User’s Guide

HP B1466
68000 Series
Debugger/Simulator

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damagesimection

with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1989-1992, 1995, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

UNIX® is a registered trademark in the United States and othertcies,
licensed exclusively through X/Open Company Limited.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure bythe U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:
Edition 1 B1466-97003, November 1992

Edition 2 B1466-97004, July 1995

B1466-97003 ingrporates information which previously appeared in
B1466-92000, B1466-92001, B1466-97000, B1466-97001, B1466-97002,
64360-92003, 64360-97011, 64360-97008, and 64360-97009.

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

Debugging C Programs for
6800x/010/020/3xx Microprocessors

The HP B1466 68000 Series Debugger/Simulator is a debugging tool for
6800x/010/020/3xx miwprocessor code. The debugger loads and executes C
programs or assembly language programs using a simulator on your host
system.

With the Debugger, You Can ...

Browse and edit C and C+ + source files.

View C and C+ + functions on the stack.

Monitor variables as the program executes.

View assembly language code with source lines.

View registers and stack contents.

Step through programs by C or C+ + source lines or by assembly language
instructions.

Stop programs upon the execution of selected instructions or upon a read
or write of selected memory locations.

Create conditional breakpoints using macros.

Patch C or C+ + code without recoitipg.

Simulate input and output devices using your computer’s keyboard,
display, and file system.

Tune code by using the clock cycle count pseudo register to time code
modules during simulation.

Save and execute command files.

Log debugger commands and output.

Examine the inheritance relationships of C+ + classes.

With the Graphical Interface You Can ...

Use the debugger under an X Window System that supports O SF/Motif
interfaces.

Enter debugger commands usindlfown orpop-up menus.

Set source-level breakpoints using the mouse.

» Create custom action keys for commonly used debugger commands or
command files.

» Viewsource code, monitored data, registers, stack contents, and backtrace
information in separate windows on the debugger’s main display.

» Access on-line help information.

* Quickly enter commands using the guided syntax of the standard interface.

With the Standard Interface You Can ...

* Use the debugger with a terminal or terminal emulator.

* Quickly enter commands using guided syntax, command recall, and
command editing.

* Viewsource code, monitored data, registers, stack contents, and backtrace
information in separate windows on the debugger’s main display.

» Define your own screens and windows in the debugger’s main display.

» Access on-line help information.

Compatibility with Other Pr oducts

The debugger/emulator has been designed to work with HP-UX (version 8.0
or greater), SunOS, or Solaris (see listallation Noticefor version
requirements) and the following Hewlett-Packard langyagelucts:

HP B3640, Mobrola68000 Family C Cross Compiler, Version 4.00

HP B3641, Mobrola68000 Family Assembler, Linker, Librarian,
Version 2.00.

HP B1471, HP 64000-UX Operating Emmment Software, Version 6.20.

See the “Loading and Executing Programs” chapter if you are using the
Microtec language tools.

In This Book

This book is organized into five parts:

Part 1. Quick Start Guide

An overview of the debugger and a short lesson to get you started.

Part 2. User’s Guide

How to use the debugger to solve your problems.

Part 3. Concept Guide

Conceptual information on CPU simulation and on X resources.

Part 4. Reference

Descriptions of what each debugger command does|slethow the
debugger works, and a list afrer messages.

Part 5. Installation

How to install the debugger software on your computer.

Vi

Contents

Part 1

Quick Start Guide

Getting Started with the Graphical Interface

The Graphical Interface at a Glance

Pointer and cursor shapes 5

The Debugger Window 6
Graphical Interface Conventions 8
Mouse Buttons 9

Platform Differences 10

The Quick Start Tutorial 11

The Demonstration Program 11

To prepare to run the debugger 12
To start the debugger 13

To activate display area windows 14
To run until main() 15

To scroll the Code window 16

To display a function 17
Torununtilaline 18

To edit the program 19

To displayinit_system(jagain 20

To set a breakpoint 20

To run until the breakpoint 21

To patch code using a macro 22

To delete a single breakpoint 23
To delete all breakpoints 24

To step through a program 25

To run until a stack level 25

To step over functions 26

To step out of a function 26

To display the value of a variable 26
To change the value of a variable 27

Vii

Contents

To recall an entry buffer value 28

To display the address of a variable 29
To break on an access to a variable 30
To use the command line 31

To use a C printfcommand 31

To turn the cammand line off 32

To see on-line help 33

To end the debugging session 34

Part 2

User's Guide

Entering Debugger Commands
Starting the Debugger 41

Using Menus, the Entry Buffer, and Action Keys 42

To choose a glidown menu item using the mouse (method 1) 42
To choose a diidown menu item using the mouse (method 2) 43
To choose a diidown menu item using the keyboard 44

To choose pop-up menu items 45

To use pop-up menu shortcuts 46

To place values into the entry buffer using the keyboard 46

To copy-and-paste to the entry buffer 46

To recall entry buffer values 48

To edit the entry buffer 49

To use the entry buffer 49

To copy-and-paste from the entry buffer to the command line entry area
To use the action keys 50

To use dialog boxes 51

To access help information 55

Using the Command Line with the Mouse 56

To turn the covqmand line on or off 57

To enter acommand 58

To edit the command line using the command line pushbuttons 59
To edit the command line using the command fiop-up menu 60

viii

49

Contents

To recallcommands 60
To get help about the command line 61
To find commands which duplicate a menu selection 61

Using the Command Line with the Keyboard 62

To enter debugger commands from the keyboard 62

To edit the command line 64

To recall commands using the command line recall feature 64
To display the help window 65

Viewing Debugger Status 67

Debugger Status 67

Indicator Characters 68

CPU Simulated 68

Current Module 68

Last Breakpoint 68

To display information about the debugger version 69

Solving problems with the interface 70
If pop-up menusdontpopup 70

Loading and Executing Programs

Compiling Programs for the Debugger 72

Writing programs for simulation 72

68020 Module 8pport — CALLM and RTM 72
Using a Hewlett-Packard C Cross Compiler 73
Using Microtec Language Tools 75

Loading Programs and Symbols 78

To specify the location of C source files 78
To load programs 79

To load program code only 80

To load symbolsonly 81

To load additional programs 82

To turn cemand loading of symbols on or off 83

Stepping Through and Running Programs 84
To step through programs 84

Contents

To step over functions 85

To run from the current program counter (PC) address
To run from a start address 86

To run until a stop (break) address 87

To count simulated clock cycles 88

To add simulated wait states 89

Using Breakpoints 90

To set a memory access breakpoint 90

To set an instruction breakpoint 91

To set a breakpoint for a C+ + object instance 92
To set a breakpoint for overloaded C+ + functions

To set a breakpoint for C+ + functions in a class 93
To clear selected breakpoints 94

To clear all breakpoints 95

To display breakpoint information 96

To halt program execution on return to a stack level

Using Simulated Interrupts 100

To define simulated interrupts 100
To remove simulated interrupts 101

Restarting Programs 102

To reset the processor 102
To reset the program counter to the starting address
To reset program variables 103

Saving and Loading the CPU State 104
To save the current CPU state 104

Mapping Memory 105

To prevent access to memory locations 105

To prevent writing to memory locations 105

To allow access to memory locations 106

To display curreninemory map assignments 106

Accessing Input Ports 108

To set or alter input port status 108
To delete an input port 109

86

93

99

102

Contents

To rewind the input file associated with an input port 109
To display input port buffer values 110

Accessing Output Ports 111

To set or alter output port status 111

To delete an output port 112

To rewind the output file associated with an output port 112
To display output port buffer values 113

Accessing the UNIX Operating System 114

To fork a UNIX shell 114
To execute a UNIX command 115

Using simulator and emulator debugger products together

Using the Debugger with the Branch Validator 117
To unload Branch Validator data from programemory 117

Viewing Code and Data

Using Symbols 120

To add a symbol to the symbol table 120

To display symbols 121

To display symbols in all modules 122

To delete a symbol from the symbol table 122

Displaying Screens 124

To display the high-level screen 126

To display the assembly level screen 126

To switch between the high-level and assembly screens 126
To display the standard I/O screen 127

To display the next screen (activate a screen) 127

Displaying Windows 129

To change the active window 131

To select the alternate view of a window 132

To view information in the active window 133

To view information in the "More" lists mode 134
To copywindow contents to a file 135

xXi

116

Contents

To view commands in a separate window 136

Displaying C Source Code 137

To display C source code 137
To find first occurrence of a string 138
To find next occurrence of a string 138

Displaying Disassembled Assembly Code 140
To display assembly code 140

Displaying Program Context 141

To set current module and function scope 141

To display current module and function 142

To display debugger status 142

To display register contents 143

To list all registers 145

To display the function calling chain (stack backtrace) 146

To display all local variables of a function at the specified stack (backtrace)
level 149

To display the address of the C+ + object invoking a member function 150

Using Expressions 151

To calculate the value of a C expression 151

To display the value of an expression or variable 152
To display members of arsicture 153

To display the members of a C+ + class 154

To display the values of all members of a C+ + object 154
To monitor variables 155

To monitor the value of aregister 156

To discontinue monitoring specified variables 156
To discontinue monitoring all variables 157

To display C+ + inheritance relationships 157

To print formatted output to a window 158

To print formatted output to journal windows 158

Viewing Memory Contents 160

To compare two blocks of memory 160

To search a memory block for a value 160

To examine a memory area for invalid values 161
To display memory contents 162

Xii

Contents

Using Simulated 1I/O 163

How Simulated 1/O Works 164

Simulated 1/0O Connections 164

Special Simulated I/O Symbols 166

To enable simulated 1/O 166

To disable simulated 1/O 167

To set the keyboard I/O mode to cooked 167
To set the keyboard I/O mode toraw 168
To control blocking of reads 168

To interpret keyboard reads as EOF 169
To redirect I/O 169

To check resource usage 171

To increase I/O file resources 171

Editing Code and Data

Editing Files 174

To edit source code from the Code window 174

To edit an arbitraryfile 175

To edit a file based on an address in the entry buffer 175
To edit a file based on the current program counter 175

Patching Source Code 176

To change a variable using a C expression 176
To patch aline of code usinga macro 177

To patch C source code byinserting lines 178
To patch C source code by deleting lines 178

Editing Memory Contents 180

To change the value of one memory location 180
To change the values of a block of memory interactively 180
To copy a block of memory 181

To fill a block ofmemory with values 182
To compare two blocks of memory 182
To re-initialize all program variables 183

To change the contents of a register 183

Xiii

Contents

6 Using Macros and Command Files

Using Macros 187

To display the Macro Operations dialog box 191

To define a new macro interactively using the graphical interface 191
To use an existing macro as a template for a new macro 192
To define a macro interactively using the command line 193
To define a macro outside the debugger 194

To edit an existing macro 194

To save macros 195

To load macros 195

If macros do not load 195

To callamacro 196

To call a macro from within an expression 197

To call a macro from within a macro 197

To call a macro on execution of a breakpoint 198

To call a macro when stepping through programs 200

To stop a macro 201

To display macro source code 201

To delete a macro 202

Using Command Files 203

To record commands 204

To place comments in a command file 205

To pause the debugger 205

To stop conmand recording 206

To run a conmand file 206

To set command filereor handling 207

To append commands to an existing command file 208
To record commands and results iroarjnal file 208

To stop conmand and result recording toaujnal file 209
To open a file or device for read or write access 209
To close the file associated with a window number 210
To use the debugger in batch mode 211

7 Configuring the Debugger

Setting the General Debugger Options 215

To display the Debugger Options dialog box 215
To list the debugger options settings 215

Xiv

Contents

To change debugger options settings 215

To specify whether command file commands are echoed totiradl

window 216

To set automatic alignment for breakpoints and disassembly 216

To set backtrace display of bad stack frames 217

To specify demand loading of symbols 217

To select the microprocessor simulated 217

To select the interpretation of numeric literals (decimal/hexadecimal) 218
To specify exception prossing behavior 219

To specify step speed 220

Setting the Symbolics Options 221

To display symbols in assembly code 221

To display intermixed C source and assembly code 221
To convert module names upper case 222

To control case sensitivity of symbol lookups 222

Setting the Display Options 223

To specify the Breakpoint window display behavior 223

To specify the Breakpoint, Status, or Simulated 1/0 window display behavior
223

To display half-bright or inverse video highlights 224

To turn display paging on or off (more) 224

To specify scroll amount 225

Modifying Display Area Windows 226

To resize or move the active window 226

To move the Status window (standard interface only) 227

To define user screens and windows 228

To display user-defined screens 229

To erase standard 1/0O and user-defined window contents 230
To remove user-defined screens and windows 230

Saving and Loading the Debugger Configuration = 232
To save the current debugger configuration 232

To load a startup file 233

Setting X Resources 234

Where resources are defined 234
To modify the debugger’s graphical interface resources 236

Contents

To use customized scheme files 240
To set up custom action keys 242
To set initial recall buffer values 243

Part 3

Concept Guide

X Resources and the Graphical Interface

An X resource is user-definable data 248

A resource specification is ame and a value 248

Don't worry, there are shortcuts 249

But wait, there is trouble ahead 250

Class and instance apply to applicationsaswell 251

Resource specifications are found in standard places 252
Loading order resolves conflicts between files 253

The app-defaults file documents the resources you can set 254
Scheme files augment other X oesce files 254

You can create your own seime files, if you boose 255

Scheme files continue the load sequence for ¥uees 255

You can force the debugger’s graphical interface to use certain schemes
Resource setting - general procedure 258

Part 4

Reference

Debugger Commands

Command Summary 262

Breakpoint Commands 262
Session Control Commands 262
Expression Commands 263

File Commands 263

Memory Commands 264
Program Commands 265

256

Contents

Symbol Commands 265

Window Commands 266

Breakpt Access 267

Breakpt Clear_All 269

Breakpt Delete 270

Breakpt Erase 271

Breakpt Instr 272

Breakpt Read 274

Breakpt Write 275

Debugger Directory 276

Debugger Execution Display_Status 277
Debugger Execution |O_System 278
Debugger Execution Load_State 281
Debugger Execution Reset_Processor 282
Debugger Execution Save_State 283
Debugger Host_Shell 284

Debugger Help 286

Debugger Level 287

Debugger Macro Add 288

Debugger Macro Call 291

Debugger Macro Display 292
Debugger Option Command_Echo 293
Debugger Option General 294
Debugger Option List 298

Debugger Option Symbolics 299
Debugger Option View 302
Debugger Pause 305

Debugger Quit 306

Expression C_Expression 307
Expression Display Value 308
Expression Fprintf 311

Expression Monitor Clear_All 316
Expression Monitor Delete 317
Expression Monitor Value 318
Expression Printf 321

File Command 323

File Error_Conmand 324

File Journal 325

File Log 327

File Startup 329

File User_Fopen 331

Xvil

Contents

File Window_Close 333
Memory Assign 334
Memory Block_Operation Copy

Memory Block_Operation Match
Memory Block_Operation Search

Memory Display 345
MemoryHex 347

Memory Inport Assign 348
Memory Inport Delete 351
Memory Inport Rewind 352
Memory Inport Show 353
Memory Map Guarded 354
Memory Map Read_Only 355
Memory Map Show 356
Memory Map Write_ Read 357
Memory Outport Asign 358
Memory Outport Delete 361
Memory Outport Rewind 362
Memory Outport Show 363
Memory Register 364

Memory Unload_BBA 366
Program Context Display 369
Program Context Expand 370
Program Context Set 371
Program Display_Source 372
Program Find_Source Next 373
Program Find_Source Occurrence
Program Interrupt Add 376
Program Interrupt Remove 378
Program Load 379

Program Pc_Reset 382
Program Run 383

Program Step 386

Program Step Over 388
Program Step With_Macro 390
Symbol Add 391

Symbol Browse 394

Symbol Display 395

Symbol Remove 400

336
Memory Block_Operation Fill 337
339
341
Memory Block_Operation Test 343

374

Xviii

10

Window Active 402
Window Cursor 404
Window Delete 405
Window Erase 406
Window New 407
Window Resize 410
Window Screen_On 411
Window Toggle_View 412

Contents

Expressions and Symbols in Debugger Commands

Expression Elements 417

Operators 417
Constants 419

Symbols 424

Program Symbols 424
Debugger Symbols 425
Macro Symbols 425
Reserved Symbols 426
Line Numbers 426

Addresses 427

Code Addresses 427
Data and Assembly Level Code Addresses
Address Ranges 427

Keywords 429
Forming Expressions 430
Expression Strings 431

Symbolic Referencing 432

Storage Classes 432
Data Types 433

Special Casting 436
Scoping Rules 437
Referencing Symbols 437
Evaluating Symbols 441

427

XiX

Contents

Stack References 442

11 Predefined Macros
break_info 448

byte 450
close 451
dword 452
error 453
fgetc 454
fopen 455
getsym 456
inport 457
isalive 458
key get 459

key stat 460
memchr 461
memclr 462

memcpy 463
memset 464
open 465
outport 467
read 468
reg_str 469
showversion 470
strcat 471
strchr 472
strcmp 473
strcpy 474
stricmp 475
strlen 476
strncmp 477
until 478
when 479
word 480
write 481

12

13

Contents

Debugger Error Messages

Debugger Versions

Version C.06.20 504
Version C.05.20 505
Version C.05.10 506

Part 5

14

Installation Guide

Installation

Installation at a Glance 512

Supplied interfaces 512
Supplied filesets 513
C Compiler Installation 513

To install software on an HP 9000 system 514

Required Hardware and Software 514
Step 1. Install the software 515

To install the software on a Sun SPARCsydiem 517

Required Hardware and Software 517
Step 1: Install the software 518
Step 2: Map your function keys 518

To set up your software environment 520

To start the X server 520
To start HP VUE 521
To set environment variables 522

To verify the software installation 524

Contents

xxii

Part 1

Quick Start Guide

Part 1

Getting Started with the Graphical
Interface

How to get started using the debugger’s graphical interface.

Chapter 1: Getting Started with the Graphical Interface

When an X Window System that supports O SF/Motif interfaces is running on
the host computer, the debugger hagsphical interfaceghat provides

features such as pull-down apdp-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action kepoangp
recall buffers.

The debugger also hastndard interfacéor several types of terminals,
terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard. Mould use the
graphical interface for the exercises in this chapter.

Some advanced commands are ndt-sited to menus. Those monands
are entered through temmand line The command line allows you to enter
standard interface commands in the graphical interface.

Chapter 1: Getting Started with the Graphical Interface

The Graphical Interface at a Glance .

Pointer and cursor shapes

Arrow

The arrow mouse pointer shows where the mouse is pointing.

Hand

The hand mouse pointer indicates that a pop-up menu is availablessingre
the right mouse button.

Hourglass

The hourglass mouse pointeeans "wait." If the debugger is busy executing a
program, you may stop it by pggng< Ctrl> -C.

Text

The "l-beam" keyboard cursor shows where text entered with the keyboard will
appear in the entry buffer or in a dialog box.

Command-line

The "box"' keyboard cursor on the command line shows where commands
entered with the keyboard will appear.

Chapter 1: Getting Started with the Graphical Interface

The Debugger Window

File Display Medify Execution Breakpoints Window Setlings Hel
Menu bar— — —F% 27 = — — - —r
Action keys: | < Demo » || Disp Src () || CExpr() || Run || Run til () || Step Over |
Action keys [YourKey][Make |[Disp Src PC]| Monitor() || Step || Run¥fer || Step Qut |
Entry buffer ():[wain |Recal
Monitor 3 Backtrace 4
1 num_checks] 0. 0000B400:crt@\entry
2 target_temp @ A
3 current_temp @
4 old_data [80]:temp *]
Scroll bar = Lo 2
6 ave_temp . OB
7 ave_humid 0 .PPBRORE+DO
. 8 [B11:t %]
Display are e

Code

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1992

written permission
<stdio_h>

<gtring.h>
"update_sys.h"
"proc_spec.h"

tinclude
tinclude
tinclude
tinclude

1
2
3
4
5
]
7
8
9

2

S O R OROK o o R OR R OROK o o o K R K CROK KR o K SR K ROK ROk S K O K ROK KOk o o K R OK KO KOk

All Rights Reserved. Reproduction, adaptation, or translation without pri
is prohibited, except as allowed under copyright lauw
KK KKK K KK K KK K KK K OK K K K K R KK KK K K OK K K K K KK K OK K K K K K K K KK K OK K K K K K K KK K KK K K K Ok

/******IlII********IIII********IIIlI*******lIIII*******IIIII********I*II**
* This typedef is also found in demo.h but since demo.h is not included in|

* this file, this declaration appears here by itself.
ok o ol ok ok ok ok ok ok ok ok o o ol ok ok ok ok ok ok ok ol ok o ok ok ok ok ok ok o ol ok o ok ok ok ok ok ok ok o o ki ok Ok ok ok Ok ok ok ok ok ok kK Ok Ok K Ok K

tdefine SHRINKFACTOR 1.3
tdefine LISTLEN NUM_OF_OLD*4+1

Journal

Note:
> File Command

cmdf i les/debug/Cmd_dbmac .com

in startup routine. Press F8 to go to main.

Status line——— “s7a1us: command

Command lin

69000 MODULE: crt@ BREAK #: @ HELP=F5 | <[P]
> File Command cmdfiles/debug/Cmd_dbmac.com
|Breakpt| |Debugger‘| |E>¢pr‘ession| - |Hemor‘g| |Program| |St_.|mbol| |Nind0|u|
Command Error_Command User_Fopen Journal Log Hindow_Close Startup

|Command: Return||Recall

Cursor: [Buckup|[Forward][Clear to end][Clear]

|

Chapter 1: Getting Started with the Graphical Interface

Menu Bar. Provides pull-down menus from which you seleahaoands.
When menu items are not applicable, they appear half-bright and do not
respond to mouse clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons
and define the action to be performed. Action key labels and functions are
defined by setting X resources (see the “Configuring the Debugger” chapter).

Entry Buffer. Wherever you see "()"in a pull-down menu, the contents of the
entry buffer are used in that command. You can type values into the entry
buffer, or you can cut and paste values into the entry buffer from the display
area or from the command line entry area. You can also set up action keys to
use the contents of the entry buffer.

Display Area. This area of the screen is divided into windows which display
information such as high-level code, simulated input and output, and
breakpoints. To activate a window, click on its border.

In this manual, the word "window" usually refers to a window inside the
debugger display area.

Scroll Bar. Allows you to page or scroll up or down the information in the
active window.

Status Line. Displays the debugger status, the CPU type, the current
program module, and the number of the last breakpoint.

Command Line. The command line area is similar to the command line in

the standard interface; however, the graphical interface lets you use the mouse
to enter and edit commands. You cantoff the canmand line if you only

need to use the pull-down menus.

Chapter 1: Getting Started with the Graphical Interface

Graphical Interface Conventions

This manual uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooseFile —~Load —-Executable...

means to select tHéle menu, then seletibad from the File menu, then
select theExecutable...item from the Load menu.

File |

Context b

Load >Executable ..

Store &> Program Only .

Copy Window 1> Symbals Only ...

Log P>| User-Defined Macros .
Edit >

Term..

Exit b

Refer to the “Entering Debugger Commands” for specific information about
choosing menu items.

In this manual, the word "window" usually means a window inside the
debugger display area, rather than an X window.

Chapter 1: Getting Started with the Graphical Interface
Mouse Buttons

Mouse Buttons

Mouse Button Descriptions

Button Name General Function

left Selects pushbuttons. Pastes from the display area
to the entry buffer.

middle Pastes from the entry buffer to the command line
text area. If you have a two-button mouse, press
both buttons together to get the "middle button."

right Click selects first item in pop-up menus. Click on
window border activates windows. Press and hold
displays menus.

command select Displays pull-down menus. May be the left button
or right button, depending on the kind of
computer you haveSee'Platform Differences” on
page 10.

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

Platform Differences

A few mouse buttons and keyboard keys work differently between platforms.
This manual refers to those mouse button and keyboard bindings in a general
way. Refer to the following tables to find out the button names for the
computer you are using to run the debugger.

Mouse Button Bindings

Generic Button Name HP 9000 Sun SPARCsystem

command select left right

Keyboard Key Bindings

Generic Key Name HP 9000 Sun SPARCsystem
menu select extend char extend char
(diamond)
left-arrow left arrow left arrow
right-arrow right arrow right arrotv

MThese keys do not work while the cursor is in the main display area.

10

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

The Quick Start Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the debugger.

Perform the tasks in the sequence given; otherwise, your results may not be
the same as those shown here.

Some values displayed on your screen may vary from the values shown here.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental
control system (ECS). The system controls the temperature and humidity of a
room requiring accurate environmental control. The program continuously
looks at flags which tell it what action to take next.

Note Some commands are printed on two lines in this chapter. When entering
these commands, type the entire command on one line.

11

Chapter 1: Getting Started with the Graphical Interface
To prepare to run the debugger

To prepare to run the debugger

Check that the debugger has been installed on your computer. Installation is
described in the "Installation” chapter.

Find out where the debugger software is installed. If it is not installed under
"lusr/hp64000" then use "$HP64000" wherever "usr/hp64000" is printed in this
chapter.

Check that "fusr/hp64000/bin" and "." are ouy $PATH environment
variable. (Type "echo $PATH"to see the value of $SPATH.)

If the debugger software is installed on a different kind of computer than the
computer you are using, edit the "platformScheme” in the Xdefaults.sim file.
This file is located in directory /usr/hp64000/demo/debug_env/sim68000. For
example, if you are sitting at a Sun workstation which is networked to an HP
9000 Series 300 workstation, change the platforra8ehto "SunOS".

12

Chapter 1: Getting Started with the Graphical Interface
To start the debugger

To start the debugger .

1 Change to the debugger demo directory:

cd /usr/hp64000/demo/debug_env/sim68000

2 Start the debugger by entering:
Startdebug

This will set some ensdnment variables, start the debugger and load a
program for you to look at.

The Startdebug script will ask you whetherhibald copy the demo files to
another directory. Answer 'y". (You cannot modify the files in
/usr/hp64000/demo.)

Note If you were debugging your own program, you would need to entemenend
like:

db68k -c mycmd ecs
This command starts the debugger, which executes the command file

mycmd.conand loads the absolute fiées.x See the “Loading and Executing
Programs” chapter for more details.

13

Chapter 1: Getting Started with the Graphical Interface
To activate display area windows

To activate display area windows

Notice there are several windows in the main display area of the debugger.
The different windows contain different types of information from the
debugger. The active window has the thicker border.

Use the right mouse button to click on the border of the Monitor window.

Be sure to click only once (do not "double-click"). The Monitor window should
now have a thick border. Now activate the Code window:

Use the right mouse button to click on the border of the Code window.

If you click on the border of the active window, it will be expanded. Just click
again to showthe window in its normal size.

See the “Debugging Programs” chapter for a list of other ways to activate a
window.

14

Chapter 1: Getting Started with the Graphical Interface
To run until main()

To run until main()

1 Click on theRun til () action key. Run Til ()

The Code window now shows tiheain () routine.

Clicking on theRun til () action key runs the program until the line indicated
by the contents of thentry buffer

Locate thg): symbol. The area to the right of this symbol is the entry buffer.
When you started the demonstration program, the debugger loaded the entry
buffer with the value “main”.

File Display Modify Execution Breakpoints Window Settings Help

Actionkeys: | <Demo> || DispSre() || CExpr() || Run |[Runtil() || Step Over |

< Your Key > Make Disp Src PC || Monitor () Step Run Xfer Step Out

():[main Recall
Honitor 3 Backtrace 4

1 num_checks 8 2. 800084367crtB8\<unknown>

2 target_temp @ 1. 00800664 startup_startup A

3 current_temp @ 8. B000BFD2*main\main

4 old_data [8B] :temp [’}

5 humid [’}

b ave_temp 0 .000BBRE+00

7 ave_humid ©.0800GGE+00

8 [B1]1:temp [’}

extern void do_sort(); /* sets up ascii array and calls combs

95 main()
a7 init_system();
proc_spec_init{);

while (true)

update_system();
num_checks++;
interrupt_sim{&num_checks);
if (graph)

graph_data();
proc_specific();

Journal 1 v
> Program Run Until main
(Temp) Break module main line 96
STATUS: Command 6868@ MODULE: main BREAK #: 1 HELP=F5 [1B]

15

Chapter 1: Getting Started with the Graphical Interface
To scroll the Code w indow

To scroll the Code window
To see more of the program you can:

Use the mouse to operate the vertical scroll bar:

Click to go to top of file — 4
Click to go up one line

Click to go up one half page———

Drag slider to move inementally ——

Click to go down one half page

Click to go down one line —_

Click to go to end offile ————— «
Use the mouse to operate the horizontallBogbuttons: 1]

Use the < Page Up> and < Page Down> keys on your keyboard.

The scroll bar affects the contents of the active (highlighted) window.

You might notice that the scroll bar has a "sticky" slider which alwaysmst
to the center of the scroll bar. This is so that you can always do local
navigation even in very large programs. UseDiep Src () action key or the
Display-Source ()pull-down menu item to move larger distances.

16

Chapter 1: Getting Started with the Graphical Interface

To display a function

To display a function

Position the cursor over the callitot_system

Click the left mouse button.

This will place the string "init_system" into the entry buffer.

Click on theDisp Src () action key.

Scroll up one line to see the "init_system()" line.

You should now see the source code forititesystem(youtine in the Code

window.
File Display Modify Execution Breakpeints Window Seftings Help
Actionkeys: [<Demo> |[DispSrc () |[CExpr() [Run][Runtil() |[Step Over |
< Your Key > Make Disp Src PC || Monitor () Step Run Xfer Step Out
()|init_system |Reca|l
Monitor 3— ———————Backtrace————4—
1 num_checks "] 2. 000004367crt@\<unknoun>
2 target_temp @ 1. 00888664 startup’_startup A
3 current_temp @ 0. 8800BFD2*main\main
4 old_data [08]:temp *]
5 humid]
6 ave_temp 0.000008E+08
7 ave_humid ©.0@00GOAE+00
8 [01]1:temp 2}
38 init_system()
31 { /« FUNCTION init_system() */
32 /% Initialize the target values for temperature and humidity */
33 target_temp = 73;
34 target_humid = 45;
35
36 /* Intialize the variables indicating the current enviromment */
37 /* conditions */
38 current_temp = 68;
39 current_humid = 41;
40
41 /* Set starting directions for temp and humid */
42 temp_dir = up;
43 humid_dir = up;
44
45 /* Initialize the variables that depict the current status of the */
46 /* computer room and what hardware needs to be on or off in the room *
Journal 1+ v
> Program Context Set init_system
> Program Display_Source init_system
STATUS: Command 68600 MODULE: init_system BREAK #: 1 HELP=F5 L[4 1P|

17

Chapter 1: Getting Started with the Graphical Interface

To run until a line

To run until a line

1 Position the cursor over line 34. The hand-shaped cursor meanibyaugp
menu is available.

31 { /% FUNCTION init_system() #*/

32 /* Initialize the target values for temperature and humidity */
33 target_temp = 73;
34 target_humid = 45; ¢,

2 Hold down the right mouse button to display the Code window pop-up menu.
Move the mouse tRun until, then release the button.

34 target_humid = 45; -
Debugger Display

Set/Delete Breakpoint
Edit source

Attach Macro ...
Lot Attached Magro L.

Run until

Line 34 should now be highlighted. Notice that "init_system" now appears in
the Backtrace window at level 0, which means thatpttogram counter is
inside thenit_system(¥unction.

18

Chapter 1: Getting Started with the Graphical Interface
To edit the program

To edit the program .

This step assumes you are using an HP Advanced Cross Language System
compiler (HP B3640). If you are using another compiler, skip this step.

Suppose we wanted the initial valuetaxget_tempo be 74 instead of 73. The
debugger makes it easy to change the source code:

Place the cursor over the assignmenttget_temgline 33).

33 target_temp = 73; -
Debugger Display

SetiDelete Breakpoint
Edit source

Aftach Macro
Lot Atmehed Maors

Run until

Hold the right mouse button and selEdit Source from the Code window
pop-up menu.

An editor will appear in a new X window. The default texttediisvi. You
can use a different text editor by editing X resources (described in the
"Configuring the Debugger" chapter).

Change the "73"to "74".
Exit the editor.

Click on theMake action key.

The program Vil be re-compiled with the new value and reloaded.

19

Chapter 1: Getting Started with the Graphical Interface
To display init_system() again

To display init_system() again

Click on theDisp Src() action key.

Since "init_system" is still in the entry buffer, timé&_system (youtine is
displayed.

You have now completed a edit-compile-load pesgming cycle.

To set a breakpoint
We want to run until just past the line that we changed.
Position the mouse pointer over line 42.

Click the right mouse button to set a breakpoint.

The breakpoint window is displayed, showing the breakpoint has been added.

An asterisk (*) appears in the first column of the Code window next to the
location of the breakpoint. Dots apppear in front of any other lines (such as
comments) associated with the breakpoint.

20

Chapter 1: Getting Started with the Graphical Interface
To run until the breakpoint

To run until the breakpoint

Click on theRun Xfer action keyto run the program from its transfer address.

While the program is executing, the menus and buttons are "grayed out," and
an "hourglass" mouse pointer is displayed. You cannot enter debugger
commands while thprogram is executing. If you need to stop an executing
program, type< Ctrl> -C with the mouse pointer in the debugger X window.

After a few moments, line 42 will be highlighted, showing thedgram
execution stopped there.

The Journal window shows that a break occurred and which breakpoint it was.

File Display Modify Execution Breakpeints Window Settings Help
Action keys: <Dmm>| Disp Src () || CExpr() Run | Run til () Step Over
[¢ YourKey»][Make |[Disp Src PC|[Monitor () || Step || RunXfer || StepOut |
(y|init_sgstem IRecaH
Monitor 3 Backtrace———4—

1 num_checks 2] 3. 888884367crtB\<unknouwn>

2 target_temp 74 2. 00000664 startuph_startup A
3 current_temp 68 1. 8808BFDC main\main

4 old_data [68]:temp '] B. 80801552 init_system\init_sy

5 humid [

[ave_temp 0.000000E+00

7 ave_humid ©.0000GBE+00

8 [B1]1:temp e

current_humid = 41;

/* Set starting directions for temp and humid */
temp_dir = up;
humid_dir = up;

/% Initialize the variables that depict the current status of the */
/* computer room and what hardware needs to be on or off in the room *

func_needed = 8;
hdwr_encode = 8;

/xInitialize the count of calls to update_state_of_system() */
num_checks = 8;

/% Initialize writing location in old_array */
curr_loc = 0;

Journal 1 v
> Program Run
Break # 1 on instr module init_system line 42
STATUS: Command 6808@ MODULE: init_system BREAK #: 1 HELP=F5 L[4 1PF]

21

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

To patch code using a macro

1 Position the cursor over line 38.

2 SelectAttach Macro from the Code window pop-up menu.

38 current_temp = 68; n

39 current_humid = 41; Debugger Display
Set/Delete Breakpoint
Edit source

Attach Macro ...
Edit Attached Magro .
Run until

The Macro Operations dialog box appears. The macro "patch_temp"is
already selected. Before we attach the macro, let’s examine it:

=l

Debugger/Emulator: Macro Operations

Defined Macros

writep(port, size, value)
write(fildes, buf, nbyte)
<User-Defined Macros>
graph_on()
do_forward()
show_num()
atch_temp_arg(tem

Parameters:| IRecaII

Selected Macro

|patch_temp E

} |Aﬂach E |Cance||

3 Click on theEdit button in the dialog box.

This macro will seturrent_tempgo 71 each time the breakpoint is
encountered. The macro skips over tegignment in th@rogram source
code by setting the program counter to line 39. The return value it thie
macro to stop program execution after the macro.

22

Chapter 1: Getting Started with the Graphical Interface
To delete a single breakpoint

Debugger Macro Add int patch_temp()
{

/* set the current_temp to be 71 degrees instead of what the code says */
current_temp = 71;

/* Restart execution at line # 39 -- Skips over the code too!! */
$Memory Register @PC = #39$;

/* Return value indicates continuation logic: 1=continue, O=break */
return(0);

4 EXxit the editor.

5 Click on theAttach button in the dialog box.

The plus sign ("+ ") in front of line 38 indicates that a macro has been attached
to a breakpoint at that line.

6 Click on theRun Xfer action keyto run the program.

Notice thatcurrent_tempas shown in the Monitor window, is 71, not 68. Click
Disp Src PCto show the source in the code window.

To delete a single breakpoint

Once you set a breakpoint, program executidinoneak each time the
breakpoint is encountered. If you don't want to break on a certain breakpoint
again, you must delete the breakpoint. Suppose you want to delete the
breakpoint that was previously set at line 4ihih system

1 Position the mouse over line 42.

2 Click the right mouse button to delete the breakpoint.

The breakpoint window shows the breakpoint has been deleted. The asterisk
in front of line 42 disappears.

23

Chapter 1: Getting Started with the Graphical Interface
To delete all breakpoints

To delete all breakpoints

1 Position the mouse pointer in the Breakpoint window.

2 Hold down the right mouse button to selBelete All Breakpointsfrom the
Breakpoint window pop-up menu.

All breakpoints are deleted.

24

Chapter 1: Getting Started with the Graphical Interface
To step through a program

To step through a program

You can execute one source line (high-level mode) or one instruction
(assembly-level mode) at a time by stepping through the program.

Click on theStepaction key a few times.

If you want to try using a pull-down menu, selegecution-Step-from PC a
few times.

As the debugger steps through the program, you can see the PC (PC) progress
through the source code, as shown by the inverse video line in the Code
window.

To run until a stack level

Now we need to go back tnain(). You can run the program until it enters
main() by running to a stack level.

Position the mouse pointer over the line containing "main\main”in the
Backtrace window.

SelectRun Until Stack Level from the Backtrace pop-up menu.

The program counter is now backnrain(), on the call tgroc_spec_init()

Backtrac 4
AAAEA436Y cr 18N < unknown> _w

AAREAGEY startuph_startup

3.
2.
l.
a

. BE60 1651 Backtrace Display

Highlight{Toggle Window
Remove Window

Disp Source at Stack Level
Disp Vars at Stack Level
Run Until Stack Level

Fd

25

Chapter 1: Getting Started with the Graphical Interface
To step over functions

To step over functions

You can either step through functions or step over functions. When you step
over a function, it is executed as a single program step.

Click on theStep Overaction key.

The next line ifmain() is highlighted. The routinproc_spec_init(was
executed as a single program step.

To step out of a function

Click on theStepaction key until the program counter isupdate_system()

Click on theStep Outaction key.

The program vil execute until it retirns fromupdate_system()

To display the value of a variable

Use the left mouse button to highlight "num_checks" in the Code window.

Click on theC Expr () action key.

In the Journal window, the current value of the variable is displayed in its
declared type (int). Notice that this is the same as the value displayed in the
Monitor window.

26

Chapter 1: Getting Started with the Graphical Interface
To change the value of a variable

To change the value of a variable

1 In the entry buffer, add "= 10" after "num_checks".

2 Click on theC Expr () action key.

The new value is displayed in the Journal window and in the Monitor window.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | < Demo » Disp Sre () || CExpr() Run Run til () Step Over
|< Your Key >| Make Disp Src PC || Monitor () Step Run Xfer Step Out
() | num_checks=18 IRecaII
Monitor 3 Backtrace 4
1 num_checks 10 2. 9808084367crt@\<unknown>
2 target_temp 76 1. 9PPBB664 startup_startup A
3 current_temp 70 @. OPOBBFEA mainimain
4 old_data [08] :temp 70
5 humid 43
3 ave_temp 0.00000BE+B0
7 ave_humid ©@.00000GE+0@
8 [01]1:temp 65
lee while (true)
1e1 {
182 update_system();
le4 interrupt_sim(&num_checks);
185 if (graph)
1e6 graph_data();
187 proc_specific();
1eg
169 1}
118
111 /****l******l******l******l******l*l****)I(*)I(******l******l******l******l***
112 * FUNCTION: interrupt_sim
113 * PARMS: counter —- loop counter passed in from main
114 * DESCRIPTION:
115 #* create a simulation of a (usually) long interrupt service routine thal
116 #* also has a duration profile to use with a SPA duration trigger.
Journal 1 v
> Expression C_Expression num_checks=10
Result is: 18 Ox8A
STATUS: Command 68000 HODULE: main BREAK #: 1 HELP=F5 L[4 1P|

27

Chapter 1: Getting Started with the Graphical Interface
To recall an entry buffer value

To recall an entry buffer value

1 Click on theRecallbutton.
2 In the Recall dialog box, click the left mouse button on "num_checks".

3 In the Recall dialog box, click the left mouse buttonQif.

The string "num_checks"is now in the entry buffer.

='| Debugger/Emulator: Entry Buffer Value Selection

Previous Entry Buffer Values

@1

init_system
graph
interrupt_sim
init_val_arr
read_conditions
main

update system

hum_checks=10

(r

| num_checks, |

|

28

Chapter 1: Getting Started with the Graphical Interface
To display the address of a variable

To display the address of a variable

You can use the C address operator (&) to display the address of a program
variable.

Position the mouse pointer in the entry buffer.

Type "&"in the entry buffer so that it contains "&num_checks".

|():|&num_checks IRecaHI

Click on theC Expr () action key.

The result is the address of the variatlen _checksThe address is displayed
in hexadecimal format.

Journal 1
» Expression C_Expression &num_checks
Result is: data address B@0076F2 {num_checks}

29

Chapter 1: Getting Started with the Graphical Interface
To break on an access to a variable

To break on an access to a variable

You can also set breakpoints on a read, a write, or any access of a variable.
This helps to locate defects due to multiple functions accessing the same
variable. Suppose you want to break on the access of the variablechecks
("&num_checks" should 8tbe in the entry buffer.)

Set the breakpoint by selectiBgeakpoints —Set—Read/Write ().

Run the program by clicking on tlRun action key.

File Display Modify Execution | Breakpoints | Window Settings Help
Actionkeys: | <Demo> || Disp .Qisplay (I Bun | Runtil() || Step Over |
[YourKeys|[Make |[Disp 125t B Instruction () [RunXfer][Step Out_|
- Delete () Read ()
() | &num_checks Delete Al Wite () IRecaII
Edit/Call Macro ... |Read/Write ()

When the program stops, the code window shows that the program stopped at
the next reference to the varialolem _checks

Tryrunning the program a few more times to see where it stops. (Notice that
num_checkgs passed by referenceitgerrupt_sim Sincecounterpoints to the
same address asim_checkghe debugger stops at referencesdonter)

Delete the access breakpoint. Seldidow —Breakpoints, place the mouse
in the Breakpoint window, press and hold the right mouse button, and choose
Delete All Breakpoints.

30

Chapter 1: Getting Started with the Graphical Interface
To use the command line

To use the command line

1 SelectSettings—=Command Line from the menu bar.

The command line area which appears at the bottom of the debugger window
can be used to enter complex commands using either the mouse or the
keyboard.

2 Build a command out of the command tokens which appear beneath the
command line entry area.

To use the command line with the mouse, click on the button for each
command token.

3 When the command has been built, type or select aiRet.

To use a C printf command

The command line’s Expssion Printf command prints the formatted output
of the command to theodirnal window using C format pameters. This
command permits type conversions, scaling, and positioning of output within
the Journal window.

1 Place the string "num_checks= 10" in the entry buffer by usin&éueall
button.

2 Click theC Expr () action key to assign 10 to num_checks.

3 Using the command line, enter:

Journal 1
> Expression Printf "%81@d",num_checks
BeEeBReR11

Expression Printf "%010d",num_checks

31

Chapter 1: Getting Started with the Graphical Interface
To turn the command line off

In this example, the value aim_checkss printed as a decimal integer with a
field width of 10, padded with zeros.

To turn the command line off

1 Move the mouse pointer to the Status line.

2 Hold down the shift key and click the right mouse button.
The shift-click operation selects the second item from a pop-up menu, which
in this case i€ommand Line On/Off.

You can turn the acomand line on and off from the Settingdipdown menu,
the Status pop-up menu, and thencoand linegpop-up menu.

32

Chapter 1: Getting Started with the Graphical Interface
To see on-line help

To see on-line help .

1 SelectHelp -General Topic ...

2 SelectTo Use Help then click on th®©K button.

Spend a few minutes exploring the help topics, so that you can find them when
you need them.

33

Chapter 1: Getting Started with the Graphical Interface
To end the debugging session

To end the debugging session

* Use thecommand selechouse button to choo$§éle —Exit -Yes.

[File |

Context

Load

Store

Copy Window
Log

Edit

Term ..

Vijvv v Vv

Exit

-|ves

=Citri=X]

The debug session is ended and your system prompt is displayed.

This completes your introduction to t68000 Series Debugger/Simulator.

You have used many features of the debugger. For additional information on
performing tasks with the debugger, refer to the "User’s Guide" part of this
manual. For more detailed information on debugger commarrds, e
messages, etc., refer to the "Reference" part of this manual.

34

Part 2

User’'s Guide

Part 2

36

Entering Debugger Commands

How to enter debugger commands using the mouse or the keyboard.

37

Entering Debugger Commands

This chapter shows you how to enter debugger commands using the graphical
interface or the standard interface. The tasks are grouped into the following
sections:

e Starting the debugger.

» Using menus, the entry buffer, and action keys.
* Using the command line with the mouse.

* Using the command line with the keyboard.

* Viewing debugger status.

Thegraphical interfaceprovides an easy way to entemnomands using a mouse.
It lets you use pull-down amqgbp-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action kepoandp
recall buffers, and other advanced features. To use the graphical interface,
your computer must be running an X Window System that supports
OSF/Maotif interfaces.

The debugger also hastndard interfacéor several types of terminals,
terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard.

When using the graphical interface, doenmand ling@ortion of the interface
gives you the option of entering commands in the same manner as they are
entered in the standard interface. If you are using the standard interface, you
can only enter commands from the keyboard using the command line.

Function Key Commands

Chapter 2: Entering Debugger Commands

You can enter commonly used commands quickly asdyday pressing the

function keys F1 through F8 on your keyboard. Function keys can be use
the graphical interface as well as the standard interface. The following ta
and figure describe the commands associated with the function keys.

If you are using the debugger on a Sun SPARCsystem, refer to the
“Installation" chapter for information on mapping function keys.

Function Key Commands

Function Graphical Equivalent,

Description

Key Command Line Equivalent

F1 Display—Next Window, Activate the next higher numbered window.
Window Active Next

F2 Display-Previous Window Activate the next lower numbered window.
Window Active Previous

F3 Settings—High Level Debugor Switch between assembly-level and
Settings—Assembly Level Debug high-level mode.
Debugger Level

F4 Right click on active window border, Select the alternate display of the active
Window Toggle_View window.

F5 Help-Command Line.., Access on-line help.
Debugger ? (Help)

F6 Display-Simulated /0O, Access the standard I/O screen. Also access
Window Screen_On Next any existing user-defined screens.

F7 Execution-Step Instruction -from PC, Execute one C source line (high-level
Program Step mode), or execute one microprocessor

instruction (assembly-level mode).
F8 Execution-Step Source-from PC, Execute one C source line, but treat whole

Program Step Over

functions as a single line (high-level mode);
execute one microprocessor instruction, but
treat whole subroutines as a single
instruction.

39

Chapter 2: Entering Debugger Commands

Command Line Control Character Functions

Press the control kesCtrl> simultaneously with thB, C,E,F,GL,QR S,
U, or\ keys to execute the operations listed in the following table. (The letter
keys may be upper- or lower-case.)

Command Line Control Character Functions

Control Function

<Ctrl> B Recall command reverse.

<Ctrl>C Abort the current cmmand and retrn to debugger camand mode.
<Ctrl> E Clear to end of command line.

<Ctrl> F Shift contents of active window to right.

<Ctrl> G Shift contents of active window to left.

<Ctrl> L Redraw screen.

<Ctrl> Q Resume output to screen (standard interface only).

<Ctrl>R Recall previous command.

<Ctrl> S Suspend output to screen (standard interface only).

<Ctrl> U Clear command line

<Ctrl>\ End the debug session (same as Debugger Quit Yes command)

The Journal Window

The debugger displays debugger commands entered from the keyboard in the
Journal window. The Journal window also displays warning and informational
messages from the debugger and output generated by commands. This
window is available in both the high-level and assembly-level screens.

40

Chapter 2: Entering Debugger Commands
Starting the Debugger

Starting the Debugger

Use thedb68kcommand to start the debugger.

See Also The “Getting Started with the Graphical Interface” chapter for information
about starting the graphical interface.

The “Getting Started with the Standard Interface” chapter for information
about starting the standard interface.

The “Loading and Executing Programs” chapter for information about loading
programs as you start the debugger.

The “Using Macros and Command Files” chapter for information about
loading command files as you start the debugger.

The “Configuring the Debugger” chapter for information about using
debugger startup files.

The on-line "manual page" for information about tthh&8kcommand and its
commandline options. To see this information, type the following operating
system command:

man db68k

41

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the debugger’s
graphical interface to enter commands. This section describes how to:

Choose a plitdown menu item using the mouse.
Choose a plltdown menu item using the keyboard.
Use the pop-up menus.

Use action keys.

Use the entry buffer.

Copy and paste to the entry buffer.

Use dialog boxes.

Access help information.

To choose a pull-down menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.

2 Press and hold theommand selechouse button to display the menu.

3 While continuing to hold down the mouse button, move the mouse pointer to
the desired menu item. If the menu item has a cascade menu (identified by an
arrow on the right edge of the menu button), then continue to hold the mouse
button down and move the mouse pointer toward the arrow on the right edge
of the menu. The cascade menu will display. Repeat this step for the cascade

menu until you find the desired menu item.

4 Release the mouse button to select the menu choice.

42

Note

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some menu items have an ellipsis (“...") as part of the menu label. An elli
indicates that the menu item will display a dialog or message box when th
menu item is chosen.

Thecommand seledtutton can be either the left or right button, depending
on the computer you are using. The “Getting Started with the Graphical
Interface” chapter has a table which explains which button to use.

To choose a pull-down menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.
Click thecommand seleechouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a
cascade menu (identified by an arrow on the right edge of the menu button),
then repeat the previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of
the menu and click the mouse button.

Some menu items have an ellipsis (“...”) as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu
item is chosen.

43

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pull-down menu item using the
keyboard

To initially display a pull-down menu, press and holdithenu seledtey (for
example, the “Extend char” key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, “f’ for
“File”. Type the character in lower case.)

To move right to another pull-down menu after having initially displayed a
menu, press theght-arrow key.

To move left to another pull-down menu after having initially displayed a
menu, press thieft-arrow key.

To move down one menu item within a menu, pressith-arrow key.
To move up one menu item within a menu, pressifiarrow key.

To choose a menu item, type the character in the menu item label that is
underlined. Or, move to the menu item using the arrow keys and then press
the< RETURN> key on the keyboard.

To cancel a displayed menu, presskEseapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to
move within or between menus. For each menu or menu item, the underlined
character in the menu or menu item label is the keyboard mnemonic
character. Notice the keyboard mnemonic is not always the first character of
the label. If a menu item has a cascade menu attached to it, then typing the
keyboard mnemonic displays the cascade menu.

Some menu items have an ellipsis (“...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu
item is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard
input to a dialog box, you must position the mouse pointer somewhere inside
the boundaries of the dialog box. That is because the intéwgbeard focus

44

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

policyis set topointer That just means that the window containing the mouse
pointer receives the keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard
accelerators which are keyboard shortcuts for selected menu items. Refe
the “Setting X Resources” chapter and the “Debug.Inputésahfile for

more information about setting the X resources that control defining
keyboard accelerators.

To choose pop-up menu items

Move the mouse pointer to the area whose pop-up menu you wish to access.
(If a pop-up menu is available, the mouse pointer changes from an arrowto a
hand.)

Press and hold the right mouse button.

After the pop-up menu appears (while continuing to hold down the mouse
button), move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some pop-up menus which are available include:
» Display-area Windows.
+ Status Line.

e Command Line.

45

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use pop-up menu shortcuts

To choose the first item in a pop-up menu, click the right mouse button.

To choose the second item in a pop-up menu, hold down 8iaft> keyand
click the right mouse button.

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An “lI-beam” cursor
will appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the
< Ctrl> U key combination.

To copy-and-paste to the entry buffer

To copy and paste a "word" of text, position the mouse pointer over the word
and click the left mouse button.

To specify the exact text to copyto the entry buffer, position the mouse
pointer over the first character to copy, then hold the left mouse button while
dragging the mouse pointer over the text. When you release the mouse
button, the highlighted text will appear in the entry buffer.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

46

Example

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

On a memory display, you may need to scroll the display to show more
characters of a symbol.

The interface displays absolute addresses as hexvalues. If you copy and
an address from the display to the entry buffer, you must add a trailing “h”
make the interface interpret it as a hex value when you use the entry buff
contents with a command.

Text pasted into the entry buffer replaces that which is currently there. You
cannot use paste to append text to text already in the entry buffer. You can
retrieve previous entry buffer values by using Rezall button.

See “To copy-and-paste from the entry buffer to the command line entry area”
for information about pasting the contents of the entry buffer into the
command line entry area.

To paste the symbol “init_system” into the entry buffer from the interface
display area, position the mouse pointer over the symbol and then click the
left mouse button.

|():| init_system IRecaIII

N

€
97 linit_systen @

98 proc_speceinit();

47

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

1 Position the mouse pointer over tRecall button just to the right of the entry

buffer text area, and click the mouse button to bring up the Entry Buffer
Value Selection dialog box.

In the dialog box, click on the string you want.

In the dialog box, click on the "OK" button.

The Entry Buffer Value Selection dialog box contains a list of previous values
from the entry buffer. You can also predefine entries for the Entry Buffer
Value Selection dialog box and define the maximum number of entries by
setting X resources (refer to the “Setting X Resources” chapter).

If you decide not to change the contents of the entry buffer, click on the
"Cancel" button in the dialog box.

If you want the Entry Buffer Value Selection dialog boxto remaibhe after

you make a selection, press "Apply'instead of "OK". You may drag the dialog
boxto another location on your display so that it does not cover the debugger
window.

See the following “To use dialog boxes” section for information about using
dialog boxes.

48

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To edit the entry buffer

» To position the keyboard cursor, click the left mouse button or use the arr|
keys.
» To clear the entry buffer, typeCtrl> -U.

» To delete characters, press thBackspace>or < Delete char> keys.

» To delete several characters, highlight the characters to be deleted using the
left mouse button, then press th8ackspace>or < Delete char> keys.

To use the entry buffer

1 Place information into the entry buffer (see the previous “To place values into
the entry buffer using the keyboard”, “To copy-and-paste to the entry buffer”,
or “To recall entry buffer values” task descriptions).

2 Choose the menu item, or click the action key, that uses the contents of the
entry buffer.

The contents of the entry buffer will be used wherever the "()" symbol appears
in a menu item or action key.

To copy-and-paste from the entry buffer to the
command line entry area

1 Position the mouse pointer within the command line text entry area.

49

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Note

2 If necessary, reposition the keyboard cursor to the location where you want to

paste the text.

3 If necessary, choose the insert or replace mode for thenemd entry area.

4 Click the middle mouse button to paste the text into the command line entry

area at the current cursor position.

You should paste to the monand lineonlywhen the command line is

expecting an address or a string. The characters from the entry buffer will be
treated as if they were typed from the keyboard. If the command line is
expecting keyword tokens, pasting can have unexpected results. For example,
pasting "delta" into an empty command lind generate a "Debugger

Execution Load_State ta" command!

Although a paste from the display area to the entry buffer affects all displayed
entry buffers in all open windows, a paste from the entry buffer to the
command line only affects the command line of the window in which you are
currently working.

See “To copy-and-paste to the entry buffer” for information about pasting
information from the display into the entry buffer.

To use the action keys

If the action key uses the contents of the entry buffer, place the desired
information in the entry buffer.

Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this
makes it possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the debugger’s
graphical interface. You can use the predefined action keys to make, load,

50

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

run, and step through the demo program. Youll really appreciate action keys
when you define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter
“Setting X Resources” for more information about creating action keys.

To use dialog boxes

Click on an item in the dialog box list to copy the item to the text entry area.
Edit the item in the text entry area (if desired).

Click on the “OK” pushbutton to make the selection and close the dialog box,
click on the “Apply’ pushbutton to make the selection and leave the dialog
box open, or click on the “Cancel” pushbutton to cancel the selection and
close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing
file name or specify a new file name.

Entry Buffer Recall You can recall a previously used entry buffer text string,
a predefined entry buffer text string, or a newly entered
entry buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to
the command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

51

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

» Dialog boxes can be moved around the screen and do not have to be
positioned over the graphical interface window.

» Ifyou iconify the interface window, all dialog boxes are iconified along
with the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the
“Setting X Resources” chapter).

In file names, you may use a tilde a@ghand for your home directory.

52

Examples

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use the File Selection dialog box:

I

Debugger/Simulator: File Selection

The file filter selects

specific files. —
A list of
filter-matching files.

/

A list of files
previously accessed
during the debugger
session.

A single click on a
file name from
either list highlights
the file name and
copies it to the text
area. A double click
chooses the file and
closes the dialog
box.

!

File Filter

Jusers/myproj/*.c

Files

usersim

projfinit_system.c
{users/imyprojimain.c
usersimyprojfproc_spec.c
users/myprojfupdate_sys.c

<Previous Files>
usrfhp64000/lib{X 11/app-defaults/HPE84_Debug
usersimyprojf. Xdefaults
usersimyprojfXdefaults. sim.man

[
vi

/users/myproj/main.c_

oK Filter

Cancel

Label informs you
what kind of file
selection you ar
performing.

Text entry area. Text is Clicking this button

either copied here
from the recall list, or
entered directly.

Entering a new file Clicking this button
chooses the file name filter and clicking this cancels the file
displayed in the text button causes a list of selection operation
entry area and closes files matching the new and closes the dialog
the dialog box. filter to be read from box.

the directory.

53

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you
of the type of list
displayed.

A single click on a
directory name
from the list
highlights the name
and copies it to the
text area. A double
click chooses the

I='| Debugger/Simulator: Directory Selection

Previous Working Directories

4
$SHOME

directory and closes
the dialog box.

A list of predefined
or previously
accessed directories.

Text entry area.
Directory name is
either copied here
from the recall list, or
entered directly.

To customize the initial list of entries look for "dirSelectSub”
in the file $HPE4000/libfX11/app-defaults/HP64_Debug

and add your own definition to your . Xdefaults file.

Use the File-»Edit->File pulldown to edit these files.

