HP 64791/2

70208H/70216H Emulator
PC Interface

User’'s Guide

A cackarc

HP Part No. 64791-97010
Printed in U.S.A.
July 1994

Edition 4

Notice

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damagesanrection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1991, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

IBM and PC AT are registered trademarks of International
Business Machines Corportion.

MS-DOS is a trademark of Microsofto@oration.

V400 and V5@ are trademark of NEC Eleacinics Inc.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
bythe U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Rights fonon-DOD U.S.Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Manproduct updates and fixes do not require manual
changes and, manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual

revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64791-97001, August 1991
64791-97004, November 1991
64791-97007, December 1993
64791-97010, July 1994

Using this Manual

This manual covers the following emulators as used with the PC
Interface:

a HP 64791A 70208 emulator
m HP 64792A 70216 emulator
s HP 64791B 70208H emulator
s HP 64792B 70216H emulator

For the most part, these emulators all operate the same way.
Differences between the emulators are described where they exist.
These 70208,70216,70208H and 70216H emulatirbeweferred

to as the "70216 emulator"in this manual where they are alike. In
the specific instances where 70208, 70208H and 70216H emulator
differs from the 70216 emulator, it will be referred as {H208
emulator","”70208H emulator”and "70216H emulator".

This manual:

a Shows you how to use emulation commands by executing
them on a sample program and describing their results.

s Shows you howto use the emulator in-circuit (connected
to a target system).

s Shows you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, selecting a target system
clock source, and allowing the target system to insert wait
states.

This manual will not:

s Showyou howto use every PC Interface command and
option. The PC Interface is described in HR 64700
Emulator's PC Interface: User's Reference.

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A.

‘Introduction” -This chapter lists the 70216 emulator features and
describes how they can help you in developing new hardware and
software.

'Getting Started"-This chapter shows you how to use emulation
commands by executing them on a sanglagram. This chapter
describes the sample program and how to:

load programs into the emulator
map memory

display and modify memory
display registers

step through programs

run programs

set software breakpoints

search memory for data

use the analyzer

'In-Circuit Emulation" -This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit"
emulation features.

‘Configuring the Emulator” -You can configure the emulator to

adapt it to your specific development needs. This chapter describes
the emulator configuration options and how to save and restore
particular configurations.

'Using the Emulator"-This chapter describes emulation topics that
are not covered in the "Getting Started" chapter (for example,
coordinatedneasurements antbsingmemory).

'File Format Reader-This appendix describes how to use the File
Format Reader from MS-DOS or PC Interface, load absolute files
into the emulator, use global and local symbols with the PC
Interface.

Contents

Introduction to the 70216 Emulator

Introduction 1-1
Purpose ofthe Emulator 1-1
Features of the 70216 Emulator 1-3
Supported Microprocessors.o 1-3
ClockSpeeds 1-3
Emulation memory 0o 1-4
Analysis 1-4
Registers e 1-4
Single-Step 1-4
Breakpoints 1-5
Reset Support 1-5
Configurable Target System Interface 1-5
Foreground or Background Emulation Monitor 1-5
Real-Time Operation 1-6
EasyProductsUpgrades 1-6
Limitations, Restrictions 1-7
DMA Support e 1-7
TC bit of DMA Status Register 1-7
User Interrupts 1-7
Interrupts While Executing Step @mmand 1-7
Evaluationchip. o 1-7
Getting Started
Introduction 2-1
Before YouBegin 2-2
Prerequisites 2-2
The sample program 2-2
Assembling and Linking the Sample Program 2-6
Starting Up the 70216 PC Interface 2-7
Selecting PC Interface Commands 2-8
Emulator Status 2-8

MappingMemory 2-8
Which Memory Locations Should Be Mapped?

Contents-1

2-Contents

Loading Programsinto Memory 2-12

FileFormat, 2-12
Target Memory Type for MemorylLoad 2-12
Force the Absolute FiletoBeRead 2-13
File FormatOptions 2-13
Absolute FileName 2-13
DisplayingSymbols 2-14
Displaying Global Symbols 2-15
Loading and Displaying Local Symbols 2-17
Transfer Symbols to the Emulator 2-19
Changing the DisassemblerMode 2-19
Displaying Memoryin Mnemonic Format 2-20
Stepping Through the Program 2:21.
Specifyinga StepCount 2:23.
ModifyingMemory e 2-24
Runningthe Program 2-25 .
Searching MemoryforData 2-25
Breakinginto the Monitor 2-26
Using Software Breakpoints 2-26
Defining a Software Breakpoint 2-28
Displaying Software Breakpoints. 2-28
Setting a Software Breakpoint 2-29
Clearing a Software Breakpoint 2-29
Usingthe Analyzer 2-30
Resetting the Analysis Specification 2-30
Specifying a Simple Trigger 2-30
Startingthe Trace 2-33
Change the Analyzer Display Format 2-33
Displayingthe Trace 2-34
For a Complete Description 2-35
CopyingMemory 2-36
Resettingthe Emulator 2-36
Exitingthe PCInterface 2-37

3

'In-Circuit"Emulation

Introduction 3-1
Prerequisites e 3-1
Installing the Target System Probe 3-2
Pin Protector 3-3
Auxiliary OutputLines 3-3
Installinginto a PLCC Type Socket 3-5
Installingintoa PGA Type Socket 3-6
In-Circuit Configuration Options 3-7
Running the Emulator from Target Reset 3-8
Target System Interface 3-9

Configuring the Emulator

Introduction 4-1
Prerequisites e 4-2
Accessing the Emulator Configuration Options 4-3
Clocksource 4-4
Enable Real-TimeMode 4-5
Enable target READYo 4-6
Enabletarget NMI 4-6
Enabletarget RESET, 4-7
Enabletarget HOLD 4-7
Tracerefreshcycles 4-8
Trace DMAcycles e 4-8
Trace holdcycles. 4-8
Segment algorithm L o 4-9
Enable ROMbreak, 4-10
Enable sw_breakpoints L. 4-11
Enable CMB Interaction, 4-12
Enable DMA in background 4-13
Enable support FPP oL, 4-13 .
Disassemblermode 4-14
Enablewordaccess 4-14
Reset value for stack pointer? 4-15
Monitor Type 4-16.
Foreground Monitor Address? 4-17.
Storing an Emulator Configuration 4-18
Loading an Emulator Configuration 4-18

Contents-3

4-Contents

5 Using the Emulator

A

Introduction 5-1
AddressSyntax. 5-2
REGISTER NAMESand CLASSES 5-4
BASIC(*)class 5-4
NOCLASS e e 5-4
SIO class (70208/70216 Emulator) 5-5
SIO class (70208H/70216H Emulator) 5-6
ICUCclass e 5-7
TCUClass e 5-7
SCUCclass e 5-8
DMA71class 5-8
DMAZ3Y7 class (70208H/70216H Emulatoronly) 5-9
Making Coordinated Measaments 5-10
Running the Emulator at EXECUTE 5:11
Breaking on the Analyzer Trigger 5-11
Storing Memory Contents to an Absolute File 5-13

File Format Readers

Introduction A-1

Usingthe OMF86, NEC30Reader A-2
What the Reader Accomplishes A-2
Location of the Reader Program A-4
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-6
Ifthe Reader WontRun A-8
Including ReaderinaMakeFile A-8

Usingthe HP 64000 Reader A-9
What the Reader Accomplishes A-9
Location of the HP 64000 Reader Program A-12
Using the Reader from MS-DOS A-12
Using the Reader from the PC Interface A-12
Ifthe Reader WontRun A-14
Including RHP64000 in a Make File A-14

lllustrations

Figure 1-1. HP 64792 Emulator for uPD70216 1-2
Figure 2-1. Sample Program Listing. 2-3
Figure 2-2. PC Interface Display 2-7
Figure 2-3. Sample Program Load Map Listing 2-9
Figure 2-4. Memory Map Configuration 2-11
Figure 2-5. Modifying the Trace Specification 2-32
Figure 2-6. Modifying the Pattern Specification 2-32
Figure 3-1. AuxiliaryOutputLines 3-3
Figure 3-2. Installing into a PLCC type socket 3-5
Figure 3-3. Installinginto a PGA type socket 3-6
Figure 4-1. General Emulator Configuration (70216) 4-3
Tables
Table A-1. Howto Access Variables A-3
Table A-2. Howto Access Variables A-11

Contents-5

Notes

6-Contents

Introduction to the 70216 Emulator

Introduction The topics in this chapter include:
m Purpose of the emulator
m Features of the emulator

m Limitations and Restrictions of the emulator

Purpose of the The 70216 emulator is designed to replace the 70216 microprocessor in

Emulator your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and 1/O resources.

Introduction 1-1

RS-232/RS5—422
Connection

T

Green
Status Right

‘\\Probe Cable

Power Switch

Target System — p»

(typically contains memory,
CPU, and I/0 circuitry)

lator Probe

Figure 1-1. HP 64792 Emulator for uPD70216

1-2 Introduction

Features of the
70216 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported The HP 64791/2 emulator supports the following packages of
Microprocessors microprocessor.
Model No. Microprocessor Package
HP 64791A uPD70208 68-pin PLCC
68-pin PGA
HP 64792A uPD70216 68-pin PLCC
68-pin PGA
HP 64791B uPD70208H 68-pin PLCC
68-pin PGA
HP 64792B uPD70216H 68-pin PLCC
68-pin PGA
The HP 64791/2 emulator probe has a 68-pin PLCC connector. When
you use 68-pin PGA type microprocessor, you must use with PLCC to
PGA adapter; refer to the "In-Circuit Emulation Topics" chapter in this
manual.
Clock Speeds The 70208 and 70216 emulator runs with an internal clock speed of

8MHz (system clock), or with target system clocks from 2 to 10 MHz.

The 70208H and 70216H emulator runs with an internal clock speed of
16 MHz (system clock) or with target system clocks from 1 to 16

MHz.

Introduction 1-3

Emulation memory

Analysis

Registers

Single-Step

1-4 Introduction

The HP 70216 emulator is used with one of the following Emulation
Memory Cards.

m HP 64726 128K byte Emulation Memory Card

m HP 64727 512K byte Emulation Memory Card

m HP 64728 1M byte Emulation Memory Card

m HP 64729 2M byte Emulation Memory Card

When you use the HP 64729, You can only use 1M byte for emulation
memory.

You can define up to 16 memory ranges (at 128 byte boundaries and at
least 128 byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target system
ROM, or as guarded memory. The emulator generates an error
message when accesses are made to guarded memory locations. You
can also configure the emulator so that writes to memory defined as
ROM cause emulator execution to break out of target program
execution.

The HP 70216 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

m HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer

m HP 64704 80-channel Emulation Bus Analyzer

m HP 64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

You can display or modify the 70216 internal register contents.

You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints

Reset Support

Configurable Target
System Interface

Foreground or
Background
Emulation Monitor

You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses the BRK 3 instruction(CC hex) as software breakpoint
interrupt instruction. When you define a software breakpoint, the
emulator places the breakpoint interrupt instruction (CC hex) at the
specified address; after the breakpoint interrupt instruction causes
emulator execution to break out of your program, the emulator replaces
the original opcode.

The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory. You can configure the
emulator so that it presents cycles to, or hides cycles from, the target
system when executing in background.

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70216 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can executdaneground the mode in which

the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also executbackgroundthe emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy any processor address space.

Introduction 1-5

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or 1/0.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O are not allowed.

Easy Products Because the HP 64700 Series development tools (emulator, analyzer,
Upgrades LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A/B Card Cage. This means that you'll be able to update
product firmware, if desired, without having to call an HP field
representative to your site.

1-6 Introduction

Limitations,
Restrictions

DMA Support

TC bit of DMA Status
Register

User Interrupts

Interrupts While
Executing Step
Command

Evaluation chip

Direct memory access to emulation memory by external DMA
controller is not permitted.

While using the uPD71071 or the uPD71037 DMA mode on the
70208H emulator, or using the uPD71037 DMA mode on the 70216H
emulator, when the emulator read the other than DST register, the TC
bit of the DST is reset. If you know the DMA Status, you have to use
the count register in the place of the TC bit.

If you use the background monitor, NMI and INTP1-7 from the target
system are suspended until the emulator goes into foreground operation.

While executing user program code in stepping in the foreground
monitor, interrupts are accepted if they are enabled in the foreground
monitor program. When using the background monitor the emulator
will fail to step, if the interrupts are acknowledged before stepping user
program code.

Hewlett-Packard makes no warranty of the problem caused by the
70208/70208H/70216/70216H Evaluation chip in the emulator.

Introduction 1-7

. Notes

1-8 Introduction

Getting Started

Introduction This chapter leads you through a basic tutorial that shows how to use
the HP 64792 emulators for the 70216 microprocessors with the PC
Interface.

