
HP 64791/2

70208H/70216H Emulator
PC Interface

User’s Guide

HP Part No. 6 4791-97010
Printed in U.S.A.
July 1994

Edition 4

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1991, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

IBM and PC AT are registered trademarks of International
Business Machines Corportion.

MS-DOS is a trademark of Microsoft Corporation.

V40 and V50 are trademark of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Rights for non-DOD U.S.Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes and, manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64791-97001, August 1991
64791-97004, November 1991
64791-97007, December 1993
64791-97010, July 1994

Using this Manual

This manual covers the following emulators as used with the PC
Interface:

HP 64791A 70208 emulator
HP 64792A 70216 emulator
HP 64791B 70208H emulator
HP 64792B 70216H emulator

For the most part, these emulators all operate the same way.
Differences between the emulators are described where they exist.
These 70208,70216,70208H and 70216H emulators will be referred
to as the "70216 emulator" in this manual where they are alike. In
the specific instances where 70208, 70208H and 70216H emulator
differs from the 70216 emulator, it will be referred as the "70208
emulator","70208H emulator" and "70216H emulator".

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected
to a target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, selecting a target system
clock source, and allowing the target system to insert wait
states.

This manual will not:

Show you how to use every PC Interface command and
option. The PC Interface is described in the HP 64700
Emulator’s PC Interface: User’s Reference.

Organization

Chapter 1 "Introduction" -This chapter lists the 70216 emulator features and
describes how they can help you in developing new hardware and
software.

Chapter 2 "Getting Started"-This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to:

load programs into the emulator
map memory
display and modify memory
display registers
step through programs
run programs
set software breakpoints
search memory for data
use the analyzer

Chapter 3 "In-Circuit Emulation" -This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit"
emulation features.

Chapter 4 "Configuring the Emulator" -You can configure the emulator to
adapt it to your specific development needs. This chapter describes
the emulator configuration options and how to save and restore
particular configurations.

Chapter 5 "Using the Emulator"-This chapter describes emulation topics that
are not covered in the "Getting Started" chapter (for example,
coordinated measurements and storing memory).

Appendix A. "File Format Reader"-This appendix describes how to use the File
Format Reader from MS-DOS or PC Interface, load absolute files
into the emulator, use global and local symbols with the PC
Interface.

Contents

1 Introduction to the 70216 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70216 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-4
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-5
Reset Support . 1-5
Configurable Target System Interface 1-5
Foreground or Background Emulation Monitor 1-5
Real-Time Operation . 1-6
Easy Products Upgrades . 1-6

Limitations, Restrictions . 1-7
DMA Support . 1-7
TC bit of DMA Status Register 1-7
User Interrupts . 1-7
Interrupts While Executing Step Command 1-7
Evaluation chip . 1-7

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
The sample program . 2-2
Assembling and Linking the Sample Program 2-6

Starting Up the 70216 PC Interface 2-7
Selecting PC Interface Commands 2-8
Emulator Status . 2-8

Mapping Memory . 2-8
Which Memory Locations Should Be Mapped? 2-9

Contents-1

Loading Programs into Memory 2-12
File Format . 2-12
Target Memory Type for Memory Load 2-12
Force the Absolute File to Be Read 2-13
File Format Options . 2-13
Absolute File Name . 2-13

Displaying Symbols . 2-14
Displaying Global Symbols 2-15
Loading and Displaying Local Symbols 2-17
Transfer Symbols to the Emulator 2-19

Changing the Disassembler Mode 2-19
Displaying Memory in Mnemonic Format 2-20
Stepping Through the Program 2-21

Specifying a Step Count . 2-23
Modifying Memory . 2-24
Running the Program . 2-25
Searching Memory for Data . 2-25
Breaking into the Monitor . 2-26
Using Software Breakpoints . 2-26

Defining a Software Breakpoint 2-28
Displaying Software Breakpoints 2-28
Setting a Software Breakpoint 2-29
Clearing a Software Breakpoint 2-29

Using the Analyzer . 2-30
Resetting the Analysis Specification 2-30
Specifying a Simple Trigger 2-30
Starting the Trace . 2-33
Change the Analyzer Display Format 2-33
Displaying the Trace . 2-34
For a Complete Description 2-35

Copying Memory . 2-36
Resetting the Emulator . 2-36
Exiting the PC Interface . 2-37

2-Contents

3 "In-Circuit" Emulation

Introduction . 3-1
Prerequisites . 3-1
Installing the Target System Probe 3-2

Pin Protector . 3-3
Auxiliary Output Lines . 3-3

Installing into a PLCC Type Socket 3-5
Installing into a PGA Type Socket 3-6
In-Circuit Configuration Options 3-7
Running the Emulator from Target Reset 3-8
Target System Interface . 3-9

4 Configuring the Emulator

Introduction . 4-1
Prerequisites . 4-2
Accessing the Emulator Configuration Options 4-3
Clock source . 4-4
Enable Real-Time Mode . 4-5
Enable target READY . 4-6
Enable target NMI . 4-6
Enable target RESET . 4-7
Enable target HOLD . 4-7
Trace refresh cycles . 4-8
Trace DMA cycles . 4-8
Trace hold cycles . 4-8
Segment algorithm . 4-9
Enable ROM break . 4-10
Enable sw_breakpoints . 4-11
Enable CMB Interaction . 4-12
Enable DMA in background . 4-13
Enable support FPP . 4-13
Disassembler mode . 4-14
Enable word access . 4-14
Reset value for stack pointer? 4-15
Monitor Type . 4-16
Foreground Monitor Address? 4-17
Storing an Emulator Configuration 4-18
Loading an Emulator Configuration 4-18

Contents-3

5 Using the Emulator

Introduction . 5-1
Address Syntax . 5-2
REGISTER NAMES and CLASSES 5-4

BASIC(*) class . 5-4
NOCLASS . 5-4
SIO class (70208/70216 Emulator) 5-5
SIO class (70208H/70216H Emulator) 5-6
ICU class . 5-7
TCU class . 5-7
SCU class . 5-8
DMA71 class . 5-8
DMA37 class (70208H/70216H Emulator only) 5-9

Making Coordinated Measurements 5-10
Running the Emulator at /EXECUTE 5-11
Breaking on the Analyzer Trigger 5-11

Storing Memory Contents to an Absolute File 5-13

A File Format Readers

Introduction . A-1
Using the OMF86, NEC30 Reader A-2

What the Reader Accomplishes A-2
Location of the Reader Program A-4
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-6
If the Reader Won’t Run . A-8
Including Reader in a Make File A-8

Using the HP 64000 Reader . A-9
What the Reader Accomplishes A-9
Location of the HP 64000 Reader Program A-12
Using the Reader from MS-DOS A-12
Using the Reader from the PC Interface A-12
If the Reader Won’t Run A-14
Including RHP64000 in a Make File A-14

4-Contents

Illustrations

Figure 1-1. HP 64792 Emulator for uPD70216 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. PC Interface Display 2-7
Figure 2-3. Sample Program Load Map Listing 2-9
Figure 2-4. Memory Map Configuration 2-11
Figure 2-5. Modifying the Trace Specification 2-32
Figure 2-6. Modifying the Pattern Specification 2-32
Figure 3-1. Auxiliary Output Lines 3-3
Figure 3-2. Installing into a PLCC type socket 3-5
Figure 3-3. Installing into a PGA type socket 3-6
Figure 4-1. General Emulator Configuration (70216) 4-3

Tables

Table A-1. How to Access Variables A-3
Table A-2. How to Access Variables A-11

Contents-5

Notes

6-Contents

1

Introduction to the 70216 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70216 emulator is designed to replace the 70216 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1. HP 64792 Emulator for uPD70216

1-2 Introduction

Features of the
70216 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The HP 64791/2 emulator supports the following packages of
microprocessor.

Model No. Microprocessor Package

HP 64791A uPD70208 68-pin PLCC
68-pin PGA

HP 64792A uPD70216 68-pin PLCC
68-pin PGA

HP 64791B uPD70208H 68-pin PLCC
68-pin PGA

HP 64792B uPD70216H 68-pin PLCC
68-pin PGA

The HP 64791/2 emulator probe has a 68-pin PLCC connector. When
you use 68-pin PGA type microprocessor, you must use with PLCC to
PGA adapter; refer to the "In-Circuit Emulation Topics" chapter in this
manual.

Clock Speeds The 70208 and 70216 emulator runs with an internal clock speed of
8MHz (system clock), or with target system clocks from 2 to 10 MHz.

The 70208H and 70216H emulator runs with an internal clock speed of
16 MHz (system clock) or with target system clocks from 1 to 16
MHz.

Introduction 1-3

Emulation memory The HP 70216 emulator is used with one of the following Emulation
Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card
HP 64729 2M byte Emulation Memory Card

When you use the HP 64729, You can only use 1M byte for emulation
memory.
You can define up to 16 memory ranges (at 128 byte boundaries and at
least 128 byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target system
ROM, or as guarded memory. The emulator generates an error
message when accesses are made to guarded memory locations. You
can also configure the emulator so that writes to memory defined as
ROM cause emulator execution to break out of target program
execution.

Analysis The HP 70216 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer
HP 64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70216 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

1-4 Introduction

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses the BRK 3 instruction(CC hex) as software breakpoint
interrupt instruction. When you define a software breakpoint, the
emulator places the breakpoint interrupt instruction (CC hex) at the
specified address; after the breakpoint interrupt instruction causes
emulator execution to break out of your program, the emulator replaces
the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory. You can configure the
emulator so that it presents cycles to, or hides cycles from, the target
system when executing in background.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70216 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background, the emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy any processor address space.

Introduction 1-5

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A/B Card Cage. This means that you’ll be able to update
product firmware, if desired, without having to call an HP field
representative to your site.

1-6 Introduction

Limitations,
Restrictions

DMA Support Direct memory access to emulation memory by external DMA
controller is not permitted.

TC bit of DMA Status
Register

While using the uPD71071 or the uPD71037 DMA mode on the
70208H emulator, or using the uPD71037 DMA mode on the 70216H
emulator, when the emulator read the other than DST register, the TC
bit of the DST is reset. If you know the DMA Status, you have to use
the count register in the place of the TC bit.

User Interrupts If you use the background monitor, NMI and INTP1-7 from the target
system are suspended until the emulator goes into foreground operation.

Interrupts While
Executing Step

Command

While executing user program code in stepping in the foreground
monitor, interrupts are accepted if they are enabled in the foreground
monitor program. When using the background monitor the emulator
will fail to step, if the interrupts are acknowledged before stepping user
program code.

Evaluation chip Hewlett-Packard makes no warranty of the problem caused by the
70208/70208H/70216/70216H Evaluation chip in the emulator.

