
HP 64791/2

70208H/70216H Emulator
Terminal Interface

User’s Guide

HP Part No. 6 4791-97009
Printed in U.S.A.
July 1994

Edition 4

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1991, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

V40 and V50 are trademark of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Rights for non-DOD U.S.Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes and, manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64791-97000, August 1991
64791-97003, November 1991
64791-97006, December
64791-97009, July 1994

Using this Manual

This manual will show you how to use the following emulators with
the firmware resident Terminal Interface.

HP 64791A 70208 emulator
HP 64792A 70216 emulator
HP 64791B 70208H emulator
HP 64792B 70216H emulator

For the most part, the 70208/70208H/70216/70216H emulators all
operate the same way. Differences between the emulators are
described where they exist. These 70208, 70208H, 70216 and
70216H emulators will be referred to as the "70216 emulator" in
this manual where they are alike. In the specific instances where
70208, 70208H and 70216H emulator differs from the 70216
emulator, it will be referred as the "70208 emulator", "70208H
emulator" and "70216H emulator".

This manual will:

Show you how to use emulation commands by executing
them on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, selecting a target system
clock source, and allowing the target system to insert wait
states.
Show you how to use the emulator in-circuit (connected to
a target system).
Describe the command syntax which is specific to the
70216 emulator.

This manual will not:

Describe every available option to the emulation
commands; this is done in the HP 64700 Emulators
Terminal Interface: User’s Reference.

Organization

Chapter 1 Introduction to the 70216 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic
features of the 70216 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display
registers, step through programs, run programs, use software
breakpoints, search memory for data, and perform coverage tests
on emulation memory.

Chapter 3 Emulation Topics. This chapter shows you how to: restrict the
emulator to real-time execution, use the analyzer trigger to cause
breaks, and run the emulator from target system reset.

Chapter 4 In-Circuit Emulation Topics . This chapter shows you how to:
install the emulator probe into a target system, select a target
system clock source, allow the target system to insert wait states,
and use the features which allow you to debug target system ROM.

Appendix A 70216 Emulator Specific Command Syntax. This appendix
describes the command syntax which is specific to the 70216
emulator. Included are: emulator configuration items, address
syntax, display and access modes.

Appendix B Using the Optional Foreground Monitor. This appendix describes
how to use the foreground monitor.

Appendix C Specific Error Messages. This appendix describes the error
messages which is specific to the 70216 emulator.

Notes

Contents

1 Introduction to the 70216 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70216 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-4
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-5
Reset Support . 1-5
Configurable Target System Interface 1-5
Foreground or Background Emulation Monitor 1-5
Real-Time Operation . 1-6
Easy Products Upgrades . 1-6

Limitations, Restrictions . 1-7
DMA Support . 1-7
TC bit of DMA Status Register 1-7
User Interrupts . 1-7
Interrupts While Executing Step Command 1-7
Evaluation chip . 1-7

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

A Look at the Sample Program 2-2
Using the "help" Facility . 2-7

Becoming Familiar with the System Prompts 2-8
Initializing the Emulator . 2-10

Other Types of Initialization 2-10
Mapping Memory . 2-11

Which Memory Locations Should be Mapped? 2-13

Contents-1

Getting the Sample Program into Emulation Memory 2-14
Standalone Configuration . 2-15
Transparent Configuration 2-16
Remote Configuration . 2-17
For More Information . 2-17

Displaying Memory In Mnemonic Format 2-18
Stepping Through the Program 2-19
Displaying Registers . 2-20

Combining Commands . 2-20
Using Macros . 2-21
Command Recall . 2-21
Repeating Commands . 2-22
Command Line Editing . 2-22

Modifying Memory . 2-23
Specifying the Access and Display Modes 2-23

Searching Memory for Data . 2-24
Breaking into the Monitor . 2-24
Using Software Breakpoints . 2-24

Displaying and Modifying the Break Conditions 2-26
Defining a Software Breakpoint 2-26

Using the Analyzer . 2-28
Predefined Trace Labels . 2-28
Predefined Status Equates 2-28
Specifying a Simple Trigger 2-29
For a Complete Description 2-31

Copying Memory . 2-31
Testing for Coverage . 2-32
Resetting the Emulator . 2-34

3 Emulation Topics

Introduction . 3-1
Prerequisites . 3-1
Execution Topics . 3-2

Restricting the Emulator to Real-Time Runs 3-2
Setting Up to Break on an Analyzer Trigger 3-3
Making Coordinated Measurements 3-3

Monitor Option Topics . 3-4
Background Monitor . 3-4
Foreground monitor . 3-4

Other Topics . 3-6
Selecting Accept Or Ignore Target System Reset 3-6

2-Contents

4 In-Circuit Emulation Topics

Introduction . 4-1
Prerequisites . 4-1
Installing the Emulator Probe into a Target System 4-2

Auxiliary Output Lines . 4-3
Installing into a PLCC Type Socket 4-5
Installing into a PGA Type Socket 4-6
Execution Topics . 4-7

Specifying the Emulator Clock Source 4-7
Emulator Probe Signal Topics . 4-8

Allowing the Target System to Insert Wait States 4-8
Target ROM Debug Topics . 4-8

Coverage Testing ROMed Code 4-9
Modifying ROMed Code . 4-9

Electrical Characteristics(70208/70216) 4-10
Electrical Characteristics(70208H/70216H) 4-16
Target System Interface . 4-22

A 70216 Emulator Specific Command Syntax

ACCESS_MODE . A-2
ADDRESS . A-4

Address Syntax . A-4
CONFIG_ITEMS . A-6
DISPLAY_MODE . A-16
REGISTER NAMES and CLASSES A-18

BASIC(*) class . A-18
SIO class (70208/70216 Emulator) A-18
SIO class (70208H/70216H Emulator) A-19
ICU class . A-20
TCU class . A-20
SCU class . A-21
DMA71 class . A-21
DMA37 class (70208H/70216H Emulator only) A-22

B Using the Optional Foreground Monitor

Comparison of Foreground and Background Monitors B-1
Background Monitors . B-2
Foreground Monitors . B-2

Contents-3

An Example Using the Foreground Monitor B-3
Modify EQU Statement . B-3
Assemble and Link the Monitor B-4
Initialize the Emulator . B-4
Configure the Emulator . B-4
Load the Program Code . B-5
Load the Sample Program B-5
Disable Tracing Refresh Cycle B-5

Single Step and Foreground Monitors B-6
Limitations of Foreground Monitors B-6

Synchronized measurements B-6

C Specific Error Messages

Illustrations

Figure 1-1. HP 64792 Emulator for uPD70216 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 4-1. Auxiliary Output Lines 4-3
Figure 4-2. Installing into a PLCC type socket 4-5
Figure 4-3. Installing into a PGA type socket 4-6

Tables

Table 4-2 70208/70216 AC Electrical Specifications 4-10
Table 4-2 70208H/70216H AC Electrical Specifications 4-16

4-Contents

1

Introduction to the 70216 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70216 emulator is designed to replace the 70216 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1. HP 64792 Emulator for uPD70216

1-2 Introduction

Features of the
70216 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The HP 64791/2 emulator supports the following packages of
microprocessor.

Model No. Microprocessor Package

HP 64791A uPD70208 68-pin PLCC
68-pin PGA

HP 64792A uPD70216 68-pin PLCC
68-pin PGA

HP 64791B uPD70208H 68-pin PLCC
68-pin PGA

HP 64792B uPD70216H 68-pin PLCC
68-pin PGA

The HP 64791/2 emulator probe has a 68-pin PLCC connector. When
you use 68-pin PGA type microprocessor, you must use with PLCC to
PGA adapter; refer to the "In-Circuit Emulation Topics" chapter in this
manual.

Clock Speeds The 70208 and 70216 emulator runs with an internal clock speed of
8MHz (system clock), or with target system clocks from 2 to 10 MHz.

The 70208H and 70216H emulator runs with an internal clock speed of
16 MHz (system clock) or with target system clocks from 1 to 16
MHz.

Introduction 1-3

Emulation memory The HP 70216 emulator is used with one of the following Emulation
Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card
HP 64729 2M byte Emulation Memory Card

When you use the HP 64729, You can only use 1M byte for emulation
memory.
You can define up to 16 memory ranges (at 128 byte boundaries and at
least 128 byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target system
ROM, or as guarded memory. The emulator generates an error
message when accesses are made to guarded memory locations. You
can also configure the emulator so that writes to memory defined as
ROM cause emulator execution to break out of target program
execution.

Analysis The HP 70216 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer
HP 64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70216 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

1-4 Introduction

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses the BRK 3 instruction(CC hex) as software breakpoint
interrupt instruction. When you define a software breakpoint, the
emulator places the breakpoint interrupt instruction (CC hex) at the
specified address; after the breakpoint interrupt instruction causes
emulator execution to break out of your program, the emulator replaces
the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory. You can configure the
emulator so that it presents cycles to, or hides cycles from, the target
system when executing in background.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70216 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background, the emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy any processor address space.

Introduction 1-5

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A/B Card Cage. This means that you’ll be able to update
product firmware, if desired, without having to call an HP field
representative to your site.

1-6 Introduction

Limitations,
Restrictions

DMA Support Direct memory access to emulation memory by external DMA
controller is not permitted.

TC bit of DMA Status
Register

While using the uPD71071 or the uPD71037 DMA mode on the
70208H emulator, or using the uPD71037 DMA mode on the 70216H
emulator, when the emulator read the other than DST register, the TC
bit of the DST is reset. If you know the DMA Status, you have to use
the count register in the place of the TC bit.

User Interrupts If you use the background monitor, NMI and INTP1-7 from the target
system are suspended until the emulator goes into foreground operation.

Interrupts While
Executing Step

Command

While executing user program code in stepping in the foreground
monitor, interrupts are accepted if they are enabled in the foreground
monitor program. When using the background monitor the emulator
will fail to step, if the interrupts are acknowledged before stepping user
program code.

Evaluation chip Hewlett-Packard makes no warranty of the problem caused by the
70208/70208H/70216/70216H Evaluation chip in the emulator.

Introduction 1-7

Notes

1-8 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64792 emulator for the 70216 microprocessor.

This chapter will:

Describe the sample program used for this chapter’s examples.

Show you how to use the "help" facility.

Show you how to use the memory mapper.

Show you how to enter emulation commands to view
execution of the sample program. The commands described
in this chapter include:

chapter include:

– Displaying and modifying memory
– Stepping
– Displaying registers
– Defining macros
– Searching memory
– Running
– Breaking
– Using software breakpoints
– Copying memory
– Testing coverage

Getting Started 2-1

Before You Begin Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Completed hardware installation of the HP64700 emulator in
the configuration you intend to use for your work:

– Standalone configuration
– Transparent configuration
– Remote configuration
– Local Area Network configuration

References: HP 64700 Series Installation/Service manual

2. If you are using the Remote configuration, you must have
completed installation and configuration of a terminal
emulator program which will allow your host to act as a
terminal connected to the emulator. In addition, you must start
the terminal emulator program before you can work the
examples in this chapter.

3. If you have properly completed steps 1 and 2 above, you
should be able to hit <RETURN> (or <ENTER> on some
keyboards) and get one of the following command prompts on
your terminal screen:

U>
R>
M>

If you do not see one of these command prompts, retrace your
steps through the hardware and software installation
procedures outlined in the manuals above, verifying all
connections and procedural steps.

In any case, you must have a command prompt on your
terminal screen before proceeding with the tutorial.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

2-2 Getting Started

$MODV20

NAME cmd_rds

PUBLIC Msgs,Init,Cmd_Input,Msg_Dest

COMN SEGMENT PARA COMMON ’COMN’
;**
; Command input byte.
;**
Cmd_Input DB ?
;**
; Destination of the command message.
;**
Msg_Dest DB 20H DUP (?)
 EVEN
 DW 6FH DUP (?) ; Stack area.
Stk LABEL WORD
COMN ENDS

DATA SEGMENT PARA PUBLIC ’DATA’
Msgs LABEL BYTE
Msg_A DB "Command A entered "
Msg_B DB "Command B entered "
Msg_I DB "Invalid Command "
End_Msgs LABEL BYTE
DATA ENDS

CODE SEGMENT PARA PUBLIC ’CODE’
 ASSUME PS:CODE,DS0:DATA,DS1:COMN,SS:COMN
;**
; The following instructions initialize segment
; regsiters and set up the stack pointer.
;**
Init: MOV AW,DATA
 MOV DS0,AW
 MOV AW,COMN
 MOV DS1,AW
 MOV SS,AW
 MOV SP,OFFSET Stk
;**
; Clear previous command
;**
Read_Cmd: MOV Cmd_Input,0
 NOP
;**
; Read command input byte. If no command has been
; entered, continue to scan for command input.
;**
Scan: MOV AL,Cmd_Input
 CMP AL,0
 BE Scan
;**
; A command has been entered. Check if it is
; command A, command B, or invalid.