E;HP64000fdemofdebui ehv

Selection

fusers/myproj

|

Cancel

Clickinlg this button
chooses the directory
displayed in the text
entry area and closes

the dialog box.

Clicking tlhis button
chooses the directory
displayed in the text
entry area, but keeps
the dialog box on the
screen instead of
closing it.

1
Clicking this button
cancels the directory
selection operation
and closes the dialog
box.

54

Chapter 2: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Displaythe Help Index by choositglp ~General Topic ...or
Help -~Command Line ...

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help

Index, the interface displays a window containing the help information. You
may leave the window on the screen while you continue using the interface.

Examples To see more information on howto use the on-line help, cliddap, then
click onGeneral Topics ...then click on "To Use Help", then click on the
"OK" button.
=] Debugger/Emulator: Help Topics Index
ng‘:ﬁeral Information--

General Topic ...
Command Line ... IThe Interface ... At a Glance

ICommon Questions & Answers

Version ... IAction Keys
X Resource Names | ICommand Line Operation
= I(): Entry Buffer

Dialog Boxes

Pop-up Menus

[For More Information

Glossary

To Set or Clear Breakpoints

To Set a Variable

--Menu Bar--

Pulldown Menus Quick Reference

Selection

o Help: Topics
|To Use Help, ‘
To Use Help
Cancel Use the menu to see information about the debugger’s graphical

user interface.

To see more text, move the mouse to the scrollbar on the right side
of the window. Hold the right mouse button while you move the mouse up
and doun.

To move the help window, move the mouse to the iitle bar.
Hold the right mouse butten while you drag the window.

To get help on another topic, click on that topic then click on the
button in the ESTSREYSEHSIEEN uindou.

To save a help topic in a file which you can print or view at later
time, click on the B [button. A file selection dialog box
will ask you to name the file in which to save the information.

55

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the graphical interface, tlanmand lingortion of the interface
gives you the option of entering commands in the same manner as they are
entered in the standard interface. Additionally, the graphical interface makes
the command tokens pushbuttons so commands may be entered using the
mouse.

If you are using the standard interface, the command line is the only way to
enter commands.

This section describes how to:

e Turn the conmand line off/on.
 Enter commands.

» Edit commands.

* Recall commands.

» Displaythe help window.

56

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To turn the command line on or off

To turn the command line on or off using the down menu, boose
Settings=Command Line.

To turn the cemmand line on or off using the status lp@p-up menu:
position the mouse pointer within the status line area, press and hold the right
mouse button, and choo€emmand Line On/Off from the menu.

To turn the cexmand line on or off with a single mouse click, hold the
< Shift> key and click on the status line.

To turn the conmand line off using the command line entry guea-up
menu: position the mouse pointer within the entry area, press and hold the
right mouse button, and chooS8emmand Line On/Off from the menu.

To turn the cammand line on with the keyboard: place the mouse pointer in
the display area and press any alphanumeric key.

"On" means that the command line is displayed and you can use the command
token pushbuttons, the commanduretand recall pushbuttons, and the

cursor pushbuttons for command line editing. "Off" means the command line
is not displayed and you can use only the pull-downgomtup menus and the
action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the debugger window. The status line is not part of the command
line and continues to be displayed whether the command line is on or off.

Choosing certain pull-down menu items while thencoand line is off causes
the command line to baitned on. That is because the menu item chosen
requires some input at thernmand line that aanot be supplied another way.

57

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To enter a command

1 Build a command using the command token pushbuttons byssinsly

positioning the mouse pointer on a pushbutton and clicking the left mouse
button until a complete command is formed.

Execute the completed command by clicking Return pushbutton (found
near the bottom of the command line in the “Commamdug).

Or:

Execute the completed command using the Command Line entrgapeap
menu: Position the mouse pointer in the command line entry area; press and
hold the right mouse button until the Command Lpog@-up menu appears;
then, choose thExecute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of partial commands or command tokens.
You know a command is complete when “<uet> " appears on one of the
command token pushbuttons. The interface does not check or act on a
command, however, until the command is executed. (In contrast, commands
resulting from menu choices and action keys are supplied with the needed
carriage return as part of thensmand.)

58

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To edit the command line using the command line
pushbuttons

To clear the command line, click ti#ear pushbutton. .

To clear the command line from the cursor position to the end of the line,
click theClear to endpushbutton.

To move to the right one command word or token, clickRtravard
pushbutton.

To move to the left one command word or token, clickBhekup pushbutton.

To insert characters at the cursor position, prestndest char keyto change
to insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pressBaekspace>
key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

When moving by words left or right, tiBackup pushbutton is grayed out and
unresponsive when the cursor reaches the beginning of th@aod string.

See “To edit the command line using the mouse and the commarnpb irep
menu” and “To edit the command line using the keyboard” for information
about additional editing operations you can perform.

59

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

To edit the command line using the command line
pop-up menu

To clear the command line: position the mouse pointer within the Command
Line entry area; press and hold the right mouse button until the Command
Line pop-up menu appears; cho@ear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line:
position the mouse pointer at the place where you want the clear-to-end to
start; press and hold the right mouse button until the Commandbioeip
menu appears; choo&tear to End of Line from the menu.

To position the cursor at the next token or the previous token: press and hold
the right mouse button until the Command Lptp-up menu appears;
choose~orward Tab or Backward Tab from the menu.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

See “To edit the command line using the mouse and the command line
pushbuttons” and “To edit the command line using the keyboard” for
information about additional editing operations you can perform.

To recall commands

Click the pushbutton labeldglecallin the Command Line to display the
dialog box.

Choose a cmmand from the buffelist. (You can also enter amonand
directly into the text entry area of the dialog box.)

Because all command entry methods in the interface — menus, action keys,
and command line entries — are echoed to the command line entry area, the

60

Chapter 2: Entering Debugger Commands
Using the Command Line with the Mouse

contents of the Command Recall dialog box is not restricted to commands
entered directly into the command line entry area.

The Command Recall dialog box containsaof interface caamands
executed during the debugger session as well as any predefined comman
present at interface startup.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the “Setting X
Resources” chapter).

See “To use dialog boxes” for information about using dialog boxes.

To get help about the command line

To display the help topic explaining the operation of the command line, select
Help —General Topic ..—~Command Line Operation.

To display the command line help menu, seklgdp ~Command Line ...

To find commands which duplicate a menu
selection

To see how a menu item maps to command line commands:
SelectWindow —Journal BrowserStart to open a journal browser window.

Select the menu item.

Most menu selections generate one or more commands. If you know which
commands are generated, you can include them in action keys or command
files.

61

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

executed by pressing tkeReturn> key. Command tokens are entered by
typing a single letter, typically the first uppercase letter of the token.

. Commands are entered on the command line at the deburggapt (>) and

The third and fourth lines of the status window displayomand tokens. The
third line shows the tokens that you can enter at the current location in the
command line. Theolrth line shows tokens that are available if you select
the highlighted command token on the third line. The command token lines
provide you with a look ahead feature, showing you the debugganeods
available to you at anytime.

This section describes how to:
 Enter commands.

» Edit commands.

* Recall commands.

» Access on-line help information.

To enter debugger commands from the keyboard

1 Build a command using direct keyboard entry by sssigely typing letters
corresponding to comand tokens until a complete command is formed.

2 Execute a completed command using the keyboard, pressRatirn> key
on the keyboard.

You can enter commands anytime the cursor is displayed on the command
line. You can enter only one debugger command at a time.

Debugger commands have the following syntax:

command [qualifier...] [parameter...]

62

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

To enter a command keyword, type the first letter of the keyword. For
example, to enter the commabédbugger L evel Assemptype the letters D, L,
and A. The following commandilappear on the ammand line:

Debugger Level Assembly

Press< Return> to enter (execute) the command.

In command examples, the letter you must type is highlighted in bold type.

Note In cases where you can select from more than one keyword beginning with the
same letter, type the first uppercase letter of the desired keyword. For
example, typ@to seleciOn andF to select &F.

Enter qualifier keywords in the same way as command keywords. Qualifiers
provide the debugger with information on how to execute thentand.
Qualifiers are normally single words that immediately follow the command
name. For example, in the command:

Program Find_Source Next Backward

the qualifierBackwardcauses the debugger to search the file from the current
position in the file towards the beginning of the file for a specified string.

Type parameters in their entirety from the keyboard. Parameters must be
separated from the command or qualifier keyword by at least one space.
Parameters describe the object of the command and are typically Gsopee

that represent values or addresses used by the command. For example, in the
command:

Expression Display_Value &system_is_running

the paramete&system_is_runningpecifies the address of the variable
system_is_running

63

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

To edit the command line

To clear the command line, pres€tri> U.

To clear the command line from the cursor position to the end of the line,
press< Ctrl> E.

To move to the right one command word, pre3sb> .
To move left or right character-by-character, pressthand - keys.

To delete characters to the left of the cursor position, press the
< BACKSPACE> key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

To recall commands using the command line
recall feature

To recall commands from the command line, presst@&l> R key
combination. Continue to pres<CtrI> R to move from the most recently
executed commands backward to earlier commands.

To move forward in the recall list, pres<tri> B.

The command line recall feature is available to you, but it is not as easyto use
or as flexible as the Command Recall dialog boxin the graphical interface.
You must search through monands in a linear fashion instead of going
directly to the command you want in the dialog box. The depth of the recall
list is predefined and caot be controlled by you. The recidt may contain
duplicate entries that you must scroll past and that take up room in the recall

64

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

list. Finally, you canot predefine entries for the redit — the list only
contains the most recent commands executed during the debusgiense

To display the help window

Press the function kéib.

Or:

Enter the command
Debugger ?

This command displays a menu of debugger commands, command parameters,
function keys, and other debugger features. Descriptions for each topic may be
obtained by positioning the cursor on the first letter of any topic in the help
menu and pressing tkeReturn> key.

The debugger’s help window is context sensitive. When you display the help
window, the cursor is located on the last command you entered before
displaying the help window. The debugger assumes you need help with this
command. PressReturn> to display information about the command.

Pressing< Return> or < Down> displays information on the next item in the
help menu. PressingUp> displays information about the previous item in
the help menu.

You can move the cursor to the first command of a command type (Breakpt,
Debugger, etc.) by entering the first letter of the command type. For example,
to move the cursor to the entry for the first window command, enter:

w
The cursor will be positioned at the Window Activaraoand entry. Then you

can use the cursor keys to select the window command you need help with and
press< Return> to display information on that command.

65

Chapter 2: Entering Debugger Commands
Using the Command Line with the Keyboard

Press thé&5 function key one time or press the escap&gc>) key twice to
exit the help window. (Note that you cannot exit the graphical interface help
window this way.)

66

Chapter 2: Entering Debugger Commands
Viewing Debugger Status

Viewing Debugger Status

The status line shows you what the debugger is doing. The status line:

» Contains information about the operation being performed by the
debugger.

« Contains indicators to warn you about special conditions.

» Shows the microprocessor being simulated.

» Shows the program module associated with the current program counter.
» Shows the number of the last breakpoint that occurred.

The status line is always present in both the graphical interface and the
standard interface.

The debugger displays the status line in the following format:
STATUS:<Status> [J][L]]W] CPU MODULE: <module> BREAK #: <#>
[R]

Debugger Status

The Status field on the status line shows the current state of the debugger.
The possible values for this field are:

Command The debugger is ready to accept a command or a macro
definition.
Execute The debugger is executing target environment instructions.

The debugger displayxecuteon the status line when you
enter the Program Run command or the Program Step

command.
ComFile The debugger is reading commands from a command file.
Macro The debugger is executing a macro.
Paused The debugger is in the paused state after execution of the

Debugger Pause command.

67

Chapter 2: Entering Debugger Commands
Viewing Debugger Status

Reading The debugger is reading an executable file or a C source file
into the debugger’'s memory.

Working The debugger is executing internal debugger operations.

Indicator Characters

The Warning indicator (W) indicates that the program counter isnot ona C
source line boundary. The debugger displays a warning when it detects a
breakpoint, an instruction halt, or an instruction error between lines.

The Log indicator (L) indicates that commands are being logged to a log file.

The Journal indicator (J) indicates that everything appearing in the Journal
window is being written to a journal file.

The Register indicator (R) indicates that a register variable is being used, but
its lifetime is not known by the debugger. The debugger displays an R when
the variable is referenced, indicating that the values being used for this
variable may not be valid.

CPU Simulated

The CPU entryindicates which microprocessor is being simulated.

Current Module

The MODULE: entry names theiaent module (< module>). The current
module is the module pointed to by the program counter. If the program
counter points outside of the known code area associated with the program,

Last Breakpoint

The BREAK # entry indicates the number of the last breakpoint that
occurred, or (0) zero if execution was not terminated with a breakpoint.

68

Chapter 2: Entering Debugger Commands
Viewing Debugger Status

To display information about the debugger
version

SelectHelp —~General Topic ..-Interface Revision Information. .

Information about how this version of the debugger differs from previous
versions is now included in the on-line help. This includes the information
which was previously printed in th@perating Noticeor the "Versions" chapter
of theUser's Guide

69

Chapter 2: Entering Debugger Commands
Solving problems with the interface

Solving problems with the interface

If pop-up menus don’t pop up

When you hold the right mouse button down, a pop-up menu does not appear.
Here are some things to check:

[] Check that the mouse pointer is hand-shaped.

Some areas of the screen do not have pop-up menus.

[] Check that your mouse buttons are not being redefined in your window
manager resource file. Delete any redefinitions from the resource file.

For example, it is very common for usersiomto redefine the right mouse
button to raise a window by changing the mouse button definitions in the
.mwmrcfile. The redefinition causes mwm to trap the right mouse button and
not pass it through to the debugger. Deleting the redefinitibaliew the

button click to pass through.

70

Loading and Executing Programs

Howto load a program into the debugger and control its execution.

71

Compiling Programs for the Debugger

Writing programs for simulation
Several microprocessor features work differently in the simulator:

* Some instructions and exception conditions cause the microprocessor to
read or write data to CPU space. CPU space references are intended for
communication with external hardware (such as a floating point
coprocessor or security-checking device). For this reasoméheory
simulator ignores CPU space writes and returns $FF for CPU space reads.
Thus, there is no mechanism for simulating coprocessor communication.

* Since the debugger provides complete step and breakpoint control, the
trace bits in the Status Register are ignored; they do not cause a trace
exception to occur after each instruction.

 The TRAP instruction causes dlegal instructionexception. Use normal
debugger commands to set breakpoints.

68020 Module Support — CALLM and RTM

CALLM and RTM are used in conjunction with external hardware to
maintain a finer resolution of access control than that afforded by the
supervisor and master bits.

On the actual 68020 nricprocessor, if the module descriptor used by a
CALLM or RTM instruction has typ&01, the 68020 will perform a CPU
space read from address $10004 to determine the legality of an access level
change. The resulting status value must be between 1 and 7 inclusive or a
format exception will occur.

The simulated CALLM and RTM instructions do not perform a CPU space
read. Theyinterrogate the simulator access level status va@eadgevhich is
initially 1 (valid status). You can chan@asvia the Memory Register
command, for example:

Memory Register @as = 4

72

Note

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debugger

If you change@asto a value between 4 and 7, the CALLM instruction will
copy arguments from the current stack to the new stack specified in the
module descriptor.

The simulated CALLM instruction puts an undefined value in place of the
saved access leviel the module call stack frame. (Normally tbeeved access
levelwould have been the current access level, obtained from CPU space
address $10000.)

Using a Hewlett-Packard C Cross Compiler

Use the default compile mode when compiliogtarget programs for use
with the debugger. The default settings generate executable files (.x file
extension) in the HP-MRBEE-695 file format required by the debugger.
The default option settings force a stack frame to be built for every function
call, which is required for stack backtracing.

The “Getting Started” chapter of tihotorola 68000 Family C Cross Compiler
User's Guidegives an example of how to compile a simple program and
execute it in the debugger/simulator environment.

Do not use theh option when compiling and linkingpyr program for the
debugger. Thehoption causes the compiler to generate HP 64000 file
formats. Use the default settings which generate executable files in the
HP-MRI IEEE-695 file format required by the debugger. The debugger
extracts all symbolic information from the executable (.x) file.

Using Environment Dependent Files

The HP B3640 Mairola68000 Family C Cross Compilerovides
environment dependent files that support theB1R66 68000-Series
Debugger/Simulator environment. These environment dependent routines
affect the following areas of C pragnming:

e program setup
» dynamic memory allocation

e program input and output

73

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debugger

Note

The "Environment Dependent Routines" chapter ofMio¢orola 68000
Family C Cross Compiler User's Guidescribes the environment dependent
routines supplied with the compiler.

Using Optimizing Modes

If you use the optimizing modes (-O or —OT), function calls that do not have
automatic variables may not have stack frames. As a result, the stack
backtrace window will not contain entries for such functions. Additionally, the
optimizing modes will cause the compiler to generate code which is not easily
debugged.

When initially compiling gprogram for the debugger, you should turn off all

optimizations to avoid confusion when using the debugger. After program
flow and all basic algorithms have been debugged, you can recompile the

program with all optimizations turned on.

When you compile with all optimizations on, one or more of the following
problems may occur while using the debugger:

e Target program execution in the debugger may not appear to correctly
reflect the logical flow of the program.

* The debugger may not stop execution at a high-level breakpoint or may
stop execution at the wrong location in the program.

* The debugger may not be able to display local variables.

Forcing Variables to be Placed in Memory

The default compiler settings automatically create register variables for statics
and frequently used variables. Some debugger functions such as access
breakpoints will not work with register variables. The compiler optin, -F
turns off the compiler’s automatic creation of register variables, forcing the
compiler to assign these variablestemory. This enables greater

functionality of some debugger commands. After debugging yode, you

can then recompile your code without these options for greater efficiency.

74

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debugger

Using Math Libraries

Although FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code that
will run interchangeably in both the debugger/emulator and
debugger/simulator, use the C compiler’s floating point library routines.
These libraries contain routines that do not use FPU instructions, thereb
allowing them to execute properly in both debugging environments.

References

The “Getting Started” chapter of tihotorola 68000 Family C Cross Compiler
User's Guidegives an example of how to compile a simple program and
execute it in the debugger environment.

The “Command Syntax’ chapter of tMotorola 68000 Family C Cross
Compiler User's Guidgives detailed descriptions of compiler options.

The “Environment Dependent Routines” chapter of¥worola 68000
Family C Cross Compiler User's Guidescribes the environment dependent
routines supplied with the compiler.

Using Microtec Language Tools

The debugger is designed to work with the HP Advanced Cross Language
System. However, you can also use the Microtec Research, Inc. language tools
with the debugger.

Microtec’s language tools are quite similar to the HP language tools. The
input syntax and code generated by the HP and Microtec assemblers, linkers,
and librarians are identical with few exceptions.

The language tools available from Microteare themcc68kC compiler, the
ccc68kC+ + compiler, thesm68kassembler, thimk68k linker, and the
lib68k librarian.

Using the Microtec Commands

For instructions on how to compile and assemble programs using the Microtec
language tools, refer to thepplication Note for Hewlett-Packard 68xxx Product
Interfaces and Microtec Research Inc. 68xxx Language Tbhis application

note is available from your Hewlett-Packard sales representative.

75

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debugger

Assembler Defaults

You should be aware of these differences between asm68lsé8kt a

Command-line syntax. The differences are minor. See thelm® man
pages for a description of the commdame options.

Case sensitivity. as68k is case sensitive by default, asm68k is not. Use the
command line flag "-fcase" to make asm68k case sensitive.

Symbols in HP-MRI IEEE-695 files. The HP assembler places local
symbols in the output object file by default, asm68k does not. Use the
command line flag "-fd’ with asm68k to generate local symbols.

The HP assembler places global symbols in the debug part by default. There is
no way to do this with Microtec’s asm68k. This information is needed to
correctly scope symbols. Thus yoilfind that some symbols may be

incorrectly scoped with the Microtec assembler.

Linker Defaults

You should be aware of these differences between Ink68k and 1d68k:

Output file format. 1d68k produces HP-MRIHEE-695 by default. Ink68k
products Motorola S-Records by default. To generate an HP-MREI695
(.x) format absolute file, use thel command line option offi flag.

Local symbols. 1d68k provides local symbols in absolute file by default, but
Ink68k does not. The command line fléigand optionH also set thel flag
which will cause Ink68k to generate local symbols.

Support files. 1d68k and Ink68k have different default locations and
environment variables used to locate linker command files and libraries.

Librarian Defaults

ar68k usesa as the default library suffix. lib68k usdib as the default library
suffix.

76

Chapter 3: Loading and Executing Programs
Compiling Programs for the Debugger

The Microtec MCC68K Compiler

mcc68k is very different from the HP compilers. Studythe Microtec
documentation if you need specific information about mcc68k.

77

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Loading Programs and Symbols

This section shows you how to:

» Specify the location of C source files.

* Load programs.

* Load programs only (without symbols).

» Load symbols only (without the program).
* Load additional programs.

» Specifydemand loading of symbols.

To specify the location of C source files

Before you start the debugger, set the HP64_DEBUG_PATHa@mment
variable.

The location of C source files can be defined to the debugger with the UNIX
shell variableHP64_DEBUG_PATH If HP64_DEBUG_PATH is defined, the
debugger first searches for the files in the path(s) specified in the variable, in
the order in which they are listed.

In addition to path names, you can place a percent %poHaracter in the

HP64 _DEBUG_PATH definition. The percent sign forces the debugger to
search for files in their compile-time locations. (Compile-time paths are

stored in the absolute file.) The search of these paths occurs at the point that
the percent sign is found in the variable. For example, if the percent sign is
first in the variable before any paths, the debugger will search for the file in the
location recorded for it in the absolute file before checking the other locations
specified by the HP64_DEBUG_PATH variable.

IfHP64 DEBUG_PATH is not defined, or HP64_ DEBUG_PATH is defined,
but the files were not found in the patissed there, the debugger searches for
source files in the following sequence:

78

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

1 their location at compile time (this information is recorded in the
absolute file)

2 the current directory (if the required source files are not found in their
compile location)

Example The shell variable definition:

HP64_DEBUG_PATH=/users/proj/src:/users/proj/mysrc
export HP64_DEBUG_PATH

causes the debugger to search paths for C source files in the following order:

3 lusers/projlsrc

4 Jusers/proj/mysrc

5 the paths specified in the absolute file at compile time
6 the current directory

If you use the csh shell (most Sun systems) setenvinstead oExport to set
the variable.

To load programs

* When starting the debugger, enter the executable file name as the last term in
the db68k command line.

$ db68k <abs_file>

Or:

» SelectFile —~Load —Executable then use the File Selection dialog box to select
the executable file.

Or:
» Using the command line, enter:

Program Load Default <file_name>

79

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Examples

When you load an absolute file using these commands, the debugger:
Removes all previous program symbols.

1

2 Removes all previously set breakpoints.
3 Resetsthe program counter (PC).

4 Loads the full symbol set.

5 Loads the new executable module.

Absolute files contain executable object code. They must have a file name
extension ofx. You do not need to specify thefile extension when entering
the absolute file name.

TheProgramLoadDefault command is equivalent to tReogramLoadNew
All Pc_Set command.

To load the executable filxs.x

$ db68k ecs

Or:

Program Load Default ecs

To load program code only

SelectFile ~Load -Program Only ..., then use the File Selection dialog box to
select the absolute file.

Or:
Using the command line, enter:

Program Load New Code_only No_Pc_Set <absolute_name>

80

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Enter the name of the absolute file whose code is to be loaded, and press the
< Return> key.

The code image will be loadedtivout loading symbols or resetting the PC.

If you are re-loading a program, you may need to re-specify variables for the
Monitor window. To re-load a program without clearing the Monitor window
enter:

Program Load Append Code_only No_Pc_Set <absolute_name>

To load symbols only

Use the -1 option to the db68k command when starting the debugger.
$ db68k -l <absolute file> <RETURN>

Or:

SelectFile sLoad -Symbols Only .., then use the File Selection dialog boxto
select the absolute file.

Or:

Using the command line, enter:
Program Load New Symbols_only No_Pc_Set <absolute_file>

Enter the name of the absolute file whose symbols are to be loaded, and press
the< Return> key.

Only symbolic information is loaded from the absolute file.

81

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

Examples

To load additional programs

Using the command line, enter:
Program Load Append

Select either All, Code_Only, or Symbols_Only. Then, select either Pc_Set or
No_Pc_Set. Finally, enter the name of the absolute file to be appended, and
press thes Return> key.

All both code and symbols are loaded.
Code_Only only code from the absolute file is loaded.
Symbols_Only only symbols from the absolute file are loaded.

Pc_Set the program counter (PC) is set to the transfer address
found in the absolute file.

No_Pc_Set the program counter (PC) is not changed.

When you append a program, it is loaded without deleting the existing
program. The new symbolsihbe added in a tree with the executable file
name as theoot.

To append the program “module2.X’ to the current program without setting
the program counter:

Program Load Append Al No_Pc_Set module2

82

Chapter 3: Loading and Executing Programs
Loading Programs and Symbols

To turn demand loading of symbols on or off

SelectSettings—-Debugger Optionsand set th®emand Loadingoption.

With demand loading, some symbol information is loaded on an as-neede
demand bsis rather than during the initial load of the .x filer@and loading
lets you load and debug programs that otherwise would not be loadable
because of very large amounts of symbol information.

Symbol information for global symbols, local symbols in the source module
containing main, and local symbols in assembly modules are loaded during the
initial load of the .xfile. Local symbolsin C source modules other than that
module which contains main are loaded either when the user explicitly
references the module or when the program is stopped with the program
counter in the module.

You can also use the -d option when starting the debugger to specify demand
loading. The -doff option turns offednand loading. This option wil override
the option in the startup file.

83

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

Stepping Through and Running Programs

The various Program Run command options can be combined to make
complexrun-time control scamands for gur program.

This section shows you how to:
. e Step through programs.

» Step over functions.

* Run from the current PC address.

« Run from a start address.

* Run until a stop address.

To step through programs

» Click on theStepaction key.

Or:

» SelectExecution-Step—from PC.

Or:

» Using the command line, enter:
Program Step

And press the Return> key.

Your program executes one C source line (high-level mode) or one machine
instruction (assembly-level mode) at a time from the address contained in the
program counter PC. When the prograrisca function, stepping continues

in the called function.

84

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

You can specify a starting address with the Program Step command. You can
also specify a step count to cause the debugger to step multiple lines or
instructions in your program.

The debugger updates the screen after each instruction or line is executed.
The highlighted line in the Code window (which indicates the value of the
program counter) is the location of the next line to be executed. Ifa
breakpoint is encountered, single-stepping is halted.

You can also use function ké&y to single-step.

If the debugger steps into an HP library routine, run until the stack level above
the level of the library routine. Use the Program Run Untile@and or the
Backtrace window pop-up menu.

To step over functions

Click on theStep Overaction key.

Or:

SelectExecution-Step Over—from PC.

Or:

Using the command line, enter:
Program Step Over

And press the& Return> key.

The debugger steps through the program one line or one instruction at a time.
However, if the debugger encounters a C function or assembly-level JSR or
CALL instruction, it stops stepping, executes the JSR or CALL instruction,
and then continues stepping when the called subroutine returns.

You can also use function k&g to step over functions.

85

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

To run from the current program counter (PC)
address

» Click on theRun action key.

Or:

* SelectExecution-Run —from PC.

Or:

» Using the command line, enter:
Program Run

And press the Return> key.

The program runs until:

The program encounters a permanent or temporary breakpoint.
An error occurs.

A STOP instruction is encountered.

You press< Ctrl> -C.

The program terminates normally.

You can run from the current program counter address to resume program
execution after the program has been stopped.

To run from a start address

1 Enter the start address into the entry buffer.

2 SelectExecution-»Run -from ().

Or:

86

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

* Using the command line, enter:
Program Run From <start_addr>

Type in the start address, and presstiReturn> key.

The program runs until:

* The program encounters a permanent or temporary breakpoint.
* An error occurs.

* A STOP instruction is encountered.

* You presx Ctrl>-C.

* The program terminates normally.

Running from a start address in high-level mode may cause unpredictable
results if the compiler startup routine is bypassed.

To run until a stop (break) address

1 Enter the stop address into the entry buffer.

2 SelectExecution»Run -until () or click on theRun til () action key.

Or:

* Using the command line, enter:
Program Run Until <break_addr>

Type in the stop address and, optionally, a pass count, and press the
< Return> key.

The break address (< break_address>) acts aspotany instruction
breakpoint. It is automatically cleared when program execution is halted.

The pass count (< ga_ount>) paameter specifies the number of times the
break address is executed before the program is halted. For example, a pass

87

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

Examples

count of three it cause theprogram to break on the fourth execution of the
break address.

Multiple break addresses are OR’ed. In other words, if you specify more than
one break address, the program runs until either address is encountered.

To run the program until either line 20 or line 90 is encountered, whichever
occurs first.

Program Run Until #20,#90

To run from the current program counter address until the break address
update_systers encountered twice:

Program Run Until update_system %%?2
The Until option in the command sets a pomary breakpoint at address

update_systemThe pass count pameter % %2 specifies that the debugger is
to stop program execution on the second access to adghdete_system

To count simulated clock cycles

Look at thecyclesvalue in the register window.

When using the simulator, tlogclesvalue in the register window is the
cumulative number of clock cycles executed since this value was last reset (by
means of the commandemory Registers @cycles = 0 , for example).

This count is based d#B8020 cycle aunts, with the assumption that no
instructions overlap in the pipeline. Actual cycle counts on a pipelined
processor may be significantly less.

If an instruction causes an exception, cycle counts for exceptiongsiogere
included even if exception progsing is disabled. Partially executed
instructions receive full cycle counts.

Cycle times are shown with the cache disabled. Enabling the cache has no
effect on cycle times.

88

Chapter 3: Loading and Executing Programs
Stepping Through and Running Programs

You can use the @cycles pseudoregister in expressions and macros. Keep in
mind, however, that @ cycles exists only in the simulator. Macros which will be
used with a debugger/emulator must not refe@toycles

To add simulated wait states

» Set the value of the @wait_state pseudoregister.

The maximum value of @wait_state is 255 (OxFF).

Example To add three cycles to simulated memory accesses, type "@wait_state= 3"in
the entry buffer, then click on th@ EXPR () action key.

89

Chapter 3: Loading and Executing Programs

Using Breakpoints

Using Breakpoints

The debugger implements breakpoints using shadow bits. The number of
access breakpoints available to the debugger/simulator is unlimited.

This section shows you how to:

» Set a memory access breakpoint (read, write, or either).
* Set an instruction breakpoint.

* Clear selected breakpoints.

* Clear all breakpoints.

» Display breakpoint information.

To set a memory access breakpoint

Enter the address (which may be a symbol) in the entry buffer. Select
Breakpoints -Setand selecRead Write , or Read/Write.

Or:

Using the command line, entBreakpt, select the type of accessto break on
(Read, Write, or Access), enter the address of the memory location, and press
the< Return> key.

The access types have the following meanings:

Read break on read accesses.
Write break on write accesses.
Access break on either read or write accesses.

90

Chapter 3: Loading and Executing Programs
Using Breakpoints

Access breakpoints cause the debugger to halt program execution each time
the target program reads from or writes to the speaifiechory location(s).
Memory locations can contain code or data.

Examples To cause execution to halt each time the program reads from or writes to the
variable current_temp:

Breakpt Access ¤t_temp

To cause execution to halt each time the program reads from the variable
current_temp:

Breakpt Read ¤t_temp

To cause execution to halt each time the program writes to the variable
current_temp:

Breakpt Wite ¤t_temp

To set an instruction breakpoint

» Position the mouse pointer in the code window over the line at which you wish
to set a breakpoint. Either click the right mouse button, or press and hold the
right mouse button to display the Debugger Display pop-up menu and choose
Set/Clear Breakpointfrom the menu.

Or:

» Enter the instruction address into the entry buffer, then select
Breakpoints - Set-Instruction ().

Or:
» Using the command line, enter:

Breakpt | nstr <addr>

91

Chapter 3: Loading and Executing Programs

Using Breakpoints

Note

Example

Enter the address of the instruction location, and press Return> key.

The instruction breakpoint causes the debugger to halt program execution
each time the target program attempts to execute an instruction at the
specified memory location(s). The debugger halts program execution before
the program executes the instruction at the breakpoint address.

If you specify a range, the debugger sets breakpoints on the first byte of each
instruction within the specified range.

Set breakpoints are marked with asterisks “*” in the code window. In the

high-level mode, dots “.” show the source lines associated with a breakpoint.

The default setting of the debugger optilign_Bp(align breakpoint) isFF.
Setting the option t®n causes breakpoints to be aligned based on the
assembly language instructions foundriemory at the time the breakpoints
are set. If multiple breakpoints exist in the same program area, their
alignment may be incorrect. Make sure &ilgn_Bpoption is set t@FF to
prevent breakpoint alignment problems. See the “Configuring the Debugger
chapter for more information.

To set an instruction breakpoint at line 82 of the current module:

Breakpt | nstr #82

Example

To set a breakpoint for a C+ + object instance

Use the dot or arrow operator to specify the object andnégraber function.

This allows you to set a breakpoint for a member function only when it is
invoked for a given object or instance.

To break when functioofuncis invoked by object instan@®bjl, enter:

Breakpoint | nstr cobjl.cfunc

92

Chapter 3: Loading and Executing Programs
Using Breakpoints

To do this the hard way, you could enter:

Breakpoint | nstr C::cfunc\@entry;when (C::cfunc\this==

&cobjl)

To set a breakpoint for overloaded C+ + .
functions

» To set a breakpoint at one of the functions when you know the argument type,
supply the argument type following the functicanme.

» To set a breakpoint at one of the functions when you don't know which
argument type you want, just use the name of the function. The debugger will
list the choices with a menu in theurnal window.

Example To set a breakpoint for the functigrint (which is not in a class) fdloat
arguments, entaarint (float) in the entry buffer and select
Breakpoints -»Set ().

Another way to set a breakpoint for the functprimt is to enteprint in the
entry buffer, seledBreakpoints -»Set (), then type the number of "print
(float);" from the menu in the Journal window.

To set a breakpoint for C+ + fu nctions in a class

» Set a breakpoint for the C+ + class.

Examples To set breakpoints for all member functions of the assnameenter
“classname::" in the entry buffer, then seaakpoints -Set () from the
menu bar.

Or, using the command line, enter:

93

Chapter 3: Loading and Executing Programs

Using Breakpoints

Breakpoint | nstr classname::

To clear selected breakpoints

Position the mouse pointer in the Code window over the line at which you
wish to clear a breakpoint. Click the right mouse button.

Or:

Position the mouse pointer in the Code window over the line at which you
wish to clear a breakpoint. Hold the right mouse button and ssd¢/clear
Breakpoint.

Or:

Position the mouse pointer in the Breakpoint window over the breakpoint you
wish to clear. Hold the right mouse button and sdbetete Breakpoint

Or:

Place the breakpoint address in the entry buffer, then select
Breakpoints »Delete ()

Or:

Using the command line, enter:
Breakpt Delete <brkpt_nmbr>

Enter the breakpoint number, and presstiireturn> key.

The debugger assigns a breakpoint number to each breakpoint. The debugger
uses this number to remove the breakpoint.

The < brkpt_nmbr> is the number of the breakpoint displayed in the
debugger breakpoint window. Enter a range of breakpoint numbers

94

Chapter 3: Loading and Executing Programs
Using Breakpoints

(< brkpt_nmbr> ..< brkpt_nmbr>) to remove more than one breakpoint at a
time. When you delete a breakpoint, all following breakpoints are
renumbered.

Or:

» Using the command line, enter:

Breakpt Erase <address>

where < address> is a parameter of the same form used to set a breakpoint.

Examples To delete breakpoint number 1:

Breakpt Delete 1

To clear all breakpoints

» SelectBreakpoints »Delete All.
Or:

» SelectDelete All Breakpointsfrom the Breakpoints window pop-up menu.
Or:

» Using the command line, enter:
Breakpt Clear_All

And press the& Return> key.

95

Chapter 3: Loading and Executing Programs
Using Breakpoints

To display breakpoint information

» SelectWindow -Breakpoints.

Or:
» Using the command line, enter:

Wndow Active Breakpoint

And press the Return> key.

The debugger displays the breakpoint window when:

* You enter a breakpoint command.
* You execute the Window Active Breakpoint command.
* You use function keys F1/F2 to activate next/previous windows.

The Breakpoint window temporarily overlays the top portion of the screen.

When made active, this window displays breakpoint information including:

* Breakpoint number.

* Breakpoint address.

* Name of the module or function containing the breakpoint (in high-level
mode).

* Module line number (in high-level mode).

* Breakpoint type.

» Command arguments entered with the breakpoint command.

The following paragraphs describe each field in the breakpoint window.

Breakpoint number

The debugger assigns a breakpoint number (#) when you execute a breakpoint
command. The debugger uses this number as a label to reference or clear each
breakpoint.

96

Chapter 3: Loading and Executing Programs
Using Breakpoints

Breakpoint address

The breakpoint address (ADDRESS) shows the memory location of the
breakpoint. The debugger displays the address as a hexadecimal value.

Module/function

The module/function field (MOD/FNCT) displays either the name of the
module containing the breakpoint or the name of a function if you qualifie
the breakpoint with a function name. If you specify a module name with a
breakpoint command, the name must be followed by a line number (for
examplemainl#80). The field width is eight characters. The debugger
truncates field entries greater than eight characters in length to eight
characters.

Line number

The line number entry (LINE) displays a module line number if you set a
breakpoint in a high-level module. If the compiler did not generate executable
code for the C statement at the line number specified, the debugger examines
the source code and sets a breakpoint on the next line number for which the
compiler generated executable code.

In the code window, the debugger places asterisks beside all line numbers that
are associated with breakpoints. The debugger places period symhbelside

line numbers that are specified as breakpoints, but have no code associated
with them.

Breakpoint type

The breakpoint type (TYPE) describes what type of breakpoint is set:
instruction, read, write, or access. In assembly-level mode, the debugger sets
instruction breakpoints on microprocessor instruction addresses. In high-level
mode, the debugger sets instruction breakpoints on source line numbers. The
debugger flags instruction breakpoints with(assembly-level) ofH

(high-level). When switching between modes, these flags are useful for
differentiating between the different types of breakpoints.

Command argument

The debugger records arguments (COMMAND ARGUMENT) in the
breakpoint window as you entered them on the command line. Line numbers,

97

Chapter 3: Loading and Executing Programs
Using Breakpoints

addresses, symbol names, and macro names all appear in this field. For more
information about breakpoints, see the specific breakpoint command
descriptions in the “Debugger Commands” chapter.

98

Chapter 3: Loading and Executing Programs
Using Breakpoints

To halt program execution on return to a stack
level

» SelectRun Until Stack Level from the Backtrace window pop-up menu.

Or:

1 Set a stack level breakpoint.
2 Run the program.

3 If desired, delete the breakpoint that was just encountered.

Example Assume that you want to run the program until it returns tortaim()
function. You can determine where to set a breakpoint on return to main by
using the stack level information in the backtrace window (you may have to
activate this window in order to see the information in it).

There is a number next to the functimin() in the backtrace window. This
is the current stack level afain(). This is the address of the machine level
instruction immediately following the call initialize_system

Place the mouse pointer over the line in the backtrace window that lists
"main." Hold the right button and seléRtin Until Stack Level.

Or, using the command line and assumimajn() is at stack level 1, enter:

Breakpoint | nstr @1

This command W causeprogram execution to stop when the program returns
to the functiormain. The at sign (@) is a debugger operator that causes the
debugger to interpret the number 1 as a stack level.

Executing the Breakpt Instr command causes the debugger to update and
display the Breakpoint window. The breakpoint you just entered is shown in
the Breakpoint window. Now use the appropriatewotands taun the

program and delete the breakpoint.

99

Chapter 3: Loading and Executing Programs
Using Simulated Interrupts

Using Simulated Interrupts

The debugger can simulate program interrupts to your target program. The
debugger lets you specify a delay between interrupts in terms of a clock cycle
count. The pseudoregist@cyclesmaintains the current clock cycle count.

Caution The pseudoregister @cycles is not implemented in the emulation
environment. Macros written for execution in both the simulation and
emulation environments must not refer@xycles
This section shows you how to:

» Define simulated interrupts.

* Remove simulated interrupts.

To define simulated interrupts

Using the command line, enter:

Program | nterrupt Add

Select Repetitive or Once, specify how often the interrupt should occur,

specify the interrupt level number and exception vector number; then, press

the< Return> key.

Use the Program Interrupt Addroonand to cause a simulatptbgram

interrupt to occur after a specified number of clock cycles have been executed.

You can define simulated interrupts to be repetitive or to occur only once.
See Also Program Interrupt Add on pag&6.

100

Chapter 3: Loading and Executing Programs
Using Simulated Interrupts

To remove simulated interrupts

* Using the command line, enter:

Program | nterrupt Remove

Enter the level number of the interrupts to be removed, and press the
< Return> key.

The Program Interrupt Removermmmand cancels any pending intgpts.

Examples To remove all level 7 interrupts:

Program | nterrupt Remove 7

To remove all interrupts:

Program | nterrupt Remove

101

Chapter 3: Loading and Executing Programs
Restarting Programs

Restarting Programs

This section shows you how to:
* Reset the processor.
* Reset the program counter to the starting address.

* Reset program variables.

To reset the proce ssor

* SelectExecution-Reset to Monitor.

Or:

» Using the command line, enter:
Debugger Execution Reset_Processor

And press the Return> key.

Resetting the processor simulates a microprocessor reset operation by
restoring the microprocessor to its initial state.

To reset the pr ogram counter to the starting
address

* SelectExecution—Set PC to Transfer.

Or:

102

Chapter 3: Loading and Executing Programs
Restarting Programs
Using the command line, enter:
Program Pc_Reset

And press the Return> key.

The program counter is reset to the transfer address of your absolute file.
next Program Run or Program Step command entertddwi afrom address
will restartprogram execution at the beginning of the program.

To reset pr ogram variables

Reload your program.

Memory is not reinitialized when you reset the processor or reset the program
counter. Therefore, program variables are not reset to their original values.
To reset program variables after resetting the processor or program counter,
reload your program.

For faster loading, you can load only the program code. The debugger retains
symbol information. You do not have to reload symbol information if symbol
addresses have not changed.

For information on loading programs, refer to the previous “Loading
Programs and Symbols” section.

103

Chapter 3: Loading and Executing Programs
Saving and Loading the CPU State

Saving and Loading the CPU State

State files are used to save the current CPU sta¢enOry image, register
values, and program symbols) of a debussEm. Though state files can only
be created from within a debugger/simulator session, you can use them to
restore a CPU state in either a debugger/simulator or debugger/emulator
session.

This section shows you how to:
» Save the current CPU state.

 Load a saved CPU state.

To save the current CPU state

* Using the command line, enter:
Debugger Execution Save_State

Enter the name of the file in which the CPU stdtewdd be saved, and press
the< Return> key.

The currentmemory contents and register values are saved to the specified
file. If a file name is not specified, the default file nath&8k.savs used.

Examples To save the curremhemory contents and register values in file "session1.sav™

Debugger Execution Save_State sessionl

104

Chapter 3: Loading and Executing Programs
Mapping Memory

Mapping Memory

This section shows you how to:

» Prevent access to memory locations.
e Prevent writing to memory locations. .
» Allowaccess to memory locations.

» Display currenmemory map assignments.

To prevent access to memory locations

* Using the command line, enter:
Memory Map Quarded

Enter the range of addresses that should not be accessed, and press the
< Return> key.

Examples To configure memory address range 800@totigh 0&00h as guarded
(nonaccesible)memory:

Memory Map Guarded 8000h..0a000h

To prevent writing to memory locations

* Using the command line, enter:

Memory Map Read_Only

105

Chapter 3: Loading and Executing Programs
Mapping Memory

Enter the range of addresses that should not be written to, and press the
< Return> key.

Examples To configure memory address range 800@totgh 8ffth as read-only (ROM)
memory:

Memory Map Read_Only 8000h..8fffh

To allow access to memory locations

* Using the command line, enter:
Memory Map Wite_Read

Enter the range of addresses to which reads and writes are allowed, and press
the< Return> key.

Examples To configure memory address range 200ttotigh 3ffth as Write_Read
(RAM) memory:

Memory Map Wite_Read 2000h..3fffh

To display current memory map assignments

* Using the command line, enter:
Memory Map Show

And press the Return> key.

Examples To display the memory map:

106

Chapter 3: Loading and Executing Programs
Mapping Memory

Memory Map Show

> Memory Map Show
TYPE OWNER ADDRESS COMMAND LINE
RAM SIMU 00000000..0000002F Load section
RAM SIMU 000000BC..000000BF Load section
RAM SIMU 00000100..0000010B Load section
RAM SIMU 00000400..00001044 Load section env
RAM SIMU 00001048..00002851 Load section prog
RAM SIMU 00002854..0000906B Multiple load sections
RAM SIMU 00040000..00043FFF Load section stack
RAM SIMU 00060000..0006401D Multiple load sections

The command displays memory address ranges mapped as Guarded
(NOMEM), Read_Only (ROM), or Write_Read (RAM) in the journal
window. The display includes a list of sections loaded and their address ranges.

107

Chapter 3: Loading and Executing Programs

Accessing Input Ports

Accessing Input Ports

This section shows you how to:

e Set or alter input port status.

» Delete an input port.

» Rewind the input file associated with an input port.

» Displayinput port buffer values.

Examples

To set or alter input port status

Using the command line, enter:
Memory | nport Assign

Select the size, port address, and input data source; then, preRdtuen>
key.

The Memory Inport Asign canmand asigns a simulatedput port and

defines its size, address, and input source. The port address can be any valid
address. The source of input data may be the standard 1/O screen, the journal
window, a file, an expression string, or the input or output port buffers.

To assign address 0x40C as an pi@t (input) of size byte:

Memory | nport Assign Byte 0x40C Source_Is Data_String
"message"

Read operations from the porillvaccess the string containing the word
'message’.

108

Chapter 3: Loading and Executing Programs
Accessing Input Ports

To delete an input port

* Using the command line, enter:

Memory | nport Delete
Enter the address of the input port to be disabled, and presRéteirn> .

key.

The specified input port address is disabled, allowing the address to behave
like a normal memory location.

Examples To disable the input port at addré€9h:
Memory | nport Delete 400h

To rewind the input file associated with an input
port

* Using the command line, enter:
Memory | nport Rewind

Enter the address of the input port whose associated input file or is to be
rewound or whose input string pointer is to be reset, and pressRagirn>
key.

Examples To rewind the input file or string associated with input pif@h:

Memory | nport Rewind 0x400h

109

Chapter 3: Loading and Executing Programs

Accessing Input Ports

Examples

To display input port buffer values

Using the command line, enter:
Memory | nport Show

Enter the address or address range of the input ports whose buffer values are
to be displayed, and press th®eturn> key.

Each input port has a single value buffer associated with it. The buffer
contains the last value read from the port. This value can be represented in
byte, word, or long format.

To show all assigneahput ports:

Memory | nport Show

To show input port at addre460h:
Memory | nport Show 0x400

To show all input ports in the address rad86h tirough 4fth:
Memory | nport Show 0x400..0x4ff

110

Chapter 3: Loading and Executing Programs
Accessing Output Ports

Accessing Output Ports

This section shows you how to:

* Set or alter output port status.

» Delete an output port. .
* Rewind the output file associated with an output port.

» Displayoutput port buffer values.

To set or alter output port status

* Using the command line, enter:
Memory CQutport Assign

Select the size, port address, and output destination; then, press the
< Return> key.

(explanatory text)

The Memory Outport Asign canmand defines the address, size, and output
destination of a simulated output port. The target program can write output
data the the simulated output port. The port address can be any valid address.

Examples To assign address 0x408 as an p/@t (output) of size word:

Memory CQutport Assign Word 0x408 Destination_Is File
"/myproj/cmdout.dat”

Write operations to the portithaccess file /mproj/lcmdout.dat’. You must
specify the file name in quotation marks.

To assign address 0x40C as an p@t (output) of size byte:
Memory CQutport Assign Byte 0x40C Destination_lIs Stdio

111

Chapter 3: Loading and Executing Programs
Accessing Output Ports

Write operations to the portithaccess the stdio window.

To delete an output port

. * Using the command line, enter:

Memory CQutport Delete

Enter the address of the output port to be disabled, and presfRétarn>
key.

The specified output port address is disabled, allowing the address to behave
like a normal memory location.

Examples To disable the output port at addrd8sh:
Memory CQutport Delete 408h

To rewind the output file associated with an
output port

* Using the command line, enter:
Memory CQutport Rewind

Enter the address of the output port whose associated output file is to be
rewound, and press tkeReturn> key.

Examples To rewind the output file associated with output pt8h:

Memory CQutport Rewind 0x408

112

Chapter 3: Loading and Executing Programs
Accessing Output Ports

To display output port buffer values

* Using the command line, enter:

Memory CQutport Show
Enter the address or address range of the output ports whose buffer valu.

to be displayed, and press th®eturn> key.

Each output port has a one value buffer associated with it that contains the
last value written to the port. The buffer value can be displayed in byte, word,
or long format.

Examples To display all assigned outpports:

Memory CQutport Show

To display output port at addre438h:
Memory CQutport Show 0x408

To display all output ports in the address ra#@eh tirough 4ffh:
Memory CQutport Show 0x400..0x4ff

113

Chapter 3: Loading and Executing Programs
Accessing the UNIX Operating System

Accessing the UNIX Operating System

This section shows you how to:
* Fork a UNIX shell.

« Execute a UNIX command.

To fork a UNIX shell

SelectFile - Term.

A terminal emulation window will be created.

Or:

Using the command line, enter:
Debugger Host_Shell

And press the Return> key.

The Debugger Host_Shell command lets you teporarily leave the
debugging environment by forking a UNIX shell. The shell created is
whatever the shell variab®HEL L is expanded to. In this mode, you may
enter operating system commands.

The Debugger Host_Shell command does not end the debuggemset
suspends program operation. To return to the debugger,<e@tdr -D or
typeexit atthe UNIX prompt, and press tkeReturn> key.

114

Chapter 3: Loading and Executing Programs
Accessing the UNIX Operating System

To execute a UNIX command

* Using the command line, enter:

Debugger Host_Shell

Type in the UNIX command, and press thReturn> key. .

When using the graphical interface, a terminal emulation window will be
opened and the UNIX commandie executed in that window (as specified
by the “shellCommand” X reairce).

When using the standard interfasgloutfrom the command is written to the
journal window. stderris not captured. Commands writinggmerrwill
corrupt the display. Interactive UNIX sumandsannotbe used in this mode.

Examples To display the current working directory, enter:

Debugger Host_Shell pwd

115

Chapter 3: Loading and Executing Programs
Using simulator and emulator debugger products together

Using simulator and emulator debugger products
together

You can continue a debugging session started in the debugger/simulator in the
debugger/emulator by following the steps listed below:
. 1 In the debugger/simulator, use thebugger Execution Save_State
command to save theiaentmemory contents and register values.
2 Quit the simulator session using thebugger Quit command.
3 Start the debugger/emulator.

4 Load the state file created with tBebugger Execution Save_State
command using thBebugger Execution Load_State command. This
will restorememory and processor registers to the state you saved in the
debugger/simulator.

116

Chapter 3: Loading and Executing Programs
Using the Debugger with the Branch Validator

Using the Debugger with the Branch Validator

The Hewlett-Packard Branch Validator (BBA) is an interactive tool that helps
you rapidly determine which branches of a program have not been taken.
With the missed branches identified, you can modify your ssipa tests to
ensure software reliability.

The branch analysis information is collected byr6grams that have been .

compiled using thbacpppreprocessor.

To unload Branch Validator data from program
memory

SelectFile -Store—~BBA Data ... Then choose a fileame from the File
Selection dialog box.

Or:

Using the command line, enter:
Memory Unload_BBA All

And press the Return> key.

This command unloads branch arsiyinformation associated with all
absolute files loaded.

The default file name isbadump.data

The BBA preprocessor (-b option) must be used at compile time in order for
this information to exist in programemory.

Once this information has been unloaded, it can be formatted with the BBA
report generatohbarep(see theHP Branch Validator for AXLS C User's
Guide.

117

Chapter 3: Loading and Executing Programs
Using the Debugger with the Branch Validator

118

Chapter 4: Viewing Code and Data

Viewing Code and Data

How to find and display source code andmory contents.

119

Chapter 4: Viewing Code and Data

Using Symbols

Using Symbols

This section shows you how to:

* Add a symbol to the symbol table.

» Display symbols.

» Delete a symbol from the symbol table.

Example

To add a symbol to the symbol table

Using the command line, enter:
Symbol Add

Enter the symbol data type, the symbol name, and optionally the base address
and the initial value; then, press th&®eturn> key.

Two types of symbols can be added:

» Program symbols, which are identical to variables defined in a C or
assembly program. These symbols must be given base addresses.

» Debugger symbols, which may be used to aid and control the flow of the
debugger. These symbols are specified without a base address, and only
debugger commands and C exggiens in macros can refer to them. They
cannot be referenced by the program in tangeinory.

To add a program symbol of type int (default) as an alias for "num_checks",
enter the following:

Symbol Add nc Address &num_checks Fill_ Mem -1

The "Fill_Mem -1"conmand places the value -1 in num_checks. Notice that
the Monitor window is not updated to reflect that change.

120

Chapter 4: Viewing Code and Data
Using Symbols

To display symbols

» SelectDisplay-Symbol () to display information about the symbol in the
entry buffer.

Or:

» Using the command line, enter:
Symbol Display Default

Enter the symbol, module, or function name; then, press Return> key.
Symbols and associated information are displayed in the journal window.

When displaying a symbol in the current module, the debugger looks for the
symbol in the current module. If there is no module qualifier, all symbols with
the specified nameillvbe displayed, including global symbols and symbols
local to the module.

The wildcard character may be placed at the end of a symbol name to
represent zero or more characters. If used with no symbol riasgeated
the same asthat is, all symbols are displayed.

Examples To display the symbol 'update_sys’in the current module:

Symbol Display Default update_sys

Symbol Display Default update_sys
@ecs\\update_sys : Type is High level module.
Code section = 00001436 thru 00001C21

To display all symbols in module 'update_sys”
Symbol Display Default update_sys\

> Symbol Display Default update_sys\
Root is: update_sys

@ecs\\update_sys : Type is High level module.
Code section = 00001436 thru 00001C21
update_sys\update_system
: Type is Global Function returning void.

121

Chapter 4: Viewing Code and Data
Using Symbols

Address = 00001436 thru 00001513
update_system\refresh
: Type is Local int.
Address = Frame + 8
update_systemlinterval_complete
: Type is Local int.
Address = Frame + 12

To display symbols in all modules

* With "\"in the entry buffer, sele®isplay-Symbol ().
Or:
» Using the command line, enter:

Symbol Display Default\

To delete a symbol from the symbol table

* Using the command line, enter:
Symbol Remove <symb_name>

Enter the symbol, module, or function name; then, press Return> key.

The specified symbols are removed from the symbol table. Only program
symbols and user-defined debugger symbols can be deleted from the symbol
table.

Examples To delete the symbol "counter”in function "update_system™

Symbol Remove update_system\counter

122

Chapter 4: Viewing Code and Data
Using Symbols

To delete all symbols in module "update_sys™

Symbol Remove update_sys\

To delete all symbols in all modules:

Symbol Remove \

123

Chapter 4: Viewing Code and Data

Displaying Screens

Displaying Screens

A debugger screen is what you see in the display area. Each debugger screen
may contain one or more debugger windows. A debugger window is a
predefined physical area on the screen containing specific debugger
information.

The debugger has three predefined screens. Each predefined screen has a
correspondingame and number. The predefined screens and their associated
names and numbers digted below:

Screen Name Screen Number
High-level screen 1
Assembly-level screen 2
Standard I/O screen 3

This section shows you how to:

» Displaythe high-level screen.

» Displaythe assembly level screen.

» Switch between the high-level and assembly screens.
» Displaythe standard I/O screen.

» Displaythe next screen (activate a screen).

High-Level Screen

The debugger automatically displays the high-level screen when an executable
(.X) file containing the C function main() is loaded from the UNDxhooand
line with the db68k command. This screen has nine windows:

e journal
 code

e monitor

» backtrace
e status

» breakpoint
e error

* help

124

Chapter 4: Viewing Code and Data
Displaying Screens

e view

The high-level screen displays high-level source code and stack backtrace
information including the calling sequence of functions and function nesting
levels.

Assembly-Level Screen

The debugger automatically displays the assembly-level screen when an
executable (.x) file is loaded from within the debugger or the executable fil
does not contain the C source function main(). This screen has ten wind

e journal

* code

* monitor

* register

e stack

e status

* breakpoint
e error

« help

* view

The assembly-level window displays assembly-level code and processor register
and stack information.

Standard 1/O Screen

The debugger displays the standard I/O screen when your program requests
interactive input from the standard input device (stdin), or directs output to
the standard output device (stdout). It may also be displayed usikgthe
function key. This screen has five windows:

e status

* breakpoint
e error

* help

* view

You can also access the standard I/O screen as a window (window No. 20).

The standard I/O window emulates a dumb terminal. It can be moved about
the display, but it can be no larger than 24 rows by 80 columns.

125

Chapter 4: Viewing Code and Data
Displaying Screens

To display the high-level screen
» SelectSettings—High Level Debug
Or:

» Using the command line, enter:

Wndow Screen_On High_Level

To display the assembly level screen

» SelectSettings—-Assembly Level Debug
Or:
» Using the command line, enter:

Wndow Screen_On Assembly Level

To switch between the high-level and assembly
screens

* Press thé&3 function key.

Or:

126

Chapter 4: Viewing Code and Data
Displaying Screens
* Using the command line, enter:
Debugger Level

You can also use the Window New and the Window Active commands to
display a different screen.

To display the standard I/O screen

* Press thé&6 function key.

Or:

e SelectWindow —Simulated IO.

Or:

» Using the command line, enter:
Whdow Screen_On Stdio

The standard 1/O screen is displayed when your program requests interactive
input from the standard input device (keyboard) or when your program writes
information to the standard output device.

To display the next screen (activate a screen)

* Press thé&6 function key.

Or:

127

Chapter 4: Viewing Code and Data
Displaying Screens

* Using the command line, enter:
Whdow Screen_On Next

The next higher-numbered screen will be displayed. Either the high-level or
the assembly-level screen will be displayed, not both.

The debugger screens are numbered as follows:

Screen Name Screen Number

High-level screen 1
Assembly-level screen 2
Standard I/O screen 3
User-defined screens 4-

128

Chapter 4: Viewing Code and Data
Displaying Windows

Displaying Windows

This section shows you how to:

» Change the active window.