Introduction 1-7

Notes

1-8 Introduction

2

Getting Started

Introduction This chapter leads you through a basic tutorial that shows how to use
the HP 64792 emulators for the 70216 microprocessors with the PC
Interface.

This chapter will:

Tell you what to do before you use the emulator in the tutorial.

Describe the sample program used for this chapter’s examples.

Briefly describe how to enter PC Interface commands and
how emulator status is displayed.

This chapter will show you how to:

Start up the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view sample program execution.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the media
containing the PC Interface software. The HP 64700
Emulators PC Interface: User’s Reference manual contains
additional information on the installation and setup of the PC
Interface.

3. In addition, it is recommended, although not required, that you
read and understand the concepts of emulation presented in
the Concepts of Emulation and Analysis manual. The
Installation/Service also covers HP 64700 Series system
architecture. A brief understanding of these concepts may
help avoid questions later.

The sample program The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

We will show you how to use the emulator to:

load this program into emulation memory
execute the program
monitor the program’s operation with the analyzer
simulate entry of different commands using the “Memory
Modify” emulation command.

2-2 Getting Started

LOCATION OBJECT CODE LINE SOURCE LINE

 1 "70116"
 2 GLB Msgs,Init,Cmd_Input,Msg_Dest
 3
 4 DATA
 0000 5 Msgs
 0000 436F6D6D61 6 Msg_A DB "Command A entered "
 0005 6E64204120
 000A 656E746572
 000F 656420
 0012 436F6D6D61 7 Msg_B DB "Command B entered "
 0017 6E64204220
 001C 656E746572
 0021 656420
 0024 496E76616C 8 Msg_I DB "Invalid Command "
 0029 696420436F
 002E 6D6D616E64
 0033 202020
 0036 9 End_Msgs
 10
 11 PROG
 12 ASSUME DS0:DATA,DS1:COMN
 13 **
 14 * The following instructions initialize segment
 15 * regsiters and set up the stack pointer.
 16 **
 0000 B80000 17 Init MOV AW,SEG Msg_A
 0003 8ED8 18 MOV DS0,AW
 0005 B80000 19 MOV AW,SEG Cmd_Input
 0008 8EC0 20 MOV DS1,AW
 000A 8ED0 21 MOV SS,AW
 000C BC00F9 22 MOV SP,OFFSET Stk
 23 **
 24 * Clear previous command
 25 **
 000F 26C6060000 26 Rrad_Cmd MOV Cmd_Input,#0
 0014 0090
 27 **
 28 * Read command input byte. If no command has been
 29 * entered, continue to scan for command input.
 30 **
 0016 26A00000 31 Scan MOV AL,Cmd_Input
 001A 3C00 32 CMP AL,#0
 001C 74F8 33 BE Scan
 34 **
 35 * A command has been entered. Check if it is
 36 * command A, command B, or invalid.
 37 **
 001E 3C41 38 Exe_Cmd CMP AL,#41H
 0020 7407 39 BE Cmd_A
 0022 3C42 40 CMP AL,#42H
 0024 740C 41 BE Cmd_B
 0026 E91200 42 BR Cmd_I
 43 **
 44 * Command A is entered. CW = the number of bytes in
 45 * message A. BP = location of the message. Jump to
 46 * the routine which writes the message.

Figure 2-1. Sample Program Listing

Getting Started 2-3

Data Declarations

The "DATA" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

 47 **
 0029 B91200 48 Cmd_A MOV CW,#Msg_B-Msg_A
 002C BE0000 49 MOV IX,OFFSET Msg_A
 002F E90F00 50 BR Write_Msg
 51 **
 52 * Command B is entered.
 53 **
 0032 B91200 54 Cmd_B MOV CW,#Msg_I-Msg_B
 0035 BE0012 55 MOV IX,OFFSET Msg_B
 0038 E90600 56 BR Write_Msg
 57 **
 58 * An invalid command is entered.
 59 **
 003B B91200 60 Cmd_I MOV CW,#End_Msgs-Msg_I
 003E BE0024 61 MOV IX,OFFSET Msg_I
 62 **
 63 * Message is written to the destination.
 64 **
 0041 BF0001 65 Write_MSG MOV IY,OFFSET Msg_Dest
 0044 F3A4 66 REP MOVBKB
 67 **
 68 * The rest of the destination area is filled
 69 * with zeros.
 70 **
 0046 C60500 71 Fill_Dest MOV BYTE PTR [IY],#0
 0049 47 72 INC IY
 004A 81FF0021 73 CMP IY,#Msg_Dest+20H
 004E 75F6 74 BNE Fill_Dest
 75 **
 76 * Go back and scan for next command
 77 **
 0050 EBBD 78 BR Read_Cmd
 79
 80 COMN
 81 **
 82 * Command input byte.
 83 **
 0000 84 Cmd_Input DBS 1
 85 **
 86 * Destination of the command message.
 87 **
 0001 88 Msg_Dest DDS 3EH
 00F9 89 Stk DWS 1 ; Stack area.
 <0000> 90 END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Initialization

The program instructions from the Init label to the Read_Cmd label
perform initialization. The segment registers are loaded and the stack
pointer is set up.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to look for a command (a value
other than 0 hex).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A decide whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution transfers
to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution transfers
to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
was entered, and execution transfers to the instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
CW with the displayed message’s length and register IX with the
message’s starting location. Then, execution transfers to Write_Msg,
which writes the appropriate message to the destination location,
Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20 hex bytes long.) Then, the program jumps back to read the next
command.

The Destination Area

The "COMN" section declares memory storage for the command input
byte, the destination area, and the stack area.

Getting Started 2-5

Assembling and
Linking the Sample

Program

The sample program is written for the HP 64853 Cross
Assembler/Linker.

Use the following command to assemble and link the sample program.

 C> asm -oe cmd_rds.s > cmd_rds.o <RETURN>

 C> lnk -o > cmd_rds.m <RETURN>

 object files cmd_rds.R <RETURN>
 library files <RETURN>
 Load addresses: PROG,DATA,COMN 400H,600H,800H <RETURN>
 more files (y or n) N <RETURN>
 absolute file name cmd_rds.X <RETURN>

2-6 Getting Started

Starting Up the
70216 PC Interface

If you built the emulator device table and set the HPTABLES shell
environment variable as shown in the HP 64700 Emulators PC
Interface: User’s Reference, you can start up the 70216 PC Interface by
entering the following command from the MS-DOS prompt:

C> pcv50 <emulname>
where <emulname> is emul_com1 if your emulator is connected to the
COM1 port or emul_com2 if it is connected to the COM2 port. If you
edited the \hp64700\tables\64700tab file to change the emulator name,
substitute the appropriate name for <emulname> in the above
command.

In the command above, pcv50 is the command to start the PC
Interface; "<emulname>" is the logical emulator name given in the
emulator device table. (To start the version of the PC Interface that
supports external timing analysis, substitute ptv50 for pcv50 in this
command.) If this command is successful, you will see the display
shown in figure 2-2. Otherwise, you will see an error message and
return to the MS-DOS prompt.

Figure 2-2. PC Interface Display

Getting Started 2-7

Selecting PC
Interface Commands

This manual will tell you to "select" commands. You can select
commands or command options by using the left and right arrow keys
to highlight the option. Then press the Enter key. Or, you can simply
type the first letter of that option. If you select the wrong option, press
the ESC key to retrace the command tree.
When a command or option is highlighted, the bottom line of the
display shows the next level of options or a short message describing
the current option.

Emulator Status The emulator status is shown on the line above the command options.
The PC Interface periodically checks the status of the emulator and
updates the status line.

Mapping Memory The 70216 emulator contains high-speed emulation memory (no wait
states required) that can be mapped at a resolution of 128 bytes.

Note When you use the 8087 coprocessor on your target system connected to
70216 microprocessor, the 8087 can access 70216 emulation memory
on coprocessor memory read/write cycles.
In this case, you should reset the target system to connect the 70216
emulator to the 8087 coprocessor before starting emulation session.
Refer to "In-Circuit Emulation Topics" chapter for more information
about accesses to emulation memory.

2-8 Getting Started

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Configuring the Emulator" chapter).
The memory mapper allows you to define up to 16 different map terms.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory. For
example, the HP 64853 linker load map listing for the sample program
is shown in figure 2-3.

HP 64000+ Linker

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE

CMD_RDS.R 00000400 00000600 00000800

next address 00000452 00000636 000008FB
XFER address = 00000400 Defined by CMD_RDS.R
Absolute file name = CMD_RDS.X
Total number of bytes loaded = 00000183

Figure 2-3. Sample Program Load Map Listing

Getting Started 2-9

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The program area, which
contains the opcodes and operands which make up the sample program,
occupies locations 400 hex through 451 hex. The data area, which
contains the ASCII values of the messages the program displays, is
occupies locations 600 hex through 635 hex. The destination area,
which contains the command input byte and the locations of the
message destination and the stack, occupies locations 800 hex through
8FA hex.

Two mapper terms will be specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

To map memory for the sample program, select:

Config, Map, Modify

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

0..07ff

Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the erom (emulation ROM) type. Move the cursor
to the "address range" field of term 2 and enter:

0800..09ff

Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the eram (emulation RAM) type. To save your
memory map, use the right arrow key or the Enter key to exit the field
in the lower right corner. (The End key on Vectra keyboards moves
the cursor directly to the last field.) The memory configuration display
is shown in figure 2-4.

2-10 Getting Started

For your programs (not the sample), you may want to map emulation
memory locations containing programs and constants (locations that
should not be written to) as ROM. This will prevent programs and
constants from being written over accidentally, and will cause breaks
when instructions attempt to do so.

Note The memory mapper reassigns blocks of emulation memory after the
insertion or deletion of mapper terms. Suppose you modified the
contents of 400H-7FFH above, deleted term 1, then displayed locations
400H-7FFH. You’ll notice the contents of those locations differ before
and after you delete the mapper term.

Figure 2-4. Memory Map Configuration

Getting Started 2-11

Loading Programs
into Memory

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

File Format Use Tab and Shift-Tab to select the format of your absolute file. The
emulator accepts absolute files in the following formats:

Intel OMF86 absolute.

NEC30 absolute.

– (This absolute file is generated by NEC LK70116 linker
for uPD70208 and uPD70216.)

HP64000 absolute.

Raw HP64000 absolute.

Intel hexadecimal.

Motorola S-records.

Tektronix hexadecimal.

For this tutorial, choose the HP64000 format.

Target Memory Type
for Memory Load

The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, both emulation and target system memory.

Since emulation memory is mapped for sample program locations, you
can select either "emulation" or "both". Use Tab key and Shift-Tab to
cycle through the choices.

