User’s Guide for the Graphical User Interface

HP 64742/3/4
68000/HC001/ECO000
Emulation/Analysis

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1992, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
Microtec is a registered trademark of Microtec Research Inc.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B1468-97000, March 1992
Edition 2 B1468-97001, June 1992
Edition 3 B1468-97002, December 1993

Safety, and Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

68000 Emulation and Analysis

The HP 64742, HP 64743, and HP 64744 family of 68000 emulators replace the
microprocessor in your embedded microprocessor system, also caladjtie
systemso that you can control execution and view or modify processor and target
system resources.

The emulator requires amulation analyzethat captures 48 channels of emulation
processor bus cycle information synchronously with the processor’s clock signal.
The HP 64706 Emulation Bus Analyzer meets this requirement.

You can also use the HP 64703 Emulation Bus Analyzer which has 64 channels
and arexternal analyzethat captures up to 16 channels of data external to the
emulator.

And, you can use the HP 64704 or HP 64794 Emulation Bus Analyzers which have
80 channels; however, these analyzers do not have external analysis channels.

With the Emulator, You Can ...

* Plug into 68000 target systems.

» Download programs into emulation memory or target system RAM.

» Display or modify the contents of processor registers and memory resources.

* Run programs, set up software breakpoints, step through programs, and reset
the emulation processor.

With the Analyzer, You Can ...

» Trigger the analyzer when a particular bus cycle state is captured. States are
stored relative to the trigger state.

* Qualify which states get stored in the trace.

» Prestore certain states that occur before each normal store state.

» Trigger the analyzer after a sequence of up to 8 events have occurred.

» Capture data on signals of interest in the target system with the external
analyzer.

» Cause emulator execution to break when the analyzer finds its trigger condition.

With the HP 64700 Card Cage, You Can ...

Use the RS-422 capability of the serial port and an RS-422 interface card on
the host computer (HP 98659 for the HP 9000 Series 300) to provide
upload/download rates of up to 230.4K baud.

Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

Start and stop up to 16 emulators at the same time (up to 32 if modifications
are made).

Use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition, or you can allow an external instrument to arm the analyzer or break
emulator execution.

With the Graphical User Interface, You Can ...

Use the emulator and analyzer under an X Window System that supports
OSF/Motif interfaces.

Enter commands using pull-down or pop-up menus.

Enter, recall, and edit commands using the command line pushbuttons.

Enter file names, recalled commands, recalled values, etc., using dialog boxes.
Set breakpoints by pointing the mouse cursor on a line in the mnemonic
memory display and clicking.

Create action keys for commonly used commands or command files.

With the Softkey Interface, You Can ...

Use the emulator and analyzer with a terminal or terminal emulator.
Quickly enter commands using softkeys, command recall, and command
editing.

In This Book

This book documents the Grapical User Interface and the Softkey Interface when
used with the HP 64742, HP 64743, and HP 64744 68000 family of emulators and
the HP 64703/704/706/794 analyzer. Itis organized into five parts whose chapters
are described below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly shows
you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 shows you how to start and exit the HP 64700 interfaces.
Chapter 3 shows you how to enter commands.

Chapter 4 shows how to configure the emulator.

Chapter 5 shows how to use the emulator.

Chapter 6 shows how to use the analyzer.

Chapter 7 shows how to use the Software Performance Measurement Tool
(SPMT) with the analyzer.

Chapter 8 shows how to use the external state analyzer.

Chapter 9 shows how to make coordinated measurements.

Chapter 10 shows how to change X resource settings for the Graphical User
Interface.

Part 3. Reference
Chapter 11 describes emulator/analyzer interface commands.
Chapter 12 lists the error messages that can occur while using the
emulator/analyzer interface.

Part 4. Concept Guide
Chapter 13 contains conceptual information on various topics.

Part 5. Installation Guide

Chapter 14 outlines the installation of the Graphical User Interface, and shows
you how to start and exit the interface.

