You may display a brief
description for anything from a single command to command groups or the entire
command set. Detailed information is available for single commands.

You may enter a question matknstead of typing help; it performs the same
function.

The parameters are as follows.

This option switches in the abbreviated help mode; only the expanded name of each
command is displayed next to the command.

If the name of an individual command is specified, only the detailed help
information is displayed for that command.

Specifying the name of a command group lists the commands available within that
group.

If you specify "*" for <COMMAND_NAME> or <COMMAND_GROUP>,
information for all commands will be displayed.

Thehelp command without any parameters provides a list of command groups.

Display general help information listing the command groups and information
regarding the use of thelp command:

M> help

280

Chapter 10: Emulator Commands
help,?
Display the short version of the help listing:

M> ? -s

Display the same listing of commands for only one of the command groups:
M> help -s emul

Display more information about each of the available memory commands by
leaving out thes flag:

M> help emul

Display specific information for the command:

M> help m

281

Chapter 10: Emulator Commands

init

Examples

init

<RETURN=

SYNTINIT

Theinit command allows you to reinitialize the emulator. Powerup, complete, and
limited initializations are available through various options.

The parameters are as follows.

The-p option causes a powerup initialization sequence. This initializes the
operating system, data communications, emulation and analyzer boards, and runs
extensive performance verification. If you are using the emulator through a LAN
connection, this option will break your LAN connection. Use the -c option to avoid
breaking the LAN connection.

The-c option causes a complete initialization sequence. Everything is initialized as
defined by the powerup sequence with the exception of the performance
verification.

The-r option causes a powerup initialization sequence. This initializes the
operating system and data communications, and ignores other optional products. It
also ignores the emulator and analyzer. It is primarily used by the progflash feature
to update firmware.

Perform a powerup initialization sequence:
M> init -p

If you have used telnet to connect to the emulation card using LAN, your
connection will be broken by this initialization sequence.

282

Chapter 10: Emulator Commands

init

Perform a complete initialization sequence, which resets the entire emulator
without executing performance verification:

M> init -c

Perform a limited initialization sequence, resetting only the emulator and analyzer:

M> init

You should only use thait command if the emulator is not responsive to other
commands. If you wish to change other configuration parameters without
initializing the emulator, there are commands available for that purpose. (See
below.)

If no options are specified, a limited initialization sequence is performed. The
operating system and data communications are not affected but all of the emulation
and analysis boards are reset. For example, a limited initialization would not
change macro definitions, system date and time, or the data communications
parameters, but the emulation memory map and breakpoint list would be reset to
their default states.

Theinit -c andinit -p commands cause a loss of system memory. If these
commands are used in macros, commands that follow them will not be executed.

See Also cf (change emulation configuration)
dt (set system date and time)
map (define the emulation memory map)
stty (set data communications parameters)

tinit (reset the analyzer to powerup defaults)

283

Chapter 10: Emulator Commands
load

load

-0) [rerome

NN N NN

I

<LOAD_OPTS> loadsynt

L]

Theload command lets you load program code into emulation or target memory.
Various file formats are supported via options to the load command.

The parameters are as follows. At least one dash (-) must be included before any
parameters are specified. It is optional to include or omit dashes for succeeding
parameters.

-i Specifies that the program code will be in Intel hex file format.

-m Specifies that the program code will be in Motorola S-record file format.

284

<LOAD_OPTS>

<FILE>

Chapter 10: Emulator Commands
load

Specifies that the program code will be in Tektronix hex file format.

Specifies that the program code will be in HP file format. In this case, the file is
expected to be transferred using the HP 64000 Hosted Development System
transfer protocol.

Load only those portions of program code which would reside in memory mapped
to emulation memory space. (Refer to igp command.)

Load only those portions of program code which would reside in memory mapped
to target memory space. (Refer to thap command.)

The program code will be transferred in quiet modeq lis not specified, the
emulator controller will write a “#” for each record successfully received and
processed.

The foreground monitor will be reloaded into dual-port memory.

This allows you to download a symbol file from the host computer into the
emulator. This option is valid for HP 64700 emulators that support the use of
symbols.

This represents all options to lead command that are specific to a particular HP
64700-Series Emulator. The MC68040 emulator does not support any custom load
options.

This represents the absolute file to load into the emulator.
When using the HP file format, the program is expected to be in binary.
When using the HP file format, the program is expected to be in hex.

When using Intel, Motorola or Tektronix file formats, this option sets up a prot
checking scheme using ASGACK/NAK characters. If using this option, the hos
should send one record at a time and wait for the emulator to return anASCI|
character between records. If the emulator returns an ABI instead, there has
been an error in data transmission. When the emulator receives the EOF character,
it will return only the normal emulator prompt because data transmission is
complete.

If, during the transfer, the host receivedsAK for a record, it should retransmit the
record until arACK is received or until a timeout value is reached, whichever
occurs first.

285

Chapter 10: Emulator Commands

load

-f You specify thef option if you are loading a custom foreground monitor into the
emulator.
In the default, at least one file format option must be specified.

See Also See Chapter 4 for instructions on loading programs using different communications

configurations.

286

Chapter 10: Emulator Commands
m

Cm)

—d }—]<DISPLAY_M0DE>[—I]

@ <ADDRESS >

= <RETURN>
v

-d

<DISPLAY _
MODE>

<ADDRESS>

Them command allows you to display and modify emulation and target system
memory. Options allow you to specify the display mode, specific address or
addresses for display or modification, and the data values to be inserted.

The parameters are as follows.
The-d option allows you to set the display mode for memory accesses.

A one-character mnemonic specifying the display mode to use in creating memory
displays. The allowable display modes are specific to the microprocessor in use;
some typical modes abe(byte),w (word) andm (mnemonic). See thmode

syntax pages to determine the correct display modes. If no display mode is
specified, the global display mode set viartttecommand is used as a default.

Specifies the address to be displayed or modified. As noted in the syntax, an
address followed by two periods and another address specifies a range of addresses
to display or modify. Address notation is specific to each microprocessor. The
MC68040 emulator allows the use of function codes and the distinction between
logical and physical when specifying address information. However, the address
default representation is a hexadecimal number. SERADBRESS>syntax

pages in Chapter 11 for examples of correct address specifications.

If you specify only the first address of a range followed by two periods and omit
the second address of the range, 128 bytes of the range starting at the first address
specified are selected for display or modification.

287

Chapter 10: Emulator Commands

m
<EXPR>

Examples

Data value to which a particular location is to be modified. If a range of locations is
to be modified to a sequence of data values, the values must be separated by
commas. Refer to the examples for details.

At least one address must be specified. If no display mode is specified the display
mode set by thmo command is used. Data items specified in memory

modification are repeated as a group to fill the address range specified (see the
examples below for clarification). The memory <DISPLAY_MODE> defaults to

the last value specified, or the default format for the emulator in use upon powerup
initialization (varies dependent on the microprocessor being emulated).

Display the memaory range fO0 hex through f1f hex in byte format:
M> m -db 0f00..0f1f

Display the same address range in word format:

M> m -dw 0f00..0f1f

Display the range in long word format (32 bits):

M> m -dl 0f00..0f1f

Display memory contents as assembler mnemonics:

M> m -dm _sys_demaodisp.._sys_demointr

You can display several rows of memory at a time. Type:

M> m -db 700..7ff

Modify the contents of location 700 hex to the byte value 21 hex by typing:
M> m 700=21

Notice that the results of the memory modification are not automatically displayed.
To view the results of a modification, you enter anothe@ommand.

288

Chapter 10: Emulator Commands
m

Clear the contents of a memory range:

M>m 700..71f=00

Modify the contents of a range to some other hex value:

M> m 700..71f=21

Provide a sequence of data items for modification:

M> m 700..71f=41,42,43

If the selected address range for display or modification includes target system
memory, the emulation processor will be broken to the monitor upon execution of
the command. After the command is complete, the processor will be returned to
target program execution if no errors occurred.

The method of specifying address information varies among different types of
microprocessors. See the <ADDRESS> syntax pages in Chapter 11 for specific
address information for the MC68040. Remember that specifying an address a
particular way in one command will affect the way you need to specify it for all
commands. For example, if you use function codes with your MMU translations,
you will also need to use function codes within the address information for the
command to display or modify those ranges of memory.

The way the data items are handled (for modification) depends on the
<DISPLAY_MODE> in effect. For example, if the display mode is byte, and the
data items 1a, 3f, and 66 are entered as 1a3f66, the location specified will be
modified to 66 hex. If the display mode is word, the location will be modified to
3f66 hex. And if the display mode is long word, the location will be modified to
001a3f66. Note that data may be specified in decimal, octal, or binary in addition to
the hexadecimal default. (See #EEXPR> syntax pages for information on

specifying numeric bases.) Conversely, if you specify the value 33 hex for
modification in byte mode, the value 33 is entered; in word mode, the value 0033 is
entered; in long word mode, the value 00000033 is entered. In other words, if the
value supplied is shorter than the mode in effect, it is padded with leading zeros.

In mnemonic mode, the instruction disassembler assumes that the first address
location disassembled contains the first byte of an opcode; therefore, if you specify
an address location that does not contain an opcode, the memory display will be
incorrect.

289

Chapter 10: Emulator Commands

m

See Also

The <DISPLAY_MODE> parameters depend on what modes are supported by the
emulator. See the <MODE> syntax pages for details on supported display modes.

Display modes default to the last one specified. Therefore, if you would like to
examine data areas after using the mnemonic display mode, you should change the
mode.

When a sequence of data items is provided for memory modification, the sequence
is repeated until the entire range has been modified.

If symbols have been defined, either by loading a symbol file or by usisgrthe
command, these symbols can be used imtkemmand and will appear in the
mnemonic mode-¢m) memory display. The command processor retains the name
of the last module referenced. If a symbol does not contain a module name, the list
of global symbols is searched. If the symbol is not found, the list of user symbols is
searched. If the symbol is still not found, the system searches the last module
referenced. If it doesn’t find it there, the rest of the modules are searched.

map (specify mapping of memory to emulation or user memory and to RAM or
ROM)

mo (specify global access and display modes)

290

Chapter 10: Emulator Commands
mac

<NAME>

<COMMAND>

mac

mac

% <RETURN>

. <COMMAND>.

Themac command allows you to save a group of commands under a name of your
choice. This allows you to instantly recall that command group by typing in the
assigned name; the emulator will then preprocess the macro to expand the
commands stored therein to a normal command line; the command line is then
executed as usual.

The parameters are as follows:

The-d parameter, in conjunction with the macro <NAME>, deletes the macro
defined by <NAME>. If <NAME> is given as the character “*” then all macros are
deleted.

This represents the name you assign to the macro definition. Names can be
combination of alphanumeric characters; however, you cannot define a macro
has a name identical to that of another HP 64700 Terminal Interface command-

If you specify a name which is the same as a currently defined macro, that macro
will be overwritten by the new macro you define.

Certain HP 64700-Series emulators may predefine macros to aid you in setting up
configurations for certain emulation tasks, such as in-circuit emulation.

This represents one or more emulator commands, including names which are used
to define other macros. <NAME> and <COMMAND> must be separated by an
equal sign (=), and the command string must be enclosed with braces “{}.” Each
<COMMAND> must be separated from other commands by a semicolon (;).

291

Chapter 10: Emulator Commands

mac

Examples

When using command substitution, you can include pseudo-parameters in the form
of “&token&” in the macro definition. Do not include any white space between the
two “&” symbols. When you execute the macro, include the string to be substituted
for &token& as a parameter on the command line. The macro will execute using
the command expanded with the string you substituted. See the Examples section
for more information.

This option sets the macro expansion echo to quiet mode. In this mode, any macro
that you run will be executed without displaying the expanded command string.

This option sets the macro expansion echo to verbose mode. In this mode, any
macro that you run will first display the expanded command string as a comment,
and then will execute the macro.

If no parameters are supplied, the current set of macro definitions is displayed. If
only <NAME> is supplied without a command string, the macro defined by
<NAME> is displayed.

Define a macro that resets the emulator, then defines the memory map, resets the
processor and breaks into the monitor, and then sets up the stack pointer:

M> mac setup={init;map 0..7fff eram;rst -m;reg usp=7000}

To execute the command, type:

M> setup

You could define another macro called “echonwait” as follows:

M> mac echonwait={echo "Set S1 to OFF";w}

Delete the macro nameetup

M> mac -d setup

Delete all macros:

M> mac -d *

Define a macro that fills an arbitrary 100-byte block range with a user-defined
value:

292

Chapter 10: Emulator Commands
mac
M> mac fill={equ start=&address&;m -db
start..start+100t=&value&}

Invoke the macro:

M> fill 50 88

In this example, 50 will be substituted for &addressé&, and 88 will be substituted
for &value&. So, addresses 50 through 150 decimal will contain the value 88.

Nested macro calls are permitted and limited only by constraints of system memory.

The commands within the macro definition are not checked for correct syntax until
the macro is executed; therefore, it is advisable to test the command string before
defining the macro.

The number of macros that can be created is limited to 100, but may be less,
depending on the complexity of the macros defined.

The length of the macro name combined with the macro definition is limited only
by the maximum HP 64700 command length of 255 characters; thus, the macro
name and definition can be a maximum of 251 characters.

A command within a macro definition cannot contain the pound sign character (#)
unless the command is enclosed in a quoted string. (Otherwise, text following the #
is interpreted as a comment.) This means there can be no matching brace at the end
of the command. Use tleehocommand to place comments in a macro definition.

Command line substitution is possible when invoking a macro. During the ma
definition, you may include pseudo-parameters which allow you to substitute
parameters, such as file names, when invoking the macro.

Pseudo-parameters are replaced on a position-dependent scheme, where the first
pseudo-parameter encountered in the macro string is replaced with the first
parameter passed into the macro. The second pseudo-parameter is replaced with the
second parameter passed into the macro, and so on.

You can define multiple pseudo-parameters in a macro using the same name for
both (or all) of them. Because pseudo-parameters are position-dependent, the first
pseudo-parameter will always be substituted with the first parameter you pass into
the macro, the second pseudo-parameter with the second parameter you pass into
the macro, and so on.

293

Chapter 10: Emulator Commands
mac

See Also rep (repeat; allows you to repeat any command, including macros)

294

Chapter 10: Emulator Commands
map

<ADDRESS>

map

7@ = <ADDRESS=> f. = <ADDRESS5> 7@

e fram
&

= <RETURN>

N

grd

Co D~
e 64783504

Themap command allows you to map address ranges to one of five different
classes of memory. For example, you may want to specify that addresses 1000
through 2fff hex are in emulation RAM, and addresses 3000 through 3fff hex
(where your program code will reside) are in emulation ROM. Later, when your
target system hardware is prototyped, you will be able to easily modify these
specifications to indicate that the address ranges actually reside in target system
RAM or ROM.

The parameters are as follows.

The address values specify the address range to be assigned to a particular memory
type. Whenever the emulation processor accesses the range specified, it will be
directed to the memory type specified in the map. Specification of address

295

Chapter 10: Emulator Commands

map

other

eram

erom

tram

trom

dp

lock

tci

information defaults to a hexadecimal value. See#&iBDRESS>syntax pages in
Chapter 11 for details of address specification.

The address rangeher specifies all address ranges not otherwise specified by
mapper terms. The emulator restricts type definition of the "other" ratigertp
tram, orgrd.

Specifyingeram indicates that the given address range is to reside in emulation
address space and act as RAM (read/write).

Specifyingerom indicates that the given address range resides in emulation address
space; it is to act as ROM (read only). Beeeommand allows you to specify that
emulation processor writes to this space or to space designated as target ROM
(trom) will cause an emulation system break.

The emulator does not protect emulation memory from being modified when a
write to emulation ROM occurs.

Specifyingtram indicates that the given address range lies within target system
RAM space. When the emulation processor accesses an address within this range,
the target system data buffers will be enabled by a mapper signal to complete the
transaction.

Specifyingtrom indicates that the given address range lies within target system
ROM space. As with therom parameter above, the command may be used to

set up the emulation system to break upon a write to these address ranges. In any
case, if target ROM memory is actually implemented as RAM, and the necessary
write strobes are connected to this memory, the emulator will allow the processor to
overwrite the memory locations.

Thegrd parameter indicates the given address range is to be “guarded;” therefore,
the emulation system software should not know that it exists. An emulation system
break will always be generated upon accesses to guarded memory.

Use the 4 Kbyte block of dual-port emulation memory. Valid only for erom and
eram.

Interlock target system and emulatibh and TEA signals (only valid for erom
and eram blocks).

Inhibit caching for this memory block.

If the commandnap is entered with no parameters, the current memory map is
displayed.

296

Examples

Chapter 10: Emulator Commands
map

View the memory map:

M> map

Suppose you need to map the following ranges:

» 1000 through 1fff, using dual-port emulation RAM and interlocking transfer
termination signals with the target system.

e 2000 through 2fff using emulation RAM and interlocking transfer termination
signals with the target system.

» 5000 through 7fff using target RAM and inhibiting caching.

e 8000 through 8fff using target ROM.

» All other memory is mapped as guarded.

Implement this map by entering

R> map 1000..1fff eram dp,lock
R> map 2000..2fff eram lock
R> map 5000..7fff tram tci

R> map 8000..8fff trom

Delete all map terms (reset the map):

R> map -d *

The emulation system assigns a term number to each address range you specify in
the map command. Term numbers are assigned in ascending order of addres
Therefore, if you map the addresses 0 through 100 (TERM_NUMBER_1) and
1000 through 1fff (TERM_NUMBER_2), then specify another range of 300
through 3ff, TERM_NUMBER_2 will be renumbered as TERM_NUMBER_3 a
the range 300 through 3ff will become TERM_NUMBER_2. Remember to use the
assigned term number when specifying mapper terms to be deletechigpthe
<TERM_NUMBER> command.

The memory mapper reassigns blocks of emulation memory after the insertion or
deletion of mapper terms. For example, if you modified the contents of 300 through
3ff above, deleted TERM_NUMBER_1, and displayed locations 300 through 3ff,
you would notice the contents of those locations are not the same as they were
before deleting the mapper term.

The mapper address block resolution 256 bytes. A map term can represent a block
as small as 256 bytes or as large as the memory space available in your system.

297

Chapter 10: Emulator Commands

map

See Also

When you create a map term, it will be rounded upwards to occupy the minimum
number of 256-byte blocks required to contain the term.

When any map term is added or deleted, the emulation processor will be reset and
held in the reset state until a break or run command is issued. The processor
remains reset in recognition of the fact that returning to execution directly after map
modification is most likely invalid.

Be sure to disable all breakpoinkts (-d bp) before changing the map. Breakpoints

are not cleared when the memory map is changed. (Breakpoints are also not cleared
when a file is loaded, or when memory is manually modified.) After the new map

and the program are set up, you can re-enable the breakpoints by re-enabling the
breakpoints break conditiob -e bp and entering thiep -e * command. When

the list of breakpoints is displaydop], the memory is checked to verify whether

the breakpoint is still in memory.

If all mapper terms are deleted with the commzuagh -d *, the “other” range is
unaffected.

bc (break conditions; determines whether emulator breaks to monitor upon write to
space mapped as ROM)

m (memory display/modify)
bp (set/delete execution breakpoints)

Chapter 7, “Configuring the Emulator,” has a complete description of the block
allocation strategy used for the emulation memory resources.

298

Chapter 10: Emulator Commands
mmu

mmu

- <RETURN=>
R GEND St EITa RO P

\% <ADDRESS=> \.Q

<ADDRESS=> _/ 64783509

Themmu command is used to display valid logical-to-physical address
translations. You can display the present translations for all logical addresses
for only a limited range of logical addresses. Further, you can display the det
how a single logical address is mapped through the tables to its correspondin
physical address. Finally, you can display the details of a single translation table
used by a selected logical address.

You can use thmmmu command to view the present set of valid translations, even
when one or more of the MMU registers is invalid. Parameters mitine
command let you specify values to use when none exist in the MMU registers.

299

Chapter 10: Emulator Commands

mmu

<ADDRESS>

<MMUREG>

<VALUE>

The parameters are as follows:

Shows the content of Table A for the logical address you included in your
command.

The address or address range specifies a logical address reference for the MMU
information to be displayed.

Shows the content of Table B for the logical address you included in your
command.

Shows the content of Table C for the logical address you included in your
command.

The name of a register in the set of registers used by the MMUs (mmusr, tc, srp,
urp, itt0, dtt, itt1, dtt1).

Lets you specify the name of any MMU register and supply a value to be used
when composing MMU displays, instead of using the present content of the register.

Shows the details of the translation through the tables for the logical address you
included in your command.

A number to be used in place of the present value within the referenced MMU
register. This number does not overwrite the present content of the register.

Whenmmu is used by itself, it shows a list of the valid MMU mappings. One
entry in the listis allocated for each page in the system.

300

Chapter 10: Emulator Commands
mmu

Examples Show all of the valid logical-to-physical mappings in the MMU:
M> mmu

Show all of the logical-to-physical mappings for logical addresses in the range of
7FFO through 800F:

M> mmu 7ff0..800f

Show the table details used to translate logical address 400:

M> mmu -t 400

Show the details of Table A used to translate logical address 40FC.
M> mmu -ta 40fc

Show the present MMU mappings based on a SRP register value of 00102000
instead of the present SRP register value, and mTTO register values of 0:

M> mmu -r srp=00102000 -r itt0=0 -r dtt0=0

See Also dmmu (Controlling the deMMUer.)

301

Chapter 10: Emulator Commands

mo

mo

Cw

<ACCESS_
MODE>

64783505

Themo command allows you to modify the global access and display modes.
Access mode is defined as the type of processor data cycles used by the emulation
monitor to access a portion of your memory. Display mode is defined as the
method used to display or modify data resident in memory.

The parameters are as follows:

The-a parameter, in combination with a single character specifying mode type, sets
the global access mode.

A single character used to specify the global access mode. Note that there is no
space between tha parameter and the mode specifier. The MC68040 emulator
allows the following access modes:

I long word (four bytes) access mode

w word (two bytes) access mode

b byte access mode

x emulator selects the optimum access mode (this is the default).

302

Chapter 10: Emulator Commands

mo

-d The-d parameter, in combination with a single character, sets the global display
mode default.

<DISPLAY _ A single character used to specify the global display mode default. Note that there

MODE> is no space between tktbparameter and the mode specifier. The MC68040

emulator allows the following display modes:

I long word (four bytes) display mode

w word (two bytes) display mode
b byte display mode
m mnemonic display mode

If no parameters are specified, the current settings of the display and access modes
are displayed.

Examples To display locations _sys_startup of the demo program in mnemonic format, enter:

M> m -dm _sys_startup

For other examples of the effects of changing the display mode, see the syntax
pages for then (memory) command in this manual.

View the current settings of the access and display modes:

R> mo

Set the access mode to words:

R> mo -aw

Change the access mode to words and the display mode to long words:

R> mo -aw -dI

Change the access mode to words, and the display mode to mnemonics:

R> mo -aw -dm

Reset the access and display modes to the powerup defaults:

303

Chapter 10: Emulator Commands

mo

See Also

R> mo -ab -dw

The emulator allows you to display and access memory in several ways for memory
display and modification. You set the display and access size usimg the
command. There are two types of mode settings.

Display Mode
Display mode defines how the emulator displays or modifies memory.

The mnemonic display mode allows you to display memory disassembled into
processor instruction mnemonics usingrtheommand. If you specify mnemonic
display mode and then execute any other command that references the display
mode, the command will behave as if “byte” display mode was selected. (Such
commands include memory modifies and searches.)

Themo command only sets the initial display mode. It is changed by using the
mode option in any of the memory access commands (sucloeset).

Access Mode
Access mode defines how the emulator accesses target system memory.

The emulation monitor uses the access mode to determine whether to use byte,
word or long word instructions during accesses to target system memory and
emulation memory that is not dual-port. It doesaffect how that data is displayed
on screen, or the way in which data is interpreted for memory modification. That is
controlled by the display mode.

By default, the emulator selects the most efficient mode for the access. You will
only want to specify use of byte, word, or long word if you must ensure that the
specified access mode is used due to restrictions in your memory hardware.

m (memory display/modify)

304

Chapter 10: Emulator Commands
po

(30)

—()
SO ’ T

P

<STRING>

Examples

N

SRS m
p ;

Thepo command allows you to change the system prompt characters.

posynf

The parameters are as follows:

The-p option allows you to change the emulator’'s command prompt to one
specified by<STRING>.

<STRING> is any group of ASCII characters enclosed by single open quotes (‘) or
double (") quote marks. This parameter, when used-pjthllows you to specify a
new emulator command prompt.

If several people use the system, you may want to define macros which reset the
prompt so each user knows who is currently using the emulator. For example:

M> mac yourid={po -p "\YOURID>"}
M> mac herid={po -p "\HERID>"}
M> mac hisid={po -p "\HISID>"}

You can redefine the emulator’'s command prompt string usingpthe

<STRING> command. Upon powerup, the emulator prompt defaults to “>.” (The
character before the string, for exampleM, U, etc., is used to indicate the

current emulator status anchist affected by redefining the prompt string.)

305

Chapter 10: Emulator Commands

pv
pv
< pv = <RETURN>
~@r{ <rererr_conrs]
Thepv command runs performance verification on the emulator and analyzer. The
performance verification exercises all the emulator hardware and software to high
confidence level.
The parameters are as follows:
<REPEAT _ <REPEAT_COUNT> allows you to specify the number of times to repeat the
COUNT> performance verification. This is a required parameter.
If no parameters are given, a warning message about initialization of the emulator
along with correcpv command syntax is displayed. To actually executevihe
command, you must provide a <REPEAT_COUNT> value.
Examples Executingpv with no parameters provides a warning display, along with help for

the correct syntax. Type:

M> pv

To loop through the performance verification twice, type:

M> pv 2

You should only run performance verification when the emulation probe is plugged
into the demo board.

When you use thev command, the emulator is initialized as if power were cycled.
Therefore, all equates, macros, memory map, configuration settings, system clock,
software breakpoints, trace specifications, and other configuration items you have
altered will be cleared. Do not use thecommand unless you can restore these
items from a host, or have documented them so you can restore their states
manually.

306

See Also

Chapter 10: Emulator Commands
pv
If pv reports failures, first check your hardware installation as documented in the
manual. If the failures persist, call your local HP Sales and Service office for
assistance. A list of offices is provided in Bgpport Serviceguide.

Note that providing multiple commands suctpad.;r is invalid; the second
command will not execute due to the system reset.

Typing in <CTRL>-C to abort thev command may result in incorrect failure
messages.

init (reinitializes the emulator)

307

Chapter 10: Emulator Commands
pv

308

Chapter 10: Emulator Commands
r

r L = <RETURN>
@ = <ADDRESS>

Ther command starts an emulation run. Execution begins at the address specified
by the <ADDRESS> parameter; if no address is specified, execution begins at the
address in the program counter.

The parameters are as follows:

<ADDRESS> Specifies the address where execution is to begin. If you sfetify processor
runs from the current program counter value. If you spesifithe processor runs
from its reset address. If the emulator is already resetc@mmand is the same as
rrst.

If no parameters are specified, the emulation run begins at the address specified by
the processor’s current program counter contents.

Examples Load the demo program, run it, and then break to monitor:

R> demo;r rst;b

Run the processor from address 700 (the entry address) in the demo program:

R> r 700

See Chapter 4 for information on how the emulator handlessartommand.

See Also s (step; allows controlled stepping through program instructions)
rx (run only when CMB (Coordinated Measurement Bus) execute pulse is received)

X (pulse the CMB execute line if resident on the CMB)

309

Chapter 10: Emulator Commands

reg

reg

reg 7

~ " <RETURN>

<REG_NAME>

ey

<REG_CLASS>

J/

<REG_NAME>

<REG_CLASS>

<VALUE>

Thereg command allows you to display and modify emulation processor register
contents. Individual registers may be displayed or modified. Related groups of
registers may be displayed. Combinations of display and modify are permitted on
the same command line.

The parameters are as follows.

The <REG_NAME> parameter allows you to specify a single register to display or
modify.

The <REG_CLASS> parameter allows you to specify an entire group of registers
for display.

To modify a register’s contents, supply the new contents in the <VALUE> variable.
This is a numeric value. The default is hexadecimal, other number bases may be
specified. Floating point values cannot be used. Also, you cannot use symbols as
the value for modifying the PC register.

Register Class

Register Names

* (basic) pc, st, usp, isp, msp, cacr, caar,d0..d7, a0..a7, vbr, dfc, sfc
fpu fpcr, fpsr, fpiar, fp0..fp7
mmu itt0, dtt0, itt1, dttl, mmusr, tc, srp, urp

310

Chapter 10: Emulator Commands
reg

Examples View the contents of all registers:

M> reg

Modify the contents of register DO to 50 hex:

M> reg d0=050

You can display more than one register at a time by listing all register names on the
same line:

M> reg dO st

See Also s (step; allows you to step through program execution—in combination with the
reg command, this is useful in debugging)

311

Chapter 10: Emulator Commands

rep

<COUNT>

<COMMAND>

Examples

See Also

rep

<COMMAND>

<COUNT> <RETURN>

Therep command allows you to repeat a group of commands a specified number
of times. The command list is simply a group of valid HP 64700 commands
separated by semicolons and delimited by braces.

The parameters are as follows.

An integer value specifying how many times to execute the command list. A count
of zero is a special case, meaning “repeat forever” (the repetition can be stopped by
entering <CTRL>-C, which issues a break to the emulator).

Any valid HP 64700 Emulator command, including previously defined macros,

may be specified with the options appropriate to the command. The list of
commands must be preceded by an opening brace and followed by a closing brace.
Also, the commands must be separated by semicolons. The commands will be
executed in the same order as they are specified on the command line.

Both a count and at least one command must be specified.

Suppose that you're using an ANSI terminal and want to simulate a repetitive
memory display of a certain memory range:

M> mac mem={echo \1b \5b \31 \3b \31 \48; m-db
4000..401f; w 0}

Command macros that you define usingrttee command can be used within a
command group for repetition.

No other command input will be accepted until the command group has executed
the indicated number of repetitions.

mac (allows assignment of a name to a command group for easy recall of a
specified command sequence)

312

Chapter 10: Emulator Commands
rst

Examples

rst

rst = <RETURN>

Therst command resets the emulation microprocessor. An option allows you to
specify that the processor should begin executing the emulation monitor code
immediately after the reset.

The parameters are as follows:
Causes the emulator to begin executing monitor code immediately after the reset.

The default operation is to reset and remain in the reset state.

Reset the processor and keep it in the reset state:

M> rst

Reset the processor and have it immediately commence emulation monitor
execution:

U> rst-m

If -mis not specified, the emulation processor remains in the reset state. Note
any commands which require the emulation processor to execute the monitor

for command processing will not execute while the processor is in the reset state,
but will first break from emulation into the monitor; these include commands such
asreg.

Commands or hardware signals which will take the emulator out of a reset state
includeb, r, s, reg, m, etc. and the CMB /EXECUTE pulse.

313

Chapter 10: Emulator Commands

X

<ADDRESS>

Examples

rx

% <RETURN>

= <ADDRESS>

Therx command allows you to set the starting address for synchronous CMB
(Coordinated Measurement Bus) execution.

The parameters are as follows.

The <ADDRESS> parameter specifies where to start program execution when the
CMB EXECUTE pulse is detected. If $ is specified for address, the current
program counter is used (default). The default base for <ADDRESS> is
hexadecimal; other bases can be specified with the proper extension. (Sg® the
syntax pages for supported bases.) For the MC68020 and MC68030/EC030
emulators, you may also specify function codes. See the <ADDRESS> syntax
pages in Chapter 11 for more information.

If you enter thex command without any address parameters, the current address
value setting is displayed. If no rx command has been entered since initialization of
the emulator, then the default settingd$.

View the current address setting specifieday

M> rx

Begin execution at 700 when the CMB-EXECUTE pulse is received:
M> rx 700

Start execution at the current value of the program counter when the
CMB-EXECUTE pulse is received:

M> rx $

314

Chapter 10: Emulator Commands

If the HP 64700 emulator is connected to the CMB, and the CMB-EXECUTE pulse
is detected, followed by the CMB-READY line in the true state, the emulator will
begin execution at the address specified byxteommand. If nax command has
been issued, execution begins at the current program counter value (sa®e as

Execution will begin at the address specified>gvery time the conditions listed
above are met. For example, if you type the commad@0, the emulator will
start executing at address 100 hex every time the CMB-EXECUTE line is pulsed.

Therx command automatically turns on CMB interaction by effectively
performing the equivalent ofanb -ecommand whether or not you have done so.

See Also cmb (enables or disables CMB interaction)

X (initiates a synchronous CMB interaction by pulsing the CMB-EXECUTE line)

315

Chapter 10: Emulator Commands

S

<COUNT>

<ADDRESS>

% <RETURN>

= @ = <COUNT>
==y

Thes command allows you to single-step the emulation processor through a
program. You can specify the number of steps to execute at a single time; or, you
can direct the emulator to step continuously. In addition, you may specify the
starting address for stepping.

The parameters are as follows:

If you enter theq parameter, stepping will occur in quiet mode; that is, the
instructions and program counter are not displayed upon execution of each step.

If you enter thew parameter, stepping will be done in whisper mode; only the final
program counter value is displayed after the step is executed.

The <COUNT> parameter allows you to specify the number of steps to execute in
sequence before returning command control. For example, if you spécifyen
five instructions will be executed in sequence.

The default base for <COUNT> is decimal. Other number bases may be specified;
see theEXPR syntax pages for more information.

If you do not specify a value for <COUNT>, then a value of one (1) is assumed. If
you specify a step count of zero (0), the emulator interprets this as “step
continuously.” Continuous stepping can be aborted with the <CTRL>-C command,;
or, it will be terminated upon receipt of an emulation break condition such as a
write-to ROM.

The <ADDRESS> parameter allows you to specify the starting address for

stepping. The default is a hexadecimal value; seEXiRR syntax pages for

information on specifying other number bases. The MC68040 emulator allows you
to specify function codes as part of the address. See the <ADDRESS> syntax pages
for more information.

316

Chapter 10: Emulator Commands
s
If you specifys with no parameters, the processor is stepped one instruction from
the current program counter location. If you specify <COUNT> but not
<ADDRESS>, then the current program counter value is specified for
<ADDRESS>.

Examples Step one location from entry:

M> s 1 entry

You can step through two additional instructions in the program by typing:

M> s 2

You can also step through the program in “quiet” mode. This inhibits the display of
any information about the stepping process. Type:

M>s-q 2

You can step the processor and display only the final program counter value after
the step by using the “whisper” mode:

M>s-w 3

Remember that you must specify a step count value if you specify an address. If
you don’t, a <CTRL>-C will abort the stepping. Type:

M> s 2000

The emulator will step 2000 times; ert&TRL>-C to abort the step function.

You can assign values to label names usinggueeommand and then use these
labels when specifying step information. For example, you could step 20
instructions from entry using the following equate. Type:

M> equ readcount=20
M> s readcount entry

If the emulator was in the run state (U> prompt) executing a user program when
you request the step, it will break to the monitor program before executing the step.

317

Chapter 10: Emulator Commands

S

See Also

When the Coordinated Measurement Bus (CMB) is being actively controlled by
another emulator, the step commag)ddpes not work correctly. The emulator may
end up running in user code (NOT stepping). Disable CMB interactioln {d)

while stepping the processor.

If you substituteb for the <ADDRESS> parameter, the current program counter
value will be used as the <ADDRESS> value. The same will occur if no address
parameter is specified.

If you specify a value for <ADDRESS>, then you must specify a value for
<COUNT>. Otherwise, the address value will be interpreted as a step count; the
emulator will step the number of locations specified.

If you have loaded a symbol file or user defined symbols, you will see the module
and symbol in the output when an instruction address has a corresponding symbol.

r (run emulation processor from a specified address)

reg (view or modify processor register contents)

318

Chapter 10: Emulator Commands
ser

ser

’(-d)—-|<D|SPLAY_MODE>'_I

<EXPR>

<ADDRESS>

<RETURN>

Thesercommand allows you to search memory for a data value, a character string,
or a combination of both. For every pattern match, the starting address of the match
is displayed.

The parameters are as follows:

-d The-d operator, in combination with the <DISPLAY_MODE> parameter, allows
you to specify the display mode used for the search. As a result, you can alter the
method used by the system for interpreting the display list data and the resultant

matches.
<DISPLAY _ This is a single character specifying the display mode to be used in the search. The
MODE> MC68040 emulator supports(byte), w (word), and (long word). For more

information on the <DISPLAY_MODE> parameters, seatlbecommand.

<ADDRESS> You use <ADDRESS> to specify first the lower, and possibly the upper, addre
boundaries of the memory range to search for the given data pattern. <ADDR
defaults to a hexadecimal number; expressions may also be provided. In addition,
the MC68040 emulator allows you to specify function codes. See the <ADDRESS>
pages in Chapter 11 for more details.

The two periods.() are used as a separator between the lower and upper address
boundary specifications. Notice that no additional spaces are inserted. You can use
“<ADDRESS>.." to specify the range from the address through the next 127 bytes.

<EXPR> <EXPR> is a numeric expression to be used as a reference pattern in the search.
The default is a hexadecimal number; other bases and expressions may be
specified. See the <EXPR> syntax in Chapter 11 for more information.

319

Chapter 10: Emulator Commands

ser
<STRING>

Examples

You specify <STRING> if you want to search for an ASCII character pattern. Note
that <STRING> must be bounded by single open quote marks (‘) or double quotes

(ll).
Many keyboards (and printers) actually represent the single open quote mark * as
an accent grave mark. In any case, the correct key is the one which produces a

character encoded as ASCII 60 hexadecimal. The correct double quote mark is the
character encoded as ASCII 22 hexadecimal.

If the character string you are searching for contains double quotes, you must
delimit the string with single open quotes and vice versa. For example, the string
"Type "C"™ will return an error; the strinype "C" is correct.

At least one address range and data pattern must be specified. If no display mode is
set with thed option, the current global display mode from ithecommand is
used.

Search for the string “This” in a particular address range:

M> ser O..0ffff="This"

You can also combine searches for numeric values, numeric expressions, and
ASCII strings:

M> ser -db 0..0ffff=20,"message",10+10

Data values in a search are interpreted according to the display mode. Search for
the same string, but change the display mode:

M> ser -dw 1000..103f=20,"MESSAGE",20

The search fails because the end of the expression was not on a word boundary.

Using the-d (display mode) option, the method of interpreting the pattern supplied
by the user can be altered. If no option is given, the display mode used is taken
from global default set by themo command.

If addresses specified in the search reside in target system memory, the emulator is
broken to the monitor and returned to the user program when the command is
completed.

320

Chapter 10: Emulator Commands
ser
You can concatenate various combinations of <STRING> and <VALUE> to form
more complex search patterns by separating the parameters with cgmmas (

See Also cp (used to copy the contents of one memory range to another)

m (used to display/modify memory locations)

321

Chapter 10:
stty

Emulator Commands

stty

>

stty

AT

CAARACTER SIZE

S7OrR L/75

LALYD FATE

1

noparity

evenp

oddp

|

onep

zerop

1stopb

2stopb

o]
S 0]
o} ~

(¢l
S
S

1200

2400

4800

9600

19200

38400

57600

115200

230400

460800

i

INTERFACE TYFE

LATA COMMUNICATIONS
OF LATA TERMINAL

CARSACE RETUANS
NEW LINVE MAFFING

RIESCIS ANLSHAKE

LOSKRADTR

XONAXOFF

£ECHO

Mo o2z

R

rs?32

a
o]
@

a
a

onlcr

oncrn

o
El

crts

—crts

cdsr

|
a
a
a
<

(e

—xon

echo

—echo

<RETURN>

322

PARITY

CHARACTER
SIZE

STOP BITS

BAUD RATE

INTERFACE
TYPE

DATA COM-
MUNICATIONS
OR DATA
TERMINAL

CARRIAGE
RETURN/
LINE FEED
MAPPING

RTS/CTS
HANDSHAKE

Chapter 10: Emulator Commands
stty
Thestty command allows you to modify the parameters of the data
communications ports without changing the configuration switch settings.

The parameters are as follows.
Parity for the serial port may be set odd, even, zero, one, or none.

The length of each character sent by the system may be set to 7 bits or 8 bits.

The number of stop bits used to terminate each character may be set to one (1) or
two (2).

The baud rate (rate at which bits are transmitted and received) may be set to one of
the following values: 300 1200 2400 4800 9600 19200 38400 57600 115200
230400 460800.

The type of interface on the serial port may be set to either RS-232 or RS-422.

RS-422 uses balanced transmission lines and therefore can achieve much higher
data rates with reliability over longer distances than RS-232. Otherwise, the
interfaces are similar.

The Serial Port may be set to operate either as Data Communications Equipment
(DCE) or as Data Terminal Equipment (DTE). This configures the handshake lines
and transmit/receive lines for the proper signal to pin relationships on the interface.

You can select several different options for terminating lines of output from the
system, depending on what is required by your hardware. The following choic
available:

onlcr—generate new-line and carriage-return on output
ocrnl—generate carriage-return and new-line on output
ocr—generate carriage-return on output

onl—generate new-line on output

The optiorcrts enables the Request To Send/Clear To Send handshake. Specifying
-crts disables this handshake.

323

Chapter 10: Emulator Commands

stty

DSR/DTR
STATUS

XON/XOFF
HANDSHAKE

ECHO

Examples

The optioncdsr enables exchange and recognition of the Data Set Ready/Data
Terminal Ready status lines. Specifyiegsr disables the exchange.

If you specifyxon, the system generates XON/XOFF (DC1/DC3 characters)
software handshaking to control the amount of data received at a given time.
Specifying-xon disables this handshake sequence.

(When the emulator’s receive buffer is full, it will send a DC3 (XOFF) character to
the host to stop transmission; when it is ready for more data, it will send a DC1
(XON) character to restart transmission.)

If you specifyechq all characters received by the emulator datacomm are echoed
back to the sending system. Specifyiaghomeans the system will not echo back
characters received.

You will normally use this with the echo settings required by your host computer
and your terminal. Most Hewlett-Packard systems will require that you enable the
echo feature, as HP host computers automatically echo characters back to data
terminal devices.

The powerup default configurations for the serial port are determined by the rear
panel configuration switches. See Hie 64700 Card Cage Installation/Service
Guidefor more information.

Display the current data communications setting for both ports:

M> stty

Set the baud rate for the serial port, port A, to 1200 baud:
M> stty A 1200

Change the baud rate back to 9600 and disable local echo on the Serial Port:
M> stty A 9600 -echo

Delete the XON/XOFF software handshake and add the RTS/CTS hardware
handshake:

M> stty A -crts -xon

324

Chapter 10: Emulator Commands
sym

(sym

<ADDRESS>
-d
-du

sym

‘‘ <RETURN>
@] @

)
= <SYMBOL> ®<ADDRESS> -
D

Thesym command defines, displays, or deletes symbols in the emulator.
The parameters are as follows.

The <ADDRESS> parameter specifies the value to assign to a user symbol.
The-d option deletes all symbols.

The-du option deletes user symbols. KBAME> parameter is not included, all
user symbols are deleted. KNAME> parameter is included, only user symbol
matching the entered name are deleted.

The-dg option deletes all global symbols. No option exists to delete one global
symbol.

The-dl option deletes local symbols in a module. fNAME> parameter is not
included, all local symbols are deleted for all modules<NAME> parameter is
included to specify a module name, only local symbols in the module matching the
entered name are deleted.

The-g option specifies the display of global symbols. fNAME> parameter is
not included, all global symbols are displayed.{NAME> parameter is
included, only global symbols matching the entered name are displayed.

325

Chapter 10: Emulator Commands

sym
<NAME>

Examples

This represents the symbol label to be defined or referenced. The format of the
symbol name reference is determined by the type of symbol, where:

name is a user symbol or module name

:name is a global symbol name

name: is a local module name

module:name is a symbol name in a local module.

In addition, symbols can be referenced using a “wild card” expression when
displaying and deleting names. Only one wildcard character can appear in a symbol
name. An asterisk (“*") character is used to represent zero or more characters at the
end of a symbol name. A wildcard can be used in any of the following symbol

types:

name* represents a user symbol name followed by zero or more of any character
or characters

:name* represents a global symbol name followed by zero or more of any
character or characters

module:name* represents a local module:symbol followed by zero or more of any
character or characters.

This option allows you to display local modules and symbolssMAME>
parameter is not included, all local modules are displaye&NffdME> parameter
is included, only local symbols matching the symbol name or module are displayed.

This option allows you to display user symbols. fiNMAME> parameter is not
included, all user symbols are displayed. {NAME> parameter is included, only
user symbols matching the entered name are displayed.

Thesym command without any parameters displays all of the symbols currently
defined.

Display all symbols:
M> sym

Display all global symbols:
M> sym -g

326

Chapter 10: Emulator Commands
sym
Display the global symbol _sys_demodisp:

M>sym -g _sys_demodisp

Define a user symbol named “mysymbol”:

M>sym mysymbol=107h

Display a user symbol named “mysymbol”:

M>sym -u mysymbol

Display all local modules:

M>sym -|

Display symbols in a local module named handle_msg (note the demo program
does not contain this module. It is here for example, only):

M>sym - handle_msg:

Delete all global symbols:

M>sym -dg

Display all symbols or local modules whose names begin with “_sys_™:

M>sym _sys *

Three types of symbols are supported: global, local, and user. Global symbols
reference addresses anywhere in memory using an absolute reference. Local
symbols also use absolute addressing but are grouped within a “module.” User
symbols are defined at the command line. Global and local symbols cannot be
defined at the command line.

The definition of a module for grouping local symbols depends on the environment
being used. For local symbols created by a high-level language, a module might be
a function, a procedure, or a separately compilable source file. When you define
local symbols through the use of a symbol file, a module,

327

Chapter 10: Emulator Commands
sym

328

Chapter 10: Emulator Commands

in effect, becomes a technique to manage the symbols. It can be a mnemonic device
to refer to modules, or it can be a simple way to group local symbols into a set for
display and deletion purposes becausesynecommand facilitates manipulation

of local symbols by their module name.

Symbols are used like equated variables. When using symbols in expressions, only
the+ and- operators can be used immediately before and after the symbol name.
The expression can contain literals and equaigg) (abels, but not other symbols.

When using symbols, if a symbol and an equated value have the same name, the
equated value will be used.

The symbol table can be updated in three ways:
* You can enter user symbols at the command line.
* You can update it from an external “symbol file” usingltieal -Socommand.

* You can load an absolute file (such as an Intel OMF file) which can contain
symbols as well as program code.

A “symbol file” is a text file containing user-specified symbols. See Chapter 13 for
more information.

See Also equ (used to equate names to expressions)

load (used to load a program file with symbols, or a symbol text file)

329

Chapter 10: Emulator Commands

t

Examples

See Also

Thet command starts an emulation trace.

There are no parameters.

To begin a trace, enter:

M> t

Thet command (otx if making a synchronous CMB execution) must be entered to
begin a measurement. Most other trace commands are used only for specification of
triggering, sequencer, and storage parameters, or to display trace results or status.

r (starts a user program run; normally will be specified after entering the
command)

th (halts a trace in process)
ts (allows you to determine the current status of the emulation analyzer)
tx (specifies whether a trace is to begin upon start of CMB execution)

x (begins synchronous CMB execution)

330

Chapter 10: Emulator Commands
ta

Examples

ta

When used in the 1K analyzer, thecommand displays activity on each of the
analyzer input lines. Each signal may be low, high, or moving. There are no
parameters. Tha command can be accepted by the deep analyzer, but it will
provide no information.

Display current signal activity in the 1K analyzer:

M> ta

You will see a display similar to the following:

Pod 5 =01700100 0010?7100
Pod 4 =11700710 0??00100
Pod 3 =0?72?2?7??? ?22?7?27??7
Pod 2 =11700110 00000000
Pod 1 =00000700 1??????0

You can interpret the results as follows:

Bits 15, 12, 11, 6-9, 4, 2 and 1 of Pod 5 are low, bits 14, 10, 5 and 2 are low, and
bits 13 and 3 are moving.

Bits 15, 14, 9 and 2 of Pod 4 are high, bits 12, 11, 7, 4, 3, 1 and O are low, an
13, 10, 6 and 5 are moving.

Bit 15 of Pod 3 is low; all other Pod 3 bits are moving.
Bits 9,10,14 and 15 of Pod 2 are high, bit 13 is moving; all others are low.

Bit 7 of Pod 1 is high; bits 1-6 and 10 are moving; all others are low.

331

Chapter 10: Emulator Commands

ta

The trace activity measurement is interpreted as shown in the following table.

Type of signal activity Symbol displayed
Signal is low 0
Signal is high 1
Signal is moving ?

Each pod (group of 16 lines) is displayed on a single line with bit 0 (LSB) at the far
right and bit 15 (MSB) on the far left. Each pod represents the following analyzer
bits:

Pod Emulation Analyzer Bits
1 Bits O through 15

2 Bits 16 through 31

3 Bits 32 through 47

4 Bits 48 through 63

5 Bits 64 through 79

332

Chapter 10: Emulator Commands
tarm

farm
s

trig2

always

tarm

Examples

<RETURN=>

Thetarm command allows you to specify an arming condition for the
emulation-bus analyzer. You can specify the arm condition as the assertion of the
trig1 or trig2 signals or asrm always. The arm condition may then be used in
specifying the analyzer trigger or in specifying branch conditions for the sequencer,
as well as count or prestore qualifiers.

The parameters are as follows.

The operators and!= are used to respectively indicate that the arm condition is
equal to, or not equal to, the speciftedl ortrig2 condition.

If you specifytarm =trigl as the arming condition, then the assertion of the trigl
signal will arm the analyzer. Conversely, if you spetafyn !=trigl , the analyzer

will remain armed until the trigl signal is asserted. The trigl signal can be asserted
from many sources including the analyzer itself or the rear panel BNC connector or
the CMB. Sednct, cmbt, andtgout for examples.

