
HP 64797

H8/3048 Emulator
Softkey Interface

User’s Guide

HP Part No. 64797-97001
January 1995

Edition 1

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1995, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

H8/3048 registered trademark of Hitachi Ltd.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Right for non-DOD
U.S. Government Department and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64797-97001, January 1995

Using This Manual

This manual will show you how to use the HP 64797 H8/3048
Emulator with the Softkey Interface. This manual will also help define
how these emulators differ from other HP 64700 Emulators.

This manual will:

Show you how to use emulation commands by executing them
on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, and selecting a target system clock
source.
Show you how to use the emulator in-circuit (connected to a
target system).

This manual will not:

Show you how to use every Softkey Interface command and
option; the Softkey Interface is described in the Softkey
Interface Reference

Organization

Chapter 1 Introduction. This chapter lists the H8/3048 emulator features and
describes how they can help you in developing new hardware and
software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Chapter 4 Configuring the Emulator. You can configure the emulator to adapt
it to your specific development needs. This chapter describes the
options available when configuring the emulator and how to save and
restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter.

Chapter 6 Using On-chip Flash Memory. This chapter describes differences
between flash memory functions of the H8/3048 emulator and actual
on-chip flash memory.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax
which may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands which
follow the "$" are entered at the HP-UX prompt.

<RETURN> The carriage return key.

Notes

Contents

1 Introduction

Purpose of the H8/3048 Emulator 1-1
Features of the H8/3048 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-4
Emulation memory . 1-5
Analysis . 1-5
Registers . 1-5
Breakpoints . 1-6
Reset Support . 1-6
Real Time Operation . 1-6
Easy Product Updates . 1-6

Limitations, Restrictions . 1-7
Foreground Monitor . 1-7
DMA Support . 1-7
Watch Dog Timer in Background 1-7
Monitor Break at Sleep/Standby Mode 1-7
Hardware Standby Mode . 1-7
Interrupts in Background Cycles 1-7
On-chip Flash Memory . 1-7
Evaluation chip . 1-7

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6
Generate HP Absolute file . 2-6

Entering the Softkey Interface . 2-7
From the HP-UX Shell . 2-7
Using the Default Configuration 2-8

On-Line Help . 2-9

Contens - 1

Softkey Driven Help . 2-9
Pod Command Help . 2-10

Loading Absolute Files . 2-11
Displaying Symbols . 2-11

Global . 2-11
Local . 2-12

Displaying Memory in Mnemonic Format 2-13
Displaying Memory with Symbols 2-14
Running the Program . 2-15

From Transfer Address . 2-15
From Reset . 2-15

Displaying Memory Repetitively 2-15
Modifying Memory . 2-16
Breaking into the Monitor . 2-17
Using Software Breakpoints . 2-17

Enabling/Disabling Software Breakpoints 2-18
Setting a Software Breakpoint 2-19
Clearing a Software Breakpoint 2-20

Stepping Through the Program 2-20
Displaying Registers . 2-21
Using the Analyzer . 2-22

Specifying a Simple Trigger 2-22
Displaying the Trace . 2-23
Displaying Trace with Time Count Absolute 2-24
H8/3048 Analysis Status Qualifiers 2-25

Trace Analysis Considerations 2-26
How to Specify Trigger Condition 2-26
Store Condition and Trace . 2-27
Triggering the Analyzer by Data 2-29
For a Complete Description 2-30

Exiting the Softkey Interface 2-30
End Release System . 2-30
Ending to Continue Later . 2-30
Ending Locked from All Windows 2-30
Selecting the Measurement System Display or Another Module 2-31

3 In-Circuit Emulation

Installing the Target System Probe 3-2
PGA adaptor . 3-3
QFP adaptor . 3-3
QFP socket/adaptor . 3-3

2 - Contents

Installing into a 5 voltage target 3-4
Installing 64784E PGA adaptor 3-5
Installing QFP adaptor . 3-6

Installing into a low voltage target 3-7
Specification . 3-7
Installing 64797B PGA adaptor 3-8

Installing the H8/3048 microprocessor 3-9
In-Circuit Configuration Options 3-10
Target System Interface and Timing Specification 3-11
Running the Emulator from Target Reset 3-11
PGA Pin Assignments . 3-12

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-3

Micro-processor clock source? 4-3
Enter monitor after configuration? 4-5
Restrict to real-time runs? . 4-5
Processor type? . 4-6
Source for processor operation mode? 4-7

Memory Configuration . 4-9
Mapping Memory . 4-9

Emulator Pod Configuration . 4-12
Enable bus arbitration? . 4-12
Enable NMI input from target system? 4-13
Enable reset input from target system? 4-14
Drive background cycles to the target system? 4-15
Reset value for stack pointer? 4-16
Target memory access size? 4-16

Debug/Trace Configuration . 4-17
Break processor on write to ROM? 4-17
Trace background or foreground operation? 4-18
Trace on-chip DMAC cycles? 4-18
Trace refresh cycles? . 4-19

Simulated I/O Configuration . 4-19
Interactive Measurement Configuration 4-20
External Analyzer Configuration 4-20
Saving a Configuration . 4-20
Loading a Configuration . 4-21

5 Using the Emulator

Contens - 3

Introduction . 5-1
Features Available via Pod Commands 5-2
Using a Command File . 5-3
Debugging C Programs . 5-4

Displaying Memory with C Sources 5-4
Displaying Trace with C Sources 5-4
Stepping C Sources . 5-4

Storing Memory Contents to an Absolute File 5-5
Coordinated Measurements . 5-5
Register Classes and Names . 5-6

Summary . 5-6

6 Using the On-chip Flash Memory

Introduction . 6-1
Memory Mapping . 6-1
Flash Memory Registers . 6-2
Programming/
Erasing Flash Memory . 6-2

Programming Data . 6-2
Erasing Data . 6-3
Protection Mode . 6-3

Boot Mode . 6-4

Illustrations

Figure 1-1. HP 64797 Emulator for the H8/3048 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. Softkey Interface Display 2-8
Figure 3-1 Installing HP 64784E/HP 64784G 3-5
Figure 3-2 Installing HP 64784D 3-6
Figure 3-3 Installing HP 64797B/HP 64784G 3-8
Figure 3-4 Installing the H8/3048 processor 3-9
Figure 3-5 PGA Adaptor Pin Assignment 3-16

4 - Contents

Tables

Table 1-1 Supported Microprocessors 1-3
Table 1-2 Clock Speeds . 1-4
Table 3-1 DC Characteristics of input high voltage 3-7
Table 3-2 PGA Pin Assignment 3-12
Table 4-1 Clock Speeds . 4-4

Contens - 5

6 - Contents

1

Introduction

The topics in this chapter include:

Purpose of the H8/3048 Emulator

Features of the H8/3048 Emulator

Purpose of the
H8/3048 Emulator

The H8/3048 Emulator is designed to replace the H8/3048
microprocessor in your target system so you can control operation of
the microprocessor in your application hardware (usually referred to as
the target system). The H8/3048 emulator performs just like the
H8/3048 microprocessor, but is a device that allows you to control the
H8/3048 microprocessor directly. These features allow you to easily
debug software before any hardware is available, and ease the task of
integrating hardware and software.

Introduction to the H8/3048 Emulator 1-1

Figure 1-1. HP 64797 Emulator for the H8/3048

1-2 Introduction to the H8/3048 Emulator

Features of the
H8/3048 Emulator

Supported
Microprocessors

The HP 64797A H8/3048 emulator supports the microprocessors listed
in Table 1-1.

Table 1-1. Supported Microprocessors

Supported Microprocessors

Type Package On-chip ROM Supply Voltage

H8/3048 100 pin QFP PROM 4.75 to 5.25V

2.70 to 5.25V

Masked ROM 4.75 to 5.25V

2.70 to 5.25V

H8/3048F 100 pin QFP Flash Memory 4.25 to 5.25V

2.70 to 5.25V

H8/3047 100 pin QFP Masked ROM 4.75 to 5.25V

2.70 to 5.25V

H8/3044 100 pin QFP Masked ROM 4.75 to 5.25V

2.70 to 5.25V

The H8/3048 emulator is provided without any adaptor and probe. To
emulate each processor with your target system, you need to purchase
appropriate adaptor and probe. To purchase them, contact your local
HP sales representative.

The list of supported microprocessors in Table 1-1 is not necessarily
complete. To determine if your microprocessor is supported or not,
contact Hewlett-Packard.

Introduction to the H8/3048 Emulator 1-3

Clock Speeds You can select whether the emulator will be clocked by the internal
clock source or by the external clock source on your target system. You
need to select a clock input conforming to the specification of Table
1-2.

Crystal ocsillator frequency of internal clock is 8MHz.

Refer to the "Configuration the Emulator" Chapter in this manual for
more details.

Table 1-2. Clock Speeds

Emulation
Memory

Clock Speed

With HP64784D With HP64784E With HP64797B

64726A
64727A
64728A

From 1 up to 16MHz
(System Clock)

From 1 up to 16MHz
(System Clock)

From 1 up to 13MHz
(System Clock)

64729A From 1 up to 18MHz
(System Clock)

From 1 up to 18MHz
(System Clock)

From 1 up to 13MHz
(System Clock)

1-4 Introduction to the H8/3048 Emulator

Emulation memory The H8/3048 emulator is used with one of the following Emulation
Memory Cards.

HP 64726A 128K byte Emulation Memory Card
HP 64727A 512K byte Emulation Memory Card
HP 64728A 1M byte Emulation Memory Card
HP 64729A 2M byte Emulation Memory Card

When you use the HP64797A emulator over 16MHz, you have to use
the HP 64729A 2M byte Emulation Memory Card.

You can define up to 16 memory ranges (at 512 byte boundaries and
least 512 byte in length.) The emulator occupies 6K byte, which is
used for monitor program and internal RAM of microprocessor mapped
as emulation RAM, leaving 122K, 506K, 1018K, 2042K byte of
emulation memory which you may use.

You can characterize memory range as emulation RAM (eram),
emulation ROM (erom), target system RAM (tram), target system
ROM (trom), or guarded memory (grd). The emulator generates an
error message when accesses are made to guarded memory locations.

You can also configure the emulator so that writes to memory defined
as ROM cause emulator execution to break out of target program
execution.

Analysis The H8/3048 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704A 80-channel Emulation Bus Analyzer
HP 64703A 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer.
HP 64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703A 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the H8/3048 internal register contents. This
includes the ability to modify the program counter (PC) value so you
can control where the emulator starts a program run.

Introduction to the H8/3048 Emulator 1-5

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific state or
states, allowing you to perform post-mortem analysis of the program
execution. You can also set software breakpoints in your program.
This feature is realized by inserting a special instruction into user
program. One of undefined opcodes (5770 hex) is used as software
breakpoint instruction. Refer to the "Using Software Breakpoints"
section of "Getting Started" chapter for more information.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real Time Operation Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator needs to break to the monitor to
perform an action you requested, such as displaying target system
memory.) Emulator features performed in real time include: running
and analyzer tracing. Emulator features not performed in real time
include: display or modification of target system memory, load/dump
of target memory, display or modification of registers.

Easy Product
Updates

Because the HP 64700 Series development tools(emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700B Card Cage. This means that you’ll be able to update product
firmware, if desired, without having to call to HP field representative to
your site.

1-6 Introduction to the H8/3048 Emulator

Limitations,
Restrictions

Foreground Monitor Foreground monitor is not supported for the H8/3048 emulator.

DMA Support Direct memory access to the emulation by external DMAC is not
allowed.

Watch Dog Timer in
Background

Watch dog timer is suspended count up while the emulator is running
in background monitor.

Monitor Break at
Sleep/Standby Mode

When the emulator breaks into the background monitor, sleep or
software standby mode is released. Then, PC indicates next address of
"SLEEP" instruction.

Hardware Standby
Mode

Hardware standby mode is not supported for the H8/3048 emulator.
Hardware standby request from target system will drive the emulator
into the reset state.