Contents

Part 1

Quick Start Guide

Getting Started

The Emulator/Analyzer Interface — At a Glance

The Softkey Interface 24

Softkey Interface Conventions 25

The Graphical User Interface 26
Graphical User Interface Conventions 28

The Getting Started Tutorial 31

Step 1. Startthe demo 32

Step 2: Display the program in memory 33

Step 3: Run from the transfer address 34

Step 4: Step high-level source lines 35

Step 5: Display the previous mnemonic display 36
Step 6: Run until an address 37

Step 7: Display data values 38

Step 8: Display registers 39

Step 9: Step assembly-level instructions 40

Step 10: Trace the program 41

Step 11: Display memory at an address in a register 43
Step 12: Patch assembly language code 44

Step 13: Exit the emulator/analyzer interface 47

24

Contents

Part 2 User’s Guide

2 Starting and Exiting HP 64700 Interfaces

Starting the Emulator/Analyzer Interface 53

To start the emulator/analyzer interface 53

To start the interface using the default configuration 54

To run a command file on interface startup 55

To display the status of emulators 55

To unlock an interface that was left locked by another user 56

Opening Other HP 64700 Interface Windows 57

To open additional emulator/analyzer windows 57
To open the high-level debugger interface window 58
To open the software performance analyzer (SPA) interface window

Exiting HP 64700 Interfaces 59

To close an interface window 59
To exit a debug/emulation session 60

Entering Commands

Using Menus, the Entry Buffer, and Action Keys 63

To choose a pulldown menu item using the mouse (method 1) 64
To choose a pulldown menu item using the mouse (method 2) 65
To choose a pulldown menu item using the keyboard 65

To choose popup menu items 67

To place values into the entry buffer using the keyboard 68

To copy-and-paste to the entry buffer 68

To recall entry buffer values 71

To use the entry buffer 71

58

To copy-and-paste from the entry buffer to the command line entry area

To use the action keys 73
To use dialog boxes 73
To access help information 77

72

Contents

Using the Command Line with the Mouse 78

To turn the command line on or off 78

To enter a command 79

To edit the command line using the command line pushbuttons 80
To edit the command line using the command line popup menu 81
Torecall commands 82

To get help about the command line 82

Using the Command Line with the Keyboard 83

To enter multiple commands on one command line 83
Torecall commands 84

To edit commands 84

To access on-line help information 85

Using Command Files 86

To start logging commands to a command file 89
To stop logging commands to a command file 89
To playback (execute) a command file 90

Using Pod Commands 91

To display the pod commands screen 92
To use pod commands 92

Forwarding Commands to Other HP 64700 Interfaces 93

To forward commands to the high-level debugger 93
To forward commands to the software performance analyzer 94

Configuring the Emulator

Using the Configuration Interface 99

To start the configuration interface 100

To modify a configuration section 102

To store a configuration 104

To change the configuration directory context 105
To display the configuration context 106

To access help information 106

To exit the configuration interface 107

To load a configuration 107

Contents

Modifying the General Configuration Items 108

To select the emulator clock source (HP 64742/3) 108

To enable/disable entry into the monitor after configuration 109
To restrict the emulator to real-time runs 109

To turn OFF the restriction to real-time runs 110

To select the inverse assembly syntax 110

Selecting the Emulation Monitor Program 112

To use the background monitor program 115

To use a foreground monitor program 116

To synchronize monitor cycles to the target system (HP 64744) 119
To disable the synchronization of monitor cycles (HP 64744) 119

Mapping Memory 120

To map memory ranges 122

To characterize unmapped ranges 124

To delete memory map ranges 125

To map memory ranges that use function codes 126

Configuring the Emulator Pod 128

To synchronize emulation memory cycles to the target (HP 64742/3) 128
To disable synchronization of emulation memory cycles (HP 64742/3) 129
To enable/disable bus arbitration 129

To include bus arbitration tags in the trace 130

To exclude bus arbitration tags from the trace 130

To enable/disable /BERR response on emulation memory accesses 131
To enable/disable response to target system interrupts 132

To set the reset value for the Supervisor Stack Pointer 132

To set the processor data bus width (HP 64744) 133

To specify the target memory access size 133

To drive background cycles to the target system 134

To stop driving background cycles to the target system 135

Setting the Debug/Trace Options 136

To enable/disable breaks on writes to ROM 136
To specify which TRAP instruction is used for software breakpoints 137
To include/exclude background states in the trace 137

10

Contents

5 Using the Emulator

Loading and Storing Absolute Files 141

To load absolute files 141
To load absolute files without symbols 142
To store memory contents into absolute files 142

Using Symbols 143

To load symbols 143

To display global symbols 144

To display local symbols 145

To display a symbol’'s parent symbol 149

To copy-and-paste a full symbol name to the entry buffer 150

Using Context Commands 151

To display the current directory and symbol context =~ 152
To change the directory context 152
To change the current working symbol context 153