Figure 2-1. Sample Program Listing

Getting Started 2-3

;**
Exe_Cmd: CMP AL,41H
 BE Cmd_A
 CMP AL,42H
 BE Cmd_B
 BR Cmd_I
;**
; Command A is entered. CW = the number of bytes in
; message A. BP = location of the message. Jump to
; the routine which writes the message.
;**
Cmd_A: MOV CW,Msg_B-Msg_A
 MOV IX,OFFSET Msg_A
 BR Write_Msg
;**
; Command B is entered.
;**
Cmd_B: MOV CW,Msg_I-Msg_B
 MOV IX,OFFSET Msg_B
 BR Write_Msg
;**
; An invalid command is entered.
;**
Cmd_I: MOV CW,End_Msgs-Msg_I
 MOV IX,OFFSET Msg_I
;**
; Message is written to the destination.
;**
Write_Msg: MOV IY,OFFSET Msg_Dest
 REP MOVBK Msg_Dest,Msgs
;**
; The rest of the destination area is filled
; with zeros.
;**
Fill_Dest: XOR AL,AL
 MOV CW,OFFSET Msg_Dest+20H
 SUB CW,IY
 REP STM Msg_Dest
;**
; Go back and scan for next command
;**
 BR Read_Cmd
CODE ENDS
 END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Data Declarations

The area at DATA segment defines the messages used by the program
to respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

Initialization

The program instructions from the Init label to the Read_Cmd label
perform initialization. The segment registers are loaded and the stack
pointer is set up.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to see if a command is entered
(a value other than 0H).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41H), execution is transferred
to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42H), execution is transferred
to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

Getting Started 2-5

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
CW with the length of the message to be displayed and register IX with
the starting location of the appropriate message. Then, execution
transfers to Write_Msg which writes the appropriate message to the
destination location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20H bytes long.) Then, the program jumps back to read the next
command.

The Destination Area

The area at COMN segment declares memory storage for the command
input byte, the destination area, and the stack area.

The program emulates a primitive command interpreter.

2-6 Getting Started

Using the "help"
Facility

The HP 64700 Series emulator’s Terminal Interface provides an
excellent help facility to provide you with quick information on the
various commands and their options. From any system prompt, you
can enter "help" or "?" as shown below.

R>help

Commands are grouped into various classes. To see the commands
grouped into a particular class, you can use the help command with that
group. Viewing the group help information in short form will cause the
commands or the grammar to be listed without any description.

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 hidden - special use commands normally hidden from user
 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 xtrc - external trace analysis commands
 * - all command groups

Getting Started 2-7

For example, if you want to get some information for group gram, enter
"help gram". Following help information should be displayed.

R>help gram

Help information exists for each command. Additionally, there is help
information for each of the emulator configuration items.

Becoming Familiar
with the System

Prompts

A number of prompts are used by the HP 64700 Series emulators.
Each of them has a different meaning, and contains information about
the status of the emulator before and after the commands execute.
These prompts may seem cryptic at first, but there are two ways you
can find out what a certain prompt means if you are not familiar with it.

Using "help proc" to View Prompt Description

The first way you can find information on the various system prompts
is to look at the proc help text.

R>help proc

 gram - system grammar

 --- SPECIAL CHARACTERS ---
 # - comment delimiter ; - command separator Ctl C - abort signal
 {} - command grouping "" - ascii string ‘‘ - ascii string
 Ctl R - command recall Ctl B - recall backwards

 --- EXPRESSION EVALUATOR ---
 number bases: t-ten y-binary q-octal o-octal h-hex
 repetition and time counts default to decimal - all else default to hex
 operators: () ~ * / % + - << <<< >> >>> & ^ | &&

 --- PARAMETER SUBSTITUTION ---
 &token& - pseudo-parameter included in macro definition
 - cannot contain any white space between & pairs
 - performs positional substitution when macro is invoked
 Example
 Macro definition: mac getfile={load -hbs"transfer -t &file&"}
 Macro invocation: getfile MYFILE.o
 Expanded command: load -hbs"transfer -t MYFILE.o"

2-8 Getting Started

Using the Emulation Status Command (es) for Description
of Current Prompt

When using the emulator, you will notice that the prompt changes after
entering certain commands. If you are not familiar with a new prompt
and would like information about that prompt only, enter the es
(emulation status) command for more information about the status of
the emulator.

U>es
N70216--Running user program

 --- Address format -----
 Memory address -- 32 bit (seg:off) logical or 20 bit physical address
 IO address -- 16 bit address

 --- Emulation Prompt Status Characters ---
 U - running user code M - running in monitor
 c - slow clock w - waiting for target ready line
 R - emulation reset r - target reset
 h - halt g - bus grant
 b - slow bus cycle W - awaiting CMB ready
 T - awaiting target reset ? - unknown state

 --- Analyzer STATUS Field Equates ---
 fetch - program fetch exec - execute instruction
 read - read write - write
 mem - memory access cpu - cpu cycle
 extio - external I/O access intio - internal I/O access
 haltack - halt acknowledge holdack - hold acknowledge
 intack - interrupt acknowledge refresh - refresh cycle
 grd - guarded memory access rom - rom access
 dma - DMA memory access casdma - cascaded DMA cycle
 em80 - 8080 emulation mode native - native mode
 ds0 - ds0 use cycle ds1 - ds1 use cycle
 ss - ss use cycle ps - ps use cycle
 usr - user cycle mon - monitor cycle

Getting Started 2-9

Initializing the
Emulator

If you plan to follow this tutorial by entering commands on your
emulator as shown in this chapter, verify that no one else is using the
emulator. To initialize the emulator, enter the following command:

R>init
Limited initialization completed

The init command with no options causes a limited initialization, also
known as a warm start initialization. Warm start initialization does not
affect system configuration. However, the init command will reset
emulator and analyzer configurations. The init command:

Resets the memory map.

Resets the emulator configuration items.

Resets the break conditions.

Clears software breakpoints.

The init command does not:

Clear any macros.

Clear any emulation memory locations; mapper terms are
deleted, but if you respecify the mapper terms, you will find
that the emulation memory contents are the same.

Other Types of
Initialization

There are two options to the init command which specify other types of
initializations. The -p option specifies a powerup initialization, also
known as a cold start initialization. The cold start initialization
sequence includes the emulator, analyzer, system controller, and
communications port initialization; additionally, performance
verification tests are run.

The -c option also specifies a cold start initialization, except that
performance verification tests are not run.

2-10 Getting Started

Mapping Memory Depending on the memory board, emulation memory consists of 128K
, 512K or 1M bytes, mappable in 128 byte blocks. The monitor
occupies 4K bytes, leaving 124K , 508K or 1020K bytes of emulation
memory which you may use. The emulation memory system does not
introduce wait states.

Note When you use the i8087 coprocessor on your target system connected
to 70216 microprocessor, the i8087 can access 70216 emulation
memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70216
emulator to the i8087 coprocessor before starting emulation session.

Refer to "In-Circuit Emulation Topics" chapter for more information
about accesses to emulation memory.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus, except i8087
coprocessor (for example, external DMA controllers), cannot access
emulation memory.

Getting Started 2-11

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the rom
break condition is enabled. Memory is mapped with the map
command. To view the memory mapping options, enter:

M>help map

Enter the map command with no options to view the default map
structure.

M>map

 map - display or modify the processor memory map

 map - display the current map structure
 map <addr>..<addr> <type> - define address range as memory type
 map other <type> - define all other ranges as memory type
 map -d <term#> - delete specified map term
 map -d * - delete all map terms

 --- VALID <type> OPTIONS ---
 eram - emulation ram
 erom - emulation rom
 tram - target ram
 trom - target rom
 grd - guarded memory

 # remaining number of terms : 16
 # remaining emulation memory : 7f000h bytes
 map other tram

2-12 Getting Started

Which Memory
Locations Should be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what memory locations your program will occupy in
memory. A linker load map listing for the sample program is shown
below.

From the load map listing, you can see that the sample program
occupies three address range. The program area, which contains the
opcodes and operands which make up the sample program, occupies
locations 400 through 450 hex. The data area, which contains the
ASCII values of the messages the program transfers, is occupies
locations 600 through 635 hex. The destination area, which contains
the command input byte and the locations of the message destination,
occupies locations 800 through 8FF hex.

Hewlett-Packard ldv20 Tue Jul 2 13:18:08 1991

HP64873-19005 02.30 01Aug90 Copr. HP 1990
Command line: ldv20 -c cmd_rds.k -L

NAME cmd_rds
SEG /CODE=400h
SEG /DATA=600h
SEG /COMN=800h
LOAD cmd_rds.o
END

OUTPUT MODULE NAME: cmd_rds
OUTPUT MODULE FORMAT: HP-OMF 86

MODULE SUMMARY

MODULE SEGMENT CLASS START END

cmd_rds /users...../cmd_rds.o
 CODE CODE 00400 00450
 COMN COMN 00800 008FF
 DATA DATA 00600 00635

SEGMENT SUMMARY

SEGMENT CLASS GROUP START END LENGTH ALIGNMENT COMBINE

CODE CODE 00400 00450 00051 Paragraph Public
DATA DATA 00600 00635 00036 Paragraph Public
COMN COMN 00800 008FF 00100 Paragraph Common
??SEG 00000 00000 00000 Paragraph Public
??DATA1 ??INIT 00000 00002 00003 Byte Common

START ADDRESS: 00040:00000 -> 00400

Getting Started 2-13

Since the program writes to the destination locations, the mapper block
of destination area should not be characterized as ROM memory.
Enter the following command to map memory for the sample program,
and display the memory map.

R>map 0..7ff erom
R>map 800..9ff eram
R>map

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions or commands
attempt to do so (if the rom break condition is enabled).

Getting the
Sample Program
into Emulation
Memory

This section assumes you are using the emulator in one of three
configurations:

1. Connected only to a terminal, which is called the standalone
configuration. In the standalone configuration, you must
modify memory to load the sample program.

2. Connected between a terminal and a host computer, which is
called the transparent configuration. In the transparent
configuration, you can load the sample program by
downloading from the "other" port.

 # remaining number of terms : 14
 # remaining emulation memory : 7e600h bytes
 map 000000..0007ff erom # term 1
 map 000800..0009ff eram # term 2
 map other tram

2-14 Getting Started

3. Connected to a host computer and accessed via a terminal
emulation program (for example, the terminal window of the
PC Interface). Configurations in which the emulator is
connected to, and accessed from, a host computer are called
remote configurations. In the remote configuration, you can
load the sample program by downloading from the same port.

Standalone
Configuration

If you are operating the emulator in the standalone configuration, the
only way to get the sample program into emulation memory is by
modifying emulation memory locations with the m (memory
display/modification) command.

You can enter the sample program into memory with the m command
as shown below.

R>m -db 400=0b8,0,0,8e,0d8,0b8,0,0,8e,0c0,8e,0d0,0bc,0,1
R>m -db 40f=26,0c6,6,0,0,0,90,26,0a0,0,0,3c,0,74,0f8
R>m -db 41e=3c,41,74,7,3c,42,74,0c,0eb,13,90
R>m -db 429=0b9,12,0,0be,0,0,0eb,10,90,0b9,12,0,0be,12,0,0be,7,90
R>m -db 43b=0b9,12,0,0be,24,0,0bf,1,0,0f3,0a4
R>m -db 446=32,0c0,0b9,21,0,2b,0cf,0f3,0aa,0eb,0be
R>m -db 600="Command A entered Command B entered Invalid command "

After entering the opcodes and operands, you would typically display
memory in mnemonic format to verify that the values entered are
correct (see the example below). If any errors exist, you can modify
individual locations. Also, you can use the cp (copy memory)
command if, for example, a byte has been left out, but the locations
which follow are correct.

Note Be careful about using this method to enter programs from the listings
of relocatable source files. If source files appear in relocatable sections,
the address values of references to locations in other relocatable
sections are not resolved until link-time. The correct values of these
address operands will not appear in the assembler listing.

Getting Started 2-15

Transparent
Configuration

 If your emulator is connected between a terminal and a host computer,
you can download programs into memory using the load command
with the -o (from other port) option. The load command will accept
absolute files in the following formats:

HP absolute.

Intel hexadecimal.

Tektronix hexadecimal.

Motorola S-records.

The examples which follow will show you the methods used to
download HP absolute files and the other types of absolute files.

HP Absolutes

Downloading HP format absolute files requires the
transfer protocol. The example below assumes that the transfer utility
has been installed on the host computer (HP 64884 for HP 9000 Series
500, or HP 64885 for HP 9000 Series 300).

Note Notice that the transfer command on the host computer is terminated
with the <ESCAPE>g characters; by default, these are the characters
which temporarily suspend the transparent mode to allow the emulator
to receive data or commands.

R>load -hbo <RETURN> <RETURN>
$ transfer -rtb cmd_rds.X <ESCAPE>g

 ####
 R>

Other Supported Absolute Files

 The example which follows shows how to download Intel
hexadecimal files, but the same method (and a different load option)
can be used to load Tektronix hexadecimal and Motorola S-record files
as well.

2-16 Getting Started

R>load -io <RETURN> <RETURN>
$ cat ihexfile <ESCAPE>g

 #####
 Data records = 00003 Checksum error = 00000
 R>

Remote Configuration If the emulator is connected to a host computer, and you are accessing
the emulator from the host computer via a terminal emulation program,
you can also download files with the load command. However, in the
remote configuration, files are loaded from the same port that
commands are entered from. For example, if you wish to download a
Tektronix hexadecimal file from a Vectra personal computer, you
would enter the following commands.

R>load -t <RETURN>
After you have entered the load command, exit from the terminal
emulation program to the MS-DOS operating system. Then, copy your
hexadecimal file to the port connected to the emulator, for example:

C:\copy thexfile com1: <RETURN>
Now you can return to the terminal emulation program and verify that
the file was loaded.

For More Information For more information on downloading absolute files, refer to the load
command description in the HP 64700 Emulators Terminal Interface:
User’s Reference manual.

Getting Started 2-17

Displaying
Memory In
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format.

 R> m -dm 400..44f

If you display memory in mnemonic format and do not recognize the
instructions listed or see some illegal instructions or opcodes, go back
and make sure the memory locations you are trying to display have
been mapped. If the memory map is not the problem, recheck the linker
load map listing to verify that the absolute addresses of the program
agree with the locations you are trying to display.