This chapter will:
m Tell you what to do before you use the emulator in the tutorial.
m Describe the sample program used for this chapter's examples.

m Briefly describe how to enter PC Interface commands and
how emulator status is displayed.

This chapter will show you how to:
m Start up the PC Interface from the MS-DOS prompt.
m Define (map) emulation and target system memory.
m Load programs into emulation and target system memory.

m Enter emulation commands to view sample program execution.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the media
containing the PC Interface software. Hie 64700
Emulators PC Interface: User’'s Referenoanual contains
additional information on the installation and setup of the PC
Interface.

3. In addition, it is recommended, although not required, that you
read and understand the concepts of emulation presented in
the Concepts of Emulation and Analysisinual. The
Installation/Servicealso covers HP 64700 Series system
architecture. A brief understanding of these concepts may
help avoid questions later.

The sample program The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

We will show you how to use the emulator to:

m load this program into emulation memory

m execute the program

m monitor the program’s operation with the analyzer

m simulate entry of different commands using theemory
Modify” emulation command.

2-2 Getting Started

LOCATION OBJECT CODE LINE SOURCE LINE

1"70116"
2 GLB Msgs,Init,Cmd_Input,Msg_Dest
3
4 DATA
0000 5 Msgs
0000 436F6D6D61 6 Msg_A DB "Command A entered "
0005 6E64204120
000A 656E746572
000F 656420
0012 436F6D6D61 7 Msg_B DB "Command B entered "

0017 6E64204220

001C 656E746572

0021 656420

0024 496E76616C 8 Msg_| DB "Invalid Command "
0029 696420436F

002E 6D6D616E64

0033 202020

0036 9 End_Msgs
10
11 PROG
12 ASSUME DSO0:DATA,DS1:COMN

14 * The following instructions initialize segment
15 * regsiters and set up the stack pointer.

16
0000 B80000 17 Init MOV AW,SEG Msg_A
0003 8ED8 18 MOV DS0,AW
0005 B80000 19 MOV AW,SEG Cmd_Input
0008 8ECO 20 MOV DS1,AW
000A 8EDO 21 MOV SS,AW
000C BCOOF9 22 MOV SP,OFFSET Stk

23

24 * Clear previous command

25

000F 26C6060000 26 Rrad_Cmd MOV Cmd_lInput,#0
0014 0090
27
28 * Read command input byte. If no command has been
29 * entered, continue to scan for command input.

30
0016 26A00000 31 Scan MOV AL,Cmd_Input
001A 3C00 32 CMP AL#0
001C 74F8 33 BE Scan

34

35 * A command has been entered. Check if it is
36 * command A, command B, or invalid.

37
001E 3C41 38 Exe_Cmd CMP AL#41H
0020 7407 39 BE Cmd_A
0022 3C42 40 CMP AL #42H
0024 740C 41 BE Cmd_B
0026 E91200 42 BR Cmd_l

43

44 * Command A is entered. CW = the number of bytes in
45 * message A. BP = location of the message. Jump to
46 * the routine which writes the message.

Figure 2-1. Sample Program Listing

Getting Started

2-3

47

0029 B91200 48 Cmd_A MOV CW,#Msg_B-Msg_A
002C BE000O 49 MOV IX,OFFSET Msg_A
002F E90F00 50 BR Write_Msg

51

52 * Command B is entered.

53
0032 B91200 54 Cmd_B MOV CW #Msg_I|-Msg_B
0035 BE0012 55 MOV IX,OFFSET Msg_B
0038 E90600 56 BR Write_Msg

57

58 * An invalid command is entered.
003B B91200 60 Cmd_| MOV CW,#End_Msgs-Msg_|
003E BE0024 61 MOV IX,OFFSET Msg_|

62

63 * Message is written to the destination.

64
0041 BF0001 65 Write_ MSG MOV IY,OFFSET Msg_Dest
0044 F3A4 66 REP MOVBKB

67

68 * The rest of the destination area is filled
69 * with zeros.

70
0046 C60500 71 Fill_Dest MOV BYTE PTR [IY],#0
0049 47 72 INC 1Y
004A 81FF0021 73 CMP Y, #Msg_Dest+20H
004E 75F6 74 BNE Fill_Dest
75
76 * Go back and scan for next command
0050 EBBD 78 BR Read_Cmd
79
80 COMN
81
82 * Command input byte.
83
0000 84 Cmd_Input DBS 1
85
86 * Destination of the command message.
0001 88 Msg_Dest DDS 3EH
00F9 89 Stk Dws 1 ; Stack area.
<0000> 90 END Init

Figure 2-1. Sample Program Listing (Cont’d)

Data Declarations

The "DATA" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, andMsg_I.

2-4 Getting Started

Initialization

The program instructions from that label to theRead_Cmdlabel
perform initialization. The segment registers are loaded and the stack
pointer is set up.

Reading Input

The instruction at thRead_Cmdlabel clears any random data or
previous commands from ti&md_Input byte. TheScanloop
continually reads th€md_Input byte to look for a command (a value
other than 0 hex).

Processing Commands

When a command is entered, the instructions ftoelm Cmdto
Cmd_A decide whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution transfers
to the instructions &md_A.

If the command input byte is "B" (ASCII 42 hex), execution transfers
to the instructions &md_B.

If the command input byte is neither "A" nor "B", an invalid command
was entered, and execution transfers to the instructiabst .

The instructions &€md_A, Cmd_B, andCmd_| each load register
CW with the displayed message’s length and register 1X with the
message’s starting location. Then, execution transfésite Msg,
which writes the appropriate message to the destination location,
Msg_Dest

After the message is written, the instructionBitit Dest fill the

remaining destination locations with zeros. (The entire destination area
is 20 hex bytes long.) Then, the program jumps back to read the next
command.

The Destination Area

The "COMN" section declares memory storage for the command input
byte, the destination area, and the stack area.

Getting Started 2-5

Assembling and The sample program is written for the HP 64853 Cross
Linking the Sample Assembler/Linker.

Program
Use the following command to assemble and link the sample program.

C> asm -oe cmd_rds.s >cmd_rds.o <RETURN>
C> Ink -0 > cmd_rds.m <RETURN>
object files cmd_rds.R <RETURN>
library files <RETURN>
Load addresses: PROG,DATA,COMN 400H,600H,800H <RETURN>
more files (y or n) N <RETURN>
absolute file name cmd_rds.X <RETURN>

2-6 Getting Started

Starting Up the
70216 PC Interface

If you built the emulator device table and settRTABLES shell
environment variable as shown in tHE 64700 Emulators PC

Interface: User's Referencgou can start up the 70216 PC Interface by
entering the following command from the MS-DOS prompt:

C> pcv50 <emulname>
where <emulname> mmul_com1lif your emulator is connected to th
COML1 port oremul_com?2if it is connected to the COM2 port. If you
edited the \hp64700\tables\64700tab file to change the emulator n
substitute the appropriate name for <emulname> in the above
command.

In the command abovpev50is the command to start the PC
Interface; "<emulname>" is the logical emulator name given in the
emulator device table. (To start the version of the PC Interface that
supports external timing analysis, substipttes0 for pcv50in this
command.) If this command is successful, you will see the display
shown in figure 2-2. Otherwise, you will see an error message and
return to the MS-DOS prompt.

o]
LOOE

Emulation,

Analysis

STATUS: n78216——Emulation reset Emulation trace halted

UGG System Register Processor Breakpoints Memory Config Analysis
Active Delete Erase Load Open Store Utility Zoom

Figure 2-2. PC Interface Display

Getting Started 2-7

Selecting PC This manual will tell you to "select” commands. You can select

Interface Commands commands or command options by using the left and right arrow keys
to highlight the option. Then press thster key. Or, you can simply
type the first letter of that option. If you select the wrong option, press
the ESC key to retrace the command tree.
When a command or option is highlighted, the bottom line of the
display shows the next level of options or a short message describing
the current option.

Emulator Status The emulator status is shown on the line above the command options.
The PC Interface periodically checks the status of the emulator and
updates the status line.

Mapping Memory The 70216 emulator contains high-speed emulation memory (no wait
states required) that can be mapped at a resolution of 128 bytes.

Note When you use the 8087 coprocessor on your target system connected to
70216 microprocessor, the 8087 can access 70216 emulation memory
on coprocessor memory read/write cycles.
In this case, you should reset the target system to connect the 70216
emulator to the 8087 coprocessor before starting emulation session.
Refer to "In-Circuit Emulation Topics" chapter for more information
about accesses to emulation memory.

2-8 Getting Started

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be

treated as ROM or RAM.

Note # Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, D
controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Configuring the Emulator" chapter).

The memory mapper allows you to define up to 16 different map terms.

Which Memory Typically, assemblers generate relocatable files and linkers combine
Locations Should Be relocatable files to form the absolute file. The linker load map listing
Mapped? will show what locations your program will occupy in memory. For
example, the HP 64853 linker load map listing for the sample program
is shown in figure 2-3.

HP 64000+ Linker

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE
CMD_RDS.R 00000400 00000600 00000800
next address 00000452 00000636 000008FB

XFER address = 00000400 Defined by CMD_RDS.R
Absolute file name = CMD_RDS.X
Total number of bytes loaded = 00000183

Figure 2-3. Sample Program Load Map Listing

Getting Started 2-9

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The program area, which
contains the opcodes and operands which make up the sample program,
occupies locations 400 hex through 451 hex. The data area, which
contains the ASCII values of the messages the program displays, is
occupies locations 600 hex through 635 hex. The destination area,
which contains the command input byte and the locations of the
message destination and the stack, occupies locations 800 hex through
8FA hex.

Two mapper terms will be specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

To map memory for the sample program, select:
Config, Map, Modify

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

0..07ff

Move the cursor to the "memory type" field of term 1, and press the
TAB key to select therom (emulation ROM) type. Move the cursor
to the "address range" field of term 2 and enter:

0800..09ff

Move the cursor to the "memory type" field of term 2, and press the
TAB key to select theram (emulation RAM) type. To save your
memory map, use the right arrow key or Emger key to exit the field

in the lower right corner. (Thend key on Vectra keyboards moves
the cursor directly to the last field.) The memory configuration display
is shown in figure 2-4.

2-10 Getting Started

Memory Map Configuration
Unmapped memory type
Term Address Range Memory Type

g
TAB :Scroll choices

pty
“11- Ctrl ++ :Field editing

STATUS: n78216—-Emulation reset Emulation trace halted

Use the TAB and Shift-TAB keys to pick memory type for mapped range.

Figure 2-4. Memory Map Configuration

For your programs (not the sample), you may want to map emulation
memory locations containing programs and constants (locations that
should not be written to) as ROM. This will prevent programs and
constants from being written over accidentally, and will cause breaks
when instructions attempt to do so.

Note # The memory mapper reassigns blocks of emulation memory after the
insertion or deletion of mapper terms. Suppose you modified the
contents of 400H-7FFH above, deleted term 1, then displayed locations
400H-7FFH. You'll notice the contents of those locations differ before
and after you delete the mapper term.

Getting Started 2-11

Loading Programs
into Memory

File Format

Target Memory Type
for Memory Load

2-12 Getting Started

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

UseTab andShift-Tab to select the format of your absolute file. The
emulator accepts absolute files in the following formats:

m Intel OMF86 absolute.

s NEC30 absolute.

— (This absolute file is generated by NEC LK70116 linker
for uPD70208 and uPD70216.)

= HP64000 absolute.

m Raw HP64000 absolute.
m Intel hexadecimal.

m Motorola S-records.

m Tektronix hexadecimal.

For this tutorial, choose the HP64000 format.

The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, both emulation and target system memory.

Since emulation memory is mapped for sample program locations, you
can select either "emulation” or "both". Ukab key andShift-Tab to
cycle through the choices.

Force the Absolute
File to Be Read

File Format Options

Absolute File Name

This option is only available for the Intel OMF86, NEC30, and
HP64000 absolute file formats.

It forces the file format reader to regenerate the emulator absolute file
(.hpa) and symbol database (.hps) before loading the code. Normally,
these files are only regenerated whenever the file you specify (the
output of your language tools) is newer than the emulator absolute
and symbol database.

For more information, refer to the "File Format Readers" appendix.

Some of the formats, such as the Intel OMF86 format, have special
options.

Refer to the "File Format Readers" appendix of this manual for more
information.

For most formats, you enter the name of your absolute file in the last
field. The HP64000 format requires the linker symbol filename instead.
Typecmd_rds.l, and pres&nter to start the memory load.

Memory Load Configuration

File Format HP648808
Target memory type for memory load
Force the absolute file to be read no |

Absolute file name

«tl+ :Interfield movement Ctrl «+ :Field editing TAB :Scroll choices

STATUS: n78216—-Emulation reset Emulation trace halted

Enter the name of an HP64888 linker symbol file (ex. test.L).