Executing User Programs 154

To run programs from the current PC 154

To run programs from an address 155

To run programs from the transfer address 155
To run programs fromreset 155

To run programs until an address 156

To stop (break from) user program execution 157
To step high-level source lines 157

To step assembly-level instructions 158

To reset the emulation processor 159

Using Software Breakpoints 160

To display the breakpoints list 162

To enable/disable breakpoints 163
To set a permanent breakpoint 165
To set a temporary breakpoint 166
To set all breakpoints 167

To deactivate a breakpoint 167

To re-activate a breakpoint 168

To clear a breakpoint 170

To clear all breakpoints 172

11

Contents

Displaying and Modifying Registers 173

To display register contents 173
To modify register contents 174

Displaying and Modifying Memory 175

To display memory 175

To display memory in mnemonic format 176

To return to the previous mnemonic display 176
To display memory in hexadecimal format 177
To display memory in real number format 178
To display memory at an address 179

To display memory repetitively 180

To modify memory 180

Displaying Data Values 181

To display data values 181
To clear the data values display and add a new item
To add items to the data values display 182

Changing the Interface Settings 183

To set the source/symbol modes 183
To set the display modes 184

Using System Commands 186

To set UNIX environment variables 186

To display the name of the emulation module 187
To display the eventlog 187

To display the errorlog 188

To edit files 189

To copy information to a file or printer 192

To open a terminal emulation window 193

Using Simulated I/O 194
To display the simulated I/O screen 194
To use simulated I/O keyboard input 195

Using Basis Branch Analysis 196
To store BBA datato afile 196

182

12

Contents

6 Using the Emulation Analyzer

The Basics of Starting, Stopping, and Displayingcés 199

To start a trace measurement 200

To display the trace status 200

To stop a trace measurement 203

To display the trace 204

To position the trace display on screen 205
To change the trace depth 206

To modify the last

trace command entered 206

Qualifying Trigger and Store Conditions 207

To qualify the trigger state and position 212

To trigger on a number of occurrences of some state 214
To qualify states stored in the trace 215

To prestore states before qualified store states 216

To change the count qualifier 217

To trace until the analyzer is halted 219

To break emulator execution on the analyzer trigger 220

Using the Sequencer 221

To trigger after a sequence of states 221
To specify a global restart state 223
To trace "windows" of program execution 224

Modifying the Trace Display 226

To display the trace about a line number 227

To display the trace, disassembling from a line number 228
To display the trace in absolute format 229

To display the trace in mnemonic format 230

To display the trace with high-level source lines 231

To display the trace with symbol information 233

To change column widths in the trace display 234

To display time counts in absolute or relative format 235
To display the trace with addresses offset 236

To return to the default trace display 237

To display external analyzer information 238

13

Contents

Saving and Restoring Traces 239

To save trace commands 239
To restore trace commands 240
To save traces 241

To restore traces 242

Making Software Performance Measurements

Activity Performance Measurements 245

To set up the trace command for activity measurements 247
To initialize activity performance measurements 248
To interpret activity measurement reports 252

Duration Performanckleasurements 260

To set up the trace command for duration measurements 261
To initialize duration performance measurements 263
To interpret duration measurement reports 265

Running Measurements and Creating Reports 269

To run performance measurements 269
To end performance measurements 270
To create a performance measurement report 271

Using the External State Analyzer

Setting Up the External Analyzer 275
To connect the external analyzer probe to the target system 276

Configuring the External Analyzer 279

To control the external analyzer with the emulator/analyzer interface
To specify the threshold voltage 281

To specify the external analyzer mode 282

To specify the slave clock mode 283

To define labels for the external analyzer signals 286

280

14

9

10

Contents

Making Coordinated Measurements

Setting Up for Coordinated Measurements 293

To connect the Coordinated Measurement Bus (CMB) 293
To connect to the rear panel BNC 295

Starting/Stopping Multiple Emulators 297

To enable synchronous measurements 297
To start synchronous measurements 298
To disable synchronous measurements 298

Using Trigger Signals 299

To drive the emulation analyzer trigger signal to the CMB 301

To drive the emulation analyzer trigger signal to the BNC connector 302
To drive the external analyzer trigger signal to the CMB 302

To drive the external analyzer trigger signal to the BNC connector 303
To break emulator execution on signal from CMB 303