 000400 - MOV AW,#0060
 000403 - MOV DS0,AW | MOV AW,#0080
 000408 - MOV DS1,AW | MOV SS,AW | MOV SP,#010
 00040f - MOV DS1:0000,#00
 000415 - NOP
 000416 - MOV AL,DS1:0000
 00041a - CMP AL,#00
 00041c - BE/Z 00416
 00041e - CMP AL,#41
 000420 - BE/Z 00429
 000422 - CMP AL,#42
 000424 - BE/Z 00432
 000426 - BR SHORT 0043b
 000428 - NOP
 000429 - MOV CW,#0012
 00042c - MOV IX,#0000
 00042f - BR SHORT 00441
 000431 - NOP
 000432 - MOV CW,#0012
 000435 - MOV IX,#0012
 000438 - BR SHORT 00441
 00043a - NOP
 00043b - MOV CW,#0012
 00043e - MOV IX,#0024
 000441 - MOV IY,#0001
 000444 - REP/E/Z MOVBKB
 000446 - XOR AL,AL
 000448 - MOV CW,#0021
 00044b - SUB CW,IY
 00044d - REP/E/Z STMB
 00044f - BR SHORT 0040f

2-18 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with the s (step) command. Enter the help s to view the
options available with the step command.

R>help s

A step count of 0 will cause the stepping to continue "forever" (until
some break condition, such as "write to ROM", is encountered, or until
you enter <CTRL>c). The following command will step from the first
address of the sample program.

R>s 1 0:400

Note There are a few cases in which the emulator can not step. Step
command is not accepted between each of the following instructions
and the next instruction. 1) Manipulation instructions for sreg: MOV
sreg,reg16; MOV sreg,mem16; POP sreg. 2) Prefix instructions: PS:,
SS:, DS0:, DS1:, REPC, REPNC, REP, REPE, REPZ, REPNE,
REPNZ, BUSLOCK. 3) EI, RETI, DI.

 s - step emulation processor

 s - step one from current PC
 s <count> - step <count> from current PC
 s <count> $ - step <count> from current PC
 s <count> <addr> - step <count> from <addr>
 s -q <count> <addr> - step <count> from <addr>, quiet mode
 s -w <count> <addr> - step <count> from <addr>, whisper mode

 --- NOTES ---
 STEPCOUNT MUST BE SPECIFIED IF ADDRESS IS SPECIFIED!
 If <addr> is not specified, default is to step from current PC.
 A <count> of 0 implies step forever.

 00000:00400 cmd_rds:Init MOV AW,#0060
 PC = 00000:00403

Getting Started 2-19

Displaying
Registers

The step command shown above executed a MOV AW,#0060H
instruction. Enter the following command to view the contents of the
registers.

M>reg *

The register contents are displayed in a "register modify" command
format. This allows you to save the output of the reg command to a
command file which may later be used to restore the register contents.
(Refer to the po (port options) command description in the Terminal
Interface: User’s Reference for more information on command files.)

Combining
Commands

More than one command may be entered in a single command line if
the commands are separated by semicolons (;). For example, you
could execute the next instruction(s) and display the registers by
entering the following.

M>s;reg

The sample above shows you that MOV DS0,AW and MOV
AW,#0080H are executed by step command. Refer to the Note above.

 reg ps=0000 pc=0403 psw=f002 aw=0060 bw=05d9 cw=0000 dw=0000 sp=0009 bp=0001
 reg ix=0010 iy=0e01 ds0=0000 ds1=0000 ss=0000

 00000:00403 - MOV DS0,AW | MOV AW,#0080
 PC = 00000:00408
 reg ps=0000 pc=0408 psw=f002 aw=0080 bw=05d9 cw=0000 dw=0000 sp=0009 bp=0001
 reg ix=0010 iy=0e01 ds0=0060 ds1=0000 ss=0000

2-20 Getting Started

Using Macros Suppose you want to continue stepping through the program,
displaying registers after each step. You could continue entering s
commands followed by reg commands, but you may find this tiresome.
It is easier to use a macro to perform a sequence of commands which
will be entered again and again.

Macros allow you to combine and store commands. For example, to
define a macro which will display registers after every step, enter the
following command.

M>mac st={s;reg}

Once the st macro has been defined, you can use it as you would any
other command.

M>st

Command Recall The command recall feature is yet another, easier way to enter
commands again and again. You can press <CTRL>r to recall the
commands which have just been entered. If you go past the command
of interest, you can press <CTRL>b to move forward through the list
of saved commands. To continue stepping through the sample program,
you could repeatedly press <CTRL>r to recall and <RETURN> to
execute the st macro.

 # s ; reg
 00000:00408 - MOV DS1,AW | MOV SS,AW | MOV SP,#0100
 PC = 00000:0040f
 reg ps=0000 pc=040f psw=f002 aw=0080 bw=05d9 cw=0000 dw=0000 sp=0100 bp=0001
 reg ix=0010 iy=0e01 ds0=0060 ds1=0080 ss=0080

Getting Started 2-21

Repeating Commands The rep command is also helpful when entering commands
repetitively. You can repeat the execution of macros as well
commands. For example, you could enter the following command to
cause the st macro to be executed four times.

M>rep 4 st

Command Line
Editing

The terminal interface supports the use of HP-UX ksh(1)-like editing
of the command line. The default is for the command line editing
feature to be disabled to be compatible with earlier versions of the
interface. Use the cl command to enable command line editing.

M>cl -e

Refer to "Command Line Editing" in the HP 64700-Series Emulators
Terminal Interface Reference for information on using the command
line editing feature.

 # s ; reg
 00000:0040f cmd_rds:Read_Cmd MOV DS1:0000,#00
 PC = 00000:00415
 reg ps=0000 pc=0415 psw=f002 aw=0080 bw=05d9 cw=0000 dw=0000 sp=0100 bp=0001
 reg ix=0010 iy=0e01 ds0=0060 ds1=0080 ss=0080
 # s ; reg
 00000:00415 - NOP
 PC = 00000:00416
 reg ps=0000 pc=0416 psw=f002 aw=0080 bw=05d9 cw=0000 dw=0000 sp=0100 bp=0001
 reg ix=0010 iy=0e01 ds0=0060 ds1=0080 ss=0080
 # s ; reg
 00000:00416 cmd_rds:Scan MOV AL,DS1:0000
 PC = 00000:0041a
 reg ps=0000 pc=041a psw=f002 aw=0000 bw=05d9 cw=0000 dw=0000 sp=0100 bp=0001
 reg ix=0010 iy=0e01 ds0=0060 ds1=0080 ss=0080
 # s ; reg
 00000:0041a - CMP AL,#00
 PC = 00000:0041c
 reg ps=0000 pc=041c psw=f046 aw=0000 bw=05d9 cw=0000 dw=0000 sp=0100 bp=0001
 reg ix=0010 iy=0e01 ds0=0060 ds1=0080 ss=0080

2-22 Getting Started

Modifying Memory The preceding step and register commands show the sample program is
executing Scan loop, where it continually reads the command input
byte to check if a command had been entered. Use the m (memory)
command to modify the command input byte.

M>m 800=41
To verify that 41H has been written to 800H, enter the following
command.

M>m -db 800
000800..000800 41

When memory was displayed in byte format earlier, the display mode
was changed to "byte". The display and access modes from previous
commands are saved and they become the defaults.

Specifying the
Access and Display

Modes

There are a couple different ways to modify the display and access
modes. One is to explicitly specify the mode with the command you
are entering, as with the command m -db 800. The mo (display and
access mode) command is another way to change the default mode.
For example, to display the current modes, define the display mode as
"word", and redisplay 800H, enter the following commands.

M>mo
mo -ab -db

M>mo -dw
M>m 800

000800..000800 0041

To continue the rest of program.

M>r
U>

Display the Msg_Dest memory locations (destination of the message,
801H) to verify that the program moved the correct ASCII bytes. At
this time we want to see correct byte value, so "-db" option (display
with byte) is used.

U>m -db 801..820
000801..000810 43 6f 6d 6d 61 6e 64 20 41 20 65 6e 74 65 72 65
000811..000820 64 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Getting Started 2-23

Searching
Memory for Data

The ser (search memory for data) command is another way to verify
that the program did what it was supposed to do.

U>ser 800..820="Command A entered "
pattern match at address: 000801

If any part of the data specified in the ser command is not found, no
match is displayed (No message displayed).

Breaking into the
Monitor

You can use the break command (b) command to generate a break to
the background monitor. While the break will occur as soon as
possible, the actual stopping point may be many cycles after the break
request (depend on the type of instruction being executed and whether
the processor is in a hold state).

U>b
M>

Using Software
Breakpoints

You can stop program execution at specific address by using bp
(software breakpoint) command. When you define or enable a software
breakpoint to a specified address, the emulator will replace the opcode
with a BRK 3 instruction. When the emulator detects the breakpoint
interrupt instruction (CC hex), user program breaks to the monitor, and
the original opcode will be replaced at the software breakpoint address.

Since the system controller knows the locations of the defined software
breakpoints, it can determine whether the breakpint interrupt
instruction was generated by an enabled software breakpoint or by a
single-byte interrupt instruction in your target system.

If the single-byte interrupt was generated by a software brekpoint,
execution breaks to the monitor, and the brekpoint interrupt instruction

2-24 Getting Started

(BRK 3) is replaced by the original opcode. A subsequent run or step
command will execute from this address.

If the single-byte interrupt was geneated by a BRK 3 instruction in the
target system, execution still breaks to the monitor, and an "Undefined
software breakpoint" message is displayed.

Caution Software breakpoints should not be set, enabled, disabled, or removed
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Note Because software brekpoints are implemented by the replacing opcodes
with the brekpoint interrupt instruction (CC hex), you can not define
the software breakpoints in the target ROM.

However you can copy target ROM into the emulation memory which
does allow you to use software brekpoints. Once target ROM is copied
into the emulation memory, software breakpoints may be used
normally at the addresses in these emulation memory locations. (see
the "Target ROM Debug Topics" section of the "In-Circuit Emulation"
chapter.)

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Getting Started 2-25

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Note Software breakpoint will be ignored, when software breakpoint and
other emulation break (for example, break command (b), simple trigger
command (tg), etc.) occur at the same time. Refer to HP 64700
Emulators Terminal Interface: User’s Reference manual.

Displaying and
Modifying the Break

Conditions

Before you can define software breakpoints, you must enable software
breakpoints with the bc (break conditions) command. To view the
default break conditions and change the software breakpoint condition,
enter the bc command with no option. This command displays current
configuration of break conditions.

M>bc
bc -d bp #disable
bc -e rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

To enable the software break point feature enter

M>bc -e bp

Defining a Software
Breakpoint

Now that the software breakpoint feature is enabled, you can define
software breakpoints. Enter the following command to break on the
address of the Cmd_I (address 43aH) label.

M>bp 43b
M>bp

bp 00043b #enabled

Run the program, and verify that execution broke at the appropriate
address.

M>r 0:400
U>m 800=43

!ASYNC_STAT 615! Software breakpoint: 00000:00043b

2-26 Getting Started

M>st
s;reg
00000:0043b - MOV CW,#0012
PC = 00000:0043e
reg ps=0000 pc=043e psw=0090 aw=0001 bw=0000 cw=0012 dw=ff80 sp=0100 bp=90ff
reg ix=0012 iy=0021 ds0=0060 ds1=0080 ss=0080

When a breakpoint is hit, it becomes disabled. You can use the -e
option to the bp command to re-enable the software breakpoint.

M>bp
BREAKPOINT FEATURE IS ENABLED
bp 00043b #disabled

M>bp -e 00043b
M>bp

BREAKPOINT FEATURE IS ENABLED
bp 00043b #enabled

M>r
U>m 800=43

!ASYNC_STAT 615! Software breakpoint: 00043b

M>bp
BREAKPOINT FEATURE IS ENABLED
bp 00043b #disabled

Getting Started 2-27

Using the Analyzer

Predefined Trace
Labels

Three trace labels are predefined in the 70216 emulator. You can view
these labels by entering the tlb (trace label) command with no options.

M>tlb
Emulation trace labels
tlb addr 0..19
tlb data 20..35
tlb stat 36..50

Predefined Status
Equates

Common values for the 70216 status trace signals have been
predefined. You can view these predefined equates by entering the
equ command with no options.

M>equ

These equates may be used to specify values for the stat trace label
when qualifying trace conditions.

 ### Equates ###
 equ casdma=0xxx1xxxx1010111y
 equ cpu=0xxx1xxxx00xxxxxy
 equ dma=0xxx1xxxx10x01xxy
 equ ds0=0xxx1xx11xxxxxxxy
 equ ds1=0xxx1xx00xxxxxxxy
 equ em80=0xx1xxxxxxxxxxxxy
 equ exec=0xxx0xxxxxxxxxxxy
 equ extio=0xxx1xxxx00010xxy
 equ fetch=0xxx1xxxx001x100y
 equ grd=0xxx10xxxxxxxxxxy
 equ haltack=0xxx1xxxxxxx1011y
 equ holdack=0xxx1xxxx11xxxxxy
 equ intack=0xxx1xxxx001x000y
 equ intio=0xxx1xxxx00000xxy
 equ mem=0xxx1xxxxxx0x1xxy
 equ mon=0x0xxxxxxxxxxxxxy
 equ native=0xx0xxxxxxxxxxxxy
 equ ps=0xxx1xx10xxxxxxxy
 equ read=0xxx1xxxxxx0xx01y
 equ refresh=0xxx1xxxx0100101y
 equ rom=0xxx1x0xxxxxxxxxy
 equ ss=0xxx1xx01xxxxxxxy
 equ usr=0x1xxxxxxxxxxxxxy
 equ write=0xxx1xxxxxx0xx10y

2-28 Getting Started

Specifying a Simple
Trigger

The tg analyzer command is a simple way to specify a condition on
which to trigger the analyzer. Suppose you wish to trace the states of
the program after the read of a "B" (42 hex) command from the
command input byte. Enter the following commands to set up the trace,
run the program, issue the trace, and display the trace status. (Note that
the analyzer is to search for a lower byte read of 42H because the
address is even.)