Interrupts in
Background Cycles

The H8/3048 emulator does not accept any interrupts while in
background monitor. Such interrupts are suspended while running the
background monitor, and will occur when context is changed to
foreground.

On-chip Flash
Memory

The H8/3048 emulator uses emulation memory instead of actual
on-chip flash memory. So, operation for on-chip flash memory is
different from H8/3048 microprocessor. Refer to "Using the On-chip
Flash Memory" chapter in this manual for more details.

 Evaluation chip Hewlett-Packard makes no warranty of the problem caused by the
H8/3048 Evaluation chip in the emulator.

Introduction to the H8/3048 Emulator 1-7

Notes

1-8 Introduction to the H8/3048 Emulator

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the H8/3048 emulator with
the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s example.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual for
instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also covers
HP64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
H8/3048 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter. The sample
program is shipped with the Softkey Interface and may be copied from
the following location.

/usr/hp64000/demo/emul/hp64797/cmd_rds.src

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A,Msg_B, and Msg_I.

2-2 Getting Started

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "THIS IS MESSAGE A"
Msg_B .SDATA "THIS IS MESSAGE B"
Msg_I .SDATA "INVALID COMMAND"
End_Msgs

 .SECTION Prog,CODE
;**
;* Set up the Stack Pointer.
;**
Init MOV.L #Stack,ER7
;**
;* Clear previous command.
;**
Clear MOV.B #H’00,R0L
 MOV.B R0L,@Cmd_Input
;**
;* Read command input byte. If no command has been
;* entered, continue to scan for it.
;**
Scan MOV.B @Cmd_Input,R2L
 CMP.B #H’00,R2L
 BEQ Scan
;**
;* A command has been entered. Check if it is
;* command A, command B, or invalid command.
;**
Exe_Cmd CMP.B #H’41,R2L
 BEQ Cmd_A
 CMP.B #H’42,R2L
 BEQ Cmd_B
 BRA Cmd_I
;**
;* Command A is entered. R3L = the number of bytes
;* in message A. R4 = location of the message.
;* Jump to the routine which writes the message.
;**
Cmd_A MOV.B #Msg_B-Msg_A,R3L
 MOV.L #Msg_A,ER4
 BRA Write_Msg
;**
;* Command B is entered.
;**
Cmd_B MOV.B #Msg_I-Msg_B,R3L
 MOV.L #Msg_B,ER4
 BRA Write_Msg
;**
;* An invalid command is entered.
;**
Cmd_I MOV.B #End_Msgs-Msg_I,R3L
 MOV.L #Msg_I,ER4
;**

Figure 2-1. Sample Program Listing

Getting Started 2-3

Initialization

The program instruction at the Init label initializes the stack pointer.

Reading Input

The instruction at the Clear label clears any random data or previous
commands from the Cmd_Input byte. The Scan loop continually
reads the Cmd_Input byte to see if a command is entered (a value
other than 0 hex).

;* The destination area is cleared.
;**
Write_Msg MOV.L #Msg_Dest,ER5
Clear_Old MOV.B #H’20,R6L
Clear_Loop MOV.B R0L,@ER5
 ADDS.L #1,ER5
 DEC.B R6L
 BNE Clear_Loop
;**
;* Message is written to the destination.
;**
 MOV.L #Msg_Dest,ER5
Write_Loop MOV.B @ER4+,R6L
 MOV.B R6L,@ER5
 ADDS.L #1,ER5
 DEC.B R3L
 BNE Write_Loop
;**
;* Go back and scan for next command.
;**
 BRA Clear

 .SECTION Data,DATA
;**
;* Command input byte.
;**
Cmd_Input .RES.B 1
 .RES.B 1
;**
;* Destination of the command messages.
;**
Msg_Dest .RES.W H’80
Stack
 .END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
R3L with the length of the message to be displayed and register ER4
with the starting location of the appropriate message. Then, execution
transfers to Write_Msg which writes the appropriate message to the
destination location, Msg_Dest.

Prior to writing the message, Clear_Old clears the destination area.
After the message is written, the program branches back to read the
next command.

The Destination Area

The "Data" section declares memory storage for the command input
byte, the destination area, and the stack area.

Getting Started 2-5

Sample Program
Assembly

The sample program is written for and assembled with the Hitachi
Cross System. The sample program was assembled with the following
command.

$ asm38 cmd_rds.src -debug -cpu=300ha
<RETURN>

Linking the Sample
Program

The sample program can be linked with following command and
generates the absolute file. The contents of "cmd_rds.k" linkage editor
subcommand file is shown in figure 2-2.

$ lnk -subcommand= cmd_rds.k <RETURN>

Generate HP
Absolute file

To generate HP Absolute file for the Softkey Interface, you need to use
"h83cnvhp" absolute file format converter program. The h83cnvhp
converter is provided with HP 64797 Softkey Interface. To generate
HP Absolute file, enter following command:

$ h83cnvhp cmd_rds <RETURN>

You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are generated.
These are sufficient throughout this chapter.

Note You need to specify "debug" command line option for compiler,
assembler and linker command to generate local symbol information.
Otherwise, you will see the warning message when file format
converter h83cnvhp is executed. And no local symbol file will be
generated. The "debug" option directs to include local symbol
information to the object file.

debug
input cmd_rds
start Prog(1000),Table(2000),Data(0FF800)
output cmd_rds
print cmd_rds
exit

Figure 2-2. Linkage Editor Subcommand File

2-6 Getting Started

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered from the HP-UX shell.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab or /usr/hp64000/etc/64700tab.net).

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

#--------+------------+-----------+---
Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#--------+------------+-----------+---
 lan: h8300 h6473048 21.17.9.143

Getting Started 2-7

Using the Default
Configuration

The default emulator configuration is used with the sample program.
The H8/3048 emulator is configured to emulate H8/3048 chip and the
address range 0 hex through ffff hex is mapped as emulation ROM.

Note When you use internal ROM/on-chip flash memory area, you must
map that area as emulation memory. If you don’t map internal ROM
properly, you cannot access that area.

Note Since the H8/3048 emulator automatically maps internal RAM as
emulation RAM, you don’t need to map this area.

Refer to "Memory Configuration" section of "Configuring the
Emulator" chapter in this manual for more details.

 HPB3077-11002 A.05.20 15Jun94 Unreleased
 H8/3048 SOFTKEY USER INTERFACE

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1993

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA94304-1181

 STATUS: Starting new session___........

 run trace step display modify break end ---ETC--

Figure 2-3. Softkey Interface Display

2-8 Getting Started

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

---SYSTEM COMMANDS & COMMAND FILES---

? displays the possible help files
help displays the possible help files

! fork a shell (specified by shell variable SH)
!<shell command> fork a shell and execute a shell command

pwd print the working directory
cd <directory> change the working directory

pws print the default symbol scope
cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic

forward <UI> "command" send the command in the quoted string from this user
 interface to another one. Replace <UI> with the name
 the other user interface as shown on the softkeys:

--More--(15%)

Getting Started 2-9

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help m’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Pod Commands
 Time Command

 m <addr> - display memory at address
 m -d<dtype> <addr> - display memory at address with display option
 m <addr>..<addr> - display memory in specified address range
 m -dm <addr>..<addr> - display memory mnemonics in specified range
 m <addr>.. - display 128 byte block starting at address A
 m <addr>=<value> - modify memory at address to <value>
 m -d<dtype> <addr>=<value> - modify memory with display option
 m <addr>=<value>,<value> - modify memory to data sequence
 m <addr>..<addr>=<value>,<value> - fill range with repeating sequence

 --- VALID <dtype> MODE OPTIONS ---
 b - display size is 1 byte(s)
 w - display size is 2 byte(s)
 l - display size is 4 byte(s)
 m - display processor mnemonics

STATUS: H8/3042--Running in monitor___________________________________...R....
 pod_command ’help m’

pod_cmd set perfinit perfrun perfend ---ETC--

2-10 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" nor
"user_mem". For example:

load cmd_rds <RETURN>

Normally, you will configure the emulator and map memory before
you load the absolute file; however, the default configuration is
sufficient for the sample program.

Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" option), symbol information is loaded. Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol.

Getting Started 2-11

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.src:
<RETURN>

 Global symbols in cmd_rds
 Static symbols
 Symbol name ___________________ Address range ___ Segment ____________ Offset
 Cmd_Input 0FF800 0000
 Init 001000 0000
 Msg_Dest 0FF802 0002
 Msgs 002000 0000

 Filename symbols
 Filename __
 cmd_rds.src

 STATUS: H8/3048-Running in monitor____________________________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

 Symbols in cmd_rds.src:
 Static symbols
 Symbol name ___________________ Address range ___ Segment ____________ Offset
 Clear 001006 0006
 Clear_Loop 001050 0050
 Clear_Old 00104E 004E
 Cmd_A 001028 0028
 Cmd_B 001034 0034
 Cmd_I 001040 0040
 Cmd_Input 0FF800 0000
 Data 0FF800 0000
 END_Msgs 00002031
 Exe_Cmd 001018 0018
 Init 001000 0000
 Msg_A 002000 0000
 Msg_B 002011 0011
 Msg_Dest 0FF802 0002
 Msg_I 002022 0022

 STATUS: cws: cmd_rds.src:__...R....
 display local_symbols_in cmd_rds.src:

 run trace step display modify break end ---ETC--

2-12 Getting Started

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example, to display the memory of the "cmd_rds" program,

display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbol Init is used in the command above to specify the starting
address of the memory to be displayed.

 Memory :mnemonic :file = cmd_rds.src:
 address data
 001000 7A07000FF9 MOV.L #000FF902,ER7
 001006 F800 MOV.B #00,R0L
 001008 6AA8000FF8 MOV.B R0L,@0FF800
 00100E 6A2A000FF8 MOV.B @0FF800,R2L
 001014 AA00 CMP.B #00,R2L
 001016 47F6 BEQ 00100E
 001018 AA41 CMP.B #41,R2L
 00101A 5870000A BEQ 001028
 00101E AA42 CMP.B #42,R2L
 001020 58700010 BEQ 001034
 001024 58000018 BRA 001040
 001028 FB11 MOV.B #11,R3L
 00102A 7A04000020 MOV.L #00002000,ER4
 001030 58000014 BRA 001048
 001034 FB11 MOV.B #11,R3L
 001036 7A04000020 MOV.L #00002011,ER4

 STATUS: H8/3048--Running in monitor____________________________________...R....
 display memory Init mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-13

Displaying
Memory with
Symbols

You can include symbol information in memory display.

set symbols on <RETURN>

Note The "set" command is effective only to the window which the
command is invoked. When you access the emulator from multiple
windows, you need to use the command at each window.

 Memory :mnemonic :file = cmd_rds.src:
 address label data
 001000 :Init 7A07000FF9 MOV.L #000FF902,ER7
 001006 cmd_rd:Clear F800 MOV.B #00,R0L
 001008 6AA8000FF8 MOV.B R0L,@:Cmd_Input
 00100E cmd_rds:Scan 6A2A000FF8 MOV.B @:Cmd_Input,R2L
 001014 AA00 CMP.B #00,R2L
 001016 47F6 BEQ cmd_rds.src:Scan
 001018 cmd_:Exe_Cmd AA41 CMP.B #41,R2L
 00101A 5870000A BEQ cmd_rds.sr:Cmd_A
 00101E AA42 CMP.B #42,R2L
 001020 58700010 BEQ cmd_rds.sr:Cmd_B
 001024 58000018 BRA cmd_rds.sr:Cmd_I
 001028 cmd_rd:Cmd_A FB11 MOV.B #11,R3L
 00102A 7A04000020 MOV.L #00002000,ER4
 001030 58000014 BRA cmd_rd:Write_Msg
 001034 cmd_rd:Cmd_B FB11 MOV.B #11,R3L
 001036 7A04000020 MOV.L #00002011,ER4

 STATUS: H8/3048--Running in monitor____________________________________...R....
 set symbols on

 pod_cmd set perfinit perfrun perfend ---ETC--

2-14 Getting Started

Running the
Program

The "run" command lets the emulator execute a program in memory.
Entering the "run" command by itself causes the emulator to begin
executing at the current program counter address. The "run from"
command allows you to specify an address at which execution is to
start.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the .END
assembler directive (i.e., pseudo instruction). For example, the sample
program defines the address of the label Init as the transfer address.
The following command will cause the emulator to execute from the
address of the Init label.

run from transfer_address <RETURN>

From Reset The "run from reset" command specifies that the emulator begin
executing from target system reset (see "Running From Reset" section
in the "In-Circuit Emulation" chapter).