2-12 Getting Started

Force the Absolute
File to Be Read

This option is only available for the Intel OMF86, NEC30, and
HP64000 absolute file formats.

It forces the file format reader to regenerate the emulator absolute file
(.hpa) and symbol database (.hps) before loading the code. Normally,
these files are only regenerated whenever the file you specify (the
output of your language tools) is newer than the emulator absolute file
and symbol database.

For more information, refer to the "File Format Readers" appendix.

File Format Options Some of the formats, such as the Intel OMF86 format, have special
options.

Refer to the "File Format Readers" appendix of this manual for more
information.

Absolute File Name For most formats, you enter the name of your absolute file in the last
field. The HP64000 format requires the linker symbol filename instead.
Type cmd_rds.l, and press Enter to start the memory load.

Getting Started 2-13

 Displaying
Symbols

Symbol files are created when you generate absolute files with the
HP 64000-PC Cross Assembler/Linkers. When you assemble a source
file, an assembler symbol file (with the same base name as the source
file and a “.a” extension) is created. The assembler symbol file contains
local symbol information. When you link relocatable assembly
modules, a linker symbol file (with the same base name as the absolute
file and a “.l” extension) is created. The linker symbol file contains
global symbol information and information about the relocatable
assembly modules that combine to form the absolute file.

When you load a file using the HP64000 file format, the file format
reader collects global symbol information from the linker symbol file
and local symbol information from the assembler symbol files. It uses
this information to create a single symbol database with the extension
.hps.

If you load a file using the following formats, the file format reader
obtains all the global and local symbol information from the absolute
file and builds a symbol database with extension .hps.

Intel OMF86 absolute.

NEC30 absolute.

The following pages show you how to display global and local symbols
for the sample program. For more information on symbol display, refer
to the PC Interface Reference.

2-14 Getting Started

Displaying Global
Symbols

When you load a file using the following formats into the emulator, the
corresponding symbol database is also loaded.

Intel OMF86 absolute.

NEC30 absolute.

HP64000 absolute.

The symbol database also can be loaded with the “System, Symbols,
Global, Load” command. Use this command when you load multiple
absolute files into the emulator. You can load the various symbol
databases corresponding to each absolute file. When you load a symbol
database, information from a previous symbol database is lost. That is,
only one symbol database can be present at a time.

After a symbol database is loaded, both global and local symbols can
be used when entering expressions. You enter global symbols as they
appear in the source file or in the global symbols display.

Getting Started 2-15

To display global symbols, select:

System, S ymbols, Global, Display

The symbols window automatically becomes the active window
because of this command. You can press <CTRL>z to zoom the
window. The resulting display follows.

The global symbols display has two parts. The first part lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-sensitive. For example, if you wish to make
a measurement using the symbol Cmd_Input , you must specify
Cmd_Input .

The strings cmd_input and CMD_INPUT are not valid symbol names
here.

2-16 Getting Started

Loading and
Displaying Local

Symbols

To display local symbols, select:

System, S ymbols, L ocal, Display

Enter the name of the module you want to display (from the first part of
the global symbols list; in this case, CMD_RDS.S) and press Enter.
The resulting display follows.

After you display local symbols with the “System Symbols Local
Display” command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

Getting Started 2-17

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the first
part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that
module becomes the default local symbol module, as with the “System
Symbols Local Display” command.

Local symbols must be from assembly modules that form the absolute
whose symbol database is currently loaded. Otherwise, no symbols will
be found (even if the named assembler symbol file exists and contains
information).

One thing to note: It is possible for a symbol to be local in one module
and global in another, which may result in some confusion. For
example, suppose symbol “XYZ” is a global in module A and a local
in module B and that these modules link to form the absolute file. After
you load the absolute file (and the corresponding symbol database),
entering “XYZ” in an expression refers to the symbol from module A.
Then, if you display local symbols from module B, entering “XYZ” in
an expression refers to the symbol from module B, not the global
symbol. Now, if you again want to enter “XYZ” to refer to the global
symbol from module A, you must display the local symbols from
module A (since the global symbol is also local to that module).
Loading local symbols from a third module, if it was linked with
modules A and B and did not contain an “XYZ” local symbol, would
also cause “XYZ” to refer to the global symbol from module A.

2-18 Getting Started

Transfer Symbols to
the Emulator

You can use the emulator’s symbol-handling capability to improve
measurement displays. You do this by transferring the symbol
database information to the emulator. To transfer the global symbol
information to the emulator, use the command:

System, Symbols, Global, Transfer

Transfer the local symbol information for all modules by entering:

System, Symbols, Local, Transfer, All

You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

Changing the
Disassembler
Mode

The emulator has two sets of syntax to display memory contents or
trace listing in mnemonic format.

HP64853 Cross Assembler.
NEC Assembler.

The disassembler mode allow you to select which syntax the
disassembler should use in mnemonic memory, trace, and register
displays. The default disassembler mode selects NEC assembler syntax.

Before getting into the main emulation session, you may change the
disassembler mode to select the HP64853 syntax because it is suitable
for your language tool in this chapter.

To change the disassembler mode, select:

Config, General
Use the arrow key to move the cursor to the "Disassembler Mode"
field, and use TAB key to select "64853". Press End and Enter
consecutively to exit the configuration.

Getting Started 2-19

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format. To do this, select:

Memory, Display, Mnemonic
Enter the address range "400H..429H". You could also specify this
address range using symbols.
For example,
"Init..Cmd_A " or "Init..Init+29H ".
The Emulation window remains active. You can press <CTRL>z to
zoom the memory window. The resulting display follows.

If you want to see the rest of the sample program memory locations,
you can select "Memory, Display, Mnemonic" command and enter the
range from 42AH to 451H.

2-20 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the sample
program, select:

Processor, Step, Address
Enter a step count of 1, enter the symbol Init (defined as a global in the
source file), and press Enter to step from program’s first address,
400H. The Emulation window remains active. Press <CTRL>z to
view a full screen of information. The executed instruction, the
program counter address (PS:PC), and the resulting register contents
are displayed as shown in the following.

Note You cannot display registers if the processor is reset.
Use the "Processor Break" command to cause the emulator to start
executing in the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator execution
will temporarily break to the monitor.

Getting Started 2-21

Note There are a few cases in which the emulator can not step. Step
command is not accepted between each of the following instructions
and the next instruction.
1) Manipulation instructions for sreg :
MOV sreg,reg16; MOV sreg,mem16; POP sreg.
2) Prefix instructions: PS:, SS:, DS0:, DS1:, REPC, REPNC, REP,
REPE, REPZ, REPNE, REPNZ, BUSLOCK.
3) EI, RETI, DI.

To continue stepping through the program, you can select:

Processor, Step, Pc

After selecting this command, you can change the previous step count.
If you wish to step the same number of times, just press Enter to start
the step.

To save time when single-stepping, you can use the function key macro
<F1>, which executes the command:

Processor, Step, Pc, 1

For more information, see the Emulator PC Interface Reference
chapter on Function Key Macros.

To repeat the previous command, you can press <CTRL>r .

2-22 Getting Started

Specifying a Step
Count

If you want to step sevral times from the current program counter,
select:

Processor, Step, Pc

The previous step count is displayed in the "number of instructions"
field. You can enter a number from 1 through 99 to specify the number
times to step. Type 5 into the field, and press Enter. The resulting
display follows.

When you specify step counts greater than 1, only the last instruction
and the register contents after that instruction are displayed.

Getting Started 2-23

Modifying Memory The preceding step commands show the sample program is executing
in the Scan loop, where it continually reads the command input byte to
look for a command.

To simulate the entry of a sample program command, you can modify
the command input byte by selecting:

Memory, Modify, Byte
Now enter the address of the memory location to be modified, an equal
sign, and new value of that location, for example, Cmd_Input="A" .
(The Cmd_Input label was defined as a global symbol in the source
file.)

To verify that "A" was indeed written to Cmd_Input (800 hex), select:

Memory, Display, Byte
Type the address 800H or the symbol Cmd_Input , and press Enter.
The resulting display is shown below.

You can continue to step through the program as shown earlier in this
chapter to view the instructions which are executed when an "A" (41
hex) command is entered.

2-24 Getting Started

Running the
Program

To start the sample program, select:

Processor, Go, Pc
The status line will show that the emulator is "Running user program".

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command "A" (41 hex) was entered above, so the
"Command A entered " message should have been written to the
Msg_Dest locations. Because you must search for hexadecimal values,
you will want to search for a sequence of characters which uniquely
identify the message, for example,
" A " or 20 hex, 41 hex, and 20 hex. To search the destination memory
location for this sequence of characters, select:

Memory, Find
Enter the range of the memory locations to be searched, "800H..820H",
and enter the data " A " or 20H, 41H, and 20H. The resulting
information in the Emulation window shows you that the message
write occurred correctly. The message is:

Pattern match at address: 0000808

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and search
for " B " (20 hex, 42 hex, and 20 hex), or you can modify the command
input byte to "C" and search for "d C" (64 hex, 20 hex, and 43 hex).

Getting Started 2-25

Breaking into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor, Break

The status line shows that the emulator is "Running in monitor".

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request. This depends on the
type of instruction being executed, and whether the processor is in a
hold state.

Using Software
Breakpoints

When you define or enable a software breakpoint to a specified
address, the emulator will replace the opcode with a BRK 3 instruction.
When the emulator detects the breakpoint interrupt instruction (CC
hex), user program breaks to the monitor, and the original opcode will
be replaced at the software breakpoint address.

Since the system controller knows the locations of the defined software
breakpoints, it can determine whether the breakpint interrupt
instruction was generated by an enabled software breakpoint or by a
single-byte interrupt instruction in your target system.

If the single-byte interrupt was generated by a software brekpoint,
execution breaks to the monitor, and the brekpoint interrupt instruction
(BRK 3) is replaced by the original opcode. A subsequent run or step
command will execute from this address.

If the single-byte interrupt was geneated by a BRK 3 instruction in the
target system, execution still breaks to the monitor, and an "Undefined
software breakpoint" message is displayed.

2-26 Getting Started

Note Because software brekpoints are implemented by the replacing opcodes
with the brekpoint interrupt instruction (CC hex), you can not define
the software breakpoints in the target ROM.

However you can copy target ROM into the emulation memory which
does allow you to use software brekpoints. Once target ROM is copied
into the emulation memory, software breakpoints may be used
normally at the addresses in these emulation memory locations. (see
the "Target ROM Debug Topics" section of the "In-Circuit Emulation"
chapter in the Terminal Interface User’s Guide manual.)

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Getting Started 2-27

Note Software breakpoint will be ignored, when software breakpoint and
other emulation break (for example, break command, trigger command,
etc.) occur at the same time. Refer to PC Interface: User’s Reference
manual.