M>tg addr=800 and data=0xx42

If you wish to trace the odd address and the data, enter the following
command to set up the trace (Note that the data value should be entered
like as 0xx42 or 42xx when using the 70216 emulator.): tg addr=801
and data=42xx

M>t
emulation trace started

M>r 0:400
U>ts

--- Emulation Trace Status ---
New User trace running
Arm ignored
Trigger not in memory
Arm to trigger ?
States ? (512) ?..?
Sequence term 1
Occurrence left 1

The trace status shows that the trigger condition has not been found.
You would not expect the trigger to be found because no commands
have been entered. Modify the command input byte to "B"(42H) and
display the trace status again.

U>m 800=42
U>ts

---Emulation Trace Status ---
New User trace complete
Arm ignored
Trigger in memory
Arm to trigger ?
States 512 (512) 0..511
Sequence term 2
Occurrence left 1

The trace status shows that the trigger has been found, and that 512
states have been stored in trace memory. Enter the following command
to display the first 20 states of the trace.

U>tl -t 20

Getting Started 2-29

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0.

To list the next lines of the trace, enter the following command.

U>tl

 Line addr,H 70216 mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------------ ------- --------- ---
 0 00800 ff42 memory read 0000 --- +
 1 0041a exec 0000 0.400 uS .
 2 0041c f874 fetch 0000 0.480 uS .
 3 0041c BE/Z 00416 0000 0.520 uS .
 4 0041e 413c fetch 0000 0.360 uS .
 5 0041e CMP AL,#41 0000 0.520 uS .
 6 00420 0774 fetch 0000 0.360 uS .
 7 00420 BE/Z 00429 0000 0.520 uS .
 8 00422 423c fetch 0000 0.360 uS .
 9 00422 CMP AL,#42 0000 0.480 uS .
 10 00424 0c74 fetch 0000 0.400 uS .
 11 00424 BE/Z 00432 0000 0.480 uS .
 12 00426 13eb fetch 0000 0.400 uS .
 13 0009a xxxx refresh 0000 0.880 uS .
 14 00432 12b9 fetch 0000 0.840 uS .
 15 00432 MOV CW,#0012 0000 0.520 uS .
 16 00434 be00 fetch 0000 0.360 uS .
 17 00435 MOV IX,#0012 0000 0.640 uS .
 18 00436 0012 fetch 0000 0.240 uS .
 19 00438 07eb fetch 0000 0.880 uS .

 Line addr,H 70216 mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------------ ------- --------- ---
 20 00438 BR SHORT 00441 0000 0.520 uS .
 21 0043a b990 fetch 0000 0.360 uS .
 22 0009c xxxx refresh 0000 0.880 uS .
 23 00441 bfff fetch 0000 0.880 uS .
 24 00441 MOV IY,#0001 0000 0.480 uS .
 25 00442 0001 fetch 0000 0.400 uS .
 26 00444 a4f3 fetch 0000 0.840 uS .
 27 00444 REP/E/Z MOVBKB 0000 0.520 uS .
 28 00445 xxxx exec 0000 0.240 uS .
 29 00446 c032 fetch 0000 0.120 uS .
 30 00448 21b9 fetch 0000 0.880 uS .
 31 00612 ff43 memory read 0000 0.880 uS .
 32 00801 43ff memory write 0000 0.880 uS .
 33 00613 6fff memory read 0000 0.880 uS .
 34 00802 ff6f memory write 0000 0.880 uS .
 35 00614 ff6d memory read 0000 0.880 uS .
 36 00803 6dff memory write 0000 0.840 uS .
 37 00615 6dff memory read 0000 0.880 uS .
 38 00804 ff6d memory write 0000 0.880 uS .
 39 00616 ff61 memory read 0000 0.880 uS .

2-30 Getting Started

For a Complete
Description

For a complete description of the HP 64700 Series analyzer, refer to
the HP 64700 Emulators Terminal Interface: Analyzer User’s Guide.

Copying Memory The cp (copy memory) command gives you the ability to copy the
contents of one range of memory to another. This is a handy feature to
test things like the relocatability of programs, etc. To test if the sample
program is relocatable within the same segment, enter the following
command to copy the program to an unused, but mapped, area of
emulation memory. After the program is copied, run it from its new
start address to verify that the program is indeed relocatable.

U>cp 500=400..44f
U>r 0:500
U>

The prompt shows that the emulator is executing user code, so it looks
as if the program is relocatable. You may want to issue a simple trace
to verify that the program works while running from its new location.

U>tg any
U>t
Emulation trace started
U>tl

Getting Started 2-31

Testing for
Coverage

For each byte of emulation memory, there is an additional bit of
emulation RAM used by the emulator to provide coverage testing.
When the emulator is executing the target program and an access is
made to a byte in emulation memory, the corresponding bit of coverage
memory is set. With the cov command, you can see which bytes in a
range of emulation memory have (or have not) been accessed.

For example, suppose you want to determine how extensive some test
input is in exercising a program (in other words, how much of the
program is covered by using the test input). You can run the program
with the test input and then use the cov command to display which
locations in the program range were accessed.

The examples which follow use the cov command to perform coverage
testing on the sample program. Before performing coverage tests, reset
all coverage bits to non-accessed by entering the following command.

U>cov -r

 Line addr,H 70216 mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------------ ------- --------- ---
 0 00516 a026 fetch 0000 --- +
 1 00516 MOV AL,DS1:0000 0000 0.520 uS .
 2 00517 xxxx exec 0000 0.240 uS .
 3 00518 0000 fetch 0000 0.120 uS .
 4 0051a 003c fetch 0000 0.880 uS .
 5 00800 ff00 memory read 0000 0.880 uS .
 6 0051a CMP AL,#00 0000 0.360 uS .
 7 0051c f874 fetch 0000 0.480 uS .
 8 0051c BE/Z 00516 0000 0.520 uS .
 9 0051e 413c fetch 0000 0.360 uS .
 10 00114 xxxx refresh 0000 0.880 uS .
 11 00516 a026 fetch 0000 0.880 uS .
 12 00516 MOV AL,DS1:0000 0000 0.520 uS .
 13 00517 xxxx exec 0000 0.240 uS .
 14 00518 0000 fetch 0000 0.120 uS .
 15 0051a 003c fetch 0000 0.880 uS .
 16 00800 ff00 memory read 0000 0.880 uS .
 17 0051a CMP AL,#00 0000 0.360 uS .
 18 0051c f874 fetch 0000 0.520 uS .
 19 0051c BE/Z 00516 0000 0.480 uS .

2-32 Getting Started

Run the program from the start address (00000:00400H) and use the
cov command to display how much of the program is accessed before
any commands are entered (refer to the "ADDRESS" section in the
"70216 Emulator Specific Command Syntax" appendix).

U>r 400
R>cov -a 400..450

coverage list - list of address ranges accessed
0000400..000041f

percentage of memory accessed: % 39.5

Now enter the sample program commands "A", "B", and an invalid
command ("C" will do); display the coverage bits for the address range
of the sample program after each command. You can see that more of
the sample program address range is covered after each command is
entered.

U>m 800=41
U>cov -a 400..450

coverage list - list of address ranges accessed
0000400..0000423
0000429..0000433
0000441..0000450

percentage of memory accessed: % 77.8

U>m 800=42
U>cov -a 400..450

coverage list - list of address ranges accessed
0000400..000043b
0000441..0000450

percentage of memory accessed: % 92.6

U>m 800=43
U>cov -a 400..450

coverage list - list of address ranges accessed
0000400..0000450

percentage of memory accessed: % 100.0

Getting Started 2-33

Resetting the
Emulator

To reset the emulator, enter the following command.

U>rst
R>

The emulator is held in a reset state (suspended) until a b (break), r
(run), or s (step) command is entered. A CMB execute signal will also
cause the emulator to run if reset.

The -m option to the rst command specifies that the emulator begin
executing in the monitor after reset instead of remaining in the
suspended state.

R>rst -m
M>

2-34 Getting Started

3

Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which are unique to the 70216 emulator such as the cf command which
allows you to specify emulator configuration.
A reference-type description of the 70216 emulator configuration items
can be found in the "70216 Emulator Specific Command Syntax"
appendix.

This chapter will:

Describe how to run in real-time and how to break on an
analyzer trigger. These topics are related to program execution
in general.

Describe how to locate the monitor, These topics are related to
the monitor options.

Describe how to do other things which do not fall into the
categories mentioned above: how to specify a run from reset.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

Emulation Topics 3-1

Execution Topics The descriptions in this section are of emulation tasks which involve
program execution in general.

Restricting the
Emulator to

Real-Time Runs

By default, the emulator is not restricted to real-time runs. However,
you may wish to restrict runs to real-time to prevent accidental breaks
that might cause target system problems. Use the cf (configuration)
command to enable the rrt configuration item.

R>cf rrt=en
When runs are restricted to real-time and the emulator is running user
code, the system refuses all commands that cause a break except rst
(reset), r (run), s(step), and b (break to monitor).

Because the emulator contains dual-port emulation memory,
commands which access emulation memory are allowed while runs are
restricted to real-time.

The following commands are not allowed when runs are restricted to
real-time:

reg (register display/modification).

m (memory display/modification) commands that access
target system memory.

io (I/O display/modification).

The following command will disable the restriction to real-time runs
and allow the system to accept commands normally.

R>cf rrt=dis

3-2 Emulation Topics

Setting Up to Break
on an Analyzer

Trigger

The analyzer may generate a break request to the emulation processor.
To set up to break on an analyzer trigger, follow the steps below.

Specify the Signal Driven when Trigger is Found

Use the tgout (trigger output) command to specify which signal is
driven when the analyzer triggers. Either the "trig1" or the "trig2"
signal can be driven on the trigger.

R>tgout trig1

Enable the Break Condition

Enable the "trig1" break condition.

R>bc -e trig1
After you specify the trigger to drive "trig1" and enable the "trig1"
break condition, set up the trace, issue the t (trace) command, and run
the program.

Making Coordinated
Measurements

Coordinated measurements are measurements made between multiple
HP 64700 Series emulators which communicate via the Coordinated
Measurement Bus (CMB). Coordinated measurements can also include
other instruments which communicate via the BNC connector. A
trigger signal from the CMB or BNC can break emulator execution into
the monitor, or it can arm the analyzer. An analyzer can send a signal
out on the CMB or BNC when it is triggered. The emulator can send an
EXECUTE signal out on the CMB when you enter the x (execute)
command.

Coordinated measurements can be used to start or stop multiple
emulators, start multiple trace measurements, or to arm multiple
analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or
BNC trigger signals are interpreted as a "request to break". The
emulator looks at the state of the CMB READY (active high) line to
determine if it should break. It does not interact with the EXECUTE
(active low) or TRIGGER (active low) signals.

Emulation Topics 3-3

For information on how to make coordinated measurements, refer to
the HP 64700 Emulators Terminal Interface: Coordinated
Measurement Bus User’s Guide manual.

Monitor Option
Topics

The monitor is a program which is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the processor
instructions which access the target system. After the monitor has
performed its task, execution returns to the target program.

The background monitor does not take up any processor address space
and does not need to be linked to the target program. The monitor
resides in dedicated background memory.

Background Monitor When the emulator is powered up or initialized, the background
monitor is selected by default.

Foreground monitor The default emulator configuration selects the background monitor.
You can change the emulator configuration to select the foreground
monitor. When you select the foreground monitor, processor address
space is taken up. The foreground monitor takes up 4K bytes of
memory. Use the cf command to select the foreground monitor.

R>cf mon=fg..2000
2000 defines an hexadecimal address (on a 4K byte boundary) where
the monitor will be located. (Note: this will not load the monitor, it
only specifies its location.) The start address of the foreground monitor
should be 4k boundary and in between 1000H and 0FE000H.
Foreground monitor must then be loaded into emulation memory. A
memory mapper term is automatically created when you execute the cf

3-4 Emulation Topics

mon=fg command to reserve 4K bytes of memory space for the
monitor. The memory map is reset any time cf mon=bg is entered. It
is only reset when the cf mon=bg command is entered if the emulator
is not already configured to use the background monitor.

Note The foreground monitor provided with the 70216 emulator should not
be located at a base address 0 or 0ff000 hex; because the 70216
microprocessor’s vector table is located.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

Emulation Topics 3-5

Other Topics This section describes how other emulation tasks, which did not fit into
the previous groupings, are performed.

Selecting Accept Or
Ignore Target System

Reset

The 70216 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to "cf
rst" configuration setting in "70216 Emulator specific Command
Syntax" appendix).

While running in background monitor, the 70216 emulator ignores
target system reset completely independent on this setting.

You can ignore reset from target system completely by specifying "cf
rst=dis". In this configuration emulator ignore any reset from target
system. Specifying "cf rst=en" , this is a default configuration, make
the emulator to respond to reset from target system. In this
configuration, emulator will accept reset and execute from reset vector
(0FFFF0 hex) as same manner as actual microprocessor after reset is
inactivated

3-6 Emulation Topics

4

In-Circuit Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Describe how to use software breakpoints with ROMed code,
how to perform coverage testing on ROMed code, and how to
test patches to ROMed code. These topics relate to the
debugging of target system ROM.

