User’s Guide for the Graphical User Interface

HP 64751 68340 Emulator
HP 64704 Analyzer

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1992, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
Microtec is a registered trademark of Microtec Research Inc.
MS-DOS is a trademark of Microsoft Corporation.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B1442-97000, March 1992
Edition 2 B1442-97001, September 1992
Edition 3 B1442-97002, March 1993
Edition 4 B1442-97003, December 1993

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

68340 Emulation and Analysis

The HP 64751 68340 emulator replaces the microprocessor in your embedded
microprocessor system, also calledttirget systenso that you can control
execution and view or modify processor and target system resources.

The emulator can be used with the HP 64704 Emulation Bus Analyzer or the
HP 64794 Deep Memory Emulation Bus Analyzer which capture 80 channels of
emulation processor bus cycle information synchronously with the processor’s
clock signal. This analyzer is called #maulation analyzer

With the Emulator, You Can ...

* Plug into 68340 target systems with Pin Grid Array (PGA) sockets.

» Download programs into emulation memory or target system RAM.

» Display or modify the contents of processor registers and memory resources.

* Run programs at clock speeds up to 25 MHz (with active probe boards
64751-66508 and higher — up to 16.78 MHz with boards 64751-66506 and
lower), set up software breakpoints, step through programs, and reset the
emulation processor.

With the Analyzer, You Can ...

» Trigger the analyzer when a particular bus cycle state is captured. You can
also trigger the analyzer after a state has occurred a specified number of times.
States are stored relative to the trigger state.

* Qualify which states get stored in the trace.

» Prestore certain states that occur before each qualified store state.

» Trigger the analyzer after a sequence of up to 8 different events have occurred.

e Cause the emulator to stop program execution when the analyzer finds its
trigger condition.

With the HP 64700 Card Cage, You Can ...

Use the RS-422 capability of the serial port and an RS-422 interface card on
the host computer (HP 98659 for the HP 9000 Series 300) to provide
upload/download rates of up to 230.4K baud.

Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

Start and stop up to 16 emulators at the same time (up to 32 if modifications
are made).

Use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition, or you can allow an external instrument to arm the analyzer or break
emulator execution.

With the Graphical User Interface, You Can ...

Use the emulator and analyzer under an X Window System that supports
OSF/Motif interfaces.

Enter commands using pull-down or pop-up menus.

Enter, recall, and edit commands using the command line pushbuttons.

Enter file names, recalled commands, recalled values, etc., using dialog boxes.
Set breakpoints by pointing the mouse cursor on a line in the mnemonic
memory display and clicking.

Create action keys for commonly used commands or command files.

With the Softkey Interface, You Can ...

Use the emulator and analyzer with a terminal or terminal emulator.
Quickly enter commands using softkeys, command recall, and command
editing.

In This Book

This book describes the Graphical User Interface and the Softkey Interface when
used with the HP 64751 68340 emulator and the HP 64704 analyzer. Itis
organized into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly shows
you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 shows how to plug the emulator into a target system.

Chapter 3 shows you how to start and exit the HP 64700 interfaces.
Chapter 4 shows you how to enter commands.

Chapter 5 shows how to configure the emulator.

Chapter 6 shows how to use the emulator.

Chapter 7 shows how to use the analyzer.

Chapter 8 shows how to use the Software Performance Measurement Tool
(SPMT) with the analyzer.

Chapter 9 shows how to make coordinated measurements.

Chapter 10 shows how to change X resource settings for the Graphical User
Interface.

Part 3. Reference

Chapter 11 describes emulator/analyzer interface commands.
Chapter 12 lists the error messages that can occur while using the
emulator/analyzer interface.

Chapter 13 lists the emulator specifications and characteristics.

Part 4. Concept Guide
Chapter 14 contains conceptual information on various topics.

Part 5. Installation Guide

Chapter 15 outlines the installation of the Graphical User Interface, and shows
you how to start and exit the interface.
Chapter 16 shows you how to install or update emulator firmware.

Contents

Part 1

Quick Start Guide

Getting Started

The Emulator/Analyzer Interface — At a Glance

The Softkey Interface 24

Softkey Interface Conventions 25

The Graphical User Interface 26
Graphical User Interface Conventions 28

The Getting Started Tutorial 31

Step 1. Startthe demo 32

Step 2: Display the program in memory 33

Step 3: Run from the transfer address 34

Step 4: Step high-level source lines 35

Step 5: Display the previous mnemonic display 36
Step 6: Run until an address 37

Step 7: Display data values 38

Step 8: Display registers 39

Step 9: Step assembly-level instructions 40

Step 10: Trace the program 41

Step 11: Display memory at an address in a register 43
Step 12: Patch assembly language code 44

Step 13: Exit the emulator/analyzer interface 47

24

Contents

Part 2 User’s Guide

2 Plugging into a Target System

Step 1. Turn OFF power 53

Step 2. Unplug probe from demo target system 54

Step 3. Select the emulator clock source 55

Step 4. Plug the 68340 PGA emulator probe into the target system 60
Step 5. Turn ON power 61

3 Starting and Exiting HP 64700 Interfaces

Starting the Emulator/Analyzer Interface 65

To start the emulator/analyzer interface 65

To start the interface using the default configuration 66

To run a command file on interface startup 67

To display the status of emulators 67

To unlock an interface that was left locked by another user 68

Opening Other HP 64700 Interface Windows 69

To open additional emulator/analyzer windows 69
To open the high-level debugger interface window 70
To open the software performance analyzer (SPA) interface window 70

Exiting HP 64700 Interfaces 71

To close an interface window 71
To exit a debug/emulation session 72

Contents

4 Entering Commands

Using Menus, the Entry Buffer, and Action Keys 75

To choose a pulldown menu item using the mouse (method 1) 76
To choose a pulldown menu item using the mouse (method 2) 77
To choose a pulldown menu item using the keyboard 77

To choose popup menu items 79

To place values into the entry buffer using the keyboard 80

To copy-and-paste to the entry buffer 80

To recall entry buffer values 83

To use the entry buffer 83

To copy-and-paste from the entry buffer to the command line entry area 84
To use the action keys 85

To use dialog boxes 85

To access help information 89

Using the Command Line with the Mouse 90

To turn the command line on or off 90

To enter acommand 91

To edit the command line using the command line pushbuttons 92
To edit the command line using the command line popup menu 93
Torecall commands 94

To get help about the command line 94

Using the Command Line with the Keyboard 95

To enter multiple commands on one command line 95
Torecall commands 96

To edit commands 96

To access on-line help information 97

Using Command Files 98

To start logging commands to a command file 101
To stop logging commands to a command file 101
To playback (execute) a command file 102

Using Pod Commands 103

To display the pod commands screen 104
To use pod commands 104

Contents

Forwarding Commands to Other HP 64700 Interfaces 105

To forward commands to the high-level debugger 105
To forward commands to the software performance analyzer 106

5 Configuring the Emulator

Using the Configuration Interface 110

To start the configuration interface 111

To modify a configuration section 113

To store a configuration 115

To change the configuration directory context 116
To display the configuration context 117

To access help information 117

To exit the configuration interface 118

To load a configuration 118

Modifying the General Configuration Items 119

To select the emulator’s clock source 119

To enable/disable entry into the monitor after configuration 120
To restrict to real-time runs 120

To turn OFF the restriction to real-time runs 121

Reconfiguring the Emulator Configuration Registers 122
To define values for the emulator configuration registers 122

Selecting the Emulation Monitor 123

To select the background monitor 125
To select the foreground monitor program 126
To use a custom foreground monitor program 129

Mapping Memory 133

To map memory ranges 135

To characterize unmapped ranges 139

To delete memory map ranges 140

To map memory ranges that use function codes 141
To emulate global chip select operation 143

10

Contents

Configuring the Emulator Pod 148

To set the reset values of the SSP and PC 148
To specify the user memory access size 149

Setting the Debug/Trace Options 150

To enable/disable breaks on writes to ROM 150
To trace background cycles 151

Using the Emulator

Using the Emulator Configuration Registers 155

To view the SIM register differences 158
To synchronize to the 68340 SIM registers 158
To synchronize to the emulator configuration registers 159

Loading and Storing Absolute Files 160

To load absolute files 160
To load absolute files without symbols 161
To store memory contents into absolute files 162

Using Symbols 163

To load symbols 163

To display global symbols 164

To display local symbols 165

To display a symbol’'s parent symbol 169

To copy-and-paste a full symbol name to the entry buffer 170

Using Context Commands 171

To display the current directory and symbol context 172
To change the directory context 172
To change the current working symbol context 173

11

Contents

Executing User Programs 174

To run programs from the current PC 174

To run programs from an address 175

To run programs from the transfer address 175
To run programs fromreset 175

To run programs until an address 176

To stop (break from) user program execution 176
To step high-level source lines 177

To step assembly-level instructions 178

To reset the emulation processor 178

Using Software Breakpoints 179

To display the breakpoints list 180

To enable/disable breakpoints 181
To set a permanent breakpoint 184
To set a temporary breakpoint 185
To set all breakpoints 186

To deactivate a breakpoint 186

To re-activate a breakpoint 187

To clear a breakpoint 189

To clear all breakpoints 191

Displaying and Modifying Registers 192

To display register contents 196
To modify register contents 197

Displaying and Modifying Memory 198

To display memory 198

To display memory in mnemonic format 199

To return to the previous mnemonic display 199
To display memory in hexadecimal format 200
To display memory in real number format 201
To display memory at an address 202

To display memory repetitively 203

To modify memory 203

Displaying Data Values 204

To display data values 204
To clear the data values display and add a new item
To add items to the data values display 205

205

12

Contents

Changing the Interface Settings 206

To set the source/symbol modes 206
To set the display modes 207

Using System Commands 209

To set UNIX environment variables 209

To display the name of the emulation module 210
To display the eventlog 210

To display the errorlog 211

To edit files 212

To copy information to a file or printer 215

To open a terminal emulation window 216

Using Simulated I/O 217

To display the simulated I/O screen 217
To use simulated I/O keyboard input 218

Using Basis Branch Analysis 219
To store BBA datato afile 219

Using the Emulation Analyzer

The Basics of Starting, Stopping, and Displayingcés 223

To start a trace measurement 224

To display the trace status 224

To stop a trace measurement 227

To display the trace 228

To position the trace display on screen 229
To change the trace depth 230

To modify the last

trace command entered 230

13

Contents

Qualifying Trigger and Store Conditions 231

To qualify the trigger state and position = 237

To trigger on a number of occurrences of some state 239
To qualify states stored in the trace 240

To prestore states before qualified store states 241

To change the count qualifier 242

To trace until the analyzer is halted 243

To break emulator execution on the analyzer trigger 244

Using the Sequencer 245

To trigger after a sequence of states 245
To specify a global restart state 247
To trace "windows" of program execution 248

Modifying the Trace Display 250

To display a dequeued trace 251

To display the trace about a line number 252

To display the trace, disassembling from a line number 253
To display instruction cycles only 254

To display the trace in absolute format 255

To display the trace in mnemonic format 256

To display the trace with high-level source lines 257

To display the trace with symbol information 259

To change column widths in the trace display 260

To display time counts in absolute or relative format 261
To display the trace with addresses offset 262

To return to the default trace display 263

Saving and Restoring Traces 264

To save trace commands 264
To restore trace commands 265
To save traces 265

To restore traces 266

14

Contents

8 Making Software Performance Measurements

Activity Performance Measurements 269

To set up the trace command for activity measurements 271
To initialize activity performance measurements 272
To interpret activity measurement reports 276

Duration Performanckleasurements 284

To set up the trace command for duration measurements 285
To initialize duration performance measurements 287
To interpret duration measurement reports 289

Running Measurements and Creating Reports 293

To run performance measurements 293
To end performance measurements 294
To create a performance measurement report 295

9 Making Coordinated Measurements

Setting Up for Coordinated Measurements 301

To connect the Coordinated Measurement Bus (CMB) 301
To connect to the rear panel BNC 303

Starting/Stopping Multiple Emulators 305

To enable synchronous measurements 305
To start synchronous measurements 306
To disable synchronous measurements 306

Using Trigger Signals 307

To drive the emulation analyzer trigger signal to the CMB 309

To drive the emulation analyzer trigger signal to the BNC connector 310
To break emulator execution on signal from CMB 310

To break emulator execution on signal from BNC 311

To arm the emulation analyzer on signal from CMB 311

To arm the emulation analyzer on signal from BNC 312

15

Contents

10

Setting X Resources

To modify the Graphical User Interface resources 316
To use customized scheme files 320

To set up custom action keys 322

To set initial recall buffer values 323

To set up demos or tutorials 325

Part 3

11

Reference

Emulator/Analyzer Interface Commands

How Pulldown Menus Map to the Command Line 332
How Popup Menus Map to the Command Line 336
Syntax Conventions 338

Commands 339

bbaunld 340

break 341

cmb_execute 342

copy 343

COUNT 348

display 350

display memory 356

display trace 360

end 364

--EXPR-- 366

FCODE 369

forward 371

help 372

load 374

log_commands 376

modify 378
performance_measurement_end 384
performance_measurement_initialize 385
performance_measurement_run 387
pod command 389

QUALIFIER 391

16

12

13

reset 394

run 395
SEQUENCING 397
set 399

specify 404

step 406
stop_trace 408
store 409
-SYMB-- 411
sync_sim_registers 419
trace 420
TRIGGER 424
wait 426
WINDOW 428

Error Messages

Contents

Graphical/Softkey Interface Messages - Unnumbered 433

Graphical/Softkey Interface Messages - Numbered 450

Terminal Interface Messages 453

Emulator Messages 453

68340 Emulator Messages 456

General Emulator and System Messages 462
Analyzer Messages 475

Specifications and Characteristics

Emulator Specifications and Characteristics

Electrical 478
Physical 490
Environmental 492

478

17

Contents

Part 4 Concept Guide

14 Concepts

X Resources and the Graphical User Interface 497

X Resource Specifications 497
How X Resource Specifications are Loaded 499
Scheme Files 501

Part 5 Installation Guide

15 Installation

Installing Hardware 510

Step 1. Connect the Emulator Probe Cables 512

Step 2. Install Boards into the HP 64700 Card Cage 515

Step 3. Install emulation memory modules on emulator probe 527
Step 4. Plug the emulator probe into the demo target system 531
Step 5. Apply power to the HP 64700 533

Connecting the HP 64700 to a Computer or LAN 537

Installing HP 9000 Software 538

Step 1. Install the software from the media 538

Step 2. Verify the software installation 540

Step 3a. Start the X server and the Motif Window Manager (mwm) 541
Step 3b. Start HP VUE 541

Step 4. Set the necessary environment variables 541

18

16

Contents

Installing Sun SPARCsystem Software 544

Step 1. Install the software from the media 544

Step 2. Start the X server and OpenWindows 545
Step 3. Set the necessary environment variables 545
Step 4. Verify the software installation 547

Step 5. Map your function keys 548

Verifying the Installation 549

Step 1. Determine the logical name of your emulator 549
Step 2. Start the interface with the

emul700command 550

Step 3. Exit the Graphical User Interface 553

Installing/Updating Emulator Firmware

To update emulator firmware with "progflash” 557
To display current firmware version information 560
If there is a power failure during a firmware update 561

Glossary

Index

19

20

Part 1

Quick Start Guide

A one-glance overview of the product and a few task instructions to help you
comfortable.

21

Part 1

22

Getting Started

23

Chapter 1: Getting Started

Display area.

Status line. ——

Command line.

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file main (module) . "main.c
address data
00000FC0 4E560000 LINK.W A6, #50000
00000FC4 4EB9000014 JSR $000014E8
00000FCA 4EB900001a JSR $00001A3E
00000FD0 4E71 NOP
0 FD2 4EB9000015 JSR 500001592
00000F] 52B9000076 ADDQ.L #1,5000076F2
00000FDE 4 00076 PEA $000076F2
00000FE4 4EB9000010 JSR 500001014
00000FEA b588F ADDQ.L #4,a7
00000FEC 4A39000076 TST.B $000076FE
00000FF2 6708 BEQ.B $00000FFC
00000FF4 4EB9000019 JSR $0000197E
00000FFA 4E71 NOP
00000FFC 4EB900001a JSR $00001A62
00001002 4E71 NOP
00001004 s60CC BRA.B $00000FD2
STATUS : cWs: main."main.e": RS - R
display memory main mnemonic

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

24

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

25

Chapter 1: Getting Started

Menu bar ——

Action keys

Entry buffer

Entry buffer recall
button.

Display area.

Scroll bar.

Status line. —__

Command line.

Command line entry

area.

Softkey
pushbuttons

The Graphical User Interface

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Aerto() | Break | Step Asm

() imain I_R/eca
Memory :mnemonic file = main{modulel. "main.c”
addre label da

31 exterh woid update_system!(); /#* update system wariables #/
32 extern woid interrupt_simi{}; /% simulate an interrupt */
33 extern woid do_sort(}; /#* sets up ascii array and call
34

35 main(}

36 i

97 init_system(};

35 proc_spec_initil;

33

186 while (truel

1A

182 update_system(};

183 num_checks++;

184 interrupt_sim{&num_checks)

185 if {graph?’

1686 graph_datal};

187 proc_specificl);

STATUS: cws: main. " main.c”:

isplay memory main mnemonic

Command: Cursor: |§.§é§<ﬁ§i%§§} |Forward |Clear to end |Clear |He|p

Command buttons. Includes commandCursor buttons for command line area
recall button. control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

26

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command buttons(includes command recall button). The commiaeturn
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

27

Chapter 1: Getting Started

The commandecall button allows you to recall previous or predefined
commands. When you click on the comm&uedtall button, a dialog box
appears that allows you to select a command.

e Cursor buttons for command line area control Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

28

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

29

Chapter 1: Getting Started

The following tables show the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

30

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The tutorial examples presented in this
chapter make the following assumptions:

e The HP 64751 emulator and HP 64704 analyzer are installed into the
HP 64700 Card Cage, the HP 64700 is connected to the host computer, and the
emulator/analyzer interface software has been installed as outlined in the
"Installation” chapter.

» The emulator contains at least 256 Kbytes of emulation memory installed in
bank 0 and is plugged into the demo target system.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

31

Chapter 1: Getting Started
Step 1. Start the demo

Step 1. Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

$ cd /usr/hp64000/demo/debug_env/hp64751 <RETURN>
Refer to the README file for more information on the demo program.

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on a HP 9000 computer
and displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS".

Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (flusr/hp64000/etc/64700tab.net).

32

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Seftings

Action keys: | = Demo = | Run xfer til {) |Disp Src & Asm | Patch ()
| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()
| Disp @REG || Disp Src Prev || Trace | Run [Again

() imain IReca

Memaory :mnemonic :file = main{modulel. "main.c”
addre label data

31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 maini}
35 i
97 init_systemi);
98 proc_spec_initi};
33
186 while {truel
181 i
182 update_system();
183 num_checks++;
184 interrupt_sim{&num_checks)
185 if {graph?
1686 graph_datall;
187 proc_specificll);

STATUS: cws: main."main.c”

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

33

Chapter 1: Getting Started
Step 3: Run from the transfer address

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

» Click on theRun Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main <RETURN>
Memory :Bsp fmnemonic :file = maintmodule). "main.c”:
addre label data

31 extern woid update_systemil; /% update system wariables */
32 extern woid interrupt_simil; f* simulate an interrupt #/
33 extern woid do_sorti}; /* sets up ascii array and calls
34
35 maint}

I
97 init_system(};
98 proc_spec_init(};
33
166 while (truel
181 {
18z update_systemi ?;
143 num_checks++;
1684 interrupt_sim{&num_checks?;
165 if (graph?
166 graph_datall;
167 proc_specificl);

STATUS: HE8340--Running in monitor Software break: 000000 c08sp B A1.3

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor" (you may have to clicls¢fectmouse

button to remove temporary messages from the status line). When you run until an
address, a breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the current program counter.

34

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

To step a source line from the current program counter, click @tépeSource
action key.

Or, using the command line, enter:

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

Step into the "init_system" function by continuing to step source lines, either by
clicking on theStep Sourceaction key, by clicking on th&gain action key which
repeats the previous command, or by enteringtife sourcecommand on the
command line.

Memory :Bsp fmnemonic :file = init_systemimodule). "init_system.c”
addre label data
26
27 void init_wal_arr{};
28
23 void
3H init_systeml]}

- E A% FUMCTION init_system() */
32

/% Initialize the target walues for temperature and humidity */

33 target_temp = 73;

34 target_humid = 45;

35

36 /% Intialize the variables indicating the current environment #/
37 /* conditions */

a8 current_temp = B8;

33 current_humid = 41;

48

41 /#% SJet starting directions for temp and humid #*/

42 temp_dir = up;

35

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display

Click on theDisp Src Prevaction key.

Or, using the command line, enter:
display memory mnemonic previous_display <RETURN>
This command is useful, for example, when you have stepped into a function that

you do not wish to look at—you can display the previous mnemonic display and
run until the source line that follows the function call.

36

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();", press and hold the
selectmouse button, and chooRen Until from the popup menu.

—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Seftings Help
Action keys: | = Demo = | Run xfer til {) |Disp Src & Asm | Patch ()
| = Your Key = | tMake & Load | Step Asm | Step Source | Disp Var()
| Disp @REG || Disp Src Prev || Trace | Run [Again
() imain IRecaII
Memory :Bsp imnemonic :(file = mainimodulel. "main.c”:
addre label dats A
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and call
34
35 main{}
35 i
97 init_systemi);
c_initl(l);
Choose Action for Highlighted Line
ig? ”Ehi le Crrue) Set/Clear Software Breakpoint
182 update_system({] Edit Source
183 num_checks++; -
184 interrupt_sim{gRun Until
185 if {graph?
1686 graph_datal Trace After
187 proc_specific()] Trace Before
7| STATUS: cws: main."main.c”: Trace About NN Ny
; Trace Until :

Or, using the command line, enter:

run until main."main.c": line 98 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

37

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on theDisp Var () action key.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>
Data :update

addre label type dats

HARAT7GF 2 |_num_checks int32 5]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

38

Chapter 1: Getting Started

Step 8: Display registers

Step 8: Display registers
You can display the contents of the processor registers.
» ChooseDisplay - Registers—» BASIC.

Or, using the command line, enter:

display registers <RETURN>

Registers

MNext FC ABEBEFCARsp
FC BBHEEFCA STATUS 2784 < = =z > USP BEBEABAR S5P HBE12F34

VER APREREEA SFC @@ DFC @@

DB-07 HEREREZA AHEEEEZE BRBAGHZE BEBEEY IC HERAD14E BBEBZAFS BRAB4E6FS BEBEY7 A6
AB-AY @BEEY 156 FFFFFFFF BRBEY7ZE BOBESEZE0 BORAY7ES OBEEF 156 ARA1ZF34 BEB1ZF 34

39

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

» To step one instruction from the current program counter, click datépeAsm
action key.

Or, using the command line, enter:

step <RETURN>

Registers

MNext FC BBABBFCABsp

FC BBHEEFCA STATUS 2784 < = =z > USP BEBRBEAR S5P BBE12F34

D8-07 HERBEAZA AHEEEEZE BRBAGHZE BEEEEYIC DAREAD14E BEEBZAFS ARAE4E6FS BRBE77E6
AB-AY BEEEY1S6 FFFFFFFF BRBAY 28 BEBEEHZE BARAYYES BEEEF 156 ABA12F34 BEB12F 34
WER BEREEAEA SFC @B@ DFC @@

Step_FC BHABBFCAEsp JSR p.proc_spec_init

Mext FC BBEEE1A3EEsp

FC BBHBEIA3E STATUS 2784 < 5 =z * USP BHBRBAEAR S5P HBEE12F3d

0B-07 HAABAAZA BEBHAGZH AABAGAZS DHOEAT IC HORBE145 BHEBZAFS ABEA4GFS DEBE77AEG
AB-A7 BAEB7156 FFFFFFFF BREA7725 DHOEGSHZE0 HOAB77ES DHEEF 156 ABA1ZF34 BEB12F38
WER HRABAAEA SFC B OFC @8

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

40

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after main <RETURN>

Notice the message "Emulation trace started" appears on the status line. This

shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

Run the demo program from its transfer address by choosing
Execution— Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address <RETURN>

41

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete". This

shows the trigger state has been found and the analyzer trace memory has been
filled.

5 To view the captured states, choBésplay - Trace.

Or, using the command line, enter:

display trace <RETURN>

race List Mare data of f screen
Label: Address Opcgode or Status w/ Source Lines time count
umnbaol mnemonic w/symbal relative

BHgHEdE R Emain.c - line 1 thru 6 HEHHUSHEEEEESHERHERESHSHERBRHSRY

n

prog|main.main LINK.W AG, #$EEEL e
pr|main+BEABERAZ $BEEG supr prgm word rd {(ds1B6} 728 nS
+HA6Z sysstactdBAATF 34 $Baa1 supr data long wr (dslG3 728 n3
+@63 sysstactdA@@yF 36 $Z2FFA supr data word wr (ds16) 728 n3

il main. c - line 37 HEHHREEHAHAH AR ARARERER R R AR A E AR E R H R R H R R

init_systemi);

+084 pr|main+AE0BEEEY TSR init.init_system G568 nS
+HEAS pr|main+tAHOBEEEE $OAHD supr prgm word rd (dslB} 720 nS
+HAE pr|maintAHEBREERE $14E8 supr prgm word rd (ds1B} 7268 nS

BB Emain. c - line 95 HEHHUHBEHAHAHAHAHAHEHERBAH AR AR HHHHBHHRBRH RS BH

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

42

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

Step 11: Display memory at an address in a
register

Click on theDisp @REGaction key.

Or, using the command line, enter the name of the command file:

mematreg <RETURN>
A command file dialog box appears (or a prompt appears in the command line).

Move the mouse pointer to the dialog box text entry area, type "A7", and click on
the "OK" button.

Or, if the prompt is in the command line:
A7 <RETURN>

Memory :@sp :bytes :blocked :update

addre data he iascii
BAR12F5C-63 AR 58] 2A Fa 58] BAa 2A Fa A
BAA12FE4-6R AR 5]z] 46 Fa 5]z] B1 2F a4 .. F o
BAR1ZFEC-73 AR 53] 1a aA 53] BAa 71 56 C e e e . ogW
Baa12F74-78 5 5] [5]5] 72 0A [5]5] Ba aa ac .
BAR12F7C-33 Al 53] 5Aa 28 53] BAa a7 1c P
Baa12F84-36 5 5] [5]5] a1 4B [5]5] B1 2F 34 A
BAR12FEC-33 AR 53] AF EA 53] BAa 76 Fe [W
BEa12F34-38 55| a1 2F Fa [5]5] Ba a7 1H P
BAR12FIC-A3 55| J5[5] Ba AR J5[5] BAa 5G] 5L5] e e e
BAR12FA4-AB AR 58] AA AR 58] BAa 77 Ed e T
BAR12FAC-B3 55| J5[5] Ba AR J5[5] BAa 5G] 3A e H

AEA 1 2FB4-BB AB B8 BA B2 BB BA @A 15
BEA 1 2FBC-C3 AR B8 BA @1 @B BA @A 15 e e e e
AEA12FC4-CB AB B8 @A B8 BB BE BA 4@ P

BAE12FCC-03 g B Y7 28 @@ B BE &e P
AEA12F04-08 AB B8 @@ CA B8 @A 8@ 2§ e e e
AAE12FOC-E3 15 T 1 " Vs IC B@ ®Ba 77 28 P T

43

Chapter 1: Getting Started
Step 12: Patch assembly language code

Step 12: Patch assembly language code

ThePatch () action key lets you patch code in your program.
1 With "main” still in the entry buffer, click on tHeun Xfer til () action key.

2 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on thRisp Src & Asm action key.

Memory :Bsp fmnemonic :file = main(module). "main.c":
addre label data
32 extern void interrupt_sim{}; /% simulate an interrupt */
33 extern void do_sartil); /#% sets up ascii array and calls
34
35 maini}

i
pr|main.main 4ESE8064 LINK.W AB, #8668

init_systemi};

BEaEarC4 4EB30ERAl4 JSR init.init_system
98 proc_spec_init(};

ARBEARFCA 4EB3AEEALA ISR p.proc_spec_init
33
1668 while (truel

ABABEF DB 4E71 WOP
181 i
162 update_systemi);

BEEEEFDZ 4EB3AEEALS ISR up. update_system
183 rum_checks++;

3 Click on thePatch () action key.

A window appears and tivé editor is started. Add the line:

LINK A6,#1234h

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press <RETURN> to apply the patch.

44

Chapter 1: Getting Started
Step 12: Patch assembly language code

Memory :Bsp fmnemonic :file = main(module). "main.c":
addre label data
32 extern void interrupt_sim{}; /% simulate an interrupt */
33 extern void do_sartil); /#% sets up ascii array and calls
34
35 maini}

i
pr|main.main 4E561234 LINK.W AB, #1%1234

init_systemi};

BEaEarC4 4EB30ERAl4 JSR init.init_system
98 proc_spec_init(};

ARBEARFCA 4EB3AEEALA ISR p.proc_spec_init
33
1668 while (truel

ABABEF DB 4E71 WOP
181 i
162 update_systemi);

BEEEEFDZ 4EB3AEEALS ISR up. update_system
183 rum_checks++;

Notice in the emulator/analyzer interface that the instruction at address "main" has
changed.

Click on thePatch () action key again.

A window running thevi editor again appears, allowing you to modify the patch
code that was just created. Modify the line you added previously to:

LINK A6,#0

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN>" to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address "main" has
been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify
code that follows.

45

Chapter 1: Getting Started
Step 12: Patch assembly language code

5 Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> thru <address>)
before clicking on th@atch () action key, you can modify a patch template file
which allows you to insert as much or as little code as you wish.

6 Click on thePatch () action key again.

A window running thevi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() function is called before the
init_system() function. Suppose also that there is memory available at address
8800H. Edit the patch template file as shown below.

; PCHS700 Assembly Patch File: PCHmain+4.s

Date : Tue Jun 30 14:06:06 MDT 1992
; Dir : /users/guest/demo/debug_env/hp64751
; Owner: guest

INCLUDE PCHSINC.s
ORG main+4
BRA patchl ;You may want to change this name!
ORG 8800h ;You MUST set this address!
patchl:
; i You may need to modify labels and operands of the 111
; il following code to match your assembler syntax i
; 1l Patching Range: main+4 thru main+15

JSR _proc_spec_init

JSR _Init_system
BRA main+16 ;You MUST set this address also!

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a"
and press <RETURN> to apply the patch.

You can step through the program to view execution of the patch.

46

Chapter 1: Getting Started
Step 13: Exit the emulator/analyzer interface

Step 13: Exit the emulator/analyzer interface .

» To exit the emulator/analyzer interface and release the emulator, choose
File - Exit — Released

Or, using the command line, enter:

end release_system <RETURN>

47

48

Part 2

User’'s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

49

Part 2

50

Plugging into a Target System

51

Plugging the Emulator into a Target
System

This chapter describes the steps you must perform when connecting the emulator to
a target system:

1 Turn OFF power.

2 If the emulator is currently connected to the demo target system or a different
target system, unplug the emulator probe.

3 Select the emulator clock source.
4 Plug the emulator probe into the target system.
5 Turn ON power (first the HP 64700, then the target system).

After you plug the emulator into your target system, you must configure the
emulator so that it operates properly with your target system (refer to the
"Configuring the Emulator" chapter).

CAUTION Possible Damage to the Emulator ProbeThe emulation probe contains devices
that are susceptible to damage by static discharge. Therefore, precautionary
measures should be taken before handling the microprocessor connector attached to
the end of the probe cable to avoid damaging the internal components of the probe
by static electricity.

We STRONGLY suggest using a ground strap when handling the emulator
probe. A ground strap is provided with the emulator.

52

Chapter 2: Plugging into a Target System

Step 1. Turn OFF power

Step 1. Turn OFF power

CAUTION Possible Damage to the EmulatorMake sure target system power is OFF and
make sure HP 64700 power is OFF before removing or installing the emulator

probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target

system whose power is ON.

1 If the emulator is currently plugged into a different target system, turn that target system’s pow

or OFF.

2 Turn emulator power OFF.

53

Chapter 2: Plugging into a Target System
Step 2. Unplug probe from demo target system

Step 2. Unplug probe from demo target system

1 If the emulator is currently connected to a different target system, unplug the emulator probe;
otherwise, disconnect the emulator probe from the demo target system.

54

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

Step 3. Select the emulator clock source

For 64751-66506 and lower numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made with the "Micro-proce
clock source?" configuration question as described in the "Configuring for
Operation with Your Target System" section of the "Configuring the Emulator"
chapter.

For 64751-66508 and higher numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made by positioning a jumper
module on the board.

If your active probe board number is 64751-66506 or lower, go on to Step 4;
otherwise, perform the following steps.

55

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and removye the
cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

W ADD PLASTIC

WASIIERS TO
THESE TWO
POSITIONS ONLY

56

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

2 To select the 32.768 KHz crystal internal to the emulator, insert the jumper module such that pin 1 of

the module aligns with pin 1 of the socket. The target system MUST drive MODCK high (or allow a
pullup resistor in the emulator to pull it high) during reset to enable the 68340 VCO and programr
clock mode.

h

To select an external (target system) TTL oscillator, rotate the jumper module 180 degrees such

of the module aligns with pin 1 of the socket. The target system MUST drive MODCK low during|reset

to enable the 68340 to use the EXTAL signal as the clock source.

Pin 1 of
Clock Jumper
Saocket

64751E01

57

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

3 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure tluue cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

W ADD PLASTIC

WASIIERS TO
THESE TWO
POSITIONS ONLY

58

Chapter 2: Plugging into a Target System
Step 3. Select the emulator clock source

You can also replace the jumper with a prototyping socket on which a crystal and
any capacitors or tank circuitry are assembled. (One such prototyping socket is part
number 20314-36-455 from Electronic Molding Corp., 96 Mill Street, Woonsocket
RI.) The figure below shows the connections that are made to the socket.

—
Emulator +5v —] | (Do Not Connecf Anything
! ! 1417 4o This Pin)
EXTAL Side of Emulator | 5 Py - XTAL Side of Emulaofor
32768 KHz Crystal 32768 KHz Crystal
68340 EXTAL — 3 12 m 68340 XTAL
Target EXTAL —1 4 1M — Target XTAL
NC —5 10 — NC
NC — 6 99— NC
NC — 7 81— Emulator +5v

64751B01

59

Chapter 2: Plugging into a Target System
Step 4. Plug the 68340 PGA emulator probe into the target system

. CAUTION

Step 4. Plug the 68340 PGA emulator probe into
the target system

Possible Damage to the Emulator ProbeThe emulator probe is provided with a
pin extender.Do not use the probe without a pin extender installedReplacing
a broken pin extender is much less expensive than replacing the emulator probe.

The use of more than one pin extender is discouraged, unless it is necessary for
mechanical clearance reasons, because pin extenders cause signal quality
degradation.

1 Install the emulator probe into the target system socket. Make sure that pin 1 of the connector|aligns
with pin 1 of the sockeDamage to the emulator will result if the probe is incorrectly installed.

68340
EMULATOR
PROBE

TARGET SYSTEM

PIN A1

PGA SOCKET

60

Chapter 2: Plugging into a Target System
Step 5. Turn ON p ower

Step 5. Turn ON power

1 Turn emulator power ON. .

2 Turn target system power ON.

61

62

Starting and Exiting HP 64700
Interfaces

63

Starting and Exiting HP 64700 Interfaces

You can use several types of interfaces to the same emulator at the same time to
give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer interface (which is also a separate product)
lets you make measurements that can help you improve the performance of your
software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator. Only one C
debugger interface window and one SPA window are allowed, but you can start
multiple emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are grouped into
the following sections:

e Starting the emulator/analyzer interface.
» Opening other HP 64700 interface windows.
e Exiting HP 64700 interfaces.

64

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in the "Installation" chapter.

This section describes how to:

« Start the interface.

» Start the interface using the default configuration.
* Run acommand file on interface startup.
» Display the status of emulators defined in the 64700tab.net file.

* Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use theemul700 <emul_name>ommand.

If /Jusr/hp64000/binis specified in your PATH environment variable (as shown in
the "Installation" chapter), you can start the interface witlenma/700
<emul_name>command. The "emul_name" is the logical emulator name given in
the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
and data in the fourth.

65

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Examples To start the emulator/analyzer interface for the 68340 emulator:

$ emul700 em68340 <RETURN>

The "em68340" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

'# lan: em68340 m68340 21.17.9.143
serial: em68340 m68340 myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in the "Error Messages" chapter.

To start the interface using the default
configuration

» Use theemul700 -d <emul_namexommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

66

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

To run a command file on interface startup

Use theemul700 -c <cmd_file> <emul_namesommand.

You can cause command files to be run upon starting the interface by using th
<cmd_file> option to theemul700command.

Refer to the "Using Command Files" section in the "Entering Commands" cha
for information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup” command file:
$ emul700 -c startup em68340 <RETURN>
To display the status of emulators
Use theemul700 -lor emul700 -lvcommand.
The-l option of theemul700command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.
You can also use the option with the| option for a verbose listing of the status
information.

Examples To list, verbosely, the status of the emulator whose logical name is "em68340":

$ emul700 -lv. em68340 <RETURN>

The information may be similar to:

em68340 - m68340 running; user = guest

description:

M68340 emulation, w/internal analysis, 260Kb emul mem

user interfaces: xdebug, xemul, xperf, skemul, sktiming

device channel:

/dev/emcom23

67

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Or, the information may be similar to:

em68340 - m68340 running; user = guest@myhost
description: M68340 emulation w/internal analysis, 260Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
internet address: 21.17.9.143

To unlock an interface that was left locked by
another user

» Use theemul700 -U <emul_namexommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. This command will fail if there currently is a
session in progress.

Examples To unlock the emulator whose logical name is "em68340":

$ emul700-U em68340 <RETURN>

68

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows if those products have been
installed (for example, the software performance analyzer (SPA) interface and
high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Window®r enter the
emul700 <emul_name>xommand in another terminal emulation window.

To open additional conventional Softkey Interface windows, choose

File - Emul700- Emulator/Analyzer under Terminal Windowsr enter the
emul700 -u skemul <emul_namerzommand in another terminal emulation
window.

You can open additional Graphical User Interface windows, or terminal emulation
windows containing the Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

69

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

To open the high-level debugger interface window

* ChooseFile - Emul700- High-Level Debugger ...under "Graphic Windows", or
enter theemul700 -u xdebug <emul_nameezommand in another terminal

emulation window.
For information on how to use the high-level debugger interface, refer to the

debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

* ChooseFile - Emul700- Performance Analyzer ...under "Graphic Windows", or
enter theemul700 -u xperf <emul_name>ommand in another terminal
emulation window.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

70

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 764700 interfaces. You
can simply close one of the open interface windows, or you can exit the debug

session by closing all the open windows. When exiting the debug session, yo
lock the emulator so that you can continue later, or you can release the emula
system so that others may use it. This section describes how to:

* Close an interface window.

» Exit a debug/emulation session.

To close an interface window

In the interface window you wish to close, chobse - Exit — Window. In the
emulator/analyzer interface command line, enteetitlcommand with no options.

All other interface windows remain open, and the emulation session continues,
unless the window closed is the only one open for the emulation session. In that
case, closing the window ends the emulation session, but locks the emulator so that
other users cannot access it.

71

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

To exit a debug/emulation session

To exit the interface, save your configuration to a temporary file, and lock the
emulator so that it cannot be accessed by other users, ¢hlees&xit - Locked.
In the emulator/analyzer interface command line, entegriidockedcommand.

To exit the interface and release the emulator for access by other users, choose
File - Exit — Released In the emulator/analyzer interface command line, enter the
end release_systernommand.

If you exit the interface locked, the interface saves the current configuration to a
temporary file and locks the emulator to prevent other users from accessing it.
When you again start the interface with ¢éineul700command, the temporary file

is reloaded, and therefore, you return to the configuration you were using when you
quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry buffer
and command recall buffer. These recall buffer values will be present when you
restart the interface.

In contrast, if you end released, you must have saved the current configuration to a
configuration file (if the configuration has changed), or the changes will be lost.

72

Entering Commands

73

Entering Commands

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, you have even more in the command line.

This chapter shows you how to enter commands in each type of emulator/analyzer
interface. The tasks associated with entering commands are grouped into the
following sections:

« Using menus, the entry buffer, and action keys.
e Using the command line with the mouse.

e Using the command line with the keyboard.

e Using command files.

e Using pod commands.

e Forwarding commands to other HP 64700 interfaces.

74

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the Graphical User
Interface to enter commands. This section describes how to:

Choose a pulldown menu item using the mouse.

Choose a pulldown menu item using the keyboard.

Use the popup menus. .
Use the entry buffer.

Copy and paste to the entry buffer.

Use action keys.

Use dialog boxes.

Access help information.

75

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 1)

Position the mouse pointer over the name of the menu on the menu bar.
Press and hold tmmmmand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

76

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.

Click thecommand selechouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a ca
menu (identified by an arrow on the right edge of the menu button), then repe

previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and holdrtteu seleckey (for
example, the "Extend char" key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, " for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

77

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then presRET@JRN>
key on the keyboard.

To cancel a displayed menu, pressiEBeapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkadoard focus policig set to

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to the "Setting X
Resources" chapter and the "Softkey.Input" scheme file for more information about
setting the X resources that control defining keyboard accelerators.

78

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose popup menu items

Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold ttselectmouse button.

After the popup menu appears (while continuing to hold down the mouse butt
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:

Mnemonic Memory Display.
Breakpoints Display.

Global Symbols Display.
Local Symbols Display.
Status Line.

Command Line.

79

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, prestnieu key
combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

80

Note

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are a number of entry buffers being displayed, there
is actually only one entry buffer and it is common to all windows. That means you
can copy a symbol or an address from one window and then use it in another
window.

On a memory display or trace display, a symbol may not be completely displa
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

81

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Example To paste the symbol "num_checks" into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the paste mouse
button.

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Aerto() | Break | Step Asm
{):i num_checks IReca
A mouse click Memory :imnemonic :file = mainimodule). "main.c”:
. addre label dats
causes the interface 31 extern woid update_systemi}; /#* update system wariables #/
to expand the 32 extern woid interrupt_simi{}; /% simulate an interrupt */
. . . extern void do_sort(); /#* sets up ascii array and call
highlight to include
the symbol o ey
"num_checks" and init_system();
paste the symbol proc_spec_init};
into the entry buffer. 188 while (true)

181 i

182 update_system(};

183 num_check sga

184 interrupt_sim{&num_checks);
185 if {graph?’

1686 graph_datal};

187 proc_specificl);

STATUS: cws: main. " main.c”

82

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startu

If you exit the emulation/analysis session with the interface "locked", recall buf
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

83

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by:
» Copying the text from the display area using the copy-and-paste feature.
» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.

Position the mouse pointer within the command line text entry area.

If necessary, reposition the cursor to the location where you want to paste the text.
If necessary, choose the insert or replace mode for the command entry area.

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

84

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this make
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
You can use the predefined action keys, but you'll really appreciate them when you
define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.
2 Edit the item in the text entry area (if desired).

3 Click on the "OK" pushbutton to make the selection and close the dialog box, click
on the "Apply" pushbutton to make the selection and leave the dialog box open, or
click on the "Cancel" pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

85

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the graphical interface window.

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the "Setting
X Resources" chapter).

86

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of File Filter

filter-matching files
flrom the culrrgn; fusers/quest/demos/ debug_ernv/hpB47517/% . EA

directory. .

. _ Files
A list of files fusersiquestfdemofdebug_envihp&4751/Config.EA
previously accessed . § fusersfquest/demoidebug_envihp&d751/Configall.EA
during the emulation <Previous Files=

session. usersfiquestfdemofdebuq envihp84751/Config.EA

A single click on a
file name from either
list highlights the file
name and copies it tc
the text area. A
double click chooses
the file and closes thi

dialog box. i ¥
Label informs you
what kind of file

selection you are fusers/guest/demo/debug_env/hpB4751/Config. EA_
performing.

Load Emulation Configuration

Text entry area. -
Text is either OK Filter Cancel
copied here from
the recall list, or
entered directly.

Clicking this button Entering a new file filter Clicking this button
chooses the file name and clicking this button cancels the file selection
displayed in the text entry causes a list of files operation and closes the
area and closes the dialogmatching the new filter to dialog box.

box. be read from the directory.

87

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you

O,f the type of list Emulator/Analyzer: Directory Selection
displayed.

A list of predefined Previous Working Directories

or previously ¥ Associated X Resource: "emul.m&8000*dirSelectSub.entri
accessed d #

irectories. %HDME .

HP&4000/monitor
A single click on a HP&4000/demofdebug_envihp&d731
directory name from -
the list highlights fusersiguestidemo/debug env
the name and copics
it to the text area. A
double click chooses
the directory and

closes the dialog £ e]

box.

Selection

Esers.-" guest/demos debug_erv/hpB4751

Text entry area.

Directory name is
either copied here OK Apply
from the recall list,
or entered directly.

Clicking this button Clicking this button Clicking this button
chooses the directory chooses the directory cancels the directory
displayed in the text entrydisplayed in the text entryselection operation and
area and closes the dialogarea, but keeps the dialogcloses the dialog box.
box. box on the screen instead

of closing it.

88

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Display the Help Index by choositglp — General Topic...or Help - Command
Line....

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Inde
interface displays a window containing the help information. You may leave t
window on the screen while you continue using the interface.

89

Chapter 4: Entering Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the Graphical User Interface,dbemand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. Additionally, the graphical interface makes the softkey
labels pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with the keyboard is
the only way to enter commands.

This section describes how to:

e Turn the command line off/on.
* Enter commands.

» Edit commands.

* Recall commands.

» Display the help window.

To turn the command line on or off

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodelégeimouse button,
and choos€ommand Line Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

Turns display of the command line area "on" or "off." On means that the command
line is displayed and you can use the softkey label pushbuttons, the command
return and recall pushbuttons, and the cursor pushbuttons for command line editing.

90

Chapter 4: Entering Commands
Using the Command Line with the Mouse

Off means the command line is not displayed and you use only the pulldown menus
and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some input at the command line that cannot be supplied another way.

To enter a command

Build a command using the softkey label pushbuttons by successively positioning
the mouse pointer on a pushbutton and clickingtishbutton selechouse button
until a complete command is formed.

Execute the completed command by clickingRleturn pushbutton (found near
the bottom of the command line in the "Command" group).

Or:

Execute the completed command using the Command Line entry area popup menu:
Position the mouse pointer in the command line entry area; press and hold the
selectmouse button until the Command Line popup menu appears; then, choose the
Execute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete wReturn pushbutton is not
halfbright. The interface does not check or act on a command, however, until the
command is executed. (In contrast, commands resulting from pulldown menu
choices and action keys are supplied with the needed carriage return as part of the
command.)

91

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pushbuttons

To clear the command line, click t@dear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton.

To move to the right one command word or token, clickthvard pushbutton.
To move to the left one command word or token, clickBekup pushbutton.

To insert characters at the cursor position, presaseet key to change to
insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pres8HheKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, tli@rward pushbutton becomes halfbright
and unresponsive when the cursor reaches the end of the command string.
Similarly, theBackup pushbutton becomes halfbright and unresponsive when the
cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line popup
menu" and "To edit the command line using the keyboard" for information about
additional editing operations you can perform.

92

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line popup menu

To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold ge&ectmouse button until the Command Line popup
menu appears; chooSéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line: posit
the mouse pointer at the place where you want the clear-to-end to start; press
hold theselectmouse button until the Command Line popup menu appears; ch
Clear to End of Line from the menu.

To position the cursor and insert characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Insert Mode from the menu; type the characters to be inserted.

To replace characters at the current cursor location: position the mouse pointer in a
non-text area of the command line entry area; press and halel¢cénouse

button to display the Command Line popup menu; chBoséion Cursor,

Replace Modefrom the menu; type the characters to be inserted.

To position the cursor and replace characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Replace Modefrom the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for information
about additional editing operations you can perform.

93

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To recall commands

1 Click the pushbutton labeldgiecallin the Command Line to display the dialog box.

2 Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — pulldown menus, action
keys, and command line entries — are echoed to the command line entry area, the
contents of the Command Recall dialog box is not restricted to just commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

» To display the help topic explaining the operation of the command line, press the
Help pushbutton located near the bottom-right corner of the Command Line area.

94

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

When using the command line with the keyboard, you enter commands by pressing
softkeys whose labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

The command line also provides command completion. You can type the first few
characters of a command (enough to uniquely identify the command) and then
press <Tab>. The interface completes the command word for you.

Entering commands with the keyboard is easy. However, the interface provid
other features that make entering commands even easier. For example, you

» Enter multiple commands on one line.
* Recall commands.
» Edit commands.

» Access on-line help information.

Examples

To enter multiple commands on one command
line
Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the commands
are separated by semicolons (;).

To reset the emulator and break into the monitor:

reset ; break <RETURN>

95

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

Examples

To recall commands

Press <CTRL>r or <CTRL>b.

The most recent 20 commands you enter are stored in a buffer and may be recalled
by pressing <CTRL>r. Pressing <CTRL>b cycles forward through the recall buffer.

For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r <RETURN>

To edit commands

Use the <Left arrow>, <Right arrow>, <Tab>, <Shift><Tab>, <Insert char>, <Back
space>, <Delete char>, <Clear line>, and <CTRL>u keys.

The <Left arrow> and <Right arrow> keys move the cursor single spaces to the left
or right.

The <Tab> and <Shift><Tab> keys move the cursor to the next or previous word
on the command line.

The <Insert char> key enters the insert editing mode and allows characters or
command options to be inserted at the cursor location.

The <Back space> key deletes the character to the left of the cursor.
The <Delete char> key deletes the character to the right of the cursor.
The <Clear line> key deletes the characters from the cursor to the end of the line.

The <CTRL>u key erases the command line.

96

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

To access on-line help information

» Use thehelp or ? commands.

To access the command line’s on-line help information, type &ighgor ? on the
command line. You will notice a new set of softkeys. By pressing one of these
softkeys and <RETURN>, you can display information on that topic.

Examples To display information on the system commands:

help system_commands <RETURN>

Or:

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screen full
of information, you will have to press the space bar to see the next screen full, or
the <RETURN> key to see the next line, just as you do with the Widdé¢

command. After all the information on the particular topic has been displayed (or
after you press "g" to quit scrolling through information), you are prompted to press
<RETURN> to return to the command line.

97

Chapter 4: Entering Commands
Using Command Files

Using Command Files

You can execute a series of commands that have been stored in a command file.
You can create command files by logging commands while using the interface or
by using an editor on your host computer.

Once you create a command file, you can execute the file in the emulation
environment by typing the name of the file on the command line and pressing
<RETURN>.

Command files execute until an end-of-file is found or until a syntax error occurs.
You can stop a command file by pressing <CTRL>c or the <Break> key.

This section shows you how to:
» Start logging commands to a command file.
» Stop logging commands to a command file.

» Playback (execute) a command file.

Nesting Command Files

You can nest a maximum of eight levels of command files. Nesting command files
means one command file calls another.

Comments in Command Files

Text that follows a pound sign (#), up to the end of the line, is interpreted as a
comment.

Using the wait Command

When editing command files, you can inseait commands to pause execution of
the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

98

Chapter 4: Entering Commands
Using Command Files

Use thawait measurement_completeommand after changing the trace depth.
By doing this, when you copy or display the trace after changing the trace depth,
the new trace states will be available. Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters by using a
parameter declaration line preceding the commands in the command file. When the
command file is called, the system will prompt you for current values of the formal
parameters listed.

Parameters are defined as:

Passed Parameters These are ASCII strings passed to a command file. Any
continuous set of ASCII characters can be passed. Spaces separate the
parameters.

Formal Parameters -These are symbols preceded by an ampergahd (
which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for the formal
parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the parameter in
double quotes () or single quotes (). Thus, to pass the parameter HP 9000 to a
command file, you can use either "HP 9000" or 'HP 9000'.

The special paramet&®ArG_IEfT gets set to all the remaining parameters
specified when the command file was invoked. This lets you use variable size
parameter lists. If no parameters are &&rG_|EfT gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1

#

modify a location or list of locations in memory
and display the result

#

modify memory &ADDR words to & VALUE1 &ArG_IEfT
display memory &ADDR blocked words

99

Chapter 4: Entering Commands
Using Command Files

When you execute CMDFILE, you will be prompted with:

Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location to be
modified. You will then be prompted f&/ALUEL . If you enter, for example,
"0,-1,20, Offffh, 4+5*4", the first parameter "0,-1,20," is passe&MALUE1 and
the remaining parameters "Offffh," and "4+5*4" are pass&ias |EfT .

You can also pass the parameters when you invoke the command file (for example,
CMDFILE 1000h 0,-1,20, Offfth, 4+5*4).

Other Things to Know About Command Files

You should know the following about using command files:

1

Command files may contain shell variables. Only those shell variables
beginning with "$" followed by an identifier will be supported. An identifier is
a sequence of letters, digits or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{ }" or entered directly
following the "$" symbol. Braces are required when the identifier is followed
by a letter, a digit or an underscore that is not interpreted as part of its name.

For example, assume a directory named /users/softkeys and the shell variable
"S". The value of "S" is "soft". By specifying the directory as /users/${S}keys
the correct result is obtained. However, if you attempt to specify the directory
as /users/$Skeys, the Softkey Interface looks for the value of the variable
"Skeys". This is not the operators intended result. You may not get the
intended result unless Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in your
environment with the command "env".

Positional shell variables, such as $1, $2, and so on, are not supported. Neither
are special shell variables, such as $@, $*, and so on, supported.

You can continue command file lines. This is done by avoiding the line feed
with a backslash (). A line terminated by "\" is concatenated with any
following lines until a line that does not contain a backslash is found. A line
constructed in this manner is recognized and executed as one single command
line. If the last line in a command file is terminated by "\", it appears on the
command line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three quoting

100

Chapter 4: Entering Commands
Using Command Files

characters for shell commands which are double quotes ("), single quotes ('),
and the backslash symbol (\).

For example, the following three lines are treated as a single shell command.
The two hidden line feeds are ignored because they are inside the two single
quotes ():

lawk '/$/ { blanks++}
END { print blanks }

"an_unix_file .

To start logging commands to a command file

ChooseFile - Log - Record and use the dialog box to select a command file name.

Using the command line, enter tlog_commands to <filescommand.

To stop logging commands to a command file

ChooseFile - Log - Stop.

Using the command line, enter tlog_commands offtommand.

101

Chapter 4: Entering Commands
Using Command Files

To playback (execute) a command file

ChooseéFile - Log - Playback and use the dialog box to select the name of the
command file you wish to execute.

Using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the interface
cannot find the command file in the current directory, it searches the directories
specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

102

Chapter 4: Entering Commands
Using Pod Commands

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal Interface is the
low-level interface that resides in the firmware of the emulator.

A pod command used in the Graphical User Interface bypasses the interface and
goes directly to the emulator. Because some pod commands can cause the interface
to become out-of-sync with the emulator, or even cause the interface to terminate
abnormally, they must be used with care.

For example, if you change configuration items, the actual state of the emulat
no longer match the internal record the interface keeps about the state of the
emulator.

Issuing certain communications-related commands can prevent the interface from
communicating with the emulator and cause abnormal termination of the interface.

However, it is sometimes necessary to use pod commands. For example, you must
use a pod command to execute the emulap@rormance verification (pv)
routine. Performance verification is an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level interface if they
are used indiscriminately.

This section shows you how to:
» Display the pod commands screen.

* Use pod commands.

103

Chapter 4: Entering Commands
Using Pod Commands

To display the pod commands screen

ChooseDisplay — Pod Commands

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, Gettisgs- Pod
Command Keyboard

To use pod commands

To begin using pod commands, cho8s#tings— Pod Command Keyboard

To end using pod commands, click twspendpushbutton softkey.

TheSettings— Pod Command Keyboardcommand displays the pod commands
screen and activates the keyboard for entering pod command on the command line.

104

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfaces.

This background process also allows commands to be forwarded from one int
to another. Commands are forwarded usinddheard command available in the
command line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

Examples

To forward commands to the high-level debugger

Enter theforward debug "<command string>" command using the command
line.

To send the "Program Run" command to the debugger:
forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

105

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

» Enter theforward perf "<command string>" command using the command line.

Examples To send the "profile" command to the software performance analyzer:

. forward perf "profile” <RETURN>

106

Configuring the Emulator

107

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

» Using the configuration interface.

* Modifying the general configuration items.

» Reconfiguring the emulator configuration registers.
» Selecting the emulation monitor program.

* Mapping emulation and target system memory.

» Configuring the emulator pod.

» Setting the debug/trace options.

The simulated I/O feature and configuration questions are described in the
Simulated 1/0 User’s Guide

The interactive measurement configuration questions are described in the "Making
Coordinated Measurements" chapter.

Configuring for Operation in the Target System

After you plug the emulator into a target system and turn on power to the
HP 64700, you need to configure the emulator so that it operates properly with your
target system.

Before the emulator can operate in your target system, you must:

Map memory. Because the emulator can use target system memory or emulation
memory (or both), it is necessary to map ranges of memory so that the emulator
knows where to direct its accesses.

You can synchronize emulation memory accesses to the target system in order to
more closely imitate target system memory. For example, if emulation memory

108

Chapter 5: Configuring the Emulator

replaces slower target system memory that requires wait states, synchronizing
emulation memory to the target system causes wait states to be inserted on
emulation memory accesses as they would be on target system memory accesses.

Refer to the "Mapping Memory" section later in this chapter.

Select the emulator’s clock source. Generally, you should use the target
system clock when plugging the emulator into a target system.

Also, the emulator needs to know the following things:

Is there circuitry in the target system that requires programs to run in
real-time? Some emulator commands cause temporary breaks to the monito
state, typically to access microprocessor register values, single-port emulation
memory, or target system memory. If the target system requires that program
in real-time, you must restrict the emulator to real-time runs.