Defining a Software
Breakpoint

To define a breakpoint at the address of the Cmd_I label of the sample
program (43B hex), select:

Breakpoints, Add
Enter the local symbol "Cmd_I". After the breakpoint is added, the
Emulation window becomes active and shows that the breakpoint is set.

You can add multiple breakpoints in a single command by separating
them with a semicolon. For example, you could type
"2010h;2018h;2052h" to set three breakpoints.

Run the program by selecting:

Processor, Go, Pc
The status line shows that the emulator is running the user program.
Modify the command input byte to an invalid command by selecting:

Memory, Modify, Byte

Enter an invalid command, such as "Cmd_Input=75h". The following
messages result:

ALERT: Software breakpoint: 00000:0043b
STATUS: Running in monitor

To continue program execution, select:

Processor, Go, Pc

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display
The display shows that the breakpoint was cleared.

2-28 Getting Started

Setting a Software
Breakpoint

A breakpoint is disabled when it is hit. To re-enable the software
breakpoint, you can select:

Breakpoints, Set, Single

The address of the breakpoint you just added is still in the address field.
To set this breakpoint again, press Enter.

As with the "Breakpoints Add" command, the Emulation window
becomes active and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints, Clear, Single

The address of the breakpoint set in the previous section is still in the
address field. To clear this breakpoint, press Enter.

Getting Started 2-29

Using the Analyzer The analyzer collects data at each pulse of a clock signal, and saves the
data (a trace state) if it meets a "storage qualification" condition.

Note Emulators which have the optional external analyzer will display the
"Internal/External " option after commands in the following examples.
Select Internal to execute the example commands.

Resetting the
Analysis

Specification

To be sure that the analyzer is in its default or power-up state, select:

Analysis, Trace, Reset

Specifying a Simple
Trigger

Suppose you wish to trace the states of the sample program which
follow the read of a "B" (42 hex) command from the command input
byte. To do this, you must modify the default analysis specification by
selecting:

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right allow key
to move the "Trigger on" field. Type "a" and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the
address of the command input byte, using either the global symbol
Cmd_Input or address 800H, and press Enter.

The “Data” field is now highlighted. Type 0XX42 and press Enter.
"42" is the hexadecimal value of the “B” command and the "X"s
specify "don’t care" values. When 42H is read from the command
input byte (800H), a lower byte read is performed because the address
is even. If the address is odd, you must specify the data to 42XX.

Now the “Status” field is highlighted. Use the TAB key to view the
status qualifier choices.

2-30 Getting Started

70216 Analysis Status Qualifiers

This trace command example uses the status qualifier "read". The
following analysis status qualifiers also can be used with the 70216
emulator.

 Qualifier Status Bits Description
 ----------- ------------------- -----------------------
 exec 0xxx0xxxxxxxxxxxy execute instruction
 fetch 0xxx1xxxx001x100y program fetch
 read 0xxx1xxxxxx0xx01y read
 write 0xxx1xxxxxx0xx10y write
 mem 0xxx1xxxxxx0x1xxy memory access
 intio 0xxx1xxxx00000xxy internal I/O access
 extio 0xxx1xxxx00010xxy external I/O access
 cpu 0xxx1xxxx00xxxxxy cpu cycle
 dma 0xxx1xxxx10x01xxy DMA memory access
 casdma 0xxx1xxxx1010111y cascaded DMA cycle
 refresh 0xxx1xxxx0100101y refresh cycle
 holdack 0xxx1xxxx11xxxxxy hold acknowledge
 intack 0xxx1xxxx001x000y interrupt acknowledge
 haltack 0xxx1xxxxxxx1011y halt acknowledge
 em80 0xx1xxxxxxxxxxxxy 8080 emulation mode
 native 0xx0xxxxxxxxxxxxy native mode
 ds0 0xxx1xx11xxxxxxxy ds0 use cycle
 ds1 0xxx1xx00xxxxxxxy ds1 use cycle
 ss 0xxx1xx01xxxxxxxy ss use cycle
 ps 0xxx1xx10xxxxxxxy ps use cycle
 rom 0xxx1x0xxxxxxxxxy rom access
 grd 0xxx10xxxxxxxxxxy guarded memory access
 usr 0x1xxxxxxxxxxxxxy user cycle
 mon 0x0xxxxxxxxxxxxxy monitor cycle

Getting Started 2-31

Figure 2-5. Modifying the Trace Specification

Figure 2-6. Modifying the Pattern Specification

2-32 Getting Started

Note You can combine qualifiers to form more specific qualifiers. For
example, the expression memory&&read matches only memory
reads. See the Emulator PC Interface Reference for more information.

Select the read status and press Enter.

The resulting analysis specification is shown in figure 2-5. To save the
new specification, use End Enter to exit the field in the lower right
corner. You’ll return to the trace specification. Press End to move the
"trigger position" field. Use the TAB key until it says center, then
press Enter to exit the trace specification.

Starting the Trace To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is running.
You do not expect the trigger to be found, because no commands have
been entered. Modify the command input byte to "B" by selecting:

Memory, Modify, Byte

Enter Cmd_Input="B". The status line now shows that the trace is
complete. (If you have problems, you may be running in monitor.
Select Processor Go Pc to return to the user program.)

Change the Analyzer
Display Format

If you have transferred the symbol database information to the
emulator by entering the following commands:

System, Symbols, Global, Transfer
System, Symbols, Local, Transfer, All

you should change the display format to make better use of the trace
display.

Getting Started 2-33

To change the analyzer display format, enter the command:

Analysis, Format

Use the down arrow key to move to the field labeled addr. And, use
the right arrow key to move the field labeld Width above. The default
width of the address column is six characters. A width of 17 characters
is often wide enough to accommodate most symbol names. Type 17 to
change the width of the address column, and press End, then Enter.

Displaying the Trace To display the trace, select:

Analysis, Display
You are now given two fields in which to specify the states to display.
Use the End key to move the cursor to the "Ending state to display"
field. Type 60 into the press Enter. The resulting trace is similar to
trace shown in the following display (use <CTRL>z to zoom the trace
window). You may need to press the Home key to get to the top of the
trace.

2-34 Getting Started

Note If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

Line 0 in the above trace list shows the analyzer trigger state. The
trigger state is always on line 0. The other states show the exit from
the Scan loop and the Exe_Cmd instructions. Press the PgDn or Next
key to see more lines of the trace. Notice that prefetches of instructions
which do not get executed are included in the trace list.

The resulting display shows the Cmd_B instructions, the branch to
Write_Msg, and the beginning of the instructions that move the
“Entered B command ” message to the destination locations.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the PC Interface, refer to the Analyzer PC Interface User’s Guide.

Getting Started 2-35

Copying Memory You can copy the contents of one range of memory to another. This is
a useful feature to test things like the relocatability of programs. To
test if the sample program is relocatable within the same segment, copy
the program to an unused, but mapped, area of emulation memory. For
example, select:

Memory, Copy
Enter 400H through 452H as the source memory range to be copied,
and enter 500H as the destination address.

To verify that the program is relocatable, run it from its new address
by selecting:

Processor, Go, Address
Enter 500H. The status line shows that the emulator is "Running user
program". You may wish to trace program execution or enter valid and
invalid commands and search the message destination area (shown
earlier in this chapter) to verify that the program works correctly at its
new address.

Resetting the
Emulator

To reset the emulator, select:

Processor, Reset, Hold
The emulator is reset (suspended) until you enter a "Processor Break",
"Processor Go", or "Processor Step" command. A CMB execute
signal also will run the emulator if reset.

You also can specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state.

To do this, select:

Processor, Reset, Monitor

2-36 Getting Started

Exiting the PC
Interface

There are three different ways to exit the PC Interface. You can exit
the PC Interface using the "locked" option which restores the current
configuration next time you start the PC Interface. You can select this
option as follows.

System, Exit, Locked
Another way to execute the PC Interface is with the "unlocked"
option, which presents the default configuration the next time you start
the PC Interface. You can select this option with the following
command.

System, Exit, Unlocked
Or , you can exit the PC Interface without saving the current
configuration using the command:

System, Exit, No_Save

See the Emulator PC Interface Reference for a complete description of
the system exit options and their effect on the emulator configuration.

Getting Started 2-37

Notes

2-38 Getting Started

3

"In-Circuit" Emulation

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emualtion and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

The 70216 emulator probe has a 68-pin PLCC connector;
The 70216 emulator is shipped with a pin protector over the target
system probe. This guard is designed to prevent impact damage to the
pins and should be left in place while you are not using the emulator.

Caution OBSERVE THESE PRECAUTIONS TO AVOID EMULATOR
CIRCUIT DAMAGE. Take the following precautions while using
the 70216 emulator.

Power Down Target System. Turn off power to the user target
system and to the 70216 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The 70216 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, take precautions before handling the user plug to avoid
emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the 70216 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation

Pin Protector The target system probe has a pin protector that prevents damage to the
probe when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room for the plastic shoulders
of the probe socket. If this occurs, another pin protector may be stacked
onto the existing pin protector.

Auxiliary Output Line One auxiliary output line, "TARGET BUFFER DISABLE " is
provided with the 70216 emulator.

Caution DAMAGE TO THE EMULATOR PROBE WILL RESULT IF
THE AUXILIARY OUTPUT LINES ARE INCORRECTLY
INSTALLED.
When installing the auxiliary output line into the end of the emulator
probe cable, make sure that the ground pin on the auxiliary output line
(labeled with white dots) is matched with the ground receptacles in the
end of the emulator probe cable.

Figure 3-1. Auxiliary Output Lines

In-Circuit Emulation 3-3

TARGET BUFFER DISABLE ---This active-high output is used
when the co-processor memory accesses to emulation memory will be
operated. This output is used to tristate (in other words, select the high
Z output) any target system devices on the 70216 data bus. Target
system devices should be tristated because co-processor memory reads
from emulation memory will cause data to be output on the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the
following timing in the co-processor memory access cycle.

3-4 In-Circuit Emulation

Installing into a
PLCC Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70216 microprocessor (PLCC type) from the
target system socket. Note the location of pin 1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Figure 3-2. Installing into a PLCC type socket

In-Circuit Emulation 3-5

Installing into a
PGA Type Socket

You can use an ITT CANNON "LCS-68-12" PLCC connector to plug
into the target system socket of an PGA type. You may use this socket
with the pin protector to connect the microprocessor connector to the
target system.

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70216 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.
Store the microprocessor in a protected environment (such as
antistatic form).
Place the microprocessor connector with a PLCC-to-PGA
socket and a pin protector (see figure 3-3), attached to the end
of the probe cable, into the target system microprocessor
socket.