If you specifytrig2 as the arming condition, then the assertion of the trig2 sign

will arm the analyzer. Conversely, if you speddym !=trig2 , the analyzer will

remain armed until the trig2 signal is asserted. The trig2 signal can be asserte
many sources including the analyzer itself or the rear panel BNC connector or the
CMB. Seebnct, cmbt, andtgout for examples.

If you specifytarm always, the analyzer is continuously armed.

If no parameters are supplied, the curtanh condition is displayed. The default
setting after powerup oinit istarm always.

View the current state ¢drm:

M> tarm

333

Chapter 10: Emulator Commands

tarm

See Also

You may want to connect an external instrument, such as a logic analyzer, to the
HP 64700 rear panel BNC port and have the external instrument trigger an
emulation-bus analyzer trace:

M> bnct -r trigl
M> tcf -c

M> tarm =trig1l
M> tg arm

This will cause the emulation-bus analyzer to trigger upon assertion of the rear
panel BNC signal. To return the analyzer to the continuously armed state:

M> tarm always

Perhaps you want the analyzer to store only states received while there is NOT a
trigger signal on the CMB (Coordinated Measurement Bus). To do this:

M> cmbt -r trig2
M> tcf -c

M> tarm !=trig2
M> tsto arm

The trig2 signal is set to receive the CMB trigger. Then the emulation-bus analyzer
configuration is set to complex (this is required to usatheparameter in

analyzer expressions). Next, settdwen condition to the logical NOT of the trig2
signal; finally, analyzer storage is qualified by #nm parameter.

bc (can be used to cause the emulator to break to monitor execution upon receipt of
the trigl and/or trig2 signals)

bnct (used to define connections between the internal trigl and trig2 signals and the
rear panel BNC connector)

cmbt (used to define connections between the internal trigl and trig2 signals and
the CMB trigger signal)

tgout (defines whether or not the trigl or trig2 signals are driven when the analyzer
finds the trigger state)

334

Chapter 10: Emulator Commands
tcf

-deep [<depth>]

/% <RETURN=>

M
_
)
g 64794502

Thetcf command is used to set the configuration for the emulation-bus analyzer.
The-1k and-deepparameters are available only when using the deep analyzer.

The parameters are as follows:
Specifying-e sets the analyzer to the easy configuration.
Specifying-c sets the analyzer to the complex configuration.

Specifying-1k (available only in the deep analyzer) sets the analyzer to the
compatible mode. In this mode, the deep analyzer is compatible with emulator
interfaces that were designed to work with the 1K analyzer The trace memory is
1024 states deep if you have no state or time count included in your trace
specification; it is 512 states deep if a state or time count is included in your tr
specification. This is the default mode at power up.

Specifying-deep(available only in the deep analyzer) sets the deep analyzer to the
deep mode; the trace memory depth will be the maximum depth available in the
analyzer. Specifyingdeep <depth>sets the analyzer to have a trace memory of

the depth you specify (less than the maximum depth, if desired). You may want to
specify a reduced depth when making a series of traces to be sent to post-processing
software.

Specify<depth>using a decimal number. For example, to obtain the same depth
as the 1K analyzer, enter ttoé -deep 1024command. This gives you the same
trace depth as the 1K analyzer without imposing the memory tradeoff for counting
that is imposed in the 1K analyzérf(-1k).

335

Chapter 10: Emulator Commands

tcf

Examples

When using the terminal interface the -1k mode is selected during powerup. You
must select thedeepmode after power up by entering thé-deep [depth]

command. In high-level interfaces, Hieepmode is automatically selected after
power up.

If no parameters are supplied, the current analyzer configuration is displayed. After
powerup, the default analyzer configuratiotcis-e andtcf -1k. Thetinit
command will setcf -e, but will not affect thecf -1k/-deepspecification.

Display the current analyzer configuration:
M> tcf
Set the analyzer to complex configuration:

M> tcf -c

Set the analyzer for a 4K memory depth:

tcf -deep 4096

If no parameters are supplied, the current analyzer configuration is displayed. After
powerup otinit , the default analyzer configuratiorics -e.

There are two possible configurations for the analyzer: easy configuration

(tcf -e), and complex configurationcf -c). Below, each of the configurations is
described briefly, along with some of the commands that modify the analyzer in
each configuration. The command descriptions are not meant to be an exhaustive
list of each command’s features; refer to the syntax pages for a detailed description
of a particular command.

336

Chapter 10: Emulator Commands
tcf

Easy Configuration

When in easy configuratiotct -€), much of the complexity of the analyzer is
hidden. Some measurement power is lost. When you need the full power of the
analyzer, switch to the complex configuration.

Expressions

In easy configuration, all analyzer commands take the general form of
<command> <simple_expression>The commands that use this form tag tif,
telif, tg, tpg, andtsto. A simple expression is the information that can fit into a
single pattern or a single range (e, trng, andSIMPLE_EXPR syntax for
further information). Examples aageldr=2105 data!=15, andaddr=4012..401a

Sequencing

The easy configuration allows you to have the analyzer search for a simple
expression; when it is found, it can then search for a different simple expression.
The ability to search for one expression, then search for another expression based
on the first is known as sequencing.

In easy configuration, there are 4 sequencer terms available. Each has a primary
sequence branch, which always branches to the next sequencer term (1 to 2, 2 to 3,
and so on). The branch out of the last term defines the trigger term. A global restart
term is also available, which will return the sequencer to term 1 if found. If both the
primary branch and global restart term are satisfied simultaneously, the primary
branch is always taken in preference to the restart.

Sequencer Manipulation

The simplest sequencer control is theommand. This defines a one term

sequence with the trigger occurring upon the branch out of the term. You can
specify an occurrence count; that is, the number of times the given trigger qualifier
must be found to satisfy the trigger condition.

You can exercise greater control over the easy configuration sequencer using the
tsq command. This command allows you to insert additional sequence terms (up to
the limit of four) or delete terms.

By using thdif command, you can define the primary branch condition for each
sequence level. You can also specify an occurrence count for each branch
condition. The primary branch out of the last sequence term in the list defines the
trigger condition.

337

Chapter 10: Emulator Commands

tcf

Thetelif command specifies the global restart condition. If both a primary branch
and global restart condition are satisfied at the same time, the primary branch is
always taken. However, if the primary branch has an occurrence count greater than
one (1), and the global restart is encountered before the occurrence count is
satisfied for the primary branch, the global restart is taken, and the primary branch
occurrence count is reset to zero.

Storage Specification

You can specify which events should be stored by the analyzer usistpthe
command. This is a global storage qualifier; that is, the qualifier is identical for all
sequencer terms. Analyzer events that cause the sequencer to change states are
always stored, regardless of the storage qualifier.

State/Time Counts

You can set up the analyzer to count time between states or count occurrences of a
specific state using theq command.

Prestore

The 1K analyzer has a two-stage prestore pipeline; it can display up to two prestore
states before each store state. The deep analyzer has a single-stage prestore
pipeline; it can display only one prestore state before each store state. You set up
the qualifier for this pipeline using tiygg command. When the qualifier is found,

the event is stored in the pipeline; when the next store-qualified event is found
(matching thesto qualifier), the pipeline is flushed, placing the prestore-qualified
event(s) immediately before the corresponding store-qualified event. You can use
the prestore feature to observe the relationships between certain program variables
and program routines or between program routines. (For example, you might
store-qualify writes to a variable. Using prestore, you can capture the instructions
that caused those writes to occur. You might store-qualify entry to a code module,
and prestore qualify calls to that module.)

338

Chapter 10: Emulator Commands
tcf

Complex Configuration

The full analyzer capability is available to you in the complex configuratibn (

-¢). Using the multiple sequence terms, primary and secondary branch capability,
and powerful expression capability, you can make just about any conceivable
measurement.

Expressions

In complex configuration, all analyzer commands take the general form of
<command> <complex_expressionThe commands that use this form @

tif, telif, tg, tpg, andtsto. A complex expression is made up of pattern, range and
arm labels, tied together with various operators that define the specific condition.
Each of the pattern and range labels must be previously assigned to a specific
simple expression using that andtrng commands. (These two commands are
only available in the complex configuration.) So, you might define some pattern
labels and a range label as follows:

U> tpat pl addr=205a
U> tpat p5 data!=00
U> trng addr=4000..4011

And then make complex expressions as follows:

pl or p5
rand p5
pl|!r

See thec<COMPLEX_EXPR> syntax pages for details on complex expressions

Sequencing

The complex configuration allows you to have the analyzer search for a complex
expression; when it is found, it can then search for a different complex expression.

In complex configuration, there are always 8 sequencer terms. Each has a primary
sequence branch, which can branch to any sequencer term (1 to 5, 2 to 8, and so
on). A secondary branch is also available. It can branch to any sequencer term. If
both the primary branch and secondary branch are satisfied simultaneously, the
primary branch is always taken in preference to the secondary branch.

339

Chapter 10: Emulator Commands

tcf

Sequencer Manipulation

The simplest sequencer control is theommand. As in easy configuration, it

defines a two term sequence with the trigger in the second term. You can specify an
occurrence count; that is, the number of times the given trigger qualifier must be
found to satisfy the trigger condition.

You can exercise greater control over the complex configuration sequencer using
thetsq command. Although you cannot add or delete sequence terms in complex
configuration (there are always eight), you can specify the trigger term. You can
also reset the sequencer (which clears all the branch specifiers and storage
qualifiers).

By using thdif command, you can define the primary branch condition for each
sequence level. You can also specify an occurrence count for each branch
condition, and the destination term for each branch.

Thetelif command specifies the secondary branch condition, which can jump to

any sequence term. If both a primary and secondary branch condition are satisfied

at the same time, the primary branch is always taken. However, if the primary

branch has an occurrence count greater than one (1), and the secondary branch is
encountered before the occurrence count is satisfied for the primary branch, the
secondary branch is taken, and the primary branch occurrence count is reset to zero.

Storage Specification

You can specify events to be stored by the analyzer usitgtérebmmand. You

may specify different storage qualifiers for each sequence term; if you have
sequence term 5 active during execution of a particular procedure and you want to
store all of the writes while that procedure is executing, you castode qualify

writes while term 5 is activagdat p2 stat=write;tsto 5 p2.

If you don't include a term number when specifying the storage qualifier, your
storage qualifier will apply to all sequence terms.

State/Time Counts, Prestore

The state/time counting and prestore facilities are identical to those provided in the
easy configuration; however, you must specify a complex expression instead of an
easy expression in qualifying the state count or prestore.

340

Chapter 10: Emulator Commands
tcf

Resetting the Analyzer Configuration

When the analyzer configuration is changed, the entire analyzer specification is
reset. You can perform a reset back to the default sequencer setup in either
configuration by using thisq -r command.

When the trace configuration is changed, the count qualdgy i6 reset to “none”
(instead of “time”) if the clock modedk) is fast (F) or very fast (VF).

See Also tarm (used to set the analyzer arm specification; this specification can only be used
in analyzer expressions in complex configuration)

tcq (sets the expression for the trace count qualifier in either analyzer configuration)

telif (sets the global restart in easy configuration, secondary branch condition in
complex configuration)

tg (used to set a trigger expression in either analyzer configuration)
tif (sets primary branch specification in either analyzer configuration)

tpat (used to label complex analyzer expressions with a pattern name; the pattern
name is then used by the analyzer setup commands. Only valid in complex
configuration)

tpqg (specifies trace prestore qualifier in either analyzer configuration)
trng (defines a range of values to be used in complex analyzer expressions)
tsto (specifies a qualifier to be used when storing analyzer states)

tsq (used to modify the trace sequencer’'s number of terms and trigger term)

341

Chapter 10: Emulator Commands
tck

tck

The tck command used in the 1K analyzer:

tck () <RETURN>

64783501

e) =)
)

342

VF

CLOCK SIGNALS

Chapter 10: Emulator Commands
tck

Thetck command allows specification of clock qualifiers, master edges and
maximum clock speed of the master clocks used for the emulation-bus analyzer.
The clock speed selection has no effect in the deep analyzer.

The parameters are as follows:

If the b option is specified, only background monitor code will be qualified to be
captured by the analyzer.

If the u option is specified, only user code (your target program code) will be
qualified to be captured by the analyzer. This is the default.

Theu andb qualifiers are ORed with all of the other qualifiers specified.

Thes option indicates that the maximum clock speed for the 1K analyzer is to be
modified per a one or two letter code immediately following.

Specifies a bus speed of SLOW; less than or equal to 16 MHz.
Specifies a bus speed of FAST; between 16 MHz and 20 MHz.
Specifies a bus speed of VERY FAST; greater than 20 MHz.

Specifyingr indicates that the analyzer is to be clocked on the rising edge of the
indicated clock signal. If you specify both clocks in the deep analyzer, the rising
edge of either the or theM clock can clock a state.

Specifyingf indicates that the analyzer is to be clocked on the falling edge of the
indicated clock signal.

Specifyingx indicates that the analyzer should be clocked on both the rising a
falling edges of the indicated clock signal.

Specifyingl indicates that the analyzer should only accept other clock signals
the associated clock signal is low (less positive/more negative voltage). Used as a
qualifier (example: clock on rising edgelobnly if N is low). Note that -I N is the
same as -b, which captures only background monitor execution.

Specifyingh indicates that the analyzer should only accept other clock signals
when the associated clock signal is high (more positive/less negative voltage). Used
as a qualifier (example: clock on falling edgevbbnly if N is high).

In the deep analyzer, thandh operators can be used on clock sigiaher and
f operators may be used on clock sighagdM. In the 1K analyzer, thef, x, I,
andh operators may be used on the following clock sigdalk; L, M or N.

343

Chapter 10: Emulator Commands

tck

Examples

If no parameters are specified, the current clock definitions are displayed. After
powerup otinit , theu option is always set. Other clock options set at initialization
depend on the particular emulator in use, and whether or not there is an external
analyzer present.

Display the current settings of the master clocks after powerufritr:a

M> tck

Suppose that you are using the 1K analyzer, the target system clock rate for the
MC68040 processor is 40 MHz, acidwait=en. The resulting data rate is 20 MHz,

so you must set the clock rate to fast, and disable the time counter. (See Chapter 5
for more information.)

R> tcq none
R> tck -s F

Add tracing of background code to the current clock settings:

M> tck -ub

Specify that trace data can be clocked into the analyzer on either the rising edge of
theL clock or on the rising edge of the clock, but only when thi clock is low:

R> tck -r LM -I N

Thetck command is included with the system for internal system initialization and
system control through high-level software interfaces. You may also use this
command to set the 1K analyzer data rates, which depend on the target system
clock rate and number of rate states. See the section on analyzer clocks in Chapter
5, “Using the Analyzer,” for more information.

Changing the clock speed with the SPEED>option affects thécg command
parameters. When speed is setS¢slow), thetcq command may either count
states or time. When speed is setRdfast), thecqg command may be used to
count states but not time. If clock speed is seWt®e(very fast)tcq cannot count
either states or time and should be sétdmone.

The clocking options of the 1K analyzer operate on five different clock signals:
K, L, M andN. Inthe deep analyzer, only three clock signals are used. Clocks

344

Chapter 10: Emulator Commands
tck
M, andN are generated by the emulator; the emulation master clock edges are set at
powerup for the particular emulator being used; you should not change them.

When several clock edges are specified, any one of the edges can clock the trace. If
several qualifiersl (or h) are specified, they are ORed; the trace is clocked when
one or more of the qualifiers is met.

See Also ta (display current trace signal activity. This can be useful after you have modified
the clocks for the external analyzer; you can issaecammand and verify that
you are seeing activity on the signals of interest.)

tcq (used to specify trace count qualifier for states, time, or none; maximum clock
speed set itck affect whichtcq parameters are valid)

tsck (used to define slave clock signals used by the anatgketgfines the master
clock signals. Default mode fesck is off on all pods.)

Also see Chapter 5, “Using the Analyzer,” for information on analyzer clock speed.

345

Chapter 10: Emulator Commands

tcq

<ANALYZER_
EXPR>

time

arm

fca

tcq

<RE TURN=>

Thetcq command allows you to specify the type of count to be made by the
emulation trace tag counter, and specify a qualification for the counter, if desired.
Using this command, you can specify whether the analyzer measures time between
each state it captures, counts occurrences of certain types of states you specify, or
makes no count at all. If using the deep analyzer, you can also specify that counts
be made only when ttegm signal is asserted. If using the 1K analytay,arm is

not permitted in any configuration.

The parameters are as follows:

<ANALYZER_EXPR> allows you to specify an expression to be counted by the
trace tag counter. This expression consists<SIMPLE_EXPR> in analyzer

easy configuration and<COMPLEX_EXPR> in complex configuration. See the
syntax pages for expressions for specific details of analyzer expressions. In either
configuration, the expression may consist of the stategcount all states) or
none(disable trace tag counting).

If you specifytime rather than an analyzer expression, the trace tag counter
measures the amount of time between stored states.

In the 1K analyzer, thieq time qualifier is only available when the analyzer clock
speed is set to the sloB)(speed setting (default). If the clock speed is set to very
fast (VF), then trace tag counting must be turned off by specitgigpgone Refer

to thetck command (analyzer clock specification) for further information.

In the deep analyzer, if you spedfy] arm, the trace tag counter will make its
counts only after tharm signal is true. Tharm signal can be supplied on either
trigl or trig2, and can be asserted by either the analyzer itself, by an associated
emulator or analyzer on the coordinated measurement bus, or by an instrument
connected to the rear panel BNC on the instrumentation card cage.

Thearm signal begins in the false state. It switches to the true state and remains
true after the first false-to-true transition of the selected signal(s).

346

Examples

Chapter 10: Emulator Commands
tcq
If no parameters are given, the current count qualifier is displayed at powerup or
aftertinit initialization, the clock qualifier defaults to the stiag time.

To view the currentcq setting, type:

R>tcq

To change the trace listing so that the time intervals are displayed as a value
relative to the last state stored, type:

R>tf addr,h mne count,r

When you display the trace list, asterisks will be shown icdhet field if your
clock rate is slow enough to allow time or state counts.

To count time intervals, do the following:

R>tck -sS
R>tcq time

To measure the time between each character output by the demo program:

R>tck -sS;tcq time

R>tsto addr=_sys_demodisp

R>t

R>demo;r ; m _sysbuf="12345@"
Usth; tl

When you display the trace list, the time interval is now measured relative to t
trigger state. To reset the trace format to count relative, type:

Ustf addr,h mne count,r

To specify that counts be made in the deep analyzer only after an external
instrument provides a false-to-true transition to the rear panel BNC, type:

R> bnct -d trigl
R> tarm =trigl
R> tcqg arm

347

Chapter 10: Emulator Commands

tcq

See Also

When the tag counter is active, the analyzer counts occurrences of the expression
you specify (which may includéme, noneg or simple or complex expressions,
depending on analyzer configuration. Each time a trace state is stored, the value of
the counter is also stored and the counter is reset. The tag counter uses trace
memory for stored states; the analyzer can store 1024 statésgnitbng and 512
states otherwise.)

tck (used to specify the clock source and clock parameters for the analyzer)

tp (specifies position of the trigger within the trace; notettitaaffects the
number of states the analyzer can store and therefore may affect trigger positioning)

tpat (assigns analyzer expressions to pattern names in complex configuration; the
pattern names are then used to specify qualifiers in other analyzer commands such
astcq)

trng (specifies a range of values to be used as a complex mode qualifier; this range
definition can be used as a count qualifietdm)

tsg (used to manipulate the trace sequencer)

348

Chapter 10: Emulator Commands
telif

telif

EASY CONFIGURATION

(et k <RETURN>
(3p)~ <SMPLE_EXPR>

COMPLEX CONFIGURATION

telif L <RETURN>
5

QH <COMPLEX_EXPR> L
G

<BRANCH_TO_TERM>

Thetelif command allows you to set the global restart qualifier (in easy
configuration) for the emulation-bus analyzer sequencer. In complex configuration,
telif lets you set the secondary branch qualifier for each term of the emulation-bus
analyzer sequencer.

The parameters for easy configuration are as follows:

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a
global restart qualifier. For exampteSIMPLE_EXPR> might consist of the
expressioraddr=2000. For detailed information on specification of simple
expressions, see Chapter 11, “Expressions.”

The parameters for complex configuration are as follows:

<TERM#> <TERM#> lets you specify a sequencer term number to associate with the given
<COMPLEX_EXPR>. When you associate a term number with a complex
expression, that expression is only used as a secondary branch qualifier at the
sequencer level specified by the term number. If you speCBRM#> without an
expression, the secondary branch qualifier currently associated with that term
number is displayed.

<COMPLEX _ <COMPLEX_EXPR> allows you to specify complicated analyzer expressions
EXPR> made up of relationships between simple analyzer expressions. When you create a
complex expression, you must first assign pattern ngmiegg) to simple
expressions using thipat command. You then use the pattern names and relational
operators to create complex expressions. For example, if you wish to branch from

349

Chapter 10: Emulator Commands

telif

<BRANCH_
TO_TERM>

Examples

term 1 to term 2 wheaddress=200anddata=20 or whenaddress=200Gnd
data=42 you would use the following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> telif1pl|p22

The | symbol represents an intra-set OR operator. For more information on complex
expressions, operators, and pattern sets, see Chapter 11, “Expressions.”

The<BRANCH_TO_TERM> parameter allows you to indicate the branch
destination when theCOMPLEX_EXPR> is found. For example, you may wish

to have the sequencer branch from term 1 to term 3 after the expression is found.
This would be specified aslif 1 <COMPLEX_EXPR> 3. If you do not specify a
term number, the default is to increment the sequencer tellekTERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

If telif is entered with no parameters, the global restart qualifier or secondary
branch qualifiers (depending on analyzer configuration) for all sequencer levels are
displayed. Itelif is entered with only aTERM#> parameter in complex
configuration, the secondary branch qualifier for only that term number is displayed.

Upon initialization via a powerup sequence ortthie command, the secondary
branch specifiers are settadif never.

In complex configuration, KBRANCH_TO_TERM> is not specified, the default
is (KTERM#> + 1)

At sequencer term number 8, the default branch to conditioFrERM#>; that is,
branch to the same term.

To have the analyzer record the routine only when address 100 occurs, and then
200 occurs before 300 occurs, do the following:

U> tsq-i 2

U> tif 1 addr=100
U> tif 2 addr=200
U> telif addr=300

350

Chapter 10: Emulator Commands
telif

In complex configuration, telif commands can branch to other terms. For example:

R> tcf -c

R> tpat p1 addr=100
R> tpat p2 addr=200
R> tpat p3 addr=300
R> tsq -t 3

R>tif 1 pl2

R>tif 2 p2 3

R>telif 2 p3 1

Thetelif command is used as a global restart qualifier in easy configuration and a
secondary branch qualifier in complex configuration. The hierarchy &f thied

telif commands is such that either branch will be taken if found before the other;
however, if both branches are found simultaneousljftteanch is always taken
over thetelif branch.

When in easy configuration, the sequencer will restart by jumping to sequencer
term number one (1) when the expression specifigdlthyoccurs. Theelif
command allows you to specify a global restart qualifier. This means that the
analyzer will restart the sequencer when the qualifier is satisfied.

When in complex configuration, the sequencer will branch to the sequencer level
specified by th&BRANCH_TO_TERM> parameter when the expression
specified is found. There are always eight sequencer terms available. Position of
the trigger term is defined with tiey command. If both théf andtelif

expressions are satisfied simultaneouslytitheranch is taken. Otherwise,

branching occurs according to which expression is first satisfiedelihe

command allows you to branch to any sequence term from any other term.

If the tif expression for the giveriTERM#> has axkCOUNT> parameter other
than one (1), the counter is reset to zero (0) ifdliebranch is taken before the
occurrence counter parameter is satisfied. For example tif d@inter parameter
is 7, and theif expression has been found five times, thenelifeexpression is
satisfied, theelif branch will be taken and thi& counter will be reset from 5 to 0.
This might cause you difficulty if you happen to hteld branching back to the
same term; your occurrence condition may or may not be satisfied.

See Also tarm (allows you to specify that thegl ortrig2 signal will arm the analyzer.
This arm condition can then be used as part of the secondary branch qualifier)

351

Chapter 10: Emulator Commands

telif

tcf (used to select whether the analyzer is operated in easy configuration or
complex configuration)

tif (used to specify a primary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer configuration.
Specifying thég command overrides the current sequencer specification and will
modify the existingelif qualifier stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in specifying
complex expressions. These complex expressions are used to ghéaiyalifiers
in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a range
variable. This range information may be used in specifying congiéxjualifiers)

tsto (specifies a global trace storage qualifier in both easy & complex
configurations; also specifies a trace storage qualifier for each sequencer term in
complex configuration. Used to control the types of information stored by the
analyzer)

tsg (used to manipulate the trace sequencer)

352

Chapter 10: Emulator Commands
tf

tf

ok

<LABEL>

<BASE>

<WIDTH>

mne

) <RETURN=>

=,

- Q = <WIDTH>

LU .
) Tﬁy

Thetf command allows you to specify which pieces of information from the trace
memory of the emulation-bus analyzer will be displayet fiyace list) commands.

~—={ mre
—={ count

The parameters are as follows:

If you specify<LABEL>, the analyzer bits associated with that label will be
displayed in a column of the trace list withABEL> as the column header.

<BASE> allows you to specify the numeric base in which <LABEL> is to display.
The choices ar¥ (binary),Q or O (octal),T (decimal),H (hexadecimal), oA
(ASCII). The specifiers are not case sensitive. In ASCII mode, non-printing
characters are displayed as periods (§BIASE> is not specified, the default bas

is hexadecimal.

This option allows you to set the width of only the address field to values from 4 to
50. If your emulator supports symbols, by settiwglDTH> , you can view
symbols in the address field when you display memory mnemonic.

<LABEL>, <BASE>, and<WIDTH> must each be separated by a comma (,).

If you specifymne, the disassembled mnemonic for each instruction captured by
the analyzer is displayed. To ensure correct operatiomefthe labeladdr,

data, statandextra (if applicable) must be defined according to their power up
defaults for the target processor being emulated; otherwise, incorrect disassembly
may occur.

353

Chapter 10: Emulator Commands

tf
count

seq

Examples

If you specifycount, the state or tag time counter defineddayis displayed in the
trace list. If you have designated prestore states vipgheommand, these
prestore states will be flagged in ttwunt column of the trace list.

Specifyingcount,acauses the state/time counter to display the count in absolute
mode. That is, each counter value is shown relative to the trigger state. Therefore,
states before the trigger will show as negative values and states after the trigger will
show as positive values. Prestore states do not have counts.

Specifyingcount,r causes the state/time counter to display the count in relative
mode. That is, each counter value is shown relative to the previous state. As with
count,a, prestore states do not have counts.

If you specifyseq an indicator is printed for each state which caused the sequencer
to branch from one term to another (whether the same term or a different term).

If no parameters are given, the current settings of the trace format are displayed.
Upon powerup or aftertinit command, the trace formattisaddr,H mne
count,R seq

To view the default trace format, type:

M> tf

Set the format so the address and data values are displayed in hexadecimal:

U> tf addr,H data,H

Set the format so the address is displayed in decimal and the data in binary:

U> tf addr, T data,Y

Display processor status information in binary:

U> tf addr,H mne stat,Y

To see what types of ASCII information are transferred on the least-significant byte
of the data bus, type:

U> tlb byte3 56..63
U> tf addr,H mne byte3,A

354

Chapter 10: Emulator Commands
tf

To display trace sequencer information along with a status display in hex, type:

U> tf addr,H mne stat,H seq

To display state/time counter information, type:

U> tf addr,H mne count seq

To change the counter display to count relative, type:

U> tf addr,H mne count,R seq

Varioustf format items may be concatenated as desired on the command line by
including a space between each format item.

Each format item specifies a column of the trace list display.

Changing the trace formdbes nothange the type of information captured by the
analyzer; it only specifies how the captured data should be displayed.

See Also tl (displays the current data in the trace memory of the emulation-bus analyzer
according to the specifications set uptf)y

tlb (define labels which represent groups of emulation-bus analyzer input lines;
these labels may be used to create special trace list displays by including the labels
in thetf definition)

355

Chapter 10: Emulator Commands

¢

tg

% <ANALYZER_EXPK=>

<ANALYZER_
EXPR>

<COUNT>

Examples

‘ k
@ = <COUNT=>

Thetg command sets a trigger condition for the emulation-bus analyzer.
The parameters are as follows:

<ANALYZER_EXPR> allows you to specify the expression to recognize as a
trigger. This expression consists cfaIMPLE_EXPR> in analyzer easy
configuration and aCOMPLEX_EXPR> when the analyzer is in complex
configuration. See Chapter 11, “Expressions,” for specific details of analyzer
expressions. In either configuration, the expression may consist of thestates
all (trigger on any state) ooneor never (don't trigger the analyzer).

You use thecCOUNT> parameter to specify the number of times the expression
<ANALYZER_EXPR> must occur before the trigger condition is satisfied.
<COUNT?> is specified as a decimal integer valugGIOUNT> is not specified,
the default is one (1).

If no parameters are specified, the current primary branch condition for sequencer
term 1 is displayed. Note that this is not necessarily the trigger condition,
depending on the analyzer commands leading up to this point. After powerup or
tinit initialization,tg is set tag any.

To trigger the analyzer when address 100 occurs on the emulation bus:

U> tg addr=100

To trigger the analyzer on any address in the range from 200 through 2ff that
includes a write transaction, type:

U> tg addr=200..2ff and stat=write

To trigger the analyzer on the 32nd occurrence of address 100, type:

U> tg addr=100 32

356

Chapter 10: Emulator Commands
tg
To trigger the analyzer when address 100 occurs on the emulation bus:

U> tcf -c
U> tpat pl addr=100
U> tg pl

To trigger the analyzer on any address in the range from 200 through 2ff that
includes a write transaction, type:

U> trng addr=200..2ff
U> tpat p5 stat=write
U>tg r and p5

Thetg command modifies the current analyzer sequence specification. The manner
in which the sequencer is modified is dependent upon the analyzer configuration.

If the analyzer is in easy configuratidof(-€), the sequencer is reduced to a one

term sequence triggering upon exit from term 1. The global restart qualifier is set to
never {elif never); the primary branch condition is set to the specified trigger
expressiont{f 1 <EXPR> <COUNT>).

When operating the analyzer in easy configuration, usingtb@mmand resets the
sequencer to a two term sequence with a primary branch in term number one
corresponding to the trigger condition.

If the analyzer is in complex configuratianf(-c), the sequencer is modified to
trigger upon entrance to the second sequence teqgrvt @), the secondary branch
qualifier is set to nevetdlif 2 never), and the primary branch qualifier for term
number 1 is set to the specified expressiitil KEXPR> 2 <COUNT>).

In analyzer complex configuration, ti,gcommand defines simple sequence
specification and overwrites sequencer terms 1 and 2 to create the new
specification.

When the expression specified occurs the number of times specified in the
<COUNT> parameter, the analyzer has found its trigger.

The analyzer storage qualifidsto) is not affected in either configuration;
therefore, the analyzer uses the storage qualifier from the mosttstoent
command.

357

Chapter 10: Emulator Commands

tg
See Also

bc (allows you to break the emulator to the monitor when various conditions occur;
you can have the emulator break upon analyzer trigger by speddpuigtrigl
andbc -e trig1 (or you could use the trig2 signal to perform the same function))

t (starts an emulation trace)

tarm (used to specify an analyzer arm condition; the analyzer will not trigger until
the arm condition is received if you spediyarm)

tcf (used to specify whether the analyzer is operated in easy or complex
configuration)

tpat (used to assign pattern names to simple analyzer expressions; the pattern
names are then used in creating complex analyzer expressions which could be used
with thetg command to trigger the analyzer)

trng (used to specify a range of values for a particular group of analyzer lines; this
range may be used in specifying complex analyzer expressions for triggering the
analyzer)

tsto (specifies which states encountered by the analyzer should be stored in trace
memory)

tsg (used to manipulate the trace sequencer. Note that the sequencer’s current status
is affected by thieg command.)

358

Chapter 10: Emulator Commands
tgout

tgout

G

[T <RETURN>
,) J

| expr
~—={ frigger j

complete

The syntax diagram above shows the syntax available when using the deep
analyzer. If using the 1K analyzer, #wpr, trigger, complete -t and-c options
are not available; by default, your trigl/trig2 choice selects the trigger function.,

Thetgout command allows you to specify either trigl, trig2, or both trigger signals
to be driven when the emulation-bus analyzer finds the condition you specify.
Trigl and trig2 are bidirectional signal lines that can be used to coordinate
measurement activity between emulators and analyzers installed in the
instrumentation card cage, and instruments connected to the BNC or the CMB on
the rear panel of the card cage. For details of how to configure and use trigl and
trig2, refer to the chapter on making coordinated measurements in your
emulator/analyzer manual(s).

Note that there is delay in measurements thatgaese for measurement
coordination. For example, you may specify that the emulator break to its monitor
program when it receives trigl from the analyzer. Several states may be executed

359

Chapter 10: Emulator Commands

tgout
in the emulator between the time the analyzer recognizes its trigger condition,
generates trigl, delivers trigl to the emulator, and the emulator responds to trigl by
breaking to its monitor program.

The parameters are as follows:
none If noneis specified, neither trigl nor trig2 will be driven by the analyzer.

trigl If trigl is specified, the trig1l signal will be driven by the analyzer when the
condition you specify is found. If you do not specify a condition in your command,
recognition of the analyzer trigger is assumed to be the specified condition.

trig2 If trig2 is specified, the trig2 signal will be driven by the analyzer when the
condition you specify is found. If you do not specify a condition in your command,
recognition of the analyzer trigger is assumed to be the specified condition.

To specify that both trigl and trig2 should be driven, concatenate both options with
a commatgout trigl,trig2 .

trigger Drive the selected trigl/trig2 signal(s) when the analyzer satisfies its trigger
specification.

complete Available only in the deep analyzer: drive the selected trig1/trig2 signal(s) when the
analyzer completes its measurement (captures trigger plus fills trace memory).

-t <delay> Available only in the deep analyzer: drive the selected trig1/trig2 signal(s) when the
analyzer satisfies its trigger specification and captures the additional number of
states specified in <delay>. If you are using this feature to capture a continuous
stream of target program activity, you may find some stacking cycles at the end of
each trace memory if your emulation processor does stacking before a break.

Note that if you usé <delay> or -c¢ <delay> your trace will be completed
automatically when the analyzer has captured enough states to satisfy the delay
specification.

-c <delay> Available only in the deep analyzer: drive the selected trig1/trig2 signal(s) when the
analyzer captures the state that is after the trigger and is <delay> states before the
end of trace memory. If you are using this feature to capture a continuous stream of
target program activity, you may find some stacking cycles at the end of each trace
memory if your emulation processor does stacking before a break.

Note that if you use <delay> or -c¢ <delay> your trace will be completed
automatically when the analyzer has captured enough states to satisfy the delay
specification.

360

<expression>

expr

Examples

Chapter 10: Emulator Commands
tgout

Drive the selected trig1/trig2 signal(s) when the analyzer recognizes the state(s) that
satisfies <expression>. The <expression> is a simple expression in easy
configuration, and a complex expression in complex configuration. If you have
already specified tout <trigger(s)> <expressionzyou can change the
expression without having to reenter #tagger(s)>; simply typetgout
<new_expression>

Available only in the deep analyzer: drive the selected trig1/trig2 signal(s) when the
analyzer captures the state that satisfies the most recently defined <expression>.
This is useful if you have already defined a compexit expression, and now you
want to use that same expression to drive a different trigger.

If no parameters are specified, the current statigoott is displayed. Upon
powerup otinit, the default state tgout none

Display the state dfjout:
M> tgout

Set the emulator so that it will break from target program execution to monitor
execution upon receipt of the analyzer trigger:

M> tcf -e

M> bc -e trigl
M> tgout trigl
M> tg addr=710

The emulator will break to its monitor program after the analyzer encounters
address 710, asserts trig 1, and trig 1 is recognized by the emulator. This for
emulation break includes delay in the break response time. Therefore, itis no
possible to predict which state will be executing when the emulator responds to the
trigl break signal and enters the monitor.

To generate trigl when the analyzer detects a write to address 1000 when in easy
configuration:

M> tgout trigl addr=1000 and stat=write

To generate trig2 when the deep analyzer completes a trace:

M> tgout trig2 complete

361

Chapter 10: Emulator Commands

tgout

To generate trigl and trig2 when the deep analyzer stores the tenth state after its
trigger:

M> tgout trigl,trig2 -t 10

To generate trig2 when the deep analyzer captures the fifth state before the end of
its trace memory:

M> tgout trig2 -c 5

To generate trigl on any access to any address from 2000 through 2010 using easy
configuration:

M> tgout trigl expr
M>tgout addr=2000..2010

or

M> tgout trigl addr=2000..2010

To generate trigl on any write to any address in the range from 2000..2010 while in
complex configuration:

M> tcf -c

M> trng addr=2000..2010
M> tpat p5 stat=write

M> tgout r and p5

While in complex configuration, to generate trigl if pattern p1 is found while the
sequencer is at level 1, or if pattern p2 is found while the sequencer is at level 2:

M>tgout trigl
M>tgout 1 p1
M>tgout 2 p2

362

See Also

Chapter 10: Emulator Commands
tgout
To define an expression, and then assign it to generate trig2 in the deep analyzer:

M>tgout addr=100 and data=44 and stat=write
M>tgout trig2 expr

The most recent expression defined fortgfmait command is remembered by the
analyzer. Once defined, the expression can be assigned to drive either trigl, trig2,
or both in a later command.

To define an expression for trig2 and then reassign it to trigl in a later deep
analyzer command:

M>tgout trig2 addr=100 and data=44 and stat=write
M>tgout trigl expr

Note: To stop the analyzer from driving the trig1/trig2 line, issu¢htifEace halt)
command.

bc (allows you to specify a break to emulation monitor whengbeat condition is
satisfied)

bnct (specifies whether or not trigl and trig2 are used to drive and/or receive the
rear panel BNC connector signal line)

cmbt (specifies whether or not trigl and trig2 are used to drive and/or receive the
CMB trigger signal)

tarm (used to specify that the analyzer will be armed upon assertion or negati
trigl or trig2, for synchronizing measurements that include other analyzers)

th (halts the analyzer trace and turns off any active drive of trig1/trig2)

w -m (wait_measurement_complete. The point where measurement complete is
recognized is affected by any specification that included threc options of the
tgout command)

363

Chapter 10: Emulator Commands

th
th
(th) = <RETURN>
7 64783506
Theth command stops an emulation trace. This command has one parameter.
w This suppresses display of trace output and error messages.
Examples Start an emulation trace:

M> t

Stop the trace:
M> th

The analyzer will stop driving thteig1 andtrig2 signals when the trace is halted.

This may cause you difficulty in making measurements with instruments connected
to the BNC. For example, if you set the HP 64700 analyzer tottgde(tgout

trigl) when the trigger condition is found, then pipe this to the BNC connector

with bnct -d trigl, the BNC signal will be driven high when the HP 64700

analyzer finds its trigger while a trace is in progress; it will fall low when the trace
finishes.

You should start the HP 64700 trace after you have begun the external instrument’s
measurement. Otherwise, the following measurement errors may occur, depending
on the type of external instrument you are using:

» With an edge sensitive instrument, starting the instrument after the HP 64700
finds the analyzer trigger will mean that the instrument never sees the
transition of therrigl line and therefore never triggers.

» With a level sensitive instrument, starting the instrument after the HP 64700
finds the trigger will mean that the instrument triggers immediately; although
many states of interest have probably already passed.

If the analyzer trigger specification has not been found, you will need to ube the
command to halt the analyzer before you can display the trace list.

364

Chapter 10: Emulator Commands
th

See Also t (used to start an analyzer trace)
ts (allows you to determine the current status of the emulation-bus analyzer)
tx (starts an analyzer trace upon receipt of the CMB execute signal)

X (starts a synchronous CMB execution)

365

Chapter 10: Emulator Commands

tif
tif
EASY CONFIGURATION
1if <RETURN=>
L% <TERM#a> :
*={ <SIMPLE_EXPR>
B
COMPLEX CONFIGURATION
fif <RETURN>
\‘-{ <TERM#> :
ﬂ'{ <COMPLEX_EXPR>
Thetif command allows you to set the primary branch qualifier for each term of the
emulation-bus analyzer sequencer.
Easy configuration parameters:
<TERM#> When you specifk TERM#>, it indicates which sequencer term’s primary branch

qualifier is to be modified with the qualifier specified in #&MPLE_EXPR>
parameter. If you specifTERM#> without an expression, thié qualifier for
that term number is displayed.

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a
storage qualifier. For exampkeSIMPLE_EXPR> might consist of the expression
addr=2000 For detailed information on specification of simple expressions, see
Chapter 11, “Expressions.”

<COUNT> You use thec<COUNT> parameter to specify the number of times the expression
<SIMPLE_EXPR> must occur before the primary branch condition is satisfied.
<COUNT?> is specified as a decimal integer valugGIOUNT> is not specified,
the default is one (1).

366

<TERM#>

<COMPLEX_
EXPR>

<BRANCH_
TO_TERM>

<COUNT>

Chapter 10: Emulator Commands
tif
Complex configuration parameters:

<TERM#> lets you specify a sequencer term number to associate with the given
<COMPLEX_EXPR>. When you associate a term number with a complex
expression, that expression is used as a branch qualifier at the sequencer level
specified by the term number. If you spec&ifyERM#> without an expression, the
complex expression currently associated with that term number is displayed.

<COMPLEX_EXPR> allows you to specify complicated analyzer expressions

made up of relationships between simple analyzer expressions. When you create a
complex expression, you must first assign pattern ngmeg8) to simple

expressions using thipat command. You then use the pattern names and relational
operators to create complex expressions. For example, if you wish to branch from
term 1 to term 2 wheaddress=200&nddata=20or whenaddress=200&nd

data=42 you would use the following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tif1pl|p22

The | symbol represents an intra-set OR operator. For more information on complex
expressions, operators, and pattern sets, see Chapter 11, “Expressions.”

The<BRANCH_TO_TERM> parameter allows you to indicate the branch
destination when theCOMPLEX_EXPR> is found. For example, you may wish

to have the sequencer branch from term 1 to term 3 after the expression is found.
This would be specified a$ 1 <COMPLEX_EXPR> 3. If you do not specify a

term number, the default is to increment the sequencer tével ERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

You use the«COUNT> parameter to specify the number of times the expressio
<COMPLEX_EXPR> must occur before the primary branch condition is satisfi
<COUNT?> is specified as a decimal integer valugs@IOUNT> is not specified,
the default is one (1).

If you specify the<COUNT> parameter, you must also specify a
<BRANCH_TO_TERM> parameter. If you omit theBRANCH_TO_TERM>
parameter when specifyirgfCOUNT>, the system will interpret the count as
“branch to term” information; if greater than eight (8), an error will be returned;
otherwise, you will have just specified an incorrect branch.

If tif is entered with no parameters, the primary branch qualifiers for all sequencer
levels are displayed. {if is entered with only aTERM#> parameter, the primary
branch qualifier for only that term number is displayed.

367

Chapter 10: Emulator Commands

tif
Upon initialization via a powerup sequence ortthi¢ command, the primary
branch specifiers are setttb<TERM#> any (STERM#> + 1).

In complex configuration, §EBRANCH_TO_TERM> is not specified, the default
is (K-TERM#> + 1); if <COUNT> is not specified, the default count is one (1).

At sequencer term number 8, the default branch to condittoFERM#>; that is,
branch to the same term.

Examples Suppose that you want to trigger the analyzer on the occurrence of address 300, but
only after the occurrence of address 100, followed by address 200.

M> tif 1 addr=100
M> tif 2 addr=200
M> tif 3 addr=300
M>t

M>m 100 200 300
M> ts

Thetelif command is used as a global restart qualifier in easy configuration and a
secondary branch qualifier in complex configuration. The hierarchy ¢f thed

telif commands is such that either branch will be taken if found before the other;
however, if both branches are found simultaneousljftieanch is always taken
instead of theelif branch.

When in easy configuration, the sequencer will increment to the next sequencer
level when the expression specifiedtibyoccurs the number of times specified by
the<COUNT> parameter. There is a maximum of four sequence levels; only one
is available at initialization. If you require more sequencer levels, you must insert
them with thesq command. (The term for which you are specifying a primary
branch for with théif command must be present in the sequence.) The branch out
of the last sequencer term constitutes the trigger.

368

Chapter 10: Emulator Commands
tif
When in complex configuration, the sequencer will branch to the sequencer level
specified by theBRANCH_TO_TERM> parameter when the expression
specified occurs the number of times indicated ikB®UNT> parameter. There
are always eight sequencer terms available. Position of the trigger term is defined
with thetsq command.

See Also tarm (allows you to specify that thiegl ortrig2 signal will arm the analyzer.
This arm condition can then be used as part of the primary branch qualifier)

tcf (used to select whether the analyzer is operated in easy configuration or
complex configuration)

telif (used to specify a secondary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer mode. Specifying the
tg command overrides the current sequencer specification and will modify the
existingtif qualifier stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in specifying
complex expressions. These complex expressions are used to tpecijifiers
in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a range
variable. This range information may be used in specifying contiplgualifiers)

tsto (specifies a global trace storage qualifier in both easy and complex
configurations; also specifies a trace storage qualifier for each sequencer term in
complex configuration. Used to control the types of information stored by the
analyzer)

tsq (used to manipulate the trace sequencer)

369

Chapter 10: Emulator Commands
tinit

tinit

Thetinit command restores all trace specification items to their powerup default
values. See “Defaults.”

Thetinit command has no parameters.

Examples To reset the analyzer parameters to the powerup defaults, type:

M> tinit

These are the powerup defaults for the trace specification:

Analyzer arm

tarm always

Trace Configuration

tcf -e, tcf -1k

Note that the 68040 Graphical User Interface changes tcf -1k to tcf -deep, and if the
trace configuration was complex, it is reset to easy.

Analyzer master clocks

tck-rL-u-s S

Trace count qualifier

tcq none

Trace format

tf addr,H mne

370

Chapter 10: Emulator Commands
tinit
Trace trigger

tg any
tgout none
Analyzer signal line labels

#i### Emulation trace labels
tlb addr 0..31

tlb data 32..63

tlb stat 64..79

Trigger Position

tps

Trace Prestore Qualifier

tpg none

Trace sequencer (includes branch and store conditions)

tif 1 any
tsto all
telif never

Trace slave clocks

tsck-0 1
tsck -0 2
tsck -0 3
tsck -0 4
tsck-05

Trace Upon Execute

tx -d # ignore the execute signal

See Also init (used to initialize selected portions of the emulator or the entire emulator,
dependent on the options given)

371

Chapter 10: Emulator Commands

tl

tl

)

- T’@L—{Q

<LOW

~C

Thetl command allows you to display the current emulation-bus analyzer trace list

)j =~ <ALIGN_STATE>

Y g

(e)

ER_STATE>
L@» <UPPER_STATE>
«

information.

The

Display the top states of the trace. If you have specified the number of states to

parameters are as follows:

<RETURN>

display with the<COUNT> parameter, that number of states is displayed.
Otherwise, the default is to display the same number of states as the ldsiviasie
invoked to display part (but not all) of the trace.

Display the next states of the trace. If you have specified the number of states to

display with the<COUNT> parameter, that number of states is displayed.

Otherwise, the same number of states will be displayed as the last time ydu used

to di

splay part (but not all) of the trace.

372

<COUNT>

Chapter 10: Emulator Commands
tl
<COUNT> allows you to specify the number of states to display witht thie-n
options.

Normally, column headers are displayed at the top of each trace list. These label the
state number, count, and each trace field specified b toenmand. Specifying
the-h option allows you to suppress printing of the column headers.

This option causes the analyzer to disassemble the content of its trace list, starting
at the trace-list line number you include in this command. This results in a trace list
that appears to be an assembly language program listing.

By specifying-o and<IALOPTS>, you can control disassembly of the trace list.
The following table lists the<l ALOPTS> supported.

Option Meaning

-od Dequeue the trace list; that is, match opcodes with the
associated operands. You can help the match of opcodes with
operands by including the line number of the first instruction
to be disassembled and the line number of its corresponding
operands in your command
(e.g.tl -d -od 50 62 meaning align operands on trace-list line
number 62 with the instruction on line number 50).

-on Don't dequeue the trace list; that is, show the list in the order
that the bus cycles appeared.

-0i Display instructions only; that is, don’t display operand
cycles as separate states.

-oa Display both instruction and operand bus states.

-ol Disassemble the trace list beginning with the low word at t
specified trace-list line number (the default is to disassem
from the high word).

The-b option dumps the trace list in binary format using the HP 6¢a@efer
protocol. See Chapter 13, “Data File Formats,” in this manual for details on the
binary trace list format.

The-x option dumps the trace list in hexadecimal format using the HP 64000
transfer protocol. See Chapter 13, “Data File Formats,” in this manual for details
on the hexadecimal trace list format.

The-h, -d, and-o options cannot be used with eithleror -x. Also, the-b and-x
options cannot be used together.

373

Chapter 10: Emulator Commands

tl
s

a

<LOWER_
STATE>

<UPPER_
STATE>

<ALIGN_STATE>

Examples

This allows you to display symbols in the address column.
This (the default) allows display of absolute addresses in the address column.
This allows you to display symbols and absolute addresses in the address column.

The HP 64700 remembers the last option specified for the addresssfiedd dr
-6), and uses it for the netkttcommand if no other option is specified.

If you specify*, the entire trace list is displayed. Notice thaioes not recognize
displaying the entire trace as the last default count. (This helps avoid filling your
screen with lots of trace list data on subseqtiestmmands.)

If you specify<LOWER_STATE>, the trace display starts with the state on that
trace-list line number.

If you specify botkLOWER_STATE> and<UPPER_STATE>, the trace list
contains all states between the lower and upper trace-list line numbers, inclusive.

If you specify a lower state, it must be done without usingttbie-n options,
because the Terminal Interface will interpret your lower state specification as a
<COUNT> parameter. However, you can specify a range of states while using
these options; the range will be interpreted and displayed correctly.