Should the emulator respond to target system interrupts when

running in the monitor program? If so, you must use a foreground monitor
program since target system interrupts are always ignored during background
operation (refer to the "Selecting the Emulation Monitor" section later in this
chapter). If it's not important that the emulator respond to target system interrupts
when running in the monitor, you can use the background monitor.

109

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

Start the configuration interface.

Modify a configuration section.

Store a configuration.

Change the configuration directory context.
Display the configuration context.

Access help information.

Exit the configuration interface.

Load a configuration.

This chapter describes emulator configuration in general terms. For information
about your emulator’s specific configuration questions, refer to your emulator
User’'s Guide

110

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface main menu (see example below) is displayed.

The configuration sections that are presented depend on the hardware and features
of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface, you don't get a main menu from which to
choose configuration sections; however, the same display area and command line
are used to answer the configuration questions.

111

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Examples The 68340 emulator configuration interface main menu is shown below.

Clicking on one of
these lines selects a
particular configuration
section.

Clicking this button
presents the questions
for the selected
configuration section.

Emulator Configuration: Main Men

~ Emulator Configuration Sections
& General Items

<> Reconfigure Internal Registers
<> Monitor Type

<> Memory Map

<> Emulator Pod Settings

<» DebugfTrace Options
£ Simulated 10

~Analyzer Configuration Sections

<> Interactive Measurement Specification

Modify Apply to Exit
Section Emulator Window

Clicking this button Clicking this button Clicking this button
stores the current exits the configuration presents the on-line help.
configuration. interface.

112

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface main menu, and click the
"Modify Section" pushbutton.

3 Use the command line to answer the configuration questions.

If you're using the Softkey Interface:
The configuration questions in the "General Items" section are the first to
asked.

To access the questions in the "Reconfigure Internal Registers" section, answer
"yes" to the "Reconfigure internal registers?" question.

To access the questions in the "Monitor Type" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Memory Map" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Emulator Pod Settings" section, answer "yes" to
the "Modify emulator pod configuration?" question.

To access the questions in the "Debug/Trace Options" section, answer "yes" to
the "Modify debug/trace options?" question.

113

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Each configuration section presents a window similar to the following.

The menu bar. File Display

select imternal or external emulation clock

Whern the internal clock has been selected, the emulator
will operate using an internal 32.768 Khz crustal.

Configuration he|p < The ETrget system HUSThdriVBIHDDELK hing(Dr EHEL; 4
. a pullup resistor in the emulator to pu it nig uring
text display area. reset to enable the 53348 VCD.

WReg the external clock has been selected, the emulator
will™se the crystal or TTL oscillator in the target system.
MOOCLE 2kould be driven appropriately.

Emulator status

and error message %\ Confiquring H68340
line. Micro-processor clock source? internal

Command line text

entry area. |internal§|external§| El E | El El El RECALL E

Pushbutton softkeysi{ Command: Heanll Cursor: |Backup IFonl.rard |Clearto end:|Clear:

Command control
and cursor control
pushbuttons.

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return” command pushbutton to accept the answer that is
shown.

When you answer a configuration question, you are normally presented with the
next question in the section; however, there are some cases when a carriage return
is required, and you can supply it by clicking the "Return" command pushbutton or
by pressing the <RETURN> key.

114

Chapter 5: Configuring the Emulator
Using the Configuration Interface

At the last question of a configuration section, you are asked if you wish to return
to the main menu. You can click the "next_sec" softkey pushbutton to access the
guestions in the next configuration section.

To recall a configuration question, click the "RECALL" softkey pushbutton. If you
do this at the starting question of a configuration section, you are asked if you want
to return to the main menu.

In order for the emulator to recognize any configuration changes, the configuration
must be applied to the emulator.

To store a configuration

When answering the configuration questions, chédse- Store...from the
pulldown menu, and use the File Selection dialog box to name the configuration
file.

From the configuration interface main menu, click on the "Apply to Emulator"
button, and use the File Selection dialog box to name the configuration file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don't enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

The file to which the configuration is stored becomes the current configuration file.
The emulator only recognizes configuration changes when they are stored or loaded.

When modifying a configuration using the graphical interface, you can store your
answers at any time. This is useful for quickly verifying the effect a configuration
change has on the emulator.

Configuration information is saved in two files with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file, and the file with
the ".EB" extension is the "binary" or loadable copy of the file.

115

Chapter 5: Configuring the Emulator
Using the Configuration Interface

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

To change the configuration directory context

* When answering the configuration questions, chédse- Directory... from the

pulldown menu, and use the Directory Selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

116

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To display the configuration context

* When answering the configuration questions, ch@ssglay - Context...from the
pulldown menu.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

mulator Configuration: Current Conte

z Directory: fusersiguest/demofdebug_envihp&4751
k Configuration File: fusersfguestidemofdebug_envihp&4751/Config

To access help information

* When answering the configuration questions, chétedp — General Topic...from
the pulldown menu.

» From the configuration interface main menu, click on the "Help Topic" button.

117

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To exit the configuration interface

When answering the configuration questions, chédse- Exit... from the
pulldown menu (or type <CTRL>X), and click "Yes" in the confirmation dialog box.

From the configuration interface main menu, click the "Exit Window" button, and
click "Yes" in the confirmation dialog box.

The confirmation dialog box only appears if changes have been made to the current
configuration.

When you choose "Yes" from the confirmation dialog box, any modifications made
to the configuration which haven’t been stored are lost. Choosing "No" from the
confirmation dialog box cancels the exit and keeps the emulator configuration
interface running.

To load a configuration

In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the File Selection dialog box to specify the
configuration file to be loaded.

Using the command line, enter tload configuration <FILE> command.

This command loads previously created and stored configuration files.

118

Chapter 5: Configuring the Emulator
Modifying the General Configuration Items

Modifying the General Configuration Items

In order to modify the general configuration items, you must first start the
configuration interface and access the "General Items" configuration section (refer
to the previous "Using the Configuration Interface" section).

This section shows you how to:

» Select the emulator’s clock source.

» Enable/disable entry into the monitor after configuration.
» Restrict to real-time runs.

e Turn OFF the restriction to real-time runs.

To select the emulator’s clock source

For 64751-66508 and higher numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made by positioning a jumper
module on the board as described in the "Plugging into a Target System" chapter.

For 64751-66506 and lower numbered active probe printed-circuit boards, the
selection of the internal or external clock source is made with the "Micro-processor
clock source?" configuration question.

Answer "internal" or "external" to the "Micro-processor clock source?" question.

When you answer "internal", the emulator will use the internal 32.768 KHz crystal.
The target system MUST drive MODCLK high (or allow a pullup resistor in the
emulator to pull it high) during reset to enable the 68340 voltage-controlled
oscillator (VCO).

When you answer "external”, the emulator will use the crystal or TTL oscillator in
the target system. MODCLK should be driven appropriately.

Generally, you should select the external clock option when using the emulator
in-circuit to synchronize the emulator with your target system.

119

Chapter 5: Configuring the Emulator
Modifying the General Configuration Iltems

Your target system clock must conform to the specifications for the 68340
microprocessor.

Note that changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the "Enter monitor
after configuration?" question is answered.

To enable/disable entry into the monitor after
configuration

Answer "yes" or "no" to the "Enter monitor after configuration?".

This question allows you to select whether the emulator will be running in the
monitor or held in the reset state on completion of the emulator configuration.

The answer to this configuration question is important in some situations. For
example, when you select the external clock and the target system is turned off, do
not select reset to monitor. Otherwise, configuration will fail. When you select an
external clock source, this question becomes "Enter monitor after configuration
(using external clock)?" and the default answer becomes "no".

To restrict to real-time runs

Answer "yes" to the "Restrict to real-time runs?" question.

While running programs, temporary breaks to the monitor state are not allowed.
The emulator refuses the following commands:

» Display or modify registers.

» Display, modify, copy, load, store, or breakpoint commands that access
single-port emulation memory or target system memory.

The emulator contains one 4 Kbyte block of dual-port emulation memory
which can be accessed while runs are restricted to real-time. This block of

120

Chapter 5: Configuring the Emulator
Modifying the General Configuration Items

dual-port emulation memory is reserved for foreground monitor programs
when they are used.

* Synchronize SIM registers.

If you want to enter one of these commands, you must first make an explicit break
into the monitor using thereak command.

CAUTION Target system damage could occurlf your target system circuitry is dependent
on constant execution of program code, be aware that the following commands still
cause breaks from running programs even when you have restricted the emulator to
real-time runs:

e reset
e run

* break
e step

Use caution in executing these commands.

To turn OFF the restriction to real-time runs

* Answer "no" to the "Restrict to real-time runs?" question.

Temporary breaks to the monitor while running programs are allowed, and the
emulator accepts commands normally.

121

Chapter 5: Configuring the Emulator
Reconfiguring the Emulator Configuration Registers

Reconfiguring the Emulator Configuration
Registers

In order to modify the general configuration items, you must first start the
configuration interface and access the "Reconfigure Internal Registers"

configuration section (refer to the previous "Using the Configuration Interface"
section).

This section shows you how to:

» Define values for the emulator configuration registers.

To define values for the emulator configuration
registers

» Answer the "Initial value of the configuration copy of <CF_SIM_REGISTER>"
questions.

These questions allow you to specify the initial values of the following CF_SIM
registers.

CF_MBAR
CF_SIM_MCR
CF_PPARA1

CF_PPARA2

CF_CSOADDR
CF_CSOMASK
CF_CS1ADDR
CF_CS1IMASK
CF_CS2ADDR
CF_CS2MASK
CF_CS3ADDR
CF_CS3MASK

Refer to the "Using the Emulator Configuration Registers" section in the "Using the
Emulator" chapter for information on how these registers are used.

122

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

Selecting the Emulation Monitor

This section shows you how to:

» Select the background monitor (implemented with the 68340 Background
Debug Mode (BDM)).

» Select the foreground monitor program.
» Use acustom foreground monitor program.

When you power up the emulator, or when you initialize it, the background monitor
is selected. You can also configure the emulator to use a foreground monitor.
Before the background and foreground monitors are described, you should
understand the foreground and background emulator modes as well as the fu

of the emulation monitor.

Background

Background is the emulator mode in which emulation processor execution is
suspended.

Foreground

Foreground is the mode in which the emulator executes as if it were a real
microprocessor. The emulator is in foreground when it is running user programs or
running in a foreground monitor.

Function of the Monitor

The monitor is the interface between the emulation system controller (which
accepts and executes emulation commands) and the target system. The monitor
uses the emulation microprocessor because that's the only way to access registers,
single-port emulation memory, and target system memory.

When the emulation system controller recognizes that a command requires the
monitor, it writes a command code to a communications area and "breaks" emulator
execution into the monitor. The monitor reads this command (and any associated
parameters), makes the appropriate accesses, places the values in the
communication area, and returns emulator execution to its previous state.

123

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

Background Monitor

When a background monitor is selected, the Background Debug Mode (BDM) of
the 68340 processor is used. The BKPT line is asserted to enter the monitor.

Foreground Monitor

The foreground monitor is an assembly language program that is executed by the
68340 emulation microprocessor in its normal operating mode.

When a foreground monitor is selected, the foreground monitor or downloaded
custom monitor is loaded into dual-ported emulation memory and consumes a
4 Kbyte block of the 68340’s address range.

The foreground monitor program is included with the interface software as
/usr/hp64000/monitor/fm64751.s It can be assembled with the HP AxLS
68000/10/20 Assembler/Linker/Librarian or with the Microtec Research 68000
assembler and linker.

You may customize the foreground monitor if necessary; however, you must
maintain the basic communications protocol between the monitor and the emulation
system controller. Comments in the monitor program source file detail sections
that cannot be changed.

Comparison of Background and Foreground Monitor Programs

Monitor Program Characteristic Background Foreground
Takes up processor memory space No Yes, 4 Kbytes
Allows the emulator to respond to target system No Yes
interrupts during monitor execution

Can be customized No Yes
Resident in emulator firmware 68340 emulation Yes, (custom monitor

processor's BDM | must be assembled
linked, and loaded)

124

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To select the background monitor

Access the configuration questions.
Answer "yes" to the "Modify memory configuration?" question.
Answer "background" to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

Re-map memory (see the following section on "Mapping Memory").

When a background monitor is selected, the Background Debug Mode (BDM) of
the 68340 processor is used. The BKPT line is asserted to enter the monitor.

During background monitor operation, there will be no bus cycle activity except for
memory reads and writes that result from memory display or modify commands.

Changing the monitor configuration resets the memory map, So you must re-map
memory.

125

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

10

11

12

13

To select the foreground monitor program

Access the configuration questions.
Answer "yes" to the "Modify memory configuration?" question.
Answer "foreground" to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

Enter 0 through 7 in response to the "Interrupt priority level for default foreground
monitor?" question.

Enter the base address of the monitor in response to the "Monitor’s base address?"
guestion.

Answer the "Enable /DSACK interlocking on monitor addresses?" question.
Re-map memory (see the following section on "Mapping Memory").
Answer "yes" to the "Modify emulator pod configuration?" question.
Answer the "Reset value for Supervisor Stack Pointer?" question.

Answer the "Reset value for Program Counter?" question.

Save the configuration changes.

Modify the TRACE exception vector to point to the TRACE_ENTRY symbol in
the monitor program so that you can step through the user program.

Selecting the Foreground Monitor

Answering "foreground" to the "Monitor type?" question causes the current
memory map to be deleted, and a new map term is added for the monitor program.

126

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

The starting address of the monitor block is set by answering the "Monitor’'s base
address?" question, and your response to the "Enable /DSACK interlocking on
monitor addresses?" question determines whethelstti®dSACK interlock)

memory attribute is added.

When you select a foreground monitor, the emulator automatically loads the default
program, resident in emulator firmware, into dual-ported emulation memory. The
foreground monitor is reloaded every time the emulator breaks into the monitor
state from the reset state.

Unlike the background monitor, the foreground monitor runs within the same
address space as the target program consuming a 4 Kbyte block of the 68340’s
address range. The foreground monitor can run with target interrupts enabled
"Selecting the Interrupt Priority Level" below).

The emulator breaks into the foreground monitor by using the emulation
processor’s background debug mode (BDM) except for single-stepping, which uses
the trace exception. The time spentin BDM is approximately 350 microseconds.
An exception stack frame of 7 to 13 words will be temporarily pushed onto the
user’'s master and/or interrupt stack(s) during monitor entry.

Selecting the Interrupt Priority Level

The default foreground monitor can be configured to run at a lowered interrupt
priority level to allow critical target system interrupts to be processed during
monitor execution.

At the point it is safe to lower the interrupt priority level, the foreground monitor
will set the interrupt priority mask to the value specified or the interrupt level that
was in effect before monitor entry, whichever is greater.

During background monitor operation, all target system interrupts, including level 7
non-maskable interrupts, are blocked.

Modifying this configuration item will reset the processor.

Selecting the Monitor’'s Base Address

Your response to the "Monitor’'s base address?" question defines the starting
address of the 4 Kbyte block of dual-ported emulation memory. This block of
memory is reserved for the foreground monitor. The address must reside on a

4 Kbyte boundary (in other words, an address ending in 000H) and must be
specified in hexadecimal. Also, the foreground monitor's base address must have
no function code specified.

127

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

The current memory map will be deleted, and a new map term is added for the
monitor.

Specifying Target Synchronization

If you wish to synchronize monitor cycles to the target system (that is, interlock the
emulation and target system /DSACK on accesses to the monitor memory block),
answer "yes" to the "Enable /DSACK interlocking on monitor addresses?"
guestion; otherwise, answer "no".

When interlocking is enabled, cycle termination of accesses to foreground monitor
memory will not occur until the target system provides a /DSACK. If the monitor
is placed in an address range for which the target system does not generate a
/IDSACK, the emulator will be unable to break into the monitor and a "CPU in wait
state" status will result.

When interlocking is disabled, accesses to foreground monitor memory will be
terminated by a /DSACK signal generated by the emulator. Any cycle termination
signals generated by the target system during monitor memory accesses, including
/BERR, will be ignored.

Modifying this configuration item will reset the processor and controls whether the
dsi (/DSACK Interlock) memory attribute is used in the foreground monitor
memory map term.

Re-Mapping Memory

When you configure the emulator for a foreground monitor program, the memory
map is reset, and a 4 Kbyte block of emulation memory is automatically mapped
for the monitor program. You must re-map other memory ranges before loading
user programs.

Modifying the TRACE Exception Vector

In order for single stepping to operate with the foreground monitor, the trace vector
in the target system’s exception table (VBR plus 24H) must point to the
TRACE_ENTRY address in the monitor. This address is equal to the monitor's
base address plus 800H in the default foreground monitor.

128

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To use a custom foreground monitor program

1 Edit the monitor program source file to define its base address.
2 Assemble and link the monitor program.

3 Access the configuration questions.

4 Answer "yes" to the "Modify memory configuration?" question.
5 Answer "user_foreground" to the "Monitor type?" question.

6 Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

7 Enter the name of the monitor program absolute file in response to the "Monitor
filename?" question.

8 Enter the base address of the monitor in response to the "Monitor’s base address?"
guestion.

9 Answer the "Enable /DSACK interlocking on monitor addresses?" question.
10 Re-map memory (see the following section on "Mapping Memory").
11 Answer "yes" to the "Modify emulator pod configuration?" question.
12 Answer the "Reset value for Supervisor Stack Pointer?" question.
13 Answer the "Reset value for Program Counter?" question.

14 Save the configuration changes.

129

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

Examples

15 Modify the TRACE exception vector to point to the TRACE_ENTRY symbol in

the monitor program so that you can step through the user program.

Using a custom foreground monitor program is the same as selecting the default
foreground monitor, except that the customized monitor program must be
assembled, linked, and loaded into emulation memory. Also, the "Interrupt priority
level for default foreground monitor?" question is not asked because you can
specify the interrupt priority level in the program.

A custom foreground monitor must be assembled and linked starting at the 4 Kbyte
boundary specified as the monitor’s base address. An ORG statement in the
foreground monitor source file defines the base address. Refer to the foreground
monitor source provided with the emulator for more information.

The custom foreground monitor is saved in the emulator (until the monitor type is
changed) and reloaded every time the emulator breaks into the monitor state from
the reset state.

The following examples of how to set up and use a foreground monitor program
assume the HP 64870 or HP B1464 68000/08/10/20/302
Assembler/Linker/Librarian is installed on the host computer.

To copy the foreground monitor program source file

$ cp /usr/hp64000/monitor/fm64751.s . <RETURN>

To edit the monitor program source

$ chmod 644 fm64751.s <RETURN>
$ vi fm64751.s <RETURN>

The monitor will be loaded at 20000H, so the modify ORG statement near the top
of the file to look like this:

ORG 020000H * START MONITOR ON 4K BOUNDARY

Notice that the ORG statement is indented from the left margin; if it is not indented,
the assembler will interpret the ORG as a label and will generate an error when
processing the address portion of the statement.

130

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To assemble and link the monitor program enter the following commands
(which assume thatisr/hp64000/binis defined in the PATH environment
variable):

$ as68k-L fm64751.s >fm64751.lis <RETURN>
$ 1d68k -c fm64751.k -L> fm64751.map <RETURN>

Where the “fm64751.k” linker command file is:

name fm64751
load fm64751.0
end

To configure the emulator to use a foreground monitor programaccess the
configuration questions, and answer the questions as shown below.

Modify memory configuration? yes

Monitor type? user_foreground

Reset map (change of monitor type requires map reset)? yes
Monitor file name? fm64751

Monitor’s base address? 20000h

Re-map memory for the demo program by entering the following mapper
commands:

0 thru 6fffth emulation rom <RETURN>
7000h thru 16fffh emulation ram <RETURN>
end <RETURN>

Modify emulator pod configuration? yes

Reset value for Supervisor Stack Pointer? 13000h
Reset value for Program Counter? 400h
Configuration file name? fmoncfg

To load the demo program absolute fileenter the following command using the
command line:

load ecs.x <RETURN>

131

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor

To modify the TRACE exception vector to point to the TRACE_ENTRY label
in the monitor program (so that the emulator can single-step), enter the following
commands using the command line:

modify memory 24h longto 20800h <RETURN>

Now, you are ready to use the emulator.

132

Chapter 5: Configuring the Emulator
Mapping Memaory

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

Up to 7 ranges of memory can be mapped, and the resolution of mapped ranges is
256 bytes bytes (that is, the memory ranges must begin on 256 byte boundaries and
must be at least 256 bytes in length).

The emulator contains 4 Kbytes of dual-port emulation memory and provides two
slots for additional emulation memory modules:

HP 64171A 256 Kbyte Memory Modules or HP 64171B 1 Mbyte Memory
Modules (0 wait state emulation memory through 16.7 MHz, 1 wait state
above 16.7 MHz).

HP 64172A 256 Kbyte Memory Modules or HP 64172B 1 Mbyte Memory
Modules (0 wait state emulation memory through 25 MHz).

* HP 64173A 4 Mbyte Memory Modules (0 wait state emulation memory
through 22 MHz, 1 wait state above 22 MHz).

(The 68340 processor is programmed for the correct number of wait states by user
code.) If memory modules are mixed, the performance characteristics of the slower
module should be used.

Emulation memory is made available to the mapper in blocks. When you map an
address range to emulation memory, at least one block is assigned to the range.
When a block of emulation memory is assigned to a range, it is no longer available,
even though part of the block may be unused.

Emulation memory in bank 0 of the emulator probe is divided into 4 equal blocks,
and memory in bank 1 is divided into 2 equal blocks. The 4 Kbyte block of
dual-port emulation memory is 1 block.

When you map ranges of emulation memory, blocks are allocated so as to leave the
greatest amount of emulation memory available. For example, if you map the range
0 through OFFH as emulation memory, the 4 Kbyte block of dual-port memory is
used if possible; if that block has already been used, the next smallest available
block is used.

133

Chapter 5: Configuring the Emulator

Mapping Memory

You should map all memory ranges used by your programs before loading
programs into memory.

Using Emulation Memory to Substitute for 8-Bit Memory

Emulation memory is 16-bit wide memory. However, you can use emulation
memory to substitute for 8-bit memory by using one of the chip selects and
generating internd SACKXx signals for an 8-bit port. You must place the
appropriate values into the emulator configuration (CF_SIM) versions of the chip
select address and mask registers so that emulation memory is accessed correctly.

Using Chip Selects to Access Emulation Memory

When using chip selects to access emulation memorfp3AE€Kx signals can be
generated internally or externally.

If the DSACKX signals are generated externally (as defined by the
CF_CSXMASK register), emulation memory must be interlocked with the target
system (use thasi attribute when mapping the emulation memory range);
otherwise, there will be NOSACKX response.

Fast Termination Mode

Emulation memory does not support the fast termination mode (-1 wait state) that
can be defined in the chip select registers. If a chip select is programmed for this
mode, it will override the mapper and force access to the target system.

External DMA Access to Emulation Memory

External direct memory access (DMA) to emulation memory is not permitted.

The HP 64751 emulator supports operation of the two 68340 on-chip DMA

channels in both single- and dual-address modes. Dual-address transfers can access
emulation memory; single-address transfers must be between peripherals and
memory in the target system only.

134

Chapter 5: Configuring the Emulator
Mapping Memaory

To map memory ranges

1 Access the configuration questions.
2 Answer "yes" to the "Modify memory configuration?" question.

3 Enter the address range, memory type, and optionally an attribute for the memory
range.

You can characterize memory ranges as emulation RAM, emulation ROM, tar
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the m
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if the "Break processor on write to ROM?" trace/debug
configuration option is enabled.

Even though execution breaks into the monitor, the memory location is modified if
it's in emulation ROM or target system RAM mapped as ROM.

135

Chapter 5: Configuring the Emulator

Mapping Memory

The attributes can be:

dp

dsi

csO

dp_dsi

dp_cs0

Dual-port emulation memory.

One emulation memory range, up to 4 Kbytes in length, can be
given thedp attribute. Thelp attribute specifies that the range
be mapped to the 4 Kbyte block of dual-port emulation
memory. If a foreground monitor program is selecteddghe
attribute is automatically assigned to the memory range
reserved for the monitor program.

Interlock emulation memory and target system /DSACK.

Thedsi attribute specifies that accesses in that range of
emulation memory be synchronized with the target system.
This means the termination of accesses in the range will not
occur until the target system provides a /DSACK. If the target
system does not generate a /[DSACK, the emulator will be
unable to break into the monitor and a "CPU in wait state"
status will result.

When interlocking is disabled, accesses to emulation memory
will be terminated by a /DSACK signal generated by the
emulator. Any cycle termination signals generated by the target
system during emulation memory accesses, including /BERR,
will be ignored.

Use 68340 chip select 0.

ThecsOattribute allows you to emulate the 68340’s global chip
select operation. One memory range, either target or emulation,
can be given this attribute. Refer to the "To emulate global chip
select operation" task description at the end of this section.

Combination of thelp anddsi attributes.

Combination of thelp andcsOattributes.

136

Chapter 5: Configuring the Emulator
Mapping Memaory

dsi_cs0 Combination of thelsi andcsOattributes.
dp_dsi_cs0 Combination of thelp, dsi, andcsOattributes.

Examples Consider the following section summary from the linker load map output listing.

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN

ABSOLUTE DATA 00000000 0000002F 00000030 O (BYTE)

0 NORMAL 00000030 00000030 00000000 2 (WORD)

env. NORMAL CODE 00000400 00000FB8 00000BBY 2 (WORD)

prog NORMAL CODE 00000FBA 00001A83 O00000ACA 2 (WORD)

const NORMAL ROM 00001A84 00001AC9 00000046 2 (WORD)

lib NORMAL CODE 00001ACA 0000265D 00000B94 2 (WORD)

libc NORMAL CODE 0000265E 0000487B 0000221E 2 (WORD)

libm 0000487C 0000487C 00000000 O (BYTE)

mon NORMAL CODE 0000487C 000049C5 0000014A 2 (WORD)

envdata NORMAL DATA 00007000 00007155 00000156 4 (LONG)

data NORMAL DATA 00007156 00007721 000005CC 2 (WORD)

idata 00007722 00007722 00000000 O (BYTE)

udata 00007722 00007722 00000000 O (BYTE)

libdata NORMAL DATA 00007724 00007727 00000004 4 (LONG)

libcdata NORMAL DATA 00007728 00008153 00000A2C 2 (WORD)

mondata NORMAL DATA 00008154 00008177 00000024 2 (WORD)

stack NORMAL DATA 0000B000 00012FFF 00008000 4 (LONG)

heap NORMAL DATA 00013000 00016FFD 00003FFE 4 (LONG)

Notice the ABSOLUTE DATA, CODE, and ROM sections occupy locations 0
through 49C5H. Because the contents of these sections will eventually reside in
target system ROM, this area should be characterized as ROM when mapped. This
will prevent these locations from being written over accidentally. If breaks on

writes to ROM are enabled, instructions that attempt to write to these locations will
cause emulator execution to break into the monitor.

Also, notice the DATA sections occupy locations 7000H through 8177H and
0BOOOH through 16FFDH. Since these sections are written to, they should be
characterized as RAM when mapped.

137

Chapter 5: Configuring the Emulator

Mapping Memory

Enter the following commands to map memory for the above program.

delete all <RETURN>
0 thru 6fffh emulation rom <RETURN>
7000h thru 16fffh emulation ram <RETURN>

The resulting memory mapper screen is shown below.

Emulation memary blocks: available =
function

entry range code attribute

1 BH- BFFFH EMUL/ROM
2 78BBH- 16FFFH EMUL/RAM

To synchronize emulation memory accesses in the range 0 through 6FFFH, you
would enter the following command in place of the command above:

0 thru 6fffh emulation rom dsi <RETURN>
To specify that the range 0 through 6FFFH is in supervisor program space, you
would enter:

0 thru 6fffh supervisor program emulation rom <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

138

Chapter 5: Configuring the Emulator
Mapping Memaory

To characterize unmapped ranges

1 Access the configuration questions.
2 Answer "yes" to the "Modify memory configuration?" question.

3 Use thalefault softkey to characterize unmapped ranges.

Thedefault softkey in the memory mapper allows you to characterize unmapped
memory ranges. Unmapped memory ranges are treated as target system RA
default. Unmapped memory ranges cannot be characterized as emulation me

Examples To characterize unmapped ranges as target RAM:

default target ram <RETURN>

To characterize unmapped ranges as guarded memory:

default guarded <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

139

Chapter 5: Configuring the Emulator
Mapping Memory

To delete memory map ranges
1 Access the configuration questions.

2 Answer "yes" to the "Modify memory configuration?" question.

3 Use thaleletesoftkey to delete mapped ranges.

Note that programs should be reloaded after deleting mapper terms. The memory
mapper may re-assign blocks of emulation memory after the insertion or deletion of
mapper terms.

Examples To delete term 1 in the memory map:

delete 1 <RETURN>

To delete all map terms:

delete all <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

140

Chapter 5: Configuring the Emulator
Mapping Memaory

To map memory ranges that use function codes

Specify function codes with address ranges when mapping memory.

Memory mapper softkeys that represent the different function codes are:

supervisor

user

program

data

supervisor program
supervisor data
user program

user data

When you specify function codes with mapper ranges, the 68340 function code
outputs (FCO, FC1, FC2) are decoded to select particular blocks of memory.
Function codes let you overlay address ranges. When you specify function codes
as part of the address, the emulator memory mapper knows that overlaid blocks are
different memory regions and will define them separately.

If you specify a function code when mapping a range of memory, you must include
the function code when referring to locations in that range. If you don't include the
function code, an "ambiguous address" error message is displayed.

If you use different function codes, it's possible to map address ranges that overlap.
When address ranges with different function codes overlap, you must load a
separately linked module for the space associated with each function code. The
modules are linked separately because linker errors occur when address ranges
overlap.

When address ranges are mapped with different function codes, and there are no
overlapping ranges, your program modules may exist in one absolute file.

However, you have to use multiple load commands—one for each function code
specifier. This is necessary to load the various sections of the absolute file into the
appropriate function code qualified memory ranges. When you do this, be sure that
all address ranges not mapped (that is, the "other" memory mapper term) are
mapped as target RAM. When "other" is mapped as guarded, guarded memory
access errors (from the attempt to load the absolute file sections that are outside the
specified function code range) can prevent the absolute file sections that are inside
the specified function range from being loaded.

141

Chapter 5: Configuring the Emulator

Mapping Memory

Examples

Suppose you're developing a system with the following characteristics:
* Input port at 100 hex.

* Output port at 400 hex.

* Supervisor program from 1000 through 1fff hex.

» User program from 3000 through 3fff hex.

e User data from 3000 through 3fff hex.

Notice that the last two terms have address ranges that overlap. You can use
function codes to cause these terms to be mapped to different blocks of memory.

Suppose also that the only things that exist in your target system at this time are the
input and output ports and some control logic; no memory is available. You can
reflect this by mapping the I/O ports to target system memory space and the rest of
memory to emulation memory space with the following mapper commands:

Oh thru Offfh targetram <RETURN>
1000h thru 1fffh supervisor program emulation rom

<RETURN>
3000h thru 3fffh user program emulation ram <RETURN>
3000h thru 3fffh user data emulation ram <RETURN>

After the configuration is saved, display memory at 1000H by entering the
following command (using the command line):

display memory 1000h blocked bytes <RETURN>

Notice that an "ambiguous address" error occurs because the "sp" function code
was not included with the address. The following command should have been
entered instead:

display memory fcode sp 1000h blocked bytes <RETURN>

142

Chapter 5: Configuring the Emulator
Mapping Memaory

To emulate global chip select operation

Use thecsOattribute when mapping the boot ROM address range.

Make sure the CF_MBAR register is valid, and modify the CF_CSOADDR and
CF_CSOMASK registers to appropriate values.

Or:
Load a previously saved configuration that has appropriate values of CF_MBAR,
CF_CSOADDR, and CF_CSOMASK.

If the you're emulating boot ROM with emulation memory, load the boot ROM
code.

Run from reset.

The advantages are:
* You can put the boot ROM contents in emulation memory.

* The base address of the boot ROM does not have to be at address 0 to fetch
vectors from reset.

» If boot ROM is already in the target system, you can prevent guarded memory
accesses when running from reset.

Limitations:

The maximum amount of emulation memory that can be mapped is half the amount
of memory installed in bank 1 or one quarter the amount of memory installed in
bank 0, whichever is larger.

143

Chapter 5: Configuring the Emulator

Mapping Memory

Examples

This example shows how to use ds®@memory map attribute to emulate the
68340’s global chip select operation.

To map the boot ROM address range in emulation memonaccess the
configuration questions, and answer the questions as shown below.

Modify memory configuration? yes
Entering the following mapper commands. Specify unmapped ranges as guarded

memory to show that the fetches of the supervisor stack pointer and program
counter values after reset really come from the boot ROM address range.

80000h thru 8ffffh emulation rom csO <RETURN>
default guarded <RETURN>
Configuration file name? boot_cfg

To modify the emulator configuration registers so appropriate information is sent to
the analyzer:

modify register CF_SIM CF_MBAR to 100001h <RETURN>
modify register CF_SIM CF_CSOADDR to 80001h <RETURN>
modify register CF_SIM CF_CSOMASK to Offfdh <RETURN>

To load the supervisor stack pointer and program counter values that will be
fetched from the boot ROM after reset:

modify memory 80000h longto 0,81000h <RETURN>

To load the boot ROM program into emulation memory (NOP, NOP, BRA.B
81000H):

modify memory 81000h words to 4e71lh, 4e71h, 60fah

<RETURN>

To trace execution after reset:

trace <RETURN>

144

Chapter 5: Configuring the Emulator
Mapping Memaory

To run from reset:

run from reset <RETURN>

To display the trace:
display trace <RETURN>

Label: Address Opcode ar Status time count

Base: he mnemonic relative

ABEAERERE ORI.B #$@g8,004 m—m————————=
+@d1 BEEREEERZ $B8E supr prgm word rd (ds163 728 n3
+0d2 BEBEEAE4 ORI.B #$ 1806, AB G868 nS
+HA3 CEHERAEE % 1HEH supr prgm word rd (ds163) 728 nS
+B8@4 BEE31AEE MNOP 848 nS
+BE5 BEE31AEZ MOP 728 nS
+0dE BEB3 1064 BRA.B $E0Es 1080 728 nS
+067 BEE31AE6 MNOP 728 nS
+063 BEE31aEE NOP 728 nS
+863 BEE3laEz MOP 728 nS
+018 BEB5 1884 BRA.B 80685 1880 728 nS
+811 BEE318EE MOP 6868 nS
+A12 BEE318EE MNOP 728 nS
+813 BEB3lAEZ MNOP 728 nS
+@14 BEB31ad4 BRA.B $E0Es 10ag 728 nS
+A15 BEE31AE6 MNOF 7268 nS

Notice the supervisor stack pointer and program counter values that were loaded at
80000H and 80004H are fetched from memory locations 0 through 7 and the
program begins running at 81000H.

Suppose your boot ROM is at a higher address:

To map the boot ROM address range in emulation memory, access the
configuration questions, and answer the questions as shown below.

Modify memory configuration? yes
Entering the following mapper commands. Specify unmapped ranges as guarded

memory to show that the fetches of the supervisor stack pointer and program
counter values after reset really come from the boot ROM address range.

0ff000000h thru Off00ffffh emulation rom ¢sO <RETURN>
default guarded <RETURN>

Configuration file name? boot_cfg

145

Chapter 5: Configuring the Emulator

Mapping Memory

To modify the emulator configuration registers so appropriate information is sent to
the analyzer:

modify register CF_SIM CF_MBAR to 100001h <RETURN>
modify register CF_SIM CF_CSOADDR to 0ff000001h <RETURN>
modify register CF_SIM CF_CSOMASK to Offfdh <RETURN>

To load the supervisor stack pointer and program counter values that will be
fetched from the boot ROM after reset:

modify memory 0ff000000h longto 0, 0ff001000h <RETURN>

To load the boot ROM program into emulation memory (NOP, NOP, BRA.B
OFF001000H):

modify memory 0ff001000h words to 4e71h, 4e71h, 60fah
<RETURN>

To trace execution after reset:

trace <RETURN>

To run from reset:

run from reset <RETURN>

To display the trace:
display trace <RETURN>

146

Chapter 5: Configuring the Emulator

Mapping Memaory

Label: HAddress Opcode or Status time count

Base: he mnemonic relative

FFoBREEA ORI.B #$@@,080 —mm—————————
+dd1 FFBEaEBEZ $080A supr prgm word rd (dsl6) 726 n3
+0@2 FFBAgaE4 Illegal Instruction: $FFEE18E8 7268 nS
+683 FFABEARG §160EH supr prgm word rd (dslG} G5a n3
+B864 FFE@laEa MNOP 348 nS
+B8@5 FFE@laez MNOP 7208 nS
+0d6 FFE@la@4 BRA.B $FFaalaga 728 nS
+0@7 FFBA1806 MNOF 7268 nS
+085 FFEalopa NOP 7208 n3
+0@3 FFE@lapz MNOP 7268 nS
+018 FFBA18@4 BRA.B $FFBal1aEa 728 nS
+811 FFE@l8EE MNOF 728 nS
+6812 FFE@lapa MNOP 5868 nS
+6813 FFB@laez MNOP 7208 nS
+d14 FFB@la@4 BRA.B $FFaalaga 728 nS
+6815 FFBA1806 MNOF 7268 nS

Notice the supervisor stack pointer and program counter values that were loaded at
OFFO00000H appear to be fetched from memory locations 0FFO00000H through
OFF000007H when they are really fetched from locations 0 through 7. This is
because the upper 8 bits of the CF_CSOADDR register are sent to the analyzer
instead of A31-A24 (this is true even if Port A is set up to be address lines).

147

Chapter 5: Configuring the Emulator
Configuring the Emulator Pod

Configuring the Emulator Pod

In order to configure the emulator pod, you must first start the configuration
interface and access the "Emulator Pod Settings" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:
» Set the reset values of the Supervisor Stack Pointer and the Program Counter.

e Set the user memory access size.

To set the reset values of the SSP and PC

Enter an even address in response to the "Reset value for Supervisor Stack
Pointer?" question.

Enter an even address in response to the "Reset value of the Program Counter?"
guestion.

When using a foreground monitor, the supervisor stack pointer must be set to an
address in emulation or target system RAM in order for the emulator to transition
into the run state, to step, or to perform other functions after emulation reset.

The "Reset value ... ?" configuration questions set the initial SSP and PC values
after emulation reset. Upon the transition from emulation reset into the emulation
monitor, the supervisor stack pointer register and the program counter are set to the
values specified, which must be 32-bit hexadecimal even addresses.

If a run from reset command is given, this configuration item has no affect and the
initial supervisor stack pointer and program counter will be retrieved from reset
vector in the vector table.

When using the background monitor, the initial values set in response to the "Reset
value ... ?" configuration questions are also used to set up the SSP and PC after
emulation reset; however, this is not necessary for proper emulator operation. If a
target system reset occurs while running in the background monitor, the supervisor
stack pointer and program counter are unaffected.

148

Chapter 5: Configuring the Emulator
Configuring the Emulator Pod

To specify the user memory access size

Answer the "User memory access size?" question.

When accessing target system memory locations or single-port emulation memory
locations, the access mode specifies the type of microprocessor cycles that are used
to read or write the value(s). For example, when the access mode is byte and a
target system location is modified to contain the value 12345678H, byte

instructions are used to write the byte values 12H, 34H, 56H, and 78H to target
system memory.

Answer "bytes" if the emulator should make 8-bit accesses to target system
memory.

Answer "words" if the emulator should make 16-bit accesses to target system
memory.

Answer "longs" if the emulator should make 32-bit accesses to target system
memory.

149

Chapter 5: Configuring the Emulator
Setting the Debug/Trace Options

Setting the Debug/Trace Options

In order to set the debug/trace options, you must first start the configuration
interface and access the "Debug/Trace Options" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:
+ Enable/disable breaks on writes to ROM.

» Trace background cycles.

To enable/disable breaks on writes to ROM

1 Access the configuration questions.
2 Answer "yes" to the "Modify trace/debug options?" question.

3 Answer "yes" to the "Break processor on write to ROM?" question to enable
breaks; answer "no" to disable breaks.

When breaks on writes to ROM are enabled:
The emulator will break into the emulation monitor whenever the user program
attempts to write to a memory region mapped as ROM.

Even though execution breaks into the monitor, the memory location is
modified if it's in emulation ROM or target system RAM mapped as ROM.

When breaks on writes to ROM are disabled:
The emulator will not break to the monitor upon a write to ROM.

150

Chapter 5: Configuring the Emulator
Setting the Debug/Trace Options

To trace background cycles

Answer "background"” or "both" to the "Trace background or foreground
operation?" question.

Answering "background" specifies that the analyzer trace only background cycles.
This is rarely a useful setting for user program debugging.

Because the background monitor is implemented using the 68340 background
debug mode (BDM), only memory accesses are captured when tracing background

cycles.
Answering "both" specifies that the analyzer trace both foreground and backg.

cycles. You may wish to specify this option so that all emulation processor cy
may be viewed in the trace display.

151

152

Using the Emulator

153

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

Using the emulator configuration registers.
Loading absolute files.

Using symbols.

Using context commands.

Executing user programs (starting, stopping, stepping, and resetting the
emulator).

Using software breakpoints.
Displaying and modifying registers.
Displaying and modifying memory.
Displaying data values.

Changing the interface settings.
Using system commands.

Using simulated I/O.

Using Basis Branch Analysis.

154

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

Using the Emulator Configuration Registers

The 68340 processor contains a System Integration Module (SIM) which has the
external bus interface, four chip selects, input/output ports, and other circuitry to
reduce external logic in a typical microprocessor system. The SIM can be
programmed or configured in a variety of ways to suit the need of various systems.

The HP 64751A emulator contains circuitry that accommodates the flexibility of
the 68340 SIM and maintains consistent emulation features.

64751A EMULATOR

T T T T T T T TT T T T
| |
T — SERIAL I/0 68340 |
g TIMERS PROCESSOR |
R
G — DMA !
E | |8
T : PORTA COE¥EOL : !
: PORTB | CPU32 L7
I I 4
s 1< AS, DS g
Y | SIM I
s | > DAt ANALYSISI ©
T 1 ADDR, FC LATCH |
| : |
E | A23-A0,FC I
Mo A31-A24 I
: > D15-D0 > ! g
I q : T
| | R
| L | 0
| DE-SIM MEMORY EMUL. | I L
| MODULE[G0 | MAPPER MEMORY
| CF_SIM— |
| |
- J

155

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

In the previous figure, there is a block labeled DE-SIM module. It receives as
inputs from the 68340:

e Port A which can be address lines 31-24, interrupt acknowledge inputs, or
general purpose 1/O lines.

» Port B which can be interrupt requests, chip selects, or general purpose I/O
lines.

The DE-SIM module provides as outputs:

» Address lines A31-A24 to the memory mapper and the analyzer.
» A qualified chip select 0 (CSO0) to the memory mapper.

The 68340 SIM is configured through the registers in the SIM register class; these
registers control how the 68340 uses external signal lines to access memory.

The emulator’s DE-SIM module is configured through the registers in the CF_SIM
register class. The DE-SIM module controls how the emulator interprets the
signals from the 68340 when accessing emulation memory and passing information
to the analysis trace.

Normally, the SIM and CF_SIM registers should be programmed with the same
values so they will be working together.

One of the primary functions of the DE-SIM is to provide A31-A24 to the memory
mapper and analyzer so they will have the complete 32-bit address bus. This is
easy if Port A of the 68340 is programmed as address lines; however, if it's
programmed as an input port, for example, the upper address lines are not available
external to the 68340 (this is the case following reset). The four chip selects,
however, have access to the full 32 bit address inside the 68340. You can therefore
locate memory using a chip select at an address that is not possible to decode
externally. If properly programmed, the DE-SIM can use information in the
programming of the chip selects to re-create the upper address lines. This provides
the ability to map emulation memory at these addresses and also provides a correct
address in the analysis trace so that symbolic debugging is possible.

Normally, the DE-SIM would be programmed through the CF_SIM registers to
match the programming of the 68340 SIM as it will exist after all of the boot-up
configuration is complete. This can be done before the boot-up code is run. In fact,
the programming of the CF_SIM registers is part of the configuration and will be
loaded along with the memory map and other configuration items when a
configuration file is loaded.

156

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

The default programming of the DE-SIM matches the reset values of the 68340
SIM (refer to the MotorolMC68340 Integrated Processor User’s Manial
specific values).

If desired, the programming of the DE-SIM can be transferred into the 68340 SIM
with thesync_sim_registers to_68340_from_configpmmand. This happens
automatically each time a break to the monitor from emulation reset occurs. This
ensures that the 68340 is prepared to properly access memory when a program is
downloaded to the emulator.

Alternatively, the emulator’'s DE-SIM can be programmed from the 68340 SIM
with thesync_sim_registers from_68340_to_configommand. This is useful if
initialization code that configures the 68340 SIM exists, but you don’t what its
values are. In this case, you can use the default configuration, run from reset to
execute the initialization code, and usedyniec_sim_registers
from_68340_to_configcommand to configure the emulator to match the 68340
SIM.

At any time, you can verify if the SIM and DE-SIM are programmed the same
thesync_sim_registers differenceommand. Any differences between the two
register sets will be listed.

It should be noted that the DE-SIM module is programmed solely from the
CF_SIM register set and is therefore static with respect to the application program.
No attempt is made to update the programming of the DE-SIM by tracking
instructions that will program the 68340 SIM.

This section shows you how to:
* View the SIM register differences.
» Synchronize to the 68340 SIM registers.

» Synchronize to the emulator configuration registers.

157

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

To view the SIM register differences

» Enter thesync_sim_registers differenceommand.

Before displaying the SIM configuration register differences, make sure the
contents of the MBAR register is valid (in other words, its least significant bit
should be 1).

Examples To display the SIM register differences:

modify register SIM MBAR to 40001h <RETURN>
sync_sim_registers difference <RETURN>

MBAR = 40001 CF_MBAR = 100001
CSOMASK = ffffffff CF_CSOMASK = ffff000d
CSOADDR = 18515e60 CF_CSOADDR = ff000000
CS1MASK = fffffffo CF_CS1MASK = 00000000
CS1ADDR = 8830fcc8 CF_CS1ADDR = 00000000
CS2MASK = fff7ffff CF_CS2MASK = 00000000
CS2ADDR = e41cff24 CF_CS2ADDR = 00000000
CS3MASK = fffffffd CF_CS3MASK = 00000000
CS3ADDR = 54005ca0 CF_CS3ADDR = 00000000

To synchronize to the 68340 SIM registers

» Enter thesync_sim_registers from_68340_to_configpmmand.

The contents of the 68340 SIM registers are copied to the emulator’s configuration
registers. The contents of the MBAR register must be valid (that is, its least
significant bit should be 1).

158

Chapter 6: Using the Emulator
Using the Emulator Configuration Registers

To synchronize to the emulator configuration
registers

Enter thesync_sim_registers to_68340_from_configpmmand.

The contents of the emulator’s configuration registers are copied to the 68340 SIM
registers. The contents of the CF_MBAR register must be valid (that is, its least
significant bit should be 1).

159

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into the emulator
and storing memory contents into absolute files. This section shows you how to:

* Load absolute files into memory.
* Load absolute files without symbols.

» Store memory contents into absolute files.

To load absolute files

ChooseFile - Load - Executableand use the dialog box to select the absolute file.

Using the command line, enter tbad <absolute_file>command.

You can load absolute files into emulation or target system memory. You can load
IEEE-695 format absolute files. You can also load HP format absolute files. The
store memorycommand creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM, use the command lioatsemul_mem
syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command liloeld user_memsyntax.

If you want both emulation and target memory to be loaded, do not specify
emul_memor user_mem

160

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Examples To load the demo program absolute file, enter the following command:

load ecs.x <RETURN>

To load only portions of the absolute file that reside in target system RAM:

load user_mem absfile <RETURN>

To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile <RETURN>

To load absolute files without symbols

* ChooseFile - Load - Program Only and use the dialog box to select the absolu
file.

» Using the command line, enter thad <absolute_file> nosymbolsommand.

161

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Examples

To store memory contents into absolute files

Using the command line, enter tstere memorycommand.

You can store emulation or target system memory contents into HP format absolute
files on the host computer. Absolute files are stored in the current directory. If no
extension is given for the absolute file name, it is given a ".X" extension.

Storing memory contents into absolute files is useful when copying ROM contents
to RAM so that software breakpoints can be used. In other words, you store ROM
contents to an absolute file, re-map memory to substitute emulation RAM for the
target ROM, and load the absolute file.

To store the contents of memory locations 900H through 9FFH to an absolute file
on the host computer named "absfile":

store memory 900h thru 9ffth to absfile <RETURN>

After the command above, a file named "absfile.X" exists in the current directory
on the host computer.

162

Chapter 6: Using the Emulator
Using Symbols

Using Symbols

If symbol information is present in the absolute file, it is loaded along with the
absolute file (unless you use thesymbolsoption). Both global symbols and
symbols that are local to a program module can be displayed.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to the "Setting X Resources" chapter).

This section describes how to:

* Load symbols.

» Display global symbols.

» Display local symbols. .
» Display a symbol’'s parent symbol.

» Copy-and-paste a full symbol name to the entry buffer.

To load symbols

ChooseéFile - Load — Symbols Onlyand use the dialog box to select the absolute
file.

Using the command line, enter tbad symbols <absolute_filexxommand.

Unless you use theosymbolsoption when loading absolute files, symbols are
loaded automatically. However, if you did userbgymbolsoption when loading
the absolute file, you can load the symbols without loading the absolute file again.

This option is particularly useful for loading symbols for files located in target
ROM so that you can use symbols with that code.

163

Chapter 6: Using the Emulator

Using Symbols

Examples To load symbols from the demo program:
load symbols ecs.x <RETURN>
To display global symbols
ChooseDisplay — Global Symbols
Using the command line, enter ttisplay global_symbolscommand.
Listed are: address ranges associated with a symbol, the segment the symbol is
associated with, and the offset of that symbol within the segment.
If there is more than a screen full of information, you can use the up arrow, down
arrow, <NEXT>, or <PREV> keys to scroll the information up or down on the
display.

Examples To display global symbols in the demo program:

display global_symbols <RETURN>

Global symbols in ecs.x

Procedure symbols

Procedure name Address range __ Segment 0ffset
__fflush ABAE448C - BBAB44A5S libe Jala)a]e]
_bufsync ABAB2COC - EBABZDAS libec Jala)s]e]
_dbl_tao_str ABEABZEEE - BBAB3I333 libc A1E4
_doprnt ABAB3648 - BBAB4371 libe A8 36
_exec_funecs ABBABZE8A - BBEBZEAS libe ABzC
_Findbuf ABAB44AE - BBAB4533 libc ABAD
_startup AHHEESFC - HEAHB?IE erw AEEA
_swrite ABEE47 1C - BBAB4751 libe Aanan
_wrtchk ABAB4752 - BBAB47ES libe Jala)a]e]
_=f1lsbuf ABEAE47ER - BBAB457E libc Jala)s]e]
atexit ABABZE5E - BBABZG53 libe ABAD
calloc ABBABZBCE - BBABZBF7 libe A412
clear_screen AABEEIFE - BEBBBA3E erw B1CA
close ABABAECE - BHEDEIAS env AB9R
cambsort ABHE1Z44 - BEAE143E prog A28A
do_sort ABEE1442 - BBABI4ELl prog 4438

164

Chapter 6: Using the Emulator
Using Symbols

To display local symbols

When displaying symbols, position the mouse pointer over a symbol on the symbol
display screen and click tlselectmouse button.

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®esplay Local Symbolsfrom the popup
menu.

Position the mouse cursor in the entry buffer and enter the module whose local
symbols are to be displayed; then, chddsplay — Local Symbols ()

Using the command line, enter ttlisplay local_symbols_in <modulexommand.
To display the address ranges associated with the high-level program’s sourc

line numbers, you must display the local symbols in the file.

165

Chapter 6: Using the Emulator

Using Symbols

Examples

View the local
symbols associated
with the highlighted
symbol by choosing
this menu item.

To use the Symbols Display popup menu:

update_system

HAABABSE - BEABAESD
ARAR 1557

E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Global symbols in ecs.x
Procedure symbols A
Procedure name Address range __ Segment Of fset
HAAB2CAGE - BBEABZCOB libe aaBEa

B
prog

wait_for_io Global Symbols Display F env L]
write " 0 erwv A154
write_hdwr Display Local Symbols 1o prog Az236
Paplay Parent Symbols
Static symbols
Symbal name Cut Full Symbol Name . Segment Of fset
7A5 s . stack HEHER
JSR_ENTRY Edit File Defining Symbol on ARAA
L_1_I0_check_loaop HEARAGIE e HEHER
L_2_I10_exit_loop HEARAG4A e HEHER
MONITOR_MESSAGE AEABEE174 - ABEATLYY mondata ABEA
TopOfHeap B8 16FFE Jaala]e] ¥
TopOfStack BE6 13868 heap Jaala]e]
| STATUS: M68340--Running in monitor Emulation trace complete

166

Using the command line

To display local symbols in a module:

display local_symbols_in

update_sys <RETURN>

Chapter 6: Using the Emulator

Using Symbols

Symbals in update_sysimodule!
Procedure symbols

Frocedure name

get_targets

graph_data

read_conditions

sawve_points

set_outputs

update_system

write_hdur

Filename symbals
Filename

Address
ARAR1ES4 -
ABAR1S7E -
ABAR1EE4 -
ARAR1832 -
ABABLT7A -
ABAA1S32 -
ApAR1s1z -

range
BAEEE 1500
BEBE 1R3Y
BEER1773
BEEE 1377
BEEE 1866
ABEE 1640
AHEE 1556

__ Segment

prog
prog
prog
prog
prog
prog
prog

update_sys.c

To display local symbols in a procedure:

display local_symbols_in

update_sys.save_points <RETURN>

Procedure special sumbols
Procedure special name
EMTRY

ERIT

TEXTRANGE

Address
AREE 15832
ABEE 1376

range

Symbols in update_sys{module}.save_pointsi{procedure!

Segment

prog
preg

AREA 1632 - BEBRE1SY7 prog

Offset
A386
A3ER
A386

167

Chapter 6: Using the Emulator
Using Symbols

To display address ranges associated with the high-level source line numbers:

display local_symbols_in update_sys."update_sys.c":

<RETURN>

Symbols in update_sysimodule). "update_sys.c":

Source reference symbols

Line range Address range __ Segment 0ffset
t1-#47 AAAAL53Z - ABEBISB!l prog HBEE
#45-#53 ARBALSBZ - ABAB1SCS prog ABZE
#54-#56 AABALSCE - ABARLS0! prog BB3A
#57-1#53 ARAALS0Z - ABER1SED prog BBR46
#EE-HER ARBALSEE - ABEBISF3 prog BBE2
#E1-#E1 AREALSF4 - ABAB16B3 prog BBES
#E2-#E63 HREA1EE4 - BBEB16HT prog BB7g
#E4-#64 ARABALEER - ABEBLG1Y prog HBYE
#E5-H#E5 ARBALE1E - ABAR1G629 prog ABaC
#E3-#72 ARBALEZA - ABAR1G630 prog HBSE
#73-1#75 ARBALE3E - ABER1G643 prog BBEZ
#7E-H#77 AREA 1644 prog BBES
#78-194 ARBALES4 - ABAB16EF prog BBCs
#35-#35 HREALEYE - BBEB1G8Y prog HBE4
#36-#33 ARABALE8E - ABEB 1680 prog HBFC
t166-#168A AABALEBE - ABAR1G68F prog a1z

168

Chapter 6: Using the Emulator
Using Symbols

To display a symbol’s parent symbol

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup

menu.
Examples
1 ¥
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
View the pal’ent Symbaols in update_sysimodulel.save_points{procedure’ A
: Procedure special symbols
Sy_mb0| as_soqlated Procedure special name Address range __ Segment Of fset ;
with the highlighted | |ENTRY BEea 1892 prog

ExIT BEBE1376
ERTRAMGE

symbol by choosing

this menu item. — ay

\ Display Local Symbols
Display Parent Symhbols

Cut Full Symbol Hame
Edit File Defining Symbol

STATUS: M68340--Running in monitor Emulation trace complete
E

169

Chapter 6: Using the Emulator

Using Symbols

Examples

Copy the full name
of the highlighted
symbol to the entry
buffer by choosing
this menu item.

To copy-and-paste a full symbol name to the

entry buffer

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup

menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown

menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that have
been truncated. Also, you are guaranteed of specifying the proper scope of the

symbol.

1 1
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
{):iupdate_sysimodulel. save_points{procedure) IRecaH
Symbols in update_sysimodulel
Procedure symbols A
Procedure name Address range __ Segment Of fset
get_targets HAAE1654 - BBEAB1E0D0 prog BAACE
graph_data HAAB137E - BBEABIAS? prog A3F2
read_conditions BEBE16E4 - BEEALYY3 prog

HARRA ARAA

Local Symhbols Display

=E po ts

set_output I prog
Display Local Symbols S:gg
Display Parent Symbols

Filename symbals
Filename

Cut Full Symbol Mame

update_sys.c

Edit File Defining Symbol

| STATUS: cws: update_sys

170

Chapter 6: Using the Emulator
Using Context Commands

Using Context Commands

The commands in this section display and control the directory and symbol
contexts for the interface.

Directory context. The current directory context is the directory accessed by all
system references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories since
beginning the emulation session, the current directory context is that of the
directory from which you started the interface.

Symbol context. The emulator/analyzer interface and the Symbol Retrieval
Utilities (SRU) together support a current working symbol context. The current
working symbol represents an enclosing scope for local symbols. If symbols h
not been loaded into the interface, you cannot display or change the symbol ¢

This section shows you how to:
» Display the current directory and symbol context.
» Change the directory context.