Figure 3-3. Installing into a PGA type socket

3-6 In-Circuit Emulation

In-Circuit
Configuration
Options

The 70216 emulator provide configuration options for the following
in-circuit emulation issues. Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Using the Target System Clock Source

The default 70208 and 70216 emulator configuration selects the
internal 8 MHz (system clock speed) clock as the emulator clock
source. The default 70208H and 70216H emulator configuration selects
the internal 16 MHz (system clock speed) clock as the emulator clock
source.You should configure the emulator to select an external target
system clock source for the "in-circuit" emulation.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

Note When you use the i8087 coprocessor on your target system connected
to 70216 microprocessor, the i8087 can access 70216 emulation
memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70216
emulator to the i8087 coprocessor before starting emulation session.

Enabling NMI and RESET Inputs from the Target System

You can configure whether the emulator should accept or ignore the
NMI and RESET signals from the target system.

In-Circuit Emulation 3-7

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET Input From Target?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

Processor, Go, Reset

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

3-8 In-Circuit Emulation

Target System
Interface

RESET This singal is connected to 70216 through
ACT14, 51ohm and 10K ohm pull-up register.

NMI This singal is connected to 70216 through
ACT14, 51 ohm and 100K ohm pull-down
register.

In-Circuit Emulation 3-9

AD15-AD0 These singals are connected to 70216 through
FCT245, 51 ohm and 10K ohm pull-up register.

END/TC This singal is connected to 70216 through 51
ohm and 10K ohm pull-up register.

OTHER(OUTPUT) These singals are connected to 70216 through
FCT244, 51 ohm and 10K ohm pull-up
registers.

3-10 In-Circuit Emulation

4

Configuring the Emulator

Introduction Your 70216 emulator can help you in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software and in-circuit when
integrating software with hardware. You can use the emulator’s
internal clock or your target system clock. Emulation memory can be
used with your target system memory, and it can be mapped as RAM
or ROM. You can execute your target programs in real-time or allow
emulator execution to be diverted into the monitor when commands
request access of target system resources (target system memory,
register contents, etc.)

The emulator is a versatile instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the emulator configuration options.

This chapter will:

Show you how to access the emulator configuration options.

Describe the emulator configuration options.

Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the Emulator 4-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the HP
64700 Emulators: Concepts of Emulation and Analysis manual and the
"Getting Started" chapter of this manual.

4-2 Configuring the Emulator

Accessing the
Emulator
Configuration
Options

Select:

Config, General

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Note You can use the System Terminal window to modify the emulator
configuration. If you do this, some PC Interface features may no
longer work properly. We recommend that you modify the emulator
configuration using only the PC Interface.

Figure 4-1. General Emulator Configuration (70216)

Configuring the Emulator 4-3

Clock source This configuration item allows you to select whether the emulator will
be clocked by the internal clock source or by a target system clock
source.

int Selects the internal clock oscillator as the emulator
clock source. In the 70208/70216 emulator,
internal clock speed is 8 MHz (system clock).

In the 70208H/70216H emulator, internal clock
speed is 16 MHz (system clock). This is the default.

ext An external target system clock is the emulator
clock source. In the 70208/216 emulator, external
oscillator clock sources must be within the range of
4-20 MHz.

In the 70208H/70216H emulator, external oscillator
clock sources must be within the range of 2-32
MHz.

Note Changing the clock source drives the emulator into the reset state.

4-4 Configuring the Emulator

Enable Real-Time
Mode

The "Enable real-time mode" question lets you configure the emulator
to refuse commands that cause an emulator break to monitor during
user program runs.

No All commands, whether or not they require a break
to the emulation monitor, are accepted by the
emulator.

Yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "Processor
Reset", "Processor Break", "Processor Go", and
"Processor Step") are refused. For example, the
following commands are not allowed when runs are
restricted to real-time:

Display/modify registers.

Display/modify target system memory.

Display/modify I/O.

Caution Restrict emulator to real-time runs with certain target systems.
If your target system circuitry depends on constant program execution,
you should restrict the emulator to real-time runs. This helps avoid
target system damage. Remember that you still can execute the
"Processor Reset", "Processor Break", and "Processor Step"
commands. You should use caution when executing these commands.

Configuring the Emulator 4-5

Enable target
READY

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready lines while emulation memory is being accessed.

No When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted).

Yes When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested).

Enable target NMI This configuration option specifies whether or not the emulation
processor accepts to NMI signal generated by the target system.

Yes The emulator accepts NMI signal generated by the
target system. When the NMI signal is accepted,
the emulator calls the NMI procedure as actual
microprocessor.

No The emulator ignores NMI signal from target
system completely.

Note
When target NMI signal is enabled , it is in effect while the emulator is
running in the target program. while the emulator is running monitor,
NMI will be ignored until the monitor is finished.

4-6 Configuring the Emulator

Enable target
RESET

The 70216 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to
"Processor Go Reset" command in "In-circuit Emulation" chapter).
While running in background monitor, the 70216 emulator ignores
target system reset completely independent on this setting.

Yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (0FFFF0 hex) as same
manner as actual microprocessor after reset is
inactivated.

No If disabled, the emulator completely ignores the
reset signal from target system. This is true if the
emulator is in foreground (executing user program).

Enable target
HOLD

This configuration allows you to specify whether or not the emulator
accepts HOLD (Bus Hold Request) signal generated by the target
system.

No The emulator ignores HOLD signal from target
system completely.

Yes The emulator accepts HOLD signal. When the
HOLD is accepted, the emulator will respond as
actual microprocessor.

Configuring the Emulator 4-7

Trace refresh
cycles

This question allows you to specify whether or not the analyzer trace
the 70216 emulation processor’s refresh cycles.

Yes Specifies that the analyzer will trace the 70216
refresh cycles.

No Specifies that the analyzer will not trace the 70216
refresh cycles.

Trace DMA cycles This question allows you to specify whether or not the analyzer trace
the 70216 emulation processor’s internal DMA cycles.

Yes Specifies that the analyzer will trace the 70216
internal DMA cycles.

No Specifies that the analyzer will not trace the 70216
internal DMA cycles.

Trace hold cycles This question allows you to specify whether or not the analyzer trace
the 70216 emulation processor’s hold cycles.

Yes Specifies that the analyzer will trace the 70216 hold
cycles.

No Specifies that the analyzer will not trace the 70216
hold cycles.

4-8 Configuring the Emulator

Segment algorithm The run and step commands allow you to enter addresses in either
logical form (segment:offset, e.g., 0F000H:0000H) or physical form
(e.g., 0F000H). When a physical address (non-segmented) is entered
with either a run or step command, the emulator must convert it to a
logical (segment:offset) address.

minseg Specifies that the physical run address is converted
such that the low 16 bits of the address become the
offset value. The physical address is right-shifted 4
bits and ANDed with 0F000H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

maxseg Specifies that the low 4 bits of the physical address
become the offset. The physical address is
right-shifted 4 bits to yield the segment value.

logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

curseg Specifies that the value entered with either a run or
step command (0 thru 0ffff hex) becomes the offset.
In this selecting, the current segment value is not
changed.

logical_addr = (current segment):(entered value)

If you use logical addresses other than the three methods which follow,
you must enter run and step addresses in logical form.

Configuring the Emulator 4-9

Enable ROM break This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM. The
emulator will prevent the processor from writing to memory mapped as
emulation ROM. It cannot prevent writes to target system RAM
locations mapped as ROM, though the write to ROM break is enabled.

Yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

No The emulator will not break to the monitor upon a
write to ROM.

Note The wrrom analysis specification status option allows you to use
“write to ROM” cycles as trigger and storage qualifiers.

4-10 Configuring the Emulator

Enable
sw_breakpoints

This question allows you to enable or disable the software breakpoints
feature.
When you define (add) a breakpoint, software breakpoints are
automatically enabled.

No The software breakpoints feature is disabled. This
is the default emulator configuration, so you must
change this item before you can use software
breakpoints.

Yes Allows you to use the software breakpoints feature.
The emulator detects the breakpoint interrupt
instruction (CC hex), it generates a break to
background request which as with the "processor
break" command.

When you define or enable a software breakpoint, the emulator will set
the trap bit at the software breakpoint address.When software
breakpoints are enabled and emulator detects the breakpoint trap bit,
emulator execute the instruction at the breakpoint address and it
generates a break to background request which as with the "processor
break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint trap interrupt is a
software breakpoint or opcode in your target program.

If it is a software breakpoint, execution breaks to the monitor,and the
breakpoint trap bit is cleared. A subsequent run or step command will
execute from next address.

When software breakpoints are disabled, the emulator clears the trap
bit. Up to 32 software breakpoints may be defined.

Configuring the Emulator 4-11

Enable CMB
Interaction

Coordinated measurements are measurements made synchronously in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators that communicate over the
Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated measurement.
The CMB signals READY and /EXECUTE are used to perform
multiple emulator start/stop.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

No The emulator ignores the /EXECUTE and READY
lines, and the READY line is not driven.

Yes Multiple emulator start/stop is enabled. If you enter
the

Processor, CMB, Go, ...

command, the emulator will start executing code
when a pulse on the /EXECUTE line is received.
The READY line is driven false while the emulator
is running in the monitor. It goes true whenever
execution switches to the user program.

Note CMB interaction also will be enabled when you enter the

Processor, CMB, Execute

command.

4-12 Configuring the Emulator

Enable DMA in
background

This configuration allows you to specify whether or not the emulator
accepts DMARQ0-3 (DMA Request 0-3) signals generated by the
target system in background.

Yes The emulator accepts DMARQ0-3 signals. When
the DMARQ0-3 are accepted, the emulator will
respond as actual microprocessor.

No The emulator ignores DMARQ0-3 signals from
target system completely in background.The 70216
emulator ignored DMA request from internal DMA
controller until the emulator goes into forground
operation.

Enable support
FPP

This configuration allows you to use FPP(Floating Point co-Processor)
and to specify whether the emulator will drive the target system bus
during ANY bus cycle.

No Specifies target system does not have FPP. The
data bus signals are not driven to the target system
when the emulator access to the emulation memory.

Yes Specifies your target system has FPP to work with
the emulator. The i8087 on your target system can
read co-processor instructions on the emulation
memory.

 When "Yes" is selected, a special hardware mode which allows the
emulator to support a floating point co-processor is enabled. When a
floating point co-processor is present, it must monitor all address and
data that the emulation processor inputs and outputs. Because of this, it
is necessary to enable data bus drivers to the target system for all
emulation memory read cycles. This is normarlly done only on write
cycles, and is not done on read cycles to avoid bus contention problems
between the emulator and the target system. When this mode is
enabled, the USER output from the pod should be used to disable user

Configuring the Emulator 4-13

buffers that would normally to turned on when the emulator is reading
from emulation memory. Also you should also select "yes" at the
"Respond to HLDRQ from target system" configuration question for
target hold signal input.