If you specify theod option to dequeue the trace list, and you specify
<LOWER_STATE> for the first state to display, then <ALIGN_STATE> specifies
the operand associated with the instruction fetched in <LOWER_STATE>.

If no parameters are given, the trace list is displayed starting with the first state that
has not yet been displayed. The number of states displayed is identical to the
number of states displayed by the th&tommand.

For example, if the last trace list display wlagd 5, then the next command will
start the display at state 6 and display a total of five states.

The-a option is in effect by default, which causes the address field to display
absolute addresses.

The trace list also defaults to the last disassembly state used (that vga#
specified previously in & command, it will continue).

To return to the top of the trace list and disassemble instructions, type:

U> tl -td

374

Chapter 10: Emulator Commands
tl

To vary the number of states displayed, type:

U>tl-td5

To display a range of states, type

U> tl -td 20..30

To suppress display of the column headers, uséthption:

U> tl -h

To align the instruction on trace list line number 38 with the operand cycles on line
number 47, enter the command:

U> tl -d -od 38 47

You may also dump the trace list to a host computer using {feénary) or-x
(hexadecimal) options in conjunction with the HP 64ta@f0sfer software. This

allows you to perform post processing of the trace data on your host. See Chapter
13, “Data File Formats,” for details of trace list formats.

To display a trace list from a trace in progress, the trigger specification must be
satisfied. Otherwise, halt the trace with tlheommand. Entering before the

trace is halted displays the messagertigger not in memory ** .” If the

analyzer was halted before any states were captured, the messdgérace

data **” is displayed upon entry of thbcommand.

See Also t (starts an analyzer trace)
tf (specifies the display format for the trace)
th (halts a trace in process)

tlb (defines analyzer signal line labels; these may be usédrbgpecifying the
trace list display format)

ts (allows you to determine the current status of the emulation-bus analyzer)

375

Chapter 10: Emulator Commands

tlb

tib

<LABEL>

<BIT#>

<RETURN=>

@ | <LaBEL~

<LABEL>

}<LABEL> —@— “RITe> ‘L
~(<o |

Thetlb command allows you to define new labels for emulation-bus analyzer lines,
as well as display or delete previously defined analyzer labels.

The parameters are as follows:

If you specify thed option with a <LABEL>, the named label is deleted from the
definition table. If the <LABEL> is currently used in a trace specification or in the
trace display formatf{ command), it will not be deleted until removed from all of
the specifications. If <LABEL> is given &sall labels are deleted.

Specifying-n causes the named <LABEL> to be defined with negative polarity.
That is, after label definition, one (1) bits indicate a signal lower than the threshold
voltage and zero (0) bits indicate a signal higher than the threshold voltags. If

not specified, the <LABEL> defaults to positive.

You use <LABEL> to specify a name for the group of signals indicated by
<BIT_RANGE>. <LABEL> is an alphanumeric designator; upper and lower case
are significant. Labels can have up to 31 characters. If <LABEL> is supplied
without an option, the named label is displayed; if <LABEL> is giveh aB of

the label definitions are displayed.

<BIT#> specifies first the lower (or only), then upper, bits of the range to be
assigned to the named <LABEL>. If more than one bit is specified (creating a
range), the bit numbers are separated by two periods (..).

If no parameters are specified, the current label definitions are displayed. At
emulator powerup, or aftéinit, the only label definitions are the address, data, and
status labels needed to operate the emulation-bus analyzer. All new label
definitions default to positive polarity unless theoption is given.

376

Examples

See Also

Chapter 10: Emulator Commands
tlb

Define a label which will overlap the lower data bus byte:

M> tlb byte3 56..63

View the label definitions:

M> tlb

In the trace list, view only the output write data on the lower data byte in ASCII
format:

M> tf byte3,A

<BIT>..<BIT> specifies the range of analyzer lines to be associated with
<LABEL>. Note that it is not necessary to specify an upper boundary; if only one
bit number is given, itis the only one that will be associated with the given label.

The emulation-bus analyzer, dependent on the particular emulator in use, has
between 32 and 80 lines, where 0 is the least significant bit.

In emulation-bus analyzer labels, no more than 32 signal lines may be assigned to a
given label. Also, an emulation-bus analyzer label may not cross more than a
multiple of 16 boundary. For example, a label cannot be defined for emulation-bus
analyzer lines 15..32 because one multiple of 16 boundary is crossed from 15 to 16
and another boundary is crossed from 31 to 32.

Labels can be made to overlap; for example, you may wish to define a label for a
particular status line or data bit so that you can easily track its state in the trac

The number of labels that can be defined is limited only by system memory.

tf (used to specify the trace list formih; <LABEL> definitions can be specified
as output columns in the trace listing throughttteammand)

tpat (trace pattern definition; labels definedlim can be used in pattern definitions)

trng (trace range, used to specify a range of valid values to be used in a trace
specification; labels defined I§p may be used in defining the trace range)

377

Chapter 10: Emulator Commands

tp

tp

<POSITION>

Examples

<RETURN=
<POSITION> F

Thetp command allows you to specify where the trigger state will be positioned
within the trace list.

The parameters are as follows:

Specifying-a along with a <POSITION> parameter indicates that the trigger is to
be placed in the trace list with <POSITION> number of states after the trigger
position to the end of the trace. That is, there will be <POSITION> number of
states between the trigger position and the end of the trace.

Specifying-b along with a <POSITION> parameter indicates that the trigger is to
be placed in the trace list with <POSITION> number of states before the trigger

position to the beginning of the trace. That is, there will be <POSITION> number
of states between the beginning of the trace and the trigger position.

<POSITION> is a decimal value from 0 to 1023 (or O to 51itdfis in effect)
specifying the number of states positioned before or after the trigger state,
depending on the option supplied.

If you specify thes parameter, the trigger is positioned at the start of the trace list.
If you specify thec parameter, the trigger is positioned at the center of the trace list.
If you specify thee parameter, the trigger is positioned at the end of the trace list.

If no parameters are supplied, the current trigger position setting is displayed. Upon
powerup or aftetinit, the trigger position itp s.

To display the current setting of the trigger position, type:

378

See Also

Chapter 10: Emulator Commands
tp

M> tp
To define a trigger on an interrupt-acknowledge bus cycle, type:
M> tg stat=ack
When you run the program and display the trace list, note that the trigger (always
state zero (0)) will be positioned at the start of the trace.
To move the trigger to the end of the trace, type:
M>tp e
When you display the trace, note that state 1 will be empty. (You must rerun the
trace to see the changes.)
To position the trigger at the center of the trace list, type:

M> tp c

To position the trigger so that 10 states are displayed after it, type:

M> tp -a 10

When you display the trace list, note that 11 states will be displayed after the
trigger. This is within the specified accuracy of the system.

To position the trigger so that 5 states are displayed before it, type:
M>tp-b5

When you display the trace list, note that four states will be displayed before
trigger, which again is within the system’s positioning accuracy.

If the trace tag counteicqy) is disabled, the position number specified has an
accuracy of +/- 3 states; otherwise, the accuracy is +/- 1 state.

tcq (used to specify the trace count qualifier; affects the number of states that can
be stored by the analyzer)

tg (defines the trigger expression)

tl (used to display the trace list)

379

Chapter 10: Emulator Commands

tp
tsq (used to specify the trigger position within the trace sequencer; reference the
sequencer operation when deciding where to position the trigger in the trace list, if
you want to capture all of the sequence conditions)

380

Chapter 10: Emulator Commands
tpat

tpat

COMPLEX CONFIGURATION ONLY

{ tpat L <RETURN>
G~

pl-p8

<SIMPLE_EXPR>

: 1
p2 ~| <SIMPLE_EXPR>

p3

it

pi

p5

p7

ot

Thetpat command allows you to assign pattern names to simple analyzer
expressions.

The parameters are as follows:

The labelgpl throughp8 are the names assigned to each simple expressiorp (The
in the label must be lowercase.)

<SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a
storage qualifier. For exampkeSIMPLE_EXPR> might consist of the expression
addr=2000 For detailed information on specification of simple expressions, se
Chapter 11, “Expressions.”

Simple expressions assigned to patterns are restricted from the standard
<SIMPLE_EXPR> definition in that you may not assign a range of values to a
given label; only one value is permitted. (However, in actual practice, it is
sometimes possible to circumvent this restriction by careful choice of don’t care
values in the expression.)

Also, patterns can be specified that encompass more bits than the number of bits
defined for the specified label. When this occurs, the upper bits are truncated.

If no parameters are given, or if the pattern name is givenadiseight of the
current pattern assignments are displayed. If one of the pattern names is given, the
expression assigned to that pattern is displayed.

381

Chapter 10: Emulator Commands

tpat
Upon entering complex configuration after powerup tmit initialization, all
eight patterns are definedtpst <pattern#> any.
Examples Set pattern assignments on addresses, status conditions, and data values:
M> tpat p1 addr=100
M> tpat p2 addr=200
M> tpat p3 addr=300
M> tpat p5 stat=write
M> tpat p6 data=20
To set up a trigger so that any one of the above addresses will trigger the analyzer,
type:
M> tg pl|p2|p3
To trigger the analyzer when address 100 is found to have a write cycle, type:
M> tg pl and p5
To trigger the analyzer when address 200 is found to have and associated data value
of 20, type:
M> tg p2 and p6
To ensure that a symbol is recognized on a long-word-aligned boundary:
R>tpat p1 addr=~3&Main
Notice the symbols "~3&" in the above command. These AND the value
1111111111111100 (the inverse of 3) with the address of Main to ensure that the
last two address bits are zeros. This long-aligns the address of Main.
Thetpat command is only valid in the complex analyzer configuraticit¢).
See Also tcf (defines whether the analyzer is in easy configuration or complex configuration;

thetpat command is only valid in complex configuration)

tcq (specifies a trace count qualifigpat patterns may be used in complex
configuration qualifier specification)

382

Chapter 10: Emulator Commands
tpat
telif (specifies a secondary branch qualifier in analyzer complex configurtgigdn;
patterns may be used in qualifier specification)

tg (used to specify a simple trigger in either easy configuration or complex
configurationipat patterns may be used in complex configuration trigger
specification)

tif (used to specify a primary branch qualifier in either analyzer configurgein;
patterns may be used in complex configuration branch specifications)

tpq (specifies a trace prestore qualifigrat patterns may be used in qualifier
specification)

trng (defines a range of values on a set of analyzer input lines; this range may be
used in conjunction with the patterns definedgat in setting up complex analysis
qualifiers)

tsg (used to manipulate the trace sequencer)

tsto (used to define global storage qualifiers in both analyzer configurations; may
also be used to define storage qualifiers for each sequencer level in complex
configuration. The patterns defined ipat may be used in complex configuration
storage qualifier definition.)

383

Chapter 10: Emulator Commands

tpq

<ANALYZER_
EXPR>

tpg

Examples

tpq

<RETURN>
g <ANALYZER_~XPR> M

Thetpg command allows you to specify a prestore qualifier for the trace.

The parameters are as follows:

<ANALYZER_EXPR> allows you to specify the expression to be recognized as a
prestore state. This expression consists<8IMPLE_EXPR> in analyzer easy
configuration and aCOMPLEX_EXPR> when the analyzer is in complex
configuration. See Chapter 11, “Expressions,” for specific details of analyzer
expressions. In either configuration, the expression may consist of thestdédls
(prestore all states)pne/never(disable prestore), @arm (external qualifier

received from the coordinated measurement bus).

If no parameters are given, the current prestore qualifier setting is displayed. Upon
powerup or aftetinit initialization, the prestore qualifier defaultstpg none

Display the current prestore qualifier:

R> tpq

Assume that you have three routines called wait_keyboard, wait_mouse, and
wait_tablet. All three call a routine named delay_loop. You can see which routine
called delay_loop by defining a prestore qualifier:

R> tcf -c

R> tpat pl addr=wait_keyboard
R> tpat p2 addr=wait_mouse
R> tpat p3 addr=wait_tablet

R> tpq p1|p2|p3

During the trace, the analyzer fills a two stage pipe with states that satisfy the
prestore qualifier. Each time a trace state is stored into the trace buffer, the prestore
qualifier is also stored and then cleared. Therefore, up to two prestore events may
be stored for each normal store event. The prestore events in the trace buffer will

384

See Also

Chapter 10: Emulator Commands
tpq

y
QUALIFIED NO ENABLZ

BY tsto
?

YES

STATES
= IGNORED

FLUSH PRESTORE QUEUE

TRACE STORAGE WHEN
MEMORY FLUSHED

XXXX - XXXX 1 PRESTORE
QUEUE
2

yyyy - vy

zzz2

correspond to the most recent states that satisfied the prestore qualifier immediately
prior to a store event but following the previous store event.

Because the prestore memory shares trace memory with store events, the number of
store events recorded will be reduced by the number of prestore states recorded.

tcf (specifies whether the analyzer is to operate in easy configuration or complex
configuration)

tsg (used to manipulate the trace sequencer)

tsto (used to specify a global storage qualifier for both easy configuration and
complex configuration; also used to specify individual sequence term storage
qualifiers in complex configuration)

385

Chapter 10: Emulator Commands

trng

trng

COMPLEX CONFIGURATION ONLY

o

any

<LABEL>

<EXPR>

- <RETURN>

= <LABEL> = a = <EXPR=> = O = <EXPR=>

Thetrng command lets you specify a range of acceptable values for an analyzer
trace label.

The parameters are as follows:

When you specifny, all possible patterns on all labels will satisfy the range
specification.

<LABEL> specifies the group of signal lines to which a range is assigned. These
might beaddr, data, or stat; or, they may be a label that you have defined. See the
tlb command syntax pages for information on defining labels.

<EXPR> allows you to specify first the lower, then upper, boundaries of the range
of patterns to be considered valid range entries. For example, to define the address
range of 2000 through 21ff hex, you would specify<BXPR> range as

2000..21ff Note the two periods used as a separator between the lower and upper
range bounds; no additional spaces are included.

Also, the first boundary specified must be less than or equal to the second boundary
specified (examplarng addr=2000..21ffis correctfrng addr=21ff..2000is

incorrect). You may also specify a single value for the range (exatmgle:

addr=2000.

See Chapter 11, “Expressions,” for details on expression syntax.

Ranges can be specified that encompass more bits than the number of bits defined
for the specified label.

If no parameters are supplied, the current range definition is displayed. After
powerup otinit initialization, thetrng command is set tiong any. (Note that

trng is not directly available after analyzer initialization; the analyzer is set to easy
configuration when initialized. You must then switch to complex configuration to
accessrng.)

386

Chapter 10: Emulator Commands
trng
Thetcf -e (set trace configuration to easy) command also will tesgt In other
words, anytrng defined when the analyzer was in complex configuration is
destroyed when the analyzer is set to easy configuration; you cannot return to
complex configuration and use the tiag .

Examples Trigger the analyzer on the first access to any address in the range from 200
through 2ff;

M> tcf -c
M> trng addr=200..2ff
M>tgr

The range of values specified togg may then be used in complex qualifiers for
the trace specification. Thieng command is only available in the analyzer’s
complex configuration (seef syntax pages).

There is no need for a not equals operator in specifying ranges, as the trace
specification commands which allow “range” as a parameter also accept "not
range" in the fornhr.

See Also tcf (sets analyzer to complex or easy configuration; analyzer must be in complex
configuration to utilize theng command)

tcq (trace state/time counter; in complex configuration, states can be counted using
the range specification)

telif (specifies the sequencer secondary branch expression; in complex
configuration, this expression can include references to the range)

tg (specifies analyzer trigger; may trigger on references to range)

tif (specifies the sequencer primary branch expression; in complex configuration,
branch expression may include range qualifier)

tpat (trace pattern definition; assigns pattern names to simple expressions for later
use in analyzer specificatioripat essentially commits only one pattern to a label;
whereadrng allows a range of values to be assigned to the range pattern)

tpg (defines trace prestore qualifier; the range specification may be used in
complex configuration prestore qualifier expressions)

tsq (trace sequencer definition)

387

Chapter 10: Emulator Commands

trng
tsto (defines trace storage qualifier; that is, specifies exactly what states are actually
to be stored by the analyzer. In complex configuration, this can include states that
fall within the specification defined kiyng)

388

Chapter 10: Emulator Commands
ts

ts

ts <RETURN>
-
Thets command allows you to determine the current status of the emulation-bus
analyzer.

The parameters are as follows:

-w The-w option indicates that the trace status should be printed in whisper mode;
which gives an abbreviated version of the status.

If the whisper option is not specified, the long version of trace status is displayed.

Examples To view the trace status, type:

U> ts

To display the short form of the status, type:

U> ts -w

Trace Status Displays
The trace status is displayed in the following form:

---Emulation Trace Status---

(NEW) [User | CMB] trace [complete | halted | running]
Arm [ignored | (not) received]

Trigger (not) found

Arm to trigger armcount

States visible (history) first..last

Sequence term term

Count remaining count

389

Chapter 10: Emulator Commands

ts

NEW

User

CMB

complete
halted

running

ignored
received

not received

found

not found

Status Display Interpretation

The first line of the trace status indicates the initiator of the trace, whether the trace
is completed, running, or halted, and whether or not this trace has been displayed.

This trace has not been displayed. leommand will clear this flag until the next
trace is started. Halting a trace that is running (as opposed to complete), marks the
trace as being NEW even though the trace may have been displayed while running.
The nextl command with no options will list the trace from the top.

The operator initiated this trace with theommand.

This trace was initiated by a /EXECUTE pulse on the CMB aftteicammand
was entered.

The trace has found its trigger and completed.
The trace was halted in response th aommand.

The trace is still running; either the complete sequencer specifications have not yet
been satisfied; or not enough qualified store states have been found to fill trace
memory.

The second line of the trace display indicates the analyzer arm status.
The arm condition specified for this trace weasn always.
The arm condition has been satisfied.

The arm condition was not satisfied. (If you specified an arm condition but didn’t
use it in trigger qualification, this will be displayed if the arm condition is not
satisfied. However, the analyzer may still find the correct trigger and complete the
trace.)

The third line of the state trace display indicates the trigger status. Because of the
pipelined analyzer architecture, it is possible that the trace status may display “not
found” when in fact the trigger has been found. This will occur when not enough
states satisfying the storage specification are found to push the trigger out of the
pipeline and into trace memory. In any case, the trace will not be displayable until
the trigger is in trace memory (unless you halt the analyzer).

The trigger condition has been found.

The trigger condition has not yet been satisfied.

390

armcount

visible

history

first

last

term

count

Chapter 10: Emulator Commands
ts
The fourth line of the trace display indicates the amount of time that passed
between the arm signal and the trigger condition.

This will be from -0.04 usec to 41.94288 ms. The arm to trigger counter may
underflow or overflow, in which case “<-0.04 uS” or “>41.94288 mS” are reported,
respectively. If the arm signal was ignored, if the trigger was not found, or if the
clock setting (tck) is fast (F) or very fast (VF), the character “?” (unknown) is
displayed.

The fifth line of the display indicates the number of states displayalile by

Number of states which can be displayedlbyhis will be a number from 0 to
1024 (or 0 to 512 ifcq is active).

Number of states which can be displayed if the current trace is halted; this may
include history states which may be overwritten and thus unavailable if the current
trace runs to completion.

Number of the first state stored in trace memory, relative to the trigger state. This
will be a number from -1024 to 0 (-512 to Qdf is active). The character “?” is
displayed if the trigger state is not yet in memory.

Number of the last state stored in trace memory, relative to the trigger state. This
will be a number from -1 to 1023 (-1 to 511d§ is active). The character "?" is
displayed if the trigger state is not yet in memory.

The sixth line of the trace display indicates the current sequencer term position.

Current sequence term position (1 through 5 in easy configuration; 1 through 8 in
complex configuration). If the trace is completed or halted, the last sequence t
number is displayed. A “?" is displayed if the trace is running and the sequenc
running too quickly for the current term number to be read.

The seventh line of the trace display indicates the count qualifier status for the
primary branch condition of the current sequence terniijfskoe further details.

Remaining number of occurrences of the primary branch qualifier needed to satisfy
the qualifier so that the primary branch will be taken. A “?” is displayed if the trace
is running and the counter is updating too quickly to be read.

Whisper Mode Trace Display

If the -w option is given, an abbreviated version of the trace status is given as
follows:

391

Chapter 10: Emulator Commands

ts
Trace run status:
R - trace running
C - trace completed
H - trace halted
Trace arm status:
A - Arm has been received
a- arm has not yet been received
X - arm signal is being ignored
Trace trigger status:
T - trace trigger has been found
t - trace trigger has not yet been found
Trace list status:
* - indicates that this trace has not been displayed
See Also es(allows you to determine general emulator status)

t (starts a trace)

tarm (arm the analyzer based on state of the trigl and trig2 signals)

tcq (specify trace tag counter; affects number of states that the analyzer can store)
tg (specify the analyzer trigger state)

th (halt the current trace in process)

tif (specify sequencer primary branch condition and number of occurrences)

tx (specify that trace is to begin upon receiving the CMB /EXECUTE pulse)

x (begin a synchronous CMB execution)

392

Chapter 10: Emulator Commands
tsck

tsck

<RETURN>

In the 1K analyzer, thisck command allows you to specify the slave clock edges
used for the emulation-bus analyzer trace. Slave clocks are not supported in the
deep analyzer.

The parameters are as follows:

The-d option allows you to specify that the slave clock operates in demultiplexed
mode. In this mode, the lower eight channels of the analyzer pod (bits 0-7) are
latched with the slave clock and the upper eight channels (bits 8 through 15) are
replaced with the lower eight channels. In other words, the upper eight bits ar
identical to the lower eight at the pod.

However, the data is not clocked into the analyzer itself until the next master ¢
occurs. Therefore, if no slave clocks have occurred since the last master clock, the
data on the lower eight analyzer lines is identical to the upper eight. If one or more
slave clocks have occurred since the last master clock, the data on the lower eight
bits is the only data available to the analyzer.

When using thed option, you must specify one of thre -f, or-x options to
indicate the active edge(s) of the slave clock.

The-m option specifies that the slave clock operates in mixed mode. In the mixed
mode, the lower eight channels of the analyzer pod (bits 0-7) are latched with the
slave clock, and the master clock latches in the entire pod. Therefore, if no slave
clock has occurred since the last master clock, the data on the lower eight bits of the

393

Chapter 10: Emulator Commands

tsck
pod will be clocked into the analyzer at the same time as the upper eight bits. If
more than one slave clock has occurred since the last master clock, only the first
slave clock data will be available to the analyzer.
When using them option, you must specify one of the -f, or-x options to
indicate the active edge(s) of the slave clock.

<POD#> Specifies one of five groups of analyzer input lines. These are as follows:

r Indicates that the pod should latch data onitfieg edge of the slave clock.

f Indicates that the pod should latch data orfaélieg edge of the slave clock.

X Indicates that the pod should latch datdoth edges of the slave clock.

CLOCK SIGNALS Ther,f, andx operators may be used on the following clock sigdal; L, M or
N. ClocksL, M, andN are generated by the emulator. ClogksdK are not used.

If you specify multiple clocks, any one of the clock edges (as defined byfthe
andx options) will clock the trace.

o] If you specify-o with a<POD#>, the slave clock is ignored on that pod.

If no parameters are specified, the current slave clock definitions are displayed. The
default for all slave clocks ©ff after powerup ofinit initialization.

Examples To display the current state of the slave clock specifications, type:

M> tsck

Each analyzer pod has the capability of latching certain signals with a slave clock
instead of the master clock. (You set up the master clock witbklemmand.)

You should generally not use this command. It is provided for use by HP 64700
high-level interfaces.

See Also ta (allows you to display active signals on the analyzer input lines; useful in
verifying that you have selected the correct clock conditions)

tck (used to define master clock signals used by the analgekdefines the slave
clock signals. Default mode fesck is off on all pods.)

394

Chapter 10: Emulator Commands
tsq

tsq

EASY CONFIGURATION

fsq

COMPLEX CONFIGURATION

tsg

= <RETJRN>

<RETURN=>

64794506

Thetsq command allows you to manipulate or display the trace sequencer. Note
that thetif andtelif commands are used to define each sequencer state specification.

The parameters for easy configuration are:

If you specifyr, the sequencer is reset to a simple one term sequence which st
all states and triggers on the first occurrence of any state. This is equivalent to
issuing the commands:

tg any
tsto any
telif never

Specifyingi in conjunction with & TERM#> inserts a new sequence term at
<TERM#>. The new sequence term will use the default storage qualifier (which
can be modified with thisto command). It will also use the secondary branch
qualifier (global restart in easy configuration) specified bytéhiecommand.

395

Chapter 10: Emulator Commands

tsq
If there is already a sequence term with nursi&RM#>, terms with number
<TERM#> and above will be renumberedlERM#> becomesTERM#> + 1)
to make room for the new term.

The primary branch qualifier for the new term will be definetif aTERM#> any
unless it is the last term in the sequence (by definition, the trigger term), in which
case the primary branch qualifier is setite&TERM#> never.

d Specifyingd in conjunction with & TERM#> deletes the term specified and
renumbers higher numbered terms downward to fill the gap.

<TERM#> <TERM#> specifies a term number in the range 1 through 4 to insert in the
sequencer-{) or remove from the sequencet)(You must insert terms in a
contiguous manner; for example, you cannot insert a term number 4 if the
sequencer only has two terms defined. Instead, you must next insert a term
numbered 1, 2 or 3.

inc Specifyinginc allows you to choose whether or not the states that cause the
sequencer to transition from one state to another (or to the same state, in the case of
restart) are qualified for storage in trace memory. By default, all states that satisfy
sequencer advance specifications are stored in the trace mésqoipc en.
There may be times when an elaborate series of sequencer-advance steps is required
to obtain a single traced state. You can prevent your trace memory from being
filled with sequencer-advance states by using this command.

init Usinginit allows you to specify which sequence term will be the first active
sequence term when a new trace begins. By default, term 1 is the first active
sequence term when a new trace begins.

The parameters for complex configuration are:

r If you specify-r, the sequencer is reset to an eight term sequence with the trigger
term at term number 2. The sequencer will be sistdcany (store any state). All
secondary branch qualifiers are turned i <TERM#> never), and all primary
branch qualifiers will jump to the next higher numbered term on any state (
<TERM#> any (KTERM#> +1)).

t Specifying-t by itself displays the trigger term. You can define which term is to be
the trigger term by specifying along with &< TERM#>. The analyzer will trigger
on the first entrance to the term from either a primary or secondary branch.

<TERM#> <TERM#> specifies a term number in the range 2 through 8 to use as the trigger
term.

396

Chapter 10: Emulator Commands
tsq
If no options are given, all of the sequencer storage and branch qualifiers are
displayed along with the trigger term position. Upon powerup ortaiter
initialization, the sequencer defaults to the following state:

tif 1 any
tsto all
telif never

In other words, the sequencer powers up with two sequence terms; the second
sequence term is the trigger term. Any state will cause a branch from the first term
to the second term; global restart is set to never and all states are stored by the
analyzer.

Switching analyzer configurations from easy to complex or vice versa also resets
the sequencer (that isf -c or tcf -€).

Examples View the state of the sequencer after poweruptimita

M> tsq

While still in easy configuration, insert two sequence terms:
M> tsq -i 2

M> tsq -i 3

To delete a sequence term in easy configuration, type:

M> tsq -d 3

To change the trigger term in complex configuration:

M>tcf -c

M> tsq -t5

To allow all states that satisfy sequencer-advance specifications to be stored in the
trace memory of the deep analyzer (the default), enter the command:

R>tsq -inc en

To disable storage of sequencer states in trace memory of the deep analyzer, enter
the command:

R> tsq -inc dis

397

Chapter 10: Emulator Commands

tsq

See Also

To specify that sequence term 5 will be the active term when the deep analyzer
trace first begins, enter the command:

R> tsq -init 5

When the analyzer is in easy configuratitu {€), the sequencer has a maximum
of four sequence terms with a minimum of one term.

If the analyzer is in complex configuratianf(-c), the sequencer always has eight
terms (although your sequencer setup may only use two terms). Any term except
term 1 can be the trigger term. Each term has a primary and secondary branch,
which can dictate progression to other sequence terms.

With microprocessors that prefetch instructions, it is often more accurate to base
trace conditions on data movement resulting from an instruction rather than the
instruction itself. When the data pattern is found, it is more likely that the
instruction executed. Such methods must be used with care; in some programs,
several different routines may execute the same data movement.

tcf (defines whether analyzer is operated in complex or easy configuration)

telif (sets global restart qualifier in easy configuration; secondary branch qualifier
in complex configuration)

tg (defines the trigger qualifier)
tif (sets the primary branch qualifier in both easy and complex configuration)

tsto (defines the analyzer global storage qualifier)

398

Chapter 10: Emulator Commands
tsto

tsto

EASY CONFIGURATION

tsto L T <RETURN=>
<SIMPLE _EXPR> M

COMPLEX CONFIGURATION

CEo .
f <TERM => { <COMPLEX_EXPR> M

Thetsto command allows you to specify a trace storage qualifier for the
emulation-bus analyzer.

The parameters for easy configuration are:

<SIMPLE_ <SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a

EXPR> storage qualifier. For exampkeSIMPLE_EXPR> might consist of the expression
addr=2000 For detailed information on specification of simple expressions, see
Chapter 11, “Expressions.”

The parameters for complex configuration are:

<TERM#> <TERM#> lets you specify a sequence term number to associate with the give
<COMPLEX_EXPR>. When you associate a term number with a complex
expression, that expression is only used as a storage qualifier at the sequenc
specified by the term number. If you spe&fyERM#> without an expression, th
complex expression currently associated with that term number is displayed. If you
specify an expression without including BERM#>, the expression is used as a
global storage qualifier; that is, the storage qualifiers of all eight sequence terms are
set to the same value as the global storage qualifier you specified.

If you've specified a global storage qualifier, you can override any of the sequence
term storage qualifiers by specifying the term number along with the new qualifier.
For example, you might specify a global storage qualifiestofany; you could
override this for term 3 by specifyirtisto 3 none

<COMPLEX _ <COMPLEX_EXPR> allows you to specify complicated analyzer expressions
EXPR> made up of relationships between simple analyzer expressions. When you create a

399

Chapter 10: Emulator Commands

tsto

Example

complex expression, you must first assign pattern ngmegsg) to simple

expressions using thipat command. You then use the pattern names and relational
operators to create complex expressions. For example, if you wish to store only the
states havingddress=200Gnddata=20or the states havirgddress=200&nd

data=42 you would use the following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tsto pl|p2

The “|” symbol represents an intra-set OR operator. For more information on
complex expressions, operators, and pattern sets, see Chapter 11.

If no parameters are given, the current trace storage qualifier settings are displayed.
Upon powerup or aftémit initialization, the trace storage qualifier defaulttsto

all. Using thetcf command to switch from complex configuration to easy
configuration or vice versa will also reset the storage qualifiestaall.

See Chapter 5, “Using the Analyzer,” for an example of using storage qualifiers.

The expression parameter, whethSiMPLE_EXPR> or <COMPLEX_EXPR>,
specifies the type of data to be stored by the analyzer.

If the analyzer is in easy configuratidof(-€), the expression is specified by
<SIMPLE_EXPR> and this serves as a global storage qualifier. In other words,
the same expression is used as a storage qualifier, regardless of the current
sequencer state.

If the analyzer is in complex configuratianf(-c), the expression is specified by
<COMPLEX_EXPR> and may be assigned to a sequencer state with the
<TERM#> parameter. When an expression is assigned to a specific term number,
the analyzer will only store states corresponding to the given expression when at
the given sequencer level. If RO ERM#> is given, the associated expression is
defined as global; the analyzer stores states satisfying the expression, regardless of
the sequencer level.

Remember that the analyzer only stores states for a given sequence term which
satisfy thetsto qualifier for that termwvhile at that sequencer levellf you specify
storage of items in a particular term that oafter that term has been satisfied, the
sequencer will no longer be at that level and therefore won't store the states you
specified.

400

Chapter 10: Emulator Commands

tsto

See Also tcf (used to specify whether the analyzer is in easy configuration or complex
configuration)

telif (used to specify a global restart qualifier in easy configuration; specifies a
secondary branch qualifier for each sequencer level in complex configuration)

tg (used to specify a trigger condition in either easy configuration or complex
configuration; overrides the current sequencer specification. Notg tthaes not
affecttsto; therefore, the curretdto specifications remain in effect whenevéga
command is entered)

tif (used to specify a primary branch qualifier in either analyzer configuration)

tpat (used to assign pattern names to simple analyzer expressions for use in
constructing complex analyzer expressions; these expressions can be used in
specifying storage qualifiers for th&o command)

trng (used to specify a range of values of a set of analyzer inputs; this range
information can be used in constructing complex configuration qualifiers for the
tsto command)

tsg (used to manipulate the trace sequencer)

401

Chapter 10: Emulator Commands

tx

tx
tx = =] <RETURN>

Thetx command allows you to specify that the analyzer will begin a measurement
when the CMB /EXECUTE line is asserted.
The parameters are as follows:

-e If you specify thee option, the analyzer will start a measurement upon receiving
the CMB /EXECUTE signal.

-d If you specify thed option, the analyzer will NOT start a measurement upon
receiving the CMB /EXECUTE signal.
If no options are specified, the current statx@nable/disable is displayed. Upon
powerup or after &nit , the system defaults te -e.

Examples Verify the current setting dk:

M> tx

To set up a CMB measurement such that the emulator starts running and an
analyzer measurement begins at the entry address of the demo program whenever
the CMB /EXECUTE pulse is received, type the following commands:

M> cmbt -d none
M> tx -e

M> tg addr=entry
M> rx entry

If tx -e is given, enabling measurement on execute, the CMB trigger is immediately
driven true upon receiving the /EXECUTE signal. If the analyzer is not driving
either trigl or trig2, it is then started. The CMB trigger is then disabled and the HP
64700 waits for all other participants in the measurement to release the CMB

402

Chapter 10: Emulator Commands
tx

trigger. When the last instrument releases the CMB trigger, the trigger will go false;
at this point any analyzers driving trigl or trig2 will be started.

See Also cmbt (specifies whether the CMB trigger signal is driven or received by the
internal trigl and trig2 signals)

tarm (specifies the arm condition for the analyzer)

tg (specifies a trigger condition for the analyzer)

403

Chapter 10: Emulator Commands

ver

Examples

ver

ver = <RETURN>

Thever command instructs the emulator to return the current emulator Terminal
Interface software version numbers. You should use this command when you need
to know the version number of your emulator Terminal Interface software to
compare it to th€irmware/Software Compatibility Nofer the HP64700 PC

Interface or Softkey Interface software versions.

To determine the current emulator Terminal Interface software version numbers,
type:

M> ver

The system returns a display similar to the following:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without
prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700 Series Emulation System
Version: A.04.00 220ct92

HP64783 Motorola 68040 emulator
Version: A.01.00 20Feb93
Control: HP64748C ABG Control Board
Memory: 260 KBytes
Bank 0: HP64172A (20ns) 256 Kbyte Memory Module

HP64740 Emulation Analyzer
Version: A.02.02 13Mar91

404

Chapter 10: Emulator Commands
w

<NN>

Examples

&= <RETURN>

Thew command is used to program automatic waits into macros, repeats, and
command files. Normal operation is to wait for any keystroke before executing the
next operation; optionally, the wait can be programmed for a specific time period or
for completion of a measurement in process (such as a trace).

The parameters are as follows:
Wait for NN number of seconds before proceeding.
Wait for completion of the current measurement before proceeding.

The default is to wait for any keystroke on the command port before proceeding.

To cause the emulator to wait for any keystroke before proceeding to the next
command, type:

U>w

You might use this in a situation where you wish the operator to make a judge
regarding some other condition before proceeding with the next measurement. For
example, if some LEDs in the target system should reach a certain state before a
measurement is made, use the basic form of the wait commgnahich will

allow the operator to verify that the LEDs have reached the proper state; then
proceed with the next command by pressing any key.

To cause the emulator to wait for 32 seconds or for any keystroke, type:

U> w 32

This might be used where you know the desired system state will be reached in a
definite amount of time (or should be reached within that time).

405

Chapter 10: Emulator Commands
w

To have the emulator wait until another measurement is completed or for any
keystroke entry, type:

U> w-m

Note that the above examples, taken exactly as shown, don’t provide you with a
useful function—they are provided only to show correct examples of command line
syntax. To use the wait command effectively, it should be applied within macros,
repeat commands, or command files.

406

Chapter 10: Emulator Commands
X

Examples

See Also

X = <RETURN>

Thex command allows you to initiate a synchronous CMB (Coordinated
Measurement Bus) measurement execution.

To initiate a synchronous CMB measurement and have this HP 64700 emulator
participate in the measurement, type the following commands:

M> rx 2000

M> tcf -e

M> tg addr=2000
M> tx

M> x

This enables the CMB and sets the run at execute address to 2000. The analyzer
trigger is also set to 2000 hex and trace at execute is enabled. Finally, the
command is issued, initiating the coordinated execution. Other emulators on the
CMB will respond per theirx, tx, andcmb commands.

Whenx is performed, the CMB /EXECUTE line is pulsedixf(trace at execute) is
enabled, an analyzer measurement will begin. If the CMB is enabled cialthe
command, a break will occur, followed by a run at execute as specifieday the
command.

Thex command is available whether CMB and trace at execute are enabled o
Specifically, theemb andtx commands control how this HP 64700 emulator will
respond when an /EXECUTE or READY is detected. ¥hemmand only
controls when this emulator will issue an JEXECUTE signal.

cmb (used to enable or disable interaction with the CMB)

rx (used to specify an address to start a program run when the /EXECUTE pulse is
received from the CMB)

tx (used to specify that an analyzer measurement should begin when the
/EXECUTE pulse is received from the CMB)

407

408

11

Expressions

Numeric and logical expressions used in the Terminal Interface

409

Chapter 11: Expressions

This chapter includes information about these expression types:
* ADDRESS (address expressions)

« ANALYZER_EXPR (expressions in trace specifications)

« COMPLEX_EXPR (complex configuration expressions)
 EXPR (numeric expressions)

 SIMPLE_EXPR (easy configuration expressions)

The syntax, functional description, and related information is included for each
expression type.

410

Chapter 11: Expressions
ADDRESS

ADDRESS

<EXPR>

64783510

The address expression (EXPR) allows you to enter an address in a form
recognized by the MC68040 emulator. When you see the address variable in
various syntax diagrams, remember that it is unique to the MC68040 emulator.

The <EXPR> must be a 32 bit-number. (If you supply less than 32 bits, the number
is sign-extended to 32-bits). When you don'’t specify a base, such as “y” for binary,
“0” for octal, or “t” for decimal, the default is “h” for hexadecimal. You can specify
either supervisor or user to further qualify an address. The @ symbol is required if
you specify either supervisor or user address space. Otherwise, the @ must be
omitted.

Examples Suppose you create the following memory map:

R>map 0..0fff eram

Now, the following memory display commands are valid:

R>m 0..0f
R>m 1000..100f@s
R>m 1000..100f@u

You can specify the base with the address. For example:

100t (100 base ten)
7010 (701 base eight)
2340@s (234 base eight in supervisor space)

411

Chapter 11: Expressions
ADDRESS

See Also m (memory display/modify command)
map (specify mapping of memory)

mo (display or modify global access and display modes)

412

Chapter 11: Expressions
ANALYZER_EXPR

ANALYZER_EXPR

T: <SIMPLE _EXPR> 7—>
<COMPLEX EXPR>
Analyzer expressions are used in specifying triggers, time qualifiers, primary and

secondary branch conditions, prestore qualifiers, and other analyzer setup items.
There are two types of analyzer expressions, simple and complex.

In asimple expressionthe analyzer label is related to a numeric expression within
an analyzer command. These expressions are required when the analyzer is in easy
configuration {cf -€).

Some examples include:
tg addr=2000
tif 1 data=20..30

telif addr!'=3000 or data!=5

In acomplex expressionthe relationship between an analyzer label and an
expression is assigned one of eight pattern identifiers or a range label. These
patterns and the range are then used to create the actual expressions. Complex
expressions are required when the analyzer is in complex configutefien).(

Some examples include:
First we assign a pattern name:

tpat p1 addr=2000
tpat p2 addr!'=3000
tpat p5 data!=5
trng data=20..30

Then we create the actual complex expressions within the analyzer commands:

413

Chapter 11: Expressions

ANALYZER_EXPR

See Also

tg pl

tifdlr

(r specifies the range defined with theg command)
telif 1 p2 or p5 3
Any syntax diagram in this manual that indicates <ANALYZER_EXPR> means

that a simple expression is required when the analyzer is in easy configuration, and
a complex expression is required when the analyzer is in complex configuration.

See the <SIMPLE_EXPR> and <COMPLEX_EXPR> syntax pages for complete
details on each expression.

414

Chapter 11: Expressions
COMPLEX_EXPR

COMPLEX_EXPR

<COMPLEX _EXPR>

<SET1>

and <SET2>
L or
<SET2> ‘
and <SET1>

<SET1>
(restricted to one operator type in the set)

| Rl

<SET2>

(restricted to one operator type in the set)

3
p7
arm

w—
Z==

In analyzer complex configuratiottf -c) you use pattern labels, which have been
assigned to various simple expressions, to form complex expressions.

415

Chapter 11: Expressions

COMPLEX_EXPR

Pattern Labels and Ranges

You assign pattern labels to simple expressions usirtpadheommand. For
example:

tpat p1 addr=2000

tpat p2 data!=00

tpat p3 stat=dma

tpat p4 addr=2000 and data=23
tpat p5 addr!'=2105 and data!=0fc

You use thérng command to provide assign the range label:

trng data=42..44

Sets

The pattern labels, along with the range and arm specifications, are divided into two
sets.

Set 1:

pl,p2,p3,p4,r,!r
Set 2:

p5,p6,p7,p8,arm

Intraset Operations

You use intraset operators to form relational expressions between members of the
same set. The operators are:

~ (intraset logical NOR)
| (intraset logical OR)

The operators must remain the same throughout a given intraset expression. So,
you could form the following types of intraset expressions:

pl~p2~r

(Pattern 1 NOR pattern 2 NOR range.)
p2 | 'r

(Pattern 2 OR (NOT range).)

416

Chapter 11: Expressions
COMPLEX_EXPR

p5 | arm
(Pattern 5 OR arm.)
p6 ~ p8

(Pattern 6 NOR pattern 8.)

You cannotuse the intraset operators to form expressions between set 1 and set 2.
Also, remember that the intraset operator must remain the same throughout the set.
Therefore, the following examples angalid:

p2~p3|p4

(This is incorrect because the operator must remain the same throughout the set.)

p2~pS
(You cannot use intraset operators for interset operations.)

Interset Operations

You use interset operators to form relational expressions between members of set 1
and set 2. The operators are:

and (interset logical AND)
or (interset logical OR)

You can then form the following types of expressions:
(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:
(set 2 expression) and (set 1 expression)

417

Chapter 11: Expressions

COMPLEX_EXPR

Combination

You can use both the intraset and interset operators to form very powerful
expressions.

pl~p2 and p5|arm
p3 or p6~p7~p8

However, you cannot repeat different sets to extend the expression. The following
is invalid:

pl~p2 and p5 and p3 and p7

DeMorgan’s Theorem and Complex Expressions

It seems that you only have a few operators to form logical expressions. However,
using the combination of the simple and complex expression operators, along with
a knowledge of DeMorgan’s Theorem, you can form virtually any expression you
might need in setting up an analyzer specification.

DeMorgan’s theorem in brief says that

A NOR B = (NOT A) AND (NOT B)

and
A NAND B = (NOT A) OR (NOT B)
The NOR function is provided as an intraset operator. HowevedAN®

function is not provided directly. Suppose you wanted to set up an analyzer trace
of the condition

(addr=2000) NAND (data=23)

This can be done easily using the simple and complex expression capabilities.
First, you would define the simple expressions as the inverse of the values you
wanted to NAND:

tpat p1 addr!'=2000
tpat p2 data!=23
Then you would OR these together using the intraset operators:

p1|p2

418

Chapter 11: Expressions
COMPLEX_EXPR

This is effectively the same as:
(NOT addr=2000) OR (NOT data=23) = (addr=2000) NAND (data=23)

If you need an intraset AND operator, you can use the same theory. Suppose you
actually wanted:

(addr=2000) AND (data=23)
First, define the simple expressions as the inverse values:

tpat p1 addr!'=2000
tpat p2 data!=23

Then you would NOR these together using the intraset operators:

pl~p2

This is effectively the same as:
(NOT addr=2000) NOR (NOT data=23) = (addr=2000) AND (data=23)

See also See the <EXPR> syntax pages for information on numeric expression
specifications. See the <SIMPLE_EXPR> syntax pages for information on the
types of simple expressions that may be assigned pattern names. See the
<ADDRESS> syntax pages for information on address specifications.

419

Chapter 11: Expressions

EXPR

EXPR

<OPERATOR> |= i)

<j = <EXPR>
o/ o/
Numeric expressions are the root of all HP 64700 Terminal Interface expression

types, including analyzer expressions, address specifications, equates, and
expressions you might want to calculate usingettft®dcommand.

The expression capability in the Terminal Interface is very powerful; you may
specify numbers in one of four different bases and use many different arithmetic
and logical operators to form more complex expressions.

Terminal Interface expressions consist of othgressiongrecursion) andalues
which may be modified by variowperators. You may change the precedence of
operators by enclosing expressions within parentheses.

Values

<VALUE>

<NUMBER>

<PATTERN>

<LABEL>

i

Values consist afiumbers (in one of four basespatterns (hexadecimal, octal, or
binary numbers that also include don't care vallabgls (only labels pointing to
other numbers or patterns, assigned byethecommand), and symbols.

Numbers are in hexadecimal, decimal, octal, or binary. You specify the base as
follows:

Yy Binary (example: 10010y)
QgOo Octal (example: 3770 or 377Q)
Tt Decimal (example: 197T)

420

Chapter 11: Expressions
EXPR

Hh Hexadecimal (example: 0A7fH) (Note that hexadecimal
numbers starting with any one of the letter digits A-F must
be prefixed with a zero; otherwise the system will return an
error message)

If you do not specify a base, numbers default to hexadecimal or decimal, depending
on the context.

All numbers used in equates, echo, address specification, analyzer expressions, and
any other specification relating to a microprocessor address, data or status value
default to hexadecimal.

Numbers used to specify repeat count values, such as in the sequence branch
commands, trigger, step, repeat command, and so on, default to decimal.

Patterns are hexadecimal, octal, or binary numbers which include don't care digits,
specified by the letteds orx. The characte? represents a pattern of all don't care
digits. For example:

1011xx11ly
0A7Xh (equivalent to 000010100111xxxxy)
2x5Q (equivalent to 010xxx101y)

You will generally use patterns only in analyzer expressions. A place where you
might want to use don’t care values is to simulate a second range variable in
complex mode specifications. For example, you might have:

trng addr=4000..4020

And you need a second rangalafa from 11 through 14 hex. Although it isn’t
perfect, you can simulate a second range by assigning the pattern label:

tpat p1 data=00010XXXy

(This actually gives a range from 10 to 17 hex.)

Note Don't care values are not allowed in expressions foe¢checommand.

Labels refer to names equated to numbers, patterns, or other expressions using the
equ command.

421

Chapter 11: Expressions

EXPR

Note

Operators

4@ (Two's Complement)
@ (One's Complement)
(Integer Multiply)
paGEED
(Integer Divide)
~C)
(Modulo)
5 7%
(Addition)
e G
@ (Subtraction)
(Shift Left)
—e{ <<

(Rotate Left)

<<<
(Shift Right)
= >>
(Rotate Right)
>>>

(Bit—wise And)
e G
(Bit—wise Exclusive Or)
e G
T D
(Logical And (Bit—wise Merge))
= &8

The expression capability includes a powerful set of operators, freeing you from the
need to calculate expressions before entering them into other expressions. All
operations are carried out on 32 bit two’s complement signed integers (values
which are not 32 bit will be padded out with zeros when expression evaluation
occurs).

The operators are listed in the diagram above and described in order of evaluation
precedence. As mentioned above, you may use parentheses in the expression to
change the order of evaluation.

If your emulator supports symbols, and you are using a symbol in an expression,
only the+ and- operators are valid before and after the symbol. For example:
-dm 100h+main-5

422

Chapter 11: Expressions
EXPR

-~ Unary two’s complement, unary one’s complement. Two’s
complement is not allowed on patterns containing don’t
care bits. This is the truth table for one’s complement:

0=>1
1=>0
X=>X

Examples:

~1x0y = Ox1Y
-1101Y = 0011Y

*| % Integer multiply, integer divide, integer modulo. These
operations are not allowed on patterns containing don’t
care bits.

Examples:
30afH*21 = 06468fH
23T%A4T=3

0fa6/2 = 07d3h

+ - Addition, subtraction. Not allowed on patterns containing
don't care bits.

Examples:

03dh+03fh = 07ch
1110Y-101Y = 1001Y

<< << Shift left, rotate left, shift right, rotate right (you must
>>>>> specify the number of locations to shift or rotate after the
operator).
Examples:

1x0Y<<1 = 1x00Y

1x0Y>>1 = 01xY

423

Chapter 11: Expressions
EXPR

1x01Y>>>1 = 100000000000000000000000000001x0Y

Oxxf0abcdH>>>4 = 0dxxfOabcH

This symbol (&) represents a bit-wise AND operation. The
truth table is:

& 0 1 X

0 0 0 0

1 0 1 X

X 0 X X
For example:

10xxy&11x1Y = 10xxY

This symbol (*) represents a bit-wise exclusive OR
operation. The truth table is:

A 0 1 X

0 0 1 0

1 1 0 X

X 0 X X
For example:

10xxY"A11x1Y = 01xxY

424

&&

Chapter 11: Expressions

EXPR

This symbol (]) represents a bit-wise inclusive OR

operation. The truth table is:

| 0 X

0 0 0

1 1 1

X 0 X
For example:

10xxY|11x1Y = 11x1Y

This symbol (&&) represents a bit-wise merge operation.