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the information
on the screen is constantly updated. For example, to display the
Msg_Dest locations of the sample program repetitively (in blocked
byte format), enter the following command.

display memory Msg_Dest repetitively blocked
bytes <RETURN>

Getting Started 2-15

Modifying Memory The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labeled Cmd_Input. You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory Cmd_Input bytes to 41h <RETURN>
Or:

modify memory Cmd_Input string to ’A’
<RETURN>

After the memory location is modified, the repetitive memory display
shows that the "THIS IS MESSAGE A" message is written to the
destination locations.

 Memory :bytes :access=bytes :blocked :repetitively
 address data :hex :ascii
 0FF802-09 54 48 49 53 20 49 53 20 T H I S I S
 0FF80A-11 4D 45 53 53 41 47 45 20 M E S S A G E
 0FF812-19 41 00 00 00 00 00 00 00 A
 0FF81A-21 00 00 00 00 00 00 00 00
 0FF822-29 00 00 00 00 00 00 00 00
 0FF82A-31 00 00 00 00 00 00 00 00
 0FF832-39 00 00 00 00 00 00 00 00
 0FF83A-41 00 00 00 00 00 00 00 00
 0FF842-49 00 00 00 00 00 00 00 00
 0FF84A-51 00 00 00 00 00 00 00 00
 0FF852-59 00 00 00 00 00 00 00 00
 0FF85A-61 00 00 00 00 00 00 00 00
 0FF862-69 00 00 00 00 00 00 00 00
 0FF86A-71 00 00 00 00 00 00 00 00
 0FF872-79 00 00 00 00 00 00 00 00
 0FF87A-81 00 00 00 00 00 00 00 00

STATUS: H8/3048--Running user program_________________________________...R....
 modify memory Cmd_Input bytes to 41h

 run trace step display modify break end ---ETC--

2-16 Getting Started

Breaking into the
Monitor

The "break" command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

Note If DMA transfer is in progress with BURST transfer mode, break
command is suspended and occurs after DMA transfer is completed.

Using Software
Breakpoints

Software breakpoints are provided with an H8/3048 special code; This
special code (5770 hexadecimal) is H8/3048 undefined instruction.

When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the special
code.

Note You must set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Note Because software breakpoints are implemented by replacing opcodes
with the special code, you cannot define software breakpoints in target
ROM.

Getting Started 2-17

When software breakpoints are enabled and emulator detects a fetching
the special code (5770 hexadecimal), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the special code is software
breakpoints or opcode in your target program.

If it is a software breakpoint, execution breaks to the monitor,and the
special code is replaced by the original opcode. A subsequent run or
step command will execute from this address.

If the special code is opcode of your target program, execution still
breaks to the monitor, and an "Undefined software breakpoint" status
message is displayed.

When software breakpoints are disabled, the emulator replaces the
special code with the original opcode.

Unlimited software breakpoints may be defined.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints are
disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the H8/3048 special code (5770 hexadecimal) will be
placed at the address specified. When the special code is executed,
program execution will break into the monitor.

2-18 Getting Started

Setting a Software
Breakpoint

To set a software breakpoint at the address of the Cmd_A label, enter
the following command.

modify software_breakpoints set
cmd_rds.src:Cmd_A <RETURN>

Notice that when using local symbols in expressions, the source file in
which the local symbol is defined must be included.

After the software breakpoint has been set, enter the following
command to display memory and see if the software breakpoint was
correctly inserted.

display memory Init mnemonic <RETURN>

As you can see, the software breakpoint is shown in the memory
display with an asterisk.

Enter the following command to cause the emulator to continue
executing the sample program.

run <RETURN>

Now, modify the command input byte to a valid command for the
sample program.

 Memory :mnemonic :file = cmd_rds.src:
 address label data
 001000 :Init 7A07000FF9 MOV.L #000FF902,ER7
 001006 cmd_rd:Clear F800 MOV.B #00,R0L
 001008 6AA8000FF8 MOV.B R0L,@:Cmd_Input
 00100E cmd_rds:Scan 6A2A000FF8 MOV.B @:Cmd_Input,R2L
 001014 AA00 CMP.B #00,R2L
 001016 47F6 BEQ cmd_rds.src:Scan
 001018 cmd_:Exe_Cmd AA41 CMP.B #41,R2L
 00101A 5870000A BEQ cmd_rds.sr:Cmd_A
 00101E AA42 CMP.B #42,R2L
 001020 58700010 BEQ cmd_rds.sr:Cmd_B
 001024 58000018 BRA cmd_rds.sr:Cmd_I
* 001028 cmd_rd:Cmd_A 5770 Illegal Opcode
 00102A 7A04000020 MOV.L #00002000,ER4
 001030 58000014 BRA cmd_rd:Write_Msg
 001034 cmd_rd:Cmd_B FB11 MOV.B #11,R3L
 001036 7A04000020 MOV.L #00002011,ER4

STATUS: H8/3048--Running in monitor___________________________________...R....
 display memory Init mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-19

modify memory Cmd_Input bytes to 41h <RETURN>

You will see the line of the software breakpoint is displayed in
inverse-video. The inverse-video shows that the Program Counter is
now at the address.

A message on the status line shows that the software breakpoint has
been hit. The status line also shows that the emulator is now executing
in the monitor.

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear
cmd_rds.src:Cmd_A <RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step
from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, ...

You will see the inverse-video moves according to the step execution.
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line, it
may be entered by pressing <RETURN>.

2-20 Getting Started

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers class, or an individual register.

display registers <RETURN>

You can use "register class" and "register name" to display registers.
Refer to the "Register Class and Name" section in Chapter 5.

When you enter the "step" command with registers displayed, the
register display is updated every time you enter the command.

step <RETURN>, <RETURN>, <RETURN>

Registers

Next_PC 001030
 PC 001030 SP 000FF902 CCR 80 <i > MDCR C7
 ER0 00000000 ER1 00000000 ER2 00000041 ER3 00000011
 ER4 00002000 ER5 000FF813 ER6 00000041 ER7 000FF902

STATUS: H8/3048--Stepping complete____________________________________...R....
 display registers

 run trace step display modify break end ---ETC--

Getting Started 2-21

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse of
a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Specifying a Simple
Trigger

Suppose you want to trace program execution after the point at which
the sample program reads the "B" (42 hex) command from the
command input byte. To do this you would trace after the analyzer
finds a state in which a value of 42xxh is read from the Cmd_Input
byte. The following command makes this trace specification.

trace after Cmd_Input data 42xxh status read
<RETURN>

Registers

Next_PC 001030
 PC 001030 SP 000FF902 CCR 80 <i > MDCR C7
 ER0 00000000 ER1 00000000 ER2 00000041 ER3 00000011
 ER4 00002000 ER5 000FF813 ER6 00000041 ER7 000FF902

Step_PC 001030 BRA cmd_rd:Write_Msg
Next_PC 001048
 PC 001048 SP 000FF902 CCR 80 <i > MDCR C7
 ER0 00000000 ER1 00000000 ER2 00000041 ER3 00000011
 ER4 00002000 ER5 000FF813 ER6 00000041 ER7 000FF902

Step_PC 001048 MOV.L #000FF802,ER5
Next_PC 00104E
 PC 00104E SP 000FF902 CCR 80 <i > MDCR C7
 ER0 00000000 ER1 00000000 ER2 00000041 ER3 00000011
 ER4 00002000 ER5 000FF802 ER6 00000041 ER7 000FF902

STATUS: H8/3048--Stepping complete____________________________________...R....
 step

 run trace step display modify break end ---ETC--

2-22 Getting Started

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "B" with the following
command.

modify memory Cmd_Input bytes to 42h <RETURN>

The status line now shows "Emulation trace complete".

Displaying the Trace The trace listings which follow are of program execution on the
H8/3048 emulator. To display the trace, enter:

display trace <RETURN>

Line 0 (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0. The other
states show the exit from the Scan loop and the Exe_Cmd and Cmd_B
instructions. To list the next lines of the trace, press the <PGDN> or
<NEXT> key.

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols relative
after :Cmd_Input 42FF 42xx read mem byte ------------ +001
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan 240 nS +002
cmd_rds.:Exe_Cmd AA41 CMP.B #41,R2L 240 nS +003
cmd_rds.src:Scan 6A2A 6A2A unused fetch mem 240 nS +004
:cmd_rds:+00001A 5870 BEQ cmd_rds.sr:Cmd_A 280 nS +005
:cmd_rds:+00001C 000A 000A fetch mem 240 nS +006
:cmd_rds:+00001E AA42 CMP.B #42,R2L 480 nS +007
:cmd_rds:+000020 5870 BEQ cmd_rds.sr:Cmd_B 280 nS +008
:cmd_rds:+000022 0010 0010 fetch mem 240 nS +009
cmd_rds.sr:Cmd_B FB11 MOV.B #11,R3L 480 nS +010
:cmd_rds:+000036 7A04 MOV.L #00002011,ER4 280 nS +011
:cmd_rds:+000038 0000 0000 fetch mem 240 nS +012
:cmd_rds:+00003A 2011 2011 fetch mem 240 nS +013
:cmd_rds:+00003C 5800 BRA cmd_rd:Write_Msg 240 nS +014
:cmd_rds:+00003E 0008 0008 fetch mem 280 nS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
display trace

 run trace step display modify break end ---ETC--

Getting Started 2-23

The resulting display shows Cmd_B instructions, the branch to
Write_Msg and the beginning of the instructions which move the
"THIS IS MESSAGE B" message to the destination locations.

To list the previous lines of the trace, press the <PGUP> or <PREV>
key.

Displaying Trace with
Time Count Absolute

Enter the following command to display count information absolute
from the trigger state.

display trace count absolute <RETURN>

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols relative
+015 cmd_rd:Write_Msg 7A05 MOV.L #000FF802,ER5 480 nS +016
:cmd_rds:+00004A 000F 000F fetch mem 240 nS +017
:cmd_rds:+00004C F802 F802 fetch mem 280 nS +018
cmd_rd:Clear_Old FE20 MOV.B #20,R6L 240 nS +019
cmd_r:Clear_Loop 68D8 MOV.B R0L,@ER5 240 nS +020
:cmd_rds:+000052 0B05 ADDS #1,ER5 240 nS +021
:Msg_Dest 0000 00xx write mem byte 280 nS +022
:cmd_rds:+000054 1A0E DEC.B R6L 240 nS +023
:cmd_rds:+000056 46F8 BNE cmd_r:Clear_Loop 240 nS +024
:cmd_rds:+000058 7A05 7A05 fetch mem 240 nS +025
cmd_r:Clear_Loop 68D8 MOV.B R0L,@ER5 280 nS +026
:cmd_rds:+000052 0B05 ADDS #1,ER5 240 nS +027
:cmd_rds:+000003 0000 xx00 write mem byte 240 nS +028
:cmd_rds:+000054 1A0E DEC.B R6L 240 nS +029
:cmd_rds:+000056 46F8 BNE cmd_r:Clear_Loop 280 nS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

2-24 Getting Started

H8/3048 Analysis
Status Qualifiers

The status qualifier "read" was used in the example trace command
used above. The following analysis status qualifiers may also be used
with the H8/3048 emulator.