Describe some of restrictions and considerations.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concept of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation Topics 4-1

Installing the
Emulator Probe
into a Target
System

The 70216 emulator probe has a 68-pin PLCC connector;
The 70216 emulator is shipped with a pin protector over the target
system probe. This guard is designed to prevent impact damage to the
pins and should be left in place while you are not using the emulator.

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the 70216 emulator.

Power Down Target System. Turn off power to the user target
system and to the 70216 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The 70216 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the 70216 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

4-2 In-Circuit Emulation Topics

Auxiliary Output Line One auxiliary output lines, "TARGET BUFFER DISABLE " is
provided with the 70216 emulator.

Caution DAMAGE TO THE EMULATOR PROBE WILL RESULT IF
THE AUXILIARY OUTPUT LINES ARE INCORRECTLY
INSTALLED.
When installing the auxiliary output line into the end of the emulator
probe cable, make sure that the ground pin on the auxiliary output line
(labeled with white dots) is matched with the ground receptacles in the
end of the emulator probe cable.

Figure 4-1. Auxiliary Output Lines

In-Circuit Emulation Topics 4-3

TARGET BUFFER DISABLE ---This active-high output is used
when the co-processor memory accesses to emulation memory will be
operated. This output is used to tristate (in other words, select the high
Z output) any target system devices on the 70216 data bus. Target
system devices should be tristated because co-processor memory reads
from emulation memory will cause data to be output on the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the
following timing in the co-processor memory access cycle.

4-4 In-Circuit Emulation Topics

Installing into a
PLCC Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70216 microprocessor (PLCC type) from the
target system socket. Note the location of pin 1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Figure 4-2. Installing into a PLCC type socket

In-Circuit Emulation Topics 4-5

Installing into a
PGA Type Socket

You can use an ITT CANNON "LCS-68-12" PLCC connector to plug
into the target system socket of an PGA type. You may use this socket
with the pin protector to connect the microprocessor connector to the
target system. To connect the microprocessor connector to the target
system, proceeded with the following instructions.

Remove the 70216 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Place the microprocessor connector with a PLCC-to-PGA
socket and a pin protector (see figure 4-3), attached to the end
of the probe cable, into the target system microprocessor
socket.

Figure 4-3. Installing into a PGA type socket

4-6 In-Circuit Emulation Topics

Execution Topics The descriptions in this section are of emulation tasks which involve
program execution in general.

Specifying the
Emulator Clock

Source

The default 70208 and 70216 emulator configuration selects the
internal 8 MHz (system clock speed) clock as the emulator clock
source. The default 70208H and 70216H emulator configuration selects
the internal 16 MHz (system clock speed) clock as the emulator clock
source. You should configure the 70208/70208H and 70216/70216H
emulator to select an external target system clock source for the
"in-circuit" emulation. Use the cf (configuration) command and the
clk configuration item to specify that the emulator use a target system
clock.

R>cf clk=ext
To reconfigure the emulator to use its internal clock, enter the
following command.

R>cf clk=int

In-Circuit Emulation Topics 4-7

Emulator Probe
Signal Topics

The descriptions in this section are of emulation tasks which involve
emulator probe signals while in background or while accessing
emulation memory.

Allowing the Target
System to Insert Wait

States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready lines while emulation memory is being accessed. Use the cf
(configuration) command with the rdy configuration item to cause
emulation memory accesses to honor target system ready signals.

R>cf rdy=lk
When the ready relationship is locked to the target system, emulation
memory accesses honor ready signals from the target system (wait
states are inserted if requested).

To reconfigure so that emulation memory accesses do not honor target
system ready signals, enter the following command.

R>cf rdy=unlk
When the ready relationship is not locked to the target system,
emulation memory accesses ignore ready signals from the target
system (no wait states are inserted).

Target ROM
Debug Topics

The descriptions in this section are of emulation tasks which involve
debugging target ROM. The tasks described below are made possible
by the cim (copy target system memory image) command.
The cim command allows you to read the contents of target memory
into the corresponding emulation memory locations. Moving target
ROM contents into emulation memory is the key which allows you to
perform the tasks described below.
For example, if target ROM exists at locations 400H through 0A38H,
you can copy target ROM into emulation memory with the following
commands.

R>map 400..0bff erom
R>cim 400..0a38

4-8 In-Circuit Emulation Topics

Coverage Testing
ROMed Code

Coverage testing (as described in the "Getting Started" chapter) can
only be performed on emulation memory. However, if you wish to
perform coverage tests on code in target system ROM, you can copy
target ROM into emulation memory and perform the coverage tests on
your ROMed code.

Once target ROM is copied into emulation memory, coverage testing
may be done normally at addresses in these emulation memory
locations (refer to the "ADDRESS" section the "70216 Emulator
Specific Command Syntax" appendix).

U>cov -a 400..0a38

Modifying ROMed
Code

Suppose that, while debugging your target system, you begin to suspect
a bug in some target ROM code. You might want to fix or "patch" this
code before programming new ROMs. This can also be done by
copying target system ROM into emulation memory with the cim
(copy target memory image) command. Once the contents of target
ROM are copied into emulation memory, you can modify emulation
memory to "patch" your suspected code.

In-Circuit Emulation Topics 4-9

Electrical
Characteristics
(70208/70216)

The AC characteristics of the 70208 and 70216 emulator are listed in
the following table

Table 4-2 70208/70216 AC Electrical Specifications

uPD70208
uPD70216

10MHz

HP 64791A/2A

Unit

Worst Case Typical

Characteristic Symbol Min Max Min Max

External Clock Cycle Times tCYX 50 250 50 250 ns

External Clock High Level Width tXXH 19 19 ns

External Clock Low Level Width tXXL 19 19 ns

External Clock Rise Time tKR 5 5 ns

External Clock Fall Time tKF 5 5 ns

CLKOUT Cycle Time tCYK 100 500 100 500 ns

CLKOUT High Level Width tKKH 45 45 ns

CLKOUT Low Level Width tKKL 45 45 ns

CLKOUT Rise Time tKR 5 5 ns

CLKOUT Fall Time tKF 5 5 ns

CLKOUT Delay Time (External Clock) tDXK 40 80 ns

Input Rise Time (Except External Clock) tIR 15 15 ns

Input Fall Time (Except External Clock) tIF 10 10 ns

4-10 In-Circuit Emulation Topics

Table 4-2 70208/70216 AC Electrical Specification(Cont’d)

Output Rise Time (Except CLKOUT) tOR 15 15 ns

Output Fall Time (Except CLKOUT) tOF 10 10 ns

RESET Setup Time (CLKOUT) tSRESK 20 61.5 ns

RESET Hold Time (CLKOUT) tHKRES 25 66.5 ns

RESETOUT Output Delay (CLKOUT) tDKRES 5 50 0 55.5 ns

READY Inactive Setup Time (CLKOUT) tSRYLK 15 36.5 ns

READY Inactive Hold Time (CLKOUT) tHKRYL 20 41.5 ns

READY Active Setup Time (CLKOUT) tSRYHK 15 36.5 ns

READY Active Hold Time (CLKOUT) tHKRYH 20 41.5 ns

NMI Setup Time (CLKOUT) tSNMIK 15 46.5 ns

POLL Setup Time (CLKOUT) tSPOKL 20 48.5 ns

Data Setup Time (CLKOUT) tSDK 15 38 ns

Data Hold Time (CLKOUT) tHKD 10 33 ns

CLKOUT To Address Delay Time tDKA 10 50 5 55.5 ns

CLKOUT To Address Hold Time tHKA 10 5 ns

CLKOUT Low To PS Delay Time tDKP 10 50 5 55.5 ns

CLKOUT High To PS Float Delay Time tFKP 10 50 5 55.5 ns

Address Setup Time (ASTB) tSAST 25 23 ns

CLKOUT Low To Address Float Delay Time tFKA 10 50 10 55.5 ns

In-Circuit Emulation Topics 4-11

Table 4-2 70208/216 AC Electrical Specification(Cont’d)

CLKOUT Low To ASTB High Delay Time tDKSTH 40 48.5 ns

CLKOUT High To ASTB Low Delay Time tDKSTL 45 53.5 ns

ASTB High Level Width tSTST 35 35 ns

ASTB Low To Address Hold Time tHSTA 25 25 ns

CLKOUT To CONTROL1 Delay Time(*1) tDKCT1 10 60 8.5 68.5 ns

CLKOUT To CONTROL2 Delay Time(*2) tDKCT2 10 55 8.5 63.5 ns

Address Float To RD Low Delay Time tDAFRL 0 0 ns

CLKOUT Low To RD Low Delay Time tDKRL 10 65 10 73.5 ns

CLKOUT Low To RD High Delay Time tDKRH 10 60 10 68.5 ns

RD High To Address Delay Time tDRHA 60 51.5 ns

RD Low Level Width tRR 160 160 ns

BUFEN High To BUFR/W Delay Time tDBECT 25 38.5 ns

CLKOUT Low To Data Delay Time tDKD 10 60 5 65 ns

CLKOUT Low To Data Float Delay Time tFKD 10 60 5 65 ns

WR Low Level Width tWW 160 160 ns

WR High To BUFEN High OR BUFR/W
Low

tDWCT 25 25 ns

CLKOUT High To BS Low Delay Time tDKBL 10 60 10.5 68.5 ns

4-12 In-Circuit Emulation Topics

Table 4-2 70208/216 AC Electrical Specification(Cont’d)

CLKOUT Low To BS High Delay Time tDKBH 10 60 10.5 68.5 ns

HLDRQ Setup Time (CLKOUT) tSHQK 20 53 ns

CLKOUT Low TO HLDAK Delay Time tDKHA 10 70 5 75 ns

CLKOUT High To DMAAK Delay Time tDKHDA 10 60 5 65 ns

CLKOUT Low To DMAAK Delay Time tDKLDA 10 90 5 75 ns

WR Low Level Width
(DMA Extended Write)

tWW1 160 160 ns

WR Low Level Width
(DMA Normal Write)

tWW2 60 60 ns

RD Low, WR Low Delay Time (DMAAK) tDDARW 15 16.5 ns

DMAAK Hihg Delay Time (RD) tDRHDAH 15 16.5 ns

RD High Delay Time (WR) tDWHRH 5 5 ns

TC Output Delay Time (CLKOUT) tDKTCL 60 60 ns

TC OFF Delay Time (CLKOUT) tDKTCF 60 60 ns

TC Low Level Width tTCTCL 75 75 ns

TC Pull Up Delay Time (CLKOUT) tDKTCH 135 135 ns

END Setup Time (CLKOUT) tSEDK 35 51.5 ns

END Low Level Width tEDEDL 100 100 ns

DMARQ Setup Time (CLKOUT) tSDQF 35 72.5 ns

INTPn Low Level Width tIPIPL 100 100 ns

In-Circuit Emulation Topics 4-13

Table 4-2 70208/70216 AC Electrical Specification(Cont’d)

RxD Setup Time (SCU Internal Clock) tSRX 1000 1000 ns

RxD Hold Time (SCU Internal Clock) tHRX 1000 1000 ns

CLKOUT Low To SRDY Delay Time tDKSR 150 155 ns

TOUT1 Low To TxD Delay Time tDTX 500 505 ns

TCTL2 Setup Time (CLKOUT) tSGK 50 50 ns

TCTL2 Setup Time (TCLK) tSGTK 50 50 ns

TCTL2 Hold Time (CLKOUT) tHKG 100 100 ns

TCTL2 Hold Time (TCLK) tHTKG 50 50 ns

TCTL2 High Level Width tGGH 50 50 ns

TCTL2 Low Level Width tGGL 50 50 ns

TOUT Output Delay Time (CLKOUT) tDKTO 200 205 ns

TOUT Output Delay Time (TCLK) tDTKTO 150 155 ns

TOUT Output Delay Time (TCTL2) tDGTO 120 125 ns

TCLK Rise Time tTKR 25 25 ns

TCLK Fall Time tTKF 25 25 ns

TCLK High Level Width tTKTKH 50 50 ns

TCLK Low Level Width tTKTKL 50 50 ns

TCLK Cycle Time tCYTK 124 DC 124 DC ns

Access Rate tAI 150 150 ns

4-14 In-Circuit Emulation Topics

Table 4-2 70208/70216 AC Electrical Specification(Cont’d)

REFRQ High Delay Time (MRD) tDRQHRH 15 16.5 ns

*1 MWR, IOWR during DMA cycle

*2 BUFEN, BUFR/W, INTAK, REFRQ, and MWR, IOWR during CPU cycle

In-Circuit Emulation Topics 4-15

Electrical
Characteristics
(70208H/70216H)

The AC characteristics of the 70208H and 70216H emulator are listed
in the following table

Table 4-2 70208H/70216H AC Electrical Specifications

uPD70208Hu
PD70216H

16MHz

HP 64791B/2B

Unit

Worst Case Typical

Characteristic Symbol Min Max Min Max

External Clock Cycle Times tCYX 31.5 DC 31.25 500 ns

External Clock High Level Width tXXH 12 12 ns

External Clock Low Level Width tXXL 12 12 ns

External Clock Rise Time tKR 5 5 ns

External Clock Fall Time tKF 5 5 ns

CLKOUT Cycle Time tCYK 62.5 DC 62.5 1000 ns

CLKOUT High Level Width tKKH 26.25 26.25 ns

CLKOUT Low Level Width tKKL 26.25 26.25 ns

CLKOUT Rise Time tKR 5 5 ns

CLKOUT Fall Time tKF 5 5 ns

CLKOUT Delay Time (External Clock) tDXK 20 60 ns

Input Rise Time (Except External Clock) tIR 15 15 ns

Input Fall Time (Except External Clock) tIF 10 10 ns

4-16 In-Circuit Emulation Topics

Table 4-2 70208H/70216H AC Electrical Specification(Cont’d)