* Change the symbol context.

171

Chapter 6: Using the Emulator
Using Context Commands

To display the current directory and symbol
context

* ChooseDisplay — Context.

» Using the command line, enter {w&d andpws commands.

The current directory and working symbol contexts are displayed, and also the
name of the last executable file from which symbols were loaded.

Example

. Emulator/Analyzer: Current Conte
Directory context. Directory:

t— Symbol File: fusersfguestidemofdebug_envihp64751fecs.x
Executable from Symbol Scope: update_sys
which symbols were
last loaded.

Done

Symbol context.

To change the directory context

» ChooseFile - Context— Directory and use the dialog box to select a new directory.

* Using the command line, enter tbek<directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

172

Chapter 6: Using the Emulator
Using Context Commands

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select the new
working symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to
in.)

You can predefine symbol contexts and set the maximum number of entries f
Symbol Scope Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

173

Chapter 6: Using the Emulator
Executing User Programs

Executing User Programs

You can use the emulator to run programs, break program execution into the
monitor, step through the program by high-level source lines or by assembly
language instructions, and reset the emulation processor.

When displaying memory in mnemonic format, a highlighted bar shows the current
program counter address. When you step, the mnemonic memory display is
updated to highlight the new program counter address.

When displaying resisters, the register display is updated to show you the contents
of the registers after each step.

You can open multiple interface windows to display memory in mnemonic format
and registers at the same time. Both windows are updated after stepping.

This section describes how to:

e Start the emulator running the user program.
» Stop (break from) user program execution.

» Step through user programs.

* Reset the emulation processor.

To run programs from the current PC

* ChooseExecution— Run - from PC.

* Using the command line, enter thum command.

When the emulator is executing the user program, the message "Running user
program" is displayed on the status line.

174

Chapter 6: Using the Emulator
Executing User Programs

To run programs from an address

» Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - from ().

» Using the command line, enter tha from <address>command.

Examples To run from address 9COH:

run from 9cOh <RETURN>

To run programs from the transfer address .

* ChooseExecution— Run - from Transfer Address.

* Using the command line, enter thum from transfer_address command.

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface astthasfer address

To run programs from reset

* ChooseExecution— Run - from Reset

* Using the command line, enter thum from reset command.

The run from reset command resets the emulation processor and lets the emulator
run and fetch its stack pointer and program counter value from memory.

175

Chapter 6: Using the Emulator
Executing User Programs

A resetcommand followed by mun command will load the interrupt stack pointer
and program counter values specified during configuration into the emulation
processor and run from the loaded program counter value. This is true for both
background and foreground monitors.

Examples

To run programs until an address

Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - until ().

Using the command line, enter tha until <address>command.
When you run until an address, a software breakpoint is set at the address and the
program is run from the current program counter.

When using the command line, you can combine the various types of run
commands; for example, you can run from the transfer address until another
address.

To run from the transfer address until the address of the global symbol main:

run from transfer_address until address main <RETURN>

To stop (break from) user program execution

ChooseExecution- Break.

Using the command line, enter thiwak command.

This command generates a break to the background monitor.

176

Chapter 6: Using the Emulator
Executing User Programs

If the user program executes a STOP or LPSTOP instruction, you cannot break to
the emulator’s monitor state while the processor is in the stopped state. The break
command uses the emulation processor background debug mode (BDM), and the
processor must be executing instructions in order to enter the BDM. An interrupt
from the target system will cause the 68340 to exit the stopped state; then, the break
command will work normally.

Software breakpoints and then until command allow you to stop execution at
particular points in the user program.

Examples To break emulator execution from the user program to the monitor:

break <RETURN>

To step high-level source lines

» ChooseExecution— Step Sourceand select one of the items from the cascade
menu.

» Using the command line, enter ttep sourcecommand.

When stepping through instructions associated with source lines, execution can
remain in a loop and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation you can abort the step command by
pressing <CTRL>c.

Examples To step through instructions associated with the high-level source lines at the
current program counter:

step source <RETURN>
To step through instructions associated with high-level source lines at address
"main":

step source from main <RETURN>

177

Chapter 6: Using the Emulator
Executing User Programs

Examples

To step assembly-level instructions

ChooseExecution- Step Instruction and select one of the items from the cascade
menu.

Using the command line, enter ttepcommand.

The step command allows you to step through program execution an instruction or
a number of instructions at a time. Also, you can step from the current program
counter or from a specific address.

To step one instruction from the current program counter:
step <RETURN>

To step a number of instructions from the current program counter:

step 8 <RETURN>

To step a number of instructions from a specified address:

step 16 from 920h <RETURN>

To reset the emulation processor

ChooseExecution- Reset

Using the command line, enter tlesetcommand.

Theresetcommand causes the processor to be held in a reset stateesik,a

run, orstepcommand is entered. A CMB execute signal will also cause the
emulator to run if reset. Also, a request to access memory or registers while reset
will cause a break into the monitor.

178

Chapter 6: Using the Emulator
Using Software Breakpoints

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations.

Note Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

When you set a software breakpoint at an address, the instruction at that address is
replaced with a BGND instruction. When the BGND instruction is executed,

control is passed to the emulator’'s monitor program, and the original instruction is
restored in the user program.

If the BGND instruction was not inserted as the resultrobdify
software_breakpoints secommand, the "Undefined software breakpoint”
message is displayed on the status line.

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore, software breakpoints cannot be
set in target memory while the emulator is reset, and they can never be set in target
ROM. (You can, however, copy target ROM to emulation memory by storing the
contents of target ROM to an absolute file, re-mapping the range as emulation
RAM, and loading the absolute file.)

Another way to break user program execution at a certain point is to break on the
analyzer trigger.

This section shows you how to:
» Display the breakpoints list.
» Enable/disable breakpoints.
» Set a permanent breakpoint.
» Set a temporary breakpoint.
» Set all breakpoints.

» Deactivate a breakpoint.

179

Chapter 6: Using the Emulator
Using Software Breakpoints

CAUTION

* Re-activate a breakpoint.
» Clear a breakpoint.

* Clear all breakpoints.

Software breakpoints should not be set, cleared, enabled, or disabled while the
emulator is running user code. If any of these commands are entered while the
emulator is running user code, and the emulator is executing code in the area where
the breakpoint is being modified, program execution may be unreliable.

To display the breakpoints list

ChooseDisplay - Breakpoints or Breakpoints - Display.

Using the command line, enter tiisplay software_breakpointscommand.

The breakpoints display shows the address and status of each breakpoint currently
defined. If symbolic addresses are turned on (when setting the display modes), the
symbolic label associated with a breakpoint is also displayed. Also, the breakpoints
display shows whether the breakpoint feature is enabled or disabled.

Software breakpoints :enabled
addre label taty
AREARFCA maintmodule). "main.c": line 36 temporary
BEEREFCA Bsp maintmodule). "main.c": line 38 pending
ABABAFDZ mainimodule). "main.c”: line 1B2 permanent
ABEBGEFFC maintmodule). "main.c": line 187 inactivated
The status of a breakpoint can be:
temporary Which means the temporary breakpoint has been set but not

encountered during program execution. These breakpoints are
removed when the breakpoint is encountered.

180

Chapter 6: Using the Emulator
Using Software Breakpoints

pending Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
inactivated when the breakpoint is encountered.

permanent Which means the permanent breakpoint is active.

inactivated Which means the breakpoint has been inactivated somehow.
Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary and
permanent breakpoints may be inactivated using the breakpoints
display popup menu.

In the breakpoints display, a popup menu is available. You can set, inactivate, or
clear breakpoints as well as enable or disable the breakpoints feature from the
popup menu.

To enable/disable breakpoints

Choose th8reakpoints - Enable toggle.

When displaying the breakpoint list, press and hold&hectmouse button and
then choos&nable/Disable Software Breakpointgrom the popup menu.

Using the command line, enter tmedify software_breakpoints enableor
modify software_breakpoints disablecommand.

The breakpoints feature must be enabled before you can set, inactivate, or clear
breakpoints.

If breakpoints were set when the feature was disabled, they are "inactivated" when
the feature is re-enabled, and you must set them again.

The emulator/analyzer interface will enable software breakpoints whenever the
XEnv_68k_exceptsymbol is present in the symbol data base.

The run-time library provided with the 68332 C Cross Compiler uses software
breakpoints to interrupt program execution when exceptions (for example, divide

181

Chapter 6: Using the Emulator
Using Software Breakpoints

by zero) are encountered. If software breakpoints are disabled, exception
processing may result in "access to guarded memory" errors and/or other
unpredictable behavior. To prevent this, a special global symbol,
XEnv_68k_exceptis included in the library.

When theXEnv_68k_exceptsymbol is present, the 68340 emulator writes a value
to this location. The value tells the run-time library to use the BGND instruction to
perform a software break.

182

Examples

Bring up menu and
choose this item to
change states.

Chapter 6: Using the Emulator
Using Software Breakpoints

To enable software breakpoints using the breakpoints display popup menu:

E E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Sof tware breakpoints :disabled
addre label taty A
BARABEFCH main{module). "main.c": line 36 inactivated
BEBAAFCA Bsp mainimoduled. "main.c": line 38 inactivated
BARABFDZ main{module). "main.c": line B2 inactivated
ABBREFFC maintmodulel. "main.c” line 187 inactivated
Choose Action for Highlighted Line
Fetfinactbeate Broakpoint
Clegy {delete) Breakpoby
Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set Al Breakpoints
Clear {delete]) All Ereakpoints ¥
| STATUS: M68340--Running in monitor Software break: 000000fcalsp
E E

183

Chapter 6: Using the Emulator
Using Software Breakpoints

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to set the breakpoint and clicketeetmouse

button. Or, press and hold teelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent ()

Using the command line, enter tmedify software_breakpoints set <address>
permanentcommand.

Permanent breakpoints are available if your version of HP 64700 system firmware
is A.04.00 or greater.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

184

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples To set permanent breakpoints using the mnemonic memory display popup menu:
E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340)
File Display Modify Execution Breakpoints Trace Settings Help
lick this [Action keys: | < Demo = | Disp Sre () | Trace() | Run |Step Source
Click t I,S Ine to set @ | = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
breakpoint.
() imain IRecaII
Memory :Bsp imnemonic (file = mainimoduled. "main.c”:
Click this line to address lshel data A
| b kpoi 31 extern wvoid update_system(}; /% update system wvariables #/
Clear a brea pOInt' 3z extern void interrupt_sim(}; /% simulate an interrupt */
(Asterisks mark set 93 extern void do_sort(}; /% sets up ascii array and call
. 34
breakpoints.) 35 mainl)
36 {
97 init_system(};
* 98 proc_spec_init{};
33
: 168 while {true’
Bring up menu and 101 {
choose this item to update_systemi); = - e
183 num_checks++; oose Action for Highlighted Line
set (Or C!ear) a 184 interrupt_sim{&num] SetiCl Softw Breakpoint
breakpoint on the W et/Clear Software Breakpoin
. . . graph_datall); i
highlighted line. | proo. apesifio(y, |EditSource
Run Until i
| STATUS: HB8340--Stepping complete BN N
¢ Trace After ;

To set a temporary breakpoint

» Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints — Temporary () (or Breakpoints - Set ()if your version of
HP 64700 system firmware is less than A.04.00).

» Using the command line, enter tmedify software_breakpoints set <address>
temporary or modify software_breakpoints set <addresseommand.

The breakpoints feature must be enabled before individual breakpoints can be set.

185

Chapter 6: Using the Emulator
Using Software Breakpoints

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

To set all breakpoints

* When displaying the breakpoint list, position the mouse pointer within the
breakpoints display screen, press and holdefectmouse button, and chodSet
All Breakpoints from the popup menu.

» ChooseBreakpoints - Set All.

» Using the command line, enter tmedify software_breakpoints secommand.

Breakpoints must be enabled before being set.

To deactivate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the active breakpoint and click teelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

A deactivated breakpoint remains in the breakpoint list and can be re-activated
later. Deactivating a breakpoint is different than clearing a breakpoint because a
cleared breakpoint is removed from the breakpoints list.

186

Chapter 6: Using the Emulator
Using Software Breakpoints

To re-activate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the inactivated breakpoint and click gelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

The "inactivated" breakpoint either becomes "temporary" (or "pending") if it was
set as a temporary breakpoint or "permanent” if it was set as a permanent
breakpoint.

187

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples

To re-activate breakpoints using the breakpoints display popup menu:

Change status with a
mouse click on this

line (menu and
highlight do not
appear).

Choose this menu
item to change the
state of the
highlighted
breakpoint.

inactiva

H line

maintimodulel. "main. 187

Choose Action for Highlighted Line

Setflnactivate Ereakpoint

Clear {delete) Breakpoint

Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set All Breakpoints
Clear {delete]) All Ereakpoints

—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm

() imain IRecaII

Sof tware breakpoints :enabled

addre label taty A
BEBAAFCA mainimoduled. "main.c” line 36 inactivated
BEBAAFCA Bsp mainimoduled. "main.c” line 38 permanent
BRBAAFDZ mainimodulel. "main.c” line 1B2 permanent

| sTATUS:

ME68340--5tepping complete Emulation trace complete

188

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear a breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to clear a currently set breakpoint (notice the
asterisk at the left of the line) and click g&ectmouse button. Or, press and hold

the selectmouse button and chooSet/Clear Software Breakpointfrom the

popup menu.

When displaying breakpoints, position the mouse pointer over the line displaying
the breakpoint you wish to clear, press and holgéfectmouse button, and
chooseClear (delete) Breakpointfrom the popup menu.

Place an absolute or symbolic address in the entry buffer; then choose
Breakpoints Clear ().

Using the command line, enter tmedify software_breakpoints clear <address>
command.

When you clear a breakpoint, it is removed from the breakpoints list.

189

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples To clear a software breakpoint using the breakpoints display popup menu:
E E
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Sof tware breakpoints :enabled
. addre label taty A
Bnng Up the menu BARABEFCH mainimoduler.” line 36 inactivated

i BEBAAFCA Bsp mainimoduled.” line 38 permanent
and choose this item BRBAAFDZ mainimodulel.” H line 1B2 permanent
to clear the d AFFC mainimodul nain.c’: ' permanent

highlighted Choose Action for Highlighted Line

Setflnactivate Ereakpoint

breakpoint. —
\ Clear {delete) Breakpoint

Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set All Breakpoints
Clear {delete]) All Ereakpoints v

| STATUS: ME68340--5tepping complete Emulation trace complete
E 13

190

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear all breakpoints

» When displaying breakpoints, position the mouse pointer within the Breakpoints
Display screen, press and hold sieéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

» ChooseBreakpoints - Clear All.

» Using the command line, enter tmedify software_breakpoints clearcommand.

191

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Displaying and Modifying Registers
This section describes tasks related to displaying and modifying emulation
processor registers.

You can display the contents of an individual register or of all the registers. The
register classes and names are listed in the following table.

Register Class | Register Description
BASIC PC Program Counter
ST Status Register
(General USP User Stack Pointer
Registers) SSP Supervisor Stack Pointer
DO - D7 Data Registers 0 through 7
AO - A7 Address Registers 0 through 7
VBR Vector Base Register
SFC, DFC Alternate Function Code Registers

192

Chapter 6: Using the Emulator

Displaying and Modifying Registers

Register Class | Register Description
SIM MBAR Module Base Address Register
SIM_MCR Module Configuration Register
(System SYNCR Clock Synthesizer Control Register
Integration AVR Autovector Register
Module) RSR Reset Status Register
PORTA Port A Data
DDRA Port A Data Direction
PPARA1 Port A Pin Assignment 1
PPARA2 Port A Pin Assignment 2
PORTB Port B Data
PORTB1 Port B Data
DDRB Port B Data Direction
PPARB Port B Pin Assignment
SWIvV Software Interrupt Vector
SYPCR System Protection Control
PICR Periodic Interrupt Control Register
PITR Periodic Interrupt Timing Register
SWSR Software Service
CSOMASK Address Mask CSO
CSOADDR Base Address CSO
CS1IMASK Address Mask CS1
CS1ADDR Base Address CS1
CS2MASK Address Mask CS2
CS2ADDR Base Address CS2
CS3MASK Address Mask CS3
CS3ADDR Base Address CS3
DMA1/2 DMA_MCR1/2 Module Configuration Register
INTR1/2 Interrupt Register
(DMA CCR1/2 Channel Control Register
Controller CSR1/2 Channel Status Register
Modules FCR1/2 Function Code Register
1and2) SAR1/2 Source Address Register
DAR1/2 Destination Address Register
BTC1/2 Byte Transfer Counter

193

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Register Class | Register Description

SERIAL SERIAL_MCR Module Configuration Register
ILR Interrupt Level

(Serial Module) | IVR Interrupt Vector
MR1A Mode Register 1A
SRA Status Register A
CSRA Clock-Select Register A
CRA Command Register A
RBA Receiver Buffer A
TBA Transmitter Buffer A
IPCR Input Port Change Register
ACR Auxiliary Control Register
ISR Interrupt Status Register
IER Interrupt Enable Register
MR1B Mode Register 1B
SRC Status Register B
CSRB Clock-Select Register B
CRB Command Register B
RBB Receiver Buffer B
TBB Transmitter Buffer B
IP Input Port Register
OPCR Output Port Control Register
OP_SET Output Port Bit Set
OP_RST Output Port Bit Reset
MR2A Mode Register 2A
MR2B Mode Register 2B

TIMER1/2

(Timer Modules
1 and 2)

TIMER_MCR1/2
IR1/2

CR1/2

SR1/2

CNTR1/2
PREL11/2
PREL21/2
COM1/2

Module Configuration Register
Interrupt Register

Control Register
Status/Prescaler Register
Counter Register

Preload 1 Register

Preload 2 Register

Compare Register

194

Chapter 6: Using the Emulator

Displaying and Modifying Registers

Register Class | Register Description

CF_SIM CF_MBAR Module Base Address Register
CF_SIM_MCR Module Configuration Register

(Emulator CF_PPARA1 Port A Pin Assignment 1

Configuration | CF_PPARA2 Port A Pin Assignment 2

Registers) CF_CSOMASK Address Mask CS0O
CF_CSOADDR Base Address CS0O
CF_CS1MASK Address Mask CS1
CF_CS1ADDR Base Address CS1
CF_CS2MASK Address Mask CS2
CF_CS2ADDR Base Address CS2
CF_CS3MASK Address Mask CS3
CF_CS3ADDR Base Address CS3

195

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Examples

To display register contents

ChooseDisplay - Registers

Using the command line, enter tiisplay registerscommand.

When displaying registers, you can display classes of registers and individual
registers.

The least significant bit of the emulation processor's MBAR register must be a 1
(which means the MBAR contents are valid) before you can display or modify
registers in the SIM, DMA1, DMA2, SERIAL, TIMER1, or TIMER2 register
classes.

The contents of write-only registers cannot be displayed.

To display the basic register contents:

display registers <RETURN>

To display the SIM module configuration register:

modify register SIM MBAR to 100001h <RETURN>
display registers SIM SIM_MCR <RETURN>

To display the contents of the emulator configuration registers (CF_SIM class):

display registers CF_SIM <RETURN>

196

Chapter 6: Using the Emulator
Displaying and Modifying Registers

To modify register contents

» ChoosaModify - Registers...and use the dialog box to name the register and
specify its value.

Clicking the "Recall" pushbutton

lets you select register names and
values from predefined or previously
specified entries.

er: Modify Registe

Placing the mouse pointer in the tex ~Modify Register

entry area lets you type in the register W |Reca||

Walue ;| IRecaII

name and value.

To define the type of value, press Value Type | Hex = |
and hold theommand selechouse I Read Current Register Value
button and drag the mouse to select

the value type. [ox [Apply

Clicking this checkbox causes the
current value of the named register to
be placed in the "Value" text entry

area.
Clicking this button modifies Clicking this button cancels

Clicking this button modifies the the register to the value modification and closes the

register to the value specified and specified and leaves the dialogdialog box.

closes the dialog box. box open.

» Using the command line, enter tmedify register <register> to <value>
command.

You can modify the emulator configuration registers (CF_SIM register class);
however, any changes you make this way are not saved when you save the
configuration. You must modify the configuration to have emulator configuration
register changes saved.

197

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal formats and in
real number formats. You can also display the contents of memory in assembly
language mnemonic format.

This section shows you how to:

» Display memory.

» Display memory in mnemonic format.

» Display memory in mnemonic format at the current PC.
» Return to the previous mnemonic display.

» Display memory in hexadecimal format.

» Display memory in real number format.

» Display memory at an address.

» Display memory repetitively.

* Modify memory.

* Modify memory at an address.

To display memory

* ChooseDisplay - Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed, displays
memory as hexadecimal bytes beginning at address zero.

198

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory in mnemonic format

To display memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, chooBésplay -~ Memory - Mnemonic (), or, using the
command line, enter thiisplay memory <address> mnemonicommand.

To display memory at the current program counter address, choose
Display -~ Memory — Mnemonic at PC or, using the command line, enter the
display memory mnemonic at_pcommand.

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

Whether source lines, assembly language instructions, or symbols are include
the display depends on the modes you choose with the

Settings— Source/Symbols Modesr Settings— Display Modespulldown menu
items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

To return to the previous mnemonic display

ChooseDisplay - Memory - Mnemonic Previous

Using the command line, enter ttlisplay memory mnemonic previous_display
command.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint at the line following the function call, and run the
program from the current program counter.

199

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Examples

To display memory in hexadecimal format

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Memory — Hex () and select the size from the cascade menu.

Using the command line, enter ttisplay memory <address> blocked <size>
command.

This command displays memory as hexadecimal values beginning at the address in
the entry buffer.

To display memory in absolute word format:

display memory ascii_old_data absolute words <RETURN>
Memory :Bsp fwords rabsolute :update

addre label data :he iascii
ABEAYZ0R _ascii_old_d 2628

ABRATZ0C 2BzA

ABHATZ0E 26834 4
ABHETZER 3Gea g.
ABHETZEZ 2354 tP
ABHETZE4 6173 as
ABHETZER 20824

ABEE72ES 34ea 4.
ABHEYZER 2628

ABHETZEC 3736 76
ABHETZEE 2E32 .2
ABHETZFA Jz2ea 2.
ABHETZF 2 2353 jiss)
ABHETZF 4 7769 wi
ABHETZFE 20824

ABEE72F 3 31e@ 1.
ABHEYZFA aB4C L

200

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes <RETURN>

Memary :Bsp rbytes rbleocked :update
addre data ihe iascii

ABEAY20R-E1 28 28 28 28 28 34 38 @A 48.
ABEATZEZ-E3 23 58 61 73 =28 2B 34 @A #FPas 4.
ABEATZER-F 1 28 28 37 36 2E 32 32 @A 76 22 .
ABEATZ2FZ2-F3 23 53 ¥Y7 B3 =28 Z@ 31 @A S wi 1.
ABEA7ZFR-81 A 4C 45 41 52 45 44 @A .LER RED.
ABHE7382-89 4C B BE 28 28 2@ 31 @A Len 1.
ABHA73BA-11 43 4C 45 41 52 45 44 @A CLER RED.
ApEaY312-13 41 Y6 65 28 38 ZE 38 @A Ave a.e.
ABEAY31R-21 43 4C 45 41 52 45 44 @A CLER RED.
ABRAT3Z22-23 43 4C 45 41 52 45 44 @A CLEAR RED.
ABEAT732A-31 43 4C 45 41 52 45 44 @A CLEAR RED.
ABHA7332-33 43 4C 45 41 52 45 44 @A CLER RED.
ABHA733A-41 43 4C 45 41 52 45 44 @A CLER RED.
ABHET342-43 43 4C 45 41 52 45 44 @A CLER RED.
ABHA734A-51 43 4C 45 41 52 45 44 @A CLER RED.
ABEEY352-53 43 4C 45 41 52 45 44 @A CLER RED.
ABHAY35A-61 43 4C 45 41 52 45 44 @A CLER RED.

To display memory in real number format

Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - Real () and select the size from the cascade menu.

Using the command line, enter ttlisplay memory <address> real <size>
command.

Displays memory as a list of real number values beginning at the address in the
entry buffer. Short means four byte real numbers and long means eight byte real
numbers.

201

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Examples To display memory in 64-bit real number format:
display memory real long <RETURN>
Memary :Bsp :long real :update

addre label data :real
AREB720A _ascii_old_d E.8134798157437BE- 154
AREETZER 1. 37554980 1 174B3E- 138
AREE7ZER B. B84783378053044E - 154
BREE7ZF2 1. 6346646 1035068E- 138
BREE7ZFA 3. 145289638 168 13E-307
AREE73E2 1. 876155244346 36E+A60
AREE73EA 1. 59148324067 205E+016
AREE73 12 2.34828830112762E+0A7
AREE73 1A 1. 59148324067 205E+016
AREE7IZ2 1. 59148324067 205E+A16
AREE7IZA 1.59148324067205E+016
BREE7I2 1. 59148324067 205E+816
BREE7I3A 1. 59148324067 205E+016
BBEE7I42 1. 59148324067 205E+A16
AREE734A 1.59148924067205E+816
AREE7352 1.591489240672B5E+A16
AREE73SA 1. 59148324067 205E+016

To display memory at an address

» Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - At ().

This command displays memory in the same format as that of the last memory
display command. If no previous command has been issued, memory is displayed
as hexadecimal bytes.

202

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory repetitively
ChooseDisplay - Memory - Repetitively.

Using the command line, enter ttisplay memory repetitively command.

The memory display is constantly updated. The format is specified by the last
memory display command.

This command is ignored if the last memory display command was a mnemonic
display.

To modify memory .

ChooseModify -~ Memory and complete the command using the command line.

To modify memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choosodify . Memory at () and complete the command
using the command line.

Using the command line, enter tmedify memory command.

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

203

Chapter 6: Using the Emulator
Displaying Data Values

Displaying Data Values

The data values display lets you view the contents of memory as data types. You
can display data values in the following formats:

bytes

8-bit integers

unsigned 8-bit integers
chars

words

16-bit integers

unsigned 16-bit integers
long words

32-bit integers

unsigned 32-bit integers

This section shows you how to:
» Display data values.
* Clear the data values display and add a new item.

* Add item to the data values display.

To display data values

ChooseDisplay - Data Values

Using the command line, enter tiisplay datacommand.

Items must be added to the data values display before you can use this command.

The data display shows the values of simple data types in the user program. When
the display mode setting turns ON symbols, a label column that shows symbol
values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor (for
example, encountering a breakpoint) cause the data values screen to be updated.

204

Chapter 6: Using the Emulator
Displaying Data Values

To clear the data values display and add a new
item

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- New () and select the data type from the cascade menu.

Using the command line, enter itisplay data <address>command.

To add items to the data values display

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- Add () and select the data type from the cascade menu.

Using the command line, enter itisplay data , <address>ommand.

205

Chapter 6: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes

To display assembly language mnemonics with absolute addresses, choose

Settings— Source/Symbol Modes. Absolute, or, using the command line, enter
theset source off symbols offommand.

To display assembly language mnemonics with absolute addresses replaced by
global and local symbols where possible, ch&ettings- Source/Symbol

Modes- Symbols or, using the command line, enter $ie¢ source off symbols
on command.

To display assembly language mnemonics intermixed with high-level source lines,

chooseSettings— Source/Symbol Modes. Source Mixed or, using the command
line, enter theset source on symbols ooommand.

To display only high-level source lines, cho&sttings- Source/Symbol

Modes- Source Only, or, using the command line, enter sie¢ source only
symbols oncommand.

The source/symbol modes affect mnemonic memory displays and trace displays.

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

206

Chapter 6: Using the Emulator
Changing the Interface Settings

To set the display modes

» ChooseSettings- Display Modes...to open the display modes dialog box.

~SourcefSymbols View

Press and hold thszlect \

mouse button and drag the
mouse to select "Source Only",
"Source Mixed", or "Off". Source in Trace |Source Mixed =

Tab Expansion (2 to 15 Spaces)

il Symbolic Addresses

urce in Memory | Source Only =

Clicking toggles whether
symbolic information is
displayed.

tMnemonic Field
Move the mouse pointer to the Symbols in Mnemonic Field

text entry area and type in the

value. Descriptions of the Source Lin

modes follow. Source: (60 to 253) All Others: (1 to 80)

Clicking toggles auto update - il Memory Displays (Except Mnemonic)
settings. -] Trace Display

7 Default All Settings

Clicking this checkbox
changes all display mode OK Apply Cancel |
settings to their defaults.

Clicking this button saves your Clicking this button saves Clicking this button cancels your
changes and closes the dialog your changes and leaves thehanges and closes the dialog box.
box. dialog box open.

207

Chapter 6: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Source/Symbols View

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displaystoggles whether memory displays are automatically updated
after commands that change memory contents or whether you must enter memory
display commands to update the display. You may wish to turn off memory
display updates, for example, when displaying memory mapped 1/O.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

208

Chapter 6: Using the Emulator
Using System Commands

Using System Commands

With the system commands, you can:

» Set UNIX environment variables while in the Softkey Interface.
» Display the name of the emulation module.

» Display the event log.

» Display the error log.

+ Editfiles.

» Copy information to a file or printer.

* Open a terminal emulation window.

To set UNIX environment variables

» Using the command line, enter thet <VAR>command.

You can set UNIX shell environment variables from within the Softkey Interface
with theset <environment_variable> = <valuexommand.

Examples To set the PRINTER environment variable to "lp -s":

set PRINTER ="Ip -s" <RETURN>

After you set an environment variable from within the Softkey Interface, you can
verify the value of it by enteringet <RETURN>,

209

Chapter 6: Using the Emulator
Using System Commands

Examples

To display the name of the emulation module

Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

To display the name of your emulation module:

name_of module <RETURN>

The name of the emulation module is displayed on the status line.

To display the event log

ChooseDisplay - Event Log.

Position the mouse pointer on the status line, press and halel¢ltenouse
button, and then chooisplay Event Logfrom the popup menu.

Using the command line, enter tlisplay event_logcommand.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, software breakpoints and
trace commands).

210

Chapter 6: Using the Emulator
Using System Commands

To display the error log

* ChooseDisplay - Error Log .

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooSisplay Error Log from the popup menu.

» Using the command line, enter tilisplay error_log command.

The last 100 error messages that have occurred during the emulation session are

displayed.

211

Chapter 6: Using the Emulator
Using System Commands

To edit files

ChooseéFile - Edit - File and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place an address reference
(either absolute or symbolic) in the entry buffer; then, chBdse. Edit — At ()
Location.

To edit a file based on the current program counter, chtilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the "Setting X Resources" chapter
for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

212

Examples

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted symbol is
defined.

—_—

Chapter 6: Using the Emulator
Using System Commands

To edit a file that defines a symbol:

f t
—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm
() imain IRecaII
Global symbols in ecs.x
Procedure symbols
Procedure name Address range __ Segment
realloc HAAB2AFA - BBRABZBCS libe
save_points [p FARARRA
set_outputs Global Symbols Display prog
sprintf . libe
strepud Display Local Symbols prog
strnomp Drgplay Parent Symbols libc
unlink e
update_system | Cut Full Symbol Name prog
{@=ts=For—io__ TEditFile Defining Symbol e
write [=1akty
write_hdwr HEAAE1812 - BBEAB1EEE prog
Static symbols
Symbal name Address range __ Segment
?AS HEABF 156 stack
JSR_ENTRY HEaAB43C2 mon
| STATUS: M68340--Running in monitor Emulation trace complete Tl
t f

213

Chapter 6: Using the Emulator
Using System Commands

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted source

To edit afile at a source line:

curr_loct++;
if {curr_loc >

NUH_OF_0LD

curr_los = B; /*BUGIITTI+/

Choose Action for Highlighted Line

—'E Hewlett Packard Emulator/Analyzer: em68340 (m68340) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Herto() | Break | Step Asm

(): save_points IRecaH
Memory :Bsp imnemonic :file = update_sysimodulel. "update_sys.c”

addre label dats A
262 MAKEEAR{ARGE Y ;
263
264 old_datalcurr_locl. temp = current_temp;
265 old_datalecurr_locl.humid = current_humid;

Set/Clear Software Ereakpoint

line exists.

Edit Source

Run Until

F_0Lo

268

ZE3 temp_tot=H;

278 for (i=B;i<NUM_OF_OLD; i++
271 temp_tot += old_datald
272

273 old_datalcurr_locl. ave_ter
274

275 humid_tot=H;

276 for (i=@;i<NUM_OF_OLD; i++
277 humid_tot += old_datall
278

| STATUS: M68340--Running in monitor

Trace After
Trace Before
Trace About
Trace Until

214

Chapter 6: Using the Emulator
Using System Commands

To copy information to a file or printer

ChooseéFile - Copy, select the type of information from the cascade menu, and use
the dialog box to select the file or printer.

Using the command line, enter tt@py command.

ASCII characters are copied to the file or printer.
If you copy information to an existing file, it will be appended to the file.

Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option is use
for restricting the number of lines that are copied. Also, this option is useful fo
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with ®Bettings— Source/Symbols Modesr
Settings— Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thide — Copy - Display ...command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

215

Chapter 6: Using the Emulator
Using System Commands

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been
loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named

(by an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from event log display.

To open a terminal emulation window

e ChooseFile - Term...

This command opens a terminal window into the current working directory context.

216

Chapter 6: Using the Emulator
Using Simulated 1/10

Using Simulated 1/O

Simulated 1/O is a feature of the emulator/analyzer interface that lets you use the
same keyboard and display that you use with the interface to provide input to
programs and display program output.

To use simulated I/O, your programs must communicate with the simulated I/O
control address and the buffer locations that follow it. (The Hewlett-Packard AXLS
compilers, if your program uses I/O, automatically link with environment
dependent routines that communicate with the simulated 1/0 control address and
buffer.)

Also, before simulated 1/0O can work, the emulator must be configured to enable
polling of the simulated I/O control address and to define the control address

location.
This section shows you how to: .

» Display the simulated I/O screen.
» Use simulated I/0O keyboard input.

Refer to theSimulated 1/0 User’s Guidier complete details on how simulated 1/0
works.

To display the simulated I/O screen

ChooseDisplay — Simulated 10.

Before you can display simulated 1/O, polling for simulated I/O must be enabled in
the emulator configuration.

217

Chapter 6: Using the Emulator
Using Simulated 1/10

Examples

Simulated [/0 display Status messages disabled
display is open

A message tells you whether the display is open or closed. You can modify the
configuration to enable status messages.

To use simulated 1/0 keyboard input

* To begin using simulated /O input, cho&ettings— Simulated 10 Keyboard.

» To end simulated I/O and return to using the interface, useiipendsoftkey.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with turn
command line display back on.

If you are planning to use even a modest amount of simulated I/O input during an
emulation session, it might be a good idea to open another Emulator/Analyzer
window to be used exclusively for simulated I/O input and output.

218

Chapter 6: Using the Emulator
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

219

220

Using the Emulation Analyzer

221

Using the Emulation Analyzer

This chapter describes tasks you perform while using the emulation analyzer.
These tasks are grouped into the following sections:

» The basics of starting, stopping, and displaying traces.
» Qualifying trigger and store conditions.

» Using the sequencer.

» Modifying trace displays.

e Saving and restoring traces.

222

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The Basics of Starting, Stopping, and Displaying
Traces

This section describes the basic tasks that relate to starting and stopping trace
measurements.

When you start a trace measurement, the analyzer begins looking at the data on the
emulation processor’s bus and control signals on each analyzer clock signal. The
information seen on a particular clock is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete." The default trigger state specification is "any state," so when you start

a trace measurement after initializing the analyzer, the analyzer will "trigger" on the
first state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the measurement
by displaying the trace status.

In some situations, for example, when the trigger state is never found or when
analyzer hasn't filled trace memory, the trace measurement does not complete®
these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keys to position the
trace list on the display. To speed up the display of traces, you can reduce the
depth of the trace list. Also, when entering trace commands, there is a special
command that allows you to recall and modify the last trace command entered.

This section describes how to:

e Start trace measurements.

» Display the trace status.

e Stop trace measurements.

« Display the trace.

» Position the trace display on the screen.
e Change the trace depth.

* Modify the last trace command entered.

223

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter tinace command.

Thetrace command tells the analyzer to begin monitoring the states which appear
on the trace signals. You will see a message that confirms that a trace is started.

The default trace command (simpfgice with no options) will trigger on any state,
store all captured states.

While the emulator is running the user program, you can start the default trace
measurement with the command:

trace <RETURN>
A message is displayed on the status line to show you that the "Emulation trace

[has] started", and another message will show you when the "Emulation trace [is]
complete”.

To display the trace status

ChooseDisplay - Status

Using the command line, enter ilisplay statuscommand.

In addition to the analyzer information shown on the status line (Emulation trace
started, Emulation trace complete, etc.), you can display complete analyzer status
with the command below.

224

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples To display the trace status:

display status <RETURN>

Status

Emulator Status
MES348--Running user program
Trace Status

Emulation trace complete
Arm ignored

Trigger in memory

Arm to trigger 7

States 512 (512) @..511
Jegquence term £
Oecurrence left 1

The first line of the emulation trace status display shows the user trace has be
"completed”; other possibilities are that the trace is still "running" or that the tr
has been "halted".

The second line of the trace status display contains information on the arm
condition. If the analyzer is always armed, the message "Arm ignored" is
displayed. When the arm condition is ignored, the "Arm to trigger" time is not
meaningful and a question mark is displayed. (The "Making Coordinated
Measurements" chapter explains arm conditions.)

If the analyzer is to be armed by one of the internal signals, either the message
"Arm not received" or "Arm received" is displayed. The display indicates if the arm
condition happened any time since the most recent trace started, even if it happened
after the trace was halted or became complete.

The "Arm to trigger" line displays the amount of time between the arm condition
and the trigger. The time displayed will be from -0.04 microseconds to 41.943
milliseconds, less than -0.04 microseconds, or greater than 41.943 milliseconds. |If
the arm signal is ignored or the trigger is not in memory, a question mark (?) is
displayed.

225

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The "States" line shows the number of states that have been stored (out of the
number that is possible to store) and the line numbers that the stored states occupy.
(The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the term
the sequencer was in when the trace completed. Because adarbotthe last
sequence ternconstitutes the trigger, the number displayed is what would be the
next term (2 in the preceding example) even though that term is not defined. If the
trace is halted, the sequence term number just before the halt is displayed,;
otherwise, the current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the current
sequence term. If the occurrence left is changing too quickly to be read, a question
mark (?) is displayed.

226

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To stop a trace measurement

* Choosé€lrace - Stop.

* Using the command line, enter thtep_tracecommand.

You can, and most likely will, specify traces whose trigger or storage states are
never found. When this happens, the "Emulation trace complete" message is never
shown, and the trace continues to run ("Emulation trace running"). When these
situations occur, you can halt the trace measurement wigitahetracecommand.

Thestop_tracecommand is also useful to deactivate signals which are driven
when the trigger is found (refer to the "Making Coordinated Measurements"
chapter).

Examples To halt a trace measurement:

stop_trace <RETURN>

When thestop_tracecommand is entered, the message "Emulation trace halted" is
displayed.

227

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To display the trace

Chooselrace - Display or Display - Trace.

Using the command line, enter tiisplay trace command.

You can display captured trace data withdtsplay trace command. The
available options to thdisplay trace command are described in the "Modifying
the Trace Display" section later in this chapter.

To display the trace:
display trace <RETURN>

0ffset=0 More data off screen
Label: Address Opcgode or Status w/ Source Lines time count
Bas=e: umnbaol mnemonic w/symbal relative
strepyf+d@@eEal2 mOOOQ.L #1,03 mmmmmm—————o
+BA1 strcpyB+HAEBEB14 NOP 728 nS
+B0Z strcpyB+BAEBEBLIE CHMP.L 04,03 5868 nS
+883 strepyS+BBOEBEG1S BLT.B prog|strepyB+$aa18 728 n3
+AB4 streopyS+BEABABLIA NOP 728 nS
+ABS streopyS+BAAEABLE NOP 728 nS
+8d6 strcpyB+b@pBE@lZ ADDOQ.L #1,03 728 nS
+B87 stropyb+BBAEBEB14 NOP 7268 nS
+B88 strcpuyb+BAEBEBLIE CMP.L 04,03 728 nS
+@63 strcpyS+dAABEE18 BLT.B proglstrcpg8+$aala 728 n3
+A18 stropyB+HAEBEBLIAR NOF G868 nS
+A11 strepyS+BARAEABLE NOP 728 nS
+812 strepyb+BBEBEB1Z ADDO.L #1,03 728 nS
+A13 streopybS+BAAEAB14 NOP 728 nS
+814 stropyB+d@EBEBIE CMP.L 04,03 728 nS
+815 strocpyB+BBEBEBLIS BLT.H prog|stropyB+$aa18 726 nS

The first column in the trace list contains the line number. The trigger is always on
line 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles.

The third column shows mnemonic information about the emulation bus cycle.

228

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The fourth column shows the count information (time is counted by default).
"Relative" indicates that each count is relative to the previous state.

You can use the scrollbar in the Graphical User Interface or the <NEXT> and
<PREV> keys in the Softkey Interface to scroll through the trace list a page at a
time. The <Up arrow> and <Down arrow> keys will scroll through the trace list a
line ata time. You can also display the trace list centered around a specific line
number (for examplealisplay trace 100 <RETURN3. Refer to the "Modifying

the Trace Display" section for more information on the trace list display.

Note that when a trigger condition is found but not enough states are captured to fill
trace memory, the status line will show the trace is still running. You can display

all but the last captured state in this situation; you must halt the trace to display the
last captured state.

To position the trace display on screen

Use the scroll bar or the <Up arrow>, <Down arrow>, <PREV>, <NEXT>,
<CTRL>f, and <CTRL>g keys.

The trace display command can display up to 1024 states, not all of which can
appear on the screen at the same time. However, you can reposition the display on
the screen with the keys described below.

The <Up arrow> and <Down arrow> (or roll up and roll down) keys move the
display up or down on the screen one line at a time.

The <PREV> and <NEXT> (or page up and page down) keys allow you to move
the display up or down a page at a time.

The <CTRL>f and <CTRL>g keys allow you to move the display left or right,
respectively. These keys are used when the width of the address or
mnemonic/absolute columns is increased so that not all the trace display data can be
displayed across the screen.

229

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To change the trace depth

Using the command line, enter ttiisplay trace depthcommand.

Thedisplay trace depthcommand allows you to specify the number of states that
are displayed. By reducing the trace depth, you can shorten the time it takes for the
interface to upload the trace information. You can increase the trace depth to view
more states of the current trace.

The maximum number of trace states is 1024 when counting is turned off, 512
otherwise. The minimum trace depth is 9.

If you wish to reduce the number of states that are displayedisgiiay trace
depth command must be entered beforetthee command. You cannot use this
command to reduce the number of states displayed in the current trace.

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter tinace modify_commandcommand.

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see the "Setting X Resources" chapter).

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command,; also,
the last trace command is always available, no matter how many commands have
since been entered.

230

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you carprestorestates. The prestore qualifier is a second storage qualifier
used for storing states that occur before the normally stored states. Prestore is
useful for capturing entry points to procedures or for identifying where global
variables are accessed from.

This section describes how to:

* Qualify the trigger state and its position in the trace.
e Trigger on a number of occurrences of some state.
* Qualify states stored in the trace.

* Qualify prestore states.

» Change the count qualifier.

» Trace until the analyzer is halted.

» Cause the emulator to break into the monitor when the analyzer triggers.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions which consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 3770).
D d (default) Decimal (example: 2048d or 2048).

231

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an "X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function
Operators Analysis specification expressions may contain operators. All

operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&O0fff00h

232

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the analyzer
trace signals. The emulation analyzer trace signals are described in the table that
follows.

233

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

ify

cles.

ne
b are:

Emulation Analyzer Trace Signals
Trace Signal Signal
Signals Name Description
0-31 A0-A31 Address Lines 0-31.
32-47 D0-D15 Data Lines 0-15.
64 BKG_L Background Debug Mode (BDM) active. This signal is used to qua
the analyzer clock for tracing only foreground or only background cy
65 FCO Function Codes 0-2. These lines to the analyzer are derived from t
66 FC1 68340 processor’s function code lines. The function code meaning
67 FC2
001 - User Data Space
010 - User Program Space
101 - Supervisor Data Space
110 - Supervisor Program Space
111 - CPU Space
68 RAW Read/write signal.
69 SI1Z0 Number of bytes remaining to be transferred.
70 Siz1
71 CS BYTE L Chip select byte/word signal.
72 DSO L Data size acknowledge. Note that the 68340 SIM can be programmed to
73 DS1 L internally generate theSACKX signals for external accesses; in this
case, th&SACKXx values do not show up on these trace signals.
74 BERR L Bus error active.
75 HALT L Halt active.
76 CODE_L Instruction execution active.
77 FLUSH_L Instruction pipeline flush active.
78 FC3 Function code 3. This can be set by the 68340 DMA controller for
DMA transfers; however
79 CSO L Chip select 0 active.

234

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

State Qualifiers

Whenever a state can be specified in the trace command (trigger state, storage state,
prestore state, etc.), you will see the following softkeys that allow you to qualify the
state:

address The value following this softkey is searched for on the lines that
monitor the emulation processor’s address bus.

data The value following this softkey is searched for on the lines that
monitor the emulation processor’s data bus.

status The value following this softkey is searched for on the lines that
monitor other emulation processor signals.

When a value is specified without one of these softkeys it is assumed to be an
address value.

Predefined Values for Qualifiers ~ When you specify status qualifiers for
analyzer states (by pressing thatus softkey), you will be given the following
softkeys which are predefined values for the qualifiers.

235

Chapter 7: Using the Emulation Analyzer

Qualifying Trigger and Store Conditions

Predefined Equates for Analyzer Status

Equate Value Description

buserror OXXXX XOXX XXXX XXXXb /BERR active

code OXXX0 XXXX XXXX XXXXb code execution cycles

code_tfr OXX00 XXXX XXXX XXXXb first instruction following a pipeline flush

cpu OXXXX XXXX XXXX 111xb CPU space function code

csx_hyte OxxxX XX11 OxXX XxXxxb byte data transfer, chip select actib&SACKx not
internally generated)

csx_word OXxXXX XX11 1xxx xXxxb word data transfer, chip select actidSACKx
not internally generated)

data OXO0XX XXXX XXXX X01xb data cycle

dma OXIXX XXXX XXXX XXXXD DMA space function code (if used by DMA
controller module)

ds_byte OXxXXX XX10 XxxxXX Xxxxb byte data transfer

ds_word OxxxX XX01 xxxx XxXxxb word data transfer

memread OXXXX XXXX XXX1 XXXXb memory read

memwrite OXXXX XXXX XXXO XXXXb memory write

prog OXOXX XXXX XXXX X10xb program space function code

rerun OXXXX 00XX XXXX XXxXb /BERR and /HALT active (retry)

siz_3byt OXXXX XXXX X11X Xxxxb 3 byte access

siz_byte OXXXX XXXX X01X Xxxxb byte access

siz_long OXXXX XXXX XO00xX XXxxb long word access

siz_word OXXXX XXXX X10X XxXxxb word access

super OXOXX XXXX XXXX 1xxxb supervisor space function code

supdata 0X0xx Xxxx Xxxx 101xb supervisor data space function code

supprog OX0xx XxXxx Xxxx 110xb supervisor program space function code

user OXOXX XXXX XXXX OxxXxb user space function code

userdata 0X0xx Xxxx Xxxx 001xb user data space function code

userprog 0X0xx Xxxx Xxxx 010xb user program space function code

These predefined values may be used as other values would be used. For example:

trace after status write

is the same as:

trace after status

OXXXXXXXXXXXOXXXXD

236

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To qualify the trigger state and position

Enter a trigger state specification in the entry buffer; then, chioase - After (),
Trace— About (), or Trace - Before ().

When displaying memory in mnemonic format, position the mouse pointer over the
source line where you want to set the trace trigger, press and heédatinouse

button and choosErace After, Trace Before or Trace About from the popup

menu.

Using the command line, enter tinace after, trace about, ortrace before
commands.

Tracing after the trigger state says states that occur after the trigger state should be
saved; in other words, the trigger is positioned at the top of the trace.

Tracing before the trigger state says states that occur before the trigger state
be saved; in other words, the trigger is positioned at the bottom of the trace.

Tracing about the trigger state says states that occur before and after the trigger
state should be saved; in other words, the trigger is positioned at the center of the
trace.

When the analyzer counts time or states, the actual trigger position is within +/- 1
state of the number specified. When counts are turned OFF, the actual trigger
position is within +/- 3 states of the number specified.

Usually, when you enterteace aboutcommand, the trigger state (line 0) is

labeled "about". However, if there are three or fewer states before the trigger, the
trigger state is labeled "after". Likewise, if there are 3 or fewer states after the
trigger, the trigger state is labeled "before".

The state you define aftace after, trace about, ortrace beforeis the state that
will trigger the analyzer and cause states to be stored.

237

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples Suppose you want to look at the execution of the demo program after the call of the
"update_system()" function (main.c: line 102) occurs. To trigger on this address,
enter:

trace after address main."main.c": line 102 <RETURN>
set source on inverse_video on symbols on <RETURN>

display trace <RETURN>

race List 0ffset=8 More data off

Label: Address Opcode or Status w/ Source Lines time count
umnbol mnemonic w/symbal relative

Bigdi it imain.c - line 181 thru 162 HHUBUESUBRAS SRS SHEHRRERERSHSRHERY

update_: tem{)
pr|main+td0EEEE1Z TSR up. update_system 728 n3
pr|maintBHEEEE 14 $AEEA supr prgm word rd (dslB} 728 nS
pr|main+tdEAEEEIE $1532 supr prgm word rd (dslB} 7208 nS
gt tttinain. e - line R g e e g

+BA3 pr|maintBAEBRAE1E incomplete instr.: SE2BRSTYRYS 7208 n3

+dE4 sysstactBBBEyF 38 3al]a]5] supr data long wr (dslG) 726 n3
+HE5 sysstac+BBARYFIZ $AF0G supr data word wr (dslG) 726 n3
Bt fupdate_sys.c - line 1 thru 47 BHRBRHEHERERARERARBRRAR RS

Hinclude

In the preceding trace list, line O (labeled "after") shows the beginning of the
program loop.

238

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To trigger on a number of occurrences of some
state

» Use theoccurs <#TIMES> after specifying the trigger state.

When specifying a trigger state, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of some
state.

The default base for an occurrence count is decimal. You may specify occurrence
counts from 1 to 65535.

Examples To trigger on the 20th occurrence of the call of the "update_system()" function
(main.c: line 102):
trace after address main."main.c": line 102 occurs 20
<RETURN>

239

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To qualify states stored in the trace

Enter a storage state specification in the entry buffer; then, chicase- Only ().

Using the command line, use thiely option in thetrace command.

By default, all captured states are stored; however, you can qualify which states get
stored by using thigace command’only option.

When the emulator is running the demo program, to stuyeaccesses of the
"target_temp" variable:

trace after main."main.c": line 102
only target temp <RETURN>

race List 0ffset=0 Mare data of f screen
Label: Address Opcgode or Status w/ Source Lines time count
umnbaol mnemonic w/symbal relative

BHgHEdE R Emain.c - line 141 thru 162 BELHEHSUHHRRSRESHERHSHEEHSBESHSRY

update_systemi);
ElRdzil v |maintBAABEAELZ incomplete instr.: J4EBIS TRV —mmmmmmmmmeo
+BH81 dat|_target_temp $HE43 supr data word rd (dslB} 3.58 mS
+082 dat|_target_temp $HA47 supr data word wr (dslB} [EalE] nS
+083 dat|_target_temp $HAE47 supr data word rd (dslBE} 2.2 uj
+HA4 dat|_target_temp $BA47 supr data word rd (ds1B} 4.62 m3
+HAS dat|_target_temp $BA47 supr data word rd (ds1B6} 51.6 m5
+HA66 dat|_target_temp 30847 supr data word rd (dslG) 3.84 wu3
+@E7 dat|_target_temp 38847 supr data word rd (dslG3 2.8 us
+BA8 dat|_target_temp $HAE47 supr data word rd (dslB} 2.3 u§
+B83 dat|_target_temp $HAE47 supr data word rd (dslB} 47.4 w3
+018 dat|_target_temp $HA4E supr data word wr (dslB} 348 nS
+611 dat|_target_temp $HE4G supr data word rd (dslBE} 2.1 us
+012 dat|_target_temp $BA4E supr data word rd (ds1B} 4.62 m3

Notice the trigger state (line 0, labeled "after") is included in the trace list; trigger
states are always stored.

240

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To prestore states before qualified store states

Enter a storage state specification in the entry buffer; then, clicasze- Only ()
Prestore.

Use theprestore option in therace command.

Prestore allows you to save up to two states which precede a normal store state.
Prestore is turned off by default. However, you can usiabe command’s
prestore option to specify a prestore qualifier.

Prestore is useful when you want to find the cause of a particular state. For
example, if a variable is accessed from many different places in the program, you
can qualify the trace so that only accesses of that variable are stored. Then, you can
turn on prestore to find out where accesses of that variable originate from.

States which satisfy the prestore qualifier and the storage qualifier at the sam
are stored as normal states.

To storing only write accesses to the variable "target_temp" and prestore the two
previous states:

trace after main."main.c": line 102
only target_temp status memuwrite
prestore anything <RETURN>

0ffset=8 More data of f screen
Label: Address Opcode or Status w/ Source Lines time count
Base: umnbol mnemonic w/symbal relative

Bigdi it imain.c - line 181 thru 162 HHUBUESUBRAS SRS SHEHRRERERSHSRHERY

incomplete imstr.: /4EBI/PPPe ——mmmmmmmmmm
105 HHRSEENEHHAREREEE RN R

if (*temperature <= MIN_TEMP) temp_dir = up;
pstore get_tar+HBAHEEE4E incomplete instr.: FACS3I V7YY
pstore dat|_target_temp $HB4A supr data word rd (ds1B6}
+HA3 dat|_target_temp $BA43 supr data word wr (dslB) 3.58 mS5
pHgntttupdate_sys.c - line JUEL g g g b g R g b g g i hg gy
if (*temperature <= MIN_TEMP) temp_dir = up;
pstore get_tar+BEAAEEAE4E incomplete instr.: JACS3I/YPPYS
pstore dat|_target_temp $HE43 supr data word rd (dslB}
+BEAE dat|_target_temp $0A43 supr data word wr (dslB} 145. m3
g tttupdate_sys.c - line R g g b g

if {*temperature <= MIN_TEMP)} temp_dir = up;

241

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To change the count qualifier

Use thecounting option in therace command.

After initializing the analyzer, the default count qualifier is "time", which means
that the time between states is saved. When time is counted, up to 512 states can be
stored in the trace.

When you count states, the counter is incremented each time the state is captured
(not necessarily stored) by the analyzer. When a state is counted, up to 512 states
can be stored in the trace.

When you turn OFF counting, up to 1024 states can be stored in the trace.

Suppose you want to know how many loops of the program occur between calls of
the "do_sort" function. To change the count qualifier to count a state that occurs
once for each loop of the program, enter:

trace only do_sort
counting state main."main.c": line 102 <RETURN>

set source off <RETURN>

Label: Address Opcode or Status state count
Base: ymbol mnemonic wdsymbaol relative

write_h+EBEBEBZZ CMP.L As,04 mmmmmmem e
+@a1 pro|main. do_sort incomplete instr.: S4ESESYYYYS
+082 pro|lmain.do_sort incomplete instr.: S4ESESTYVYS
+BA3 pro|lmain.do_sort incomplete instr.: S4ESESTYVVS
+d84 pro|lmain.do_sort incomplete instr.: J4ESESTYVYS
+BA5 pro|lmain.do_sort incomplete instr.: S4ESESTYYVS
+dA56 pro|lmain.do_sort incomplete instr.: S4ESESTYVVS
+d87 pro|lmain.do_sort incomplete instr.: J4ESESTYVYS
+dA53 pro|lmain.do_sort incomplete instr.: J4ESESTYVYS
+B83 pro|lmain.do_sort incomplete instr.: S4ESESTYVVS
+d18 pro|lmain.do_sort incomplete instr.: S4ESESTYVYS
+A11 pro|main. do_sort incomplete instr.: S4ESESYYPYS
+A12 prao|lmain.do_sort incomplete instr.: S4ESEST7YVYS
+A13 pro|lmain.do_sort incomplete instr.: S4ESESTYVRS
+A14 pro|lmain.do_sort incomplete instr.: S4ESES7YVRS
+A15 pro|lmain.do_sort incomplete instr.: S4ESESTTVRS

B e e i T i i I R SN S A A S

242

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

The trace listing above shows that the program loops 4 times for each call of the
"do_sort" function.

To trace until the analyzer is halted

Chooselrace - Until Stop.

Using the command line, enter tinace on_haltcommand.

Thetrace on_haltcommand allows you to prevent triggering. In other words, the
trace runs until you enter tiséop_tracecommand. Th&ace on_haltcommand
is the same as tracihgfore a state that never occurs.

Thetrace on_haltcommand is useful, for example, when you wish to trace the
states leading up to a break into the monitor. Suppose your program breaks
access to guarded memory. To trace the states that lead up to the break, ent
trace on_haltcommand, and run the program. When the break occurs, the
emulator is running in the background monitor, and the analyzer is no longer
capturing states. To display the states leading up to the break, estepttieace
command (and thdisplay trace command if traces are not currently being
displayed).

When theon_halt option is used in a trace command, the trigger condition (and
position) options, as well as thepetitively andbreak_on_trigger options, cannot
be included in the command.

Also, note that this does not work the same when using a foreground monitor
(unless the processor becomes halted) because the analyzer continues to capture
states when the break to monitor occurs.

243

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To break emulator execution on the analyzer
trigger

Enter a trigger state specification in the entry buffer; then, chioase - Until ().

Using the command line, use thieak on_trigger option to therace command.