Getting Started 2-13

Displaying
Symbols

2-14 Getting Started

Symbol files are created when you generate absolute files with the

HP 64000-PC Cross Assembler/Linkers. When you assemble a source
file, an assembler symbol file (with the same base name as the source
file and a “.a" extension) is created. The assembler symbol file contains
local symbol information. When you link relocatable assembly
modules, a linker symbol file (with the same base name as the absolute
file and a “.I” extension) is created. The linker symbol file contains
global symbol information and information about the relocatable
assembly modules that combine to form the absolute file.

When you load a file using the HP64000 file format, the file format
reader collects global symbol information from the linker symbol file
and local symbol information from the assembler symbol files. It uses
this information to create a single symbol database with the extension
.hps.

If you load a file using the following formats, the file format reader
obtains all the global and local symbol information from the absolute
file and builds a symbol database with extension .hps.

= Intel OMF86 absolute.
= NEC30 absolute.
The following pages show you how to display global and local symbols

for the sample program. For more information on symbol display, refer
to thePC Interface Reference

Displaying Global When you load a file using the following formats into the emulator, the
Symbols corresponding symbol database is also loaded.

m [Intel OMF86 absolute.
= NEC30 absolute.

s HP64000 absolute.

The symbol database also can be loaded withSy&tém, Symbols,
Global,Load” command. Use this command when you load multiple
absolute files into the emulator. You can load the various symbol
databases corresponding to each absolute file. When you load a symbol
database, information from a previous symbol database is lost. That is,
only one symbol database can be present at a time.

After a symbol database is loaded, both global and local symbols can
be used when entering expressions. You enter global symbols as they
appear in the source file or in the global symbols display.

Getting Started 2-15

Modules

CMD_RDS. S

Address S

ymbol

B0000: 00800
60606: 88400
B0060: 008a1
60606: 80600

Window NFISATY
Command_file

Cmd_Input
Init
Msg_Dest
Msgs

STATUS: n78216——-Emulation reset Emulation trace halted

Register Processor Breakpoints Memory Config Analysis
Wait HMS-DOS Log Terminal Symbols Exit

To display global symbols, select:
System, Symbols, Gobal, Display

The symbols window automatically becomes the active window
because of this command. You can press <CERtzoom the
window. The resulting display follows.

Symbols,

2-16 Getting Started

The global symbols display has two parts. The first part lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-sensitive. For example, if you wish to make
a measurement using the symBohd_Input, you must specify
Cmd_Input.

The stringemd_input andCMD_INPUT are not valid symbol names
here.

Loading and
Displaying Local
Symbols

Address

Symbol

00008
188432
180438
1 pA8ee
188636
1 0041E
: 88446
1 90408
b 15]15751)
188612
:ee8o1
188624
100608
: BB48F
180416
1 BB8F9
188441

Command_file

88429

Cmd_A
Cmd_B
Cmd_I
Cmd_Input
End_Msgs
Exe_Cmd
Fill Dest
Init
Msg_A
Msg_B
Msg_Dest
Msg_ I
Msgs
Read_Cmnd
Scan

Stk
Urite_Msg

! n78216--Emulation reset
N34T Register Processor
Wait MS-DOS Log Terminal

To display local symbols, select:

System, Symbols, L ocal, Display

Enter the name of the module you want to display (from the first pa
the global symbols list; in this cas&iD_RDS.§ and pres&nter.
The resulting display follows.

Symbols,

Emulation trace halted
Breakpoints Memory Config Analysis
Symbols Exit

After you display local symbols with th&ystemSymbolsL ocal

Display” command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

Getting Started 2-17

2-18 Getting Started

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the first
part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that
module becomes the default local symbol module, as withSjretem
SymbolsL ocalDisplay” command.

Local symbols must be from assembly modules that form the absolute

whose symbol database is currently loaded. Otherwise, no symbols will
be found (even if the named assembler symbol file exists and contains
information).

One thing to note: It is possible for a symbol to be local in one module
and global in another, which may result in some confusion. For
example, suppose symbol “XYZ” is a global in module A and a local
in module B and that these modules link to form the absolute file. After
you load the absolute file (and the corresponding symbol database),
entering “XYZ" in an expression refers to the symbol from module A.
Then, if you display local symbols from module B, entering “XYZ" in
an expression refers to the symbol from moduledBthe global

symbol. Now, if you again want to enter “XYZ" to refer to the global
symbol from module A, you must display the local symbols from
module A (since the global symbol is also local to that module).
Loading local symbols from a third module, if it was linked with
modules A and B and did not contain an “XYZ" local symbol, would
also cause “XYZ" to refer to the global symbol from module A.

Transfer Symbols to You can use the emulator’s symbol-handling capability to improve
the Emulator measurement displays. You do this by transferring the symbol
database information to the emulator. To transfer the global symbol
information to the emulator, use the command:

System, Symbols, Gobal, Transfer
Transfer the local symbol information for all modules by entering:
System, Symbols, Local, Transfer, Al

You can find more information on emulator symbol handling
commands in thEmulator PC Interface Reference

Changing the The emulator has two sets of syntax to display memory contents or
Disassembler trace listing in mnemonic format.

Mode

m HP64853 Cross Assembler.
s NEC Assembler.

The disassembler mode allow you to select which syntax the
disassembler should use in mnemonic memory, trace, and register
displays. The default disassembler mode selects NEC assembler syntax.

Before getting into the main emulation session, you may change the
disassembler mode to select the HP64853 syntax because it is suitable
for your language tool in this chapter.

To change the disassembler mode, select:

Config, General
Use the arrow key to move the cursor to the "Disassembler Mode"
field, and us@ AB key to select64853. Press€End andEnter
consecutively to exit the configuration.

Getting Started 2-19

Displaying Once you have loaded a program into the emulator, you can verify that
Memory in the program has indeed been loaded by displaying memory in

) mnemonic format. To do this, select:
Mnemonic Format

Memory, Display, Vhemonic
Enter the address range "400H..429H". You could also specify this
address range using symbols.
For example,
"Init..Cmd_A" or "Init..Init+29H ".
The Emulation window remains active. You can press <CERa>
zoom the memory window. The resulting display follows.

If you want to see the rest of the sample program memory locations,
you can selectM emory,Display, Mnemonic" command and enter the
range from 42AH to 451H.

Emulation,
Symbol Mnemonic

Init MOV AW, BB08

- MOU DSB,AW | MOU AU, 18608

- MOU DS1,AW | MOU SS,AW | MOV SP,#@sf
_RDS.S:Read_Cmnd MOU DS1:88680, 60

- NOP

CMD_RDS. S8: Scan MOV AL, DS1:8888

- CMP AL, 166

- BE/Z CMD_RDS. 8: Scan

D_RDS.S:Exe_Cmd CMP AL, #41

- BE/Z CMD_RDS.S:Cmd_f

- CMP AL, #42

- BE/Z CMD_RDS.S:Cmd_B

- BR NEAR PTR CMD_RDS.S:Cmd_I
CMD_RDS.S:Cmd_A MOU CU, #8812

n78216--Emulation reset Emulation trace halted
Window System Register Processor Breakpoints [[EIWIgY Config Analysis
Display Modify Load Store Copy Find Report

2-20 Getting Started

Stepping Through
the Program

i gedefr
180415 -
188416
:ge41a -
:80dic -
:@gedie
:ge4z28 -
:ee422 -
:ge4z24 -
100426 -
188429

180488 Init

PC = 006000: 88403
ps= 6088 ss= 0000
pc= 8483 sp= BBB9
au= 88688 bu= BOBO

Window System
Go Break Reset

_RDS. S:Read_Cnd

CMD_RDS. S: Scan

D_RDS. S: Exe_Cnd

CMD_RDS. S:Cmd_f

STATUS: n78216——Running in monitor

Register
I/0 CMB Step

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the sample
program, select:

Processor, Step, Address
Enter a step count of 1, enter the synihil (defined as a global in th
source file), and pre€nter to step from program’s first address,
400H. The Emulation window remains active. Press <CER&>
view a full screen of information. The executed instruction, the
program counter address (PS:PC), and the resulting register contents
are displayed as shown in the following.

Emulation,
MOU DS1:68860, taa

NOP

MOV AL, DS1:0800

CHMP AL, #08

BE/Z CMD_RDS. S: Scan

CHMP AL, #41

BE/Z CMD_RDS.S:Cmd_A

CHMP AL, #42

BE/Z CHMD_RDS.S:Cmd_B

BR NEAR PTR CHMD_RDS.S:Cmd_I
MOU CU, #8812

MOU AW, 18068
dsB= 86608

ix= 80008
cu= 8688

ds1= 6688
iy= 80008
du= 8888

psu= £882
bp= 8801

Emulation trace halted

|gQeEtde Breakpoints Memory Config Analysis

Note

v

You cannot display registers if the processor is reset.
Use the ProcessoBreak" command to cause the emulator to start
executing in the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator execution
will temporarily break to the monitor.

Getting Started 2-21

Note

2-22 Getting Started

v

There are a few cases in which the emulator can not step. Step
command is not accepted between each of the following instructions
and the next instruction.

1) Manipulation instructions for sreg :

MOV sreg,regl16; MOV sreg,mem16; POP sreg.

2) Prefix instructions: PS:, SS:, DS0:, DS1:, REPC, REPNC, REP,
REPE, REPZ, REPNE, REPNZ, BUSLOCK.

3) El, RETI, DL.

To continue stepping through the program, you can select:
Processor, Step, Pc

After selecting this command, you can change the previous step count.
If you wish to step the same number of times, just [Eegs to start
the step.

To save time when single-stepping, you can use the function key macro
<F1>, which executes the command:

Processor, Step, Pc, 1

For more information, see tiigmulator PC Interface Reference
chapter on Function Key Macros.

To repeat the previous command, you can press <CiT.RL>

Specifying a Step
Count

P0000: 68488 Init

PC = 00000: 60403
ps= 8088 <ss= 0008
pc= 8483 sp= 00B9
au= P08 bu= 8000

PPOOO: 0403
PC = 6068e8:
ps= 0068
pc= 8488
au= 8068

ps= 0008 ss= 00606
pc= 848f sp= B8f9
au= 00688 bu= 00868

STATUS: n?8216-—Running in monitor

Windouw System
Go Break Reset

Register
10 CMB Step

If you want to step sevral times from the current program counter,
select:

Processor, Step, Pc

The previous step count is displayed in the "number of instructions"
field. You can enter a number from 1 through 99 to specify the nu
times to step. Type 5 into the field, and piester. The resulting
display follows.

When you specify step counts greater than 1, only the last instruction
and the register contents after that instruction are displayed.

Emulation,
MOV AU, #8088

aeee
noen
aeeo

dsi= 8088
iy= 0098
du= 8088

MOU DSB,AN | MOU AW, 8088
aeee
aeen
aoeo

dsi= PO
iy= 0BED
du= 0BE8

psu= {0682
bp= 86801

MOU DS1,AW | MOV SS,AW | MOU SP, #@8f
aeeo
aeen

aoen

dsi=
iy=
du=

6e8e
[a:1417]
[<:131%}

psu= {082
bp= 86801

Emulation trace halted

@Gl Breakpoints Memory Config Analysis

Getting Started 2-23

Modifying Memory

The preceding step commands show the sample program is executing
in theScanloop, where it continually reads the command input byte to
look for a command.

To simulate the entry of a sample program command, you can modify
the command input byte by selecting:

Memory, Modify, Byte
Now enter the address of the memory location to be modified, an equal
sign, and new value of that location, for exam@ed_Input="A" .
(TheCmd_Input label was defined as a global symbol in the source
file.)

To verify that "A" was indeed written ©md_Input (800 hex), select:

Memory, Display, Byte
Type the address 800H or the symBaid_Input, and pres&nter.
The resulting display is shown below.

Address S

ymbol

00000: 88429
00006: 88432
00000: 00438

Cmd_A
Cmd_B
Cmd_I

Symbols

Data Chex>

41

Analysis

Window System
Display Modify Load Store Copy Find Report

STATUS: n78216——Running in monitor Emulation trace halted
Register Processor Breakpoints JERNYY Config Analysis

2-24 Getting Started

You can continue to step through the program as shown earlier in this
chapter to view the instructions which are executed when an "A" (41
hex) command is entered.

Running the

To start the sample program, select:

Program
Processor, Go, Pc
The status line will show that the emulator is "Running user progrargs
Searching You can search the message destination locations to verify that the

Memory for Data

sample program writes the appropriate messages for the allowed
commands. The command "A" (41 hex) was entered above, so the
"Command A entered " message should have been written to the
Msg_Destlocations. Because you must search for hexadecimal values,
you will want to search for a sequence of characters which uniquely
identify the message, for example,

" A"or 20 hex, 41 hex, and 20 hex. To search the destination memory
location for this sequence of characters, select:

Memory, Find
Enter the range of the memory locations to be searched, "800H..820H",
and enter the data&' " or 20H, 41H, and 20H. The resulting
information in the Emulation window shows you that the message
write occurred correctly. The message is:

Pattern match at address: 0000808
To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and search

for" B " (20 hex, 42 hex, and 20 hex), or you can modify the command
input byte to "C" and search for "d C" (64 hex, 20 hex, and 43 hex).