Output Rise Time (Except CLKOUT) tOR 15 15 ns

Output Fall Time (Except CLKOUT) tOF 10 10 ns

RESET Setup Time (CLKOUT) tSRESK 20 61.5 ns

RESET Hold Time (CLKOUT) tHKRES 15 56.5 ns

RESETOUT Output Delay (CLKOUT) tDKRES 5 30 0 35 ns

READY Inactive Setup Time (CLKOUT) tSRYLK 7 28.5 ns

READY Inactive Hold Time (CLKOUT) tHKRYL 15 36.5 ns

READY Active Setup Time (CLKOUT) tSRYHK 7 28.5 ns

READY Active Hold Time (CLKOUT) tHKRYH 15 36.5 ns

NMI Setup Time (CLKOUT) tSNMIK 15 46.5 ns

POLL Setup Time (CLKOUT) tSPOLK 20 48.5 ns

Data Setup Time (CLKOUT) tSDK 7 30 ns

Data Hold Time (CLKOUT) tHKD 5 28 ns

CLKOUT To Address Delay Time tDKA 5 25 0 30.5 ns

CLKOUT To Address Hold Time tHKA 10 5 ns

CLKOUT Low To PS Delay Time tDKP 5 30 0 35.5 ns

CLKOUT High To PS Float Delay Time tFKP 5 30 0 35.5 ns

Address Setup Time (ASTB) tSAST 16.25 14.25 ns

CLKOUT Low To Address Float Delay Time tFKA 10 30 5 35.5 ns

In-Circuit Emulation Topics 4-17

Table 4-2 70208H/216H AC Electrical Specification(Cont’d)

CLKOUT Low To ASTB High Delay Time tDKSTH 25 33.5 ns

CLKOUT High To ASTB Low Delay Time tDKSTL 30 38.5 ns

ASTB High Level Width tSTST 16.25 16.25 ns

ASTB Low To Address Hold Time tHSTA 16.25 16.25 ns

CLKOUT To CONTROL1 Delay Time(*1) tDKCT1 5 40 3.5 48.5 ns

CLKOUT To CONTROL2 Delay Time(*2) tDKCT2 5 35 3.5 43.5 ns

Address Float To RD Low Delay Time tDAFRL 0 0 ns

CLKOUT Low To RD Low Delay Time tDKRL 5 40 5 48.5 ns

CLKOUT Low To RD High Delay Time tDKRH 5 35 5 43.5 ns

RD High To Address Delay Time tDRHA 52.5 44 ns

RD Low Level Width tRR 105 105 ns

BUFEN High To BUFR/W Delay Time tDBECT 16.25 29.75 ns

CLKOUT Low To Data Delay Time tDKD 5 30 0 35 ns

CLKOUT Low To Data Float Delay Time tFKD 5 30 0 35 ns

WR Low Level Width tWW 105 105 ns

WR High To BUFEN High OR BUFR/W
Low

tDWCT 16.25 16.25 ns

CLKOUT High To BS Low Delay Time tDKBL 5 30 5.5 38.5 ns

4-18 In-Circuit Emulation Topics

Table 4-2 70208H/216H AC Electrical Specification(Cont’d)

CLKOUT Low To BS High Delay Time tDKBH 5 30 5.5 38.5 ns

HLDRQ Setup Time (CLKOUT) tSHQK 7 40 ns

CLKOUT Low TO HLDAK Delay Time tDKHA 5 40 0 45 ns

CLKOUT High To DMAAK Delay Time tDKHDA 5 35 0 40 ns

CLKOUT Low To DMAAK Delay Time tDKLDA 5 55 0 40 ns

WR Low Level Width
(DMA Extended Write)

tWW1 105 105 ns

WR Low Level Width
(DMA Normal Write)

tWW2 47.5 47.5 ns

RD Low, WR Low Delay Time (DMAAK) tDDARW 11.25 12.75 ns

DMAAK Hihg Delay Time (RD) tDRHDAH 11.25 12.75 ns

RD High Delay Time (WR) tDWHRH 5 5 ns

TC Output Delay Time (CLKOUT) tDKTCL 35 35 ns

TC OFF Delay Time (CLKOUT) tDKTCF 35 35 ns

TC Low Level Width tTCTCL 52.5 52.5 ns

TC Pull Up Delay Time (CLKOUT) tDKTCH 83.75 83.75 ns

END Setup Time (CLKOUT) tSEDK 20 36.5 ns

END Low Level Width tEDEDL 50 50 ns

DMARQ Setup Time (CLKOUT) tSDQF 15 52.5 ns

INTPn Low Level Width tIPIPL 80 80 ns

In-Circuit Emulation Topics 4-19

Table 4-2 70208H/70216H AC Electrical Specification(Cont’d)

RxD Setup Time (SCU Internal Clock) tSRX 500 500 ns

RxD Hold Time (SCU Internal Clock) tHRX 500 500 ns

CLKOUT Low To SRDY Delay Time tDKSR 100 105 ns

TOUT1 Low To TxD Delay Time tDTX 200 205 ns

TCTL2 Setup Time (CLKOUT) tSGK 40 40 ns

TCTL2 Setup Time (TCLK) tSGTK 40 40 ns

TCTL2 Hold Time (CLKOUT) tHKG 80 80 ns

TCTL2 Hold Time (TCLK) tHTKG 40 40 ns

TCTL2 High Level Width tGGH 40 40 ns

TCTL2 Low Level Width tGGL 40 40 ns

TOUT Output Delay Time (CLKOUT) tDKTO 150 155 ns

TOUT Output Delay Time (TCLK) tDTKTO 100 105 ns

TOUT Output Delay Time (TCTL2) tDGTO 90 95 ns

TCLK Rise Time tTKR 25 25 ns

TCLK Fall Time tTKF 25 25 ns

TCLK High Level Width tTKTKH 30 30 ns

TCLK Low Level Width tTKTKL 30 30 ns

TCLK Cycle Time tCYTK 62.5 DC 62.5 DC ns

Access Rate tAI 105 105 ns

4-20 In-Circuit Emulation Topics

Table 4-2 70208H/70216H AC Electrical Specification(Cont’d)

REFRQ High Delay Time (MRD) tDRQHRH 16.25 17.75 ns

*1 MWR, IOWR during DMA cycle

*2 BUFEN, BUFR/W, INTAK, REFRQ, and MWR, IOWR during CPU cycle

In-Circuit Emulation Topics 4-21

Target System
Interface

RESET This singal is connected to 70216 through
ACT14, 51ohm and 10K ohm pull-up register.

NMI This singal is connected to 70216 through
ACT14, 51 ohm and 100K ohm pull-down
register.

4-22 In-Circuit Emulation Topics

AD15-AD0 These singals are connected to 70216 through
FCT245, 51 ohm and 10K ohm pull-up register.

END/TC This singal is connected to 70216 through 51
ohm and 10K ohm pull-up register.

OTHER(OUTPUT) These singals are connected to 70216 through
FCT244, 51 ohm and 10K ohm pull-up
registers.

In-Circuit Emulation Topics 4-23

Notes

4-24 In-Circuit Emulation Topics

A

70216 Emulator Specific Command Syntax

The following pages contain descriptions of command syntax specific
to the 70216 emulator. The following syntax items are included
(several items are part of other command syntax):

<ACCESS_MODE>. May be specified in the mo (display
and access mode), m (memory), and io (I/O port) commands.
The access mode is used when the m or io commands modify
target memory or I/O locations.

<ADDRESS>. May be specified in emulation commands
which allow addresses to be entered.

<CONFIG_ITEMS>. May be specified in the cf (emulator
configuration) and help cf commands.

<DISPLAY_MODE>. May be specified in the mo (display
and access mode), m (memory), io (I/O port), and ser (search
memory for data) commands. The display mode is used when
memory locations are displayed or modified.

<REG_NAME> and <REG_CLASS>. May be specified in
the reg (register) command.

Emulator Specific Command Syntax A-1

ACCESS_MODE

Summary Specify cycles used by monitor when accessing target system memory
or I/O.

Syntax

Function The <ACCESS_MODE> specifies the type of microprocessor cycles
that are used by the monitor program to access target memory or I/O
locations. When a command requests the monitor to read or write to
target system memory or I/O, the monitor program will look at the
access mode setting to determine whether byte or word instructions
should be used.

Parameters

b Byte. Selecting the byte access mode specifies that
the emulator will access target memory using upper
and lower byte cycles (one byte at a time).

w Word. Selecting the word access mode specifies
that the emulator will access target memory using
word cycles (one word at a time) at an even
address.
When the emulator read or write odd number of
byte data, the emulator will read or write the last
byte data using byte cycle.
At an odd address, the emulator will access target
memory using byte cycles.

Defaults In the 70208 and 70208H,the <ACCESS_MODE> is b at power up
initialization.In the 70216 and 70216H,the <ACCESS_MODE> is w

A-2 Emulator Specific Command Syntax

at power up initialization. Access mode specifications are saved; that
is, when a command changes the access mode, the new access mode
becomes the current default.

Related Commands mo (specify display and access modes)

Emulator Specific Command Syntax A-3

ADDRESS

Address Syntax Address specifications used in emulation commands.

Syntax

Function The <ADDRESS> parameter used in emulation commands may be
specified as a logical address or as physical address (though a physical
address in run or step command is converted to logical address by the
emulation system).

Parameters

<SEGMENT> This expression (0-0FFFF hex) is the segment
portion of the logical address. The value specified
is placed in the 70216 PS register before running or
stepping.

<OFFSET> This expression (0-0FFFF hex) is the offset portion
of the logical address. The value specified is placed
in the 70216 PC register before running or stepping.

A-4 Emulator Specific Command Syntax

<PHY_ADDR> This expression (0-0FFFFF hex) is a physical
address in the 70216 address range. In run and step
commands, the emulation system converts this
physical address to a logical address as specified by
the rad (run address default) configuration item
(see the <CONFIG_ITEM> description).

<I/O_ADDR> This expression (0-0FFFF hex) with no function
code is a 70216 I/O address. This expression
should be used in I/O command.

Defaults If no number base is specified, values entered are interpreted as
hexadecimal numbers.

Related Commands <CONFIG_ITEMS> (70216 specific items specified with the cf
command)

Emulator Specific Command Syntax A-5

CONFIG_ITEMS

Summary 70208/70216 emulator configuration items.

Syntax

A-6 Emulator Specific Command Syntax

Function The <CONFIG_ITEMS> are the 70216 specific configuration items
which can be displayed/modified using the cf (emulator configuration)
command. If the "=" portion of the syntax is not used, the current
value of the configuration item is displayed.

Emulator Specific Command Syntax A-7

Parameters

bgdma Enabling internal DMA during background
operation. This configuration allows you to specify
whether or not the 70216 emulation processor’s
internal DMA is allowed while in background.

Setting bgdma equal to en specifies that the
internal DMA is allowed while in background.

Setting bgdma equal to dis specifies that the
internal DMA is not allowed while in background.

Note If you use the background monitor and set bgdma equal to dis, DMA
request from internal DMA controller is ignored during background
operation. When the emulator goes into foreground operation, the
emulator accepts DMA request.

clk Clock Source. This configuration item allows you
to specify whether the emulator clock source is to
be internal (int , provided by the emulator) or
external (ext, provided by the target system).

In the 70208 and 70216 Emulator, the internal
clock speed is 8 MHz (system clock).
In the 70208H and 70216H Emulator, the internal
clock speed is 16 MHz (system clock).

The 70208 and 70216 emulator will operate at
external clock speed from 4 to 20 MHz (entered
clock).
The 70208H and 70216H emulator will operate at
external clock speed from 2 to 32 MHz (entered
clock).

A-8 Emulator Specific Command Syntax

fpp This configuration allows you to use to
FPP(Floating Point co-Processor) and to specify
whether the emulator will drive the target system
bus during ANY memory cycle.

Setting fpp equal to en specifies that the emulator
will drive target system,during ANY emulation
memory cycle.

If the target system does not contain a floating point
co-processor, you should answer "dis".

When "en" is selected, a special hardware mode
which allows the emulator to support a floating
point co-processor is enabled. When a floating
point co-processor is present, it must monitor all
address and data that the emulation processor inputs
and outputs.
Because of this, it is necessary to enable data bus
drivers to the target system for all emulation
memory read cycles.

This is normally done only on write cycles, and is
not done on read cycles to avoid bus contention
problems between the emulator and the target
system. When this mode is enabled, the USER
output from the pod should be used to disable user
buffers that would normally to turned on when the
emulator is reading from emulation memory. Also
you should select "cf hold=en" for target hold
signal input.

hold Respond to target hold . This configuration allows
you to specify whether or not the emulator accepts
hold signal generated by the target system.

Setting hold equal to dis specifies that the emulator
ignores hold signal from target system completely.

Emulator Specific Command Syntax A-9

Setting hold equal to en specifies that the emulator
accepts hold signal. When the hold is accepted, the
emulator will respond as actual microprocessor.

mne This configuration item is reserved. Change of this
item has no effect.

mode Select the mode of dis-assembler that are used by
the emulator to display assembler syntax.

Setting mode equal to native specifies that the
emulator will display dis-assembler with
AxLS(HP64873) assembler syntax.

Setting mode equal to 64853 specifies that the
emulator will display dis-assembler with
OLS(HP64853) assembler syntax.

mon Monitor Options. This configuration item is used

to select the type of monitor to be used by the
emulator.

If bg (background monitor) is selected, all monitor
functions are performed in background.