Thebreak_on_trigger option to therace command allows you to cause the
emulator to break when the analyzer finds the trigger state.

Note that the actual break may be several cycles after the analyzer trigger.

To trace before source line 102 and cause the emulator to break into the monitor
when the analyzer triggers:

trace before address main."main.c": line 102
break_on_trigger <RETURN>

244

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Using the Sequencer

When you use the analyzer’'s sequencer, you can specify traces that trigger on a
series, or sequence, of states. You can specify a state which, when found, causes
the analyzer to restart the search for the sequence of states. Also, the analyzer’s
sequencer allows you to trace "windows" of code execution.

This section describes how to:

» Trigger on a sequence of states.

» Specify a global restart state.

» Trace "windows" of program execution.

The sequencing and windowing capabilities from within the Softkey Interface are
not as powerful or flexible as they are from within the Terminal Interface. For
example, in the Terminal Interface, you can specify different restart states for each
sequence term and you can set up a windowing trace specification where the
does not have to be in the window. If you do not find the sequencing flexibility
you need from within Softkey Interface, refer to &840 Emulator User's Guide

for the Terminal Interface

To trigger after a sequence of states

Use thdrace find_sequenceommand.

The analyzer's sequencer has several levels (also saliegnce terms Each
state in the series of states to be found before triggering, as well as the trigger state,
is associated with a sequence term.

The sequencer works like this: The analyzer searches for the state associated with
the first sequence term. When that state is captured, the analyzer starts searching
for the state associated with the second term, and so on. The last sequence term
used is associated with the trigger state. When the trigger state is captured the
analyzer is triggered. Up to seven sequence terms and an optional occurrence count
for each term are available.

245

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Examples In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and finally the
"do_sort" function. Also, suppose you wish to store only opcode fetches of the
assembly language LINK A6,#0 instruction (data values that equal 4E56H) to show
function entry addresses.

To set up the sequencing trace specification, enter the following trace command.

trace find_sequence save_points then interrupt_sim
trigger about do_sort onlydata 4e56h <RETURN>

set source off <RETURN>

Label: Address Opcode or Status time count

Basze: umnbaol mnemonic w/symbal relative

-A11 updat.write_hdur $4ESG supr prgm word rd {(dslB} ————-mme-
=g adv upda.save_points $4ES6 supr prgm word rd (ds16) 8.4 mS
sg adv ma.interrupt_sim $4ES6 supr prgm word rd (ds16) G.78 m3
-AH8 pr.proc_specific $4ESE supr prgm word rd (dslB} 12.5 m3
-B87 up.update_system incomplete instr.: S4ESESTVPIVS 5.BB m5
-HHE upda.get_targets incomplete instr.: S4ESESTVPYVS 3.4 S
-HE5 .read_conditions incomplete instr.: S4ESES7YVYS 3.58 m5
-AH4 upda.set_outputs incomplete instr.: S4ESRSTPRYS 8.36 m3
-Ba3 updat.write_hdwr incomplete instr.: /4ESG/7777/ 47.3 m3
-8z upda. save_points incomplete instr.: J4ESG/7777/ 8.4 mS
-A01 ma.interrupt_sim incomplete instr.: J4ESGSTYYYS G.78 m3
pro|main.da_sart incomplete instr.: J4ESES 7YY/ 16.4 m53
+6a1 pro|main.strocpyS incomplete instr.: S4ESESPYPYS 3.69 mS
+H82 pro|main.stropyd incomplete instr.: S4ESESPYVYS 45H. us
+0A3 pro|main.stropyd incomplete instr.: S4ESESPYVYS 458, us
+0A4 pro|main.stropyd incomplete instr.o: S4ESESPYVYS 458. us

Notice the states that contain "sq adv" in the first column (you may have to press
<PREV> in order to see the states captured prior to the trigger). These are the
states associated with (or captured for) each sequence term. Just as the trigger state
is always stored in trace memory, the states captured in the sequence are always
stored if the trace buffer is deep enough.

246

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Examples

To specify a global restart state

Use theaestart option to thérace command.

When using the analyzer's sequencer, an additional sequence restart term is also
allowed. This restart is a "global restart"; that is, it applies to all the sequence terms.

The restart term is a state which, when captured before the analyzer has found the
trigger state, causes the search for the sequence of states to start over. You can use
the restart term to make certain some state does not occur in the sequence that
triggers the analyzer.

In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and the "do_sort"
function. However, you only want to trigger when the "interrupt_sim" calls the
"do_sort" function. In other words, if the "proc_specific" function is entered be
the "do_sort" function is entered, you know "interrupt_sim" did not call "do_sor
this time, and the analyzer should start searching again from the beginning.

Again, suppose you wish to store only opcode fetches of the assembly language
LINK A6,#0 instruction (data values that equal 4E56H).

To set up this sequencing trace specification, enter the following trace command.

trace find_sequence save_points then interrupt_sim
restart proc_specific trigger about do_sort only data
4e56h <RETURN>

set source off <RETURN>

247

Chapter 7: Using the Emulation Analyzer

Using the Sequencer

Label: Address Opcode or Status time count

bBase: umnbol mnemonic w/symbal relative

-a1z upda. set_outputs $4ESE supr prgm word rd (dslG} 183. mS
-a11 updat.write_hdwr $4ESE supr prgm word rd (dslG) 47.3 mS
sq adv upda.save_points $4E36 supr prgm word rd (dslG} 8.4 m3
sq adv ma.interrupt_sim $4ESE supr prgm word rd (dslB} .78 m3
sq adv pr.proc_specific $4ESE supr prgm word rd (dslB} 86.8 U5
-BE7 up.update_system incomplete instr.: S4ESESVYYYS 5.68 m3
-HEE upda.get_targets incomplete instr.: S4ESESVYVYS 31.5 U5
-AB5 .read_conditions incomplete instr.: F4ESES7YRYS 3.58 m3
-B84 upda. set_outputs incomplete instr.: /f4ESG/777Y?S 51.9 mS
-Ba3 updat.write_hdwr incomplete instr.: /4ESG/7777/ 47.3 mS
sq adv upda.save_points incomplete instr.: /4ESB/777?/ 18.4 mS
sq adv ma.interrupt_sim incomplete instr.: J4ESESYPVYS .78 m3
pro|main.do_sort incomplete instr.: /A4ESESVPY?YS 863, u5
+HE1 pro|main.strocpyS incomplete instr.: /A4ESESVPY?YS 3.6 m5
+H82 pro|main.stropyd incomplete instr.: S4ESESTVVRS 454, u5
+BA3 pro|main.stropyd incomplete instr.: S4ESES?VVYS 458, us

Notice in the preceding trace (you may have to press <PREV> in order to see the
states captured prior to the trigger) that, in addition to states captured in the
sequence, "sq adv" is also shown next to states which cause a sequencer restart.

To trace "windows" of program execution

Use theenableanddisable options to thérace command.

Windowing refers to the analyzer feature that allows you to turn on, or enable, the
capturing of states after some state occurs then to turn off, or disable, the capturing
of states when another state occurs. In effect, windowing allows you capture
"windows" of code execution.

Windowing is different than storing states in a rangedttg range option in the

trace command syntax) because it allows you to capture execution of all states in a
window of code whereas storing states in a range won't capture the execution of
subroutines that are called in that range or reads and writes to locations outside that
range.

When you use the windowing feature of the analyzer, the trigger state must be in
the window or else the trigger will never be found.

248

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

If you wish to combine the windowing and sequencing functions of the analyzer,
there are some restrictions:

» Up to four sequence terms are available when windowing is in effect.
* Global restart is not available when windowing is in effect.

« Occurrence counts are not available.

Examples In the demo program, suppose you are only interested in the execution that occurs
within the switch statement of the "combsort" function. You could specify source
line number 228 as the window enable state and the source line number of the next
statement (line number 240) as the window disable state. Set up the windowing
trace specification with the following command.

trace enable main."main.c": line 229 disable
main."main.c": line 241 <RETURN>

set source on <RETURN>

race List Ffs 5 More data off scree
Label: Address ode or Status w/ Source Lines time count
Base: umnbol mnemonic w/synbal relative
+H1A combsor+AARAAEOE MOP ats]a] nS

Hififittimain.c - line 233 thro 241 fHEHEHBHERESEREGEGHALEHEREREREREYS

= '::tn_np—len— ap,) K
sq adv combsor+HEHEEEER L D03,A4 726 nS
B ifmain. e - line 227 thruo 223 HHEHHHBHEHESHAHAHAHAHBHERBRHERERES

n to conform to combll #/

sq adv combsor+BRRBRAIE MOVE.L (A3}, D00

+813 combsor+EBEBEBSA CMPI.L H$EBEDEGEE, DA 728 nS
+814 da|main.switches $6888 supr data long wr (dslB) 7208 nS
+815 switche+tBHHOEHEZ $OAHD supr data word wr (dslB} 726 nS
+H15 data|main. gap $HBEAR supr data long rd (dslBG} 7268 nS

Notice in the resulting trace (you have to press the <NEXT> key) that the enable
and disable states have the "sq adv" string in the line number column. This is
because the windowing feature uses the analyzer's sequencer.

249

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Modifying the Trace Display

This section describes the options available when displaying trace lists.
This section describes how to:

» Display a dequeued trace.

» Display the trace about a line number.

» Display the trace, disassembling from a line number.

» Display instruction cycles only.

» Display the trace in absolute format.

» Display the trace in mnemonic format.

» Display the trace with high-level source lines.

» Display the trace with symbol information.

* Change the column widths in the trace display.

» Display time counts in absolute or relative format.

» Display the trace with address information offset by a value.

* Return to the default trace display.

250

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To display a dequeued trace

» Use thadequeue oroption to thalisplay trace command.

Unused prefetches are removed from the trace display, and data transactions are
aligned with the instructions that caused them to occur.

Examples To display a dequeued trace:

display trace dequeue on <RETURN>

Ofled Trace -t

Label: Address Opcode or Status time count

Bas=e: he mnemonic relative

AB@ABRFCE LINK.W A6, #$6006 ——m—m—m———— o
=HAE12F34 stck sdata wr:$BBE1ZFFO

+8d4 BEOEEFC4 JSR $B0E0 14E8 2.3 us
=HEAB1ZF38 stck sdata wr:$BBEE0EFCA

+818 BEBE14ES LIMK.W AE, #$B000E 4.28 uS
=HAB12FEBC stck sdata wr:$BBE1Z2F34

+@14 BEEE14EC MOVE.W #$08843, $00607206 2.3 us
=AHEAY 206 dest sdata wr:$H843

+0158 BEBA14F4 HMOVE.W #$8820, $660667208 2.8 us
=BRAE7 208 dest sdata wr:$@EZ0

+023 BEBA14FC MOVE.W #$0844, $60EE7EEE 3.6 usS
=BHEEYEEE dest sdata wr:iBBd44

+6828 BEBE1S84 MOVE.W #$BEZ29, $EBEE7EFE 3.6 uS
=BHEE7EFA dest sdata wr:$BBEZ29

+6833 BEEa1SEC CLR.B $EREa77ag 3.6 uS
=HHEAY 7 A dest =sdata wr:$dA

To turn OFF the dequeued trace display:
display trace dequeue off <RETURN>

251

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

To display the trace about a line number

» Use the<LINE #> option to thalisplay trace command.

The<LINE #> trace display option allows you to specify the line number to be
centered in the display.

Examples To display the trace about line number 66:

display trace 66 <RETURN>

race List

Label: HAddress Opcode or Status time count

Base: he mnemonic relative

+653 BHBEAE153Z $AEHEA supr prgm word rd (ds16) 7208 n3
+HEH BEBAYEFG $080A supr data long wr (dslB3 726 n3
+H61 BEEAYEFS $BBRA supr data word wr (dslB} 726 n3
+H62 BEAE1S34 $154E supr prgm word rd (dsl6} 728 nS
+663 HEAH1S3E $4Z239 supr prgm word rd (ds16} 7208 nS
+H64 HEALZFEE fEHEH supr data long wr (dsl63} 7208 nS
+H65 HEE1ZFEA $1536 supr data word wr (dsl1G63 726 nS
+H66 BBAB1S4E $4ESE supr prgm word rd (ds163 728 n3
+HE7 BEAA1558 $BBRA supr prgm word rd (dslB3} GE6 n3
+HE5 BEA12F 54 $0RE 1 supr data long wr (dslB3 726 n3
+653 BEALIZFEE ZFGC supr data word wr (dslG} 728 n3
+B78 BEAE1SSZ $267C supr prgm word rd (dsl16) 728 nS
+671 BAEE 1554 $HEEH supr prgm word rd (ds16} 7208 nS
+672 BEAHISSE $7156 supr prgm werd rd {(dslG} 726 nS
+673 HBEAH1S5E §7ZEH supr prgm word rd (ds163 7268 nS
+674 BBEAE1S5A $4E71 supr prgm word rd (ds16) 7208 n3

252

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To display the trace, disassembling from a line
number

» Use thalisassemble_from_line_numbeoption to thedisplay trace command.

The "disassemble_from_line_number" trace display option causes the inverse
assembler to attempt to begin disassembling the trace information from the
specified line number. This option is required for inverse assemblers that cannot
uniquely identify opcode fetch states on the processor bus.

If the line number specified is not an opcode fetch state, the disassembled
information will be incorrect.

Examples To display the trace, disassembling from line number 66:

display trace disassemble_from_line_number 66 <RETURN>

Label: HAddress Opcode ar Status time count

Base: he mnemonic relative

+066 BEBALS4E LINK.W AG, #$0808 7208 nS
+HE7 BEAA 1558 $080A supr prgm word rd (dsl6) GE6 n3
+H68 GBEALZFE4 EEEE1 supr data long wr (dslG 728 n3
+HE3 BEALIZFSE $2FaC supr data word wr (ds163 728 nS
+6878 BEBALSSZ MOVEA.L #$880@7 156, AE 7208 nS
+671 BAEE 1554 $HEEH supr prgm word rd {(ds16} 7208 nS
+672 BEEHISSE $7156 supr prgm werd rd {(dsl1G63 726 nS
+6873 BEBA1S58 MOVEQ #$A0ABAEAE, 01 728 n3
+6874 BEBALSSA MOP 7208 nS
+6875 BEBa1ss5C MOVE.L 0O1,0@ 7268 nS
+076 BEBAISSE ADD.L 0@, 0a 728 nS
+877 BEBALSEE ADD.L 01,08 5868 nS
+6878 BEBALSEZ LSL.L #2,08 7208 nS
+6879 BEBAISE4 MOVE.W %6841, ($B8,A0,08. L) 7208 nS
+H38 HEAH1SEE $HEH41 supr prgm werd rd {(dslG} 726 nS
+H31 AAER 1563 $H3AH supr prgm word rd (ds163 7268 nS

253

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

To display instruction cycles only

* Use thadisassemble_from_line_number <LINE #> instructions_onlpption to
thedisplay trace command.

Only the lines that contain an instruction opcode are displayed in the trace.

Examples To display the trace about line number 66 displaying only instruction cycles:
display trace disassemble_from_line_number 66
instructions_only <RETURN>

race List

Label: HAddress Opcode or Status time count

Basze: he MAEmoni c relative

+BF6 BABRIS4E LIMK.W AG, #$6860 7.2 uS
+B78 BEEA1SSZ MOVEA.L #$BEAA71S6,AE 2.8 uS
+B73 BEBRISSE MOVED #$ARARREEE, D] 2.2 uS
+B74 BABBISSA NOP 728 nS
+B75 @EERISSC MOVE.L D1,0@ 728 nS
+B76 ©EERISSE AOD.L DA,08 728 nS
+B77 @@ERISGA ADD.L D1,0@ =t nS
+B78 @@ERISGZ LSL.L #2,08 728 nS
+B73 BEERISG4 MOVE.W #3641, ($AE,AB,D8.L) 728 nS
+BE2 BEERISGA MOVE.W #3629, ($82,A8,068.L) 2.2 uS
+BE6 @EERISFA CLR.L ($@4,A8,08.L) 2.8 uS
+B83 @@ER1SF4 CLR.L ($8%,A8,08.L) 2.2 uS
+B93 BEEBISTE NOP 2.9 uS
+B94 @EEAISPA AODO.L #1,01 728 nS
+B97 BABBISTC NOP 2.1 .S
+B98 @AERISPE MOVEDQ #$AOAGRAEZA, 0 728 nS

To return to displaying all cycles:

display trace disassemble_from_line_number 66
all_cycles <RETURN>

254

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace in absolute format

Use theabsoluteoption to thedisplay trace command.

Theabsolutetrace display option allows you to display status information in
absolute format (binary, hex, or mnemonic). @hsolute status mnemonic
display is the same as default mnemonic display, except that opcodes are not
disassembled.

To display the trace in absolute format with the status information as binary values:

display trace absolute status binary <RETURN>

Label: Address Oata Absolute Status time count
Basze: he he binary relative
+B66 BEBA1S4E 4ES56 BEBALI1111B111@1 726 nS
+B67 BEBA155A AEPE PAE1AL111118111@1 a1s]5] nS
+BE8 BEB12FB4 AEA1 BPAEL111111PABA1611 726 nS
+BE3 BHEB1ZFBE ZFBC BA11111111881611 728 nS
+B78 BEBA1S5Z ZB7C BE1ALII11118111@1 726 ns
+B71 BEBA1S54 AEBEE BE1ALI111118111@81 726 nS
+B872 BHBELSSE 7156 BE1A111111611161 720 nS
+B873 BEBA1558 7cBB BE1ALII1I1161116] 726 nS
+B874 BEBA1SGA 4E71 BE1ALII1111B111@1 726 nS
+B75 BEBA1SSC 2BA1 BAE1ALI111118111@1 726 nS
+A76 BEBA1SSE DEB8 BE1A1111118111@81 728 nS
+B77 BEBA1SEA DE31 BE1AL1111118111@81 [1=]E] ns
+B78 BEBALSEZ ESBE BE1A1111118111@1 726 ns
+B73 BEBA1SE4 31BC BA1A111111811181 726 nS
+B80 BHOE1SER AE41 BE1E111111611161 720 nS
+B81 BEBA1SE8 AEBAE BE1ALII111161116]1 726 nS

255

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace in mnemonic format

Use thannemonicoption to thalisplay trace command.

Themnemonictrace display option allows you to display the trace information in
mnemonic format (that is, opcodes and status). The default trace display is in

mnemonic format.

To display the trace in mnemonic format:

display trace mnemonic

<RETURN>

Label:
Baze:
+BE6
+B67
+B68
+B63
+878
+871
+872
+873
+874
+875
+B76
+877
+878
+B879
+B88
+B81

race List

Address Opcode or Status time count
he mnemonic relative
ABAE154E LINK.W AB, #6080 728 nS
BEEA 1558 $B8E supr prgm word rd (ds163 [atats] n3
BEE12F54 $8RAE1 supr data long wr (dslB3 728 n3
HEB1ZFE6 $ZFEC supr data word wr {(dslG) 728 n3
ABEE 1552 MOVER.L #H$BEBET1SE, AB 728 nS
BEEE 1554 $HEEH supr prgm weord rd {(ds163} 720 nS
BEHE 1556 $7156 supr prgm werd rd {(dslG63} 720 nS
ABEE1558 MOVEQD #$0BRERADA, D1 7268 nS
ABEE155A NOP 728 nS
AB@B155C MOVE.L D1,08 728 nS
BBEB155E ADD.L De, 08 728 nS
HABEE 15668 ADD.L 01,08 6868 nS
BABEB 1562 LSL.L #2,08 728 nS
AB@E 1564 MOVE.W #$BE41, ($86,A8,046.L) 728 nS
HEEE 1566 $HE41 supr prgm werd rd {(dslG63} 720 nS
AREA15E3 $H3AH supr prgm word rd {(ds163} 726 nS

256

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To display the trace with high-level source lines

* Use theset sourcecommand.

To include high-level source lines in the trace display, you must usetthe
command. Theetcommand allows you to include symbolic information in trace,
memory, register, and software breakpoint displays. s€eb@mmand affects all
displays for the current window.

Theset source on/off/onlycommand allows you to include source file information
in the trace list or memory mnemonic display. $herce onlyoption specifies
that only the source file information will be displayed.

When source lines are included, comments that contain file and line information
appear before the source lines.

Also, when source lines are turned on, three additional options are available in the
set command: inverse video, tabs are, and number of source lines.

Theinverse_videooption allows you to display source lines in inverse video.

Thetabs_areoption allows you to specify the number of spaces between tab stops
so that the appropriate number of spaces can be inserted for source lines. The
default value is eight. Values from two to 15 can be entered.

Typically, there are lines in the source file that are not associated with actual
instructions (declarations, comments, etc.). filn@ber_of_source_linesoption

allows you to specify the number of these source lines to be displayed for every
source line that is associated with an actual instruction. Only source lines up to the
the previous source line that corresponds to actual code will be displayed. The
default value is five. Values from one to 50 can be entered.

Examples To display the trace with high-level source lines:

set source on <RETURN>
display trace <RETURN>

257

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

race List Ff =A

Label: Address Opcode or Status w/ Source Lines time count
Base: he mnemonic relative
HHBHHAHEER NI t_system.c - line 66 thru G0 HHEHHBEHAHAHAEAHARERERBRERGS
Returns: MNothing.
KR K S K K K K KK K K K K K 6 KK K K K O K KK K o K KK K

wvoid
init_wval_arr()

i

+056 BHEE1S4E LIMK.W A6, #$000a 728 nS
+H67 BHEEE1S5E $HEEA supr prgm word rd {(ds163} 55868 nS
+H68 HRAA1ZFE4 $EEA1 supr data long wr (ds1G) 728 nS
+Hd63 BEE12F 86 $2F8C supr data word wr (dsl6) 728 n3
+878 BEBA1S5Z2 MOVEAR.L #$88887156, A 728 nS
+B71 BHEE 1554 $0EEH supr prgm word rd (dsl63) 728 nS
+072 BEEE1S5E $7156 supr prgm word rd (ds163) 728 nS

HHBHEHAEE A init_system.c - line 81 thru B2 HERERERBABAEAREREHERER SRS
int cur_el;

for {cur_sl = B; cur_sl < NUM_OF_OLD; cur_sl++d

To set the number of source lines to be displayed at 12:

set source on number_of _source_lines 12 <RETURN>
display trace <RETURN>

+

adress time count
he mnemonic relative
HHERHRHERR i nit_system.c - line B6 thru B0 HEBEEHAHABARABEEBHARBRERSR

*

ﬁ

Description: This code initializes the wal_arr data structure.
Parameters: none

*
*
®
*
* References: MNone.
*
#* Returns: Nothing.

KKK KKK KT KK KKK KK
wvoid

init_wval_arr()

i

+HBE BEEBIS4E LIMK.H ARG, %0804 728 nS
+H67 BHEEE1S5E $HEEA supr prgm word rd {(ds163} 55868 nS
+H68 HRAA1ZFE4 $EEA1 supr data long wr (ds1G) 728 nS

258

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace with symbol information

Theset symbols on/oftommand allows you to specify that address information be
displayed in terms of program symbols.

To display the trace with symbol information:

set source off symbols on <RETURN>
display trace <RETURN>

Label: Address Opcode or Status time count

Basze: umnbaol mnemonic w/symbal relative

+866 ini.init_wval_arr LINK.W AG, #$B86E 728 nS
+d67 init_vatHEABAEEZ 3884 supr prgm word rd (ds16) GE6 n3
+d65 sysstactdB@@yFE4 $8ad1 supr data long wr (dslG) 728 n3
+B063 sysstac+ABBEAYFEE $ZFEC supr data word wr (dslB} 728 n3
+878 init_va+BBEBEBE4 MOVEA.L #$EBEB7 156, AE 728 nS
+671 init_wa+tAHOBAEAE $OAHD supr prgm word rd (ds1B} 728 nS
+672 init_watAHOBEEEE $715E supr prgm word rd (dslB} 720 nS
+B873 init_vat+BBAEBEBER HMOVE(Q #$00a8aEaE, 01 7268 nS
+B874 init_vat+BBEBEBAC NOP 728 nS
+875 init_watdBEBEBEE MOVE.L 0O1,08 728 nS
+B76 init_va+BAEBEB1E ADD. L 08, 08 728 nS
+B877 init_va+BAEBEB1Z ADD. L 01,08 6868 nS
+B878 init_va+BAEBEB14 LSL.L #z, 08 728 nS
+879 init_va+BBEBEBIE MOVE.W #$8841, (388, A6,08.L) 728 nS
+H34 init_watAHOBEE1E $0841 supr prgm word rd (dslB} 720 nS
+H31 init_watAHABAAEIA $B3H0 supr prgm word rd (ds1B} 7268 nS

259

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To change column widths in the trace display

Use theset width command.

Theset width command allows you to change the width of the address and

mnemonic (or absolute) columns in the trace list. Values from one to 80 can be

entered.

When address information is being displayed in terms of symbols (in other words,
symbols on), you may wish to increase the width of the address column to display

more of the symbol information.

When trace information is displayed in mnemonic format, you can additionally

specify the width of symbols in the "Opcode or Status" column.

To display the trace with the address column width set to 30 characters:

30 <RETURN>

<RETURN>

wymbol

More data off ser

Opcode or Status

pr0g|init_sgstem.init_val_arr

|init_val_arr+888@@882

stack | sysstack+dBEE7FE4
stack | sysstack+BABEYFEE

set width label
display trace
race List
Label:
Base:
+066
+HE7 prog
+058
+053
+B7H prog
+671 prog
+B72 prag
+H73 prog
+674 prog
+@75 prog
+d76 prog
+B77 prog
+B75 prog
+673 prog
+H3H prag
+H31 prog

init_val_arr+BEABEEE4
init_val_arr+HBEABBEBE
init_val_arr+HBB88BBB88
init_wval_arr+HAABBEAAA
init_wval_arr+BAAABERAC
init_wal_arr+dAABARRE
init_wval_arr+BAABAERTR
init_wal_arr+BRAABER]TZ
init_val_arr+BEEBBE14
init_wval_arr+BEABBB1E
init_val_arr+HB88BB018
init_wval_arr+HAABEALA

mn
AE, #$EEEE
supr prgm word
supr data long
supr data word
#$EBEE7 156, A
supr prgm word
supr prgm word

#$HaBHE0EA, 01

01,08

0e, 0B

01,08

#2, 08

#48641, ($B6, A8, 08. L)
supr prgm word
supr pragm word

rd
wr
wr

rd
rd

rd
rd

(ds16)
(ds16)
(ds16)

(ds16)
(d=16)

(d=16)
(d= 16}

260

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To display time counts in absolute or relative
format

» Use thecount option to thalisplay trace command.

Count information may be displayed two ways: relative (which is the default), or
absolute. When relative is selected, count information is displayed relative to the
previous state. When absolute is selected, count information is displayed relative to
the trigger condition.

Thecount absolute/relativetrace display option is not available when counting is
turned off in the trace command.

Examples To display the trace with absolute time counts:

display trace count absolute <RETURN>

race List

Label: Address Opcode or Status time count

Base: he mnemonic absolute

+866 BEBALS4E LINK.W A6, #$0004 47.28 S
+d67 BEEA 1558 $B8E supr prgm word rd (ds163 47.36 us
+Hd65 BEE12F54 $BRA1 supr data long wr (dslB3 48.68 us
+HE3 BEEIZFEE $2FaC supr data word wr (ds163) 49.48 uS
+878 BEBALSSZ MOVEA.L #$8888715E, AE 5H. 12 uS
+671 BEEE 1554 $HEEd supr prgm weord rd {(ds163} SH.84 S
+072 BHEEE1S5E $7156 supr prgm werd rd {(dslG63} 51.56 5

+A73 BEAB1555 MOVEQ #$6086BR66, D1 52.28 U3

A I I
o
[}
=
=

+A74 BEAB1IS5A NOP . us
+A75 BeAB155C MOVE.L D1,08 53.72 uS
+A76 BEAB1S5E ADD.L 0@, 08 54.44 U5
+A77 BEABISEA ADD.L 01,08 55.12 uS
+A78 BEABISEZ2 LSL.L #2,08 55.84 uS
+@73 BEEB1564 MOVE.W #$8641, ($86,R4,08.L) 56.56 S
+H38 HEEE1SEE $HE41 supr prgm word rd {(ds163} 57.28 S
+651 ARER 1568 $0380 supr prgm word rd {(ds16) 58.88 uS

261

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace with addresses offset

Use theoffset_by option to thalisplay trace command.

Theoffset_bytrace display option allows you to cause the address information in
the trace display to be offset by the amount specified. The offset value is subtracted
from the instruction’s physical address to yield the address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use theoffset_byoption to change the address information so that it again agrees
with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

To display the trace with addresses offset by 154EH:
display trace offset_by 154eh <RETURN>

0ffset=154E

Label: HAddress Opcode or Status time count

Base: he mnemonic absolute

+066 BEBAEaEA LINK.W A6, #$0808 47.28 U5
+HE7 BEAAREAZ $080A supr prgm word rd (dsl6) 47.36 u5
+HE5 BEA11A36 $0RE 1 supr data long wr (dslB3 45.63 uS
+H63 BEAL1ASE $2FaC supr data word wr (ds163 49.48 S
+6878 DEBAEEA4 MOVEAR.L #$8BE@7 156, AE 5H. 12 U5
+671 HAHOAEEE FHEEH supr prgm word rd {(ds16} SH.84 S
+072 UOBEEAEZ $7156 supr prgm werd rd {(dsl1G63 51.56 U5

+A73 BEARABER MOVEQ #$aaEREEAA, D1 52.28 U3

A I I
o
[}
=
=

+A74 BEABABAC NOP . us
+A75 BEAREARBE MOVE.L 01,08 53.72 U5
+A76 BEARAR1A ADD.L 0a, 0a 54.44 U5
+A77 BEARERLZ ADD.L 01,08 55.12 U5
+A78 OEEBABR14 LSL.L #2,08 55.84 U5
+873 QEBREBLG6 MOVE.W #$B8E41, ($0H,R ,DE8.L) 56.56 S
+H3H HBEAEBALS FAH41 supr prgm word rd (ds163 57.28 S
+651 AAERAEIA $H3AH supr prgm word rd (ds16) 58.88 U5

262

Chapter 7: Using the Emulation Analyzer

Modifying the Trace Display

Examples

To return to the default trace display

Use theset defaultcommand.

Theset defaultcommand allows you to return to the default display.

To return to the default trace display:

set default <RETURN>

Label: Address Opcode or Status time count
Base: he mnemonic relative
+866 BEBALS4E LINK.W A6, #$0004 728 nS
+d67 BEEA 1558 $B8E supr prgm word rd (ds163 GE6 n3
+Hd65 BEE12F54 $BRA1 supr data long wr (dslB3 728 n3
+HE3 BEEIZFEE $2FaC supr data word wr (ds163) 728 nS
+878 BEBALSSZ MOVEA.L #$8888715E, AE 728 nS
+671 BEEE 1554 $HEEd supr prgm weord rd {(ds163} 728 nS
+072 BHEEE1S5E $7156 supr prgm werd rd {(dslG63} 726 nS
+873 BEBA1S58 HMOVEQ #$0B0ERAEAE, D1 728 nS
+874 BEBALSSA MOP 728 nS
+875 BE@E155C HMOVE.L D1,08 728 nS
+876 BEBALSSE ADD.L De, 08 728 nS
+B877 BEBELSEE ADD.L 01,08 6868 nS
+B878 BEBALSEZ LSL.L #2,08 728 nS
+873 BEEE1S64 MOVE.W #$E@41, ($08,A0,08.L) 728 nS
+H38 HEEE1SEE $HE41 supr prgm word rd {(ds163} 7268 nS
+651 ARER 1568 $0380 supr prgm word rd {(ds16) 728 nS

263

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

Saving and Restoring Traces

The emulator/analyzer interface allow you to save trace commands and trace lists.
You can restore trace commands in order to set up the same trace specification.
You can restore traces in order to view trace data captured in the stored trace.

This section describes how to:
e Save trace commands.

e Restore trace commands.
e Save traces.

* Restore traces.

Examples

To save trace commands

ChooséFile - Store— Trace Spec

Using the command line, enter thtere trace_specommand.

You can save a trace command to a "trace specification” file and reload it at a later
time.

The trace command is saved in a file named "tspecfile.TS" in the current directory.
The extension ".TS" is appended to trace specification files if no extension is
specified in thestore trace_specommand.

To store the current trace command:

store trace_spec tspecfile <RETURN>

264

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

To restore trace commands

* ChooseFile - Load - Trace Spec

* Using the command line, enter tbad trace_specommand.

Trace commands that are restored will always work, even if symbols have been
changed; however, once you modify the trace command, it may no longer work.

Examples To bring back the trace command saved in "tspecfile. TS" and perform a trace
measurement using it:

load trace_spec tspecfile <RETURN>

trace again <RETURN>

To save traces

* ChooseFile - Store— Trace Data

* Using the command line, enter thtere tracecommand.

You can save a trace to a trace file and reload it at a later time.

The trace is saved in a file named "trcfile. TR" in the current directory. The
extension ".TR" is appended to trace files if it is not specified isttre trace
command.

Examples To store the current trace:

store trace trcfile <RETURN>

265

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

Examples

To restore traces

ChoosedFile - Load - Trace Data

Using the command line, enter tload trace command.

The restored trace depth is the depth specified when the trace was stored and cannot
be increased. You may want to increase the trace depth before storing traces.

When a trace is loaded, the trace command is not restoredcefagainor trace

modify command will use the last trace command entered, not the command which
resulted in the loaded trace. Also, the trace status shown Oigfiey status

command does not reflect the loaded trace.

To restore the "trcfile.TR" trace file:
load trace trcfile <RETURN>

The trace information stored in "trcfile. TR" is restored. You can view the trace as
you would any other trace.

266

Making Software Performance
Measurements

267

Making Software Performance
Measurements

The Software Performance Measurement Tool (SPMT) is a feature of the Softkey
Interface that allows you to make software performance measurements on your
programs.

The SPMT allows you to make some of the measurements that are possible with the
HP 64708 Software Performance Analyzer and its Graphical User Interface
(HP B1487).

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using tberf32 report generator utility.

Two types of software performance measurements can be made with the SPMT:
activity measurements, and duration measurements.

This chapter describes tasks you perform while using the Software Performance
Measurement Tool (SPMT). These tasks are grouped into the following sections:

» Activity performance measurements.
» Duration performance measurements.

* Running performance measurements and creating reports.

268

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Activity Performance Measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (reads and writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement will
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address range,
you can get an idea of how much activity in other areas is caused by the code
measured. An activity measurement report of the code (prog), data, and stac
sections of a program is shown below.

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77
Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv = 0.88
Time Percent Rel = 99.84 Abs = 99.84

data
Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

269

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16

stack
Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel= 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

prog 57.77%
data 30.5100 **rkrkrkkikkkikk
stack 11.729p *k*
Graph of Memory Activity relative time percents >= 1
prog 60.97%
data 28.090f *¥kxkxkkdkikkkk
stack 10.94% *xxxxx

Graph of Program Activity relative state percents >=1
prog 99.82%

Graph of Program Activity relative time percents >=1
prog 99.84%

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals

270

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Absolute count - state 5120
Absolute count - time - Us 2221.20

This section describes how to:
» Set up the trace command for activity measurements.
» Initialize activity performance measurements.

» Interpret activity measurement reports.

To set up the trace command for activity
measurements

1 Specify a trace display depth of 512.

2 Trace after any state, store all states, and count time.

Before you initialize and run performance measurements, the current trace
command (in other words, the last trace command entered) must be properly

In general, you want to give the SPMT as many trace states as possible to
post-process, so you should increase the trace depth to the maximum number, as
shown in the following command.

If you wish to measure activity as a percentage of all activity, the current trace
command should be the default (in other wordge <RETURN>). The default

trace command triggers on any state, and all captured states are stored. Itis
important that time be counted by the analyzer; otherwise, the SPMT measurements
will not be correct. Also, since states are stored "after" the trigger state, the
maximum number of captured states appears in each trace list.

You can qualify trace commands any way you like to obtain specific information.
However, when you qualify the states that get stored in the trace memory, your
SPMT results will be biased by your qualifications; the percentages shown will be
of only those states stored in the trace list.

271

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Examples

To specify a trace depth of 512:
display trace depth 512 <RETURN>

To trace after any state, store all states, and count time:

trace counting time <RETURN>

To initialize activity performance measurements

Use theperformance_measurement_initializecommand.

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements. This is done by initializing the
performance measurement. You can initialize the performance measurement in the
following ways:

» Defaultinitialization (using global symbols if the symbols database is loaded).
+ Initialize with user-defined files.

» Initialize with global symbols.

» Initialize with local symbols.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Default Initialization

Entering theperformance_measurement_initializzzcommand with no options

specifies an activity measurement. If a valid symbolic database has been loaded,
the addresses of all global procedures and static symbols will be used; otherwise, a
default set of ranges that cover the entire processor address range will be used.

272

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Initialization with User Defined Ranges

You can specifically give the SPMT address ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initializecommand.

Address range files may contain program symbols (procedure name or static), user
defined address ranges, and comments. An example address range file is shown
below.

Any line which starts with a # is a comment.
All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

"->" means thru. The above will define a range which starts with symboll
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 thru the end of symbol2.
dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

Initialization with Global Symbols

When theperformance_measurement_initializecommand is entered with no

options or with thegylobal_symbolsoption, the global symbols in the symbols

database become the address ranges for which activity is measured. If the symbols
database is not loaded, a default set of ranges that cover the entire processor address
range will be used.

The global symbols database contains procedure symbols, which are associated
with the address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

Initialization with Local Symbols

When theperformance_measurement_initializecommand is entered with the
local_symbols_inoption and a source file name, the symbols associated with that
source file become the address ranges for which activity is measured. If the
symbols database is not loaded, an error message will occur telling you that the
source filename symbol was not found.

273

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

You can also use thecal_symbols_inoption with procedure symbols; this allows
you to measure activity related to the symbols defined in a single function or
procedure.

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frometieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

274

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Examples Suppose the "addr_ranges" file contains the names of all the functions in the "ecs"
demo program loop:

combsort
do_sort
gen_ascii_data
get_targets
graph_data
interrupt_sim
proc_specific
read_conditions
save_points
set_outputs
strcpy8
update_system
write_hdwr

Since these labels are program symbols, you do not have to specify the address
range associated with each label; the SPMT will search the symbol database for the
addresses of each label.

An easy way to create the "addr_ranges" file is to usediiyeglobal_symbols
command to copy the global symbols to a file named "addr_ranges"; then, fork a
shell to UNIX (by entering "! <RETURN>" on the Softkey Interface command

line) and edit the file so that it contains the procedure names shown above. Enter a
<CTRL>d at the UNIX prompt to return to the Softkey Interface.

To initialize the activity measurement with a user-defined address range file:

performance_measurement _initialize addr_ranges <RETURN>

275

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

To interpret activity measurement reports

* View the performance measurement report.

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The reports generated for activity measurements
show you the percentage of analyzer trace states that are in the specified address
range, as well as the percentage of time taken by those states. The performance
measurement must include four traces before statistics (mean and standard
deviation) appear in the activity report. The information you will see in activity
measurement reports is described below.

Memory Activity All activity found within the address range.
Program Activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the

execution of those instructions (reads and writes to memory, stack pushes, etc.).

Relative With respect to activity in all ranges defined in the performance
measurement.

Absolute With respect to all activity, not just activity in those ranges defined in
the performance measurement.

Mean Average number of states in the range per trace. The following equation is
used to calculate the mean:

states in_range
mean =
toral states

276

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Standard Deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

i=1

N
std dev = ’\/Nl__f X 3 Ssumq — N (mean)2

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.
Ssumgq Sum of squares of states in the range per trace.

Symbols Within Range Names of other symbols that identify addresses or
ranges of addresses within the range of this symbol.

Additional Symbols for Address Names of other symbols that also identify
this address.

Note that some compilers emit more than one symbol for certain addresses.
example, a compiler may emit "interrupt_sim" and "_interrupt_sim" for the first
address in a routine named interrupt_sim. The analyzer will show the first symbol

it finds to represent a range of addresses, or a single address point, and it will show
the other symbols under either "Symbols within range" or "Additional symbols for
address", as applicable. In the "interrupt_sim" example, it may show either
“interrupt_sim" or "_interrupt_sim" to represent the range, depending on which
symbol it finds first. The other symbol will be shown below "Symbols within

range" in the report. These conditions appear particularly in default measurements
that include all global and local symbols.

Relative and Absolute Counts Relative count is the total number of states
associated with the address ranges in the performance measurement. Relative time
is the total amount of time associated with the address ranges in the performance
measurement. The absolute counts are the number of states or amount of time
associated with all the states in all the traces.

277

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Examples

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct, = m‘ x 100

Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of traces in the measurement.

Pm Mean of the means (i.e., mean sample).

Consider the following activity measurement report (generated with the commands
shown):

display trace depth 512 <RETURN>
trace counting time <RETURN>
performance_measurement _initialize addr_ranges <RETURN>

performance_measurement_run 20 <RETURN>
performance_measurement_end <RETURN>
Iperf32 | more

278

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Label

set_outputs
Address Range 177AH thru 180AH

Memory Activity
State Percent Rel = 31.31 Abs = 25.00
Mean = 128.00 Sdv = 227.46
Time Percent Rel = 31.30 Abs = 24.95

Program Activity
State Percent Rel = 28.61 Abs = 25.00
Mean = 128.00 Sdv = 227.46
Time Percent Rel = 28.57 Abs = 24.95

strcpy8
Address Range 10A6H thru 1100H

Memory Activity
State Percent Rel = 21.77 Abs = 17.38
Mean = 89.00 Sdv =149.70
Time Percent Rel= 21.76 Abs = 17.34

Program Activity
State Percent Rel = 26.39 Abs = 23.06
Mean = 118.05 Sdv = 190.05
Time Percent Rel = 26.47 Abs = 23.11

interrupt_sim
Address Range 1014H thru 109EH

Memory Activity
State Percent Rel = 18.78 Abs = 15.00
Mean = 76.80 Sdv =187.57
Time Percent Rel = 18.78 Abs = 14.97

Program Activity
State Percent Rel= 17.17 Abs = 15.00
Mean = 76.80 Sdv =187.57
Time Percent Rel= 17.14 Abs = 14.97

write_hdwr
Address Range 1812H thru 188AH

Memory Activity
State Percent Rel = 12.52 Abs = 10.00
Mean = 51.20 Sdv =157.59
Time Percent Rel= 12.52 Abs = 9.98

Program Activity
State Percent Rel = 11.44 Abs = 10.00
Mean = 51.20 Sdv =157.59
Time Percent Rel= 11.43 Abs= 9.98

get_targets
Address Range 1654H thru 16DCH

Memory Activity
State Percent Rel= 6.26 Abs = 5.00

279

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.26 Abs = 4.99

Program Activity
State Percent Rel= 5.72 Abs= 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 5.71 Abs= 4.99

update_system
Address Range 1592H thru 164CH

Memory Activity
State Percent Rel= 6.26 Abs = 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.26 Abs = 4.99

Program Activity
State Percent Rel= 5.73 Abs= 5.01
Mean = 25.65 Sdv =114.48
Time Percent Rel= 5.73 Abs= 5.00

combsort
Address Range 1244H thru 143AH

Memory Activity
State Percent Rel= 2.08 Abs = 1.66
Mean = 8.50 Sdv = 21.92
Time Percent Rel= 2.08 Abs = 1.66

Program Activity
State Percent Rel= 3.59 Abs= 3.13
Mean = 16.05 Sdv = 41.49
Time Percent Rel= 3.58 Abs = 3.12

do_sort
Address Range 1442H thru 14EOH

Memory Activity
State Percent Rel= 0.62 Abs = 0.50
Mean = 2.55 Sdv= 6.23
Time Percent Rel= 0.63 Abs= 0.50

Program Activity
State Percent Rel= 0.77 Abs= 0.67
Mean = 3.45 Sdv= 8.43
Time Percent Rel= 0.78 Abs = 0.68

gen_ascii_data
Address Range 1108H thru 123CH

Memory Activity
State Percent Rel= 0.39 Abs= 0.31
Mean = 1.60 Sdv= 5.18
Time Percent Rel= 0.40 Abs= 0.32

Program Activity
State Percent Rel= 0.58 Abs = 0.51
Mean = 2.60 Sdv= 8.52
Time Percent Rel= 0.59 Abs = 0.51

280

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

graph_data
Address Range 197EH thru 1A36H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

proc_specific
Address Range 1A62H thru 1A82H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

read_conditions
Address Range 16E4H thru 1772H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

save_points
Address Range 1892H thru 1976H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

281

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Graph of Memory Activity relative state percents >= 1

set_outputs 31.310p *rrkkkrkkkkkkkik
strcpy8 D1.77% *rrkkskksss
interrupt_sim 18.78% *Hkxwkikax
write_hdwr 12.52%p *rrrrrx
get_targets 6.26% ***
update_system 6.26% ***
combsort 2.08% *

Graph of Memory Activity relative time percents >= 1

set Ou'[puts 31.3000 *FExEkEkxRA*ARK
strcpy8 21.76% *rrkkkkkkss
interrupt_sim 18.78% *Hwxwkikax
write_hdwr 12.52%p *rxkrrx
get_targets 6.26% ***
update_system 6.26% ***
combsort 2.08% *

Graph of Program Activity relative state percents >= 1

set_outputs 28.6100 *rFikkrkkrkkrkk
StI’C_pyS 26.300p *kkkkkkkkkkik
interrupt_sim 17.17% *rxrrrrrx
write_hdwr 11.44% rrrex
get_targets 5.72% ***
update_system 5.73% ***
combsort 3.59% **

Graph of Program Activity relative time percents >=1

set Outputs 28.570 *rkkkkrkkrkkrkk
StI’C_py8 26.47% *Fxkxdkdkdkik
interrupt_sim 17.14% rxikkex
write_hdwr 11.43% *xrrx
get_targets 5.71% ***
update_system 5.73% ***
combsort 3.58% **

282

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Summary Information for 20 traces

Memory Activity
State count

Relative count 8177

Mean sample 31.45

Mean Standard Dv 75.74

95% Confidence 112.76% Error tolerance
Time count

Relative Time - Us 5838.56

Program Activity
State count
Relative count 8948
Mean sample 34.42
Mean Standard Dv 80.77
95% Confidence 109.90% Error tolerance
Time count
Relative Time - Us 6396.40
Absolute Totals
Absolute count - state 10240
Absolute count - time - Us 7325.88

The measurements for each label are printed in descending order according to the
amount of activity. You can see that the set_outputs function has the most activity.
Also, you can see that no activity is recorded for several of the functions. The
histogram portion of the report compares the activity in the functions that acco
for at least 1% of the activity for all labels defined in the measurement.

283

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Duration Performance Measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The analyzer trace command is set up to store only the entry
and exit states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration, and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Recursion can place several entry addresses before the first exit address, and/or
several exit addresses before the first entry address. Duration measurements are
made between the last entry address in a series of entry addresses, and the last exit
address in a series of exit addresses (see the figure below). All of the entry and exit
addresses which precede these last addresses are assumed to be unused prefetches,
and are ignored during time measurements.

START - assumed prefetch

START - assumed prefetch

START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch Measure duration
END - assumed prefetch

END - last EXIT address -

START - assumed prefetch

START - assumed prefetch Measure duration
START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch

When measuring a recursive function, module duration will be measured between
the last recursive call and the true end of the recursive execution. This will affect
the accuracy of the measurement.

284

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

If a module is entered at the normal point, and then exited by a point other than the
defined exit point, the entry point will be ignored. It will be judged the same as any
other unused prefetch, and no time-duration measurement will be made. Its time
will be included in the measure of time spent outside the procedure or function.

If a module is exited from the normal point, and then reentered from some other
point, the exit will also be assumed to be an unused prefetch of the exit state.

Note that if you are making duration measurements on a function that is recursive,
or one that has multiple entry and/or exit points, you may wind up with invalid
information.

This section describes how to:
» Set up the trace command for duration measurements.
» Initialize duration performance measurements.

* Interpret duration measurement reports.

To set up the trace command for duration
measurements

1 Specify a trace display depth of 512.

2 Trace after and store only function start and end addresses.

For duration measurements, the trace command must be set up to store only the
entry and exit points of the module of interest. Since the trigger state is always
stored, you should trigger on the entry or exit points. For example:

trace after symbol_entry or symbol_exit only
symbol_entry or symbol_exit counting time <RETURN>
CAUTION The previous command depends on the generation of correct exit address symbols

by the software development tools.

285

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Examples

Or:

trace after module_name start or module_name end only
module_name start or module_name end counting time
<RETURN>

Where "symbol_entry" and "symbol_exit" are symbols from the user program. Or,
where "module_name" is the name of a C function or Pascal procedure (and is
listed as a procedure symbol in the global symbol display).

To specify a trace display depth of 512:
display trace depth 512 <RETURN>

To set up the trace command for duration measurements on the interrupt_sim
function:

trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>

The trace specification sets up the analyzer to capture only the states that contain
the start address of the interrupt_sim function or the end address of the
interrupt_sim function. Since the trigger state is also stored, the analyzer is set up
to trigger on the entry or exit address of the interrupt_sim function. With these
states in memory, the analyzer will derive two measurements: time from start to
end of interrupt_sim, and time from end to start of interrupt_sim.

286

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

To initialize duration performance measurements

Use theperformance_measurement_initializecommand with thduration
option.

After you set up the trace command, you must tell the SPMT the time ranges to be
used in the duration measurement. This is done by initializing the performance
measurement. You can initialize the performance measurement in the following
ways:

* Initialize with user-defined files.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Initialization with User Defined Ranges

You can specifically give the SPMT time ranges to use by placing the information
in a file and entering the file name in ferformance_measurement_initialize
command.

Time range files may contain comments and time ranges in units of microseco
(us), milliseconds (ms), or seconds (s). An example time range file is shown

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds
ms milliseconds
s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

287

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Examples

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frompetieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

To initialize the duration measurement:

performance_measurement_initialize duration <RETURN>

288

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

To interpret duration measurement reports

View the performance measurement report.

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The information you will see in duration measurement
reports is described below.

Number of Intervals Number of "from address" and "to address" pairs (after
prefetch correction).

Maximum Time The greatest amount of time between the "from address" to the
"to address".

Minimum Time The shortest amount of time between the "from address" to the
"to address".

Average Time Average time between the "from address" and the "to address".
The following equation is used to calculate the average time:

amount of time for all intervals

mean = :
number of intervals

289

Chapter 8: Making Software Performance Measurements

Duration Performance Measurements

Standard Deviation

Deviation from the mean of time. The following equation

is used to calculate standard deviation:

_ 1
std dev = /\/NTf

Where:
N
mean

Ssumgq

N 2
X ¥ Ssumq — N (mean)
i=1

Number of intervals.
Average time.

Sum of squares of time in the intervals.

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’'s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om

error pct, = m‘ x 100

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence
level.

Number of intervals.

290

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Pm Mean of the means (i.e., mean of the average times in each
time range).

Examples Consider the following duration measurement report (generated with the commands
shown):
display trace depth 512 <RETURN>
trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>
performance_measurement_initialize duration <RETURN>

10 <RETURN>
<RETURN>

performance_measurement_run
performance_measurement_end
Iperf32 | more

Time Interval Profile

From Address 1014
File main(module)."/users/guest/demo/debug_env/hp64751/main.c”
Symbolic Reference at main.interrupt_sim

To Address 109E
File main(module)."/users/guest/demo/debug_env/hp64751/main.c”
Symbolic Reference at interrupt_sim+8A

Number of intervals 2550

Maximum Time 648396.800 us

Minimum Time 65.640 us

Avg Time 67133.955 us

Statistical summary - for 10 traces
Stdv 139265.45

95% Confidence 8.05% Error tolerance

Graph of relative percents
1us 10 us 0.00%
10.1 us 100 us 15.06% **xxiki

100.1 us 500 us 0.00%
500.1us 1 ms 4.98% ***
1.001 ms 5 ms 15.02% *xwxrrrx
5.001 ms 10 ms 14.82% *rirrrrx
10.1 ms 20 ms 14.94% rxxrrxx
20.1 ms 40 ms 10.00% **xxx
40.1 ms 80 ms 4.94% ***
80.1 ms 160 ms 9.57% ****+*
160.1 ms 320 ms 4.86% ***
320.1 ms 640 ms 5.53% ***
640.1ms1.2s 0.27%

291

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

From Address 109E
File main(module)."/users/guest/demo/debug_env/hp64751/main.c"
Symbolic Reference at interrupt_sim+8A

To Address 1014
File main(module)."/users/guest/demo/debug_env/hp64751/main.c"
Symbolic Reference at main.interrupt_sim

Number of intervals 2550

Maximum Time 182927.360 us

Minimum Time 82534.400 us

Avg Time 99593.389 us

Statistical summary - for 10 traces
Stdv 25497.98
95% Confidence 0.99% Error tolerance

Graph of relative percents
1us 10 us 0.00%
10.1 us 100 us 0.00%
100.1 us 500 us 0.00%
500.1 us 1 ms 0.00%
1.001 ms 5 ms 0.00%
5.001 ms 10 ms 0.00%
10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 0.00%
80.1 ms 160 ms 96.94%
160.1 ms 320 ms 3.06% **
320.1 ms 640 ms 0.00%
640.1 ms1.2s 0.00%

Two sets of information are given in the duration measurement report: module
duration and module usage.

The first set of information in the duration measurement report is the "module
duration" measurement. The module duration report shows that the amount of time
it takes for the interrupt_sim function to execute varies from 65.64 microseconds to
648.4 milliseconds. The average amount of time it takes for the interrupt_sim
module to execute is roughly 67.13 milliseconds.

The second set is the "module usage" measurement. Module usage measurements
show how much time is spent outside the module of interest; they indicate how
often the module is used. The information shown in the first part of the duration
report above shows that the average amount of time spent outside the interrupt_sim
function is about 99.59 milliseconds.

292

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

Running Measurements and Creating Reports

Several performance measurement tasks are the same whether you are making
activity or duration measurements.

This section describes how to:
¢ Run performance measurements.
e End performance measurements.

. Create a performance measurement report.

To run performance measurements

Use theperformance_measurement_rurcommand.

Theperformance_measurement_rurcommand processes analyzer trace data.
When you end the performance measurement, this processed data is dumped
binary "perf.out” file in the current directory. Tperf32 report generator utility is
used to read the binary information in the "perf.out" file.

If the performance_measurement_rurcommand is entered without a count, the
current trace data is processed. If a count is specified, the current trace command is
executed consecutively the number of times specified. The data that results from
each trace command is processed and combined with the existing processed data.
The STATUS line will say "Processing trace <NO.>" during the run so you will

know how your measurement is progressing. The only way to stop this series of
traces is by usingCTRL>c (sig INT).

The more traces you include in your sample, the more accurate will be your results.
At least four consecutive traces are required to obtain statistical interpretation of
activity measurement results.

293

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples

To run the performance measurement, enter the following command:
performance_measurement_run 20 <RETURN>
The command above causes 20 traces to occur. The SPMT processes the trace

information after each trace, and the number of the trace being processed is shown
on the status line.

Examples

To end performance measurements

Use theperformance_measurement_endommand.

Theperformance_measurement_endommand takes the data generated by the
performance_measurement_runcommand and places it in a file nanpexif.out

in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must renamepbd.out file before performing another
measurement.

Theperformance_measurement_endommand does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering anothguerformance_measurement_runcommand.

Once you have entered therformance_measurement_endommand, you can
use theperf32 report generator to look at the data saved ipéneout file.

Note that the "perf.out" file is a binary file. Do not try to read it with the UNIX
more or cat commands. Thperf32 report generator utility (described in the
following section) must be used to read the contents of the "perf.out" file.

To cause the processed trace information to be dumped to the "perf.out” file:

performance_measurement_end <RETURN>

294

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

To create a performance measurement report

Use theperf32 command at the UNIX prompt.

Theperf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). Theperf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and nperf32, or you can exit the Softkey
Interface and ruperf32.

Options to "perf32"

A default report, containing all performance measurement information, is generated
when theperf32 command is used without any options. The options available with
perf32 allow you to limit the information in the generated report. These options

are described below.

-h Produce outputs limited to histograms.

-S Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.
-f<file> Produce a report based on the information contained in

<file> instead of the information contained in perf.out.

For example, the following commands save the current performance measurement
information in a file called "perfl.out", and produce a histogram showing only the
program activity occupied by the functions and variables.

mv perf.out perfl.out <RETURN>
perf32 -hpf perfl.out <RETURN>

Options-h, -s, -p, and-m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

295

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples Now, to generate a report from the "perf.out"” file, type the following on the
command line to fork a shell and run fhef32 utility:

Iperf32 | more

296

Making Coordinated Measurements

297

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

» Setting up for coordinated measurements.

» Starting and stopping multiple emulators.

» Driving trigger signals to the CMB or BNC.

» Stopping program execution on trigger signals.

* Arming analyzers on trigger signals.

298

CMB Connector —_| (B oty

BNC Connector

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

[et Trigger rVout
®

Comn canfig
1 o porrom ror

N

ol
s Iy

UL Awarne Juuy U
No 1o
o

| U r\ H |
U o
U v
© @
5V/230V Autoranging
~ ~ 600 VA Mox 7263 iz

64700E20

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear panel
of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 connected to the CMB. This signal can be used to
trigger an analyzer. It can be used as a break source for the emulator.

READY The CMB READY line is high true. It is an open collector and performs
an ANDing of the ready state of enabled emulators on the CMB. Each emulator on
the CMB releases this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a synchronized start.

299

When CMB is enabled, each emulator is required to break to background when
CMB READY goes false, and will wait for CMB READY to go true before

returning to the run state. When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the CMB

can drive this line. It serves as a global interrupt and is processed by both the
emulator and the analyzer. This signal causes an emulator to run from a specified
address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and BNC
trigger lines have the same logical purpose: to provide a means for connecting the
internal trigger signals (trigl and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used directly as a break
condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

300

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Setting Up for Coordinated Measurements

This section describes how to:
e Connect the Coordinated Measurement Bus.