The truth table resembles:

&& 0 X
0 0 0
1 ¥ 1
X 0 X

An overlap, indicated by*ain the merge truth table, may
occur if two patterns specify different values for a pattern
bit. If an overlap occurs, the first pattern’s value for that
bit overrides the second pattern’s value.

For example:

10xxY&&11x1Y = 10x1Y

Using Expressions in Addressing and in Analyzer Expressions

You can use the expression evaluation capability to form more powerful
expressions for use in specifying addressing and analyzer expressions. For
example, suppose you want to trigger the analyzer on the access to trap vector 13.

425

Chapter 11: Expressions
EXPR

Instead of calculating the address, since you know the base address is 080 hex and
each vector is four address bytes, you can specify this as:

tg addr=(080h+(13T*4))
You could simplify the above even further using the equate command to assign
names to some of the values. For example:

equ trapvectorbase=080h

equ trapvectorlength=4
Then:

tg addr=(trapvectorbase+(13*trapvectorlength))

See also See the <ANALYZER_EXPR>, <SIMPLE_EXPR>, and <COMPLEX_EXPR>
pages for information on the use of expressions in forming analyzer expressions.

See theechoandequ command syntax pages for information on use of expressions
in expression calculation and equates.

See the <ADDRESS> syntax pages for information on use of expressions in
addressing.

426

Chapter 11: Expressions
SIMPLE_EXPR

SIMPLE_EXPR

EASY CONFIGURATION ONLY

<LABEL> ‘e‘ = <EXPR>
- e . ‘ - <rXPR>

EASY AND COMPLEX CONFIGURATION

<LABEL> }—EP@% <EXPR>

[o> o2+ oo |

Easy Configuration

When the analyzer is in easy configuratitafi {€), sSimple expressions are used to
set up trace qualifiers for sequencer branches, triggers, state counting, and so on.
These expressions can take the following forms:

label=expression
Examples addr=2000h
data=25h+20h

stat=0110xxxxY

label!'=expression

Examples stat!=suprdata (notice that the expression can also be
equate label)

data!=00

label=expression..expression
Examples addr=4000..401

data=41..42

427

Chapter 11: Expressions

SIMPLE_EXPR

label'=expression..expression
Examples addr!=1000..1038

data!=00..40
No more than one simple expression can exist at any given time which is in the
form of a range (expr..expr).

label=expression and label=expression
Examples addr=3000 and data=41

addr=start and data=00

label!=expression or label!=expression

Examples addr!'=3000 or data!=41

Complex Configuration

In analyzer complex configuratiotef -c), you assign each simple expression a
pattern name using ttigat command. These pattern names are then combined to
form complex expressions involving relationships between multiple simple
expressions.

With the exception of these two expressions:
label=expression..expression
label!=expression..expression

all of the simple expression types can be assigned pattern natpas ioy
complex configuration. To form ranges of expressions in complex configuration,
you use thérng command.

Examples tpat p1 addr!'=3000 or data!=41
tpat p2 data=23

trng addr=1000..1038

(You don't need thé&= relation in ranges because all complex expressions provide
for the logicalnot of the range specifier.)

428

Chapter 11: Expressions
SIMPLE_EXPR

Invalid Simple Expressions

The following simple expressions are invalid in either analyzer configuration. If

you need expressions of these types, you must switch to complex configuration,
assign pattern names to subparts of these expressions, and then combine them using
the complex expression capability.

label=expression and label'=expression

This is incorrect because you must use only=thedation with theand operator.
To represent this, switch to complex configuration and do the following:

tpat p1 label=expression

tpat p5 label'=expression

Now, you would represent the above (incorrect) simple expression as a complex
expression of the form:

pland p5
label!=expression or label=expression

A similar problem exists here. You must use onlyltheelation with theor
operator. To represent this, switch to complex configuration and do one of the
following.

tpat p1 label'=expression

tpat p2 label=expression

You would represent the above (incorrect) simple expression as a complex
expression of the form:

pl|p2

You could also do this:
tpat p1 label'=expression

tpat p5 label=expression

429

Chapter 11: Expressions

SIMPLE_EXPR
Represent this in complex form as:
pl or p5
See the <COMPLEX_EXPR> syntax pages for more details on forming complex
expressions.
See also See the <EXPR> syntax pages for information on numeric expression

specifications.

430

12

Emulator Error Messages .

This chapter lists error and status messages that you may see when using the
emulator. The causes of the messages are given along with actions you can take to

overcome error conditions.

431

Chapter 12: Emulator Error Messages
IERROR 1! I/O port access not supported

This chapter contains descriptions of error and status messages that can occur while
using the Terminal Interface. The error messages are listed in numerical order, and
each description includes the cause and the action you should take to remedy the
situation.

The HP 64700-Series emulators can return messages to the display only when they
are prompted to do so. Situations may occur where an error is generated as the
result of some command, but the error message is not displayed until the next
command (or a carriage return) is entered.

The emulator can return synchronous and/or asynchronous messages after
executing commands. Synchronous messages are the result of the command being
executed. Asynchronous messages are the result of some command executed
previously (ie: execution of a breakpoint instruction).

A maximum of eight error messages can be displayed at one time. If more than
eight errors are generated, only the last eight are displayed.

21

Emulator error messages

IERROR 1! I/O port access not supported

Cause: You used the command. The MC68040 processors do not support
separate I/O address space.

Action: Use then command to modify memory mapped I/O ports on these
emulators.

IERROR 21! Insufficient emulation memory
Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system. Refer to error number 147 in this chapter for a detailed explanation that
may apply directly to the problem causing this error message.

432

40

80

140

141

Chapter 12: Emulator Error Messages
IERROR 40! Restricted to real time runs

IERROR 40! Restricted to real time runs

Cause: Thef rrt=en option is set (restrict to real time runs) and you have entered a
command that requires a temporary break to the monitor for processing (such as a
request to display target system memory locations). The emulator will not allow
temporary breaks while the emulator is in the reset state or while the target program
iS running.

Action: Break to the monitor using tbecommand, and then execute the desired
command or disable real time mode withrt=dis .

IERROR 80! Stack pointer is odd

Cause: You tried to modify the stack pointer to an odd value and the emulator
expects the stack to be aligned on a word boundary.

Action: Modify the stack pointer to an even value.

IERROR 140! Invalid attribute for memory type : <attribute>

Cause: The memory type attributgsandlock are valid only for emulation
memory eram or erom memory types). You tried to assign one of these attributes
to target memoryt{am ortrom).

Action: Refer to the chapter titled, "Using the Terminal Interface" for information
on the memory type attributes.

IERROR 141! Dual ported memory limited to 4K bytes

Cause: There are only 4 Kbytes of dual-port emulation memory on the emulator
probe. You tried to map an emulation memory term whose address range spanned
more than 4 Kbytes by using ttp attribute.

Action: You can:

* Reenter thenap command, using thdp attribute. Be sure to restrict the
address range to 4 Kbytes (O..fff).

* Reenter thenap command, and use regular emulation memory. That is, o
thedp attribute.

433

Chapter 12: Emulator Error Messages
IERROR 142! Dual ported memory already in use

142

144

145

IERROR 142! Dual ported memory already in use

Cause: There is only one 4-Kbyte block of dual-port, emulation memory available
for mapping and you tried to map another term usingphettribute. If you select
the foreground monitoc{ mon=fg), this block is used by the monitor and is not
available for mapping.

Action: Reenter the map command withoutdbeattribute, or select a background
monitor and reenter the map command withdphettribute.

IERROR 144! Monitor address is not set to <addr> for downloaded monitor
IERROR 144! Continuing with default foreground monitor

Cause: You have downloaded a custom foreground monitor which was linked at an
address other than the monitor address specified within the emulation configuration.

Action: Change the monitor address within the emulation configuration or link your
custom monitor at the address specified in the configuration.

IERROR 145! Downloaded monitor spans multiple 4K byte block boundaries

Cause: You tried to load a custom foreground monitor, but the absolute file has
address records that are outside the range of a single 4-Kbyte block.

Action: Modify your custom monitor so that its code and data fit into a single
4-Kbyte block; then assemble, link, and repeat the load operation.

434

147

150

Chapter 12: Emulator Error Messages
IERROR 147! Request cannot be satisfied with remaining map resources

IERROR 147! Request cannot be satisfied with remaining map resources

Cause: Although you have not exceeded the maximum number of map terms that
can be specified in the memory map, you have run into a hardware resource
limitation in the emulator that arises when target memory is mapped usiog the
attribute.

There are eight hardware resources on the emulation probe for mapping emulation
memory and driving the TCI signal for target memory ranges. When two
emulation memory modules are installed, the emulator requires seven of these
resources to map all of the emulation memory. Target memory ranges require
either zero or one resource, depending on whether or not use@fatigbute

matches its use in the "other" term. For example, if "other" is mapped to target
RAM without thetci attribute, one hardware resource is required to add a map term
for target memory that uses tlwé attribute. Consuming additional hardware
resources for mapping target memory will reduce the amount of emulation memory
available for mapping. Once all eight hardware resources have been consumed,
mappable emulation memory will be reduced to zero and you will get this message.

Action: Try to minimize the number of hardware resources used for mapping target
memory by mapping the "other" term to target memory both with and without the
tci attribute. Find out whether you use less hardware resources by specifying the
tci attribute or not specifying thei attribute for the "other" term.

IERROR 150! Program counter is odd or uninitialized

Cause: You tried to run the processor from the current PC, but the value of the
current PC is odd.

Action: Modify the PC to an even value. The processor expects even word
alignment of opcodes.

435

Chapter 12: Emulator Error Messages
IERROR 150! Program counter is located in guarded memory

150

151

151

IERROR 150! Program counter is located in guarded memory

Cause: You tried to run but the emulator detected that the program counter is
located in guarded memory. This error will only be generated if the MMU is
disabled; otherwise, you will see an asynchronous error indicating access to
guarded memory occurred when the emulator attempted to run the target program.

Action: Make sure the program counter is set to an address in RAM or ROM before
you attempt to run your program.

IERROR 151! Interrupt stack pointer is odd or uninitialized
IERROR 151! Master stack pointer is odd or uninitialized

Cause: You are in the monitor and you tried to run, but the emulator detected that
your stack pointer is invalid (it detected an odd value).

Action: Use theeg command to set the stack pointer to an even value that points at
a memory region (emulation or target RAM) that can be used for stack operations
before running your program.

IERROR 151! Interrupt stack is located in ROM: <address>
IERROR 151! Master stack is located in ROM: <address>

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as ROM, and you enabled breaks on writes to ROM.

The monitor exits your target program by executing an RTE instruction.

Depending upon whether or not you set the M bit in the SR, the monitor will either
place a format $0 stack frame on the interrupt stack or will place a format $1
(throwaway) stack frame on the interrupt stack and a format $0 stack frame on the
master stack. Any access violations detected during these writes will abort the exit
from the monitor.

Action: Use theeg command to set the stack pointer to an even value that points at
a memory region (emulation or target RAM) that can be used for stack operations
before running your program. Or, you can modify the emulation configuration and
respecify the memory map to RAM for the address range containing the interrupt
stack and/or the master stack.

436

151

151

Chapter 12: Emulator Error Messages
IERROR 151! Interrupt stack is located in guarded memory: <address>

IERROR 151! Interrupt stack is located in guarded memory: <address>

IERROR 151! Master stack is located in guarded memory: <address>

Cause: You issued a command to run the target program, but when the emulator
attempted to write to one of your stacks, it detected that the stack address is in
memory mapped as guarded.

The monitor exits to user program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master stack.
Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use theeg command to set the stack pointer to an even value that points at
a memory region (emulation or target RAM) that can be used for stack operations
before running your program. Or, you can modify the emulation configuration and
respecify the memory map to RAM for the address range containing the interrupt
stack and/or the master stack.

IERROR 151! Interrupt stack is not located in RAM: <address>
IERROR 151! Master stack is not located in RAM: <address>

Cause: You issued a command to run the target program. When the emulator
attempted to write to one of your stacks, it detected that the stack address is not
located in memory which operates as RAM. When the monitor writes out a stack
frame to your stack space, the monitor reads it back to verify that it was created
correctly. Unless the emulator can verify that the stack frame is located in RAM
and was created correctly, the monitor will abort the run.

The monitor exits the target program by executing an RTE instruction. Depending
upon whether or not you set the M bit in the SR, the monitor will either place a
format $0 stack frame on the interrupt stack or will place a format $1 (throwaway)
stack frame on the interrupt stack and a format $0 stack frame on the master

Any access violations detected during these writes will abort the exit from the
monitor.

Action: Use theeg command to set the stack pointer to an even value that points at
a memory region (emulation or target RAM) that can be used for stack operations
before running your program. Or, you can modify the emulation configuration and
respecify the memory map to RAM for the address range containing the interrupt
stack and/or the master stack.

437

Chapter 12: Emulator Error Messages
IERROR 154! Hardware breakpoints can only be used in target memory

154

154

155

IERROR 154! Hardware breakpoints can only be used in target memory

Cause: You attempted to use the "force hardware" option to set a breakpoint at an
address mapped as emulation memory. The "force hardware" option for
breakpoints is not available for addresses in emulation memory; it is only available
for breakpoints in target memory, typically for setting breakpoints in target ROM.

Action: Delete the "force hardware" option from your command and try to set the
breakpoint again.

IERROR 154! Out of hardware breakpoints

Cause: You either tried to set a breakpoint in target ROM or use the force hardware
option to set a breakpoint in target RAM, and all eight hardware breakpoint
resources are already in use.

Action: Review your present set of breakpoints to see if you can delete one or more
of the hardware breakpoints that are presently set. No more than eight hardware
breakpoints can be set at any one time (one per aligned long word). Only one
hardware resource is used if two hardware breakpoints are set in the same long
word.

ISTATUS 155! Vector table modified for single stepping

Cause: This status message indicates that you issued the emulator command to
single step. The emulator detected that the trace vector was not properly set for
stepping so the emulator temporarily modified one or more exception vectors in
your vector table. The original values are restored by the emulator after the step
completes. This message is only issued one time if you do not change the address
or value of the trace vector.

438

156

157

158

160

Chapter 12: Emulator Error Messages

IERROR 156! Unable to modify trace vector to <value> for single stepping

IERROR 156! Unable to modify trace vector to <value> for single stepping

Cause: You tried to single step, and the emulator detected the trace vector was not
set properly and the emulator was unable to modify the vector table because it was
not located in emulation memory or target RAM. This usually occurs when the
vector table is located in target ROM.

Action: Copy or relocate the vector table in emulation memory or target RAM, or
change your ROM image so that it contains the proper value for the trace vector for
single stepping. Refer to stepping information in the chapter titled "Using the
Emulator” in this manual.

ISTATUS 157! Disabled mmu/cache while background monitor is selected

Cause: This status message indicates that the MMU and/or cache was enabled in
the emulation configuration when you changed the monitor type to background.
The background monitor requires the MMU and the cache to be disabled in order to
operate properly. Both the MMU and the cache were disabled automatically when
you changed to the background monitor.

IERROR 158! Cannot enable mmu/cache while background monitor is selected

Cause: You tried to enable either the MMU or the cache within the emulation
configuration after selecting the background monitor. The background monitor
requires the MMU and the cache to be disabled in order to operate properly.

Action: Use the foreground monitor if you want to enable either the MMU or the
cache.
IERROR 160! MMU is not enabled via configuration

Cause: You tried to display MMU translations or load the deMMUer but the MMU
is disabled within the emulation configuration.

Action: If you wish to use the MMU, enable it in the emulation configuration
before attempting to display its translations or load the deMMUer.

439

Chapter 12: Emulator Error Messages
IERROR 160! MMU is not enabled via translation control register

160

161

162

163

IERROR 160! MMU is not enabled via translation control register

Cause: You tried to display the MMU translations or load the deMMUer. While
the MMU is enabled within the emulation configuration, the enable bit is not set in
the translation control register.

Action: Either enable the MMU in your target system by modifying the TC register,
or specify an enabled value for the TC register on the command line when invoking
the MMU or deMMUer commands.

IERROR 161! No translation for alternate function code address spaces

Cause: You tried to display an MMU translation for an address specified with
alternate function codes 0, 3, 4, or 7.

Action: Don'’t use alternate function codes 0, 3, 4, or 7 when attempting to display
an MMU translation for an address. The MMU does not translate addresses in
alternate function code space.

ISTATUS 162! Display truncated to <number of lines> lines

Cause: This status message indicates that more lines of MMU translations could
have been displayed, but when you requested a display of MMU translations, you
limited the number of lines to be displayed.

IERROR 163! DeMMUer has not been loaded

Cause: You tried to enable the deMMUer before it had been loaded. The
deMMUer can only be enabled after it has been loaded with a set of reverse
translation information.

Action: Load the deMMUer from the present translation tables in memory or from
a deMMUer file that you have previously saved.

440

163

170

170

Chapter 12: Emulator Error Messages

IERROR 163! Unable to access deMMUer while analysis trace is in process

IERROR 163! Unable to access deMMUer while analysis trace is in process

Cause: You tried to issue a command that requires access to the deMMUer while
the analyzer was running a trace. You cannot load, enable or disable the deMMUer
while an analysis trace is in process.

Action: Wait for the trace to complete or stop the trace before changing the state of
the deMMUer.

ISTATUS 170! Emulator terminated hung bus cycle: <address> byte read

Cause: This status message will be displayed if the target system fails to provide

TA or TEA bus cycle termination for a particular cycle and the emulator terminates

the bus cycle in order to break from execution of the target program to execution
within the monitor, or to complete execution of a monitor command (which

accessed this memory address). This can happen on any access to target memory or
interlocked emulation memory (when using the "lock" attribute in terminal mode).

The emulator will not terminate any hung bus cycles unless you explicitly say break
or you execute a monitor command (ie: "m 7000"). The emulator will generate this
status message each time it terminates a hung bus cycle. The emulator never
attempts to terminate bus cycles in program space (opcode fetches) or for any
addresses in the foreground monitor.

IERROR 170! Target failed to terminate bus cycle: <address> long read

Cause: You attempted to break or reset into the monitor and the target system failed
to terminate a bus cycle wifA or TEA. Normally, the emulator will force bus

cycle termination for the target system in order to break into the monitor.

However, the emulator refused to terminate the bus cycle because the address was
in program space or it was within the address range of the foreground monitor.

Action: Reset the emulator and target system. If the address is within emulation
memory, do not use the lock attribute if the target system does not provide cycle
terminations within this address range.

441

Chapter 12: Emulator Error Messages
IERROR 171! Request failed; bus grant

171 IERROR 171! Request failed; bus grant

Cause: An attempt was made to execute a monitor command, but an external target
system device has monopolized the bus and the monitor is no longer responding.

Action: Wait until the processor has regained bus control, and then retry the
operation or don't let external devices monopolize the bus for extended periods of
time.

171 IERROR 171! Request failed; no target power
Cause: You do not have proper power applied to your target system or demo board.

Action: Check the connection from your emulation probe to the target system or
demo board. If using the demo board, be sure you have connected the external
power cable correctly.

171 IERROR 171! Request failed; slow clock
Cause: The target system is providing target power but no clock signal.

Action: Make sure the clock oscillator is installed correctly.

171 IERROR 171! Request failed; target reset

Cause: During a monitor command, the target system asserted (and continues to
assert) the reset signal; the monitor is no longer responding.

Action: Prevent your target system from asserting the reset signal when you are
using monitor commands.

171 IERROR 171! Request failed; halted

Cause: During a monitor command, one or more target exceptions caused the
processor to stop running bus cycles.

Action: Use the emulation-bus analyzer to determine what exceptions caused the
problem and try to work around them.

442

Chapter 12: Emulator Error Messages
IERROR 171! Request failed; no bus cycles

171 IERROR 171! Request failed; no bus cycles

Cause: During a monitor command, some problem caused the processor to stop
running bus cycles.

Action: Use the emulation-bus analyzer to determine what caused the problem and
try to work around them. If you are using the demo board, make sure the reset
flying lead from the probe is connected to the demo board.

171 IERROR 171! Request failed; unexpected exception: <vector number>

Cause: The monitor was executing a command and some exception occurred that it
did not expect. During monitor command execution, the monitor traps all
exceptions by using its own stack and vector table. The monitor provides exception
handlers for some exceptions, such as access fault, so that it can either recover or
issue a detailed error message. The monitor had no exception handler for the
exception number shown in this message.

Action: Reset the emulator and try your command again.

172 IERROR 172! Target bus error: <address>

Cause: The monitor attempted to access target system memory or interlocked
emulation memory and the target system terminated the bus cyclEBmith

Action: Retry your command. If the error occurs again and if it is during an
attempted access to emulation memory, you can change the interlocked attribute to
emulation memory. If the error occurs again on access to target system memory,
inspect your target system to understand why it is sendinggAdor the specified
address.

443

Chapter 12: Emulator Error Messages
IERROR 172! Address translation error; target bus error: <address>

172

172

172

IERROR 172! Address translation error; target bus error: <address>

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor; the memory access generated an access fault resulting
from an MMU address translation failure. The target system terminated a
tablewalk cycle withTEA (bus error).

Action: Verify that the SRP and URP registers point to the correct location in
memory where your address translation tables reside. If this is target memory, you
will need to determine why your target system as3étts.

IERROR 172! Address translation error; non-resident page: <address>

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor; the memory access generated an access fault resulting
from an MMU address translation failure. This error indicates that the address does
not have a valid translation.

Action: Display the address translation tables for the <address> given in the
message. You can display the MMU translations to see if the <address> is within
one of the translated ranges. You can display translation tables for the address, and
then you can view table details if one of the translation tables seems to be
misdirecting the translation of the address.

IERROR 172! Address translation error; supervisor-only page: <address>

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor and the memory access generated an access fault resulting
from an MMU address translation failure. A user mode access was attempted to a
page that is only accessible in supervisor mode.

Action: Try your command again, but be sure to specify access in the supervisor
mode.

444

172

173

174

Chapter 12: Emulator Error Messages

IERROR 172! Address translation error; write-protected page: <address>

IERROR 172! Address translation error; write-protected page: <address>

Cause: The error occurred when the monitor attempted to access memory with the
MMU enabled. You requested the monitor to display or modify memory, or you
tried to exit the monitor and the memory access generated an access fault resulting
from an MMU address translation failure.

This error indicates that write access was denied to a write-protected page. NOTE:
Except for stacking on exit, any attempts to modify memory in write protected
pages using the monitor will succeed as long as the translation tables reside in
RAM. The monitor will temporarily clear any write protect flags in your

translation tables in order to force the access to be completed. If the monitor is
unable to clear the write protect flags because the translation tables are in ROM,
you will see this error.

Action: Check the content of the write protected page to see if it has been changed
by the attempted write transaction.

IERROR 173! Monitor operation interrupted by target system

Cause: Your attempt to execute a monitor command was aborted when the target
system preempted the monitor and did not return control. When the foreground
monitor is running and is in its idle state, the monitor can be interrupted by the
target system to service target system requirements. If the target system interrupts
the monitor and fails to return control to the monitor after it has finished, this error
is generated. The emulator does not attempt to regain control when after the
monitor has been preempted.

Action: The only way to regain control of your emulation system is to reset the
emulation processor. If you do not want the monitor to be preemptable by target
system interrupts, you can increase the monitor interrupt priority level. Refer to the
chapter that discusses the emulation configuration options.

IERROR 174! No monitor configured

Cause: You configured monitor "none" and you tried to break into the monitor
execute a command that requires use of the monitor.

Action: Either change the configuration to use a monitor, or do not try to issue a
command that requires the monitor.

445

Chapter 12: Emulator Error Messages
IERROR 175! Coverage not supported

175

175

176

177

IERROR 175! Coverage not supported

Cause: Theov (memory coverage) command cannot be used in this emulator
because there is no supporting hardware.

IERROR 175! Copy target image not supported

Cause: Theim (copy image memory) command cannot be used in this emulator.
Normally, thecim command would be used to copy a target system memory range
to emulation memory so you could set breakpoints or patch code.

Action: To do this without theim command, save the target system memory range
to an absolute file using tlieimp command. Then remap the target memory range

to emulation memory, and load the absolute file into emulation memory using the

load command. Refer to the chapter titled, "Using the Emulator" for information on
saving and loading absolute files.

IERROR 176! Update HP64700 system firmware to A.04.00 or newer

Cause: This error occurred because your system firmware is out of date.

Action: Refer to the chapter titled, "Installing/Updating Emulator Firmware". You
must update the firmware to the version number specified in the message, or newer
firmware version number. Your system is not usable with its present firmware.

IERROR 177! Update HP64740 firmware to version A.02.02 or newer

Cause: This error occurred when you attemped to disassemble a trace and the
analyzer firmware was found to be out of date.

Action: Refer to the chapter titled, "Installing/Updating Emulator Firmware". You
must update the firmware to the version number specified in the message, or newer
firmware version number. Your analyzer is not able to disassemble its trace
memory with its present firmware.

446

178

178

179

Chapter 12: Emulator Error Messages
IERROR 178! Unable to run HP64783 performance verification tests

IERROR 178! Unable to run HP64783 performance verification tests

Cause: You entered tipg command, but the emulator was unable to start
performance verification because the firmware did not identify the probe as being
the MC68040.

Action: Make sure the correct emulator probe is connected and that all cables are
secured. Make sure that the demo board is connected to the emulator probe, the
power cable is connected between the HP 64700 card cage and the demo board, and
the reset flying lead is connected between the emulation probe and the demo board.

IERROR 178! Unable to run HP64783 tests without target power

Cause: The demo board does not have proper power connected to it.

Action: Check the connections of the external power cable and the reset flying lead
to the demo board.

ISTATUS 179! HP64783 M68040 firmware not compatible with emulation

probe

Cause: The emulation control card is programmed with MC68040 firmware, but the
firmware does not identify the probe as being the MC68040.

Action: Make sure that you are using an MC68040 probe, and then make sure the
probe cables between the control card and the probe are connected correctly. Refer
to the Installation and Service Chapter for proper cable connections.

447

Chapter 12: Emulator Error Messages
IERROR 201! Out of system memory

201 IERROR 201! Out of system memory

Cause: Macros and equates that you have defined have used all of the available
system memory.

Action: Delete some of the existing macros¢ -d <NAME>) and equates(u
-d <NAME>). This will free additional memory.

204 IERROR 204! FATAL SYSTEM SOFTWARE ERROR
205 IERROR 205! FATAL SYSTEM SOFTWARE ERROR
208 IERROR 208! FATAL SYSTEM SOFTWARE ERROR

Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands that caused the error. Cycle power
on the emulator and reenter the commands. If the error repeats, call your local HP
Sales and Service office for assistance.

300 IERROR 300! Invalid option or operand
305 IERROR 305! Invalid option or operand: <option>

Cause: You have specified an incorrect option to a command. <option>, if printed,
indicates the incorrect option.

Action: Use online help by typingelp <command>or ? <command> Reenter
the command with the correct syntax. Refer to the chapter titled, "Emulator
Commands" for more information.

307 IERROR 307! Invalid expression: <expression>

Cause: You have entered an expression with incorrect syntax; therefore, it cannot
be evaluated. <expression> is the bad expression.

Action: Use online help by typirgelp gram. Reenter the expression, following

the syntax rules for that type of expression. Refer to the chapter titled, "Emulator
Commands" to determine the expression type; then see the "Expressions"” chapter to
determine the correct syntax for that type.

448

Chapter 12: Emulator Error Messages
IERROR 308! Invalid number of arguments

308 IERROR 308! Invalid number of arguments

Cause: You either entered too many options to a command or an insufficient
number of options.

Action: Reenter the command with correct syntax. Use online help by tyging
<command> Refer to the chapter titled, "Emulator Commands" in this manual for
more information.

310 IERROR 310! Invalid address: <address>

You specified an invalid address value as an argument to a command (other than an
analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number (even zero (0)).

Action: Reenter the command and the address specification. Use online help by
typing help proc. See the <ADDRESS> and the <EXPRESSION> syntax pages in
the "Expressions" chapter for information on address specifications.

311 IERROR 311! Invalid address range: <address_range>

Cause: You specified an invalid address range as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don't
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number, or the upper boundary of the range you specified is less than the
lower boundary.

Action: Reenter the command and the address specification. Use online help by
typing help proc. See the <ADDRESS> syntax pages and <EXPRESSION> syntax
pages in the "Expressions" chapter for information on address specifications. Also,
make sure that the upper boundary specification is greater than the lower boundary
specification (the lower boundary must always precede the upper boundary on the
command line).

449

Chapter 12: Emulator Error Messages
IERROR 313! Missing option or operand

313 IERROR 313! Missing option or operand
Cause: You have omitted a required option to the command.

Action: Reenter the command with the correct syntax. Use online help by typing
help <cmd> Refer to the chapter titled, "Emulator Commands" in this manual for
further information on required syntax.

314 IERROR 314! Option conflict: <option>

Cause: You have entered a command with two options that cannot be used together.
For example, you might have entetkdx; you cannot ask for both a binary and
hexadecimal trace list dump.

Action: Reenter the command, specifying only non-conflicting options. See the
syntax information for the command in the chapter titled, "Emulator Commands" in
this manual to determine which options can be used together.

315 IERROR 315! Invalid count: <count>

Cause: This error occurs when the emulation system expects a certain number (of
arguments, for example), but you specify a different number.

Action: Enter the number the system expects to receive.

316 IERROR 316! Invalid range expression: <range>

Cause: In thd command, you specified an illegal range. For example, you might
have specified -10..a

Action: Use only legitimate range numbers inttheommand (-1024..1023 with
counting off, or -512..511 with counting on); the second range value must be
greater than the first.

317 IERROR 317! Range out of bounds: <address range>

Cause: In thd command, you specified a range number that was greater than the
number of states available in the analyzer. For example, you might have splecified
-2048..2048the analyzer only has 1024 states.

Action: Specify range numbers between -1024 and 1023 when counting is turned
off, or between -512 and 511 when counting is turned on.

450

Chapter 12: Emulator Error Messages
IERROR 318! Count out of bounds: <number>

318 IERROR 318! Count out of bounds: <number>

Cause: You specified an occurrence count less than 1 or greater than 65§35 for
or tif. For example, you might have entetiéd any 2 69234

Action: Reenter the command, specifying a count value from 1 to 65535. For
exampletif 1 any 2 65535

319 IERROR 319! Invalid base: <base>
Cause: This error occurs if you have specified an invalid basetinagbsmmand.

Action: Enter thénelp tf or command to view the valid base options.

320 IERROR 320! Invalid label: <label>

Cause: You tried to define a label with characters other than letters, digits, or
underscores.

Action: Reenter thdb command with a label consisting only of letters, digits, or
underscores.

321 IERROR 321! Label not defined: <label>

Cause: You entered an analyzer expression in which the label was not present in the
analyzer label list. For example, if the label list inclualddr, data, andstat, you

might have entered something suclgaewerdata=24t This error also occurs if

you try to delete a label that does not exist.

Action: You can reenter the command, using one of the previously defined labels,
and adjust the expression as necessary to accommodate the fit of that label to the
analyzer input lines. You can also define a new label usintpttemmand, and

then reenter the analyzer command using the newly defined label.

451

Chapter 12: Emulator Error Messages
IERROR 400! Record checksum failure

400

401

410

411

IERROR 400! Record checksum failure

Cause: During &ransfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry thearansfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

IERROR 401! Records expected: <number>; records received: <number>

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry theransfer. If the failure is repeated, make sure the data
communications parameters are set correctly on the host and on the HP 64700. See
theHP 64700-Series Card Cage Installation/Service Giadeetails.

IERROR 410! File transfer aborted

Cause: Atransfer operation was aborted due to a break received, most likely a
<CTRL> ¢ from the keyboard. If you typed <CTRL> c, you probably did so
because you thought the transfer was about to fail.

Action: Retry the transfer, making sure to use the correct command options. If you
are unsuccessful, make sure the data communications parameters are set correctly
on the host and on the HP 64700; then retry the operation.

IERROR 411! Severe error detected, file transfer failed
Cause: An unrecoverable error occurred duritrgrasfer operation.

Action: Retry the transfer. If it fails again, make sure the data communications
parameters are set correctly on the host and on the HP 64700. Also make sure you
are using the correct command options, both on the HP 64700 and on the host.

452

Chapter 12: Emulator Error Messages
IERROR 412! Retry limit exceeded, transfer failed

412 IERROR 412! Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record duraugséer operation
was exceeded; therefore, the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the host,
line noise may cause the failure.

520 IERROR 520! Equate not defined: <name>

Cause: You tried to delete an equate that did not exist in the equate table. For
example suppose the equaded andb=2 were in the equate table. If you typed
equ -d ¢ you would receive the above error message.

Action: Useequ to display the list of named equates before deleting equates.

603 IERROR 603! Read PC failed during break
Cause: The monitor is not responding.

Action: Check your target system configuration, the emulator configuration and
memory map, or reinitialize the emulator. Then try the command sequence again.

604 IERROR 604! Disable breakpoint failed: <address>
Cause: System failure or target condition.

Action: Emulator was unable to write previously saved opcode to target memory.
Check target memory system.

453

Chapter 12: Emulator Error Messages
IASYNC_STAT 605! Undefined software breakpoint: <breakpoint address>

605

605

606

608

IASYNC_STAT 605! Undefined software breakpoint: <breakpoint address>

Cause: This status message indicates a breakpoint instruction was executed and the
emulator stopped target execution and started running in the monitor. The emulator
had no record of a breakpoint being set at this address. This can happen if the
MMU relocates a page containing a breakpoint before that breakpoint is executed.

In this case, the emulator will have no record of the breakpoint at the relocated
address.

IERROR 605! Undefined software breakpoint: <address>

Cause: The emulator has encountered a BKPT instruction in your program that was
not inserted with thbp command.

Action: Remove the breakpoints inserted in your code before assembly and link,
and then reinsert them using thgecommand. If this message was received after
you enabled the MMU, read "Execution Breakpoint Problems" in the chapter titled,
"Using Memory Management".

IERROR 606! Unable to run after CMB break
Cause: System failure or target condition.

Action: Run performance verificatiop command), and check target system.

IERROR 608! Unable to break

Cause: This message is normally used with other messages that further describe the
error. Itis displayed if the emulator is unable to break to the monitor because the
emulation processor is reset, halted, or the monitor is not responding for some
reason.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use the
b command to break to the monitor. If reset by the target system, release that reset.
If halted, tryrst -m to get to the monitor. If there is a bus grant, wait for the
requesting device to release the bus before retrying the command. If there is no
clock input, perhaps your target system is faulty. It's also possible that you have
configured the emulator to restrict to real time runs, which will prohibit temporary
breaks to the monitor.

454

Chapter 12: Emulator Error Messages
IERROR 610! Unable to run

610 IERROR 610! Unable to run

Cause: Run has failed for some reason. For example, this message will appear if
the emulator cannot write to stack, which is required to run. Usually, this error
message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more information about why the run failed. Look at the emulator prompt to know
the emulator status. Take a trace with the analyzer to see where the emulator is
executing.

611 IERROR 611! Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if the CMB
READY line goes false. The emulator breaks to the monitor. When CMB READY

is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor. No action is necessary (status only).

613 IASYNC_STAT 613! Analyzer Break

Cause: Status message. No action necessary.

615 IASYNC_STAT 615! Software breakpoint: <breakpoint address>

Cause: This status message indicates that the target program executed a software
breakpoint instruction (an execution breakpoint, either in software or provided by
one of the eight hardware breakpoint resources). The emulator stopped the target
program and began running in the monitor.

616 IASYNC_STAT 616! BNC trigger break

Cause: This status message will be displayed if you hate setonctand the
BNC trigger line is activated during a program run. The emulator is broken to the
monitor.

455

Chapter 12: Emulator Error Messages
IASYNC_STAT 617! CMB trigger b reak

617 IASYNC_STAT 617! CMB trigger break

Cause: This status message will be displayed if you habe setcmbtand the
CMB trigger line is activated during a program run. The emulator is broken to the
monitor.

618 IASYNC_STAT 618! trigl break

Cause: This status message will be displayed if you have set the analyzer to drive
trigl upon finding the triggehc -e triglis set, and the analyzer has found the
trigger condition while tracing a program run. The emulator is broken to the
monitor.

619 IASYNC_STAT 619! trig2 break

This status message will be displayed if you have set the analyzer ttrigéive
upon finding the triggehc -e trig2 is set, and the analyzer has found the trigger
condition while tracing a program run. The emulator is broken to the monitor.

620 IERROR 620! Unexpected software breakpoint
621 IERROR 621! Unexpected step break

Cause: System failure.

Action: Run performance verificatiop¥ command).

623 IASYNC_STAT 623! CMB execute break

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run; the emulator must break before
running. This is a status message; no action is required.

456

Chapter 12: Emulator Error Messages
IERROR 624! Configuration aborted

624 IERROR 624! Configuration aborted

Cause: Occurs when a <CTRL> c is entered dwfiniisplay command.

625 IERROR 625! Invalid configuration value: <value>

Cause:You have entered a configuration option incorrectly, such as typing
cf mon=junk instead otf mon=fg.

Action: Typehelp cf <item>for a description of configuration items and valid
values. Reenter the configuration command, specifying only the correct values.

626 IERROR 626! Configuration failed; setting unknown: <item>=<value>

Cause: Target condition or system failure while trying to change configuration
item.

Action: Try to reset. Then reenter yafirommand. Check target system, and run
performance verificatiorpyy command).

627 IERROR 627! Invalid configuration item: <item>

Cause: You specified a non-existent configuration item ieftctemmand. For
example, because the MC68040 emulator does not support an internal clock, you
would see this message if you enterbdk=int because there is mtk

configuration item for your emulator.

Action: Typehelp cfto see valid items. Reenter the command, specifying only
configuration items that are supported by your emulator. Refer b $yatax
pages in the chapter titled, "Emulator Commands" in this manual.

457

Chapter 12: Emulator Error Messages
IASYNC_ STAT 628! Write to ROM break:<ROM address>

628

628

628

630

631

632

634

IASYNC_STAT 628! Write to ROM break:<ROM address>

Cause: This status message indicates the target program accessed memory mapped
as either emulation ROM or target ROM; the emulator interrupted target execution
and began running in the monitor. This only occurs if you enabled breaks on writes
to ROM. When the MMU is enabled, the address displayed in this message will be
physical, as denoted by the trailing "a" after the function code.

IASYNC_STAT 628! Guarded mem break: <guarded memory address>

Cause: This status message indicates that the target program accessed memory
mapped as guarded and the emulator interrupted target execution and began
running in the monitor. When the MMU is enabled, the address displayed in this
message will be physical, as denoted by the trailing "a" after the function code.

IASYNC_STAT 628! Handled target exception: <exception>

Cause: The vector base register points to the exception vector table in the
foreground monitor and the target program generated an exception that was caught
by the monitor.

IERROR 630! Register access aborted

Cause: Occurs when a <CTRL> c is entered during register display.

IERROR 631! Unable to read registers in class: <name>
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed. Most
likely, the emulator was unable to break to the monitor to perform the register read.

IERROR 632! Unable to modify register: <register>=<value>
Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
modification.

IERROR 634! Display register failed: <register>

Cause: The emulator was unable to display the register you requested.

458

Chapter 12: Emulator Error Messages
IERROR 637! Register class cannot be modified: <register class>

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
display.

637 IERROR 637! Register class cannot be modified: <register class>

Cause: You tried to modify a register class instead of an individual register. You
can only modify individual registers.

Action: See theeg syntax pages in the chapter titled, "Emulator Commands" in
this manual for a list of register names.

640 IERROR 640! Unable to reset
Cause: Target condition or system failure.

Action: Check target system, and run performance verificgoegmmand).

641 IERROR 641! Unable to reset into monitor

Cause: You have enteredsa-m command and the emulator is unable to break
into the monitor.

Action: This message is accompanied by other error messages. Look at those
messages for clarification of the problem and actions to take.

652 IERROR 652! Break condition must be specified

Cause: You enterdat -eor bc -d without specifying a break condition to enable or
disable.

Action: Reenter thbc command along with the enable/disable flag and the break
condition you wish to modify.

459

Chapter 12: Emulator Error Messages
IERROR 653! Break condition configuration aborted

653

661

663

665

666

IERROR 653! Break condition configuration aborted

Cause: Occurs when <CTRL> c is entered dubmdisplay.

IERROR 661! Software breakpoint break condition is disabled

Cause: You disabled the software breakpoint feature. Breakpoints are enabled by
default. Then you attempted to set a breakpoint, or you attempted to single step
with the foreground monitor (either the built-in or custom foreground monitor).

Action: Re-enable the software breakpoint feature and try again.

IERROR 663! Specified breakpoint not in list: <address>

You tried to enable a software breakpoby (e <ADDRESSY that was not

previously defined. <address> prints the address of the breakpoint you attempted to
enable. Insert the breakpoint into the table and memory by tgping

<ADDRESS>

IERROR 665! Enable breakpoint failed: <address>
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

IERROR 666! Disable breakpoint failed: <address>
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

460

667

668

669

670

671

680

Chapter 12: Emulator Error Messages
IERROR 667! Breakpoint code already exists: <address>

IERROR 667! Breakpoint code already exists: <address>

Cause: You attempted to insert a breakpoint itk ADDRESS> however, there

was already a software breakpoint instruction at that location which was not already
in the breakpoint table. Your program code is apparently using the same breakpoint
instruction ap.

Action: Remove the breakpoints from your program code andpiseinsert
breakpoints.

IERROR 668! Breakpoint not added: <address>

Cause: The emulator tried to insert a breakpoint in a memory location which could
not be accessed.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

IERROR 669! Breakpoint remove aborted

Cause: Occurs when <CTRL> c is entered duribg & command.

IERROR 670! Breakpoint enable aborted

Cause: Occurs when <CTRL> c is entered duribg &e command.

IERROR 671! Breakpoint disable aborted

Cause: Occurs when <CTRL> c is entered duribg ad command.

IERROR 680! Stepping failed

Cause: Stepping has failed for some reason. For example, this message will appear
if the emulator can’t modify the trace vector, which is used to implement the step
function. Usually, this error message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find
more about why stepping failed.

461

Chapter 12: Emulator Error Messages
IERROR 682! Invalid step count: <count>

682

684

685

686

688

689

692

IERROR 682! Invalid step count: <count>

Cause: You specified an non-cardinal value for a step count $rctdremand
(such as entering 22.).

Action: Reenter the step command, using only cardinal values (positive integers)
for the step count.

IERROR 684! Failed to disable step mode

Cause: System failure. Run performance verificapncommand).

IERROR 685! Stepping aborted

Cause: This message is displayed if a break was received dsiisigp)
command with a stepcount of zero (0). The break could have been due to any of the
break conditions ibc or a <CTRL> ¢ break.

IERROR 686! Stepping aborted; number steps completed: <steps completed>

Cause: This message is displayed if a break was received dsiisigip)

command with a stepcount greater than zero. The break could have been due to any
of the break conditions inc or a <CTRL> ¢ break. The number of steps completed

is displayed.

IERROR 688! Step display failed

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

IERROR 689! Break due to cause other than step

Cause: An activity other tharstep command caused the emulator to break. This
could include any of the break conditions incecommand or a <CTRL> c break.

IERROR 692! Trace error during CMB execute
Cause: System failure.

Action: Run performance verificatiopf command).

462

693

694

700

702

707

Chapter 12: Emulator Error Messages
IASYNC_ STAT 693! CMB execute; run started

IASYNC_STAT 693! CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB/EXECUTE pulse has been received; the emulation
processor started running at the address specified loy tmenmand.

IASYNC_ERR 694! Run failed during CMB execute
Cause: System failure or target condition.

Action: Run performance verificatiop¥ command), and check target system.

IERROR 700! Target memory access failed

Cause: The emulator was unable to perform the requested operation on memory
mapped to the target system. This message is displayed in conjunction with other
error messages that further clarify the problem that occurred. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation.

Action: See other error messages to further understand the cause of the error.

IERROR 702! Emulation memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation. Usually there are other error messages. Refer to them to fully
understand the cause of the error.

Action: See message 608.

IERROR 707! Request access to guarded memory: <address>

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to a

these during command processing, the above message is printed, along with
specific address or addresses accessed.

Action: Reenter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. You can also remap memory so that the desired
addresses are no longer mapped as guarded.

463

Chapter 12: Emulator Error Messages
IERROR 720! Invalid map term number: <map term number>

720

721

723

IERROR 720! Invalid map term number: <map term number>

Cause: You attempted to delete a mapper term that does not exist. For example, you
may have trieagnap -d 9, but the emulator only has eight map terms. You may
have triednap -d 2 when only one mapper term has been defined.

Action: Use themap command to determine the numbers of the terms currently
mapped. Then delete the appropriate mapper term.

IERROR 721! No map terms available; maximum number already defined

Cause: You tried to add more mapper terms than are available for this emulator. For
example, with the MC68040 emulator, there are only eight terms. If you had

already defined memory types for these terms, then tried to map another term, you
would see the above error message.

Action: Either combine map ranges to conserve on the number of terms or delete
mapper terms that aren’t needed.

IERROR 723! Invalid map address range: <address range>

Cause: You specified an invalid address range as an argumeniriapgthe

command. For example, you may have specified digits that don’t correspond to the
base specified, or you forgot to precede a hexadecimal letter digit with a number, or
the upper boundary of the range you specified is less than the lower boundary.

Action: Reenter thenap command and the address specification. See the
<ADDRESS> and the <EXPRESSION> syntax pages in the "Expressions" chapter
for information on address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower boundary
must always precede the upper boundary on the command line).

464

725

726

730

731

732

Chapter 12: Emulator Error Messages
IERROR 725! Unable to load new memory map; old map reloaded.

IERROR 725! Unable to load hew memory map; old map reloaded.
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

IERROR 726! Unable to reload old memory map; hardware state unknown

Cause: Error occurred while trying to modify the emulation memory map.

Action: Usually there are other error messages present. Refer to their descriptions
to more fully understand the cause and action to take for this error.

IERROR 730! Invalid memory map type: <type>

Cause: You specified a memory type while mapping that is not one of the
supported typesram, erom, tram, trom, orgrd.

Action: Reenter thenap command, specifying only one of the five supported
types, listed above.
IERROR 731! Invalid memory map attribute: <attribute>

Cause: The only valid memory map attributes for the MC68040 emulaidp are
(dual-port memory), thieck (interlock target system termination sigrigsésand
TEA), and theci (transfer cache inhibit) attributes. For example, the following
command will cause an error: “map 0..100 eram loc2".

Action: Reenter your command, using only valid memory map attributes.

IERROR 732! Invalid memory type for 'other’ range: <type>

Cause: The memory types foap other <type>are restricted tram, trom, or
grd. If you see the above message, you have tried to map the “other” ramgmto
orerom.

Action: Map the “other” range twam, trom, orgrd.

465

Chapter 12: Emulator Error Messages
IERROR 734! Map range overlaps with term: <term number>

734

752
754
756

800

801

IERROR 734! Map range overlaps with term: <term number>

Cause: You entered a map term whose address range overlaps with one already
mapped. For example, you may have entered artexpn1000..2fff eram and then
tried to enter a terrmap 2000..3fff erom

Action: Reenter the map term so that ranges do not overlap, or combine terms and
change the memory type. See the <ADDRESS> syntax pages in the chapter titled,
"Expressions" in this manual.

IERROR 752! Copy memory aborted; next destination: <address>
IERROR 754! Memory modify aborted; next address: <address>
IERROR 756! Memory search aborted; next address: <address>

Cause: One of these messages is displayed if a break occurs during processing of
thecp, m, orsercommands, respectively. The break could result from any of the
break conditions (excepp) or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions withttheommand.

IERROR 800! Invalid command: <command>

Cause: You entered a command that is not part of the standard Terminal Interface
command set (documented in this manual) and was not found in the currently
defined macros.

Action: Enter only commands defined in this manual or in the macro set. You can
display the macro set usingac. You can rename commands or name command
groups using thenac command.

IERROR 801! Invalid command group: <group hame>

Cause: This error occurs when you specify an invalid group namehelthes
<group> command.

Action: Enter thénelp command with no options for a listing of the valid group
names.

466

802

807

809

812

813

Chapter 12: Emulator Error Messages
IERROR 802! Invalid command format

IERROR 802! Invalid command format

Cause: This error occurs when an invalid macro is entered, for example,
mac {help;{}.

Action: See thenac command description.

IERROR 807! Macro list full; macro not added
Cause: The maximum number of macros have been defined.

Action: You must delete macros before adding any new macros.

IERROR 809! Macro buffer full; macro not added
Cause: This error occurs when the memory reserved for macros is all used up.

Action: You must delete macros to reclaim memory in the macro buffer.

IERROR 812! Invalid macro name: <name>

Cause: You tried to delete a macro that did not exist; or you tried to define a new
macro with a name containing characters other than letters, digits, or underscores.

Action: Use themac command to display the names of macros in the macro table
before deleting them witmac -d <NAME>. Define new macro names using only
letters, digits, and underscore characters.

IERROR 813! Command line too long; maximum line length: <number of
characters>

Cause: This error occurs when the command line exceeds the maximum number of
characters.

Action: Split the command line into two command lines.

467

Chapter 12: Emulator Error Messages
IERROR 814! Command line too complex

814

815

816

818

820

IERROR 814! Command line too complex
Cause: There was not enough memory for the expressions in the command line.

Action: Split up the command line, or use fewer expressions.

IERROR 815! Missing macro parameter: <parameter>

Cause: This error occurred because you did not include a parameter with the
specifiedmac command for macro expansion.

Action: Enter the command again, and include the appropriate parameter for the
macro expansion.

IERROR 816! Command line too complex
Cause: Too many expression operators are used.

Action: Split up the command line, or use fewer expressions.

IERROR 818! Command line too complex

Cause: A maximum nesting level has been exceeded for nested command
execution.

Action: Reduce the number of nesting levels.

IERROR 820! Unmatched quote encountered

Cause: In entering a string, such as withettliitocommand, you didn’t properly
match the string delimiters (eitheror “”). For example, you might have entered

echo “set S1 to off

Action: Reenter the command and string, making sure to properly match opening
and closing delimiters. Note that both delimiters must be the same character. For
exampleecho “set S1 to off!