If fg (foreground monitor) is selected, all monitor
functions are performed in foreground. (Breaks to
the monitor still put the emulator into the
background mode, but the monitor program returns
to foreground before performing any functions.)

A-10 Emulator Specific Command Syntax

Note You should use the 20 bits physical address or segment:offset address
expression to locate the foreground monitor on a 4K byte boundary.
The start address of the foreground monitor should not be located at a
base address 0 or 0ff000 hex;because the 70216 microprocessor’s
vector table is located. Refer to the "Using the Optional Foreground
Monitor" appendix in this manual.

nmi Enable/disable user NMI. This configuration item
allows you to specify whether user NMI is accepted
or ignored by the emulator. To accept user NMI,
set nmi equal to en. To ignore user NMI, set nmi
to dis. When nmi is set to dis, the emulator ignores
user NMI input.

Note
When target NMI signal is enabled , it is in effect while the emulator is
running in the target program. while the emulator is running
background monitor, NMI will be ignored until the monitor is finished.

rad Physical to Logical Run Address Conversion. This
configuration item allows you to specify the default
method in which the emulation system will convert
physical addresses specified in run and step
commands to logical addresses.

Setting rad equal to maxseg specifies that the low
nibble of the physical address become the offset
value; the high four nibbles become the segment
value.

Setting rad equal to minseg specifies that the low
four nibbles of the physical address become the
offset value; the high nibble and three hex zeros
will become the segment value.

Emulator Specific Command Syntax A-11

Setting rad equal to curseg specifies that the value
which is entered in a run or step command will
become the offset value.

rdy Allow Target Ready Signals to Insert Wait States.
This configuration item allows you to specify
whether the emulator should honor target system
ready signals on accesses to emulation memory.
Setting rdy equal to lk specifies that target ready
signals be honored on emulation memory accesses.
Setting rdy equal to unlk specifies that target ready
signals be ignored on emulation memory accesses.

rrt Restrict to Real-Time Runs. This configuration
item allows you to specify whether program
execution should take place in real-time or whether
commands should be allowed to cause breaks to the
monitor during program execution.

To restrict execution to real-time, set rrt equal to
en. To allow breaks to the monitor during program
execution, set rrt equal to dis. When runs are
restricted to real-time, commands which access
target system resources (display registers, or
display/modify target system memory or I/O) are
not allowed.

rsp Specify the Stack Location. This configuration item
allows you to specify the stack location value ;
(SS:SP) after the emulation reset. The stack
segment (SS) and stack pointer (SP) will be set on
entrance to the emulation monitor initiated RESET
state.

Note When you are using the foreground monitor, this address should be
defined in an emulation memory or a target system RAM area.

A-12 Emulator Specific Command Syntax

rst The 70216 emulator can respond or ignore target
system reset while running in user program or
waiting for target system reset.

While running in background monitor, the 70216
emulator ignores target system reset completely
independent on this setting.

Specifying "cf rst=en" , this is a default
configuration, make the emulator to respond to
reset from target system. In this configuration,
emulator will accept reset and execute from reset
vector as same manner as actual microprocessor
after reset is inactivated.

You can ignore reset from target system completely
by specifying "cf rst=dis". In this configuration
emulator ignore any reset from target system.

Note When you use the r rst (run from reset) command in-circuit to run
form processor reset after the target reset input, you should use "cf
rst=en" configuration setting.

tdma Trace Internal DMA cycles. This question allows
you to specify whether or not the analyzer trace the
70216 emulation processor’s internal DMA cycles.

Setting tdma equal to en specifies that the analyzer
will trace the 70216 internal DMA cycles.

Setting tdma equal to dis specifies that the analyzer
will not trace the 70216 internal DMA cycles.

Emulator Specific Command Syntax A-13

thold Trace hold acknowledge cycles. This question
allows you to specify whether or not the analyzer
trace the 70216 emulation processor’s hold
acknowledge cycles.

Setting thold equal to en specifies that the analyzer
will trace the 70216 hold acknowledge cycles.

Setting thold equal to dis specifies that the analyzer
will not trace the 70216 hold acknowledge cycles.

trfsh Trace refresh cycles. This question allows you to

specify whether or not the analyzer trace the 70216
emulation processor’s refresh cycles.

Setting trfsh equal to en specifies that the analyzer
will trace the 70216 refresh cycles.

Setting trfsh equal to dis specifies that the analyzer
will not trace the 70216 refresh cycles.

A-14 Emulator Specific Command Syntax

Defaults The default values of the 70216 and 70216H emulator configuration
items are listed below.

cf bgdma=dis
cf clk=int
cf fpp=dis
cf hold=en
cf mne=70216
cf mode=native
cf mon=bg
cf nmi=en
cf rad=minseg
cf rdy=lk
cf rrt=dis
cf rsp=0000:0009
cf rst=en
cf tdma=en
cf thold=en
cf trfsh=en
mo -aw -dw

The default values of the 70208 and 70208H emulator configuration
items are listed below.

cf bgdma=dis
cf clk=int
cf fpp=dis
cf hold=en
cf mne=70208
cf mode=native
cf mon=bg
cf nmi=en
cf rad=minseg
cf rdy=lk
cf rrt=dis
cf rsp=0000:0009
cf rst=en
cf tdma=en
cf thold=en
cf trfsh=en
mo -ab -db

Related Commands help

You can get an on line help information for particular configuration
items by typing:

R>help cf <CONFIG_ITEM>

Emulator Specific Command Syntax A-15

DISPLAY_MODE

Summary Specify the memory display format or the size of memory locations to
be modified.

Syntax

Function The <DISPLAY_MODE> specifies the format of the memory display
or the size of the memory which gets changed when memory is
modified.

Parameters

b Byte. Memory is displayed in a byte format, and
when memory locations are modified, bytes are
changed.

w Word . Memory is displayed in a word format, and
when memory locations are modified, words are
changed.

m Mnemonic. Memory is displayed in mnemonic
format; that is, the contents of memory locations
are inverse-assembled into mnemonics and
operand. When memory locations are modified, the
last non-mnemonic display mode specification is
used. You cannot specify this display mode in the
ser (search memory for data) command.

A-16 Emulator Specific Command Syntax

Defaults At powerup or after init,in the 70208 and 70208H Emulator, the
<ACCESS_MODE> and <DISPLAY_MODE> are b. In the 70216
and 70216H Emulator, the <ACCESS_MODE> and
<DISPLAY_MODE> is w at power up initialization.

Display mode specifications are saved; that is, when a command
changes the display mode, the new display mode becomes the current
default.

Related Commands mo (specify access and display modes)

m (memory display/modify)

io (I/O display/modify)

ser (search memory for data)

Emulator Specific Command Syntax A-17

REGISTER
NAMES and
CLASSES

The following register names and classes are used with the
display/modify registers commands in 70216 emulator.

BASIC(*) class

Register name Description

aw, bw
cw, dw
bp, ix, iy
ds0, ds1, ss
sp, pc, ps, psw

BASIC registers.

SIO class
(70208/70216

Emulator)

(System I/O registers)

Register name Description

 opcn
opsel
opha
dula
iula
tula
sula
wcy1
wcy2
wmb
rfc
tcks

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register
ICU low address register
TCU low address register
SCU low address register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register
Timer clock selection register

A-18 Emulator Specific Command Syntax

SIO class
(70208H/70216H

Emulator)

(System I/O registers)

Register name Description

 opcn
opsel
opha
dula
iula
tula
sula
sctl
wcy1
wcy2
wmb
rfc
sbcr
tcks
exwb
wsmb
wiob
wcy3
brc
badr
bsel

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register
ICU low address register
TCU low address register
SCU low address register
System control register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register
Stand-by control register
Timer clock selection register
Extended wait block selection register
Wait submemory block selection register
Wait I/O block selection register
Programmable wait, cycle 3 register
Boud rate counter
Bank address register
Bank select register

Emulator Specific Command Syntax A-19

ICU class (Interrupt Control Unit registers)

Register name Description

 imkw
irq
iis
ipol
ipfw

imdw
iiw1
iiw2
iiw3
iiw4

Interrupt mask word register
Interrupt request register (Read only)
Interrupt in-service register (Read only)
Interrupt polling register (Read only)
Interrupt priority and finish word register
(Write only)
Interrupt mode word register (Write only)
Interrupt initialize word 1 register (Write only)
Interrupt initialize word 2 register (Write only)
Interrupt initialize word 3 register (Write only)
Interrupt initialize word 4 register (Write only)

Caution When ipol register is displayed, interruptis are suspended until the FI
command is published.

TCU class (Timer Control Unit registers)

Register name Description

tct0
tst0
tct1
tst1
tct2
tst2
tmd

Timer/counter 0 register
Timer status 0 register (Read only)
Timer/counter 1 register
Timer status 1 register (Read only)
Timer/counter 2 register
Timer status 2 register (Read only)
Timer/counter mode register (Write only)

A-20 Emulator Specific Command Syntax

SCU class (Serial Control Unit registers)

Register name Description

srb
sst
stb
scm
smd
simk

Serial receive data buffer (Read only)
Serial status register (Read only)
Serial transmit data buffer (Write only)
Serial command register (Write only)
Serial mode register (Write only)
Serial interrupt mask register (Write only)

DMA71 class (DMA Control Unit registers (for uPD71071 mode)

Register name Description

 dicm
dch
dbc/dcc0
dbc/dcc1
dbc/dcc2
dbc/dcc3
dba/dca0
dba/dca1
dba/dca2
dba/dca3
dmd0
dmd1
dmd2
dmd3
ddc
dst
dmk

DMA initialize register (Write only)
DMA channel register
DMA base/current count register channel 0
DMA base/current count register channel 1
DMA base/current count register channel 2
DMA base/current count register channel 3
DMA base/current address register channel 0
DMA base/current address register channel 1
DMA base/current address register channel 2
DMA base/current address register channel 3
DMA mode control register channel 0
DMA mode control register channel 1
DMA mode control register channel 2
DMA mode control register channel 3
DMA device control register
DMA status register (Read only)
DMA mask register

Emulator Specific Command Syntax A-21

DMA37 class
(70208H/70216H

Emulator only)

(DMA Control Unit register (for uPD71037 mode)

Register name Description

 cmd
bank0
bank1
bank2
bank3
adr0
adr1
adr2
adr3
cnt0
cnt1
cnt2
cnt3
sfrq

smsk

mode
clbp
init
cmsk
amsk

DMA read status/write command register
DMA bank register channel 0
DMA bank register channel 1
DMA bank register channel 2
DMA bank register channel 3
DMA current address register channel 0
DMA current address register channel 1
DMA current address register channel 2
DMA current address register channel 3
DMA current count register channel 0
DMA current count register channel 1
DMA current count register channel 2
DMA current count register channel 3
Software DMA write request register channel
(Write only)
DMA write single mask register channel
(Write only)
DMA write mode register channel (Write only)
DMA clear byte pointer F/F (Write only)
DMA initialize register (Write only)
DMA clear mask register (Write only)
DMA write all mask register bit (Write only)

Related Commands reg (register display/modify)

A-22 Emulator Specific Command Syntax

B

Using the Optional Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The monitor programs named FMV50.S, FMV50HL.S, FMV40.S and
FMV40HL.S are for the HP 64853 Cross Assembler/Linker.

Note Use the appropriate monitor; "FMV50.S" for the 70216,
"FMV50HL.S" for the 70216H, "FMV40.S" for the 70208 and
"FMV40HL.S" for the 70208H emulator. "FMV50.S" foreground
monitor program is used in this example. If your emulator is for the
other emulator, read this appendix by replacing "FMV50.S" with the
appropriate monitor.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Using a Foreground Monitor B-1

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not fully taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. You link this
monitor with your code so that when control is passed to your program,
the emulator can still service real-time events, such as interrupts or
watchdog timers. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor (see the "Emulation topics"
chapter and the examples in this appendix).

B-2 Using a Foreground Monitor

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to link a foreground
monitor. By using the emulation analyzer, we will also show how the
emulator switches from state to state using a foreground monitor.

For this example, We will locate the monitor at 1000 hex; the sample
program will be located at 400 hex with its data at 600 hex and its
common at 800 hex.

Modify EQU
Statement

To use the monitor, you must modify the EQU statement near the top
of the monitor listing to point to the segment start address where the
monitor will be loaded. In this example, the monitor will be located at
1000 hex, so the modified EQU statement looks like this:

MONSEGMENT EQU 0100H

Notice that the EQU statement is indented from the left margin; if it is
not indented, the assembler will attempt to interpret the EQU as a label
and will generate an error when processing the address portion of the
statement. You can load the monitor at any base address on a 4k byte
boundary.

Note You should not load the foreground monitor at the base address 0 or
0ff000 hex; because the 70216 microprocessor’s vector table is located.

Using a Foreground Monitor B-3

Assemble and Link
the Monitor

You can assemble and link the foreground monitor program with the
following commands in using the HP 64853 Cross Assembler/Linker:

$ asm -o FMV50.S > FMV50.LIS <RETURN>
$ lnk <RETURN>
object files FMV50.R <RETURN>
library files <RETURN>
Load addresses: PROG,DATA,COMN 0,0,0
<RETURN>
more files (y or n) n <RETURN>
absolute file name FMV50.X <RETURN>

If you haven’t already assembled and linked the sample program, do
that now. Refer to the "Getting Started" chapter for instructions on
assembling and linking the sample program.