» Connect the rear panel BNC.

To connect the Coordinated Measurement Bus
(CMB)

Caution Be careful not to confuse the 9-pin connector used for CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cablge for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connegtors
and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are using a self-built calﬂ)le!

301

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect the cables to the HP 64700 CMB ports.

(FEMALE)
(NC)

TWO EMULATORS

THREE EMULATORS, ETC

(FEMALE
(NO)

64700E14

302

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Number of HP 64700 Series Maximum Total Length of Restrictions on the CMB
Emulators Cable Connection

2108 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear

panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear
panel pullups connected. *

* A modification must be performed by your HP Customer Engineer.
Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

Caution The BNC line on the HP 64700 accepts input and output of TTL levels only. (
levels should not be less than 0 volts or greater than 5 volts.) Failure to observe
these specifications may result in damage to the HP 64700 Card Cage.

303

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect one end of a 50 ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

t
' /0"
e
fr\gg
ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK
t
' /0"
e
1idd

PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700C15

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising g£dge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a regeiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected ang
protected from TTL level signals when the emulator is powered down.

S

304

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:
» Enable synchronous measurements.
e Start synchronous measurements.

» Disable synchronous measurements.

To enable synchronous measurements

Enter thespecify run command.

You can enable the emulator’s interaction with the CMB by usingptbeify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specifiedsieitigy run
command.

Note that when the CMB is being actively controlled by another emulatateine
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction (see "To disable synchronous
measurements” below) while stepping the processor.

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use thepecify tracecommand to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined bydpecify tracecommand will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message "CMB execute; emulation trace started".

305

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Examples

When you enter a normtthce command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

To enable synchronous measurements:
specify run from 1e8h <RETURN>

To trace when synchronous execution begins:

specify trace after address main <RETURN>

To start synchronous measurements

Enter thecmb_executecommand.

Thecmb_executecommand will cause the EXECUTE line to be pulsed, thereby
initiating a synchronous measurement. CMB interaction does not have to be
enabled in order to use either of these commands. (When you enable CMB
interaction, you only specify how the emulator will react to the CMB EXECUTE
signal.)

All emulators whose CMB interaction is enabled will break into the monitor when
any one of those emulators breaks into its monitor.

To disable synchronous measurements

Enter thespecify run disablecommand.

You can disable the emulator's interaction with the CMB by usinggheify run
disablecommand. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

306

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

Using Trigger Signals

The HP 64700 contains two internal lines, trigl and trig2, over which trigger
signals can pass from the emulator or analyzer to other HP 64700s on the
Coordinated Measurement Bus (CMB) or other instruments connected to the BNC
connector.

You can configure the internal lines to make connections between the emulator,
analyzer, CMB connector, or BNC connector. Measurements that depend on these
connections are callédteractive measurements coordinated measurements

To configure the internal trigl and trig2 lines, you must entemtiaify
configuration command and then answer "yes" to the "Modify interactive
measurement specification?" question. When you do this, the following display
appears.

Interactive Measurement Specification

BNC <<-97-3> —--% BMC <<=77-3> ——=%

CMBT <<-97-» --- CHMBT <<-7?7-%» —-——
Trigl Trigz

Emulator <<-—---- -—- Emulatar <<-77--—- ——-

Analyzer —————- Pro-—=f Analyzer <<-7?7-3F ——=f

WOTES:
1. The connections marked "??" are set up here in configuration.

2. drive = ———-%* receive = <{-—-- (The display won’t change, however.}

This display illustrates the possible connections between the internal lines (trigl
and trig2) and the emulator, analyzer, and external devices.

Notice that the analyzer always drives trigl, and the emulator always receives trigl.
This provides for thbreak_on_trigger syntax of thérace command.

You can use the trigl or trig2 line to make a connection between the analyzer and
the CMB connector or BNC connector so that, when the analyzer finds its trigger
condition, a trigger signal is driven on the HP 64700’s Coordinated Measurement
Bus (CMB) or BNC connector.

You can use the trigl or trig2 line to make a connection between the emulator break
input and the CMB connector, BNC connector, or analyzer so that program

307

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

execution can break when a trigger signal is received from the CMB, BNC, or
analyzer.

You can use the trig2 line to make a connection between the analyzer and the CMB
connector or BNC connector so that the analyzer can be armed (that is, enabled)
when a trigger signal is received from the CMB or BNC connector.

You can use the trigl and trig2 lines to make several type of connections at the
same time. For example, when the analyzer finds its trigger condition, a signal is
driven on the trigl line. This signal may be used to stop user program execution,
but the trigger signal may also be driven on the CMB and BNC connectors.

Also, it's possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven on
the CMB and BNC connectors, signals can also be received from the CMB and
BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

You can disable connections made by the internal trigl and trig2 lines by
answering "neither" or "no" to the appropriate interactive measurement
configuration question.

308

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

This section shows you how to:

Drive the emulation analyzer trigger signal to the CMB.

Drive the emulation analyzer trigger signal to the BNC connector.
Break emulator execution on signal from CMB.

Break emulator execution on signal from BNC.

Arm the emulation analyzer on signal from CMB.

Arm the emulation analyzer on signal from BNC.

To drive the emulation analyzer trigger signal to
the CMB

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "receive" to the "Should CMBT drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the CMB over the trig2

internal line by specifying that the CMBT should receive trig2 and that the
emulation analyzer should drive trig2.

309

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To drive the emulation analyzer trigger signal to
the BNC connector

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.

3 Answer "receive" to the "Should BNC drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the emulation
analyzer should drive trig2.

To break emulator execution on signal from CMB

1 Enter themodify configuration command.

. 2 Answer "yes" to the "Modify interactive measurement specification?" question.

3 Answer "drive" to the "Should CMBT drive or receive Trigl?" question.

You could also break emulator execution on a trigger signal from the CMB over the
trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

310

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To break emulator execution on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should BNC drive or receive Trigl?" question.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

To arm the emulation analyzer on signal from
CMB

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question..

Answer "drive" to the "Should CMBT drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

311

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To arm the emulation analyzer on signal from
BNC

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify interactive measurement specification?" question.
3 Answer "drive" to the "Should BNC drive or receive Trig2?" question.

4 Answer "receive"” to the "Should Analyzer drive or receive Trig2?" question.

5 Use thearm_trig2 option to thérace command.

312

10

Setting X Resources

313

Setting X Resources

The Graphical User Interface is an X Window System application which means it is
aclientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). Itis an
interface between application programs you run on your system and the system
input and output devices.

An X resourcecontrols an element of appearance or behavior in an X application.
For example, in the graphical interface, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server's RESOURCE_MANAGER property. (Kndb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $SHOME/. Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the SHOME/.Xdefaulitsstfile
(typically containing resource specifications for a specific remote host) is read.

314

Chapter 10: Setting X Resources

Resource specifications included in the command line witkxthe option.
System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

User-defined scheme files located in directory SHOME/.HP64_schemes (note
the dot in the directory name).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

This chapter shows you how to:

Modify the Graphical User Interface resources.
Use customized scheme files.

Set up custom action keys.

Set initial recall buffer values.

Set up demos or tutorials.

Refer to the "X Resources and the Graphical Interface" section in the "Concepts"
chapter for more detailed information.

315

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

To modify the Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying its
X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This resource should he
(custom) set to the platform on which the X server is

running (and displaying the Graphical User
Interface) if it is different than the platform
where the application is running.

HP64_Softkey.colorScheme BW Names the color scheme file.
Color
(custom)

HP64_Softkey.sizeScheme Small Names the size scheme file which defineg
Large the fonts and the spacing used.
(custom)

HP64_Softkey.labelScheme Label Names to use for labels and button text.
$LANG The default uses the SLANG environment

(custom) variable if it is set and if a scheme file
named Softkey.$LANG exists in one of th
directories searched for scheme files;
otherwise, the default is Label.

D

HP64_Softkey.inputScheme Input Specifies mouse and keyboard operation
(custom)

316

Chapter 10: Setting X Resources

To modify the Graphical User Interface resources

Commonly Modified Application Resources

Resource Values Description
HP64_Softkey.lines 24 Specifies the number of lines in the main
(min. 18) display area.
HP64_Softkey.columns 100 Specifies the number of columns, in
(min. 80) characters, in the main display area.
HP64_Softkey.enableCmdline True Specifies whether the command line area|is
False displayed when you initially enter the
Graphical User Interface.
*editFile (example) vi| Specifies the command used to edit files.
%s
*editFileLine (example) vi| Specifies the command used to edit a file|at
+%d %s a certain line number.
*<proc>*actionKeysSub.keyDefs (paired list| Specifies the text that should appear on the
of strings) | action key push buttons and the commangs
that should be executed in the command |ine
area when the action key is pushed. Refer
to the "To set up custom action keys"
section for more information.
*<proc>*dirSelectSub.entries (list of Specifies the initial values that are placed|in
strings) theFile — Context— Directory popup recall
buffer. Refer to the "To set initial recall
buffer values" section for more information.
*<proc>*recallSub.entries (list of Specifies the initial values that are placed|in
strings) the entry buffer (labeled "():"). Refer to the

"To set initial recall buffer values" section
for more information.

317

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

The following steps show you how to modify the Graphical User Interface’s X
resources.

1 Copy part or all of the HP64_Softkey application defaults file to a temporary file.

The HP64_Softkey file contains the default definitions for the graphical interface
application’s X resources.

For example, on an HP 9000 computer you can use the following command to copy
the complete HP64_Softkey file to HP64_Softkey.tmp (note that the HP64_Softkey
file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is re-created each time
Graphical User Interface software is installed or updated. You can use the UNIX
diff command to check for differences between the new HP64_Softkey application
defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_schemes/old/HP64_Softkey.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:
vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to the
following.

! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

| Note: The application cannot be resized by using the window manager.

IHP64_Softkey.lines:

24

IHP64_Softkey.columns: 85

318

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

Edit the line containing "HP64_Softkey.lines" so that it is uncommented and is set
to the new value:

|
! The lines and columns set the vertical and horizontal dimensions of the

! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

|

| Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
IHP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you're not sure, you can check by enteringxtai -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:
xrdb -merge -nocpp HP64_Softkey.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append the
temporary file to your SHOME/. Xdefaults file. For example:

cat HP64_Softkey.tmp >> $HOME/.Xdefaults
4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the Graphical User Interface. Starting and exiting t
Graphical User Interface is described in the "Using the Interface" chapter.

319

Chapter 10: Setting X Resources
To use customized scheme files

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

Create the $SHOME/.HP64_schemes/<platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

Copy the scheme file to be modified to the SHOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

Modify the $SHOME/.HP64_schemes/<platform>/Softkey.<scheme> file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is different
than the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the Graphical User
Interface. At least one resource must be defined in your color scheme file for it to
be recognized.

320

Chapter 10: Setting X Resources
To use customized scheme files

4 If your custom scheme file has a different name than the default, you must modify
the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource settings so
that your customized scheme files are used instead of the default scheme files.

For example, to use the "$SHOME/.HP64_schemes/HP-UX/Softkey.MyColor" color
scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":

HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

321

Chapter 10: Setting X Resources
To set up custom action keys

Examples

To set up custom action keys

Modify the "actionKeysSub.keyDefs" resource.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The first
string defines the text that should appear on the action key pushbutton. The second
string defines the command that should be sent to the command line area and
executed when the action key is pushed.

A pair of parentheses (with no spaces, that is "()") can be used in the command
definition to indicate that text from the entry buffer should replace the parentheses
when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "“()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A second
exclamation point ends the command string and allows additional options on the
command line.

Also, command files can be executed by placing the name of the file in the
command definition.

Finally, an empty action (") means to repeat the previous operation, whether it
came from a pulldown, a dialog, a popup, or another action key.

To set up custom action keys when the graphical interface is used with the 68340
emulator, modify the "*m68340*actionKeysSub.keyDefs" resource:

*m68340*actionKeysSub.keyDefs: \

"Make"

"Load Pgm"
"Run Pgm"
"Trace after ()"
"Step Source"

"Again"

"cd /users/project2/68340; Imake! in_browser" \
"load configuration config.EA; load program2" \
"run from reset" \
"trace after (); display trace" \
"set source on; display memory mnemonic; step source" \

Refer to the previous "To modify Graphical User Interface resources" section for
more detailed information on modifying resources.

322

Chapter 10: Setting X Resources
To set initial recall buffer values

To set initial recall buffer values

* Modify the "entries" resource for the particular recall buffer.

There are six popup recall buffers present in the Graphical User Interface. The
resources for these popup recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders around
dialog box windows. The most natural setting for this resource is "title."

Popup Recall Buffer Resources

Recall Popup Resources Description
File - Context- Directory ... | *dirSelect.textColumns The default number of text
*dirSelect.listVisibleltemCount columns in the popup is 50.

*dirSelectSub.entries

The default number of visible

File - Context— Symbols ... | *symSelect.textColumns lines in the popup is 12.

*symSelect.listVisibleltemCount

*symSelectSub.entries The "entries” resource is

defined as a list of strings (see

Trace- Trace Spec ... *modtrace.textColumns -
the following example).

*modtrace.listVisibleltemCount
*modtraceSub.entries

Up to 40 unique values are

Entry Buffer (): *recall.textColumns saved in each of the recall
*recall.listVisibleltemCount buffers (as specified by the
*recallSub.entries resource settings

"*XcRecall.maxDepth: 40" and

Command Line command *recallCmd.textColumns "X cRecall.onlyUnique: True")

recall *recallCmd.listVisibleltemCount
*recallCmdSub.entries

Command Line pod/simio *recallKbd.textColumns
recall *recallKbd.listVisibleltemCount
*recallKbdSub.entries

323

Chapter 10: Setting X Resources
To set initial recall buffer values

Examples

To set the initial values for the directory selection dialog box when the Graphical
User Interface is used with 68340 emulators, modify the

"*m68340*dirSelectSub.entries" resource:
*m68340*dirSelectSub.entries: \

"$HOME" \

oy

"lusers/projectl" \

"lusers/project2/68340"

Refer to the previous "To modify the Graphical User Interface resources" section
for more detailed information on modifying resources.

324

Chapter 10: Setting X Resources
To set up demos or tutorials

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying the
resources described in the following tables.

Demo Related Component Resources

Resource Value Description
*enableDemo False Specifies whethédtelp - Demo
True appears in the pulldown menu.

*demoPopupSub.indexFile

/Xdemo/Index-topics

Specifies the file containing thie list

of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the of the demo topic list popup.
*demoPopup.listVisibleltemCount 10 Specifies the length, in lines, of|the

demo topic list popup.

*demoTopic

About demos

Specifies the default topic in the
demo popup selection buffer.

325

Chapter 10: Setting X Resources
To set up demos or tutorials

Tutorial Related Component Resources
Resource Value Description
*enableTutorial False Specifies whether
True Help - Tutorial appears in the

pulldown menu.

*tutorialPopupSub.indexFile JXtutorial/Index-topics Specifies the file containing|the
list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the tutorial
topic list popup.

*tutorialPopup.listVisibleltemCount 10 Specifies the length, in lines,|of
the tutorial topic list popup.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial popup selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in the

Graphical User Interface.

Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use "\I' to produce inverse video
in the text, "\U" to produce underlining in the text, and "\N" to restore normal text.

Command files are executed when the "Press to perform demo (or tutorial)" button
(in the topic popup dialog) is pushed. A command file must have the same name as
the topic file with ".cmd" appended. Also, a command file must be in the same

directory as the associated topic file.

326

Chapter 10: Setting X Resources
To set up demos or tutorials

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the topic
which appears in the index popup and second the name of the file that is raised
when the topic is selected. For example:

"About demos" Jusers/guest/gui_demos/general

"Loading programs" /users/guest/gui_demos/loadprog

"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topicl), paths relative to the
directory in which the interface was started (for example, mydir/topic2), or paths
relative to the product directory (for example, ./Xdemo/general where the product
directory is something like /usr/hp64000/inst/emul/64751A).

3 Set the "*enableDemo" or "*enableTutorial" resource to "True".

4 Define the demo index file by setting the "*demoPopupSub.indexFile" or
"*tutorialPopupSub.indexFile" resource.

For example:
*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to the
directory in which the interface was started (for example, mydir/indexfile), or paths
relative to the product directory (for example, ./Xdemo/Index-topics where the
product directory is something like /usr/hp64000/inst/emul/64751A).

5 If you wish to define a default topic to be selected, set the "*demoTopic" or
"*tutorialTopic" resource to the topic string.

For example:
*demoTopic: "About demos"

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

327

328

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

329

Part 3

330

11

Emulator/Analyzer Interface
Commands

331

Emulator/Analyzer Interface Commands

This chapter describes the emulator/analyzer interface commands in alphabetical
order. First, the syntax conventions are described and the commands are
summarized.

How Pulldown Menus Map to the Command Line

The following table shows the items available in the pulldown menus and the
command line commands to which they map.

332

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown

Command Line

File - Context- Directory

File - Context— Symbols

File - Load - Emulator Config
File - Load - Executable

File - Load - Program Only
File - Load - Symbols Only
File - Store— Trace Data

File - Store— Trace Spec

File - Store— BBA Data

File - Copy - Display

File - Copy - Memory

File - Copy - Data Values
File - Copy- Trace

File » Copy - Registers

File - Copy - Breakpoints

File » Copy - Status

File - Copy - Global Symbols
File » Copy - Local Symbols ()
File » Copy - Pod Commands
File -~ Copy - Error Log

File -~ Copy - Event Log

File - Log - Playback

File - Log - Record

File - Log - Stop

File - Emul700- High-Level Debugger
File - Emul700- Performance Analyzer

File - Emul700- Emulator/Analyzer
File - Emul700- Timing Analyzer
File - Edit - File

File - Edit - At () Location

File - Edit -~ At PC Location

File -~ Term

File - Exit - Window (save session)

cd

cws

load configuration

load <abs_file>

load <abs_file> nosymbols
load symbols

store trace

store trace_spec

bbaunload

copy display to

copy memory to

copy data to

copy trace to

copy registers to

copy software_breakpoints to
copy status to

copy global_symbols to

copy local_symbols_in --SYMB-- to
copy pod_command to

copy error_log to

copy event_log to
<command file>
log_commands to
log_commands off

N/A

N/A

N/A

N/A

Ivi <file> ! no_prompt_before_exit

I vi +<line> <file> ! no_prompt_before_exit
Ivi +<line> <file> ! no_prompt_before_exit

!
end

File - Exit — Locked (all windows, save sessiongnd locked

File - Exit — Released (all windows, release

emulator)

end release_system

333

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown Command Line
Display— Context pwd, pws
Display - Memory display memory

Display— Memory - Mnemonic ()
Display— Memory — Mnemonic at PC

Display— Memory - Mnemonic Previous

Display— Memory - Hex () - bytes
Display— Memory - Hex () »words
Display— Memory - Hex () long
Display— Memory - Real ()- short
Display— Memory - Real ()- long
Display— Memory - At ()

Display - Memory - Repetitively
Display - Data Values

Display - Data Values- New ()- <type>
Display - Data Values- Add () - <type>
Display - Trace

Display - Registers

Display - Breakpoints

Display - Status

Display - Simulated 10

Display - Global Symbols

Display - Local Symbols ()

Display - Pod Commands

Display- Error Log

Display - Event Log

display memory --EXPR-- mnemonic
display memory mnemonic at_pc
display memory mnemonic previous_display
display memory --EXPR-- blocked bytes
display memory --EXPR-- blocked words
display memory --EXPR-- blocked long
display memory --EXPR-- real short
display memory --EXPR-- real long
display memory --EXPR--

display memory repetitively

display data

display data --EXPR-- <type>

display data, --EXPR-- <type>

display trace

display registers

display software_breakpoints

display status

display simulated_io

display global_symbols

display local_symbols_in --SYMB--
display pod_command

display error_log

display event_log

Modify - Emulator Config
Modify - Memory

Modify — Memory at ()
Modify — Register

modify configuration
modify memory

modify memory --EXPR--
modify register

334

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown Command Line
Execution— Run - from PC run

Execution— Run - from () run from --EXPR--
Execution- Run - from Transfer Address run from transfer_address
Execution— Run - from Reset run from reset

Execution— Run - until () run until --EXPR--
Execution- Step Source»from PC step source

Execution- Step Source-from () step source from --EXPR--
Execution- Step Source-from Transfer step source from transfer_address
Address

Execution- Step Instruction - from PC step

Execution- Step Instruction - from () step from --EXPR--

Execution- Step Instruction - from Transfer step from transfer_address
Address

Execution- Break break

Execution- Reset reset

Breakpoints - Display display software_breakpoints

Breakpoints— Enable modify software_breakpoints enable/disable

Breakpoints— Permanent () modify software_breakpoints set --EXPR--
permanent

Breakpoints— Temporary () modify software_breakpoints set --EXPR--
temporary

Breakpoints Set Al modify software_breakpoints set

Breakpoints - Clear () modify software_breakpoints clear --EXPR--

Breakpoints — Clear All modify software_breakpoints clear

Trace - Display display trace

Trace- Trace Spec N/A (browses recall buffer for trace commands)

Trace - After () trace after STATE

Trace - Before () trace before STATE

Trace- About () trace about STATE

Trace-Only () trace only STATE

Trace- Only () Prestore trace only STATE prestore anything

Trace— Again trace again

Trace - Repetitively <previous trace spec> repetitively

Trace - Everything trace

Trace- Until () trace before STATE break_on_trigger

Trace - Until Stop trace on_halt

Trace - Stop stop_trace

335

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown

Command Line

Settings— Source/Symbol Modes- Absolute
Settings— Source/Symbol Modes, Symbols
Settings— Source/Symbol Modes, Source
Mixed

Settings— Source/Symbol Modes, Source
Only

Settings— Display Modes- Source Only
Settings— Pod Command Keyboard
Settings— Simulated 10 Keyboard
Settings—» Command Line

set source off symbols off
set source off symbols on
set source on inverse_video on symbols on

set source only inverse_video off symbols on

set

display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio
N/A (toggles the command line)

How Popup Menus Map to the Command Line

The following tables show the items available in the popup menus and the
command line commands to which they map.

Mnemonic Memory Display Popup

Command Line

Set/Clear Breakpoint
Edit Source

Run Until

Trace After

Trace Before

Trace About

Trace Until

modify software_breakpoints set/clear --EXPR--
I'vi +<line> <file> ! no_prompt_before_exit

run until --EXPR--

trace after STATE

trace before STATE

trace about STATE

trace before STATE break_on_trigger

Breakpoints Display Popup

Command Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints

Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--
modify software_breakpoints clear --EXPR--

modify software_breakpoints enable/disable

modify software_breakpoints set

modify software_breakpoints clear

336

Chapter 11: Emulator/Analyzer Interface Commands

Symbols Display Popup

Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--

display local_symbols_in --SYMB--, display
global_symbols

N/A

I'vi +<line> <file> ! no_prompt_before_exit

Status Line Popup

Command Line

Remove Temporary Message
Display Error Log

Display Event Log

Command Line On/Off

N/A

display error_log
display event_log
(toggles command line)

Command Line Popup

Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command

Clear to End of Line

Clear Entire Line

Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key

<RETURN> key

<CTRL>e

<CTRL>u

(toggles command line)

337

Chapter 11: Emulator/Analyzer Interface Commands

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols show options available on the softkeys and other commands
that are available, but do not appear on softkeys (suoly_asommandsandwait).
These appear in the syntax diagrams as:

(g\ob@\,symbo\s)

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompts or references to other syntax
diagrams. Prompts are enclosed with angle brackets (< and >). References to other
diagrams are shown in all capital letters. Also, references to expressions are shown
in all capital letters, for example --EXPR-- and --SYMB-- (see those syntax
diagrams). These appear in the following syntax diagrams as:

<REGISTERS> ——EXPR——

Circles

Circles indicate operators and delimiters used in expressions and on the command
line as you enter commands. These appear in the syntax diagrams as:

)

The -NORMAL- Key

The softkey labeleeNORMAL- allows you exit the --SYMB-- definition, and
access softkeys that are not displayed when defining expressions. You can press
this key after you have defined an expression to view other available options.

338

Chapter 11: Emulator/Analyzer Interface Commands

Commands

Emulator/analyzer interface commands are summarized in the table below and
described in the following pages.

IUNIX_COMMAND
bbaunload

break

cd (change director§/)
cmb_execute
<command file2

copy datd

copy display

copy error_log

copy event_log

copy global_symbols
copy help

copy local_symbols_in
copy memorﬁ‘/

copy pod_command
copy registe

copy software_breakpoints
copy status

copy trace
cws(change working symb8l)
display dat

display error_log

display event_log
display global_symbols
display local_symbols_in
display memory

display pod_command
display registe

display simulated_?o
display software_breakpoints
display status

display trace

end

forward

help®

load <absolute_file>
load configuration

load emul_mem

load trace

load trace_spec

load user_memory
Iog_command%

modify configuration
modify keyboard_to_sim?o

L This option is not available in real-time mode.
2 This is only available when simulated 1/O is defined.
3 These commands are not displayed on softkeys.

4 This option is not available in real-time mode if addresses are in target system or single-port er

memory.

modify memorg
modify registe

modify software breakpoin]ts
name_of_modu%
performance_measurement_enc
performance_measurement_init
performance_measurement_rur
pod_command

pwd (print working director)?)
pws (print working symbo?”)
reset

run

set

specify

step

stop_trace

store memory

store trace

store trace_spec
sync_sim_registe?’s

trace

wait>

nulation

339

Chapter 11: Emulator/Analyzer Interface Commands

bbaunld

See Also

bbaunld

This command is available when the HP Branch Validator product is installed.
This basis branch analyzer (BBA) product is used to analyze the testing of your
programs, create more complete test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can use thisbaunload command to store the BBA information to a file. Then,
you can generate reports based on the stored information.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
bbaunload command syntax.

340

Chapter 11: Emulator/Analyzer Interface Commands
break

break

break <RETURN>

This command causes the emulator to leave user program execution and begin
executing in the monitor.

The behavior obreak depends on the state of the emulator:

running Break diverts the processor from execution of your
program to the emulation monitor.

reset Break releases the processor from reset, and diverts
execution to the monitor.

running in monitor Théreak command does not perform any operation while
the emulator is executing in the monitor.

See Also Thereset, run, andstep commands.

341

Chapter 11: Emulator/Analyzer Interface Commands
cmb_execute

cmb_execute

cmb_execute <RETURN>

Thecmb_executecommand causes the emulator to emit an EXECUTE pulse on its
rear panel Coordinated Measurement Bus (CMB) connector. All emulators
connected to the CMB (including the one sending the CMB EXECUTE pulse) and
configured to respond to this signal will take part in the measurement.

See Also Thespecify run andspecify tracecommands.

342

Chapter 11: Emulator/Analyzer Interface Commands

copy

copy

isplay < >

displ N <FLE

\
event_log L@ <ICMDI>

%Lobat,symbots

<RETURN>

noheader

~—— local_symbols_in f
\—i --SYMB--

~—{ registers

<C_ASS>

<REGISTER>

— frace F

from,tme,mumber)—{ <LINE#> }—(Thru,tme,mumber) | <LINE#=> P

~— memory
FCODE

—-EXPR-
k(thru

—-EXPR--

Use this command with various parameters to save or print emulation and analysis

information.

343

Chapter 11: Emulator/Analyzer Interface Commands

copy

<CLASS>

<ICMD!>

data

display
error_log

event_log

~-EXPR--

The copy command copies selected information to your system printer or listing
file, or directs it to a UNIX process.

Depending on the information you choose to copy, default values may be options
selected for the previous execution of diplay command. For example, if you
display memory locations 10h through 20h, then issug® memory to myfile
command, myfile will list only memory locations 10h through 20h.

The parameters are as follows:

A comma used immediately afteremory in the command line appends the
currentcopy memorycommand to the precedidgsplay memorycommand. The

data specified in both commands is copied to the destination specified in the current
command. Data is formatted as specified in the current command. The comma is
also used as a delimiter between values when specifying multiple memory
addresses.

Specifies a particular class of the emulator registers. Refer to the "Accessing
Registers" section in the "Using the Emulator" chapter for a list of the register
names and classes.

This represents an UNIX filter or pipe where you want to route the output of the
copy command. UNIX commands must be preceded by an exclamation point (!).
An exclamation point following the UNIX command continues command line
execution after the UNIX command executes. Emulation is not affected when
using an UNIX command that is a shell intrinsic.

This allows you to copy a list of memory contents formatted in various data types
(see display data).

This allows you to copy the display to a selected destination.
This allows you to copy the most recent errors that occurred.
This allows you to copy the most recent events that occurred.

An exclamation point specifies the delimiter for UNIX commands. An exclamation
point must precede all UNIX commands. A trailing exclamation point should be
used if you want to return to the command line and specify noheader. Otherwise,
the trailing exclamation point is optional. If an exclamation point is part of the
UNIX command, a backslash (\) must precede the exclamation point.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

344

FCODE

<FILE>

from_line_number
global_symbols

help

<LINE#>

local_symbols_in

memory

noappend

Chapter 11: Emulator/Analyzer Interface Commands
copy

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This prompts you for the name of a file where you want the specified information
to be copied. If you want to specify a file name that begins with a number, you
must precede the file name with a backslash. For exaogp display to \12.10
<RETURN>

This specifies the trace list line number from which copying will begin.
This lets you copy a list of global symbols to the selected destination.

This allows you to copy the contents of the emulation help files to the selected
destination.

Use this withfrom_line_number andthru_line_number to specify the starting
and ending trace list lines to be copied.

This lets you copy all the children of a given symbol to the selected destination.
See the-SYMB-- syntax page and ttf&mbolic Retrieval Utilities User’'s Guide
for information on symbol hierarchy.

This command copies the contents of a memory location or series of locations to
the specified output. The memory contents are copied in the same format as
specified in the last display memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

1 The address refers to guarded memory.

2 Runs are restricted to real-time, the emulator is running a user program, a
the address is located in target system memory or in single-port emulatio
memory.

Initial values are the same as those specified by the condisgolay memory 0
blocked bytes offset_by 0 Defaults are to values specified in the previtisplay
memory command.

This causes any copied information to overwrite an existing file with the same
name specified by <FILE>. If this option is not selected, the default operation is to
append the copied information to the end of an existing file with the same name
that you specify.

345

Chapter 11: Emulator/Analyzer Interface Commands

copy

noheader

pod_command

printer

registers

<REGISTER>

software
_breakpoints

status

--SYMB--

thru_line_number
to

trace

This copies the information into a file without headings.

This allows you to copy the most recent commands sent to the HP 64700 Series
emulator/analyzer.

This option specifies your system printer as the destination device fmwhe
command. Before you can specify the printer as the destination device, you must
define PRINTER as a shell variable. For example, you could enter the text shown
below after the "$" symbol:

$ PRINTER=Ip
$ export PRINTER

If you don’t want the print message to overwrite the command line, execute:

$ set PRINTER ="Ip -s"

This allows you to copy a list of the contents of the emulation processor registers to
the selected destination. Toapy registercommand is not allowed when the
emulator is configured for real-time runs and is running the user program. With no
options specified, the basic register class is copied.

Specifies the name of an individual register. Refer to the "Accessing Registers"
section in the "Using the Emulator" chapter for a list of the register names and
classes.

This option lets you copy a list of the current software breakpoints to a selected
destination.

This allows you to copy emulation and analysis status information.

This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’s Guidier
information on symbol hierarchy.

Specifies the last line number of the trace list to include in the copied range.
This allows you to specify a destination for the copied information.

This lets you copy the current trace listing to the selected destination. Trace
information is copied in the same format as specified in the last display trace
command. Initial values are the same as specified by thaidpkty trace
command.

346

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
copy

copy local_symbols_in mod_name to printer <RETURN>
copy local_symbols_in mod_name: fo linenumfile <RETURN>
copy memory start to printer <RETURN>

copy memory 0 thru 100h, start thru +5, 500H ,
target2 fo memlist <RETURN>

copy memory 2000h thru 204fth to memlist <KRETURN>
copy registers BASIC to printer <RETURN>

copy registers to reglist <RETURN>

copy trace to tlist <RETURN>

copy trace from_line_number 0 thru_line_number 5
to longtrac <RETURN>

Thedisplay, modify, andstore commands.

347

Chapter 11: Emulator/Analyzer Interface Commands

COUNT

anystate

off

QUALIFIER

State

time

COUNT

From COUNT on
TRACE diagram

state H QUALIFIER

- o——
Caee)

= To output of COUNT
on TRACE diagram

The analyzer trace depth is 1024 states. A state is a unique combination of address,
data, and status values occurring on the emulation bus simultaneously. When
counting is off, the analyzer can store 1024 states in the trace buffer. When
counting is on, the analyzer can only store 512 states in the trace buffer. That is
because the analyzer must now use two states in the trace buffer for each state
captured on the analyzer bus. One of the two states stores the state information
itself. The other state stores the count information associated with the state
information.

By default, all stored states are displayed. You can decrease the depth of the trace
display buffer to speed the display of the trace. The following command decreases
the trace display depth to 256 states:

display trace depth 256 <RETURN>

By default, the analyzer counting function is turned off.

This option allows you to set up theunting parameter for the analyzer to count
on any state.

This option turns off trace counting capability. As previously explained, turning
off counting provides a larger trace depth.

This is defined by you and used with #iate option to define the states to be
captured by the analyzer.

This causes the emulation-bus analyzer to count occurrences of the specified state
during a trace measurement.

This option causes the emulation-bus analyzer to count the time between states
captured during the trace measurement.

348

Chapter 11: Emulator/Analyzer Interface Commands

COUNT
Examples
trace after START counting state LOOP2 <RETURN>
trace counting time <RETURN>
See Also Thetrace command.

349

Chapter 11: Emulator/Analyzer Interface Commands
display

display

display = <RETURN>

\{ status

~—{ pod_command

%evemjog
%errontog
\——(S\mutmed,\o
%gtobat,symbots

local_symbols_in

repefitively

WSYMB -

data
--EXPR--
FCODE

--EXPR-- <TYP_>
reg\sTers
ﬁ <CLASS> \
<REG\STER>

\{ DISPLAY MEMORY ‘
\{ DISPLAY TRACE l{offsefbyH ——EXPR--

software_breakpaints

This command displays selected information on your screen.

350

<CLASS>

data

error_log

event_log

~-EXPR--

Chapter 11: Emulator/Analyzer Interface Commands
display

You can use the <Up arrow>, <Down arrow>, <PREV>, and <NEXT> keys to

view the displayed information. For software_breakpoints, data, memory, and trace
displays you can use the <CTRL>g and <CTRL>f keys to scroll left and right if the
information goes past the edge of the screen.

Depending on the information you select, defaults may be the options selected for
the previous execution of tldgsplay command.

The parameters are as follows:

A leading comma allows you to append additional expressions to the previous
display data command. Commas between expression/data type specifications allow
you to specify multiple variables and types for display with the current command.

Specifies a particular class of the emulator registers. Refer to the "Accessing
Registers" section in the "Using the Emulator" chapter for a list of the register
names and classes.

You can display the values of simple data types in your program. This command
can save you time; otherwise, you would need to search through memory displays
for the location and value of a particular variable.

The address, identifier, and data value of each symbol may be displayed. You must
issue the commargkt symbols orto see the symbol names displayed.

In the first display data command after you begin an emulation session, you must
supply at least one expression specifying the data item(s) to display.

Thereatfter, the display data command defaults to the expressions specified in the
last display data command, unless new expressions are supplied or appended (with
a leading comma).

Symbols are normally set off until you give the commsetdsymbols on
Otherwise, only the address, data type, and value of the data item will be displ

This option displays the recorded list of error messages that occurred during the
emulation session.

This option displays the recorded list of events.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying the data item to display or an offset value for the breakpoint
address. See theeXPR-- syntax diagram.

351

Chapter 11: Emulator/Analyzer Interface Commands

display

global_symbols

local_symbols_in

memory

offset_by

pod_command

registers

<REGISTER>

repetitively

simulated_io

software_
breakpoints

This command displays the global symbols defined for the current absolute file.
Global symbols are symbols declared as global in the source file. They include
procedure names, variables, constants, and file names. Wldispiag
global_symbolscommand is used, the listing will include the symbol name and its
logical address.

This option lets you display all the children of a given symbol. Displaying the local
symbols sets the current working symbol to the one specified. Se8YhB--

syntax page and tt&ymbolic Retrieval Utilities User's Guider details on symbol
hierarchy.

This option allows you to display the contents of memory.

This option allows you to offset the listed software breakpoint address value from
the actual address of the breakpoint. By subtracting the offset value from the
breakpoint address, the system can cause the listed address to match that given in
the assembler or compiler listing or symbols after code has been relocated.

This option lets you display the output of previously executed emulator pod
commands.

This command displays the current contents of the emulation processor registers.

If a stepcommand just executed, the mnemonic representation of the last
instruction is also displayed, if the current display is the register display. The
display registercommand is not allowed when the emulator is configured for
real-time runs and is running the user program. Symbols also may be displayed in
the register step mnemonic string (seesymbol3. With no options specified, the
basic register class is displayed as the default.

Specifies the name of an individual register. Refer to the "Accessing Registers"
section in the "Using the Emulator" chapter for a list of the register names and
classes.

This optional part of thdisplay statuscommand causes the emulator status screen
to be updated continuously.

This lets you display data written to the simulated 1/O display buffer after you have
enabled polling for simulated 1/0O in the emulation configuration. For details about
setting up simulated I/O, refer to tBemulated 1/0 User’s Guide

This option lets you display the current list of software breakpoints.

352

Chapter 11: Emulator/Analyzer Interface Commands
display

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending, inactivated, or unknown.

A pending breakpoint causes the processor to enter the emulation monitor upon
execution of that breakpoint. Executed breakpoints are listed as inactivated.
Entries that show an inactive status can be reactivated by executmgdifie
software_breakpoints secommand.

A label column also may be displayed for addresses that correspond to a symbol.
See thesetcommand for details.

status This displays the emulator and trace status.

--SYMB-- This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’'s Guidier
more information on symbol hierarchy and representation.

thru --EXPR-- Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display both
single-dimensioned and multi-dimensioned arrays. Arrays are displayed in the
order specified by the language definition, typically row major order for most
Algol-like languages.

trace This displays the current trace list.

<TYPE> Specifies the format in which to display the information, as shown in the following
table. (Data type information is not available from the symbol database, so you
must specify it.)

353

Chapter 11: Emulator/Analyzer Interface Commands

display

<TYPE> Meaning

byte Hex display of one 8-bit location.

word Hex display of one 16-bit location.

long Hex display of one 32-bit location.

int8 Display of one 8-bit location as a signed integer using
two’s complement notation.

intl6 Display of two bytes as a signed integer using two’s
complement notation.

int32 Display of four bytes as a signed integer using two’s
complement notation.

u_int8 Display of one byte as an unsigned positive integer.

u_intl6 Display of two bytes as an unsigned positive integer.

u_int32 Display of four bytes as an unsigned positive integer.

char Displays one byte as an ASCII character in the range

0..127. Control characters and values in the range
128..255 are displayed as a period (.).

Examples

display event_log <RETURN>

display local_symbols_in mod_name <RETURN>

display data Msg_A thru +17 char , Stack long <RETURN>
set symbols on <RETURN>

set width label 30 <RETURN>

display data ,Msg_B thru +17 char ,Msg_Dest thru +17
char <RETURN>

display local_symbols_in mod_name <RETURN>

display local_symbols_in mod_name:main <RETURN>

354

See Also

Chapter 11: Emulator/Analyzer Interface Commands

display
display registers <RETURN>
display registers BASIC D2 <RETURN>
display simulated_io <RETURN>
display software_breakpoints <RETURN>
display software_breakpoints offset_by 1000H <RETURN>

Thecopy, modify, set andstepcommand descriptions and the following pages
which describe thdisplay memory anddisplay trace commands.

355

Chapter 11: Emulator/Analyzer Interface Commands
display memory

display memory

< display }Cmemory N

FCODE

\{ thru W --EXPR--
(0
N

4 short =

blocked L long I
absolute 4 words —
bytes

~_EXPR--

— repetitively

—{ mnemonic

To | <RETURN> | on
DISPLAY diagram

offseLbyH ~-EXPR--

This command displays the contents of the specified memory location or series of
locations.

356

absolute
at_pc
blocked
bytes
--EXPR--

Chapter 11: Emulator/Analyzer Interface Commands
display memory

The memory contents can be displayed in mnemonic, hexadecimal, or real number
format. In addition, the memory addresses can be listed offset by a value, which
allows the information to be easily compared to the program listing.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside the currently displayed address range. This feature works
even if stepping is performed in a different emulation window than the one
displaying memory mnemonic.

Pending software breakpoints are shown in the memory mnemonic display by an
asterisk (*) in the leftmost column of the assembly instruction or source line that
has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and assembly
code intermixed, or with source code only. Symbols also can be displayed in the
memory mnemonic string. (See tetcommand.)

Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previdisplay memory command.
The symbols and source defaults are:

set source off symbols off

The parameters are as follows:

Formats the memory listing in a single column.

Displays the memory at the address pointed to by the current program counte
Formats the memory listing in multiple columns.

Displays the absolute or blocked memory listing as byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or memory offset value. See the EXPR
syntax diagram.

357

Chapter 11: Emulator/Analyzer Interface Commands

display memory

FCODE

long

mnemonic

offset_by

previous_display

real

repetitively

short

thru

words

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

Displays memory in a 64-bit real number format or 32-bit long words when
preceded bylocked or absolute

This causes the memory listing to be formatted in assembly language instruction
mnemonics with associated operands. When specifying mnemonic format, you
should include a starting address that corresponds to the first byte of an operand to
ensure that the listed mnemonics are correcetl§ource onlyis on, you will see

only the high level language statements and corresponding line numbers.

This option lets you specify an offset that is subtracted from each of the absolute
addresses before the addresses and corresponding memory contents are listed. You
might select the offset value so that each module appears to start at address 0000H.
The memory contents listing will then appear similar to the assembler or compiler
listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Returns to display associated with the previous mnemonic memory display
command.

Formats memory values in the listing as real numbers. (NaN in the display list
means "Not a Number.")

Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, since it is very CPU intensive. To allow
updates to the current memory display whenever memory is modified, a file is
loaded, software breakpoint is set, etc., uss¢hepdatecommand.

Formats the memory list as 32-bit real numbers.

This option lets you specify a range of memory locations to be displayed. Use the
<Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view additional
memory locations.

Displays the absolute or blocked memory listing as 16-bit word values.

A comma aftememory in the command line appends the curdisplay memory
command to the precedingsplay memorycommand. The data specified in both
commands is displayed. The data will be formatted as specified in the current

358

Chapter 11: Emulator/Analyzer Interface Commands
display memory

command. The comma is also a delimiter between values when specifying multiple
addresses.

Examples You can display memory in real number and mnemonic formats:

display memory 2000h thru 202fh, 2100h real long
<RETURN>

display memory 400h mnemonic <RETURN>

set symbols on <RETURN>
set source on <RETURN>
display memory main mnemonic <RETURN>

See Also Thecopy memory, modify memory, set andstore memorycommands.

359

Chapter 11: Emulator/Analyzer Interface Commands

display trace

display trace

\ depth <DEF’THH> }

DR
t <LINE #>
’@\snssembe from_line_number = <LINE #>

~{ high word L(Cﬂgmdamfmm MmeH <LINE #=> }—\
Oera?

oll_cycles

instructions_only

~——{ dequeue on
~—={ mnemanic off

absolute
onary
hex >\
mnemomc}\

absolute
e
\{offsef,by H —-EXPR-- }—>

To | <RETURN=> | on
DISPLAY diagram

This command displays the contents of the trace buffer.

360

Chapter 11: Emulator/Analyzer Interface Commands
display trace

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be listed
mnemonically or in hexadecimal or binary form.

Addresses captured by the analyzer are physical addresses.

Theoffset_byoption subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate enbijsfety

each instruction in the listed trace will appear as it does in the assembled or
compiled program listing.

Thecount parameter lists the current trace of time or state either relative to the
previous event in the trace list or as an absolute count measured from the trigger
event. If time counts are currently selected cthunt parameter causes an absolute
or relative time count to be listed. If the current trace contains state counts, a
relative or absolute state count results.

Thesourceparameter allows display of source program lines in the trace listing,
enabling you to quickly correlate the trace list with your source program.

Initial values are the same as specified by the command:

display trace mnemonic count relative offset_by 0
<RETURN>

The parameters are as follows:

absolute Lists trace information in hexadecimal format, rather than mnemonic opcodes.
align_data_ Use this to correct data-alignment problems if you see any in a dequeued trace list.
from_line If you see that the dequeuer has aligned data with the wrong instructions, use this

token to select the correct data alignment by specifying the line that should begin a
data realignment (align_data_from_line 36).

all_cycles Used to specify that all cycles should be included in the inverse assembled
information shown in the trace list.

count
absolute This lists the time count for each event of the trace as the total time measured from
the trigger event.
relative This lists the time count for each event of the trace as the time measured relative to

the previous event.

361

Chapter 11: Emulator/Analyzer Interface Commands

display trace
depth
<DEPTH#>

dequeue

disassemble
_from_line
__number

~-EXPR--

high_word

instructions_only

<LINE#>

low_word

mnemonic

offset_by

This defines the number of states to be uploaded by the interface.

Note that after you have changed the trace depth, execute the comaitand
measurement_completdefore displaying the trace. Otherwise the new trace states
will not be available.

This obtains a trace list showing the activity of the emulation processor during the
trace. Unused prefetches are eliminated from this display, and data transactions are
aligned with the instructions that caused them to occur.

Displays the trace at a certain line number and disassembles instruction opcodes.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses traced
by the emulation analyzer. See the EXPR syntax diagram.

Causes inverse assembly to begin with the opcode in the high word of the long
word located in the specified trace-memory line number. This field is isn’t
applicable for the 68340 because its data bus is 16-bits wide.

Causes the trace list to contain only those lines that show an instruction opcode.

This prompts you for the trace list line number to be centered in the display. Also,
you can use <LINE#> witHisassemble_from_line_number<LINE#> prompts

you for the line number from which the inverse assembler attempts to disassemble
data in the trace list. When used vatign_data_from_line, this is the line

number from which to begin aligning data. The line number specified for data
alignment must be the same as, or higher than, the line number specified for the
beginning of the trace disassembly.

Causes inverse assembly to begin with the opcode stored in the low word of the
long word at the specified trace memory line number. This field is isn’t applicable
for the 68340 because its data bus is 16-bits wide.

Lists trace information with opcodes in mnemonic format.

This option allows you to offset the listed address value from the address of the
instruction. By subtracting the offset value from the physical address of the
instruction, the system makes the listed address match that given in the assembler
or compiler listing.

362

Chapter 11: Emulator/Analyzer Interface Commands
display trace

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Note that when using theet source onlycommand, the analyzer may operate more
slowly than when using theet source orcommand. This is an operating
characteristic of the analyzer:

When you use the commaset source onand are executing only assembly
language code (not high-level language code), no source lines are displayed.
The trace list will then fill immediately with the captured assembly language
instructions.

When usingset source onlyno inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with high-level
source code. This requires the emulation software to search for any captured
analysis data generated by a high-level language statement.

In conclusion, you should not set the trace lisetbsource onlywhen tracing
assembly code. This will result in optimum analyzer performance.

status
binary Lists absolute status information in binary form.
hex Lists absolute status information in hexadecimal form.
mnemonic Lists absolute status information in mnemonic form.
Examples
display trace count absolute <RETURN>
display trace absolute status binary <RETURN>
display trace mnemonic <RETURN>
See Also Thecopy, store, andsetcommands.

363

Chapter 11: Emulator/Analyzer Interface Commands

end
end
This command terminates the current emulation session.
You can end the emulation session and keep the emulator in a locked state. The
current emulation configuration is stored, so that you can continue the emulation
session on reentry to the emulator. You can select another measurement system
when ending the current session. You also can release the emulation system when
ending the session so that others may use the emulator.
Note that pressing <CTRL>d performs the same operation as presding
<RETURN>. Pressing <CTRL>\ or <CTRL>| performs the samenals
release_system <RETURN>
If the command is specified without any options, two different things can occur.
What occurs depends on whether the interface instance being ended is the only one
currently executing. If it is, then this command ends the interface, but leaves the
emulator in a continue state. The interface, if restarted, will reload the last
configuration used.
If the interface instance is one of several into the same emulation session, then the
end command ends the interface instance where the end is issued. Other interface
instances into the same emulation session are not affected.
The parameters are as follows:

locked This option allows you to stop all active instances of an emulator/analyzer interface

release_system

session in one or more windows and/or terminals. When the emulation session
ends, control returns to the UNIX shell, but the emulator is still locked to your user
id and is not available to others.

This option stops all instances of the emulator/analyzer interface in one or more
windows or terminals. The emulation system is released for other users. If you do
not release the emulation system, others cannot access it.

364

Chapter 11: Emulator/Analyzer Interface Commands

end
Examples
end <RETURN>
end release_system <RETURN>
See Also The "Exiting the Emulator/Analyzer Interface" section in the "Using the

Emulator/Analyzer Interface" chapter.

365

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

--EXPR--

T—{ <DON'T CARE NUMBER>} f
L@J <NUMBER>

[t

~ ——SYMB——

<0OP>

An expression is a combination of humeric values, symbols, operators, and
parentheses used to specify address, data, status, executed address, or any other
value used in the emulation commands.

The function of an expression (--EXPR--) is to let you define the address, data,
status, or executed address expression that fits your needs. You can combine
multiple values to define the expression.

Certain emulation commands will allow the option of <+EXPR> after pressing a
thru softkey. This allows you to enter a range without retyping the original base
address or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

The parameters are as follows:

DON'T CARE You can include "don’t care numbers" in expressions. These are indicated by a
NUMBER number containing an "x." These numbers may be defined as binary, octal, decimal,
or hexadecimal. For example: 1fxxh, 17x70, and 011xxx10b are valid.

Note that "Don’t care numbers" are not valid for all commands.

--NORMAL-- This appears as a softkey label to enable you to return +&etKER-- key. The
--NORMAL-- label can be accessed whenever defining an expression, but is only
valid when "C" appears on the status line, which indicates a valid expression has
been defined.

366

<NUMBER>

<OP>

--SYMB--

end

start

<UNARY>

()

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

This can be an integer in any base (binary, octal, decimal, or hexadecimal), or can
be a string of characters enclosed with quotation marks.

This represents an algebraic or logical operand and may be any of the following (in
order of precedence):

mod modulo

* multiplication

/ division
logical AND

+ addition

- subtraction

| logical OR

This allows you to define symbolic information for an address, range of addresses,
or afile. See theSYMB-- syntax pages and ti&ymbolic Retrieval Utilities
User's Guidefor more information on symbols.

This displays the last location where the symbol information may be located. For
example, if a particular symbol is associated with a range of addrersdes||
represent the last address in that range.

This displays first memory location where the symbol you specify may be located.
For example, if a particular symbol is associated with a range of addstases,
will represent the first address in that range.

This defines either the algebraic negation (minus) sign (-) or the logical negation
(NOT) sign ().

Parentheses may be used in expressions to enclose numbers. For every opening
parenthesis, a closing parenthesis must exist.

Note that when "C" appears on the right side of the status line, a valid express
exists. The-NORMAL-- key can be accessed at any time, but is only valid wh
"C" is on the command line.

Note that when thru softkey has been entered, a <+ EXPR> prompt appears.
This saves you from tedious repeated entry of long symbols and expressions. For
example:

disp_buf thru +25

367

Chapter 11: Emulator/Analyzer Interface Commands

-EXPR--

Examples

See Also

is the same as

disp_buf thru disp_buf + 25

05fxh

offffh

disp_buf +5
symb_tbl + (offset/ 2)
start

mod_name: line 15 end

The SYMB syntax description.

368

Chapter 11: Emulator/Analyzer Interface Commands
FCODE

FCODE

fcode none

J

o

a

n
O

[
o

[
a

O
NN

N
o
[

The function code is used to define the address space being referenced. Select the
appropriate function code from those listed below.

cpu CPU space.

d Data space.

none Causes the emulator to ignore the function code bits.
p Program space.

S Supervisor space.

sd Supervisor data space.

sp Supervisor program space.

u User space.

ud User data space.

up User program space.

369

Chapter 11: Emulator/Analyzer Interface Commands
FCODE

Examples To copy a portion of user data memory to a file:
copy memory fcode udlO0OOHthru 1fffH to mymem <RETURN>
To modify a location in program memory:

modify memory fcode p5000hlong to 12345678h <RETURN>

370

Chapter 11: Emulator/Analyzer Interface Commands
forward

forward

<COMMAND>%4# <RETURN>

debug
H. Ce
~Co]
o

This command lets you forward commands to other HP 64700 interfaces that use
the "emul700dmn" daemon process to coordinate actions between the interfaces.

bms Sends messages to the Broadcast Message Server or BMS.

<COMMAND> An ASCII string, enclosed in quotes, that is the command to be forwarded to the
named interface.

debug Forwards command to the high-level debugger interface.

emul Forwards command to the emulator/analyzer interface.

perf Forwards commands to the software performance analyzer interface.

<UINAME> Forwards commands to a user interface name other than those available on the
softkeys.

Examples To send the "Program Run" command to the debugger:

forward debug "Program Run" <RETURN>

To send the "profile" command to the software performance analyzer:

forward debug "profile" <RETURN>

See Also TheUser’s Guidéor the interface to which you are forwarding commands.

371

Chapter 11: Emulator/Analyzer Interface Commands

help

help
[e - e

Displays information about system and emulation features during an emulation
session.
Typing help or ? displays softkey labels that list the options on which you may
receive help. When you select an option, the system will list the information to the
screen.
Thehelp command is not displayed on the softkeys. You must enter it into the
keyboard. You may use a question mark in pladelgfto access the help
information.
The parameters are as follows:

<HELP_FILE> This represents one of the available options on the softkey labels. You can either
press a softkey representing the help file, or type in the help file name. If you are
typing in the help file name, make sure you use the complete syntax. Not all of the
softkey labels reflect the complete file name.

Examples

help system_commands <RETURN>
? run <RETURN>

This is a summary of the commands that appear on the softkey labels when you
typehelp or pres:

system_commands
run

trace

step

break

display

modify

load

store

372

Chapter 11: Emulator/Analyzer Interface Commands

copy
reset

stop_trace

end

software_breakpoints

registers

expressions (--EXPR--)

symbols (--SYMB--)

specify

cmb

cmb_execute

map

set

wait

pod _command

bbaunload

coverage
performance_measurement_initialize
performance_measurement_run
performance_measurement_end

help

373

Chapter 11: Emulator/Analyzer Interface Commands

load
load
load <FILE> }» <RETURN>
(e
/
nosymbals
noupdate
o) e |
~{ configuration

< ILE> ’——LCﬂoupduTED—/

-
This command transfers absolute files from the host computer into emulation or
target system RAM. With other parameters, the load command can load emulator
configuration files, trace records, trace specifications, or symbol files.
The absolute file contains information about where the file is stored. The memory
map specifies that the locations of the file are in user (target system) memory or
emulation memory. This command also allows you to access and display
previously stored trace data, load a previously created configuration file, and load
absolute files with symbols.
Note that any file specified by <FILE> cannot be named "configuration”,
"emul_mem", "user_mem", "symbols", "trace", or "trace_spec" because these are
reserved words, and are not recognized by the emulator/analyzer interface as
ordinary file names.
The absolute file is loaded into emulation memory by default.
The parameters are as follows:

configuration This option specifies that a previously created emulation configuration file will be

loaded into the emulator. You can follow this option with a file name. Otherwise
the previously loaded configuration will be reloaded.

374

FCODE

<FILE>

<memory_type>

noabort

nosymbols

noupdate

symbols
trace

trace_spec

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
load

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This represents the absolute file to be loaded into either target system memory,
emulation memory (.X files are assumed), or the trace memory (.TR files are
assumed).

This indicates the type of memory that you choose for the load operation. The
memory type can be emulation or user memory. You also can load a background
monitor file.

This option allows you to load a file even if part of the file is located at memory
mapped as "guarded" or "target ROM" (trom).

This option causes the file specified to be loaded without symbols.

This option suppresses rebuilding of the symbol data base when you load an
absolute file. If you load an absolute file, end emulation, then modify the file (and
relink it), the symbol database will not be updated upon reentering emulation and
reloading the file. The default is to rebuild the database.

This option causes the file specified to be loaded with symbols.
This option allows you to load a previously generated trace file.
This option allows you to load a previously generated trace specification.

Note that the current trace specification will be modified, but a new trace will not
be started. To start a trace with the newly loaded trace specificatiortracaer
again or specify trace again(nottrace). If you specifytrace, a new trace will

begin with the default trace specification, not the one you loaded.

load sortl <RETURN>
load configuration config3 <RETURN>

load trace trace3 <RETURN>

Thedisplay trace command.

375

Chapter 11: Emulator/Analyzer Interface Commands

log_commands

<FILE>

off

noappend

log_commands

log_commonds Y to H <FILE> } <RETURN=>
f
off

This command allows you to record commands that are executed during an
emulation session.

A command file is an ASCII file containing Softkey Interface commands. The
interface can read a command file and execute its commands as if they were typed
into the command line. Simply type the filename on the command line.

This interface command lets you create command files by logging. When the
interface is in logging mode, all commands entered and executed on the command
line are also copied to the named file. Once started, logging continues until either
logging is turned off or the emulation session is ended.

Thelog_commandscommand is not on the softkeys. You must type it into the
command line to access the remainder of the log_commands softkeys.

The parameters are as follows:

This represents the file where you want to store interface commands. If the file does
not exist, a new file is created. If the file already exists, the new commands are
appended to the present content in the file, unlegsodggpendoption is specified.

This option stops command logging.