Getting Started 2-25

Breaking into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor, Break

The status line shows that the emulator is "Running in monitor".

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request. This depends on the
type of instruction being executed, and whether the processor is in a
hold state.

Using Software
Breakpoints

2-26 Getting Started

When you define or enable a software breakpoint to a specified
address, the emulator will replace the opcode with a BRK 3 instruction.
When the emulator detects the breakpoint interrupt instruction (CC
hex), user program breaks to the monitor, and the original opcode will
be replaced at the software breakpoint address.

Since the system controller knows the locations of the defined software
breakpoints, it can determine whether the breakpint interrupt
instruction was generated by an enabled software breakpoint or by a
single-byte interrupt instruction in your target system.

If the single-byte interrupt was generated by a software brekpoint,
execution breaks to the monitor, and the brekpoint interrupt instruction
(BRK 3) is replaced by the original opcode. A subsequent run or step
command will execute from this address.

If the single-byte interrupt was geneated by a BRK 3 instruction in the
target system, execution still breaks to the monitor, and an "Undefined
software breakpoint" message is displayed.

Note

Note

Note

Caution

v

v

v

Because software brekpoints are implemented by the replacing opcodes
with the brekpoint interrupt instruction (CC hex), you can not define
the software breakpoints in the target ROM.

However you can copy target ROM into the emulation memory which
does allow you to use software brekpoints. Once target ROM is copied
into the emulation memory, software breakpoints may be used
normally at the addresses in these emulation memory locations. (s

the "Target ROM Debug Topics" section of the "In-Circuit Emulatio
chapter in thderminal Interface User's Guid@anual.)

You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Getting Started 2-27

Note #

Defining a Software
Breakpoint

Displaying Software
Breakpoints

2-28 Getting Started

Software breakpoint will be ignored, when software breakpoint and
other emulation break (for example, break command, trigger command,
etc.) occur at the same time. RefeP® Interface: User’s Reference
manual.

To define a breakpoint at the address of@hel_|I label of the sample
program (43B hex), select:

Breakpoints, Add
Enter the local symbol "Cmd_I". After the breakpoint is added, the

Emulation window becomes active and shows that the breakpoint is set.

You can add multiple breakpoints in a single command by separating
them with a semicolon. For example, you could type
"2010h;2018h;2052hto set three breakpoints.

Run the program by selecting:

Processor, o, Pc
The status line shows that the emulator is running the user program.

Modify the command input byte to an invalid command by selecting:
Memory, Modify, Byte

Enter an invalid command, such as "Cmd_Input=75h". The following

messages result:

ALERT: Software breakpoint: 00000:0043b
STATUS: Running in monitor
To continue program execution, select:

Processor, CGo, Pc

To view the status of the breakpoint, select:

Breakpoints, Display
The display shows that the breakpoint was cleared.

Address Symbol

00000: 88429 Cnd_A
00080: 88432 Cwmd_B
60008: 080438 Cwnd_I

Symbols

Address

000600: 8843b

Analysis

Window System
Display Add Remove

STATUS: n78216——Running user program
Register

Emulation trace halted
Processor [HEEISOIE= Memory Config Analysis

Set Clear

Setting a Software
Breakpoint

Clearing a Software
Breakpoint

A breakpoint is disabled when it is hit. To re-enable the software
breakpoint, you can select:

Breakpoints, Set, Single
The address of the breakpoint you just added is still in the address field.

To set this breakpoint again, pré&sser.

As with the BreakpointsAdd" command, the Emulation window
becomes active and shows that the breakpoint is set.

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints, Clear, Single

The address of the breakpoint set in the previous section is still in the
address field. To clear this breakpoint, piester.

Getting Started 2-29

Using the Analyzer The analyzer collects data at each pulse of a clock signal, and saves the
data (a trace state) if it meets a "storage qualification" condition.

Note Emulators which have the optional external analyzer will display the

"Internal/External " option after commands in the following examples.
Selectinternal to execute the example commands.

Resetting the To be sure that the analyzer is in its default or power-up state, select:
Analysis
Specification

Analysis, Trace, Reset

Specifying a Simple Suppose you wish to trace the states of the sample program which
Trigger follow the read of a "B" (42 hex) command from the command input
byte. To do this, you must modify the default analysis specification by
selecting:
Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right allow key
to move the "Trigger on" field. Type "a" and présger.

You'll enter the pattern expression menu. Press the up arrow key until
theaddr field directly opposite the pattea=x is highlighted. Type the
address of the command input byte, using either the global symbol
Cmd_Input or address 800H, and prdsster.

The “Data” field is now highlighted. Type 0XX42 and pr&sger.

"42" is the hexadecimal value of the “B” command and the "X"s
specify "don’t care" values. When 42H is read from the command
input byte (800H), a lower byte read is performed because the address
is even. If the address is odd, you must specify the data to 42XX.

Now the “Status” field is highlighted. Use the TAB key to view the
status qualifier choices.

2-30 Getting Started

70216 Analysis Status Qualifiers

This trace command example uses the status qualifier "read". The
following analysis status qualifiers also can be used with the 70216

emulator.
Qualifier Status Bits Description
exec OXXXOXXXXXXXXXXXY execute instruction
fetch Oxxx1xxxx001x100y program fetch
read OXxx1xxxxxx0xx01ly read
write OXXXIXXXXXX0XX10y write
mem OXXXIXXXXXX0x1xXy memory access
intio 0xxx1xxxx00000xxy internal I/O access
extio Oxxx1xxxx00010xxy external I/O access
cpu OXXXIXXXX00XXXXXy cpu cycle
dma Oxxx1xxxx10x01xxy =~ DMA memory access
casdma Oxxx1xxxx1010111ly cascaded DMA cycle
refresh Oxxx1xxxx0100101y refresh cycle
holdack Oxxx1xxxx11xxxxxy hold acknowledge
intack Oxxx1xxxx001x000y interrupt acknowledge
haltack Oxxx1xxxxxxx1011ly halt acknowledge
em80 OXXIXXXXXXXXXXXXY 8080 emulation mode
native OXXOXXXXXXXXXXXXY ~ nhative mode
ds0 OXxXx1xx11xxxxxxxy dsO use cycle
dsl OXxx1xx00xxxxxxxy dsl use cycle
Ss OXXXIXXOLIXXXXXXXY SS use cycle
ps OXXXIXXLOXXXXXXXY ~ pS use cycle
rom OXXXIXOXXXXXXXXXY ~ rom access
grd OXXXLOXXXXXXXXXXYy guarded memory access
usr OXLXXXXXXXXXXXXXY user cycle
mon OXOXXXXXXXXXXXXXY ~ monitor cycle

Getting Started 2-31

Internal State Trace Specification

il While storing TGRS
Trigger on g} il times

store

Branches Count Prestore Trigger position

of 512

«tl+ :Interfield movement Ctrl «+ :Field editing TAB :Scroll choices

STATUS: n7B8216--Running user program Emulation trace halted

Use the TAB and Shift-TAB keys to select a trigger position or enter a number.

Figure 2-5. Modifying the Trace Specification

Internal State Trace Specification

Set 1
Range (r) Label = thru
Pat addr: data stat.
a Cmd_Input Bxx42 read
b
c
d

Set 2
e
f
g
h
arm

Expression

Expressions have the form: {set1> andsor <setZ2>. UWhere setl consists of <a,
b,c,d,r,'r> and setZ consists of <e,f,g,h,arm>. Patterns within a set can be
Jjoined with }Cor)> or “(nor), but not both. Example: *r “aore | f i gl h
Pattern Expression: (I

STATUS: n7B8216--Running user program Emulation trace halted

The TAB key selects uhether the pattern matches the values or not the values.

Figure 2-6. Modifying the Pattern Specification

2-32 Getting Started

Note #

Starting the Trace

Change the Analyzer
Display Format

You can combine qualifiers to form more specific qualifiers. For
example, the expressiomemory&&read matches only memory
reads. See temulator PC Interface Referenfmr more information.

Select theead status and pregnter.

The resulting analysis specification is shown in figure 2-5. To save
new specification, usénd Enter to exit the field in the lower right
corner. You'll return to the trace specification. Piesd to move the
“"trigger position" field. Use the TAB key until it sagsnter, then
pressEnter to exit the trace specification.

To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is running.
You do not expect the trigger to be found, because no commands have
been entered. Modify the command input byte to "B" by selecting:

Memory, Modify, Byte

EnterCmd_Input="B". The status line now shows that the trace is
complete. (If you have problems, you may be running in monitor.
SelectProcessofs0 Pc to return to the user program.)

If you have transferred the symbol database information to the
emulator by entering the following commands:

System, Symbols, Gobal, Transfer
System, Symbols, Local, Transfer, All

you should change the display format to make better use of the trace
display.

Getting Started 2-33

Displaying the Trace

addr, H

To change the analyzer display format, enter the command:
Analysis, Format

Use the down arrow key to move to the field labeleédr. And, use

the right arrow key to move the field lab&ddth above. The default
width of the address column is six characters. A width of 17 characters
is often wide enough to accommodate most symbol names1Type
change the width of the address column, and firedsthenEnter.

To display the trace, select:

Analysis, Display
You are now given two fields in which to specify the states to display.
Use theEnd key to move the cursor to the "Ending state to display"
field. Type 60 into the preg&nter. The resulting trace is similar to
trace shown in the following display (use <CTRLli® zoom the trace
window). You may need to press tHeme key to get to the top of the
trace.

78216 mnemonic, H

8edic

80417
ae418
8041a

8041a
aedic
8edic

ae420
804208
ae4z22
80422

a
1
2
3
4
5
6
7
8
9

CHD_RDS. S:Exe_Cnd 413c fetch
CMD_RDS. 8: Scan aBzZb fetch
CHD_RDS. S: Scan MOV AL, DS1:0808

Cmd_Input

CMD_RDS. S: Exe_Cmd 413c fetch
CHMD_RDS. S:Exe_Cmd CHMP AL, #41

STATUS: n78216—-Running user program Emulation trace complete
AFLLIY System Register
Active Delete Erase Load Open Store Utility Zoom

BE/Z CMD_RDS. S: Scan

XXXX EXec

8808 fetch

883c fetch

142 memory read
CHP AL, 168

f874 fetch
BE/Z CMD_RDS. S: Scan

8774 fetch

BE/Z CMD_RDS.S:Cmd_A
423c fetch

CMP AL, #42

o000, OE®

Processor Breakpoints Memory Config Analysis

2-34 Getting Started

Note #

addr, H

If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

Line 0 in the above trace list shows the analyzer trigger state. The
trigger state is always on line 0. The other states show the exit fro
the Scanloop and thé&exe_Cmdinstructions. Press thiiggDn or Next
key to see more lines of the trace. Notice that prefetches of instru
which do not get executed are included in the trace list.

Analysis
78216 mnemonic, H xbits,H

80422
ae424
80424
20426
ae8de

CHD_RDS. S:Cmd_B 12b9 fetch 8008
CHMD_RDS. S:Cmd_B MOV Cu, #ee12 8eae

20434
88435
#0436
80438
20438
8043a
8043c

D_RDS.S:UWrite Msg bfff fetch 8eae
D_RDS.S:Urite Msg MOU IV, #8801 8008

STATUS: n78216—-Running user program Emulation trace complete
Window System Register Processor Breakpoints Memory Config NCYEESES
Begin Halt CMB System Format Trace Display

CMP AL, #42 [5]5]513)
Bc?74 fetch [55]4]3)
BE/Z CMD_RDS.S:Cmd_B 06880
12e9 fetch [55]4]3)
xxxx refresh 06880

beBBd fetch 8008
MOV IX, #8612 8eae
8612 fetch 8008
B6e9 fetch 8eae
BR NEAR PTR CHMD_RDS.S:Urite_Msg 0608
b988 fetch 8eae
8812 fetch 8008

For a Complete
Description

The resulting display shows tkend_B instructions, the branch to
Write_Msg, and the beginning of the instructions that move the
“Entered B command " message to the destination locations.

For a complete description of using the HP 64700 Series analyzer with
the PC Interface, refer to tlienalyzer PC Interface User’s Guide

Getting Started 2-35

Copying Memory

You can copy the contents of one range of memory to another. This is
a useful feature to test things like the relocatability of programs. To

test if the sample program is relocatable within the same segment, copy
the program to an unused, but mapped, area of emulation memory. For
example, select:

Memory, Copy
Enter 400H through 452H as the source memory range to be copied,
and enter 500H as the destination address.