+ Select the alternate view of a window.
e Set the cursor position for a window.

A debugger window is a predefined physical area on the screen. The deb
has 18 predefined windows. Each window displays information specific to
associated name (for example, the breakpoint window displays breakpoint
information).

Each of the 18 predefined windows has a correspondingerand number.

All windows (except the log file and journal file windows, which are files) also
have an associated screen number. The following table lists the predefined
windows and their associated names and numbers.

129

Chapter 4: Viewing Code and Data
Displaying Windows

Window Name Window Screen
Number Number

journal (high—level) 1 1

code (high—level) 2 1
monitor (high—level) 3 1
backtrace 4 1
status (high—level) 5 1
journal (assembly-level) 10 2

code (assembly-level) 11 2
monitor (assembly-level) 12 2
register (assembly-level) 13 2
stack 14 2
status (assembly—level) 15 2
standard /O 20 3

view 24 1,2,3
breakpoint 25 1,2,3
error 26 1,2,3
help 27 1,2,3
log file 28 none
journal file 29 none

The code window displays C source code in high-level mode. The code
window displays disassembled machine code in assembly-level mode. The C
source code that generated the assembly code can be interleaved with the
assembly-level code.

When disassembled code is displayed, the address and machine code of a
disassembled instruction are displayed on the left side of the window as
hexadecimal values. For instructions over 6 bytes in length, bytes 7 through n
are replaced by ellipsis.).

The stack window displays the stack beginning at the memory location pointed
to by the debugger stack pointer @SP. This window is available only within
the assembly-level screen.

130

Chapter 4: Viewing Code and Data
Displaying Windows

To change the active window

* Use thecommand selechouse button to click on the border of the window
you wish to activate.

Or:

» Select the window you want to make active from\tiedow - menu.

Or:

* Use the command line to select a window:
Whdow Active <window>

where<window> is the name of the window to be made active, and press the
< Return> key.

The debugger uses a highlighted or thick border for the active window. The
cursor keys, scroll bar, and function k&4 (select the alternate display) only
operate in the active window.

If you are using a terminal without graphics caipabs, the active window is
indicated by single dashes around the border (other windows all have borders
of equals signs).

The window number is displayed in the upper right border of the window.

Examples To make the high-level backtrace window active:

Window —Backtrace

Or:

Wndow Active High_Level Backtrace

To make the breakpoint window active:

Wndow Active Breakpoint

131

Chapter 4: Viewing Code and Data

Displaying Windows

To make user window 57 active:

Whdow Active User_Window 57

Example

To select the alternate view of a window

Click on the border of the active window with tb@mmand selechouse
button.

Or:

Press thé4 function key.

Or:

Using the command line, enter:
Wndow Toggle View

Or:

Using the command line, enter:

Wndow Toggle View <Window>

where<Window> is the name of the window whose alternate view is to be

displayed, and press tkeReturn> key.

The typical default alternate view of a window is an enlarged view of the
window, letting you view more information. Repeating the command switches
between the normal view and the alternate view of the active window.

To display the alternate view of the high-level code window:

Whdow Toggle_View High Level Code

132

Chapter 4: Viewing Code and Data
Displaying Windows

To view information in the active window

Use the scroll bar.

Or:

Use the cursor control keys.

Press thec Up> or < Down> cursor keyto move up or down in the window .
one line at a time.

Press thec Page Down> (< Next>) or < Page Up> (< Prev>) key to move
the window one-half of the window length at a time.

Press thec Home> or < End> (< Shift> < Home>) keyto position the
window at the beginning or end of the information displayed in the window.

Type< Ctrl> -F or< Ctrl> -G to shift the contents of the active window to the
right or left.

The following table describes the functions of the cursor control keys in the
active window and the command line window.

133

Chapter 4: Viewing Code and Data

Displaying Windows

Key

Description

—

N
!

Prev

Next

Home

End (Shift Home
Insert char
Delete char

Undo

)

Move to right in data field of command.
Highlight token to the right in status line window.

Move to left in data field of command.
Highlight token to the left in status line window.

Move up one line in window.

Move down one line in window.

Move up one half window.

Move down one half window.

Move to the top of the active window (except stack window).
Move to bottom of window (except for stack window).

Put keyboard in insert mode for editing data field of command.
Delete character within data field of command.

Back tab.

The Home and End (Shift-Home) keys have additional functions when used
with the code and stack windows. The following table describes how the
Home and End (Shift-Home) keys work in these active windows.

Active Window Home Key End Key
Code Move to top of module Move to bottom of module
Stack Move to current stack pointer (SP) Move to curraarhé pointer (FP)

To view information in the 'More" lists mode

If the "--More--" prompt is printed at the bottom of a window, the debugger is
waiting to display more than one screen of information.

134

Chapter 4: Viewing Code and Data
Displaying Windows

Press the space bar to display the next screen of information.
Press thes Return> key to display the next line.

Press "Q"to end the "More" display.

If you try to enter a command while the debugger is displaying thi®ote--"
prompt, the coomand vill not be executed until the "More" display has ende.

You can turn the "Moréist mode off or on with th&ettings-Debugger
Options dialog box.

For more information, see your operating system documentation anctiee
command.

To copy window contents to a file

SelectFile ~Copy Window .

Or:

From the command line, enter the following commands:

File User_Fopen Append99 File< file_name >
Expression Fprintf 99, "%w",< window_number >
File Whdow_ Close 99

135

Chapter 4: Viewing Code and Data

Displaying Windows

To view commands in a separate window

SelectWindow -Journal Browser - Start.

Journal output—the eomands and miscellaneous information usually
displayed in the Journal window—be displayed in a separate browser
window.

You may start several nested browser windows.

UseEnd to end output to the current browser window without closing the
window. Selectindrestart has the effect of aBnd followed by aStart. Use
NextNCmdsto record the next commands in a browser window (for
example, to record commands to use for an action key).

136

Chapter 4: Viewing Code and Data
Displaying C Source Code

Displaying C Source Code

This section shows you how to:
« Displaythe C source code.
* Find first occurrence of a string.

* Find next occurrence of a string.

To display C source code

1 Displaythe high-level screen (see the instructions in the previous “Displaying
Screens” section).

2 Display source code at the location in the entry buffer by selecting
Display-Source () Or click on theDisp Src () action key.

Or, using the command line, enter:

Program Display_Source

Enter the line number or function name of the code you wish to display, and
press the Return> key.

Examples To display the C source code at line number 1 (in the current module):

Program Display_Source #1

To display the C source code at functioain
Program Display_Source main
To display C+ + source code at overloaded C+ + funatfang you can

either give the name of the function and select the definition from a menu, or
you can specify the definition by entering the argument type:

137

Chapter 4: Viewing Code and Data
Displaying C Source Code

Program Display_Source cfunc (float)

Example

To find first occurrence of a string

1 Displaythe high-level screen (see the instructions in the previous “Displaying

Screens” section).
Enter the string in the entry buffer.

SelectDisplay—Source Find Fwd ()or Display—Source Find Back ().

Or, using the command line, enter:

Program Find_Source Cccurrence <Direction>

Select either Forward or Backward as the direction, enter the line number or
string you wish to find, and press thdReturn> key.

To find the first occurrence of the string “main”:

Program Find_Source Cccurrence Forward main

To find next occurrence of a string
SelectDisplay-Source Find Again
Or:

Using the command line, enter:

Program Find_Source Next <Direction>

138

Example

Chapter 4: Viewing Code and Data
Displaying C Source Code

Select either Forward or Backward as the direction, and pressRetirn>

key.

To find the next occurrence of a string:

Program Find_Source Next Forward

139

Chapter 4: Viewing Code and Data
Displaying Disassembled Assembly Code

Displaying Disassembled Assembly Code

To display assembly code

. » SelectSettings—~Assembly Level Debug
Or:

» Using the command line, enter:
Wndow Screen_On Assembly Level

The Code window will show disassembled insructions.

140

Chapter 4: Viewing Code and Data
Displaying Program Context

Displaying Program Context

This section shows you how to:

* Set current module and function scope.

» Display current module and function.

» Display debugger status.

» Displayregister contents. .
» List all debugger registers.

» Displaythe function calling chain (stack backtrace).

» Display all local variables of a function at the specified stack (backtrace)
level.

To set current module and function scope

SelectFile ~Context-Symbols .., enter the module or function name in the
dialog box, and click on the OK pushbutton.

Or:

Using the command line, enter:
Program Context Set

Enter the module or function name, and presstReturn> key.

The module and function scope is used by the debugger to uniquely identify
symbols. For example, several functions may have local variables with the
same names. When you use that variable natt®wi naming the function,
the debugger assumes you mean the variable inuttierd module or function
scope.

141

Chapter 4: Viewing Code and Data
Displaying Program Context

Examples

To select module “update_sys” as the current module:

Program Context Set update_sys

To select function “update_sys\graph_data” as the current function:

Program Context Set update_sys\graph_data

To set the program context to the module at which the program counter is
pointing:

Program Context Set

To display current module and function

SelectDisplay-Context. Click on the Done pushbutton when you wish to
stop displaying the information.

Or:
Using the command line, enter:
Program Context Display

The current module, function, and line number are displayed in the journal
window.

To display debugger status

SelectWindow - Status.

Or:

142

Chapter 4: Viewing Code and Data
Displaying Program Context

* Using the command line, enter:
Debugger Execution Display_Status

The following information is displayed in the view window (which temporarily
overlays the top portion of the screen):

* Product version.

e Current working directory.
e Current logfile in use.

e Current journal file in use.
e Startup file used.

To display register contents

» SelectWindow -Registers

Or:

» SelectModify »Register.., click Recallto choose the register fromist of
register names, and cliékead Current Register Valueto display the register
value.

Or:

» Using the command line, enter:
Wndow Active Assembly Registers

The register window shows the current values of the microprocessor’s registers
and several debugger variables. The microprocessor register values are labeled
with their standard names. The debugger displays all values in hexadecimal
format unless otherwise noted.

If you are running just the debugger the Registers window is available only
within the assembly-level screen.

143

Chapter 4: Viewing Code and Data
Displaying Program Context

The information displayed in the register window varies with different
microprocessors. See the “Registers” chapter and b&yfor information

about the registers and pseudoregisters which you can display using expression
commands.

Stack Pointer. A7 is the stack pointerSP for the current mode (user,
supervisor, or interrupt). The stack pointdd$S@ ISP, andMSB that are not
current are labeled and displayed separately.

Previous Instruction Pseudoregister @pi. The program counter for the
previous instruction is indicated by the pseudoregi@ei. This value is
useful for finding the instruction that jumped to, called, or returned to the
current location.

PCand@piare truncated to show only the address bits valid for the current
CPU type.

Cycle Count Pseudoregister @cycles. The number of cycles@cycle}
used by instructions since this counter was last cleared (by thmaod
MemoryRegister @cycles = 0, for example) is displayed as the pseudoregister

@cycles

Exception Handling Keyword @exc. The value of the pseudoregistérexc
determines how the debugger handles exceptions. See the chapter titled "CPU
Simulation" in this manual a detailed explanation of this keyword.

Access Status Pseudoregister @as. The pseudoregister @as is the access
status used by the process@ALLM andRTMinstructions. It is used to
determine the legality of as access level change.

CPU Modes and Registers Some registers in the display are shown only for
some CPU modes, as shown in the following table.

144

Chapter 4: Viewing Code and Data
Displaying Program Context

68020

Status Register: TTSM.II..XNZVC -
Stack Pointers: USP, ISP, MSP (only two shown at a time)
Control Registers: SFC, DFC, VBR, CACR, CAAR

Access Status: as

6833x, 68340, 68360

Status Register: TTS.II..XNZVC

Stack Pointers: USP, SSP (only one shown)
Control Registers: SFC, DFC, VBR

68010, 68012, 68070

Status Register: T.S..II..XNZVC

Stack Pointers: USP, SSP (only one shown)
Control Registers: SFC, DFC, VBR

68000, 68008, 68302, 68HC001

Status Register: T.S..III..XNZVC
Stack Pointers: USP, SSP (only one shown)

Control Registers: None

ThelSPregister of the 6802Mmcresponds to th8SPregister of the other
processors. Th8 andM bits of the status register determine which stack
pointer appears iA7; the other stack pointers appear separately&
MSP, ISP, or SSB.

To list all registers

* Using the command line, enter:
Symbol Display Reserved_Symbols

A list of all the registers and pseudoregistensported by the debugger will
be displayed in the Journal window.

145

Chapter 4: Viewing Code and Data
Displaying Program Context

This command is useful if you want to know what registersapearted by
the debugger, or if you need to find the sizes of various registers.

See Also Many of the registers are described in the “Registers” chapter.

To display the function calling chain (stack
backtrace)

» SelectWindow —Backtrace.

Or:

» Using the command line, enter:
Wndow Active High_Level Backtrace

The backtrace window displays the function calling chain, from the compiler
startup routine to the current function in high-level mode.

This window displays (from left to right):

* Function nesting level.

* Return address to theliag function.
» Frame status character.

* Module containing the function.

* Function name.

Function Nesting Level. The nesting level of the current function is always
0, the calling function always 1, etc.

You may reference the nesting level when setting a breakpoint. For example,
to cause the program to execute until it returns to the second nested function,
enter the command:

Program Run Until @2

146

Chapter 4: Viewing Code and Data
Displaying Program Context

Another way to execute until a stack level is reached is to cHws&ntil
Stack Levelin the Backtrace window pop-up menu.

Return Address. The return address field displays the return address of the
calling function.

Frame Status Character. One of several characters immediately precedes a
function name in the backtrace window. These frame status characters and
their descriptions are listed in the table below.

Character Description

Space The debugger is executing within a function.

The program counter is at a label. Typically, this is an
assembly language function point.

* The function has been entered, but the function prolog has
not been executed. The debugger cannot locate local
symbols in the function until the prolog has been executed.

? The frame is questionable. For example, this is displayed
when a function has been stripped of debug information.

! The frame is not valid.
The debugger is at the start of an interrupt routine.

+ The debugger is executing an interrupt routine.

Module Name. If the function is in a known module, the backtrace window
displays the module name. If theogram counter is pointing to an address
that is not contained in a module known to the debugger, the module field in
the backtrace window displays a string of question marks (????7??7?).

Function Name. Ifthe return address of a function is inside a known

function, the debugger displays the function name. Ifthe address is outside of
all known functions, the function field in the backtrace window will display
<unknown>. This is the case with the compiler startup module crt0, because
it is assembly code and contains no debug information.

Backtrace Information. Whenever a break occurs in program execution, the
backtrace window is updated. When updating the window, the debugger

147

Chapter 4: Viewing Code and Data
Displaying Program Context

generates backtrace information as described in the following paragraphs.
The backtrace window is displayed only in the high-level screen.

Nesting level 0.

Nesting level 1.

Nesting levels 2
through n.

Functions with no
stack frame.

Nesting level 0 information is based solely on the
current value of the processor’s program counter (PC).
The module and function shown at this level are
selected because the value of the PC falls within their
code spaces.

When program execution breaks on an address that has
an associated public label (for example, a function entry
point), nesting level 1 information is based on the
processor SP. The debugger assumes that the SP is
pointing to the return address because the label is
assumed to be a function entry point and no stack frame
has yet been established. With no staaknfe available,
the return address of thellaag function is at the top of
the stack. This return address is the address at level 1.
The module and function shown are based on this
address, that is, the address falls within their code
spaces.

When program execution breaks on an address that has
no associated public label, nesting level 1 is based on
the processor’s ime pointer (register A6). In this case,
the stack location four bytes above the location pointed
to by register A6 contains the return address of the
calling function. This address is the address shown at
level 1;the module and function shown are based on
this address.

Nesting levels 2 through n are always based on existing
stack frames. A stack frame is generated for each frame
on the stack, based on saved frame pointers. Nesting
levels are generated until backtracing of the stack
encounters a zerodme pointer. This occurs when the
stack frame associated with the compiler startup
routines is encountered.

If a function has no stack frame (due to cdling with
the -O option), the function that called it does not

148

Chapter 4: Viewing Code and Data
Displaying Program Context

appear in the backtrace window at any stack level other
than levels 0 or 1.

Assembly language Assemblylanguage functions that set up stack frames

functions. appear in the backtrace window, but the information
shown is incomplete. Since high level debug
information is not present in such handwritten
functions, the stack frame appears as a questionable
frame. Additionally, there is no function name

associated with the frame, i.e., it is displayed as
<unknown>.

To display all local variables of a function at the
specified stack (backtrace) level

» SelectDisp Vars at Stack Levelfrom the Backtrace window pop-up menu.

Or:

» Using the command line, enter:
Program Context Expand <@stack_level>

Enter the stack level preceded byasign (@), and press tkeReturn> key.

The values of the parameters passed to the function and the function’s local
variables are displayed in the Journal window.

Example To display local variables at stack level 1, position the cursor over "1."in the
Backtrace window, and hold the right mouse button. Move the mouRispio
Vars at Stack Leveland release the button.

Or, use the command line to enter:

Program Context Expand @1

149

Chapter 4: Viewing Code and Data
Displaying Program Context

Example

To display the address of the C+ + object
invoking a member function

Display the value of the functiontkis pointer.

If the program has stopped at a function, you can find out the address of the
object which invoked the function.

The program counter must besidethe function; otherwise you may see a
"Local variable not alive" error message.

To see the address of the object that invokecttinecfunction in clas€,
enter the following string in the entry buffer:

C::cfunc\this

then selecDisplay-Var/Expression ().

150

Chapter 4: Viewing Code and Data
Using Expressions

Using Expressions

This section shows you how to:

» Calculate the value of a C expression.

» Displaythe value of an expression or variable.
* Monitor variables.

« Discontinue monitoring specified variables.

» Discontinue monitoring all variables.

e Print formatted output to a window.

e Print formatted output to journal windows.

To calculate the value of a C expression

* Enter the expression in the entry buffer, then sdédésplay-C Expression ()

Or:

» Using the command line, enter:
Expression C_Expression

Enter the C expression to be calculated, and press Return> key.
The value of the C expression is displayed in the journal window.

If the C expression is an assignmentestant, the Expsion C_Expression
command sets the value of the C variable.

Examples To calculate the value of 'old_data*

151

Chapter 4: Viewing Code and Data

Using Expressions

Expression C_Expression old_data
Result is: data address 000091DC {old_data}

To calculate the value of member temp’ of the first element of the old_data
array of structures:

Expression C_Expression old_data[0].temp
Result is:

To assign the value 1 to num_checks’.

Expression C_Expression num_checks = 1
Resultis: 1 0x01

Examples

To display the value of an expression or variable

Use the mouse to copy the expression or variable into the entry buffer, then
selectDisplay—Var/Expression ().

Or:

Using the command line, enter:
Expression Display_Value

Enter the expression or variable whose value is to be displayed, and press the
< Return> key.

The value of the expression or variable is displayed in the journal window.

The contents of an item, such as an array, are displayed instead of the C value
of the item which is its address.

To display the value of the variable 'num_checks

Expression Display_Value num_checks
01h

152

Chapter 4: Viewing Code and Data
Using Expressions

To display the address of the variable 'num_checks”

Expression Display_Value &num_checks
000091F0

To display the name of th&irent program module:

Expression Display_Value @module

To display the name of theirent program function:
Expression Display_Value @function .

To display members of a structure

1 Copythe name of thersicture into the entry buffer.
2 Add an asterisk (*) in front of theame of the sucture.

3 SelectDisplay-Var/Expression ().

If you are using the command line, use ExpressiorDisplay Value
command.

Example To display the names of the memberstafistureastruct use the following
expression in the entry buffer:

*astruct

The * operator tells the debugger to displaythembers of thetsucture,
rather than the address of the structure.

153

Chapter 4: Viewing Code and Data

Using Expressions

Example

To display the members of a C+ + class

Using the command line, enter

Symbol Display Options Search_all End_Options
<class_name >\

This will display the type, siz@rotection, and overloading of eagtember of
class_name

To display the members of claSsenter:

Symbol Display Options Search_all End_Options C\

Example

To display the values of all members of a C+ +
object

Enter the name of the C+ + object in the entry buffer and select
Display-Var/Expression ().

Or:

Using the command line, enter:
Expression Display_Value < object >

Remember, you are displaying the values imbject so you need to run the
program to the point where the object is created. To displaptmebers of a
class, see "To display the members of a C+ + class."

To display the members of objembjin classC, enter "cobj"in the entry
buffer and seledDisplay—Var/Expression ().

154

Chapter 4: Viewing Code and Data
Using Expressions

To monitor variables

» Enter the variable to be monitored in the entry buffer and click on the
Monitor () action key.

Or:

» Enter the variable to be monitored in the entry buffer and select
Display—Monitor () .

Or:

» Using the command line, enter:
Expression Mbonitor Value

Enter the variable to be monitored, and presstReturn> key.

The monitor window displays monitored variable egsiens. This window
can be displayed in both the high-level and assembly-level screens.

Variables in the monitor window are updated each time the debugger stops
executing the program. (The program is not considered to be "stopped"when
a breakpoint with an attached macro is encountered.)

Example To monitor the value of variable ‘current_temp”

Expression Mbnitor Value current_temp

155

Chapter 4: Viewing Code and Data

Using Expressions

Example

To monitor the value of a register

Monitor a register just as you would a variable.

To monitor the value of register D2, enter "@D2" in the entry buffer and
selectDisplay—Monitor () .

Or, using the command line, enter

Expression Monitor Value @D2.

Example

To discontinue monitoring specified variables

SelectDelete Variablein the Monitor window pop-up menu.

Or:

Using the command line, enter:
Expression Mbonitor Delete

Enter the number of the variable (shown in the monitor window) that should
no longer be monitored, and press thReturn> key.

The variable is removed from the monitor window.

To stop monitoring variable 2 in the monitor window:

Expression Mbonitor Delete 2

156

Chapter 4: Viewing Code and Data
Using Expressions

To discontinue monitoring all variables

SelectDelete All Variablesin the Monitor window pop-up menu.

Or:

Using the command line, enter:

Expression Monitor Clear_All .

All variables are removed from the monitor window.

To display C+ + inheritance relationships

Enter the name of a C+ + class in the entry buffer, then select
Display-Symbols—Browse C+ + Class ()

Or:
Using the command line, enter:
Symbol Browse

Enter the name of the C+ + class to be displayed, and pressRéteirn>
key.

157

Chapter 4: Viewing Code and Data

Using Expressions

Examples

To print formatted output to a window

Using the command line, enter:
Expression Fprintf

Enter the number of the user-defined window, the format string (enclosed in
quotes), and the arguments; then, presstReturn> key.

The formatted output is written to the user-defined window. This command is
similar to the C fprintf function.

The debugger associates the log file window (window no. 28) with a log (.com)
file so that you can write output to that window using the Expression Fprintf
command. This window is not displayed. It is used only for writing to a
command file.

The debugger associates the journal file window (window no. 29) with a
journal file so that it can write journal window output to the journal (.jou) file.
Additional output may be written to the journal file by writing to window 29.

To print the value o¥arto user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print a string in double quotes to user window 57 followed by the floating
point value of float_temp’with a precision of 2:

Expression Fprintf 57,"The value of 'float_temp’ is:
%.2f \n" float_temp

To print formatted output to journal windows

Using the command line, enter:

Expression Printf

158

Examples

See Also

Chapter 4: Viewing Code and Data
Using Expressions

Enter the format string (enclosed in quotes) and the arguments; then, press
the< Return> key.

The formatted output is written to the journal window. Thisiotand is
similar to the C printf function.

To print the value o¥arto the journal window as a single character:

Expression Printf "%c",var

To print the string in double quotes to the journal window followed by the
floating point value of float_temp’with a precision of 2:

Expression Printf "The value of 'float_temp’ is: %.2f
\n" float_temp

"To view commands in a separate window" on pE@.

159

Chapter 4: Viewing Code and Data
Viewing Memory Contents

Viewing Memory Contents

This sections explains how to to view, compare, and search blocks of memory.

Example

To compare two blocks of memory

Using the command line, enter:
Memory Block Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what
happens when a mismatch is found, enter the address range to be compared
and the starting address of the range that it is compared to; then, press the
< Return> key.

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To search a memory block for a value

Using the command line, enter:
Memory Block Operation Search <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select
either Once or Repeatedly to specify when the search should stop, enter the

160

Chapter 4: Viewing Code and Data
Viewing Memory Contents

address range and the value that is to be searched for, and press the
< Return> key.

Example To search for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when the esgiom is found or address 10ffh
is reached:

Memory Block Operation Search Wbrd Once

1000h..+0xff = ,gh' .

To examine a memory area for invalid values

* Using the command line, enter:
Memory Block Operation Test <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select
either Once or Repeatedly to specify when the search should stop, enter the
address range and the value that should be found in the range, and press the
< Return> key.

Example To test for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when a word not matching thessipras
found:

Memory Block Operation Test Wird Once 1000h..+0xff =
'gh’

161

Chapter 4: Viewing Code and Data
Viewing Memory Contents

Examples

To display memory contents

Place a memory start location in the entry buffer and then select
Display—-Memory < Format>.

Or:

Using the command line, enter:
Memory Display <Format>

Select either Mnemonic (()), Byte (()), Word (()), or Long (()) as the format
in which memory contents are to be displayed.

If you are using the command line, enter the starting address or the address
range of the memory whose contents are to be displayed, and press the
< Return> key.

To display disassembled memory in the code window starting at the symbol
" emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mhemonic _emeg_shutdown

To display memory in byte format in the journal window starting at the symbol
‘current_humid;

Memory Display Byte current_humid

162

Chapter 4: Viewing Code and Data
Using Simulated 1/0

Using Simulated 1/0O

Simulated 1/0 (SIMIO) lets programs use the UNIX file system, run UNIX
commands, and use the keyboard and displayfoutiand output.

Your programs can use SIMIO means of the I/O libraries and erainment
dependent routines provided with the B840 C Cross Compiler. Your
programs use the library functions when they open, close, read, or write to
files, etc. These simulated I/O functions are identical in both the
debugger/emulator and debugger/simulator to let you write programs that
function correctly in both environments. Refer to the "Environment
Dependent Routines" chapter of your compiler manual for information on
using the C SIMIO libraries.

If you are using the Microtec Research, Inc., C compiler (HP B3640), your
programs can use SIMIO byeans of the @outines supplied to you with the
debugger software. These routines can be found in a subdirectory of debugger
demo directory /usr/hp64000/demo/debug_env/isim68@d®ed "mri." Your
programs can use these functions to open, close, read, or write to files, etc, in
the debugger environment. See the "simio.c," "simio.h," and the "README"
files in the "mri" subdirectory for more information.

Your programs can also use simulated I/Oneans of user-written assembly
code. Ifyou are developing programs that use simulated 1/O from assembly
code, refer to th&imulated 1/0 User's Guider a complete description of
simulated I/O protocol.

This chapter shows you how to:
+ Enable simulated I/O.

+ Disable simulated I/O.

e Set the keyboard 1/O mode.
* Redirect I/O.

 Check resource usage.

* Increase file resources.

» Displaythe simulated I/O system report.

163

Chapter 4: Viewing Code and Data

Using Simulated 1/0

How Simulated 1/0O Works

Communication between your program running in the simulated system and
the SIMIO process takes place through contiguous single-byte leregttory
locations. The first memory location is called the Control Address (CA). The
Control Address and the memory locations that follow it are called the CA
buffer.

Control Address buffers are less than or equal to 260 bytes in size. A
maximum of 256 bytes of information can be transferred between the debugger
and the host system at one time. Some simulated I/O commands require four
additional bytes for command parameters.

Communication between a program and the simulated 1/O process is a series
of requests by the program and responses by the SIMIO process:

The program places a SIMIO monand in the CA buffer and then waits
for a return code to be placed in the first byte of the CA.

The SIMIO process fdis the CA buffermemory. When it finds a
command, the SIMIQrocess executes themmmand. When the SIMIO
process completes themmmand, the first byte of the CA buffer is changed
to the command retn code.

In the debugger/simulator, the debugger stops executing the program while a
SIMIO command is beingrocessed. This causes no timing related problems
because all timing is relative to the system simulator. Once the SIMIO request
has finished proasing, thgprogram continues executing. This behavior has

the effect of producing an I/O system that takes 0 cycles to complete. When
simulation stops, the simulated cycle counting also stops. When simulation
resumes, the 1/0O request is complete and the time reference of cycle counting
continues.

Simulated I/O Connections

The SIMIO system supports three types of I/O connections. These are:

» Keyboard and display.
* UNIX files.
* UNIX processes.

164

Chapter 4: Viewing Code and Data
Using Simulated 1/0

Display and Keyboard

The debugger provides a windowmed stdio which functions as thermal

display output for target programs. The screen can be opened for output from
target programs via SIMIO with the specialme/dev/simio/display This

name appears to be an UNIX file name. However, it is really a name reserved
by the debugger to indicate the internal screen. The keyboard is accessed by

the special namklev/simio/keyboard

UNIX Files

UNIX files are accessed by their names from the tgvgegram running in

the debugger in the same way they are accessed by host software. The filé
operations of open, close, read, write, and seek are supported by the SIMIO
protocol. When opening a siam on an UNIX file, SIMIO gpports the same
control parameters for file creation and blocking I/O that are available to host
programs.

UNIX Processes

UNIX processes can be run as subprocesses to the debugger with their input
and output directed to the user program. Subprocesses are controlled from the
user program by a Process ldentification number (PID). This lets the user
program check specific subprocesses, send them signals, or stop them. This
subprocess fality allows userprograms to take advantage of the powerful
software and execution environment of the host UNIX system. Host programs
can be used to process data for a debugger user program or to simulate
portions of the software that are not available in the user program.

Because simulated 1/O lets the debugger execute UNIX commands, the
debugger can communicate with other host system 1/O devices, such as
printers, plotters, modems, etc.

For more information on using UNIX processes, refer to the description of
theexec_cmd(Junction in the "Environment Dependent Routines" chapter of
the Motorola 68000 Family C Cross Compiler User's Guide

165

Chapter 4: Viewing Code and Data

Using Simulated 1/0

Special Simulated I/O Symbols

User Program Symbols

The following symbols are user program symbols that are used by the SIMIO
system to process the simulated I/O protocol:

systemio_buf This symbol indicates the start of the Control Address buffer.

Simulated I/O Reserved Symbols

The following names are reserved by the SIMIO system amadlotebe used for
your file names. The SIMIO system recognizes these names and uses special
processing to direct the 1/O to th@oper location:

stdin This name W be replaced by theame $ored in the stdin_ame. This
name is set via the Stdio_Redirect command.

stdout This name Wi be replaced by theame s$ored in the stdout_ame.
This name is set via the Stdio_Redirect command.

stderr This name W be replaced by theame $ored in the stderr_ame.
This name is set via the Stdio_Redirect command.

/dev/simio/keyboard This name refers to the keyboard while greduct is
running interactively.

/dev/simio/display This name refers to the stdio display window while the
product is running interactively.

To enable simulated I/O

Using the command line, enter:

Debugger Execution | O_System Enable

166

Chapter 4: Viewing Code and Data
Using Simulated 1/0

When SIMIO is enabled, polling for simio monand begins. In the
debugger/simulator, the debugger detects writes to the SIMIO control address.
SIMIO behavior in the debugger is identical to that described iSimalated

I/O User's Guide

To disable simulated 1/0

* Using the command line, enter: .

Debugger Execution | O_System Disable

To set the keyboard I/O mode to cooked

* Using the command line, enter:
Debugger Execution | O_System Modde Cooked

In the Cooked mode, the keyboard input is processed. This lets you type and
then edit the line to correct errors. When the final line is composed, press the
< Return> keyto enter the line. Once the line is entered, it is read by the
target program. Onlythe characters from the final line and the carriage return
character are passed as input. If program execution is interrupted by entering
< Ctrl> -C before the line is entered, the characters on the input line are lost.

See also "To set the keyboard 1/O mode to raw"

167

Chapter 4: Viewing Code and Data
Using Simulated 1/0

To set the keyboard I/O mode to raw

* Using the command line, enter:
Debugger Execution | O_System Mode Raw

In the Raw mode, each character you type is sent directly to the target
program that is reading from the keyboard. Characters are not echoed as they
are typed. Anyinput editing, such as backspace, must be handled by the target
program. The only special character that cannot be sent to the target program
is < Ctrl> -C which is used to interrupt the debugger’s execution of the

program.

See also "To set the keyboard 1/0 mode to cooked"

To control blocking of reads

» SettheO_NDELAYflag in thestartup()routine.

The flagO_NDELAYis passed to the functiapen()to control whether or
not reads from the keyboard will bloakaiting for characters This flag can
only be set when opening the stream; it may not be changed after the file
stream is open. This flag can be set in the compippsed routinestartup().
This routine opens stams stdin, stdout, and stderr.

See also The chapter titled "Environment Dependent Routines" inMibéorola 68000
Family C Cross Compiler User's Guideanual.

168

Chapter 4: Viewing Code and Data
Using Simulated 1/0

To interpret keyboard reads as EOF

Using the command line, enter:
Debugger Execution | O_System Keyboard EOF

This causes the debugger to interpret any further keyboard reads as being at
the end of file.

In cooked mode, pressirgCtrl> -D is equivalent to entering theebugger
Execution 10_System Keyboard EOF command.

To redirect I1/0

To redirect the three I/O streams and to resat program to the startup
address, perform the following steps.

Redirect the three I/O streams by changing the translation names for the stdio
streams. Using the command line, enter:

Debugger Execution | O_System Stdio_Redirect

<"stdin_name","stdout_name","stderr_name">

Enter the new names for standamgut, standard output, and standard error;
then, press the Return> key.

Reset the program counter to the startup address. Sslsaition-Set PC to
Transfer. Or, using the command line, enter:

Program Pc_Reset

When the target program starts execution from the normal compiler startup
address, the standard C startup libraries open the following three 1/0 streams:
* stdin

+ stdout

169

Chapter 4: Viewing Code and Data

Using Simulated 1/0

Examples

e stderr

The debugger uses an internal table to determine where the streantsise
opened. Each of the names (stdin, stdout, andr3tdas an associated
translation name:

e stdin_name
e stdout_name
e stderr_name

The translation name contains the name of a file to use when the target
requests opening of any of these stdio streams. By default, stdin_name
containgdev/simio/keyboarthe keyboard), and translations stdout_name and
stderr_name contaildev/simio/displaythe standard 1/0O (stdio) screen).

These translations are used only when opening the streams. Timey ba
used to redirect the streams after they have been opened. Thetaggein
must be rerun from the startup address to allow the stdiarsis to be
reopened if the translations have been changed.

To redirect the standard input file to the keyboard, the standard output file to
the display, and the standard error file to file Jusers/project/errorfile’.

Debugger Execution | O_System Stdio_Redirect

"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"

Program Pc_Reset

To redirect the standard input file to temp.dat’, the standard output file to
‘cmdout.dat’, and the standard error file to file ‘errorlog.err’.

Debugger Execution | O_System Stdio_Redirect

"temp.dat","cmdout.dat","errorlog.err"

Program Pc_Reset

170

Chapter 4: Viewing Code and Data
Using Simulated 1/0

To check resource usage

Using the command line, enter:

Debugger Execution | O_System Report

The command displays the simulated I/O status, keyboard mode, and the
translation names used for stdin, stdout, and stderr.

The SIMIO system has the following default resource limitations:

* 40 open files

* 4 subprocesses

To increase /O file resources

Change to directorfusr/hp64000/includghen change to the appropriate
subdirectory for your processor. @ACT STEP = Change the value of macro
FOPEN_MAXfrom 12 to the new maximum number of open files (the limit is
40) in file stdio.h

Change to the appropriate environment directory uhdethp64000/eny/
then change to th&csubdirectory.

Recompile filestartup.c For example, for a 68000-famipyocessor, type:

cc68k -p 68000 -Ouc startup.c

Add startup.oto the environment library using the command:
ar68k -r startup .. lenv.a

You can increase the simulated I/O file limit by modifying the startup code for
your compiler. The code must be modified from the UNIX shell. The
maximum number of open SIMIO files descriptors can be increased to 40.

171

Chapter 4: Viewing Code and Data

Using Simulated 1/0

Caution

Compiler startup files compiled with the modifis@io.hheader file will run

onlyin the debugger environment. Emulators which do not have the debugger
interface do not support the increased number of open SIMIO file descriptors.
Calls to the SIMIO function op¥) will fail in this environment if 12 file
descriptors have already been allocated.

172

Chapter 5: Editing Code and Data

Editing Code and Data

How to use the debugger to make permanent or temporary changes to source
code, memory contents, and registers.

173

Chapter 5: Editing Code and Data

Editing Files

Editing Files

The graphical interface gives you a number of context-dependent and
context-independent editing commands. From several screens, you can bring
up the source file that contains the source line or symbol you are viewing in
the display.

The interface will hoose the “vi” editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the chapter “Configuring
the Debugger” for more information about setting this resource.

Remember to re-compile

When you use the editor to change a source code file, jonueed to
re-compile the source file. You can recompile with a click of the mouse if you
define theMake action key to compile the target program.

To edit source code from the Code window

Place the mouse pointer over the line you want to edit. Sedéctource
from the Code window pop-up menu.

The debugger will start the edr in a new X window. The cursor in the editor
window will be on the same line of code as the mouse pointer in the Code
window.

After editing the file, you quit the edit session by the standard method for the
editor used.

You will need to re-compile theoarce file. You can recompile with a click of
the mouse if you define thdake action key to compile the target program.

174

Chapter 5: Editing Code and Data
Editing Files

To edit an arbitrary file

1 SelectFile -Edit -File.

2 Using the file selection dialog box, enter the name of the file you wish to edit;
then, click on the OK pushbutton.

After editing the file, you quit the edit session by the standard method for the

editor used.

1 Place an address reference (either absolute or symbolic) in the entry buffer.

To edit a file b ased on an address in the e ntry
buffer

2 SelectFile -Edit -At () Location.

The interface determines which source file contains the code generated for the
address in the entry buffer and opens an edit session on the file.

To edit a file b ased on the currentp rogram
counter

» SelectFile -Edit -At PC Location.

The interface determines which source file generated the address currentlyin
the program counter and opens an editi®® on that source file. The

interface willissue an gor if it cannot find a source file for the address in the
PC.

175

Chapter 5: Editing Code and Data
Patching Source Code

Patching Source Code

When you change source code by editing the C source file, you need to
re-compile.

The debugger provides several ways to patch your program without
re-compiling:

» Change a variable’s value using a C expression.

* Applya patch using a breakpoint macro.

To change a variable using a C expression

Enter a C expression in the entry buffer.

A good way to do this is to highlight an expression from your source code
using the left mouse button. When you release the button, the expression will
appear in the entry buffer. Now edit the expression to have the desired value.

Click on theC Expr () action key. Or seled@isplay—C Expressionfrom the
menu bar.

The value of the variable will be changed until gfregram modifies it. You
can continuously monitor the variable’s value if you display it in the Monitor
window (use théMonitor () action key or th&xpressiorMonitor Value
command).

Or:

Using the command line enter:

Expression C_Expression <expression>

176

Chapter 5: Editing Code and Data
Patching Source Code

To patch a line of code using a macro

1 Set a breakpoint at the line you wish to patch.

An easywayto set the breakpoint is to click the right mouse button on the line
in the Code window.

2 Attach a macro to the breakpoint.

ChooseAttach Macro ... from the Code window pop-up menu.

3 Write a macro to patch the code.

In the Macro Operations dialog box, enter the name of a new macro and click
on theEdit button.

The macro may contain any number of C expressions and debugger commands.
The last two lines of the macro should be:

$Modify Register @PC = # next_line $;

return(1)

wherenext_lineis the number of the line after the breakpoint. Return 0

instead of 1 if you want the debugger to stop after the macro is executed.

Exit the editor as usual, then click on ttgach button in the Macro
Operations dialog box.

Now whenever the breakpoint line is encountered, the debudgereeute
the macro before the patched line is executed. The macro will execute your
patch code, then skip to the next line.

177

Chapter 5: Editing Code and Data
Patching Source Code

To patch C source code by inserting lines

1 Define a macro containing the inserted statements. The macrgnovite a

return value of 1 (true) in order for the program to continue after the macro is
executed.

Set a breakpoint on the C line following the point where the insertion should
occur and attach the macro to the breakpoint.

Start your program.

The program vil run until the breakpoint is encountered. The debugger will
then interpret and execute the C staénts in the macro, and continue
executing the program.

Example

To patch C source code by deleting lines

Write a macro that sets the program counter to point to the first line of code
beyond the lines of code that you want to delete. The macro must provide a
return value of 1 (true) in order for the program to continue after the macro is
executed.

Set a breakpoint on the first line to be deleted and specify the macro with that
breakpoint.

Start your program.

The program Wl run until the breakpoint is encountered. The macro will
then set the program counter to the line specified in the macro. Program
execution will then continue, skipping tbeogram lines between the
breakpoint and line specified in the macro.

Consider the following code:

178

Chapter 5: Editing Code and Data
Patching Source Code

25 count=5;

26 for (i=0; i < MAXNUM; i++)
27 |

28 array[i]=1;

29 count=count+2;

30 k=count*i;

31 }

To delete lines 29 and 30, and insert a new line incremeodungtby one, you
could write the following macro:

Debugger Macro Add patch_29()
{

count++;
$Expression C_Expression @PC = #31$;
return(1);

To execute the code patch, enter the command:

Breakpt | nstr #29;patch_29()

and run your program.

179

Chapter 5: Editing Code and Data
Editing Memory Contents

Editing Memory Contents

This section shows you how to:

* Change memory location values.
» Copya block of memory.

* Fill a block ofmemory with values.
e Compare two blocks of memory.

* Change the contents of a register.

* Unload BBA data from programemory.

To change the value of one memory location

1 SelectModify ~Memory.

Or, using the command line, enter:
Memory Assign <Size>
2 Using the command line, select either Byte, Word, or Long as the size of the

memory location, and enter the expression that assigns a value to an address,
and press the Return> key.

To change the values of a block of memory
interactively

1 SelectModify ~Memory.

Or, using the command line, enter:

180

Chapter 5: Editing Code and Data
Editing Memory Contents

Memory Assign <Size>

2 Using the command line, select either Byte, Word, or Long as the size of the
memory location, enter the address of the beginning of the block, and press
the< Return> key.

This starts the interactive memory modification mode.

3 Enter the value for the location displayed in the Journal window and press the
< Return> key.

4 To exit this mode, press tkeReturn> key without entering a value.

Example To display the contents of memory location 1000h and allow interactive
modification of memory contents:

Memory Assign Byte 1000h
00001000 = 0x48 72:

To copy a block of memory
1 Using the command line, enter:
Memory Block_Operation Copy
2 Enter the address range of the memoryto be copied, followed by a comma.

3 Enter the starting address of the destination and pressRe&urn> key.

Example To copy the block of memory starting at address 1000h and ending at address
10ffh to a block of the same size starting at address 5000h:

Memory Block Operation Copy 1000h..10ffh,5000h

181

Chapter 5: Editing Code and Data
Editing Memory Contents

. Example

To fill a block of memory with values

Using the command line, enter:
Memory Block Operation Fil <Size>

Select either Byte, Word, or Long as the size of the memory locations, enter
the expression that assigns a value to locations in a range of addresses, and
press thes Return> key.

To fill memory locations 1000tough1007h with the long pattern
61626364, 65666768:

Memory Block Operation Fill Long 0x1000..+7="abcdefgh’

Example

To compare two blocks of memory

Using the command line, enter:
Memory Block Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what
happens when a mismatch is found, enter the address range to be compared
and the starting address of the range that it is compared to; then, press the
< Return> key.

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

182

Chapter 5: Editing Code and Data
Editing Memory Contents

To re-initialize all program variables

SelectFile ~Load -Program Only .., then use the File Selection dialog boxto
select the absolute file.

Or:

Using the command line, enter:

Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and pres.
< Return> key.

The code will be loaded thiout loading symbols or resetting the PC.

The debugger does not save the initial values of variables. The only way to
restore the initial values is to re-load the program. After re-loading the
program, you may need to restore some debugger settings; for example, you
might need to re-specify variables for the Monitor window.

To change the contents of a register

SelectModify -Register. This will display the Modify Register dialog box.

Or:

Using the command line, enter:
Memory Register

On the command line, enter the name of the register and the value to which
the register’s contents should be changed, and pressRbtirn> key.

Registers may also be modified by usingé@istet' in a C_expression.

183

Chapter 5: Editing Code and Data
Editing Memory Contents

Example

To modify register values interactively:

Memory Register

The program counter PC is displayed in the journal window. You can modify
the PC by entering a value (10a4h in this example) at the cursor prompt and

pressing< Return>. The PC will be modified, and the next register will be
displayed:

@pc =0x000010B8 4280: 10a4h
@sp =0x00015DB4 89524:

Press< Return> without entering a value to exit this mode.
To set the value of register @d1 to 44h:
Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

184

Using Macros and Command Files

How to use macros and command files to make debugging easier.

185

Chapter 6: Using Macros and Command Files

The debugger provides several ways for you to simplify tasks that you do often.

Macros are C-like functions. You can call macros individually, attach
them to breakpoints, or automatically execute them with each program
step. Macros are especially useful for temporarily patching C code.

Command filescontain series of debugger commands. The debugger can
read a command file and execute the commamuisd there as if they

were entered directly into the interface command line. Command files are
useful for setting up the debugger, for executing a program to a certain
point, and for automated testing.

Action keys are shortcut definitions or "hotkeys" which allow you to add
new commands to the graphical interface. Action keys are useful for
simplifying frequently-used commands, for making the debugger easier to
use for co-workers who do not frequently use a debugger, and for making
the debugger into a framework for demos and tutorials.

186

Chapter 6: Using Macros and Command Files
Using Macros

Using Macros

A macro is a C-like function consisting of debuggemooands and C
statements and expg®ons.

Macros are most often used to:
 Patch C source code.

Often, bugs found with the debugger can be temporarily patched with C
source statments in macros. You do not have to exit the debugger, edit
the source code, recompile and link, and then reenter the debugger.
Instead, you can make a temporary patch by using breakpoint macros.

* Return values to expssions.

» Create conditional breakpoints.

» Execute commands after egotogram step aomand.
+ Execute a set of commands.

Macros can:

* Have input paameters (macro arguments).

» Define macro local variables.

e Contain C statements and exps®ns.

» Refer to target variables and registers.

» Refer to user-defined variables.

e Have return values.

e Call other macros.

e Can be used in expressions (if they return values).
» Execute most debugger commands.

Macros cannot:

» Define global variables.

» Define static variables.

* Berecursive.

» Define other macros.

e Contain the conditional operator (expression ? expression : expression).

Macros can be called:

» Byspecifying the macro name in an exggien.

» Bycalling the macro from within another macro.
» With the Debugger Macro Call command.

* With the Breakpt command.

» With the Program Step With_Macro command.

187

Chapter 6: Using Macros and Command Files

Using Macros

Caution

This section shows you how to:

+ Define a macro.

+ Call a macro.

e Stop a macro.

» Display macro source code.

» Patch C source code by using macros.

« Delete a macro.

Saving and re-using macros

You can define and save macros interactively during a debugger session.

Macro limits

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macro interactively, the debugger does not
respond to more than 78 characters on a line. When readimgraaoad file,

the debugger stops recognizing characters 2fiBrcharacters have been read
on a line.

The maximum number of lines allowed in a macro depends on the complexity
of the lines. Macros with too many lines (too complex) will faitdg 92 'Not
enough memory for expressianill be displayed.

A maximum of 40 parameters may be specified in a macro definition.

Once you have defined a macro, you can use it any time during the debugging
session, whenever that set of commands or statements is needed.

The pseudoregister @cycles is not implemented in the emulation
environment. Macros written for execution in both the simulation and
emulation environments must not refer@xycles

Macro comments

Macros support C coments (introduced by the charactérand terminated
with the charactery).

188

Chapter 6: Using Macros and Command Files
Using Macros

Macro arguments

You can use formal macro arguments throughout the macro definition. They
are replaced at execution time by the actual parameters present in the macro
call. The actual parameter is coerced to hreasponding formal pameter

type. If coercion is not possible, arr@r occurs.

You must list the macro’s arguments (if any), along with their associated types,
when you define the macro. For example, the following listing defines
arguments for the built-in macro strcpy():

Debugger Macro Add int strcpy(target, source)
char *target;
char *source;

Macro variables

Variables that are local to the macro may be created within the macro. T
definition of local variables follows the rules of C, with the exception that y
cannot define variables with initializers. Variables may be defined to have
simple type, or they may be of type array or pointer. Derived types (such
structures and unions), enumerated types, and typedefs are not legal within
macros.

The macro processor does not recognize the C keywords extern, auto, static,
and register. The macro processor reports an error if these C keywords are
used. Static variables are not scoped within a macro. However, symbols
created with the Symbol Add command (debugger symbols) are globally
scoped, and can be accessed from within a macro. Register variables (such as
@PC) may also be accessed from within a macro.

Target program symbols can also be accessed from within a macro. Variables
which are globally scoped within the target program can be accessed directly.
File static, function static, and automatic variables can be accessed directly
onlyif the current context of the debugger is the module or function in which
they are scoped. Otherwise, they require a module or function name as a
gualifier before they can be accessed. For example, assume the following
definition exists in your target program, in a file called init.c:

static int i; /* file static */
foo(int parm)

static int j; [* function static */
auto intk; [* function local */

189

Chapter 6: Using Macros and Command Files
Using Macros

If a macro is executed while the PC is pointing into the function foo(),

variables i, j, and k can be directly accessed. Ifthisis not the case, i must be
accessed with a module qualifier, such as init\i. The function static j must be
accessed as init\foo\j. The automatic k can be accessed as init\foo\k if the stack
frame for bo() is alive.

Macro control flow statements

Macros support the following C control flow statents:

o If-else

e While and For

 Do-while

» Break and Continue in While, For, and Do statements.

However, macros cannot contain conditional egpiens of the form:

<expression>?<expression>:<expression>

Macro return values

Macros support the C “return” sexhent for retirning values.

If a breakpoint macro returns a nonzero value, program execution continues.
If it returns a zero value, program execution is halted. If a macro does not
return a value, it should be declared as void when it is defined.

Macros containing debugger commands

You can create macros that contain only a sequence of debugger commands.
Macros containing only debugger commands are similar to command files.
You can use these macros to set up complexinitialization conditions.

You cannot use the following oimands in macros:

e Program Run
 Program Step

* Program Step Over
 Debugger Host_Shell
 Debugger Macro Add
e Symbol Add

e Symbol Remove

190

Chapter 6: Using Macros and Command Files
Using Macros

 File Command
» Debugger Quit

To display the Macro Operations dialog box

SelectBreakpoints —Edit/Call Macro from the menu bar.

Or:

SelectAttach Macro from the Code window pop-up menu.

The Macro Operations dialog box allows you to call predefined macros, e
call existing user-defined macros, and create new macros.

To define a new macro interactively using the
graphical interface

Display the Macro Operations dialog box.
Move the mouse pointer to the Selected Macro entry area.

Type< Ctrl> -U to clear the Selected Macro entry area, then type the name of
the macro you wish to create.

When you press Return> or click on theEdit button, the debugger will
display an editor window.

A "skeleton" macro will appear in the édli window.

Edit the macro definition.

191

Chapter 6: Using Macros and Command Files
Using Macros

When you exit the editor, save the macro under the defaaienlf you save it
under a different name, the macro may be lost.

See Also See '"To use an existing macro as a template for a new macro" if you want to
use an existing macro as the basis for a new macro.

Example To create an macro called "test_macro", seBeetkpoints —Edit/Call Macro
and enter "test_macro" in the Selected Macro area. NowpiRstIrn> or
click on theEdit button. Edit the macro in the editor window. If you are using
thevi editor, exit using the "ZZ" camand. The new macréisuld now appear
at the end of the Defined Macros list.

To use an existing macro as a template for a new
macro

1 Displaythe Macro Operations dialog box.
2 In the dialog box, select the macro you wish to use as a template.
3 Click on theEdit button.

4 In the editor, change theame of the macro.

Now you may edit the parameters and body of the macro.

When you exit the editor, the macrdlwe saved under the nevame. The
original macro will not be changed.

192

Chapter 6: Using Macros and Command Files
Using Macros

To define a macro interactively using the
command line

Enter the Debugger Macro Add command followed by an optional return
type, and then a macro name. The macro name must be followed by
parentheses; the parentheses can optionally enclose macro arguments
separated by commas.

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

Enter the text of the macro body.
[[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]

End the macro definition with a period as the first and only character on a
line. The macro is checked for syntax errors as soon as the period is
encountered. If an error is found within a macro, the macro definition is not
saved. The macro must be completely reentered.

Your completed macro definition should have the following syntax:

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

[[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]

Debugger commands can be embedded in the macro by enclosing the
commands betwee®icharacters. For example,

$Expression C_Expression @PC = #313;
No standard C library functions are available from within a macro. However,

there are built-in macros available in the debugger that perform similar
functions (refer to the "Predefined Macros" chapter).

193

Chapter 6: Using Macros and Command Files

Using Macros

To define a macro outside the debugger

Using a text editor on your host system, define the macro.
Save the macro definition in a command file (< filename> .com).
Start the debugger.

Load the command file into the debugger using the File Command command.

As the macro is loaded into the debugger, the macro processor parses the
macro, looking for syntax errors. If the macro definition contains no errors, it
is loaded into the debugger’s symbol table.

If an error is detected, the macro processor reports the error and quits loading
the command file. The macro remains undefined.

The number of macros that you can define is limited only by the available
memory on your host computer system.

To edit an existing macro

If you want to edit a macro attached to a breakpoint, sEgitAttached
Macro from the Code window pop-up menu.

Or:
Display the Macro Operations dialog box.
Select the macro you want to edit.

Click on the Edit button.

194

Chapter 6: Using Macros and Command Files
Using Macros

Remember to save the macro under the default file name when you leave the
editor (use the "ZZ" or "wqg!" ammand invi).

To save macros

» SelectFile -~Store-User-Defined Macros...

The File Selection dialog box will be displayed so that you bawse a file in
which to save the macros. The debugger will automatically acttha
extension to the file name.

The debugger will save all of theyr user-defined macros to a file.

The debugger does not provide a way to save only selected macros. If you
to save macros in separate files, you can create the macros using a text ed

To load macros

» SelectFile —Load -User-Defined Macros...

Choose the macro file to load from the File Selection dialog box.

If macros do not load

[} Check that the macros do not directly access local program variables.

When the debugger loads macros which access local program variables, the
debugger does not know which local scope to use to define the macro.

195

Chapter 6: Using Macros and Command Files

Using Macros

If you need to access local program variables in a macro, pass them to the
macro as parameters.

Example

To call a macro

SelectBreakpoints —Edit/Call Macro ... »Call.

Or:

Using the command line, enter:
Debugger Macro Call

Enter the name of the macro to be called, and press®eturn> key.

When a macro is called with the Debugger Macro Call command, its return
value is ignored. Macros are typically called in this manner for the side effects
they generate.

If you have the following macro definition:

Debugger Macro Add void stackchk()
/* The symbols 'stack’ and 'TopOfStack’ exist in the compiler’s */
/* environment library, and are addresses which indicate the */
/* bottom and the top of the system stack. The symbol @sp is a */
/* debugger reserved symbol which contains the current value of */
[* the processor’s stack pointer. */

$Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
$Expression Printf "%d bytes of stack available", @sp - stack$;

the command:
Debugger Macro Call stackchk()

displays, in the journal window, the amount of stack used and the amount of
stack left.

196

Chapter 6: Using Macros and Command Files
Using Macros

To call a macro from within an expression

» Enter a macro call as part of any expression entered on the command line of
the debugger.

The debugger will evaluate the macro and use itgnetalue when evaluating
the rest of the expression.

Example If you have the following macro definition:

Debugger Macro Add int power(x,y)
int X
int vy;
t.
int i /* Loop counter */
int multiplier; /* Value x is multiplied by */

/* Multiply x by itself y -1 times */

for (i = 1, multiplier = x; i < y;i++)
X *= multiplier;

/* Return x My */

return x;

}
The command:

Expression Display_Value 33.3 + power(2,3)

will call and evaluate the macro, displaying the value 41.3 in the debugger’s
journal window.

To call a macro from within a macro

* You can call a macro from within a macro when they are part of an expression.

The following restrictions apply to calling macros from within a macro:

* The macro called must have been previously defined.

197

Chapter 6: Using Macros and Command Files
Using Macros

e The macro cannot call itself.

Example If you have the following macro definition:

Debugger Macro Add int ten_to_the(y)
int vy;

return power(10,y); }

the macro will computé&0**y by calling the previously defined macpawer().

To call a macro on execution of a breakpoint

» SelectAttach Macro from the Code window pop-up menu.

Or:

* When using the command line to set a breakpoint, add a semicolon (;) and the
name of the macro to the command.

When setting breakpoints, you can attach a macro to the breakpoint.
Whenever the breakpoint is encountered, the macro is executed. Depending
on the return value of the macro, program executidireither ¢op or

continue.

» Ifthe macro returns zero, program execution stops at the breakpoint.

» Ifthe macro returns a nonzero value, program execution continues at the
breakpoint.

Macros attached to breakpoints can test program or user-defined variables
before determining whether execution should break or not (by returning zero
or nonzero values, respectively).

Macro control flow statements within a breakpoint macro can alter execution
flowin the target environment based on target or debugger variable values.
You can also include C expressions in macros. By using control flow
statements and C exg®0ons in macros, you can patch your C programs.

198

Chapter 6: Using Macros and Command Files
Using Macros

Example The following example shows how return values can be used to conditionally
control a breakpoint. The example uses the Debugger Macro Add and
Breakpt Write commands to define a breakpoint that occurs only when the
target variable days becomes greater than 31.

Debugger Macro Add int daycheck()

if (days > 31)
return O;
else
return 1;

Breakpt Write &days; daycheck()

When the break occurs, the macro is executed. If days is less than or equal to
31, program execution continues. If days is greater than 31, program execution
stops.

If you have the following macro definition:

Debugger Macro Add int break_when(stopfunction, min, max)
char *stopfunction;
int min;
int max;
/* Debugger symbol @function is a char pointer to the name */
[* of the current function. Compare the current function */

/* with the function name passed, using the built-in macro */
/* memcmp(). */

if (Istremp(@function,stopfunction))
if ((global_var > min) && (global_var <max))

$Expression Printf "global_var: %d\n", global_var$;
return O;

/* Not in specified function, return 1 so that program will */
/* continue executing.
return 1;

the command:

Breakpt Wite &global_var; break_when("foo", 256,512)

will set a write breakpoint on the global variaglebal_var Whenever the
program writes talobal_var the macrdoreak_when(js executed with the
parameterfoo", 256, and512 The macro returns the value 1 until the value
of global_varfalls between 256 and 512 because of a writgldlal_varin the
functionfoo(). The macro then returns 0, causing the program to halt.