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols absolute
after :Cmd_Input 42FF 42xx read mem byte ------------ +001
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 240 nS +002
cmd_rds.:Exe_Cmd AA41 CMP.B #41,R2L + 480 nS +003
cmd_rds.src:Scan 6A2A 6A2A unused fetch mem + 720 nS +004
:cmd_rds:+00001A 5870 BEQ cmd_rds.sr:Cmd_A + 1.00 uS +005
:cmd_rds:+00001C 000A 000A fetch mem + 1.24 uS +006
:cmd_rds:+00001E AA42 CMP.B #42,R2L + 1.72 uS +007
:cmd_rds:+000020 5870 BEQ cmd_rds.sr:Cmd_B + 2.00 uS +008
:cmd_rds:+000022 0010 0010 fetch mem + 2.24 uS +009
cmd_rds.sr:Cmd_B FB11 MOV.B #11,R3L + 2.72 uS +010
:cmd_rds:+000036 7A04 MOV.L #00002011,ER4 + 3.00 uS +011
:cmd_rds:+000038 0000 0000 fetch mem + 3.24 uS +012
:cmd_rds:+00003A 2011 2011 fetch mem + 3.48 uS +013
:cmd_rds:+00003C 5800 BRA cmd_rd:Write_Msg + 3.72 uS +014
:cmd_rds:+00003E 0008 0008 fetch mem + 4.00 uS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
 display trace count absolute

 run trace step display modify break end ---ETC--

Qualifier Status Bits (40..57) Description

backgrnd xx x0xx xxxx xxxx xxxxB Background cycle
byte xx xxxx 1xxx x1xx xx1xB Byte access
cpu xx xxxx 1xxx x11x xxxxB CPU access
data xx xxxx 1xxx x1x1 xxxxB Data access
dma xx xxxx 1xxx x10x xxxxB DMA memory access
fetch xx xxxx 1x1x x110 xx01B Fetch cycle
foregrnd xx x1xx xxxx xxxx xxxxB Foreground cycle
grd xx xx01 1xxx x1xx 1xxxB Guarded memory access
intack xx xxxx x0xx xxxx xxxxB Interrupt acknowledge cycle
io xx xxxx 1xxx x1xx 0xxxB Internal I/O access
memory xx xxxx 1xxx x1xx 1xxxB Memory access
nointack xx xxxx x1xx xxxx xxxxB No interrupt acknowledge cycle
read xx xxxx 1xxx x1xx xxx1B Read cycle
refresh xx xxxx 1xxx x01x xxxxB Refresh cycle
word xx xxxx 1xxx x1xx xx0xB Word access
write xx xxxx 1xxx x1xx xxx0B Write cycle
wrrom xx xx10 1xxx x1xx 1xx0B Write to ROM cycle

Getting Started 2-25

Trace Analysis
Considerations

There are some points to be noticed when you use the emulation
analyzer.

How to Specify
Trigger Condition

You need to be careful to specify the condition on which the emulation
analyzer should start the trace. Suppose that you would like to start the
trace when the program begins executing Exe_Cmd routine:

trace after cmd_rds.src:Exe_Cmd <RETURN>
modify memory Cmd_Input bytes to 41h <RETURN>

(Actually trace will be completed before you enter "modify memory"
command)

You will see:

This is not what we were expecting to see. As you can see at the first
line of the trace list, the address of Exe_Cmd routine appears on the
address bus during the program executing Scan loop. This made the
emulation analyzer start trace. To avoid mis-trigger by this cause, set
the trigger condition to the second instruction of the routine you want
to trace:

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols absolute
after cmd_rds.:Exe_Cmd AA41 AA41 fetch mem ------------ +001
cmd_rds.src:Scan 6A2A MOV.B @:Cmd_Input,R2L + 240 nS +002
:cmd_rds:+000010 000F 000F fetch mem + 480 nS +003
:cmd_rds:+000012 F800 F800 fetch mem + 720 nS +004
:cmd_rds:+000014 AA00 CMP.B #00,R2L + 1.00 uS +005
:Cmd_Input 00FF 00xx read mem byte + 1.24 uS +006
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 1.48 uS +007
cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 1.72 uS +008
cmd_rds.src:Scan 6A2A MOV.B @:Cmd_Input,R2L + 2.00 uS +009
:cmd_rds:+000010 000F 000F fetch mem + 2.24 uS +010
:cmd_rds:+000012 F800 F800 fetch mem + 2.48 uS +011
:cmd_rds:+000014 AA00 CMP.B #00,R2L + 2.72 uS +012
:Cmd_Input 00FF 00xx read mem byte + 3.00 uS +013
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 3.24 uS +014
cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 3.48 uS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
 trace after cmd_rds.src:Exe_Cmd

 run trace step display modify break end ---ETC--

2-26 Getting Started

trace after cmd_rds.src:Exe_Cmd+2 <RETURN>
(Since the instruction at Exe_Cmd label is two bytes instruction, the
next instruction starts from Exe_Cmd+2.)

modify memory Cmd_Input bytes to 41h <RETURN>

If you need to see the execution of the instruction at Exe_Cmd label,
use trace about command instead of trace after command. When you
use the trace about command, the state which triggered the analyzer
will appear in the center of the trace list.

Store Condition and
Trace

When you specify store condition with trace only command,
disassembling of program execution is unreliable.

trace <RETURN>

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols absolute
after :cmd_rds:+00001A 5870 BEQ cmd_rds.sr:Cmd_A ------------ +001
:cmd_rds:+00001C 000A 000A fetch mem + 240 nS +002
cmd_rds.sr:Cmd_A FB11 MOV.B #11,R3L + 760 nS +003
:cmd_rds:+00002A 7A04 MOV.L #00002000,ER4 + 1.00 uS +004
:cmd_rds:+00002C 0000 0000 fetch mem + 1.24 uS +005
:cmd_rds:+00002E 2000 2000 fetch mem + 1.52 uS +006
:cmd_rds:+000030 5800 BRA cmd_rd:Write_Msg + 1.76 uS +007
:cmd_rds:+000032 0014 0014 fetch mem + 2.00 uS +008
cmd_rd:Write_Msg 7A05 MOV.L #000FF802,ER5 + 2.52 uS +009
:cmd_rds:+00004A 000F 000F fetch mem + 2.76 uS +010
:cmd_rds:+00004C F802 F802 fetch mem + 3.00 uS +011
cmd_rd:Clear_Old FE20 MOV.B #20,R6L + 3.24 uS +012
cmd_r:Clear_Loop 68D8 MOV.B R0L,@ER5 + 3.52 uS +013
:cmd_rds:+000052 0B05 ADDS #1,ER5 + 3.76 uS +014
:Msg_Dest 0000 00xx write mem byte + 4.00 uS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
 modify memory Cmd_Input bytes to 41h

 run trace step display modify break end ---ETC--

Getting Started 2-27

The program is executing the Scan loop.

Now, trace only accesses to the address range Init through Init+0ffh .

trace only range Init thru Init+0ffh <RETURN>

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols absolute
after :Cmd_Input 00FF 00xx read mem byte ------------ +001
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 240 nS +002
cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 480 nS +003
cmd_rds.src:Scan 6A2A MOV.B @:Cmd_Input,R2L + 720 nS +004
:cmd_rds:+000010 000F 000F fetch mem + 1.00 uS +005
:cmd_rds:+000012 F800 F800 fetch mem + 1.24 uS +006
:cmd_rds:+000014 AA00 CMP.B #00,R2L + 1.48 uS +007
:Cmd_Input 00FF 00xx read mem byte + 1.72 uS +008
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 2.00 uS +009
cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 2.24 uS +010
cmd_rds.src:Scan 6A2A MOV.B @:Cmd_Input,R2L + 2.48 uS +011
:cmd_rds:+000010 000F 000F fetch mem + 2.72 uS +012
:cmd_rds:+000012 F800 F800 fetch mem + 3.00 uS +013
:cmd_rds:+000014 AA00 CMP.B #00,R2L + 3.24 uS +014
:Cmd_Input 00FF 00xx read mem byte + 3.48 uS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
 trace

 run trace step display modify break end ---ETC--

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols absolute
after :cmd_rds:+000012 F800 F800 fetch mem ------------ +001
:cmd_rds:+000014 AA00 AA00 fetch mem + 240 nS +002
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 720 nS +003
cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 1.00 uS +004
cmd_rds.src:Scan 6A2A MOV.B @:Cmd_Input,R2L + 1.24 uS +005
:cmd_rds:+000010 000F 000F fetch mem + 1.48 uS +006
:cmd_rds:+000012 F800 F800 fetch mem + 1.72 uS +007
:cmd_rds:+000014 AA00 AA00 fetch mem + 2.00 uS +008
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 2.48 uS +009
cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 2.72 uS +010
cmd_rds.src:Scan 6A2A MOV.B @:Cmd_Input,R2L + 3.00 uS +011
:cmd_rds:+000010 000F 000F fetch mem + 3.24 uS +012
:cmd_rds:+000012 F800 F800 fetch mem + 3.48 uS +013
:cmd_rds:+000014 AA00 AA00 fetch mem + 3.72 uS +014
:cmd_rds:+000016 47F6 BEQ cmd_rds.src:Scan + 4.24 uS
STATUS: H8/3048--Running user program Emulation trace complete______...R....
 trace only range Init thru Init+0ffh

 run trace step display modify break end ---ETC--

2-28 Getting Started

As you can see the execution of CMP.B instructions are not
disassembled. This occurs when the analyzer cannot get necessary
information for disassembling because of the store condition. Be
careful when you use the trace only command.

Triggering the
Analyzer by Data

You may want to trigger the emulation analyzer when specific data
appears on the data bus. You can accomplish this with the following
command.

trace after data <data> <RETURN>

There are some points to be noticed when you trigger the analyzer in
this way. You always need to specify the <data> with 16 bits value
even when access to the data is performed by byte access. This is
because the analyzer is designed so that it can capture data on internal
data bus (which has 16 bits width). The following table shows the way
to specify the trigger condition by data.

For example, to trigger the analyzer when the processor performs word
access to data 1234 hex in 16 bit bus area, you can specify the
following:

trace after data 1234h <RETURN>

To trigger the analyzer when the processor accesses data 12 hex to the
even address located in 8 bit data bus area:

trace after data 12xxh <RETURN>

 ==
 Location of | Access | Address | Available
 data | size | value | <data> Specification
 ==
 | | even | ddxx *1
 8 bit data | byte/word|----------+-------------------------
 bus area | | odd | xxdd *1
 ----------------+---------------------+-------------------------
 | | even | ddxx *1
 | byte |----------+-------------------------
 16 bit data | | odd | xxdd *1
 bus area |----------+----------+-------------------------
 | word | even | hhll *2
 ==

 *1 dd means 8 bits data
 *2 hhll means 16 bits data

Getting Started 2-29

On the other hand, to trigger 12 hex to the odd address located in 8 bit
data bus.

trace after data xx12h <RETURN>

Notice that you always need to specify "xx" value to capture byte
access to 8 bit data bus area. Be careful to trigger the analyzer by data.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the
emul700 command. When you enter the Softkey Interface v ia pmon
and MEAS_SYS, only one window is permitted.

2-30 Getting Started

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display or Another
Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

Getting Started 2-31

Notes

2-32 Getting Started

3

In-Circuit Emulation

When you are ready to use the H8/3048 emulator in conjunction with
actual target system hardware, there are some special considerations
you should keep in mind.

installing the emulation cable

properly configure the emulator

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to Chapter 4.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

Caution The following precautions should be taken while using the H8/3048
emulator. Damage to the emulator circuitry may result if these
precautions are not observed.

Power Down Target System. Turn off power to the user target system
and to the H8/3048 emulator before attaching and detaching the adaptor
and probe to the emulator or target system to avoid circuit damage
resulting from voltage transients or mis-insertion.