To break emulator execution on signal from BNC 304

To break emulator execution on external analyzer trigger 304

To arm the emulation analyzer on signal from CMB 305

To arm the emulation analyzer on signal from BNC 305

To arm the emulation analyzer on external analyzer trigger 306

To arm the external analyzer on signal from CMB 306

To arm the external analyzer on signal from BNC 307

To arm the external analyzer on emulation analyzer trigger 307

Setting X Resources

To modify the Graphical User Interface resources 312
To use customized scheme files 316

To set up custom action keys 318

To set initial recall buffer values 319

To set up demos or tutorials 321

15

Contents

Part 3 Reference

11 Emulator/Analyzer Interface Commands

How Pulldown Menus Map to the Command Line 328
How Popup Menus Map to the Command Line 332
Syntax Conventions 334

Commands 335

break 336

bbaunld 337

cmb_execute 338

copy 339

copy local_symbols_in 342
copy memory 343

copy registers 345

copy trace 346

display 347

display data 349

display global_symbols 352
display local_symbols_in 353
display memory 354

display registers 358

display simulated_io 359
display software_breakpoints 360
display trace 361

end 365

--EXPR-- 366

FCODE 369

forward 371

help 372

load 374

log_commands 376

modify 377

modify configuration 378
modify keyboard to_simio 379
modify memory 380

modify register 383

modify software_breakpoints 384
performance_measurement_end 386
performance_measurement_initialize 387

16

12

Contents

performance_measurement_run 389
pod_command 391
QUALIFIER 393
RANGE 395
reset 397

run 398
SEQUENCING 400
set 402

specify 407
STATE 409

step 411
stop_trace 413
store 414
--SYMB-- 416
trace 423
TRIGGER 426
wait 428
WINDOW 430

Error Messages
Graphical/Softkey Interface Messages - Unnumbered 435
Graphical/Softkey Interface Messages - Numbered 452

Terminal Interface Messages 455

Emulator Messages 455

68000 Emulator Messages 458

General Emulator and System Messages 460
Analyzer Messages 473

17

Contents

Part 4 Concept Guide

13 Concepts

X Resources and the Graphical User Interface 481

X Resource Specifications 481
How X Resource Specifications are Loaded 483
Scheme Files 485

Part 5 Installation Guide

14 Installation

Installation at a Glance 492

Installation Overview for HP 9000 Hosted Systems 492
Installation Overview for Sun SPARCsystems 494

Installation for HP 9000 Hosted Systems 495

Step 1. Install the hardware in the HP 64700 Series Cardcage 495
Step 2. Configure the emulator for the communication channel 495
Step 3. Connect the emulator to your system 496

Step 4. Install the software 496

Step 5. Verify the software installation 498

Step 6a. Start the X server and the Motif Window Manager (mwm) 499
Step 6b. Start HP VUE 499

Step 7. Set the necessary environment variables 500

Step 8. Determine the logical name of your emulator 502

Step 9. Start the interface with the emul700 command 503

Step 10. Exit the Graphical User Interface 505

18

Contents

Installation for Sun SPARCsystems 506

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7.
Step 8.
Step 9.

Install the hardware in the HP 64700 Series Cardcage 506
Configure the emulator for the communication channel 506
Connect the emulator to your system 507

Install the software 507

Start the X server and OpenWindows 508

Set the necessary environment variables 508

Verify the software installation 510

Map your function keys 511

Determine the logical name of your emulator 512

Step 10. Start the interface with the emul700 command 513
Step 11. Exit the Graphical User Interface 515

Glossary

Index

19

20

Part 1

Quick Start Guide

21

Part 1

22

Getting Started

23

Chapter 1: Getting Started

Display area.

Status line.

Command line.