199

Chapter 6: Using Macros and Command Files

Using Macros

Example

To call a macro when stepping through programs

» SelectExecution-Step-with Macro

Or:

Using the command line, enter:
Program Step Wth_Macro

Enter the name of the macro to be called, and press®eturn> key.

You can use the Program Step With_Macro command to execute a macro
after the step occurs. Calling a macro in this manner is useful in tracking
down subtle bugs.

If the functionfoo() was corrupting automatic variabl@slexandch on the
stack, the following macro and commands could be used to identify the line
where the corruption was occurring:

Debugger Macro Add void auto_check()
if ((index < 0 || index > 80) || (ch < 32 || ch > 126))
$Window Screen_On High_Level$;
$Expression Printf "Autos corrupted!!'\n"$;
$Expression Printf "index: %d ch: %c\n", index, ch$;
}
Program Run Until foo

Program Step Wth_Macro auto_check()

200

Chapter 6: Using Macros and Command Files
Using Macros

To stop a macro

* Press< Ctrl>-C.

Macros can be halted during execution by pressi@yl> -C.

Caution < Ctrl> -C will stop execution of a macro. F®ng< Ctrl>-C may interrupt a
code-patching macro before it completes execution. If this occurs, you cannot
restart program execution within the macro where it stopped.

To display macro source code

* ChooseEdit in the Macro Operations dialog box.

Or:

» Using the command line, enter:
Debugger Macro Display <macro_name>

Enter the name of the macro you want to display, and pressRe&urn>
key.

This command Wl write the macro surce to the journal window. If you want
to write the macro source to a user-defined window or to a file, you can specify
an optional user window number as the destination.

Example To write the source for macro auto_check() to user window 51:

Debugger Macro Display auto_check() ,51

201

Chapter 6: Using Macros and Command Files
Using Macros

To delete a macro

* Using the command line, enter:
Symbol Remove <macro_name>

Enter the name of the macro you want to delete, and pressRbeirn> key.

Use the Breakpt Delete command to remove the breakpoint that called the
macro.

202

Chapter 6: Using Macros and Command Files
Using Command Files

Using Command Files

A command file is an ASCII file containing debugger commands.

You can create command files from within the interface by logging commands
to a command file as you execute the commands, or you can create or modify
command files outside the interface with an ASCII textadi

The debugger can read a command file and execute the comroandgiiere
as if they were entered directly into the interface command line.

Command files can also call other command files and the interfhexecute
the called file like a subroutine of thellozg file.

This section shows you how to:

* Record commands.

* Place comments in a command file.

» Pause the debugger.

* Stop conmand recording.

* Run acommand file.

» Set command filereor handling.

* Append commands to a command file.
 Record commands and results tmarpal file.

» Stop recording ammands and results toaurnal file.
* Open afile or device for read or write access.

* Close the file associated with a window number.

* Use the debugger in batch mode.

203

Chapter 6: Using Macros and Command Files
Using Command Files

To record commands

* Use the -command_fil@ption to the db68k command when starting the
debugger. (The debugger appends the file extensionto command_filg

$ db68k -l <command_file> <RETURN>

Or:

» SelectFile ~Log—Record Commands Using the file selection dialog bog,
enter the name of the file to which the commaniidbe saved, and click on
the OK pushbutton.

Or:

» Using the command line, enter:
File Log On

Enter the name of the file to which commandshe saved, and press the
< Return> key.

All commands, whether they are entered from the menus or the command
line, are recorded to tHeg file. If a command causes arrer, both the
command and thereor code are recorded asements.

Example To start logging commands to file “cmdfilel.com”

File Log Oncmdfilel

204

Chapter 6: Using Macros and Command Files
Using Command Files

To place comments in a command file

* Using the command line, enter:
File Log Comment

Enter the comment thahsuld be placed in the oumand file, and press the
< Return> key.

In the command file, the comment is prefixed with a semicolon (;).

When editing command files, you can also use C-style comments (introduced
by the characters /* and terminated with the characters */).

Example To place the comment “Place this comment in a command file.” in the .
command file:

File Log Comment Place this comment in the command file.

To pause the debugger

* Using the command line, enter:
Debugger Pause

And press the Return> key.
The debugger is paused until you enter the spacebar.

You can also specify that the debugger pause for a number of seconds by using
the Debugger Pause Time command.

The Debugger Pause commands are useful when executing command files.

205

Chapter 6: Using Macros and Command Files
Using Command Files

To stop command recording

SelectFile -Log »Stop Command Recording
Or:

Using the command line, enter:

File Logo FF

And press the Return> key.

The command file is closed.

To run a command file

Use the -command_fil@ption to the db68k command when starting the
debugger. (Theommand_filanust end with thecomextension.)

$ db68k -c <command_file> <RETURN>

Or:

SelectFile sLog —Playback Using the file selection dialog box, enter the name
of the command file, and click on the OK pushbutton.

Or:

Using the command line, enter:
File Command

Enter the name of the command file from which debugger commahbts w
executed, and press theReturn> key.

206

Chapter 6: Using Macros and Command Files
Using Command Files

The debugger will begin executingmmandsdund in the coomand file as if
those commands were entered directly into the interface. The debugger will
continue to execute commands until it reaches the end of the file or, perhaps,
until an error occurs, depending on thenenand file eror handling mode

(see “To set command file®r handling”).

To interrupt playback of a comand file, press the Ctrl> -c key combination.
(If the graphical interface is being used, the mouse pointer must be within the
interface window.)

Example To start executing command from the file “cmdfilel.com”:

File Command cmdfilel

See Also File Startup in the "Debugger Commands" chapter

To set command file error handling

* Using the command line, enter:
File Error_Command <Handling_Mode>

Select either Abort_Read, Continue_Read, or Quit_Debugger error handling
mode, and press theReturn> key.

When an error occurs while executing ancoand file:
Abort_Read causes the debugger to stop reading thenand file.

Continue_Read causesthe debugger to continue executing the command file
with the next command.

Quit_Debugger causes the debugger session to end.

207

Chapter 6: Using Macros and Command Files
Using Command Files

To append commands to an existing command file

* Using the command line, enter:
File Log Append

Enter the name of the file to which commandshe appended, and press the
< Return> key.

Example To append command to the file “cmdfilel.com”:

File Log Append cmdfilel

To record commands and results in a journal file

» Use the -jourmnal_file option to the db68k command when starting the
debugger. (The debugger appends the file extenjsioto journal_file))

$ db68k-j <journal_file> <RETURN>

Or:

» SelectFile ~Log—Record Journal. Enter the name of the file to which the
commands and resultslbbe saved, and click on the OK pushbutton.

Or:
» Using the command line, enter:
File Journal On

Enter the name of the file to which commands and resiiltsaxsaved, and
press thes Return> key.

208

Chapter 6: Using Macros and Command Files
Using Command Files

Journal files are similar to acomand files. They contain debugger commands
entered during a debug session. Journal files also contain any output
generated by debugger commandsurdal files contain everything that is
written to the journal window during a debugsien.

Example To start recording commands and results to fibeifpall.jou”:

File Journal Onjournall

To stop command and result recording to a

journal file
» SelectFile -Log-Stop Journal Recording .
Or:

» Using the command line, enter:
File Journalo FF

And press the Return> key.

To open a file or device for read or write access

* Using the command line, enter:
File User_Fopen

Select the open option, window number, and file name; then, press the
< Return> key.

209

Chapter 6: Using Macros and Command Files
Using Command Files

After opening a file using the File User_Fopen Append or File User_Fopen
Create command, you can use the Egpi@n Fprintf command to write
information to the file. Files opened for reading may be read from the built-in
macro fgetc(). See the "Predefined Macros" chapter of this manual for a
complete description of this macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

Example To open user window 57 and redirect any data written to window 57 to the file
varTrace.out”.
File User_Fopen Create 57 File varTrace.out
To close the file associated with a window number
Using the command line, enter:
File Whdow_ Close
Enter the window number associated with the file when it was opened, and
press thes Return> key.
Example To close the file associated with user window number 57:

File Whdow_Close 57

210

Chapter 6: Using Macros and Command Files
Using Command Files

To use the debugger in batch mode

* Use the -b and -command_fil@ptions to the db68k command when starting
the debugger.

When using the debugger in batch mode, stdin, stdout, and stderr are disabled.
The -b option must be accompanied by the -c option and a debugger command
file. Allcommands are read from the command file. No user interaction with
the debugger is allowed. In batch mode, the debugger can be executed as a
background process. This mode is commonly used for automatic testing.

$ db68k -b -c <command_file> .

Example

211

Chapter 6: Using Macros and Command Files
Using Command Files

212

Chapter 7: Configuring the Debugger

Configuring the Debugger

How to change the appearance and behavior of the debugger.

213

Chapter 7: Configuring the Debugger

Configuring the debugger

These tasks are grouped into the following sections:

Setting the general debugger options.

Setting the symbolics options.

Setting the display options.

Modifying display area windows.

Saving and loading the debugger configuration.

Setting X resources.

Some options can be set using either the Debugger Options dialog box or the
command line. Other options can be set only using the command line.

214

Chapter 7: Configuring the Debugger
Setting the General Debugger Options

Setting the General Debugger Options

This section describes how to:
» Displaythe Debugger Options dialog box.
» List the debugger options settings.

» Change debugger options settings.

To display the Debugger Options dialog box

SelectSettings—-Debugger Optionsfrom the menu bar.

You can change settings in the Debugger Options dialog box by clicking o
the appropriate buttons.

To list the debugger options settings

SelectSettings—-Debugger Options ...

You can also look at most debugger option settings by examining the
Debugger Options dialog box.

To change debugger options settings

Use the Debugger Options dialog box.

Or:

215

Chapter 7: Configuring the Debugger
Setting the General Debugger Options

* Use the command line.

See Also The "Debugger Option" sections in the "Debugger Commands" chapter for
information on using the command line to set debugger options.

To specify whether command file commands are
echoed to the Journal window

* Using the command line, enter:
Debugger Option Command_Echo

Select On or Off, and press thdReturn> key.

On Command file commands are echoed to thedal window.
Off Command file commands are not echoed to thedal
window.

To set automatic alignment for breakpoints and
disassembly

» In the Debugger Options dialog box, click on the Align Breakpoints button to
toggle alignment.

On Debugger automatically aligns breakpoints or locations to
be displayed in mnemonic format to the beginning of
instructions.

Off Breakpoints are not automatically aligned.

216

Chapter 7: Configuring the Debugger
Setting the General Debugger Options

To set backtrace display of bad stack frames

In the Debugger Options dialog box, click on the Framog $utton to toggle
display of bad stack frames.

On Only consecutive valid stack frames are displayed.

Off All stack frames, including bad frames, are displayed.

To specify demand loading of symbols

In the Debugger Options dialog box, click on the Demand Loading button.

On Symbol information is loaded on an as-needed basis. .

Off All symbol information is loaded.

The-doff commanedine option overrides the On setting when the settings are
saved in a startup file.

To select the microprocessor simulated

Using the command line, enter:
Debugger Option General Processor <processor_id>

Enter the identifier of the microprocessor being simulated, and press the
< Return> key.

Valid processor identifiers are:

217

Chapter 7: Configuring the Debugger
Setting the General Debugger Options

68000, 68EC000, 68HC000, 68HC001, 68008, 68010, 68012, 68020,
68EC020, 68070, 68302, 683xx, 6833x, 68330, 68331, 68332, 68333, 68F 333,
68334, 68335, 68336, 68337, 68338, 68340, 68349, CPU32, or CPU32P.

To select the interpretation of numeric literals
(decimal/hexadecimal)

* In the Debugger Options dialog box, hold tmenmand selechouse button
down on the button for "Input Radix" or "Output Radix". Release the button
to select "Decimal” or "Hex".

If you select Hex, input and output values are interpreted as hexadecimal for
assembly-level references. Any assembly-level number you want interpreted as
decimal must be terminated withTgfor example, specify 32 as 32T).

Even if you select Hex, the following inputdélwiotbe interpreted as
hexadecimal:

* Line numbers starting with "# ",

» Variables in high-level expressions, includi@gExpressionand macro
expressions. To cast a high-level expression as hexadecimal, use a leading
"0x" or a trailing "h".

» Debugger variables including:
— breakpoint numbers,
— viewport numbers, and
— data viewport line numbers.
Binary numbers are not available when you select Hex.

Floating point and enumeration type values are not affected.

218

Chapter 7: Configuring the Debugger
Setting the General Debugger Options

To specify exception processing behavior

* Using the command line, enter:
Debugger Option General Exceptions

Select Normal, Report, or Stop; then, presstiReturn> key.

Normal The debugger handles exceptions as would the processor.
(default)
Report The debugger reports exceptions to the Journal window and

then handles them as would the processor.

Stop The debugger reports exceptions to the Journal window and
then halts program execution.

TheDebuggeOption GeneralExceptions command sets the value of @exc.
You can set @exc as you would any program variable. The followinglistisle
what the values of @exc mean:

@exc value stop report to journal trap coprocessor
execution window exceptions

0 yes yes yes

1 no yes yes

2 no no yes

4 yes yes no

5 no yes no

6 no no no

bus errorandaddress erroexception handling is not simulated. Bus errors
cannot occur during simulation, and an address eritbiewninateprocessing
regardless of the value of the @exc pseudoregister.

Due to the fact that bus error and coprocessor simulation is not provided, the
only possible exception staclkafne formats are $0H{srt format), $1
(throwaway), and $2 (instruction exception).

219

Chapter 7: Configuring the Debugger
Setting the General Debugger Options

To specify step speed

* Using the command line, enter:
Debugger Option General Step_Speed <numb 0..100>

Enter the step speed number (from 0 to 100), and pressRe&urn> key.

Higher numbers represent slower speeds.

220

Chapter 7: Configuring the Debugger
Setting the Symbolics Options

Setting the Symbolics Options

This section shows you how to:
» Display symbols in assembly code.
» Displayintermixed C source and assembly code.

» Control case-sensitivity for symbols and module names.

To display symbols in assembly code

In the Debugger Options dialog box, click on the Assembly Symbols button to
toggle assembly symbol display.

Select On or Off, and press thdReturn> key. .

On Symbols are displayed instead of addresses wherever
possible.
Off Addresses are displayed.

To display intermixed C source and assembly
code

In the Debugger Options dialog box, click on the Intermixed Source/Assembly
button to toggle source display.

On Assembly code is intermixed with C source code.

Off Only C source code is displayed.

221

Chapter 7: Configuring the Debugger
Setting the Symbolics Options

To convert module names to upper case

In the Debugger Options dialog box, click on Uppercase Module Names.

To control case sensitivity of symbol lookups

In the Debugger Options dialog box, select one of the following values for
Symbol Lookup:

As Entered Only The debugger will always look up the symbol as
entered, case sensitive.

As Entered & Upper The debugger will look up the symbol as entered. If this
fails, the debugger will convert the symbolupper case
and try again.

As Entered & Lower The debugger will look up the symbol as entered. If this
fails, the debugger will convert the symbol to lower case
and try again.

As Entered, Upper The debugger will look up they symbol as entered. If

& Lower this fails, the debugger will convert the symbol to lower
case and try again. If this fails, the debugger will convert
the symbol to upper case and try again.

222

Chapter 7: Configuring the Debugger
Setting the Display Options

Setting the Display Options

This section shows you how to:

» Specify the Breakpoint, Status, or Simulated I/O window display behavior.
» Display half-bright or inverse video highlights.

» Displayinformation a screen at a time (more).

» Specify scroll amount.

To specify the Breakpoint window display
behavior

In the Debugger Options dialog box, hold tlenmand selechouse button
down on the Breakpoint Window button. Release the button to select On
Swap.

Swap The Breakpoint window is only displayed when you set or
delete a breakpoint or when you display breakpoints.

On The Breakpoint window is displayed at all times.

To specify the Breakpoint, Status, or Simulated
I/0O window display behavior

In the Debugger Options dialog box, under View Options, select On or Swap.

On The window is displayed at all times.

223

Chapter 7: Configuring the Debugger
Setting the Display Options

Swap The window is only displayed when you activate the window
or when the debugger updates the information in the
window.

Off (Simulated 1/0 window only) The Stdio window is only

displayed when function k&6 is pressed or when the
Window Screen_On Stdio command is entered.

To display half-bright or inverse video highlights

Using the command line, enter:
Debugger Option View Highlight

Select Half_Bright or Inverse, and press thReturn> key.

This setting does not affect the graphical user interface.

To turn display paging on or off (more)

In the Debugger Options dialog box, hold teenmand selechouse button
down on the More List Mode button. Release the button to select On or Off.

On Information is listed one screen at a time.

Off Information is listed all at once.

224

Chapter 7: Configuring the Debugger
Setting the Display Options

To specify scroll amount

* Using the command line, enter:
Debugger Option View Amt_Scroll <numb 0..50>

Enter the number of lines for information to be scrolled (from 0 to 50), and
press thes Return> key.

225

Chapter 7: Configuring the Debugger
Modifying Display Area Windows

Modifying Display Area Windows

You can reformat display-area screens by modifying their windows. For
example, you can reformat the high-level screen by resizing and moving the
high-level Code, Monitor, Backtrace, Journal, and Breakpoint windows. You
can also resize and move the alternate view of these windows.

This section shows you how to:

» Resize or move the active window.

* Move the Status window (standard interface only).

» Define user screens and windows.

» Display user-defined screens.

» Erase standard I/O and user-defined window contents.

« Remove user-defined screens and windows.

To resize or move the active window

Using the command line, enter:
Wndow Resize

And press thet Return> key.

TypeT to position the top-left corneB,to position the lower-right corner, or
Mto move the window without resizing it; then, use the cursor keys to move
the window or window border. When the window is at the desired location,
press thes Return> key to save the new coordinates.

If you make a mistake while resizing the window, pi@SR&L C or presEsc
twice to restore the previous coordinates.

226

Chapter 7: Configuring the Debugger
Modifying Display Area Windows

The Window Resize command is used to move or alter the size of any existing
window, except for the Status window. Use the Window New command to
move the Status window in the standard interface.

When you use the Window Resize command omidrenal view of a window,
the normal dimensions are modified. When you use the command on the
alternate view of a window, the alternate dimensions are modified.

You can enter resize commands when any screen is displayed. However, the
debugger does not display commands on the standard 1/O screen or on any
user-defined screen.

To move the Status window (standard interface
only)

The Status window cannot be moved in the graphical interface.

Using the command line in the standard interface, enter:
Wndow New

Specify window number 5 to move the high-level Status window (or window
number 15 to move the assembly level Status window), select Tab followed by
High_Level (or Assembly), enter the new coordinates for the Status window,
and press the Return> key.

The Status window cannot be resized. The difference between the bottom row
coordinate and top row coordinate must be 3.

A high-level program must be loaded in order to move the high-level status
screen.

Be sure to move any windows that occupy the screen area to which you are
moving the Status window. Otherwise, the Status window will be hidden
behind these windows.

227

Chapter 7: Configuring the Debugger
Modifying Display Area Windows

Examples

To move the high-level Status window to the top of the display (upper left
corner at 0,0 and lower right corner at 3,78):

Whdow New 5 <tab> Hgh_Level 0,0,3,78

To move the assembly-level Status window to the bottom of the display:

Wndow New 15 <tab> Assembly 19,0,22,78

To define user screens and windows

Using the command line, enter:
Wndow New

Enter the window and screen parameters, and pressReturn> key.

The debugger lets you define your own screens and windows so that you have
flexibility in displaying debugger information.

User-defined windows must be assigned a number greater than or equal to 50,
and less than or equal to 256. Numbers below 50 are reserved for predefined
debugger screens and windows.

When you make a new window with the Window New commandnthenal

view and alternate view dimensions are set identically. The debugger allocates
a buffer with enougimemory to contain the entire window. Therefore, the
window with the largest dimensions (normally the alternate view) should be
defined first to allocate sufficient memory.

To display a user-defined screen, useWiedow Screen_On command or
press function kely6.

228

Chapter 7: Configuring the Debugger
Modifying Display Area Windows

Caution When making a new window on the high-level or assembly-level screens, be
careful not to enter coordinates thall vesult in a window that covers the
status line and command line. On a stan@&®dolumn terminal display, a
row coordinate may be between 0 and 23. Creating a window with a bottom
row coordinate greater than 18lwause part or all of the status and
command lines to be covered.

Examples To make a user window numbered 57 in user screen 4 with the upper-left
corner of the window at coordinates 5,5 and the lower-right corner of the
window at coordinates 18,78:

Whdow New 57 <tab> User_Screen 4 <tab> Bounds 5,5,18,78

If user screen 4 does not exists, the debugger automatically creates it.

To display user-defined screens

* Using the command line, enter:
Wndow Screen_On User_Screen <screen_nmbr>

Enter the user screen number, and presstReturn> key.

Examples To display user screen 4:

Whdow Screen_On User_Screen 4

229

Chapter 7: Configuring the Debugger
Modifying Display Area Windows

To erase standard 1/0O and user-defined window
contents

* Using the command line, enter:
Whdow Erase <user window_nmbr>

Enter the user window number (the standard I/O window number is 20) whose
contents you wish to clear, and press¢hHeeturn> key.

If you do not specify a window number or if you specify 0, the active
user-defined window is cleared. This command is useful in macros.

Examples To erase the contents of user window 57:

. Wndow Erase 57

To remove user-defined screens and windows

* Using the command line, enter:
Whdow Delete <user window _nmbr>

Enter the number of the window to be removed, and pressReturn> key.

To remove a user-defined screen, remove all windows associated with that
screen.

You cannot remove predefined debugger windows and screens.

Examples To remove a user-defined screen that has three windows (numbers 50, 55, and
73):

Whdow Delete 50

230

Chapter 7: Configuring the Debugger
Modifying Display Area Windows

Wndow Delete 55

Whdow Delete 73

231

Chapter 7: Configuring the Debugger
Saving and Loading the Debugger Configuration

Saving and Loading the Debugger Configuration

Information regarding debugger options and screen configurations can be
saved in astartup file Startup files can be created only from within the
debugger.

This section shows you how to:
» Save the current debugger configuration.

* Load a startup file.

To save the current debugger configuration

Use the menu select mouse button to chddlse.Store—Startup (.rc) file
(as default) The information is saved in file “db68k.rc” in the current
directory.

Or:

Use the menu select mouse button to chdédlse-Store—Startup (.rc) file.
Using the file selection dialog box, enter the name of the file to which startup
information should be saved; then, click on the OK pushbutton.

This command also saves the window and screen settings.

When saving window and screen settings that have been customized for a
particular type of terminal, name the startup file the same as the TERM
environment variable setting. If no startup file is loaded when starting the
debugger, the debugger will automatically search for startup filesed
“J/$TERM.rc” (in the current directory) or “$HOME/.$TERM.rc” (in the
home directory). files.

232

Chapter 7: Configuring the Debugger
Saving and Loading the Debugger Configuration

To load a startup file

* Use the -startup_fileoption to the db68k command when starting the
debugger.

$ db68k -s <startup_file> <RETURN>

The debugger’s startup options and window specifications are configured as
described irstartup_file

Thestartup_filemust end with the .rc extension and can be created only from
within the debugger.

If no startup file is named, the following files are searched for in order. The
first one that exists will be used ($HOME and $TERM are UNIX
environment variables).

db68k.rc in the current directory
J$TERM.rc in the current directory
$HOME/.$TERM.rc

If no startup file is found, reasonable defaulii§lve used.

Examples To start the debugger and load the state saved in the startup file “my_state.rc”:

$ db68k -s my_state.rc <RETURN>

233

Chapter 7: Configuring the Debugger

Setting X Resources

Setting X Resources

The debugger’s graphical interface is an X Window System application which
means it is @lientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

An X resourcecontrols an element of appearance or behavior in an X
application. For example, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

Where resources are defined

When the graphical interface starts up, it reads resource specifications from a
set of configuration files. Resources specifications in later files override those
in earlier files. Files are read in the following order:

1 The application defaults file,
$HP64000/lib/X11/app-defaults/HP64_Debug.

2 The $XAPPLRESDIR/HP64_Debug file. (The XAPPLRESDIR
environment variable defines a directory containing system-wide custom
application defaults.)

3 The server's RESOURCE_MANAGER property. (Ttrdb command
loads user-defined resource specifications into the
RESOURCE_MANAGER property.)

Ifno RESOURCE_MANAGER property exists, user defined resource
settings are read from the $SHOME/.Xdefaults file.

4 The file named by the XENVIRONMENT ema@nment variable.

If the XENVIRONMENT variable is not set, the $H OME/. Xdefauttsst
file (typically containing resource specifications for a specific remote host)
is read.

234

Chapter 7: Configuring the Debugger
Setting X Resources

5 Resource specifications included in thentpand line with thexrm
option.

6 System scheme files in directory /usr@4p00/lib/X11/HP64_sames.

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_s@mes.

8 User-defined scheme files located in directory $H OMEG# Bclemes
(note the dot in the directoryame).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

The HP64_Debug application defaults file is re-created each time debugger’s
graphical interface software is installed or updated. You can use the UNIX
diff command to check for differences between the ne@HBebug

application defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_selmes/old/HB4_Debug.

Refer to the “X Resources and the Graphical Interface” chapter for more
detailed information about X resources.

235

Chapter 7: Configuring the Debugger
Setting X Resources

To modify the debugger’s graphical interface
resources
You can customize the appearance of an X Windows application by modifying

its X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Debug.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This m@srce should bﬁ
(custom) set to the platform on which the X server

is running (and displaying the debuggers
graphical interface) if it is different than
the platform where the application is

running.
HP64_Debug.colorScheme BW Names the color scheme file.
Color
(custom)
HP64_Debug.sizeScheme Small Names the size scheme file which defings
Large the fonts and the spacing used.
(custom)
HP64_Debug.labelScheme Label Names to use for labels and button tex.

SLANG The default uses the $LANG

(custom) environment variable ifit is set and if a
scheme file named Debug.$LANG exists
in one of the directories searched for
scheme files; otherwise, the default is
Label.

HP64_DebugriputScheme Input Specifies mouse and keyboard operatign.
(custom)

236

Chapter 7: Configuring the Debugger

Setting X Resources

Commonly Modified Application Resources

Resource Values Description
HP64_Debug.enableCmdline True Specifies whether the command line arga
False is displayed when you initially enter the
debugger’s graphical interface.
*editFile (example) | Specifies the command used to edit files.
vi %s
*editFileLine (example) | Specifies the command used to edit a file

Vi + %d %s

at a certain line number.

*sim68000*actionKeysSub.keyDefs

(paired lig
of strings)

tSpecifies the text that should appear on

the action key pushbuttons and the

commands that®uld be executed in th
command line area when the action ke
pushed. Refer to the “To set up custon
action keys” section for more informatia

*sim68000*dirSelectSub.entries

(list of
strings)

Specifies the initial values that are plac
in theFile ~Context-Directory pop-up
recall buffer. Refer to the “To set initial
recall buffer values” section for more
information.

*sim68000*recallEntrySub.entries

(list of
strings)

Specifies the initial values that are plac
in the entry buffer (labeled “():"). Refer
to the “To set initial recall buffer values’
section for more information.

237

Chapter 7: Configuring the Debugger
Setting X Resources

The following steps show you how to modify the debugger’s graphical
interface’s X resources.

1 Copy part or all of the HP64_Debug application defaults file to g teaTy
file. Type:

cp $HP64000/lib/X11/app-defaults/HP64_Debug HP64_Debug.tmp
2 Make the temporary file writable:
chmod +w HP64_Debug.tmp

3 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to

change.

For example, to change the number of lines in the main display area to 36,
search for the string “HP64_Debug.lines”. Ydwald see lines similar to the
following.

|
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines

I'and 80 columns. These minimums are silently enforced.
|

| Note: The application cannot be resized by using the window manager.

IHP64_Debug.lines: 24
IHP64_Debug.columns: 85

Edit the line containing “"HP64_Debug.lines” so that it is umoeented and is
set to the new value:

|
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines

I'and 80 columns. These minimums are silently enforced.
|

| Note: The application cannot be resized by using the window manager.

HP64_Debug.lines: 36
IHP64_Debug.columns: 85

If you wish, you may delete any lines which you will not be modifying; any
resources you deletalluse the default values.

Save your changes and exit the editor.

238

Chapter 7: Configuring the Debugger
Setting X Resources

4 Ifthe RESOURCE_MANAGER property exists (as is the case with HP VUE
— if youre not sure, you can check by enteringxtdb -query command), use
thexrdb command to add the rasrces to the RESOURCE_MANAGER
property. For example:

xrdb -merge -nocpp HP64_Debug.tmp
5 Save the changes where they can be found by the debugger.

One way to do this is to append the temporary file to your $HOME/.Xdefaults
file. For example:

cat HP64_Debug.tmp >> $HOME/.Xdefaults

You can also save the changes in a scheme file (see "To use customized
scheme files").

6 Remove the temporaryfile.

7 Start or restart the debugger’s graphical interface.

239

Chapter 7: Configuring the Debugger
Setting X Resources

To use customized scheme files

Scheme files are used to set platform specifioueses that deal with color,
fonts and sizes, mouse and keyboard operation, and labels and titles. You can
create and use customized scheme files by following these steps.

1 Create the $3HOME/HP64_seimes/< platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

2 Copythe scheme file to be modified to the
$HOME/.HP64_schmes/< platform> directory.

Label scheme files are not platform specific; therefore, theyls be placed
in the $HOME/.HP64_s@mes directory. All other scheme filéssild be
placed in the SHOME/.HP64_semes/< platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Debug.Color
$HOME/.HP64_schemes/HP-UX/Debug.MyColor

Note that if your custom seime file has the same name as the default scheme
file, the load order requires resources in the custom file to explicitly override
resources in the default file.

3 Modify the $SHOME/.HP64_sames/< platform> /Debug.< scheme> file.

For example, you could modify the
“SBHOME/.HP64_sckemes/HP-UX/Debug.MyColor” file to change the

defined foreground and background colors. Also, since thenseliile name

is different than the default, you could comment out variousures settings

to cause general foreground and background color definitions to apply to the
debugger’s graphical interface. At least one resource must be defined in your
color scheme file for it to be recognized.

240

Chapter 7: Configuring the Debugger
Setting X Resources

4 If your custom schme file has a different name than the default, modify the
scheme resurce definitions.

The debugger’s graphical interface application defaults file contains resources
that specify which scheme files are used.olftycustom schme files are

named differently than the default scheme files, you must modify these
resource settings so that your customize@sthfiles are used instead of the
default scheme files.

For example, to use the “SHOME/.HP64_soies/HP-UX/Debug.MyColor”
color scheme file you would set the “B# Debug.colorS@me” resurce to
“MyColor”:

HP64_Debug.colorScheme: MyColor

241

Chapter 7: Configuring the Debugger
Setting X Resources

To set up custom action keys

* Modify the “actionKeysSub.keyDefs” resource.

To modify this resource, follow the procedure in "To modify the debugger’s
graphical interface resources."

The “actionKeysSub.keyDefs” resource defindisteof paired strings. The

first string defines the text that should appear on the action key pushbutton.
The second string defines the command thau&d be sent to the oumand

line area and executed when the action key is pushed.

A pair of parentheses (with no spaces, that is “()") can be used in the
command definition to indicate that text from the entry buffensdd replace
the parentheses when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, “()”, in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using the Debugger Host_Shell command.
Also, command files can be executed by using the File Command command.

Finally, an empty action (") means to repeat the previous operation, whether
it came from a plrdown, a dialog, op-up, or another action key.

Example To set up custom action keys, modify the “debug*actionKeysSub.keyDefs”
resource:
*sim68000*actionKeysSub.keyDefs: \
"Make" "D Hmake "\
"Disp Src ()" "PCS();PD()"\
"Run Until ()* "PRU("\
"Step" "P S
See Also “To modify debugger’s graphical interface resources” in this chapter.

242

Chapter 7: Configuring the Debugger
Setting X Resources

To set initial r ecall buffer values

Modify the “entries” resource for the particular recall buffer.

Some of the resources for the pop-up recall bufferéstesl in the following
table:

Pop-up Recall Buffer Resources

Recall Pop-up

Resources

Entry Buffer ():

*recallEntrySub.entries

File ~Context-Directory ... *dirSelectSub.entries
Modify -Register; Recall Value *modRegDB*recallSub.entries
Command Line command recall *recallCmdSub.entries

Value

Macro Operations dialog box; Recall *macroDB_popup*recdSub.entries

Example

Other X resources for the recall buffers are described in the supplied
application defaults file.

The window manager resource “*transientDecoration” controls the borders
around dialog boxwindows. The most natural setting for this resource is
“title.”

To set the initial values for the directory selection dialog box, modify the
“debug*dirSelectSub.entries” resource:

*sim68000*dirSelectSub.entries: \
"$HOME" \
oy
"lusers/projectl" \
"lusers/project2/code”

Refer to the previous “To modify the debugger’s graphical interface
resources” section in this chapter for more detailed information on modifying
resources.

243

Chapter 7: Configuring the Debugger
Setting X Resources

244

Part 3

Concept Guide

Part 3

246

X Resources and the Graphical
Interface

An introduction to X resources.

247

Chapter 8: X Resources and the Graphical Interface

X Resources and the Graphical Interface

This chapter helps you to understand how to set the X resources that control
the appearance and operation of the debugger’s graphical interface. This
chapter:

» Explains the X Window concepts surrounding resource specification.
» Explains the scheme files used by the debugger’s graphical interface.

The debugger’s graphical interface is an X Window System application which
means it is @lientin the X Window System client-server model.

TheX servelis a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

An X resource is user-definable data

A resources a user-definable piece of data that controls the operation or
appearance of an X Windows application. A resource may applyto an
application (application-specific resources) or it may apply to the objects
calledwidgetsfrom which the application is constructed. That is particularly
true of standard widget resources that control the appearance of an
application. For example, most widgets have a standard resource that allows
the user to specify the font used to display text on objects like buttons, menus,
and labels.

An application-specific resouras defined by the application developer and

may control such things as the mode of operation of an application. For
example, you can use an application-specific resource for the debugger’s
graphical interface to control whether to start the interface with the command
line on or the command line off.

A resource specification is a name and a value

Each resource in an application hassae and a value. Because an X

Window System application is constructed from widgets, a resoaroe is

closely associated with the names of the widgets that make up the application.
Each application begins with a top-level widget that is the parent of all other

248

Chapter 8: X Resources and the Graphical Interface

widgets in the application. The name of the top-level widget is usually the
same as that of the application. This top-level widget may have a number of
widgets “beneath” it that are called children of the top-level widget. The
names for these widgets are most often chosen for their mnemonic value.
These children can also in turn have child widgets. A resowatenthen, is
simply a name of a piece of data for the lowest-level widgepled with a

string of widget names picked up from each of the widgets along the path
starting with the top-level widget and going down to the lowest-level widget.

The data name and widget names within @auese rame are separated from
each other by dots. The resoureene itself is terminated by a colon. A
resource value is simply the data value itself. Ignoring the widgaes and
data name for the moment, a commorotgse for most widgets is color. A
data value for color might be “blue.”

To put this all together, a resource string for the foreground color for the
“quit” pushbutton displayed on an application called “tracker” might look like
the following:

tracker.panel.control.quit.foreground: white

Don't worry, there are shortcuts

As you might guess, specifying resources for applications with many levels
widgets can be difficult and error-prone. For that reason, you can use a
shortened notation. To fully understand how the notation works, however,
you must first understand abonstance nameandclass names

An instance namé& a name given to a particular widget by an application
developer. You have already seen instance names used. The name “quit” is an
instance name for a pushbutton widget used by the developer of the “tracker”
application from the last example. An instance name makes the pushbutton
widget named “quit” unique from other pushbutton widgets in the “tracker”
application.

A class namés a general name for all widgets of a particular type. For
example, the class name for the O SF/Motif pushbutton widget is
XmPushButton. When you refer to a widget in an application by its class
name, you are referring to all widgets of that class in the application, and not
to just a particular widget.

249

Chapter 8: X Resources and the Graphical Interface

Instead of specifying the foreground color for the tracker quit button by using
a resource ame made up of instance names as in the last example, you could
instead use a class name, as follows:

tracker.panel.control. XmPushbutton.foreground: white

Using class names in this way makes it easier to spectfyress because it
relieves you from having to discover the names of particular widgets in an
application. A long string of instance names or class namab &sleing

string of names, however. Fortunately, a wildcard helps to makétntest a
true shortcut. The wildcard is an asterisk ("*"). It can be used to replace any
number of class or instance names in auese rame. The last example could
now be shortened to either of the following:

tracker*XmPushButton.foreground: white

tracker*quit.foreground: white

But wait, there is trouble ahead

An X Window System application maintains a complete list adueses, and

the application knows the complete instance and class names for each
resource. Because you can specify resource values using shortened notation,
the application, when starting up, must match specified values to individual
resources. Some general rules apply:

» Either a class name or instance name from the request must match each
class or instance name in the applicatidistsof reources.

» Entries prefixed by a dot are more specific and therefore have precedence
over entries prefixed by an asterisk.

» Instance names are more specific and therefore have precedence over class
names.

» Matching is done from left to right. Instance or class names appearing at
the beginning of the specification have precedence over those later in the
specification.

As you can quickly see, resource matching favors specific resoanceshover
general resourceames. General rearce rames, especially those involving
class names, can have unexpected and unintended effects. Consider the last
example again. The resource specification

250

Chapter 8: X Resources and the Graphical Interface

tracker*XmPushButton.foreground: white

may not only set the foreground color of the quit button on the control panel
of the application to white — it could also set the foreground colors for any
pushbutton anywhere in the application. That is because the combination of
the wildcard and the use of the class name make thasres specification

match a resource request for any pushbutton in the application.

The second of the two specifications in the example does not completely solve
the problem either. Suppose there was another button elsewhere in the
application with the instance name of “quit.” (Duplicating instance names is
correct as long as the widget paths to two different widgets of the same name
are different.) The second specification of

tracker*quit.foreground: white

could match a resource request for that button as well because the wildcard
allows the specification to match a number of different widget paths through
the application.

Resource specification is usually a matter of trial and error. The following
resource is probably specific enough to set just the foreground color for the
quit button on the control panel:

tracker*control*quit.foreground: white

To view the resources in the debugger’s graphical interface, you can choose
Help -»X Resource Namesnd click on the “All names” button.

Class and instance apply to applications as well

Just as there are classes and instances of widgets, there are classes and
instances of X Window applications. Resource specifications can be
constructed in such a way that they apply to a whole class of applications, or
just to an instance of those applications.

The class name for the debugger graphical integacducts isHP64_Debug
The instance of the class that this debugger graphical interface falls under is
calleddebugsim A few examples are in order.

» For agiven resource (called <resource>), the following specification
applies to all debugger interface products for all processors:

251

Chapter 8: X Resources and the Graphical Interface

HP64_Debug*<resource>: <value>

» The following specifications apply to all sim68000 debugger interfaces:

HP64_Debug.sim68000*<resource>: <value>
debugsim.sim68000*<resource>: <value>

According to the precedence rules for resource matching, the first
specification is the most general and would be overridden by either of the
following two.

Resource specifications are found in standard places

X resources are defined in standard places so that applications can find them
and use them when starting up.

The app-defaults file

The app-defaults file contains only resources for a specific application. The
system directory for application default files is
$HP64000/lib/X11/app-defaults. Thame of the default file is the same as the
class name for the application and is also callecafipedefaults filgfor

example, HP64_Debug is thame of the debugger’s graphical interface’s
application defaults file).

These defaults should not be changed by individual users because doing so
affects the appearance and behavior of the application for all users of the
application.

The .Xdefaults file

The .Xdefaults file in your $SHOME directory usually contains user-defined
resources for several applications.

Scheme files

X resource specifications can pointsdcheme filen which other X resources
are specified.

252

Chapter 8: X Resources and the Graphical Interface

Loading order resolves conflicts between files

If there are two files, then which resource specification from which file
controls the resource in the application? That problem is solved by adhering
to a loading order for files. The following is a list of the standard places, in
order, that an application looks to find resources:

1 The application default file.

The application default file for the graphical interface is called
HP64_Debug This file is created at software installation time and placed
in the system application defaults directory.

2 $XAPPLRESDIR/< class>

This environment variable defines an alternative directory path leading to
customized class files. Useful for directing the application to system-wide
custom files.

3 RESOURCE_MANAGER property. Some X servers have a resource
property associated with the root window for the server. Resources are
added to the resource property database by usilbhg (HP VUE is an
example.) The server can use this propertyto access those resources.

Ifno RESOURCE_MANAGER property exists, then
$HOME/.Xdefaults is read. The primary and probably best method fo
creating or adding to this file is by copying part or all of the app-defaul
file into the .Xdefaults file.

4 $XENVIRONMENT file. This environment variable defines a file that
contains resource specifications.

Ifthe XENVIRONMENT variable is not set, then
$HOME/.Xdefaultshostis read.

5 Command line options

Resources can be specified on themgwand line by using thexrm
command line option. The application strips these arguments out and
sets these resources beforegiag the rest of the numand line on to the
application.

Remember, load order specifies the precedence foures overrides. A
resource found later in the load order overrides a resource found earlier in the
load order if the resource specifications match each other.

253

Chapter 8: X Resources and the Graphical Interface

The app-defaults file documents the resources you can set

TheHP64_Debudile is complete, well-commented, and a goodgrce of
reference for graphical interface resources. Thé4Pebug file kould be
your primary source of information about setting graphical interface
resources. This file can bes#g viewed from the help topic menu byaosing
Help -General Topicand selecting the “X Resources: Setting” topic.

To further assist you with setting X magces, there is also another topic on

the help menu pull-down that yohauld use. Chooddelp -X Resource

Namesto display the class and instance name for the graphical interface in a
dialog box. From the dialog box, you can also display all widget class and
instance names for all widgets that make up the debugger’s graphical interface.
In most cases, you will not need to delve that far into the widget tree, but it is
there if you need it.

In addition to the app-defaults file, the graphical interface sceame files
Resources are not duplicated betweeresahfiles and the H&2_Debug file.
You may wish to set resources found in theeseh files as well, so you need to
understand how scheme files relate to the interface and to the other X
resource files.

Scheme files augment other X resource files

Hewlett-Packard realizes that the debugger’s graphical interface wilinbie
environments made up of workstations with different display capabilities and
even in environments with different types of computers (platforms) running
the X Window System. The debugger’s graphical interface, unlike many other
X applications, makes determinations about display hardware as to the
platform type, the resolution of the display, and whether the display is color or
monochrome. The interface then loads the appropriatareefiles to allow

the interface to come up in a reasonable way based on the hardware.

There are sixscheme files. Their names and a brief description of the
resources they contain follows:

Debug.Label Defines the labels for the fixed text in the interface.
Such things as menu item labels and similar text are in
this file. If the $LANG environment variable is set, the
scheme file “Debug.$LANG” is loaded if it exists;
otherwise, the file “Debug.Label” is loaded.

254

Chapter 8: X Resources and the Graphical Interface

Debug.BW Defines the color scheme for black and white displays.
This file is chosen if the display cannot produce at least
16 colors.

Debug.Color Defines the color scheme for color displays. This file is

chosen if the display can produce 16 or more colors.

Debug.Input Defines the button and key bindings for the mouse and
keyboard.
Debug.Large Defines the window dimensions and fonts for high

resolution display (1000 pixels or more vertically).

Debug.Small Defines the window dimensions and fonts for low
resolution displays (less than 1000 pixels vertically).

Debug.Label (or Debug.$LANG) resides in the directory
/usr/hp64000/lib/X11/HP64_schemebhis directory is the upper level directory
for scheme files. The other five files are in subdirectories below this one
named by platfornfor operating system). For example, the ${I80 scheme
files are in the subdirectofysr/hp64000/lib/X11/HP64_schemes/HP-UX

Like the app-defaults file, these scheme files are system fileshanddsnot be .
modified directly.

You can create your own scheme files, if you choose

The debugger’s graphical interface supports user-definedrezfiles. The
interface searches two places for user-defined scheme files and loads any it
finds after loading the system scheme files. Refer to any of the scheme files
mentioned for information about where to place your owesahfiles.

Scheme files continue the load sequence for X resources

Scheme files extend the load order for finding Xorgges. System seme file
resources override all other resources gathered so far, and user-defined
scheme files, inurn, override the system smme files. Continuing from the
load order list previously, the sete files follow, in the order

6 /usr/hp64000/lib/X11/HP64_semes/Debug.Label
/usr/hp64000/lib/X11/HP64_selmes/< platform> /Debug.< scheme>

255

Chapter 8: X Resources and the Graphical Interface

7 $XAPPLRESDIR/HP64_s@mes/Debug.Label
$XAPPLRESDIR/HP64_sdmes/< platform> /Debug.< scheme>

Just as $XAPPLRESDIR can point to a system-wide app-defaults file, so
can it point to a set of system-wide scheme files.

8 $HOME/.HP64_schmes/Debug.Label
$HOME/.HP64_schmes/< platform> /Debug.< scheme>

Please note the dot (.) in the “.HP64 esttes” directory name.

You can force the debugger’s graphical interface to use
certain schemes

Five application-specific resources allow you to force the interface to use
certain schemes. The msces and what they control are as follows:

HP64_Debug.platformSeme:

Controls the platform scheme chosen by the interface. Thisires is
particularly useful in mixed-platform environments where you might be
executing the interface remotely on an HP 9000 computer, but displaying
the interface on a Sun SPARCsystem computer. In this situation, you may
wish to set the resource to use the SunO8mehso that you can use the
same key and mouse button bindings as other Sun OpenWindows
applications.

The value of this resource is actually theme of a subdirectory under
/usr/hp64000/lib/X11/HP64_selmes or one of the alternative directories
for scheme files. You can createuy own file and subdirectory under
/usr/hp64000/lib/X11/HP64_selmegor alternative) and then set this
resource to choose that subdirectory instead of the standard platform
subdirectory.

Values can be: HP-UX, SunOS, or the name of a sub-directory containing
custom scheme files.

HP64_Debug.colorSeme:
Chooses the black and white or colorestie.

Values can be: Color, BW, or the name of a custom scheme file.

HP64_ DebugrputScleme:
Chooses the keyboard and mouse bindings.

256

Chapter 8: X Resources and the Graphical Interface

Values can be: Input or the@me of a custom scheme file.

HP64_Debug.sizeSeme:
Chooses the large or small sche for fonts and sizes.

Values can be: Large, Small, or the name of a custom scheme file.

HP64_Debug.labelSeme:

Chooses a different label satne for fixed text. Again, this rearce is
affected by the $LANG variable.

Values can be: Label, $LANG (if this environment variable is set and
there is a Debug.$LANG scheme file), or the name of a custom scheme
file.

These resources are in the app-defaults file. To override these resources, set
them in your.Xdefaultfile.

Again, setting X resources is a trial and error process. Tleersefiles used
by the debugger’s graphical interface simplify the process by collecting related
resources in specific files.

To review the organization:

» The app-defaults file contains resources that control the operation of
interface. To override a resource in this file, copy the resource to you
Xdefaults file and change it there.

* Resources that control the appearance of the display and keyboard and
mouse button bindings for your platform are in theesah files. Copythe
scheme files to anppropriate place and modify the resources found in
them to change the look of the interface.

If you would rather place these resources in your .Xdefaults file,
remember the load order. Make theoexxe rame in the .Xdefaults file
more specific or it will be overridden by the one in theesah file.

The app-defaults file and the scheme files angrpest sources of reference
for help with modifying individual resources.

257

Chapter 8: X Resources and the Graphical Interface

Resource setting - general procedure

Application specific resources

If you plan to modify an application-specific resource, you should look in the
HP64_Debug file for information about that oeisce.

Ifthe RESOURCE_MANAGER property exists (as is the case with

HP VUE), copy the complete HP64_Debug file, or just the part you are
interested in, to a temporary file. Modify the resource in your temporary file
and save the file. Then, merge the temporaryfile into the
RESOURCE_MANAGER property with thedb -merge < filename>
command.

Ifthe RESOURCE_MANAGER property does not exist, copy the complete
HP64_Debug file, or just the part you are interested inptw)X defaultfile.
Modify the resource in your .Xdefaults file and save the file.

Finally, if the debugger’s graphical interface is currently executing, you must
exit and restart the interface for the change to have any effect.

General resources

If you plan to modify a general resource that could not be found in the
HP64_Debugfile, look to the seme files for information about that
resource. A general disssion of the kinds of information found in the
scheme files can betind in the previous “Seme files augment other
resources” section.

Copythe appropriate seme file to one of the alternative directories and
make the modifications there. (If you are using $XAPPLRESDIR, make sure
the variable is set and exported.) Save the file. If the debugger’s graphical
interface is currently executing, you must exit the application and restart it to
see the results of your change.

258

Part 4

Reference

Part 4

260

Debugger Commands

Detailed descriptions of command line commands.

261

Chapter 9: Debugger Commands

Command Summary

Breakpoint Commands

Breakpoint commands control execution gfragram.

Command Definition

Breakpt Access Set a breakpoint on access (read/write) of an address
Breakpt Clear_All Clear all breakpoints

Breakpt Delete Delete specified breakpoints

Breakpt Instr Set an instruction breakpoint

Breakpt Read Set a breakpoint on a read from an address

Breakpt Write Set a breakpoint on a write to an address

Breakpt Erase Delete a breakpoint at a specific address

Session Control Commands

The session control commands select debugger operating modes, set debugger
session options, define and display macros, allow access to the host operating
system, and end debugger sessions.

Command Definition

Debugger ? Access debugger on-line help

Debugger Directory Display or change present working directory
Debugger Execution Display_Status Display current directory and files in use
Debugger Execution IO_System Control debugger simulated 1/0

Debugger Execution Load_State Restore previously saved debugg®nse
Debugger Execution Reset_Processor Simulate microprocessor reset

Debugger Execution Save_State Save current debuggsose

Debugger Host_Shell Enter HP-UX operating system environment
Debugger Level Select debugger mode (high-level or assembly)
Debugger Macro Add Create a macro

Debugger Macro Call Call a macro

Debugger Macro Display Display macro source code

262

Chapter 9: Debugger Commands

Debugger Option Set or list debugger options for this session
Debugger Pause Pause debugger session
Debugger Quit Terminate a debugging session

Expression Commands

Expression commands calculate exgsien values, print formatted output to a
window, and monitor variables.

Command Definition

Expression C_Expression Calculate the value of a C expression
Expression Display Value Display the value of an expression or variable
Expression Fprintf Print formatted output to a window
Expression Monitor Clear_All Discontinue monitoring all variables
Expression Monitor Delete Discontinue monitoring specified variables
Expression Monitor Value Monitor variables

Expression Printf Print formatted output to Journal window

File Commands

File commands read amdocess command files, open files or devices for
writing, log debugger commands to a file, and save debugger startup

parameters.
Command Definition
File Command Read in arpdocess a ammand file
File Error_Canmand Set command filemr handling
File Journal Send Journal Window output to a file or the browser
File Journal Browser Send journal output to a graphical browser window
File Log Record debugger commandsées in a file
File Startup Save the default startup options
File User_Fopen Open afile or device for read or write access
File Window_Close Close the file associated with a window number

263

Chapter 9: Debugger Commands

Memory Commands

Memory commands do operations on the targetapimcessor’snemory.

Command

Definition

Memory Assign

Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test

Memory Display
Memory Hex

Memory Inport Assign
Memory Inport Delete
Memory Inport Rewind
Memory Inport Show
Memory Map Guarded
Memory Map Read_Only
Memory Map Show
Memory Map Write_Read
Memory Outport Asign
Memory Outport Delete
Memory Outport Rewind
Memory Outport Show
Memory Register
Memory Unload_BBA

Change the valuesémory locations
Copy a memory block
Fill memory block with values
Compare two blocks of memory
Search a memory block for a value
Examine memory area for invalid values
Display memory contents
Read or write Intel Hex or Motorola S-Recoremory
images
Set or altenput port status
Delete an input port
Rewind input file associated with input port
Display input port buffer values
Prevent access to memory locations
Prevent writing to memory locations
Display curremtemory map assignments
Allow access to memory locations
Set or alter outppbrt status
Delete an output port
Rewind output file associated with output port
Display output port buffer values
Change the contents of a register
Unload BBA data froprogrammemory

264

Chapter 9: Debugger Commands

Program Commands

Program commands load and exequtegrams, control program execution,
display source code and program variables, and set or cancel program

interrupts.

Command Definition

Program Context Set Specify current module and function scope

Program Context Display Display all local variables of a function

Program Context Expand Display all local variables of a function at the specified stack
(backtrace) level

Program Display_Source Display C source code

Program Find_Source Occurrence Find first occurrence of a string

Program Find_Source Next Find next occurrence of a string

Program Interrupt Add Simulate an interrupt

Program Interrupt Remove Cancel all pending interrupts

Program Load Load or reload an absolute file for debugging and set load
options

Program Pc_Reset Reset the program starting address

Program Run Start or continue program execution

Program Step Execute a number of instructions or lines

Program Step With_Macro Execute macro after each instruction step

Symbol Commands

Symbol commands add, remove, and display symbols.

Command Definition

Symbol Add Add a symbol to the symbol table
Symbol Browse Browse C+ + class

Symbol Display Display symbol, type, and address
Symbol Remove Delete a symbol from the symbol table

265

Chapter 9: Debugger Commands

Window Commands

Window commands do operations on the debugger windows.

Command

Definition

Window Active
Window Cursor
Window Delete
Window Erase
Window New
Window Resize

Activate a window

Set the cursor position for a window
Remove a user-defined window or screen
Clear data from a window

Make a new screen or window

Change the size of a window

Window Screen_On Activate a screen
Window Toggle_View Select the alternate display of a window

266

Chapter 9: Debugger Commands
Breakpt Access

Breakpt Access

(Breakpt >—>< Access

C‘ <addr> \‘ j \' j <Return>
..<addr> ;<macro_ call>

The Breakpt Access command sets an access breakpoint at the specified
memory location (< addr>) or range (< addr> ..< addr>). The access
breakpoint halts program execution each time the target program attempts to
read from or write to the specified memory location or range. Memory
locations may contain code or data.

You can attach a macro to a breakpoint using the optional < macro_call>
parameter. See the chapter titled “Using Macros and Command files”.

Each time the debugger detects an access of the address or range, it does the
following:

1 Suspends program execution.

Execution will sop immediately following the current instruction.

2 Executes a macro (if you attached one to the breakpoint). Depending on
the macro return value, the debugger does one of the following actions:

— Ifthe macro return value is true (nonzero), the debugger resumes
execution with the next instruction after the instruction that
caused the read or write to the memory location. No breakpoint
information is displayed.

— Ifthe macro return value is false (zero), the debugger returns to
command mode and displays breakpoint information.

3 Returnsto coomand mode if no macro was attached and displays
breakpoint information.

267

Chapter 9: Debugger Commands

Breakpt Access

See Also

Examples

Breakpt Clear_All Breakpt Read
Breakpt Delete Breakpt Write
Breakpt Erase Program Run
Breakpt Instr Program Step

To set a breakpoint on accesses of addresses ‘assign_vdutougjh
‘assign_vectors'+ 16:

Breakpt Access &assign_vectors..+16

To set a breakpoint on access of the address of the variable ‘current_temp”:

Breakpt Access ¤t_temp

To stop program execution when the value of variable system_running is set or
read as TRUE:

Breakpt Access &system_running; when (system_running==1)

The predefined macro when’is executed when the breakpoint is encountered.

268

Chapter 9: Debugger Commands
Breakpt Clear_All

Breakpt Clear_All

() (Clear Al)
Breakpt Clear All } <Return>

The Breakpt Clear_All command clears (removes) all defined breakpoints.

See Also
Breakpt Access Breakpt Read
Breakpt Delete Breakpt Write
Breakpt Erase Program Run
Breakpt Instr Program Step
Examples To remove all defined breakpoints:

Breakpt Clear_all

269

Chapter 9: Debugger Commands

Breakpt Delete

Breakpt

. See Also

Examples

Breakpt Delete

<brkpt nmbr> L j <Return>
.<brkpt _nmbr>

The Breakpt Delete command deletes (removes) one or more previously set
breakpoints. When you set a breakpoint, the debugger assigns it a breakpoint
number. Use this breakpoint number (< brkpt_nmbr>) to remove a specific
breakpoint. You can delete a group of breakpoints by specifying a range of
breakpoint numbers (< brkpt_nmbr> ..< brkpt_nmbr>). The debugger
displays the breakpoint numbers in the Breakpoint window.

When you remove a breakpoint, the Breakpoint window displays the
remaining breakpoints. Any breakpoints following the one removed are
renumbered.

Breakpt Access Breakpt Read
Breakpt Clear_All Breakpt Write
Breakpt Erase Program Run
Breakpt Instr Program Step

To delete breakpoint number 2:

Breakpt Delete 2

To delete breakpoint numbers 3 through 5:

Breakpt Delete 3..5

270

Chapter 9: Debugger Commands
Breakpt Erase

Breakpt Erase

CBFEQKDT >—>< Erase

C. <addr> \» f= <Refurn>
<addr>

B3051504

The Breakpt Erase command erases (deletes) a previously set breakpoint at a
specific address or all breakpoints set within a range of addresses. The Breakpt
Erase command differs from the Breakpt Delete command in that you identify
the breakpoint(s) you wish to remove by an address or by a range of addresses
instead of by a breakpoint number.

When you remove a breakpoint, the Breakpoint window displays the
remaining breakpoints. Any breakpoints following the breakpoints(s)
removed are renumbered.

See Also
Breakpt Access Breakpt Read
Breakpt Clear_All Breakpt Write
Breakpt Delete Program Run
Breakpt Instr Program Step
Examples To delete breakpoint set at the entry to tin@in() function:

Breakpt Erase main

To delete a breakpoint set at the syminain _checks

Breakpt Erase &num_checks

271

Chapter 9: Debugger Commands
Breakpt Instr

Breakpt Instr

C Breakpt)——(Instr

C

<addr>

\' j \‘ j <Return>
..<addr> ;<macro _call>

The Breakpt Instr command sets artinstion breakpoint at a specified

memory location (< addr>) or range (< addr> ..< addr>). The instruction
breakpoint halts program execution each time the target program attempts to
execute an instruction at the specifradmory location(s). If you specify a

range, the debugger sets breakpoints on the first byte of each instruction
within the specified range or (in high-level mode) the first instruction of each
line within the range.