If the named file is an existing file, this option causes the new commands to
overwrite any information present in the file. If this option is not specified, new
commands are appended to the existing contents of the file.

376

Chapter 11: Emulator/Analyzer Interface Commands
log_commands

Examples
log_commands to logfile <RETURN>
log_commands off <RETURN>
See Also Thewait command.

377

Chapter 11: Emulator/Analyzer Interface Commands
modify

modify

(modify Honﬂgurmmn <RETURN>
%keybomrdjo,simio
D) Lo

to)@ <REAL#> h
% string >——< 1o H <STRING> }

<reaisTER-]+_ 0+ —EXPR- |——
<CLASS>
%oftwmre,breakpowntM set P,

FCODE

—(clear
FCODE <EXPR>
-

~—=(enable
~—{ disable

This command allows you to observe or change information specific to the
emulator.

378

bytes
<CLASS>

clear

configuration

disable
enable

~-EXPR--

Chapter 11: Emulator/Analyzer Interface Commands
modify

Themodify command is used to:

* Modify contents of memory (as integers, strings, or real numbers).
* Modify the contents of the processor registers.

* View or edit the current emulation configuration.

» Modify the software breakpoints table.

The following pages contain detailed information about the vanmasfy syntax
diagrams.

The parameters are as follows:
Modify memory in byte values.

Specifies a particular class of the emulator registers. Refer to the "Accessing
Registers" section in the "Using the Emulator" chapter for a list of the register
names and classes.

This option erases the specified breakpoint address and restores the original content
of the memory location. (The location must not have changed (by loading a file or
modifying memory) after the breakpoint was set.) If no breakpoints are specified in
the command, all currently specified breakpoints are cleared and the memory
locations are restored to their original values.

A comma is used as a delimiter between values when modifying multiple memory
addresses or breakpoints.

Lets you view and edit the current emulation configuration items. The

configuration questions are presented in sequence with either the default response,
or the previously entered response. You can select the currently displayed response
by pressing <RETURN>. Otherwise, you can modify the response as you desi

then press <RETURN>.

This option turns off the software breakpoint capability.
This option allows you to modify the software breakpoint specification.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address, register, or software breakpoint value.
See the-EXPR-- description.

379

Chapter 11: Emulator/Analyzer Interface Commands
modify

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

keyboard_to_simio Lets the keyboard to interact with your program through the simulated 1/O
software. When the keyboard is activated for simulated 1/O, its normal interaction
with emulation is disabled. The emulation softkeys are blank and the softkey
labeled "suspend" is displayed on your screen. Pressapgnd <RETURN>will
deactivate keyboard simulated 1/0 and return the keyboard to normal emulation
mode. For details about setting up simulated I/O, refer tBithelated 1/0 User's
Guide

long Modify memory values as 32-bit long word values or 64-bit real values when
preceded byeal.

memory Lets you modify the contents of selected memory locations. Yomodify the
contents of individual memory locations to individual values. Or, you can modify a
range of memory to a single value or a sequence of values.

Modify a series of memory locations by specifying the address of the first location
in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first memory location. The second value replaces the contents of
the next memory location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

A range of memory can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequence.
This type of memory maodification is done by entering the limits of the memory
range to be modified (--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in the range are to
be changed.

Note that if the specified address range is not large enough to contain the new data,
only the specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the memory
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or target memory with
no monitor) the modification is aborted at the address where the error occurred.

380

permanent

real
<REAL#>

register

<REGISTER>

set

short

software
breakpoints

Chapter 11: Emulator/Analyzer Interface Commands
modify

Memory modifications of integer values use the currently set display memory
mode. Byte is the default.

Memory modifications of "real" values use the currently set display memory mode.
Short is the default.

Sets a permanent breakpoint. The software breakpoint instruction remains in the
program until the breakpoint is inactivated or removed.

Modify memory as real number values.
This prompts you to enter a real number as the value.

Lets you to modify the contents of the emulation processor internal registers. The
modify register command is not allowed when the emulator is configured for
real-time runs and is running the user program.

Specifies the name of an individual register. Refer to the "Accessing Registers"
section in the "Using the Emulator" chapter for a list of the register names and
classes.

This option allows you to activate software breakpoints in your program. If no
breakpoint addresses are specified in the command, all breakpoints that have been
inactivated (executed) are reactivated.

Modify memory values as 32-bit real numbers.

Lets you change the specification of software breakpoints. Software breakpoints
provide a way to accurately stop the execution of your program at one or more
instruction locations. When a software breakpoint is set, the instruction that is
normally at that location is replaced with a BGND instruction. When the software
breakpoint is executed, control is passed to the emulator’s monitor program, and
the original instruction is restored in the user program. Thus, execution is
interrupted before the instruction at the specified address is executed.

Operation of the program can be resumed after the breakpoint is encountered
specifying either aun or stepcommand.

If you modify software breakpoints while the memory mnemonic display is active,
the new breakpoints are indicated by &ih the leftmost column of the instruction
containing the breakpoint.

The software breakpoint facility may be completely disabled or enabled via the
"modify software_breakpoints" command. The default is "enabled".

381

Chapter 11: Emulator/Analyzer Interface Commands

modify
string Modify memory values to the ASCII character string given by <STRING>.
<STRING> Quoted ASCII string including special characters as follows:
null \0
newline \n
horizontal tab \t
backspace \b
carriage return \r
form feed \f
backslash \
single quote v
bit pattern \ooo (where 000 is an octal number)
temporary Sets a temporary breakpoint. When the break occurs, the original opcode is
replaced in the program.
thru This option lets you specify a range of memory locations to be modified.
to This lets you specify values to which the selected memory locations or registers
will be changed.
words Modify memory locations as 16-bit values.
Examples

modify configuration <RETURN>

modify memory datal bytesto OE3H,01H, 08H <RETURN>
modify memory datal thru DATA100 to OFFFFH <RETURN>
modify memory 0675H realto -1.303 <RETURN>

modify memory temp real long to 0.5532E-8 <RETURN>

modify memory buffer string to "This is a test \n\0"
<RETURN>

modify register D2 to 41H <RETURN>

382

Chapter 11: Emulator/Analyzer Interface Commands
modify

modify software_breakpoints enable <RETURN>

modify software_breakpoints set loopl end , loop2 end ,
OE40H <RETURN>

modify software_breakpoints clear <RETURN>
modify software_breakpoints set <RETURN>
See Also Thecopy, display, load, store commands.

383

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_end

performance_measurement_end

<performonceimeosurememtiend> <RETURN>

This command stores data previously generated by the
performance_measurement_runcommand, in a file named "perf.out" in the
current working directory.

The file named "perf.out" is overwritten each time this command is executed.
Current measurement data existing in the emulation system is not altered by this
command.

Examples
performance_measurement_end <RETURN>

See Also Theperformance_measurement_initializeandperformance_measurement_run
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

384

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

activity

duration

performance_measurement_initialize

<performomceimeosurememti'\mﬂ@ﬁzeD) <RETURN>

k{ restore
‘% <FILE>

%\oba\isymbo\s
~—={ local _symbols in \

\ duration |~
\

—SYMB——

\>< activity

This command sets up performance measurements.

The emulation system will verify whether a symbolic database has been loaded. If

a symbolic database has been loaded, the performance measurement is set up with
the addresses of all global procedures and static symbols. If a valid database has not
been loaded, the system will default to a predetermined set of addresses, which
covers the entire emulation processor address range.

The measurement will default to "activity" mode.

Default values will vary, depending on the type of operation selected, and wh
symbols have been loaded.

The parameters are as follows:

This option causes the performance measurement process to operate as though an
option is not specified.

This option sets the measurement mode to "duration." Time ranges will default to a
predetermined set (unless a user-defined file of time ranges is specified).

385

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

<FILE>

global_symbols

local_symbols_in

restore

--SYMB--

Examples

See Also

This represents a file you specify to supply user-defined address or time ranges to
the emulator.

This option specifies that the performance measurement will be set up with the
addresses of all global symbols and procedures in the source program.

This causes addresses of the local symbols to be used as the default ranges for the
measurement.

This option restores old measurement data so that a measurement can be continued
when using the sanieace command as previously used.

This represents the source file that contains the local symbols to be listed. This also
can be a program symbol name, in which case all symbols that are local to a
function or procedure are used. See the SYMB syntax diagram.

performance_measurement _initialize <RETURN>
performance_measurement _initialize duration <RETURN>

performance_measurement_initialize local_symbols_in
mod_name <RETURN>

Theperformance_measurement_rurandperformance_measurement_end
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

386

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

performance_measurement_run

Q}erform@nceimeosurememtirUHD \ <RETURN>
¥>{ <COUNT> }—/

This command begins a performance measurement.

This command causes the emulation system to reduce trace data contained in the
emulation analyzer, which will then be used for analysis by the performance
measurement software.

The default is to process data presently contained in the analyzer.
The parameters are as follows:

<COUNT> This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and combine it
with existing data. This sequence will be repeated the number of times specified by
the COUNT option.

Note that thérace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the tlatault
commandtface <RETURN>).

For a duration measurement, you must set up the trace specification to store only
the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples
performance_measurement_run 10 <RETURN>
performance_measurement_run <RETURN>

See Also Theperformance_measurement_en@ndperformance_measurement_initialize

commands.

387

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

388

Chapter 11: Emulator/Analyzer Interface Commands

pod_command

pod _command

O o e |

keyboard

(%DDd,COmmOﬂd%>4% <rRETURN=>

Allows you to control the emulator through the direct HP 64700 Terminal Interface.

The HP 64700 Card Cage contains a low-level Terminal Interface, which allows
you to control the emulator’s functions directly. You can access this interface
usingpod_command The options tpod_commandallow you to supply only

one command at a time. Or, you can select a keyboard mode which gives you
interactive access to the Terminal Interface.

There are certain commands that you should avoid while using the Terminal
Interface througlpod_command

Do not use. These commands will change the operation of the

release_systencommand.

Do not use. The trace status polling and unload will become
confused.

To see the results of a particutend_command(the information returned by the
emulator pod), you usdisplay pod_command

by

stty, po, Xp - .
communications channel, and are likely to hang the Softkey
Interface and the channel.

echo, mac Using these may confuse the communications protocols in use
on the channel.

wait Do not use. The pod will enter a wait state, blocking access
the emulator/analyzer interface.

init, pv These will reset the emulator pod and forcerzch

389

Chapter 11: Emulator/Analyzer Interface Commands

pod_command

keyboard

<POD_CMD>

suspend

Examples

See Also

The parameters are as follows:

Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. digglay pod_commandto see
the results returned from the emulator.

Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press <RETURN>.

This command is displayed once you have entered keyboard mode. Select it to stop
interactive access to the Terminal Interface and return to the Graphical User
Interface or Softkey Interface.

This example shows a simple interactive session with the Terminal Interface.

display pod_command <RETURN>

pod_command keyboard <RETURN>

cf <RETURN>

tsq <RETURN>

tcqg <RETURN>

Entersuspendto return to the Graphical User Interface or Softkey Interface.

Thedisplay pod_commandcommand.

The 68340 Emulator User’s Guide for the Terminal Interfaoel the Terminal
Interface on-line help information.

390

Chapter 11: Emulator/Analyzer Interface Commands
QUALIFIER

address

and

QUALIFIER

ﬂ

= data

= address

= long_aligned

status

TheQUALIFIER parameter is used withace only, trace prestore TRIGGER,
andtrace countingto specify states captured during the trace measurement.

You may specify a range of states or specific states to be captured. You can
continue to "or" states until the analyzer resources are depleted. You can use only
one "range" statement in the enti@ce command.

You can include "don’t care numbers." These contain an "x" preceded and/or
followed by a number. Some examples include 1fxxh, 17x70, and 011xxx10b.
"Don’t care numbers" may be entered in binary, octal, or hexadecimal base.

Expression types are "address" when none is chosen. The default is to quali
all states.

The parameters are as follows:

The value following this softkey is searched for on the lines that monitor the
emulation processor’s address bus. This is the default, and is therefore not required
on the command line when specifying an address expression.

This lets you specify a combination of status and expression valuestahesis
specified in the state specification.

391

Chapter 11: Emulator/Analyzer Interface Commands

QUALIFIER

data

-EXPR--

long_aligned

not

or

range

status

<STATUS>

thru

Examples

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status value. See the EXPR syntax
diagram for details.

Causes a mask to be applied to the address to force it to a long word boundary

(least significant hex digit is 0, 4, 8, or C). This is necessary because the
emulation-bus analyzer may not otherwise see the address on the address bus due to
the way the processor fetches instructions.

This specifies that the analyzer will search for the logical "not" of a specified state
(this includes any address that is not in the specified state).

This option allows you to specify multiple states to be captured during a trace
measurement.

This indicates a range of addresses to be specified (--EXPR-- thru --EXPR--).

The value following this softkey is searched for on the lines that monitor emulation
processor signals other than the address and data lines.

This prompts you to enter a status value in the command line. Status values can be
entered from softkeys or typed into the keyboard. Numeric values may be entered
using symbols, operators, and parentheses to specify a status value. See the EXPR
syntax diagram.

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the
Emulation Analyzer" chapter for a list of the predefined values that can be assigned
as status state qualifiers.

This indicates that the following address expression is the upper address in a range.

trace only address mod_name:read_input <RETURN>

trace only address range mod_name:read_input thru
output <RETURN>

trace only address range mod_name:clear thru read_input
<RETURN>

392

Chapter 11: Emulator/Analyzer Interface Commands

QUALIFIER
trace before status write <RETURN>
trace about address 1000H status write <RETURN>
See Also Thetrace command.

393

Chapter 11: Emulator/Analyzer Interface Commands

reset
reset
This command suspends target system operation and reestablishes initial emulator
operating parameters, such as reloading control registers.
The reset signal is latched when the reset command is executed and released by
either therun or break command.

See Also Thebreak andrun commands.

394

Chapter 11: Emulator/Analyzer Interface Commands
run

~EXPR--

run

run <RETURN>

from —-EXPR--
. transfer_address '
untit —-EXPR--
FCODE

resef
This command causes the emulator to execute a program.

If the processor is in a reset staita) will cause the reset to be released.

If the from parameter and an address is specified, the processor will start running
your program at that address. Otherwise, the run will occur from the address
currently stored in the processor’s program counter.

A run from reset command will reset the processor and then allow it to run. Itis
equivalent to enteringr@setcommand followed by ain command.

If the emulator is configured to participate in the READY signal on the CMB, then
this emulator will release the READY signal so that it will go TRUE if all other

HP 64700 emulators participating on that signal are also ready. See the
cmb_executecommand description.

Qualifying a run command with amtil parameter causes a software breakpoint
be set before the program is run.

If you omit the address option (--EXPR--), the emulator begins program execu

at the current address specified by the emulation processor program counter. If an
absolute file containing a transfer address has just been loaded, execution starts at
that address.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

395

Chapter 11: Emulator/Analyzer Interface Commands

run

FCODE

from
reset

transfer_address

until

Examples

See Also

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This specifies the address from which program execution is to begin.
This option resets the processor prior to running from the reset vector address.

This represents the starting address of the program loaded into emulation or target
memory. The transfer address is defined in the linker map and is part of the symbol
database associated with the absolute file.

Causes a software breakpoint to be set at the specified address before the program
is run.

run <RETURN>
run from 810H <RETURN>
run from COLD_START <RETURN>

run from transfer_address until 910H <RETURN>

The stepcommand.

396

Chapter 11: Emulator/Analyzer Interface Commands

SEQUENCING
SEQUENCING
From froce
syntax diagram ~

\"(gccurs) =—{<1¢T\MES>

then

restari H QJALIFIER y—

Lets you specify complex branching activity that must be satisfied to trigger the
analyzer.

Sequencing provides you with parameters fotridaee command that let you
define branching conditions for the analyzer trigger.

You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to a
total of four sequence terms.

The analyzer default is no sequencing terms. If you select the sequencer using the
find_sequence parameter, you must specify at least one qualifying sequence term.

The parameters are as follows:

find_sequence Specifies that you want to use the analysis sequencer. You must enter at lea
qualifier.
QUALIFIER Specifies the address, data, status value or value range that will satisfy this

sequence term if looking for a sequence (find_sequence), or will restart at the
beginning of the sequence (restart). See the QUALIFIER syntax pages for further
information.

occurs Selects the number of times a particular qualifier must be found before the analyzer
proceeds to the next sequence term or the trigger term. This option is not available
when trace windowing is in use. SeeWBNDOW syntax pages.

397

Chapter 11: Emulator/Analyzer Interface Commands

SEQUENCING
<#TIMES>

then

restart

Examples

See Also

Prompts you for the number of times a qualifier must be found.

Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

Selects global restart. If the analyzer finds the restart qualifier while searching for a
sequence term, the sequencer is reset and searching begins for the first sequence
term.

trace find_sequence Caller_3 then Write_Num restart
anly."anly.c": line 57 trigger after Results+0c4h
<RETURN>

Thetrace command and the QUALIFIER and WINDOW syntax descriptions.

398

Chapter 11: Emulator/Analyzer Interface Commands
set

set

{ set - 7 J <RETURN>
: |
|

inverse_video on

off

b
\(tubs_ureH <TABS> ’j

\{number_of_source_lines <NUMSRC>}>

B
/—J

\—(width }—={ lobel) <WIDTH> I)

-
\b(mnemonic <WIDTH> I
symbols)= <wiDTH> }j/

-

*(source >—>| <WIDTH> I

Controls the display format for the data, memory, register, software breakpoint, and
trace displays. With theetcommand, you can adjust the display format results for

399

Chapter 11: Emulator/Analyzer Interface Commands

set

default

<ENV_VAR>

inverse video
off

on

langinfo

various measurements, making them easier to read and interpret. Formatting of
source lines, symbol display selection and width, and update after measurement can
be defined to your needs.

Thedisplay command uses ttsetcommand specifications to format measurement
results for the display window.

Another option to the set commar&ENY_VAR> = <VALUE>, allows you to set
and export system variables to the UNIX environment.

The default display format parameters are the same as those set by the commands:

set update
set source off symbols off

You can return the display format to this state by entering:

set default

The parameters are as follows:
This option restores all the set options to their default settings.
Specifies the name of a UNIX environment variable to be set.

The equals sign is used to equate the <ENV_VAR> parameter to a particular value
represented by <VALUE>.

This displays source lines in normal video.

This highlights the source lines on the screen (dark characters on light background)
to differentiate the source lines from other data on the screen.

In certain languages, you may have symbols with the same names but different
types. For example, in IEEE695, you may have a file named main.c and a
procedure named main. SRU would identify these as main(module) and
main(procedure). The commadigplay local_symbols_in mairnwould cause an

error message to appear (Ambiguous symbol: main(procedure, module)). Users of
C tend to think the procedure is important and users of ADA tend to think the
module is important. By entering "langinfo" and "C", SRU will interpret the above
command to benain(procedure). With langinfo ADA, SRU will interpret the

above command to lmeain(module).

400

ADA

C_IEEG95

Note

noupdate

number_of _
source_lines

<NUMSRC>

source

memory_only
trace_on

Chapter 11: Emulator/Analyzer Interface Commands
set

Identifies ANSI C as the language so SRU can use the C hierarchy to disambiguate
symbols.

Identifies ADA as the language so SRU can use the ADA hierarchy to
disambiguate symbols.

Identifies C_IEEE-695 as the language so SRU can use the C_IEEE-695 hierarchy
to disambiguate symbols.

An alternate method for making the langinfo specification is to use the environment
variable, HP64SYMORDER. By making the following entry in yquiofile, the
langinfo setting will always be C, for example.

$ HP64SYMORDER=C # | want to use the C disambiguating
hierarchy
$ export HP64SYMORDER # let children processes know
about it

When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will not update when a new measurement
completes. Displays showing memory contents are not updated when a command
executes that could have caused the values in memory to change (modify memory,
load, etc.).

This allows you to specify the number of source lines displayed for the actual
processor instructions to which they correlate. Only source lines up to the previous
actual source line will be displayed. Using this option, you can specify how many
comment lines are displayed preceding the actual source line. The default value is
5.

This prompts you for the number of source lines to be displayed. Values in th
range 1 through 50 may be entered.

This provides a way to default the memory and trace displays to a setting that HP
believes is the nicest possible formats for memory and trace displays. Parameters
such as "source on/only", number of source lines to show, display width, and
turning symbols on are all governed by this one selection. With this selection,
memory displays will show the maximum available source lines preceding each
block of code, and trace lists will show five source lines preceding trace data.

401

Chapter 11: Emulator/Analyzer Interface Commands

set

off

on

only

symbols
off

on

high

low

all

tabs_are

<TABS>

update

<VALUE>

width

This option prevents inclusion of source lines in the trace and memory mnemonic
display lists.

This option displays source program lines preceding actual processor instructions
with which they correlate. This enables you to correlate processor instructions with
your source program code. The option works for both the trace list and memory
mnemonic displays.

This option displays only source lines. Processor instructions are only displayed in
memory mnemonic if no source lines correspond to the instructions. Processor
instructions are never displayed in the trace list.

This prevents symbol display.

This displays symbols. This option works for the trace list, memory, software
breakpoints, and register step mnemonics.

Displays only high level symbols, such as those available from a compiler. See the
Symbolic Retrieval Utilities User's Guidler a detailed discussion of symbols.

Displays only low level symbols, such as those generated internally by a compiler,
or an assembly symbol.

Displays all symbols.

This option allows you to define the number of spaces inserted for tab characters in
the source listing.

Prompts you for the number of spaces to use in replacing the tab character. Values
in the range of 2 through 15 may be entered.

When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will be updated when a new measurement
completes. This is the default. Note that for displays that show memory contents,
the values will be updated when a command executes that changes memory
contents (such as modify memory, load, and so on).

Specifies the logical value to which a particular UNIX environment variable is to
be set.

402

Chapter 11: Emulator/Analyzer Interface Commands
set

source This allows you to specify the width (in columns) of the source lines in the memory
mnemonic display. To adjust the width of the source lines in the trace display,
increase the widths of the label and/or mnemonic fields.

label This lets you specify the address width (in columns) of the address field in the trace
list or label (symbols) field in any of the other displays.

mnemonic This lets you specify the width (in columns) of the mnemonic field in memory
mnemonics, trace list and register step mnemonics displays. It also changes the
width of the status field in the trace list.

symbols This lets you specify the maximum width of symbols in the mnemonic field of the
trace list, memory mnemonic, and register step mnemonic displays.

<WIDTH> This prompts you for the column width of the source, label, mnemonic, or symbols
field.

Note that <CTRL>f and <CTRL>g may be used to shift the display left or right to
display information which is off the screen.

Examples
set source on inverse_video on tabs_are 2 <RETURN>
set symbols on width label 30 mnemonic 20 <RETURN>
set PRINTER ="|p -s" <RETURN>
set HP64KSYMBPATH="filel:procl
file2:proc2:code_block 1" <RETURN>
See Also Thedisplay data, display memory, display software_breakpoints anddisplay

trace commands.

403

Chapter 11: Emulator/Analyzer Interface Commands
specify

specify

run <RETURN=>

—{ disable

——EXPR--

fransfer_address

= until --EXPR-- }-/

% TRACE

This command preparesn ortrace command for execution, and is used with
thecmb_executecommand.

When you precederan or trace command withspecify, the system does not
execute your command immediately. Instead, it waits until until an EXECUTE
signal is received from the Coordinated Measurement Bus or until you enter a
cmb_executecommand.

If the processor is reset and no address is specifiadb aexecutecommand will
run the processor from the "reset" condition.

Note that theun specification is active until you entgpecify run disable The
trace specification is active until you enter anottege command without the
specify prefix.

The emulator will run from the current program counter address if no address is
specified in the command.

404

disable
from

--EXPR--

FCODE

transfer_address

run

TRACE

until

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
specify

The parameters are as follows:

This option turns off the specify condition of thum process.

This is used with thepecify run from command. An expression is a combination
of numeric values, symbols, operators, and parentheses, specifying a memory
address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This is used with thepecify run from command, and represents the address from
which the program will begin running.

This option specifies that the emulator will run from either an expression or from
the transfer address when a CMB EXECUTE signal is received.

This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

Specifies an address where program execution is to stop. The emulator will set a
software breakpoint at this address and stop execution of your program when it
reaches this address and enter the monitor.

specify run from START <RETURN>

specify trace after address 1234H <RETURN>

Thecmb_executecommand.

405

Chapter 11: Emulator/Analyzer Interface Commands

step

step

step

\‘ <RETURN=>
silently

<NUMBER>

source

= FCODE ={ transfer_oddress

Thestepcommand allows sequential analysis of program instructions by causing
the emulation processor to execute a specified number of assembly instructions or
source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after eatbpcommand.

Source line stepping is implemented by single stepping assembly instructions until
the next PC is beyond the address range of the current source line. When
attempting source line stepping on assembly code (with no associated source line),
stepping will complete when a source line is found. Therefore, stepping only
assembly code may step forever. To abort stepping, press <CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside of the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than one
displaying memory mnemonic.

If no value is entered for <NUMBER> times, only atepinstruction is executed

each time you press <RETURN>. Multiple instructions can be executed by holding
down the <RETURN> key. Also, the default step is for assembly code lines, not
source code lines.

If the from address option (defined by --EXPR-- or transfer_address) is omitted,
stepping begins at the next program counter address.

406

--EXPR--

FCODE

from

<NUMBER>

silently

transfer_address

source

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
step

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

Use this option to specify the address from which program stepping begins.

This defines the number of instructions that will be executed bstépeommand.
The number of instructions to be executed can be entered in binary (B), octal (O or
Q), decimal (D), or hexadecimal (H) notation.

This option updates the register step mnemonic only after stepping is complete.
This will speed up stepping of many instructions. The default is to update the
register step mnemonic after each assembly instruction (or source line) executes (if
stepping is performed in the same window as the register display).

This represents the starting address of the program you loaded into emulation or
target memory. The transfer_address is defined in the linker map.

This option performs stepping on source lines.

step <RETURN>

step from 810H <RETURN>
step 20 from OAOH <RETURN>
step 5 source <RETURN>
step 20 silently <RETURN>

step 4 from main <RETURN>

Thedisplay registers display memory mnemonic andset symbolscommands.

407

Chapter 11: Emulator/Analyzer Interface Commands
stop_trace

stop_trace

Cstopitroce <RETURN>

This command terminates the current trace and stops execution of the current
measurement.

The analyzer stops searching for trigger and trace states. If trace memory is empty
(no states acquired), nothing will be displayed.

See Also Thetrace command.

408

Chapter 11: Emulator/Analyzer Interface Commands
store

~-EXPR--

FCODE

<FILE>

= frace_spec } <7ILE=> H<RETURN>

——EXPR--

——EXPR--

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file.

Thestore command creates a new file with the name you specify, if there is not
already an absolute file with the same name. If a file represented by <FILE>
already exists, you must decide whether to keep or delete the old file. If you
respond withyesto the prompt, the new file replaces the old one. If you respond
with no, thestore command is canceled and no data is stored.

The transfer address of the absolute file is set to zero.
The parameters are as follows:

This is a combination of numeric values, symbols, operators, and parentheses|
specifying a memory address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This represents a file name you specify for the absolute file identifier or trace file
where data is to be stored. If you want to name a file beginning with a number, you
must precede the file name with a backslash (\) so the system will recognize it as a
file name.

409

Chapter 11: Emulator/Analyzer Interface Commands

store

memory

thru

to

trace

trace_spec

Examples

See Also

This causes selected memory locations to be stored in the specified HP64000
format file with a. X extension.

This allows you to specify that ranges of memory be stored.

Use this in thestore memorycommand to separate memory locations from the file
identifier.

This option causes the current trace data to be stored in the specified fileWdth a
extension.

This option stores the current trace specification in the specified file viith a
extension.

A comma separates memory expressions in the command line.

store memory 800H thru 20FFH to TEMP2 <RETURN>
store memory EXEC thru DONE to \12.10 <RETURN>
store trace TRACE <RETURN>

Store trace_spec TRACE <RETURN>

Thedisplay memory, display trace, andload commands.

410

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

--SYMB--

-—5YMB--

<SYMB>
. (Coced e)
Jracedare

enfry_exit range

text_range

N \ _ gegmemH <SEG_NAME> }—/
- FLE K{ line H <LINE#> }7

FILE
}<HLENAME> }»@—»
.<FLENAM E> I'
- SCOPE ’
<SYMB>

"l SCOPE %*

. <FILFNAME> I'
SCOPE ‘

SCOPE

»{ <IDENTIFIER>

(O-{ < -0

411

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

This parameter is a symbolic reference to an address, address range, file, or other
value. Symbols may be:

» Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry and
exit points).

» Combinations of paths, filenames, and line numbers referencing a particular
source line.

» Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
These utilities build trees to identify uniqgue symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol request
will occur immediately. If you then change a module and reenter the emulation
environment without rebuilding the symbol database, the emulation software
rebuilds the changed portions of the database in increments as necessary.

Further information regarding the SRU and symbol handling is available in the
Symbolic Retrieval Utilities User's Guidélso refer to that manual for
information on th&dP64KSYMBPATH environment variable.

The last symbol specified indisplay local_symbols_in --SYMB-<command, or
with thecwscommand, is the default symbol scope. The default is "none" if no
current working symbol was set in the current emulation session.

You also can specify the current working symbol by typing the cws command on
the command line and following it with a symbol name. file command
displays the current working symbol on the status line.

Display memory mnemonic also can modify the current working symbol.

Note that if no default file was defined by executing the comrdiauday
local_symbols_in --SYMB-; or with thecwscommand, a source file name
(<FILE>) must be specified with each local symbol in a command line.

412

entry_exit_range

<FILENAME>

line

<LINE#>
<IDENTIFIER>
SCOPE

segment

<SEG_NAME>

text_range

(<TYPE>)

filename

fsegment

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The parameters are as follows:

The range of addresses beginning with the entry point and ending with the return
instruction. The entry point is the address used by other files when they call this
procedure.

This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was loaded,
then the default file is assumed (the last absolute file specified by a display
local_symbols_in command). A default file is only assumed when other parameters
(such adine) in the--SYMB-- specification expect a file.

This specifies that the following numeric value references a line number in the
specified source file.

Prompts you for the line number of the source file.
Identifier is the name of an identifier as declared in the source file.

Scope is the name of the portion of the program where the specified identifier is
defined or active (such as a procedure block).

This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.

Prompts you for entry of the segment name.

The range of addresses beginning with the lowest address occupied by any code in
the procedure and ending with the highest address occupied by any code in the
procedure. Normally, the text_range will be the same as the entry_exit_range;
some compilers may rearrange code so that the return instruction (for example) is
not at the highest address in the range occupied by code of the procedure.

When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type a
between the identifier name and the type specification. The type will be one of
following:

Specifies that the identifier is a source file.

This provides an alternate way to reference a file segment in a command (example:
myfile.c:PROG(fsegmen}). It is better to use the keywosdgment(example:

myfile.c: segment PROG. The "segment" keyword is preferred because it will do
scanning for PROG, Prog, prog, and other expressions of the program segment in

413

Chapter 11: Emulator/Analyzer Interface Commands

--SYMB--

module

procedure

prospecial

static

task

the example line. Thisegmentkeyword will only scan for the one expression
(PROG).

These refer to module symbols. For most C compilers, these names derive from the
source file name. For Ada, they are packages. Other language systems may allow
user-defined module names.

Any procedure or function symbol. For languages that allow a change of scope
without explicit naming, SRU assigns an identifier and tags it with type procedure.

Prospecial symbols are symbols that were created by the HP SRU (such as entry,
exit, and return). They are derived symbols, not intended for the product user.
Typical prospecial symbols would be entryl, entry2, and entry3 in a procedure that
has three possible entry points.

Static symbols, which includes global variables. The logical address of these
symbols will not change.

Task symbols, which are specifically defined by the processor and language system
in use.

A colon is used to specify the UNIX file path from the line, segment, or symbol
specifier. When following the file name with a line or segment selection, there
must be a space after the colon. For a symbol, there must not be a space after the
colon.

414

Examples

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The following short C code example should help illustrate how symbols are
maintained by SRU and referenced in your emulation commands.

File /users/dave/control.c:

int *port_one;
main ()

int port_value;

port_ptr = port_one;
port_value = 10;

process_port (port_ptr, port_value);
} /* end main */

File /system/projectl/porthand.c:
#include "utils.c"

void process_port (int *port_num, int port_data)

static int i;
static int i2;

for (i=0;i<=64; i++) {
i2=i*2;
*port_num = port_data + i2;
delay();
{

static int i;
i=3;

port_’data = port_data + i;
} /* end of process_port */

File /system/projectl/utils.c:
delay()

intij;
int waste_time;

for (i = 0; i <= 256000; i++)
for (j = 0; j <= 256000; j++)
waste_time = 0O;
} /* end delay */

415

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The symbol tree as built by SRU might appear as follows, depending on the object
module format and compiler used:

/users/dave/control.c
(filename)
port_one (static) main (procedure)

ENTRY TEXTRANGE
procspecial) (procspecial
/system/ project1/porthand.c
(filename)
EXIT
{procspecial

process_port /system/project1/ utils.c
(procedure) filename)

delay

ENTRY TEXTRANGE
procspecial) (procspecial
ENTRY BLOCK 1
procspecial) (procedure) -
{procspecial

{procspecial

EXIT
(procspecial

@ TEXTRANGE

Note that SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the delay () procedure.

416

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

SRU has no way of knowing where these variables will be at run time and therefore
cannot build a corresponding symbol tree entry with run time address.

Here are some examples of referencing different symbols in the above programs:

control.c:main
control.c:port_one
porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module format; the HP
object module format does not support referencing of include files that generate
program code.

porthand.c:process_port.i
porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching identifiers by
specifying the complete scope. You also can save typing by specifying a scope with
cws. For example, if you are making many measurements involving symbols in the
file porthand.c, you could specify:

cws porthand.c:process_port

Then:
i
BLOCK 1.i

are prefixed with porthand.c: process_port before the database lookup.

If a symbol search with the current working symbol prefix is unsuccessful, the last
scope on the current working symbol is stripped. The symbol you specified is then
retested with the modified current working symbol. Note that this does not change
the actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK 1

417

Chapter 11: Emulator/Analyzer Interface Commands

--SYMB--

See Also

and made a reference to symbol i2, the retrieval utilities attempt to find a symbol
called

porthand.c:process_port.BLOCK_1.i2
which would not be found. The symboal utilities would then strip BLOCK_1 from
the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although not shown in the
tree, assume that a procedure called port_one is also defined in control.c. This
would conflict with the identifier port_one which declares an integer pointer. SRU
can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

Thecopy local_symbols_iranddisplay local_symbols_incommands.

Also refer to theSymbolic Retrieval Utilities User’s Guider further information
on symbols.

418

Chapter 11: Emulator/Analyzer Interface Commands
sync_sim_registers

sync_sim_registers

L]

fromféSBAOjofcomﬂg) <RETURN>

Gync,swm,r@gwsfers

to_68340_from_config

difference

Thesync_sim_registercommand synchronizes the 68340’s system integration
module (SIM) registers to the emulator's CF_SIM registers.

The parameters are as follows:

from_68340_to_conf Copies the microprocessor’s SIM registers into the emulator's CF_SIM registers.
ig

to_68340_from_conf Copies the emulator’'s CF_SIM registers into the microprocessor’s SIM registers.
ig

difference Displays the differences between the microprocessor’s SIM registers and the
emulator’'s CF_SIM registers.

See Also Themodify register commands.

419

Chapter 11: Emulator/Analyzer Interface Commands

trace

trace

frace
: = WINDOW = SEQUENCING

—={ again / <RETURN>

={ repetitively

anything
break on_trigger
K repetitively ~

This command allows you to trace program execution using the emulation analyzer.

The options shown can be executed once for tach command. Refer to the
COUNT, QUALIFIER, SEQUENCING, TRIGGER, and WINDOW diagrams for
detalils on setting up a trace.

You can perform analysis tasks either by starting a program run and then specifying
the trace parameters, or by specifying the trace parameters first and then initiating
the program run. Onceti@ce begins, the analyzer monitors the system busses of
the emulation processor to detect the states specifiedtiadeecommand. The
analyzer will trace any state, counting time by default.

420

again

anything

arm_trig2

break on_trigger

COUNT

counting

modify _command

Chapter 11: Emulator/Analyzer Interface Commands
trace

When the trace specification is satisfied and trace memory is filled, a message will
appear on the status line indicating the trace is complete. You can then use display
trace to display the contents of the trace memory. If a previous trace list is on
screen, the current trace automatically updates the display. If the trace memory
contents exceed the page size of the display, the <NEXT>, <PREV>, <Up arrow>,
or <Down arrow> keys may be used to display all the trace memory contents. You
also can press <CTRL>f and <CTRL>g to move the display left and right.

You can set up trigger and storage qualifications usingpéefy tracecommand.
The analyzers will begin tracing wherrab_executecommand executes, which
causes an EXECUTE signal on the Coordinated Measurement Bus.

The analyzer will trace any state by default.
The parameters are as follows:

This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using without the
again parameter will start a trace with the default specification rather than the
loaded specification.)

This causes the analyzer to capture any type of information.

This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700s, or an HP 64700 and
another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation

configuration interactive measurement specification. When doing this, you must
specify that either BNC or CMBT drive trig2, and that the analyzer receive trig2.
See the chapter on "Making Coordinated Measurements" for more information.

This stops target system program execution when the trigger is found. The
emulator begins execution in the emulation monitor. When using this option, t
on_halt option cannot be included in the command.

This specifies whether time or state occurrences, or nothing, will be counted during
the trace. See the COUNT syntax diagram for details.

This option specifies whether the analyzer will count time or occurrences of states
during a trace, or whether the option is to be turned off.

This recalls the last trace command that was executed.

421

Chapter 11: Emulator/Analyzer Interface Commands

trace

on_halt

only

prestore

QUALIFIER

repetitively

SEQUENCING

TRIGGER

WINDOW

When using this option, the analyzer will continue to capture states until the
emulation processor halts or untétap_tracecommand is executed. When this
option is used, thiereak_on_trigger, repetitively, andTRIGGER options cannot
be included in the command.

This option allows you to qualify the states that are stored, as defined by
QUALIFIER .

This option instructs the analyzer to save specific states that occur prior to states
that are stored (as specified with the "only" option).

This determines which of the traced states will be stored or prestored in the trace
memory for display upon completion of the trace. Events can be selectively saved
by usingtrace only to enter the specific events to be saved. When this is used,
only the indicated states are stored in the trace memory. See the QUALIFIER
syntax.

This initiates a new trace after the results of the previous trace are displayed. The
trace will continue until atop_traceor a newtrace command is issued. When
using this option, you cannot use thre _halt option.

Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for the
trigger. You are limited to four sequence terms if windowing is enabled. See the
SEQUENCING syntax pages for more details.

This represents the event on the emulation bus to be used as the starting, ending, or
centering event for the trace. SeeTRGGER syntax diagram. When using this
option, you cannot include tloa_halt option.

Selectively enables and disables analyzer operation based upon independent enable
and disable terms. This can be used as a simple storage qualifier. Or, you may use
it to further qualify complex trigger specifications. SeeMiBlIDOW syntax

pages for details.

422

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
trace

trace after 1000H <RETURN>
trace only address range 1000H thru 1004H <RETURN>

trace after address 1000H occurs 2 only address range
1000H thru 1004H break on_trigger <RETURN>

Thecopy trace display trace, load trace, load trace_specspecify trace store
trace, andstore trace_specommands.

423

Chapter 11: Emulator/Analyzer Interface Commands

TRIGGER
TRIGGER
From
TRACE
diagram g after N 1
QUALIFIER
H
To output of
occurs H <#TIMES> }—f on diagram
This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.
A trigger is a QUALIFIER. When you include thecursoption, you can specify
the trigger to be a specific number of occurrences of a QUALIFIER (see the
QUALIFIER syntax diagram).
The default is to trace after any state occurs once.
The parameters are as follows:
about This option captures trace data leading to and following the trigger qualifier. The
trigger is centered in the trace listing.
after Trace data is acquired after the trigger qualifier is found.
before Trace data is acquired prior to the trigger qualifier.
occurs This specifies a number of qualifier occurrences of a range or state on which the
analyzer is to trigger.
QUALIFIER This determines which of the traced states will be stored in trace memory.
<#TIMES> This prompts you to enter a number of qualifier occurrences.

424

Chapter 11: Emulator/Analyzer Interface Commands

TRIGGER
Examples
trace after MAIN <RETURN>
trace after 1000H thendata 5 <RETURN>
Also see thérace command examples.
See Also Thetrace command.

Also, refer to the "Making Coordinated Measurements" chapter.

425

Chapter 11: Emulator/Analyzer Interface Commands

wait

wait

» <RETURN>

<TIME> #Csecomds\j@ fmeesurementicomp\et@—/

measurement complete @ =~ <TIME>

This command allows you to present delays to the system.

Thewait command can be an enhancement to a command file, or to normal
operation at the main emulation level. Delays allow the emulation system and
target processor time to reach a certain condition or state before executing the next
emulation command.

Thewait command does not appear on the softkey labels. You must typaithe
command into the keyboard. After you typait, the command parameters will be
accessible through the softkeys.

If you issue avait command without any other options, the system will pause until
it receives a <CTRL>c signal.

Note that ifset intr <CTRL>c was not executed on your system, <CTRL>c
normally defaults to the backspace key. See your UNIX system administrator for
more details regarding keyboard definitions.

Note that avait command in a command file will cause execution of the command
file to pause until a <CTRL>c signal is received, if <CTRL>c is defined as the
interrupt signal. Subsequent commands in the command file will not execute while
the command file is paused. You can verify whether the interrupt signal is defined
as <CTRL>c by typingetat the system prompt.

426

Chapter 11: Emulator/Analyzer Interface Commands

wait
The parameters are as follows:
measurement This causes the system to pause until a pending measurement completes (a trace
_complete data upload process completes), or until a <CTRL>c signal is received. If a
measurement is not in progress,wet command will complete immediately.
or This causes the system to wait for a <CTRL>c signal or for a pending measurement
to complete. Whichever occurs first will satisfy the condition.
seconds This causes the system to pause for a specific number of seconds.
<TIME> This prompts you for the number of seconds to insert for the delay.
Examples

wait <RETURN>

wait 5; wait measurement_complete <RETURN>

427

Chapter 11: Emulator/Analyzer Interface Commands

WINDOW

disable

enable

QUALIFIER

Examples

WINDOW

From trace
syntax diagram

{ enable H QUALIFIER }
disable H QUALIFIER M

Lets you select which states are stored by the analyzer.

WINDOW allows you to selectively toggle analyzer operation. When enabled, the
analyzer will recognize sequence terms, trigger terms, and will store states. When
disabled, the analyzer is effectively off, and only looks for a particular enable term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term occurs after
the analyzer is enabled, the analyzer will then stop storing states, and will not
recognize trigger or sequence terms. You may specify only one enable term and
one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you must
supply a qualifier term. If you then specify disable, you must specify a qualifier
term.

The parameters are as follows:

Allows you to specify the term which will stop the analyzer from recognizing states
once the enable term has been found.

Allows you to specify the term which will enable the analyzer to begin monitoring
states.

Specifies the actual address, data, status value or range of values that cause the
analyzer to enable or disable recognition of states. Note that the enable qualifier
can be different from the disable qualifier. Refer to the QUALIFIER syntax pages
for further details on analyzer qualifier specification.

trace enable _rand disable 0Oecch <RETURN>

428

Chapter 11: Emulator/Analyzer Interface Commands
WINDOW

See Also Thetrace command and the SEQUENCING and QUALIFIER syntax descriptions.

429

430

12

Error Messages

431

Error Messages

This chapter contains a list of error messages that may occur while operating the
emulator and analyzer.

Theerror log records error messages received during the emulation session. You
may want to display the error log to view the error messages. Sometimes several
messages will be displayed for a single error to help you locate a problem quickly.
To prevent overrun, the error log purges the oldest messages to make room for the
new ones.

To display the error log:
display error_log <RETURN>

Error messages are grouped into the following categories:
» Graphical/Softkey Interface Messages - Unnumbered
» Graphical/Softkey Interface Messages - Numbered

* Terminal Interface Messages

Note that Terminal Interface messages are passed along to the Graphical User
Interface (or Softkey Interface) and appear, with numbers, in the error log display.

432

Graphical/Softkey Interface Messages -
Unnumbered

Address range too small for request - request truncated
Cause: Too small of an address range is specified in a modify memory command.

Action: Specify a larger memory range.

Cannot create module file:
Cause: Insulfficient disk space for the module file.

Action: Check disk space under /usr/hp64000.

Cannot start. Ending previous session, try again

Cause: The host system could not start a new emulation session, and is ending the
previous session.

Action: After the previous session has ended, try starting a new emulation session.
If that fails, try "emul700 -u <logical name>" to unlock the emulator and cycle
power, if needed.

Cannot start. Pod initialization failed

Cause: The host system could not start a new emulation session because it could
not initialize the emulator.

Action: Cycle power on the emulator; verify that there are no red lights on the front
of the emulator. You may need to run the Terminal Interface "pv" command to
verify that the emulator is functioning properly before starting a new session.

Configuration not valid, restoring previous configuration
Configuration not valid, restoring default configuration

Cause: The modifications you tried to make to the emulator configuration are not
valid, so the host system restored the previous configuration.

Action: See the "Configuring the Emulator" chapter for more information about the
emulator configuration items and their settings.

433

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Configuration process QUIT

Cause: The configuration process ended because <CTRL>"\" (SIGQUIT signal)
was encountered. This is an easy way to exit configuration without saving any
changes.

Action: Try starting the emulation session again. If the problem persists, you may
need to cycle power on the emulator.

Connecting to <LOGICAL NAME>

Cause: This is a status message. The host system is making a communication
connection to the emulator whose logical name is defined in
/usr/hp64000/etc/64700tab.net or /usr/hp64000/etc/64700tab.

Continue load failed

Cause: The host system could not continue the previous emulation session because
it could not load the continue file.

Action: Try again. If the failure continues, call your HP Service Representative.

Continuing previous session, continue file loaded

Cause: This is a status message. An emulation session which was ended earlier
with theend command has been restarted. The host system reported that the session
was continued (using settings from the previous session) and that the continue file
loaded properly.

Continuing previous session, user interface defaulted

Cause: The previous emulation session was continued and the Softkey Interface
was set to the default state.

Could not create default configuration

Cause: The host system could not create a default configuration for the emulation
session.

Action: Check disk space under /usr/hp64000 and verify proper software
installation.

434

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Could not create <CONFIGURATION BINARY FILENAME>
Cause: The system could not create a binary emulation configuration file (file.EB).

Action: Check the file.EB write permission and verify that the specified directory
exists and is writeable.

Could not exec configuration process

Cause: The host system could not fork the configuration process or could not
execute the configuration process.

Action: Make sure that the host system is operating properly, and that all Softkey
Interface files were loaded properly during the installation process. Try starting the
emulation session again.

Could not load default configuration
Cause: The host system could not load the default configuration into the emulator.

Action: Cycle power on the emulator and run the Terminal Interface "pv"
(performance verification) command on the emulator to verify that it is functioning
properly. Also, verify proper software installation. If loading default configuration
still fails, then call your HP 64000 representative.

<CONFIGURATION FILENAME> does not exist

Cause: The configuration file you are trying to load does not exist.

Action: Try theload configuration command again using a valid configuration file
name.

Don'’t care number unexpected

Cause: While defining an expression in your command, you included a don't care
number (a binary, octal, decimal, or hexadecimal number containing "x"), whic
was not expected. Don’t care numbers are not valid for all commands. See th
EXPR command syntax for more information about expressions.

Emulation analyzer defaulted to delete label

Cause: Analyzer trace labels were changed or modified while labels were in use in
the trace specification.

435

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Enter the previous trace specification and try again.

Emul700dmn continuation failed

Cause: Communication between the emulator and the host system to continue the
emulation session failed.

Action: Check the data communication switch settings on the rear panel of the HP
64700 series emulator. If necessary, refer té1B&4700 Installation/Service
Guide

Emul700dmn executable not found

Cause: The emulation session could not begin because the host system could not
locate the HP 64700 emulator daemon process executable.

Action: Make sure that software installation is correct. Then try starting the
emulator again.

Emul700dmn failed to start

Cause: The emulation session could not begin because the host system could not
start the HP 64700 emulator daemon process.

Action: Make sure there is sufficient disk space under /usr/hp64000. Make sure the
host system is operating properly, that all Softkey Interface software has been
loaded correctly, and the data communication switch settings on the emulator rear
panel match the settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn queue and/or semaphores missing
Emul700dmn queue failure

Emul700dmn error in file operation

Emul700dmn queue full

Cause: The HP 64700 emulator daemon process command was too large for the
host system to process.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the

436

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

/usr/hp64000/etc/64700tab.net (or 64700tab) file. You may have to cycle power
and usemul700 -u ,logical nameo unlock the system.

Emul700dmn sem op failed, perhaps kernel limits too low

Cause: The host system could not start the emulation session; there may be too
many processes running on the host system.

Action: Make sure the host system is operating properly, and is not overloaded with
currently executing processes. Stop or remove some processes on the system. Also,
verify that the semaphore capabilities have been installed in the UNIX kernel. Then
try starting the emulation session again.

Emul700dmn version incompatible with this product

Cause: The emulation session could not begin because the version of the HP 64700
emulator daemon executable on host system is not compatible with the version of
the Softkey Interface you are using.

Action: Make sure the software has been properly installed. Then try starting the
emulator again.

<LOGICAL NAME>: End, continuing

Cause: This is a status message. The emulation session is being exitedemith the
command. When you restart the emulation session later, it will continue using the
same settings as in the session you just ended. The emulator logical name is located
in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

<LOGICAL NAME>: End, released

Cause: This is a status message. The emulation session is being exitedemith the
release_systencommand. When the session has ended, the emulator is released,
meaning that others can access and use it. When you restart the emulation session
later, the new session will use all default settings. The emulator logical name i
located in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Ending released

Cause: This is a status message. The emulation session is being exitedemith the
release_systemThe emulator will be released for others to access and use it.

437

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Error: display size is <LINES> lines by <COLUMNS> columns. It must be at
least 24 by 80.

Cause: You tried to specify an incorrect window size.

Action: Set the window size accordingly, then start the emulation session. The size
of the window must be a minimum of 24 lines (rows) by 80 columns to operate an
emulation session.

Error in configuration process
Error starting configuration process
Cause: Unexpected configuration error.

Action: Verify proper software installation and call your HP 64000 representative.

Fatal error from function <ADDRESS OF FUNCTION>

Cause: This is an unexpected fatal system error.

Action: Cycle power on the emulator and start again. If this is a persistent problem,
call your HP 64000 representative.

File could not be opened

Cause: You tried to store or load trace data to a file with incorrect permission. Or
the analyzer could not find the file you specified, or else there were already too
many files open when you entered your command.

Action: Check the directory and file for correct read and write permission. Specify
a file that is accessible to the analyzer. Close the other files that are presently open.
File perf.out does not exist

Cause: You tried to execute the "restore" command to continue a previous software
performance measurement, and the SPMT software found that no
"performance_measurement_end" command was previously executed to create a
file from which "restore" could be performed.

Action: Execute a new SPMT measurement.

438

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

File perf.out not generated by measurement software

Cause: The file named perf.out exists in the current directory, but it was not created
by the "performance_measurement_end" command.

Action: Rename the old "perf.out" file, or move it to another directory.

HP64700 1/0 channel semaphore failure: <string>
Cause: Semaphore (ipc) facility not installed.

Action: Reconfigure the kernel to add ipc facility.

HP 64700 1/O error; communications timeout
Cause: This is a communication failure.

Action: Check power to the emulator and check that all cables are connected
properly. If you are using LAN and heavy LAN traffic is present, try setting the
environment variable to HP64700TIMEOUT="30" (or larger if needed). The value
is the number of seconds before timeout occurs. Then try running again.

HP64700 1/O error; connection timed out
Cause: A user abort occurred while attempting to connect via LAN.

Action: Possibly connecting to an emulator many miles away, be patient.

HP 64700 /O error; power down detected
Cause: The emulator power was cycled.

Action: Do not do this during a user interface session; this may force the user
interface to end immediately.

HP64700 1/0O channel busy; communications timed out

Cause: The communications channel is in use for an unusually long period of
by another command.

Action: try again later.

439

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

lllegal status combination

Cause: You tried to specify combinations of status qualifiers in expressions
incorrectly when entering commands.

Action: Refer to the "Emulator/Analyzer Interface Commands" chapter for
information about syntax of commands.

lllegal symbol name

Cause: You tried to specify incorrect symbol names when entering commands.

Action: Specify correct symbol names. To see global symbol names, use the
display global_symbolscommand. To see local symbol names, use the
display local_symbols_in <SYMB>command.

Initialization failed
Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initialization load failed

Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initializing emulator with default configuration

Cause: This is a status message. The host system started the emulation session and
initialized the emulator using the default configuration. The emulator is probably
operating correctly.

Initializing user interface with default config file

Cause: This is a status message. The host system started the emulation session and
Softkey Interface using the default configuration file. The emulator is probably
operating correctly.

440

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Insufficient emulation memory, memory map may be incomplete

Cause: You can map only the amount of emulation memory available in your
emulator. Trying to map additional unavailable memory may cause information to
be missing from your memory map.

Action: Modify your configuration and update the memory map to correctly reflect
the amount of emulation memory available.

Invalid answer in <CONFIGURATION FILENAME> ignored

Cause: You must provide acceptable responses to questions in the configuration file
(file.EA). The emulator ignored the incorrect response. Incorrect responses may
appear in configuration files when you have saved the configuration to a file, edited
it later, and tried reloading it into the emulator. This may also occur if you have
loaded a configuration file that you created while using another emulator, and the
response differs from the response required for this emulator.

Action: Examine your configuration file to check for inappropriate responses to
configuration file questions.

Inverse assembly file <INVERSE ASSEMBLER FILENAME> could not be
loaded

Inverse assembly file <INVERSE ASSEMBLER FILENAME> not found,
<filename>

Inverse assembly not available

Cause: The file does not exist.

Action: Reload your interface and/or real-time operating system software.

Inverse assembly not available
Cause: The inverse assembler for your emulator is missing.

Action: Verify proper software installation.

Joining session already in progress, continue file loaded

Cause: This is a status message. When operating the emulator in multiple
windows, a new emulation session is "joined" to a current session. In this case, the
new session was able to continue because the continue file loaded properly.

441

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Joining session already in progress, user interface defaulted

Cause: When operating the emulator in multiple windows, a new emulation session
is "joined" to a current session. In this case, the new session used the user interface
default selections.

Load aborted

Cause: While loading a file into the emulator, an event occurred that caused the
host system to stop the load process.

Action: Use thalisplay error_log command to view any errors. If the problem
persists, make sure the host system and emulator are operating properly, and that
you are trying to load an acceptable file. See the "Emulator/Analyzer Interface
Commands" chapter for information about lieed command.

Load completed with errors

Cause: While loading a file into the emulator, one or more events occurred that
caused errors during the load process.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before you load the file again. If the
problem persists, make sure the host system and emulator are operating properly,
and that you are trying to load an acceptable file.

Measurement system not found

Cause: You tried to end the current emulation session and select another
measurement system module which could not be located by the host system.

Action: Either try theend select measurement_systecommand again or end and
release the emulation session.

Memory allocation failed, ending released

Cause: This is a fatal system error because the emulation session was unable to
allocate memory.

Action: You may need to reconfigure your UNIX kernel to increase the per process
maximum memory limit and available swap space. Reboot your UNIX system and
try starting a new session again.

442

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Memory block list unreadable

Memory range overflow
Cause: A modify memory command is attempted that would cross physical 0.

Action: Limit the modify memory command to not overflow physical O or break
the command into two separate modify commands.

No address label defined

Cause: The address trace label was somehow removed in the terminal interface
using thetlb command.

Action: End session and start again.

No more processes may be attached to this session

Cause: You can operate an emulator in four windows. Each time you start the
emulator in another window, a new process is attached to the current session.

Action: Do not try to use more than four windows. Once you have started the
emulator in four windows, you have reached the maximum number of processes
allowed for that emulator.

Not an absolute file
No absolute file: <file>
No absolute file, No database: <file>

Cause: You tried to load a file into the emulator that is not an executable or
absolute file, so the host system stopped the load process.

Action: Try your command again, and make sure you specify a valid absolute file
name to be loaded.

No symbols loaded
Cause: You tried to step through lines in the source file before symbols are lo

Action: Load symbols and try again, or use step with the "source" option (i.e. step
assembly language program).

443

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

No valid trace data
Cause: You tried to store trace data before a trace was completed.

Action: Wait until valid trace data is available before attempting to store a trace.

Not a valid trace file - load aborted
Cause: You tried to load a file.TR that was not created by the emulation session.

Action: Only load trace data files that were created by the emulator.

Not compatible trace file - load aborted
Cause: You tried to load a file.TR that was created by another type of emulator.

Action: Only load trace data files that were created by the same type of emulator.

Number of lines not in range: 1 <= valid lines <= 50
Cause: You tried to enter a number of lines that was outside the range from 1 to 50.

Action: Try entering the command again using a valid number of lines.

Number of spaces not in range: 2 <= valid spaces <= 15
Cause: You tried to enter a number of spaces outside the range from 2 to 15.

Action: Try entering the command again using a valid number of spaces.

opcode extends beyond specified address range
Cause: Memory disassembly is attempted on an address range that is too small.

Action: Display memory mnemonic using a large address range, or no address
range at all.

Perfinit - Absolute file (database) must be loaded line <LINE NUMBER>

Cause: No symbolic data base has been opened (or exists) for the target file when
you executed the "performance_measurement initialize" command.

Action: Make sure a data base has been loaded for the target file.

444

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Perfinit - error in input file line <LINE NUMBER> invalid symbol

You included a "label" file name with your "performance_measurement_initialize"
command, and that file contains an invalid symbol.

Action: Edit the file and correct the invalid symbol.