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file main (module) . "main.c":
address data

000FD2 4E5&0000 LINK A6, ff00000

000FDe 4EB2000015 JSR 000152E

000FDC 4EB200001A JSR 0001aA96
4E71 HOP
4EB9000015 JSR 00015D8
5289000076 ADDQR.L #1,00076F4
4879000076 PEA.L 00076F4

000FFe 4EB2000010 JSR 000102¢
000FFC 588F ADDQ.L #4,A7

000FFE 4A39000077 TST.B 0007700
001004 €708 BEQ.B 000100E
001006 4EB2000019 JSR 00019D8
00100C 4E71 NOP

00100E 4EB200001A JSR 0001ABA
001014 4E71 NOP

00101e e&0CC BRA.B 0000FE4

STATUS : ows: main."main.c":
display memory main mnemonic

trace

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

24

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

25

Chapter 1: Getting Started

The Graphical User Interface

Menu bar — File Display Modify Execution Breakpoints Trace Settings Help

Action keys: = Demo = | Disp Sre () | Trace () | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

Entry buffer Memory :mnemonic (file = main{modulel. "main.c":
label da

eff woid update_systeml); * update system wariables *

31 d upd y @] / pd y b1 /

Entl’y buﬂ:er reca“ extern woid interrupt_simi{}; /% simulate an interrupt */
extern voi o_sorti); * sets up ascii array and calls

bLHt0r1 dd @] / 1] y d 11

Action keys

main(}

i
init_system(};

D|Sp|ay area. proc_spec_initil;
while (truel

Scroll bar. update_sustem{};

num_checks++;
interrupt_sim{&num_checks);
if {graph?’

graph_datal};

Status Iine. \ proc_specificl);

STATUS: cws: main. " main.c”:

Command line.

display memory main mnemonic

Command line entry
area.

Softkey pushbuttons =

Command buttons. Includes commandCursor buttons for command line area
recall button. control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

26

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command buttons(includes command recall button). The commiaeturn
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

27

Chapter 1: Getting Started

The commandecall button allows you to recall previous or predefined
commands. When you click on the comm&uedtall button, a dialog box
appears that allows you to select a command.

e Cursor buttons for command line area control Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

28

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

29

Chapter 1: Getting Started

The following tables show the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

30

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The tutorial examples presented in this
chapter make the following assumptions:

e The HP 64742/3/4 emulator and HP 64703/4/6 analyzer are installed into the
HP 64700 Card Cage, the HP 64700 is connected to the host computer, and the
Softkey Interface software has been installed as outlined in the "Installation”
chapter.

» The emulator is operating out-of-circuit (that is, not plugged into a target
system) and contains at least 60 Kbytes of emulation memory. (If you're using
the HP 64744 68000/HC0O01/EC000 Emulator, it must be plugged into the
64744-66509 demo board).

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

31

Chapter 1: Getting Started
Step 1. Start the demo

Step 1. Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

$ cd /usr/hp64000/demo/debug_env/hp64742 <RETURN>
Refer to the README file for more information on the demo program.

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on a HP 9000 computer
and displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS".

Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (flusr/hp64000/etc/64700tab.net).

32

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Seftings

Action keys: = Demo = | Run xfer til {) | Disp Srec & Asm| Patch () |
= Your Key = | tMake & Load | Step Asm | Step Source | Disp Var() |
Disp @REG || Disp Src Prev | Trace | Run | Again |

Recall

Memaory :mnemonic :file = main{modulel. "main.c”
addre label data

31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and calls
34
35 maini}
35 i
97 init_systemi);
98 proc_spec_initi};
33
186 while {truel
181 i
182 update_system();
183 num_checks++;
184 interrupt_sim{&num_checks)
185 if {graph?
1686 graph_datall;
187 proc_specificll);

STATUS: cws: main."main.c”

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

33

Chapter 1: Getting Started
Step 3: Run from the transfer address

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

» Click on theRun Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main <RETURN>
Memory :Bsp fmnemonic :file = main(module). "main.c":
addre label data

31 extern void update_system(); /* update system variables =#/
32 extern void interrupt_simi}; /% simulate an interrupt #*/
33 extern void do_sorti); /% sets up ascii array and calls
34
35 maini}

.
97 init_systemi};
98 proc_spec_init(};
33
168 while (true}
181 i
18z update_systemi);
163 num_checks+4+;
184 interrupt_sim{&num_checksl;
165 if (graph?
166 graph_datall;
167 proc_specificll);

STATUS: M6800@--Running in monitor Software break: 0000fd20sp []

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor". When you run until an address, a
breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the current program counter.

34

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

To step a source line from the current program counter, click @tépeSource
action key.

Or, using the command line, enter:

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

Step into the "init_system" function by continuing to step source lines, either by
clicking on theStep Sourceaction key, by clicking on th&gain action key which
repeats the previous command, or by enteringtife sourcecommand on the
command line.