To verify that the program is relocatable, run it from its new address
by selecting:

Processor, Go, Address
Enter 500H. The status line shows that the emulator is "Running user
program”. You may wish to trace program execution or enter valid and
invalid commands and search the message destination area (shown
earlier in this chapter) to verify that the program works correctly at its
new address.

Resetting the
Emulator

2-36 Getting Started

To reset the emulator, select:

Processor, Reset, Hold
The emulator is reset (suspended) until you entBracéssoBreak”,
"ProcessofGo", or "ProcessofStep” command. A CMB execute
signal also will run the emulator if reset.

You also can specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state.

To do this, select:
Processor, Reset, Mbnitor

Exiting the PC
Interface

There are three different ways to exit the PC Interface. You can exit
the PC Interface using the "locked" option which restores the current
configuration next time you start the PC Interface. You can select this
option as follows.

System, Exit, Locked
Another way to execute the PC Interface is with the "unlocked"
option, which presents the default configuration the next time you s
the PC Interface. You can select this option with the following
command.

System, Exit, Unlocked
Or, you can exit the PC Interface without saving the current
configuration using the command:

System, Exit, No_Save

See th&amulator PC Interface Referentmr a complete description of
the system exit options and their effect on the emulator configuration.

Getting Started 2-37

Notes

2-38 Getting Started

"In-Circuit" Emulation

Introduction The emulator ign-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation.

This chapter will:

m Describe the issues concerning the installation of the emul
probe into target systems.

m Show you how to install the emulator probe.

m Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emualtion and Analysignual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 3-1

Installing the The 70216 emulator probe has a 68-pin PLCC connector;
The 70216 emulator is shipped with a pin protector over the target
Target SyStem system probe. This guard is designed to prevent impact damage to the

Probe pins and should be left in place while you are not using the emulator.
Caution OBSERVE THESE PRECAUTIONS TO AVOID EMULATOR
' CIRCUIT DAMAGE. Take the following precautions while using

the 70216 emulator.

Power Down Target System.Turn off power to the user target

system and to the 70216 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge.The 70216 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, take precautions before handling the user plug to avoid
emulator damage.

Protect Target System CMOS Componentslf your target system
includes any CMOS components, turn on the target system first, then
turn on the 70216 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation

Pin Protector The target system probe has a pin protector that prevents damage to the
probe when inserting and removing the probe from the target system
microprocessor sockddo not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room for the plastic shoulders
of the probe socket. If this occurs, another pin protector may be stacked
onto the existing pin protector.

Auxiliary Output Line One auxiliary output line, TARGET BUFFER DISABLE " is
provided with the 70216 emulator.

Caution DAMAGE TO THE EMULATOR PROBE WILL RESULT IF
' THE AUXILIARY OUTPUT LINES ARE INCORRECTLY
INSTALLED.
When installing the auxiliary output line into the end of the emulator
probe cable, make sure that the ground pin on the auxiliary output line
(labeled with white dots) is matched with the ground receptacles in the
end of the emulator probe cable.

-«+— PROBE CHBLE

4+—— MICROPROCESSOR
CONNECTOR

TARGET BUFFER
DISAHBLE

Figure 3-1. Auxiliary Output Lines

In-Circuit Emulation 3-3

3-4 In-Circuit Emulation

TARGET BUFFER DISABLE ---This active-high output is used

when the co-processor memory accesses to emulation memory will be
operated. This output is used to tristate (in other words, select the high
Z output) any target system devices on the 70216 data bus. Target
system devices should be tristated because co-processor memory reads
from emulation memory will cause data to be output on the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the
following timing in the co-processor memory access cycle.

11 Te 13 T T4 11

CLK NV WA WA

BUFEN

:

TARGET
BUFFER
DISAHBLE

The time “"t7 s

e1% nsec MAX. (ZB2VB/ /72167
/B2VBH B2 16H Emulator)

Installing into a To connect the microprocessor connector to the target system,
PLCC Type Socket proceeded with the following instructions.

m Remove the 70216 microprocessor (PLCC type) from the
target system socket. Note the location of pin 1 on the
microprocessor and on the target system socket.

m Store the microprocessor in a protected environment (such as
antistatic form).

m Install the microprocessor connector into the target system
microprocessor socket.

-«+— PROBE CABLE

MICROPROCESSOR
CONNECTOR

PIN 1 OF
MICROPROCESSOR
CONNECTOR

TARGET SYSTEM
MICROPROCESSOR

SOCKET PIN 1 OF

TARGET SYSTEM
MICROPROCESSOR
SOCKET

Figure 3-2. Installing into a PLCC type socket

In-Circuit Emulation 3-5

Installing into a You can use an ITT CANNON "LCS-68-12" PLCC connector to plug
into the target system socket of an PGA type. You may use this socket

PGA Type Socket with the pin protector to connect the microprocessor connector to the
target system.

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

m Remove the 70216 microprocessor (PGA type) from the target
system socket. Note the location of pin Al on the
microprocessor and on the target system socket.

m Store the microprocessor in a protected environment (such as
antistatic form).

m Place the microprocessor connector with a PLCC-to-PGA
socket and a pin protector (see figure 3-3), attached to the end
of the probe cable, into the target system microprocessor

socket.
_ PROBE CABLE

4—— MICROPROCESSOR
CONNECTOR

PIN 1 OF

' MICROPROCESSOR
CONNECTOR

PLCC—to—PGAR SOCKET

PN AL O = (ITT CANNON LCS-68-12)
MICROPROCESSOR
CONNECTOR
PIN PROTECTOR
PIN Rl OF — »le
TARGET SYSTEM
MICROPROCESSOR TARGET SYSTEM

MICROPROCESSOR

SOCKET SOCKET

Figure 3-3. Installing into a PGA type socket

3-6 In-Circuit Emulation

In-Circuit
Configuration
Options

Note

The 70216 emulator provide configuration options for the following
in-circuit emulation issues. Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Using the Target System Clock Source

The default 70208 and 70216 emulator configuration selects the
internal 8 MHz (system clock speed) clock as the emulator clock
source. The default 70208H and 70216H emulator configuration selects
the internal 16 MHz (system clock speed) clock as the emulator clock
source.You should configure the emulator to select an external tar
system clock source for the "in-circuit" emulation.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

When you use the 18087 coprocessor on your target system connected
to 70216 microprocessor, the i8087 can access 70216 emulation
memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70216
emulator to the i8087 coprocessor before starting emulation session.

Enabling NMI and RESET Inputs from the Target System

You can configure whether the emulator should accept or ignore the
NMI and RESET signals from the target system.

In-Circuit Emulation 3-7

Running the
Emulator from
Target Reset

3-8 In-Circuit Emulation

You can specify that the emulator begins executing from target system
reset. When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET Input From Target?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:
Processor, Go, Reset
The status now shows that the emulator is "Awaiting target reset".

After the target system is reset, the status line message will change to
show the appropriate emulator status.

Target System
Interface

RESET

NMI

This singal is connected to 70216 through

ACT14, 51ohm and 10K ohm pull-up register.

+5V

12K

RESET

ACT14

‘v2le

This singal is connected to 70216 through
ACT14, 51 ohm and 100K ohm pull-down

register.

NMI
ACT14

10BK

0216

In-Circuit Emulation 3-9

3-10 In-Circuit Emulation

AD15-ADO These singals are connected to 70216 through
FCT245, 51 ohm and 10K ohm pull-up register.

ol
AD15-ADB

FCT245 ’v216

END/TC This singal is connected to 70216 through 51
ohm and 10K ohm pull-up register.

L/
END/TC S@216

OTHER(OUTPUT) These singals are connected to 70216 through
FCT244, 51 ohm and 10K ohm pull-up
registers.

18K

OTHER(OUTPUT) °!

D VAVAVESS FCT244 70216

Configuring the Emulator

Introduction

Your 70216 emulator can help you in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software and in-circuit when
integrating software with hardware. You can use the emulator’s
internal clock or your target system clock. Emulation memory can be
used with your target system memory, and it can be mapped as RAM
or ROM. You can execute your target programs in real-time or allow
emulator execution to be diverted into the monitor when commands
request access of target system resources (target system memory,
register contents, etc.)

The emulator is a versatile instrument and may be configured to su
your needs at any stage of the development process. This chapter|
describes the emulator configuration options.

This chapter will:
m Show you how to access the emulator configuration options.
m Describe the emulator configuration options.

m Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the Emulator 4-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer tblkhe
64700 Emulators: Concepts of Emulation and Analyssual and the
"Getting Started" chapter of this manual.

4-2 Configuring the Emulator

Accessing the
Emulator
Configuration
Options

Select:

Config, General

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Clock source?
Enable target NMI?

Trace refresh cycles?

Enable support FPP?

Enable uword access?

Monitor type?

Segment algorithn? [JJPINEF Enable ROM breaks? [I¥] Enable su_breakpoints?[ii]

Enable CMB interaction?

Reset value for stack pointer(SS:SP>7 [llliHuEZ8)

«tl+ Interfield movement Ctrl ++ !Field editing TAB :Scroll choices

General Emulation Configuration

Enable real-time mode?[[j§] Enable target READY? [Th]
@ Enable target RESET? m Enable target HOLD? @

[*H] Trace DMA cycles? [¥] Trace hold cycles? [y]|

[n]] Enable DMA in background? L n]|
[n]| Disassembler mode?
[yl

background|

STATUS: n78216--Emulation reset Emulation trace halted

If "int" is selected, the emulator uses the internal clock. Otheruise, the

emulator uses the external(input from the target system > clock.

Figure 4-1. General Emulator Configuration (70216)

Note #

You can use the System Terminal window to modify the emulator
configuration. If you do this, some PC Interface features may no
longer work properly. We recommend that you modify the emulator
configuration using only the PC Interface.

Configuring the Emulator 4-3

Clock source

Note #

4-4 Configuring the Emulator

This configuration item allows you to select whether the emulator will
be clocked by the internal clock source or by a target system clock
source.

int Selects the internal clock oscillator as the emulator
clock source. Inthe 70208/70216 emulator,
internal clock speed is 8 MHz (system clock).

In the 70208H/70216H emulator, internal clock
speed is 16 MHz (system clock). This is the default.

ext An external target system clock is the emulator
clock source. In the 70208/216 emulator, external
oscillator clock sources must be within the range of
4-20 MHz.

In the 70208H/70216H emulator, external oscillator
clock sources must be within the range of 2-32
MHz.

Changing the clock source drives the emulator into the reset state.

Enable Real-Time The "Enable real-time mode" question lets you configure the emulator

Mode to refuse commands that cause an emulator break to monitor during
user program runs.

No All commands, whether or not they require a break
to the emulation monitor, are accepted by the
emulator.

Yes When runs are restricted to real-time and the

emulator is running the user program, all
commands that cause a break (excBptcessor
Reset", ProcessoBreak”, 'Processof0", and
"ProcessofStep") are refused. For example, the
following commands are not allowed when runs are
restricted to real-time:

m Display/modify registers.
m Display/modify target system memory.
m Display/modify I/O.

Caution ' Restrict emulator to real-time runs with certain target systems
If your target system circuitry depends on constant program execution,
you should restrict the emulator to real-time runs. This helps avoid
target system damage. Remember that you still can execute the
"ProcessoReset", ProcessoBreak”, and ProcessofStep”
commands. You should use caution when executing these commands.

Configuring the Emulator 4-5

Enable target
READY

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready lines while emulation memory is being accessed.

No

Yes

When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted).

When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested).

Enable target NMI

Note #

4-6 Configuring the Emulator

This configuration option specifies whether or not the emulation
processor accepts to NMI signal generated by the target system.

Yes

No

The emulator accepts NMI signal generated by the
target system. When the NMI signal is accepted,
the emulator calls the NMI procedure as actual
microprocessor.

The emulator ignores NMI signal from target
system completely.

When target NMI signal is enabled , it is in effect while the emulator is
running in the target program. while the emulator is running monitor,
NMI will be ignored until the monitor is finished.

Enable target
RESET

The 70216 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to
"ProcessofGo Reset" command in "In-circuit Emulation” chapter).
While running in background monitor, the 70216 emulator ignores
target system reset completely independent on this setting.

Yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (OFFFFO hex) as same
manner as actual microprocessor after reset is
inactivated.

No If disabled, the emulator completely ignores the
reset signal from target system. This is true if the
emulator is in foreground (executing user program).

Enable target
HOLD

This configuration allows you to specify whether or not the emulato
accepts HOLD (Bus Hold Request) signal generated by the target
system.

No The emulator ignores HOLD signal from target
system completely.

Yes The emulator accepts HOLD signal. When the

HOLD is accepted, the emulator will respond as
actual microprocessor.