If you set a breakpoint for an overloaded C+ + function, the debugger will ask
you to choose which definition of the function to use. You can also specify the
argument type of the function definition in parentheses after the function
name in the Breakpt Instr command.

You can attach a macro to a breakpoint using the optional < macro_call>
parameter. See the “Using Macros and Command Files” chapter.

The debugger performs the following actions when it encounters an
instruction breakpoint:

1 Suspends program execution before the program executes the instruction
at the breakpoint address.

2 Executes a macro (if you attached one when you set the breakpoint).
Depending on the macro return value, the debugger does one of the
following actions:

— Ifthe macro return value is true (nonzero), the debugger resumes
execution starting at the instruction where the break occurred. No
breakpoint information is displayed.

272

See Also

Examples

Chapter 9: Debugger Commands
Breakpt Instr

— Ifthe macro return value is false (zero), the debugger returns to
command mode whout executing the instruction where the break
occurred and displays breakpoint information.

3 Returnsto command mode whout executing the instruction where the
break occurred if no macro was attached and displays breakpoint

information.
Breakpt Access Breakpt Write
Breakpt Clear_All Program Run
Breakpt Delete Program Step

Breakpt Read

To set an instruction breakpoint at line 82 of the current module:

Breakpt | nstr #82

To set an instruction breakpoint at line 83 of the current module only when
the system is running (using the predefined macro when’:

Breakpt | nstr #83; when (system_running)

To set an instruction breakpoint starting at address 10deh and ending at
address 10e4h:

Breakpt | nstr 10deh..10e4h

To set instruction breakpoints beginning on lines 15 through 25 of module
initSystem’:

Breakpt | nstr initSystem\#15..#25

273

Chapter 9: Debugger Commands

Breakpt Read

Breakpt Read

(Breakpt >—>< Read

C. <addr>

See Also

Examples

\‘ j \' j <Return>
..<addr> ;<macro_ call>

The Breakpt Read command sets a read breakpoint. The read breakpoint halts
program execution each time the target program attempts to read data from
the specified memory location (< addr>) or range (< addr> ..< addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

Breakpt Access

To set a breakpoint on reads from variable 'system_running”

Breakpt Read &system_running

To set aread breakpoint starting at the address of variable 'current_temp’and
ending 8 bytes after the address of current_temp”:

Breakpt Read ¤t_temp..+8

To stop program execution when the value of variable system_running is read
as TRUE:

Breakpt Read &system_running; when (system_running==1)

274

Chapter 9: Debugger Commands
Breakpt Write

Breakpt Write

(Breokpt >—>< Write

C‘ <addr> \' f \' J <Return>
..<addr> ;<macro_call>

The Breakpt Write command sets a write breakpoint. The write breakpoint
halts program execution each time the targemory attempts to write data to
the specified memory location (< addr>) or range (< addr> ..< addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

See Also Breakpt Access

Examples To set a breakpoint to occur when the program writes a false value to variable
'system_isrunning’

Breakpt Wite &system_running; when (system_running==00)

To set a write breakpoint starting at the address of global variable
‘current_temp’and ending 8 bytes after the address of ‘current_temp”

Breakpt Wite ¤t_temp..+8

275

Chapter 9: Debugger Commands

Debugger Directory

Debugger Directory

(Debugger)—»(Directory Show_Working) J <Return>

Examples

Chonge_Working>—> <directory>

The Debugger Directory command displays or changesutrerct working
directory. When you specify tHghow_Workingarameter, the debugger
displays the current working directory in the journal window. When you
specify theChange_Workingarameter with a directory name, the debugger
makes that directory the current working directory.

To display the current working directory:

Debugger Directory Show_Working

To change the current working directory to /users/project/sources:

Debugger Directory Change_Working /users/project/sources

276

Chapter 9: Debugger Commands
Debugger Execution Display_Status

Debugger Execution Display_Status

Debugger = Display Status = <Return>

The Debugger Execution Display_Status command activates the debugger
View window and displays the following status information:

Version of debugger

Current working directory

Current log file

Current journal file

Startup file used in current debugsen
Loaded absolute files

If no files have been loaded, the absolute file will besing from the display.

If multiple executable files have been loaded using the Program Load Append
command, they il be displayed in the View window. You may need to toggle
the window (click on the window border) to see all of the files.

Example To display product version, current working directory, and current log,
journal, startup, and absolute files in the View window:

Debugger Execution Display_Status

277

Chapter 9: Debugger Commands
Debugger Execution I0_System

Debugger Execution IO_System

Debugger [0_System

<Refurm>

k’(STdio Redired)—‘ <’'stdin_name’’stdout_name”,"stderr _name’> L

Cooked

deidmn

The Debugger Execution IO_System command enables you to configure the
simulated I/O system to use the host system keyboard, display, and file system
to simulate 1/0O devices for your target program.

Debugger Execution |0_System Enable

The Debugger Execution 10_System Enable command enables the debugger
simulated I/O system.

Debugger Execution |O_System Disable

The Debugger Execution 10_System Disable command disables the debugger
simulated I/O system.

Debugger Execution |O_System Stdio_Redirect

The Debugger Execution 10_System Stdio_Redirect command allows you to
define the standard 1/O input (< stdirmame>), output (< stdout_name>),

and error (< stderr_ame>) files/devices. These are file/device names in the
host computer file system. Two special filenames allow you to access the

278

See Also

Examples

Chapter 9: Debugger Commands
Debugger Execution IO_System

system keyboard (/dev/simio/keyboard) and the system display
(/dev/simio/display).

Debugger Execution |O_System Mode

The Debugger Execution 10_System Mode command selects how keyboard
I/0 input is processed. Keyboard I1/O may be either cooked or raw.

Cooked Mode. In cooked mode, the target program gets input from the
keyboard in the form of lines. Editing operations, such as backspace, line Kill,
etc., on inputis done bythe debugger. WReturn or CTRL D is entered,

the line is passed to the target program by the simulated 1/O system. The
keyboard input is echoed to the screen during the editing operation. If
program execution is interrupted by enterin@trl> -C before the line is
entered, the characters on the input line are lost.

Raw Mode. In raw mode, each keystroke is passed from the keyboard to the
simulated I/O system with no praseng. No carriage retn is needed to enter
characters and no editing operations are available. In the raw mode any
character is valid, includinGTRL D. No characters are echoed to the screen
upon entry. The only special character that cannot be sent to the target
program i< CtrlI> -C which is used to interrupt the debugger’s execution of
the program.

Debugger Execution |O_System Report

The Debugger Execution 10_System Reporhowand displays the status of
the simulated I/O system.

The "Using Simulated 1/0" section in the "Viewing Code and Data" chapter.

To enable simulated 1/O:

Debugger Execution | O_System Enable

To disable simulated 1/O:

Debugger Execution | O_System Disable

279

Chapter 9: Debugger Commands
Debugger Execution I0_System

To redirect the standard input file to the keyboard, the standard output file to
the display, and the standard error file to file Jusers/project/errorfile’.

Debugger Execution | O_System Stdio_Redirect
"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"”

To redirect the standard input file to temp.dat’, the standard output file to
‘cmdout.dat’, and the standard error file to file ‘errorlog.err”.

Debugger Execution | O_System Stdio_Redirect
"temp.dat","cmdout.dat","errorlog.err"

To set data input mode to cooked:

Debugger Execution | O_System Modde Cooked

280

Chapter 9: Debugger Commands
Debugger Execution Load_State

Debugger Execution Load_State

<Debugger>—'<Execution)—{Lood_Stote) L j <Return>
<save_file>

The Debugger Execution Load_State commantbres thememory contents
and register values saved with the debugger/simulator Debugger Execution
Save_State command. If you do not specify a file name (< save_file>), the
debugger uses the default filb68k.sav

Example To restoranemory contents and register values saved in save file "session1":

Debugger Execution Load_State sessionl

281

Chapter 9: Debugger Commands
Debugger Execution Reset_Processor

Debugger Execution Reset_Processor

Debugger

: . Resetiprocessor>—> <Rcturn>

This command simulates a miprocessor reset.

It does the following:

1

© 00 N o O b

Note

The program counter is loaded from exception vector 1 at location 4 in
memory.

The interrupt stack pointer is loaded from exception vector 0 at location 0
in memory.

The status register is reset as follows;

the trace bits are cleared,

the supervisor bit is set to 1,

the master bit is set to 0 (68020 only),

the interrupt priority mask is set to level 7.
All other bits in the status register are set to 0.

The vector base register is set to 0 (68020 only).
The cache control register is set to 0 (68020 only).
The cycle count@cycles) is set to zero.

Any pending interrupt or exception is cleared.

Registers A0-A6 and DO-D7 are set to 0.

This command does not re-initialize memory. UseRhmgram Load New
Code_Only command to reset C variables.

See Also

Program Pc_Reset

Example

To reset the microprocessor:

Debugger Execution Reset_Processor

282

Chapter 9: Debugger Commands
Debugger Execution Save_State

Debugger Execution Save_State

(Debugger)—{Execution)—»{Sove_StotaL f <Return>
<save_file>

The Debugger Execution Save_State command savesittentmemory
contents and register values. These values can be restored at a later time by
executing the Debugger Execution Load_State command. If a file name

(< save_file>) is not specified, the default file nadib&8k.savs used.

See Also Debugger Execution Load_State

Example To save the curremhemory contents and register values in file "sessionl.sav™

Debugger Execution Save_State sessionl

283

Chapter 9: Debugger Commands

Debugger Host_Shell

Debugger Host_Shell

(:Debugger:>4%i:Hosf,SheH :}:>

<command>

<Refturn>

NoPrompt

The Debugger Host_Shell command enables you tpoearily leave the
debugging environment by forking an operating system shell or to execute a
single UNIX operating system command from within the debugger. The type
of shell forked is based on the shell variable SHELL. In this mode, you may
enter operating-system commands. Tareto the debugger, ent&TRL D

or typeexit and press thReturn key.

INBrowser

NaPrompft

You can execute operating system commands from within the debugger by
entering a single operating system command with the debiggrrgger
Host_Shell command. If you are using the graphical interface, the
operating system command is executed in a "cmdscript" window. Press

< Return> to close the window. If you are using the standard intersadeut
from the command is written to theurnal window andtderris not

captured. Commands writing sdderrwill corrupt the display. Interactive
commandgannotbe used in this mode.

The following options are available only in the graphical user interface:

InBrowser

Directs stderr and stdout of the command into text browser windows.

284

Chapter 9: Debugger Commands
Debugger Host_Shell

Wait
Suspends the interface until the command completes.

NoPrompt

When the command completes, the "cmdscript" window is closed
immediatelly.

See Also Debugger Quit

Examples To temporarily exit the debugger to the UNIX operating systemmncand
mode:

Debugger Host_Shell

To write the current working directory to the journal window:

Debugger Host_Shell pwd

285

Chapter 9: Debugger Commands

Debugger Help

Debugger Help

Debugger

Example

S ?(Help) <Return>

This command displays the dine help screen. The debuggeiovides orline

help for all debugger commands, debugger command arguments, and debugger
function keys. You can access on-line help by entering themand

Debugger ? or by pressing thE5 function key.

If you are using the graphical interface, a Help dialog box will be displayed. If
you are using the standard interface, a menu will appear in the display area.

If you enter the commanBebugger ? in the standard interface, the

debugger puts the cursor at the top of the topic list in the help menu. If you
press thd=5 function key, the debugger puts the cursor at the entry for the
command displayed on the command line (if one is displayed). Otherwise, the
cursor is positioned at the top of the topic list. You can select topics from the
help menu in two ways:

» Use the cursor keys to move to the desired topic and preBethm
key.

* Type the first letter of the desired topic. This positions the cursor at that
topic. Then press thReturn key.

Use theReturn keyto see more topics in alphabetical order.

To exit help in the standard interface, pressEbe (escape) key twice or
press function kelg5.

To display the debugger help screen:
Debugger ?

286

Chapter 9: Debugger Commands
Debugger Level

Debugger Level

Debugger - Level

<Return>

Assembly

- H

igh Level

The Debugger Level command selects either high-level mode or
assembly-level mode for debugging. When debugging programs containing C
modules, you can switch back and forth between the two modes. If the
program contains no high-level modules asigle to the debugger, the
debugger displays an error message if you attempt to select high-level mode.

If no parameters are specified with this command, the mode is switched back
and forth between the two modes, performing the same function &8the
function key.

Examples To select the assembly-level debug mode:

Debugger Level Assembly

To select the high-level debug mode: .

Debugger Level High_Level

To switch to the alternate debug mode:

Debugger Level

287

Chapter 9: Debugger Commands
Debugger Macro Add

Debugger Macro Add

(Debugger)—{ Macro }={ Add \‘

C‘ <macro_name>

J

<type>

@ ‘@—» <Return>
L <param_list> j

The Debugger Macro Add command defines a macro.

The name of the macro is specifieddiyacro_name>. The result type of the
macro is specified bytype> . If a type is not specified, it defaults to type int.
A parenthesized list of pameterg<param_list>) may optionally follow
the macro name. Parameter names must be composed of alphanumeric
characters. A maximum of 40 parameters is allowed.

When you enter the Debugger Macro Add command, ¢dluenhl window is
automatically enlarged, and the debugger displays the macro text prompt
character (>) indicating that you can enter the macro body.

Note If the stdio screen or a user-defined screen is active when the Debugger Macro
Add command isssued, thedurnal window wl not become active. Keyboard
input at this point Vll be interpreted by the debugger as the macro definition.

To terminate the macro definition, a period (.) must be entered as the first and
only character on a line.

The macro definition consists of all lines entered after the mamerand
before the terminating period. The macro definition consists ofdhecs
lines of the macro (the macro body) and optional formal arguments. The
syntax for the macro body is:

{macro_statement; [macro_statement;]...}

288

Chapter 9: Debugger Commands
Debugger Macro Add

The curly braces ({}) are required punctuation. Formal arguments can be
used throughout the macro definition, and are later replaced by the actual
arguments in the macro call.

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macros interactively, the debugger does not
respond to more than 78 characters on a line. When readimgraaoad file,

the debugger stops recognizing characters 2fiBrcharacters have been read
on a line.

The maximum number of lines allowed in a macro depends on the complexity
of the lines. Macros with too many lines (too complex) will fardg 92 'Not
enough memory for expressianill be displayed.

A macro is similar to a C function. The body can contain anylegal C statement
(except the SWITCH and GOTO statements). The statements IF, ELSE, DO,
WHILE, FOR, RETURN, BREAK, and CONTINUE can be used to control
program flow within a macro, just as in C. Macros have return types and can
be used in expressions.

Note Debugger commands may be used in macro definitions; they are indicated by
placing a dollar sign ($) at the beginning and the end of a command sequence.
For example, the following command sequences are legal in macro definitions:

$Program Find_Source Occurrence Forward system$;
or

$

Memory Assign Long &time=12

Program Find_Source Occurrence Forward system
$;

Macros can be executed by specifying the macro name on the command line in
a Debugger Macro Call command, in an egsien, or with a breakpoint
command.

Macros can be removed using the command:

Symbol Remove <macro_name>

See Also Breakpt Access
Breakpt Instr
Breakpt Read
Breakpt Write

289

Chapter 9: Debugger Commands

Debugger Macro Add

Example

Debugger Macro Call

Debugger Macro Display

Program Run

Symbol Remove

The “Using Macros and Command Files” chapter
The “Predefined Macros” chapter in this manual.

Debugger Macro Add int power(x, y)

int x;
int vy;
int i /* Loop counter */
int multiplier; /* Value x is multiplied by */

/* Multiply x by itself y -1 times */
for (i = 1, multiplier = x; i <y; i++)
X *= multiplier;

/* Return x My */
return x;

Debugger Macro Add void stackchk()

/* The symbols 'stack’ and 'TopOfStack’ exist in the compiler’s */
/* environment library, and are addresses which indicate the */
/* bottom and the top of the system stack. The symbol @sp is a */
/* debugger reserved symbol which contains the current value of */
[* the processor’s stack pointer. *

$Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
$Expression Printf "%d bytes of stack available", @sp - stack$;

290

Chapter 9: Debugger Commands
Debugger Macro Call

Debugger Macro Call

(Debugger)—{ Macro >—>< Call H <macro_call> H <Return>

The Debugger Macro Call commandisa macro previously defined by the
Debugger Macro Add command or a macro built into the debugger.

See Also Debugger Macro Add
Debugger Macro Display
Symbol Remove

Example To call the previously defined macro 'stackchk()*

Debugger Macro Call stackchk()

291

Chapter 9: Debugger Commands
Debugger Macro Display

Debugger Macro Display

C

See Also

<macro_name> \' j <Return>
,<user window nmbr>

The Debugger Macro Display command displays thece code for the

named macro. If a window number is specified (< user_window_nmbr>), the
macro source is written to the file or user-defined window associated with the
number. If you do not specify a window number, the macro source is written to
the Journal window.

Macro source for built-in macros cannot be displayed.

Debugger Macro Add
File Command
Symbol Display

Examples

To display the source for macro 'stackchk’in user-defined window 57:

Debugger Macro Display stackchk,57

To display the source for macro 'stackchk’in the Journal window:

Debugger Macro Display stackchk

292

Chapter 9: Debugger Commands
Debugger Option Command_Echo

Debugger Option Command_Echo

CDebugger)—{ Option)—{Commond_Echo " <Return>

oFF

The Debugger Option Command_Echo command controls whether or not
commands executed from a command file are echoed (copied) toutreal
window. If theoFF parameter is specified, only the results (if any) of a
command are copied to theurnal window. If theOnparameter is specified,
both the command and its results (if any) are echoed tootliradl window.
The default setting i®n

Examples To turn OFF echo to the Journal window oftmands executed from a
command file:

Debugger Option Command_Echo oFF

To turn ON echo to the Journal window ofimmands executed from a
command file:

Debugger Option Command_Echo On .

293

Chapter 9: Debugger Commands
Debugger Option General

Debugger Option General

CDebugger)—{ Option >—{Cenerol >>

<Return>

Demand_Load
Step_Speed <nmbr 0..100> /

The Debugger Option General command changes the default values for the
following debugger startup options for the current debuggisgjce:

Align_Bp Aligns breakpoints with processor instruction start
Frame_Stop Controls stack walking

Demand_Load Enables/disables demand loading of symbols
Processor Sets the processor type

Radix Interprets assembly-level numbers as decimal or hex
Exceptions Controls behavior of exception prasieg

Step_Speed Specifies the stepping speed

294

Chapter 9: Debugger Commands
Debugger Option General

Use the Debugger Option List command to display tireent option values.

To permanently change any option default values, first use the Debugger
Option command to change the value(s) and then use the File Startup
command to save the new default values in a startup file. See the File Startup
command for more information.

Align_Bp

The Align_Bp option controls automatic alignment of low-level breakpoints
and automatic alignment of disassembly. If the Align_Bp option is séfito

the debugger locates what it interprets as the starting address of all
instructions in a module (by disassembling code from the beginning of the
module). If you try to set the breakpoint at an address other than the start of
an instruction, the debugger moves the breakpoint to the beginning of the next
instruction and displays a warning. If you try to disptagmory mnemonically

from an address other than the start of an instruction, the debugger moves the
disassembly address to the beginning of an instruction. No Warning is
displayed. If the Align_Bp option is set t&-F, the debugger lets you set the
breakpoint at any address. The default settingis

Frame_Stop

When you set the Frame_Stop optionQn if the debugger encounters a bad
stack frame, it displays only the valid stack frames below the bad frame in
Backtrace window. When you set the Frame_Stop optiaFt the debugger
displays all frames, including the bad frame. The default settiofgAs

Demand_Load

When the Demand_Load option is setQq the debugger loads some symbol
information on an as-needed, demansdibaather than during the initial
loading of the executable (.x) file. Symbol information for global symbols,
local symbols in the source module containing main, and local symbols in
assembly modules are loaded during the initial load of the executable file.
Local symbols in C source modules other than that module which contains
main are loaded when the debugger explicitly references the module or when
the program is stopped with the program counter set to an address in the
module. Demand loading lets you load and deginograms that you could not
otherwise load because of very large amounts of symbol information. The
default setting for Demand_LoadasF.

295

Chapter 9: Debugger Commands
Debugger Option General

There are several side effects of demand loading. The debugger command
Memory Unload_BBA is disabled. Type mismatehogs may not be detected
during the initial load of the executable (.X) file. Global symbols may have
leading underscores stripped, depending on whether they were defined or
referenced in a C or assembly source module.

Processor

The processor option selects a specific microprocessor for simulation. The
microprocessor selected for simulation is displayed on the status line. The
default processor setting6800Q

The processor selections are:

68000, 68EC000, 68HC000, 68HC001, 68008, 68010, 68012, 68020,
68EC020, 68070, 68302, 683xx, 6833%, 68330, 68331, 68332, 68333, 68F333,
68334, 68335, 68336, 68337, 68338, 68340, 68349, CPU32, or CPU32P.

Radix

The radix option causes the debugger to interpret numeric literals, including
integers and addresses, as either decimal or hexadecimal values. By default,
numeric literals are interpreted as decimal values.

If you setRadix to hexadecimal, any number you want interpreted as decimal
must be terminated with(for example, specify 32 as 32T).

Even if you select Hex, the following inputélwiotbe interpreted as
hexadecimal: line numbers starting with "# ", variables in high-level
expressions, and debugger variables including breakpoint numbers, viewport
numbers, and data viewport line numbers. To cast a high-levelssipneas
hexadecimal, use a leading "Ox" or a trailing "h".

Binary numbers are not available whRadix is set to hexadecimal. Floating
point and enumeration type values are not affected by the radix option.

The Output parameter lets you specify whether the output of the Ezpre
Display_Value, Expression Monitor Value, and Program Context Expand
command is displayed in decimal or hexadecimal format.

Exceptions

The exceptions option controls the behavior of exception psirog by the
debugger. I'Normal mode, the debugger internal varial@zxcis set to 2.

296

Chapter 9: Debugger Commands
Debugger Option General

This causes the debugger to allow exceptions to be handled as they would be
by the processor. IReport mode, the debugger reports the exception type,
and where it occurred to the Journal window, and then handles the exception
as the processor would. In tiS%op mode, the debugger reports the exception
to the Journal window and halts program execution. This is the default mode
of operation.

Step Speed

The Step_Speed option specifies the stepping speed. The stepping speed can
be in the range of 0 to 100 units. Higher numbers represent slower speeds.
This option affects the Program Step command. The default value is 0.

See Also File Startup
Debugger Option List

Example To align assembly-level breakpoints at the beginning of an instruction:

Debugger Option General Align_ Bp On

297

Chapter 9: Debugger Commands
Debugger Option List

Debugger Option List

The Debugger Option List commalfists the arrent debugger option values
in the Journal window. Thiést will be similar to the sample list shown in the
example.

See Also Debugger Option Command_Echo
Debugger Option General
Debugger Option Symbolics
Debugger Option View
Settings—-Debugger Options ...

Examples To list the airrent debugger option settings in the Journal window:

Debugger Option List

298

Chapter 9: Debugger Commands
Debugger Option Symbolics

Debugger Option Symbolics

Debugger y={ Option j>-<j$ymbolcsj>i>

/‘

<Refurn>

Assem_Symbals

% Line_Opfion H <option numoer> }—/

oF F >/

er
K,(All — E3490B10

The Debugger Option Symbolics command changes the default values for
following debugger symbol options and C source line display options for the
current debugging ssion:

Assem_Symbols Displays symbols in assembly code
Intermixed Intermixes C source with assembly code
Check_Args Enables parameter checking in commands and macros

Uppercase_Mods Converts module namesgper case
Line_Option Sets options for building line numbers

Symbol_Case Controls case-sensitivity of symbol lookups

299

Chapter 9: Debugger Commands
Debugger Option Symbolics

Use the Debugger Option List command to display tireent option values.

To permanently change any option default values, first use the Debugger
Option command to change the value(s) and then use the File Startup
command to save the new default values in a startup file. See the File Startup
command for more information.

Assem_Symbols

The Assem_Symbols option causes symbols instead of memory addresses to be
displayed in the disassembled code whenever possible. Syminelsrare

placed to the right of the disassembled code for immediate values. This is done
because there is no sure way of telling if the immediate value was represented
by the symbol at assembly time. This option is seDidy default.

Intermixed

The Intermixed option intermixes C source code with the assembly code
generated for each respective C statement. This option is off by default.

Check_Args

The Check_Args option controls parameter checking in commands and
macros. lfoFF is selected, the debugger does not do any argument checking. If
Onis selected, the debugger warns you when an assignment is made which
contains a C type mismatch. This option is off by default.

Uppercase_Mods

The Uppercase_Mods option tells the debugger to convert modoiesto

all uppercase before entering them in the database. This is useful if you have
module names that are the same name as functions (for example, module
'main’ contains function ‘'main’), because the debugger often scopes modules
at a higher level than functions.

Line_Option

The Line_Option defines options for building line numbers from the absolute
file. The only option currently defined is set using bit 0 of the number. It is set
to 1 to not strech a section if the line address is outside the range of the
enclosing section. This currently applies to the OMF86 reader only.

300

Chapter 9: Debugger Commands
Debugger Option Symbolics

Symbol_Case

Symbol_Case tells the debugger how to look up symbols. The debugger will
always look up the symbol as entered, case sensitive. This option allows you to
specify that if the case sensitive lookup fails, the debudgmrld try again

after converting the symbol to all uppercase (Upper), lowercase (Lower), or
upper first and then lower (All). This option is useful if your toolset converts
symbols to all uppercase or lowercase characters.

See Also File Startup

Examples To display symbol names instead of address values in disassembled code:

Debugger Option Symbolics Assem_Symbols On

To turn OFF display of C source lines in assembly-level Code window:

Debugger Option Symbolics | ntermixedo FF

To enable debugger expression parameter checking:

Debugger Option Symbolics Check Args On

301

Chapter 9: Debugger Commands
Debugger Option View

Debugger Option View

Debugger — . View

\{Brec kaWimdow\ _ On <Return>
~—= Highlight %\HO\LBmght —"
Inverse

k{ More _ On —

= Stdio_Window

= Amt_Scroll = <nmbr W..50>‘/

The Debugger Option View command changes the default values for the
following debugger display options for the current debuggisgisa:

Breakpt_Window
View_Window
Highlight

More
Stdio_Window
Amt_Scroll

Use the Debugger Option List command to display threemt option values.

To permanently change any of the default values, first use the appropriate
Debugger Option command to change the value(s) and then use the File
Startup command to save the new default values in a startup file. See the File
Startup command for more information.

302

Chapter 9: Debugger Commands
Debugger Option View

Breakpt_Window

The Breakpt_Window option controls the display of the breakpoint window.

The Onsetting causes the Breakpoint window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
breakpoint is set or deleted.

If you specify theSwapsetting, the window is not automatically displayed.
You must set or delete a breakpoint or enter the Window Active Breakpoint
command to display the window. The default settin§vigp.

View_Window
The View_Window option controls the display of the view window.

The Onsetting causes the View window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
Debugger Execution Display_Status command is executed.

If you specify theSwapsetting, the window is not automatically displayed.
You must enter the Debugger Execution Display_Status command or the
Window Active View command to display the window. The default setting is
Swap.

Highlight

The Highlight option determines whether highlighted information in
debugger windows is displayed in half-bright video or inverse video. The
default is Inverse.

More

The More option controls how information resulting from a debugger
command idisted to the durnal window.

If the More option isOn, information is listed one screen at a time in the
Journal window, in the same way as the momarmo@and in the Unix operating
system works.

If the More option iFF, all information resulting from a debugger command
is written to the display at once, making it difficult to view information greater
than the number of lines available in the Journal window. The default setting
isOn

303

Chapter 9: Debugger Commands
Debugger Option View

Examples

Stdio_ Window
The Stdio_Window option controls the display of the Stdio window.

The Swapsetting causes the Stdio window to be displayed when a program
writes to it and to be removed when the program returns to thenend
mode.

The Onsetting causes the Stdio window to be displayed at all times. The
window may be hidden by other windows but will be displayed whgrogram
is writing to it.

If the oFF setting is selected, the window is not automatically displayed. You
must press function ké¥6 or enter the commandindow Screen_On
Stdio to display the window.

The default setting iSwap

Amt_Scroll

The Amt_Scroll option controls the amount that the Journal and Stdio
windows are scrolled when written to. When the output reaches the bottom of
the window, the data scrolls up one line by default. You can specify a number
of lines from one to 50.

To set the Swap option so that the Breakpoint window is displayed only when
the Window Active Breakpoint command is executed:

Debugger Option View Breakpt Window Swap

To set the View_Window option so that the view window is always displayed:

Debugger Option View View_Window On

304

Chapter 9: Debugger Commands
Debugger Pause

Debugger Pause

Debugger

J } <Return>
Time >—> <seconds>

The Debugger Pause Time command pauses the debugger for the specified
number of seconds or (if you enter the Debugger Pause commidnoditvihe
Time parameter) pauses the debugger until you press the space bar,

CTRL C, or the escape keféc) twice.The Debugger Pause command is
useful when executing command files.

See Also File Command

Examples To pause the debugger for ten seconds:

Debugger Pause Time 10

To pause the debugger until the space bar, CTRL C, or Esc-Esc is pressed:

Debugger Pause

305

Chapter 9: Debugger Commands

Debugger Quit

Debugger

Note

See Also

Examples

Debugger Quit

Quit <Return>

The Debugger Quit command ends a debuggisgiee without saving the

session. If you enter the commabdbugger Quit Yes , the debugging

session is immediately ended. If you enter the comnfzatiigger Quit

without an option, the debugger asks the questhaa you sure? If you reply

yes the debugging session is ended. Otherwise the debugging session continues.

The Debugger Quit command does not save the debuggisigseUse the
File Startup command to save themnt set of debugger startup options and
window parameters in a startup file.

If you want to save the debugging session, use the Debugger Execution
Save_State command to save therentmemory contents and register values.
This command is not available with the debugger/emulatoducts.

Debugger Host_Shell

To end the debugger/simulator session:

Debugger Quit

The debugger wilbrompt you with the question "Are you sure?" before ending
the session.

To terminate the debugging session immediately:

Debugger Quit Yes

306

Chapter 9: Debugger Commands
Expression C_Expression

Expression

Note

Examples

Expression C_Expression

<C_expr> <Return>

The Expression C_Expression command calculates the value of most valid C
expressions or assigns a value to a variable. The result is displayed in floating
point or in decimal, hexadecimal, and ASCII formats.

The Expression C_Expression command can be used to set C variables by
specifying a C assignment statent. This command recognizes variable types,
and the assignment expressions specified behave according to the rules of C.

The Expression C_Expression commanaa evaluate conditionals of the
form:

<expression>?<expression>:<expression>

To calculate the value of time’and display the result "data address 00009
{time_struct}":

Expression C_Expression time

To calculate the value of membépurs’ of structure ‘time’and display the
result "4 Ox04"

Expression C_Expression time->hours

To assign the value 1 to 'system risnning’ and display the result "1 0x01":

Expression C_Expression system_is_running = 1

307

Chapter 9: Debugger Commands
Expression Display_Value

Q» <expr= = <Refurn>

Expression Display Value

\’ 4
<expr= J

The Expression Display_Value command displays esgio@s and their values
in the Journal window.

b1466s01

/S

Displays the expression as a string.

IT

Displays the expression in decimal format.

/H

Displays the expression in hexadecimal format.

308

Chapter 9: Debugger Commands
Expression Display_Value

If you do not use /S, /T, or /H, all expressions displayed with this command are
displayed according to their type as shown in the following list:

Type Display Format

Ints 32-bit signed decimal numbers

Longs 32-bit signed decimal numbers

Shorts 16-bit signed decimal numbers

Chars 8-bit characters (unsigned hexadecimal numbers if not
printable)

Pointers 32-bit unsigned numbers

Enums Name of Enumerator constant (enumerator value if
name not defined)

Arrays All elements

Structures All members

Quoted String All characters as typed, in by double quotes ("")

Hex Byte 8-bit hexadecimal

Hex Word 16-bit hexadecimal

Hex Double Word 32-bit hexadecimal

Float 32-bit floating point

Double 64-bit floating point

Note The contents of an item such as an array is displayed instead of the C value of

the item, which is its address.

If an expression range is displayed, each value within the range is displaye
according to the base type (if one exists). For example, if the vafiatpés a
character array, the following command results in elem#ags/10]
throughflags/30] being displayed:

Expression Display_Value flags+10..+30

Note that the command first evaluaftigys/[10] to a character, and uses
this as the base of the address rafdggs[30] is also evaluated to a
character. It is used as the end of the address range.

Any expression can be type cast to display it in a different format. All values
that make up a complextype are printed. For example, if the vaciaieis
a long, the following statement displays it aparfcharacter array:

Expression Display_Value (char[4])&count

309

Chapter 9: Debugger Commands
Expression Display_Value

To display the contents of a character array as a string, cast the variable using
the quoted string cast, as shown in the following example:

Expression Display_Value (Q S)buf

If the type of the expression is unknown, it defaults to type byte. See the
“Expressions and Symbols in Debugger Commands” chapter for more
information about type casting.

See Also Expression Fprintf
Expression Monitor Value
Expression Printf
Memory Display

Examples To display the value of the variable 'systemrisining” 01h

Expression Display_Value system_is_running

To display the address of the variable 'systenruisning’ 000091F0

Expression Display_Value &system_is_running

To display the address of the C structure 'tii80091DC

Expression Display_Value time

To display the values of the memberstofisture time”
hours 4

minutes O

seconds 20

Expression Display_Value *time

To display the name of theirent program module:

Expression Display_Value @module

To display the name of theiaent program function:

Expression Display_Value @function

310

Chapter 9: Debugger Commands
Expression Fprintf

Fprintf >—> <window__nmbr>)

Expression Fprintf

C.

S'<format _string>" <Return>

,<argument>

The Expression Fprintf command prints formatted output to the specified
user-defined window. Formatted output may be written to a file that has been
opened by the File User_Fopen command. The Bgwa Fprintf command

is similar to the C fprintf function.

This command allows type conversions, scaling, and positioning of output in a
file or in a window. The window number must have been previously assigned

by a File User_Fopen or Window New command or the window number must
be the log file number (28) or journal file number (29), if opened.

The command requires a format string as the second parameter. The for
string may contain both text and argument conversion specifications.
Whenever a conversion specification is encountered, the next argument is
converted according to the specification, and the result is copied to the output
window.

The conversion specifiers are similar to those in C and have the following
format:

%[—] [digits] [.[digits]] [I] conversion_char
where:

% indicates the start of a conversion specification.

311

Chapter 9: Debugger Commands

Expression Fprintf

digits

digits

indicates that the result of conversion is to be left-justified
within the field.

is a string of one or more decimal characters. Thedigis

is a minimum field width. The field will be at least this many
characters wide, padded if necessary. The padding is
normally on the left. Whenr-"is used, padding is on the
right. The field is padded with blanks unless the first digit in
digitsis a0; then the field is padded with zeros.

separates two digit strings and must be specified if a second
digit string is used.

(second occurrence) is the maximum field width. For
strings, it is the maximum number of characters to print; for
fand e notations, it is the maximum number of fractional
decimal places to print. For g notation, it is the number of
significant digits to be printed.

indicates that a conversion character (d, x, or u)
corresponds to a long argument.

Conversion Characters

Conversion characters are listed in the following table with a detailed
description of each character.

Char

e E

Description
The argument is converted to character format.
The argument is converted to decimal format.

The float or double argument is converted to the format
[-]d.ddde+dd , where the number of digits after the
decimal point is equal to the precision. If precision is zero,
no decimal point is printed. The default precision is 6. The
E conversion character produces a number with E instead of
e introducing the exponent. The exponent always contains
at least two digits.

312

0,G

Chapter 9: Debugger Commands
Expression Fprintf

The double argument is converted to decimal notation in
the formatf—]ddd.ddd , where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, it is 6 by default; if the
precision is explicitly zero, no decimal point appears. If
there is a decimal point, at least one digit appears before it.

The double argument is printed in f or e notation, or in F or
E notation when G is used. The precision specifies the
number of significant digits. The notation used depends on
the value converted; e or E notation will be used only if the
exponent resulting from the conversion is less than -3 or
greater than or equal to the precision. Trailing zeros are
removed from the result; a decimal point appears onlyifit is
followed by a digit.

The argument is either the debugger internal variable
@HLPC, or a high level line number preceded bythe
character. Source lines are formatted as strings according to
%s rules. (Note: See @HLPC in the "Registers" chapter of
this manual.)

The argument is an instruction address. The disassembled
instruction is treated as a string.

The argument is a string. The characters from the string
copied to the output until a NULL character is encountere
or the maximum number of characters specified have been
printed.

The argument is converted to unsigned decimal format.

The argument is displayed according to its type.

The argument is is a window number. The current contents
of the window are written to the specified window.

The argument is converted to hexadecimal. Letters are
displayed in upper caseéxis not printed before the value.

313

Chapter 9: Debugger Commands

Expression Fprintf

X The argument is converted to hexadecimal. Letters are
displayed in lower case.

% The charactedo is substituted for the field. Any other
non-conversion character followin@is printed %% is
used to genera¥ in the output as a literal character.

Conversion characters are case-sensitive. Values printed in E notation have
the following format:

[-]d.d...E{+|-}dd

Eachdrepresents a decimal digit. The number is first scaled so that one digit
appears to the left of the decimal point. The number of digits in the fractional
part is six by default, or the maximum field width if specified. The sign of the
mantissa is printed only if the number is negative. The sign of ghanext is
always printed.

Values printed in F notation have the following format:

[d....d..

Eachdrepresents a decimal digit. The number of digits in the fractional part is
six by default or the maximum field width if specified. The number of digits
printed depends on the number of significant digits in the number.

Because floating point values are passed as parameters, they are converted to
double precision. Parameters musiplbemoted to double presion values as

a requirement of the C language. Other values passed as parameters may also
be converted.

The Expression Fprintf command uses the format string to decide how many
arguments to print. The number of conversion specifications must equal the
number of arguments. If there are too many arguments, some of them will not
be printed. If there are too few arguments, the value printed cannot be
determined.

If the argument type does not correspond to its conversion field specification,
arguments may be converted incorrectly.

See the Expression Printf command for dst@bout conversion specifiers.

314

Chapter 9: Debugger Commands
Expression Fprintf

See Also Expression Printf
File Journal
File Log
File User_Fopen
Window New

Examples To print value of var’to user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print the string in double quotes to user window 57 followed by the floating
point value of temperature’ with a precision of 2:

Expression Fprintf 57,"The value of 'temperature’ is:
%.2f \n",temperature

To print source line 24 to user window 55:

Expression Fprintf 55,"%h",#24

To print the contents of the assembly-level stack window to user window 256:

Expression Fprintf 256,"%w",14

315

Chapter 9: Debugger Commands
Expression Monitor Clear_All

See Also

Examples

Expression Monitor Clear_All

The Expression Monitor Clear_All oomand sops monitoring of all
expressions being monitored with the E>xggien Monitor Value cmmand
and removes all expressions from the Monitor window.

Expression Fprintf
Expression Monitor Delete
Expression Monitor Value
Expression Printf

Memory Display

To stop monitoring all expssions:

Expression Monitor Clear_All

316

Chapter 9: Debugger Commands
Expression Monitor Delete

Expression Monitor Delete

Expression

See Also

<display nmbr> L J <Return>
..<display _nmor>

The Expression Monitor Delete monand sops monitoring of specified
expressions being monitored with the E>xggien Monitor Value cmmand
and removes those expressions from the Monitor window.

When an expression is monitored using the Esgiosn Monitor Value
command, it is ssigned a line number, which is displayed in the Monitor
window. These assigned line numbers are used to specify the expression or
group of expresions to be deleted (removed). All monitored espians can

be deleted with the Expression Monitor Clear_Almoand.

Expression Fprintf
Expression Monitor Clear_All
Expression Monitor Value
Expression Printf

Memory Display

Examples

To stop monitoring expssion 2 in the Monitor window:

Expression Mbonitor Delete 2

To stop monitoring expssions 3 through 6 in the Monitor window:

Expression Monitor Delete 3..6

317

Chapter 9: Debugger Commands
Expression Monitor Value

Expression Monitor Value

(Expression

Monitor D—{ Value <expr> \‘

..<expr>

()
2/

<Return>

;<display _nmbr> L
..<display _nmbr>

The Expression Monitor Value namand mortors the specified expssions
as the target program is executing. Egsiens are updated and displayed in
the Monitor window each time the debugger stops executing the program.

Up to seventeen lines, selected by the display line range parameter
(;< display_nmbr> ..< display_nmbr>), can be displayed in the Monitor
window.

Variables located in registers are shown withbeetween their names and
values.

318

Chapter 9: Debugger Commands
Expression Monitor Value

All expressions monitored with thisconand are displayed according to their
type as follows:

Type Display Format

Ints 32-bit signed decimal numbers

Longs 32-bit signed decimal numbers

Shorts 16-bit signed decimal numbers

Chars 8 bit characters (unsigned hexadecimal numbers if not
printable)

Pointers 32-bit unsigned numbers

Enums Name of Enumerator constant (enumerator value if
name not defined)

Arrays All elements if enough lines, else first element

Structures All members if @ough lines, else first element

Quoted String Characters surrounded by double quotes ("")

Hex Byte 8-bit hexadecimal

Hex Word 16-bit hexadecimal

Hex Double Word 32-bit hexadecimal

Float 32-bit floating point

Double 64-bit floating point

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the vafiaggés a
character array, the following command displays 20 characters.

Expression Mbonitor Value flags+10..+29

Any expression can be type cast to display its value in a different format. For
example, if the variable count is a long value, the followingest@int causes
count to be displayed as a four character array:

Expression Mbnitor Value (char[4])&count

If the type of the expression is unknown, it defaults to type byte.

Only 17 lines can be displayed in the data window. By default, a single line is
used to display monitored exmons. If an array is monitored, only the
elements that will fit on one line will be displayed. Ifteusture is monitored,

only the first member iWbe displayed. To display an entire array trusture,

a display line range may have to be specified. If all lines in the data window are

319

Chapter 9: Debugger Commands
Expression Monitor Value

See Also

Examples

filled, you must use the Expression Monitor Deletenomand to delete an
expression before monitoring another one.

If you do not specify a display line range, the next available line in the data
window is selected to display the monitored variable. If you specify one line,
the expression is displayed on that line. If you specify a range of lines, the
amount of data thatilMit on those lines is displayed.

Expression Monitor Clear_All
Expression Monitor Delete
Symbol Display

To monitor the value of variable ‘current_temp”

Expression Mbnitor Value current_temp

To monitor the value of the threeembers intsucture ‘time’and display
them on Monitor window lines 4 through 6:

Expression Mbonitor Value *time;4..6

To monitor the contents of string buf:

Expression Monitor Value (Q S)buf

320

Chapter 9: Debugger Commands
Expression Printf

Expression Printf

C‘ "<format _string>" <Return>

,<argument>

The Expression Printf command prints formatted output to dlenal
window.

See the Expression Fprintf command for a detailed description.

See Also Expression Fprintf
File User_Fopen

Examples To print the string in double quotes to the journal window followed by the
floating point value of temperature’ with a precision of 2:

Expression Printf "The value of 'temperature’ is: %.2f
\n"temperature

To print source line 24 to the Journal window:

Expression Printf "%h",#24

To print the name of thaucrent module to the Journal window:

Expression Printf "%s",@module

To print the disassembled instruction at add2®&0h to the durnal window
as a string:

321

Chapter 9: Debugger Commands
Expression Printf

Expression Printf "%m", 2030h

00002030 2040 MOVEA.L DO,A0

To print the contents of the assembly-level stack window to the Journal
window:

Expression Printf "%w",14

> Expression Printf "%w",14
00043FC8=00000690

FP->00043FC4=00043FF0
00043FC0=000604AC
00043FBC=00000001

SP->00043FB8=00000001

322

Chapter 9: Debugger Commands
File Command

File Command

The File Command command reads the file specified by < file_name> and
executes the commands contained in the fillhasgh they were entered from
the keyboard. Commands in the file are executed until the end of the file is
reached. Input then continues from the previous source. The previous source
can be the keyboard or another command file.

This command is commonly used to read macro definitions from a file, to set
up I/O ports, or to change window displays.

File Command commands may be nested up to 16 levels deep.

If the filename coaists of alphanumeric characters, a period, or a backslash,
double quotation marks are optional. Otherwise, quotation marks must
enclose the file name. If a filename extension is not specified, the debugger
automatically appends a default extensicam

Command files can be executed at debugger startup using the -c option, from
the command line during a debuggingsien, or from a startup file.

See the File Startup command description for information about how to
automatically execute a command file when the debugger is started.

See Also File Log
File Startup
The “Using Macros and Command Files” chapter.

Example To execute command file varTrace.com™

File Command varTrace

323

Chapter 9: Debugger Commands

File Error_Command

File Error_Command

< File HErroriCommcmd

<Return>

See Also

Examples

= Abort Read =
= Continue Read
= Quit Debugger

The File Error_Comand command sets the command filmehandling

mode. The command specifies what action the debugger takes whaomman e
occurs while reading a command fikgbort_Reacdcauses the debugger to

return to the coomand line after anreor and wait for keyboard input. This is
the default actionContinue_Readauses the debugger to continue to the next
command in the command file after ama. Quit_Debuggecauses the

debugger to end the debugging session when an error occurs (as if you typed
Debugger Quit Yes).

File Command
File Log

To return to the cmmand line after anreor and wait for keyboard input:

File Error_ Command Abort Read

To continue to the next command in the command file afterram:e

File Error_Command Continue_Read

To exit the debugger when an error occurs:

File Error_Command Quit_Debugger

324

Chapter 9: Debugger Commands
File Journal

File Journal

(. = <file name> = <Refurn>

fj

= NexINCmds %% <= V

The File Journal ammand copies the information written to treudnal
window output into a journal file specified by < fileame> . The default
journal filerame extensionjou will be appended to < filaame> . Thequrnal
file provides a history of your debuggings®n.

File Journal On opens a journal file for writing. If a file already exists
with the specified file name, new information is appended to the end of the
existing file.

File Journal Append opens an existing file. New information is
appended to the end of the existing file.

File Journal oFF closes the journal file.

File Journal Browse opens a journal browser window in the graphical

interface. Start opens a new browser windo®nd stops output to the current
browser without closing the windoRestart has the same effect 8tart
followed byEnd. NextNCmds causes the output from the nextommands to
be sent to an individual browser.

A window number (29) is assigned to tlajnal file so that output can be
written to that file using the Expression Fprintf command.

See Also Expression Fprintf "To view commands in a separate window" on pzje

325

Chapter 9: Debugger Commands

File Journal

Examples

To make and open journal file 'debugl.jou’ for writing:

File Journal Ondebugl

To close the currently open journal file:

File Journalo FF

To open existing journal file 'debugl.jou’ for writing and append new
information at the end of the file:

File Journal Append debugl

326

Chapter 9: Debugger Commands
File Log

File Log

(File)——(Log

<file_name> <Return>

See Also

Comment>—> <comment _text>

The File Log command records useput in a conmand file, specified by
<file_name> . The default filename extensioamwill be appended to

< filename> . The File Log command allows an interactive debuggsioseto
be logged as a command file which can beimeat a later time.

File Log On opens a file for writing. If the specified file already exists, the
file is overwritten by the new data.

File Log Append reopens a logging file to allow new information to be
added to the end of the file.

File Log oFF terminates logging to the file.

File Log Comment places a string of text in the file as a comment. Ifa lo
file is not open, File Log Comment commands amoigd by the debugger.

All successful commands are written to the log file so the file can later be used
as a command file.

Commands which are entered but not successfully completed, are written to
the .com file as comments along with theirog codes.

User input is recorded in the log file until the Log oFfmooand is executed.

A window number (28) is assigned to the log file so that output can be written
to that file using the Expression Fprintf command.

Expression Fprintf
File Error_Canmand

327

Chapter 9: Debugger Commands

File Log

Examples

To make and open log file logl.com’for writing:

File Log Onlogl

To close the currently open log file:

File Logo FF

To open existing log file logl.com’for writing and append new information at
the end of the file:

File Log Append logl

To place the comment This is a comment string’in the log file:

File Log Comment This is a comment string.

If a log file is not open, this command inared.

328

Chapter 9: Debugger Commands
File Startup

File Startup

j k j v} <Return>
<startup file> ,<command file>

See Also

Examples

The File Startup command saves thierent debugger option settings and
window parameters in a startup file specified by < startup_file>. When you
start a debugging session and specify the startup file with the -s option of the
db68k command, the startup options and window parameters you stved w
the default parameters in that debuggirgsam.

A startup file has an extension.af appended to the end of it. If you do not
specify a startup file name, the startup options are saved in a file named
db68k.rc

You can modify default debugger startup option values with the Debugger
Option command and window parameters with the Window commands.

Remember that you can also specify a command file to be executed when
debugger starts.

Debugger Option

File Command

Window New

Window Resize

the "Using Macros and Command Files" chapter

To save the current set of debugger startup options and windampgars in
startup file 'my_start_file.rc’

File Startup my_start_file

329

Chapter 9: Debugger Commands
File Startup

To save the current set of debugger startup options and windeampgars in
startup file ‘'my_start_file.rc’and execute the command file initDemo.com’

whenever the debugger is started using 'my_start_file.rc’.

File Startup my_start_file , initDemo

330

Chapter 9: Debugger Commands
File User_Fopen

File User_Fopen

< , j (/ A ;

File User Fopen = Append <window nmbr>
e)
(e)
<—~ <Tab> 4 File D <file_name> <Return>

The File User_Fopen command opens the file specified by < file_name> for
reading or writing and assigns a window number to it.

¥

The File User_Fopen Append command opens an existing file for
writing, adding new information at the end of the file.

The File User_Fopen Create command creates a new file for writing.

The File User_Fopen Read command opens an existing file for reading.

After opening a file using the File User_Fopen Append or File User_Fop
Create command, you can use the Egpian Fprintf command to write
information to the file. Files opened for reading may be read from the buil
macro fgetc(). See the "Predefined Macros" chapter of this manual for a
complete description of this macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

See Also Expression Fprintf
File Window_Close
Window Delete
Window New

331

Chapter 9: Debugger Commands

File User_Fopen

Examples

To open user window 57 and redirect any data written to window 57 to the file
varTrace.out”.

File User_Fopen Create 57 File varTrace.out

To open user window 57 and append any data written to window 57 to the
existing file varTrace.out”.

File User_Fopen Append57 File varTrace.out

To open file temp.dat’ for reading, accessing the file as user window 52:

File User_Fopen Read52 Filetemp.dat

332

Chapter 9: Debugger Commands
File Window_Close

File Window_Close

W‘mdowiﬁose\ <file_window num> <Return>

The File Window_Close command closes a device or file which was previously
opened with the File User_Fopen command. The Window Delete command
may also be used for this purpose.

See Also File User_Fopen
Window Delete

Example To close file associated with user window number 57:

File Whdow_Close 57

333

Chapter 9: Debugger Commands
Memory Assign

Memory Assign

<addr>

C <Return>

=<expr>

=<expr_string>

The Memory Assign ammand changes the contents of the memory location
specified by<addr> to the value or values defined by the expressiexpr>

or expression stringexpr_string>. The size of the memory elements to be
modified is specified by one of the size qualifiers (Byte, Word, or Long).

Expression strings are specified as ASCII characters enclosed in quotation
marks and/or as a list of values separated bywas. Exprssions and
expression string elements will beibcated or padded as required, based on
the size qualifier.

Memory values can be entered interactively if you do not define a value on the
command line. When a value is not specified, the contents of the specified
memory locations are displayed in hexadecimal and decimal. You can change
the existing value by entering any legal expression followed by a carriage
return. The nexinemory location and its contents are then displayed. The
return key entered without a valudlwause the coomand to terminate.

The Memory Assign ammand does not recognize variable typing. It is

intended to be used as an assembly-level memory setting routine. For example,
assume that the varialdeuntis a long integer. If you want to set the value of
count equal to 5, the oomand

Memory Assign Long count=5

334

See Also

Examples

Chapter 9: Debugger Commands
Memory Assign

will not work. The canmand vill set thememory location referenced by the
value of count equal to 5, not the contents of the variable. To set the value of
count equal to 5, use the followingmmand:

Memory Assign Long &count=5

The Expression C_Expression commahdudd be used to set C variables.
This command recognizes variable types and the specifiedssipns behave
according to the rules of C. The command:

Expression C_Expression count=5

will set count equal to 5.

Expression C_Expression
Memory Register

To display the contents of memory location 1000h and allow interactive
modification of memory contents:
00001000 = 0x48 72:

Memory Assign Byte 1000h

To change the contents of memory locations 206@bugh2005h to 00, 41,
00, 42, 00, 43, and change the contents of locations 2006h/2007h to the v
of 'system_isrunning”:

Memory Assign Word 2000h=41h,42h,43h,system_is_running

335

Chapter 9: Debugger Commands
Memory Block_Operation Copy

Memory Block_Operation Copy

(Memory)—{Block_Operotion)——(Copy H <addr>..<addr> b

See Also

Examples

C——@——{ <addr> H <Return>

The Memory Block_Operation Copy command copies the contents of the
memory range specified kyaddr>..<addr> to a block of the same size
starting at the memory location specifieddmddr> .

Memory Assign

Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test

To copy the block of memory starting at address 1000h and ending at address
10ffh to a block of the same size starting at address 5000h:

Memory Block Operation Copy 1000h..10ffh,5000h

To copy the block of memory starting at the address of the structure
‘current_targets’ and ending 15 bytes after this address to a bloo&mbry
starting at the address of the structure 'default_targets:

Memory Block Operation Copy ¤t_targets..+0xf,
&default_targets

336

Chapter 9: Debugger Commands
Memory Block_Operation Fill

Memory Block_Operation Fill

< Memory)—{BIock_Operotion)—{ Fill

C‘ <addr>..<addr> <Return>

<expr>

<expr_string>

The Memory Block_Operation Fill comand fils the range omemory
locations specified by the address rargaldr>..<addr> with the value or
values specified by an expressioaxpr> or an expression string
<expr_string>. If no expression is given, the debugger fills the specified
memory locations with zeros. The specified size qualifier (Byte, Word, or
Long) determines the size of the value.

If you specify a single expression value, the debugger fillgtdmory area
with that value. If you enter an expression string, the debugger fills the
memory area with the specified string pattern.

An expression string is a list of values separated yneas and can include
ASCII characters enclosed in quotation marks. All egpi@ns in an
expression string are padded or truncated to the size specified by the size
qualifiers if they do not fit the specified size evenly.

If the number of values in an expression string is less than the number of bytes
in the specified address range, the debugger repeatedly places the list of values
in memory until all designated memory locations are filled. If you specify more
values than can be contained in the specified address range, the debugger
ignores the excess values.

337

Chapter 9: Debugger Commands
Memory Block_Operation Fill

See Also Memory Assign
Memory Block_Operation Copy
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test
Memory Register

Examples To fill memory locations 1000tough1007h with the long pattern
61626364, 65666768:

Memory Block Operation Fill Long 0x1000..+7="abcdefgh’

To fill the memory area starting at location 1000h and ending at location 10ffh
with zeros:

Memory Block Operation Fill Byte 0x1000..0x10ff

338

Chapter 9: Debugger Commands
Memory Block_Operation Match

Memory Block _Operation Match

(Memory)——(Block_OperotionD—{ Mateh Repeat On_Mismatch
Stop_On_ Mismatch
J

<Return>

<addr>..<addr> y <addr>

The Memory Block_Operation Match command compares the contents of two
blocks of memory to determine their similarities or differences. The command
compares the block of memory specified by the address range
<addr>..<addr> with the same size block starting<aaddr> .

The debugger displays differences between the two blocks of memory,
mismatched values and addresses, in the Journal window. If the contents of the
two blocks of memory are the same, the debugger displays the message
Memory blocks are the same

The Memory Block_Operation Match Stop_On_Mismatcmowand halts
when a mismatch is found. If the Memory Block_Operation Match
Repeat_On_Mismatch command is selected, the comparison continues u
the end of the block.

When you execute the Memory Block_Operation Match
Stop_On_Mismatch/Repeat_On_Mismatcimenand wihout specifying an

address range, the debugger continues comparing the address range specified
in the previous Memory Block_Operation Match Stop_On_Mismatch

command starting from where ddnd the last mismatch.

See Also Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Search
Memory Block_Operation Test

339

Chapter 9: Debugger Commands
Memory Block _Operation Match

Examples

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To execute the previous Memory Block_Operation Match
Stop_On_Mismatch ecomand starting from where ibfind the last mismatch:

Memory Block Operation Match Stop_On_Mismatch

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop at the end of thmemory block:

Memory Block_Operation Match Repeat_On_Mismatch
1000h..10ffh,5000h

340

Chapter 9: Debugger Commands
Memory Block_Operation Search

Memory Block_Operation Search

(Memory)—{BIock_Operotion)—{ Search

=|| <Return>

Repeatedly

\‘{ <addr>..<addr>

<expr_string>

The Memory Block_Operation Search command searches the block of
memory specified by addr>..<addr> for the specified expressiarexpr> or
expression stringexpr_string>. The size qualifier (Byte, Word, or Long)
specifies the size of an expression or each expression in an expression string. A
Memory Block_Operation Search command givethout paameters
continues the search of a previous Memory Search command given with t
Once qualifier. The Repeatedly qualifier causes the search to repeat.

You can specify expression strings as ASCII characters enclosed in quota
marks and/or as a list of values separated bywas. If the strings do not fit
the specified size evenly, all expressions in an expression string will be padded
or truncated to the size specified by the size qualifiers.

If you specify the Once qualifier, the search stops when the &sipreis

found. If you specify the Repeatedly qualifier, the debugger repeatedly
searches for the specified expression, displaying each match until it reaches the
end of the block or until you pre€§RL C.