Perfinit - error in input file line <NUMBER>

Cause: You included an input file name with your
"performance_measurement_initialize" command, and that file contains a syntax
error.

Action: Edit the file and correct the syntax error.
Perfinit <—-EXPR— ERROR> line <LINE NUMBER>

Perfinit - File could not be opened

Cause: You specified a file as an option to "performance_measurement_initialize",
and the file you specified could not be found or opened by SPMT software.

Action: Make sure you entered the correct file name.

Perfinit - No events in file

Cause: You specified a file along with your "performance_measurement'initialize"
command that contained no events. Any measurement displayed from this file will
have NULL results.

Action: Either edit the file to add events, or use the default setup to start a new
measurement.

perf.out file could not be opened - created

Cause: The performance analyzer failed to open or create a file named "perf.o
response to your "performance_measurement_end" command.

Action: Free up some file space or correct the write permissions in your curren
working directory.

445

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Performance tool must be initialized

Cause: You tried to make a performance measurement when the Software
Performance Measurement Tool (SPMT) was not initialized.

Action: The Software Performance Measurement Tool (SPMT) must be initialized
before making performance measurements on your software. Use the
performance_measurement_initializecommand to initialize the SPMT.

Performance tool not initialized

Cause: The Software Performance Measurement Tool (SPMT) has not been
initialized.

Action: To make accurate activity or duration measurements on current data, use
the performance_measurement_initializecommand to initialize the SPMT before
running a performance measurement.

Question file missing or invalid
Cause: Some of the Softkey User Interface files are missing or are corrupted.

Action: Reinstall the host software and try starting the emulation session again.

Range crosses segment boundary

Cause: On a segment offset processor, an address range is specified that would
cross different segments.

Action: Break the memory command into multiple commands so that the address
ranges start and end in the same segment.
Read memory failed at <PHYSICAL ADDRESS> - store aborted

Cause: While storing memory from the emulator to a file, a read memory error
occurred.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before storing the file again.

Session aborted

Cause: This will only happen when running multiple emulation windows and a
fatal system error occurs.

446

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Find the window that caused the error and see the error message that it
displayed. All the additional windows will simply state "session aborted". Cycle
power on the emulator and enéenul700 -u <logical name=o make sure the
emulator is unlocked.

Session cannot be continued, ending released

Cause: The emulation session is ending automatically because it could not be
continued from the previous session. When the session has ended the emulator will
be released, meaning that others can access and use it.

Action: When you restart the emulation session later, the new session will use all
default settings.

Slave clock requires at least one edge

Cause: The analyzer has an invalid clock specification.

Action: Modify your configuration and try your command again.

Starting address greater than ending address
Cause: You specified a starting address that is greater than the ending address.

Action: Specify a starting address that is less than or equal to the ending address.

Starting new session, continue file loaded

Cause: This is a status message. The emulator was started using a new emulation
session, and the continue file loaded properly.

Starting new session, user interface defaulted

Cause: The emulator was started using a new emulation session, and the user
interface was set to default selections.

Action: Call your HP Service Representative.

Status unknown, run "emul700 -| <LOGICAL NAME>"
Cause: The host system cannot determine the status of the emulator.

Action: To verify communication between the emulator and the host system, and
display the emulator status, enter ¢éneul700 -I <logical name>ommand. The

447

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

emulator logical name is located in the /usr/hp64000/etc/64700tab.net (or
64700tab) file.

Stepping aborted; number steps completed: <STEPS TAKEN>

Cause: Stepping aborted because <CTRL>c or software breakpoint was hit,
guarded memory was accessed, or some other kind of error occurred.

Action: See the error log display for any abnormal errors. Correct those errors and
then step again.

Stepping complete

Cause: Stepping was completed successfully.

Step count must be 1 through 999
Cause: You tried to use a step count greater than 999.

Action: Use a step count less than 1000.

Symbols not accessible, symbol database not loaded

Cause: You specified a trace list with values expressed using symbols defined in
the source code modules, such as source on, and the database file has not been
loaded into emulation. Example: display trace symbols on.

Timeout in emul700dmn communication

Cause: The host system could not start the emulation session because the HP 64700
emulator process ran out of time before the emulator could start.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Trace file not found
Cause: You tried to load trace data file that does not exist.

Action: Find the correct name and path of the trace data file and try again.

448

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Unexpected message from emul700dmn

Cause: The host system could not start the emulation session because of an
unexpected message from the HP 64700 emulator process command.

Action: You must pressnd_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Unknown expression type

Cause: While entering your command, you included an unknown expression type.
Action: See the EXPR command syntax for more information about expressions.
Then try entering your command again with a known expression type.

Unload trace data failed

Cause: An unexpected error occurred while waiting for a trace to be completed.

Action: End and release the session, and then try again.

Wait time failure, could not determine system time
Cause: The system call failed.

Action: Verify that 'date’ executes correctly from the UNIX prompt.

Warning: at least one integer truncated to 32 bits
Warning: at least one integer truncated to 16 bits
Warning: at least one integer truncated to 8 bits

Cause: The number entered was too large for the currently specified display or
access size.

Action: Try entering the command again using the correct size of number.

Width not in range: 1 <= valid width <= 80
Cause: You tried to specify the width of the field outside the range from 1 to 80.

Action: Try entering the command again using a valid number for the width.

449

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Numbered

Graphical/Softkey Interface Messages - Numbered

These numbered messages can occur because of various problems with the
emulator/analyzer.

10315 Logical emulator name unknown; not found in 64700tab file

Cause: This message may occur while trying to start up the emulator. It indicates
that the emulator name specified could not be found in the 64700tab.net or
/etc/hosts files.

Action: Specify the name in one of these files.

10326 Emulator locked by another user

Cause: This message occurs when you try to start an emulation interface, but your
attempt failed because the emulator is being used by someone else.

Action: The current user must release the emulator.

10327 Cannot lock emulator; failure in obtaining the accessid
Cannot lock emulator; failure in <ERRNO MSG>

10328 Cannot unlock emulator; emulator not locked
Cause: You have issued a command to unlock an emulator that is not locked.

Action: The emulator is available now. You can start the interface.

10328 Cannot unlock emulator; lock file missing
10328 Cannot unlock emulator; semaphore missing

Cause: Lock semaphore missing.

Action: Verify existence and permissions of /usr/hp64000 directory. Cycle
emulator power and usenul700 -u <logical name>

10328 Cannot unlock emulator; emulator in use by user: <USER NAME>
Cause: The emulator is already in use by the named user.

Action: Current user must release the emulator.

450

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Numbered

10329 Emulator locked by user: <USER NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10330 Emulator locked by another user interface

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10331 HP64700 1/O channel in use by emulator: <LOGICAL NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10332 Cannot default emulator; already in use

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10350 Cannot interpret emulator output

Cause: There may be characters dropped in the information returned from the
emulator.

Action: Ignore this message unless it becomes frequent. If it becomes frequent, you
may have a fatal error; call your HP 64700 representative.

10351 Exceeded maximum 64700 command line length
Cause: Your command is longer than 240 characters.

Action: Shorten the command.

10352 Incompatible with 64700 firmware version

Cause: The installed interface firmware combination is incorrect or incompatible.

451

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Numbered

10360

10371

Action: Upgrade the interface software of product firmware.

Analyzer limitation; all range resources in use
Analyzer limitation; all pattern resources in use
Analyzer limitation; all expression resources in use

Cause: Your trace specification would use more than the maximum number of
resources available to the analyzer.

Action: Simplify the trace specification.

64700 command aborted

Cause: User abort occurred due to emulator being monopolized by another
command.

Action Don’t issue an abort.

452

Chapter 12: Error Messages
Terminal Interface Messages

20

21

40

Terminal Interface Messages

This section contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order, and each
description includes the cause of the error and the action you should take to remedy
the situation.

The emulator can return messages to the display only when it is prompted to do so.
Situations may occur where an error is generated as the result of some command,
but the error message is not displayed until the next command (or a carriage return)
is entered.

A maximum number of 8 error messages can be displayed at one time. If more
than 8 errors are generated, only the last 8 are displayed.

Emulator Messages

Attempt to change foreground monitor map term

Cause: When configuring the emulator to use a foreground monitor, a memory
range is automatically mapped for the monitor’'s use. You attempted to alter that
term when mapping memory.

Action: Try using another memory range for the new map term. If you need to
have the range used by the foreground monitor, then switch to a background
monitor, delete the old foreground monitor map term, and add the new term. Now
you can return to using a foreground monitor; remember you will need to reload the
monitor code.

Insufficient emulation memory
Cause: You have attempted to map more emulation memory than is available.

Action: Reduce the amount of emulation memory that you are trying to map.

Restricted to real time runs

Cause: While the emulator is restricted to real-time execution, you have attempted
to use a command that requires a temporary break in execution to the monitor. The
emulator does not permit the command and issues this error message.

453

Chapter 12: Error Messages
Terminal Interface Messages

Action: You must break the emulator’s execution into the monitor before you can
enter the command.

61 Emulator is in the reset state

Cause: You have entered a command that requires the emulator to be running in
the monitor (for example, displaying registers).

Action: Enter thddreak command to cause the emulator to run in the monitor, and
enter the command that caused the error again.

80 Stack pointer is odd

Cause: You have attempted to modify the stack pointer to an odd value for a
processor that expects the stack to be aligned on a word boundary (such as the
68340).

Action: Modify the stack pointer to an even value.

81 Stack is in guarded memory

Cause: Your stack pointer pointed to a location in memory mapped as guarded;
you then attempted to run or step the emulation processor. The emulator was
unable to access the stack to complete the transition from the monitor to the user
program or vice versa.

Action: Either remap memory so the stack pointer points to a location in RAM, or
change the stack pointer value (either with your program or by configuring the
emulator’s stack pointer value on reset) to point to a location in RAM.

82 Stack is in target ROM

Cause: Your stack pointer pointed to a location in memory mapped as target ROM;
you then attempted to run or step the emulation processor. The emulator was
unable to access the stack to complete the transition from the monitor to the user
program or vice versa.

Action: Either remap memory so the stack pointer points to a location in RAM, or
change the stack pointer value (either with your program or by configuring the
emulator’s stack pointer value on reset) to point to a location in RAM.

454

Chapter 12: Error Messages
Terminal Interface Messages

83 Stack is in emulation ROM

Cause: Your stack pointer pointed to a location in memory mapped as emulation
ROM; you then attempted to run or step the emulation processor. The emulator

was unable to access the stack to complete the transition from the monitor to the
user program or vice versa.

Action: Either remap memory so the stack pointer points to a location in RAM, or
change the stack pointer value (either with your program or by configuring the
emulator’s stack pointer value on reset) to point to a location in RAM.

84 Program counter is odd

Cause: You attempted to modify the program counter to an odd value using the
modify registerscommand on a processor which expects even alignment of
opcodes.

Action: Modify the program counter only to even numbered values.

102 Monitor failure; no clock input

Cause: The monitor is unable to run because no emulation processor clock is
available.

Action: If running out of circuit, select the internal clock during configuration; if
running in-circuit, select the external clock during configuration and make sure a
clock meeting the microprocessor’s specifications is input to the clock pin of the
target system probe.

103 Monitor failure; no processor cycles

Cause: The monitor is unable to run since the processor is not running. The
monitor is unable to determine the cause of the failure.

Action: If running in-circuit, troubleshoot the target system. If running out of
circuit, reinitialize the emulator and try the procedure again.

104 Monitor failure; bus grant

Cause: The monitor is unable to run. The emulation processor is not running
because it has granted the bus to another device.

Action: Wait until the processor has regained bus control, then retry the operation.

455

Chapter 12: Error Messages
Terminal Interface Messages

105

106

107

141

142

Monitor failure; halted

Cause: The monitor is unable to run because the processor is halted (due to an
external halt line or a halt instruction).

Action: Release the external halt and retry the operation. If the processor halted
due to a halt instruction, try tlesetcommand, then retry the operation.

Monitor failure; wait state

Cause: The monitor is unable to run because the processor is in a continuous wait
state.

Action: A continuous wait state may indicate target system problems.
Troubleshoot the wait line. If you were running out of circuit, try initializing the
emulator, then retry the procedure.

Monitor failure; bus error

Cause: The monitor is unable to run because the processor has encountered a bus
fault (such as the 68340 /BERR line).

Action: Release the /BERR line and determine why it was activated.

68340 Emulator Messages

The following error messages are unique to the 68340 emulator.

Dual ported memory limited to 4K bytes

Cause: You attempted to map an address range larger than 4 Kbytes to dual-port
emulation memory. Only 4 Kbytes of dual-port emulation memory is available.

Action: Split the address range into one 4 Kbyte range that will be mapped to
dual-port emulation memory and another range that will be mapped to single-port
emulation memory.

Dual ported memory already in use

Cause: You attempted to map a second address range to dual-port emulation
memory. Only one address range can be mapped to dual-port emulation memory.

Action: If both ranges can fit into one 4 Kbyte range, delete the term currently
mapped to dual-port emulation memory, and map the larger range. If both ranges

456

143

144

145

146

Chapter 12: Error Messages
Terminal Interface Messages

cannot fit into one 4 Kbyte range, you must map one of the ranges to single-port
emulation memory.
Dual ported memory in use by foreground monitor

Cause: You attempted to map an address range to the 4 Kbyte block of dual-port
emulation memory when it has already been allocated to the foreground monitor.

Action: When using a foreground monitor, only single-port emulation memory is
available when mapping memory.

Dual ported memory not mapped to <abs_file_address_range> for
downloaded monitor

Continuing with default foreground monitor

Cause: You attempted to load a custom foreground monitor absolute file whose
address range does not agree with the range defined in response to the "Monitor
address?" configuration question. The second message tells you the default
foreground monitor, resident in the emulator firmware, continues to be used.

Action: Either assemble and link your foreground monitor at the address specified
during configuration or change the answer to the "Monitor address?" configuration
guestion so that it agrees with the monitor program absolute file.

Downloaded monitor spans multiple 4K byte block boundaries

Cause: You attempted to load a custom foreground monitor absolute file that does
not fit into one 4 Kbyte address range.

Action: Edit your foreground monitor program source file so that it fits into one
4 Kbyte address range.

Monitor must be mapped on a 4K byte boundary

Cause: You attempted to define a foreground monitor base address that is n
4 Kbyte boundary.

Action: Specify the monitor program base address that is on a 4 Kbyte boundary
(in other words, ending in 000H).

457

Chapter 12: Error Messages
Terminal Interface Messages

147

148

149

150

¢s0 can be used on one term only

Cause: You attempted to map a second address range for global chip select
operation. Only one address range can be mapped for this purpose.

Action: You must remove the current mapper term that is assignesOaribute
before you can map a different range for global chip select operation.

Bus activity required to access dual ported memory

Cause: In order for the system controller to be able to access dual-port emulation
memory, the 68340 emulation processor’s /AS signal must not remain active for
too long a time (more than 100 microseconds, approximately). Typically, this
situation occurs when the 68340 emulation processor attempts to access memory
that is not present.

Action: Investigate the cause of the /AS signal being active too long.
Register mbar valid bit not set

Register c¢f_mbar valid bit not set

Cause: The contents of the MBAR or CF_MBAR register must be valid (that is, bit
0 of the register must be set to 1) before you can display of modify of the SIM or
SIM configuration registers.

Action: Make sure the contents of the MBAR or CF_MBAR register are valid.
Program counter is odd or uninitialized

Program counter is located in guarded memory

Cause: You attempted to run or step from the current program counter when it
contains an odd value or an address that is mapped as guarded memory.

Action: When running from the current program counter, make sure it contains an
even address that is not in guarded memory.

458

151

152

155

156

Chapter 12: Error Messages
Terminal Interface Messages

Supervisor stack pointer is odd or uninitialized
Supervisor stack is located in emulation ROM

Supervisor stack is located in guarded memory

Cause: You are using a foreground monitor, and you have attempted to run or step
when the stack pointer contains an odd value or when the stack pointer contains an
address that is mapped as emulation ROM or guarded memory.

Action: Make sure the stack pointer contains an even address value that is not
mapped as emulation ROM or guarded memory.

Foreground monitor had unexpected exception %d

Cause: The decimal number value of the vector offset (included with the message)
tells you what type of exception caused the message. For example, if a priviledged
opcode is attempted to be executed at the user access level, the decimal value 32 is
shown with this error message.

Action: Determine the cause of the exception.

Unable to verify trace vector; vector table in guarded memory

Cause: In order to step when using a foreground monitor, the trace vector must
contain the address of the monitor program’s TRACE_ENTRY label (which equals
the monitor base address plus 800H). The step command reads the trace vector on
each step to make sure it contains the correct address value. This error occurs when
the vector table is in guarded memory.

Action: Make sure the vector table is not in an address range mapped as guarded
memory.

Unable to verify trace vector; vector table read failed

Cause: In order to step when using a foreground monitor, the trace vector mu
contain the address of the monitor program’s TRACE_ENTRY label (which eq

the monitor base address plus 800H). The step command reads the trace ve

each step to make sure it contains the correct address value. This error occurs when
the vector table is in target memory and the read fails.

Action: Make sure the vector base register points to the correct location in target
memory and that the memory system is operating correctly.

459

Chapter 12: Error Messages
Terminal Interface Messages

157

158

159

162

Unable to set trace vector to <TRACE_ENTRY _address>; vector table write
failed

Cause: In order to step when using a foreground monitor, the trace vector must
contain the address of the monitor program’s TRACE_ENTRY label (which equals
the monitor base address plus 800H). The step command reads the trace vector on
each step to make sure it contains the correct address value. If the trace vector does
not contain the correct value, the emulator attempts to write the correct value. This
error occurs when the vector table is in target memory and the write fails.

Action: Make sure the vector base register points to the correct location in target
memory and that the memory system is writeable and is operating correctly.

Trace vector modified to <TRACE_ENTRY _address> for single stepping

Cause: In order to step when using a foreground monitor, the trace vector must
contain the address of the monitor program’s TRACE_ENTRY label (which equals
the monitor base address plus 800H). The step command reads the trace vector on
each step to make sure it contains the correct address value. If the trace vector does
not contain the correct value, the emulator attempts to write the correct value. This
message informs you the emulator was successful in writing the correct value to the
trace vector.

Unable to set trace vector to <TRACE_ENTRY_address>; vector table in
TROM

Cause: In order to step when using a foreground monitor, the trace vector must
contain the address of the monitor program’s TRACE_ENTRY label (which equals
the monitor base address plus 800H). The step command reads the trace vector on
each step to make sure it contains the correct address value. If the trace vector does
not contain the correct value, the emulator attempts to write the correct value. This
error occurs when the vector table is in memory mapped as target ROM.

Action: If the vector table is really in target ROM memory, its trace vector must
already contain the correct address value.
Double bus fault occurred

Cause: This message informs you of a double bus fault in the emulation
microprocessor. The most common cause of this error message is running or
stepping from target memory locations that do not exist.

460

Chapter 12: Error Messages
Terminal Interface Messages

163 Update HP64740 firmware to version A.02.02 or newer

Cause: The HP 64751 emulator requires version A.02.02 or newer of the analyzer
firmware.

Action: Refer to the "Updating Emulator/Analyzer Firmware" section in the
"Installation” chapter.

168 Can't access module regs, addr space mask (@sd bit 6) is set

Cause: You have attempted to modify the MBAR or CF_MBAR register with a
value that masks supervisor data space by setting bit 6. The HP 64751 emulator
requires an address space to access 68340 SIM registers and, therefore, doesn't let
you set bit 6 in the MBAR or CF_MBAR register.

Action: Modify the MBAR or CF_MBAR registers with values that do not set bit 6.
168 Can't access module regs, mbar (@sd bit 6) is set

Can't access module regs, cf_mbar (@sd bit 6) is set

Cause: These errors occur if the user program sets bit 6 of the MBAR register
(whose contents can be copied into the CF_MBAR register with the
sync_sim_registers to_m68340_sintommand) and the emulator needs to access
other SIM or emulator configuration registers.

Action: Modify the MBAR or CF_MBAR registers with values that do not set bit 6.

177 BDM communication failed

Cause: There was some problem with the serial communication interface with the
emulation processor’s Background Debug Mode (BDM).

Action: Initialize the emulator or cycle power. Then reenter the command. If the
same failure occurs, call your HP sales and service office.

178 Unable to run performance verification tests
Cause: The emulator was unable to run the performance verification tests.

Action: Make sure the emulator probe is connected correctly and that all cables are
secured. Make sure that the emulator probe is plugged into the demo target system
and that the demo target system power cable is connected to the HP 64700.

461

Chapter 12: Error Messages
Terminal Interface Messages

179

179

204

205

208

206

312

M68340 probe not connected or configured incorrectly
Cause: The emulator is reading an invalid identifier for the emulation probe.

Action: Make sure that the emulator probe cables are connected correctly. Also,
make sure that the probe is the 68340 probe.

Fuse F1 blown on HP64748C ABG Control Board
Cause: The emulator detects a blown fuse on the HP 64748C ABG Control Board.

Action: Contact your Hewlett-Packard Representative.

General Emulator and System Messages
FATAL SYSTEM SOFTWARE ERROR
FATAL SYSTEM SOFTWARE ERROR

FATAL SYSTEM SOFTWARE ERROR
Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats, call your
local HP Sales and Service office for assistance.

Incompatible compatibility table entry

Cause: The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 system.

Action: The ROMs in your emulator must be compatible with each other for your
emulation system to work correctly. Contact your Hewlett-Packard Representative.

Ambiguous address: %s

Cause: Certain emulators support segmentation or function code information in
addressing. The emulator is unable to determine which of two or more address
ranges you are referring to, based upon the information you entered.

Action: Re-enter the command and fully specify the address, including
segmentation or function code information.

462

Chapter 12: Error Messages
Terminal Interface Messages

318 Count out of bounds: %s
Cause: You specified an occurrence count less than 1 or greater than 65535.

Action: Re-enter the command, specifying a count value from 1 to 65535.

400 Record checksum failure

Cause: During &ransfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry theransfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

401 Records expected: %s; records received: %s

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry theransfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Refer to the "Installation" chapter for details.

410 File transfer aborted

Cause: Aransfer operation was aborted due to a break received, most likely a
<CTRL>c from the keyboard.

Action: If you typed <CTRL>c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the correct
command options. If you are unsuccessful, make sure that the data
communications parameters are set correctly on the host and on the HP 64700, then
retry the operation.

411 Severe error detected, file transfer failed

Cause: An unrecoverable error occurred duritvgrasfer operation.

Action: Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Also make sure that you are using the correct command options, both on the
HP 64700 and on the host.

463

Chapter 12: Error Messages
Terminal Interface Messages

412

413

415

600

602

603

604

Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record durgngséer operation
was exceeded, therefore the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the
host, it is possible that line noise may cause the failure.

Transfer failed to start
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

Timeout, receiver failed to respond
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

Adjust PC failed during break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Break failed
Cause: Théreak command was unable to break the emulator to the monitor.

Action: Determine why the break failed, then correct the condition and retry the
command. See message 608.

Read PC failed during break
Cause: System failure or target condition.

Action: Try again.

Disable breakpoint failed: %s

Cause: System failure or target condition.

464

Chapter 12: Error Messages
Terminal Interface Messages

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

605 Undefined software breakpoint: %s

Cause: The emulator has encountered a software breakpoint in your program that
was not inserted with theodify software_breakpoints secommand.

Action: Remove the breakpoint instructions in your code before assembly and link.

606 Unable to run after CMB break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

608 Unable to break

Cause: This message is displayed if the emulator is unable to break to the monitor
because the emulation processor is reset, halted, or is otherwise disabled.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use
thebreak command to break to the monitor. If reset by the emulation system,
release that reset. If halted, tegetandbreak to get to the monitor. If thereis a

bus grant, wait for the requesting device to release the bus before retrying the
command. If there is no clock input, perhaps your target system is faulty. It's also
possible that you have configured the emulator to restrict to real time runs, which
will prohibit temporary breaks to the monitor.

610 Unable to run
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

611 Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if the
CMB READY line goes false. The emulator breaks to the monitor. When CMB

465

Chapter 12: Error Messages
Terminal Interface Messages

612

613

614

615

616

617

READY is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor.

Action: None, information only.

Write to ROM break

Cause: This status message will be printed if you have enabled breaks on writes to
ROM and the emulation processor attempted a write to a memory location mapped
as ROM.

Action: None (except troubleshooting your program).

Analyzer Break

Cause: Status message.

Guarded memory access break

Cause: This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action: Troubleshoot your program; or, you may have mapped memory incorrectly.

Software breakpoint: %s

Cause: This status message will be displayed if a software breakpoint is
encountered during a program run. The emulator is broken to the monitor. The
string %s indicates the address where the breakpoint was encountered.

BNC trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

CMB trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a CMB trigger signal and the CMB trigger line is activated during a
program run. The emulator is broken to the monitor.

466

618

619

620

621

622

623

Chapter 12: Error Messages
Terminal Interface Messages

trigl break

Cause: This status message will be displayed if you usedghk on_trigger
syntax of thérace command and the analyzer has found the trigger condition while
tracing a program run. The emulator is broken to the monitor.

trig2 break

Cause: This status message will be displayed if you have used the inig2nal
line to connect the analyzer trigger output to the emulator break input and the
analyzer has found the trigger condition. The emulator is broken to the monitor.

Unexpected software breakpoint

Cause: If you have enabled software breakpoints, this message is displayed if a
software breakpoint instruction is encountered in your program that was not
inserted by anodify software_breakpoints secommand and is therefore not in
the breakpoint table.

Action: Remove the breakpoint instructions in your code before assembly and link,
and use thenodify software_breakpoints seicommand to reinsert them after the
program is loaded into memory.

Unexpected step break
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

%s

Cause: Monitor specific message.

CMB execute break

Cause: This message occurs when coordinated measurements are enabled
EXECUTE pulse causes the emulator to run; the emulator must break before
running.

Action: This is a status message; no action is required.

467

Chapter 12: Error Messages
Terminal Interface Messages

624

626

628

628

630

631

632

Configuration aborted

Cause: Occurs when a <CTRL>c is entered while emulator configuration items are
being set.

Configuration failed; setting unknown: %s=%s
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Guarded memory break: %s"

Cause: A memory access to a location mapped as guarded memory has occurred
during execution of the user program.

Action: Investigate the cause of the guarded memory access by the user program.

Write to ROM break: %s"

Cause: When the emulator is configured to break on writes to ROM, a memory
write access to a location mapped as ROM has occurred during execution of the
user program.

Action: Investigate the cause of the write to ROM by the user program. You can
configure the emulator so that it does not break on writes to ROM.

Register access aborted

Cause: Occurs when a <CTRL>c is entered during register display.

Unable to read registers in class: %s
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform the register
read. See message 608.

Unable to modify register: %s=%s

Cause: The emulator was unable to modify the register you requested.

468

634

636

637

640

650

Chapter 12: Error Messages
Terminal Interface Messages

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
modification. See message 608.

Display register failed: %s
Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
display. See message 608.

Register not writable: %s
Cause: This error occurs when you attempt to modify a read only register.

Action: If this error occurs, you cannot modify the contents of the register with the
modify register command.

Register class cannot be modified: %s
Cause: You tried to modify a register class instead of an individual register.

Action: You can only modify individual registers. Refer todiplay registers
command description for a list of register names.

Unable to reset
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Unable to configure break on write to ROM

Cause: The emulator controller is unable to configure for breaks on writes to
ROM, possibly because the emulator was left in an unknown state or because
hardware failure.

Action: Initialize the emulator or cycle power. Then reenter the command. If the
same failure occurs, call your HP sales and service office.

469

Chapter 12: Error Messages
Terminal Interface Messages

651

653

661

663

664

665

666

Unable to configure break on software breakpoints

Cause: The emulator controller cannot enable breakpoints, possibly because the
emulator is in an unknown state or because of a hardware failure.

Action: Initialize the emulator or cycle power, then re-enter the command. If the
same failure occurs, call your HP sales and service office.

Break condition configuration aborted

Cause: Occurs when <CTRL>c is entered during the configuration of break
conditions.

Software breakpoint break condition is disabled

Cause: You have attempted to set or clear a software breakpoint when software
breakpoints are disabled.

Action: You must enable software breakpoints before you can set them.

Specified breakpoint not in list: %s

Cause: You tried to clear a software breakpoint that was not previously set. The
string %s prints the address of the breakpoint you attempted to clear.

Action: You must first set a software breakpoint before it can be cleared.

Breakpoint list full; not added: %s

Cause: The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address %s, was not inserted.

Action: Clear breakpoints that are no longer in use. Then, set the new breakpoint.

Enable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Disable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

470

667

668

669

670

671

680

684

Chapter 12: Error Messages
Terminal Interface Messages

Breakpoint code already exists: %s

Cause: You attempted to insert a breakpoint; however, there was already a
software breakpoint instruction at that location which was not already in the
breakpoint table.

Action: Your program code is apparently using the same instructions as used by
the software breakpoints feature. Remove the breakpoint instructions from your
program code and use thmdify software_breakpoints secommand to insert
them.

Breakpoint not added: %s

Cause: You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Breakpoint remove aborted

Cause: Occurs when <CTRL>c is entered when clearing a software breakpoint.

Breakpoint enable aborted

Cause: Occurs when <CTRL>c is entered when setting software breakpoints.

Breakpoint disable aborted

Cause: Occurs when <CTRL>c is entered when disabling software breakpoints.

Stepping failed
Cause: Stepping has failed for some reason.

Action: Usually, this error message will occur with other error messages. Ref
the descriptions of the accompanying error messages to find out more about
stepping failed.

Failed to disable step mode

Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

471

Chapter 12: Error Messages
Terminal Interface Messages

6386 Stepping aborted; number steps completed: %d

Cause: This message is displayed if a break was received dategrammand
with a step count greater than zero. The break could have been due to any of the
break conditions or a <CTRL>c break. The number of steps completed is displayed.

688 Step display failed
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

689 Break due to cause other than step

Cause: An activity other tharstepcommand caused the emulator to break. This
could include any of the break conditions or a <CTRL>c break.

692 Trace error during CMB execute
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

693 CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified pdledy run command.

Action: None; information only.

694 Run failed during CMB execute
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

700 Target memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

472

702

707

710

725

726

754

Chapter 12: Error Messages
Terminal Interface Messages

Action: In most cases, the problem results from the emulator’s inability to break to
the monitor to perform the operation. See message 608.

Emulation memory access failed
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

Request access to guarded memory: %s

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Re-enter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. Or, you can remap memory so that the desired
addresses are no longer mapped as guarded.

Memory range overflow

Cause: Accessing a word or short word, for examigiglay memory Offffffff
blocked word will cause a rounding error that overflows physical memory.

Action: Reduce memory display request.

Unable to load new memory map; old map reloaded
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

Unable to reload old memory map; hardware state unknown
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

Memory modify aborted; next address: %s

Cause: This message is displayed if a break occurs during processigdifya
memory command. The break could result from any of the break conditions
(except a software breakpoint) or could have resulted from a <CTRL>c break.

473

Chapter 12: Error Messages
Terminal Interface Messages

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

901 Invalid firmware for emulation subsystem

Cause: This error occurs when the HP 64700 system controller determines that the
emulation firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROM is installed in the emulation controller.

902 Invalid analysis subsystem; product address: %s

Cause: This error occurs when the HP 64700 system controller determines that the
analysis firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROMs are installed in the analyzer board.

903 Invalid ET subsystem; product address: %s

Cause: Detects an invalid ET. Used only internally.

904 Invalid auxiliary subsystem; product address: %s

Cause: For future products.

911 Lab firmware for emulation subsystem

Cause: This message should never occur. It shows that you have an unreleased
version of emulation firmware.

912 Lab firmware analysis subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of analysis firmware.

913 Lab firmware subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of system controller firmware.

474

Chapter 12: Error Messages
Terminal Interface Messages

914 Lab firmware auxiliary subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Analyzer Messages

1105 Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.
1108 Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace label
which is currently used as a qualifier in the emulation trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.
1305 CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified bpebiy trace
command).

475

476

13

Specifications and Characteristics

477

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

Emulator Specifications and Characteristics

This section contains the following types of emulator specifications and
characteristics:

» Electrical characteristics (including emulator timing).
» Physical characteristics.

* Environmental characteristics.

Electrical

This section describes the electrical characteristics of the HP 64751 68340
Emulator and the HP 64700 Card Cage.

Electrical Characteristics of the HP 64751 Emulator

The emulator requires some control signals and power supply in order to run.
Therefore, a target system is required in order to use the emulator. The demo board
that is included with the emulator is one such minimum target system.

DC Characteristics. The DC characteristics of the HP 64751 emulator’s active
probe are listed in the following table.

478

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

DC Electrical Specifications

Characteristic Symbol Min Max Unit

Input High Voltage (except clock) 1Y 2.0 Ve \%

Input Low Voltage L GND 0.8 \%

Input Leakage Current, GN¥in<Vcc lin HA
BR, BGACK, IRQx -25 25

Input High Current lH HA
BERR,DSACKx — 25
RESET HALT — 50

Input Low Current I mA
BERR,DSACKx — -0.25
RESET HALT — -1.0

Output High Voltage,dH =-0.8 mA VoH \Y,
A0-A23,AS,BG, D0-D15,DS, RW, 24 —

RMC, SIZ0-SIZ1, FCO-FC3 24 —

Output Low Voltage VoL \%
loL=2.0mA A0-A23, SIZ0-SIZ1, FCO-FC3 — 0.5
loL.=45mA RW,RMC — 0.5
loL=20mA AS, D0-D15DS — 0.5
loL=14 mA RESETHALT — 0.5

Power Dissipation Pb w
Ta =0°C — 2.2
Ta =70°C — 2.2

Capacitance, M =0V, Ta =25°C,f=1 MHz Gn — 20 pF

Load Capacitance CL pF
A0-A31, RW, SIZ0-SIZ1, FCO-FC3 — 100
All Other — 50

AC Characteristics.

The AC characteristics of the HP 64751 emulator’s acti

probe are listed in the following tables.

479

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66508 and higher active probe board numbers) — Clock

Timing
MC68340
25.16 MHz HP 64751
Num. Characteristic Symbol| Min Max Min Max Unit
System Frequency (See Note) sysf dc 25.16 dc 25.16 MHz
Crystal Frequency XfraL 25 50 25 50 kHz
On-Chip VCO System Frequency syd 0.13 25.16 0.13 25.16 MHz
On-Chip VCO Frequency Range vdo 0.1 50.3 0.1 50.3 MHz
Crystal Oscillator Startup Time rct — 20 — 20 ms
1 | CLKOUT Period dyc 40 — 40 — ns
2,3 | CLKOUT Pulse Width dw 19 — 19 — ns
4,5 | CLKOUT Rise and Fall Times ch — 4 — 4 ns

NOTE: All internal registers retain data at 0 Hz.

480

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66508 and higher active probe board nhumbers) — Read and
Write Cycles
(Vece =5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)
MC68340
25.16 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
6 | CLKOUT High to Address, FC, SIZRMC | tcHav 0 20 0 20 ns
Valid
7 | CLKOUT High to Address, Data, FC, SIZE, tcHAazx 0 40 0 40 ns
RMC High Impedance
8 | CLKOUT High to Address, FC, SIZRMC | tcHAzn 0 — 0 — ns
Invalid
9 | CLKOUT Low toAS, DS, tcesa | 3 | 20| O 23 ns
CS,IACK, 3 20 3 20 ns
IFETCH", IPIPE" Asserted 3 20| — — ns
9A2 | AS toDS orCS Asserted (Read) stsa | 6 | 6 | -8 8 ns
11 | Address, FC, SIZRMC Valid toAS, CS tavsa | 10 | — | 10 — ns
(andDS Read) Asserted
12 | CLKOUT Low toAS, DS, tcecsn | 3 | 20| O 23 ns
CS,IACK, 3 20 3 20 ns
IFETCH", IPIPE"* Negated 3 | 20 | — — ns
13 | AS,DS,CS,IACK Negated to Address, FC, tsnal | 10 | — | 10 — ns
SIZE Invalid (Address Hold)

14 | AS,CS (andDS Read) Width Asserted sWwa | 70 | — | 70 — ns
14A | DS Width Asserted Write stvaw | 30 | — | 30 — ns
14B | AS, CS,IACK, (andDS READ) Width tswow | 30 | — | 30 — ns

Asserted (Sync Cycle)
15° | AS, DS, CS Width Negated sk | 30 | — | 30 — ns

481

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66508 and higher active probe board nhumbers) — Read and
Write Cycles
(Vece = 5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)

MC68340
25.16 MHz HP 64751

Num. Characteristic Symbol | Min | Max | Min Max Unit
16 | CLKOUT High toAS, DS, tchsz | — | 60 | — | 0.5%yc+30| ns
RMW High Impedance — 60 | — 40 ns
17 | AS,DS,CS Negated to RY High tsnen | 10 — 10 — ns
18 | CLKOUT High to RW High tCHRH 0 20 0 20 ns
20 | CLKOUT High to RW Low tCHRL 0 20 0 20 ns
21 | RA High toAS, CS Asserted Raaa | 10 | — | 10 — ns
22 | RMW Low toDS Asserted (Write) Rasa | 47 — a7 — ns
23 | CLKOUT High to Data-Out Valid dupoo | — 20 — 23 ns
24 | Data-Out Valid to Negating EdgeAS,CS | tovasn | 10 | — | 10 — ns
(Synchronous Write)
25 | DS,CS Negated to Data-Out Invalid tsnpol | 10 | — | 10 — ns
(Data-Out Hold)
26 | Data-Out Valid t®S Asserted (Write) odvsa | 10 | — | 9 — ns
27 | Data-In Valid to CLKOUT Low (Data Setup) bpitL 5 — 8 — ns
27A | LateBERR,HALT, tseccL | 10 | — | 10 — ns
BKPTE Asserted to CLKOUT Low 10 — — — ns
(Setup Time)
28 | AS,DS Negated tSACKx,BERR,HALT | tsnon | O | 50 | 0 50 ns
29* | DS Negated to Data-In Invalid (Data-In Hold) snbi 0 — 0 — ns
29A%| DS Negated to Data-In High Impedance SHIbI — 40 — 40 ns

482

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66508 and higher active probe board numbers) — Read and
Write Cycles
(Vece =5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)
MC68340
25.16 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
30* | CLKOUT Low to Data-In Invalid tcLpl 10 — 10 — ns
(Synchronous Hold)
30A* CLKOUT Low to Data-In High Impedance | citpH — 60 — 60 ns
31° | DSACKx Asserted to Data-In Valid phol | — | 32 | — 32 ns
32 | HALT andRESET Input Transition Time RErf 0 140 0 140 ns
33 | CLKOUT Low toBG Asserted dLBA — 20 — 20 ns
34 | CLKOUT Low toBG Negated dLBN — 20 — 20 ns
35" | BR Asserted t®G AssertedRMC Not teraca | 1 | — | 1 — clks
Asserted)
37 | BGACK Asserted t®G Negated dacN | 1 | 25 1 25 clks
39 | BG Width Negated dH 2 | — | 2 — clks
39A | BG Width Asserted da 1| — | 1 — clks
46 | RW Width Asserted (Write or Read) RWA | 100 | — | 100 — ns
46A | RW Width Asserted (Sync. Write or Read) rwas | 60 — 60 — ns
47A | Asynchronous Input Setup Time AIdT 5 — 5 — ns
47B | Asynchronous Input Hold Time AIHT 10 — 10 — ns
48 | DSACKx Asserted tBERR,HALT Asserted basa — 20 — 20 ns
53 | Data-Out Hold from CLKOUT High pocH 0 — 0 — ns
54 | CLKOUT High to Data-Out High Impedance cHbH | — 20 — 20 ns
55 | RAW Asserted to Data Bus Impedance Changeapt | 25 — 25 — ns

483

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66508 and higher active probe board nhumbers) — Read and
Write Cycles
(Vece = 5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)

MC68340
25.16 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
56 | RESET Pulse Width (Reset Instruction) HRPW | 512 | — | 512 — clks
57 | BERR Negated tbIALT Negated (Rerun) BINHN 0 — 0 — ns
70 | CLKOUT Low to Data Bus Driven (Show | tsctop | 0 | 30 | —© | —C ns
Cycle)
71 | Data Setup Time to CLKOUT Low (Show | tscips | 10 — | =L — ns
Cycle)
72 | Data Hold from CLKOUT Low (Show Cycle) s¢LpH 6 — | =° — ns

MC68340 NOTES:

1. All AC timing is shown with respect to 0.8-V and 2.0-V levels unless otherwise noted.

2. This number can be reduced to 5 ns if strobes have equal loads.

3. If multiple chip selects are used, 8 width negated (#15) applies to the time from the negation
heavily loaded chip select to the assertion of a lightly loaded chip select.

4. These hold times are specified with respeEt3mn asychronous reads and with respect to CLKO
on synchronous reads. The user is free to use either hold time.

5. If the asychronous setup time (#47) requirements are satisfi@SaA@Kx low to data setup time
(#31) andDSACKX low toBERR low setup time (#48) can be ignored. The data must only satisfy
data-in to CLKOUT low setup time (#27) for the following clock cyBIERR must only satisfy the late
BERR low to CLKOUT low setup time (#27A) for the following clock cycle. L

6. To ensure coherency during every operand traf&®uwyill not be asserted in responséf until
after cycles of the current operand transfer are completRM@lis negated.

7. In the absence &fSACKXx, BERR is an asychronous input using the asychronous setup time (#4
8. Address Access Time =cd + tcw - tcHAv - toicL = 74 ns (@ 25.16-MHz clock). Chip Select
Access Time = 2c - tcLsa - toicL = 55 ns (@ 25.16-MHz clock).

HP 64751 NOTES:
A. IFETCH andPIPE are not driven to the target system.
B. The emulator does not respon®BtOPT from the target system.

C. The emulator does not drive data to the target system during show cycles.

484

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66506 and lower active probe board numbers) — Clock Timing
MC68340
16.78 MHz HP 64751
Num. Characteristic Symbol| Min Max Min Max Unit
System Frequency (See Note) sysf dc 16.78 dc 16.78 MHz
Crystal Frequency XfraL 25 50 25 50 kHz
On-Chip VCO System Frequency syd 0.13 16.78 0.13 16.78 MHz
On-Chip VCO Frequency Range vdo 0.1 35 0.1 35 MHz
Crystal Oscillator Startup Time rct — 100 — 100 ms
1 | CLKOUT Period dyc 59.6 — 59.6 — ns
2,3 | CLKOUT Pulse Width dw 28 — 28 — ns
4,5 | CLKOUT Rise and Fall Times ch — 5 — 5 ns
NOTE: All internal registers retain data at 0 Hz.

485

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66506 and lower active probe board numbers) — Read and
Write Cycles
(Vece = 5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)

MC68340
16.78 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
6 | CLKOUT High to Address, FC, SIZRMC | tciay | O | 30 | © 30 ns
Valid
7 | CLKOUT High to Address, Data, FC, SIZE, tcHAazx 0 60 0 60 ns
RMC High Impedance
8 | CLKOUT High to Address, FC, SIZRMC | tcHAzn 0 — 0 — ns
Invalid
9 | CLKOUT Low toAS, DS, tccsa | 3 | 30| 0 33 ns
CS,IACK, 3 3| 3 30 ns
IFETCH", IPIPE" Asserted 3 |3 — — ns
9A2 | AS toDS orCS Asserted (Read) stsa | -15 | 15 | -15 15 ns
11 | Address, FC, SIZRMC Valid toAS, CS tavsa | 15 | — | 15 — ns
(andDS Read) Asserted
12 | CLKOUT Low toAS, DS, tcecsn | 3 | 30| O 33 ns
CS,IACK, 3 3| 3 30 ns
IFETCH", IPIPE"* Negated 3 | 30 | — — ns
13 | AS,DS,CS,IACK Negated to Address, FC, tsnal | 15 | — | 15 — ns
SIZE Invalid (Address Hold)

14 | AS,CS (andDS Read) Width Asserted swa | 100 | — | 100 — ns
14A | DS Width Asserted Write swaw | 45 | — | 45 — ns
14B | AS, CS,IACK, (andDS READ) Width tswow | 40 | — | 40 — ns

Asserted (Sync Cycle)
15° | AS, DS, CS Width Negated sk | 40 | — | 40 — ns

486

Chapter 13: Specifications and Characteristics

Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66506 and lower active probe board numbers) — Read and
Write Cycles
(Vece =5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)
MC68340
16.78 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
16 | CLKOUT High toAS, DS, tchsz | — | 60 | — | 0.5tyc+40| ns
RMW High Impedance — 60 | — 60 ns
17 | AS,DS,CS Negated to RY High tsNeRn | 15 — 15 — ns
18 | CLKOUT High to RW High tchrRH | O | 30 | O 30 ns
20 | CLKOUT High to RW Low tchrRL | O | 30 | O 30 ns
21 | RA High toAS, CS Asserted Raaa | 15 | — | 15 — ns
22 | RMW Low toDS Asserted (Write) Rasa | 70 — 70 — ns
23 | CLKOUT High to Data-Out Valid dupoo | — 30 — 33 ns
24 | Data-Out Valid to Negating EdgeAS,CS | tovasn | 15 | — | 15 — ns
(Synchronous Write)
25 | DS,CS Negated to Data-Out Invalid tsnpol | 15 | — | 15 — ns
(Data-Out Hold)
26 | Data-Out Valid t®S Asserted (Write) ovsa | 15 | — | 12 — ns
27 | Data-In Valid to CLKOUT Low (Data Setup) bpitL 5 — 8 — ns
27A | LateBERR,HALT, teeLcL | 20 — 20 — ns
BKPTE Asserted to CLKOUT Low 20 — — — ns
(Setup Time)
28 | AS,DS Negated tbSACKx,BERR,HALT | tsnon | O | 80 | O 80 ns
29* | DS Negated to Data-In Invalid (Data-In Hold) s | 0 | — | 0 — ns
29A%| DS Negated to Data-In High Impedance SHIbI — 60 — 60 ns

487

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66506 and lower active probe board numbers) — Read and
Write Cycles
(Vece =5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)
MC68340
16.78 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
30* | CLKOUT Low to Data-In Invalid tcLpl 15 — 15 — ns
(Synchronous Hold)
30A* CLKOUT Low to Data-In High Impedance | citpH — 90 — 90 ns
31° | DSACKx Asserted to Data-In Valid phol | — | 50 | — 50 ns
32 | HALT andRESET Input Transition Time RErf 0 200 0 200 ns
33 | CLKOUT Low toBG Asserted dLBA — 30 — 30 ns
34 | CLKOUT Low toBG Negated dLBN — 30 — 30 ns
35" | BR Asserted t®G AssertedRMC Not teraca | 1 | — | 1 — clks
Asserted)
37 | BGACK Asserted t®G Negated dacN | 1 | 25 1 2 clks
39 | BG Width Negated dH 2 | — | 2 — clks
39A | BG Width Asserted da 1| — | 1 — clks
46 | RW Width Asserted (Write or Read) RWA | 150 | — | 150 — ns
46A | RW Width Asserted (Sync. Write or Read) rwas | 90 — 90 — ns
47A | Asynchronous Input Setup Time AIdT 5 — 5 — ns
47B | Asynchronous Input Hold Time AIHT 15 — 15 — ns
48 | DSACKx Asserted tBERR,HALT Asserted basa — 30 — 30 ns
53 | Data-Out Hold from CLKOUT High pocH 0 — 0 — ns
54 | CLKOUT High to Data-Out High Impedance cHbH | — 30 — 30 ns
55 | RAW Asserted to Data Bus Impedance Changeapt | 40 — 40 — ns

488

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Electrical Specifications (64751-66506 and lower active probe board numbers) — Read and
Write Cycles
(Vece = 5.0 Vdc +/-5%; GND =0 Vdc; Ta = TL to TH)

MC68340
16.78 MHz HP 64751
Num. Characteristic Symbol | Min | Max | Min Max Unit
56 | RESET Pulse Width (Reset Instruction) HRPW | 512 | — | 512 — clks
57 | BERR Negated tbIALT Negated (Rerun) BINHN 0 — 0 — ns
70 | CLKOUT Low to Data Bus Driven (Show | tsctop | 0 | 30 | —© | —C ns
Cycle)
71 | Data Setup Time to CLKOUT Low (Show | tscips | 15 — | =L — ns
Cycle)
72 | Data Hold from CLKOUT Low (Show Cycle) s¢LpH | 10 — | =L — ns

MC68340 NOTES:
1. All AC timing is shown with respect to 0.8-V and 2.0-V levels unless otherwise noted.
2. This number can be reduced to 5 ns if strobes have equal loads.

3. If multiple chip selects are used, ©8 width negated (#15) applies to the time from the negation jof a

heavily loaded chip select to the assertion of a lightly loaded chip select.

4. These hold times are specified with respeBX3mn asychronous reads and with respect to CLKOUT

on synchronous reads. The user is free to use either hold time.

5. If the asychronous setup time (#47) requirements are satisfi@SaA@Kx low to data setup time
(#31) andDSACKX low toBERR low setup time (#48) can be ignored. The data must only satisfy
data-in to CLKOUT low setup time (#27) for the following clock cyBIERR must only satisfy the late
BERR low to CLKOUT low setup time (#27A) for the following clock cycle. L

6. To ensure coherency during every operand traf&®uwyill not be asserted in responséf until
after cycles of the current operand transfer are completRM@lis negated.

7. In the absence &fSACKXx, BERR is an asychronous input using the asychronous setup time (#4
8. Address Access Time = + tcw - tcHav - toicL = 112.2 ns (@ 16.78-MHz clock). Chip Select
Access Time = 2c - tcLsa - toicL = 84.2 ns (@ 16.78-MHz clock).

HP 64751 NOTES:

A. IFETCH andPIPE are not driven to the target system.

B. The emulator does not respon®BtOPT from the target system.

C. The emulator does not drive data to the target system during show cycles.

489

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

Electrical Characteristics of the HP 64700
The electrical characteristics of the HP 64700 communication ports are as follows.

Communications

Serial Port RS-232-C DCE or DTE to 38.4 Kbaud.
RS-422 DCE to 460.8 Kbaud.

BNC (labeled Input. The signal must drive approximately 4 mA at 2 V. Edge
TRIGGER IN/OUTBensitive. Minimum pulse width is approximately 25 ns.

Output. Driven active high only;
equals +2.4V into a 50 ohm load.

Physical
Dimensions of Emulator Probe

There must be enough clearance in the target system to allow the emulation probe
to be plugged in and the cable routed from the target system to the emulator control
card in the HP 64700. The following figure shows probe dimensions.

490

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

Emulator Dimensions

Width 325 mm (12.8 in.)
Height 173 mm (6.8 in.)
Length 389 mm (15.3in.)

Emulator Weight

HP 64751 8.2 kg (18 Ib)
Cable Length

Emulator to approximately 914 mm (3 ft).
target system

Probe Dimensions

92 mm (3.625 in.) width x 16 mm (0.626 in.) height x 159 mm
(6.25 in.) length

Communications

Serial Port 25-pin female type "D" subminiature connector.
CMB Port 9-pin female type "D" subminiature connector.
CAUTION Possible damage to emulatorAny component used in suspending the emulator

must be rated for 30 kg (65 Ib) capacity.

491

Chapter 13: Specifications and Characteristics
Emulator Specifications and Characteristics

Environmental

Temperature

Operating 0°C to +55°C
(+32°F to 131°F)

Non-operating -40°C to +70°C
(-40°F to 158°F)

Altitude

Operating 4 600m
(15 000 ft)

Non-operating 15 300m
(50 000 ft).

Relative Humidity
15% to 95%.

492

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

493

Part 4

494

14

Concepts

495

Concepts

This chapter provides conceptual information on the following topics:

» Xresources and the Graphical User Interface.

496

Chapter 14: Concepts
X Resources and the Graphical User Interface

X Resources and the Graphical User Interface

This section contains more detailed information about X resources and scheme files
that control the appearance and operation of the Graphical User Interface. This
section:

» Describes the X Window concepts surrounding resource specification.

» Describes the Graphical User Interface’s implementation of scheme files.

X Resource Specifications

An X resource specification is a resource name and a value. The resource name
identifies the element whose appearance or behavior is to be defined, and the value
specifies how the element should look or behave. For example, consider the
following resource specification:

Application.form.row.done.background: red

The resource name is "Application.form.row.done.background:" and the value is
"red"_

Resource Names Follow Widget Hierarchy

A widgetis an OSF/Motif graphic device from which X applications are built. For
example, pushbuttons and menu bars are Motif widgets. Applications are built
using a hierarchy of widgets, and the application’s X resource names follow this
hierarchy. For example:

Application.form.row.done.background: red

In the resource name above, the top-level widget is named after the application.
One of the top-level widget’s children is a form widget, one of the form widget's
children is a row-column manager widget, and one of the row-column manager
widget's children is a pushbutton widget. Resource names show a path in the
widget hierarchy.

Each widget in the hierarchy is a member of a widget class, and the particular
instance of the widget is named by the application programmer.

497

Chapter 14: Concepts
X Resources and the Graphical User Interface

Class Names or Instance Names Can Be Used

When specifying resource names, you can use either instance names or class names.
For example, a "Done" pushbutton may have an instance name of "done" and a

class name of "XmPushButton". To set the background color for a hypothetical
"Done" pushbutton, you can use:

Application.form.row.done.background: red

Or, you can use:

Application.form.row.XmPushButton.background: red

Applications also have class and instance names. For example, an application may
have an instance name of "applic1" and a class name of "Application". To set the
background color for a hypothetical "Done" pushbutton only in the "applic1"
application, you can use:

applicl.form.row.done.background: red

Note that instance names are more specific than class names. That is, class names
may apply to many instances of the widget.

The class and instance names for the widgets in the Graphical User Interface can be
displayed by choosingelp - X Resource Namesnd clicking on the "All names"
button.

Wildcards Can Be Used

A wildcard may be used to match a resource specification to many different
widgets at once. For example, to set the background color of all pushbuttons, you
can use:

Application*XmPushButton.background: red

Note that resource names with wildcards are more general than those without
wildcards.

498

Chapter 14: Concepts
X Resources and the Graphical User Interface

Specific Names Override General Names

A more specific resource specification will override a more general one when both
apply to a particular widget or application.

The names for the application and the main window widget in HP64_Softkey
applications have been chosen so that you may specify custom resource values that
apply in particular situations:

1 Apply to ALL HP64_Softkey applications:
HP64_Softkey*<resource>: <value>
2 Apply to specific types of HP64_Softkey applications:

emul*<resource>: <value> (for the emulator)
perf*<resource>: <value> (for the performance analyzer)

3 Apply to all HP64_Softkey applications, but only when they are connected to a
particular type of microprocessor:

m68340<resource>: <value> (for the 68340)
m68020<resource>: <value> (for the 68020)

4 Apply to a specific HP64_Softkey application connected to a specific
processor:

perf.m68340*<resource>: <value> (for the 68340 perf. analyzer)
emul.m68020*<resource>: <value> (for the 68020 emulator)

If all four examples above are used for a particular resource, #3 will override #2 for
all applications connected to a 68340 emulator, and #4 will override #2, but only
for the specifically mentioned type of microprocessor.

When modifying resources, your resource paths must either match, or be more
specific than, those found in the application defaults file.

How X Resource Specifications are Loaded

When the Graphical User Interface starts up, it loads resource specifications from a
set of configuration files located in system directories as well as user-specific
locations.

499

Chapter 14: Concepts
X Resources and the Graphical User Interface

Application Default Resource Specifications

Default resource specifications for an application are placed in a system directory:
HP-UX {usr/lib/X11/app-defaults

SunOS /usr/openwin/lib/X11/app-defaults

The name of the Graphical User Interface application defaults file is HP64_Softkey
(same as the application class name). This file is well-commented and contains
information about each of the X resources you can modify. You can easily view
this file by choosingelp - Topic and selecting the "X Resources: App Default

File" topic. Do not modify the application defaults file; any changes to this file will
affect the appearance and behavior of the application for all users.

User-Defined Resource Specifications

User-defined resources (for any X application) are located in the X server's
RESOURCE_MANAGER property or in the user's 3HOME/.Xdefaults file.

Load Order

Resource specifications are loaded from the following places in the following order:

5 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

6 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

7 The server's RESOURCE_MANAGER property. (Kngb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

500

Chapter 14: Concepts
X Resources and the Graphical User Interface

8 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $SHOME/.Xdefaultsstfile
is read (typically contains resource specifications for a specific remote host).

9 Resource specifications included in the command line witkxthe option.

When specifications with identical resource names appear in different places, the
latter specification overrides the former.

Scheme Files

Several of the Graphical User Interface’s X resources idesdtifgme fileshat
contain additional X resource specifications. Scheme files group resource
specifications for different displays, computing environments, and languages.

Resources for Graphical User Interface Schemes
There are five X resources that identify scheme files:

HP64_Softkey.labelScheme:

Names the scheme file to use for labels and button text. Values can be: Label,
$LANG, or a custom scheme file name. The default uses the $LANG
environment variable if it is set and if a scheme file named Softkey.$LANG
exists in one of the directories searched for scheme files; otherwise, the default
is Label.

HP64_Softkey.platformScheme:

Names the subdirectory for the platform specific color, size, and input scheme
files. This resource should be set to the platform on which the X server is
running (and displaying the Graphical User Interface) if it is different than the
platform where the application is running. Values can be: HP-UX, SunOS,
pc-xview, or a custom platform scheme directory name.

HP64_Softkey.colorScheme:

Names the color scheme file. Values can be: Color, BW, or a custom scheme
file name.

501

Chapter 14: Concepts
X Resources and the Graphical User Interface

HP64_Softkey.sizeScheme:
Names the size scheme file which defines the fonts and the spacing used.
Values can be: Large, Small, or a custom scheme file name.
HP64_Softkey.inputScheme:
Names the input scheme file which specifies mouse and keyboard operation.
Values can be: Input, or a custom scheme file name.