Initialize the Emulator To initialize the emulator to a known state for this example, type:

M> init -p

Configure the
Emulator

You need to tell the emulator that you will be using a foreground
monitor and allocate the memory space for the monitor. This is all
done with one configuration command. To locate the monitor on a 4k
boundary starting at 1000 hex, type:

R> cf mon=fg..001000
To see the new memory mapper term allocated for the foreground
monitor, type:

R> map
remaining number of terms : 15
remaining emulation memory : 1f000h bytes
map 0001000..0001fff eram 16 # term 1
map other tram

Notice that a 4k byte block from 1000 through 1fff hex was mapped.

Now, you need to map memory space for the sample program. Let’s
map the memory from 0 through 5ff hex to emulation ROM and map
the memory from 600 through 9ff hex to emulation RAM in this
example.

R> map 0..7ff erom
R> map 800..9ff eram

B-4 Using a Foreground Monitor

Load the Program
Code

Now it’s time to load the sample program and monitor. In the example
shown, we’re loading the program from a host with the emulator in
Transparent Configuration. If you’re using the standalone
configuration with a data terminal, you will need to enter the data using
the m command. (You can get the data from your assembly listings.)
Load the program by typing:

R> load -hbs "transfer -tb FMV50.X"
##############

Load the Sample
Program

Assuming the sample program has been assembled and linked as
shown in Chapter 2, you can load the sample program by typing:

R> load -hbs "transfer -tb cmd_rds.X"
#####

Disable Tracing
Refresh Cycle

If you wish to disable the analyzer from tracing refresh cycles, you can
use the cf trfsh command ; the refresh cycles are not detected by the
analyzer. Type:

M> cf trfsh=dis

Before we forget, let’s initialize the stack pointer by breaking the
emulator out of reset:

R> cf rsp=0:0a00
R> b

Now you can run the sample program with the following command:

M> r 400

Using a Foreground Monitor B-5

Single Step and
Foreground
Monitors

To use the "step" command to step through processor instructions with
the foreground monitor listed in this chapter, you must modify the
processor’s interrupt vector table. The entry that you must modify is
the "BRK flag" interrupt vector, located at 4H thru 7H. The "BRK
flag" interrupt vector must point to the identifier UEE_BRK_FLAG in
the foreground monitor.

Limitations of
Foreground
Monitors

Synchronized
measurements

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
set the foreground/background configuration option to cf mon=bg.

B-6 Using a Foreground Monitor

C

Specific Error Messages

The following pages document the error messages which are specific to
the 70208/70208H and 70216/70216H emulator. The cause of the error
is described, as well as the action you must take to remedy the situation.

Message 140 : Second term is smaller than first term

Cause

This error occurs when you attempt to enter the address range with the
first term is smaller than the second term.

Action

Enter the address range with the first term is not smaller than the
second term.

Message 141 : Range terms must be the same type

Cause

This error occurs when you attempt to enter the address range with the
address expression of the first term is different from the second term.

Action

Use the same address expression to enter the address range. Refer to
"ADDRESS" section of the appendix A of this manual for more
information.

Specific Error Messages C-1

Message 142 : Range terms must be in the same segment

Cause

This error occurs when you attempt to enter the address range with
<SEGMENT>:<OFFSET> address expression and the <SEGMENT>
value of first term is different from the <SEGMENT> value of second
term.

Action

Use the same <SEGMENT> value to enter the address range with
<SEGMENT>:<OFFSET> address expression.

Message 143 : Physical address can not be used

Cause

This error occurs when you attempt to enter the address with physical
address expression in the emulation commands which physical address
expression cannot be used in.

Action

Use the other address expression which can be used in the emulation
commands. Refer the "ADDRESS" section of the Appendix A in this
manual.

C-2 Specific Error Messages

Message 144 : I/O address range overflow

Cause

This error occurs when you attempt to enter the I/O address which is
over I/O address range (0-0FFFF hex) after executing the I/O
command.

Action

Use the I/O address which is not over the I/O address range after
executing the I/O command.

Message 145 : Stack pointer not initialized

Cause

This error occurs when you attempt to execute program without setting
stack pointer in foreground moniter.

Action

Enter the stack pointer address. Refer the "CONFIG_ITEMS" section
of the Appendix A in this manual.

Message 146 : Reset by force of internal 32MHz clock

Cause

This error occurs when you attempt to reset 70208H/70216H Emulator
with very slow external clock or with external DC clock.

Action

In this case,the 70208H/70216H emulator was reset by force of internal
32MHz clock. Use the internal clock, this error does not occurs.

Specific Error Messages C-3

Message 147 : Unable to modify breakpoint while running

Cause

This error occurs when you attempt to modify the software breakpoint
while the emulator is running user code.

Action

Enter the command b to break into the monitor and modify the
breakpoint.

Message 148: Access size greater than display size, access=%c, display=%c

Cause

This error occurs when you attempt to display or modify I/O contents
by the byte in the word access mode.

Action

Change the access mode to byte.

Message 150 : DMA controller is 71071 mode

Cause

This error occurs when you attempt to access the DMA37 class
registers (refer to "REGISTER NAMES and CLASSES" section in
Appendix A) and the 70216H internal DMA Control Unit is uPD71071
mode.

Action

Change the mode of 70216H internal DMA Control Unit to uPD71037
mode.(70208H/70216H Emulator only)

C-4 Specific Error Messages

Message 151 : DMA controller is 71037 mode (70208H/70216H Emulator only)

Cause

This error occurs when you attempt to access the DMA71 class
registers (refer to "REGISTER NAMES and CLASSES" section in
Appendix A) and the 70208H or 70216H internal DMA Control Unit is
uPD71037 mode.

Action

Change the mode of 70208H or 70216H internal DMA Control Unit to
uPD71071 mode.

Message 152 : Device not enable

Cause

This error occurs when you attempt to access registers in the 70216
internal peripheral (ICU, TCU, SCU, and DMAU) and the internal
peripheral is disabled.

Action

Enable the internal peripheral to modify the OPSEL register (on-chip
peripheral selection register) with using "reg" command (refer to
"REGISTER NAMES and CLASSES" section in Appendix A).

Specific Error Messages C-5

Notes

C-6 Specific Error Messages

Index

A absolute files, downloading 2-16
access mode, specifying 2-23
ACCESS_MODE syntax A-2
address expression in "cf mon" command 3-5, A-11
ADDRESS syntax A-4
analyzer

features of 1-4
analyzer status

predefined equates 2-28
assemblers 2-13
assembling foreground monitor B-4

B b (break to monitor) command 2-24
background 1-5
background monitor 3-4, B-2

selecting 3-4
things to be aware of 3-4

bc (break conditions) command 2-26
bgdma, emulator configuration A-8
BNC connector 3-3
break conditions 2-26

after initialization 2-10
break on analyzer trigger 3-3
breakpoints 2-10

C cautions
installing the target system probe 4-2

cf (emulator configuration) command 3-1
cf mon command 3-4
characterization of memory 2-11
checksum error count 2-16
cim (copy target system memory image) command 4-8
clk (clock source) emulator configuration item 4-7
clk, emulator configuration A-8
clock source

external 4-7
internal 4-7

Index-1

CMB (coordinated measurement bus) 3-3
cold start initialization 2-10
combining commands on a single command line 2-20
command files 2-20
command groups, viewing help for 2-7
command recall 2-21
command syntax, specific to 70216 emulator A-1
commands

combining on a single command line 2-20
Comparison of foreground/background monitors B-1
CONFIG_ITEMS syntax A-6
configuration

bgdma A-8
clk A-8
fpp A-9
hold A-9
mne A-10
mode A-10
mon A-10
nmi A-11
rad A-11
rdy A-12
rrt A-12
rsp A-12
rst A-13
tdma A-13
thold A-14
trfsh A-14

configuration (hardware)
remote 2-15
standalone 2-14
transparent 2-14

coordinated measurements 3-3, 3-5
coprocessor

access emulation memory 2-11
cov (reset/display coverage) command 2-32
coverage testing 2-32

on ROMed code 4-9
cp (copy memory) command 2-31

D display mode, specifying 2-23
DISPLAY_MODE syntax A-16

2-Index

DMA 1-7
external 2-11
TC bit 1-7

downloading absolute files 2-16
dual-port emulation memory 3-2

E electrical characteristics 4-10, 4-16
emulation analyzer 1-4
emulation memory

access by i8087 coprocessor 2-11
after initialization 2-10
dual-port 3-2
note on target accesses 2-11
size of 2-11

emulation monitor
foreground or background 1-5

emulation RAM and ROM 2-11
emulator

feature list 1-3
purpose of 1-1
supported microprocessor package 1-3

emulator configuration
after initialization 2-10
on-line help for 2-8

emulator configuration items
clk 4-7
mon A-10
rdy 4-8
rrt 3-2

Emulator features
emulation memory 1-4

emulator probe
installing 4-2

emulator specific command syntax A-1
equates predefined for analyzer status 2-28
eram, memory characterization 2-13
erom, memory characterization 2-13
es (emulator status) command 2-9
escape character (default) for the transparent mode 2-16
Evaluation chip 1-7
EXECUTE (CMB signal) 3-3

Index-3

F file formats, absolute 2-16
foreground 1-5
foreground monitor 3-4, B-2

assembling/linking B-4
example of using B-3
selecting 3-4

Foreground monitors
single-step processor B-6

fpp, emulator configuration A-9

G getting started 2-1
grd, memory characterization 2-12
guarded memory accesses 2-12

H help facility, using the 2-7
help information on system prompts 2-8
hold,emulator configuration A-9
HP absolute files, downloading 2-16

I in-circuit emulation 4-1
init (emulator initialization) command 2-10
initialization, emulator 2-10

cold start 2-10
warm start 2-10

Intel hexadecimal files, downloading 2-16
internal DMA

setting bgdma equal to dis A-8
interrupt

from target system 1-7
while stepping 1-7

L labels (trace), predefined 2-28
limitation

step 2-19
linkers 2-13
linking foreground monitor B-4
load (load absolute file) command 2-16
load map 2-13
locating the foreground monitor 3-4
lower byte accesses 2-29

M m (memory display/modification) 2-15
m (memory display/modification) command 2-23

4-Index

macros
after initialization 2-10
using 2-21

map (memory mapper) command 2-12
Map command

command syntax 2-13
mapping memory 2-11
memory

displaying in mnemonic format 2-18
dual-port emulation 3-2

memory map
after initialization 2-10

memory, mapping 2-11
microprocessor package 1-3
mne, emulator configuration A-10
mo (specify display and access modes) command 2-23
mode, emulator configuration A-10
modifying ROMed code 4-9
mon, emulator configuration A-10
monitor

background 3-4, B-2
comparison of foreground/background B-1
foreground 3-4

monitor program 3-4
monitor program memory, size of 2-11
Motorola S-record files,downloading 2-16

N nmi, emulator configuration A-11
Note

address expression in "cf mon" command 3-5, A-11
notes

target accesses to emulation memory 2-11
use the appropriate foreground monitor program B-1

O on-line help, using the 2-7

P Pin guard
target system probe 4-2

predefined equates 2-28
predefined trace labels 2-28
prompts 2-8

help information on 2-8
using "es" command to describe 2-9

Index-5

R rad, emulator configuration A-11
RAM

mapping emulation or target 2-12
rdy (target system wait states) configuration item 4-8
rdy, emulator configuration A-12
READY (CMB signal) 3-3
real-time runs

commands not allowed during 3-2
commands which will cause break 3-2
restricting the emulator to 3-2

recalling commands 2-21
refresh cycle

disable tracing B-5
reg (register display/modification) command 2-20
register commands 1-4
relocatable files 2-13
remote configuration 2-15
rep (repeat) command 2-22
reset

commands which cause exit from 2-34
target system 3-6

ROM
debug of target 4-8
mapping emulation or target 2-12
writes to 2-12

rrt (restrict to real-time) configuration item 3-2
rrt, emulator configuration A-12
rsp, emulator configuration A-12
rst (reset emulator) command 2-34
rst, emulator configuration A-13

S s (step) command 2-19
sample program

description 2-2
load map listing 2-13
loading the 2-14

ser (search memory) command 2-24
simple trigger, specifying 2-29
Single step

in foregorund monitor B-6
software breakpoint

 70216 breakpoint interrupt instruction 2-24

6-Index

software breakpoints 2-24
after initialization 2-10
and NMI 2-26
defining 2-26
ignored 2-26

standalone configuration 2-14
stat (emulation analyzer status) trace label 2-28
syntax (command), specific to 70216 emulator A-1

T Target reset input
run form reset A-13

target system
interface 4-22

Target system probe
pin guard 4-2

target system RAM and ROM 2-13
target system reset

accept,ignore 3-6
tdma, emulator configuration A-13
Tektronix hexadecimal files, downloading 2-16
tg (specify simple trigger) command 2-29
tgout (trigger output) command 3-3
thold, emulator configuration A-14
tl (trace list) command 2-29
tlb (display/modify trace labels) command 2-28
trace

even address 2-29
odd address 2-29

trace labels, predefined 2-28
tram, memory characterization 2-13
transfer utility 2-16
transparent configuration 2-14
transparent mode 2-16
trfsh, emulator configuration A-14
trig1 and trig2 internal signals 3-3
trigger

break on 3-3
specifying a simple 2-29

TRIGGER (CMB signal) 3-3
trom, memory characterization 2-13
ts (trace status) command 2-29

Index-7

U UEE_BRK_FLAG, foreground monitor label B-6

W wait states, allowing the target system to insert 4-8
warm start initialization 2-10

X x (execute) command 3-3

8-Index

	Using this Manual
	Contents
	Introduction to the 70216 Emulator
	Getting Started
	Emulation Topics
	In-Circuit Emulation Topics
	70216 Emulator Specific Command Syntax
	Using the Optional Foreground Monitor
	Specific Error Messages
	Index