Configuring the Emulator 4-7

Trace refresh
cycles

This question allows you to specify whether or not the analyzer trace
the 70216 emulation processor’s refresh cycles.

Yes Specifies that the analyzer will trace the 70216
refresh cycles.

No Specifies that the analyzer will not trace the 70216
refresh cycles.

Trace DMA cycles

This question allows you to specify whether or not the analyzer trace
the 70216 emulation processor’s internal DMA cycles.

Yes Specifies that the analyzer will trace the 70216
internal DMA cycles.

No Specifies that the analyzer will not trace the 70216
internal DMA cycles.

Trace hold cycles

4-8 Configuring the Emulator

This question allows you to specify whether or not the analyzer trace
the 70216 emulation processor’s hold cycles.

Yes Specifies that the analyzer will trace the 70216 hold
cycles.

No Specifies that the analyzer will not trace the 70216
hold cycles.

Segment algorithm The run and step commands allow you to enter addresses in either
logical form (segment:offset, e.g., OFOOOH:0000H) or physical form
(e.g., OFO00H). When a physical address (non-segmented) is entered
with either a run or step command, the emulator must convert it to a
logical (segment:offset) address.

minseg Specifies that the physical run address is converted
such that the low 16 bits of the address become the
offset value. The physical address is right-shifted 4
bits and ANDed with OFO0O0H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & Oxffff)

maxseg Specifies that the low 4 bits of the physical address
become the offset. The physical address is
right-shifted 4 bits to yield the segment value.

logical_addr = (phys_addr >> 4):(phys_addr & Oxf)

curseg Specifies that the value entered with either a run
step command (0 thru Offff hex) becomes the offs
In this selecting, the current segment value is not
changed.
logical_addr = (current segment):(entered value)
If you use logical addresses other than the three methods which follow,
you must enter run and step addresses in logical form.

Configuring the Emulator 4-9

Enable ROM break

Note #

4-10 Configuring the Emulator

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM. The
emulator will prevent the processor from writing to memory mapped as
emulation ROM. It cannot prevent writes to target system RAM
locations mapped as ROM, though the write to ROM break is enabled.

Yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

No The emulator will not break to the monitor upon a
write to ROM.

Thewrrom analysis specification status option allows you to use
“write to ROM” cycles as trigger and storage qualifiers.

Enable This question allows you to enable or disable the software breakpoints
; feature.

sw_breakpomts When you define (add) a breakpoint, software breakpoints are

automatically enabled.

No The software breakpoints feature is disabled. This
is the default emulator configuration, so you must
change this item before you can use software
breakpoints.

Yes Allows you to use the software breakpoints feature.
The emulator detects the breakpoint interrupt
instruction (CC hex), it generates a break to
background request which as with the "processor
break" command.

When you define or enable a software breakpoint, the emulator will set
the trap bit at the software breakpoint address.When software
breakpoints are enabled and emulator detects the breakpoint trap
emulator execute the instruction at the breakpoint address and it
generates a break to background request which as with the "proce
break" command.

Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint trap interrupt is a
software breakpoint or opcode in your target program.

If it is a software breakpoint, execution breaks to the monitor,and the
breakpoint trap bit is cleared. A subsequent run or step command will
execute from next address.

When software breakpoints are disabled, the emulator clears the trap
bit. Up to 32 software breakpoints may be defined.

Configuring the Emulator 4-11

Enable CMB Coordinated measurements are measurements made synchronously in
Interaction multiple emulators or analyzers. Coordinated measurements can be

made between HP 64700 Series emulators that communicate over the
Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated measurement.
The CMB signals READY and /EXECUTE are used to perform
multiple emulator start/stop.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

No The emulator ignores the /EXECUTE and READY
lines, and the READY line is not driven.

Yes Multiple emulator start/stop is enabled. If you enter
the

Processor, CMB, Co, ...

command, the emulator will start executing code
when a pulse on the /EXECUTE line is received.
The READY line is driven false while the emulator
is running in the monitor. It goes true whenever
execution switches to the user program.

Note # CMB interaction also will be enabled when you enter the

Processor, CMB, Execute

command.

4-12 Configuring the Emulator

Enable DMA in
background

This configuration allows you to specify whether or not the emulator
accepts DMARQO-3 (DMA Request 0-3) signals generated by the
target system in background.

Yes The emulator accepts DMARQO-3 signals. When
the DMARQO-3 are accepted, the emulator will
respond as actual microprocessor.

No The emulator ignores DMARQO-3 signals from
target system completely in background.The 70216
emulator ignored DMA request from internal DMA
controller until the emulator goes into forground
operation.

Enable support
FPP

This configuration allows you to use FPP(Floating Point co-Proces
and to specify whether the emulator will drive the target system bu
during ANY bus cycle.

No Specifies target system does not have FPP. The
data bus signals are not driven to the target system
when the emulator access to the emulation memory.

Yes Specifies your target system has FPP to work with
the emulator. The i8087 on your target system can
read co-processor instructions on the emulation
memory.
When "Yes" is selected, a special hardware mode which allows the
emulator to support a floating point co-processor is enabled. When a
floating point co-processor is present, it must monitor all address and
data that the emulation processor inputs and outputs. Because of this, it
is necessary to enable data bus drivers to the target system for all
emulation memory read cycles. This is normarlly done only on write
cycles, and is not done on read cycles to avoid bus contention problems
between the emulator and the target system. When this mode is
enabled, the USER output from the pod should be used to disable user

Configuring the Emulator 4-13

buffers that would normally to turned on when the emulator is reading
from emulation memory. Also you should also select "yes" at the
"Respond to HLDRQ from target system" configuration question for
target hold signal input.

Disassembler

This configuration specifies the mode of dis-assembler that are used by

mode the emulator to display memory, trace, and register in mnemonic
format.
native Selecting the native mode specifies that the
emulator will display dis-assembler with NEC
assembler format.
64853 Selecting the 64853 mode specifies that the
emulator will display dis-assembler with
OLS(HP64853) assembler format.
The default emulator configuration selectsrihive mode at power
up initialization.
Enable word This configuration specifies the type of microprocessor cycles that are
access used by the monitor program to access target memory or 1/O locations.

4-14 Configuring the Emulator

When a command requests the monitor to read or write to target system
memory or |/O, the monitor program will look at the access mode
setting to determine whether byte or word instructions should be used.

Yes Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at a time) at an even address.
When the emulator read or write odd number of
byte data, the emulator will read or write the last
byte data using byte cycle

At an odd address, the emulator will access target
memory using byte cycles.

No Selecting the byte access mode specifies that the
emulator will access target memory using upper
and lower byte cycles (one byte at a time).

The 70208/70208H Emulator is the byte access mode and the
70216/70216H Emulator is the word access mode at power up
initialization. Access mode specifications are saved; that is, when a
command changes the access mode, the new access mode becomes the
current default.

Reset value for
stack pointer?

Note

This question allows you to specify the value to which the stack
segment (SS) and stack pointer (SP) will be set on entrance to the
emulation monitor initiated RESET state (the "Emulation reset" stat

The address specified in response to this question must be a
<SS>:<SP> address.

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not used
by user program.

We recommend that you use this method of configuring the stack
pointer. Without a stack pointer, the emulator is unable to make the
transition to the run state, step, or perform many other emulation
functions. However, using this optidoes notpreclude you from
changing the stack pointer value or location within your program; it
just sets the initial conditions to allow a run to begin.

Configuring the Emulator 4-15

Monitor Type

Note #

Note #

Note #

4-16 Configuring the Emulator

This configuration option allows you to select and use a foreground
emulation monitor program. The default monitor is background
monitor.

background Specify monitor type as background monitor.
When you select background monitor, you can
specify the background monitor location.

While running in background monitor, the 70216 emulator ignores
target system reset.

foreground Specify monitor type as foreground monitor. When
you select foreground monitor, you must specify
correct foreground monitor start address with next
configuration question (foreground monitor
address). After you completed the configuration
setting, you need to load foreground monitor
program to the emulator wittMemory,L oad"
feature. The foreground monitor program must
already assembled and linked with appropriate
location specification. Refer to th#> 64791/2
70208H/70216H Emulator Terminal Interface
User’s Guidefor more information.

You mustnot use the foreground monitor if you wish to perform
coordinated measurements.

If you select a foreground monitor, a 4 kilobyte block is automatically
mapped at the address specified by the next question.

Foreg round The location of the foreground monitor is important because it will
; n occupy part of the processor address space. Foreground monitor
Monitor Address?* location must not overlap the location of target system programs. The
default foreground monitor location is "OFOO00H".

When entering monitor block addresses, you must only specify
addresses on 4K byte boundaries; otherwise, an invalid syntax message
is displayed.

Note # Relocating the monitor causes all memory mapper terms to be removed.

Note You should not load the foreground monitor provided with the 70216
emulator at the base address 0 or 0ff000 hex; the 70216
microprocessor’s vector table is located.

Configuring the Emulator 4-17

Storing an The PC Interface lets you store a particular emulator configuration so
Emulator that it may be re-loaded later. The following information is saved in the

)) emulator configuration.
Configuration

m Emulator configuration items.
m Key macro specifications.

= Memory map.

m Break conditions.

m Trigger configuration.

m Window specifications.

To store the current emulator configuration, select:
Config, Store

Enter the name of a file in which to save the emulator configuration.

Loading an If you want to reload a previously stored emulator configuration, select:
Emulator
Configuration

Config, Load
Enter the configuration file name and presger. The emulator will

be reconfigured with the values specified in the configuration file

4-18 Configuring the Emulator

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to use the basic
features of the 70216 emulator. This chapter describes the more
in-depth features of the emulator.

This chapter shows you how to:
m Address syntax in emulation commands.
m Register names and classes.
m Make coordinated measurements.

m Store the contents of memory into absolute files.

Using the Emulator 5-1

Address Syntax

Syntax

s <SEGMENI> —° > COFFSET>
_ <PHY_ADDR> -

& <I/0 ADDR>

The address used in emulation commands may be specified as a logical
address or as a physical address (though a physical address in run or
step command is coverted to logical address by the emulator system).

Expressions are defined in tH® 64700 Emulators Terminal
Interface: User's Referenagaanual.

5-2 Using the Emulator

Parameters

<SEGMENT>

<OFFSET>

<PHY_ADDR>

<I/O_ADDR>

This expression (0-OFFFF hex) is the segment
portion of the logical address. The value specified
is placed in the 70216 PS register.

This expression (0-OFFFF hex) is the offset portion
of the logical address. The value specified is placed
in the 70216 PC register.

This expression (0-OFFFFF hex) is a physical
address in the 70216 address range. Inrun
commands , the emulation system converts this
physical address to a <segment>:<offset> address
as specified by the "segment algorithm"
configuration option in "Configuring the Emulator"
chapter.

This expression (0-OFFFF hex) with no function
code is a 70216 1/0O address. This expression
should be used in I/O command .

Using the Emulator 5-3

REGISTER The following register names and classes are used witiRégster
NAMES and DisplayM odify" commands in 70216 emulator.

CLASSES

BASIC(*) class
Register name Description
aw, bw BASIC registers.
cw, dw
bp, ix, iy

ds0, ds1, ss
sp, pc, ps, psw

NOCLASS
Register name Description

al, ah, bl, bh
cl, ch, dl, dh

5-4 Using the Emulator

SIO class (System I/O registers)
(70208/70216
Emulator)

Register name Description

opcn On-chip peripheral connection register
opsel On-chip peripheral selection register
opha On-chip peripheral high address register
dula DMAU low address register

iula ICU low address register

tula TCU low address register

sula SCU low address register

wcyl Programmable wait, cycle 1 register
wcy2 Programmable wait, cycle 2 register
wmb Programmable wait, memory boundary register
rfc Refresh control register

tcks Timer clock selection register

Using the Emulator 5-5

SIO class
(70208H/70216H
Emulator)

Register name

opcn
opsel
opha
dula
iula
tula
sula
sctl
weyl
wcey2
wmb
rfc
shcr
tcks
exwb
wsmb
wiob
wcy3
brc
badr
bsel

5-6 Using the Emulator

(System 1/O registers)

Description

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register

ICU low address register

TCU low address register

SCU low address register

System control register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register

Stand-by control register

Timer clock selection register

Extended wait block selection register
Wait submemory block selection register
Wait 1/0 block selection register
Programmable wait, cycle 3 register
Boud rate counter

Bank address register

Bank select register

ICU class (Interrupt Control Unit registers)

Register name Description

imkw Interrupt mask word register

irq Interrupt request register (Read only)

iis Interrupt in-service register (Read only)

ipol Interrupt polling register (Read only)

ipfw Interrupt priority and finish word register

(Write only)

imdw Interrupt mode word register (Write only)

iiwl Interrupt initialize word 1 register (Write only)

iiw2 Interrupt initialize word 2 register (Write only)

iiw3 Interrupt initialize word 3 register (Write only)

iiw4 Interrupt initialize word 4 register (Write only)
Caution ' Whenipol register is displayed, interruptis are suspended until the FI

command is published.