Verify User Plug Orientation. Make certain that Pin 1 of the QFP
socket/adaptor and Pin 1 of the QFP probe are properly aligned before
inserting the QFP probe the QFP socket/adaptor. Failure to do so may
result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/3048 emulator and the
PGA adaptor and QFP probe contain devices which are susceptible to
damage by static discharge. Therefore, operators should take
precautionary measures before handling the user plug to avoid emulator
damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the H8/3048 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation

The H8/3048 emulator is provided without any PGA adaptor, QFP
adaptor and QFP probe. To emulate each processor with your target
system, you need to purchase appropriate adaptor and/or probe.

PGA adaptor To emulate each processor with your target system, you can use HP
64784E 5 voltage PGA adaptor or HP 64797B low voltage PGA
adaptor as shown in Figure 3-1 and 3-3. These PGA adaptors allow you
to connect the emulation cable to QFP socket/adaptor on your target
system using the HP 64784G QFP probe. HP 64784G QFP probe is
flexible and comfortable to connect the PGA adaptor to a densely
populated circuit board.

If you want to connect the PGA adaptor to your target system directly,
you need to prepare PGA socket on your target system. To prepare the
PGA socket, refer to Table 3-2 and Figure 3-5 to know H8/3048 pin
assignment.

QFP adaptor To emulate with your target system running with supply voltage 5V,
you can also use HP 64784D QFP adaptor. The QFP adaptor allows
you to connect the emulation cable to the QFP socket/adapter on your
target system as shown in Figure 3-2.

QFP socket/adaptor The QFP socket/adaptor designed for H8/3048 microprocessor is
provided with the QFP adaptor and QFP probe. You must attach the
QFP socket/adaptor to your target system except you connect the PGA
adaptor to your target system directly.

When you use this QFP socket/adaptor, you can replace the H8/3048
emulator with actual H8/3048 microprocessor. Refer to Figure 3-4.

Note You can order additional QFP socket/adaptor with part No. HP
64784-61612.

In-Circuit Emulation 3-3

Installing into a 5
voltage target

You can select either of the followings to connect the H8/3048
emulator to your 5 voltage target.

HP 64784D
HP 64784E + HP 64784G

Note The H8/3048 emulator can only operate rightly with supply voltage
from 4.75V to 5.25V, when you use HP 64784E PGA adaptor or HP
64784D QFP adaptor.

Note If you have a HP 64797B low voltage PGA adaptor, you can use this
low voltage PGA adaptor instead of HP 64784E 5 voltage PGA
adaptor. HP 64797B low voltage PGA adaptor can operate rightly with
supply voltage from 2.70V to 5.25V.

Note You must use a clock conforming to the specification of Table 4-1,
when you configure the emulator to use external clock.

3-4 In-Circuit Emulation

Installing 64784E
PGA adaptor 1. Attach the QFP socket/adaptor to your target system.

2. Connect the PGA adaptor to the emulation cable.

3. Install the PGA adaptor to the QFP socket/adaptor on your
target system through QFP probe as shown in Figure 3-1.

Figure 3-1 Installing HP 64784E/HP 64784G

In-Circuit Emulation 3-5

Installing QFP
adaptor 4. Attach the QFP socket/adaptor to your target system.

5. Connect the QFP adaptor to the emulation cable.

6. Install the QFP adaptor to the QFP socket/adaptor on your
target system as shown in Figure 3-2.

Figure 3-2 Installing HP 64784D

3-6 In-Circuit Emulation

Installing into a
low voltage target

To connect the emulator into a low voltage target, you should use HP
64797B PGA adaptor and 64784G QFP probe.

Specification The emulator can only operate rightly with supply voltage from 2.7V
up to 5.25V. You must conform input high voltage(Vih) to the
specification of Table 3-1, because these DC characteristics are
different from the actual processor’s specification.

Table 3-1. DC Characteristics of input high voltage

Item Minimum (V)

P1 - P5, D0 - D15 Vcc x 0.7
or

2.4 *1

Others Vcc x 0.7
or

2.0 *1

*1 Higher of the two.

Note You must use a clock conforming to the specification of Table 4-1,
when you configure the emulator to use external clock.

In-Circuit Emulation 3-7

Installing 64797B
PGA adaptor 1. Attach the QFP socket/adaptor to your target system.

2. Connect the PGA adaptor to the emulation probe.

3. Install the PGA adaptor to the QFP socket/adaptor on your
target system through QFP probe as shown in Figure 3-3.

Figure 3-3 Installing HP 64797B/HP 64784G

3-8 In-Circuit Emulation

Installing the
H8/3048
microprocessor

You can replace the QFP adaptor/probe with the H8/3048
microprocessor.

Figure 3-4 Installing the H8/3048 processor

In-Circuit Emulation 3-9

 In-Circuit
Configuration
Options

The H8/3048 emulator provides configuration options for the following
in-circuit emulation issues.

Refer to the Chapter 4 "Configuring the Emulator" for more
information on these configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system clock
source.

Enabling Bus Arbitration

You can configure the emulator to enable/disable bus arbitration.

Enabling NMI from the Target

You can configure the emulator to accept/ignore NMI from the target
system.

Enabling /RES signal from the Target

You can configure the emulator to accept/ignore /RES signal from the
target system.

Selecting Visible/Hidden Background Cycles

Emulation processor activity while executing in background can either
be visible to target system (cycles are sent to the target system probe)
or hidden (cycles are not sent to the target system probe).

Selecting Target Memory Access Size

You can specify the types of cycles that the emulation monitor uses
when accessing target system memory.

3-10 In-Circuit Emulation

Target System
Interface and
Timing
Specification

Refer to the H8/3048 Terminal Interface User’s Guide for information
on the target system interface and timing specification of the H8/3048
emulator.

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system /RES line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to /RES signal by the
target system (see the "Enable /RES input from target system?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

Note In the "Awaiting target reset", you can not break into the monitor. If
you enter "run from reset" in out-of-circuit or in the configuration that
emulator does not accept target system reset (cf trst=dis), you must
reset the emulator.

In-Circuit Emulation 3-11

PGA Pin
Assignments When you connect the PGA adaptor to your target system directly,

pin assignment of your target PGA socket must be compatible with the
PGA adaptor pin assignment. The following table and figure show you
the pin assignment of the PGA adaptor.

Table 3-2 PGA Pin Assignment

PGA
135

pin #

QFP
100

pin #

Function
name

PGA
135

pin #

QFP
100
pin

Function
name

1 98 PA/TP5/TIOCB1/A22/CS5 15 21 P43/D3

2 1 Vcc 16 25 P46/D6

3 3 PB1/TP9/TIOCB3 17 27 P30/D8

4 nc 18 30 P33/D11

5 8 PB6/TP14/DREQ0/CS7 19 31 P34/D12

6 nc 20 33 P36/D14

7 nc 21 34 P37/D15

8 nc 22 nc

9 nc 23 37 P11/A1

10 nc 24 40 P14/A4

11 14 P92/RxD0 25 43 P17/A7

12 17 P95/SCK1/IRQ5 26 57 Vss

13 18 P40/D0 27 nc

14 nc 28 49 P24/A12

3-12 In-Circuit Emulation

Table 3-2 PGA Pin Assignment (Cont’d)

PGA
135

pin #

QFP
100

pin #

Function
name

PGA
135

pin #

QFP
100

pin #

Function
name

29 52 P27/A15 47 nc

30 54 P51/A17 48 88 P81/CS3/IRQ1

31 nc 49 89 P82/CS2/IRQ2

32 58 P60/WAIT 50 91 P84/CS0

33 61 ø 51 95 PA2/TP2/TIOCA0/TCLKC

34 64 NMI 52 97 PA4/TP4/TIOCA1/A23/CS6

35 65 Vss 53 nc

36 68 Vcc 54 2 PB0/TP8/TIOCA3

37 nc 55 5 PB3/TP11/TIOCB4

38 72 P66/LWR 56 7 PB5/TP13/TOCXB4

39 75 MD2 57 11 Vss

40 76 AVcc 58 nc

41 80 P72/AN2 59 nc

42 81 P73/AN3 60 nc

43 84 P76/AN6/DA0 61 12 P90/TxD0

44 nc 62 15 P93/RxD1

45 92 Vss 63 nc

46 nc 64 19 P41/D1

In-Circuit Emulation 3-13

Table 3-2 PGA Pin Assignment (Cont’d)

PGA
135

pin #

QFP
100

pin #

Function
name

PGA
135

pin #

QFP
100

pin #

Function
name

65 nc 83 nc

66 24 P45/D5 84 70 P64/RD

67 44 Vss 85 73 MD0

68 28 P31/D9 86 nc

69 32 P35/D13 87 79 P71/AN1

70 35 Vcc 88 83 P75/AN5

71 36 P10/A0 89 86 AVss

72 38 P12/A2 90 nc

73 41 P15/A5 91 nc

74 45 P20/A8 92 87 P80/RFSH/IRQ0

75 48 P23/A11 93 90 P83/CS1/IRQ3

76 51 P26/A14 94 93 PA0/TP0/TEND0/TCLKA

77 nc 95 nc

78 55 P52/A18 96 99 PA6/TP6/TIOCA2/A21/CS4

79 nc 97 nc

80 59 P61/BREQ 98 4 PB2/TP10/TIOCA4

81 63 RES 99 6 PB4/TP12/TOCXA4

82 66 EXTAL 100 9 PB7/TP15/DREQ1/ADTRG

3-14 In-Circuit Emulation

Table 3-2 PGA Pin Assignment (Cont’d)

PGA
135

pin #

QFP
100

pin #

Function
name

PGA
135

pin #

QFP
100

pin #

Function
name

101 nc 119 60 P62/BACK

102 nc 120 62 STBY

103 10 RESO 121 67 XTAL

104 13 P91/TxD1 122 69 P63/AS

105 16 P94/SCK0/IRQ4 123 71 P65/HWR

106 22 Vss 124 74 MD1

107 20 P42/D2 125 78 P70/AN0

108 23 P44/D4 126 82 P74/AN4

109 26 P47/D7 127 85 P77/AN7/DA1

110 29 P32/D10 128 nc

111 nc 129 nc

112 39 P13/A3 130 94 PA1/TP1/TEND1/TCLKB

113 42 P16/A6 131 96 PA3/TP3/TIOCB0/TCLKD

114 46 P21/A9 132 100 PA7/TP7/TIOCB2/A20

115 50 P25/A13 133 nc

116 53 P50/A16 134 47 P22/A10

117 nc 135 77 Vref

118 56 P53/A19 - - -

In-Circuit Emulation 3-15

Figure 3-5 PGA Adaptor Pin Assignment

3-16 In-Circuit Emulation

4

Configuring the Emulator

Introduction Your H8/3048 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing your target system software, or you can use the
emulator in-circuit when integrating software with target system
hardware.

You can use the emulator’s internal clock or the target system clock.
Emulation memory can be used in place of, or along with, target system
memory.

You can execute target programs in real-time or allow emulator
execution to be diverted into the monitor when commands request
access of target system resources (target system memory, register
contents, etc).

The emulator is a flexible instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the H8/3048 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

Configuring the Emulator 4-1

General Emulator Configuration:

Specifying the emulator clock source (internal/external).

Selecting monitor entry after configuration.

Restricting to real-time execution.

Selecting the microprocessor to be emulated.

Selecting the microprocessor operation mode.

Memory Configuration:

Mapping memory.

Emulator Pod Configuration:

Enabling emulator bus arbitration.

Enabling NMI input from the target system.

Enabling reset input from the target system.

Allowing the emulator to drive background cycles to the target
systems.

Setting up the reset value for the stack pointer.

Selecting target memory access size.

Debug/Trace Configuration:

Enabling breaks on writes to ROM.

Specifying tracing of foreground/background cycles.

Enabling tracing internal DMA cycles.

Enabling tracing refresh cycles.