468

Chapter 12: Emulator Error Messages
IERROR 822! Unmatched command group encountered

822 IERROR 822! Unmatched command group encountered

Cause: You entered tingac or rep command group without matching bra¢es
For examplemac test={rst -m;cforrep 2 {rst -m;map.

Action: Reenter the command, making sure to match braces around commands you
want grouped into the macro or repeat. For exampéde: test={rst -m;cf}.

824 IERROR 824! Maximum number of arguments exceeded
Cause: You exceeded the limit of 100 arguments per command.

Action: Reduce the number of arguments in the command.

826 IERROR 826! Maximum argument buffer space exceeded
Cause: You exceeded the space limits for argument lists.
Action: Reenter the command with less arguments, or simplify the expressions in
the arguments.
840 IERROR 840! Invalid date: <date>
Cause: You specified the date format incorrectly irdtheommand.
Action: Reenter the command with the correct date format. Seé toenmand
syntax pages in this manual for the correct format.
842 IERROR 842! Invalid time: <time>
Cause: You have incorrectly specified the time format imlttcommand.

Action: Reenter the command with the correct time format. Set ttenmand
syntax pages in this manual for the correct format.

469

Chapter 12: Emulator Error Messages
IERROR 844! Invalid repeat count: <count>

844

850

875

876

877

IERROR 844! Invalid repeat count: <count>

Cause: You entered a non-cardinal value for the repeat countréptbemmand,
such agep 22.1 <command_group>

Action: Reenter theep command, specifying only a cardinal number (positive
integer) for the repeat count.
IERROR 850! Attempt to load code outside of allocated bounds

Cause: This error occurs when tbé command attempts to load an absolute file
that contains code or data outside the range allocated for system code. Generally,
you will not use thécd command. Théed command is intended to be used by
high-level interfaces to the HP 64700.

IERROR 875! Invalid syntax for global or user symbol name: <symbol>

Cause: This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action: Make sure that you enter the global or user symbol name using the correct
syntax. When specifying a global symbol, make sure that you precede the global
symbol with a colon (for examplaglb_sym). When specifying a user symbol
(created with theym command), make sure that you enter the name correctly
without a colon.

IERROR 876! Invalid syntax for local symbol or module: <symbol/module>

Cause: This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action: When entering a local symbol name usingsira command, make sure
you specify the module name, followed by a colon, and then the symbol name (for
examplemodule:loc_syn). Make sure you specify the module name correctly.

IERROR 877! Symbol not found: <symbol>
Cause: This occurs when you try to enter a symbol hame that doesn’t exist.

Action: Enter a valid symbol name.

470

878

879

880

881

882

Chapter 12: Emulator Error Messages
IERROR 878! Symbol cannot contain wildcard in this context

IERROR 878! Symbol cannot contain wildcard in this context

Cause: You tried to enter a global, local, or user symbol name using the wildcard
(*) incorrectly.

Action: When you enter the symbol name again, include the wildcard (*) at the end
of the symbol.
IERROR 879! Symbol cannot contain text after the wildcard

Cause: You tried to include text after the wildcard specified in the symbol nhame
(for examplesym*text).

Action: Enter the symbol again, but don’t include text after the wildcard (*).

IERROR 880! Conflict between expected and received symbol information

Cause: The information you supplied in a symbol definition is not what the
HP 64700 expected to receive.

Action: Make sure that all symbols in the symbol file are defined correctly. Verify
that there are no spaces in the address definitions for the symbols in the symbol file
being downloaded.

IERROR 881! Ascii symbol download failed

Cause: This error occurs because the system is out of memory.

Action: You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

IERROR 882! No module specified for local symbol

Cause: This error occurs because you tried to specify a local symbol name without
specifying the module name where the symbol is located.

Action: Enter the module name where the local symbol is located, followed by
colon, and then the local symbol name.

471

Chapter 12: Emulator Error Messages
IERROR 1000! Conflicting disassembler option: <option>

1000

1001

1002

1102

Analyzer Error Messages

IERROR 1000! Conflicting disassembler option: <option>

Cause: This error occurs when you attempt to specify inverse assembly dptions (
-o<ialopts>) which are not allowed with each other (for examgblaai).

Action: Do not use conflicting inverse assembly options in the same trace list
command.

IERROR 1001! Invalid disassembler option: <option>

Cause: The ialopts> option specified with thetf-0” command is not valid. The
valid disassembler options aédisplay all bus cycles),(display only instruction
cycles)d (dequeue the trace list) (don’t dequeue the trace list), dnd
(disassemble starting with the lower word of the instruction).

Action: Use valid inverse assembly options in your command.

ISTATUS 1002! Analyzer SIMMs are not all the same size; using smallest size

Cause: Plug-in SIMMs are used to expand the trace depth of the deep analyzer to
64k or 256k states. Four SIMMs, all of the same size must be used. If they are not
all the same size, the smallest SIMM size in the set of four will be used for trace
depth.

Action: No action necessatry.

IERROR 1102! Invalid bit range; crosses two multiples of 16: <sig#>..<sig#>

Cause: This error occurs when defining trace labels. A trace label may not contain
trace signals crossing two 16-bit boundaries. For example, the comttamaitie

1..32 will cause this error because “name” contains signals that cross the 15-16
and 31-32 16-bit boundaries.

Action: Redefine your trace label so that no more than one 16-bit boundary is
crossed.

472

1103

1104

1105

1108

Chapter 12: Emulator Error Messages
IERROR 1103! Invalid bit range; out of bounds: <sig#>..<sig#>

IERROR 1103! Invalid bit range; out of bounds: <sig#>..<sig#>

Cause: This error occurs when defining trace labels, and you have attempted to
assign non-existent trace signals to a label.

Action: Enter the trace activity command to view the trace signals present, and use
only these signals when defining trace labels.

IERROR 1104! Invalid bit range; too wide: <sig#>..<sig#>

Cause: This error occurs when defining trace labels, and you have attempted to
assign more than 32 trace signals to a label.

Action: Use more than one trace label to define over 32 trace signals.

IERROR 1105! Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label that is
currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: Display the emulation trace sequencer specification in the configuration,
display the emulation trace patterns in the complex configuration, or display the
trace format to see where the label is used. Also, you shouldtchemhdtpq for

uses of that label. You must change the pattern or format specification to remove
the label before you can delete it.

IERROR 1108! Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace label that
is currently used as a qualifier in the emulation trace specification.

Action: Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex configuration, or
display the emulation trace format to see where the label is used. You must change
the pattern or format specification to remove the label before you can redefine

473

Chapter 12: Emulator Error Messages
IERROR 1130! lllegal base for count display

1130

1131

1132

1133

1138

IERROR 1130! lllegal base for count display

Cause: When specifying the trace format, counts may only be displayed relative or
absolute. When counting states, the count is always displayed as a decimal number.

Action: Respecify the trace format without using a base for the count column. Also,
you can use,A” to specify that counts be displayed absolute, or you canikse “
to specify that counts be displayed relative.

IERROR 1131! lllegal base for mnemonic disassembly display

Cause: When specifying the trace format, you cannot specify a number base for the
column containing mnemonic information.

Action: Respecify the trace format without using a base for the mnemonic column.

IERROR 1132! lllegal base for sequencer display

Cause: When specifying the trace format, you cannot specify a number base for the
column containing sequencer information.

Action: Respecify the trace format without using a base for the sequencer column.

IERROR 1133! Trace format command failed; using old format

Cause: This error occurs when the trace format command fails for some reason.
Action: This error message always occurs with another error message. Refer to the
description for the other error message displayed.

IERROR 1138! lllegal width for symbol display: <width>

Cause: This error occurs when the value specified for the trace format address field
width is not valid.

Action: Enter theéf command again, and specify the width of the address field for
symbol display within the range of 4 to 55.

474

1139

1141

1202

1203

1207

Chapter 12: Emulator Error Messages
IERROR 1139! lllegal width for addr display, mne not specified

IERROR 1139! lllegal width for addr display, mne not specified

Cause: This error occurs when you specify a width for the address fieldfin the
command, but do not include thme option.

Action: Enter the command again, and includentine option.

IERROR 1141! Symbol display unavailable without mne field

Cause: This error occurs when you try to display symbols, but have not included
themne option to theéf command.

Action: Don't try to display symbols unless thme field has already been
specified.

IERROR 1202! Trigger position out of bounds: <bounds>

Cause: This error occurs when you attempt to specify a number of lines to appear
either before or after the trigger which is greater than the number of lines allowed.
The <bounds> string indicates the incorrect range you typed (not the correct limits
on the range).

Action: Be sure that the trigger position specified is within the range -1024 to 1023
(or -512 to 511 if counting is enabled).
ISTATUS 1203! Trigger position changed to accomodate trigl, trig2 delay spec

Cause: The terminal interfatgout (trigger output) command provides a delay
feature that allows for driving of the trigl and/or trig2 signals a specified number of
states after trigger or before trace complete. The setup of this delay feature
interacts with the trigger position specification. The trigger position specification
may be automatically modified by the deep analyzer in order to make the delay
feature work in the expected manner.

Action: You can use the terminal interface commgn(trigger position) to
examine the new trigger position value.

IERROR 1207! Invalid clock channel: <name>
Cause: Valid clock channels are L, M, and N.

Action: Respecify the command using valid clock channels.

475

Chapter 12: Emulator Error Messages
IERROR 1209! Operator must be “and” or “or”: <expression>

1209 IERROR 1209! Operator must be “and” or “or”: <expression>

Cause: When combining trace labels to specify trace patterns (in simple expressions
or with thetpat command), an operator of either “and” or “or” must appear
between the label qualifiers.

Action: See the "Expressions" chapter for information on valid patterns.

1210 IERROR 1210! Illegal mix of = and !=

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), all labels must either be equal to values or not equal to
values.

Action: See the "Expressions" chapter in this manual.

1211 IERROR 1211! lllegal mix of and/or

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), all label qualifiers must either be ANDed together or
ORed together. You cannot mix these operators.

Action: See the "Expressions" chapter for more information.

1212 IERROR 1212! Conflict with overlapping label: <label>

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), you cannot combine labels which are defined for common
trace signals. For example, the following easy configuration commands will result

in this errortlb low8 0..7; tlb low16 0..15; tg low8=0 and low16=1

Action: Either omit one of the overlapping labels, or redefine your labels so they do
not contain common trace signals. You could also circumvent this error by using
don't cares in the appropriate places; for the example shown in cause, you could
specify patterngy low8=0xx0xY and low16=1

1213 IERROR 1213! lllegal mix of !=/and

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), labels that are not equal to values must be ORed together
so that the entire pattern specifies a “not equals” condition.

Action: See the "Expressions" chapter for information on valid patterns.

476

Chapter 12: Emulator Error Messages
IERROR 1214! lllegal mix of =/or

1214 IERROR 1214! lllegal mix of =/or

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), labels that are equal to values must be ANDed together so
that the entire pattern specifies an “equals” condition.

Action: See the "Expressions" chapter for information on valid patterns.

1215 IERROR 1215! Comparator must be = or !=: <label>

Cause: When combining trace labels to specify patterns (in simple expressions or

with thetpat command), the value of the label can only be specified with the “=" or
“I=" operators.

Action: See the "Expressions" chapter for more information.

1217 IERROR 1217! lllegal pattern name: <name>
Cause: Valid pattern names are p1 through p8.

Action: Use only valid pattern names.

1218 IERROR 1218! lllegal comparator for range qualifier: =

Cause: When specifying a range with titmggy command, you cannot use the"!="
operator.

Action: Use the “Ir” range name.

1219 IERROR 1219! Range cannot be combined with any other qualifier

Cause: For example, the following easy configuration command will result in this
error:tsto addr=400..4ff and data=40

Action: Do not attempt to combine labels when using range qualifiers.

477

Chapter 12: Emulator Error Messages
IERROR 1221! Range resource in use

1221

1224

1225

1226

IERROR 1221! Range resource in use

Cause: This error occurs when you attempt to use two different range expressions
in the “easy” configuration trace specification or when you attempt to redefine the
“complex” configuration range resource while it is currently being used as a
qualifier in the trace specification.

Action: Do not attempt to use more than one range expression in the “easy”
configuration trace specification. In the “complex” configuration, display the
sequencer specification to see where the range resource is being used and remove
it; then, you can redefine the range resource.

IERROR 1224! Sequence term number out of range: <term>

Cause: This error occurs when a sequencer qualification comtifabelif, tsq, or

tsto) specifies a non-existent sequence term. The easy configuration sequencer may
have a maximum of four sequence terms. Eight sequence terms exist in the
complex configuration sequencer.

Action: Reenter the command using an existing sequence term.

IERROR 1225! Sequence term not contiguous: <term>

Cause: This error occurs when you attempt to insert a sequence term that is not
between existing terms or after the last term. For example, the following easy
configuration commands will result in this errtiy:any; tsq -i 4

Action: Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

IERROR 1226! Too many sequence terms
Cause: This error occurs when you attempt to insert more than four sequence terms.

Action: Do not attempt to insert more than four sequence terms.

478

1227

1228

1234

1239

1240

Chapter 12: Emulator Error Messages
IERROR 1227! Sequence term not defined: <term>

IERROR 1227! Sequence term not defined: <term>

Cause: This error occurs when you attempt to delete or specify a primary branch
expression for a sequence term number that is possible, but is not currently defined.

Action: Insert the sequence term, and respecify the primary branch expression for
that term.
IERROR 1228! One sequence term required

Cause: This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action: At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

IERROR 1234! Invalid occurrence count: <number>

Cause: Occurrence counts may be from 1 to 65535.

Action: Reenter the command with a valid occurrence count.

IERROR 1239! Clock speed not available with current count qualifier

Cause: This error occurs when you attempt to specify a fast (F) or very fast (VF)
maximum qualified clock speed when counting titeg (ime). This error also
occurs when you attempt to specify a very fast (VF) maximum qualified clock
speed when counting states (for exanmiolg addr=400).

Action: Change the count qualifier; then reenter the command. See the chapter
titled, "Using the Analyzer" for more information.

IERROR 1240! Count qualifier not available with current clock speed

Cause: This error occurs when you attempt to specify the “time” count qualifier
when the current maximum qualified clock speed is fast (F) or very fast (VF).
error also occurs when you attempt to specify a “state” count qualifier when th
maximum qualified clock speed is fast (F).

Action: Change the clock speed; then change the count qualifier. See the chapter
titled, "Using the Analyzer" for more information.

479

Chapter 12: Emulator Error Messages
IERROR 1241! Invalid qualifier resource or operator: <expression>

1241

1245

1246

1248

1249

IERROR 1241! Invalid qualifier resource or operator: <expression>

Cause: When specifying complex expressions, you have either specified an illegal
pattern or used an illegal operator.

Action: See the chapter titled, "Using the Analyzer" for more information.

IERROR 1245! Range qualifier not accessible in easy configuration

Cause: This error occurs when you attempt to userthecommand in the easy
configuration.

Action: Changing into the complex configuration will allow you to usertig
command; otherwise, specify the range in easy configuration command expressions.
IERROR 1246! Pattern qualifiers not accessible in easy configuration

Cause: This error occurs when you attempt to usgp#teeommand in the easy
configuration.

Action: Changing into the complex configuration will allow you to usephe
command; otherwise, specify the patterns in easy configuration command
expressions.

IERROR 1248! Range term used more than once

Cause: This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action: Do not try to use the range resource more than once in a sequencer branch
expression.
IERROR 1249! Invalid qualifier expression: <expression>.

Cause: This error message is shown with the errors that occur when patterns, the
range, or the arm condition is used more than once within a set. This error message
also occurs when intraset operators are not the same. For example, the following
complex expression will result in this errptt ~ p2 | p3

Action: See the "Expressions" chapter for more information.

480

Chapter 12: Emulator Error Messages
IERROR 1250! Arm term used more than once

1250 IERROR 1250! Arm term used more than once

Cause: This error occurs when you attempt to use the “arm” qualifier more than
once in a sequencer branch expression.

Action: Reenter the trace command and specify the “arm” qualifier only once.

1251 IERROR 1251! Trigger term cannot be term 1

Cause: This error occurs when you attempt to specify the first sequence term as the
trigger term. The trigger term may be any term except the first.

Action: Respecify the trigger term as any other sequence term.

1253 IERROR 1253! Invalid pod number: <pod#>

Cause: This error message occurs when you attempt to specify a slave clock for a
non-existent analyzer pod.

Action: Use the trace activity command to display the valid pod numbers, and use
only these numbers when entering commands.

1254 IERROR 1254! Incompatibile signal out events: <Incompatible Event Name>

Cause: The terminal interfatgout (trigger output) command may be used to

drive the trigl and/or trig2 signals to the emulator in response to several different
events. The events are trigger recognition, measurement complete, finding a
specified expression, delay after trigger recognition, and delay before measurement
complete. Some of these events may be ORed together, but a delay specification
may not be ORed with trigger recognition or mesaurement complete events.

Action: Examine youtgout specification and modify it to remove ORing of delay
specifications with trigger recognition or measurement complete events.

481

Chapter 12: Emulator Error Messages
IERROR 1255! Trigl, trig2 delay spec out of bounds: <Entered Numeric Value>

1255

1256

1302

IERROR 1255! Trigl, trig2 delay spec out of bounds: <Entered Numeric
Value>

Cause: The terminal interfatgout (trigger output) command provides a delay

feature that allows for driving of the trigl and/or trig2 signals a specified number of
states after trigger or before trace complete. The delay value must be in the range 0
through "current analyzer depth - 1". The current analyzer depth is controlled by
the terminal interface commataf. Note: Use of this delay feature may cause
modification of the current trigger position value.

Action: Correct the delay value in your specification so that it is within the range
of 0 through "current analyzer depth -1".

IERROR 1256! Event "expr" cannot be combined with expression definition

Cause: The terminal interfatgout (trigger output) command may use an arbitrary
expression as an event to drive the trigl and/or trig2 signals to the emulator. This
expression can be set up two ways. One way usegtwbcommands; the first
command defines the signals and type of events, and the second command defines
the expression. This is most useful when defining complicated expressions. The
other way uses ortgout command which defines the expression as the event. This
error message indicates that you have tried to combine the two methods.

Action: Reenter youlgout command using the correct format for the command.
Refer to thegout command description in the chapter titled "Interfaces of the Deep
Analyzer" for correct formats for thgout command.

IERROR 1302! Trigl signal cannot be driven and received

Cause: This error occurs when you attempt to specify the internal trigl signal as the
trace arm condition while the same analyzer's trigger output is currently driving the
trigl signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trigl signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

482

Chapter 12: Emulator Error Messages
IERROR 1303! Trig2 signal cannot be driven and received

1303 IERROR 1303! Trig2 signal cannot be driven and received

Cause: This error occurs when you attempt to specify the internal trig2 signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trig2 signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trig2 signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

1305 IERROR 1305! CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified bixthes Eommand).

483

Chapter 12: Emulator Error Messages
IERROR 1305! CMB execute; emulation trace started

H##IL# In trace list Mnemonic column

The notation ##IL# may appear in place of an inverse-assembled instruction in the
Mnemonic column of a trace list. This notation indicates the inverse assembler was
unable to find the information it needed to complete a trace list line. Probably, the
information was not available in the trace memory.

For example, you would see the ##IL# notation in your trace list if you were tracing
an Intel processor and you qualified capture of only instruction execution cycles
during your trace. The inverse assembler would look for an opcode to associate
with each instruction execution, but it would find none. When its search for an
opcode timed out, it would place ##I1L# in the Mnemonic column of the trace list.

The following trace list was obtained to show the appearance of ##IL# in a trace list
Mnemonic column. The example trace list was obtained from an 80186 emulator
using its terminal interface.

Line addr,H 8018x mnemonic,H count,R seq
26200 81991 ##IL# 3.00uS .
26201 81994 ##IL# 3.00uS .
26202 81996 ##IL# 1.00uS .
26203 8197f ##IL# 3.26uS .
26204 81984 ##IL# 4.98uS .
26205 81985 ##IL# 1.02uS .
26206 8198a ##IL# 4.00uS .

The analyzer takes a long time to compose a trace list when the inverse assembler
times out before it places each line on screen. Typically, the analyzer takes 2
seconds to place each line on screen when it fails to find the information it needs
and places ##IL# on screen, instead.

484

13

Data File Formats

File formats for binary trace lists and symbol files .

485

Chapter 13: Data File Formats

The HP 64700 Series Emulator defines two special file formats that allow compact
representations of trace list information and symbol information. These file formats
may be useful to you if you decide to build software tools that interact with the
Terminal Interface. Both file formats are described in this chapter.

Binary/Hexadecimal Trace List Format

Thetl command supports two optionb,(binary) andx (hexadecimal) which
allow you to dump the trace list to your host for post processing.

When you request a binary trace list dump from the HP 64700 Emulator (

option), the emulator sends the data using the HP &4@@&fer protocol. You

must use an 8-bit communications channel to successfully transfer the data (HP
64700 and the host device must both be configured to send and receive eight bits).

The hexadecimal trace list dumy pption) also uses the HP 640@énsfer
protocol, but does not require an 8-bit communications channel. However, twice as
many characters will be transmitted as would be in the binary format.

Six primary trace list records may be transferred. These are:

* No Trigger Record

* Empty Trace Record

* New State Data Record

* More State Data Record

* New Timing Data Record
* More Timing Data Record

Each record has at least one byte. The first byte identifies the record type.

Other fields in the record, containing one or more bytes of information, provide
additional information about the trace.

The Data Records contain secondary record structures which hold the actual trace
information. For the State Data Records, the secondary record is the Trace State
record; for the Timing Data Records, the secondary record is the Trace Sample
record.

486

Chapter 13: Data File Formats
No Trigger Record
Each record structure is accompanied by a diagram. Note that line breaks in the
diagram are not EOL characters in the record.

This section describes all record types, but the 68040 emulator does not use the
timing data record types, because it does not support an external analyzer.

No Trigger Record

NO TRIGGER RECORD

10000000

BYTE 1

One byte indicating that the trigger condition of the current trace is not in memory.
Trace data cannot be displayed until the trigger condition occurs and is placed in
trace memory or until the trace is halted. Therefore, this is the only record that will
be sent when the trace list is requested, because no others are available.

Empty Trace Record

One byte indicating that the most recent trace was halted before any states were

EMPTY TRACE RECORD

01000000

BYTE 1
stored. Therefore, this will be the only record sent.

487

Chapter 13: Data File Formats
New State Data Record

New State Data Record

NEW STATE DATA RECORD
‘@@@@@LHW STATE COUNT‘ START STATE #

BYTE 1 2 3—4
| LOWEST STATE # | STATE SIZE |
5—6 7
‘T\ME vALID FLacs © ARM TIME ‘ COUNT TYPE
8-10 11
12 AND UP

(EACH IS MULTIBYTE)

One byte indicating that this is the first trace list data displayed for the current or
most recent trace.

If L=1, this is the only record being sent. Otherwise, one or more More Data
Records follow.

If H=1, this record contains the highest numbered state this trace can have.
Therefore, this is the end of the trace list. If the state count for this record is zero,
the highest numbered state can be computed by subtracting 1 from the start state.

state count

One byte indicating how many trace states are contained in this record. This will be
zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range -1024 through 1023),
most significant byte first.

lowest state

Two bytes containing the lowest state number in the entire trace list, MSB first.
Note that if the trace is halted after this record is sent, lower-numbered states may
be valid.

488

Chapter 13: Data File Formats
New State Data Record

state size

One byte indicating how many bytes of trace data will be in each trace state. This
does not include the store cause or count data bytes.

arm time

Three bytes containing the time from arm to trigger, MSB first. The lower 20 bits
contain the absolute value of the actual time, in 40 ns units.

The time alignment between HP 64700-Series emulators has a large margin of
error (+/- 100 ns) due to delay variances in the trigger paths.

The correlation between the arm time counter value and the value displayed on
screen should be as follows:

count time
0000h Arm occured an unknown amount of time after the trigger
0001h Arm occured an unknown amount of time after the trigger
0002h -40 ns - Arm input actually came after trigger was sampled but
still caused arm state to occur before trigger
internal to the elan chip.

0003h Ons
0004h 40ns

0005h 80ns

FFFFh 2.621280 ms This is now the maximum arm to trigger interval
that can be displayed.

The highest four bits contain status flags as follows:
high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was ignored (e.g.,
"tarm always"), or because the state analyzer clock speed was fast or very fast (e.g.,
"xtck -s F"). The 20 bits of time value will be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S = 1). For
overflow, the 20 bits of time value contain the maximum time value, (1°20)-4,
representing 41.94288 ms. For underflow, the S flag is set (see below), and the 20
bits of time value contain the absolute value of the minimum count, -1, repres
-40 ns.

If S =1, the arm time is negative. The 20 bits of time value contain the absolut
value of the actual count.

489

Chapter 13: Data File Formats
More State Data Record

count type

One ASCII character indicating the type of count data contained in each trace state.
"T" indicates each trace state contains a time count.

"S" indicates each trace state contains a state count.

"N" indicates that no count data is available.

first trace state..last trace state

Each of these records is in the trace state format described below. Each record is n
bytes in length; n is the state size value (described above) plus one byte indicating
the reason for storage of this state and an optional two bytes with count data
information.

More State Data Record

MORE STATE DATA RECORD

[0OOONLHQ | STATE COUNT]| START STATE #]
BYTE 1 2 3-4

[LOWEST STATE # (OPTIONAL) [TRace state recoros |

5-6 7 AND UP
(5 AND UP IF NO LOWEST
STATE FIELD)
(EACH IS MULTIBYTE)

One byte indicating this is more data from the same trace as the most recent New
State Data Record.

If L=1, this is the last record sent. Otherwise, additional More Data Records follow.

If H=1, this record contains the highest numbered state in the trace; this is the end
of the trace list. If the state count for this record is zero (0), the highest numbered
state can be computed by subtracting one (1) from the start state.

If N=1, this record contains a new lowest state. The starting state number can
change if the trace is halted; if it changes, it will always become more negative. It

490

Chapter 13: Data File Formats
More State Data Record

can change a maximum of one time for a given trace list. N=1 will never occur
unless L=1.

state count

One byte indicating the number of trace states contained in this record. This will be
zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range -1024..1023), most
significant byte (MSB) first.

lowest state

Optional two bytes containing the lowest state number in the entire trace list, most
significant byte (MSB) first. These bytes are only present if the record type has
N=1.

first trace state..last trace state

Each of these records is in the trace state format described below. Each record is a
variable number of bytes in length. The length is the state size value (described
above) plus one byte indicating the reason for storage of this state and an optional
two bytes with count data information.

491

Chapter 13: Data File Formats
Trace State Record

Trace State Record

TRACE STATE RECORD

STORE REASON ‘ STATE/TIME COUNT
BYTE 1 2-3

TRACE DATA |

4 AND UP

(2 AND UP IF
NO COUNT DATA FIELD)
(EACH IS MULTIBYTE)

state type

One ASCII character indicating the reason this state was stored.

"Q" indicates this state satisfied a sequence branch qualifier (definiédbielif).
"S" indicates this state satisfied the store qualifier (definddtb)

"P" indicates this state satisfied the prestore qualifier. The count data field bytes
below will be omitted for this state. Prestore states are marked as such only if a
state or time count was specified for the trace (definadd)y

count data

Optional two bytes containing the state or time count for this state. The count value
is relative to the previous non-prestore state. These bytes are omitted if the count
type field in the New State Data Record was "N", or if this state is a prestore state
(state type field in this record is "P"). The count data is encoded as follows (first
byte is on the left):

eeeeemmm mmmmmmmm

e represents five bits of exponent.

m represents 11 bits of mantissa.

The value represented is (m*(27e)) + (2*(11+e)) - (2711)

Time counts are in 40-nanosecond units.

492

Chapter 13: Data File Formats
New Timing Data Record

trace data

Trace data for this state, most significant byte (MSB) first. The length of this trace
data is given by the state size field in the New State Data Record.

New Timing Data Record

NEW TIMING DATA RECORD

[00100LH1 [SAMPLE COUNT | START SAMPLE #
BYTE 1 2 3-4

| LOWEST SAMPLE # | STATE SIZE
5-6 7

[7vE vap riacs | ARM_ TIME | COUNT TYPE]
8 10 11

\ SAMPLE PERIOD |
12 15

TRACE SAMFLE RECORDS

16 AND UP

(EACH IS MULTIBYTE)

record type = 00100LH1

One byte indicating this is the first trace list data displayed for the current or most
recent trace.

If L=1, this is the only record sent. Otherwise, one (1) or more More Timing Data
Records follow.

If H=1, this record contains the highest numbered sample in the trace; this is the
end of the trace list. If the sample count field for this record is zero (0), the highest
numbered sample can be computed by subtracting one (1) from the start sample
field.

493

Chapter 13: Data File Formats
New Timing Data Record

count

FFFFh

time

sample count

One byte indicating how many trace samples are contained in this record. This will
be zero if no samples are present.

start sample

Two bytes containing the starting sample number (-1024..1023), most significant
byte (MSB) first.

lowest sample

Two bytes containing the lowest sample number in the entire trace list, MSB first.
Note that if the trace is halted after this record is sent, lower-numbered samples
may become valid.

state size

One byte indicating the number of bytes of trace data in each trace sample. Note the
relationship to the count type field.

arm time

Three bytes containing the time from arm to trigger, MSB first. The lower 20 bits
contain the absolute value of the actual time, in 40 ns units.

The time alignment between HP 64700-Series emulators has a large margin of error
(+/- 100 ns) due to delay variances in the trigger paths.

The correlation between the arm time counter value and the value displayed on
screen should be as follows:

Arm occured an unknown amount of time after the trigger
Arm occured an unknown amount of time after the trigger
-40 ns - Arm input actually came after trigger was sampled but
still caused arm state to occur before trigger
internal to the elan chip.

Ons
40 ns
80 ns

2.621280 ms This is now the maximum arm to trigger interval
that can be displayed.

494

Chapter 13: Data File Formats
New Timing Data Record

The highest four bits contain status flags as follows:
high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was ignored (e.g.,
"tarm always"), or because the state analyzer clock speed was fast or very fast (e.g.,
"xtck -s F"). The 20 bits of time value will be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S = 1). For
overflow, the 20 bits of time value contain the maximum time value, (1°20)-4,
representing 41.94288 ms. For underflow, the S flag is set (see below), and the 20
bits of time value contain the absolute value of the minimum count, -1, representing
-40 ns.

If S = 1, the arm time is negative. The 20 bits of time value contain the absolute
value of the actual count.
count type

One ASCII character indicating the type of count data contained in each Trace
Sample record.

"T" indicates the timing analyzer was set to transitional mode. Each Trace Sample
record contains a six byte field which contains the delta time (in nanoseconds) since
the last transition. A two-byte field containing the trace data taken at the delta time
interval is also in the Trace Sample record.

"S" indicates the timing analyzer was set to standard mode. Each Trace Sample
record contains only the two bytes of trace data.

"G" indicates the timing analyzer was set to glitch mode. Each trace sample
consists of a two-byte trace data field and a two-byte glitch data field.

sample period

Four bytes containing the number of nanoseconds (ns) between samples.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note relatio
to the count type field).

495

Chapter 13: Data File Formats
More Timing Data Record

More Timing Data Record

MORE TIMING DATA RECORD

BYTE

[001ONLHO | SAMPLE COUNT [START SAMPLE #]
1 2 3-4

[LOWEST SAMPLE # (OPTIONAL) | TRace sawpLe Recomos |
5-6 7 AND UP

(5 AND UP IF NO LOWEST
SAMPLE FIELD)
(EACH IS MULTIBYTE)

One byte indicating this is more data from the same trace as the most recent New
Timing Data Record.

If L=1, this is the last record sent. Otherwise, additional More Timing Data Records
follow.

If H=1, this record contains the highest-numbered sample in the trace; this is the
end of the trace list. If the sample count field for this record is zero (0), the highest
numbered sample can be computed by subtracting one (1) from the start sample
field.

If N=1, this record contains a new lowest sample. The starting sample number can
change if the trace is halted; if it changes, it will always become more negative. It
can only change once for a given trace list. N=1 will only occur if L=1.

sample count

One byte indicating the number of Trace Sample records in this record. This will be
zero (0) if no Trace Samples are present (the analyzer did not find the requested
data in the last trace.)

start sample

Two bytes containing the starting sample number (in the range -1024..1023), most
significant byte (MSB) first.

496

Chapter 13: Data File Formats
Trace Sample Records

lowest sample

Optional two bytes containing the lowest sample number in the entire trace list,
most significant byte (MSB) first. These two bytes are present only if the record
type has N=1.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note relationship
to the count type field).

Trace Sample Records

TRACE SAMPLE RECORD

TRANSITIONAL MODE
\ DELTA TIME
BYTE 1-6

TRACE DATA

7-8

STANDARD MODE

TRACE DATA

BYTE 1-2

GLITCH MODE
TRACE DATA | GLITCH DATA
BYTE 1-2 5—4

Trace Sample records are variant records which are components of the New Timing
Data Record and More Timing Data Record. The structure of the Trace Sample
Record depends on the count type field in the Timing Data Records.

Transitional Mode (count type = "T")
delta time

Six bytes of data defining the delta time (elapsed time) since the last transition, in
nanoseconds (ns).

497

Chapter 13: Data File Formats
Trace Sample Records

trace data

Two bytes of trace data sampled at the delta time value given.

Standard Mode (count type ="S")
trace data

Two bytes of trace data sampled at the standard sampling period (st the
command).

Glitch Mode (count type ="G")
trace data

Two bytes of trace data sampled at the standard sampling period (s&p the
command).

glitch

Two bytes indicating the occurrences of glitches on any channel.

498

Chapter 13: Data File Formats
Trace Sample Records

Symbol Files

The HP 64783 emulator can load an ASCII text file containing symbol definitions.

Three types of symbols can be defined: local, global, and user. Only local and
global symbols can be loaded from a symbol file; user symbols can only be created
with thesym command.

Global symbols are general memory references. They represent the equivalent of
“GLOBAL” or “PUBLIC" variables in compiled programs.

Local symbols are grouped by “module.” The primary purpose of a module is to
group local symbols, but can represent any arrangement of local symbols desired.
Local symbols created by a higher level language processor are defined by
implementation.

A module is usually a source file name, and symbols are function or procedure
names. In a symbol file, any organizational scheme can be used to manage local
symbols. While the module name can be equivalent to a source file name, or some
other physical or logical entity, it is not necessary. Therefore, if memory is in short
supply, you can organize the “local” symbols to allow for easy deletion of old
symbols, and loading of new symbols that reference locations of interest.

Address references for all symbol types are absolute addresses.

499

Chapter 13: Data File Formats

Symbol file syntax

Symbol file syntax

A symbol file is an ASCII text file. The format of this file is represented by:

symbol file # <RETURN>
= <WHITESPACE>

= CWHITESPACE >
= <MODULE> 7<Z>

<RETURN>
(<W IITESPACE>

<WH\TESPACE>H <ADDRESS> p

<LOCAL SYMBOL>

N~(:)| <cLoBAL SvMBOL>

% -{ <RETURN> Henc symbol ﬁ\e)
<WHITESPACE >

<WHITESPACE> This is one or more <SP> (space) or <HT> (horizontal
tab) characters or a combination of these characters.

<RETURN> This is a <LF> (line feed) or <CR><LF> (carriage
return, line feed pair); a <CR> (carriage return) alone is
not recognized.

<ADDRESS> This is a valid address specification for the emulator
being used.
<MODULE> This defines a module name.

<LOCAL SYMBOL> This is a local symbol reference. A local symbol
definition line must include, or follow, a module name,
or an error will occur when loading the file.

500

Chapter 13: Data File Formats
Symbol file syntax

<GLOBAL SYMBOL> This is a global symbol reference.

<QUALIFIER> This allows you to specify label hierarchies. Its use is
dependent on the implementation.

This is the literal colon (*:").
This is the literal period (“.").

This is the literal pound sign (“#").

Examples Defining Local Symbols

Local symbols must include, or be preceded by, a module name reference.
Therefore, the files

#

‘main 0@p
GetAittrib:
Buffer 100@p
Pointer 120@p
#

and

#

‘main 0@p
GetAttrib:Buffer 100@p
GetAttrib:Pointer 120@p
#

will produce the same result when loaded.
After loading either symbol file, enter:

M> sym

You will see:

sym main=00000@p
sym GetAttrib:Buffer=00100@p
sym GetAttrib:Pointer=00120@p

501

Chapter 13: Data File Formats
Symbol file syntax

Naming Array Elements

You may wish to load symbols that name elements of an array to make referring to
the array elements more explicit. If your array has four elements, each element is
10h bytes long, and begins at 2000h, the symbol file will contain the following:

#

ARRAY:
E1=2000@d
E2=2010@d
E3=2020@d
E4=2030@d
#

After loading the symbol file, enter:

M> sym

You will see, at least in part:

sym ARRAY:E1=2000@d
sym ARRAY:E2=2010@d
sym ARRAY:E3=2020@d
sym ARRAY:E3=2030@d

If you no longer need the references to ARRAY elements, you can remove the
symbols with the command:

M> sym -dl ARRAY

502

14

Specifications and Characteristics

503

Chapter 14: Specifications and Characteristics
Processor Compatibility

Processor Compatibility

The HP 64783A/B is compatible with the Motorola MC68040, MC68EC040, and
MC68LCO040 processors, and with any processors that meet all specifications of the
MC68040, MC68EC040, and MC68LC040 processors.

Electrical

Maximum clock speed

The maximum external clock speed of the HP 64783A is 33 MHz, and of the

HP 64783B is 40 MHz. The emulator runs without wait states at clock speeds up to
25 MHz. Above 25 MHz, one wait state is required in all bus cycles and between
burst transfers.

Motorola JTAG

HP 64783A/B does not support Motorola JTAG. Therefore, no specifications are
given for Motorola JTAG in this manual.

504

Chapter 14: Specifications and Characteristics
HP 64783A/B Maximum Ratings

HP 64783A/B Maximum Ratings

Characteristic Symbol Value Unit
Supply Voltage c -0.3to +5.5 \%
Input Voltage \h -0.5t0 +5.5 \%
Maximum Operating Ambient Temperature AT 45 °c
Minimum Operating Ambient Temperature AT 0 °c
Storage Temperature Range stgl —40to +70 °c

505

Chapter 14: Specifications and Characteristics
HP 64783A/B Electrical Specifications

HP 64783A/B Electrical Specifications

HP 64783A/B — DC ELECTRICAL SPECIFICATIONS

(vcc=5.0 Vdc+5%)

Characteristic Symbol| Min | Max | Unit
Input High Voltage WH 2 |Vecec| V
Input Low Voltage V. |GND| 08| V
Undershoot —| 05 V
Input Leakage Current @ 0.5/2.4 V he | -250, — | pA
AVEC, BCLK, BG, CDIS, MDIS, IPLx, PCLK,RSTI, SCx, liH — | 25
TBI, TLNx, TCI, TCK, TEA
Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V . ITsI HA
An, CIOUT, Dn,LOCK, LOCKE, SIZx, TDO,TMx, TLNx, TTx, UPAX
BB, RW, TIP, TS -50 | 50
TA —100| 100

—200| 200

Output High Voltage VoH
loH =-32 mA: V

An, Dn, SIZx, TTx, UPAxLLOCK, LOCKE, TLNx, CIOUT, TMX,

PSTx,RSTO,BR, MlI, BG,reset flying lead 20 | —
lon=-32mA:_____

RMW, TS, TIP,BB, TA, IPEND 24 | —
Output Low Voltage VoL \%
loL =64 mA

An, Dn, SIZx, TTx, UPAXL.OCK, LOCKE, TLNx, CIOUT, TMXx,

PSTx,RSTO,BR, Ml, BG, reset flying lead — | 0.55
loo=24mA

RMW, TS, TIP,BB, TA, IPEND — | 05
Capacitance Cin — 25 pF

Vin=0V, f=1 MHz

506

Chapter 14: Specifications and Characteristics
HP 64783A/B Electrical Specifications

HP 64783A/B — DC ELECTRICAL SPECIFICATIONS

(vcc=5.0 Vdc+5%)

Characteristic Symbol| Min | Max | Unit
Supply Current lcc
f=25MHz — | 14| A
f=33 MHz — | 18| A

Notes for HP 64783A/B Electrical Specifications:

BCLK and PCLK have additional input current and capacitance loading because of
RC terminations. Refer to their equivalent circuit diagrams for details. The
numbers given in the HP 64783A/B Electrical Specifications table do not include

the RC terminations.

507

Chapter 14: Specifications and Characteristics
HP 64783A/B Clock AC Timing Specifications

HP 64783A/B Clock AC Timing Specifications

Notes for Clock AC Timing Specifications:

508

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |Max |Min Max Unit
Frequency of Operation 16.67 25 16,67 33 Y. 40 MHz
1 PCLK Cycle Time 20 30 15 30 12.5 25 ns
2 PCLK Rise Time 1.7 1.7 — 15 ns
3 PCLK Fall Time 1.6 1.6 — 1.5 ns
4 PCLK Duty Cycle Measured at 1.5 V 4750 52|50 46.67 53.33 46.0 54.00 | %
4 | PCLK Pulse Width High Measured at 1.9.50 | 10.50 7 8 575 6.7% ns
\%
4p' | PCLK Pulse Width Low Measured at 1,59.50 | 10.50 7 8 579 6.7% ns
\%
5 BCLK Cycle Time 40 60 30 60 25 50 ns
6,7 | BCLK Rise and Fall Time — 4 — 3 — 3 ns
8 BCLK Duty Cycle Measured at 1.5V 40 60 40 60 4 60 0
8a | BCLK Pulse Width High Measured at | 16 24 12 18 10 15 ns
15V
8ot | BCLK Pulse Width Low Measured at 1,5 16 24 12 18 10 15 ns
\%
9 PCLK, BCLK Frequency Stability —| 1000 — 1000 — 1000 ppm
10 | PCLK to BCLK Skew — n/a — n/a — n/a ns

Chapter 14: Specifications and Characteristics
HP 64783A/B Output AC Timing Specifications

1 Specification value at maximum frequency of operation.

HP 64783A/B Output AC Timing Specifications

25 MHz! | 33MHZz' | 40 MHZ
Num Characteristic Min |Max | Min |Max |Min Max | Unit
11 | BCLK to Addres€IOUT, LOCK, LOCKE, 9 25 6.5 | 225 525 21 ns
RM, SIZx, TLNx, TMx, TTx, UPAXx Valid
12 | BCLK to Output Invalid (Output Hold) 9 — 6.9 — 525 — ns
13 | BCLK toTS Valid 9 25 6.5| 225 5.25 21 ns
14 | BCLK toTIP Valid 9 25 6.5| 225 5.25 22 ns
18 | BCLK to Data Out Valid 9 27 6.5 245 525 23 ns
19 | BCLK to Data Out Invalid (Output Hold) 9 — 65 — 525 — ns
20 | BCLK to Output Low Impedance 3 — 3 — 3 — N
21 | BCLK to Data-Out High Impedance 9 32 6.5 27 525 245 |ns
26° | BCLK to Multiplexed Address Valid nfa nfa n/a nfa nfa n/a ns
277 | BCLK to Multiplexed Address Driven n/g — nfa — na — ns
28’ | BCLK to Multiplexed Address High na | nfa| n/a| n/a] nla nlg ng
Impedance
29’ | BCLK to Multiplexed Data Driven nlal — n/g — nfa — ng
30° | BCLK to Multiplexed Data Valid nal n/a n/a n/a n/la nla ns

509

Chapter 14: Specifications and Characteristics
HP 64783A/B Output AC Timing Specifications

25 MHzY | 33MHz! | 40 MHZ!

Num Characteristic Min |Max | Min |Max |Min Max Unit
38 | BCLK to AddressCIOUT, LOCK, 9 31 | 65| 26| 525 235 ns
LOCKE, RW, SIZx, TS, TLNx, TMx, TTX,
UPAX High Impedance
39 | BCLK toBB, TA, TIP High Impedance 190 31 14 26 115 235 1s
40 | BCLK toBR, BB Valid 9 25 | 65| 225 525 21| ns
43 | BCLK toMI Valid 9 25 | 65| 225/ 525 21| ns
48 | BCLK toTA Valid 9 25 | 65| 225 525 21| ns
50 | BCLK tolPEND, PSTXRSTO Valid 9 25| 65 225 525 21 ns
Notes:

1 Output timing is given for output drivers specified in the DC specs (Refer to
the table of HP 64783A/B Electrical Specifications). Large/small buffer mode
select has no effect.

2 Address multiplex mode is not supported.

510

Chapter 14: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

HP 64783A/B Input AC Timing Specifications

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |Max |Min Max Unit
15 | Data-In Valid to BCLK (Setup) 9 — 9 — 8 — ns
16 | BCLK to Data-In Invalid (Hold) 4 — 4 — 3 — ns
17 | BCLK to Data-In High Impedance — 49 — | 365 — | 3025 ns
(Read Followed by Write)
22a | TA Valid to BCLK (Setup) 15 — 15 — 13 — ns
22b | TEA Valid to BCLK (Setup) 15 — 15 — 14 — ns
22¢ | TCI Valid to BCLK (Setup) 15 — 15 — 14 — ns
22d | TBI Valid to BCLK (Setup) 15 — 15 — 14 — ns
23 | BCLK toTA, TEA, TCI, TBI Invalid 2 | — | 2| — | 2 | — | ns
(Hold)
24 | AVEC Valid to BCLK (Setup) 10, —| 10 —| 10| —| ns
25 | BCLK toAVEC Invalid (Hold) 2 — 2 — 2 — | ns
31' | DLE Width High n/a — n/a — n/a — ns
32! | Data-In Valid to DLE (Setup) n/a — n/a — n/a — Nng
33! | DLE to Data-In Invalid (Hold) n/a — n/a — n/a — ns
34! | BCLK to DLE Hold n/a — n/a — n/a — ns
35" | DLE High to BCLK n/a — n/a — n/a — ns

511

Chapter 14: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

U7

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |[Max |[Min |Max | Unit
36" | Data-In Valid to BCLK n/a — n/a — n/a — ns
(DLE Mode Setup)
37" | BCLK to Data-In Invalid n/a — n/a — n/a — ns
(DLE Mode Hold)
41a | BB Valid to BCLK (Setup) 12| —| 12 —| 12| —| ns
41b | BG Valid to BCLK (Setup) 12| —| 12| —| 12 ns
41c | CDIS,MDIS Valid to BCLK (Setup) 13 — 13 — 13 — ns
41d | IPLx Valid to BCLK (Setup) 8 — 8 — 8 — ns
42 | BCLK toBB, BG, CDIS, IPLx, MDIS 2 | — | 2| —| 2| — | ns
Invalid (Hold)
44a | Address Valid to BCLK (Setup) 12 — 12 12 n
44b | SIZx Valid to BCLK (Setup) 13| —| 13 —| 13 ns
44c | TTx Valid to BCLK (Setup) 13 — 13 — 13 ns
44d | RW Valid to BCLK (Setup) 10 — 10 — 10 ns
44e | SCx Valid to BCLK (Setup) 16 — 16 13 Ng
45 | BCLK to Address, SIZx, TTx, RV, SCx| 2 — 2 — 2 — ns
Invalid (Hold)
46 | TS Valid to BCLK (Setup) 14 — 14 — 12 ns
47 | BCLK toTS Invalid (Hold) 2 — 2 — 2 — | ns
49 | BCLK toBB High Impedance — 9 — 9 — 9 ns
(MC68040 Assumes Bus Mastership)

512

Chapter 14: Specifications and Characteristics
HP 64783A/B Input AC Timing Specifications

25 MHz 33 MHz 40 MHz
Num Characteristic Min | Max | Min |Max |Min Max Unit
51 | RSTI Valid to BCLK 9 — | 9| —| 9| —| ns
52 | BCLK toRSTI Invalid 2 | — | 2| — | 2 | — | ns
532 | Mode Select Setup RSTI Negated n/a — n/a — n/a ng
542 | RSTI Negated to Mode Selects Invalid nfa - nja +— n/a —

ns

Notes:

1 Data Latch mode is not supported.
2 Mode selects are not used.

513

Chapter 14: Specifications and Characteristics
Physical

. Physical

Emulator Dimensions

173 mm height x 325 mm width x 389 mm depth (6.8 in. x 12.8 in. x 15.3 in.)

Emulator Weight

HP 64783A/B, 8.2 kg (18 Ib). Any component used in suspending the emulator
must be rated for 30 kg (65 Ib) capacity.

Probe alone: 0.3 kg (10 0z).

Cable Length

Emulation Control Card to Probe, approximately 914 mm (36 inches).

Probe dimensions

22458 mm _
8.842 In.
| 167 mm _
\ 6575 in.
‘ [J ooooco [JooooT ¢
‘ OO00000C 0000 |===
107.8 mm (o) 0888©QO©O
4244 in. olele
85.03 mm | ——— —
3.348 in. 000
OO0
el 000000 U
OO00000
rlelelelele ja
‘ I Al
4255 mm h
1675 in EmE—————
’ T "k J—j
"7 64783E12

514

Chapter 14: Specifications and Characteristics
Environmental

Environmental .

Temperature

Operating, 0° to +40° C (+32° to +104° F); nonoperating, -40° C to +60° C (-40° F
to +140° F).

Altitude

Operating/nonoperating 4600 m (15 000 ft).

Relative Humidity

15% to 95%.

BNC, labeled TRIGGER IN/OUT

Output Drive

Logic high level with 50-ohm load >= 2.0 V. Logic low level with 50-ohm load <=
04V.

Input

74HCT132 with 135 ohms to ground in parallel. Maximum input: 5 V above Vcc; 5
V below ground.

515

Chapter 14: Specifications and Characteristics

Communications

Communications

Host Port

25-pin female type “D” subminiature connector.
RS-232-C DCE or DTE to 38.4 kbaud.

RS-422 DCE only to 460.8 kbaud.

CMB Port

9-pin female type “D” subminiature connector.