TCU class (Timer Control Unit registers)

Register name Description

tct0 Timer/counter O register

tst0 Timer status O register (Read only)
tctl Timer/counter 1 register

tstl Timer status 1 register (Read only)
tct2 Timer/counter 2 register

tst2 Timer status 2 register (Read only)
tmd Timer/counter mode register (Write only)

Using the Emulator 5-7

SCU class

DMA71 class

5-8 Using the Emulator

(Serial Control Unit registers)

Register name

srb
sst
stb
scm
smd
simk

Description
Serial receive data buffer (Read only)
Serial status register (Read only)
Serial transmit data buffer (Write only)
Serial command register (Write only)
Serial mode register (Write only)
Serial interrupt mask register (Write only)

(DMA Control Unit registers (for uPD71071 mode)

Register name

dicm

dch
dbc/dccO
dbc/dccl
dbc/dcc2
dbc/dcc3
dba/dca0
dba/dcal
dba/dca2
dba/dca3
dmdoO
dmdi
dmd?2
dmd3
ddc

dst

dmk

Description

DMA initialize register (Write only)
DMA channel register

DMA base/current count register channel 0
DMA base/current count register channel 1
DMA base/current count register channel 2
DMA base/current count register channel 3
DMA base/current address register channel 0
DMA base/current address register channel 1
DMA base/current address register channel 2
DMA base/current address register channel 3
DMA mode control register channel 0

DMA mode control register channel 1

DMA mode control register channel 2

DMA mode control register channel 3

DMA device control register

DMA status register (Read only)
DMA mask register

DMA3Y7 class
(70208H/70216H
Emulator only)

(DMA Control Unit register (for uPD71037 mode)

Register name Description

cmd DMA read status/write command register
bank0 DMA bank register channel 0
bank1 DMA bank register channel 1
bank2 DMA bank register channel 2
bank3 DMA bank register channel 3
adr0 DMA current address register channel 0
adrl DMA current address register channel 1
adr2 DMA current address register channel 2
adr3 DMA current address register channel 3
cnt0 DMA current count register channel 0
cntl DMA current count register channel 1
cnt2 DMA current count register channel 2
cnt3 DMA current count register channel 3
sfrq Software DMA write request register
(Write only)
smsk DMA write single mask register
(Write only)
mode DMA write mode register
clbp DMA clear byte pointer F/F (Write only)
init DMA initialize register (Write only)
cmsk DMA clear mask register (Write only)
amsk DMA write all mask register bit (Write only)

Using the Emulator 5-9

Making
Coordinated
Measurements

5-10 Using the Emulator

Coordinated measuremerdse measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators, which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and another
instrument connected to the BNC connector.

This chapter will describe coordinated measurements made from the
PC Interface which involve the emulator. These types of coordinated
measurements are:

m Running the emulator on reception of the CMB /EXECUTE
signal.

m Using the analyzer trigger to break emulator execution into
the monitor.

Three signal lines on the CMB are active and serve the following
functions:

/ITRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system, or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When you enable
CMB run control interaction, all emulators must
break to background on receipt of a false READY
signal and will not return to foreground until this
line is true.

/EXECUTE Active low. This line serves as a global interrupt
signal. On receipt of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
such as run the emulator or start a trace
measurement.

Running the
Emulator at
[EXECUTE

Breaking on the
Analyzer Trigger

Before you can specify that the emulator run on receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config, General
Use the arrow keys to move the cursor to the "CMB Interaction? [n]"
question, and type "y". Use tRater key to exit out of the lower
right-hand field in the configuration display.

To begin executing a program on receipt of the /EXECUTE signal,
select:

Processor, CMB, Go
Now you may select either the current program counter ("Pc", in other

words, the current PS:PC), or a specific address.

The command you enter is saved, and is executed when the
/EXECUTE signal becomes active. Also, you will see the message
"ALERT: CMB execute; run started".

To break emulator execution into the monitor when the analyzer trigger
condition occurs, you modify the trigger configuration. To access the
trigger configuration, select:

Config, Trigger
The trigger configuration display contains two diagrams, one for ea

internal TRIG1 and TRIG2 signal.

Using the Emulator 5-11

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted "Analyzer"
field in the TRIG1 portion of the display. Use fh&B key to select

the "----->>" arrow pointing from the analyzer to TRIG1. Next, move
the cursor to the highlighted "Emulator” field and useliAB key to
select the arrow pointing toward the emulator (<<-----). This specifies
that emulator execution will break into the monitor when the TRIG1
signal is driven. The trigger configuration display appears as follows:

5-12 Using the Emulator

Cross Trigger Configuration
TRIG1 TRIGZ
BNC | BNC |
cnB | chB |
Emulator | Emulator |
Analyzer e > finalyzer
«tl+ !Interfield movement Ctrl ++ :Field editing TAB :Scroll choices
STATUS: n78216——Running user program Emulation trace complete
The emulator may either receive (K) or ignore the TRIGL and TRIGZ control
signals. Upon receipt of TRIG1 or TRIGZ, the emulator will break to background
Monitor operation.

Storing Memory The "Getting Started" chapter shows you how to load absolute files

into emulation or target system memory. You can also store emulation
Contents t‘? an or target system memory to an absolute file with the following
Absolute File command.

Memory, Store
When you store memory usinly'emory,Store" command, the address
information saved to an absolute file is defined from the address
expression used in th&'emoryStore" command. refer to "Address
Expression in Emulation Commands" section in this chapter.

Note The first character of the absolute file name must be a letter. You can
name the absolute file with a total of 8 alphanumeric characters. You
also can include an extension of up to 3 alphanumeric characters. If
the file is stored in HP 64000 format, its extension must be ".X".

Caution The "MemoryStore” command writes over an existing file if it has the
same name that is specified with the command. You may wish to
verify beforehand that the specified filename does not already exist.

Using the Emulator 5-13

Notes

5-14 Using the Emulator

File Format Readers

Introduction The 70216 PC Interface is provided with the following "reader".

m Intel Object Module Format (OMF86) Reader
— (This Reader is for the Intel OMF86 absolute file)

m NEC30 Reader

— (This Reader is for the load module format file which is
generated by NEC LK70116 linker for uPD70208 and
uPD70216)

s HP64000 Reader

The Reader converts the file(s) into two files that are usable with the
HP 64792 emulator. This means that you can use available language
tools to create absolute files, then load those files into the emulator
using the 70216 PC Interface.

The Reader can operate from within the PC Interface or as a separate
process. When operating the Reader, it may be necessary to execute it
as a separate process if there is not enough memory on your personal
computer to operate the PC Interface and Reader simultaneously. You
can also operate the reader as part of a "make file".

File Format Readers A-1

Using the OMF86,
NEC30 Reader

What the Reader
Accomplishes

Note #

A-2 File Format Readers

The Reader accepts as input an absolute file in the form "<file>.<ext>",
and creates two new files that are used by the PC Interface: an
"absolute" file, and an ASCII symbol file.

The Absolute File

During execution of the Reader, an absolute file (<file>.HPA) is
created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.HPS) produced by the Reader contains
global symbols, module names, local symbols, and, when using
applicable development tools such as a "C" Compiler, program line
number. Local symbols evaluate to a fixed (static, not stack relative)
address.

You must use the required options for your specific language tools to
include symbolic ("debug") information in the absolute file. The
Reader will only convert symbol information that is present in the input
absolute file.

The symbol file contains symbol and address information in the
following form:

module_namel
module_name2

nlwnodule_nameN
global_symboll 0100:1234
global_symbol2 0100:5678

global_symboIN 0100:ABCD
[module_namel|# 1234 0200:0872
[module_namel|local_symboll 0200:0653
[module_name|local_symbol2 0200:0872

i?ﬁodule name|local_symboIN 0200:0986

The space preceding module names is required. A single tab separates
symbol and address.

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

The local symbols are scooped. This means that to access a variable
named “count” in a function named "foo" in a source file module
named "main.c", you would enter "main.c:foo.count’. See table A-1.

| Module Name | Function Name | Variable Name | You Enter: |
I I

| MAIN.C | FOO | COUNT | MAIN.C:FOO.COUNT |

| MAIN.C | BAR | COUNT | MAIN.C:BAR.COUNT |

| MAIN.C | line number 23 | MAIN.C: line 23 |

Table A-1. How to Access Variables

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is
five digit decimal number. Line numbers should appear in ascendi
order.

File Format Readers A-3

Note #

Location of the
Reader Program

Using the Reader
from MS-DOS

A-4 File Format Readers

When the line number symbol is displayed in the emulator, it appears
in brackets. Therefore, the symbol "modname:# 345" will be displayed
as "modname:[345]" in mnemonic memory and trace list displays.

Line number symbols are accessed by entering the following on one
line in the order shown:

module name

colon ()

space

the word "line"

space

the decimal line number

For example:
MAIN.C: line 23

The Reader is located in the directory naimg®4700\bin by default,
along with the PC Interface. This directory must be in the environment
variable PATH for the Reader and PC Interface to operate properly.
This is usually defined in the "\autoexec.bat" filhe following

examples assume that you have "\hp64700\bin" include in your

PATH variable. If not, you must supply the directory name when
executing the Reader program.

The command names for the Reader are shown below.

Intel OMF86 RDOMF86.EXE
Reader

NEC30 RDNEC30.EXE
Reader

You can execute the Reader from the command line with the following
command syntax:

C:\HP64700\BIN\<READER> [-q] [-u] [-m]
<filename> <RETURN>

<READER> is the name of the command name for the Reader

[-a] Specifies the "quiet" mode. This option suppress
the display of messages.

[-u] Specifies that the first leading underscore (*_") of a
symbol is not removed.

[-m] (RDOMF86.EXE only) Specifies that the OMF86
Reader removes duplicate module names generated
by some construction tools. Some tools enclose all
of the functions and variables in a module within a
block (or function) whose name is the same as that
of the module (or source file). When this option is
used, the Intel OMF86 Reader will ignore the first
enclosing block in a module is its name matches the
module name.

<filename> Specifies the same of the file containing the
absolute program. You can include an extension in
the file name.

The following commands will create the files "TESTPROG.HPA" and
"TESTPROG.HPS".

ENTER: RDOMF86 TESTPROG.ABS
ENTER: RDNEC30 TESTPROG.LNK

File Format Readers A-5

Using the Reader The 70216 PC Interface has a file format option underMtreory
from the PC Interface ~ Load" command.

After you select OMF86 as the file format, the Intel OMF86 Reader
will operate on the file you specify. After the Reader completes
successfully, the 70216 PC Interface will load the absolute and symbol
files produced by the Reader.

To use the Reader from the PC Interface, follow these steps:

1. Start up the 70216 PC Interface.
2. SelectMemory,Load". The memory load menu will appear.

3. Specify the file format as "OMF86". This will appear as the
default file format.

4. Specify the memory to be loaded (emulation, target, or both).

5. Specify to force the file format reader to regenerate the
emulator absolute file (.HPA) and symbol database (.HPS)
before loading the code. Normally, these files are only
regenerated whenever the file you specify (the output of your
language tools) is never than the emulator absolute file and
symbol database.

6. Specify that the OMF86 Reader removes duplicate module
names generated by some construction tools. Some tools
enclose all of the functions and variables in a module within a
block (or function) whose name is the same as that of the
module (or source file). When this option is used, the Intel
OMF86 Reader will ignore the first enclosing block in a
module is its name matches the module name.

7. Specify that the first leading underscore (*_") of a symbol is

not removed.

A-6 File Format Readers

Note

v

8. Specify a file in Intel OMF86 format ("TESTFILE.OMF", for

example).The file extension can be something other than
".OMF", but ".HPA" or ".HPS" cannot be used.

Using the Intel OMF86 file that you specify (TESTFILE.OMF, for
example), the PC Interface performs the following:

m [t checks to see if two files with the same base name and

extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don't exist, the Intel
OMF86 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the Intel OMF86 file
creation date/time, the Intel OMF86 Reader recreates them.
The new absolute file, TESTFILE.HPA, is then loaded into
emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date/time for the
Intel OMF8E6 file, the current absolute file, TESTFILE.HPA,
is then loaded into the emulator.

Date/time checking only done within the PC Interface. When you run
the Reader at the MS-DOS command line prompt, the Reader will
always update the absolute and symbol files.

When the Reader operates on a file, a status message will be displ
indicating that it is reading an absolute file. When the Reader
completes its processing, another message will be displayed indic
the absolute file is being loaded.

File Format Readers A-7

If the Reader Won't
Run

Including Reader in a
Make File

A-8 File Format Readers

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, exit the PC
Interface and execute the Reader program at the MS-DOS command
prompt.