Disassembler
mode

This configuration specifies the mode of dis-assembler that are used by
the emulator to display memory, trace, and register in mnemonic
format.

native Selecting the native mode specifies that the
emulator will display dis-assembler with NEC
assembler format.

64853 Selecting the 64853 mode specifies that the
emulator will display dis-assembler with
OLS(HP64853) assembler format.

The default emulator configuration selects the native mode at power
up initialization.

Enable word
access

This configuration specifies the type of microprocessor cycles that are
used by the monitor program to access target memory or I/O locations.
When a command requests the monitor to read or write to target system
memory or I/O, the monitor program will look at the access mode
setting to determine whether byte or word instructions should be used.

Yes Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at a time) at an even address.
When the emulator read or write odd number of
byte data, the emulator will read or write the last
byte data using byte cycle

4-14 Configuring the Emulator

At an odd address, the emulator will access target
memory using byte cycles.

No Selecting the byte access mode specifies that the
emulator will access target memory using upper
and lower byte cycles (one byte at a time).

The 70208/70208H Emulator is the byte access mode and the
70216/70216H Emulator is the word access mode at power up
initialization. Access mode specifications are saved; that is, when a
command changes the access mode, the new access mode becomes the
current default.

Reset value for
stack pointer?

This question allows you to specify the value to which the stack
segment (SS) and stack pointer (SP) will be set on entrance to the
emulation monitor initiated RESET state (the "Emulation reset" status).

The address specified in response to this question must be a
<SS>:<SP> address.

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not used
by user program.

Note We recommend that you use this method of configuring the stack
pointer. Without a stack pointer, the emulator is unable to make the
transition to the run state, step, or perform many other emulation
functions. However, using this option does not preclude you from
changing the stack pointer value or location within your program; it
just sets the initial conditions to allow a run to begin.

Configuring the Emulator 4-15

Monitor Type This configuration option allows you to select and use a foreground
emulation monitor program. The default monitor is background
monitor.

background Specify monitor type as background monitor.
When you select background monitor, you can
specify the background monitor location.

Note While running in background monitor, the 70216 emulator ignores
target system reset.

foreground Specify monitor type as foreground monitor. When
you select foreground monitor, you must specify
correct foreground monitor start address with next
configuration question (foreground monitor
address). After you completed the configuration
setting, you need to load foreground monitor
program to the emulator with "Memory, Load"
feature. The foreground monitor program must
already assembled and linked with appropriate
location specification. Refer to the HP 64791/2
70208H/70216H Emulator Terminal Interface
User’s Guide for more information.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

Note If you select a foreground monitor, a 4 kilobyte block is automatically
mapped at the address specified by the next question.

4-16 Configuring the Emulator

Foreground
Monitor Address?

The location of the foreground monitor is important because it will
occupy part of the processor address space. Foreground monitor
location must not overlap the location of target system programs. The
default foreground monitor location is "0F0000H".

When entering monitor block addresses, you must only specify
addresses on 4K byte boundaries; otherwise, an invalid syntax message
is displayed.

Note Relocating the monitor causes all memory mapper terms to be removed.

Note You should not load the foreground monitor provided with the 70216
emulator at the base address 0 or 0ff000 hex; the 70216
microprocessor’s vector table is located.

Configuring the Emulator 4-17

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration so
that it may be re-loaded later. The following information is saved in the
emulator configuration.

Emulator configuration items.

Key macro specifications.

Memory map.

Break conditions.

Trigger configuration.

Window specifications.

To store the current emulator configuration, select:

Config, Store

Enter the name of a file in which to save the emulator configuration.

Loading an
Emulator
Configuration

If you want to reload a previously stored emulator configuration, select:

Config, Load
Enter the configuration file name and press Enter. The emulator will
be reconfigured with the values specified in the configuration file

4-18 Configuring the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to use the basic
features of the 70216 emulator. This chapter describes the more
in-depth features of the emulator.

This chapter shows you how to:

Address syntax in emulation commands.

Register names and classes.

Make coordinated measurements.

Store the contents of memory into absolute files.

Using the Emulator 5-1

Address Syntax

Syntax

The address used in emulation commands may be specified as a logical
address or as a physical address (though a physical address in run or
step command is coverted to logical address by the emulator system).

Expressions are defined in the HP 64700 Emulators Terminal
Interface: User’s Reference manual.

5-2 Using the Emulator

Parameters

<SEGMENT> This expression (0-0FFFF hex) is the segment
portion of the logical address. The value specified
is placed in the 70216 PS register.

<OFFSET> This expression (0-0FFFF hex) is the offset portion
of the logical address. The value specified is placed
in the 70216 PC register.

<PHY_ADDR> This expression (0-0FFFFF hex) is a physical
address in the 70216 address range. In run
commands , the emulation system converts this
physical address to a <segment>:<offset> address
as specified by the "segment algorithm"
configuration option in "Configuring the Emulator"
chapter.

<I/O_ADDR> This expression (0-0FFFF hex) with no function
code is a 70216 I/O address. This expression
should be used in I/O command .

Using the Emulator 5-3

REGISTER
NAMES and
CLASSES

The following register names and classes are used with the "Register
Display/Modify" commands in 70216 emulator.

BASIC(*) class

Register name Description

aw, bw
cw, dw
bp, ix, iy
ds0, ds1, ss
sp, pc, ps, psw

BASIC registers.

NOCLASS

Register name Description

al, ah, bl, bh
cl, ch, dl, dh

5-4 Using the Emulator

SIO class
(70208/70216

Emulator)

(System I/O registers)

Register name Description

 opcn
opsel
opha
dula
iula
tula
sula
wcy1
wcy2
wmb
rfc
tcks

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register
ICU low address register
TCU low address register
SCU low address register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register
Timer clock selection register

Using the Emulator 5-5

SIO class
(70208H/70216H

Emulator)

(System I/O registers)

Register name Description

 opcn
opsel
opha
dula
iula
tula
sula
sctl
wcy1
wcy2
wmb
rfc
sbcr
tcks
exwb
wsmb
wiob
wcy3
brc
badr
bsel

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register
ICU low address register
TCU low address register
SCU low address register
System control register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register
Stand-by control register
Timer clock selection register
Extended wait block selection register
Wait submemory block selection register
Wait I/O block selection register
Programmable wait, cycle 3 register
Boud rate counter
Bank address register
Bank select register

5-6 Using the Emulator

ICU class (Interrupt Control Unit registers)

Register name Description

 imkw
irq
iis
ipol
ipfw

imdw
iiw1
iiw2
iiw3
iiw4

Interrupt mask word register
Interrupt request register (Read only)
Interrupt in-service register (Read only)
Interrupt polling register (Read only)
Interrupt priority and finish word register
(Write only)
Interrupt mode word register (Write only)
Interrupt initialize word 1 register (Write only)
Interrupt initialize word 2 register (Write only)
Interrupt initialize word 3 register (Write only)
Interrupt initialize word 4 register (Write only)

Caution When ipol register is displayed, interruptis are suspended until the FI
command is published.

TCU class (Timer Control Unit registers)

Register name Description

tct0
tst0
tct1
tst1
tct2
tst2
tmd

Timer/counter 0 register
Timer status 0 register (Read only)
Timer/counter 1 register
Timer status 1 register (Read only)
Timer/counter 2 register
Timer status 2 register (Read only)
Timer/counter mode register (Write only)

Using the Emulator 5-7

SCU class (Serial Control Unit registers)

Register name Description

srb
sst
stb
scm
smd
simk

Serial receive data buffer (Read only)
Serial status register (Read only)
Serial transmit data buffer (Write only)
Serial command register (Write only)
Serial mode register (Write only)
Serial interrupt mask register (Write only)

DMA71 class (DMA Control Unit registers (for uPD71071 mode)

Register name Description

 dicm
dch
dbc/dcc0
dbc/dcc1
dbc/dcc2
dbc/dcc3
dba/dca0
dba/dca1
dba/dca2
dba/dca3
dmd0
dmd1
dmd2
dmd3
ddc
dst
dmk

DMA initialize register (Write only)
DMA channel register
DMA base/current count register channel 0
DMA base/current count register channel 1
DMA base/current count register channel 2
DMA base/current count register channel 3
DMA base/current address register channel 0
DMA base/current address register channel 1
DMA base/current address register channel 2
DMA base/current address register channel 3
DMA mode control register channel 0
DMA mode control register channel 1
DMA mode control register channel 2
DMA mode control register channel 3
DMA device control register
DMA status register (Read only)
DMA mask register

5-8 Using the Emulator

DMA37 class
(70208H/70216H

Emulator only)

(DMA Control Unit register (for uPD71037 mode)

Register name Description

 cmd
bank0
bank1
bank2
bank3
adr0
adr1
adr2
adr3
cnt0
cnt1
cnt2
cnt3
sfrq

smsk

mode
clbp
init
cmsk
amsk

DMA read status/write command register
DMA bank register channel 0
DMA bank register channel 1
DMA bank register channel 2
DMA bank register channel 3
DMA current address register channel 0
DMA current address register channel 1
DMA current address register channel 2
DMA current address register channel 3
DMA current count register channel 0
DMA current count register channel 1
DMA current count register channel 2
DMA current count register channel 3
Software DMA write request register
(Write only)
DMA write single mask register
(Write only)
DMA write mode register
DMA clear byte pointer F/F (Write only)
DMA initialize register (Write only)
DMA clear mask register (Write only)
DMA write all mask register bit (Write only)

Using the Emulator 5-9

Making
Coordinated
Measurements

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators, which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and another
instrument connected to the BNC connector.

This chapter will describe coordinated measurements made from the
PC Interface which involve the emulator. These types of coordinated
measurements are:

Running the emulator on reception of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution into
the monitor.

Three signal lines on the CMB are active and serve the following
functions:

/TRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system, or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When you enable
CMB run control interaction, all emulators must
break to background on receipt of a false READY
signal and will not return to foreground until this
line is true.

/EXECUTE Active low. This line serves as a global interrupt
signal. On receipt of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
such as run the emulator or start a trace
measurement.

5-10 Using the Emulator

Running the
Emulator at
/EXECUTE

Before you can specify that the emulator run on receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config, General
Use the arrow keys to move the cursor to the "CMB Interaction? [n]"
question, and type "y". Use the Enter key to exit out of the lower
right-hand field in the configuration display.

To begin executing a program on receipt of the /EXECUTE signal,
select:

Processor, CMB, Go
Now you may select either the current program counter ("Pc", in other
words, the current PS:PC), or a specific address.