516

Part 4

Installation and Service

517

Part 4: Installation and Service

In This Part

Chapter 15, "Connecting the Emulator to a Target System," tells you how to
connect the emulator into an MC68040 target system and overcome the differences
between the specifications and characteristics of the target microprocessor and
those of the emulator.

Chapter 16, “Installation and Service,” tells you how to set up the emulator and
verify performance of the emulator. It also tells you what to do when you suspect
that there is a problem with the operation of the emulator.

Chapter 17, "Installing/Updating Emulator Firmware," tells you how to install,
update, and verify the firmware of your emulator.

When you finish installation of the emulator, go to part 1 of this manual and
perform the Quick Start procedure.

518

15

Connecting the Emulator to a Target
System

Things you need to know to successfully connect the emulator to a target system
and overcome problems you may encounter.

519

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Plugging The Emulator Into A Target
System

The following paragraphs help you understand the emulator. Equivalent circuits
are shown, followed by a list of devices that you may need to use to overcome
mechanical and electrical constraints in your target system.

Understanding an emulator

An emulator is a tool intended for debugging software, and the interactions

between software and hardware. Although emulators can help in debugging certain
hardware problems, catastrophic problems often require use of other tools, such as
a timing analyzers with preprocessors, or oscilloscopes. To effectively use an
emulator, you need to understand its capabilities and limitations, and how it
interacts with your target system. This chapter discusses limitations and
interactions of an emulator, as they relate to your target system.

An emulator is designed to be electrically and functionally equivalent to the
processor it emulates, as much as possible. Most MC68040 signals are electrically
isolated from their counterparts on the target system connection. This is done for
both electrical and functional reasons. Equivalent circuits of each processor signal
are shown later in this chapter. The impacts of these circuits are calculated and
presented in the emulator specifications listed in the chapter titled "Specifications
and Characteristics" in this manual.

In the ideal case, you would use the emulator specifications listed in this manual
when designing your target system instead, of the processor specifications. In the
typical case, your target system has already been designed and prototyped. A target
system that is designed around MC68040 worst case specifications will typically
work with the emulator. [f certain circuits in your target system do not allow for
variations in the MC68040 specifications, compare the relevant emulator
specifications to evaluate their impact on your target system. By keeping the
differences between emulator specifications and processor specifications in mind
while you design your target system, you can save hours of debugging time when
you plug the emulator into your target system.

520

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

The MC68040 emulator does not switch between large and small buffer modes like
the MC68040 processor does. The emulator internally uses the large buffer mode
to get optimum timing performance. Since these large drivers can cause problems
for systems designed to work with small buffer mode, the emulator buffers all
signals from the processor to the target connector. Most of the signals are bu
in ABT logic family parts. These parts are chosen to provide high speed and
current capability while keeping slew rates to an acceptable level for small buffer
mode systems. Some control signals are buffered in PALs which have significantly
less drive capability than the processor in large mode.

Examine the DC specifications of the emulator to evaluate their differences from
processor specifications. Again, you can refer to the equivalent circuit diagrams in
this chapter for exact details. Because the emulator does not behave exactly like
the processor, you may need to examine signal quality and take appropriate steps to
compensate for differences.

The BCLK clock is the most important signal to the emulator because all system
timing is derived from this signal. The BCLK clock signal must have clean edges;
the duty cycle of this clock is not particularly important. The emulator regenerates
an internal BCLK from this signal with a 50% duty cycle. All timing is referenced
from the rising edge of BCLK. The PCLK clock is also internally regenerated;
therefore, the emulator is not sensitive to this signal.

Both the BCLK and PCLK signals are terminated on the emulator. The
terminations are placed on these signals, even though the emulator causes only a
short electrical stub, so that accessories such as the flexible cable can be used to
connect the emulator probe to your target system. The terminations on these
signals can interact with terminations on your target system. Refer to the
equivalent circuits in this chapter and adjust terminations in your target system for
best results.

The emulator uses power from the target system to operate the emulation processor
and some pullup resistors. Target power is sensed to make sure the emulator does
not drive the target system until it is powered up. In addition, the power detection
circuit delays release of processor reset for 50 ms after power is in specification to
allow the clock circuits to synchronize. Because of the protections designed into

the emulator, always power on the emulator before the target system and power off
the emulator after the target system.

521

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Equivalent circuits

The equivalent circuits shown on this page and the next help you understand
connection requirements between the emulator probe and your target system.

AVEC, MDIS, TBI, TC|, TP, IPEND
D SRS +5V
PL(2:0), CDIS
PA_
o Co=10pF 316K ()
PAL lop=3.2ZmA
o Cn=7pF loL-24mA igpF
1 I =25uA I
ISDF =~ 250uA —

M, BR, RSTQ, PSTI(3:0),

TEA RST TM(210), TIOUT, TLN(10),
45V LOCK, LOCKE, U2A(1:0)
ABT
316K O PAL Cy=80F
\CZEE A oo T oo
== --32m P
fgpF \‘H:25FLAM o= 3204 I
- BG
TA +5V
+5V
2(PAL) 316K O ABT
C-20p7 316K) Cim4pF
i ==200LA L =2 100uA
I =200uA B 8pF
lo=24mA 8pF I
lou=3.2mA I u—

64783B01

522

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

R/W, TS, BB J(31:0), AG31:0),
+5V . .
oAl TT(10), SIZ(1:.0)
C-10p" 316K) =
e ==1001A ABT
I1h =100pA 1 C=8pF %WOKQ
loL=24mA 8pF oL =64mA
lou=32mA I lon=-32mA La -
= |, =+50uA I P
SC(1:0)
- BCLK
10K () ABT oV
Cin=4DF
Lg - =+ 100A 10K O
I . N ~ C,=SpF
L i ,,,,,, i 4% | =*1pA
= 7-630) —— RSO
- - 6800
t=300ps .
PCLK T "
(Y T) =

68pF

3
IHH

64783B02

523

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Connecting the emulator to the target system

Plugging the emulator into a target system can be difficult because of mechanical
constraints. If the mechanical constraints cannot be removed so that the emulator
can be plugged directly into the target socket, there are several accessories available
to help with the connection. These accessories are:

» Stacking pin protectors.
* PGA rotators, available from Emulation Technology.

PGA to PGA Flexible Adapter (see below), HP Part Number E3429A.

L nulaftor Probe

Flexiole Cable

/
Pin A1 \
Process Target System

Socketf

64783E15

524

64783E14

Chapter 15: Connecting the Emulator to a Target System
Plugging The Emulator Into A Target System

Unfortunately, these accessories have an electrical impact on your target system.
The specifications given for the emulator do not include the impact of these
accessories. In addition to delays, the accessories can cause problems with signal
quality. Only use these accessories as a last resort.

An optional Reset Flying Lead is provided with the emulator. It can be used t
reset the target system when tbiecommand is used. The signal is driven low
when the emulator is in it's reset state ("R>" prompt on screen). In addition, the
signal will pulse low when arst orrst -m command is issued, if the emulator is

not already in the reset state. The signal carried by the Reset Flying Lead is
intended to be used to initialize circuitry in your target system that would normally
be reset along with the processor (see below).

Original
Target

System
Resef

> RES

Target System RESEH

; Other

Circuits

The example circuit shows the emulator reset signal being ANDed with a target
system reset signal to generate a new target system reset signal. This new signal
will reset the processor and other circuits on the target system when either the
emulator asserts reset, or the target system generates reset.

525

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Verifying Operation Of The Emulator
In Your Target System

When connecting an emulator into a new target system, the step-by-step approach
described in the remainder of this chapter will help you get your system running
most quickly. This is a logical procedure that starts out with the most simple
requirements and moves toward compete functionality, allowing for verification of
installation at each step of the way. This not only helps debug problems if they
arise, but builds confidence that the emulator is functioning correctly in your target
system.

To begin, run the performance verification procedure described in the Installation
and Service Chapter in this manual.

Some additional equipment may be required to make measurements of MC68040
signals. It will help to have an oscilloscope and high speed timing analyzer to use
during these procedures. A 250-MHz timing analyzer may be fast enough, but
faster is better. The oscilloscope should have a single-shot bandwidth greater than
500 MHz. You may also need to cross trigger these instruments from the emulator.
If there are no trigger inputs to the timing analyzer, you can probably use a timing
channel. The BNC trigger output of the 64700 emulation card cage provides a
rising edge TTL signal.

When making measurements, remember that signals need to be probed at the right
place for the measurement being made. The emulator specifications are referenced
to the target socket connector on the probe. This is where measurements should be
made to verify compliance with the specifications. When probing setup and hold
times to circuits in the target system, make the appropriate measurements at the
circuits. This will keep connection accessories from impacting the true
measurements. Always use ground leads to get the most accurate measurements
possible.

526

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Running the emulator configured like the
processor

This step uses no emulation monitor, or emulation memory, and does not atte
control any of the processor signals. For this test, the only emulation feature that is
operating is the emulation-bus analyzer. The emulation-bus analyzer is passive,
like a preprocessor. The main purpose of this step is to determine whether the
loading and timing changes of the emulator impact your target system.

If your target system can run a program without the emulator, do this procedure.
Otherwise, go to step 2.

1 Turn on power to the emulator.

2 Check the emulator prompt by pressing <RETURN>.

The prompt should be "p>". A prompt of "->" indicates a software
compatibility problem. Correct problems indicated in error messages (seen in
the emulator error log) or check the software version usingetheommand

for more information.

3 Configure the emulator by entering the following commands:

cf mon=none

cf cache=en

cf mmu=en

cf ti=en

cf wait=<en,dis> as appropriate for your target system

4 Set up the emulation-bus analyzer to capture all MC68040 system cycles.

tck -u

tg any
tsto any
tpc

t

527

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

5 Execute your program with the commanust.

This tells the emulator to deassert reset so that the emulator does not interfere
with the target system powerup reset.

6 Power on the target system.

7 Verify correct operation.

The target system should run just as if the processor was being used. If your target
system performs any I/O, check it to see of your system performs it correctly. If
your target system appears to work correctly, allow it to reach its stable operating
temperature and test it again.

If the target system appears to work correctly, go to the paragraph titled, "Installing
the Monitor", later in this chapter. Otherwise, verify operation of the target system
as described next.

To verify operation of the target system

Get the prompt by pressing <RETURN>, or use the commstiadget more

information about the emulator status. If the system is working the prompt will
normally be "U>", but there are a few situations where the system will be working
properly and the prompt will be something different. If the bus is taken away from
the MC68040 often or for long periods of time, the emulator can display the "g>"
prompt or alternate between "g>" and "U>". If the MC68040 is running code in its
internal cache for long periods of time, the emulator may display the "b>" prompt.
The emulator may alternate between any of these prompts during normal operation.

All other prompts usually indicate a problem. Even the "g>" or "b>" prompts can
indicate a problem. To understand problems indicated by the prompts, you need to
know whether bus cycles were executed, how many bus cycles were executed, what
type of bus cycles were executed, and whether the target system is still executing
bus cycles. You can tell the difference between these conditions by checking the
trace status to see if any bus cycles were captured. The analyzer may have states in
its internal pipeline that will not be reported until the trace is halted.

528

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

b>th;ts
Emulation trace halted
--- Emulation Trace Status ---
User trace halted <- trace status
Arm ignored
Trigger not in memory
Arm to trigger ?
States 0 (0) ?..? <- number of states captured
Sequence term 2
Occurrence left 1
b>

If the trace status indicates that the trace was halted, look at the number of states
collected to decide how many bus cycles were executed. If the status indicates that
the user trace was completed, a large number of states were executed. If this is the
case, it may help to take another trace to see if bus cycles are still being executed.
Again, view the trace status to determine if bus cycles are executing.

If the "p>" prompt remains after target powerup, check:
» mechanical installation of the probe.

* blown fuses.

» target system power supply voltage.

If the prompt is "c>", mechanical installation may be causing the problem, but the
most likely cause is a problem with the clock. Check clock quality. Look at the
voltage levels, edges, and duty cycle. If the clock looks suspect, compare it to the
target system clock without the emulator. If there is a significant difference, you
may need to adjust the target system terminations to account for the emulator’s
termination.

If the prompt is "r>", either the target system never released reset, or the target
system reset itself because of some program error condition. If no bus cycles were
captured by the analyzer, the target system never released reset. You need to find
out which conditions must occur to release reset, and then investigate these
conditions to determine why reset isn't being released.

An example of a failure to release reset might be a multicard system where the
master card starts the slave cards after verifying that they are installed in the system
by reading checksums from their ROMs. If a checksum is not read correctly, reset
to the associated slave card is not released. If the emulator interfered with the
reading of the checksum, then reset would not be released.

529

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

One thing to keep in mind is that the emulator does not trace alternate bus master
cycles while it is reset.

If any bus cycles were executed before the reset occurred, then something caused
the target system to reassert the reset condition. Usually, this is caused by some
type of fault which is detected by the system. This may result from access to a
certain address range or because of a watchdog timeout. Refer to "Interpreting the
Trace List", later in this chapter, to help you understand what caused the reset.

If the prompt is "b>", and there are no cycles in the trace list, the processor never
attempted to run any bus cycles even if other indications show it should have. This
could indicate problems with power, clock, or signal transitions, especially the reset
signal. Check power supply voltage levels. Make sure the power up is monotonic.
Check clock quality. Check that the reset signal meets its required assertion time
after power up and clock stabilization. Check signal quality on the reset signal,
especially the signal transitions.

If some cycles were captured in the trace list, but no cycles are occuring now, check
for setup and hold violations on the processor strobes. All MC68040 signals,
except the interrupt lines and reset signal, are synchronous to the clock and have to
be valid for all rising edges of BCLK. Check timing inputs to the emulator, such as
TA, TEA, andTBI , for setup and hold violations. The "b>" prompt is not a normal
condition for the processor when you find no functional reason. It usually indicates
that the processor has malfunctioned.

One possible cause of a "b>" prompt is the processor missing the end-of-cycle
indication during the cycle of an alternate bus master. The processor monitors the
TS signal during alternate bus master activity to see if it needs to intervene in the
cycle (snooping). If the processor sed@Sasignal but misses the corresponding

TA signal, the processor may hang, waiting for this bus cycle to complete, even
though the bus was granted to the MC68040 and released.

If bus cycles are occuring, then the "b>" prompt only indicates that bus cycles are
infrequent. A type of system that would exhibit this behavior would be an
interrupt-driven system. When done processing an interrupt, the system could
execute a STOP instruction to wait for the next interrupt. If the interrupts were
infrequent a "b>" prompt would be displayed.

If the prompt is "w>", the emulator has stopped in the middle of a bus cycle. Get
the emulation status; it will tell you the address and the type of cycle.

530

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

w>es

M68040--CPU in wait state; 00badad00@sd long read
w>
To troubleshoot the above problem, you need to know if the target system pro
bus termination for the address. If the answer is no, then the target program
have run incorrectly. The emulation-bus analyzer will have to be used to
investigate further. If the answer is yes, then the reason the bus cycle did not
complete must be determined, as described next.

There are many reasons why bus cycle interaction between a target system and an
emulator may fail. Usually the cause is that the target system missed the
start-of-cycle indication from the emulator, or that the emulator missed the
cycle-termination indication from the target system. For a better idea of what is
going on, refer to the MC68040 bus cycle diagram, below:

| © |2 | @ W | 2] a2

BCLK
| | | | | | |
L L L L L L L
A31-A2
| | | | | | |
| | | |
A M
I I I
I I I I I I I
1 1 | | | | |
AO | | | | | | |
I I L L L L L
I I I I I I I
I I I I
> M
| | |
| Byte | : Word : | Long |
SIZ0 | | I | I I I
I I L L L L L
I I I I I I I
— L L L L L L L
R/W | | | | | | |
I I I I I I I
I I I I I I I
—_— I I Il L I L
PO\
N
T
TIP I I I I I I I
L L L L L L L
I I I I I I I
_ L I L L I Il I
TA
N\ S
I I I I I I I
D31-D24 1 1 1 1 1 1 Dﬁ
| | | | | | ‘
D23-D16 Loy 1 1 1 Dﬁ
| ‘ | | | | ‘
D15-D8 1 1 1 Ly Dﬁ
| | | | ‘ | ‘
D7-D0 1 l l LN Dﬁ
| | | | ‘ | ‘
I I I I I I I
‘ Byte Read ‘ Word Read ‘ Long Word ‘
With Wait Read

64783W02

531

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

A basic MC68040 bus cycle starts with the transfer start si§8al,TheTS signal

pulses low for about one clock cycle. Another signal, transfer in progiestays

low throughout the cycle, but is not necessarily deasserted between cycles. The end
of the cycle occurs when the processor samples a transfer acknoWedge/or a
transfer error acknowledd@eéEA on the rising edge of the clock. Because of the

nature of these signals, most systems are synchronous to the clock. The typical
system will sampl@S on the rising clock edge and then generdi aignal an

intregal number of clocks later. Wait states are added to a cycle by delaying when
the TA is asserted.

If the emulator is configured for wait states (BCLK >25 MHZz), then a compatibility
problem with the emulator may be stalling the processor.

w>cf

cf cache=en

cf mmu=en

cf mon=none

cf rrt=dis

cf tizen

cf wait=en <- configuration for wait states
w>

The emulator requires at least one wait state in all bus cycles when it is configured
as above. The emulator does not add this wait state, but will not adokfitcen

the target system until after a wait state has been add€A.idfasserted by the

target system during the wait state period and is then deasserted before the emulator
allows termination, the bus cycle will never complete.

This particular example can be easily duplicated on the demo board by configuring
for wait states and interlocking memory to the demo board.

cf wait=en
map 0..0ff eram lock
rrst

If there is no functional reason why the bus cycle would not complete, check the
timing relationships between the various bus cycle control signals. Probably the
first measurement you will want to make is to see if the setup tifi&é tdf BCLK

is within the emulator specification.

If there are no cycles in the trace list, then the processor stopped during the first bus
cycle. In this case, it is pretty easy to set up the trace TSi@g the trigger

because the cycle of interest is the first cycle. If there are only a few cycles in the
trace list, the same technique can be used if the oscilloscope or timing analyzer has
enough depth.

532

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

If there are many cycles in the trace list before the processor stalled, use a different
method of triggering. There are a number of different approaches that can be used.
The most direct method is to trigger on a conditiomlBflow andTA high for a
period of time greater than the length of a memory cycle. Another method is t
determine if the system always stops at the same address. This address can
used as the trigger. One drawback to this method is that you may have to pro
large number of signals to get a unique address.

A better way would be to use the emulation-bus analyzer to generate a trigger.
Unfortunately, because the cycle never finishes, the emulation-bus analyzer will not
capture this address, so something preceding this event must be used as the trigger.
Examine the trace list to find a unique event to use as the trigger. Once you have
specified the trigger, you need to configure the emulator to drive the trigger out.

The real trick to crosstriggering is to correlate the trigger event to the captured data.
In this type of measurement, the correlation is easy because the signals of interest
stop transitioning shortly after the trigger occurs.

tg addr=00badad00
tpc

tgout trig2

bnct -r trig2

t

Once you have a trace of the offending cycle, verify Tiais present for a valid

rising clock edge, taking into account a wait state if running faster than 25 MHz. If
TA looks reasonably correct, verify the setup and hold specificatiod#\ dEcurs

but on an invalid clock edge, you may need to make modifications to the target
system to ensure that there is at least one wait state in target cydlads Kot
asserted at all, it could be an indication that the target system mis3&l tBet up
your oscilloscope or logic analyzer to make a measurement on your cycle start
circuitry to determine why the target system did not respond to the cycle.

If the cycle where processing stops is part of a burst cycle, as indicated by the line
access type in the status display, there are several things to check.

w>es
M68040--CPU in wait state; 000000000@sd line read
w>

A burst cycle is shown below. The main characteristic of a burst cycle is that there
are four data transfers as part of one cycle. The processor puts out an address and
assertd'S only once during the cycle. A burst request is indicated by the SIZx
signals. The target memory system can inhibit the burst cycle by asserfiigj the
signal. If the cycle is inhibited, the timing becomes just like a normal cycle. If the
cycle is not inhibited, oncES has been asserted, the process starts samplifay

533

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

each data transfer. The cycle is not over until the fauAtts received. When the
emulator has wait states enabled, a wait state is required between each of the data
transfers in the burst cycle. Evaluating the timing is the same as for a normal cycle.

\ C1 \ 2 \ C3 \ C4 \ (5 \
BCLK

A31-A0

SIZ1, sSIZ0

R/W

Nofe: The selected device incremenls
the value of A3 and A2 64783W03

534

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

If the prompt is "g>" and there are no cycles in the trace list, the target system never
gave the bus to the processor. Check the bus arbitration signals for proper
functionality and timing. Refer to the bus arbitration diagram below. Remember
that the analyzer does not trace alternate bus master cycles while the emulato
reset, but it does once the emulator is running.

‘ C1 ‘ C2 ‘ c3 ‘ Cé ‘ 5 ‘ Cé6 ‘ c7 ‘ 8 ‘ c9
BCLK
| | | | | |
Aaﬂ Ao | | | | | |
| | | | | |
Transfer ‘ ‘ ‘ ‘ ‘ ‘

N S N s SN /SN

|
|
1
|
|
|
1
Aftributes :
|
|
|
|
TIP
|

AM_BRx

AM_BGx

Alternate Alternate
Processor
Master Master

* AM indicates fhe alternafe bus masfer 64783W01

535

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

When trying to determine why the bus is not being granted to the processor, you
will need to determine why either the bus arbitration circuitry or an alternate bus
master is not behaving correctly. The processor is not the bus master; therefore, it
requests the bus wiBR and waits for the target system to grant the busB@th

The processor then waits for BB line to be deasserted, indicating an idle bus,
before taking control of the bus. The processor will not request the bus until after
the reset line has been deasserted.

If the bus is requested by the processor, but it is not being granted check the bus
arbitration signal8B, BG, andBR. If the bus is granted, but never becomes idle,
the alternate bus master may be stuck in the middle of a cycle. Check the cycle
strobesTS, TA, andTEA. These strobes do not have to be asserted during alternate
master accesses, bufts is shown to the processor, tfieh needs to be shown to

end the cycle. While the processor is reset, the only item of concern is signal

quality.

If some cycles are shown in the trace list, but no cycles are occuring now, the
processor executed some cycles before getting stuck in a DMA cycle. Examine the
bus arbitration signals and cycle strobes around where the target system gets stuck.
Use the same techniques to set up a trigger as were described for measuring a bus
cycle that stops before it is complete.

If there are bus cycles occuring, then the "g>" prompt indicates that a high
percentage of the bus activity is by alternate bus masters.

536

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Interpreting the trace list

There are some cases where a problem caused by an errant bus cycle does n
up until many cycles later. The emulation-bus analyzer must be used to track
thru the sequence of events to the faulty bus cycle. Data problems will often
behave like this, but there may be other causes.

If the "h>" prompt is shown, indicating a double bus fault, and if there are only two
states in the tracelist, this indicates a problem with the fetching of the initial vectors.

h>tl

Line addr,H 68040 Mnemonic
0 00000000 $00000000 sdata long read
1 00000004 $000BADAD sdata long read
2

h>

The first two cycles in the trace list are the initial stack pointer and the initial
program counter. The initial program counter must be even or the processor will
immediately double bus fault. You should verify that the data captured by the
analyzer is what is expected.

If the data for the vectors is wrong, a trace should be set up to check for access
problems during the fetch of the initial vectors. If the data is completely incorrect,
suspect an address or strobe timing problem. If only a few bits are wrong or if the
data in the trace is correct, suspect a data timing problem.

If there are a lot of cycles in the tracelist, you need to start from the end and work
backwords to understand what caused the double bus fault. If the trace was
completed before the processor stopped, modify the trace specification to "trigger
on nothing" so that the last bus cycles that were run can be captured. Wait until the
emulator status shows a double bus fault, and then halt the trace.

tg never
reset the target system

es
th
tl -20

537

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

h>tl
Line addr,H 68040 Mnemonic
-16 00000008 $4AFCO0000 sproglongread <-illegal inst
-15 0000000c $000BADAD sprog long read
-14 00000010 $000BADAD sprog long read
-13 00000014 $00000000 sprog long read
-12 00000018 $00000000 sprog long read
-11 000000ee $----0010 sdata word write <- illegal inst stack
-10 000000ea $----0000 sdata word write

-9 000000ec $0008---- sdata word write
-8 00000010 $000BADAD sdatalongread <-odd vector
-7 000000e8 $2700---- sdata word write

-6 000000e4 $000BADAC sdata long write
-5 000000e2 $----200C sdata word write <- address error stack
-4 000000de $----0000 sdata word write

-3 000000e0 $0008---- sdata word write
-2 0000000c $000BADAD sdatalong read <- odd vector
-1 000000dc $2700---- sdata word write

A double bus fault occurs when the processor encounters an exception that prevents
processing of a previous exception. An example of a double bus fault is shown
above. This original exception occured because the target system tried to execute
an illegal instruction. During processing of the illegal instruction exception, the
processor encountered another exception.

This exception was an address error caused because the vector supplied for the
illegal instruction handler was odd. The double bus fault occured when the vector
supplied for the address error handler was also odd. Other things that can cause a
double bus fault are bus errors that occur during exception stacking or vector fetch.
Keep in mind that bus errors can happen because the the target systerfieaserts

or because of an access violation caused by the MMU.

Once you have found the cause of the double bus fault, you need to determine the
root cause of the problem. In some cases, the exception is a normal part of
execution, but the subsequent faults indicate a problem. In some cases, the first
fault indicates a problem directly, such as when the program has already
malfunctioned, and the fault is caused by an unintentional accesses.

At this point, the problem is to find the faulty bus cycle that eventually caused a
recognizable problem. The same situation exists if the processor stops execution at
an address that should not have been executed, or if a program is simply running
code incorrectly.

538

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

There are really only two ways to go about determining what is wrong. One is to
try to trace back the terminal error condition to a faulty bus cycle. The other is to
start at the beginning of the trace, or at some other known point, and work forward,
comparing the trace to the execution that was expected while looking for the p
where execution first becomes unexpected. A listing of the program or a trac
captured by a preprocessor could be used for this comparison.

When you find a suspected bus cycle, set up a trigger on it so that you can make a
timing measurement on the cycle. When looking for clues or shortcuts to the
problem, keep in mind that a system is usually made up of many different types of
memory devices: ROM, EEPROM, SRAM, DRAM, and peripheral ports. Each of
these devices may have different timing characteristics. Also, keep in mind that
unique characteristics of a bus cycle, such as size, transfer type, number of wait
states, and bursting may result in unigue timing requirements.

Fixing timing problems

When a timing problem is identified, you must decide how to fix it. First, examine
the signal to make sure that signal quality is not affecting the timing. Look for AC
or DC drive problems or reflections caused by transmission line problems. If you
can find no other solution to the problem, you may have to lower the clock speed.

If the timing problem only occurs during data accesses, another possible solution is
to add wait states to the memory access. This assumes that the problem is with the
amount of time it takes to access the memories in the system and is not a problem
with a setup time to a synchronous circuit. A good indicator of this type of

problem is when the data setup time to the emulator is being missed. One point of
caution: the emulator, when configured with wait statés/éit=en), does not add

a wait state to target accesses. The target system is responsible for adding the wait
state.

Another possible solution to data access problems is to use faster memories while
using the emulator.

539

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

Installing the emulator in a target system without
known good software

If you do not have a program in ROM on your target system that you can run to
electrically test the emulator, you will need to create a test environment. The initial
step of this is to use the emulator’s dual-port memory to install a simple program
that will run from reset. To do this, proceed as follows:

1 Turn on emulator power.

2 Check the prompt by pressing <RETURN>.
The prompt should be "p>". A "->" prompt indicates a software compatibility
problem. Correct problems indicated in error messages or check the version
"ver" for more information.

3 Configure the emulator by entering the following commands:

cf mon=none

cf cache=en

cf mmu=en

cf ti=en

cf wait=<en,dis> as appropriate for the target system

4 Map dual-port memory with the following command:
map 0..0fff eram dp,lock

This maps a block of emulation memory starting at address 0 so that the reset
vectors will be accessed from this block. The block is configured to be
interlocked to the target system strobes because all systems must have some
memory that responds at address 0 to operate.

5 Load a program with the following commands:

mo -ax -dI

m 0=0f00,100
mo -dw

m 100=60fe

This sets up the reset vectors ISP=0f00 and IPC=100. It then loads the most
simple program imaginable: jump to self.

540

Chapter 15: Connecting the Emulator to a Target System
Verifying Operation Of The Emulator In Your Target System

6 Setup atrace to capture all MC68040 cycles, as follows:

tck -u

tg any
tsto any
tpc

t

7 Executa rst.

This tells the emulator to deassert reset so that the emulator does not interfere
with the target system powerup reset.

8 Power on the target system.

9 Verify correct operation.

The target system should run the same as when the target processor was being used.
The first indication of whether or not your target system is working is to see if your
program performs any I/O that can verify correct system operation. If your target
system appears to work initially, allow it to reach normal operating temperature
before concluding that target system operation is as it should be.

If the target system appears to work properly, go ahead to the paragraph titled
"Installing a Monitor". If you suspect problems, return to "Verifying System
Operation" in the previous paragraphs. Keep in mind that the emulator must
receive strobes from the target system for emulation memory accesses to complete.
Also, because these cycles are from internal emulation memory, the data on the
target system will not be the same as what the processor sees. If you think that
there are problems with emulation memory data, check the clock speed
configuration; the emulator is designed to give correct data at all speeds of
operation.

541

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Installing Emulator Features

Once the emulator is transparently running in the target system, it is time to start
adding other emulator features. Dividing the installation of features into two tasks
is the easiest way to debug problems. The monitor is the facility that provides the
majority of the emulator’s features, but some features like the reset circuitry do not
require the monitor. The first feature to be installed does not depend on the
monitor.

Evaluating the reset facilities

Now is a good time to use the emulator to find out how the emulator reset interacts
with your target system. The first question to answer is whether or not the emulator
reset command is adequate to reset your target system. Perform the following steps:

1 Run your target program by following the procedure in the previous steps.

2 Reset the emulation processor and run your program using the emulator
commands:

r rst

Note that the "r rst" command pulses the processor reset line.

3 Verify correct operation.

If your program does not run correctly after performing the above procedure, your
target system has other circuitry besides the processor that must be reset. The
emulator only resets the emulation processor when it responds to a reset command.
Other circuitry on your target system does not get reset. The following sequence
determines if an additional reset circuit is required.

1 Run your target program following the procedure in the previous steps.

2 Reset the emulation processor and run your target program using these
emulator commands:

rst

542

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Reset the target system using whatever facility is available.

r rst

3 Verify correct operation of the target system.

An example of a target system that requires an additional reset circuit is one tha
normally has RAM starting at address 0, but for the first two bus cycles after reset,
maps ROM to this area instead to provide the inital vectors. If this remapping does
not occur, the system will attempt to fetch these vectors out of RAM, which will

fail.

For systems that require additional circuitry to be initialized by reset, a reset output
from the emulation probe (called reset flying lead) is provided. This reset flying
lead can be connected into your target circuitry to eliminate the need for an
additional step to reset circuitry in your target system. This allows the whole reset
procedure to be controlled by the emulator, automatically.

One additional thing to keep in mind is that your target system can initiate a reset
without the knowledge of the emulator. A reset that is initiated by your target
system will reset the emulator. If the emulator was running your target program at
the time of the reset, then when your system releases reset, the emulator will run as
if anr rst command had been issued. If the emulator was executing in the monitor
at the time of the reset, it will return to the monitor when the reset is released.

Another resetting method that may provide more convenience than the first method
requires use of the monitor. This method works well for target systems such as
those in the example above. This method resets the emulator into the monitor
instead of running the target system program immediately. Once in the monitor,
the initial stack pointer and initial PC can be loaded into the appropriate registers,
and then a run of the target program can be initiated. This method will be
illustrated in the next section.

543

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Installing the background monitor

The emulator allows you to choose between use of a background and foreground
monitor, but the choice is really predetermined by which of the MC68040 features
you will be using.

The background monitor does not support use of the MMU, the caches, or DMA.
Therefore, the background monitor is only useful in the most simple systems, or to
provided a mechanism for testing target hardware, or to further evaluate the
integration of the emulator with your target system.

The background monitor does not show cycles to your target system. It
accomplishes this by blocking tAi& andTIP signals. Therefore, the background
monitor is transparent to your target system. Even though the background monitor
does not show its cycles to the target system, the initial vector fetch cycles are
shown to the target system and interlocked with the target system strobes. Cycles
not shown to the target system are called background cycles. All other cycles are
called foreground cycles.

Resetting into the background monitor

There are three ways to initially get into the background monitor. The first of these
ways is to enter the monitor from reset. Perform the following command sequence
to enter the monitor:

1 Reset the emulator and the target system if necessary using any reset procedure

you determined to work adequately.

2 Configure the emulator by entering the following commands:

cf mon=bg

cf monkaa=none

cf cache=dis

cf mmu=dis

cf ti=en

cf wait=<en,dis> as appropriate for the target system

544

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

3 Set up atrace to capture all MC68040 cycles, including background monitor
cycles, by entering the following commands:

tck -ub
tsto any

tg any
t

4 Execute the commanidt -m. This tells the emulator to release reset, but
enter the monitor.

5 Verify that the emulator is in the monitor.

The prompt should be "M>", indicating that operation is in the monitor. There
is not much that can go wrong up to this point because everything required has
been previously verified.

If you see the following error messages, something went wrong during the initial
vector fetches from the target system. Check these cycles for problems.

ISTATUS 170! Emulator terminated hung bus cycle: 000000000@sd long read
ISTATUS 170! Emulator terminated hung bus cycle: 000000004@sd long read

If you see a "g>" prompt, the background monitor is not compatible with this type
of target system. Go to the paragraph titled "Installing the Foreground Monitor".

If you get the "?>" prompt or something other than the "M>" prompt, this indicates
something went wrong with monitor operation. This may indicate problems with
the clock or reset signals. Because the emulator provides all control signals for the
background monitor, typically problems are with signals that can prevent the
processor from running bus cycles.

545

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Dealing with keep-alive circuitry while using the
background monitor

Another thing to watch for when using the background monitor is the triggering of
a target system keep-alive circuit because monitor bus cycles are hidden.
Depending on how a keep-alive circuit operates, the monitor may cause a problem.
The symptoms for different keep alive circuits may not show up in the same way.

Keep-alive circuits that monitor accesses on the bus or require a certain address to
be accessed probably will fail when you use the background monitor. Keep-alive
circuits that make sure bus cycles complete will not fail. If the keep-alive circuit
generates a bus error or an interrupt, the monitor will not be affected immediately.
If the keep-alive circuit asserts reset instead, monitor operation will be affected
immediately, although there may be no apparant symptoms if reset is only asserted
temporarily because the monitor will be reentered as soon as reset is deasserted.

If you suspect a problem with a keep-alive circuit, there is a configuration option
that can make the background monitor periodically cause a read access to a
particular address. If you do need a particular address to be read for the keep-alive
function, make sure the address you give will respond with memory strobes when
accessed.

cf monkaa=0deadadO

Retry the reset into monitor with this configuration enabled. If there is any sort of
problem with the keep-alive access, it will probably show up as a wait state at the
keep-alive address. If this happens, check the timing on that particular cycle. The
keep-alive address may respond with a bus error without adversly affecting monitor
operation.

546

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Testing memory accesses with the background
monitor

Once the background monitor looks like it is running properly, you can use it t
accesses to different ranges of memory in your target system. This may be an
easier way to diagnose problems than by running a program that accesses each
memory range. Itis also easy to check accesses of different sizes using the monitor.

mo -ax -dl
m Obadad=12345678

When accesses to your target memory do not execute exactly right, the monitor
attempts to diagnose these problems and resolve them so the monitor program does
not malfunction. However, the monitor does not read back write cycles to check

the integrity of the data written. When testing memory accesses, the data should be
checked to make sure that it is correct.

M>m Obadad
0000badad ffdfOOff

If your target memory does not respond to a bus cycle, the monitor will force
termination of the cycle and report this error message:

ISTATUS 170! Emulator terminated hung bus cycle: 0000badad@sd word read
IERROR 700! Target memory access failed

Or, if the target system responds with a bus error for this memory access, the
monitor will report that information:

IERROR 170! Target bus error: 0000badad@sd
IERROR 700! Target memory access failed

547

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Running a program from the background monitor

Once you are satisfied that the monitor is working and that memory in your target
system can be accessed correctly, you can use the monitor to run your target
program. Proceed as follows:

1 Reset into the monitor.
2 Load a program, if necessary.

3 Initialize the initial stack pointer and initial program counter.

reg isp=<initial ISP>
reg pc=<target program starting address>

If these values are not known, they can be found by taking a trace of the
program running from reset, as was done in the previous sections.

4 Take a trace of the program running, using the following commands:

tg addr=<long aligned target program starting address>
t

The trigger address must be long aligned because the MC68040 always fetches
instructions as long words from long-word boundaries.

5 Run the program with the command:

r

6 Verify correct operation of the program.

Assuming that the program ran without the monitor, the stack is most likely the
cause of any problems you see. The monitor runs the program by creating a stack
in foreground memory at the location indicated by the initial stack pointer. The
monitor then initiates an RTE, which starts the target program running. The
following trace list is an example showing correct operation:

548

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Line addr,H 68040 Mnemonic
-4 000000f0 $00------ mon sdata byte read

-3 000009b4 $4E714E71 mon sprog long read

-2 000000ec $000a007C sdata long read <-unstack

-1 000000e8 $27000000 sdatalongread <-unstack

0 00000008 $000060FE sproglongread <-target program
1 0000000c $000BADAD sprog long read

If the monitor detects problems with the stack pointer (the stack pointer must be
even), or if the monitor has a problem accessing the stack memory, an error
message is issued. Additionally, the monitor checks to make sure that the stack has
been written correctly before exiting. Problems are indicated by the error messages
listed below.

From this point on, most of the problems will be discussed from a functional point
of view instead of a parametric point of view. If any of the functional problems
discussed below identify a problem that looks parametric, use the debugging
techniques of the previous procedures to isolate the problem.

IERROR 151! Interrupt stack pointer is odd or uninitialized
IERROR 610! Unable to run

This message indicates that the stack pointer is invalid. Only word-aligned stack
pointers are allowed with the emulator. If this error is seen, the run will not be
attempted.

IERROR 170! Target bus error: 0000000e8@sd
IERROR 610! Unable to run

This message indicates a bus error occured during the stack write. This behavior
could be caused by putting the stack in a memory range that responded with bus
error for all accesses, or bus error on write accesses. Or, it could be caused by
putting the stack where nothing responds, and the bus error is the result of a
timeout. Keep in mind that the stack grows down from the initial stack pointer.

ISTATUS 170! Emulator terminated hung bus cycle: 0000000e8@sd long write
IERROR 610! Unable to run

This message indicates that the stack is in an address range that did not respond
with a memory strobe. Make sure that the stack is placed in valid memory.

IERROR 151! Interrupt stack is not located in RAM: 0000000e8@sd
IERROR 610! Unable to run

549

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

This message indicates that the stack memory was not writeable. Check to make
sure that the stack is placed in RAM.

If the target program appears to start at the wrong address, or if there is some other
problem, the stack can be decoded to see if the correct information is present there.
The stack above is interpreted as follows: The initial stack pointer is defined to
point to the next available stack location. Therefore the exit stack starts four words
below the initial stack pointer.

ISP-8 -> Status register = 2700
ISP-6 -> Program Counter = 0000000a
ISP-2 -> Vector Offset = 007C

The monitor is always exited using the FOUR WORD STACK frame, and the
monitor always uses 07C as the vector offset. When running a program from the
monitor after entering from reset, the powerup status word of 2700 is used.
Therefore, the only difference you will see in this stack frame will be because of
different initial program counter values.

The procedure of setting the initial stack pointer and initial program counter can be
automated by using the initial vectors configuration question to define these values.

cf rv=<initial ISP> <initial PC>

Once this configuration has been set up, the following reset sequence may be useful
on systems that remap memory to provide reset vectors similar to the example in
the "Evaluating the Reset Facility" section.

rst -m
r

550

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Breaking into the background monitor

The next thing to try with the background monitor is to see if you can break int
from your target program. The emulator uses a nonmaskable interrupt (interr
to break into the monitor. The interrupt is generated in such a way as to not
interfere with any interrupts pending in your target system. The resulting interrupt
acknowledge cycle is not shown to the target system. The associated stacking is in
foreground memory at the location determined by the interrupt stack pointer. If the
target system program is running in Master mode, there will also be stacking on the
master stack.

A vector fetch occurs sometime during or after stacking; it is also shown to the
target system. The emulator provides the data for this vector fetch to correctly run
the background monitor. After stacking and the vector fetch are completed, the
emulator transitions into the background monitor. The background monitor may
access foreground memory during its operation.

While the emulator is in the background monitor, no target interrupts are serviced.
The interrupt signals from the target system are ignored while in the background
monitor. The emulator will not respond to these signals in any way while in the
monitor. If the signals are still present when the monitor is exited, they will be
serviced according to normal interrupt priorities.

Entry into the background monitor can be traced by using the following trigger
specification:

tck -ub

tpc

tg stat=11xxXxXxxxxx1x111xy
t

b

Line addr,H 68040 Mnemonic

00000008 $60FE0000 sprog long read

0000000c $000BADAD sprog long read

fffffff $------ FF mon int7 ack <-acknowledge
000000ee $----007C sdata word write <-stack format
000000ea $----0000 sdata word write <-stack PC high
000000ec $0008---- sdata word write <-stack PC low
0000007c $0000069C sdata long read <-vector fetch
000000e8 $2700---- sdata word write <-stack SR
00000698 $0012FFFF mon sprog long read <-monitor
0000069c $11FCO01F mon sprog long read

NOUTRWNRO RN

551

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

If you have problems trying to break into the monitor, the most likely causes are the
values of the stack pointers, or the vector base register does not point to valid
memory. Any bus errors that occur during monitor entry will cause the break to
fail. If any stacking or vector fetch cycles are not terminated, the monitor will
terminate them by force. If this happens, the PC and SR may be displayed
incorrectly by the monitor. The same problem can result from stack memory that is
not writeable. Neither condition will inhibit entry into the monitor, but the target
state will be corrupted.

Exiting the background monitor

If the procedures described in the preceding paragraphs gave satisfactory results,
you should be able to resume execution of the target program. You may want to
take a trace of the monitor exit procedure to verify that it is completed correctly.

r

If the target system and emulator do not work correctly after exiting the background
monitor, the problem may be because your target system is real-time sensitive. If
interrupts that needed to be serviced to keep the target system running were delayed
by the monitor, things such as data overrun could cause problems in the target
system. If you suspect such a problem, use the foreground monitor.

552

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Software breakpoint entry into the background
monitor

The background monitor can also be entered via a software breakpoint. The
emulator will respond to any software breakpoint instruction in the code if
breakpoints are enabled, regardless of whether the breakpoint was inserted by the
emulator or not. Breakpoints are enabled by the following command.

bc -e bp

Set breakpoints only on the initial word of an instruction; otherwise, they will not

be executed, and might alter an instruction, unintentionally. The emulator can
place a breakpoint using one of two methods. By default, the emulator will attempt
to modify memory to insert a breakpoint instruction at the address specified. If the
memory at the address specified is ROM or cannot be modified for some other
reason, special hardware resources on the emulator will interject a breakpoint
instruction when that address is fetched.

b
bp <instruction address>

If you suspect a problem occurred during the setting of the breakpoint, you can use
the analyzer to watch the breakpoint being set. The easiest way to do this is to
store-qualify your trace on the address where you are setting the breakpoint. The
trace list will only contain a cycle or two, but you can see what happened when the
emulator accessed this address.

tg any

tsto addr=<instruction address>
b

bp <instruction address>

Line addr,H 68040 Mnemonic

0 00000008 $FFFF---- sdata word read

1 00000008 $FFFF---- sdata word read

2 00000008 $FFFF---- sdata word read

3 00000008 $484F---- sdata word write <- breakpoint write
4 00000008 $FFFF---- sdata word read <- verify

5 00000008 $FFFF---- sdata word read

6

553

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

When a software breakpoint instruction is executed, the processor initiates a
breakpoint-acknowledge cycle. This cycle signals the start of an entry into the
monitor. From this point on, stacking and the vector fetch procede the same as for
a break entry. Unlike the interrupt-acknowledge cycle, the
breakpoint-acknowledge cycle is shown to the target system.

tsto any

tg stat=11xxxxxxxx1x000xy
t

r8

Line addr,H 68040 Mnemonic
-4 00000008 $484F0000 sproglongread <-bkpt fetch
-3 0000000c $000BADAD sprog long read
-2 00000010 $000BADAD sprog long read
-1 00000014 $00000000 sprog long read

0 00000000 $41------ bkpt ack (buserror) <-acknowledge
1 000000ee $----0010 sdata word write <-stack format
2 000000ea $----0000 sdata word write <-stack PC high
3 000000ec $0008---- sdata word write <-stack PC low
4 00000010 $00000690 sdatalongread <-vector fetch
5 000000e8 $2700---- sdata word write <-stack SR

6 00000690 $11FC0004 mon sprog long read <-monitor
7 00000694 $01186000 mon sprog long read

The only unique portion of a breakpoint entry is the breakpoint-acknowledge cycle
so any problems that you see will probably be related to this cycle. Because the
emulator internally responds to this cycle, it is not necessary for the target system to
respond to it. If the target system does respond to this cycle with any wait states,
the emulator may become out of sync with the target system because the emulator
terminates this cycle immediately. If this were to cause a problem, it would show

up on the cycle immediately following the breakpoint-acknowledge cycle.

554

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Stepping with the background monitor

The last feature of the background monitor which needs to be evaluated is the
single-stepping facility. The emulator uses a combination of the processor traq
facility and a nonmaskable interrupt to reenter the monitor after executing exad
one instruction.

b

tsto any

tg stat=11xxxxxxxx1x111xy
t

S

000000008@s - BRA.B $00000008
PC = 000000008@s

When a step command is issued, the emulator sets the trace bits in the SR and then
performs a normal monitor exit. The emulator then forces a break to return to the
monitor. A typical trace of a single step is shown below:

Line addr,H 68040 Mnemonic
-17 000009b0 $4E714E71 mon sprog long read
-16 000000f0 $00------ mon sdata byte read
-15 000009b4 $4E714E71 mon sprog long read
-14 000000ec $0008007C sdatalongread <- unstack
-13 000000e8 $A7000000 sdatalongread <- unstack
-12 00000008 $60FE0000 sprog longread <- stepped inst
-11 0000000c $000BADAD sprog long read
-10 00000008 $60FE0000 sprog long read
-9 0000000c $000BADAD sprog long read
-8 000000ec $00000008 sdata long write <- trace stack addr
-7 000000ea $----2024 sdata word write <- trace stack format
-6 000000e6 $----0000 sdata word write <- trace stack PC up

-5 000000e8 $0008---- sdata word write <- trace stack PC low
-4 00000024 $00000000 sdatalong read <- trace vector fetch
-3 000000e4 $A700---- sdata word write <- trace stack SR

-2 00000000 $000000F0 sproglong read <- trace prefetch

-1 00000004 $00000008 sprog longread <-trace prefetch

0 ffffffff $------ FF mon int7 ack <- break acknowledge

1 000000e2 $----007C sdata word write <- break stack format
2 000000de $----0000 sdata word write <- break stack PC up
3 000000e0 $0000---- sdata word write <- break stack PC low
4 0000007c $0000069C sdata long read <- break vector fetch
5 000000dc $2700---- sdata word write <- break stack SR
6 00000698 $0012FFFF mon sprog long read <- monitor
7 0000069c $11FCOO1F mon sprog long read

At the end of the execution of the first target program instruction, the processor

takes a trace exception. Stacking for this trace exception commences and at some
point, the trace vector is fetched. Once stacking for the trace is complete, the
processor prefetches from the address of the trace handler, but these instructions are

555

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

never executed because the processor immediately starts interrupt processing. The
interrupt processing proceeds the same as in a normal break.

Before exiting for a step, the monitor checks to make sure that the trace vector is
valid and that it points to accessable memory. If the vector is not even, or if the
memory it points to responds with a bus error or hangs, the emulator temporarily
modifies the trace vector to point to the start of the vector table. Because the
instructions of the trace handler will not be executed, the content of the address
locations is not important.

If the emulator modifies the trace vector, the following status message is given:
ISTATUS 155! Vector table modified for single stepping

If the emulator finds it must modify the trace vector for single stepping to complete,
but the modification attempt fails, an error message similar to the following is
displayed:

IERROR 170! Target bus error: 0ff800024@sd
IERROR 156! Unable to modify trace vector to ff800000h for single stepping
IERROR 680! Stepping failed

If this error occurs, the vector table must be modified so that the trace vector
contains an address that points to accessable memory. If the vectors are in ROM,
perhaps the memory can be copied into emulation memory where you can modify it.

One way to watch what the emulator is doing during a step, is to set up the analyzer
to trace only foreground cycles and to store everything. This lets you watch the
emulator check and possibly modify the trace exeception vector. Use the following
commands:

tck -u
tsto any
tg any

t

S

The emulator may experience problems when stepping over instructions that
modify the VBR. This is because the check of the trace exception vector is made
using the old VBR value, but the actual stacking will use the new value of the
VBR. If the new VBR value changes the trace exception vector to something that
would require modification, then stepping can fail.

IERROR 680! Stepping failed

556

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

When stepping over instructions that cause the processor to take exceptions, the

trace list can look very different. Most exceptions preempt the trace exception until
after their exception handler runs. Other exceptions (like TRAP, CHK and CHK2)
create their stack frame and then take the trace exception. Any exceptions ca
the step trace list to look different. In all cases, the monitor is still entered thro
the interrupt 7 exception.

For all exceptions except TRAP, CHK, and CHK2, the trace stack frame will be
missing when the monitor is entered. Instead of using the trace stack frame, the
exception stack frame will be used. The emulator detects that and issues an error
message that says stepping failed. This error message does not actually indicate a
problem with emulator stepping; it just indicates that an exception was hit. The
emulator is stopped at the starting address of the exception handler, and stepping
can be resumed.