When you execute the Memory Block_Operation Search command with the
Once qualifier, subsequent Memory Block_Operation Search commands that
are executed without exggsion parameters cause the debugger to continue
searching through the originally specified address range starting from where it
found the last match. If the ex@@on or expression string is not found in the
specified block, the debugger displays the messlagdound

341

Chapter 9: Debugger Commands
Memory Block_Operation Search

See Also

Examples

Memory Display

Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Test
Program Find First

Program Find Next

To search for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when the esgiom is found or address 10ffh
is reached:

Memory Block Operation Search Wbrd Once
1000h..+0xff = 'gh’

To execute the previous Memory Block_Operation Search command starting
from where it found the last match:

Memory Block Operation Search Wbrd Once

To search for the hexadecimal value '65666768’in long format in the address
range 1000hHrough 10ffh and stop at the end of the address range:

Memory Block_Operation Search Long Repeatedly
0x1000..0x10ff=0x65666768

342

Chapter 9: Debugger Commands
Memory Block_Operation Test

Memory Block_Operation Test

(Memory HBIock_Operotion)——(Test

=|| <Return>

Repeatedly

\‘{ <addr>..<aoddr>

The Memory Block_Operation Test command examines the specified memory
locations specified byaddr..addr> to verify that the value(s) defined by

<expr> or <expr_string> exist throughout the specifiedemory area. When

the debugger finds a mismatch, it displays the mismatched address and value.
The size qualifier (Byte, Word, or Long) specifies the size of an expression or
expression in a string.

<expr_string>

If you enter a single expression value, the debugger tests the memory are
that value. If you specify an expression string, the debugger tests the mem
area to verify that it is filled with the values found in the egpi@n string.

You can specify expression strings either as ASCII characters enclosed in
guotation marks or as a list of values separated imyeas. If they do not
evenly fit the specified size, all expressions in an expression string will be
padded with zero-valued bytes to the size specified by the size qualifier.

Once Qualifier

If you specify the Once qualifier, the test stops when a mismatch is found. If
you execute the Memory Block_Operation Test command with the Once
gualifier specified, subsequekitemory Block_Operation Test . .. Once
commands that are specifiediout paameters Wl continue testinghrough

the address range originally specified, beginning with the last address tested. A
Memory Block_Operation Test command givemhaiut paemeters continues

343

Chapter 9: Debugger Commands
Memory Block_Operation Test

the test of a previous Memory Block_Operation test command given with the
Once qualifier, beginning with the last address tested.

Repeatedly Qualifier

If you specify the Repeatedly qualifier, the debugger continues testing the
specified value(s) for mismatches until the end of the block is reached, or until
you entetCTRL C.

Examples To test for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when a word not matching thessimréas
found:

Memory Block Operation Test Wird Once 1000h..+0xff =
'gh’
To execute the previous Memory Block_Operation Test command starting

from where it found the last mismatch:

Memory Block Operation Test Word Once

To test for the hexadecimal value 65666768’ in long format in the address
range 1000hHrough 10ffh and stop at the end of the address range:

Memory Block_Operation Test Long Repeatedly
0x1000..0x10ff=0x65666768

Mismatched values are displayed in the Journal window.

344

Chapter 9: Debugger Commands
Memory Display

Memory Display

< Memory)—{ Display >>

-

—={ Mnemonic < 7 <Return>

<addr>
= Byte
\-' <addr>
\" ..<addr>

The Memory Display displays the contents of the specified memory locations.

NN

Mnemonic Option

TheMnemonicption displays memory in assembly language mnemonics
starting at the memory location specified<sddr> . If you do not specify an
address, the debugger displays memory beginning with the address pointe
by the program counter. Thismonand functions only in the assembly-level
mode.

If you have executed the Debugger Options Symbolics Intermixed On
command, Casurce code linesilbe intermixed with the assembly language
code (when applicable). If you have executed the Debugger Options Symbolics
Assem_Symbols On command, symbol referenékbevdisplayed with the
assembly language code.

ThePrev, Next Up, andDownkeys may be used when the Code window is

active to display instructions with higher or lower addresses. Note that the
Prevand Up keys do not function when disassembling addresses outside of the
target program.

345

Chapter 9: Debugger Commands

Memory Display

Note

See Also

. Examples

If the Align_bp option is set t@®n, the address of the first instruction in the
assembly Code window may be incorrect after executing the Memory Display
Mnemonic command.

Byte, Word, and Long Options

The byte, word, or long qualifier option displays the contents of memory
locations specified byaddr>..<addr> in the Journal window in both
hexadecimal and ASCII formats. The debugger representgrintable ASCI|
characters by a period (.). The debugger displays memory contents in the size
specified by the size qualifier (Byte, Word, or Long).

If you specify an address range, the debugger displays all memory locations in
that range.

If you specify a single address, the debugger displays two lines of data.

If you do not specify any parameters, the debugger displays the next 80 bytes
(five lines) of data after the previously displayed address range.

The memory contents are displayed in the Journal window.

Expression Display_Value
Symbol Display

To display disassembled memory in the Code window starting at the symbol
" emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mhemonic _emeg_shutdown

To display memory in word format in the Journal window starting at the
symbol time’and ending 15 bytes after time”

Memory Display Word time..+0xf

346

Chapter 9: Debugger Commands
Memory Hex

Memory Hex

G- S

‘ Infel Hex ' L

f ,<offset> }-/ = No_Pc_Set
‘ Intel Hex ' -

'— L{Address Ramg@—%qjddruddv‘
L <affset> |

= Intel Hex

S-Records
The Memory Hex command allows you to work with memory image files.

= <filename>

<filename>

<filename>

b1473s02

Read

This command allows you to read a memory image file indvima S record
or Intel Hex format. The addresses in the file may be offset to generate the

address in the target. You may choose to not set the program counter to the
transfer address that may be in the file.

Verify

This command allows you to compare a memory image file inokbda S

record or Intel Hex format to the current contentmemory. The addresses

in the file may be offset to generate the address in the target to compare
against. Messages in the journal window describe differences between the two.
No messages will be posted if the file andmory are identical.

Write

This command allows you to write a memory image file in dota S record

or Intel Hex format. You must provide a filame and address range to write
out. You may optionally generate a transfer address record with the current
program counter value.

347

Chapter 9: Debugger Commands
Memory Inport Assign

Memory Inport Assign

C Memory)——(Inport

C’ <port addr> ™ <tab> {Source_ls

/
k{ Journal _Window > 7 <Return>

\’CDoto_String;)—v <string>
\'{ File)—* <file_name>

NN N

set >—> <value>

The Memory Inport Asign canmand &asigns a simulatediput port and

defines its size, address, and input source. The port address can be any valid
address. The source of input data may be the standard 1/0 screen, the Journal
window, a file, an expression string, or the input or output port buffers.

348

Chapter 9: Debugger Commands
Memory Inport Assign

Inport Port Size

You can specify the size of an input port by using one of the size qualifiers
(Byte, Word, or Long).

Input Data Source

Specify the input data source (Source_ls) by entering one of the following
associated keywords:

Journal_Window Journal window
File < file_name> Specified file

Stdio Standard I/O device
Data_String Specified string
Outport Output port buffer
Inport Input port buffer

Journal_Window. If you specify Journal_Window, the input port reads data
from the Journal window that you enter interactively. The debugger displays
the port address in hexadecimal. At this point, you can enter an input value,
which can be a decimal, hexadecimal, or binary number, or a string.

File. If you enter File < file_name>, thaput port reads data from the
specified file < file_name> . When the end of a file is reached, use the Memory
Inport Rewind conmand to rewind the file.

Stdio. If you specify Stdio, the debugger reads data from the standard 1/0
screen. The debugger automatically displays the standard 1/O screen whe
input port is read. The cursor is positioned at the last point where data was
written. The standard 1/0O screen border flashes and the debugger displays a
message indicating the port from which it is reading data. Keyboard entry is
echoed to the screen onlyif the target software echoes input characters to the
standard output port.

Data_String. If you specify Data_String < string>, the input port reads data
from the specified string (< string>). When the end of the string is reached,
the debugger automatically resets the string so that the string can be read
again if the input port is accessed again. The Memory Inport Rewind
command may be used to reset the string pointer at any time.

Outport. The input port uses the value in the output port buffer at the same
address. If you enter a value, the debugger sets the output port buffer to that

349

Chapter 9: Debugger Commands
Memory Inport Assign

value. If you do not enter a value and an output port has not been declared at
that address, the debugger places a value of zero in the buffer.

Inport. If you specify Inport < portaddr> , thenput port uses the value in

the input port buffer at the same address. If you enter a value, the debugger
sets the input port buffer to that value. If you do not specify a value, a value of
zero is placed in the buffer.

To abort input from the console or standard 1/0O screen, @ER& C. This
returns the debugger tormonand mode.

See Also Memory Inport Rewind
Memory Inport Show
Memory Outport Show

Examples To assign address 0x400 as an p/@t (input) of size word:

Memory | nport Assign Word 0x400 Source Is File
"/myproj/ecs.dat"

Read operations from the portlaccess file /mproj/ecs.dat’. You must
specify the file name in quotation marks.

To assign address 0x40C as an p@t (input) of size byte:

Memory | nport Assign Byte 0x40C Source_Is Data_String
"message"

Read operations from the porillvaccess the string containing the word
‘message’.

To assign address 0x40C as an p@t (input) of size byte:
Memory | nport Assign Byte 0x40C Source_Is Stdio

Read operations from the porillvaccess the stdio window or device.

350

Chapter 9: Debugger Commands
Memory Inport Delete

Memory Inport Delete

<Memory)——(Inport >——(Delete >—— <port addr> = <Return>

The Memory Inport Delete ecomand disables the specifiatput port
address, allowing the address to behave like a normal memory location.

See Also Memory Inport Assign
Memory Outport Asign
Example To disable the input port at addré€9h:

Memory | nport Delete 400h

351

Chapter 9: Debugger Commands
Memory Inport Rewind

Memory Inport Rewind

<Memory >——< Inport >—’< Rewind >—> <port addr> > <Return>

The Memory Inport Rewind ecomand rewinds amput file or resets the
pointer to the input string associated with the input port. The input port is
specified by the port address (< patidr>).

See Also Memory Inport Assign
Memory Inport Delete
Memory Inport Show

Example To rewind the input file or string associated with input pif@h:

Memory | nport Rewind 0x400h

352

Chapter 9: Debugger Commands
Memory Inport Show

Memory Inport Show

< Memory >—>< Inport >>
:>(Show - <Return>
% <port addr>

..<port_addr>

The Memory Inport Show ecomand displays the valueosed in the buffer of

the specified input port or ports. Each input port has a single value buffer
associated with it. The buffer contains the last value read from the port. This
value can be represented in byte, word, or long format.

You can display an input port buffer value by specifying either a port address
(< port_addr>) or gort address range (< poaddr> ..<port_addr>). If you
specify a range, the debugger displays all buffer values in the range.

If you do not specify any parameters, the debugger displays all deahgned i
ports, with their port address, size, value, and data source.

See Also Memory Inport Assign .

Memory Inport Delete
Memory Inport Rewind

Examples To show all assigneadhput ports:

Memory | nport Show

To show all input ports in the address rad86h tirough 4ffh:
Memory | nport Show 0x400..0x4ff

353

Chapter 9: Debugger Commands
Memory Map Guarded

Memory Map Guarded

Memory

. See Also

Example

C_, <addr> * J <Return>
..<addr>

The Memory Map Guarded command prevents access to a specified memory
location or range of memory locations. These locations cannot be accessed
during execution of the target program. The Memory Map Guardademd
overrides any Memory Map Read_Only and Memory Map Write_Read
commands previously executed.

The size of the address range specified in a Memory Map Guarded command
and the size of the address space that is mapped by combining all Memory
Map commands is limited only by the ammt of virtualmemory available to

the debugger. You can map a maximum of 60 banks of memory.

Memory Map Read_Only
Memory Map Show
Memory Map Write_Read

To configure memory address range 800@totigh 0&00h as guarded
(nonaccesible)memory:

Memory Map Guarded 8000h..0a000h

354

Chapter 9: Debugger Commands
Memory Map Read_Only

Memory Map Read_Only

C‘* <addr> \ f <Return>
= ..<addr>

The Memory Map Read_Only command prevents a specified memory location
or range of memory locations from being written to during execution of the
target programRead_Onlyprotects the target programemory so that

specified code and/or data can only be read. The Memory Map Read_Only
command overrides any Memory Map Guarded and Memory Map
Write_Read commands previously executed.

The size of the address range specified in a Memory Map Guarded command
and the size of the address space that is mapped by combining all Memory
Map commands is limited only by the ammt of virtualmemory available to

the debugger. You can map a maximum of 60 banks of memory.

See Also Memory Map Guarded .

Memory Map Show
Memory Map Write_Read

Example To configure memory address range 800@totgh 8ffth as read-only (ROM)
memory:

Memory Map Read_Only 8000h..8fffh

355

Chapter 9: Debugger Commands
Memory Map Show

Memory Map Show

The Memory Map Show command displays a map of the memory location
assignments (Guarded, Read_Only, Write_Read).

See Also Memory Map Guarded
Memory Map Read_Only
Memory Map Write_Read

Example To display the memory map:

Memory Map Show

> Memory Map Show
TYPE OWNER ADDRESS COMMAND LINE
RAM SIMU 00000000..0000002F Load section
RAM SIMU 000000BC..000000BF Load section
RAM SIMU 00000100..0000010B Load section
RAM SIMU 00000400..00001044 Load section env
RAM SIMU 00001048..00002851 Load section prog
RAM SIMU 00002854..0000906B Multiple load sections
RAM SIMU 00040000..00043FFF Load section stack
RAM SIMU 00060000..0006401D Multiple load sections

The command displays memory address ranges mapped as Guarded
(NOMEM), Read_Only (ROM), or Write_Read (RAM) in the Journal
window. The display includes a list of sections loaded and their address ranges.

356

Chapter 9: Debugger Commands
Memory Map Write_Read

Memory Map Write_Read

Memory Map Write Read

C—» <addr> * J <Return>
..<addr>

The Memory Map Write_Read command enables read/write access to a
specified memory location or a range of memory locations by the target
program. Memory Map Write_Read allows the program to read from or write
to specified code or data areas. The Memory Map Write_Read command
overrides any Memory Map Guarded and Memory Map Read_Only
commands previously executed.

The size of the address range specified in a Memory Map Guarded command
and the size of the address space that is mapped by combining all Memory
Map commands is limited only by the ammt of virtualmemory available to

the debugger. You can map a maximum of 60 banks of memory.
See Also Memory Map Guarded .

Memory Map Read_Only
Memory Map Show

Example To configure memory address range 200ttotigh 3fffh as Write_Read
(RAM) memory:

Memory Map Wite_Read 2000h..3fffh

357

Chapter 9: Debugger Commands
Memory Outport Assign

Memory Outport Assign

Memory = Outport)—{ Assw‘gn/

g <port addr> H <tab> HDGSfmofons)D

%Jourmo\7Wimdow % <Return>
K—C Stdio
\’< File H <file_name> }

% Outport
*(set H <value>

The Memory Outport Asign caonmand defines the address, size, and output
destination of a simulated output port. The target program can write output
data to the simulated output port. The port address can be any valid address.

Outport Port Size

You can specify the size of an output port buffer by entering one of the size
qualifiers (Byte, Word, or Long).

Output Data Destination

You can direct the output port data to be written to one of the following
destinations by entering the associated keyword for the output destination.

358

See Also

Chapter 9: Debugger Commands

Memory Outport Assign
Journal_Window Journal window
File < file_name> Specified file
Stdio Standard 1/O device
Outport Output port buffer
Inport Input port buffer

Journal_Window. If you specify Journal_Window, the output port writes
output data to the Journal window. The debugger displays the current output
value and port address in hexadecimal.

Stdio. If you specify Stdio, data is written to the standard 1/O screen. The
debugger automatically displays the standard 1/O screen and positions the
cursor at the last point where data was written. When simulation stops and
control is returned to comand mode, the debugger displays the previously
displayed screen again.

File. If you specify File < file_name> , outppbrt data is written to the
specified file (< file_name>). The Memory Qadrt Rewind conmand may be
used to rewind the file.

Outport. If you specify Outport Set < value>, output port data is written to
the output port buffer. Previous values written to the buffer are lost. This
buffer is only one level deep. The last value written to a port can be viewed by
issuing the Memory Display Oport canmand. The outpytort buffer may
be initialized by using the optional value parameter. If no value is specifie
zero is placed in the buffer.

Inport. If you specify Inport Set < value>, output port data is written to the
input port buffer at the same port address. This buffer is only one level deep.
Previous values written to the buffer are lost. The last value written to a port
may be viewed by issuing the Memory Display @art canmand. If nomput

port exists at this address, ond e created.

To abort output to the console or standard I/O screen, @ieRE C. This
returns the debugger tormanand mode.

Memory Outport Delete
Memory Outport Rewind
Memory Outport Show

359

Chapter 9: Debugger Commands
Memory Outport Assign

Examples To assign address 0x408 as an p/@t (output) of size word:

Memory CQutport Assign Word 0x408 Destination_Is File
"/myproj/cmdout.dat"

Write operations to the portithaccess file /mproj/lcmdout.dat’. You must
specify the file name in quotation marks.

To assign address 0x40C as an p@t (output) of size byte:
Memory CQutport Assign Byte 0x40C Destination_lIs Stdio

Write operations to the portihaccess the Stdio window.

360

Chapter 9: Debugger Commands
Memory Outport Delete

Memory Outport Delete

<Memory)—{ Outport >——(Delete >—— <port addr> > <Return>

The Memory Outport Delete oomand disables the specified outpatrt
address, allowing the address to behave like a normal memory location.

See Also Memory Outport Asign
Memory Outport Show

Example To disable the output port at addrd8sh:
Memory Qutport Delete 408h

361

Chapter 9: Debugger Commands
Memory Outport Rewind

Memory Outport Rewind

(Memory >——< Outport >—>< Rewind >—— <port addr> = <Return>

The Memory Outport Rewind comand rewinds an output file associated
with an output port specified by the port address (< futdr>). Subsequent
output to that port starts at the beginning of the file.

See Also Memory Outport Asign
Memory Outport Delete
Memory Outport Show

Example To rewind the output file associated with output pt8h:

Memory CQutport Rewind 0x408

362

Chapter 9: Debugger Commands
Memory Outport Show

Memory Outport Show
< Memory >—>< Outport >—>

;>(Show TJ <Return>
¥>{ <port addr> \

= ..<port addr>

The Memory Outport Show comand displays the valueosed in the buffer

of the specified outport port or ports. Each output port has a one-value buffer
associated with it that contains the last value written to the port. The buffer
value can be displayed in byte, word, or long format.

You can display an output port buffer value by specifying either a port address
(<port_addr>) or port address range ffort_addr>..<port_addr>). If you
specify a range, the debugger displays all buffer values in that range.

If you do not specify any parameters, the debugger displays all declared output
ports with their port addresses, sizes, values, and data destinations.

See Also Memory Outport Asign .

Memory Outport Delete
Memory Outport Rewind

Examples To display all assigned outpports:

Memory CQutport Show

To display all output ports in the address ra#d@eh tirough 4ffh:
Memory CQutport Show 0x400..0x4ff

363

Chapter 9: Debugger Commands

Memory Register

See Also

Examples

Memory Register

] j <Return>
=<value>

The Memory Register command changes the contents of a register, status flag,
or other processor variables such as cycle count. The new contents are defined
by < value>.

@<reg_name>

The PC is displayed or changed if you do not specify a register name.

If you do not specify a value in the command, values are entered interactively.
You can enter multiple register values interactively. The debugger displays
contents of the specified register in binary, hexadecimal, or decimal, as
appropriate for the register. You can change the existing value by entering any
legal expression and pressing RReturn key.

Pressing th&®eturn key without specifying a register value terminates the
command.

All register names are preceded with an @ sign.

Memory Assign

To modify register values interactively:

Memory Register

The program counter (PC) is displayed in the Journal window. You can
modify the PC by entering a value (10a4h in this example) at the cursor
prompt and prssing Retirn. The PC il be modified, and the next register
will be displayed:

364

Chapter 9: Debugger Commands

@pc =0x000010B8 4280: 10a4h
@sp =0x00015DB4 89524:

To set the value of register @d1 to 44h:
Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

Memory Register

365

Chapter 9: Debugger Commands

Memory Unload_BBA

Memory Unload_BBA

Memory Unload BBA

Load_ File

-} <Return>
<"load_file"> ’j LC H< 'dump_ flle“>}j

Note

Note

You must have the HP Branch Validator product for the processor you are
debugging code for installed on your system in order to use tmmend. If

you do not have the HP Branch Validator for your processor, the debugger
will display the following eror message when you attempt to execute this
command:

error code = 141
No valid BBA spec file for <processor> processor

The Memory Unload_BBA aommand unloads ts&s branch analysis (BBA)
information from progranmemory. The BBA preprocessor (-b option) must
be used at compile time in order for this information to exist in program
memory. The file nambbadump.datés the default dump file name.

Once this information has been unloaded, it can be formatted with the BBA
report generatohbarep(see theHP Branch Validator for AXLS C User’s
Guide.

The Unload_BBA command is disabled when the debugger option
Demand_Load i®©n. If Demand_Load isFF but the program was loaded
with Demand_Load On, the Memory Unlo&®BA command vill generate a
BBA file with incomplete information. See the Debugger Option General
command description in this manual for more information on the
Demand_Load option.

366

Examples

Chapter 9: Debugger Commands
Memory Unload_BBA

Memory Unload_BBA All

The Memory Unload_BBA All coomand unloads branch ansi/information
associated with all absolute files loaded into thebiladump.data

This command lets yotun bbarepwithout specifying a file ame. The file
namebbadump.datas used as the default name of all dump files.

Memory Unload_BBA All To < "dump_file">

The Memory Unload_BBA All To < "dump_file"> eomand unloads branch
analysis information associated with all absolute files loaded into
<"dump_file">.

Memory Unload_BBA Load_File < 'load_file">

The Memory Unload_BBA Load_File oomand unloads only ls&s branch
information associated with the specified absolute file (< "load_file">) into
the filebbadump.data

This command lets yowun bbarepwithout specifying a file ame. The file
namebbadump.datas used as the default name of all dump files.

Memory Unload_BBA Load_File < 'load_file"> To <'dump_file">

The Memory Unload_BBA Load_File <"load_file"> To <"dump_file">
command unloads only big branch information associated with the specifi
absolute file (< "load_file">) into the file < "dump_file"> .

To unload all branch analysis information into file "bbadump.data™

Memory Unload_BBA All

To unload all branch analysis information into file "mydata":

Memory Unload_BBA All To "mydata"

To unload branch analysis information associated with absolute file a.out.x
into file "bbadump.data™:

Memory Unload_BBA Load_file "a.out"

367

Chapter 9: Debugger Commands
Memory Unload_BBA

To unload branch analysis information associated with absolute file a.out.x
into file "mydata":

Memory Unload BBA Load_file "a.out" To "mydata"

368

Chapter 9: Debugger Commands
Program Context Display

Example

Note

Program Context Display

Display <Return>

The Program Context Display command displays tireent module,
function, and line number in the Journal window. The current module is the
one pointed to by the program counter.

This command Wl display both the view context, as set by a Program Context
Set command, and the context of thuerent program counter, if the two are
different.

To display the current module, function, and line number:

Program Context Display

Current context is: @ecs\\main\main On line 81

See “Expression Elements” section of the “Expressions and Symbols in
Debugger Commands” chapter for a description of debugger operators.

If the PC does not point to a valid module, an alternate context is displaye
The alternate context is the name of the executable file that has been loa
into the debugger.

369

Chapter 9: Debugger Commands
Program Context Expand

Program Context Expand

(Progrom)—{ Context)——(Expand >—> @<stack_level> = <Return>

See Also

Example

The Program Context Expand command displays values of the parameters
passed to a function, and the local variables in a function. The values are
displayed in the Journal window.

To display a function’s calling pameters and local variables, specify the
function’s stack level preceded by an at sign (@). The Backtrace window in
high-level mode displays the function calling chain from the rpaggram to

the current function. The debugger displays the function stack (nesting) level
beside each function name. Thement function is level 0, the caller is always

1, etc.

You can use the Program Context Expand command to display the local
variables and parameters of any function shown in the backtrace window. The
calling pammeters and local variables are asilele on the Cun-time stack

for functions in a directly-called chain from the main program to the current
function.

Expression Display_Value
Expression Monitor
Symbol Display

To display local variables and calling pareters of the function at stack level
2:

Program Context Expand @2

370

Chapter 9: Debugger Commands
Program Context Set

Program Context Set

Program Context Set) <Return>

<module _name>

<function _name>

The Program Context Set command changes the default module and function
(context). The current module (the one to which the program counter is
pointing) is the default when functions are referenced without a module or
function qualifier.

The default module reverts to the current module when you invoke any
command that causpsogram execution, or if you execute the Program
Context Set command thiout a paameter.

Example To select module 'updateSys’ as the current module:

Program Context Set updateSys

371

Chapter 9: Debugger Commands
Program Display_Source

Program Display_Source

(Progrom}@isploy_Source) <Return>

See Also

Examples

#<line_nmbr>

<function _name>

The Program Display_Sourcemmmand displays Cosirce code in the Code
window beginning at the specified line or function. This command works in
high-level mode only. If you do not specify a line number or function name,
the debugger displays the line pointed to by the program counter.

You can display lines or functions in other modules by preceding them with a
module name. Thllext Page , Prev Page , Uparrow, andDownarrow keys

may be used when the Code window is active to display code at higher or lower
line numbers.

This command does not change therent program context.

Memory Display Mnemonic
Program Context Set
Program Find_Source

To display line 82 of the current module in the Code window:

Program Display_Source #82

To display the source code for function 'update_state_of_system’in the Code
window:

Program Display_Source update_state_of system

To display line 25 of module updateSys:
Program Display_Source updateSys\#25

372

Chapter 9: Debugger Commands
Program Find_Source Next

Program Find_Source Next

(Progrom)—{Find_Source Next) <Return>

. Forward '
B

ackward

The Program Find_Source Nextnemand searches a high-levelisce
program for the next occurrence of the string specified in the last Program
Find_Source Occurrencermonand. When the debugger finds the string, it
displays the line containing the string at the top of the Code window.

If you specifyForward, the debugger searches forward through the file for the
string.

If you specifyBackward the debugger searches backward through the file for
the string.

If neither Forward nor Backward is specified, the debugger searches forward
through the file for the string.

If the debugger cannot find the specified string, it displays the mestagg "
not found. The screen remains unchanged.

See Also Program Find_Source Occurrence

Example To find the next forward occurrence of the string specified in the last Program
Find_Source Occurrencemmnand:

Program Find_Source Next

373

Chapter 9: Debugger Commands
Program Find_Source Occurrence

Program Find_Source Occurrence

(Progrom)——C Find_Source)—{Occurrence

See Also

Ty

Backward

:" <string> <Return>
\\‘{ H#<line_nmbr> }J

The Program Find_Source Occurrencenotand searches a high-levelusce

file for the first occurrence of the specified string. If you provide a line

number, the debugger searches for the string starting at the given line number.
If you do not specify a line number, the string search starts at the top of the
Code window.

If you specifyForward, the debugger searches forward through the file for the
string.

If you specifyBackward the debugger searches backward through the file for
the string.

You must enclose strings containing nonalphanumeric characters in quotation
marks. Quotation marks are not required if the string consists of only
alphanumeric characters.

If the debugger finds an occurrence of the string, it displays the line containing
the string at the top of the Code window. If the string does not exist or the
debugger cannot find it, the debugger displays the messizigg hot found

The screen remains unchanged.

You can use the Program Find_Source Nerimm@and to search for the next
occurrence of the specified string.

If you specify a line number with a module reference, the debugger displays the
source code for that module in the Code window.

Program Display_Source
Program Find_Source Next

374

Chapter 9: Debugger Commands
Program Find_Source Occurrence

Examples To search forward through the current module for the string time”.

Program Find_Source Cccurrence Forward 'time’

To search backward through the current module for the string time’, starting
at line 237:

Program Find_Source Cccurrence Backward 'time’,#237

To search forward through the module ‘main’, for the string
system_isrunning, beginning at line 1:

Program Find_Source Cccurrence Forward
"system_is_running", main\#1

375

Chapter 9: Debugger Commands
Program Interrupt Add

Program Interrupt Add

Repetitive
oy
C—{<<:yc|e_count>,——‘ <level> i =|J <Return>

The Program Interrupt Add oomand causes a simulatprbgram interrupt

after a specified number of clock cyclescfcle _count> have been executed.
The pseudo register @cycle is used to keep track of the clock cycle count,
allowing the interrupt frequency to be precisely timed. The maximum number
allowed for < cycle_count> i2¢*32)-1.

Interrupt Level

The interrupt level must be between 1 and 7 inclusive. A maximum of 16
interrupts, including multiple interrupts at the same level, can be waiting or
pending.

Pending Interrupts

Once an interrupt is initiated, iemains pending until the status register’s
interrupt mask bits allow the interrupt to occur. The interrupt mask bits in the
status register can change as a result of processor instructions, or because of
user intervention.

Interrupt Recognition

An interrupt is recognized if the interrupt level specified is higher than the
interrupt mask bits. Interrupts that have a level of 7 are always recognized
(level 7 is the nonmaskable interrupt). Once an interrupt is recognized,
interrupt procesing begins before the nexttnsction fetch. On reset, all
interrupt mask bits are set, allowing only level 7 interrupts to be recognized.

376

See Also

Examples

Chapter 9: Debugger Commands
Program Interrupt Add

Exception Vectors

The exception vector parameter < vector> is a value between Zbarttat

acts as an index to the exception vector table. You are responsible for
providing the values for the table, i.e., the addresses of the interrupt routines.
If an exception vector is not given, the Interrupt Autovector for the specified
interrupt level is used.

Once/Repetitive Qualifiers

The Once qualifier sets a one-time interrupt. The Repetitive qualifier causes
the interrupt command to repeat. If you specify Repetitive, the debugger
repeats the same interruptnemand after the inteupt occurs. The interrupt
command can be canceled with the Programriofg Remove command. The

R epetitive qualifier does not always force a debugger/simulator interrupt to
occur every < cycle_count> cycles because the interrupt can be delayed by
masking or by long instructions.

Program Interrupt Remove

To set a one-time interrupt to occur in ten cycles at interrupt level 7 through
interrupt vector 66:

Program | nterrupt Add Once 10,7,66

To set a repetitive interrupt occurring evéfpO00 cycles at inteupt level 7 to
interrupt vector 64:

Program | nterrupt Add Repetitive 70000,7,64

To set a one-time interrupt to occur when program execution resumes at level
7 through autovector 7 (interrupt vector 31):

Program | nterrupt Add Once 0,7

377

Chapter 9: Debugger Commands
Program Interrupt Remove

Program Interrupt Remove

(Program Interrupt)—{ Remove)10 f <Return>
<level>

The Program Interrupt Removermmand cancels all pending imtapts at
the specified interrupt level. The interrupt level range is from 1 to 7 inclusive.
If you do not specify a level, all interrupts are canceled.

See Also Program Interrupt Add

Examples To remove all level 7 interrupts:

Program | nterrupt Remove 7

To remove all interrupts:

Program | nterrupt Remove

378

Chapter 9: Debugger Commands
Program Load

Program Load

(Program >—>< Load

Default

S
Code_Only

Symbols_ Only

<absolute file> L j
,<root>
\‘ J L j <Return>
&<buase addr> ;<section>,...

The Program Load command loads and reloads the specified executable
module into the debugger and also allows you to set default options for
loading executable modules.

Option_Set Parameter

This parameter and its qualifiers let you specify defaults for loading executable
modules. These defaults affect the Program Load Default or command line
program load cmmmands. You calist the Program Load defaults with the
Debugger Option List command.

Default Parameter

When you specify the Default parameter, the debugger loads the executable
module according to the options set with the Program Load Option_Set
command.

379

Chapter 9: Debugger Commands

Program Load

Reload Parameter

TheReloadparameter reloads only the code image for tireemt absolute

file (that is, the file at the root of the current symbol tree). This is a shorthand
way to reload code without having to look up the figame. Montored
expressions in the Monitor windowllnot be cleared; software breakpoints

will be cleared.

New/Append Parameters

TheNewparameter loads a nggwogram, removing any old program that may
have been loaded. TiNewparameter optionally allows you to load the
program image, the program symbols, or both. The program counter can be
set from the transfer address in the load file or ignored.

TheAppendparameter loads anothgrogram without deleting the existing
program.

If you enter the Program Load command with New Append or Options
parameter, the following qualifiers are available:

All Both the program image and program symbols to be
loaded.

Code_Only Only the program image is loaded.

Symbols_Only Only th@rogram symbols are loaded.

Pc_Set The program counter is set from the transfer address in
the load file.

No_Pc_Set The program counter is not reset.

Using the All or Symbols_Only qualifiers along with the Pc_Set qualifier
resets static variables for a complete restart.

The optional root pameter (,<oot>) allows you to specify an alternate
name for theoot of the symbol tree.

The base address (&< base_addr>) allows PC relative code to be sipifted
loading.

The section list (;< section>) enables partial loading of absolute file sections,
i.e., prog, data, const, etc. The symbols for all sectidhbevreloaded.

380

Chapter 9: Debugger Commands
Program Load

Resetting Program Variables

To reset static and global program variables after entering a Debugger
Execution Reset_Processor or Program Pc_Resanemd, you must reload
your program by using the Program Loadnenand. For faster loading, specify
Program Load New Code_Only. The debugger retains symbol information.
You do not have to reload symbol information if symbol addresses have not
changed.

The address where the object module will be loaded is specified at link time.
However, the address can be changed by specifying a new base address.

See Also Debugger Execution Reset_Processor
Program Pc_Reset
Debugger Option General Demand_Load
Debugger Option List

Examples To load absolute file ‘ecs’, remove all existing program symbols, reset the
program counter, and load the full symbol set:

Program Load Default ecs

To load only the program image of the prog section of absolute file ‘ecs’
without resetting the program counter:

Program Load New Code_Only No_Pc_Set ecs;prog

381

Chapter 9: Debugger Commands

Program Pc_Reset

Program Pc_Reset

Program

See Also

Example

Pc Reset <Return>

The Program Pc_Reset command reset@tbhgram counter (PC) to the
transfer address from the absolute file. This causes the next Program Run or
Program Step command to restart execution at the beginning pfageam.

The command does not clear breakpoints. All declare@t/@s sill exist as
originally specified.

Debugger Execution Reset_Processor
Program Load
Program Run

To reset the program counter to the transfer address from the absolute file:

Program Pc_Reset

382

Chapter 9: Debugger Commands
Program Run

Program Run

o~
f
\~< From)—' <starf_addr=>

<break_addr> \‘
7%%<pass_count>
: <

Return>

fromReset

J

The Program Run command starts or continues tgmgaram execution. The
program runs until it encounters a permanent or temporary breakpoint, a
error, or a stop instruction, or until you pré&sgRL C.

<macro_call>

The Program Run command may be used to resume executioprafyeam
execution has been suspended.

Program Run From

The Program Run From command beginggram execution at the specified
start address < start_addr> .

Using the Program Run From command to specify a starting address in
high-level mode may cause unpredictable results if the compiler startup
module is bypassed.

383

Chapter 9: Debugger Commands

Program Run

See Also

Program Run fromReset

Resets processor and then starts execution as the processor does when reset.

Program Run Until

The Program Run Until command begpr®gram execution at the current
program counter address and breaks at the specified address.

Break Address

The break address (< break_addr>) acts as adeany instruction
breakpoint. It is automatically cleared when program execution is halted.
Multiple break addresses are ORed. For example, the command

Program Run Until #20,#90 Return

causes the program to run until either line 20 or line 90 is encountered,
whichever occurs first.

Pass Count

The pass count (< ga_ount>) specifies the number of times the break

address is executed before the program is halted. For example, a pass count of
three will cause thprogram to break on the fourth execution of the break
address.

Macro Calls

If specified, a macro (< macro_name>) is invoked when th@oeary break
occurs.

Breakpt Access
Breakpt Clear_All
Breakpt Delete
Breakpt Instr
Breakpt Read
Breakpt Write
Program Pc_Set
Program Step

384

Chapter 9: Debugger Commands
Program Run

Examples To execute the target program starting at address 'main’.

Program Run From main

To begin program execution at the current program counter address and run
until line 110 of the errent module:

Program Run Until #110

To begin program execution at the current program counter address, run until

the program returns to thelliag function of the arrent function, and then
execute the macro read_val’

Program Run Until @1;read_val()

385

Chapter 9: Debugger Commands

Program Step

Program Step

(Progrom)——(Step >> 7 <Return>

From >—’ <start_addr> -
\' ,<step_ count> j
Count
\—“ <step_count> ‘/

Note

The Program Step command executes the specified numbetrotinsns or
lines, beginning with the location identified with < start_addr> . In high-level
mode, single-stepping is done one C source line at a time. In assembly-level
mode, single-stepping is done one machine instruction at a time. When the
program cls a function, stepping continues in the called function.

If you do not specify a starting address, single-stepping begins at the address
contained in the program counter.

If you do not specify a step count (< step_count>), the debugbjertiver
step one C source line or one machine instruction.

If the debugger steps into an HP library routine, you can then use the Program
Run Until @1 (stack level 1) commandrn to the end of the library routine.

Program Step From

The Program Step From command executes oralict®on or line, beginning
with the location specified by < start_addr> . If you do not specify the optional
step count (< step_count>), the debugger executes one line or one instruction.

386

Chapter 9: Debugger Commands
Program Step

Program Step Count

The Program Step Countroenand executes the specified number of either
instructions or lines, starting at the location pointed to by the program
counter.

The debugger updates the screen after each instruction or line is executed. If a
breakpoint is encountered, single-stepping is halted.

You can also use function ké&y to single-step.

See Also Breakpt Instr
Program Run
Program Step Over
Program Step With_Macro

Examples To step four source lines, starting at line 39:

Program Step From #39,4

To step ten source lines (high-level mode) or ten processor instructions
(assembly-level mode), starting at the program counter address:

Program Step Count 10

To step one source line (high-level mode) or one processor instruction
(assembly-level mode), starting at the program counter address:

Program Step

387

Chapter 9: Debugger Commands

Program Step Over

Program Step Over

(Progr@m)—{ Step >—>(Over >\ <Return>

From >—> <start _addr>
\-— ,<step count> j

Count
\' <step count> J

The Program Step Over command executes the numbertiafétiens or lines
specified, but executes through functiofissahat is, the called function is
executed without stepping through it. Execution begins at the specified
starting address.

When the debugger encounters a C function or assembly-level subroutine call
and then continues stepping when the called subroutine returns.

In high-level mode, the debugger executes one C source line at a time. In
assembly-level mode, the debugger executes one microprocessor instruction at
atime.

If you do not specify a starting address, single-stepping begins at the address
contained in the program counter.

If you do not specify a step count (< step_count>), the debugtjertiver
step one C source line or one machine instruction.

Program Step Over From

The Program Step Over From command executes otrei@i®n or line,
beginning with the location specified by < start_addr> . If you do not specify
the optional step count (< step_count>), the debugger executes one line or
one instruction.

388

Chapter 9: Debugger Commands
Program Step Over

Program Step Over Count

The Program Step Over Countnemand executes the specified number of
either instructions or lines, starting at the location pointed to by the program
counter. The debugger updates the screen after each instruction or line is
executed. If the debugger encounters a breakpoint, it halts single-stepping.

You can also use function k& to single-step over functions.

See Also Breakpt Instr
Program Run
Program Step Count
Program Step From
Program Step With_Macro

Examples To step four source lines, starting at line 39, and execute through any function
calls:

Program Step Over From #39,4
To step ten source lines (high-level mode) or ten processor instructions

(assembly-level mode), starting at the program counter address, and execute
through any function di:

Program Step Over Count 10

To step one source line (high-level mode) or one processor instruction
(assembly-level mode), starting at the program counter address, and execute
through any function di:

Program Step Over

389

Chapter 9: Debugger Commands
Program Step With_Macro

Program Step With_Macro

<Progrom>—>< Step }{WithiMcho} <macro_call> = <Return>

See Also

Example

The Program Step With_Macro command single stepsugh the program

and executes the specified mackxaor(acro_call>) after each instruction or
high-level line. Program execution continues if the macro returns a nonzero
value.

Single-stepping is done by C source line in high-level mode and by
microprocessor instruction in assembly-level mode.

Program Run
Program Step From
Program Step Over

To step through the program one source line (high-level mode) or one
processor instruction (assembly-level mode) at a time, executing the macro
read_var after each step:

Program Step Wth_Macro read_var()

390

Chapter 9: Debugger Commands
Symbol Add

Symbol Add

(Symbol)——(Add)L j <symbol name>
<type>

{Address} <target mem address>)

<Return>

{Fill_l\/lem <value>

The Symbol Add command creates a symbol and adds it to the debugger
symbol table. When defining a symbol, you must declare the symbol’s nam-

may be any name not previously used.

Type

You can optionally assign any valid C data type < type> to the symbol. If you
do not assign a data type, the symbol type defaults to type int.

If the symbol type is a pointer, the initial value must be a data address. If the
type is an array, the initial value must be a string of values separated by
commas and/or enclosed in quotation marks. If fewer values are given than will
fill the array, the pattern is repeated until the entire array is filled.

When initializing symbols, the symbol type is not used. Only the size is used. If
a char array is defined, it is filled with the specified pattern in the same way as
with the Memory Block_Operation Fill omand. A zero is not appended to
char arrays. The size is not determined by the string as in C. Complex values
such as floating point representation are not recognized.

391

Chapter 9: Debugger Commands

Symbol Add

See Also

Examples

Program Symbols

Program symbols are specified with a base address (Address
<target_memory_address>). The base address references an address in target
memory. Program symbols are identical to variables defined in a C or assembly
language program. The value of a program symbol is placed in taegeory.

If an initial value is specified for the program symbol, the value is loaded in the
memory location referenced by the symbol. If an initial value is not specified,

the memory location referenced by the symbol is not changed.

Debugger Symbols

Debugger symbols are specified without a base address and are not associated
with a target memory address. Debugger symbols may be used to aid and
control the flow of the debugger. They are located at a fixed location in
debugger memory. Only debugger commands and C &s{pres in macros can

refer to debugger symbols. They cannot be referenced by the program in target
memory.

If an initial value is specified for the debugger symbol, the value is loaded in
the memory location referenced by the symbol. If an initial value is not
specified, the memory location referenced by the symbol is set to zero.

Debugger Macro Add
Symbol Display
Symbol Remove

To add a program symbol of type int (default) at targetmory address 9ffOh
and set the memory location to value -1:

Symbol Add EOF Address 9ffOh Fil_Mem -1

To add a debugger symbol named strl of type char referencing an
eight-character array and fill the array with string 'abcdefgh’.

Symbol Add char str1[8] Fil_Mem 'abcdefgh’

To add a debugger symbol of type shaatmed s1 andlfthe memory location
with value 0x10203:

Symbol Add short s1 Fil_Mem 0x10203

392

Chapter 9: Debugger Commands
Symbol Add

In this example, we assigned a value to the symbol that is too large for the
specified type. In this case, the debugger fillsrtteanory location with the
lower bytes of the specified value. Executing the command:

Expression Printf "%x",s1

shows that the value is 203, the lower two bytes of the specified value.

393

Chapter 9: Debugger Commands
Symbol Browse

Symbol Browse

< Symbal D—{ Browse >—’<Ctass,ngme>* <RETURN>

The Symbol Browse command displays the parents and children ofa C+ +
class. The inheritance relationship is displayed in the Journal window.

Example To display the parents and children of the C+ + diass type:

Symbol Browse fruit

394

Chapter 9: Debugger Commands
Symbol Display

Symbol Display

Symbol = Display %i

~={ Default
f =(Data¯os > K End_ Options =

= Functions&labels

—={ Modules :

P

—{ Search_All :

H <symbol name> <Return>

—={ Warnings
k{ReseWediSymbo\s\

The Symbol Display command displays symbols and associated information in
the Journal window.

395

Chapter 9: Debugger Commands

Symbol Display

To display symbols in all modules, specify a backslash as the command
argument.

Symbol Display Default\

To displays all symbols in a specified module or function, enter a module
name or function name followed by a backslash.

Symbol Display Default memset\

The wildcard character may be placed at the end of a symbol name with any
option. The* can be used to represent zero or more characters. If used with
no symbol name, is treated the same ashat is, all symbols are displayed.

If you enter a symbol namethiout a module specification, the debugger looks
for the symbol in the current module. If there is no module qualifier, all

symbols with the specified naméhbe displayed, including global symbols

and symbols local to the module. Global symbols are not attached to a module.

Symbol Display Default dest

If you specify a structureame using the Types option, the debugger shows all
members in thetsucture and their types.

Default

If you specify Default, the debugger displays all types of symbols.
Options

The following options may be specified to display subsets of symbols.

Data¯os displays symbol namtmage class, data type, and
addresses of data and macro symbols.

Functions&labels displays symbol nammrsige class, data type, return
type, and addresses of functions and labels.

Modules displays names, module type (high-level, assembly-level,
or non-loaded), and section addresses of modules.

Types displays all symbol types.

396

Chapter 9: Debugger Commands
Symbol Display

Search_All displays symbols of all types in all roots (contexts).
Wide shows symbol names only in multicolumn (compressed)
format.

If you do not specify any options, the debugger displays all symbols.

Warnings

When you execute the Symbol Display Warnings command, the debugger
displays type mismatches. Mismatches occur when global variables are
declared with different types in different modules or global functions are
declared with different return types or argument counts in different modules.
The command displays all mismatches and the names of the modules in which
the symbols are declared.

Reserved_Symbols
If you specify Reserved_Symbols, the debugger displays processor reserved
symbols, registers, and internal debugger variables.

See Also Symbol Add
Symbol Remove

Examples To display the symbol 'updateSys’in the current module:

Symbol Display Default updateSys

Symbol Display Default updateSys
@ecs\\updateSys : Type is High level module.
Code section = 00001436 thru 00001C21

To display all symbols in module 'updateSys”.
Symbol Display Default updateSys\

> Symbol Display Default updateSys\
Root is: updateSys

@ecs\\updateSys : Type is High level module.
Code section = 00001436 thru 00001C21
updateSys\update_state_of system
: Type is Global Function returning void.
Address = 00001436 thru 00001513

397

Chapter 9: Debugger Commands
Symbol Display

update_state_of\refresh
: Type is Local int.
Address = Frame + 8
update_state_oflinterval_complete
: Type is Local int.
Address = Frame + 12

To display all modules in the current symbol tree:

Symbol Display Options Mdules End_Options\

Symbol Display Options Modules End_Options \
Root is: @ecs

31 source and 23 assembler modules, 28 source procedures.
Filename = ecs.x
@ecs\\main : Type is High level module.

Code section = 00001050 thru 00001121

Code section = 00000100 thru 0000010B
@ecs\\initSystem : Type is NON-LOADED module.

Code section = 00001122 thru 00001435

To display all function and labels in module 'main’.

Symbol Display Options Function&labels End_Options main\

To display all reserved symbols:

Symbol Display Reserved_Symbols

To display all symbols in module systemint in compressed format (symbol
names only):

Symbol Display Options Wde End_Options systemint\

Symbol Display Options Wide End_Options systemint\
Root is: systemint

systemint\ system_interrupt function
struct_system_clock hours minutes
seconds struct_system_clock *

tick_clock function argument_1 system_interrupt
tick_clock time reg_paraml
increment

To display all data and macros found within any symbol tree (that is, search \\,
@a.out\\, @filel\\ etc.):

398

Chapter 9: Debugger Commands
Symbol Display

Symbol Display Options Data&Macros Search_All
End_Options \

Symbol Display Options Data¯os Search_All End_Options \
Root is: @ecs
31 source and 23 assembler modules, 30 source procedures.
Filename = ecs.x

update_state_of\refresh
: Type is Local int.
Address = Frame + 8
update_state_oflinterval_complete
: Type is Local int.
Address = Frame + 12

To display data type struct_temp_settings:

Symbol Display Options Types End_Options
struct_temp_settings\

Symbol Display Options Types End_Options struct_temp_settings\
Root is: struct_temp_settings

@ecs\struct_temp_settings
: Type is Type definition of Structure, size
=8.
struct_temp_set\temp : Type is Member of type float.
Offset = 0
struct_temp_set\humid : Type is Member of type int.
Offset = 4

To display any type mismatches detected in the user program during program
loading, along with the address of the symbol that has the mismatch:

Symbol Display \Warnings

2 mismatches.
getOplnput\system_off: Type is Global Function returning void.

Address = 000024AE to 000025ED

***] modules mismatched ***

Modules:’'main’
updateSys\write_output_command

: Type is Global Function returning void.

Address = 00001944 to 0000197B

*** 1 modules mismatched ***

Modules: 'getOplnput’

399

Chapter 9: Debugger Commands

Symbol Remove

Symbol Remove

< Symbol)——(Remove)—ﬁ <symbol_name> I\ =|| <Return>
@f

The Symbol Remove command removes the specified symbol from the symbol
table. Only program symbols and user-defined debugger symbols can be
deleted from the symbol table.

To delete all symbols within a named module or function, append a backslash
(\) to the module or function name (< symbol_name>).

Symbol Remove updateSys\

Entering a backslash without a module or functiame deletes all symbols in
all modules.

Symbol Remove \

If you specify a symbol name thiout a module specification, the debugger
looks for the symbol in the current module.

If you specify more than one symbol to be deleted or if the specified symbol
has local symbols (for example, when a macro is deleted), the debugger
requests confirmation. Entering after the symbol namgrovides automatic
confirmation of the request. This option is useful in command files.

The debugger lets you add a debugger symbol with the same name as a target
module’s local symbol or a predefined macro’s local symbol. If you do add a
debugger symbol with same name as a local symbol, you must specify the
entire symbol name with the Symbol Remove command in order to remove it.
For example, if you added the debugger synaitel_settingsvhen running the
demonstration program, you must entatter_settingsnstead oflter_settings

to delete the symbol because there is a local symbol alter_settings in target
module updateSys. Otherwise the error message# 152, Gnnot delete:

more than one symbol with this nameelisplayed.

400

Chapter 9: Debugger Commands
Symbol Remove

See Also Symbol Add
Symbol Display
Examples To delete symbol ‘current_targets’in function ‘alter_settings”

Symbol Remove alter_settings\current_targets

To delete all symbols in module 'updateSys”.
Symbol Remove updateSys\

To delete symbol ‘alter_settings’in module 'updateSys".

Symbol Remove updateSys\alter_settings

In this example, the symbol being removed is a function which contains other
symbols. The debugger prompts you with the message This symbol has a
sub-tree. Delete with sub-tree? (Y/N)'. Enter 'Y'to delete the symbol and its
sub-tree. If you respond with 'N’, the manand is canceled.

To delete all symbols in all modules:

Symbol Remove \

401

Chapter 9: Debugger Commands
Window Active

Window Active

CWmeW) “(Active >3

High_Level

= Codc <Return>

) —

> Journal

= Assembly » Codc

= Stack

\
\

= Monitor

= Journal

il

= Registers

Breakpoint Y,
— View
—={ Stdio
= Next
—={ Previous

User_Window <user window_nmbr> |——

The Window Active command activates the specified window. The border of
the active window is highlighted. The Code window is active by default within
the high level and low level screens.

402

Chapter 9: Debugger Commands
Window Active

The Next and Previous parameters specify the next higher-numbered or
lower-numbered window relative to the active window.

The cursor keys and the F4 function key only operate in the active window.

The Error, Help, and Status windows cannot be made active.

See Also Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To make the high-level Backtrace window active:

Wndow Active High_Level Backtrace

To make the assembly Code window active:

Wndow Active Assembly Code

To make user window 57 active:

Whdow Active User_Window 57

403

Chapter 9: Debugger Commands

Window Cursor

Window Cursor

C Window)——(Cursor)—» <user_ window nmbr> — <tab>)

See Also

Examples

Position >—> <line,col> —= <Return>

The Window Cursor command sets the cursor position in the window
specified by < user_window_nmbr> . The top left corner of the window is
represented by coordinates 0,0.

Subsequent output to the window begins at the cursor position.

Only user-defined windows and the standard 1/0O window (window No. 20) may
be specified with this command.

Window Active
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

To move the cursor to line 5, column 22 in the Stdio window:

Whdow Cursor 20 Position 5,22

To move the cursor to line 3, column 0 in user window 57:

Whdow Cursor 57 Position 3,0

404

Chapter 9: Debugger Commands
Window Delete

Window Delete

<Window >——< Delete)L j <Return>
<user window nmbr>

The Window Delete command removes a windpassibly a screen) defined
previously with the Window New command. Remove a window by entering the
window's associated window number. If you do not specify a window number
or if you specify 0, the active window is removed.

Remove screens by removing all windows associated with that screen. For
example, if a user-defined screen has three windows and you delete all three
windows, the screen will be deleted as well. See the "Displaying Screens" and
"Displaying Windows" sections of the "Viewing Code and Data" chapter for
more information about window and screen numbers. Predefined debugger
windows and screens cannot be removed.

Files opened with the File User_Fopen command may also be closed with this
command.

See Also File User_Fopen
File Window_Close
Window Active
Window Cursor
Window Erase
Window Open
Window Resize
Window Screen_On
Window Toggle View

Example To delete user window 57:

Whdow Delete 57

405

Chapter 9: Debugger Commands

Window Erase

See Also

Examples

Window Erase

Erase \' f <Return>
<user_window _nmbr>

The Window Erase command clears all displayed information in the specified
window. It then places the cursor in the specified window to the 0,0 position. If
you do not specify a window number or if you specify 0, the active user-defined
window is cleared. Only user-defined windows and the standard I/O screen
(window No. 20) can be cleared. This command is primarily for use within
macros.

Window Active
Window Cursor
Window Delete
Window New
Window Resize
Window Screen_On
Window Toggle_View

To clear all displayed information in the Stdio window:

Wndow Erase 20

To clear all displayed information in user window 57:

Whdow Erase 57

406

Chapter 9: Debugger Commands
Window New

Window New

New >—> <user__window nmbr> % <tab>

~

~={ High Level
—= Assembly
= Stdio

k><tjser78<:reem>—> <screen _nmbr> <tab> { Bounds

L <top row,left col,bottom row,right col> <Return>

Note

The Window New command makes (creates) new windows and screens. It may
also be used to move existing windows to a new location within a screen.
Windows must be assigned a number between 50 and 256 inclusive. Num
through 49 are reserved for predefined debugger windows. The bounds
parameter specifies both the window size and location on the screen.

Window coordinates 0,0 correspond with the upper-left corner of the screen.

When making new window, be careful not to enter coordinates tha¢sult
in a window that will cover the status line andmsoand line.

On a standard 80-column by 24-row terminal display, a @wdinate may be
between 0 and 23. However, creating a window whose bottom row coordinate
is greater than 18 will cause part or all of the status line to be covered.

407

Chapter 9: Debugger Commands
Window New

Command Parameters

Definition of the Window New command parameters are as follows:

Parameter Definition Range
<user_window_nmbr> Window number 50 to 256 inclusive
<user_screen_nmbr> User_Screen 4 to 256 inclusive
<top row> Upper row coordinate 0 to N-1inclusive
< left col> Left column coordinate 0 to N-1inclusive
< bottom row> Lower row coordinate 0 to N-1inclusive
<right col> Right column coordinate 0to N-1inclusive
N is the number of rows or columns on your display. The value of N is dependent on display|type.

Note The Window New commandilifail if row or column oordinates are greater
than the screen boundary. For example, thrermandwWindow New 15
Assembly 36,1,39,84ill fail if you have an 80 column by 40 row screen. The
commandWindow New 15 Assembly 36,0,39® work.

Alternate Window Views

To create alternate views of a user-defined window, follow the procedure
outlined below.

1 Execute thaVindow New command to define a window with specific size
parameters.

2 Execute th&Vindow Toggle_View command, or press function kE#.

3 Execute th&Vindow Resize command to redefine the previously
defined window with new size parameters. The new size parameters must
be smaller than the previously assignedapaeters.

See Also Expression Fprintf
File User_Fopen
Window Active
Window Cursor
Window Delete
Window Erase
Window Resize

408

Chapter 9: Debugger Commands
Window New

Window Screen_On
Window Toggle_View

Examples To make a new user window, number it 57, and display it in user screen 4 with
upper-left corner at coordinates 5,5 and the lower right corner at coordinates
18,78:

Whdow New 57 User Screen 4 Bounds 5,5,18,78
To make a new user window, number it 55, and display it in the high-level

screen with upper-left corner at coordinates 5,5 and the lower right corner at
coordinates 10,20:

Wndow New 55 High_Level 5,5,10,20

To move the high level status line window to the top of the displayin the
standard interface:

Wndow New5 High_Level 0,0,3,78

For this command to execute, the high-level window must be displayed and the
difference between the bottom row coordinate and top row coordinate (3 — 0)
must equal three (3). You cannot move the status line if you are using the
graphical interface.

409

Chapter 9: Debugger Commands

Window Resize

Window Resize

Window

Note

See Also

- Resize <Return>

The Window Resize command lets you change the size and position of the
active window interactively. The cursor keys (left, right, up, and down arrows)
move either the top left corner, or the bottom right corner of the window.

To reposition the top left corner, présand position the top left corner of
the window using the cursor control keys.

To reposition the lower right corner of the window, pfi@sed use the cursor
control keys to position the lower right corner.

To move the window without resizing it prédand use the cursor control
keys to move the window on the screen.

Press th&keturn keyto save the new coordinates.
Pres€CTRL C or Esc Esc to restore the previous coordinates.

If an alternate window view is selected, the size alterations are made to the
alternate view.

The Window Resize command can be used to alter the size of any existing
window, including the predefined debugger windows, with the exception of the
Status Line or Viewwindow. In the standard interface (but not in the

graphical interface), the Status Line window can be moved or resized using the
Window New command.

Expression Fprintf
File User_Fopen
other Window commands

410

Chapter 9: Debugger Commands
Window Screen On

Window Screen_On

Screen On

e

See Also

~——{ High Level) 7 <Return>
~—{ Assembly }
~——{ Stdio)
= Next)

Example

NN

User Screen <screen_nmbr>

The Window Screen_On command displays the selected screen. You can also
use function ke¥6 to display a screen.

If the high level screen is displayed, the debugger is placed in the high lev
mode. Likewise, when you display the assembly level screen, the debugge
placed in the low level mode.

Window Active Window New
Window Cursor Window Resize
Window Delete Window Toggle_View

Window Erase

To activate the Assembly-level screen and place the debugger in low level
mode:

Wndow Screen_On Assembly

411

Chapter 9: Debugger Commands
Window Toggle View

Window Toggle_View

Toggle_View) 7 <Return>

Code
Monitor

Assembly Code

Stack

-

High_Level

Monitor

Journal

Registers

st

L\\\

~——{ Breakpoint)
—{ View)
= Stdio)
—’(USGF_WithW>—’ <user_window_nmbr>

The Window Toggle_View command selects the alternate view of a window.
Typically, this is an enlarged view of the window. If you do not specify a
window number or if you specify 0, the active window is the default.