The command you enter is saved, and is executed when the
/EXECUTE signal becomes active. Also, you will see the message
"ALERT: CMB execute; run started".

Breaking on the
Analyzer Trigger

To break emulator execution into the monitor when the analyzer trigger
condition occurs, you modify the trigger configuration. To access the
trigger configuration, select:

Config, Trigger
The trigger configuration display contains two diagrams, one for each
internal TRIG1 and TRIG2 signal.

Using the Emulator 5-11

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted "Analyzer"
field in the TRIG1 portion of the display. Use the TAB key to select
the "----->>" arrow pointing from the analyzer to TRIG1. Next, move
the cursor to the highlighted "Emulator" field and use the TAB key to
select the arrow pointing toward the emulator (<<-----). This specifies
that emulator execution will break into the monitor when the TRIG1
signal is driven. The trigger configuration display appears as follows:

5-12 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

Memory, Store
When you store memory using "Memory, Store" command, the address
information saved to an absolute file is defined from the address
expression used in the "Memory Store" command. refer to "Address
Expression in Emulation Commands" section in this chapter.

Note The first character of the absolute file name must be a letter. You can
name the absolute file with a total of 8 alphanumeric characters. You
also can include an extension of up to 3 alphanumeric characters. If
the file is stored in HP 64000 format, its extension must be ".X".

Caution The "Memory Store" command writes over an existing file if it has the
same name that is specified with the command. You may wish to
verify beforehand that the specified filename does not already exist.

Using the Emulator 5-13

Notes

5-14 Using the Emulator

A

File Format Readers

Introduction The 70216 PC Interface is provided with the following "reader".

Intel Object Module Format (OMF86) Reader

– (This Reader is for the Intel OMF86 absolute file)

NEC30 Reader

– (This Reader is for the load module format file which is
generated by NEC LK70116 linker for uPD70208 and
uPD70216)

HP64000 Reader

The Reader converts the file(s) into two files that are usable with the
HP 64792 emulator. This means that you can use available language
tools to create absolute files, then load those files into the emulator
using the 70216 PC Interface.

The Reader can operate from within the PC Interface or as a separate
process. When operating the Reader, it may be necessary to execute it
as a separate process if there is not enough memory on your personal
computer to operate the PC Interface and Reader simultaneously. You
can also operate the reader as part of a "make file".

File Format Readers A-1

Using the OMF86,
NEC30 Reader

What the Reader
Accomplishes

The Reader accepts as input an absolute file in the form "<file>.<ext>",
and creates two new files that are used by the PC Interface: an
"absolute" file, and an ASCII symbol file.

The Absolute File

During execution of the Reader, an absolute file (<file>.HPA) is
created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.HPS) produced by the Reader contains
global symbols, module names, local symbols, and, when using
applicable development tools such as a "C" Compiler, program line
number. Local symbols evaluate to a fixed (static, not stack relative)
address.

Note You must use the required options for your specific language tools to
include symbolic ("debug") information in the absolute file. The
Reader will only convert symbol information that is present in the input
absolute file.

A-2 File Format Readers

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
module_nameN
global_symbol1 0100:1234
global_symbol2 0100:5678
...
global_symbolN 0100:ABCD
|module_name|# 1234 0200:0872
|module_name|local_symbol1 0200:0653
|module_name|local_symbol2 0200:0872
...
|module name|local_symbolN 0200:0986

The space preceding module names is required. A single tab separates
symbol and address.

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

The local symbols are scooped. This means that to access a variable
named "count" in a function named "foo" in a source file module
named "main.c", you would enter "main.c:foo.count". See table A-1.

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is a
five digit decimal number. Line numbers should appear in ascending
order.

 --
 | Module Name | Function Name | Variable Name | You Enter: |
 |--|
 | MAIN.C | FOO | COUNT | MAIN.C:FOO.COUNT |
 | MAIN.C | BAR | COUNT | MAIN.C:BAR.COUNT |
 | MAIN.C | line number 23 | MAIN.C: line 23 |
 --

Table A-1. How to Access Variables

File Format Readers A-3

Note When the line number symbol is displayed in the emulator, it appears
in brackets. Therefore, the symbol "modname:# 345" will be displayed
as "modname:[345]" in mnemonic memory and trace list displays.

Line number symbols are accessed by entering the following on one
line in the order shown:

module name
colon (:)
space
the word "line"
space
the decimal line number

For example:

MAIN.C: line 23

Location of the
Reader Program

The Reader is located in the directory named \hp64700\bin by default,
along with the PC Interface. This directory must be in the environment
variable PATH for the Reader and PC Interface to operate properly.
This is usually defined in the "\autoexec.bat" file. The following
examples assume that you have "\hp64700\bin" include in your
PATH variable. If not, you must supply the directory name when
executing the Reader program.

Using the Reader
from MS-DOS

The command names for the Reader are shown below.

Intel OMF86
Reader

RDOMF86.EXE

NEC30
Reader

RDNEC30.EXE

A-4 File Format Readers

You can execute the Reader from the command line with the following
command syntax:

C:\HP64700\BIN\<READER> [-q] [-u] [-m]
<filename> <RETURN>

<READER> is the name of the command name for the Reader

[-q] Specifies the "quiet" mode. This option suppress
the display of messages.

[-u] Specifies that the first leading underscore ("_") of a
symbol is not removed.

[-m] (RDOMF86.EXE only) Specifies that the OMF86
Reader removes duplicate module names generated
by some construction tools. Some tools enclose all
of the functions and variables in a module within a
block (or function) whose name is the same as that
of the module (or source file). When this option is
used, the Intel OMF86 Reader will ignore the first
enclosing block in a module is its name matches the
module name.

<filename> Specifies the same of the file containing the
absolute program. You can include an extension in
the file name.

The following commands will create the files "TESTPROG.HPA" and
"TESTPROG.HPS".

ENTER: RDOMF86 TESTPROG.ABS
ENTER: RDNEC30 TESTPROG.LNK

File Format Readers A-5

Using the Reader
from the PC Interface

The 70216 PC Interface has a file format option under the "Memory
Load" command.

After you select OMF86 as the file format, the Intel OMF86 Reader
will operate on the file you specify. After the Reader completes
successfully, the 70216 PC Interface will load the absolute and symbol
files produced by the Reader.

To use the Reader from the PC Interface, follow these steps:

1. Start up the 70216 PC Interface.

2. Select "Memory, Load". The memory load menu will appear.

3. Specify the file format as "OMF86". This will appear as the
default file format.

4. Specify the memory to be loaded (emulation, target, or both).

5. Specify to force the file format reader to regenerate the
emulator absolute file (.HPA) and symbol database (.HPS)
before loading the code. Normally, these files are only
regenerated whenever the file you specify (the output of your
language tools) is never than the emulator absolute file and
symbol database.

6. Specify that the OMF86 Reader removes duplicate module
names generated by some construction tools. Some tools
enclose all of the functions and variables in a module within a
block (or function) whose name is the same as that of the
module (or source file). When this option is used, the Intel
OMF86 Reader will ignore the first enclosing block in a
module is its name matches the module name.

7. Specify that the first leading underscore ("_") of a symbol is
not removed.

A-6 File Format Readers

8. Specify a file in Intel OMF86 format ("TESTFILE.OMF", for
example). The file extension can be something other than
".OMF", but ".HPA" or ".HPS" cannot be used.

Using the Intel OMF86 file that you specify (TESTFILE.OMF, for
example), the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the Intel
OMF86 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the Intel OMF86 file
creation date/time, the Intel OMF86 Reader recreates them.
The new absolute file, TESTFILE.HPA, is then loaded into
emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date/time for the
Intel OMF86 file, the current absolute file, TESTFILE.HPA,
is then loaded into the emulator.

Note Date/time checking only done within the PC Interface. When you run
the Reader at the MS-DOS command line prompt, the Reader will
always update the absolute and symbol files.

When the Reader operates on a file, a status message will be displayed
indicating that it is reading an absolute file. When the Reader
completes its processing, another message will be displayed indicating
the absolute file is being loaded.

File Format Readers A-7

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, exit the PC
Interface and execute the Reader program at the MS-DOS command
prompt.

Including Reader in a
Make File

You may want to incorporate the "RDOMF86" or "RDNEC30" process
as the last step in your "make" file, or as a step in your construction
process, so as to eliminate the possibility of having to exit the PC
Interface due to space limitations describe above. If the file with
"-.HPA" and "-.HPS" extensions are not current, loading an absolute
file will automatically create them.

A-8 File Format Readers

Using the
HP 64000 Reader

An HP 64000 “reader” is provided with the PC Interface. The HP
64000 Reader converts the files into two files that are usable with your
emulator. This means that you can use available language tools to
create HP 64000 absolute files, then load those files into the emulator
using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or as a
separate process. When operating the HP 64000 Reader, it may be
necessary to execute it as a separate process if there is not enough
memory on your personal computer to operate the PC Interface and HP
64000 Reader simultaneously. You can also operate the reader as part
of a “make file.”

What the Reader
Accomplishes

Using the HP 64000 files (<file.X>, <file.L>, <scr1.A>, <scr2.A>, ...)
the HP 64000 Reader will produce two new files, an “absolute” file and
an ASCII symbol file, that will be used by the PC Interface. These new
files are named: “<file>.hpa” and “<file>.hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file (<file>.hpa)
is created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools such as a “C” compiler, program
line numbers. Local symbols evaluate to a fixed (static, not stack
relative) address.

File Format Readers A-9

Note You must use the required options for your specific language tools to
include symbolic (“debug”) information in the HP 64000 symbol files.
The HP 64000 Reader will only convert symbol information present in
the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 0100:1234
global_symbol2 0100:5678
...
global_symbolN 0100:ABCD
|module_name1|# 1234 0200:0872
|module_name1|local_symbol1 0200:0653
|module_name1|local_symbol2 0200:0872
...
|module_name1|local_symbolN 0200:0986

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN is a
five digit decimal line number. The addresses associated with global
and local symbols are specific to the processor for which the HP 64000
files were generated.

A-10 File Format Readers

Note If your emulator can store symbols internally, symbols will appear in
disassembly. When the line number symbol is displayed in the
emulator, it appears in brackets. Therefore, the symbol “MODNAME:
line 345” will be displayed as “MODNAME:[345]” in mnemonic
memory and trace list displays.

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols are scooped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “MAIN.C:COUNT” as shown below.