4-2 Configuring the Emulator

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
clock source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal crystal oscillator as the emulator
clock source. Internal crystal oscillator is 8MHz.

external Selects the clock input to the emulation probe from
the target system. You must use a clock input
conforming to the specifications of Table 4-1.

Configuring the Emulator 4-3

Table 4-1. Clock Speeds

Emulation
Memory

Clock Speed

With HP64784D With HP64784E With HP64797B

64726A
64727A
64728A

From 1 up to 16MHz
(System Clock)

From 1 up to 16MHz
(System Clock)

From 1 up to 13MHz
(System Clock)

64729A From 1 up to 18MHz
(System Clock)

From 1 up to 18MHz
(System Clock)

From 1 up to 13MHz
(System Clock)

Note Internal crystal oscillator frequency is 8MHz.

Note Changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the
following "Enter monitor after configuration?" question is answered.

4-4 Configuring the Emulator

Enter monitor after
configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail.

When an external clock source is specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
complete. If the reset to monitor fails, the previous
configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Restrict to real-time
runs?

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

no All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

yes When runs are restricted to real-time and the
emulator is running the user program, all commands
that cause a break (except "reset", "break", "run",
and "step") are refused. For example, the following
commands are not allowed when runs are restricted
to real-time:

Display/modify registers.
Display/modify internal I/O registers.
Display/modify target system memory.
Load/store target system memory.

Configuring the Emulator 4-5

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

Processor type? This configuration defines the microprocessor type to be emulated.

3044 When you are going to emulate H8/3044
microprocessor, select this item.

3047 When you are going to emulate H8/3047
microprocessor, select this item.

3048 When you are going to emulate H8/3048
microprocessor, select this item.

3048f When you are going to emulate H8/3048F
microprocessor, select this item.

Note Configuring this item will drive the emulator into the reset state.

4-6 Configuring the Emulator

Source for processor
operation mode?

This configuration defines operation mode in which the emulator works.

internal The emulator will work in selected operation mode
regardless the setting by the target system.

Operation mode Description

mode_1 The emulator will operate in mode 1. (expanded 1M
bytes mode without internal ROM: 8 bit data bus)

mode_2 The emulator will operate in mode 2. (expanded 1M
bytes mode without internal ROM:16 bit data bus)

mode_3 The emulator will operate in mode 3. (expanded
16M bytes mode without internal ROM: 8 bit data
bus)

mode_4 The emulator will operate in mode 4. (expanded
16M bytes mode without internal ROM:16 bit data
bus)

mode_5 The emulator will operate in mode 5. (expanded 1M
bytes mode with internal ROM: 8 bit data bus)

mode_6 The emulator will operate in mode 6. (expanded
16M bytes mode with internal ROM: 8 bit data bus)

mode_7 The emulator will operate in mode 7. (single chip
advanced mode)

Configuring the Emulator 4-7

external The emulator will work using the mode setting by
the target system. The target system must supply
appropriate input to MD0, MD1 and MD2.

Note It is recommended to configure this item as internal mode and select
operation mode, since the emulator dose not work fine when MD0,
MD1 and MD2 are not steady.

Note Configuring this item will drive the emulator into the reset state.

4-8 Configuring the Emulator

Memory
Configuration

The memory configuration questions allow you to select the monitor
type and to map memory. To access the memory configuration
questions, you must answer "yes" to the following question.

Modify memory configuration?

Mapping Memory The H8/3048 emulator contains high-speed emulation memory (no wait
states required) that can be mapped at a resolution of 512 bytes.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

The memory mapper allows you to define up to 16 different map terms .

Note Direct memory access to emulation memory using external DMAC are
not allowed.

Note The default emulator configuration maps location 0 hex through FFFF
hex as emulation ROM.

Note When you use internal ROM/on-chip flash memory area, you must
map that area as emulation memory. If you don’t map internal ROM
properly, you cannot access that area.

Configuring the Emulator 4-9

Note You don’t have to map internal RAM as emulation RAM, since the
H8/3048 emulator automatically maps internal RAM as emulation
RAM and this area is behaved like internal RAM. However emulation
memory system does not introduce internal RAM area in memory
mapping display.

Note If you map internal RAM area as emulation memory, this area is
behaved like external memory overlapped with internal RAM and the
H8/3048 emulator is always accessed internal RAM area mapped by
the emulator. And if you map internal RAM as guarded memory, the
emulator prohibits to access to this area by display/modify memory
commands.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

For example, you might be developing a system with the following
characteristics:

input port at 0f000 hex
output port at 0f100 hex
program and data from 1000 through 2fff hex

Suppose that the only thing that exists in your target system at this time
are input and output ports and some control logic; no memory is
available. you can reflect this by mapping the I/O ports to target system
memory space and the rest of memory to emulation memory space:

4-10 Configuring the Emulator

delete all <RETURN>
1000h thru 2fffh emulation rom <RETURN>
0f000h thru00 0f1ffh emulation ram <RETURN>
end <RETURN>

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

Note Configuring memory mapping will drive the emulator into the reset
state.

Configuring the Emulator 4-11

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Enable bus
arbitration?

The bus arbitration configuration question defines how your emulator
responds to bus request signals from the target system during both
foreground and background operation.

yes When bus arbitration is enabled, the /BREQ (bus
request) signal from the target system is responded
to exactly as it would be if only the emulation
processor was present without an emulator. In
other words, if the emulation processor receives a
/BREQ from the target system, it will respond by
asserting /BACK and will set the various processor
lines to tri-state. /BREQ is then released by the
target; /BACK is negated by the processor, and the
emulation processor restarts execution.

Note You cannot perform DMA (direct memory access) transfers between
your target system and emulation memory by using external DMA
controller on your target system; the H8/3048 emulator does not
support such a feature.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target system.
The emulation processor will never drive the
/BACK line true; nor will it place the address, data
and control signals into the tri-state mode.

4-12 Configuring the Emulator

Enabling and disabling bus master arbitration can be useful to you in
isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code. You
can disable bus arbitration to check and see if faulty arbitration
circuitry in your target system is contributing to the problem.

Note This question does not appear when you select mode_7.

Note The commands which cause the emulator to break to monitor are
ignored during the processor releases bus cycles.

Note Configuring this item will drive the emulator into the reset state.

Enable NMI input
from target system?

This configuration allows you to specify whether or not the emulator
responds to NMI (non-maskable interrupt request) signal from the
target system during foreground operation.

yes The emulator will respond to the NMI request from
the target system.

Caution While the emulator is executing the boot program of H8/3048F, the
NMI must not occur. Because the emulator can not prohibit the NMI at
this time.

no The emulator will not respond to the NMI request
from the target system.

Configuring the Emulator 4-13

The emulator does not accept any interrupt while in background
monitor. Such interrupts are suspended while running the background
monitor, and they will occur when context is changed to foreground.

Note Configuring this item will drive the emulator into the reset state.

Enable reset input
from target system?

This configuration allows you to specify whether or not the emulator
responds to /RES and /STBY signals from the target system during
foreground operation.

While running the background monitor, the emulator ignores such
signals except that the emulator’s status is "Awaiting target reset"
(see the "Running the Emulation from Target Reset" section in the
"In-Circuit Emulation" chapter).

yes The emulator will respond to /RES and /STBY
inputs during foreground operation.

no The emulator will not respond to /RES and /STBY
inputs from the target system.

Note The H8/3048 emulator dose not support hardware standby mode, and
/STBY input will be given the emulator /RES input.

Note Configuring this item will drive the emulator into the reset state.

4-14 Configuring the Emulator

Drive background
cycles to the target

system?

This configuration allows you specify whether or not the emulator will
drive the target system bus on background cycles.

no Only emulation processor’s address cycles are
driven to the target system during background
monitor.

yes Specifies that background cycles are driven to the
target system. Emulation processor’s address and
control strobes (except /HWR and /LWR) are
driven during background cycles. Background
write cycles won’t appear to the target system.

Note Refresh cycles, internal DMA cycles and target memory accesses are
always driven to the target system regardless of this configuration.

Note If you specify that the emulator will not drive background cycles to the
target system, the emulator can’t respond to /WAIT signal during
background monitor.

Note This question does not appear when you select mode_7.

Note Configuring this item will drive the emulator into the reset state.

Configuring the Emulator 4-15

Reset value for stack
pointer?

This configuration allows you to specify a value to which the stack
pointer will be set upon the transition from emulation reset into the
emulation monitor.

The address specified in response to this question must be a 32-bit
hexadecimal even address outside internal I/O register area. Default
value of stack pointer is ffffff10 hex.

Note Without a stack pointer, the emulator is unable to make the transition to
the run state, step, or perform many other emulation functions.
However, using this option does not preclude you from changing the
stack pointer value or location within your program; it just sets the
initial conditions to allow a run to begin.

Target memory
access size?

This configuration allow you to specify the types of cycles that the
emulation monitor uses when accessing target system memory.

any Access size is depends upon a display/modify target
memory command option. If option "long" is
specified, access size is will be set to "words".
Other target memory commands such as "load" and
"store" will use as access size of "bytes".

bytes Specify that the emulator will access target system
memory by byte access.

words Specify that the emulator will access target system
memory by word access.

4-16 Configuring the Emulator

Note When the access size is words, modifying target memory will fail if
you try to modify memory from an odd address or with data which byte
count is odd. Also, you can’t load file which byte count is odd.
Therefore, it is recommended to use the emulator with the default any
or bytes in this configuration

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, and specify that the analyzer trace
foreground/background execution, and bus release cycles. To access
the trace/debug configuration questions, you must answer "yes" to the
following question.

Modify debug/trace options?

Break processor on
write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, the emulator cannot
prevent writes to target system RAM locations which are mapped as
ROM, even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Configuring the Emulator 4-17

Note The wrrom trace command status options allow you to use
"write to ROM" cycles as trigger and storage qualifiers. For example,
you could use the following command to trace about a write to ROM:
trace about status wrrom <RETURN>

Note If the emulator writes to the memory mapped as ROM or guarded area
in internal DMA cycles, the emulator will not break to the monitor
regardless of this configuration.

Trace background or
foreground

operation?

This question allows you to specify whether the analyzer traces only
foreground emulation processor cycles, only background cycles, or
both foreground and background cycles. When background cycles are
stored in the trace, all mnemonic lines are tagged as background cycles.

foreground Specifies that the analyzer traces only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer traces only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer traces both foreground
and background cycles.

Trace on-chip DMAC
cycles?

This question allows you to specify whether or not the emulator traces
internal DMAC cycles.

yes Specifies that the analyzer traces internal DMAC
cycles.

no Specifies that the analyzer dose not trace internal
DMAC cycles.

4-18 Configuring the Emulator

Note Some internal DMA cycles may be traced regardless of this
configuration in order to disassemble the trace list correctly.

Trace refresh cycles? This configuration allows you to specify whether or not the emulator
traces refresh cycles.

yes Specifies that the analyzer traces refresh cycles.

no Specifies that the analyzer dose not trace refresh
cycles.

Note Some refresh cycles may be traced regardless of this configuration in
order to disassemble the trace list correctly.

Note This configuration does not appear when you select mode_7.

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

Configuring the Emulator 4-19

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the "Using the Emulator" chapter.

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User’s Guide.

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

4-20 Configuring the Emulator

Loading a
Configuration

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 4-21

Notes

4-22 Configuring the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into the
emulator, how to modify memory and view a register, and how to
perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter discusses:

Features available via "pod_command".

Register classes and names.

Debugging C Programs

Accessing target system devices using E clock synchronous
instruction.

This chapter shows you how to:

Store the contents of memory into absolute files.

Make coordinated measurements.

Use a command file.

Using the Emulator 5-1

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available in
the softkey Interface are:

Copying memory.