The actual scheme file names take the form: "Softkey.<value>".

Scheme File Names

There are six scheme files provided with the Graphical User Interface. Their names
and brief descriptions of the resources they contain follow.

Softkey.Label Defines the labels for the fixed text in the interface. Such
things as menu item labels and similar text are in this file.
If the $3LANG environment variable is set, the scheme file
"Softkey. SLANG" is loaded if it exists; otherwise, the file
"Softkey.Label" is loaded.

Softkey.BW Defines theolor scheméor black and white displays. This
file is chosen if the display cannot produce at least 16
colors.

Softkey.Color Defines theolor scheméor color displays. This file is

chosen if the display can produce 16 or more colors.

Softkey.Large Defines theize schemghat is, the window dimensions
and fonts) for high resolution displays (1000 pixels or more
vertically).

Softkey.Small Defines theize schemghat is, the window dimensions
and fonts) for low resolution displays (less than 1000 pixels
vertically).

Softkey.Input Defines thimput scheméthat is, the button and key
bindings for the mouse and keyboard).

502

Chapter 14: Concepts
X Resources and the Graphical User Interface

Load Order for Scheme Files

Scheme files are searched for in the following directories and in the following order:
10 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

11 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

12 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Custom Scheme Files

You can modify scheme files by copying them to the directory for user-defined
schemes and changing the resource specifications in the file. For example, if you
wish to modify the color scheme, and your platform is HP-UX, you can copy the
/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color file to
$HOME/.HP64_schemes/HP-UX/Softkey.Color and maodify its resource
specifications.

You can create custom scheme files by modifying the X resource for the particular
scheme and by placing the custom scheme file in the directory for user-defined
schemes. For example, if the following resource specifications are made:

HP64_Softkey.platformScheme: HP-UX
HP64_Softkey.colorScheme: MyColor
The custom scheme file would be:

$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

503

504

Part 5

Installation Guide

Instructions for installing and configuring the product.

505

Part5

506

15

Installation

507

Installation

This chapter shows you how to install emulation and analysis hardware and
interface software. It also shows you how to verify installation by starting the
emulator analyzer interface for the first time. These installation tasks are described
in the following sections:

» Installing hardware.

e Connecting the HP 64700 to a computer or LAN.
» Installing HP 9000 software.

» Installing Sun SPARCsystem software.

» Verifying the installation.

Minimum HP 9000 Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on HP 9000 Series 300/400 and Series
700 workstations.

HP-UX For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series 9000/700
workstations, the minimum supported version of the operating system is version
8.01.

MotifflOSF For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default, so you do not have to
install them specifically for this product, but you should consult R#JX
documentation for confirmation and more information.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. Series 300
workstations should have a minimum performance equivalent to that of a
HP 9000/350. A color display is also highly recommended.

508

Chapter 15: Installation

From here, you should proceed to the section titled "Installation for HP 9000
Hosted Systems" for instructions on how to install, verify, and start the Graphi
User Interface on HP 9000 systems.

Minimum Sun SPARCsystem Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on Sun SPARCsystem workstations.

SunOS The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1 or 4.1.1 or greater. The tape uses the
QIC-24 data format.

64700 Operating Environment The Graphical User Interface requires version
A.04.10 or greater of the 64700 Operating Environment. (The Graphical User
Interface version is A.04.00.)

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. A color display is
also highly recommended.

From here, you should proceed to the section titled "Installation for Sun
SPARCsystems" for instructions on how to install, verify, and start the Graphical
User Interface on SPARCsystem workstations.

509

Chapter 15: Installation

Installing Hardware

Installing Hardware

This section describes how to install emulation and analysis hardware and how to
connect the emulator probe to the demo target system.

Equipment supplied

The minimum system contains:

HP 64751A 68340 PGA Emulator Probe (which includes the demo target
system).

* HP 64748C Emulation Control card.

» HP 64704A 80-Channel Emulation Bus Analyzer card.

 HP 64700 Card Cage.

Optional parts are:

» HP 64171A 256 Kbyte Memory Modules or HP 64171B 1 Mbyte Memory
Modules (0 wait state emulation memory through 16.7 MHz, 1 wait state
above 16.7 MHz).

HP 64172A 256 Kbyte Memory Modules or HP 64172B 1 Mbyte Memory
Modules (0 wait state emulation memory through 25 MHz).

* HP 64173A 4 Mbyte Memory Modules (0 wait state emulation memory
through 22 MHz, 1 wait state above 22 MHz).

Equipment and tools needed

In order to install and use the 68340 emulation system, you need:
* Flat-blade screwdriver.

Installation overview

The steps in the installation process are:

Connect the HP 64751 emulator probe to the HP 64748C emulator control card.
Install cards into the HP 64700 card cage.

Install emulation memory modules on the emulator probe.

Connect the emulator probe to the demo target system.

Apply power to the HP 64700.

G wWNPEF

Your emulation and analysis system may already be assembled (depending on how
parts of the system were ordered).

510

Chapter 15: Installation
Installing Hardware

Antistatic precautions

Integrated-circuit boards contain electrical components that are easily damag
small amounts of static electricity. To avoid damage to the emulator cards, follow
these guidelines:

» If possible, work at a static-free workstation.
» Handle the boards only by the edges; do not touch components or traces.
» Use a grounding wrist strap that is connected to the HP 64700’s chassis.

511

Chapter 15: Installation
Installing Hardware

Step 1. Connect the Emulator Probe Cables

Three ribbon cables connect the HP 64748C emulation control card to the HP 64751 68340 emulator
probe.

The shortest cable connects from J1 of the emulation control card to J3 of the emulator probe. The
medium length cable connects from J2 of the emulation control card to J2 of the emulator probe.| The
longest cable connects from J3 of the emulation control card to J1 of the emulator probe.

1 Connect the emulator probe cables to the emulation control card.

EVULATION CONTROL CARD

EGRESS PANEL

PROBE CABLES

512

Chapter 15: Installation
Installing Hardware

2 When inserting cable connectors into the sockets, press inward on the connector clips so that {

into the sockets as shown.

=3

PUSH IN ON CLIPS
SO THEY HOOK
INTO SOCKET

513

Chapter 15: Installation
Installing Hardware

3 Connect the other ends of the cables to the emulator probe.

CABLES

PROBE

TOP PLASTIC COVER

“ROBE

ACTIVE

BOTTOM PLASTIC COVER

DEMO BOARD

514

Chapter 15: Installation
Installing Hardware

Step 2. Install Boards into the HP 64700 Card
Cage

WARNING Before removing or installing parts in the HP 64700 Card Cage, make sure
that the card cage power is off and that the power cord is disconnected.

CAUTION Do NOT stand the HP 64700 on the rear panel. You could damage the rear panel
ports and connectors.

1 Use a ground strap when removing or installing boards into the HP 64700 Card Cage to reduce the
chances of damage to the circuit cards from static discharge. A jack on the rear panel of the HP 64700
Card Cage is provided for this purpose.

o I’ s

GROUND STRAP

o PLUG

77
#

@

64700E07

515

Chapter 15: Installation

Installing Hardware

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

LOOSEN THUMB SCREW
AND SLIDE COVER
TO REMOVE

|
||l"ll' "ln

64700E08

516

Chapter 15: Installation

Installing Hardware

EMULATOR SIDE COVER

LATCHES

(ON BOTTOM PANEL)

/

517

INDICATES SLOT !

NUMBER HERE
CARD SUPPORTS

mnnnn\
=y =Y Y

3 Remove the side cover by unsnhapping the two latches and lifting off.

TAB SLOTS

4 Remove the card supports.

Chapter 15: Installation
Installing Hardware

5 First, completely loosen the four egress thumb screws.

To remove emulator cards, insert a flat blade screwdriver in the access hole and eject the emulator cards
by rotating the screwdriver.

EMULATOR CARD

FOUR EGRESS
THUMB SCREWS

PROBE CABLES

WITH FLAT BLADE SCREWDRIVER
EJECT EMULATOR CARD, EGRESS
64700802 AND PROBE CABLE AS AN ASSEMBLY

518

Chapter 15: Installation
Installing Hardware

6 Insert a screw driver into the third slot of the right side of the front bezel, push to release catch
pull the right side of the bezel about one half inch away from the front of the HP 64700. Then, dg
same thing on the left side of the bezel. When both sides are released, pull the bezel toward you
approximately 2 inches.

INSERT SCREW DRIVER INTO THIRD
SLOT OF FRONT BEZEL. PUSH

TO RELEASE CATCH AND

PULL BEZEL TOWARD YOU

@ FRONT PANEL
@ WITHOUT BEZEL
SHOWING CATCH

& |

SRy

519

'

Chapter 15: Installation
Installing Hardware

7 Lift the bezel panel to remove. Be careful not to put stress on the power switch extender.

LIFT BEZEL PANEL AND
TIP TOWARD YOU TO
REMOVE

BE CAREFUL NOT TO
PUT STRESS ON POWER
SWITCH EXTENDER.

8 If you're removing an existing analyzer card that provides external analysis, remove the right al
adapter board by turning the thumb screws counter-clockwise.

ngle

520

Chapter 15: Installation
Installing Hardware

9 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the ar
card by rotating the screwdriver.

CJECT ANALYZER CARD

Do not remove the system control board. This board is used in all HP 64700 emulation and analysis
systems.

521

Chapter 15: Installation
Installing Hardware

10 Install HP 64704A and HP 64748C boards. The HP 64704A is installed in the slot next to the
controller board. The HP 64748C is installed in the second slot from the bottom of the HP 64700
boards are identified with labels that show the model number and the serial number.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned;
press the card into mother board sockets. Check to ensure that the cards are seated all the way
sockets. If the cards can be removed with your fingers, the cards are NOT seated all the way int
mother board socket.

system
. These

then,
into the
) the

80 CHANNEL
ANALYZER CARD

647480
EMUL ATION
CONTROL
CONTROL > m
CARD %n%%mm
R
ban. BogtPglog
X “nim ﬁnﬂﬂm
\J Eﬂ "@ﬂg
\mﬁ ﬂ
|
|
CARDCAGE N ﬂ%
Il

64751E03

522

Chapter 15: Installation

Installing Hardware

POWER CONNECTION
FOR DEMO BOARD

11 Connect the +5 V power cable to the connector in the HP 64700 front panel.

523

Chapter 15: Installation
Installing Hardware

12 To reinstall the front bezel, be sure that the bottom rear groove of the front bezel is aligned with the
lip as shown below.

2 BE SURE BACK GROOVE
OF BEZEL IS ALIGNED
WITH LIP

PUSH FRONT BEZEL
INTO PLACE

524

Chapter 15: Installation
Installing Hardware

13 Install the card supports.

NUMBER HERE
INDICATES SLOT !

64700E01

14 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

=MULATOR SIDE COVER

LATCHES
(ON BOTTOM PANEL)

W)

TAB SLOTS

525

Chapter 15: Installation
Installing Hardware

15 Install the top cover in reverse order of its removal, but make sure that the side panels of the
are attached to the side clips on the frame.

SIDE CLIP

l|I||||
ml" @
||u|||| &

lllluII||

64700EQ9

526

op cover

Chapter 15: Installation
Installing Hardware

Step 3. Install emulation memory modules on .
emulator probe

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and removye the
cover.

PUSH DOWN ON
RIVET HEAD

¥
| l
it
TO INSTALL RIVET: l 7 s

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

W ADD PLASTIC

WASIIERS TO
THESE TWO
POSITIONS ONLY

527

Chapter 15: Installation
Installing Hardware

2 Determine the placement of the emulation memory modules. Three types of modules may be installed:
256 Kbyte (HP 64171A or HP 64172A), 1 Mbyte (HP 64171B or HP 64172B), and 4 Mbyte
(HP 64173A). Any type of module may be installed in either bank.

Memory in bank 0 is divided into 4 equal blocks that can be allocated by the memory mapper. Memory
in bank 1 is divided into 2 equal blocks.

If you have only one emulation memory module, place it in bank 0 to give yourself greater flexibiljty
when mapping address ranges to emulation memory. If you have two memory modules and one|is larger
than the other, place the larger module in bank 0 to give yourself more evenly proportioned blocks.

The HP 64171A/B memory modules provide 0 wait state emulation memory through 16.7 MHz and 1
wait state above 16.7 MHz. The HP 64172A/B memory modules provide 0 wait state emulation memory
through 25 MHz. The HP 64173A memory modules provide 0 wait state emulation memory through

22 MHz and 1 wait state above 22 MHz. (The 68340 processor is programmed for the correct nymber of
wait states by user code.) If memory modules are mixed, the performance characteristics of the slower
module should be used.

528

Chapter 15: Installation
Installing Hardware

3 Install emulation memory modules on emulator probe. There is a cutout on one side of the mev%u
modules so that they can only be installed one way.

To install memory modules, place the memory module into the socket groove at an angle. Firmly press
the memory module into the socket to make sure that it is completely seated. Once the memory module
is seated in the connector groove, pull the memory module forward so that the notches on the sogket fit
into the holes on the memory module. There are two latches on the sides of the socket that hold the

memory module in place.

NOTE
CUTOUT

TILT BOARD BACK
SLIGHTLY AND SEAT
INTO GROOVE

PULL BOARD
FORWARD SO
NOTCHES ON
SOCKET FIT
INTO HOLES
ON BOARD

529

Chapter 15: Installation
Installing Hardware

4 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure tluue cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

W ADD PLASTIC

WASIIERS TO
THESE TWO
POSITIONS ONLY

530

Chapter 15: Installation

Installing Hardware

Step 4. Plug the emulator probe into the demo
target system

1 With HP 64700 power OFF, connect the emulator probe cables to the demo target system.

EMULATOR
PROBE

PGA SOCKET
PIN A1 >
DEMO BOARD <ij;>

531

Chapter 15: Installation
Installing Hardware

2 Connect the power supply wires from the emulator to the demo target system. The 3-wire cab
power wire and 2 ground wiresVhen attaching the 3-wire cable to the demo target system, make
sure the connector is aligned properly so that all three pins are connected

POWER CONNECTION
FOR DEMO BOARD
FROM HP 64700

ALIGN AND
CONNECT

64751E05

ehas 1

532

Chapter 15: Installation
Installing Hardware

Step 5. Apply power to the HP 64700

The HP 64700B automatically selects the 115 Vac or 220 Vac range. In the 115 Vac range, the
HP 64700B will draw a maximum of 345 W and 520 VA. In the 220 Vac range, the HP 64700B wi
draw a maximum of 335 W and 600 VA.

The HP 64700 is shipped from the factory with a power cord appropriate for your country. You sﬂould
verify that you have the correct power cable for installation by comparing the power cord you received
with the HP 64700 with the drawings under the "Plug Type" column of the following table.

If the cable you received is not appropriate for your electrical power outlet type, contact your
Hewlett-Packard sales and service office.

533

Chapter 15: Installation

Installing Hardware

Power Cord Configurations

Plug Type Cable Part No. Plug Description | Length in/cm Color
Opt 903 8120-1378 Straight 90/228 Jade Gray
124V ** * NEMA5-15P
: 8120-1521 o 90/228 Jade Gray
Opt 900 8120-1351 Straight 90/228 Gray
250V * BS136A
8120-1703 o 90/228 Mint Gray
Opt 901 8120-1369 Straight 79/200 Gray
250V * NZSS198/ASC
aﬁ Z 8120-0696 elog 87/221 Mint Gray
Opt 902 812001689 Straight 79/200 Mint Gray
250V *CEE7-Y11
8120-1692 elog 79/200 Mint Gray
f | ff Straight
" \Fg\ 8120-2857 (Shielded) 79/200 Coco
X Brown

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

534

Chapter 15: Installation
Installing Hardware

Power Cord Configurations (Cont'd)

Plug Type Cable Part No. Plug Description Length in/cm Color
Opt 906 8120-2104 Straight 79/20 Mint Gray
250V * SEV1011

8120-2296 1959-24507 79/200 Mint Gray
Q Type 12
O RS 90’
Opt 912 Straight 79/200 Mint Gray
220V *DHCK107
8120-2957 o 79/200 Mint Gray

Opt 917 8120-4600 Straight 79/200 Jade Gray
250V SABS164
8120-4211 elog 79/200

Opt 918 8120-4753 Straight Miti 90/230 Dark Gray
100V
8120-4754 o 90/230

.

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

535

Chapter 15: Installation
Installing Hardware

1 Connect the power cord and turn on the HP 64700.

The line switch is a push button located at the lower left hand corner of the front panel. To turn QN
power to the HP 64700, push the line switch button in to the ON (1) position. The power light at the
lower right hand corner of the front panel will be illuminated.

64700E03

536

Chapter 15: Installation
Connecting the HP 64700 to a Computer or LAN

Connecting the HP 64700 to a Computer or LAN .

Refer to theHP 64700 Series Installation/Service Guideinstructions on

connecting the HP 64700 to a host computer (via RS-422 or RS-232) or LAN and
setting the HP 64700's configuration switches. (RS-422 and RS-232 are only
supported on HP 9000 Series 300/400 machines.)

537

Chapter 15: Installation
Installing HP 9000 Software

Installing HP 9000 Software

This section shows you how to install the Graphical User Interface on HP 9000
workstations. These instruction also tell you how not to install the Graphical User
Interface if you want to use just the conventional Softkey Interface.

This section shows you how to:
1 Install the software from the media.

2 Verify the software installation.
3 Start the X server and the Motif Window Manager (mwm), or start HP VUE.
4

Set the necessary environment variables.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the Softkey Interface instead of the Graphical User Interface,
you can save about 3.5 megabytes of disk space by not installing the XUI suffixed
filesets in the "64700 Operating Environment" and "<processor-type> Emulation
Tools" partitions. (Also, if you choose not to install the Graphical User Interface,
you will not have to use a special command line option to start the Softkey
Interface.)

Refer to the information on updating HP-UX in your HP-UX documentation for
instructions on viewing partitions and filesets and marking filesets that should not
be loaded.

The following sub-steps assume that you want to install all products on the tape.

538

Chapter 15: Installation
Installing HP 9000 Software

Become the root user on the system you want to update.
Make sure the tape’s write-protect screw points to SAFE.

Put the product media into the tape drive that will besthugce devicéor the
update process.

Confirm that the tape drive BUSY and PROTECT lights are on. If the PROTECT
light is not on, remove the tape and confirm the position of the write-protect screw.
If the BUSY light is not on, check that the tape is installed correctly in the drive
and that the drive is operating correctly.

When the BUSY light goes off and stays off, start the update program by entering
/etc/update

at the HP-UX prompt.

When the HP-UX update utility main screen appears, confirm that the source and
destination devices are correct for your system. Refer to the information on
updating HP-UX in your HP-UX documentation if you need to modify these values.

Select "Load Everything from Source Media" when your source and destination
directories are correct.

To begin the update, press the softkey <Select Iltem>. At the next menu, press the
softkey <Select Item> again. Answer the last prompt with

y

It takes about 20 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the results of the
update.

539

Chapter 15: Installation
Installing HP 9000 Software

Step 2. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load the
Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to successfully
start the Graphical User Interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for verifying
installation, but these checks can help to double-check the install process.

Verify the existence of thdP64_Softkeyfile in the/usr/lib/X11/app-defaults
subdirectory by entering
Is /usr/lib/X11/app-defaults/HP64_Softkeyat the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies that the
customize scripts executed because this file is created from other files during the
customize process.

Examine/usr/lib/X11/app-defaults/HP64_Softkeynear the end of the file to
confirm that there are resources specific to your emulator.

Near the end of the file, there will be resource strings that contain references to
specific emulators. For example, if you installed the Graphical User Interface for
the 68340 emulator, resource name strings will na&@340embedded in them.

After you have verified the software installation, you must start the X server and an
X window manager (if you are not currently running an X server). If you plan to

run the Motif Window Manager (mwm), or similar window manager, continue with
Step 3a of these instructions. If you plan to run HP VUE, skip to Step 3b of these
instructions.

540

Chapter 15: Installation
Installing HP 9000 Software

Step 3a. Start the X server and the Motif Window .
Manager (mwm)

If you are not already running the X server and a window manager, do so now. The

X server is required to use the Graphical User Interface because it is an X Windows

application. A window manager is not required to execute the interface, but, as a
practical matter, you must use some sort of window manager with the X server.

Start the X server by enterind1start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating system
documentation if you do not know about using X Windows and the X server.

After starting the X server and Motif Window Manager, continue with step 4 of
these instructions.

Step 3b. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE, do so
now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

Step 4. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "/usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/*, you need to set the HP64000 environment variable.

541

Chapter 15: Installation
Installing HP 9000 Software

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "sh" or "ksh"; if you're using "csh", environment variables are set
using the "setenv <VARIABLE> <value>" command.

Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server _number>.<screen_number>
export DISPLAY

For example:

DISPLAY=myhost:0.0; export DISPLAY

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

HP64000=/usr/hp64000; export HP64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

HP64000=/users/team/usr/hp64000; export HP64000

542

Chapter 15: Installation
Installing HP 9000 Software

3 Set the PATH environment variable to includeukghp64000/bindirectory by
entering

PATH=$PATH:$HP64000/bin; export PATH

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

4 Set the MANPATH environment variable to include tisehp64000/manand
usr/hp64000/contrib/mandirectories by entering

MANPATH=$MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

543

Chapter 15: Installation
Installing Sun SPARCsystem Software

Installing Sun SPARCsystem Software

This section shows you how to install the Graphical User Interface on Sun
SPARCsystem workstations. These instructions also tell you how not to install the
Graphical User Interface if you want to use just the conventional Softkey Interface.

This section shows you how to:
1 Install the software from the media.

2 Startthe X server and OpenWindows.

3 Set the necessary environment variables.
4 Verify the software installation.
5

Map your function keys.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the conventional Softkey Interface instead of the Graphical

User Interface, you can save about 3.5 megabytes of disk space by not installing the
XUI suffixed filesets. (Also, if you choose not to install the Graphical User

Interface, you will not have to use a special command line option to start the

Softkey Interface.)

Refer to theSoftware Installation Notictor software installation instructions.
After you are done installing the software, return here.

544

Chapter 15: Installation
Installing Sun SPARCsystem Software

Step 2. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is required to
run the Graphical User Interface because it is an X application.

Start the X server by enterifgsr/openwin/bin/openwinat the UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 3. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/*, you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "csh"; if you're using "sh", environment variables are set in the
"<VARIABLE>=<value>; export <VARIABLE>" form.

The DISPLAY environment variable is usually set bydhenwin startup script.
Check to see that DISPLAY is set by entering

echo $DISPLAY
If DISPLAY is not set, you can set it by entering

setenv DISPLAY=<hostname>:<server_number>.<screen_number>

545

Chapter 15: Installation
Installing Sun SPARCsystem Software

For example:
setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries used

by the HP 64000 products. Again, if you installed relative to /users/team, you
would enter

setenv HP64000 /users/team/usr/hp64000
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

Set the PATH environment variable to includeubghp64000/bindirectory by
entering

setenv PATH ${PATH}:${HP64000}/bin

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

546

Chapter 15: Installation
Installing Sun SPARCsystem Software

4 Set the MANPATH environment variable to include tise’hp64000/manand
usr/hp64000/contrib/mandirectories by entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}.${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

5 If the Graphical User Interface is to run on a SPARCsystem computer that is not
running OpenWindows, include the /usr/openwin/lib directory in
LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/ust/openwin/lib

Step 4. Verify the software installation

A number of product filesets were installed on your system during the software
installation process. Due to the complexity of installing on NFS mounted file
systems, a script that verifies and customizes these products was also installed.
This stand alone script may be run at any time to verify that all files required by the
products are in place in the file system. If required files are not found, this script
will attempt to symbolically link them from the $HP64000 install directory to their
proper locations.

* Run the scripgHP64000/bin/envinstall

547

Chapter 15: Installation
Installing Sun SPARCsystem Software

Step 5. Map your function keys

If you are using the conventional Softkey Interface, map your function keys by
following the steps below.

1 Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your SHOME directory.

2 Remove or comment out the following line from your .xinitrc file:

xmodmap -e 'keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out those
lines also.

3 Add the following to your .profile or .login file:

stty erase "H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be used
for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for the
Softkey Interface. All you have to do is set the KEYMAP variable. If you use
OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the directory
/usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of the
$PATH definition, and add the following line to your .profile:
setenv OPENWINHOME /usr/openwin

After you have mapped your function keys, you must start the X server and an X
window manager (if you are not currently running an X server).

548

Chapter 15: Installation
Verifying the Installation

Verifying the Installation

This section shows you how to:
» Determine the logical name of your emulator.
» Start the emulator/analyzer interface for the first time.

» Exit the emulator/analyzer interface.

Step 1. Determine the logical name of your
emulator

Thelogical nameof an emulator is a label associated with a set of communications
parameters in theHP64000/etc/64700tab.ndile. The 64700tab.net file is placed
in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.nett the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

Examples A typical entry for a 68340 emulator connected to the LAN would appear as
follows:
#

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#

lan: em68340 m68340 21.17.9.143

549

Chapter 15: Installation
Verifying the Installation

A typical entry for a 68340 emulator connected to an RS-422 port would appear as
follows:

#

| | | |Xpar|Parity|Flow|Stop|Char

Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type |Name| Device | | |XON

| | | |OFF | NONE |RTS |2 |8

#

”serial: em68340

m68340 myhost /dev/iemcom23 OFF NONE RTS 2 8

Step 2. Start the interface with the emul700
command

Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN or to your host system.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

Wait a few seconds to allow the emulator to complete its startup initialization.

Choose a terminal window from which to start the Graphical User Interface.

Start the Graphical User Interface by entesngil700command and giving the
logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/binis in your path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, #r@aul700command will start the

550

Example

Chapter 15: Installation
Verifying the Installation

Graphical User Interface. Otherwigeul700starts the conventional Softkey
Interface.

You should include an ampersand ("&") with the command to start the Graphi
User Interface as a background process. Doing so frees the terminal window where
you started the interface so that the window may still be used.

Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the conventional Softkey Interface under X Windows,
but you must include a command line argumeintail700to override the default
Graphical User Interface. Start the conventional interface by entering

emul700 -u skemul <logical name>

Suppose you have discovered that the logical name for a 68340 emulator connected
to the LAN is "em68340". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bir

emul700 em68340

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

551

Chapter 15: Installation
Verifying the Installation

ewlett Packard Emulator/Analyzer: em68340 (m68340

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
< Your Key = | Make |Disp Src Prev |Hun Aferto() | Break | Step Asm

O Trecall

STATUS: Starting new session

552

Chapter 15: Installation
Verifying the Installation

Step 3. Exit the Graphical User Interface

Position the mouse pointer over the pulldown menu named "File” on the menu bar
at the top of the interface screen.

Press and hold the command select mouse button until the File menu appears.

While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

553

554

16

Installing/Updating Emulator
Firmware

555

Installing/Updating Emulator Firmware

If you ordered the HP 64751A 68340 emulator probe and the HP 64748C
emulation control card together, the control card contains the correct firmware for
the HP 64751A.

However, if you ordered the HP 64751A and the HP 64748C separately, or if you
are using a HP 64748C that has been used previously with a different emulator
probe, you must download the correct firmware into the emulation control card.

The 68340 emulator firmware is included with the emulator/analyzer interface
software, and the program that downloads emulator firmware is included with the
HP B1471 64700 Operating Environment product.

(The firmware, and the program that downloads it into the control card, are also
included with the 68340 emulator probe on an MS-DOS format floppies. The
floppies are for users that do not have hosted interface software.)

Before you can update emulator firmware, you must have already installed the
emulator into the HP 64700, connected the HP 64700 to a host computer or LAN,
and installed the emulator/analyzer interface and HP B1471 software as described
in the "Installation" chapter.

This chapter describes how to:
* Update firmware with the "progflash" command.

» Display current firmware version information.

556

Chapter 16: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

To update emulator firmware with "progflash"

Enter theprogflash -v <emul_name> <products ...2ommand.

Theprogflash command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The-v option means "verbose". It causes progress status messages to be displayed
during operation.

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file.

The <products> option names the products whose firmware is to be updated.

If you enter theorogflash command without options, it becomes interactive. If you
don't include the <emul_name> option, it displays the logical names in the
/usr/hp64000/etc/64700tab.net file and asks you to choose one. If you don't
include the <products> option, it displays the products which have firmware update
files on the system and asks you to choose one. (In the interactive mode, only one
product at a time can be updated.) You can abort the interpatiyash

command by pressing <CTRL>c.

progflash will print "Flash programming SUCCEEDED" and return O if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

557

Chapter 16: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

Examples To update the "em68340" emulator firmware:

$ progflash <RETURN>

HPB1471-19309 A.05.00 03Jan94
64700 SERIES EMULATION COMMON FILES

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1988

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

Logical Name Processor
1 em68k m68000
2 em80960 i80960
3 em68340 m68340

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)
To update firmware in the HP 64700 that contains the 68340 emulator, enter "3".

Product
164700
2 64703/64704/64706/64740
364744
4 64760
564751

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64751A 68340 emulator firmware, enter "5".

Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

558

Chapter 16: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from '/usr/hp64000/inst/update/64751.cfg’
ROM identifier address = 2FFFFOH

Required hardware identifier = 1IFF4H

Control ROM start address = 280000H

Control ROM size = 40000H

Control ROM width = 16

Programming voltage control address = 2FFFFEH

Programming voltage control value = FFFFH

Programming voltage control mask = OH

Rebooting HP64700...

Checking Hardware id code...

Erasing Flash ROM

Downloading ROM code: /usr/hp64000/inst/update/64751.X
Code start 280000H (should equal control ROM start)
Code size 2348CH (must be less than control ROM size)

Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
$

You could perform the same update as in the previous example with the following
command:

$ progflash -v em68340 64751 <RETURN>

559

Chapter 16: Installing/Updating Emulator Firmware
To display current firmware version information

To display current firmware version information

* Use the Terminal Interfaceer command to view the version information for
firmware currently in the HP 64700.

When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with thed_commandcommand. For example:

display pod_command <RETURN>
pod_command "ver" <RETURN>

Examples The Terminal Interfaceer command displays information similar to:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64751A Motorola 68340 Emulator
Version: A.00.00 26Mar92
Control: HP64748C Emulation Control Board
Speed: 16.7 MHz
Memory: 260 Kbytes
Bank 0: HP64171A 256 Kbyte 35ns Memory Module

HP64740 Emulation Analyzer
Version: A.02.02 13Mar91

560

Chapter 16: Installing/Updating Emulator Firmware
If there is a power failure during a firmware update

If there is a power failure during a firmware
update

If there is a power glitch during a firmware update, some bits may be lost duri
the download process, possibly resulting in an HP 64700 that will not boot up.

[J Repeat the firmware update process.

L] If the HP 64700 is connected to the LAN in this situation and you are unable to
connect to the HP 64700 after the power glitch, try repeating the firmware update
with the HP 64700 connected to an RS-232 or RS-422 interface.

561

562

Glossary

access mode Specifies the types of cycles used to access target system me
locations. For example a "byte" access mode tells the monitor program to us
load/store byte instructions to access target memory.

analyzer An instrument that captures data on signals of interest at discreet
periods.

background The emulator mode in which foreground operation is suspended so
the emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor address space.

background emulation monitor ~ An emulation monitor that does not execute
as part of the user program, and therefore, operates in the emulator’'s background
mode.

display mode When displaying memory, this mode tells the emulator the size of
the memory locations to display. When modifying memory, the display mode tells
the emulator the size of the values to be written to memory.

embedded microprocessor system The microprocessor system which the
emulator plugs into.

emulation bus analyzer The internal analyzer that captures emulator bus cycle
information synchronously with the processor’s clock signal.

emulation monitor program A program that is executed by the emulation
processor which allows the emulation controller to access target system resources.
For example, when you display target system memory locations, the monitor
program executes microprocessor instructions that read the target memory locations
and send their contents to the emulation controller.

emulator An instrument that performs just like the microprocessor it replaces, but
at the same time, it gives you information about the operation of the processor. An
emulator gives you control over target system execution and allows you to view or

563

Glossary

modify the contents of processor registers, target system memory, and 1/0
resources.

foreground The mode in which the emulator is executing the user program. In
other words, the mode in which the emulator operates as the target microprocessor
would.

global restart When the same secondary branch condition is used for all terms in
the analyzer's sequencer, and secondary branches are always back to the first term.

prestore The analyzer feature that allows up to two states to be stored before
normally stored states. This feature is useful when you want to find the cause of a
particular state. For example, if a variable is accessed from many different places in
the program, you can qualify the trace so that only accesses of that variable are
stored and turn on prestore to find out where accesses of that variable originate
from.

primary sequencer branch Occurs when the analyzer finds the primary branch
state specified at a certain level and begins searching for the states specified at the
primary branch’s destination level.

real-time Refers to continuous execution of the user program without
interference from the emulator. (Such interference occurs when the emulator
temporarily breaks into the monitor so that it can access register contents or target
system memory or 1/O.)

secondary sequencer branch ~ Occurs when the analyzer finds the secondary
branch state specified at a certain level before it found the primary branch state and
begins searching for the states specified at the secondary branch’s destination level.

sequence terms Individual levels of the sequencer. The analyzer provides 8
sequence terms.

sequencer The part of the analyzer that allows it to search for a certain sequence
of states before triggering.

sequencer branch Occurs when the analyzer finds the primary or secondary
branch state specified at a certain level and begins searching for the states specified
at another level.

target system The microprocessor system which the emulator plugs into.

564

Glossary

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the external
analyzer) and stored in trace memory.

trigger The captured analyzer state about which other captured states are stored.
The trigger state specifies when the trace measurement is taken.

565

566

Index

about, trigger position specificatiab37
absolute count, in the trace displag;l
absolute files374
loading,160
loading without symbols61
storing memory contents intb62
absolute status, in the trace disp2§5
access mod&63
access size (target memord49
action keys26
custom322
operation85
with command files322
with entry buffer83, 85
activity measurements (SPMB69-283
additional symbols for addresx[7
confidence leveR78
error tolerance?278
interpreting report76
mean 276
relative and absolute coungy7
standard deviatior277
symbols within range277
trace command setupyl
address (analyzer state qualifier softk@gh, 391
address overlays, memory mappihgl
address qualifier35
address range file format (SPMT measuremets),
after, trigger position specificatio37
altitude, operating and non-operating environmet@g,
ambiguous address error messdgé,
analyzerb63
arming other HP 64700 Series analyzbrs,
breaking emulator execution into the monitgr244
breaking execution of other HP 64700 Series emuldiors,

567

Index

count qualifiers242
definition, 4
general descriptior,
occurrence coung39
prestore qualifier241
state qualifiers235
storage qualifier40
trace at EXECUTE305
trigger condition237
using the222
analyzer status
occurrence left informatior226
sequence term informatiop26
app-defaults directory
HP 9000 computer$00
Sun SPARCsystem computes80
application resource
SeeX resource
arm information225
arm_trig2, in trace commandi21

background123, 563
emulation monitor563
tracing,151

background monitor124
selecting123-132

bases (number231

bbaunload command, synt&40

before, trigger position specificatio?37

binary numbers231

blocks (emulation memory)
size of,133

BNC
connectorb, 298
trigger signal 300

break command, 76
syntax,341

break on analyzer trigge244

break on guarded memory accext3

breakpoints34
copying to file,215
breaks on write to ROM,50

568

Index

cables
emulator probe, lengtd91
power,533
cascade menu6
cautions
antistatic precaution§11
BNC accepts only TTL voltage leve)3
CMB 9-pin port is NOT for RS-232@G01
do not use probe without pin extends,
emulator suspension rating of 29.5 481
powering OFF the HP 647083
protect emulator against static dischafg,
rear panel, do not stand HP 64700%i5H
characteristics, emulataty8-492
characterization of memor$35
chip selects, access emulation memory wli#4,
class name, X application$98
client, X,314
clock source selection, emulator configuratibt9
CMB (coordinated measurement biz98
EXECUTE line,300, 342
HP 64700 connectiod01
READY line, 299
signals,299
TRIGGER line,299
cmb_execute commang06, 342
color scheme316, 320, 502
column width, trace display optioR60
columns in main display arezl7
command buttong7
command files376
other things to know aboutp0
passing parametei89
command line27
Command Recall dialog bok8
Command Recall dialog box, operati&d,
copy-and-paste to from entry buffée
editing entry area with popup mer3
editing entry area with pushbutto®2,
entering command9l
entry area27

569

Index

executing commandSl

help,94

keyboard use 085-97

on-line help97

recalling commands with dialog b4}

turning on or off90, 317
command paste mouse butt@,
Command Recall dialog box operati&6,
command select mouse butt@s,
commands95

combining on a single command lif9&,

completion 95

editing in command line entry aré&®2-93

entering in command lin&1

executing in command lin1

keyboard entry95

line erase96

map,142

recall,96

recalling with dialog box94

summary 339

word selection96
communications ports

electrical characteristic490

physical characteristic491

comparison of foreground/background monité&s}

configuration context
displaying from configuration windov,17

configuration, emulator
background states, tracirth1
breaks on writes to ROMS50
exiting the interfacel 18
loading from file,118
modifying a section]13
monitor entry after] 20
monitor selection]123-132
program counter48
restrict to real-time rund,20
starting the interfacd,11
storing,115
supervisor stack pointet48

570

context

changing directory in configuration windo®16
changing directory in emulator/analyzer winddw?

changing symboll 73

displaying directory from configuration window17
displaying directory from emulator/analyzer winddw?2

displaying symbol172
coordinated measuremer36,7

break_on_trigger syntax of the trace comm&04,

definition, 298
copy command343-347

breakpoints215

data,215, 344

display,215, 344

error_log,216, 344

event_log216, 344

global symbols216, 345

help,345

local_symbols_in216, 345

memory,215, 345

pod_command?16, 346

registers215, 346

software breakpoint846

status216, 346

trace,215, 346
copy-and-paste

addresses1

from entry buffer84

multi-window, 81, 84

symbol width,81

to entry buffer80
count absolute/relative, trace display opt@8
COUNT option to trace commang}8-349
count qualifiers242
count, occurrence39
CPU in wait state, status messatie, 136
cursor button28

data
copy command344
display command351
data (analyzer state qualifier softke335, 392

Index

571

Index

data values204-205
adding items to the existing displ&05
clearing the display and adding a new ite06
copying to a file215
displaying,204
data values, displaying§8
decimal number31
default trace comman@d24
default trace display, returning @63
demo target system/8
demos, setting u@25-327
depth of the trac€30
dequeued trace displ&351
design considerations (target syste#78
device table file32, 65-66
dialog box,85
Command Recall, operatiod6, 94
Directory Selection] 72
Directory Selection, operatio5, 88
Entry Buffer Recall, operatio®3, 86
File Selection, operatio86-87
Trace Specification Selection, operati2B0
dimensions
emulator491
probe 491
directory context
changing in configuration windowi,16
changing in emulator/analyzer windo\w,2
displaying from configuration windovi,17
displaying from emulator/analyzer windo®z 2
Directory Selection dialog box operati@%, 88
display area?27
columns 317
copying to file,215
lines,317-318
display command350-355
data,351
error_log,351
event_log351
global_symbols352
local_symbols_in352

572

memory,356-359
memory mnemonic33, 199
pod_command352
registers192-197, 352
simulated 0217, 352
software_breakpoint852
status224, 353
symbols,163
trace,228, 360-363
display mode563
display trace250-263
about line numbeg52
absolute forma255
count absolute/relativ@61
default,263
dequeued?51

disassemble from line numb&§3

instruction cycles only254
mnemonic format256
offset by,262

positioning, left/right229
positioning, up/dowrn229
source line inclusiorg57

symbol information inclusior59

width of columns260
displaying

simulated io screer219
displays, copying344
don't care digits232
downloading absolute file§, 160
DTACK interlock, 136
dual-port emulation memorg20

duration measurements (SPMZ$4-292

average time289
confidence leveR90

error tolerance?290
interpreting report289
maximum time 289
minimum time,289

number of intervals89
recursion consideration284

Index

573

Index

selecting 287
standard deviatior290
trace command setup85

edit
command line entry area with popup me3,
command line entry area with pushbutt®,
file, 212, 317
file at addres212, 317
file at program countep12
file at symbol from symbols scree2i,.2
file from memory display screed12
8-bit memory, substituting emulation memory fb34
electrical characteristics of the emulatf3
embedded microprocessor syst&ei
emul700, command to start the emulator/analyzer intetéace,
emulation bus analyzes63
emulation memoryl33
8-bit, substituting for134
block size 133
dual-port,120
loading absolute file4,60
size of,133
synchronizing to target syste36
emulation monitor563
function of,123
emulation session, exiting2
emulator 563
configuring the 108
device table file32, 65-66
dimensions491
electrical characteristic4,/8
environmental characteristics dB2
error message4s3
general descriptior,
multiple start/stop5, 305-306
physical characteristic490
plugging into a target systef
probe cable lengti491
restrict to real-time run4,20
running from target reset,/5
specifications and characteristidg3-492

574

status lines, predefined values 285

using the 154
weight, 491
emulator configuration

break processor on write to ROWG0

clock selection119

exiting the configuration interfac&18

load command374
loading from file,118
modify command379

modifying a configuration sectiot13

monitor entry after120

starting the configuration interfackl 1

storing,115
target memory access si2€9

trace background/foreground operatibsl
emulator limitations, external DMA suppot34

emulator probe
access to target systea90
cable length491
dimensions491
pin alignmentg0
power requirementg,78
target system connectiob?
emulator status, displayingl16
emulator/analyzer interface
exiting, 47, 71-72
running in multiple windows65
starting,65-68
emulator/analyzer window
changing directory context,72
changing symbol context,73
end command}7, 72, 364-365
entry
pod commands,04
simulated i0218
entry buffer27
address copy-and-paste &4,
clearing,80
copy-and-paste fron84
copy-and-paste t&0

Index

575

Index

Entry Buffer Recall dialog box27, 83
multi-window copy-and-paste froré4
multi-window copy-and-paste t81
operation83
recall button27
recalling entries83
symbol width and copy-and-paste &4,
text entry 80
with action keys83, 85
with pulldown menus33
Entry Buffer Recall dialog box operatio®t
environment variables (UNIX)
HP64KPATH,102
HP64KSYMBPATH,412
PATH, 65
Softkey Interface, setting while ia09
environmental characteristics of the emula46L
eram, memory characterizatidr§5
erom, memory characterizatidk85
error messaged32
analyzerd75
emulator453
general and system error/stata?
Terminal Interface453
error_log
copy command216, 344
display command351
event_log69
copy command216, 344
display command351
EXECUTE
CMB signal,300
tracing at305
exit

emulation session,2

emulator/analyzer interfacél-72
exit, emulator/analyzer interfacé/
expression31

--EXPR-- syntax366-368

576

Index

F fast termination modé,34
file
breakpoints screen ta15
data values screen @15
display area ta215
editing,212
editing at addresg12
editing at program counte212
editing at symbol from symbols scre@i?2
editing from memory display scree2t,2
emulator configuratior], 15
emulator configuration load, 18
emulator status screen 1,6
error log t0,216
event log to216
global symbols ta216
local symbols t0216
memory to215
pod commands screen 1,6
registers t0215
trace listing to215
file extensions
.EA and .EB, configuration file4,15
file formats
address ranges for SPMT measuremen3,
time ranges for SPMT measureme&/
File Selection dialog box operatiddg-87
firmware updatesh
firmware version560
foreground,123, 564
foreground monitor1 24
advantages/disadvantag&24
customizing124
example of usingl30
memory space requireti24
selecting123-132
single-step processdr26, 128, 130
source file location] 24
foreground operation, tracing51
formal parameters (command file8y,
forward command, synta87/1

577

Index

function codes

lines to analyzeR34

mapping memoryl41

memory mappingl41

need for separately linked modulég1
functions, step ovef,99

G global restart qualifiei247, 564

global symbols33, 232, 352
copy command345
display commandl 64, 352
initializing the SPMT measurement witi/3
to file, 216

ground strap52

guarded memory access#85, 141, 243

H halfbright,91-92
halt, trace227
hand pointer27, 79
hardware
HP 9000 memory needs)8
HP 9000 minimum performancg)8
HP 9000 minimums overvieVs08
SPARCsystem memory nee&69
SPARCsystem minimum performan&9
SPARCsystem minimums overvies09
help
command line94, 372-373
copy command345
help index89
on-line,97
softkey driven informatiorf7
help index, displaying89
hexadecimal numberg32
HP 64700 Operating Environment, minimum verskf®g
HP 9000
700 series Motif librarie§08
HP-UX minimum version508
installing software538-543
minimum system requirements overvi&@g3
HP 98659 RS-422 Interface Cafd,
HP-UX, minimum version508

578

Index

HP64KPATH, UNIX environment variabl&p2
HP64KSYMBPATH environment variablé12

IEEE-695 absolute file format,60
input
pod commands,04
simulated i0218
input scheme316, 502
installation,508
hardware510-536
HP 9000 softwares38-543
SPARCsystem softwarb44-548
instance name, X applicatior97-498
instruction cycles in trace, displaying onds4
interactive measuremeng7
interface, emulator configuration
exiting, 118
modifying a section113
starting,111
interface, exiting72
interlock DTACK, 136
interrupts, 124
inverse video
graphical interface demo/tutorial file326
source line display optio257

keyboard
accelerators/8
choosing menu itemgy7
focus policy,78
pod commands,04
simulated i0218
keyboard_to_simio, modify commargB80

label scheme316, 320, 502
LANG environment variables02
LD_LIBRARY_PATH environment variabl&47
libraries, Motif for HP 9000/70%08
line numbers (source file), symbol displags
line numbers (trace)

disassembling fron253

displaying about252

579

Index

lines in main display ared17-318
list, trace,228
load command374-375
absolute files160
configuration 374
trace,265-266, 375
trace_spe@65, 375
local symbols232
copy command345
display commandl 65, 352
initializing the performance measurement W3
to file, 216
locked, end command optior
log_commands commang{6-377

map command,42
mapping memoryl33-147
memory,345
activity measurements (SPMBg9, 276
characterization of,35
contents listed as asterisk (345
copy command345
display command356-359
displaying,198
displaying at an addres¥)2
displaying repetitively203
dual-port emulatiord 20
loading programs intd,60
mapping,133-147
mnemonic format display,99
modify command380
modifying, 203
re-assignment of emulation memory blocks in mapp#s,
store commandi10
to file, 215
memory mapping
block size 133
function code specificatioi41
overlaid addresse$41
resolution of mapped rangds33
using emulation memory in place of tardet?

580

memory recommendations
HP 9000508
SPARCsysten09
menus
editing command line with popup3
hand pointer means pop&y,, 79
pulldown operation with keyboardy
pulldown operation with mous@g-77
messages
Terminal Interface errod53
mnemonic information in trace listing56
mnemonic memory displag3, 199
setting the source/symbol mod266
modes, source/symba06
modify command378-383
configuration,379
keyboard to_simio380
memory,380
register,197, 381
software_breakpoint881
modify _command, trace command optiaB80
module duration measurements (SPMZBY
module usage measurements (SPNZ8)
monitor (emulation)
address 0f126, 129
comparison of foreground/backgroud@4
foreground monitor filenamé&29
foreground or backgroundi23-132
function of,123
selecting123-132
selecting entry after configuratiob20
Motif, HP 9000/700 requirements)8
mouse
buttons .29
choosing menu itemgp-77
multi-window
copy-and-paste from entry buff@4
copy-and-paste to entry buff&i
multiple command®5
multiple emulator start/stop,

Index

581

Index

N name_of module commar{l0

nesting command file98

NORMAL key, 338, 366

nosymbols163

notes
"perf.out" file is in binary forma294
breakpoint locations must contain opcodel, 186
CMB EXECUTE and TRIGGER signal300
measurement errors on recursive/multiple entry rout?@s,
re-assignment of emulation memory blocks by mapige,
selecting internal clock forces resk20
some compilers emit more than one symbol for an ad@€8gs,
step command doesn’t work when CMB enabBih
trigger found but trace memory not fille2R9

number base231

number of source lines, trace display opt25i

numerical value231

O occurrence countg39, 245
octal numbers231
offset by, trace display optio862
on-line help97
on_halt, trace command opti@13
only, trace command storage qualifia40
operating system
HP 64700 Series minimum versi&9
HP-UX minimum version508
SunOS minimum versios09
operators232
overlapping addresses, memory mapplr,

P parameter passing in command fil@8,
parent symbol, displaying from symbols screks9
paste mouse buttoR9
PATH, UNIX environment variablé&g5
perf.out, SPMT output fileg74, 288, 293-295, 384
perf32, SPMT report generator utili68, 293-294
interpreting report76, 289
options,295
using the295
performance measurements
Seesoftware performance measurements

582

Index

performance_measurement_end commagad,
performance_measurement_initialize comm&8a&;386
performance_measurement_run commasd;388
physical characteristics of the emula#80
pin extender60
platform

HP 9000 memory needsQ8

HP 9000 minimum performancg)8

SPARCsystem memory nee869

SPARCsystem minimum performan&@9
platform scheme316, 501
plug-in,52
pod commands89-390

copy command346

copying to file,216

display command352

display screerl04

keyboard input104
popup menus

command line editing wit3

hand pointer indicates presengé, 79
positioning the trace display left/rigl229
positioning the trace display up/dova2,9
power cables

connecting533

correct typeb33
power failure during firmware update6l
power requirements of emulator proBgg
prestore241
prestore qualifier241
prestore qualifier41, 564
primary branches (analyzer sequences),
processor typ&6
progflash example&s58
program activity measurements (SPMA§9, 276
program counter

mnemonic memory displagd

reset valuesl 48

running from,174
pulldown menus

choosing with keyboard,7

583

Index

choosing with mousé&,6-77
pushbutton select mouse buttas,

QUALIFIER, in trace comman@®91-393
qualifiers,235

count,242

prestore241

simple trigger237

storage240

RAM, mapping emulation or targeit35
READY, CMB signal,299
real-time executiorb64
real-time runs
commands not allowed durint20
commands which will cause bredlk1
restricting emulator td,20
restricting the emulator t4.20
recall buffer27
columns 323
initial content 323-324
lines,323
recalling entries33
recall, command®6
dialog box,94
recall, trace specifications dialog b@80
recursion in SPMT measuremeri84
registers
copy command346
display command39, 352
display/modify,192-197
modify, 197
modify command381
to file, 215
relative count, in the trace displ@&61
relative humidity, operating and non-operating environmdst,
release_system, end command opth,72, 115
repetitive display of memorg03
reset (emulator), commands which cause exit fiors,
reset command94
reset, run from175
resolution, memory mappeir33

584

resource
SeeX resource
RESOURCE_MANAGER propertp00
restart termz245, 247
restrict to real time rund 20
target system dependendp1
ROM
mapping emulation or target35
writes 10,135
RS-422, host computer interface cdid,
run commandl74, 395-396
from reset175

scheme files (for X resource8)15, 501
color scheme316, 320, 502
custom320-321, 503
input scheme316, 502
label scheme316, 320, 502
platform scheme316, 501
size scheme316, 502

scroll bar,27

secondary branch expressiégd

select mouse butto#9

selecting emulation monitot23-132

sequencer (analyze§64
branch 564
terms,245, 564
using the245-249

SEQUENCING, in trace commangD7-398

server, X314, 500

set command399-403

shell variables100

sig INT, 293

signal considerationd,78

signals, CMB299

simulated 1/0,108, 380
display command352
displaying screer17, 219
keyboard input218

size schemeg16, 502

softkey driven help informatio®,7

softkey pushbuttong7

Index

585

Index

softkeys 95
software
installation for HP 900(538-543
installation for SPARCsystems44-548
software breakpoint4,79-191
clearing,189
clearing all[191
copy command346
deactivating186
display command352
enable/disablel 81
modify command381
opcode locationg,84, 186
permanent, settind 84
re-activating,187
ROM code 179
setting,185
setting all,186
setting while running user cod0
software breakpoints list, displayintg0
software performance measureme€y,, 269-296
absolute informatior276
activity measurement269-283
adding trace274, 288
duration,284-292
end,384
ending,294
how they are mad@68
initialize, 385-386
initializing, 272, 287
initializing, default,272
initializing, duration measuremeng87
initializing, user defined range®73, 287
initializing, with global symbol273
initializing, with local symbols273
memory activity 269, 276
module duration284
module usage84
program activity269, 276
recursion284
relative information276

586

Index

restoring the current measuremem4, 288
run,387-388
running,293
trace command setupyl
trace display deptt271
source lines
set command}01
symbol display 165
trace display257
trace display, number @57
source/symbol modes, settirf)6
SPARCsystems
installing software544-548
minimum system requirements overvié@9
SunOS minimum versios09
specifications, emulato,78-492
specify command}04-405
SPMT (Software Performance Measurement Tool)
Seesoftware performance measurements
sq adv, captured sequence stad&
SRU (Symbolic Retrieval Utilities}12, 414
stack pointer, defining supervisa#8
static discharge, protecting the emulator probe ag&ipst,
status
copy command346
display command224, 353
status (analyzer state qualifier softke35, 392
predefined values fo235
status line27, 69
status messages, CPU in wait stag8, 136
status, emulator, copying to fil216
step command5, 177-178, 406-407
step over199
stop_trace commangd27, 408
storage qualifier240
store commana}09-410
absolute files160, 162
store trace comman@65-266
store trace_spec comma2b4
summary of command339
SunOS, minimum versiob09

587

Index

supervisor stack pointer, reset value3
--SYMB-- syntax411-418

symbol context
changing173
displaying,172
symbol file, loading 163
symbols,163, 232
displaying,163
displaying parent from symbols scre&f9
global to file,216
local to file,216
set command}02
--SYMB-- syntax411-418
trace display259
sync_sim_registers commanid,9
synchronous measuremerg85s
syntax conventiong838
system requirements
HP 64700 minimum versios09
HP 9000 overview508
HP-UX minimum version508
OSF/Motif HP 9000/700 requiremeni€)8
SPARCsystem overvievs09
SunOS minimum versios09

T t(starttrace) command24

tabs are, source line display opti@s,/

target memory
access sizd49
loading absolute file4,60
ROM, symbols for163

target systent64
access for emulator prob&0
contents (minimum78
dependency on executing coda;
design consideration478
plugging the emulator int&2
probe power requirement/8
processor signal consideratioA33
RAM and ROM,135

temperatures, operating and non-operating environmtds,

588

Index

terminal emulation window, openingl6
time range file format (SPMT measuremer2g)/
trace,565
at EXECUTE,305
copy command346
depth of 230
display command360-363
displaying the228
halting the 227
listing the,228
listing to file,215
load command375
loading,265-266
on_halt,243
prestore qualifier241
recalling trace specificationg30
starting the224
stopping the227
storage qualifier240
storage qualifier with prestor241
store command}10
storing,265-266
Trace Specification Selection dialog b880
trigger position237
trace command}20-423
default,224
loading and storing264-265
setting up for SPMT measuremertgl
trace display250-263
about line numberg52
absolute forma55
count absolute/relativ@61
default,263
depth, SPMT measuremerig,1
dequeued?51
disassemble from line numb@§3
instruction cycles only254
mnemonic format256
offset by,262
positioning, left/right229
positioning, up/dowrn?229

589

Index

source line inclusior57

symbol information inclusior59

width of columns260
trace display, setting the source/symbol mo2es,
trace signals (emulation analyze&t33
trace status displag24
trace_spec

load command375

store command}10
tracing background operatiotf1
tram, memory characterizatiot35
transfer addres4,75
trigger,565

break on244

condition,237

position,237

position, accuracy 0237

specifying a simple237
TRIGGER, CMB signal299
TRIGGER, in trace command24-425
trom, memory characterizatioh35
tutorials, setting ui325-327

undefined software breakpoiriff9

uploading memons

user (target) memory, loading absolute filtl8)
user progrant;64

values231
predefined for analyzer state qualifie285
version, firmware560

wait command426-427
command files, using i®8
warnings, power must be OFF during installatieilf
weight of the emulatod91
widget resource
SeeX resource
width of columns, trace display optid260
WINDOW, in trace command,28-429
windows
exiting emulator/analyzev,1

590

Index

opening additional emulator/analyzé$,
running the emulator/analyzer interface in multipk,
terminal emulation, opening16
workstation
HP 9000 memory needs08
HP 9000 minimum performancg)8
SPARCsystem memory nee869
SPARCsystem minimum performan&@9
write to ROM break150

X client, 314

X resource314
$XAPPLRESDIR directory500
$XENVIRONMENT variable 501
Xdefaults file,500
/usr/hp64000/lib/X11/HP64_schemB&63
app-defaults file500
class name for applicatior498
class name for widget498
command line option§01
commonly modified graphical interface resour@d$
defined, 497
general form497
instance name for applicatio®98
instance name for widge#97
loading order500
modifying resources, generall316-319
RESOURCE_MANAGER propert$00
scheme file system directoi03
scheme files, Graphical User Interfag@l
scheme files, name802
schemes, forcing interface to use certad,
Softkey.BW,502
Softkey.Color502
Softkey.Input502
Softkey.Label502
Softkey.Large502
Softkey.Small502
wildcard characte®98
xrdb, 500
xrm command line optiorp01

X server,314, 500

591

Index

X Window Systemg5
XEnv_68k_except symbol and effect on breakpoitig,

592

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer's facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

WARNING

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).
.

Protective conductor terminal. For protection against electrical shock in case of a
OR fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,

—;— as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

“rame or chassis terminal. A connection to the frame (chassis) of the equipment
| OR I thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

V4

Alternating or direct current (power line).

4

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	68340 Emulation and Analysis
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Plugging into a Target System
	Starting and Exiting HP 64700 Interfaces
	Entering Commands
	Configuring the Emulator
	Using the Emulator
	Using the Emulation Analyzer
	Making Software Performance Measurements
	Making Coordinated Measurements
	Setting X Resources

	Reference
	Emulator/Analyzer Interface Commands
	Error Messages
	Specifications and Characteristics

	Concept Guide
	Concepts

	Installation Guide
	Installation
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