You access line number symbols by entering the following on one line
in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

MAIN.C: line 23

Module Name Variable Name You Enter:

MAIN.C COUNT MAIN.C:COUNT

MAIN.C line number 23 MAIN.C: line 23

Table A-2. How to Access Variables

File Format Readers A-11

Location of the
HP 64000 Reader

Program

The HP 64000 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64000 Reader and PC Interface
to operate properly. The PATH is usually defined in the
“\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

Using the Reader
from MS-DOS

The command name for the HP 64000 Reader is RHP64000.EXE. To
execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

[-q] This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA”and
“TESTPROG.HPS”

RHP64000 TESTPROG.L

Using the Reader
from the PC Interface

The PC Interface has a file format option under the “Memory Load”
command. After you select HP64000 as the file format, the HP 64000
Reader will operate on the file you specify. After this completes
successfully, the PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.

2. Select “Memory Load.” The memory load menu will appear.

3. Specify the file format as “HP64000.” This will appear as the
default file format.

4. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

A-12 File Format Readers

Using the HP 64000 file that you specify (TESTFILE.L, for example),
the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64000 linker
symbol file creation date/time, the HP 64000 Reader recreates
them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date and time for
the HP 64000 linker symbol file, the HP 64000 Reader will
not recreate TESTFILE.HPA. The current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface. When
running the HP 64000 Reader at the MS-DOS command line prompt,
the HP 64000 Reader will always update the absolute and symbol files.

When the HP 64000 Reader operates on a file, a status message will be
displayed indicating that it is reading an HP 64000 file. When the HP
64000 Reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

The PC Interface executes the Reader with the “-q” (quiet) option by
default.

File Format Readers A-13

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, you will
need to exit the PC Interface and execute the program at the MS-DOS
command prompt to create the files that are downloaded to the
emulator.

Including RHP64000
in a Make File

You may wish to incorporate the “RHP64000” process as the last step
in your “make file,” as a step in your construction process, to eliminate
the possibility of having to exit the PC Interface due to space
limitations describe above. If the files with “.HPA” and “.HPS”
extensions are not current, loading an HP 64000 file will automatically
create them.

A-14 File Format Readers

Index

A absolute files
< file> .hpa created by HP 64000 Reader A-9
Intel OMF86 A-1
loading 2-12
NEC30 A-1
storing 5-13

Address Syntax 5-2
algorithm, cur segment 4-9
algorithm, max segment 4-9
algorithm, min segment 4-9
analysis begin 2-33
analysis display 2-34
analysis specification

resetting the 2-30
trigger condition 2-30

analyzer
features of 1-4

analyzer, using the 2-30
ASCII symbol file (< file> .hps) A-9
assemblers 2-9
assembling and linking the getting started sample program 2-6

B background 1-5
background monitor 4-16
BNC connector 5-10
break command 2-26
breaking on analyzer trigger 5-11
breaks

software breakpoints 2-26

C caution statements
real-time dependent target system circuitry 4-5
software breakpoint cmds. while running user code 2-27

cautions
filenames in the memory store command 5-13
installing the target system probe 3-2

characterization of memory 2-8 - 2-9

Index-1

clock source
external 3-7, 4-4
internal 3-7, 4-4

CMB (coordinated measurement bus) 5-10
CMB signals 5-10
commands (PC Interface), selecting 2-8
configuration (emulator) 4-1

loading 4-18
storing 4-18

configuration options
accessing 4-3
dis-assembler mode 4-14
emulator clock source 4-4
enable CMB interaction 4-12
enable DMA in background 4-13
enable ROM break 4-10
enable support FPP 4-13
enable sw_breakpoints 4-11
enable word access 4-14
foreground monitor address 4-17
in-circuit 3-7
monitor type 4-16
real-time mode 4-5
segment algorithm 4-9
target hold 4-7
target NMI 4-6
target ready 4-6
target reset 4-7
trace DMA cycles 4-8
trace hold cycles 4-8
trace refresh cycles 4-8

configuration(hardware), installing the emulator 2-2
coordinated measurements

break on analyzer trigger 5-11
definition 5-10
multiple emulator start/stop 4-12
run at /EXECUTE 5-11

coprocessor
access emulation memory 2-8, 3-7

copy memory command 2-36

2-Index

count, step command 2-23
cur segment algorithm 4-9

D device table, emulator 2-7
disassembler mode, changing the 2-19
displaying the trace 2-34
DMA 1-7

external 2-9
in background 4-13
TC bit 1-7

E emulation analyzer 1-4
emulation memory

access by 8087 coprocessor 2-8, 3-7
note on target accesses 2-9
RAM and ROM 2-8
size of 2-8

emulation monitor
foreground or background 1-5

emulation RAM and ROM 2-9
emulator

device table 2-7
feature list 1-3
memory mapper resolution 2-8
purpose of 1-1
reset 2-36
running from target reset 3-7 - 3-8
status 2-8
supported microprocessor package 1-3

emulator configuration
configuration options 4-1
loading 4-18
stack pointer 4-15
storing 4-18

Emulator features
emulation memory 1-4

emulator probe
installing 3-2

enable CMB interaction 4-12
enable ROM break 4-10
enable sw_breakpoints 4-11
eram, memory characterization 2-9

Index-3

erom, memory characterization 2-9
Evaluation chip 1-7
EXECUTE

CMB signal 5-10
run at 5-11

executing programs 2-25
exiting the PC Interface 2-37
external clock source 4-4

F file formats
HP64000 A-12

file formats, absolute 2-12
find data in memory 2-25
foreground 1-5
foreground monitor 4-16

locating the 4-17

G getting started 2-1
prerequisites 2-2

global symbols 2-15, 2-21
grd, memory characterization 2-9
guarded memory accesses 2-9

H hardware installation 2-2
HOLD

from target system 4-7
HP 64000 Reader A-9

 using with PC Interface A-12
HP 64000 Reader command (RHP64000.EXE) A-12
HP64000 file format A-12
HPTABLES environment variable 2-7

I IEEE-695 reader A-2
in-circuit configuration options 3-7
in-circuit emulation 3-1
installation

hardware 2-2
software 2-2

internal clock source 4-4
interrupt

from target system 1-7, 3-7
while stepping 1-7

4-Index

L line numbers 2-35
linkers 2-9
linking the getting started sample program 2-6
load map 2-9
loading absolute files 2-12
local symbols 2-17, 2-28, A-3, A-11
locating the foreground monitor 4-17
location address

 foreground monitor 4-17
locked, PC Interface exit option 2-37
logical run address, conversion from physical address 4-9

M make file A-9
mapping memory 2-8
max segment algorithm 4-9
memory

copy range 2-36
displaying in mnemonic format 2-20
mapping 2-8
modifying 2-24
reassignment of emulation memory blocks 2-11
searching for data 2-25

memory characterization 2-8
memory memory

access by coprocessor 2-9
microprocessor package 1-3
min segment algorithm 4-9
monitor

background 4-16
foreground 4-16

monitor block 4-17

N NEC30
reader A-1

NMI
from target system 4-6

NMI signal
from target system 4-6

note statements
reassignment of emul. mem. blocks by mapper 2-11

notes
absolute file names for stored memory 5-13

Index-5

changing internal clock forces reset 4-4
CMB interaction enabled on execute command 4-12
config. option for reset stack pointer recommended 4-15
coordinated measurements require background. monitor 4-16
date checking only in PC Interface A-13
displaying complete traces 2-35
line number symbols in memory and trace listings A-4
mapper terms deleted when monitor is relocated 4-17
mapping foreground monitor automatically 4-16
Reader only checks date/time within the PC Interface A-7
register command 2-21
software breakpoints only at opcode addresses 2-27
step not accepted 2-22
symbolic information is required in absolute file A-2
target accesses to emulation memory 2-9
use required options to include symbols A-10
using terminal window to modify configuration 4-3
write to ROM analyzer status 4-10

O OMF86
reader A-1

P PC Interface
exiting the 2-37
HP 64000 Reader A-12
selecting commands 2-8
starting the 2-7

physical run address, conversion to logical run address 4-9
Pin guard

target system probe 3-2
pin protector

target system probe 3-3
predefining stack pointer 4-15
prerequisites for getting started 2-2

Q qualifiers, analyzer status (70216 emulator) 2-31

R RAM, mapping emulation or target 2-9
READY signal from target 4-6
READY, CMB signal 5-10
real-time mode 4-5
register command 2-21
register commands 1-4

6-Index

registers
classes 5-4
names 5-4

relocatable files 2-9
RESET

from target system 4-7
reset (emulator) 2-36

running from target reset 3-8
RESET signal 3-7
resetting the analyzer specifications 2-30
restrict to real-time runs

permissible commands 4-5
target system dependency 4-5

ROM
writes to 2-9

ROM, mapping emulation or target 2-9
run address, conversion from physical address 4-9
run at /EXECUTE 5-11
run from target reset 3-7 - 3-8, 4-7
running programs 2-25

S sample program
assembling 2-6
linking 2-6

sample programs
for getting started 2-2

searching for data in memory 2-25
selecting PC Interface commands 2-8
simple trigger, specifying 2-30
single step 2-21
software breakpoint

 70216 breakpoint interrupt instruction 2-26
software breakpoints 2-26

and NMI 2-27
clearing 2-29
defining (adding) 2-28
displaying 2-28
ignored 2-28
setting 2-29

software installation 2-2
specifications

analysis specification 2-30

Index-7

stack pointer,defining 4-15
starting the trace 2-33
status (analyzer) qualifiers, 70216 emulator 2-31
status line 2-8
step 2-21
step count 2-23
supervisor stack pointer

required for proper operation 4-15
support FPP

in target system 4-13
symbols 2-14

.HPS file format A-10
global 2-21
local 2-28, A-9

system command
exit 2-37

T target reset
running from 3-8

target reset, running from 3-7
target system

dependency on executing code 4-5
interface 3-9

Target system probe
cautions for installation 3-2
pin guard 3-2
pin protector 3-3

target system RAM and ROM 2-9
trace

description of listing 2-35
displaying the 2-34
starting the 2-33

trace signals 2-30
tracing hold cycles 4-8
tracing internal DMA cycles 4-8
tracing refresh cycles 4-8
tram, memory characterization 2-9
TRIG1, TRIG2 internal signals 5-11
trigger

breaking into monitor on 5-11
specifying a simple 2-30

trigger condition 2-30

8-Index

TRIGGER, CMB signal 5-10
trom, memory characterization 2-9

U unlocked, PC Interface exit option 2-37
using the HP 64000 file reader A-9

W wait states, allowing the target system to insert 4-6
word access 4-14

Z zoom, window 2-16, 2-20

Index-9

Notes

10-Index

	Using this Manual
	Contents
	Introduction to the 70216 Emulator
	Getting Started
	"In-Circuit" Emulation
	Configuring the Emulator
	Using the Emulator
	File Format Readers
	Index