When you execute the Window Toggle_View command, the display alternates
between the two views of the window.

412

Chapter 9: Debugger Commands
Window Toggle View

You can also use th®4 function key to alternate views of the active window.

To create alternate views of a user-defined window, follow the procedure
outlined in the Window New command description.

See Also Window Active
Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On

Examples To display the alternate view of the active window:

Wndow Toggle View

To display the alternate view of the high-level Code window:

Wndow Toggle View Hgh Level Code

To display the alternate view of user window 57:

Wndow Toggle View User_Window 57

413

Chapter 9: Debugger Commands
Window Toggle View

414

10

Expressions and Symbols in
Debugger Commands

A description of the expressions and symbols you can use in debugger
commands.

415

Chapter 10: Expressions and Symbols in Debugger Commands

Expressions and Symbols in Debugger Commands

This chapter discusses the following language elements used in debugger
commands:

» Expression elements.
* Formatting expressions.
» Symbolic referencing.

Debugger commands use standard C operators and syntax. This chapter
describes the elements of C expressions and how expressions are structured. It
also discusses memory and variable referencing.

416

Chapter 10: Expressions and Symbols in Debugger Commands
Expression Elements

Expression Elements

Most debugger commands require simple C esgioms that evaluate to a

scalar value. Simple C expressions are the same as standard algebraic
expressions. These expressions evaluate to a single scalar value. Expressions
consist of the following elements:

e operators

e constants

e program symbols
» debugger symbols
* Dbuilt-in symbols

* macros

* keywords

* registers

+ addresses

* addressranges

* line numbers

Debugger commands allow any legal C egsien. The following paragraphs
describe elements of C expressions used in debugger commands.

Operators

The debugger supports most standard C language operators and special
debugger operators.

C Operators

C operators include arithmetic operators, relational operators, assignme
operators, and structure, union, and array operators. The followinditable
these operators in order of precedence (first line of the table is the highest
precedence).

417

Chapter 10: Expressions and Symbols in Debugger Commands

Expression Elements

Supported C Operators

Operators

Order of Association

O ->.

Left to right

~ | ++ -- sizeof (type) - * & Right to left

* | %
+ —
<< >>

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right

= 4= = *= [= Y= &= M= |= <<= >>= Right to left

Left to right

C+ + Operators

The debugger also supports C+ + operators: :;, ., ->, and &.

Debugger Operators

The debugger uses some characters as special debugger operators. These
debugger operators and their descriptions are listed in the following table:

Debugger Operators

Operator Description

[References the contents of a memory location. For example:

Expression Display_Value [0x20b0]

Identifies a line number. For example:

Program Run Until #82

418

\

Chapter 10: Expressions and Symbols in Debugger Commands
Expression Elements

Identifies a stack level, reserved symbols, or symbol tree root. For example:

Program Display_Source @2
(stack level)

Expression Display_Value @module
(reserved symbol)

Symbol Display Default @ecs\\
(symbol tree root)

Identifies a character constant.
Identifies a character string constant.

Qualifies a symbol reference. For example:

Program Run Until updateSys\#20

Specifies an executable file as the root of a symbol tree. The specified file must be
loaded into the debugger. For example:

Program Context Set @ecs\\main

Constants

A constant is a fixed quantity. Constants may be integers, floating point
values, or character string constants.

Integer Constants.

An integer constant may be defined as a sequence of numeric characters
optionally preceded by a plus or minus sign. If unsigned, the debugger
assumes the value is positive.

Positive integer constants may range between 0 and 2**31-1. When a constant
is negative, its two's complement representation is generated. Negative
integer constants may range to —2**31.

Constants can be specified as binary, decimal, or hexadecimal values. This is
done by placing a prefix or suffix descriptor before or after the constant. The

419

Chapter 10: Expressions and Symbols in Debugger Commands
Expression Elements

following table lists the legal prefixes or suffixes that may be specified with
integer constants to denote a specific base.

Integer Constant Prefixes and Suffixes

Constant Prefix Suffix Base Digit

Type Descriptor Descriptor

Binary b, B 2 0-1

Decimal t, T 10 0-9

Hexadecimal 0x,0X h,H 16 0-9, A-F, a-f
Hexadecimal constants starting with the letters A through F (or a through f)
must be prefixed with a zero. Otherwise, the debugger attempts to interpret
the value as a symbol name.
By default, the debugger interprets integer constants as decimal values. The
"Configuring the Debugger" chapter describes how to change the default radix
for assembly-level values.

Note You cannot use binary numbers when the radix is hexadecimal.

The debugger truncates values larger than that which can be contained in an
element of an expression or command. The debugger extends values less than
that allowed in the element. The truncation and extension are both
implemented according to the rules of C.

The examples given in the following table show the use of prefix and suffix
descriptors.

420

Chapter 10: Expressions and Symbols in Debugger Commands
Expression Elements

Prefix and Suffix Descriptor Examples

Constant Decimal Mode Hexadecimal Mode
73T Decimal Decimal

OEFF1h Hexadecimal Hexadecimal

10b Binary Hexadecimal
0x2214 Hexadecimal Hexadecimal

23C3 Illegal Hexadecimal

123 Decimal Hexadecimal

Floating Point Constants

The debugger represents floating point constants internally in standard IEEE
binary format. All floating point calculations follow the rules of C. The
debugger treats all floating point constants as double precision values
internally.

Floating point constants specified on the debugger command line must have
the following syntax:

[sign] integer_part.[fractional_part] [exponent]
where signis an optional plus (+) or minus (-) sign.
integer_partconsists of one or more decimal digits.
.is a decimal point.
fractional_partmay be zero or more decimal digits.

exponents an optional exponent, which is letter E (or e)
followed by an integer part.

When specifying a floating point constant, the debugger uses a more restrictive
syntax than the C language. The debugger always requires an integer part and
a decimal point.

421

Chapter 10: Expressions and Symbols in Debugger Commands

Expression Elements

Examples: 76.3e-1 76.3 -0.3el1
76.3E+0 76.e5 0.3
76.3E2 76. 0.

Character Strings and Character Constants

Character Strings. A character string is a sequence of one or more ASCI|
characters enclosed in double quotation marks or two or more characters
enclosed in single quotes. If the string has more than one character,
subsequent ASCII characters atered in consecutive bytes.

When a character string is referenced in a C expression, the debugger
substitutes an address pointer to the string in the expression.

Character Constants. A character constant is a single character enclosed in
single quotation marks.

When a character constant is referenced in a C expression, the debugger
substitutes the actual ASCII character value in the ege, not the address
of the character.

You can use # define constants in debugger expressions if your compiler places
the constant in the absolute file.

Non-printable characters. Some non-printable characters may be

embedded in both character strings and character constants enclosed in double
guotation marks (") by using the escape sequences listed in the table which
follows. Escape sequences are indicated by a backslash (V).

The backslash is interpreted as a character in character strings enclosed in
single quotation marks ().

Any characters other than those listed in the following table argpirgted
literally if preceded by a backslash. For example, to have literal double
guotation marks in a string, enclose the string in double quotation marks and
use the escape sequence for double quotes shown above. For example:

"This is a \"string\" using embedded double quotation
marks"

To have literal single quotation marks in a character string, enclose the string
in double quotation marks. For example:

422

Chapter 10: Expressions and Symbols in Debugger Commands
Expression Elements

"This is a string that’s using a single embedded
quotation mark"

Non-Printable Character Escape Sequences

Sequence ASCIl Name Hex Value Description

\b BS 08 Back Space

\f FF oC Form Feed

\n NL O0A New Line

\r CR oD Carriage Return

\t HT 09 Horizontal Tab

\" " 22 Double Quote

\ \ 5C Backslash

\number — xnumber Hex Character Value

" \xnumber must be entered in the forrhamnwherennis a two digit hexadecimal value. For
example:x0f , not Ixf

Note The debugger automatically terminates character strings enclosed in quotation
marks with a null character. However, when you use a character string with a
Memory Assign or Memory Block_OperationiflFSearch, or Test)
command, the debugger uses only the characters within the quotation marks
(null characters are not added).

423

Chapter 10: Expressions and Symbols in Debugger Commands

Symbols

Symbols

A symbol (also called an identifier) is a name that identifies a location in
memory. It consists of a sequence of characters that idpndiyam and
debugger variables, macros, keywords,registers, memory addresses, and line
numbers.

Symbols may be up to 40 characters in length. The first character in a symbol
must be alphabetic, an underscorkg 6r an at sign@). The characters

allowed in a symbol include upper and lower case alphabetic characters,
numeric characters, dollar sigr§ (at signs @), or underscores . No

other characters may be used in symbols. The debugger differentiates between
upper case and lower case characters in a symbol.

The following sections describe the different categories of symbols used by the
debugger.

Program Symbols

Program symbols are identifiers associated with a source program. They
consist of symbolic variable datames and function names that the
progammer defined when writing thewsrce program. All symbols that were
defined in the source program can be passed to the debugger and referenced
during a debugging session. Note that preprocessnes are not symbols.

The compiler includes all program symbol information in the resulting output
object module file by default. When you load an executable file for debugging,
the debugger places all program symbols into the debugger symbol table by
default. The debugger preserves symbol types and treats the symbols
according to their type.

The debugger may be instructed to load only global symbols at load time,
loading local symbols as they are referenced. This behavior is known as
symbols on demandR efer to the description of the Debugger Option General
Demand_Load command in the “Debugger Commands” chapter for more
information onsymbols on demand

Normally, the compiler prefixes a leading underscore to all global program
symbols. This is done to distinguish program symbols from reserved assembler
names. If the debugger has loaded all symbols, two symlibtevavailable;

the high-level symbol (for examplmain), and its low-level

424

Chapter 10: Expressions and Symbols in Debugger Commands
Symbols

counterpart(mairn). However, with symbols on demand, only the high-level
symbol is availablenfain).

Debugger Symbols

Debugger symbols can be added during a debugging session using the Symbol
Add command. The debugger treats debugger symbols as global symbols.
When you create a debugger symbol, you must assigraitn@g nYou may
optionally assign it a type. An initial value may also be given to a debugger
symbol. If you do not specify an initial value, the initial value defaults to zero.

Debugger symbols are stored in the debuggeemory and are not associated
with the processor targatemory.

Macro Symbols

You can use macros to:

» Create complex user commands.
» Patch your source code temporarily.
» Displayinformation in user-defined windows.

A macro is similar to a C function. It has a nameymnetype, optional
arguments, optional macro local symbols, and a sequence of statements.

There are two types of macro symbols:

* Macro names.
* Macro local symbols.

Macro Names

Macro names identify a macro. Yossign macro ames with the Debugger
Macro Add command.

Macro Local Symbols

Macro local symbols are local variables and parameters defined within macros.
They are declared when you create a debugger macro with the Debugger
Macro Add command. A macro local symbol can be accessed only by the
macro in which it is defined. It is created when the macro is executed. The
macro local symbol has an undefined initial value.

425

Chapter 10: Expressions and Symbols in Debugger Commands
Symbols

Reserved Symbols

Reserved symbols are reserved words that represent processor registers, status
bits, and debugger control variables. These symbols are always recognized by
the debugger. You can use reserved symbols any time during a debugging
session. Reserved symbols have special meanings within the debugger
command language. Theywet be defined and used for other purposes. To
avoid conflict with other symbols, the names of all reserved symbols begin with
the "@" character.

The debugger can generate a list of all reserved symbols (see page 143). In
addition, many of the reserved symbols are listed in the “Registers” chapter.

Line Numbers

Line numbers can be used to refer to lines of code in your original source
program. The compiler generates line numbers by default.

Line number references must be preceded by a poundisigr-or example:

Program Run Until #82

When you refer to a source line number, the debugger translates it to the
address of the first instruction generated by the compiler for that &rstat.

If a C source line did not generate executable code, a reference to that line
number actually refers to the next line that did generate executable code.

To reference a line number that is in a module other than the current one,
precede the line number with a module name. For example:

Breakpt | nstr updateSys\#332

If supported by your compiler, you can debug multipleestants on one line.
A dot qualifier () identifies the sequence of a statement on tlece line. A
colon qualifier () identifies a column number within the source line.
Hewlett-Packard cross assemblers do not support-statement debugging.

426

Chapter 10: Expressions and Symbols in Debugger Commands
Addresses

Addresses

An address may be represented by any C expression that evaluates to a single
value. The C expression can contain symbols, constants, line numbers, and
operators.

Code Addresses

Code addresses refer to the executable portion of a program. In high level
mode, expressions that evaluate to a code address cannot contain numeric
constants or operators.

Data and Assembly Level Code Addresses

Data addresses refer to the data portion of a program. Data address and
assembly level code address expressions may be represented by most legal C
expressions. There are no restrictions on constants or operators.

Address Ranges

An address range is a range of memory bounded by two addresses. You specify
an address range with a starting address, two peripdsnd an ending

address. These addresses can be actual memory locations, line numbers,
symbols, or expressions that evaluate to addresses in memory.

You can also specify a byte offset as the ending address parameter. Ifyo

specify a byte offset, the debugger adds the specified number of bytes to t
starting address and uses the resulting address as the ending address. Y
must precede a byte offset with a plus sign.(

You may specify module names before symbols and line numbers to override
the default module.

The following examples show how to specify address ranges.

To set instruction breakpoints starting at line number 80 and ending at line
number 90:

Breakpt Instr #80..4#90

427

Chapter 10: Expressions and Symbols in Debugger Commands
Addresses

To display code as bytes starting at line number 82 and ending at address 10d0
(hex):

Memory Display Byte #82..0x10d0

To display code as bytes, starting at memory locétiakn clockand ending at
20 bytes padtiick_clock

Memory Display Byte tick_clock..+20

To map memory to RAM, starting at memory address 3000h and ending Offfh
bytes after address 3000h:

Memory Map Write_Read 3000h..+0fffh

428

Chapter 10: Expressions and Symbols in Debugger Commands
Keywords

Keywords

Keywords are macro conditional statements that can be used in a macro
definition. These keywords are very similar to the C language conditional
statements. You amot redefine keywords or use them in any other context.
The debugger keywords are listed below.

IF

ELSE

FOR
WHILE

DO

BREAK
CONTINUE
RETURN

429

Chapter 10: Expressions and Symbols in Debugger Commands
Forming Expressions

Forming Expressions

The debugger groups exmons into two classes:
» Assemblylanguage expressions used in assembly level mode.

» Source language expgons used in either assembly level mode or high
level mode.

When you use a source language espian to express a code address in high
level mode, it can consist only of a single symbol or a single line number.
Source language ex@m®ons cannot contain numeric constants or operators.
This restriction reduces confusion when entering high level expressions.
There are no restrictions on source language egpres that evaluate to data
addresses or on assembly language expressions.

Examples of legal and illegabsrce language code exgsons in high level
mode are shown below.

Legal # 80
main

lllegal #80+ 3
main+ 10

With several commands, the size of an egpien can be specified by size
qualifiers. The size qualifiers are explained in the “Debugger Commands”
chapter.

You may use C+ + classes in expressions.

Floating point calculations follow the rules of C. Single precision numbers are
converted to double precision, the specified operation is done, and the result
is translated back to single precision.

Note Anyvalue can be treated as an address. For example, a character value (byte)
can be treated as an address. You should be careful when using values as
addresses.

Examples of valid expressions are shown in the following table.

430

Chapter 10: Expressions and Symbols in Debugger Commands
Expression Strings

Valid Expressions

Expression Meaning

#7 Line number reference (code address)

i Symbol reference (value or address)

x+ (y*5) Arithmetic operation (value or address)
default_targets[2] Array reference (value or address)
assign_vectors Function name reference (code address)

Expression Strings

An expression string is a list of values separated mneas. The expssion

string can contain expressions and ASCII character strings enclosed in
guotation marks. For several commands, each value in anssiprestring

can be changed to the size specified by the size qualifiers. If you change the
size, the debugger pads elements that do not fit evenly. Examples of
expression strings are shown in the following table.

Expression String Examples

String Results

1,2,"abc" Values 1 and 2, and ASCII values of abc.

3+ 4, time, macl() Value 7, value of time, results of calling the macro 'macl.
"1xyz123’ ASCII values.

431

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

Symbolic Referencing

The debugger references symbols in a different manner than the standard C
language definition. Therefore, understanding how variables are allocated and
stored inmemory is important. The following sections describe symbol

storage classes and data types. These sections are followed bysaialisoun:

* Referencing symbols with root, module, and functiames.
» Making stack references.

In the following paragraphs, the notion of a 'module’is synonymous with a file
in C. In fact, the module name is simply the basename obiees file with
no suffix.

Storage Classes

All variables and functions in a C source program have a storage class that
defines how the variable or function is created and accessed. The storage

classes are:

» extern (global)
» static

* automatic

* register

C preprocessor symbols are not available to the debugger. The following
paragraphs describe each storage class used in a C source program.

Extern (global)

Global variables in a C program are declared outside of a function and are
accessible to all functionst@age for these variables is allocated only once.
Thereatfter, references are made to the previously allocated space.

Global functions can be called from any other function.

Static

Static variables in a C program are allocated permanent storage and can be
local to a module or local to a function.

432

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

In C, static variables local to a module can only be accessed by functions in
that module. In the debugger, static variables local to a module can be
accessed either when a function is active in that module or when the variable is
qualified by the module name in which it is defined. A static variable that is
local to a function can only be accessed by the function in which it was
declared, unless it is qualified by the module and function in which it is defined.

Static functions can only be accessed when the function is in the current
module, unless the function is qualified by the module in which it is defined.

Automatic

Automatic variables are declared inside a function and are accessible onlyto
that function. Storage for these variables is allocated on the stack when the
function is called and released when the function returns. Automatic variables
do not have an initial value (their values are not retained between function
calls).

You can access an automatic (local) variable when it is local to the current
function, or when its function is on the stack. Use the stack-level prefix
@< stack_level>to access an automatic variable in a function on the stack.

Register

Register variables are also declared inside a function and are accessible onlyto
that function. Storage for these variables is allocated in a specific hardware
register when the function is called and released when the function returns.
Register variables do not have an initial value (their values are not retained
between function calls).

A register variable is accessible when it is local to threent function, or
when its function is on the stack.

Note Breakpoints cannot be set on accesses to register variables. If you need to set
breakpoints on a variable, make sure that it is allocated on the stack by
declaring its type as automatic.

Data Types

All symbols and expressions have an associated data type. Assembly language
modules may contain variables with the types BYTE, WORD, or LONG. The

433

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

debugger treats these types as unsigned char, unsigned short int, and unsigned
long, respectively. A segment attribute indicates whether a variable was
defined in a code segment or a data segment.

Source language modules may contain any valid C language data type. The
data types for each type of module are listed in the following tables. The

ranges of values are decimal representations.

Assembly Level Data Types

Type Size Range
BYTE (unsigned char) 8 bits, unsigned 0to 255
WORD (unsigned short int) 16 bits, unsigned 0 to 65535

LONG (unsigned long)

32 bits, unsigned

0to 4294967295

High Level Scalar Data Types

Type Size Range

char 8 bits, signed —1281to0 127

unsigned char 8 bits, unsigned 0to 255

short int 16 bits, signed —32768 to 32767

unsigned short int 16 bits, unsigned 0 to 65535

int 32 bits, signed —2147483648 to 2147483647
unsigned int 32 bits, unsigned 0 to 4294967295

long 32 bits, signed —2147483648 to 2147483647
unsigned long 32 bits, unsigned 0 to 4294967295

enum 8-32 bits, unsigned 0to 4294967295

pointer 32 bits, unsigned 0 to 4294967295

float 32 bits 1.18x1038t0 3.4x10 %8
double 64 bits 9.46x10°%t0 1.79x16 308

434

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

High Level Complex Data Types

Type Size

struct Combined size of members (plusgshle padding)
union Size of largest member

array Combined size of elements

Type Conversion
The debugger does data type conversions under the following conditions:

* When two or more operands of different types appear in an expression,
the debugger does data type conversion according to the rules of C.

 When arguments are passed to a macro function, the debugger converts
the types of the macro’s arguments to the types defined in the macro.

* When the data type of an operand is forced by type casting, the debugger
converts the data type.

* When a specific type is required by a command, the value is converted by
the debugger according to the rules of C.

Type Casting

Type casting forces the conversion of a debugger symbol or expression to a
specified data type. The debugger converts the resulting value of the
expression to the specified data type, as if the expression was assigned to
variable of that type. The debugger does not alter the contents of the vari

You can cast debugger symbols and expressions into different types using
following syntax:

(typename) expression

For example, the following symbol is cast to type char:

(char) prime

The following example casts the variable expression ptr__char to type int:

(int) ptr__char

435

Chapter 10: Expressions and Symbols in Debugger Commands

Symbolic Referencing

Unlike C, the debugger allows casting to an array. The following example
casts the address of the symbol int_value to an array of four chars:

(char[4]) &int_value

This type of casting to an array can be used with both the Expression
Display_Value and Expression Monitor_Valueramands.

Special Casting

In addition to the standard C type casts, the following assembly level casts are
also recognized by the debugger’s expression handler.

(QS)

This type cast coerces an expression into a quoted string. For example,
assuming the symbol int_val has a value of 0x61626364,

Expression Display_Value (Q S) &int_val

causes int_val to be displayed as "abcd". Note that the expression evaluates to
an address because the (Q S) type cast is semantically synonymous with the C
type cast (char *).

(1A)

This type cast coerces an expression into an instruction address. For example,
assuming the symbol int_val has a value of 0x400,

Breakpt | nstr (I A) int_val
sets an instruction breakpoint at addreg€0x

(H D)

This type cast coerces an expression into a long word (4 bytes) and displays the
value in hexadecimal format. For example, assuming the symbol char_val has
a value of Ox3F,

Expression Display_Value (H D) char_val

will cause char_val to be displayed a®@30003F.

436

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

(HW)

This type cast coerces an expression into a word (2 bytes). For example,
assuming the symbol int_val has the value 0x12345678,

Expression Display_Value (H W) int_val
will cause int_val to be displayed as 0x5678.

(H B)

This type cast coerces an expression into a byte. For example, assuming the
symbol int_val has a value of 0x12345678,

Expression Display_Value (H B) int_val

will cause int_val to be displayed as 0x78.

Scoping Rules

References to symbols follow the standard scoping rules of C. For example, if
the symbol X' is referenced, the debugger searches its symbol table for X using
the following priority:

* Avariable local to the current macro (if any).

» Avariable local to the current function (if any).
» Avariable static to the current module (if any).
» A global variable or debugger symbol.

Referencing Symbols

Symbols are qualified (and therefore referenced) according to their context.
Context in the debugger is defined by a symbol tree and, if applicable, by a
module and function name.

Root Names

Within the debugger, the symbol table is represented as a hierarchical tree,
with each level representing a scoping level. There are two types of symbol
trees which exist within the debugger:

* non-program symbol tree
e program symbol tree

437

Chapter 10: Expressions and Symbols in Debugger Commands

Symbolic Referencing

Note

Non-program symbol tree. This tree is composed of non-program symbols.
Only one non-program symbol tree exists. This tree is made up of:

» debugger symbols (@PC, @SP, etc.)

* macros

» user-defined debugger symbols

The root rmme of this tree i8.

Program symbol tree. The second type of symbol tree is the program
symbol tree. The debugger allows up to 30 program trees. This tree is made
up of symbols which exist in the target program. Since there may be multiple
program trees within the debugger, the root of a program tree is specified as
@absfile\\ where absfile is the name of the executable file with its suffix
stripped. For example, the roceame of theprogram tree associated with the
executable file a.out.xwould be @a_out\\.

Anyembedded "’ characters in a file name are converted to underscores. This
prevents conflicts with the '’ structure operator. For example, the module
name of surce file myfile.bar.c would be myfile_bar.

There is no method for generating a list of multiptegram trees.

If two or more executable files with the same name are loaded, the debugger
appends an underscore and number to one of the files to make theunoag n
unambiguous. For example, loading two a.out.x files would result in the
creation of two program trees, with rocdmes a_out and a_out_1.

Whenever the PC is pointing to the code space of a program, thearmetatf

the program’s symbol tree is tlearrentroot. A shorthand notation for
specifying the current root is the symbdFror example, if the debugger is
invoked without loading an executable file, the current root wouM ldich
would be synonymous with However, once an executable file (a.out.x) is
loaded with the PC set to an address within the executable’s code space, the
current root become®@a_out\\ which would be synonymous with

The reserved symbol "@root" points to a character string representing the
name of theerrent root, and the symbol "@file" points to theame of the file
containing the current PC. These may be empty strings (") if the PC is outside
of any defined symbol database.

438

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

Module Names

The C language does not contain the concept of a module. Within the context
of the debugger, a module is a scoping level which is identical to the scoping
level of a file in C. Module names (which are generated by the compiler), are
derived from source fileames by removing the suffix of thewgce file. For
example, the module name associated with thece file myfile.c would be

myfile. Module names are used to qualify symbol references within the
program symbol tree. When used as such, they are separated from any
following function name by &

Note If files in two directories have the same name, thilynave identical module
names. Since the debuggenpat distinguish between the two modules, all
references will resolve to the last loaded module.

Assembly level modules with multiple code sections. If assembly

language modules have more than one code section, the debugger breaks the
module down into sub-modules. For example, if the source file myfile.s had
three code sections, the modules myfile, myfile_2, and myfile_3 would appear
in the program'’s symbol tree. This module separation only affects the address
ranges of the module, not the scoping, i.e. all symbols scoped under the file
myfile.s would be scoped under module myfile.

Context. Some symbol references are dependent on the current context. See
the examples in the following tables. The current context is based on the PC
and consists of theuerent root, current module, and current function. To
display the current context, execute thenaoand:

Program Context Display Return

Symbolic Referencing With Explicit Roots

Example Comment
Symbol Display Default \\ Display symbols scoped under the non-program
root.

439

Chapter 10: Expressions and Symbols in Debugger Commands

Symbolic Referencing

Symbolic Referencing With Explicit Roots

Example

Symbol Display Default @a_out\\

Symbol Display Default \

Comment

Display symbols scoped under the program root
a_out

Display symbols scoped under the current root.

Symbol Display Default
@a_out\\mod1

Symbol Display Default \mod1

Symbol Display Default
@a_out\mod1\

Symbol Display Default \mod1\
Breakpt Instr @a_out\\mod1\funcl

Breakpt Instr \mod1\funcl

Symbol Display Default
@a_out\\mod1\func1\

Symbol Display Default
\mod1\func1\

Breakpt Access
@a_out\mod1\funcl)j

Breakpt Access \mod1\funcl)j

Display symbol information for moduleodl
scoped under program roatout

Display symbol information for moduleodl
scoped under the current root.

Display symbols scoped under modaied1lin
program roota_out

Display symbols scoped under modaied1lin
the current root.

Set a breakpoint at the entry point to function
funclin modulemodlin program root_out

Set a breakpoint at the entry point to function
funclin modulemodlin the current root.

Display symbols scoped under functifumclin
modulemodlin program roof_out

Display symbols scoped under functifumclin
modulemodlin the current root.

Set a breakpoint on accesses of varigbtmped
under functiorfunclin modulemodlin
program root_out

Set a breakpoint on accesses of varigbtmped
under functiorfunclin modulemodlin the
current root.

440

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

Symbolic Referencing With Explicit Roots

Example Comment

Notes:

The variablenodlmust be a module name.
The variabldunclmust be a function name.
The example pairs are equivalent if the current roat aut

Symbolic Referencing Without Explicit Roots

Example Comment

Symbol Display Default x Display symbol information for all symbols
namedx at any scoping level in any root.

Breakpt Access x Set a breakpoint at thefound using the scoping
rules described in this chapter.

Symbol Display Default x\ Display symbol information for global symbxwl
in the current root and all symbols scoped under
X. X may be a variable, function, or module name.

Breakpt Instr x\#18 Set a breakpoint at line 18 of module

Symbol Display Default x\y Display symbol information for local variabje
in functionx (or functionyin modulex) in the
current context.

Symbol Display Default x\y\ Display symbol information for local variabje
in functionx (or functionyin modulex) in the
current context and for all symbols scoped under
Xy.

Breakpt Access x\y\j Set a breakpoint at local variallim functiony
in modulexin the current root.

Evaluating Symbols

The debugger evaluates symbols in expressions using the rules of the C
language as follows:

441

Chapter 10: Expressions and Symbols in Debugger Commands

Symbolic Referencing

 Function names and labels evaluate to addresses.

» Variables generally evaluate to the contents of the memory location at the
address of the variable (the exception is unsubscripted array names which
evaluate to addresses.)

The examples in the following table show the differences in evaluation of these
symbol types.

Symbol Evaluation Examples

Example

Comment

Breakpt Instr foo

Breakpt Access &i

Breakpt Access a

Breakpt Access a[3]

The symbofoois a function name. The
breakpoint is set at the addres$axf

i is a variable. Therefore, the debugger evaluates
the symbol as the value bfather than the
address off. The & operator causes the
breakpoint to be set on the address of

ais an array. The breakpoint is set at the address
of the first element of the array.

A breakpoint is set at the address specified in
a[3], not the address of a[3].

Breakpt Access &a[3] A breakpoint is set at the address of a[3].

Stack References

When a function is invoked in C, space is allocated on the stack for local
variables. If one function calls another function, all information is saved on
the stack to continue execution when the called function returns. The caller
function is now nested.

You can reference variables and functions on the stack implicitly or explicitly.

Implicit Stack References

The default compiler setting allocates storage for all local variablesin a C
program in registers, if sible. Variables that naot be stored in registers
are allocated storage on the stack. With the debugger, you can implicitly
reference variables on the stack as follows:

442

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

» To refer to variables on the stack in the current function, specify the name
of the variable. For example:

» Torefer to alocal variable in a nested function, specify the function name
followed by a backslash and then the name of the local variable, for
examplemain\i

Explicit Stack References

A function is allocated storage on the stack when it is executing, or when it has
called another function. To refer to functions and variables on the stack
explicitly, you must specify the function’s nesting level preceded by a
commercial at sign (@). The backtrace window in high-level mode displays
nesting level information (for example, if the current function is @O0, llisga
function is @1, etc.). You mayreference functions on the stack as follows:

» Torefer to the address that the function will continue to execute from,
specify the function nesting level preceded by an at sign (@). For
example, the commarRrogram Run Until @ Bxecutes the program until
the current function returns to its caller.

* To refer explicitly to a local variable in a nested function, specify the
function nesting level followed by a backslash and then the name of the
variable. For example, the commalxbression Display Value @ 3\str
references the local variable 'str’ of the function at nesting level 3.

e Toreference a function itself, enter the command Program Context
Expand followed by a space and then the function nesting level. For
example, the commarRfogram Context Expand @displays all
information about the function at the specified level for that particular
invocation. This information includes the name of the function, the
current line number, and all local variables in the function and their
values. See the Program Context Expand command syntax description in
the "Debugger Commands" chapter for more information.

443

Chapter 10: Expressions and Symbols in Debugger Commands
Symbolic Referencing

444

11

Predefined Macros

445

Predefined Macros

Predefined macros are provided with the debugger. These predefined macros
provide commonly used functions to help in debugging your program. The
predefined macros available for your uselated in the “Predefined

Debugger Macros” table and are described on the following pages.

The following predefined debugger macros provide services to the SIMIO
system and internal debugger functions. They are not designed for use by the
debugger user. These namélslve displayed if you check the debugger’s
predefined macro list using the Symbol Displagncoand:

bbaunload
hpsimio
hp_redirect
hpnosimio
hpioctl
hpeofkbd
hpioreport
hpsimlock
quit_debugger

446

Chapter 11: Predefined Macros

Predefined Debugger Macros

Macro

break_info
byte

call
close
dword
error
fgetc
fopen
getsym
inport
isalive
key get
key_ stat
memchr
memclr
memcpy
memset
open
outport
read
readp
reg_str
showversion
strcat
strchr
stremp
strcpy
stricmp
strlen
strncmp
until
when
word
write
writep

Description

Display information about a breakpoint

Return a byte value at the specified address

Call target function (not supported in this product)
Close a UNIX file

Return a long value at the specified address

Display error message

Reads character from file

Open a file and associate it with a user window

Return the symbol associated with an address, if any
Advance the input data from its source

Check the status of the specified symbol

Get (read) a key from the keyboard

Check keyboard for availability of key

Search for character in memory

Clear memory bytes

Copy characters from memory

Set the value of characters in memory

Open a UNIX file for reading and/or writing

Write a value to the simulated memory-mapped outport port
Read from a system file

Read from an 1/0O port (not implemented in this product)
Get the register value using the register name in the string
Show the software version number for the debugger product
Concatenate two strings

Locate first occurrence of a character in a string
Compare two strings

Copy a string

Comparison of two strings without case distinction
String length

Limited comparison of two strings

Run until expression is true

Break when expression is true

Return a word value at the specified address

Write to a system file

Write to an 1/O port (not implemented in this product)

447

Chapter 11: Predefined Macros
break_info

break_info

Function

Return information about a breakpoint

Synopsis

int break_info (addr)
unsigned long *addr;

Description

The break_info macro returns the address and type of a breakpoint if it is
called when a breakpoint is encountered. The macro returrd2tbi¢
representation of the breakpoint address used by the debugger and the
following values for breakpoint type:

-1 The cause of the breakpoint is unknown.

0 A breakpoint did not cause this macro call.

1 The breakpoint was caused by a read from the address.

2 The breakpoint was caused by a write to the address.

3 The breakpoint was caused by an access (read/write status

unknown) of the address.

4 The breakpoint was caused by an instruction breakpoint.

Diagnostics

None.

448

Chapter 11: Predefined Macros

Example

If you have the following code segment:
main()

auto i,j,k;
i=1;
j=3;
k=i+]j;

and you execute the following command file:

Debugger Macro Add int print_info()

unsigned long address;
int reason;

reason = break_info(&address);

$Expression Printf "Breakpoint at %8x. Reason: %d\n",
address,reason$;

return(1);

Program Run Until main
Program Step

Breakpt Read &i;print_info()
Breakpt Write &k;print_info()
Breakpt Access &j;print_info()
Program Run

break_info

the debugger will display the breakpoint address and type value iautregj

window.

449

Chapter 11: Predefined Macros
byte

byte

Function

Return a byte value at the specified address

Synopsis

unsigned char byte (addr)
void *addr;

Description

The byte macro returns a byte value of themory contents at the specified
address. The value of the expressaldris computed and used as the address.

Diagnostics

The byte value of the memory contents at the specified address is returned.

450

Chapter 11: Predefined Macros
close

close

Function

Close a UNIX file

Synopsis

int close(fildes)
int fildes;

Description

The close macro closes a UNIX file. This macro is an interface to the UNIX
system caltlose(2) Refer to theHP-UX Reference Manuébr detailed
information.

Diagnostics

If the system call to close(2) is successful, 0 is returned. Otherdvise,
returned and a system generated error message is written to the journal
window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses close().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int close_files(infile, outfile)
int infile; /* file descriptor to close */
int outfile; /*file descriptor to close */

/* close input file */
infile = close(infile);
if (infile == -1)
return 0; /* close failed */

/* close output file */
outfile = close(outfile);
if (outfile == -1)
return 0; /* close failed */

return 1; /* both files were closed successfully */

451

Chapter 11: Predefined Macros
dword

dword

Function

Return a long value at the specified address

Synopsis

unsigned long dword (addr)
void *addr;

Description

The dword macro returns a LONG (4-byte) value ofriteanory contents at
the specified address. The value of the expressilonis computed and used
as the address.

Diagnostics

The LONG value of the memory at that address is returned.

452

Chapter 11: Predefined Macros
error

error

Function

Display error message

Synopsis

void error(level, text, parm)
int level;

char *text;

long parm;

Description

The error() macro is used to display error messages due to errors generated
within macroslevelmust have a value of 1, 2, ont&xtis a string which can
contain one %d format character, whpeem is the associated integer value.

levelcan be used to indicate the severity of the error by its value. The following
explains the values available fievel and the associated action taken by
error().

1 textis displayed in the journal window.

2 textis displayed in the journal window and the macro halts program
execution.

3 An error box pops ugextis displayed within the box, and the macro halts
program execution.

453

Chapter 11: Predefined Macros
fgetc

fgetc

Function

Reads character from file

Synopsis

int fgetc(vp_num)
int vp_num;

Description

The macro fgetc() returns the next character in the file associated with the
window number vp_num. The window number must be a result of the File
User_Fopen command. The value -1 isiraed on end of file.

454

Chapter 11: Predefined Macros
fopen

fopen

Function

Open a file and associate it with a user window

Synopsis

int fopen(vp_num, filename, mode)
int vp_num;

char *filename;

char *mode;

Description

The macro fopen() opens a file and associates it with a user-defined window.
This macro is equivalent to the File User_Fopen debugger comifiiandme

is the name of the file to be openetbdeis a string that specifies the mode in
which the file is opened. Valid modes are:

“r Open file for reading only

W Open file for reading and/or writing (existing file contents
are erased)

a" Open file for appending

Diagnostics

If successful, a window number is returned. The error eBdéndicates that
the window is already open or that the window number is out of range. Th
error code 101 is retirned for other errors; for example, if the file to be rea
does not exist.

455

Chapter 11: Predefined Macros

getsym

getsym

Function

Return the symbol associated with an address, if any exists

Synopsis

char *getsym (addr)
void *addr;
Description

The getsym macro returns, as a character string, the symbol associated with the
address argument. The address argument must coincide with the symbol
address for the macro to return the symtaohe; the macroinot return a

symbol name if the symbolarage space starts elsewhere but spans the
argument address.

Diagnostics

Returns the symbolame associated with the address, if one exists; otherwise,
it returns a null string.

Example

Symbol Add foo <tab> Address 0x1000

Expression Printf "%s", getsym (0x1000)
foo

456

Chapter 11: Predefined Macros
inport

inport

Function

Advance the input data from its source

Synopsis

unsigned long inport (addr, size)
void *addr;

unsigned size;

Description

The inport macro moveszebytes of data into the port address specified by
addrwhen the macro is executed. The valusipécan be 1, 2, or 4. This macro
allows inport buffers to receive new data from the defined source. The action
is equivalent to the target program reading from the inport whithdvance

the input source.

If no inport exists at the port addregslueis read from the the journal
window.

If a port exists at the port addregalueis read from the source specified when
the inport was created.

Diagnostics

If an error occurs, inport returns a O; if inport completes normally, it returns a
1.

Example

Memory | nport Assign Byte3 Source Is Data_String
"Hello"

Debugger Macro Call inport(3, 1)
Memory | nport Show 3

Note howH has been moved into the inport.

457

Chapter 11: Predefined Macros

isalive

isalive

Function

Check the status of a specified symbol

Synopsis

int isalive (symbol_name)
void symbol_name;

Description

The isalive macro can tell you whether a symbol is defined, and additionally if
it currently active or available on the stack.

Diagnostics

Returns one of the following four values, depending on the status of the
symbol:

Value Meaning

-1 Symbol does not exist

0 Symbol not currently active (cannot be referenced)

1 Symbol currently active (part of the local procedure)

2 Symbol available on the stack (not part of the local procedure)
Example

Symbol Add foo <tab> Address 0x1000

Expression Printf "%i", isalive(foo)
1

because symbol is defined and active

458

Chapter 11: Predefined Macros
key get

key get

Function

Get a key from the keyboard
Synopsis
unsigned short key_get()

Description

The macro key_get() reads a key from the keyboard. It returns only after a key
is available. The return value is the value of the key.

459

Chapter 11: Predefined Macros
key stat

key stat

Function

Check keyboard for availability of key

Synopsis

unsigned short key_stat()

Description

The key_stat() macro checks the keyboard to see if a key is available to read. It
returns 0 if no key is available. The first pending key is returned if any keys are
available.

Diagnostics

The value -1 is returned if the macradga

460

Chapter 11: Predefined Macros
memchr

memchr

Function

Search for character in memory

Synopsis

char *memchr (strl, byte_value, count)
char *strl;

char byte_value;

unsigned count;

Description

The memchr macro locates the charabyge valuen the firstcountbytes of
memory areatrl.

Diagnostics

The memchr macro retns a pointer to the first occurrence of character
byte_valuen the firstcountcharacters in memory arefil. If byte valuedoes
not occur, memchr ratns a NULL pointer. For debugger variables, -1
(OXFFFFFFFF) is retrned ifbyte_valueloes not occur.

461

Chapter 11: Predefined Macros
memclr

memclr

Function

Clear memory bytes

Synopsis

char *memclr (dest, count)
char *dest;
unsigned count;

Description

The memclr macro sets the figiuntbytes in memory aredestto zero.

Diagnostics

The memclr macro raetnsdest

462

Chapter 11: Predefined Macros
memcpy

memcpy

Function

Copy characters from memory

Synopsis

char *memcpy (dest, src, count)
char *dest,

char *src

unsigned count;

Description

The memcpy macro copiesuntcharacters from memory arsato dest

Diagnostics

The memcpy macro retnsdest

463

Chapter 11: Predefined Macros
memset

memset

Function

Set the value of characters in memory

Synopsis

char *memset (dest, byte_value, count)
char *dest;

char byte_value;

unsigned count;

Description

The memset macro sets the ficeuntcharacters in memory ardastto the
value of charactebyte_value

Diagnostics

The memset macro netnsdest

464

Chapter 11: Predefined Macros
open

open

Function

Open a UNIX file for reading and/or writing

Synopsis

int open(path,oflag)
char *path;
int oflag;

Description

Theopen()macro opens a UNIX file, returning an UNIX file descriptuath
is the name of the file to be openeflagis the mode in which the file will be
opened. The possible modes maydoenfd in the header file
{usrfinclude/fentl.hSome useful modes are:

read only
write only
read/write
no delay
append
create 256 (HP-UX) or 512 (SunOS)
truncate 512 (HP-UX) or 1024 (SunOS)

o A~ADNEFO

These modes may be combined be adding the appropriate values together.

This macro is an interface to the UNIX system oakn(2) Refer to the

HP-UX Reference Manu&r detailed information. .
Diagnostics

If the system call to open(2) is successful, the system file descriptor is
returned. Otherwisel is returned and a system generated error message is
written to the journal window of the debugger.

465

Chapter 11: Predefined Macros
open

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses open().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int open_files(infile, outfile)
char *infile; /* file to read from */
char *outfile; /* file to write to */
{

/* open input file in read only mode */

infile = open(infile, 0);

if (infile == -1)

return O; /* open failed */

[* create output file in read/write mode */
outfile = open(outfile, 258);
if (outfile == -1)

return O; /* open failed */

return 1; /* both files were opened successfully */

466

Chapter 11: Predefined Macros
outport

outport

Function

Write a value to the simulated memory-mapped outport port

Synopsis

char outport (addr, size, value)
void *addr;

unsigned size;

long value;

Description

The outport macro movesizebytes of the dataaluefrom the port specified
byaddr. sizecan be 1, 2, or 4. The action of this macro is equivalent to the
target program writing to the outport destination.

If no outport exists at the port addresslueis written to the journal window.

If a port exists at the port addregalueis written to the destination specified
when the outport was created.

Diagnostics

If an error occurs, outport returns a 0; if the macro ends normally, it returns a
1.

Examples

Memory CQutport Assign Byte 3 Destination_lIs File
"tmp/junk"

Debugger Macro Call outport(3,1,'h’)

Memory CQutport Show 3 /* Note the outport contains 'h’
*/

Debugger Host_Shell cat /tmp/junk /* Note file
contains 'h’ */

467

Chapter 11: Predefined Macros

read

read

Function

Read from a system file

Synopsis

int read(fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

The read macro reads from a system file. This macro is an interface to the
UNIX system calread(2). Refer to theHP-UX Reference Manu#br detailed
information.

Diagnostics

If the system call to read(2) is successful, the number of bytes read is returned.
Otherwise;1is returned and a system generated error message is written to
the journal window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses read().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int foo(infile, outfile)
int infile; /*file descriptor to read from */
int outfile; /*file descriptor to write to */

char buf[80];

while (fread(infile, buf, 80))
write(outfile, buf, 80);

468

Chapter 11: Predefined Macros
reg_str

reg_str

Function

Get register value

Synopsis

unsigned long reg_str(strl)
char *strl;

Description

The reg_str macro gets the contents of a register using a string variable
representation of its name. This is nosgible using standard debugger
commands. The register value isugted by the macro.

Diagnostics

If the string does not contain a valid register name, an unknown vélbe w
returned and the debuggeitiwisplay an €ror message in the debugger error
window.

Examples
To display the value of register DO:

Symbol Add char reg_name[10]
Debugger Macro Call strcpy(reg_name,"@D0")
Expression Display_Value reg_str(reg_name)

or,

Expression Display_Value reg_str("@D0")

or,

Expression C_Expression reg_str("@D0")

469

Chapter 11: Predefined Macros
showversion

showversion

Function

Show the software version number for the debugger product
Synopsis
void showversion ()

Description

The showversion macro lists the software version numbewofor gebugger
product.

470

Chapter 11: Predefined Macros
strcat

strcat

Function

Concatenate two strings

Synopsis

char *strcat (dest, src)
char *dest, *src;

Description

The strcat macro appends a string to the end of another string. The string in
srcis appended to the stringdiestand a pointer tdestis returned.

Diagnostics

No checking is done on the sizedufst

471

Chapter 11: Predefined Macros

strchr

strchr

Function

Locate first occurrence of a character in a string

Synopsis

char *strchr (strl, byte_value)
char *strl;
char byte_value;

Description

The strchr macro returns a pointer to the first occurrence of the character
byte_valuen the stringstrl, if byte_valueoccurs instrl

Diagnostics

If the charactebyte_valuas not found, strchr returns a NULL pointer. For
debugger variables, -1 (OXFFFFFFFF) isureted ifbyte_valueloes not occur.

472

Chapter 11: Predefined Macros
strcmp

strcmp

Function

Compare two strings

Synopsis

unsigned long strcmp (strl, str2)
char *strl,
char *str2;

Description

The strecmp macro compares strings in lexicographic order. Lexicographic
order means that characters are compared based on their internal machine
representation. For example, because an ASCII ‘A’is 41 hexadecimal and an
ASCII B’is 42 hexadecimal, 'A’is less than 'B".

The stringsstrl andstr2 are compared and a result is returned according to the
following relations:

relation result

sl< s2 negative integer
sl= s2 zero

sl> s2 positive integer

Diagnostics

Strings are assumed to be NULL terminated or to be within the array
boundaries. The comparison is always signed, regardless of how the strin
declared.

473

Chapter 11: Predefined Macros
strepy

strcpy

Function

Copy a string

Synopsis

char *strcpy (dest, src)
char *dest,
char *src;

Description

The strcpy macro copiescto destuntil the NULL character is moved.
(Copying from the right parameter to the left resemblessaigmment
statement.) A pointer tdestis returned.

Diagnostics

No checking is done on the sizedufst

474

Chapter 11: Predefined Macros
stricmp

stricmp

Function

Comparison of two strings without case distinction

Synopsis

unsigned long stricmp (strl, str2,)
char *strl;
char *str2;

Description

The stricmp macro comparesl with str2 without case distinction. This
means that the strings "ABC" and "abc" are considered to be identical.

The stringsstrl andstr2 are compared and a result is returned according to the
following relations:

relation result

sl< s2 negative integer
sl= s2 zero

sl> s2 positive integer

Diagnostics

Strings are assumed to be NULL terminated or to be within the array
boundaries because the comparison is limited to the number of stated
characters. The comparison is always signed, regardless of how the string
declared.

475

Chapter 11: Predefined Macros
strlen

strlen

Function

String length

Synopsis

unsigned long strlen (strl)
char *strl;

Description

The strlen macro returns the length of a string. It returns the lengtti,of
excluding the NULL character.

Diagnostics

If strlis not properly terminated by a NULL character, the length returned is
invalid.

476

Chapter 11: Predefined Macros
strncmp

strncmp

Function

Limited comparison of two strings

Synopsis

unsigned long strncmp (strl, str2, count)
char *strl;

char *str2;

unsigned count;

Description

The strncmp macro compares strings in lexicographic order. Lexicographic
order means that characters are compared based on their internal machine
representation. For example, because an ASCII ‘A’is 41 hexadecimal and an
ASCII B’is 42 hexadecimal, 'A’is less than 'B".

Thecountin the synopsis above specifies the maximum number of characters
to be compared.

The stringsstrl andstr2 are compared and a result returned according to the
following relations:

relation result

sl< s2 negative integer
sl=s2 zero

sl> s2 positive integer

Diagnostics

Strings are not required to be NULL terminated or to fit within the array
boundaries because the comparison is limited to the number of stated
characters. Less thawwuntcharacters will be compared if the strings are
smaller tharcountcharacters. The comparison is always signed, regardless of
how the string is declared.

477

Chapter 11: Predefined Macros

until

until

Function

Run until expression is true

Synopsis

char until (boolean)
int boolean;

Description

The until macro returns a zero whiesoleanis nonzero. The Until macro is

used with the Program Run and Program Step With_Macro commands. It
halts execution when the expression passed is true, and continues when the
expression passed is false. Any C expression resulting in a value may be used.

Example

Program Run Until #3 #17 ,printf ;until (i==3 || X <)

The command above sets tganary breakpoints at line numbers 3 and 17 in
the current module and at entry to the funciaintf. When any one of these
locations is encountered by the executing program, the debuijgeiow and
check theuntil conditional statements. If the variablie equal to 3, or the
variablexis less thaly, a break will occur. Otherwisprogram execution
continues.

478

Chapter 11: Predefined Macros
when

when

Function

Break when expression is true

Synopsis

char when (boolean)
int boolean;

Description

The when macro returns a zero whemleanis nonzero; it returns a one
whenbooleanis zero. This macro is used with the Breakpt Instr command.
When used with this commangkogram execution #halt when the stated
expression is true, and will continue when the stated egune is false. Any C
expression resulting in a value may be used.

Example

Breakpt | nstr strcpy;when(*str==0)

This command sets a breakpoint at the entry point ofdh&nestrcpy Each
time the breakpoint occurs, the when macro is executed. The macro causes
program execution to stop when the byte pointed tsthiy zero.

479

Chapter 11: Predefined Macros
word

word

Function

Return a word value at the specified address

Synopsis

unsigned short int word (addr)
void *addr;

Description

The word macro returns a WORD (2-byte) value ofrtteamory at the
specified address. The value of the expresaudris computed and used as
the address.

Diagnostics

The WORD value of the memory at that address is returned.

480

Chapter 11: Predefined Macros
write

write

Function

Write to a system file

Synopsis

int write(fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

The write macro writes to a system file. This macro is an interface to the
UNIX system callwrite(2). Refer to theHP-UX Reference Manu#dr detailed
information.

Diagnostics

If the system call to write(2) is successful, the number of bytes written is
returned. Otherwisel is returned and a system generated error message is
written to the journal window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses write().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int foo(infile, outfile)
int infile; /*file descriptor to read from */
int outfile; /*file descriptor to write to */

char buf[80];

while (fread(infile, buf, 80))
write(outfile, buf, 80);

481

Chapter 11: Predefined Macros
write

482

12

Debugger Error Messages .

A list of the eror messages generated by the debugger.

483

Chapter 12: Debugger Error Messages

The debugger displays the error window whenever it detectsimeod eror.
The debugger displays an error message and a pointer to the location where it
detected the error.

This chapter lists and describes theoe messages and warninigsued by the
debugger. These errors dited numerically with possibleer solutions.

484

Chapter 12: Debugger Error Messages

4 Invalid characters follow command.

A command was entered with mrcect characters or with more characters
than were expected. Check the command name and re-enter the command.

5 This command is not implemented yet.

The command specified isirently not supported, butibhbe implemented in
a later release.

6 Unknown switch.

An attempt was made to specify a switch that does not exist. Check the
command syntax for the switchagported.

7 Argument missing.

A command was enteredtout an argument that is required to execute the
command. Check the syntax description for the command and enter the
command again with theerect argument specification.

8 Invalid argument.

The argument specified is not valid for this command. Check command syntax
and re-enter the command with a valid argument.

9 Unexpected separator encountered.

The argument separator is not valid in this context. Check the syntax and enter
the correct separator.

10 Unknown expression character.

The specified expression character is not recognized by the debugger. Check
the syntax and enter the correct egsien character.

11 Missing’) ’,’] ’, or '} "in expression.

The matching right parentheses, right bracket, or right curly brace in the
specified expression is missing. Check the expression and adppiopaiate
right delimiter.

485

Chapter 12: Debugger Error Messages

12

13

14

15

16

17

18

Missing’(’,'[’, or "{ "in expression.

The matching left parentheses, left bracket, or left curly brace in the specified
expression is missing. Check the expression and adggrepriate left
delimiter.

Missing end quote.

The second quotation mark for a character string is missing at the end of the
line. Terminate the character string with an ending quotation mark.

Invalid expression element.

An expression element was specified incorrectly. The error windibdisplay

the expression specified and place a pointer at the position where the invalid
element is located. Check the syntax description and re-enter the command.
Possible erors include: invalid value, issing operand, missing operator, and
unknown operand combination.

Invalid filename.

The filename specified could not be created. Valid filenames are dependent
upon your host computer system.

Invalid line number.

The line number specified is not valid. Line numbers must be preceded with a
pound sign#), and must be in a valid range. This errdlt @ccur if you enter
a pound sign followed by zero or if you enter a pound sign without a number.

Invalid address value.

This error indicates that a value was used for an address that cannot be
interpreted as an address (for instance, a floating point number).

Invalid structure member.

A member name was given that is not a member of the spedifiediige.
Member names must be members of the specifiedttsire.

486

19

20

21

22

23

24

25

Chapter 12: Debugger Error Messages

Invalid instruction address.

This error occurs mainly in high-level mode. In high-level mode, this error will

occur if the instruction address is not a functi@me or line number. Code

addresses in high-level mode may not be numeric or expressions. In
assembly-level mode, most instruction address values are legal.

Invalid port value.

The specified port does not exist, or the port value was not specified with the

Memory Inport Assign conmand. Port values must be specified with the

Memory Inport Assign canmand.

The values are not correct for this expression.

An attempt was made to use an operand type that is not allowed for this
operator. Operators must match operands according to the C language

specifications.

Upper bound less than lower bound.

An attempt was made to specify a lower bound that is greater than the upper

bound. The upper bound must be greater than the lower bound.

Upper bound missing.

An attempt was made to specify a lower bound without an upper bound. The

upper bound must be specified.

Function symbol ranges not allowed.

An attempt was made to specify a range from one function to another in

high-level mode. Function to line number is allowed.

Range not of addresses.

A print command was entered, but the specified range contained a value
instead of an address. Place an ampersahdé¢fore the symbol name in the

range.

487

Chapter 12: Debugger Error Messages

26

27

28

29

30

31

32

33

Invalid screen specification.

The command entered contains a screen specification that does not
correspond to the screen where the specified window is located, or the
specified screen does not exist. The screen number should be verified.

Invalid window specification.

You tried to create or alter the size of a window, but the screen number,
window number, or size coordinates wélkegal. See the Window Open
command for valid window specifications.

Invalid cast. Must use format '(type)".

This error indicates that type casting was attempted outside of arssigpre
or without being enclosed in parentheses. Types can only be used in
expressions as casts, and must be enclosed in parentheses.

Unknown special key.

A key was pressed that the debugger does not recognize.

Start line invalid.

The starting line for the Program Find_Sourceotand may be omitted, or
may be any valid line optionally within a module.

Invalid exception vector.

You tried to specify an exception vector that is invalid. In a Program Interrupt
Add command, the optional exception vector must be in the range @5%t0

Invalid trace speed.

An attempt was made to specify a step speed with the debugger Option
General Step_Speed command that is not in the valid range. Tracing speed
ranges from 0 to 100.

Must be ON or OFF.

An attempt was made to specify an invalid argument with an option. Options
can be switched to ON or OFF.

488

34

35

51

52

53

54

55

56

Chapter 12: Debugger Error Messages

Cannot divide by zero.

An attempt was made to divide by zero within an expression of Expression
Display_Value or Expression C_Expression.

This feature not available in this version.

This command cannot be used in this mode.

A command that is noupported in the current mode wasued. The
Program Display_Source eonand is onlyspported in high-level mode, and
the Memory Display Mnemonic command is onkpported in assembly-level
mode.

Switches cannot be used together.

Two switches of the same group were given. Only one switch per group may be
specified.

Invalid switch given for this command.

The specified qualifier is not associated with the specified command. Check
the command syntax and re-enter the command.

Value too large.

A value that is out of range was specified. Values must be in the valid range for
the command.

Instruction expressions are invalid in this mode.

An expression was used for a code address in high-level mode. Only a single
line number or function symbol may be used in high-level mode.

Module not found.

The specified module name does not exist. Specify a valid module name.

489

Chapter 12: Debugger Error Messages

57 Line number not found.

The line number specified does not exist in the current module. If the line
number exists in a different module, the module name must be specified.

58 Symbol not found.

The symbol name was enteredanectly, or the symbol does not exist. The
symbol name may have been mistyped.

59 Macro not found.

The specified macro has not been defined, or an invalid macro name was
entered. Check the macro name, or define the macro and re-enter the macro
name.

60 File not found.

The specified file does not exist in the current directory, or in the search
directories. Check the current directory for the fdere that was specified. A
typing error may have occurred.

61 Structure member not found.

The specified structunmember does not exist in the specifiedisture.
Check the structure definition for timeember that was specified. A typing
error may have occurred.

62 Numeric addresses not allowed in this mode.

An attempt was made to specify an invalid address value.

63 Line numbers from different modules.
Line numbers from different modules were specified. Only one module
specification may be given.

65 Port input does not come from file or string.

You cannot rewind an input port that does not get its input from a file or a
string.

490

66

67

68

69

70

71

72

73

Chapter 12: Debugger Error Messages

Port output does not go to a file.

Only port output directed to a file may be rewound with the Memory Port
Rewind Output command.

This breakpoint is already set.

An attempt was made to set a breakpoint that already exists. The current
breakpoint must be deleted before it can be reset.

Port value not found.

A port was specified that has not been created with the Memory IngsigrA
or Memory Outport Asign caonmand.

Address in range already specified as Read_Only or Guarded.

An address that was previously specified with a Memory Map Read_Only or
Memory Map Guarded command was specified. Memory Map Read_Only and
Memory Map Guarded commands can only act on Write_Read areas.

Arguments do not match any Read_Only or Guarded area.

The arguments specified with a Memory Map Write_Read command do not
match the corresponding Memory Map Read_Only or Memory Map Guarded
command. The arguments must match exactly. Entering a Memory Map Show
command gives a map of Read_Only and Guarded areas.