Searching memory for strings or numeric expressions.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in"modify configuration" will NOT reflect
the HP 64700 pod’s configuration if you change the pod’s
configuration with this command. Also, commands which affect the
communications channel should NOT be used at all. Other commands
may confuse the protocol depending upon how they are used. The
following commands are not recommended for use with
"pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac -Usage may confuse the protocol in use on the channel.
wait -Do not use, will tie up the pod, blocking access. init, pv -Will
reset pod and force end release_system. t - Do not use, will confuse
trace status polling and unload.

5-2 Using the Emulator

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that loads configuration, loads
program into memory and displays memory.

To create such a command file, type "log" and press TAB key. You
will see a command line "log_commands" appears in the command
field. Next, select "to" in the softkey label, and enter the command file
name "sample.cmd". This set up a file to record all commands you
execute. The commands will be logged to the file sample.cmd in the
current directory. You can use this file as a command file to execute
these commands automatically.

Suppose that your configuration file and program are named
"cmd_rds". To load configuration:

load configuration cmd_rds <RETURN>

To load the program into memory:

load cmd_rds <RETURN>

To display memory 1000 hex through 1020 hex in mnemonic format:

display memory 1000h thru 1020h mnemonic

Now, to disable logging, type "log" and press TAB key, select "off",
and press Enter. The command file you created looks like this:

load configuration cmd_rds
load cmd_rds
display memory 1000h thru 1020h mnemonic

If you would like to modify the command file, you can use any text
editor on your host computer.

To execute this command file, type "sample.cmd", and press Enter.

Using the Emulator 5-3

Debugging C
Programs

Softkey Interface has following functions to debug C programs.

Including C source lines in memory mnemonic display
Including C source lines in trace listing
Stepping C sources

The following section describes such features.

Displaying Memory
with C Sources

You can display memory in mnemonic format with C source lines. For
example, to display memory in mnemonic format from address main
with source lines, enter the following commands.

display memory main mnemonic <RETURN>
set source on <RETURN>

You can display source lines highlighted with the following command.

set source on inverse_video on <RETURN>

To display only source lines, use the following command.

set source only <RETURN>

Specifying Address with Line Numbers

You can specify addresses with line numbers of C source program. For
example, to set a breakpoint to line 20 of "main.c" program, enter the
following command.

modify software_breakpoints set main.c: line
20 <RETURN>

Displaying Trace with
C Sources

You can include C source information in trace listing. You can use the
same command as the case of memory display. For example, to display
trace listing with source lines highlighted, enter the following
command.

display trace <RETURN>
set source on inverse_video on <RETURN>

Stepping C Sources You can direct the emulator to execute a line or a number of lines at a
time. For example, to step one line from address main, enter the
following command.

5-4 Using the Emulator

step source from main <RETURN>

To step 1 line from the current line, enter the following command.

step source <RETURN>

You can specify the number of lines to be executed. To step 5 lines
from the current line, enter the following command.

step 5 source <RETURN>

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files into
emulation or target system memory. You can also store emulation or
target system memory to an absolute file with the following command.

store memory 1000h thru 1042h to absfile
<RETURN>

The command above causes the contents of memory locations 1000 hex
through 1042 hex to be stored in the absolute file "absfile.X". Notice
that the ".X" extension is appended to the specified filename.

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

Using the Emulator 5-5

Register Classes
and Names

Summary H8/3048 register designators. All available register class names and
register names are listed below.

<REG_CLASS>

<REG_NAME> Description

BASIC (All basic registers)

PC
CCR
ER0
ER1
ER2
ER3
ER4
ER5
ER6
ER7
SP
MDCR

Program counter
Condition code register
Register ER0
Register ER1
Register ER2
Register ER3
Register ER4
Register ER5
Register ER6
Register ER7
Stack pointer
Mode control register(Read Only)

5-6 Using the Emulator

SYS(System control)

MDCR
SYSCR
DASTCR
DIVCR
MSTCR
CSCR

Mode control register(Read Only)
System control register
D/A standby control register
Clock divider control register
Module standby control register
Chip select control register

Note Even if PSTOP bit of the MSTCR register is set to 1, the emulator can
not stop the ø clock output.

INTC (Interrupt controller)

ISCR
IER
ISR
IPRA
IPRB

IRQ sense control register
IRQ enable register
IRQ status register
Interrupt priority register A
Interrupt priority register B

BUSC (Bus controller)

ABWCR
ASTCR
WCR
WCER
BRCR

Byte/Word area control register
2/3 state area control register
Wait control register
Wait controller enable register
Bus release control register

RFSHC (Refresh controller)

RFSHCR
RTMSCR
RTCNT
RTCOR

Refresh control register
Refresh timer control/status register
Refresh timer counter
Refresh time constant register

Using the Emulator 5-7

DMAC0 (DMA controller 0)

MAR0A
ETCR0A
IOAR0A
DTCR0A
MAR0B
ETCR0B
IOAR0B
DTCR0B

Memory address register 0A
Transfer count register 0A
I/O address register 0A
Data transfer control register 0A
Memory address register 0B
Transfer count register 0B
I/O address register 0B
Data transfer control register 0B

DMAC1 (DMA controller 1)

MAR1A
ETCR1A
IOAR1A
DTCR1A
MAR1B
ETCR1B
IOAR1B
DTCR1B

Memory address register 1A
Transfer count register 1A
I/O address register 1A
Data transfer control register 1A
Memory address register 1B
Transfer count register 1B
I/O address register 1B
Data transfer control register 1B

5-8 Using the Emulator

PORT (I/O port)

P1DDR
P2DDR
P3DDR
P4DDR
P5DDR
P6DDR
8DDR
9DDR
ADDR
BDDR
P1DR
P2DR
P3DR
P4DR
P5DR
P6DR
P7DR
P8DR
P9DR
PADR
PBDR
P2PCR
P4PCR
P5PCR

Port 1 data direction register(Write Only)
Port 2 data direction register(Write Only)
Port 3 data direction register(Write Only)
Port 4 data direction register(Write Only)
Port 5 data direction register(Write Only)
Port 6 data direction register(Write Only)
Port 8 data direction register(Write Only)
Port 9 data direction register(Write Only)
Port A data direction register(Write Only)
Port B data direction register(Write Only)
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register(Read Only)
Port 8 data register
Port 9 data register
Port A data register
Port B data register
Port 2 input pull up MOS control register
Port 4 input pull up MOS control register
Port 5 input pull up MOS control register

Note The emulator can not support input pull up MOS control function of
the P2PCR, P4PCR and P5PCR.

Using the Emulator 5-9

ITUG (16 bit integrated timer pulse unit general)

TSTR
TSNC
TMDR
TFCR
TOER
TOCR

Timer start register
Timer synchro register
Timer mode register
Timer function control register
Timer output master control register
Timer output control register

ITU0 (16 bit integrated timer pulse unit 0)

TCR0
TIOR0
TIER0
TSR0
TCNT0
GRA0
GRB0

Timer control register 0
Timer I/O control register 0
Timer interrupt enable register 0
Timer status register 0
Timer counter 0
General register A0
General register B0

ITU1 (16 bit integrated timer pulse unit 1)

TCR1
TIOR1
TIER1
TSR1
TCNT1
GRA1
GRB1

Timer control register 1
Timer I/O control register 1
Timer interrupt enable register 1
Timer status register 1
Timer counter 1
General register A1
General register B1

ITU2 (16 bit integrated timer pulse unit 2)

TCR2
TIOR2
TIER2
TSR2
TCNT2
GRA2
GRB2

Timer control register 2
Timer I/O control register 2
Timer interrupt enable register 2
Timer status register 2
Timer counter 2
General register A2
General register B2

5-10 Using the Emulator

ITU3 (16 bit integrated timer pulse unit 3)

TCR3
TIOR3
TIER3
TSR3
TCNT3
GRA3
GRB3
BRA3
BRB3

Timer control register 3
Timer I/O control register 3
Timer interrupt enable register 3
Timer status register 3
Timer counter 3
General register A3
General register B3
Buffer register A3
Buffer register B3

ITU4 (16 bit integrated timer pulse unit 4)

TCR4
TIOR4
TIER4
TSR4
TCNT4
GRA4
GRB4
BRA4
BRB4

Timer control register 4
Timer I/O control register 4
Timer interrupt enable register 4
Timer status register 4
Timer counter 4
General register A4
General register B4
Buffer register A4
Buffer register B4

TPC (Programable timing pattern controller)

TPMR
TPCR
NDER
NDRA
NDRA0
NDRB
NDRB2

TPC output mode register
TPC output control register
Next data enable register
Next data register A (address: 0xxffa5h)
Next data register A (address: 0xxffa7h)
Next data register B (address: 0xxffa4h)
Next data register B (address: 0xxffa6h)

WDT (Watch dog timer)

WDTCSR
WDTCNT
RSTCSR

Timer control/status register
Timer counter
Reset control/status register

Using the Emulator 5-11

sci0 (Serial communication interface 0)

SMR0
BRR0
SCR0
TDR0
SSR0
RDR0
SCMR0

Serial mode register 0
Bit rate register 0
Serial control register 0
Transmit data register 0
Serial status register 0
Receive data register 0 (Read Only)
Smart card mode register 0

SCII1 (Serial communication interface 1)

SMR1
BRR1
SCR1
TDR1
SSR1
RDR1
SCMR1

Serial mode register 1
Bit rate register 1
Serial control register 1
Transmit data register 1
Serial status register 1
Receive data register 1 (Read Only)

ADC (A/D converter

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

A/D data register A (Read Only)
A/D data register B (Read Only)
A/D data register C (Read Only)
A/D data register D (Read Only)
A/D control/status register
A/D control register

DAC (D/A converter)

DADR0
DADR1
DACR

D/A data register 0
D/A data register 1
D/A control register

5-12 Using the Emulator

FLASH (flash memory)

FLMCR
EBR1
EBR2
RAMCR

Flash memory control register
Erase block appoint register 1
Erase block appoint register 2
RAM control register

Note These register cannot control the flash memory. But the emulator can
display or modify these register except for the RAMCR register. The
RAMCR register is always FF’H.

Using the Emulator 5-13

NOCLASS

The following register names are not included in any register class.

R0
R1
R2
R3
R4
R5
R6
R7
E0
E1
E2
E3
E4
E5
E6
E7
R0H
R0L
R1H
R1L
R2H
R2L
R3H
R3L
R4H
R4L
R5H
R5L
R6H
R6L
R7H
R7L

Register R0
Register R1
Register R2
Register R3
Register R4
Register R5
Register R6
Register R7
Register E0
Register E1
Register E2
Register E3
Register E4
Register E5
Register E6
Register E7
Register R0H
Register R0L
Register R1H
Register R1L
Register R2H
Register R2L
Register R3H
Register R3L
Register R4H
Register R4L
Register R5H
Register R5L
Register R6H
Register R6L
Register R7H
Register R7L

5-14 Using the Emulator

6

Using the On-chip Flash Memory

Introduction The H8/3048 emulator is equipped with functions for the on-chip flash
memory of H8/3048F microprocessor. So you can direct the on-chip
flash memory using the H8/3048 emulator.

The following pages will describe differences between actual on-chip
flash memory and the H8/3048 emulator. You need to pay attention for
following contents.

Memory Mapping The H8/3048 emulator uses emulation memory instead of actual
on-chip flash memory of the H8/3048F microprocessor. So you need to
map this area as emulation ROM in the emulator configuraiton before
using the H8/3048 emulator. And also, you need to configure the
H8/3048 emulator as H8/3048F and mode 5/6/7 in the emulator
configuration to use flash memory functions.

Note When you use the on-chip flash memory on the H8/3048 emulator, you
must map that area as emulation ROM. When you power on the
emulator, all memory space except internal RAM is mapped as target
RAM. Therefore, if you don’t map this area properly, you can not use
the flash memory functions.

Using On-chip Flash Memory 6-1

Flash Memory
Registers

You don’t need to take care of FLMCR, EBR1, EBR2 and RAMCR
registers, since the H8/3048 emulator uses emulation memory instead
of actual on-chip flash memory and does not use these registers.