The TRAP, CHK, and CHK2 exceptions will have an additional stack frame when
the monitor is entered. The exception stack frame will precede the normal trace
and interrupt stack frames. These exceptions do not cause the monitor to issue an
error message so multiple steps will not stop on this type of exception.

557

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Installing the foreground monitor

The foreground monitor supports all features of the emulator, but imposes on your
target system more than the background monitor. The foreground monitor occupies
a 4-Kbyte block in your target memory space. The emulator provides memory for
this 4-Kbyte block, but the target system cannot use this address range for anything.
The cycles strobeBS andTIP are shown to the target system during foreground
monitor cycles. The monitor needs to be placed in an address range where it will
not interfere with target system operation.

If the monitor is placed in an address range where the target system responds with a
TA, interlock the monitor to the target strobes. The target system must not respond
with TEA for this address range. If the monitor is placed in an address range where
the target system does not respond with any strobes, do not interlock the monitor.

If in doubt, interlock the foreground monitor to the target system. It will be

obvious if this is the wrong thing to do because the monitor will stop operating
immediately.

If the MMU is being used, the monitor must be placed in an address range that is
translated logical=physical, and is writeable for supervisor program and data. If the
memory management scheme is dynamic, the monitor page must be resident at all
times. In addition, any pages required for stacking or vector fetches must also be
resident.

If there is not a suitable address range in which to put the monitor, the system
protection schemes may need to be modified to create a place for the monitor. This
may be as simple as adding an entry to the MMU tables, or it may require
modifying a hardware protection scheme to allow placement of the monitor.

Besides adding special requirements to the placement of the monitor, the MMU
impacts many operations of the emulator and processor. When the MMU is on, the
emulator can access both physical and logical memory. The emulator also provides
commands to examine the MMU tables.

With the MMU on, there are new problems added to the task of connecting the
emulator probe into a target system. Besides making sure that the restrictions noted
above are complied with, interpreting the trace list becomes more difficult. You

also need to keep in mind the distinctions between logical and physical memory
accesses when accessing memory. Finally, you need to find out whether you need
to load your program before the MMU is running or while it is running.

558

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

The foreground monitor, in contrast to the background monitor, allows servicing of
interrupts. When the foreground monitor is not busy performing some action,
interrupts are allowed. The interrupt routine must return control to the monitor
within a reasonable period of time or the monitor may timeout if it attempts to
something. The level of interrupt that can be recognized by the monitor can b
controlled through a configuration question:

cf monint=0

Resetting into the foreground monitor

If you have successfully established operation of the background monitor, or if you
have decided that you cannot use the background monitor because you need certain
MC68040 features, then it is time to evaluate the foreground monitor. The first

thing to do is to enter the foreground monitor from reset. Perform the following
command sequence to enter the monitor.

1 Reset the emulator, and the target system if necessary, using whatever reset
procedure you determined to work.

2 Configure the emulator, as follows:

cf mon=fg

cf monaddr=addr as appropriate for the target system

cf monlock=<en,dis>as appropriate for the address mapping
cf monint=0

cf cache=en

cf mmu=en

cf ti=en

cf wait=<en,dis>as appropriate for the target system

3 Set up a trace to capture all MC68040 cycles. Background cycles do not need
to be traced to see foreground monitor operation.

tg any
tsto any
tck -u

t

559

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

4 Execute the commangt -m

This tells the emulator to release reset, but enter the monitor.

5 Verify that the emulator is in the monitor.

The prompt should be "M>", indicating correct operation in the monitor.
There is not much that can go wrong up to this point since everything required
has been previously verified.

If you get the following error messages, a failure occurred during the initial vector
fetches from the target system. Check these cycles for problems.

ISTATUS 170! Emulator terminated hung bus cycle: 000000000@sd long read
ISTATUS 170! Emulator terminated hung bus cycle: 000000004@sd long read

If you get a "w>" prompt for a monitor address, you may have incorrectly
interlocked the monitor to the target system. If the monitor was correctly
interlocked, check to see if there is a timing problem with the target terminations
for the monitor address range.

If you get the "b>" prompt or something other than the "M>" prompt, suspect a
failure in monitor operation. These prompts may indicate problems with the clock
or reset signals. If the monitor is interlocked, it may also indicate that the target
system responded with a bus error for a monitor access.

560

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Dealing with keep-alive circuitry by using the
custom foreground monitor

As with the background monitor, you may have problems with keep-alive circu
located in the target system. Because the foreground monitor cycles are shown to
the target system, bus cycle activity monitors should not be a problem. Also,
because interrupts can be serviced within a reasonable period of time, any
keep-alive circuits that depend on interrupts should not be a problem.

Keep-alive circuits that require a certain address to be accessed probably will fail
when you are using the foreground monitor. The keep-alive problem will most
likely show up immediately when using the foreground monitor. If the monitor is
interlocked, it will be affected immediately if a keep-alive circuit causes a bus

error. If a keep-alive circuit generates an interrupt or a reset, it should also be
immediately obvious. If reset is only temporarily asserted, it may not be so obvious
because the emulator will return to the monitor when it is released.

If you suspect a problem with a keep-alive circuit, try using the custom foreground
monitor. This monitor can be customized to take the required actions to satisfy a
keep-alive circuit. See the chapter on configuring the emulator for information on
using the custom foreground monitor. Retry your reset into the monitor with the
customized foreground monitor.

If keep-alive circuits cannot be accommodated by using the available emulator
features, you may need to disable them for emulation.

561

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Testing memory access with the foreground
monitor

Once the foreground monitor looks like it is running properly, you can use it to test
accesses to different ranges of memory in your target system. This may be an
easier way to diagnose problems than by running a program that accesses each
memory range. Itis also easy to check accesses of different sizes using the monitor.

mo -ax -dl
m Obadad=12345678

When accesses to your target memory are not performed exactly right, the monitor
attempts to diagnose these problems and resolve them so the monitor program does
not malfunction. However, the monitor does not read back write cycles to check

the integrity of the data written. When testing memory accesses, check the data to
make sure it is correct.

M>m Obadad
0000badad ffdfoOff

If your target memory does not respond to a bus cycle, the monitor will force
termination of the cycle and report this error message.

ISTATUS 170! Emulator terminated hung bus cycle: 0000badad@sd word read
IERROR 700! Target memory access failed

Or, if the target system responds with a bus error for this memory access, the
monitor will report that information.

IERROR 170! Target bus error: 0000badad @sd
IERROR 700! Target memory access failed

562

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Running a program from the foreground monitor

Once you are satisfied that the monitor is working and that memory in your tar
system can be accessed correctly, you can use the monitor to run your target
program. Use the following procedure:

1 Reset into the monitor.
2 Load a program, if necessary.

3 Initialize the initial stack pointer and initial program counter.

reg isp=<initial ISP>
reg pc=<starting address of target program>

If you do not know these values, you can find them by taking a trace of the
program running from reset as done in the previous sections.

4 Take a trace of the program as it is running, using the following commands:

tg addr=<long aligned starting address of target program>
t

The trigger address must be long aligned because the MC68040 always fetches
instructions as long words from long-word boundaries.

5 Run the program with the command:

r

6 Verify correct operation of the program.

Assuming that the program ran without the monitor, the stack is most likely the
cause of any problems that you see. The monitor runs the program by creating a
stack in memory at the location indicated by the initial stack pointer. The monitor
then initiates an RTE, which starts the target program running. The following trace
list shows an example of correct operation:

563

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Line addr,H 68040 Mnemonic
-4 000010f0 $00------ log sdata byte read
-3 00001e74 $4E714E71 log sprog long read
-2 0000f0ec $000a007C log sdata long read <-unstack
-1 0000f0e8 $27000000 log sdata long read <-unstack
0 00000008 $000060FE log sprog long read <-target program
1 0000000c $000BADAD log sprog long read

If the monitor detects problems with the stack pointer (the stack pointer must be
even), or if the monitor has a problem accessing the stack memory, an error
message is issued. Additionally, the monitor checks to make sure that the stack has
been written correctly before exiting. Problems are indicated by the following error
messages:

IERROR 151! Interrupt stack pointer is odd or uninitialized
IERROR 610! Unable to run

This message indicates that the stack pointer is invalid. Only word aligned stack
pointers are allowed with the emulator. The run is not attempted.

IERROR 170! Target bus error: 00000f0e8@sd
IERROR 610! Unable to run

This message indicates a bus error occurred during the stack write. This behavior
can be caused if the stack is in a memory range that responds with bus error for all
accesses or for write accesses. Or, this behavior can be caused by putting the stack
where the target system fails to respond immediately; the bus error is the result of a
timeout. Keep in mind that the stack grows down from the initial stack pointer.

ISTATUS 170! Emulator terminated hung bus cycle: 00000f0e8@sd long write
IERROR 610! Unable to run

This indicates that the stack is in an address range that did not respond with a
memory strobe. Make sure that the stack is placed in valid memory.

IERROR 151! Interrupt stack is not located in RAM: 00000f0e8@sd
IERROR 610! Unable to run

This indicates that the stack memory was not writeable. Check to make sure that
the stack is placed in RAM.

If the target program appears to start at the wrong address, or if there is some other
problem, the stack can be decoded to see if the correct information is present. The
stack above is interpreted as follows: The initial stack pointer is defined to point to

564

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

the next available stack location. Therefore, the exit stack starts four words below
the initial stack pointer.
ISP-8 - Status register = 2700

ISP-6 - Program Counter = 0000000a
ISP-2 - Vector Offset = 007C

The monitor is always exited using the FOUR WORD STACK frame, and the
monitor always uses 07C as the vector offset. When running a program from the
monitor after entering from reset, the powerup status word of 2700 is used.
Therefore, the only difference you will see in this stack frame will be because of
different initial program counters.

The procedure for setting the initial stack pointer and initial program counter can be
automated by using the initial vectors configuration question to define these values.

cf rv=<initial ISP> <target program starting address>

Once this configuration has been set up, the following reset sequence may be useful
on systems that remap memory to provide reset vectors.

rst -m
r

Breaking into the foreground monitor

The next thing to try with the foreground monitor is to see if you can break into it
from your target program. The emulator uses a nonmaskable interrupt (interrupt 7)
to break into the monitor. The interrupt is generated in such a way as to not
interfere with any interrupts pending in your target system. The resulting interrupt
acknowledge cycle is not shown to the target system. The associated stacking is in
foreground memory at the location determined by the interrupt stack pointer. If the
target system program is running in Master mode, there will also be stacking on the
master stack.

A vector fetch occurs sometime during or after stacking. The emulator provides the
data for this vector fetch to correctly run the foreground monitor. While the
emulator is transitioning into the foreground monitor, interrupts are temporarily
blocked. Once in the monitor the interrupt mask level is lowered to the greater of
the "monint" configuration setting or the target program mask level.

565

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Entry into the foreground monitor can be traced by using the following trigger
specification. The interrupt acknowledge signal is not shown to the target system
and is also not shown to the analyzer unless background cycles are being traced.

tck -ub

tpc

tg stat=11xxxxxxxx1x111xy
t

b

Line addr,H 68040 Mnemonic
-2 00000008 $60FEO0000 phy sprog long read
-1 0000000c $00000000 phy sprog long read
fffffff $------ FF mon int7 ack <- acknowledge
00000200 $0000040B mmu twalk data long read <- twalk stack
00000400 $0000060B mmu twalk data long read
0000063c $0000F01B mmu twalk data long read
0000f0ee $----007C phy sdata word write <- stack format
0000f0ea $----0000 phy sdata word write <- stack PC high
0000f0ec $0008---- phy sdata word write <-stack PC low
00000200 $0000040B mmu twalk data long read <- twalk vector
00000400 $0000060B mmu twalk data long read
00000600 $0000009F mmu twalk data long read
0000007c $000016C2 phy sdata long read <- vector fetch
0000f0e8 $2700---- phy sdata word write <- stack SR
00000200 $0000040B twalk prog long read <- twalk monitor
00000400 $0000060B twalk prog long read
00000600 $0000101b twalk prog long read
000016c0 $4E732FO0D phy sprog long read <- monitor
000016c4 $4BFAFB10 phy sprog long read

e e
ShhRREBoo~NourwNhvRO

If you have problems trying to break into the monitor, the most likely causes are
that the stack pointers or vector base register do not point to valid memory. Any
exceptions during monitor entry will cause the break to fail. Access errors during
stacking or vector fetches are the most common causes of failures. The target
system can respond with a bus error, or if the MMU is running, the MMU can
signal an access error. The MMU will signal an error if a translation is not
available, if a bus error occurs during translation lookup, or if a write protection
error occurs.

The break will also fail if accesses to the monitor cause an exception. This includes
bus errors and access errors signaled by the MMU. It is possible for the monitor to
execute correctly until the MMU is enabled, and then have problems. Keep in

mind that the monitor must be translated logical=physical and located in address
space that is not write protected.

566

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

If any stacking or vector-fetch cycles are not terminated, the monitor will terminate
them by force. If this happens, the PC and SR may be displayed incorrectly by the
monitor. The same problem can result from stack memory that is not writeable.
Neither condition will prevent entry into the monitor, but you will not be able to
resume execution in the target program.

Exiting the foreground monitor

If the tests of the preceding paragraphs operate correctly, you should be able to
resume execution of the target program. You may want to take a trace of the
monitor exit to verify that everything is working correctly. Use the run command:

r

Software breakpoint entry into the foreground
monitor

The foreground monitor can also be entered via a software breakpoint. The
emulator will respond to any software breakpoint instruction in the code if
breakpoints are enabled, regardless of whether the breakpoint was inserted by the
emulator or not. Breakpoints are enabled by the following command:

bc -e bp

Only set breakpoints on the initial word of an instruction; otherwise, they will not

be executed, and they may alter an instruction, unintentionally. The emulator can
place a breakpoint using two methods. By default, the emulator will attempt to
modify memory to insert a breakpoint instruction at the address specified. If the
memory at the address specified is ROM or cannot be modified for some other
reason, special hardware resources on the emulator will interject a breakpoint
instruction when the associated address is fetched. You can tell if a hardware
resource was required to support a breakpoint by viewing memory at the breakpoint
address. If the BKPT instruction has replaced the normal instruction at that
address, a software breakpoint was used. If the normal instruction is still in the

567

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

breakpoint address, the emulator is using one of its eight hardware resources to
implement the breakpoint.

b
bp <program instruction>

If you suspect some kind of problem with the setting of the breakpoint, use the
analyzer to watch the setting of the breakpoint. The easiest way to do this is to
store-qualify the trace on the address where you are setting the breakpoint. The
trace list will only contain a cycle or two, but you can see what happened when the
emulator accessed the breakpoint address.

If the MMU is running, you will need to store-qualify the actual physical address
being accessed. The address given in the "bp" command must always be treated as
a logical address. To find the corresponding physical address, use the MMU
translation command. Also, keep in mind that the MMU may cause problems when
setting the breakpoint.

mmu -t <logical breakpoint address>

tg any

tsto addr=<physical breakpoint address>
b

bp <logical breakpoint address>

Line addr,H 68040 Mnemonic

0 00000008 $FFFF---- phy sdata word read

1 00000008 $FFFF---- phy sdata word read

2 00000008 $FFFF---- phy sdata word read

3 00000008 $484F---- phy sdata word write <- breakpoint write
4 00000008 $FFFF---- phy sdata word read <- verify
5
6

00000008 $FFFF---- phy sdata word read

568

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

When a software breakpoint instruction is executed, the processor initiates a
breakpoint-acknowledge cycle. This cycle signals the start of an entry into the
monitor. From this point on, stacking and the vector fetch proceed the same as for
a break entry. Unlike the interrupt-acknowledge cycle, the
breakpoint-acknowledge cycle is shown to the target system.

tck -u

tsto any

tg stat=11xxxxxxxx1x000xy
t

r8

Line addr,H 68040 Mnemonic
-4 00000008 $484F0000 log sprog long read <- bkpt fetch
-3 0000000c $00000000 log sprog long read
-2 00000010 $01000000 log sprog long read
-1 00000014 $00000000 log sprog long read
0 00000000 $41------ bkpt ack (buserror) <- acknowledge
1 00000200 $0000040B mmu twalk data long read <- twalk stack
2 00000400 $0000060B mmu twalk data long read
3 0000063c $0000F01B mmu twalk data long read
4 0000f0ee $----0010 phy sdata word write <- stack format
5
6
7
8
9

0000fO0ea $----0000 phy sdata word write <- stack PC high
0000f0ec $0008---- phy sdata word write <- stack PC low
00000200 $0000040B mmu twalk data long read <- twalk vector
00000400 $0000060B mmu twalk data long read
00000600 $0000009F mmu twalk data long read

10 00000010 $000016A2 phy sdata long read <- vector fetch

11 0000f0e8 $2700---- phy sdata word write <- stack SR

12 00000200 $0000040B twalk prog long read <- twalk monitor

13 00000400 $0000060B twalk prog long read

14 00000600 $0000101b twalk prog long read

15 000016a0 $007E2F0OD phy sprog long read <- monitor

16 000016a4 $4BFAFA73 phy sprog long read

The only unique part of a breakpoint entry is the breakpoint-acknowledge cycle so
any problems will probably be related to this cycle. Because the emulator

internally responds to this cycle, it is not necessary for the target system to respond
to it. If the target system responds to this cycle with any wait states, the emulator
may become out of sync with the target system because the emulator terminates this
cycle immediately. If this causes a problem, it will show up on the cycle

immediately following the breakpoint-acknowledge cycle.

569

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

Stepping with the foreground monitor

The last feature of the foreground monitor that needs to be evaluated is the
single-stepping facility. The emulator uses the processor trace facility to reenter the
monitor after executing exactly one instruction, unless an exception occurs.

b

tsto any

tg stat=11xxxxxxxx1x000xy
t

S

000000008@s - BRA.B $00000008
PC = 000000008@s

When a step command is issued, the emulator sets the trace bits in the SR, and then
performs a normal monitor exit. The emulator modifies the trace vector to transfer
control to the monitor. A typical trace of a single step is shown below:

Line addr,H 68040 Mnemonic

-42 000010f0 $00------ log sdata byte read

-41 00001e74 $4E714E71 log sprog long read

-40 00000200 $0000040B mmu twalk data long read <- twalk stack
-39 00000400 $0000060B mmu twalk data long read

-38 0000063c $0000F01B mmu twalk data long read

-37 0000f0ec $0008007C log sdata long read <- unstack

-36 0000f0e8 $A7000000 log sdata long read <- unstack

-35 00000200 $0000040B twalk prog long read <- twalk monitor
-34 00000400 $0000060B twalk prog long read

-33 00000600 $0000009f twalk prog long read

-32 00000008 $60FE0000 log sprog long read <- stepped inst
-31 0000000c $00000000 log sprog long read

-30 00000008 $60FE0000 log sprog long read

-29 0000000c $00000000 log sprog long read

-28 0000f0ec $00000008 log sdata long write <- stack address
-27 0000f0ea $----2024 log sdata word write <- stack format

-26 0000f0e6 $----0000 log sdata word write <- stack PC high
-25 0000f0e8 $0008---- log sdata word write <- stack PC low
-24 00000200 $0000040B mmu twalk data long read <- twalk vector
-23 00000400 $0000060B mmu twalk data long read

-22 00000600 $0000009F mmu twalk data long read

-21 00000024 $00001680 log sdata long read <- vector fetch
-20 0000f0e4 $A700---- log sdata word write <- stack SR
-19 00001680 $2FOD4BFA log sprog long read <- monitor

-18 00001684 $FB523ABC log sprog long read
-17 00001688 $20246000 log sprog long read
-16 0000168c $00924BFA log sprog long read
-15 0000f0e0 $00000000 log sdata long write
-14 00001718 $2F256000 log sprog long read

570

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

-13 000011d6 $----2024 log sdata word write
-12 0000171c $0022083A log sprog long read
-11 00001720 $0002F9D6 log sprog long read
-10 00001724 $67184BFA log sprog long read
-9 00001728 $F9F108D5 log sprog long read
-8 0000108 $F5------ log sdata byte read
-7 0000172c $0003484F log sprog long read <- monitor bkpt
-6 00001730 $4E7ADO002 log sprog long read
-5 00001734 $4A8D6A06 log sprog long read
-4 00001738 $F4784BFA log sprog long read
-3 00001119 $--03---- log sdata byte read
-2 0000173c $F8C40C3A log sprog long read
-1 00001119 $--0B---- log sdata byte write
0 00000000 $41------ bkpt ack (buserror) <- acknowledge
1 0000f0de $----0010 log sdata word write
2 0000f0da $----0000 log sdata word write
3 0000f0dc $172E---- log sdata word write
4 00000010 $000016A2 log sdata long read
5
6
7

0000f0d8 $2704---- log sdata word write
000016a0 $007E2FOD log sprog long read
000016a4 $4BFAFA73 log sprog long read

At the end of the execution of the first target program instruction, the processor
takes a trace exception. Stacking for this trace exception commences and at some
point, the modified trace vector is fetched. The monitor internally uses a
breakpoint instruction, but it is not part of the entry sequence.

If an error occurs during modification of the trace vector, an error message similar
to the following is displayed.

IERROR 170! Target bus error: 0ff800024@sd
IERROR 156! Unable to modify trace vector to 000001680 for single stepping
IERROR 680! Stepping failed

571

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

If the emulator does not reenter the monitor after stepping, as indicated by the
following error message, there can be a number of explanations. If the emulator
steps an instuction that modifies the VBR, the step will fail because the modified
trace vector will not be used to reenter the monitor. To get around this problem, the
trace vector in the target program can be modified to point to the monitor entry
point <monaddress + 0680>.

IERROR 680! Stepping failed

Stepping will behave differently when executing instructions that cause the
processor to take exceptions. Most exceptions preempt the trace exception until
after their exception handler runs. Other exceptions (like TRAP, CHK, and CHK2)
create their stack frame and then take the trace exception.

For all exceptions except TRAP, CHK, and CHK2, the exception handler will
execute before the trace exception is taken to return to the monitor. Exception
handlers that are instruction emulators are responsible for emulating the trace
behavior as well. If they do not emulate this behavior, stepping may fail because
the trace exception will never happen.

The TRAP, CHK, and CHK2 exception handlers do not run before the trace
exception is taken. They will have an additional stack frame when the monitor is
entered. The exception stack frame will precede the normal trace stack frame.

Installing emulation memory

The last feature of the emulator that you need to integrate is the emulation memory.
Emulation memory is intended to overlay ROM in the target system. This allows
changes to target programs to be quickly loaded into a system. Emulation memory
is not dual ported as is the case with the monitor memories. To display and modify
emulation memory, you must use the monitor.

If emulation memory is placed over existing target memory, interlock it to the

target memory strobes. This ensures that the target memory control circuits remain
in sync with the emulator. If there are no strobes that respond in the address range
where emulation memory is placed, then do not interlock. When interlocked, both
the TA and TEA signals are sampled.

572

Chapter 15: Connecting the Emulator to a Target System
Installing Emulator Features

IERROR 170! Target failed to terminate bus cycle: 000000000@sd word read
ISTATUS 170! Emulator terminated hung bus cycle: 000000000@sd word read
IERROR 702! Emulation memory access failed

To effectively use emulation memory, the monitor must be able to read and w
it. Read and write accesses to emulation memory are seen by the target syst
Emulation memory will not be able to be loaded if it is interlocked and the targ
system asserts bus error on write cycles or does not terminate the cycle.

IERROR 170! Target bus error: 0000badad @sd
IERROR 702! Emulation memory access failed

If the memory is write protected by the MMU, the monitor will temporarily disable
this protection to complete the write. This applies to both emulation memory and
target memory. Once emulation memory is mapped, it can be tested by performing
accesses from the monitor.

If the MMU is turned on and there are no address translations for the requested
emulation memory access, you will see the following error message:

IERROR 170! Address translation error; non-resident page: 000f84000@sd
IERROR 702! Emulation memory access failed

573

574

16

Installation and Service

575

Chapter 16: Installation and Service
Installation

Installation

This chapter shows you how to install emulation and analysis hardware and
interface software. It also shows you how to verify installation by starting the
emulator/analyzer interface for the first time. These installation tasks are described
in the following sections:

e Installing hardware.
» Verifying the installation and performance of the emulator.
» Ensuring software compatibility

» List of replaceable parts.

576

Chapter 16: Installation and Service
Installing Hardware

Installing Hardware

This section describes how to install emulation and analysis hardware and how to
connect the emulator probe to the demo target system.

Equipment supplied

The minimum system contains:

+ HP 64783A/B 68040/68EC040/68LC040 PGA Emulator Probe (which
includes the demo target system).

* HP 64748C Emulation Control card.

* HP 64794 Emulation-Bus Analyzer (deep analyzer) card, or HP 64704A
Emulation-Bus Analyzer (1K analyzer) card.

* Ribbon cable.

« HP 64700 Card Cage.

Optional parts are:

» HP 64172A 256-Kbyte Memory Modules for additional memory depth.
 HP 64172B 1-Mbyte Memory Modules for additional memory depth.

* HP 64173A 4-Mbyte Memory Modules for additional memory depth.

» HP 64708A Software Performance Analyzer.

Equipment and tools needed

In order to install and use the MC68040 emulation system, you need:
» Flat-blade screwdriver with shaft at least 5 inches long (13 mm approx).

Installation overview

The steps in the installation process are:

1 Install optional memory modules on the deep analyzer card, if desired.

2 Connect the HP 64783A/B emulator probe to the HP 64748C emulator control
card.

Install cards into the HP 64700 card cage.

Install emulation memory modules on the emulator probe.

Connect the emulator probe to the demo target system.

Apply power to the HP 64700 Card Cage.

o0 W

577

Chapter 16: Installation and Service

Installing Hardware

Caution

Note

Antistatic precautions

Printed-circuit boards contain electrical components that are easily damaged by
small amounts of static electricity. To avoid damage to the emulator boards, follow
these guidelines:

» If possible, work at a static-free workstation.
» Handle the boards only by the edges; do not touch components or traces.
» Use a grounding wrist strap that is connected to the HP 64700’s chassis.

If you already have a modular HP 64700A Series Card Cage and want to remove
the existing emulator and insert an HP 64783A/B emulator in its place, the

HP 64700 Series generic firmware and analyzer firmware may NOT be compatible,
and the software will indicate incompatibility. In this event, you must purchase a
Flash EPROM board to update the firmware. Instructions for installing this board
and programming it from a PC or HP 9000 are provided in the HP 64700A Card
Cage Installation/Service manual. Instructions for installing and updating emulator
firmware are covered in Chapter 20, "Installing/Updating Emulator Firmware".

If you already have a modular HP 64700 Series Card Cage and want to remove the
1K analyzer and install the deep analyzer in its place, the analyzer firmware will be
updated by your installation because the analyzer firmware is contained on the
analyzer card.

Checking Hardware Installation

After hardware installation, run a performance test to verify that the emulator is
working properly. The performance verification procedure is described under
"Verifying the Installation" later in this chapter.

Service Information

Use this chapter when removing and installing hardware, running performance
verification, and ordering parts. See the HP 64700 Series Installation/Service
Guide for information on system configurations, installing product software,
software updates, and ordering parts for the card cage. Turn off power to the card
cage before removing or installing hardware.

578

Chapter 16: Installation and Service
Installing Hardware

Step 1. Install optional memory modules on Deep
Analyzer card, if desired

Observe antistatic precautions

With no optional memory modules installed on the deep analyzer card, the tra
memory depth is 8K. If you are going to use the deep analyzer with this defau
trace memory depth, skip this step and proceed to Step 2 of this installation
procedure.

1 Determine placement of the optional memory modules. Two types of modules may be installeciL:
256-Kbyte (HP 64172A), and 1-Mbyte (HP 64172B). Either module type may be installed in the banks
on the analyzer card. Do not use HP 64171A/B or HP 64173A memory modules; they are too slow.

If you install no memory modules, the deep analyzer will have 8K maximum memory depth.
If you install four 256-Kbyte memory modules, the analyzer will have 64K maximum memory depth.
If you install four 1-Mbyte memory modules, the analyzer will have 256K maximum memory dept

=]

If you install a combination of 256-Kbyte memory modules and 1-Mbyte memory modules, the analyzer
will have 64K maximum memory depth. All four connectors must have memory modules installed
before the analyzer depth will be increased.

BANK 4

BANK 3

BANK 2

BANK 1

579

Chapter 16: Installation and Service
Installing Hardware

2 To ensure correct installation of optional memory modules on the deep analyzer card, there is a cutout
at one end of the memory modules so they can only be installed the correct way.

To install a memory module:

Align the groove in the memory module with the alignment rib in the connector.

Align the cutout in the memory module with the projection in the connector.

Place the memory module into the connector groove at an angle.

Firmly press the memory module into the connector and make sure it is completely seated.

Rotate the memory module forward so that the pegs on the connector fit into the holes on the megmory
module.

Make sure the release tabs at each end of the connector snap around the memory module to hold it in
place.

Groove in
Memary Module
and Alignment Cufout in

Rib in Connector Memory Module

Release Tabs

64794E03

580

Chapter 16: Installation and Service
Installing Hardware

Step 2. Connect the Emulator Probe Cables

Three ribbon cables connect the HP 64748C emulation control card to the HP 64783A/B emulatar probe.

The shortest cable connects from J1 of the emulation control card to J3 of the emulator probe. Th
medium length cable connects from J2 of the emulation control card to J2 of the emulator probe.
longest cable connects from J3 of the emulation control card to J1 of the emulator probe.

Make sure the cable connectors are seated. There are stainless steel clips on the cable connectors; these
must be properly latched inside the sockets. Otherwise, the cables will work loose and you will sge
erratic operation. See illustration next page (step 2).

1 Connect the emulator probe cables to the emulation control card.

EVULATION CONTROL CARD

EGRESS PANEL

PROBE CABLES

581

Chapter 16: Installation and Service
Installing Hardware

2 When inserting cable connectors into the sockets, press inward on the connector clips so that they hook
into the sockets as shown. The order of connecting cables was given in step 1.

PUSH IN ON CLIPS
SO THEY HOOK
INTO SOCKET

582

Chapter 16: Installation and Service
Installing Hardware

3 Connect the other ends of the cables to the emulator probe. Again, make sure the stainless st
on the cable connectors are properly latched within the sockets, as shown in step 2.

eel clips

PROBE CABLES

TOP PLASTIC COVER

BOTTOM PLASTIC COVER

DEMO BOARD

64/83E05

583

Chapter 16: Installation and Service
Installing Hardware

Step 3. Install Boards into the HP 64700 Card
Cage

WARNING Before removing or installing parts in the HP 64700 Card Cage, make sure
that the card cage power is off and that the power cord is disconnected.

CAUTION Do NOT stand the HP 64700 Card Cage on the rear panel. You could damage the
rear panel ports and connectors.

1 Use a ground strap when removing or installing boards into the HP 64700 Card Cage to reduce the risk
of damage to the circuit cards from static discharge. A jack on the rear panel of the HP 64700 Card Cage
is provided for this purpose.

||l||
Ill' '

GROUND STRAP
PLUG

64700E07

584

Chapter 16: Installation and Service
Installing Hardware

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

LOOSEN THUMB SCREW
AND SLIDE COVER
TO REMOVE

m.ﬂ

|
||l"ll' "ln

64700E08

585

MULATOR SIDE COVER
(ON BOTTOM PANEL)

LATCHES

INDICATES SLOT !
CARD SUPPORTS

NUMBER HERE

mnnnn\

=y =Y Y

64700ED1

TAB SLOTS

64783E08

3 Remove the side cover by unsnhapping the two latches and lifting off.

4 Remove the card supports.

Chapter 16: Installation and Service

Installing Hardware

586

Chapter 16: Installation and Service
Installing Hardware

5 First, completely loosen the four egress thumb screws.

To remove emulator cards, insert a flat blade screwdriver in the access hole and eject the emulator cards

by rotating the screwdriver.

/ N
FOUR EGRESS <
THUMB SCREWS
PROBE CABLES

AN

64783E06

EMULATDR CARD

WITH FLAT BLADE SCREWDRIVER
EJECT EMULATOR CARD, EGRESS
AND PROBE CABLE AS AN ASSEMBLY

587

Chapter 16: Installation and Service
Installing Hardware

6 Insert a screw driver into the third slot of the right side of the front bezel, push to release catch, and
pull the right side of the bezel about one-half inch away from the front of the HP 64700. Then, dqg the
same thing on the left side of the bezel. When both sides are released, pull the bezel toward you
approximately 2 inches.

Be careful because the plastic ears are easily broken on the front bezel.

FRONT PANFL
WITHOUT BEZEL
SHOWING CATCH

INSERT SCREW DRIVER INTO THIRD
SLOT OF FRONT BEZEL, PUSH

TO RELEASE CATCH AND
PULL BEZEL TOWARD YOU.

588

Chapter 16: Installation and Service
Installing Hardware

7 Lift the bezel panel to remove. Be careful not to put stress on the power switch extender.

LIFT BEZEL PANEL AND
TIP TOWARD YOU TO

BE CAREFUL NOT TO
PUT STRESS ON POWER
SWITCH EXTENDER.

8 If you're removing an existing analyzer card that provides external analysis, remove the right-angle
adapter board by turning the thumb screws counterclockwise.

589

Chapter 16: Installation and Service
Installing Hardware

9 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the analyzer
card by rotating the screwdriver.

EJECT ANALYZER CARD

Do not remove the system control board. This board is used in all HP 64700 emulation and analysis
systems.

590

Chapter 16: Installation and Service
Installing Hardware

10 Install the analyzer and emulation control cards. The analyzer is installed in the slot next to the
system control card. The emulation control card is installed in the second slot from the bottom of|the
card cage. The software performance analyzer card may occupy any slot between the emulationtbus
analyzer and the emulation control card. These cards are identified with labels that show their madel
numbers and serial numbers. Note that components on the analyzer card face the opposite direction to

the other cards.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned; th
press the card into the mother board socket. Ensure that each card is seated all the way into its $:
the cards can be removed with your fingers, the cards are NOT seated all the way into the mother board

sockets.

Attach the ribbon cable from the emulation control card to the analyzer card, and to the software
performance analyzer, if installed. Tighten the thumbscrews that hold the emulation control card|to the

cardcage frame.

80 CHANNEL
ANALYZER CARD

. 64748C
g EMU_ATION
, CONTROL
CONTROL ‘
CARD
CARDCAGE

64751E03

591

Chapter 16: Installation and Service

Installing Hardware

11 Connect the +5 V power cable to the connector in the HP 64700 front panel.

POWER CONNECTION
FOR DEMO BOARD

592

Chapter 16: Installation and Service
Installing Hardware

12 To reinstall the front bezel, be sure that the bottom rear groove of the front bezel is aligned with the

lip as shown below.

BE SURE BACK GROQVE OF
BEZEL IS ALIGNED WITH LIP,

PUSH FRONT BEZEL
INTO PLACE

13 If you wish to install the Flash card (used for updating firmware, see the Installing/Updating
Emulator Firmware chapter), refer to the diagram above. Install the flash card in any available sl
between the HP 64704A and the HP 64748C cards in the cardcage. Insert the flash card in the
guides. Make sure the connectors are properly aligned. Then press the card into the mother boz

Dt
lastic
ird

sockets. Make sure the card is seated all the way into the sockets.

593

Chapter 16: Installation and Service

Installing Hardware

14 Install the card supports.

NUMBER HERE
INDICATES SLOT |
CARD SUPPORTS

64700E01

15 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

EMULATOR SIDE COVER

LATCHES

(ON BOTTOM PANEL)

Y4

TAB SLOTS

647B3E08

594

Chapter 16: Installation and Service

Installing Hardware

16 Install the top cover in reverse order of its removal, but make sure that the side panels of the top cover

are attached to the side clips on the frame.

SIDE CLIP

||l||||l
IilulI|I

||I'||ﬂ
||m" @
0

64700EQ09

595

Chapter 16: Installation and Service
Installing Hardware

Step 4. Install emulation memory modules on
emulator probe

(Observe antistatic precautions)

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and removye the
cover. The bottom cover is only removed when you need to replace a defective active probe on the
exchange program.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

VEMORY SLOT O

MEMORY SLOT 1

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

WASHERS TO

ADD PLASTIC
OUR POSITIONS

64783E02

596

Chapter 16: Installation and Service
Installing Hardware

2 Determine the placement of the emulation memory modules. Three types of modules may be i
256 Kbyte (HP 64172A), 1 Mbyte (HP 64172B), and 4 Mbyte (HP 64173A). Any of the emulation
memory modules can be installed in either memory slot on the probe. Do not use HP 64171A/B

modules; they are too slow.

Memory in memory slot 0 is divided into four equal blocks that can be allocated by the memory m
Memory in memory slot 1 is divided into two equal blocks.

If you have only one emulation memory module, place it in memory slot 0.

If you have two memory modules of different sizes, place the memory module with the greatest ¢

in memory slot 0 to take advantage of the way memory slot 0 and memory slot 1 are divided by the

emulator. For example, if you install a 1-Mbyte module in memory slot 0 and a 256-Kbyte modul
memory slot 1, then the emulator will provide four 256-Kbyte blocks of memory in memory slot 0
two 128-Kbyte blocks of memory in memory slot 1.

Refer to the step called "To assign memory map terms" in the chapter titled "Configuring the Emt

nstalled:

apacity

2 in
and

lator"

for details of the combinations of memory module installations.

597

Chapter 16: Installation and Service
Installing Hardware

3 Install emulation memory modules on the emulator probe. There is a cutout at one end of the
modules so they can only be installed the correct way.

To install a memory module:

1 Align the groove in the memory module with the alignment rib in the connector.

2 Align the cutout in the memory module with the projection in the connector.

3 Place the memory module into the connector groove at an angle.

4 Firmly press the memory module into the connector and make sure it is completely seated.

5 Rotate the memory module forward so that the pegs on the connector fit into the holes on the
memory module.

6 Make sure the release tabs at each end of the connector snap around the memory module to
hold it in place.

Groove in
Memory Module
and Alignment Cufout in

Rib in Connectar Memory Module

Release Tabs

64794E03

memory

598

Chapter 16: Installation and Service
Installing Hardware

4 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure tluue cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

ADD PLASTIC
WASHERS TO
OUR POSITIONS

64783E02

599

Chapter 16: Installation and Service
Installing Hardware

Step 5. Connect the emulator probe to the demo
target system

1 With HP 64700 power OFF, connect the emulator probe to the demo target system. When you install
the probe into the demo board, be careful not to bend any of the pins. Do not insert the probe ofthe
MC68040 emulator into the demo board socket incorrectly. Be very careful.

EMULATOR
PROBE

PGA SOCKET
PIN A1

DEMO BOARD

64783E09

600

Chapter 16: Installation and Service
Installing Hardware

2 Connect the power supply wires from the emulator to the demo target system. The 3-wire cable has

one power wire and two ground wiréa/hen attaching the 3-wire cable to the demo target system,
make sure the connector is aligned properly so that all three pins are connected

POWER CONNECTION
FOR DEMO BOARD
FROM HP 64700A

DEMO BOARD

64783E10

3 Connect the reset flying lead from the probe to the demo board.

64783EM

RESET

601

Chapter 16: Installation and Service
Installing Hardware

Step 6. Apply power to the HP 64700

The HP 64700B automatically selects the 115 Vac or 220 Vac range. In the 115 Vac range, the
HP 64700B will draw a maximum of 345 W and 520 VA. In the 220 Vac range, the HP 64700B wi
draw a maximum of 335 W and 600 VA.

The HP 64700 is shipped from the factory with a power cord appropriate for your country. You sﬂould
verify that you have the correct power cable for installation by comparing the power cord you received
with the HP 64700 with the drawings under the "Plug Type" column of the following table.

If the cable you received is not appropriate for your electrical power outlet type, contact your
Hewlett-Packard sales and service office.

602

Chapter 16: Installation and Service
Installing Hardware

Power Cord Configurations

Plug Type Cable Part No. Plug Description | Length in/cm Color
Opt 903 8120-1378 Straight 90/228 Jade Gray
124V ** * NEMA5-15P

8120-1521 o 90/228 Jade Gray

:

Opt 900 8120-1351 Straight 90/228 Gray
250V * BS136A
8120-1703 elox 90/228 Mint Gray
Opt 901 8120-1369 Straight 79/200 Gray
250V * NZSS198/ASC
% 8120-0696 lox 87/221 Mint Gray
Opt 902 812001689 Straight 79/200 Mint Gray
250V *CEE7-Y11
8120-1692 lox 79/200 Mint Gray
72 ‘.f Straight
s \hg\ 8120-2857 (Shielded) 79/200 Coco
X Brown

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

603

Chapter 16: Installation and Service

Installing Hardware

Power Cord Configurations (Cont'd)

.

Plug Type Cable Part No. Plug Description Length in/cm Color
Opt 906 8120-2104 Straight 79/20 Mint Gray
250V * SEV1011

8120-2296 1959-24507 79/200 Mint Gray
Q Type 12
O RS 90’
Opt 912 Straight 79/200 Mint Gray
220V *DHCK107
8120-2957 o 79/200 Mint Gray
Opt 917 8120-4600 Straight 79/200 Jade Gray
250V SABS164
% 8120-4211 elog 79/200
Opt 918 8120-4753 Straight Miti 90/230 Dark Gray
100V
8120-4754 o 90/230

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

604

Chapter 16: Installation and Service
Installing Hardware

1 Connect the power cord and turn on the HP 64700.

The line switch is a push button located at the lower, left-hand corner of the front panel. To turn ON
power to the HP 64700, push the line switch button in to the ON (1) position. The power light at the
lower, right-hand corner of the front panel will be illuminated.

64700E03

605

Chapter 16: Installation and Service
Installing Hardware

To verify the performance of the emulator

1 If you have a special configuration or session in progress, save it now. This
procedure will cause your session to be lost.

2 Turn off power to the HP 64700 Card Cage.
3 Plug the emulator probe into the Demo Board.

4 Connect Demo Board power cable from the Demo Board to the HP 64700
Card Cage front panel. (See the diagrams under “Installing Hardware” in this
chapter.)

5 Connect the Reset Flying Lead from the Emulation Probe to the Demo Board.
(See "Step 4. Connect the emulator probe to the demo target system".)

6 Turn on power to the HP 64700 Card Cage.

7 Establish communication with the emulator from your host or ASCII terminal and
obtain a prompt (such &s>).

8 Enter:pv 1 <return>

There are different hardware system configurations for the HP 64700 Series
system. For information on hardware configurations, refer to the HP 64700
Installation/Service manual.

Examples If you are using a LAN, you can use the telnet capability with the Terminal
Interface:

1 From your host computer enter the commagidet <emulator_name>

2 Now enter the commangy 1

606

Chapter 16: Installation and Service
Installing Hardware

A message similar to the following should appear:
Testing: HP64783 Motorola 68040 Emulator

PASSED:
Number of tests: 1 Number of failures: 0
Testing: HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer
PASSED:
Number of tests: 1 Number of failures: 0

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64783 Motorola 68040 Emulator
HP64740 Compatible (PPN: 64794A) Deep Emulation Analyzer

If you have an emulation failure, you can replace the assembly that failed through
your local Hewlett-Packard representative, and through the

Support Materials Organization (SMO). Refer to the list of replacable parts at the
end of this chapter.

When your performance verification test is complete, use the keybhGaRL>d
keys to end the emulation session.

To verify installation of memory modules in the deep analyzer card or in the
emulation probe, type the ver command as follows:

M>ver

HP64783 Motorola 68040 Emulator
Version: A.04.00 220ct92
Control: HP64748C ABG Control Board
Speed: 33 MHz
Memory: 260 Kbytes
Bank 0: HP64172A (20ns) 256 Kbyte Memory Module

HP64740 compatible (PPN: 64794A) Deep Emulation Analyzer
Version: A.03.00 25Jun93 Unreleased
PC Board: 794-01-Al
Depth: 80ch X 1K states selected, 80ch x 64K states available
Bank 0: HP64172A (20ns) 256 Kbyte Module
Bank 1: HP64172A (20ns) 256 Kbyte Module
Bank 2: HP64172A (20ns) 256 Kbyte Module
Bank 3: HP64172A (20ns) 256 Kbyte Module

607

Chapter 16: Installation and Service

Installing Hardware

What is pv doing to the Emulator?

The performance verification procedures provide a thorough check of the
functionality of all of the products installed in the HP 64700 Card Cage. The Test
Suite for the HP 64783A/B Emulator consists of the following modules.

Tests available in Emulator Subsystem:
test # 1 (ABG68000 RAM)
test # 2 (ABG Type Map)
test # 3 (ABGDeMMU Map)
test # 4 (low DMMU RAM)
test# 5 (up DMMURAM)
test # 6 (68000 side RAM)
test # 7 (Host DPRAM)
test # 8 (Clock Test)
test # 9 (Release tobg)
test #10 (Release to fg)
test #11 (MonTransistion)
test #12 (Break Detection)
test #13(Dual Port RAM)
test #14 (Emul Mem Bank 0)
test #15(Emul Mem Bank 1)
test #16 (Demo Reset)
test #17(Demo Data)
test #18 (Demo Address)
test #19 (DemoStatus)
test #20 (Demo IPL)
test #21 (Demo Cache)
test #22 (Demo DMA)
test #23 (Demo MDIS)
test #24(Demo LED)
test #25 (Analysis Intrfc)
test #26(DeMMUer)
test #27 (CMB)

Troubleshooting

The test results for all of these modules are indicated by a simple PASS/FAIL
message. The PASS message gives a high level of confidence that all major
functions and signals are operating because it includes a loopback test that includes
read and write tests to the demo board. The demo board also stimulates inputs to
the emulator.

A FAIL message on the other hand indicates that one or more of the tested
functions is NOT working. In this event, an HP field representative can either swap
assemblies to isolate the failure to an individual board, or replace all the major
assemblies shown in the replaceable parts list. The emulation memory modules and
plastic cover are not part of the probe assembly. The emulation memory modules
must be ordered separately and the plastic covers should be removed from the
probe assembly before replacing the probe assembly.

608

Chapter 16: Installation and Service
Installing Hardware

To ensure software compatibility

There are various sets of firmware resident in the assemblies contained in the

HP 64700 Card Cage. It is important to ensure that all the versions are compatible
among the products you have installed. You can determine which versions of
firmware you have by entering the terminal interfaeecommand.

There are at least three assemblies that have separate firmware in the HP 64
Card Cage. These assemblies are:

* Host Controller card
Emulator card
* Analyzer card

If you purchased a complete Emulation/Analysis System from HP, you can be
assured that all the products contained in the HP 64700 Card Cage contain
compatible firmware at the time of sale. Software compatibility problems can occur
when you swap the host controller card, emulator card, or analyzer card from one
HP 64700 Card Cage to another, or from a recently purchased subassembly.

For example, you might purchase only the emulator subassembly (Emulation
Control Card, Probe, and interconnecting ribbon cable) and replace the original
emulator subassembly with the one you just purchased. In this case, the host
controller may contain a version of firmware that is older than required to operate
the new emulator; hence, compatibility problems can be caused by a newer
emulator. All emulators will work with the latest software versions. The emulator
software will warn you of incompatible software.

The HP 64700B Card Cage has Flash EPROM for the assemblies that may be
installed.

The latest versions of firmware for the host controller card, and analyzer card,
along with a program callgatogflash are part of the B1471 software for the

HP 9000 workstation and Sun SPARCsystems and the HP 64700 Option 006
software for PCs.

When you load all your new versions of software onto your host computer, you are
now ready to load the new version of firmware from your host computer to the
assemblies that are in the HP 64700 Card Cage.

To load the new firmware, you use firegflashcommand. The progflash
command must be run from a PC or workstation; it displays a list of card cages and
subassemblies in each card cage on your system. From these lists, you can select

609

Chapter 16: Installation and Service
Installing Hardware

which product to update. For information on usinggragflashcommand, and
updating your HP 64700 Series firmware, refer to the chapter titled
"Installing/Updating Emulator Firmware" in this manual.

610

Chapter 16: Installation and Service
Parts List

Parts List

What is an Exchange Part?

Exchange parts are shown on the parts list. A defective part can be returned {
for repair in exchange for a rebuilt part.

Probe (exchange)

The Probe for the HP 64783A is not interchangable with the Probe for the
HP 64783B. Make sure you order the Probe replacement part number that is
compatible with your emulator.

To replace the Probe on the exchange program, you must remove certain parts, and
return only that part considered an exchange part. When returning the Probe, you
must remove the:

» cable assembly.

» reset flying lead.

» top and bottom plastic covers.
*+ SRAM modules.

* demo board.

Emulation Control Card (exchange)

To replace the Emulation Control Card on the exchange program, you must remove
certain parts, and return only that part considered an exchange part. When
returning the Emulation Control Card, you must remove the:

» ribbon cable that connects the Emulation Control Card to the analyzer card.
» cable assembly.
e egress panel.

611

Chapter 16: Installation and Service

Parts List

Main Assembly

Component Part

New

Exchange

HP 64783A/B Probe and Demo Board

68040 Emulator Firmware Floppy

64700 SW UTIL

MC68040 Probe Board for HP 64783A

MC68040 Probe Board for HP 64783B
(Order the following parts separately:)
Top Plastic Cover
Bottom Plastic Cover
Plastic Rivets Kit (rivets and washers)
Reset Flying Lead

HP 64783A Demo Board for HP 64783A/B
(Order the following part separately:)
External Power Cable

HP 64748C Emulation Control Card Subassembly

Egress Panel

Bracket (used with Egress Panel)
Spacer, Hex M3X6

Screw, Machine M3X8
Cable-100 36"

Cable-100 37"

Cable-100 38"

Cable Clamp

Rubber Strip

Emulation Control Card

(without external cable or egress panel)
Wrist strap

HP 64172A 256 Kbyte SRAM Module

HP 64172B 1 Mbyte SRAM Module

HP 64173A 4 Mbyte SRAM Module

HP 64794A Emulation-Bus Analyzer (deep) card

64783-18000
64700-18006
64783-66504
64783-66505

64783-04101
64783-04102
64748-68700
64762-61602
64783-66502

5181-0201

64748-00205
64748-01201
0515-1146

0515-0372

64748-61601
64748-61602
64748-61603
64744-01201
64744-81001
64748-66515

9300-1405
64172A
64172B
64173A

64794-66502

64783-69504
64783-69505

64748-69515

64172-69501
64172-69502
64173-69501

64794-69502

612

Chapter 16: Installation and Service

Parts List

Main Assembly

Component Part

34-pin ribbon cable

New

64708-61601

Exchange

Analyzer Card HP 64740 with 1K memory depth

34-pin ribbon cable

64740-66526
64772-61602

64740-6952¢

613

614

17

Installing/Updating Emulator
Firmware

615

Chapter 17: Installing/Updating Emulator Firmware

Installing/Updating Emulator Firmware

If you ordered the HP 64783A/B MC68040 emulator probe and the HP 64748C
emulation control card together, the control card contains the correct firmware for
the HP 64783A/B.