You may want to incorporate the "RDOMF86" or "RDNEC30" process
as the last step in your "make" file, or as a step in your construction
process, so as to eliminate the possibility of having to exit the PC
Interface due to space limitations describe above. If the file with
"-.HPA" and "-.HPS" extensions are not current, loading an absolute
file will automatically create them.

Using the
HP 64000 Reader

What the Reader
Accomplishes

An HP 64000 “reader” is provided with the PC Interface. The HP
64000 Reader converts the files into two files that are usable with your
emulator. This means that you can use available language tools to
create HP 64000 absolute files, then load those files into the emulator
using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or as a
separate process. When operating the HP 64000 Reader, it may be
necessary to execute it as a separate process if there is not enough
memory on your personal computer to operate the PC Interface and HP
64000 Reader simultaneously. You can also operate the reader as part
of a “make file.”

Using the HP 64000 files (<file.X>, <file.L>, <scrl.A>, <scr2.A>, ...)
the HP 64000 Reader will produce two new files, an “absolute” file and
an ASCII symbol file, that will be used by the PC Interface. These new
files are named: “<file>.hpa” and “<file>.hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file (<file>.hpa)
is created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools such as a “C” compiler, program
line numbers. Local symbols evaluate to a fixed (static, not stack
relative) address.

File Format Readers A-9

include symbolic (“debug”) information in the HP 64000 symbol files.
The HP 64000 Reader will only convert symbol information present in
the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

Note # You must use the required options for your specific language tools to

The symbol file contains symbol and address information in the
following form:

module_namel
module_name2

'rﬁodule_nameN
global_symboll 0100:1234
global_symbol2 0100:5678

global_symboIN 0100:ABCD
[module_namel|# 1234 0200:0872
[module_namel|local_symboll 0200:0653
[module_namel|local_symbol2 0200:0872

i?ﬁodule_namel|Iocal_symboIN 0200:0986

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “4#NNNNN”" where NNNNN is a
five digit decimal line number. The addresses associated with global
and local symbols are specific to the processor for which the HP 64000
files were generated.

A-10 File Format Readers

disassembly. When the line number symbol is displayed in the
emulator, it appears in brackets. Therefore, the symbol “MODNAME:
line 345" will be displayed as “MODNAME:[345]" in mnemonic
memory and trace list displays.

Note # If your emulator can store symbols internally, symbols will appear in

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols are scooped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “MAIN.C:COUNT” as shown below.

Module Name Variable Name You Enter:
MAIN.C COUNT MAIN.C:COUNT
MAIN.C line number 23 MAIN.C: line 23

Table A-2. How to Access Variables

You access line number symbols by entering the following on one line
in the order shown:

module name

colon ()

space

the word “line”

space

the decimal line number

For example:
MAIN.C: line 23

File Format Readers A-11

Location of the
HP 64000 Reader
Program

Using the Reader
from MS-DOS

Using the Reader
from the PC Interface

A-12 File Format Readers

The HP 64000 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64000 Reader and PC Interface
to operate properly. The PATH is usually defined in the

“\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

The command name for the HP 64000 ReadeHB64000.EXE To
execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

[-a] This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA"and
“TESTPROG.HPS”
RHP64000 TESTPROG.L

The PC Interface has a file format option under MerhoryL oad”
command. After you select HP64000 as the file format, the HP 64000
Reader will operate on the file you specify. After this completes
successfully, the PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.
2. SelectMemoryLoad.” The memory load menu will appear.

3. Specify the file format as “HP64000.” This will appear as the
default file format.

4. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

Using the HP 64000 file that you specify (TESTFILE.L, for example),
the PC Interface performs the following:

m [t checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

m [f TESTFILE.HPS and TESTFILE.HPA don't exist, the HP
64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

m |f TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64000 linker
symbol file creation date/time, the HP 64000 Reader recreates
them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

m |If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date and time for
the HP 64000 linker symbol file, the HP 64000 Reader will
not recreate TESTFILE.HPA. The current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

running the HP 64000 Reader at the MS-DOS command line prompt,

Note # Date/time checking is only done within the PC Interface. When
the HP 64000 Reader will always update the absolute and symbol files.

When the HP 64000 Reader operates on a file, a status message will be
displayed indicating that it is reading an HP 64000 file. When the HP
64000 Reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

The PC Interface executes the Reader with 4fye(tuiet) option by
default.

File Format Readers A-13

If the Reader Won't
Run

Including RHP64000
in a Make File

A-14 File Format Readers

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, you will
need to exit the PC Interface and execute the program at the MS-DOS
command prompt to create the files that are downloaded to the
emulator.

You may wish to incorporate the “RHP64000” process as the last step
in your “make file,” as a step in your construction process, to eliminate
the possibility of having to exit the PC Interface due to space
limitations describe above. If the files with “.HPA” and “.HPS”
extensions are not current, loading an HP 64000 file will automatically
create them.

Index

A absolute files
< file> .hpa created by HP 64000 Reade?
Intel OMF86A-1
loading2-12
NEC30A-1
storing5-13
Address Synta%k-2
algorithm, cur segmer#-9
algorithm, max segment9
algorithm, min segment-9
analysis begir2-33
analysis displag-34
analysis specification
resetting the-30
trigger condition2-30
analyzer
features ofl-4
analyzer, using th2-30
ASCII symbol file (< file> .hpsA-9
assemblerg-9
assembling and linking the getting started sample progrém

B backgroundl-5
background monito4-16
BNC connectob-10
break comman@-26
breaking on analyzer triggérl1
breaks
software breakpoint3-26

C caution statements
real-time dependent target system circudiy
software breakpoint cmds. while running user c2&&
cautions
filenames in the memorysre canmand5-13
installing the target systeprobe3-2 .

characterization of memo®¢8 - 2-9

Index-1

2-Index

clock source
external3-7, 4-4
internal3-7, 4-4
CMB (coordinatedneasurement bu$y10
CMB signals5-10
commands (PC Interface), select+g
configuration (emulator}-1
loading4-18
storing4-18
configuration options
accessing-3
dis-assembler mode14
emulator clock sourcé-4
enable CMB interactiod-12
enable DMA in background-13
enable ROM break-10
enable support FPR13
enable sw_breakpointis11
enable word acceds14
foreground monitor addredsl7
in-circuit 3-7
monitor type4-16
real-time modet-5
segment algorithm-9
target hold4-7
target NMI4-6
target ready-6
target resed-7
trace DMA cycle#l-8
trace hold cycled-8
trace refresh cycles8
configuration(hardware), indteng the emulato2-2
coordinatedneasurements
break on analyzer triggér11
definition 5-10
multiple emulator start/stof-12
run at / EXECUTES-11
coprocessor
access emulation mema2yg, 3-7
copy memory commanz-36

count, step cmmand2-23
cur segment algorith#-9

device table, emulatd-7
disassembler mode, changing th&9
displaying the tracg-34
DMA 1-7

external2-9

in background}-13

TC bit1-7

emulation analyzet-4
emulation memory
access by 808processoR-8, 3-7
note on target accesse9
RAM and ROM2-8
size of2-8
emulation monitor
foreground or backgrount5
emulation RAM and ROM-9
emulator
device table-7
feature listl-3
memory mapper resolutiaZ8
purpose ofl-1
reset2-36
running from target res@&7 - 3-8
status2-8
supported microprocessor packdga
emulator configuration
configuration optiong-1
loading4-18
stack pointed-15
storing4-18
Emulator features
emulation memorg-4
emulator probe
installing3-2
enable CMB interactiod-12
enable ROM break-10
enable sw_breakpoin#s11
eram, memory characterizati@r

Index-3

4-Index

erom, memory characterizati@9
Evaluation chipl-7
EXECUTE

CMB signal5-10

run ats-11
executing program2-25
exiting the PC Interface-37
external clock sourcé-4

file formats
HP64000A-12

file formats, absolut@-12

find data in memorg-25

foregroundl-5

foreground monitod-16
locating the4-17

getting starte@-1
prerequisite®-2

global symbol-15, 2-21

grd, memory characterizatidh9

guarded memory accesse9

hardware installatio2-2
HOLD
from target system-7
HP 64000 Readek-9
using with PC Interfacé-12
HP 64000 Reader comand (RHB4000.EXE)A-12
HP64000 file formaf-12
HPTABLES environment variab&7

IEEE-695 readeA-2
in-circuit configuration option8-7
in-circuit emulation3-1
installation
hardware2-2
software2-2
internal clock sourcé-4
interrupt
from target systerth-7, 3-7
while steppindl-7

line number-35
linkers2-9
linking the getting started sample prograrb
load map2-9
loading absolute fileg-12
local symbol-17, 2-28, A-3, A-11
locating the foreground monit@r17
location address
foreground monito#d-17
locked, PC Interface exit optid37
logical run address, conversion from physical add4es

make fileA-9
mapping memorg-8
max segment algoritha-9
memory
copy range2-36
displaying in mnemonic forma&-20
mapping2-8
modifying2-24
reassignment of emulationemory block®-11
searching for data-25
memory characterizatio?-8
memory memory
access by coprocessa9
microprocessor packade3
min segment algorithm-9
monitor
backgroundt-16
foregroun-16
monitor block4-17

NEC30
readerA-1
NMI
from target system-6
NMI signal
from target system-6
note statements
reassignment of emuhem. blocks by mappé*-11

notes
absolute file names fotaredmemory5-13

Index-5

6-Index

changing internal clock forces reget
CMB interaction enabled on execute commdnt?
config. option for reset stack pointer recommendieid

coordinatedneasurements require backgnd. monito4-16

date checking onlyin PC Interfagel3

displaying complete trac&s35

line number symbols in memory and trace listiAgs
mapper terms deleted when monitor is relocatdd
mapping foreground monitor automaticadhi6
Reader only checks date/time within the PC Interfad@e
register commangd-21

software breakpoints only at opcode addre2s2s
step not acceptezi2?2

symbolic information is required in absolute e
target accesses to emulation mema8y

use required options to include symbal&0

using terminal window to modify configuratiah3
write to ROM analyzer status10

OMFES86
readerA-1

PC Interface
exiting the2-37
HP 64000 Readek-12
selecting commands8
starting the2-7
physical run address, conversion to logical run addréss
Pin guard
target system prob&2
pin protector
target system prob& 3
predefining stack pointet-15
prerequisites for getting start@e?

gualifiers, analyzer status (70216 emoRt2-31

RAM, mapping emulation or targét9
READY signal from targe4-6
READY, CMB signal5-10

real-time model-5

register commangd-21

register commands-4

registers

classe$-4

names-4
relocatable file2-9
RESET

from target system-7
reset (emulator2-36

running from target res&-8
RESET signaB-7
resetting the analyzer specificatio+80
restrict to real-time runs

permissible coomand#-5

target system dependentp
ROM

writes t02-9
ROM, mapping emulation or targat9
run address, conversion from physical addde8s
run at EXECUTE>-11
run from target rese&-7 - 3-8, 4-7
running programg-25

sample program
assemblin@-6
linking 2-6
sample programs
for getting starte@-2
searching for data in memo2y25
selecting PC Interface commarni
simple trigger, specifying-30
single ste2-21
software breakpoint
70216 breakpoint inteupt instruction2-26
software breakpoint®-26
and NMI12-27
clearing2-29
defining (addingR-28
displaying2-28
ignored2-28
setting2-29

software installatior2-2
specifications
analysis specificatio2-30

Index-7

8-Index

stack pointer,defining-15
starting the trac2-33
status (analyzer) qualifiers, 70216 emula2e31
status line2-8
step2-21
step coun®-23
supervisor stack pointer
required for proper operatioh15
support FPP
in target system-13
symbols2-14
HPS file formatA-10
global2-21
local2-28, A-9
system command
exit 2-37

target reset
running from3-8
target reset, running fro®7
target system
dependency on executing codt®
interface3-9
Target system probe
cautions for installatio-2
pin guard3-2
pin protector3-3
target system RAM and RO®I9
trace
description of listin@-35
displaying the2-34
starting the2-33
trace signal2-30
tracing hold cycled-8
tracing internal DMA cycled-8
tracing refresh cycle4-8
tram, memory characterizati@9
TRIG1, TRIG2 internal signals-11
trigger
breaking into monitor o8-11
specifying a simpl&-30
trigger condition2-30

TRIGGER, CMB signab-10
trom, memory characterizatidh9

unlocked, PC Interface exit opti@a37
using the HP 64000 file readas9

wait states, allowing the target system to indeft
word accesd-14

zoom, window2-16, 2-20

Index-9

Notes

10-Index

	Using this Manual
	Contents
	Introduction to the 70216 Emulator
	Getting Started
	"In-Circuit" Emulation
	Configuring the Emulator
	Using the Emulator
	File Format Readers
	Index