Note You cannot direct these registers to control the flash memory functions.
These register are not effctive for the on-chip flash memory operation
on the H8/3048 emulator.

Note The H8/3048 emulator can display or modify these registers except for
the RAMCR register. RAMCR is always FF’H.

Note You cannot do flash memory emulation by RAM using RAMCR
register.

Programming/
Erasing Flash
Memory

Programming Data To write data onto the on-chip flash memory, you need to supply 12V
to Vpp/RESO pin. When you supply 12V correctly, write to ROM
break does not occur even if write to ROM break is enabled in the
emulator configuration.

6-2 Using On-chip Flash Memory

You need only to write data to the destination address only once. The
H8/3048 emulator can program data correctly and therefore it is not
necessary to repeat writing unless you prefer.

Note If you don’t supply 12V to Vpp/RESO pinc correctly, the H8/3048
emulator does not write data to destination address. And if write to
ROM break is enabled in the emulator configuration, write to ROM
break will occur when you write date onto on-chip flash memory.

 Erasing Data To erase data onto the on-chip flash memory, you need to supply 12V
to Vpp/RESO pin.

You cannot use FLMCR, EBR1 and EBR2 registers. These registers
aren’t effective in the emulator operation. As a result, you cannot use
block-erase to erase your data of the on-chip flash memory.

Also, you cannot prewrite the data using inverted data. If you write
inverted data onto on-chip flash memory, the H8/3048 emulator will
write inverted data onto on-chip flash memory area (i.e data can never
be 00’H, it can be inverted data).

Note It is recommended to write 00’h to destination address directly, when
you want to prewrite the data of the on-chip flash memory.

Protection Mode The H8/3048 emulator does not support the following protection modes.

Block protection

Emulation protection

Error protection

Using On-chip Flash Memory 6-3

Note The H8/3048 emulator never detects errors such as read cycle to
on-chip flash memory area, exceptions, and execution of "SLEEP"
instruction during writing/erasing on-chip flash memory area.

Boot Mode The H8/3048 emulator drives into the boot mode, when the emulator
accepts reset signal from target system and you supply 12V to MD2
and Vpp/RESO pin. Then, emulation status becomes Running user
program. Emulation reset does not cause the boot mode.

Note While the boot program on internal PROM is in progress, break
command is suspended and occurs after the boot program is completed.
If you want to discontinue the boot program, you need to reset the
emulator.

Note The H8/3048 emulator does not trace execution of the boot program on
internal PROM.

Note While the emulator is executing the boot program on internal PROM,
NMI must not occur. Because the emulator cannot prohibit the NMI at
this time.

6-4 Using On-chip Flash Memory

Index

! 5 voltage adaptor
installation, 3-4
specification, 3-4

A absolute file
loading, 2-11
storing, 5-5

analyzer
configuring the external, 4-20
H8/3048 status qualifiers, 2-25
triggering by data, 2-29
using the, 2-22

assembling the getting started sample program, 2-6

B background cycles
tracing, 4-18

blocked byte memory display, 2-15
boot mode, 6-4
Break

write to on-chip flash memory, 6-2
breaks

break command, 2-17
break during DMA transfer, 2-17
guarded memory accesses, 4-10
software breakpoints, 2-17
write to ROM, 4-10, 4-17

bus arbitration
using configuration to isolate target problem, 4-13

C C program
debugging, 5-4
displaying in mnemonic memory display, 5-4
displaying in trace listing, 5-4

caution statements
real-time dependent target system circuitry, 4-6

characterization of memory, 4-9
clearing software breakpoints, 2-20

Index - 1

clock source
external, 4-3
internal, 4-3

command file
creating and using, 5-3

configuration
/WAIT signal, 4-15
hardware standby, 4-14
select microprocessor type, 4-6

configuration options
background cycles to target, 4-15
enable /BREQ input, 4-12
enable NMI input, 4-13
honor target reset, 4-14
in-circuit, 3-10
memory access size, 4-16
processor mode, 4-7
trace refresh cycles, 4-19

convert SYSROF absolute file to HP Absolute, 2-6
converter

h83cnvhp, 2-6
coordinated measurements, 4-20, 5-5
copy memory, 5-2
coverage analysis, 5-2

D Debugging C programs, 5-4
display command

memory mnemonic, 2-13
memory repetitively, 2-15
registers, 2-21
symbols, 2-11
trace, 2-23

E EBR1,EBR2 register, 6-2
emul700

command to enter the Softkey Interface, 2-7
emul700, command to enter the Softkey Interface, 2-30
emulation analyzer, 2-22
emulation memory

External DMA access, 4-9
loading absolute files, 2-11
RAM and ROM, 4-9

2 - Index

size of, 4-9
Emulator

before using, 2-2
configuration, 4-1
DMA support, 4-12
memory mapper resolution, 4-9
prerequisites, 2-2
purpose, 1-1
running from target reset, 3-11

emulator configuration, 2-8
break processor on write to ROM, 4-17
clock selection, 4-3
default mapping, 2-8
internal RAM, 4-10
loading, 4-21
monitor entry after, 4-5
restrict to real-time runs, 4-5
saving, 4-20
stack pointer, 4-16
trace background/foreground operation, 4-18
Trace internal DMAC cycles, 4-18

Emulator features, 1-3
analyzer, 1-5
breakpoints, 1-6
clock speeds, 1-4
easy product updates, 1-6
emulation memory, 1-5
processor reset control, 1-6
register display/modify, 1-5
restrict to real-time runs, 1-6
supported microprocessors, 1-3

Emulator limitations, 1-7
END assembler directive (pseudo instruction), 2-15
end command, 2-30, 4-20
erasing flash memory, 6-2
Evaluation chip, 1-7
exit

Softkey Interface, 2-30
external analyzer, 2-22

configuration, 4-20
external clock source, 4-3

Index - 3

F file extensions
.EA and .EB, configuration files, 4-20

FLMCR register, 6-2
foreground operation

tracing, 4-18
function codes

memory mapping, 4-9

G getting started, 2-1
prerequisites, 2-2

global symbols, 2-13
displaying, 2-11

grd
memory characterization, 4-10

guarded memory accesses, 4-10

H h83cnvhp
convert, 2-6

hardware installation, 2-2
help

on-line, 2-9
pod command information, 2-10
softkey driven information, 2-9

I in-circuit configuration options, 3-10
In-circuit emulation

installing the PGA adaptor, 3-4, 3-7
PGA adaptor, 3-3
QFP adaptor, 3-3
QFP probe, 3-3
QFP socket/adaptor, 3-3

installation
hardware, 2-2
software, 2-2

Installing target system probe
target system probe, 3-2

interactive measurements, 4-20
internal clock source, 4-3
internal DMA cycles, 4-15
internal RAM

mapping, 2-8, 4-10

4 - Index

internal ROM
mapping, 2-8, 4-9

L limitations
DMA support, 1-7, 4-9
Hardware standby mode, 1-7, 4-14
Interrupts in background, 1-7
Sleep/standby mode, 1-7
Watch dog timer in background, 1-7

linking the getting started sample program, 2-6
loading absolute files, 2-11
loading emulator configurations, 4-21
local symbols, 2-19

displaying, 2-12
locked

end command option, 2-30
logging of commands, 5-3
low voltage adaptor

installation, 3-7
specification, 3-7

M mapping memory, 4-9
mapping of internal RAM, 2-8, 4-10
mapping of internal ROM, 2-8, 4-9
measurement system, 2-31
memory

characterization, 4-9
copying, 5-2
mapping, 4-9
mnemonic display, 2-13
mnemonic display with C sources, 5-4
modifying, 2-16
repetitively display, 2-15
searching for strings or expressions, 5-2

memory characterization, 4-9
memory mapping

function codes, 4-9
on-chip flash memory, 6-1
ranges, maximum, 4-9
sequence of map/load commands, 4-11

mnemonic memory display, 2-13
modify command

Index - 5

configuration, 4-1
memory, 2-16
software breakpoints clear, 2-20
software breakpoints set, 2-19

module, 2-31
monitor

breaking into, 2-17

N non-maskable interrupt, 4-13
nosymbols, 2-11
notes

"debug" option must need to generate local symbol information, 2-6
/STBY input will give the emulator /RES input, 4-14
Break during DMA transfer, 2-17
default mapping of memory, 4-9
DMA to emulation memory not supported, 4-12
External DMA accesses to emulation memory, 4-9
map memory before loading programs, 4-11
mapping of internal RAM, 4-10
mapping of internal ROM, 4-9
pod commands that should not be executed, 5-2
refresh and internal DMA cycle in background, 4-15
selecting internal clock forces reset, 4-4
software breakpoints not allowed in target ROM, 2-17
software breakpoints only at opcode addresses, 2-17
Trace internal DMAC cycles, 4-19
Trace refresh cycles, 4-19
use the "set" command at each window, 2-14
write to ROM analyzer status, 4-18
write to ROM in DMA cycles, 4-18

O On-chip Flash Memory, 1-7
boot mode, 6-4
flash memory registers, 6-2
memory mapping, 6-1
protect mode, 6-3

on-line help, 2-9

P PATH, HP-UX environment variable, 2-7
PGA adaptor, 3-3

installation procedure, 3-4, 3-7
PGA pin assignment, 3-12

6 - Index

pmon
User Interface Software, 2-30

pod_command, 2-10
features available with, 5-2
help information, 2-10

predefining stack pointer, 4-16
prerequisites for using the emulator, 2-2
processor operation mode, 4-7
programming flash memory, 6-2
protection mode, 6-3
Purpose of the Emulator, 1-1

Q QFP adaptor, 3-3
QFP probe, 3-3
QFP socket/adaptor, 3-3

R RAM
mapping emulation or target, 4-10

real-time execution
restricting the emulator to, 4-5

refresh cycle, 4-15
REGISTER CLASS, 5-6
register display/modify, 2-21
REGISTER NAME , 5-6
registers

classes, 2-21
release_system

end command option, 2-30, 4-20 - 4-21
repetitive display of memory, 2-15
reset (emulator)

running from target reset, 2-15, 3-11
restrict to real-time runs

emulator configuration, 4-5
permissible commands, 4-5
target system dependency, 4-6

ROM
mapping emulation or target, 4-10
writes to, 4-10

run command, 2-15
run from target reset, 3-11

Index - 7

S sample program
description, 2-2

sample program, linking, 2-6
saving the emulator configuration, 4-20
simulated I/O, 4-19
softkey driven help information, 2-9
Softkey Interface

entering, 2-7
exiting, 2-30
on-line help, 2-9

software breakpoints, 2-17
clearing, 2-20
enabling/disabling, 2-18
setting, 2-19

software installation, 2-2
special code

software breakpoints, 2-17
stack pointer,defining, 4-16
status qualifiers, 2-25
step command, 2-20

with C program, 5-4
string delimiters, 2-10
symbols

displaying, 2-11
in memory display, 2-14

system overview, 2-2

T target memory access, 4-15
target memory, loading absolute files, 2-11
target reset

running from, 3-11
target system

dependency on executing code, 4-6
PGA adaptor, 3-3
QFP adaptor, 3-3

Target system probe
installation, 3-2

Terminal Interface, 2-10
trace

display with C source lines, 5-4
displaying the, 2-23
displaying with time count absolute, 2-24

8 - Index

internal DMAC, 4-18
specifying trigger condition, 2-26

trace about, 2-27
tracing background operation, 4-18
tracing refresh cycles, 4-19
transfer address, running from, 2-15
trigger

specifying, 2-22
trigger condition, 2-26
trigger state, 2-23

U undefined software breakpoint, 2-18
user (target) memory, loading absolute files, 2-11

V visible background cycles, 4-15

W window systems, 2-30
write to ROM break, 4-17

Index - 9

Notes

10 - Index

	Using This Manual
	Contents
	Introduction
	Getting Started
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	Using the On-chip Flash Memory
	Index