However, if you ordered the HP 64783A/B and the HP 64748C separately, or if
you are using a HP 64748C that has been previously used with a different emulator
probe, you must download the firmware for the HP 64783A/B into the emulation
control card.

The firmware, and the program that downloads it into the control card, are included
with the MC68040 emulator probe on the following MS-DOS format floppy disks:

* 68040 EMULATION FIRMWARE 64783
* 64700 SW UTIL

(The MC68040 emulator firmware is also included with the MC68040 PC Interface
software, and the firmware update utility can also be ordered as product
HP 64700S/AX Option 006.)

The steps to install or update the emulator firmware are:

1 Install the firmware update utility and the 64783 emulator firmware.

2 Run "progflash" to update emulator firmware.

The instructions in this chapter assume you have already connected the HP 64700
card cage to the PC host computer and installed the PC Interface as described in the
"Installation” chapter. In other words, the following instructions assume you have
already made the necessary changes to the CONFIG.SYS, AUTOEXEC.BAT, and
\HP64700\TABLES\64700TAB files.

616

Chapter 17: Installing/Updating Emulator Firmware
Step 1: Install the firmware update utility

Step 1: Install the firmware update utility

Your HP Vectra PC or IBM PC AT compatible computer must have MS-DOS 3.1
or greater and a fixed disk drive. The firmware update utility and the 64783
firmware require about 300 Kbytes of disk space.

Insert the 64700 SW UTIL disk into drive A.

Change MS-DOS prompt to drive A: by typing "A:" at the MS-DOS prompt.

For example:

C> A: <RETURN>
A>

Type "INSTALL" at the MS-DOS prompt.

For example:

A> INSTALL <RETURN>

After confirming that you want to continue with the installation, the install program
will give you the option of changing the default drive and/or subdirectory where the
software will reside. The defaults are:

Drive = C:
Directory Path = C:\HP64700

Follow the remaining instructions to install the firmware update utility and the
64783 firmware.

617

Chapter 17: Installing/Updating Emulator Firmware
Step 2: Run "progflash” to update emulator firmware

Step 2: Run "progflash" to update emulator
firmware

« Enter the PROGFLAS [-V] [EMUL_NAME] [PRODUCTS ...] command.

The PROGFLAS command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The -V option means "verbose". It causes progress status messages to be displayed
during operation.

The EMUL_NAME option is the logical emulator name as specified in the
\HP64700\TABLES\64700TAB file.

The PRODUCTS option names the products whose firmware is to be updated.

If you enter the PROGFLAS command without options, it becomes interactive. If
you don't include the EMUL_NAME option, PROGFLAS displays the logical
names in the \HP64700\TABLES\64700TAB file and asks you to choose one. If
you don't include the PRODUCT option, PROGFLAS displays the products which
have firmware update files on the system and asks you to choose one. (In the
interactive mode, only one product at a time can be updated.) You can abort the
interactive PROGFLAS command by pressing <CTRL>c.

PROGFLAS will print "Flash programming SUCCEEDED" and return O if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

618

Chapter 17: Installing/Updating Emulator Firmware
Step 2: Run "progflash” to update emulator firmware

Examples To install or update the HP 64783 emulator firmware in the HP 64700 that is
connected to the COML1 port:

C> PROGFLAS <RETURN>

HP64700S006 A.05.00 03Jan94
64700 SW UTIL

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1991

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

Logical Name Processor
1 EMUL_COM1 m68040
2 EMUL_COM2 m68000

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that is connected to the COML1 port, enter "1".

Product
164783

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64783A/B MC68040 emulator firmware, enter "1".

Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

619

Chapter 17: Installing/Updating Emulator Firmware
Step 2: Run "progflash” to update emulator firmware

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from '/hp64700/update/64783.cfg’
ROM identifier address = 2FFFFOH

Required hardware identifier = 1IFFFH,1FFCH

Control ROM start address = 280000H

Control ROM size = 40000H

Control ROM width = 16

Programming voltage control address = 2FFFFEH
Programming voltage control value = FFFFH
Programming voltage control mask = OH

Rebooting HP64700...
Checking Hardware id code...
Erasing Flash ROM
Downloading ROM code: /hp64700/update/64783.X
Code start 280000H (should equal control ROM start)
Code size 29A3EH (must be less than control ROM size)
Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
cC>

You could perform the same update as in the previous example with the following
command:

C> PROGFLAS -V EMUL_COM1 64783 <RETURN>

620

Glossary
Absolute Count

Glossary

Absolute Count

a count in the trace list count column that indicates the total count
accumulated between the displayed state and the trigger state. For
example, an absolute time count shown beside trace memory line
number 100 indicates the elapsed time between capture of the trigger
state and capture of state 100.

Absolute File

a file consisting of machine-readable instructions in which absolute
addresses are used to store instructions, data, or both. These are the
files that are generated by the compiler/assembler/linker and are loaded
into HP 64700 Series emulators.

Access Breakpoint

a break from execution of your target program to execution of the
emulation monitor when the emulator detects an access violation, such
as an attempt to write to ROM or guarded memory space. The same
effect can be obtained for an emulation break due to trigger recognition
within the emulation-bus analyzer, or due to a signal from an external
device supplied over the CMBT or the rear-panel BNC. Access
breakpoints do not obtain immediate transfer to the monitor program.
Several instruction cycles may be executed after the access violation
occurs before execution begins in the monitor. Refer to the chapter on
Using the Emulator in this manual for details of how to use
breakpoints, and effects of their use on execution of your target
program. Also, refer to Execution Breakpoints in this glossary.

621

Glossary
Analyzer

Analyzer

an instrument that captures activity of signals synchronously with a
clock signal. An emulation-bus analyzer captures emulator bus cycle
information. An external analyzer captures activity on signals external
to the emulator. No external analyzer is supported by the MC68040
emulator because all analysis bits are used by the emulation-bus
analyzer.

Analyzer Clock Speed

the bus cycle rate of the emulation processor. If the emulation
processor is running at 21 MHz and the fastest bus cycle requires three
clocks, then the analyzer clock speed (bus cycle rate) is 21/3 = 7 MHz.

Arm Condition

a condition that reflects the state of a signal external to the analyzer.
The arm condition can be used in branch or storage qualifiers. External
signals can be from another analyzer or an instrument connected to the
CMB or BNC.

Assembler

a program that translates symbolic instructions into object code.

Background

a memory that parallels (and overlaps) the emulation processor’s
normal address range. Entry to background can only take place under
emulator control, and cannot be reached via your target program.

Background Monitor

a monitor program that operates entirely in the background address
space. The background monitor can execute when target program
execution is temporarily suspended. The background monitor does not
occupy any of the address space that is available to your target program.

BNC Connector

a connector that provides a means for the emulator to drive/receive a
trigger signal to/from an external device (such as a logic analyzer,
oscilloscope, or HP 64000-UX system).

622

Glossary
Breakpoint

Breakpoint

a point at which emulator execution breaks from the target program and
begins executing in the monitor. (See also Execution Breakpoint and
Access Breakpoint.)

Command File

a file containing a sequence of commands to be executed.

Compatible Mode

The compatible mode of the deep analyzer configures the analyzer
provide the same memory depth as the 1K analyzer: 1024 states d
when the analyzer is not configured to make a count of states or ti
during a measurement, and 512 states deep when the analyzer is
configured to make a count of states or time during a measurement. If
the emulator interface you are using along with the deep analyzer
requires that you use the compatible mode, the deep analyzer will still
be able to provide one of its benefits for your measurement; you will be
able to make your counts of states or time at full emulator clock speed.

Compiler

a program that translates high-level language source code into object
code, or produces an assembly language program with subsequent
translation into object code by an assembler. Compilers typically
generate a program listing which may list errors displayed during the
translation process.

623

Glossary
Counter Overflow

Counter Overflow

when the counter reaches maximum count and begins a new count from
zero. The counter of the deep analyzer simply counts continuously
once a trace begins; it increments its count every 20 ns, and reaches
maximum count in about 22.9 minutes (22 minutes and 54 seconds).
The deep analyzer sets a flag in memory and stores it along with the
first state that is captured after the counter overflow occurs (first state
captured after the counter begins again at zero).

Configuration File

a file in which configuration information is stored. Typically,
configuration files can be modified and re-loaded to configure
instruments (such as an emulator) or programs (such as the PC
Interface).

Coordinated Measurement

a synchronized measurement made between the emulator and analyzer,
between emulation-bus analyzer and external analyzer, or between
multiple emulators or analyzers. For example, a coordinated
measurement is made when two or more HP 64700 emulators/analyzers
start executing together, or break into background monitors at the same
time.

Coordinated Measurement Bus (CMB)

the bus that is used for communication between multiple HP 64700
Series emulators/analyzers or between HP 64700 emulators/analyzers
and an HP 64306 IMB/CMB Interface to allow coordinated
measurements.

Cross Trigger

the situation in which the trigger condition of one analyzer is used to
trigger another analyzer. Two signals internal to the HP 64700 can be
connected through the BNC on the instrumentation card cage to allow
cross-triggering between the emulation-bus analyzer and other
analyzers.

624

Glossary
DCE (Data Communications Equipment)
DCE (Data Communications Equipment)

a specific RS-232C hardware interface configuration. Typically, DCE
is a modem.

Deep Analyzer

In this manual, the term "deep analyzer" refers to the HP 64794
Emulation-Bus Analyzer with deep trace memory.

Downloading

the process of transferring absolute files from a host computer into
emulator.

DTE (Data Terminal Equipment)

a specific RS-232C hardware interface configuration. Typically, DTE
is a terminal or printer.

Emulation-bus Analyzer

a system component built into the HP 64700 that captures the
emulation processor’s address, data, and status information.

Emulation Memory

high-speed memory (RAM) in the emulator that can be used in place of
target system memory.

Emulator

a tool that replaces the processor in your target system. The goal of the
emulator is to operate just like the processor it replaces. The emulator
gives information about the bus cycle operation of the processor and
control over target system execution. Using the emulator, you may
view contents of processor registers, target system memory, and 1/0
resources.

Emulator Probe

the assembly that connects the emulator to the target system
microprocessor socket.

625

Glossary
Execution Breakpoint

Execution Breakpoint

a BKPT instruction placed in your software in RAM, replacing the
normal instruction at the RAM address. Breakpoints for code in ROM
are stored in emulation hardware and jammed on the emulation bus
during the fetch cycle. When the BKPT is executed, emulation
immediately transfers from execution of your target program to
execution of the emulation monitor. Refer to the chapter on Using the
Emulator in this manuyal for details of how to use execution
breakpoints, and effects of their use on execution of your target
program. Also, refer to Access Breakpoints in this glossary.

Expression

the information that can fit into a single pattern or a single range (a
pattern such aaddr=2105 data!=15, or a range such as
addr=4012..401% A complex expression is made up of pattern,
range, and arm labels joined together by various operators that define
the specific condition. Each of the pattern and range labels must be
previously assigned to specific simple expressions using the terminal
interface commandgpat andtrng.

Foreground

the directly addressable memory range of the emulation processor.

Foreground Monitor

a monitor program that executes in the foreground address space. When
the monitor exists in foreground, it is directly accessible by, and can
interact with, your target program.

Guarded Memory

an address range that is to be inaccessible to the emulation processor.
The emulator will generate a break and display an error message if an
access to guarded memory occurs.

Handshaking

a process that involves receiving and/or sending control characters
which indicate a device is ready to receive data, that data has been sent,
and that data has been accepted.

626

Glossary
Host Computer
Host Computer

a computer to which an HP 64700 Series emulator can be connected. A
host computer may run interface programs which control the emulator.
Host computers may also be used to develop programs to be
downloaded into the emulator.

Inverse Assembler

a program that translates absolute code into assembly language
mnemonics.

Label

a set of one or more analyzer channels. Example, the label "addr"
used to identify the analyzer channels connected to the address bu
the emulation processor.

Linker

a program that combines relocatable object modules into an absolute
file which can be loaded into the emulator and executed.

Logical Address Space

the addresses assigned to code during the process of compiling,
assembling and linking to generate absolute files. Refer to Chapter 9
for a detailed explanation.

Macros

custom made commands that represent a sequence of other commands.
Entire sequences of commands defined in macros will be automatically
executed when you enter the macro name. Macro nesting is permitted;
this allows a macro definition to contain other macros.

Memory Mapper Term

a number assigned to a specific address range in the memory map.
Term numbers are consecutive.

627

Glossary
Memory Mapping

Memory Mapping

defining ranges of the processor address space as emulation RAM or
ROM, target RAM or ROM, or guarded memory.

Monitor Program

a program executed by the emulation processor that allows the
emulation system controller to access target system resources. For
example, when you enter a command that requires access to your
system resources, the system controller writes a command code to a
storage area and breaks the execution of the emulation processor from
the target program into the monitor. The monitor program then reads
the command from the storage area and executes the processor
instructions that access the target system. After the system resources
have been accessed, execution returns to the program.

Operating System

software which controls the execution of computer programs and the
flow of data to and from peripheral devices.

Overflow

See counter overflow.

Parity Setting

the configuration of the parity switches. Depending on the
configuration of the parity output switch and the parity switch, a parity
check bit is added to the end of data to make the sum of the total bits
either even or odd. A parity check is performed after data has been
transferred, and is accomplished by testing a unit of the data for either
odd or even parity to determine whether an error has occurred in
reading, writing, or transmitting the data.

Path

also referred to as a directory (for example \users\projects).

628

Glossary
PC Interface

PC Interface

a program that runs on the HP Vectra and IMB PC/AT compatible
computers. This is a friendly interface used to operate an HP 64700
Series emulator.

Performance Verification

a program that tests the emulator to determine whether the emulation
and analysis hardware is functioning properly.

Physical Address Space

the address space in hardware memory and hardware 1/O that is
accessed by the microprocessor during normal program execution.
Refer to Chapter 9 for a detailed explanation.

Prefetch

the ability of a microprocessor to fetch additional opcodes and
operands before the current instruction is finished executing.

Prestore

the storage of states captured by the analyzer that precede states which
are normally stored. If the normal storage qualifier specifies the entry
address of a function or routine, prestore can be used to identify the
callers of that function or routine.

Prestore Qualifier

a specification that must be met by a state before it can be saved in the
analyzer prestore memory.

Qualifier

a specification that must be met before an action can be taken by the
analyzer. For example, a store qualifier is a specification that must be
met by an incoming state before it can be stored in the trace memory.
The "arm" condition can be used as an additional qualifier. For
example, an external analyzer may be set up to supply a true signal to
the rear panel BNC connector on the card cage when it detects a true
condition in the target system. Then the analyzer can be set up to store

629

Glossary
Real-Time Execution

qualify a certain kind of state, but only when the arm signal from the
BNC is true.

Real-Time Execution

refers to the emulator configuration in which commands that
temporarily interrupt target program execution (for example,
display/modify target memory or processor registers) are not allowed.

Relative Count

a count in the trace list count column that shows the count between the
present displayed state and the state displayed immediately before it.
Relative time count, for example, shows the elapsed time between the
previous displayed state and the present state. Note that the count is
between displayed states. If your trace list is inverse assembled and/or
dequeued, several states may have been captured in memory between
the present displayed state and the displayed state immediately before it.

Remote Configuration

the configuration in which an HP 64700 Series emulator is directly

connected to a host computer via a single port. Commands are entered
(typically from an interface program running on the host computer) and
absolute code is downloaded into the emulator through that single port.

RS-232C

a standard serial interface used to connect computers and peripherals.

Sequencer

a state machine in the analyzer that searches for execution of states in a
particular order.

Single-step

the execution of one microprocessor instruction. Single-stepping the
emulator allows you to view program execution one instruction at a
time.

630

Glossary
Softkey Interface
Softkey Interface

the host computer interface program used in the UNIX environment.
The Softkey Interface is a friendly interface used to control HP 64700
emulators.

Software Breakpoint

refer to execution breakpoint and access breakpoint in this glossary.

Software Performance Analyzer

an analyzer that measures execution of software modules, interacti
between software modules, and usage of data points and I/O ports.

Standalone Configuration

the configuration in which a data terminal is used to control the HP
64700 Series emulator, and the emulator is not connected to a host
computer.

stderr

an abbreviation for “standard error output.” Standard error can be
directed to various output devices connected to the HP 64700 ports.

stdin

an abbreviation for “standard input.” Standard input is typically defined
as your computer keyboard.

stdout

an abbreviation for “standard output.” Standard output can be directed
to various output devices connected to the HP 64700 ports.

Step
See Single-step.

Store Qualifier

a specification that must be met by a state before it can be saved in the
analyzer trace memory.

631

Glossary
Synchronous Execution

Synchronous Execution

the execution of multiple HP 64700 Series emulators/analyzers at the
same time (i.e., multiple emulator start/stop).

Syntax

the order in which expressions are structured in command languages.
Syntax rules determine which forms of command language syntax are
grammatically acceptable.

Target Program

The program you are developing for your product. It is also called user
program.

Target System

the circuitry where the emulator probe is connected (typically a
microprocessor-based system under development).

Target System Memory

storage that is present in the target system.

Terminal Interface

the command interface present inside the HP 64700 Series emulators
that is used when the emulator is connected to a simple data terminal.
This interface provides on-line help, command recall, macros, and

other features which provide for easy command entry from a terminal.

Trace

a collection of states captured synchronously by the analyzer.

Trigger

the condition that identifies a reference state within an analyzer trace
measurement. Trigger also refers to the analyzer signal that becomes
active when the trigger condition is found.

Trigger signals called trigl and trig2 are bidirectional signal lines that
can be used to coordinate measurement activity between emulators and

632

Glossary
Uploading

analyzers installed in the instrumentation card cage, and between
instruments connected to the BNC on the rear panel of the card cage.
For details of how to configure and use trigl and trig2, refer to the
chapter on making coordinated measurements.

Note that there is delay when you use trigl and/or trig2 for
measurement coordination. For example, you may specify that the
emulator break to its monitor program when it receives trigl from the
analyzer. Several states may be executed in the emulator between the
time the analyzer recognizes its trigger condition, generates trig1,
delivers trigl to the emulator, and the emulator responds to trigl by
breaking to its monitor program.

Uploading
the transfer of emulation or target system memory contents to a host
computer.

Unlocked Exit

one of two methods used to leave the high level (Graphical or Softkey)
Interface and return to the host computer operating system. An
unlocked exit command allows you to exit the high level interface and
re-enter later with the default configuration. (See also Locked Exit.)
This is not available in the Terminal Interface.

User Program
Another name for your target program (the program you are developing
for your product.

Viewport

see Window.

Wait States

extra microprocessor clock cycles that increase the total time of a bus
cycle. Wait states are typically used when slower memory is
implemented.

633

Glossary
Window
Window

a specified rectangular area of virtual space shown on the display in
which data can be observed.

1K Analyzer

the term "1K analyzer" refers to the HP 64704 Emulation-Bus Analyzer
with 1K trace memory.

when shown in the trace list count column of the terminal interface or
the PC interface, the exclamation mark "!" indicates counter overflow.

634

Index

abbreviated help mod2g80
absolute count (in trace lis§54
absolute file
formats,269, 284
loading into memory284-286
loading via ftp,65-66
absolute, glossary definition @21
accent grave mark characte20
access mod&02, 304
access to guarded memo2@6
accuracy of trigger positio3,79
active edges (slave clocid93-394
activity, analyzer line331-332
addition operato¥}23
address
mapping details of a single addrea2)
supervisor/user mappings in the MM24,9
translation details of a single addreks3
address, how to long aligB82
addresses
how they are affected when the MMU is @t6
logical vs physical explaine&;10
physical in trace list, things to che@Q3
all (analyzer keyword356
altitude specificationg15
analyzer
analyzer initialization370-371
clock (master) specificatiod50, 342-345
complex configurationl 35, 339
complex configuration pattern qualifi&81-383
complex configuration range qualifi&86-388
configuration,335-341
count qualifier 338, 340, 346-348
easy configuratior337
expressions425

635

Index

expressions in the complex configuratiBA9
halt trace 364-365
invalid simple expression429
labels,376-377
line activity,331-332
master clock specificatioB42-345
performance verificatiorg06-308
prestore qualifier338, 340, 384-385
primary branches (sequence$6-369
secondary branches (sequencat}-352
sequencei395-398
sequencing in the complex configuratiBa9
sequencing in the easy configuratid@y
slave clocks393-394
start,330
state/time counted,25
storage qualifiers399-401
storage specification in the complex configurati®)
storage specification in the easy configurat888
trace configuration rese41
trace list format353-355
trace sequencet28
tracing background operatiod43
tracing foreground operatio843
trigger condition356-358
trigger in feedback loof247, 262
trigger output359-363
trigger position378-380
analyzer clock speed, glossary definition6a
AND
(bit-wise) operator424
(interset logical) operatod 17
any (analyzer keyword356, 384
arm condition
analyzer statug90
complex expressiond,1 6
cross-arming246, 262
specifying,333-334
time until trigger391, 489, 494
arming the analyzeB833-334
ASCII strings, displaying on standard out@it]

636

Index

atchitectures of virtual memor211-212
1K analyzer
glossary definition of634

b (break) comman®0, 241
background operation, tracirgg3
bases (number}20

default for step coun816

labels in trace lis353
baud rate, communication porg23
bc (break conditions) commari#}2-244
binary

number base specifiet11, 420

trace list format373, 486
bit-wise operators

AND, 424

exclusive OR424

inclusive OR425

merge 425
BKPT (breakpoint vector)

generally, 88
block (memory mapper)

re-assignment of emulation memazg,7
BNC trigger signal243, 245-247
bnct (BNC trigger drivers and receivers) commadh-247
bp (breakpoint modify) comman@2-93, 95-96, 248-252
branch not taken in trace list, what it medH
branch qualifiers (sequencer)

primary,366-369

secondary349-352
branch taken in trace list, what it meah5
break,241

to monitor,80

to monitor on a trigger signdp6
break conditions

BNC or CMB trigger signal243

software breakpoint@43

trigl or trig2 internal signal243

write to ROM,243
break in emulator due to trace complég/
breakpoint

to determine whether in software or hardw&,

637

Index

breakpoints
a breakpoint is recognized where none was3Set,
disabling,95, 251
displaying,96
enabling 93, 251
generally 88
inserting,92, 250
interlocking target system acknowledge cyclés,
removing,96, 251
breaks
guarded memory acce286
synchronous?259
bus cycle
hung bus cycle definegl
bus cycles, slowg79

C cables
power,602
cables, connecting to the emulator prd&d,
calculator for expressiongy2
can't break into monitor exampl235-237
card cage
applying powerg602
cautions
antistatic precaution$,/8
apply power to emulator before target syst@én,
protect against static dischar@8,
rear panel, do not stand HP 64700%8Y
turn OFF power before installing emulator prdis,
verify pin 1 when installing emulator prot8g
cf (emulator configuration) commantB6, 188, 253-256
channels (analyzer)
demultiplexed slave clock modg93
mixed slave clock mod893
cl (command line control) commanth, 257-258
clocks
configuration,150
count states or timé&53
generally,149
rate settingsl 51
specifications504
specifying analyzer maste&42-345

638

Index

specifying analyzer slav893-394

trace user/background codgl9
cmb (coord. meas. bus enable/disable) comn2s8i260
CMB (Coordinated Measurement Bus)

enable/disable259

specifications516

start synchronous executigi)7

trace at [EXECUTE402-403

trigger signal243, 261-263, 402
cmbt (CMB trigger drivers/receivers) commagél-263
column headers in trace list

adding new columng53

suppressing373
command files

building of,54

building with a text editor55

comments in55

editing of,55

generally 54

log from a PC hosg6

log on a UNIX host57

using on a PC hosig

using on a UNIX hos§9
command line editing

commands45

installing or removing45
command processing delags),
commands

b, 80

cf, 255

cp, 77

cu,58

dmmu,266-267

echo,49

help,46, 280-281

help for group280

init, 41

mac,51-53

macros291-294

maximum length of command Iin293

mmu,299-301

639

Index

rep,50
repeating a group 0812
rst,84
5,81
sym,325-328
tsq,54
w, 50
communications (data)
initialization, 282
setting parameter822-324
compatible mode
glossary definition of623
complex analyzer configuratioB39
complex expression$40
generally, 135
pattern specification881-383
primary branchesl, 42
range qualifiers139
range specificatior§86-388
secondary brancheb44
storage qualifiersl45
trace patterng,38
trace sequencet36-137
trigger terms135
complex expressiond,1 8
configuration
analyzer335-341
data communications switch&@23-324
default,255
emulator,253-256
items,254
trace,128
connecting probe to demo target systéfq
control (CTRL) characters
¢, command abor807, 312, 316
non-displaying271
Coordinated Measurement Bus (CMB)
generally,160
coordinated measurements
enable/disable259-260

copy

640

Index

memory blocksy7, 264
count (occurrence}l53, 337, 340, 356-357, 366, 391
reset if secondary branch tak&sl
count (time),153
count qualifier338, 340, 346-348
counter
overflow indication not seen in trace li206
counter overflow, glossary definition @24
counter, analyzer tag46
counts
controlled by external analyzei68
negative counts in count colun06
cp (copy memory) commandy, 264
cross-triggering246, 259, 262

crosstriggering emulation-bus analyzdi83-165
cu command58

data communications

configuration switches323-324

initialization, 282

setting port parameter322-324

specifications516
data cycles

monitor access to target memas2
date

displaying emulation system?

setting emulation system7, 268
decimal

number base specifiet1l, 420
deep analyzer

glossary definition of625
delimiters (string)271-272, 320
delta time

binary/hexadecimal trace ligt95, 497
deMMUer

command option24

detailed discussior223

how it is loaded by the emulat@25

how to enable224

how to load reverse translatio224

its reverse translation tab228-230

641

Index

keeping it up to dat@26

out of resources, things to che2k2

programming in static memory systet26

resource limitation228-230

restrictions when using@26-227

seeing present reverse translati@zl
deMMUer/MMU chapter209
demo target system

connecting the emulator prol&90
DeMorgan’s theoren$18
demultiplexed (slave clock) mod&93
depth of memory

how to obtain different depths79

setting in terminal interfac&57
dequeued trace, aligning opcodes/operahzi3,
dequeueing of trace lists22
disassembled trace, aligning opcodes/operdra$s,
disassembly of trace list22, 353, 373
display

a single address mapped by MMR20

date and time47

mode,304

mode, definition302

present MMU mapping217-218
divide (integer) operatod23
dmmu (reversing MMU for analyzer) commaR266-267
download

user program84-286
drivers and receivers

BNC trigger signal245-247

CMB trigger signal261-263

See alsdarigl and trig2 internal signals
dt (set or display system date/time) command 268
dual-port emulation memory,74
dump (upload memory) commarz§9-270
dynamic virtual memory systenl 2

easy analyzer configuratio®37
generally,129
global restart term4,33
primary branches], 32
reset sequencet 3l

642

Index

sequence term$30-131
echo (display to standard output) commat®]j,271-273, 420
edges (analyzer clock), rising, falling, bd343
edges (analyzer slave clock), acti883-394
emulation brealk241
emulation break on analyzer trace compl&&2,
emulation memory map used by deMMU229
emulation memory modules

installing,596
emulation monitor170

break comman®41

breaks to the243

cycles used to access target memaog,

execute after resed13

foreground, loading286

running in (emulator statu)79

searching target memor§20
emulation process ste[®8
emulation RAM, mapping address randz35
emulation ROM, mapping address ran@8§
emulator

configuration, generally§2, 170

displaying status informatiod/

error message432

how it loads the deMMUeR25

in-circuit use of 97

initialization, 282-283

initialization options41

performance verificatior06-308, 606

powerupA40

probe precaution98

prompt, changing th&05

restrict to real-time run488

status279
emulator probe

connecting the cables81

connecting to demo target systed@0
enabling the MMU100, 214
entering commands

combining 42

options 42

643

Index

repeating43
equ (equate names to expressions) comnid&id 156, 274-278
equates274-278
defining, 155
deleting,156
displaying,156
eram, mapper parameter for emulation RAR96
erom, mapper parameter for emulation RQ9G
error messaged3?2
analyzer472
emulator431-484
es (emulator status) commadd, 279
escape (ESC) characters
j, edit existing commandl5
k, recall existing commandp
example, can't break into monit@35-237
exchange part, definefil1
exclamation mark "!"
in trace list count columr205
exclusive OR (bit-wise) operatat24
EXECUTE (CMB signal)260, 390, 402, 407
execution breakpoints
displaying,96
expression calculato2,72
expression, glossary definition 626
expressions
analyzer, complex configuratioB39, 418
analyzer, easy configuratiod37
creating,108
creating complex expressiorigl0
creating, in easy configuratioh29
equating names t@y74-278
operators422
external timing analyzer
glitch mode495, 498
standard model95, 498
transitional mode495, 497

F fast (F) analyzer clock spee’il, 344
file formats
absolute269, 284
Intel hex and Tektronix hes3

644

Motorola S-recordg3
firmware update utility, installatios17
foreground monitor] 82
mapping 1:1 for use when MMU enabld®2-194
set interrupt priority184
foreground operation, tracing43
formats
absolute file269, 284
binary trace list373, 486
hexadecimal trace lisB73, 486
memory display287
trace list,353-355
FPU
used with MC68EC040 and MC68LC04M4
ftp
loading absolute file§5-66
loading symbol files68-69
function codes289
function codes used in translation tabiis}

glitch (external timing analyzer) modt95, 498
global
access and display mod&§2
restart qualifier337, 349, 357, 368, 395
storage qualifier338, 400
grave mark characte320
grd, mapper parameter for guarded memaeg,
group (command®80
guarded memory acce286
guarded memory access when using MNM8B

H,h, hexadecimal number base specifier,
halt

emulation statu279

trace,364-365

trace status390
halt of system when using MM234
handshaking (data communicatior8)3
hardware

HP 9000 minimums overvievg,76
hardware enable for the MM@Z14
headers in trace list

Index

645

Index

adding new columng53
suppressing373
help
abbreviated mod&80
on-line help commandi6, 280-281
hexadecimal
base specifieg21
number base specifiet11
trace list format373, 486
history, trace statu891
HP 9000
minimum system requirements overviévp
humidity specifications15
hung bus cycleg1

I ##IL# in trace list Mnemonic columAg4

inclusive OR (bit-wise) operatot25
information (help)280-281
init (initialize the emulator) commandl, 282-283
initialization

analyzer370-371

emulator,282-283
installation,576

hardware577-610

of optional memory module§79

placing boards in the card ca§é4

verifying installation of memory module&)7
interlock cycle termination signals83
internal signals, trigl and trig243, 245, 261, 333, 364, 402
interrupt stack pointer presettint36
interset operatorg, 17
intraset operatorg,16
inverse values (complex analyzer expressiatis),
IP address55

J Jclock (analyzer344
K Kclock (analyzer)344

L L clock (analyzer)344
label, glossary definition 0627
labels (trace)
defining analyzer113, 376-377

646

Index

deleting analyzer 14
displaying analyzen 14
predefined376
LAN connection
loading absolute file§5-66
loading symbol files68-69
line activity (analyzer)331-332
list of replaceable part611-613
listing the present MMU mapping317-218
load (download user programs) comme2g#-286
logical address
definition of,211
viewing the translation details fd&r03
logical operators
Seeoperators
logical-to-physical mappings, to vied)1-102
logical-to-physical translation (mmu commari29-301
long-aligned address, how to cre@82

m (memory display/modify) comman2i37-290
displaying options72
modifying optionsy73
search optiong,5
M clock (analyzer)344
mac (macro definition/display) commarkd,-53, 291-294
macrospl
creation of 51
deletion of,53
execution of52
limitations,293
list predefined51
map (memory mapper) commanidd2, 177-178, 295-298
mapping memory295-298
mappings, logical-to-physical, to vied1-102
master clocks (analyzef342-345
maximum
analyzer clock spee@43
command line lengt293
mapper term298
sequence levels in easy configurati®®d
sequence terms in easy configuratiR®s
software breakpoint252

647

Index

MC68EC040 and MC68LC040
performance measurements of FPU instructib0g,
special considerations when including an FPQ}
testing floating-point librarieq,04

measurements
analyzer, starting330
coordinated259-260

memory,170, 172
accessing resourcet?
assess modgp2-304
assign default mag,77
assign map termgy2
copy blocks of77
delete map term4,78
display mode302-304
displaying,72, 287-290
dual-port,174
enable one wait staté78
enable/disable cach&75
loading programs int®84-286
mapping,295-298
modifying, 73, 287-290
preventing storage of sequencer-advance dtéie,
processor cache disablirk9
searchy5, 319-321
sockets on probd,74
type (list of),172
upload to host file269-270

memory depth
setting in terminal interfac&57

memory managemert09

memory management systems suppoéd;212

memory map, how it is used by deMMU229

memory modules
installing on the emulation prob&96
verifying installation 607

memory modules, how to instai79

merge (bit-wise) operatof25

mixed (slave clock) mod&93

MMU
enabled, how it affects the analyZE26

648

enabled, using the emulator witt§0
how it affects command compositidit1,6
how it is enabled?214
mapping details of a single addrea20
mapping monitor 1:1 when MMU enableif2-194
mappings, how the emulator obtains theia8
mappings, listing the present mappir2fs/-218
mappings, modifying for monito235-237
mappings, obtaining a shorter list 21,8
restrictions when usin@15
reversing its translation266-267
special problems discussidg2
where is it located?13
mmu (logical-to-physical translation) commagé9-301
MMU/deMMUer chapter209
mnemonic
information in the trace lis53
memory display mode&,87
mnemonic column shows ##IL# notatidi84
mo (set access and display modes) comnz02304
options,78
mode
abbreviated hel280
access304
demultiplexed slave clociB93
display,304
glitch (external timing analyzer95, 498
memory acces§02-304
memory display302-304
mixed slave clock393
quiet,285, 316
standard (external timing analyzet®5, 498
transitional (external timing analyzedg5, 497
whisper,316, 389
modulo (integer) operato#23
monitor
to map 1:1 for use with an enabled MM192-194
monitor (emulation)170, 180
break command®41
breaks to the243

Index

649

Index

configuration of MC680401.81
cycles used to access target memaoy,

execute after rese813
foreground, loading?86
keep-alive address (MC68ECO03035
running in (emulator status)79
searching target memor320
set the base addred82

multiple traces, numbering,/7

multiply (integer) operatoA23

N clock (analyzer)344
names
pattern 381
values274-278
NAND operator418
negative counts in trace list count colur2@6
never (analyzer keyword356
No trace data (messagay5
none (analyzer keyword348, 356, 384
NOR (intraset logical) operatat16
notation ##IL# in trace listi84
notes
access mode for writing breakpoir2g8
address followed by two periods as a rai2gg,
address specificatiog89, 309
analyzer should not drive and receive same sigAdl, 262
analyzer, "tcq time" only if "tck -s S346
arm to trigger time alignment between emulat48$,
asterisk (*) in help comman#ég0
breakpoint display status checki2$1
date and time are reset when power is cy@6é8,
date assumes year is in 20th centdf8
display mode and memory modificati@88
don't care values are not allowed in echo comméad,
emulation memory block re-assignme2fly
equate limits274
equates, new values not updated in comma&wis,
equates, predefined74
init -c or -p cause system memory |d282
macros allowed within rep comman84,2

650

Index

macros, predefine@91
map change requires breakpoint disaP88
master clock qualifiers: tck -u, tck -843
memory display is not updatezB8
memory map modification causes emulator reX88,
occurrence counts in complex configurati®6?
operations are on thirty-two-bit signed integ@&2
primary and secondary branch qualifiers satisf&d, 368
pv command reinitializes emulat&06
range not allowed in pattern specificatidd®l
range reset when trace configuration reset to 883y,
run from reset function varies with emulat@69
rx command enables CMB interacti@60
search patterns, specifying complad20
sequence term count resghl
sequencer term 8 defau860, 368
single open quote, ASCII character,1, 320
step count must be specified with addrégs,
step does not work correctly while CMB enabl@ti
storage qualifiers and the sequendén)
storage qualifiers, globa399
string delimiter character should not be in strizigfl,
strings should not contain string delimiter chara@2e,
trace format does not affect information captuBdh
trace list command options, mutually exclusi¥eé3
trace list from a specific statg74
trace states, displaying when trigger not folB#
trigl and trig2 can both drive/receive BNZ2L5
xon toggling with baud rates of 1200 or bel®24
numbering multiple tracegy77
numbers, software versiof04
numeric calculato9
numeric search in memory19

0,0, octal number base specifié20
occurrence coun837, 340, 356-357, 366, 391
reset if secondary branch takés;1
octal
number base specifiet11
octal number base specifid20
one’s complement (unary) operaté23
opcodes and operands, how to align in tr&a28,

651

Index

operators422
| (intraset OR)140
~ (intraset NOR)140
AND (interset AND),140
combining intraset and interséi.8
interset417
intraset416
OR (interset OR)140
precedence}22
OR operator
bit-wise,425
interset logical417
intraset logical416
restriction in easy configuratioA29
other, mapper parameter for unmapped menk9,
out of deMMUer resources
how to avoid this messadge30
things to checkz02
overflow, glossary definition 0628
overlap
bit-wise merge425
trace labels377

P pl-p8, trace pattern labe&g81
parameters, data communicatioBa2-324
parts list,611-613
pattern

expressions420

labels 416

names381

qualifier (complex analyzer configd81-383
performance verificatiorg06-308
physical address

definition of,211

in trace list, things to checRP3

tracing execution in physical spad@7
physical-logical mappings, to view01-102
pipeline

analyzer architectur890

analyzer prestor&38
po (specify port control) command, 305
polarity, trace label376

652

ports (data communications)
setting parameter822-324
position of trigger state in tracg78-380
power applied to the card cage?2
power cables
connectingb02
correct typep02
powerup 40, 99
initialization sequenc&82
precedence, operat@22
predefined macro291
predefined trace label376
prestore qualifier338, 340, 384-385
defining, 152
prestore qualifier, glossary definition 629
prevent storage of sequencer-advance sti4&s
primary branches (analyzer sequencet}, 366-369
define in easy configuratiot32
print
to standard output devicé9
probe
connecting the cables81
connecting to demo target systed@0
dimensions514
emulator 306
memory sockets, 74
problem solving
can't break to monitor after MMU enabl&)5
if deMMUer is out of resources during loadi2@2
if only physical addresses in trace I&03
if out of resources with less than 8 mappirf}
if the analyzer won't trigged,99
if the demo program won't worl80
if you have trouble mapping memogQ0
if you see unexplained states in the tracel88,
if you suspect the emulator is brok200p
if you're having problems with DMA201
if you're having problems with emulation resz®2
problems, a discussion for the MMRB2
processor
cache memoried,71

Index

653

Index

cache memory generall¥389
disable cache memory89
reset from emulatoB84
run controls,79
progflash example§19
program counter presettint36
program counter symbol (309
programs
building, 62
loading from a PC host4
loading from a UNIX hos67
simultaneous run on two emulatot§2
prompt (emulator)
changing 305
changing 48
protocol (transfer)270, 285, 373, 486
protocol checking?285
pv (performance verification) commargf)6-308

Q Q,q, octal number base specifié20
qualifier, glossary definition 0§29
qualifiers

analyzer count346-348
analyzer master clocB42-345
analyzer patterr881-383
analyzer prestord,52, 384-385
analyzer range386-388
analyzer storag899-401
complex storagel 45
defining range pattern$39
global restart337, 349, 357, 368, 395
sequencer primary branc366-369
sequencer secondary brangt9-352
guestion mark (?)
break conditions displag44
on-line help comman@80
quick reference46
quiet mode285, 316
guote marks271, 305, 320

R r(run user program) commarg09
options,79

654

radix indicators
binary,108
decimal,108
hexadecimal108
octal,108
range qualifier (complex analyzer confi@®6-388
ranges416
READY (CMB signal),260, 407
recalling command3
in reverse43
receivers and drivers
BNC trigger signal245-247
CMB trigger signal261-263
See alsdarigl and trig2 internal signals
record checking?270
reg (register display/modify) commargh, 310-311
registers
displaying,85
displaying multiple86
introduction,85
modifying, 86
modifying multiple,87
relational expressiond16-417
relational operatorg49, 367, 400
relative counts in trace lis347, 354
relative, glossary definition 0630
rep (repeat commands) comma#d, 50, 312
canceling50
reset
break during241
breakpoints249
emulation microprocess@13
emulator, due to mapper modificati@98
init command 283
occurrence coungs1l
range qualifier and trace configurati@87
run from,309
sequencei395
system date and tim268
trace configuratior341
trace specificatior70-371

Index

655

Index

trace tag counteB48
restart (global) qualifiel337, 349, 357, 368, 395
reverse translations of MMU (dmmu commark§6-267
ROM memory changed by processor wrifts,
ROM, break on writes t@43
rotate left/right operatod23
RS-422, serial port data communicatid3®3
rst (reset emulation processor) commai®
options,84
run
from a specific addresg9
from current program countét9
from target system res@9
restrict to real-time188
simultaneously on two emulatod2
synchronous?259
run from reset commantiy 1

s (step the emulation processor) command, 316-318
options,81
sample period (external timing analyze95
secondary branches (analyzer sequenté),
branch default]44
semicolon (command separat@91, 312
sequence terms
deleting,396
inserting,395
inserting using easy configuratidt80
removing using easy configuratid81
reset in easy configuratiob31
sequencer
preventing states from being stored in memb#y,
preventing storage of sequencer-advance stéie,
trace start with active term other than terd34, 148
sequencer (analyze95-398
complex configuration339
define global restart terr33
display current setting34
displaying settings in complex configuratidrg7
easy configuratior337
primary branches366-369
resetting in complex configuratioh36

656

secondary branch qualifie®49-352
ser (search memory for values) comméaif-321
sets (complex config. trace sped)}p
shift left/right operator423
short help281
signals

analyzer clocks344, 394

analyzer, defining labels fo876-377

arm,391

BNC trigger,243, 245-247

CDIS, 189

CMB /EXECUTE, 260, 313, 390, 402, 407

CMB READY, 260, 407

CMB trigger,243, 261-263

EXECUTE, 160

internal trigl and trig2243, 333, 364, 402

READY, 160

TA and TEA,170, 173, 183

TCI, 173

TRIG1,161

TRIG2,161

TRIGGER,160

trigger output359-363
simple expressiong29
single-step81
single-step emulation processdts-318
slave clocks (analyzer393-394

demultiplexed mode393

mixed mode393
slow (S) analyzer clock speetfi4, 346
slow clock emulator statug79
software

ensuring compatibility$09
software breakpoint@48-252

break condition enable/disab®43

disabling,95, 251

displaying,96

enabling 93, 251

inserting,92, 250

maximum number 052

pv command effect 01306

Index

657

Index

removing,96, 251
software enable for the MM2,15
software version number404
specifications

altitude,515

clock,504

CMB, 516

data communication516

humidity, 515

probe dimension§14

temperature515

trigger in/out515

weight,514
standard (external timing analyzer) mod@5, 498
standard command prompt, changig,
states (trace)

maximum with/without coun848

prestore384

status 391

visible,391
static discharge, protecting the emulator probe ag&8st,
static memory system, loadig deMMU#2R6
static virtual memory syster@i1l
status

analyzer389-392

emulator279
step,81
storage (trace) specificatiod99-401

complex configuration340

easy configuratior338
storage qualifier] 11
store qualifier, glossary definition @31
string delimiters271-272, 320
string search in memorg20
stty (set data communications parameters) comn3@ad324
subtraction operatof23
switches, data communications configuratigi?3-324
sym (symbol) comman®25-328

deleting options70

displaying optionsy1
symbol file

658

loading via ftp 68-69
symbol names, creating74-278
symbols,68
", character string delimiter5
$, program counteB09
&&, bit-wise merge425

* trace status392
@, function code411
\, hex codes49
‘, character string delimite?5
[, intraset OR140, 350, 367, 400
~, intraset NOR140
adding user symbol30
displaying,71
removing,70
synchronous emulator executidi®,7
synchronous runs and breakS9
syntax diagrams
address variablg 11
system clock?68, 306
system date/tim&68
system requirements
HP 9000 overviews76
systems, virtual memory explaingd,1-212

t (start trace) command09, 330
T,t, decimal number base specifié20
ta (trace activity display) commarth5, 331-332
table details for a single logical addreB33-105
tag counter (analyzer346
?taken? in trace list, what it meah24
target system
mapping RAM address rang@85
mapping ROM address rang28b
target system interrupts, disabling
interrupts, to disabld,90
tarm (specify arm condition) commargg3-334
tcf (set easy/complex configuration) commatieB, 335-341
tck (specify master clock) commaridi9-150, 342-345
tcq (specify count qualifier) commant5, 153, 346-348

telif (specify secondary branch qualifiers) commaétr88, 144, 349-352

Index

659

Index

temperature specificatiors]5
term other than term 1 active at trace start
how to specify134, 148
terminal interface prompt89
terms
analyzer sequenced37, 339, 398
memory mappe97
tf (specify trace list format) commantil5, 353-355
tg (specify trigger condition) commar56-358
tgout (specify signal driven on trigger) commaB®9-363
th (trace halt) command(9, 364-365
listing traces375
tif (specify primary branch qualifiers) commani®2, 142, 366-369
time
analyzer keyword348
display,47
negative times shown in count colur@fg
setting systemy7, 268
tinit (trace initialization) comman@70-371
tl (trace list display) command10, 119-120, 122
options,117
tlb (define labels for analyzer lines) commahti3-114, 376-377
tp (trigger position in trace list) commargy¥,8-380
options,112
tpat (complex config. trace patterns) commadrds, 381-383
tpg (specify prestore qualifier) commai&2, 384-385
trace
check signal activityl55
check user/background code executit
count controlled by external analyz&68
display list, 110
display status]10
pattern defining138
preventing storage of sequencer-advance stéie,
signal activity, 155
start measuremer0Q9
status 389-392
stop measuremerit09
trace configuration
easy/complex] 28
reset341

660

Index

trace labels376-377

defining,113

deleting,114

displaying,114

predefined376
trace list

depth,125

disassembly and dequeueing?

display,117

display of symbols and addressEz)

header suppressioh]9, 373
trace list contains ##IL# notatiof34
trace list format353-355

binary/hexadecimall86

mnemonics115

modifying, 115

relative/absolutel 15
tram, mapper parameter for target RAM6
transfer memory to host file69-270
transfer, HP 64000 utility270, 285, 373, 486
transitional (external timing analyzer) mod85, 497
translating logical-to-physical (mmu commarz9-301
translation

details of a single logical addre483

of a single address through the MM220

reversing with the dmmu commarkf6-267

table details for a single logical addres33-105
trigl and trig2 internal signal243, 245, 261, 333, 364, 402
trigger

condition,356-358

cross-triggering259

infout specifications515

"not in memory" messagay5

position,112, 378-380
trigger one analyzer with anoth&63-165
trigger qualifier,110
trigger terms

assigning using complex configuratidr85
trng (specify complex config. range) commah89, 386-388
trom, mapper parameter for target RCM6
troubleshooting608

661

Index

truth tables for logical operator??2

ts (display trace status) commad(, 389-392

tsck (specify slave clocks) comma®3-394

tsg (manipulate trace sequencer) comm&4d130-131, 134-137, 395-398
tsto (specify trace storage qualifier) commaiidl,, 145, 399-401

two’s complement (unary) operatdf3

tx (trace on CMB /EXECUTE) commardip2-403

U 219
unary ones’s complement operatiz3
unary two's complement operatd3
undefined breakpoint errd252
undefined software breakpoint when using M\234
upload memory to hos269-270

V value expressiond20
values, equating with namex/4-278
variant records497
ver (display software version numbers) commai®d 404
verifying installation of memory module&)7
verifying performance306-308
version checking49
very fast (VF) analyzer clock speéd1, 344, 346
virtual memory (mmu command)99-301
virtual memory managemera)9

W w (wait for specified event) commaril, 405-406
wait (in command sequencd))5-406
wait state

enable for synchronous/burst accestes,

warnings, power must be OFF during installatiesy
weight specifications§14
whisper mode316, 389
write instructions that change ROM memdad¥,
write to emulation ROM296
write to target ROM296

X x (start synchronous CMB execution) commat@y,
XOR (bit-wise) operato#24

Y VY,y, binary number base specifid20

662

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer's facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Warning

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC Publication
348, safety requirements for electronic measuring apparatus, and has been supplied
in a safe condition. The present instruction manual contains some information and
warnings which have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

77 or L

4

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

rame or chassis terminal. A connection to the frame (chassis) of the equipment
thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	The HP 64783A/B Emulator
	In This Book
	Contents
	Quick Start Guide
	Getting Started
	Troubleshooting

	Using the MC68040 Emulator/Analyzer
	Using the Terminal Interface
	Using the Emulator
	Using the Analyzer
	Making Coordinated Measurements
	Configuring the Emulator
	Solving Problems

	Reference
	Using Memory Management
	Emulator Commands
	Expressions
	Emulator Error Messages
	Data File Formats
	Specifications and Characteristics

	Installation and Service
	Connecting the Emulator to a Target System
	Installation and Service
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