Address range contains unacceptable breakpoints.

An illegal breakpoint was specified.

Bad size specification for window.

An illegal size specification was given for a window. See the Window New
command for thearrect size specifications.

Cannot repeat a cycle count of zero.

A Program Interrupt Add comand qualifier canot request that an interrupt
occur every zero cycles; this would cause an infinite loop.

491

Chapter 12: Debugger Error Messages

74

75

76

77

78

79

80

81

82

Invalid level number. Must be 1to 7.

The Program Interrupt Add oomand, as well as tH8000 family of
microprocessors, permit 7 levels of interrupts.

Attempt to delete nonexistent breakpoint(s).

You tried to clear a breakpoint that was not previously set. Check that the
breakpoint was set, or not already cleared.

Symbol not available from this scope unreferenced.

You must reference the symbol with a qualified function or module name.

Symbol with this name already exists.

You tried to define a symbol that was previously defined. Another name
should be used.

Cannot create this symbol.

An error occurred when trying to create the symbol. Check that it is valid as a
symbol name.

Symbol is not a module.

An attempt was made to enter a symbol when a module was expected.

Invalid stack level.

This error indicates that a stack level was specified that is greater than the
current stack nesting.

Not a source function.

An attempt was made to enter an illegal function with the Program Context
Set command. The Program Context Set command requires either a module
name or agurce procedureame.

Cannot delete this symbol.

Registers and predefined symbols cannot be deleted.

492

83

84

91

92

93

94

95

96

Chapter 12: Debugger Error Messages

Invalid processor name.

This error indicates that you specified a processor other than one supported by
your debugger. See your user’s guide ftisiaof supported microprocessors.

Breakpoint limit exceeded.

The number of breakpoints allowed has been exceeded. This breakpoint has
not been set.

Internal command/expression processor error.

An internal memory error has occurred.

Not enough memory for expression.

The expression specified requires more memory than there is available. Try
clearing breakpoints or deleting macros to obtain more memory.

Invalid memory/register address.

An attempt was made to read or write to inaccessible targatory. Target
memory that is protected cannot be read from or written to.

Source is not available for this module.

An attempt was made to access source code in an assembly language module.
Use the Debugger Level command or B8function key to switch to
assembly-level mode to display this module.

Cannot build source table.

There is not sufficient memory available to build the source table for source
display.

Cannot read absolute file.

An attempt was made to load a file that is not an absolute object module.
code may need to be compiled, assembled, or linked.

493

Chapter 12: Debugger Error Messages

97

98

99

100

101

102

103

104

Cannot build disassembly table.

There is not sufficient memory available to build the disassembly table for
up-arrow and page-up support in the disassembler.

Cannot split monitor lines.

An attempt was made to monitor different elements on the same line. Only
one element per line may be monitored.

No empty lines available.

An attempt was made to specify a line number with the Expression Monitor
Value command, but the entire window is alrealdlyd. The number of lines

in the data window is limited to 17. Use the Expression Monitor Delete
command to delete some of the lines.

No available windows.

This error indicates that the numbers allocated for user-defined windows have
all been used. Some windows must be deleted before creating another
user-defined window.

Cannot open file.

An attempt was made to open a file that does not exist.

Local variable not alive.

A local variable was specified, but the function containing the variable is not
active (current or nested).

No source level information available.

The source file for the specified source module cannot be found.

Alog or journal file is already open.

An attempt was made to open a new log file when one is already in use. Close
the existing log file with the File Log Off command before opening a new log
file.

494

Chapter 12: Debugger Error Messages

105 Not a color monitor.

106 Not enough memory.
This error indicates that not enougiemory was available for the specified
command.

107 Terminated when processing absolutelé.
This error indicates that an invalid control value was encountered in loading
the ".x"file.

108 At start of function, no local variables yet.

This error indicates that arguments and local variables are not available to the
debugger at this time. They are available when the prolog to the function has
been executed.

109 Local already defined.

This error indicates that a local variable has been defined twice in a macro
definition. One definition of the variable must be deleted.

110 This argument not defined.

This error indicates that an argument was declared that was not defined on the
command line with the Debugger Macro Add command.

111 This macro is in use already.

Macros cannot be called recursively.

112 This is not allowed outside of a macro.

Keywords are allowed in macros only.

113 Cannot begin execution from a macro.

Program Run, Program Step With_Macro, Program Step, and Program Step
Over are not allowed from within macros. The PC may be altered with the
Memory Register @PC= command.

495

Chapter 12: Debugger Error Messages

114

115

116

117

118

119

121

122

123

This command not allowed from a macro.

Some commands are not allowed from a macro, such as Debugger Host_Shell
and Debugger Macro Add.

Invalid float expression, results in NAN.

A floating point expression resulted in a non-number.

Cannot convert float value.

Float value is too large to convert to an integer.

Help file unavailable.

This error indicates that the help file, "db68k.hlp", was not found.

Unsupported float type.

A floating point type other than 32 or 64 bit has been defined.

Cannot get address of register or constant.

An attempt was made to find the address of a register or constant. One
example is: Expression Display_Value &@al.

Cannot open command file for reading.

This error indicates that themwonand file specified eemot be found.

Include file name too long.

This error indicates that the filame specified (including its pathname) is too
long to be handled by the debugger’s internal buffers. Limit the number of
characters in the filename specification, or move the file to the default
directory.

Could not read source line.

This error indicates that there was an error reading the C source file.

496

Chapter 12: Debugger Error Messages

124 Cannot create file for logging.

This error indicates that there was an error when trying to create the specified
log file or that the current directory does not have write p&sion.

125 Write error occurred while writing to a file.

This error indicates that the disk is probably full.

126 Cannot open startup file < startupfile> .

This error indicates that the debugger could not open the specified setup file.
The filename may have beensspelled, or the filemme does not exist.

127 Invalid number of arguments for macro.

This error indicates that an incorrect number of arguments was specified in
the call or too many parameters were used in the macro definition.

128 Cannot show built-in macros.

This error indicates that predefined macros cannot be shown with the
Debugger Macro Display command. They have no text.

129 Runtime error in macro.

This error indicates that an error occurred when executing a macro.

130 Command not implemented in simulator version.

This error indicates that themmnand enteredilnot work in this version of
the debugger.

131 ‘option chip"not implemented in this version.
This error indicates that "option chipflwot work in this version of the
debugger.

132 Breakpoint adjusted.

This error indicates that the breakpoint has been moved to an address at the
start of an instruction. See the Debugger Option General Align_Bmend
syntax description in the "Debugger Commands" chapter.

497

Chapter 12: Debugger Error Messages

133 Error return from child process.

This error indicates that an error was returned when interacting with the host
system through the Debugger Host_Shetfhotand.

134 This command cannot be executed from batch mode.

This error indicates that themmnand enteredilvnot work in batch mode.

135 No search string available.

The command Program Findo@ce Next was entered without previously
entering the Program Find_Source Occurrenceroand.

136 Cannot open file for logging; file in use for commands.

The file specified for logging is currently open and being used to read
commands from. Boose anotherame for the log file.

137 Cannot open file for logging; file in use for logging.

The file specified to read commands from is open and being used as a log file.
Turn off logging with the File Log OFF aomand or hoose anotherame for
the command file.

141 Miscellaneous error.

This is a message from the emulator which was not processed by the debugger.
All available error information is displayed on the screen. Anyone of a
number of error messages may be displayed on your screen.

One possiblergor message is:
No valid BBA spec file for< processor>processor

You must have the HP Branch Validator product for your processor installed
on your system in order to use the Memory UnldBIA command.

142 Miscellaneous warning.

This is a message from the emulator which was not processed by the debugger.
All available warning information is displayed on the screen. Anyone of a
number of warning messages may be displayed on your screen.

498

Chapter 12: Debugger Error Messages

143 Miscellaneous note.

This is a message from the emulator which was not processed by the debugger.
All available information is displayed on the screen. Any one of a number of
notice messages may be displayed on your screen.

144 Miscellaneous fatal error.

All available fatal error information is displayed on the screen. The debugger
will then quit.

145 Too many interrupts pending.

Too many Program Interrupt ecomands have been giventiwut a sufficient
number of interrupts being processed. The current limit on pending interrupts
is 16.

146 Voids have no value.

This error message is returned when certamroands are attempted on voids.

147 Invalid suboption.

This suboption does not work with this command. Refer to the "Debugger
Commands" chapter of this manual for valid suboptions for various commands.

148 Invalid option.

This option does not work with this command. Refer to the "Debugger
Commands" chapter of this manual for valid options for various commands.

149 No temporary breakpoints for the macro.

The command Program Run From < addr> ;< macratbreturn this error
because a temporary breakpoint has not been specified.

150 Invalid type for this argument, expecting a target address.

The command was expecting an address. Re-enter the command with a target
memory address.

499

Chapter 12: Debugger Error Messages

151

152

153

154

155

156

157

159

Invalid type for this argument, expecting a number.

The command was expecting a number. Re-enter the command with a number.

Cannot delete: more than one symbol with this name.

Multiple symbols with the same name exist. More fully qualify the symbol to
make it unique and then retry the command.

Cannot save into this address (not value’).

The expression used is not an address. This command can only save at an
address which is an Ivalue’. Check the address and then retry the command.

Invalid type for macro argument.

This is an invalid type for the macro argument. Refer to the chapter on macros
for more information on valid types for macro arguments.

Stopped by user.

The execution of this command was halted by the user.

Not a logical expression (==,!=,<,>,<=,>= 1),

The expression entered is not a logical expression. Refer to the "Expressions
and Symbols in Debugger Commands" chapter for more information on
logical expressions and then re-enter the command.

Cannot create log file.

Unable to open the specified file as a journal file.

Interrupted during I/O.

Keyboard I1/0 was in cooked mode and a read from the keyboard was
interrupted.

500

Chapter 12: Debugger Error Messages

161 Bad command for current context (No root, start, etc.)

162 Ambiguous member name, must qualify with more local class.

The referenced C+ + member function may be one of several function which
have the same name. Use a class name to be more specific.

163 Cannot currently access via virtual base class.

164 Too many parameters in a # define constant.

501

Chapter 12: Debugger Error Messages

502

13

Debugger Versions

Information about how this version of the debugger differs from previous
versions.

503

Chapter 13: Debugger Versions

Version C.06.20

New options to format displayed expression values

The Expression Display_Value command has new options to force a variable
to be displayed as a decimal number, a hexadecimal number, or a string.

Revision numbers changed

All hosts have been brought to the samesies number.

Native language support

The source display window no longer turns noncA®haracters into blanks.
This allows full 8- and multi-byte characters to be displayed as determined by
the LANG environment variable and the debugger character set.

New symbol matching options

Options have been added to allow you to control the case-sensitivity for
debugger symbols. This is particularly useful if your language tools output only
uppercase symbolmes. To change the case-sensitivity setting, set the Symbol
Lookup option in the&ettings—Debugger Options..dialog box.

New object file formats

The abilityto read and generate simple Intel Hex ordvlolia S-Record hex
files has been added.

New commands added on command line

The following are new commands:

» Debugger Option Symbolics Line_Option
» Debugger Option Symbolics Symbol_Case
e MemoryHex

See the command line help for dit@n these commands.

504

Chapter 13: Debugger Versions

Version C.05.20 .

Journal browser added for GUI versions

Journal window output may now be sent to a graphical browser window if
desired. See th@indow -Journal Browser pulldown and-ile Journal
Browsercommand line help for more information.

Demand loading is now default

Demand loading now defaul®N for products that support it. These are
currently the products using HP/MREEE-695 file format executables.
Startup files will override the default, and titeand-doff command line
options will override both the startup and the default.

New commands added on command line
The following are new commands:

» Breakpoint Erase

 Program Load Reload

* Program Load Options_Set

See the command line help for ditan these cmmands. Note that the
Breakpoints »Delete ()pulldown now uses thBreakpt Erase command rather

than the \Breakpt Delete command, so that the cut buffarld contain the
address of the breakpoint rather than the number of the breakpoint when
deleting. This allows deleting break- points in the same fashion as they are set.

HP64 DEBUG_PATH search path changed

The debugger will now search fosigrce files in the location specified by the
absolute file, and then the current directory, if not found in any of the
directories specified in the optional HP64_ DEBUG_PATH msrvinent

variable. The debugger previously did not search these directories when the
HP64_DEBUG_PATH variable was set, unless specifically defined by the path.

505

Chapter 13: Debugger Versions

Support for # define constants added
The debugger now allows the use of # define constants in expressions. The
compiler you use must place this information into the absolute file.

New Predefined Macro

A new debugger macrgetsym has been added. It has one parameter, an
address, and returns a char pointer to a string that is the first symbol at that
address. A null string is returned if no symbol exists at the given address.

Version C.05.10

Larger Symbol Table

The debugger can load up to 16 million symbols. The previous limit was 64K
symbols.

Each symbol uses 128 bytesmémory. If so many symbols are loaded that
your host operating system runs out of swap space, the practical limit may be
less than 16 million symbols.

More Global Symbols

The maximum number of global symbols that can be read from an HP-MRI
IEEE-695 file has been increased from 8000 to 64K symbols.

Radix Option Side Effects

Input and output values are interpreted as hexadecimal only for assembly-level
references.

To cast a high-level expression as hexadecimal, use a leading "Ox" or a trailing
"h"_

When the radix option is set tiex, the following inputs Wl notbe
interpreted as hexadecimal:

506

Chapter 13: Debugger Versions

e line numbers starting with "#"

» variables in high-level expressions, includidgexpressionand macro
expressions.

» debugger variables including:
— breakpoint numbers
— viewport numbers

— data viewport line numbers

Graphical User Interface

The debugger now has a graphical user interface. Some of the many features of
the graphical interface include:

* pull-down andpop-up menus

» user-definable action keys

* amouse-driven command line
» improved online help

» powerful macro editing

The debugger’s old standard interface may still be used.

New Product Number

The old product number of this debugger was@4B60 for HP 9000 Series
300 computers. The new number is HP B1466.

New Reserved Symbols

@ENTRY is the address of the first executable statement in a function. For
example, funcl\@ENTRY is the first executable statemefurafl If you set

a breakpoint at funcl\@ENTRY rather than at funcl, the local variables in
funclwill be active.

@ROOT is the name of threot of the symbol tree represented by the
program counter.

@FILE is the name of the file containing theient program counter (if any).

507

Chapter 13: Debugger Versions

Environment Variable Expansion

Operating system environment variables will now be expanded when they
appear in a debugger command.

For example, "Debugger Directory Change_working $HOME /test" will now
work as expected.

Target Program Function Calls
You may now reference target program functions in C esqioes.

Target and debugger variables may be passed by value, and target variables
may be passed by reference.

C+ + Support

The debugger now supports C+ -ame mangling/de-mangling and
object/instance breakpoints for the Microtec Research Inc. C+ + compiler.

Simulated I/0O Changes

The debugger’s simulated I/O features are now compatible with the emulation
interface’s simulated 1/O.

Simulated 1/O in the debugger/emulator now requires the setting up of
simulated I/O polling and addresses in the emulator configuration.

The I/O Report no longer reports on processes used.

The keyboard EOF function is no longer supported since it is not supported
by the emulation interface’s I/O.

508

Part 5

Installation Guide

Part 5

510

14

Installation

How to install the debugger software on your computer.

511

Chapter 14: Installation
Installation at a Glance

Installation at a Glance

The debugger/simulator is a tool for debugging C programggo00 series
microprocessors in a simulated execution environment.

Follow these steps to install the debugger:
Install the software on your computer.
Set up your software environment to run the debugger.

Verify the software installation.

Supplied interfaces

When an X Window System that supports O SF/Motif interfaces is running on
the host computer, the debugger hagsphical interfaceghat provides

pull-down andpop-up menus, point and click setting of breakpoints, cut and
paste, on-line help, customizable action keyspmgtup recall buffers, etc.

The debugger also hastndard interfacéor several types of terminals,
terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard.

The installation procedure described in this chapter shows you how to install
both debugger interfaces and verify the installation.

512

Chapter 14: Installation
Installation at a Glance

Supplied filesets

As you install the software, you will see a list of the filesets on the tape. The
filesets are identified by their HP product number.

The tape may contain several products. Usually, ydwant to install all of
the products on the tape.

However, to save disk space, or for other reasons, you can choose to install
selected filesets.

C Compiler Installation

Some older versions of HP C Cross Compilers will overwrite the file
$HP64000/bin/db68k, making the graphical interface unavailable. If you
encounter this problem, install the C complieforeyou install the debugger
software.

513

Chapter 14: Installation

To install software on an HP 9000 system

To install software on an HP 9000 system

Required Hardware and Software

To install and use the debugger’s graphical interface, you need:

HP 9000 Series 300/400 computanning HP-UX version 8.01 or later,
or HP 9000 Series 700 computemnning HP-UX version 8.01 or later.

To check the HP-UX operating system version, enteuttane -a

command at the HP-UKrompt. If the version number of the HP-UX
operating system is less than 8.01, you must update the operating system
to version 8.01 or higher before you can use the debugger. (Refer to the
"Updating HP-U X" chapter of thedP-UX System Administration Tasks
manual for detailed information concerning updating your system.)

MotiffOSF. For HP 9000 Series 700 workstations, you must also have the
Motif 1.1 dynamic link libraries installed. They are installed by default, so
you do not have to install them specifically for this product, but you
should consult your HP-UX documentation for confirmation and more
information.

Hardware and Memory. The debugger’s graphical interface requires
workstations to have a minimum of 16 megabytes of memory. Series 300
workstations should have a minimum performance equivalent to that of a
HP 9000/350. A color display is also highly rezmended.

Approximately 16 Mbytes of disk space.
HP B1466 debugger/simulator software.

514

Chapter 14: Installation
To install software on an HP 9000 system

Step 1. Install the software

During the install process, you have some choices about how much you lo
from the product media. As a general rule, you should load everything fro
the media.

The following sub-steps assume that you want to install all products on the
tape.

Become the root user on the system you want to update.
Make sure the tape’s write-protect screw points to SAFE.

Put the product media into the tape drive thilitbe thesource devicéor the
update process.

Confirm that the tape drive BUSY and PROTECT lights are on.

Ifthe PROTECT light is not on, remove the tape and make sure the tape’s
write-protect screw points to SAFE. If the BUSY light is not on, check that
the tape is installed correctly in the drive and that the drive is operating
correctly.

When the BUSY light goes off and stays off, start the update program by
entering

/etc/update

at the HP-UX prompt.

When the HP-U X update utility main screen appears, confirm thabtirees
and destination devices are correct for your system. Refer to your HP-UX
System Administration documentation if you need to modify these values.

Select "Load Everything from Source Media" when your source and
destination directories are correct.

515

Chapter 14: Installation
To install software on an HP 9000 system

8 To begin the update, press the softkey < Select Item> . At the next menu, press
the softkey < Select Item> again. Answer the last promptwitihtakes
about 20 minutes to read the tape.

9 When the installation is complete, read /tmp/update.log to see the results of
the update.

516

Chapter 14: Installation
To install the software on a Sun SPARCsystem [

To install the software on a Sun SPARCsystem [

Required Hardware and Software

To install and use the debugger/simulator’s graphical interface, you need:

Sun SPARCsystem computer running Solaris version 2.3 or SunOS
version 4.1 or 4.1.1 or greater. The tape uses the QIC-24 data format.

To check the SunOS operating system version, entarrtame -a

command at the UNIXrompt. Ifthe version number of the SunOS
operating system is less than 4.1, you must update the operating system to
version 4.1 or higher before you can use the debugger. For instructions on
updating your system, see the Sostalling SunOSnanual.

System V software. To find out whether the System V environment is
already installed on your system, check that the directory /usr/5bin exists.
For instructions on institng System V, see the Sunstalling SunOS
manual.

System V IPC facilities (senp&iores). To find out whether the IPC
facilities are installed onour system, typépcs. For instructions on
installing the IPC facilities, see the S8gstem and Network
Administrationmanual.

At least 16 megabytes of memory (for the graphical user interface).

Color display (optional, but reaomended for the graphical user
interface).

Approximately 16 Mbytes of disk space.
HP B1466 debugger/simulator software.

517

Chapter 14: Installation
To install the software on a Sun SPARCsystem [

Step 1: Install the software

For instructions on how to install software on your SPARCsystem, refer to the
HP 64000-UX for SPARCsystems— Software Installation Guide

Normally you should install all of the filesets on the tape.

Step 2: Map your function keys

If you are using the character-based Standard Interface, map your function
keys by following the steps below:

1 Copythe function key definitions by typing:
cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your $SHOME directory.

2 Remove or comment out the following line frowuy .xinitrc file:

xmodmap -e keysym F1 = Help’
If any of the other keys F1-F8 are remapped using xmodmap, comment out
those lines also.

3 Add the following to your .profile or .login file:

stty erase "H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be
used for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for
the Softkey Interface. All you have to do is set the KEYMAP variable. If you
use OpenWindows, type:

518

Chapter 14: Installation
To install the software on a Sun SPARCsystem [

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the
directory /usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of
the $PATH definition, and add the following line to your .profile:

setenv OPENWINHOME /usr/openwin

519

Chapter 14: Installation
To set up your software environment

To set up your software environment

Follow these steps to prepare your computer to run the debugger:
1 Start the X server.

2 Set the necessary environment variables.

To start the X server

If you are not already running the X server and a window manager, do So now.
The X server is required to use the Graphical User Interface because it is an X
Windows application. A window manager is not required to execute the
interface, but, as a practical matter, you must use some sort of window
manager with the X server.

If you are using an HP workstation, start the X server and the Motif window
manager by entering:

x11start

If you are using a Sun workstation, enter:
/usr/openwin/bin/openwin

Consult the X Window documentation supplied with the operating system
documentation if you do not know about using X Windows and the X server.
The chapter “Using X Resources” in this book also discusses X Windows and
the X server.

520

Chapter 14: Installation
To set up your software environment

To start HP VUE

If you will be using the X server under HP VUE and have not started
HP VUE, do so now.

HP VUE differs slightly from other window managers in that it does not read
your .Xdefaults file to find resources you may want to customize. Instead, it
uses resources from the X resource database. In order to customize resources
for the Graphical User Interface under HP VUE therefore, you must either
merge a file of customized resources with the X resource database, or set an
environment variable that causes the X resource manager to read a file of
customized resources. For ease of use, choosX tiefaultfile as your merge

file.

To merge the fileXdefaultsnith the X resource database, enter
xrdb -merge .Xdefaults

at the HP-UX prompt.

Customized resourceslibe merged with the X reasirce database andlivbe
available for retrieval by the Graphical User Interface.

To enable the graphical interface to find theefaultile directly, enter the
following commands:

XENVIRONMENT=$HOME/.Xdefaults
export XENVIRONMENT

The graphical interface will be able to find and read the file in order to retrieve
customized resources.

521

Chapter 14: Installation
To set up your software environment

See Also

To set environment variables

The following instructions show you how to set these variables at the UNIX
prompt. Modify your “.profile”, “.login”, or “.vueprofile” file if you wish these
environment variables to be set when you login.

Set the DISPLAY environment variable.
Set the HP64000 emanment variable.
Set the PATH environment variable to include tise¢hp64000/bindirectory.

Set the MANPATH environment variable.

For the ksh login shell (most HP systems), set a variable by entering

export <variable>=<value>

For the csh login shell (most Sun systems), set a variable by entering

setenv <variable> <value>

The DISPLAY environment variable must be set before the debugger’s
graphical interface will start. Consult the X Window documentatigopBed
with the UNIX system documentation for an explanation of the DISPLAY
environment variable.

Set the HP64000 emanment variable if you installed the software in a
directory other than “/usr/hp64000” (that is, if you told the installation script
to use a path other than “/").

Modify the PATH environment variable to include the $HP64000/bin
directory and the HP64_DEBUG_PATH eromment variable to specify
search paths.

Modify the MANPATH environment variable to include the $#P00/man
directory. This directory contains the on-line "man" page information.

For information on setting the location of C source files, see page 78.

522

Chapter 14: Installation
To set up your software environment

Examples These examples use ksh syntax. If you are using csh as your login shell, then
use thesetenvstyle instead.

If your system is amed "myhost," set the display variable by typing:
export DISPLAY=myhost:0.0

If you installed the HP 64000 software in tto®t directory, /", enter:
export HP64000=/usr/hp64000

export PATH=$PATH:$HP64000/bin

If you installed the software in the directory /users/team, enter:

export HP64000=/users/team/usr/hp64000

523

Chapter 14: Installation
To verify the software installation

To verify the software installation

A number of new filesets were installed on your system during the software
installation process. This step assumes that you chose to load the filesets for
the debugger/simulator’s graphical interface.

You can use this step to further verify that the filesets necessary to successfully
start the graphical interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for
verifying installation, but these checks can help to double-check the install
process.

Verify the existence of thelP64_Debudfile in the
$HP64000/lib/X11/app-defaultssubdirectory by entering

Is $HP64000/lib/X11/app-defaults/HP64_Debug

at the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies
that the customize scripts executed because this file is created from other files
during the customize process.

Examine$HP64000/lib/X11/app-defaults/HP64_Debugear the end of the file
to confirm that there are resources specific to your microprocessor.

Near the end of the file, there will be ogsce strings that contain references
to specific microprocessors. For example, if you installed the debugger
graphical interface for the 68000 seriesmprocessors, resourcame strings
will have “debug*m68000” embedded in them.

524

Glossary

absolute file An executable module generated by compiling, assembling,
linking a program. Absolute files must have an extension of .x.

action key User-definable buttons in the graphical interface which allow
quick access to often-used commands.

application default file A file containing default X resource specifications
for an X Window System application.

background monitor ~ An emulation monitor program that does not execute
as part of the user program. See “emulation monitor”.

BBA The Hewlett-Packard Branch Validator. It is a software tool you can
use to analyze your testing, create more complete test suitevgasdre your
level of testing.

breakpoint A location in the program at which execution should stop.

cascade menu A secondary menu that appears when you select an item
from a pull-down menu.

click To press and immediately release a mouse button. The term comes
from the fact that pressing and releasing the buttons of most mice makes a
clicking sound.

command file An ASCII file containing debugger commands.

command line An area at the bottom of the debugger window where
commands may be entered using softkeys or pushbuttonstaAdard
interface commands are entered using the command line.

command token The smallest part into which a command may be
broken—usually one word. Command tokens appear as pushbuttons on the
command line.

525

Glossary

concurrent usage model Describes an interface in which the user can
perform most comands at the same time that code is being executed under
emulation.

configuration file ~ See “emulator configuration file”.

cooked keyboard I1/0O mode The I/O mode in which keyboard input is
processed. This lets you type and then edit the line to correct errors.

cut buffer A synonym for “entry buffer”.

dialog box Sometimes called a secondary window, the dialog box s called by
the user from the application’s main window. A dialog box contains controls
or settings, and sometimes prompts for text entry.

display area The part of the debugger window which shows windows
containing information such as high-level code and breakpoints.

double-click To pressthe mouse button twice, quickly.
E/A The Emulator/Analyzer window.

emul700dmn The UNIX background process which coordinates the actions
and message traffic of the major emulation interfaces.

emulation memory Memory provided by the emulator to be used in place of
target system memory.

emulation monitor A program that is executed by the emulation processor
that allows the emulation controller to access target system resources. For
example, when you display target system memory locations, the monitor
program executes the microprocessor instructions that read thertengetry
locations and send their contents to the emulation controller. See also
“foreground monitor” and “background monitor”.

emulator An instrument that performs just like the microprocessor it
replaces, but at the same time, it gives you information about the operation of
the processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers, target
system memory, and 1/O resources.

526

Glossary

emulator configuration file A file that contains configuration settings and
memory map definitions for the emulator.

entry area A section of theeommand linearea where commands are built.
When you use menus or softkeys, the actual command which the debugger will
execute appears in the entry area.

entry buffer The part of the graphical interface which contains “input" for
commands. The symbol for the entry buffer is "()".

execution engine Hardware or software used to execute program code.
Examples include an emulator, a target system with a ROM monitor, a target
system with an HP E3490A softwagpeobe, or a simulator.

foreground monitor An emulation monitor program that executes as part of
the user program. See “emulation monitor”.

graphical interface The debugger interface program that uses
graphics-oriented software such as windows, menus, and icons to make
interaction easy.

host shell A UNIX command intepreter.
iconify The act of turning a window into an icon.

journal file A file that contains commands entered during a debsgjse
and any output generated by the debugger. Journal files contain everything
that is written to the debugger’s journal window.

log file A command file that is created by the debugger when you record
commands.

macro A C-like function consisting of debuggerrammands and C statements
and expressions. Macros are most often used to patch C source code, create
conditional breakpoints, return values to exgsiens, or execute a set of
commands.

menu bar The row of words at the top of the graphical interface window.
Clicking on the menu bar will display a menu of debuggenroands.

monitor See “emulation monitor”.

527

Glossary

patch A small, temporary change to executable code.

PITS cycle Programming In The Small cycle. The repeatingcess of
editing, compiling, and executing code to eliminate bugs.

pointer The symbol on your computer’s screen which shows where the mouse
is pointing. The pointer may be a hand, an arrow, or another shape.

pop-up menu A menu that pops up when you press and hold the right
mouse button. Pop-up menus are available whenever the mouse pointer
changes to a "hand-cursor".

predefined macro See also “macro”.

pull-down menu A menu that appears to "pull down" from the menu bar at
the top of the interface window.

pushbutton A graphic control that simulates a real-life pushbutton. Use the
pointer and mouse to push the button and immediately start an action.

raw keyboard I/0O mode The I/O mode in which each keystroke produces a
character that is sent to the target program that is reading from the keyboard.

recall buffer A text entry field which remembers its previous value.
resource See “X resource”.

scheme file A file that contains X resource specifications for a particular
group of resources, for example, for a particular type of display, computing
environments, or language.

scroll bar A scroll bar is used to move a window so that you can see
information beyond the window's edge.

sequential usage model Describes a user interface in which user code
execution must be stopped before the interface can perform mostaruds.

shell See “host shell”.

528

Glossary

simulated I/O The debugger feature that lets user programs read input from,
and write output to, the same keyboard and display (respectively) that are used
to control the debugger. Simulated 1/0O also lets user programs use the UNIX
file system and run UNIX gamands.

simulated program interrupt ~ User program interrupts that are simulated by
the debugger. Simulated interrupts can be one-time interrupts or periodi
interrupts.

simulator A software tool that simulates a microprocessor system for the
purpose of debugging user programs.

Software Probe The HP E3490A softwargrobe is a low-cost alternative to

an emulator. It usesthe processor’s Background Debug Mode to control
execution and to access registers and memory. Because it does not include an
analyzer, the HP E3490A softwgueobe does not support read/write
breakpoints or trace analysis.

SPA The HP Software Performance Analyzer.

standard interface The traditional debugger interface designed for use with
several types of terminals, terminal emulators, and bitmapped displays. When
using the standard interface, commands are entered from the keyboard.

startup file A file that contains information regarding debugger options and
screen configurations.

state file A file that contains the CPU state (including register values) and a
memory image. This file is saved within a debugger session and can be loaded
at a later time to return to a particular state of execution.

status line A line which displays debugger information such as the CPU
type, the current moduleame, and thewrrent debugger operation.

sticky slider A scrollbar slider which is designed for local navigation in a
large file. Moving the slider moves the contents of the active window just a
few pages at a time.

storage qualifier A bus cycle state description that causes only particular
states to be stored in the analyzer trace.

529

Glossary

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the
external analyzer) and stored in tracemory.

trace event A bus state consisting of a combination of address, data, and
status values.

trigger The captured analyzer state about which other captured states are
stored. The trigger state specifies when the tnagasurement is taken.

window A window inside the debugger’s display area. See also “X window”.

working directory The current directory from which the debugger loads and
saves files.

Xresource A piece of data that controls an element of appearance or
behavior in an X application.

Xserver A program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

Xwindow A window on your computer’s display. The debugger’s graphical
interface runs inside an X window. See also “window”.

530

Index

() entry buffer 527

/devi/simio/display reserved symbt§6
/devi/simio/keyboard reserved symhbb6

@ @as access status pseudoregigrl44
@cycles cycle count pseudoregisi, 144
@exc exception handling keywort44

@pi previous instruction pseudoregistb44
@ SP stack pointefl44

@wait_state wait state pseudoregisé®r,

absolute file525
absolute files79-80
access status pseudoregister @as144
action keysy, 525

custom 242

operation50

with command files242

with entry buffer 49-50
activating windows14
active window

changing,131

description of131

displaying the alternate view df32

viewing information in133-134
add symbol120
address operato?9
addresse4l27-428

assembly level codd27

code 427

data 427

displaying variable29

ranges427
alternate view of a windowt,32
app-defaults directory

HP 9000 computergs2

Sun SPARCsystem compute2s2

531

Index

append programs2
application default file525
application resource

SeeX resource
arguments for macro%g89
assembly code

in source displayg21
assembly level code addressta]
assembly-level screen

description of125

displaying,126

moving status window28

background monitoi525
backtrace window
backtrace informatior,47
description of146
display bad stack framezl7
frame status charactefsi7
function namel47
function nesting levell 46
halting at stack leve§9
module namel47
batch mode optior211
BBA
SeeBranch Validator
bindings, mouse9-11
blocks
comparing,182
copying,181
filling, 182
Branch Validator117, 525
break on access to a varial36,
break _info macro448-449
breakpoint window
address field97
command argumen®;/
description of96
line number field97
module/function field97
number field (#)96
type field,97

532

Index

breakpoints
automatic alignmen®16
C++,92-93
checking definitions 006
clearing,94
commands, summary &f62
controllingprogram execution wittf§0—99
definition,525
deleting,23, 94
removing,94-95
setting,20
use macros withl,98
Breakpt Access comman267-268
Breakpt Clear_All comman@69
Breakpt Delete commangdy0
Breakpt Erase commangi/1
Breakpt Instr comman@,72-273
Breakpt Read commanga74
Breakpt Write comman@®75
button name®-11
byte macro450
bytes, changind,80

C compiler
installation,513

C operators417

C source code
displaying,137

C++
breakpoints92-93, 272
browse command,57, 394
classes394, 430
displaying class memberk4
displaying member value$54
functions,92-93, 137
inheritance 394
object instance92
objects 154
operators418
overloaded function®3, 272
protection154
this pointer150

533

Index

calling a macrol87
CALLM instruction,72
cascade menb25
case-sensitivity299
casting, speciai36
changes to the debuggé®g
changing
active window131
characters
constants422
non-printable422
string constantg}22
check breakpoint definition86
check simulated 1/O resource usatjél
class name
X applications251
X resource249
class name for X resirces237
classes (C+ +)
displaying members 0154
clear breakpoint94-95
click, 525
client, X,234, 248
clock cycles pseudoregister @ cycl&8)
close macro451
code addresse427
code patching
deleting C source lines from your progralid8
inserting lines of C code into your prograh78
patching a linel77
color scheme236, 240, 255
column numberg}26
ComFile (debugger statu€7
Command (debugger statu6y,
command files
commandline option,206, 211
comments in205
definition, 525
description 0f203-212
echoing commandg.16
logging commands to, stai04

534

Index

command files (continued)
logging commands totep, 206
playback 206
startup,329

command language
address ranged27
addressegl27-428
assembly level code addressta]
C operators417
C+ + operators418
character constant422
character string constané2
code addresse427
constants419
data addresse427
data types433
debugger operator418
debugger symbold25
description415-444
evaluating symbolgi41
explicit stack referenced43
expression element417-423
expression stringgd31
floating point constantg21
forming expressiongl30
global (extern) storage classd82
hexadecimal constant420
identical module name438
identifiers,424
implicit stack referenced42
integer constantg19
keywords429
legal characters allowed in symbal24
line numbers426
local storage classe$33
macro local symbolgl25
macro namesi25
macro symbol type€25
macro symbols425
module namesi39
non-printable character422

535

Index

command language (continued)

operators417

program symbols}24

referencing symbolg37

register storage classd83

reserved symbolg26

root names437

scoping rules437

special casting}36

stack referenced42

static storage classet32

storage classe432

symbol length424

symbolic referencing}32-444

symbolic referencing with explicit root439
symbolic referencing without explicit roots, 441
symbols424-426

type casting435

type conversior435

command line7, 525

command line recall operatio64
Command Recall dialog box, operati@®,
copy-and-paste to from entry buffdg
displaying,31

editing entry area with keyboarg¥}
editing entry area with pop-up merégQ
editing entry area with pushbutto®$,
entering command$§g

entry areab527

executing commandSg

help,61

mapping61

recalling conmands with command line reca¥
recalling conmands with dialog bog0
turning on or off57, 237

with keyboard62-66

Command Recall dialog box operatidii,
command select buttof+-10

command tokens, descriptios25
command tokens, description 6%

536

Index

commands
editing in command line entry areéz9-60, 64
entering37, 39-70
entering from keyboard?2
entering in command lin&8
executing in command lin&8
function key,39
logging to command file, star2p4
logging to command file tep, 206
playback from command fil€06
recalling with canmand line recal4
recalling with dialog box60
comments in macro4388
compare blocks of memorg2
compile programs for the debugg@ég—77
compiler h option, effects of3
concurrent usage modéR6
configuration file 526
configuration, debugge®13-244
constants419
character422
character string}22
floating point, 421
hexadecimal420
integer,419
control blocking of read4,68
control character functions
list of, 40
using,40
control program execution with breakpoir@8-99
cooked mode526
copy block of memoryl 81
copy macros]92
copy window,135
copy-and-paste
addressedl7
from entry buffer49
multi-window, 50
symbol width 47
to entry buffer46
CPU modes, effect on register displbg4

537

Index

CPU statel04
current working directory, displayin@43
cursor keys
descriptions133
End (Shift_Home) Key Function$34
Home Key Functiong, 34
cut buffer
Seeentry buffer
cycle count pseudoregister @ cyclgg, 144

data addresse427
data types433
db68k options

-b batch mode211

-c command file206, 211

-d demand loading of symbo&3

-l load only symbolic informatiorg1

-j journal file,208

-l log commands204

-s startup_file233
debugger commands, summary2§2
Debugger Directory comman#l76
Debugger Execution Display_Status commati,
Debugger Execution |O_System comma2i8—280
Debugger Execution Load_State commazRl,
Debugger Execution Reset_Processangmnd 282
Debugger Execution Save_State comma33,
Debugger Help commandg6
Debugger Host_Shell commari§4-285
Debugger Level commanég7
Debugger Macro Add comman288-290
Debugger Macro Call commanzd1
Debugger Macro Display commarzf2
debugger macros

Seemacros
debugger operators

Seeoperators
Debugger Option Command_Echo commazi
Debugger Option General commaR@4-297
Debugger Option List commana98
Debugger Option Symbolics commar299-301
Debugger Option View comman802—-304

538

Index

debugger options dialog baX 5
Debugger Pause commars®ds
Debugger Quit comman8p6
debugger symbols
Seesymbols
debugger versiorg9
decimal 218
define macrosl92-194
interactively,192-193
Seemacros
define simulated program interrup1€0
define user screens and windo®28
delete breakpoint85
delete C source lines from your progrdtvg
delete macro02
delete symbol122
deleting breakpoints
Seebreakpoints, deleting
demand loading symbol83
demonstration program descriptidtd,
dialog boxes
Command Recall, operatiofl], 60
debugger option€15
definition,526
Directory Selection, operatiob}, 54
Entry Buffer Recall, operatiod8, 51
File Selection, operatio®]1, 53
how to use51
macro operationg,91
directories
displaying current directorg43
Directory Selection dialog box operatidi, 54
disable simulated I/OL67
disassembly
automatic alignmen®16
display areay, 526
lines,238
display area windows
Seewindows
displaying
Seethe name of what you want to display in this index

539

Index

do statementl90
double-click,526
dword macro452

E E/A /526

editing
command line entry area with keyboaéd,
command line entry area wiffop-up menu60
command line entry area with pushbuttosss,
copying memory]81
file, 237
file at addressl 75, 237
file at program countef,75
files,174-175
macros194
memory content<,80

else statemen1,90

emul700dmn526

emulation memorys26

emulation monitor526

emulator526

enable simulated I/QL66

End (Shift_ Home) Key Function$34

end debugging sessio3¥

engine, executiorg27

entering debugger comman@gg, 39-70
from the keyboards2

entries (X resourcep43

entry area (command line§27

entry buffer,7, 527
address copy-and-paste 4a,
clearing,46
copy-and-paste frond9
copy-and-paste ta@6
editing,49
Entry Buffer Value Selection dialog box, operatid8,
multi-window copy-and-paste frorb0
operation49
recalling entries48
setting initial value243
symbol width and copy-and-paste 43,
text entry46

540

entry buffer (continued)

with action keys49-50

with pull-down menus49
Entry Buffer Recall dialog box operatiofi
environment dependent file&3
environment variables

HP64 DEBUG_PATHY8

MANPATH, 522
erase information in windog30
error macro453
error window, description 0484
errors

exception procgsing option219
evaluating symbol€41
exception handling keyword @ eXe}4
exception procssing,219
exception stack frame formatsl9
Execute (debugger statu§y,

executing UNIX commands from within the debugders

execution
controlling,84-89

run from current program counter addreéss,

run from start addres86

run until stop addres8y
execution engineg27
exiting the debuggeB4
explicit stack referenced43
Expression C_Expression commagdy
Expression Display Value commargf8-310
Expression Fprintf command11-315
Expression Monitor Clear_all comand 316
Expression Monitor Delete comand 317
Expression Monitor Value ecomand 318-320
Expression Printf command21-322
expressions

changing C variable4,76

commands, summary ¢f63

elements417-423

forming,430

strings, 431

Index

541

Index

F fgetc macro454
File Command comman@23
File Error_Canmand command24
File Journal command 325-326
File Log command327-328
File Selection dialog box operatiosl, 53
File Startup comman@®29-330
File User_Fopen commangi31-332
File Window_Close comman@833
files
absolutey9-80
appending82
command203-212
See alsecommand file
commands, summary &63
editing,174-175
editing at addresg,75
editing at program countety5
environment dependent3
journal,208
log, 204
logging commands to, sta@t04
logging commands totep,206
macro,195
playback command fil&06
saving window content435
source file location78
startup232-233, 329-330
state 104
fill block of memory,182
floating point constantg21
fopen macro455
foreground monitor527
fork a UNIX shell, 114
forming expressiong30
frame status characteir47
function keys39
list of, 39

542

functions
breaking on call20
displaying,17
stepping over26, 85

getsym macro456
graphical interface

C compiler installation513
guarded memory,05

half-bright video 224
halting program execution
on access to a specified memory locat@,
on instruction at a specifiedemory location91
hand pointer45
hardware
HP 9000memory need$14
HP 9000 minimum performancgl4
HP 9000 system requiments514
SPARCsystem memory neeég,/
SPARCsystem minimum performanéd,7
SPARCsystem minimums overvie®i 7
help
command line6l
help index55
to use33
window, 65
hexadecimal
changing default radi218
constants420
effects of radix218, 296, 506
high-level screen
description of124
displaying,126
moving status window28
highlighting, setting224
Home Key Functiong,34
Host_Shell command,14
hot keys
Seeaction keys

Index

543

Index

HP 9000

700 series Motif librarie§14

HP-UX minimum version514

system requirementS14
HP-UX

minimum version514
HP64_DEBUG_PATH file search pathg

iconify, 527
identifier,424
if statement190
implicit stack referenced42
increase simulated I/O file resourcégl
indicator character§8
initialized variables
re-initializing, 183
inport macrod57
input ports108-110
input sckeme,236, 255
insert lines of C code into your prograt78
installation
at a glance512-513
SPARCsystem specific instructiortd,7-519
instance name
X applications251
X resource249
integer constantg19
interpret keyboard reads as EABY
interrupts
defining a simulated interrupiP0
removing a simulated interrupQ1
simulating,100-101
inverse video224
isalive macro458

J indicator characte68
journal files,208
definition,527
for journal window,158
-j option,208
name of arrent journal file 143

544

journal window,136, 325
journal window, description 040

key _get macro459
key stat macro460
keyboard
choosing menu itemg4
key names]0-11
keyboard /0
control blocking,168
cooked model67
interpret keyboard reads as EABY
raw mode 168
setting model67
simulated I/O procssing,167
keywords 429

L indicator characteg8
label scheme236, 240, 254
LANG environment variable254
level, stack99
libraries
Motif for HP 9000/700514
line numbers299, 426
lines in main display area38
literals
radix, 218
load additional program82
load programs79-80
using the db68k command9
using the program load sumand,79
load symbols81

loading and executing progrant4,, 73-118

log files,204
definition,527
for log file window,158
name of arrent log file,143
logging
-l option,204
commands to command file, sta204
commands to command fileop, 206

Index

545

Index

M Macro (debugger statugy7

macros185-212
arguments189
calling,187
calling from an expressioi97
calling from within macrosl97
calling on execution of a breakpoiiQ8
calling with debugger macro calltonand, 196
calling with Program Step With_Macromonand 200
comments]188
control flow statement4,90
copying,192
debugger commands ih90
defining,188, 191-194
defining interactively191-193
defining outside the debuggdiQ4
definition,527
deleting,202
dialog box,191
displaying source code ¢f01
do statement] 90
editing,194
else statemen1,90
example of when'268, 273-275
finding commands51
if statement190
limits, 188
loading,195
local symbols425
maximum number of lines in a mac289
names425
patching C source with,77-178
predefined445, 447-482
properties of187
renaming,192
return staément,190
return values]190
saving,188, 195
simulated 1/0 446
stopping executior01
symbol types425

546

Index

macros (continued)

symbols 425

templates]192

using with breakpoint4,98

variables,189

while statement]190
main(), displayingl5
make windows active,31
man pages, setting path &22
mapping memoryl05-107
mcc68k

SeeMicrotec
memchr macro461
memclr macro462
memcpy macro463
memory

changing,180

commands, summary 64

comparing,182

copying,181

filling, 182

guarding,105

mapping,105-107

See alsanemory map

read-only,105
Memory Assign command 334—-335
Memory Block_Operation Copy commar886
Memory Block_Operation Fill acmmand,337-338
Memory Block_Operation Match commargR9-340
Memory Block_Operation Search commaBd41-342
Memory Block_Operation Test commarsd,3—344
Memory Display comman®45-346
Memory Hex command47
Memory Inport Assign conmand 348-350
Memory Inport Delete ammand 351
Memory Inport Rewind cmmand 352
Memory Inport Show cmmand 353
Memory Map Guarded commanth4
Memory Map Read_Only comman2h5
Memory Map Show comman856
Memory Map Write_ Read commang7

547

Index

Memory Outport Delete comand 361
Memory Outport Rewind comand 362
Memory Outport Show comand 363
Memory Output Assign comand358—-360
memory recommendations
HP 9000514
SPARCsysten17
Memory Register comman864—-365
Memory Unload_BBA command 366368
memset macrai64
menu barb27
menus42-55
editing command line witpop-up,60
hand pointer mearsop-up 45
mapping to command§l
pull-down operation with keyboard4
pull-down operation with mousd2—43
Microtec
compiler,77
middle button9
modify registers183
module namegi39
module names, identical38
module support72
monitor window, description 01,55
more display224
More prompt,134
Motif
HP 9000/700 requéaments514
mouse
button names
choosing menu itemd2-43
mouse button names0-11
move assembly-level status windd228
move high-level status windo228
move status windovig27

multi-staement debuggingi26
multi-window
copy-and-paste from entry buffé&0

548

names of modules, identicdl38
next screen, displayin@27
non-printable character422

objects (C+ +)
displaying member value$54
open macro465-466
operating notice§9
operating system
HP-UX minimum version514
SunOS minimum versiold17
operators
C,417
C++,418
debugger418
optimizing modes
effects of,74
using,74
options,214
radix, 218, 296, 506
saving,329-330
outport macro467
overloaded C+ + function83, 137

paging (screenp24
patch
See als@ode patching
definition,528
Paused (debugger statugj,
PC
Seeprogram counter
PITS cycle528
platform
differences10-11
HP 9000memory need$14
HP 9000 minimum performancgl4
SPARCsystem memory need47
SPARCsystem minimum performané&d,7
platform scheme?36, 256
playback
command file206
pointer,528

Index

549

Index

pop-up menus
command line editing witf§0
definition,528
hand pointer indicates presends,
shortcuts46
using,45

ports,108-110

predefined macrog45, 447-482
break_info 448-449

byte,450
close 451
dword,452

error,453
fgetc,454
fopen,455
getsym 456
inport,457
isalive,458
key get459
key stat460
memchr461
memclr,462
memcpy463
memset464
open 465-466
outport,467
read468
reg_str469
showversion470
strcat 471
strchr,472
strcemp 473
strcpy,474
stricmp,475
strlen,476
strncmp 477
until, 478
when,479
word,480
write, 481-482
predefined windowsl 29

550

previous instruction pseudoregister @4
printf
using in debuggeBl
processor
resetting,102
product version, displayind43
program conmands, summary a265
Program Context Display commargf9
Program Context Expand commaidp
Program Context Set commargd,l
program counter
resetting,102
run from current addres®6
Program Display_Source eonand
description 372
program execution
controlling,84-89
halt on access to a specified memory locatéin,
halt on an instruction at a specifistemory location91
Program Find_Source Nextmanand 373
Program Find_Source Occurrencemmoand 374-375
Program Interrupt Add ecomand 376-377
Program Interrupt Remove gonand 378
Program Load command79-381
Program Pc_Reset commargd2
Program Run command83-385
Program Step commangg6—387
Program Step Over commarg88-389
Program Step With_Macro commarg®0
program steppin®5
program symbols
Seesymbols
program variables, resettint)3
programs
loading,79-80
loading using the db68k commarv®
loading using the program loadrammand,79
restarting,102-103
run from a specified addre$§
run from the current program counter addr8ss,
run until a specified stop addre8g,

Index

551

Index

programs (continued)
running,84-89
step through84
pull-down menus
choosing with keyboardi4
choosing with mousel2—-43
definition,528
pushbutton528

quick start
graphical interface3—34
quitting the debuggeB4

R indicator charactef8
radix
selecting218
radix option,218, 296, 506
raw mode528
re-initialize variables]83
read macro468
read-only memoryl05
Reading (debugger statusg
recall buffer,528
initial content,243
recalling
commands with command line rec&i!
commands with dialog bo&0
entry buffer entries}8
redirect 1/0,169
referencing symbolgl37
reformat screen226
reg_str macro469
register window, description af43
registers
changing,183
list of, 145
monitoring,156
viewing, 143
remove breakpoint894-95
remove simulated program interruptf1
remove user-defined screens and wind@8s,

552

Index

reserved symbolg26
/dev/simio/displayl166
/devi/simio/keyboardl 66
displaying,145
simulated 1/0 166
stderr,166
stdin, 166
stdout,166
reset processot02
reset program countet02
reset program variables03
resize
windows,226
resource
SeeX resources
restart programg,02-103
return staément,190
return values in macro$90
revisions, debugger interfad®
root mmes437
root symbol438
RTM instruction,72
run
from current program counter addre&s,
from start addres86
programs84—89
until stop addres87

save window and screen setting32

scheme files235, 528

scheme files (for X remirces) 252, 254
color scheme236, 240, 255
custom 240, 255
input scleme, 236, 255
label scheme236, 240, 254
platform scheme236, 256
size scheme236, 255

scoping rules437

screens]124-128
saving setting®L32
assembly-level] 25
displaying,124-128

553

Index

screens (continued)
displaying next127
high-level,124
high-level, displaying]l26
predefined124
reformatting226
standard 1/0125
user-defined, displaying@29
working with,124-128
scroll bar,7, 16, 528
scrolling,16
"more" mode 134
setting amount o£25
sticky slider definition529
sequential usage modégRs8
server, X234, 248, 530
session control commands, summary26g
setting
keyboard I/O mode to raw or cookdd7
settings214
See alsmptions
saving,329-330
shell,527
forking, 114
showversion macral70
simulate program interrupt$00-101
simulated 1/0529
check resource usade]l
communication with the debuggdig4
connections to host systefrg4
control address buffersg4
description of163
disabling,167
display,165
enabling,166
how it works,164
increase file resourcéyl
keyboard165
keyboard I/0 167
keyboard I/O procssing,167
macros446

554

simulated I/O (continued)
processing,164
redirecting I/0 169
reserved symbol4,66
special symbolsl 66
stderr,169
stdin,169
stdout,169
UNIX Files, 165
UNIX processesl65
user program symbol$66
using,163-172
simulator,529
using with debugger/emulatdr16
size scheme236, 255
skipping functions26
slider, sticky529
See alsacrolling
software
installation for SPAR Csystems17-519
software probe529
source code
displaying,137
in assembly displag21
location of files,78
patching176-179
SPA,529
SPARCsystems
installing software517-519
minimum system requirements overviéei,/
SunOS minimum versiom17
special casting}36
special symbols, simulated 1/Q66
specify source file locatior78
speed setting (ste@20
stack
displaying bad frameg&17
explicit reference%443
halting at stack levef9
implicit references442
window, description ofl30

Index

555

Index

stack frame formats, exceptia?i,9
stack pointer, description df44
standard I/O screen
description of125
displaying,127
erasing information230
standard interface
definition,529
installation,518
start address, run froré6
starting
debuggerl3, 41
logging commands to command fikQ4
startup files232—-233
definition,529
loading,233
name of143
-s option 233
state
saving,104
state files104, 529
status
entry on status line&g7
moving status window227
status liney, 67-69, 529
viewing, 142
stderr reserved symbdl66
stdin reserved symbdl 66
stdio
Seestandard 1/0
See alsatdin, stdout
stdout reserved symbdl66
step over function26, 85
step speed, setting20
step through a prograr@4
stepping25
sticky slider 529
See alsscrolling
stop address, run fror@7
stopping
logging commands to command fikQ6

556

stopping
debugger34
storage classes
automatic433
global (extern)432
local,433
register433
static,432
storage qualification
qualifier, definition 0f529
strcat macro471
strchr macro472
strcmp macro473
strcpy macro474
stricmp macro475
strlen macro476
strncmp macro477
structures
displaying memberg,53
subroutines
Seefunctions
subwidows
activating,14
SunOS
minimum version517
switching
between high-level and assembly-level scre&p8,
Symbol Add comman®g91-393
Symbol Browse comman@94
Symbol Display comman@®95-399
Symbol Remove command00-401
symbolic information only optiorg1
symbolic referencing}32—444
with explicit roots439
without explicit roots441
symbols
assembly code®21
commands, summary &f65
debugger120, 425
demand loadin®g3, 217
displaying,121

Index

557

Index

symbols (continued)
evaluating441
evaluation, examples of42
keywords429
legal character€24
length,424
line numbers426
loading,81
macro 425
on demand424
program,120, 424
referencing437
reservedl45, 426
types of,120

system requirements
HP 9000 overviews14
HP-UX minimum version514
O SF/Motif HP 9000/700 requements514
SPARCsystem overview,17
SunOS minimum versio®17

T template
macro,192
token,525
trace
Seetrace measurement
trace events
definition,530
trace measuremeri3o
triggers,530
trigger
Sedtrace measurement, triggers
type casting435
type conversior435

U unknown module in backtrace windoiv7
until macro 478
user program symbols
simulated 1/0 166
systemio_buf166
user-defined macros
Seemacros

558

Index

user-defined screens
defining,228
displaying,229
removing,230

user-defined windows
defining,228
erasing information ir230
removing,230

variables
breaking on acces30
displaying,26
displaying address 029
initializing, 183
macros189
modifying,176
version,69
displaying,143
view information in the active window33-134
view window, description 0f43
viewing text,16

W indicator characteg8
wait state pseudoregister @wait_st8@,
what’s new in this versiorg9
when macro479

example268, 273-275
while statement190
widget resource

SeeX resource
Window Active command#02-403
Window Cursor command04
Window Delete command05
Window Erase command(6
Window New command{07—-409
Window Resize command10
Window Screen_On commani] 1
Window Toggle_View command12-414
windows,129-136

active,131

backtrace99, 146

breakpoint96

559

Index

windows (continued)
commands, summary &f66
copying to file,135
definition,530
description 0f129
displaying alternate view,32
error,484
help,65
journal,40, 136
journal file,158
log file, 158
making active131
monitor,155
moving,226
predefined129
register,143
resizing,226
scrolling,16
setting behavior 023
settings, saving32
stack,130
view, 143
working with,129-136
X, 530
See alsX windows
windows,journal 325
word macro480
words
changing,180
Working (debugger statu€8
working directory530
workstation
HP 9000memory need$14
HP 9000 minimum performancgl4
SPARCsystem memory nee84y7
SPARCsystem minimum performanéd,7
write macro481-482

560

X

X client, 234, 248
X resource234, 247-258

$XAPPLRESDIR directory253
$XENVIRONMENT variable 253
Xdefaults file,252
/usr/hp64000/lib/X11/HP64_semes255
app-defaults file252
application-specific248

class name for applications defin@é,1
class name for debugge37

class name for widgets definexi9
command line option253

commonly modified graphical interface resour@3§

Debug.BW 255

Debug.Color255

Debug.Input255

Debug.Label254

Debug.Large255

Debug.Small255

defined,248

definition,530

general form249

instance name for applications defingé1
instance name for widgets defin@d9
loading order253

modifying resources, generalB36, 258
RESOURCE_MANAGER propertg53
scheme file system directoi3565

scheme files, debugger’s graphical interfé&el
scheme files, name#@54

schemes, forcing interface to use certabg
wildcard characte250

xrdb,253

xrm command line optior253

X resources

introduction,234

X server,234, 248, 530
X windows

definition,530

Index

561

Index

562

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met it§ighed
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau'’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or repfaeaducts which

prove to be defective.

Warranty service of this producilibe performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility onpyon HP’s prior
agreement and Buyer shall pay HRIsind trip travel expenses. In all other
cases, products must be returned to a servidéyatesignated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming insructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,

unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fithess for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other custssistance agements
are available for Hewlett-Packard products.

For any assistance, contaouy nearest Hewlett-Packard Sales and Service
Office.

	Debugging C Programs for 6800x/010/020/3xx Microprocessors
	In This Book
	Contents
	Quick Start Guide
	Getting Started with the Graphical Interface

	User’s Guide
	Entering Debugger Commands
	Loading and Executing Programs
	Viewing Code and Data
	Editing Code and Data
	Using Macros and Command Files
	Configuring the Debugger

	Concept Guide
	X Resources and the Graphical Interface

	Reference
	Debugger Commands
	Expressions and Symbols in Debugger Commands
	Predefined Macros
	Debugger Error Messages
	Debugger Versions

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