Memory :Bsp fmnemonic :file = init_systemimodule). "init_system.c”
addre label data
26
27 wvoid init_wal_arri);
28
23 woid
3H init_systemti}

- Fx FUMCTION init_systemi) */
32

/% Initialize the target walues for temperature and humidity */

33 target_temp = 73;

34 target_humid = 45;

35

36 /% Intialize the variables indicating the current environment #/
37 /% conditions */

a8 current_temp = B8

39 current_humid = 41;

49

41 f#* SJet starting directions for temp and humid */

42 temp_dir = up;

35

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display

Click on theDisp Src Prevaction key.

Or, using the command line, enter:
display memory mnemonic previous_display <RETURN>
This command is useful, for example, when you have stepped into a funtion that

you do not wish to look at—you can display the previous mnemonic display and
run until the source line that follows the function call.

36

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();", press and hold the
selectmouse button, and chooRen Until from the popup menu.

ewlett Packard Emulator/Analyzer: em68000 (m68000)

File Display Modify Execution Breakpoints Trace Seftings Help

Action keys: = Demo = | Run xfer til {) | Disp Srec & Asm| Patch () |
= Your Key = | tMake & Load | Step Asm | Step Source | Disp Var() |
Disp @REG || Disp Src Prev | Trace | Run | Again |

(): main

tBsp imremonic (file = mainimodule). "main.c":

Memary

addre label dats A
31 extern void update_systemi); /#* update system wariables #*/
32 extern void interrupt_simi}; /% simulate an interrupt */
33 extern void do_sortil; /% sets up ascii array and calls
34
35 main{}
35 i
97 init_systemi);
EE] Choose Action for Highlighted Line
1688 while (truel -
181 [Set/Clear Software Breakpoint
182 update_systen| 4
183 num_checks++; Edit Source
184 interrupt_sird Run Until
185 if {graph?
1686 graph_datH Trace After
187 proc_specific Trace Before
STATUS: cws: main."main.c”: Trace About

Transa | lntil

Or, using the command line, enter:

run until main."main.c": line 97 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

37

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on theDisp Var () action key.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>
Oata :update
addre label type data
AR7EF 4 |_num_checks int32 5]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

38

Chapter 1: Getting Started

Step 8: Display registers

Step 8: Display registers
You can display the contents of the processor registers.
» ChooseDisplay - Registers

Or, using the command line, enter:

display registers <RETURN>

Registers

Mext_FC HEEAFOCEsp

PC BEEEEFOC STATUS 2784 < = =z » ISP BEEHE0ER 55P BHEHEF34
0B-07 HHPERBZE APADEAZH BARESAZE PHEBEG7H BADBARADR HEHBHARE BADHABADR BBEOBABA
AB-A7 BABA7 158 FFFFFFFF BARA7725 PBABSAZE BARA77ES OOABF 158 BADAEF34 ABEOEF34

39

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

» To step one instruction from the current program counter, click datépeAsm
action key.

Or, using the command line, enter:

step <RETURN>

Registers

Hext_FC HHAAFDCEsp

FC ABHEEFDC
D8-07 BEBRERZA AEEEBEZ0
AB-AY BEBAY 158 FFFFFFFF

STARTUS

Step_PC HBEFOCEsp JSR
HNext_FC HA1A3GEsp
PC BBE661A96

08-07 GHEEARZA ABABEAZE
AB-A7 BHEE7 1558 FFFFFFFF

STATUS

2784 < s =z 2 Usp
AEREEEZE AHEEEGYE BRERARAD
BEREY 726 AHOECHZE BRERY7ES

p.proc_spec_init
2784 ¢ s oz ¢ UsP

HARARGAZE DHARAGYE BREAAABA
HRART 726 DHOEGEZE BEEAT7ES

ABHEEARA 35P
AHEEEERE BRBRADAR
ABEEF 158 BEBEEF 34

ABEEEARE 35P
ABHACHRE BABRAEAR
ABHAEF 158 BABAEF 34

ABHAEF34
BEAERERE
AEEEEF 34

ABEEEF34
ABHEEARA
ABHEEF3A

Notice, when registers are displayed, stepping causes the assembly language

instruction just executed to be displayed.

40

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after main <RETURN>

Notice the message "Emulation trace started" appears on the status line. This

shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

Run the emulator demo program from its transfer address by choosing
Execution— Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address <RETURN>

41

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete". This

shows the trigger state has been found and the analyzer trace memory has been
filled.

5 To view the captured states, choBésplay - Trace.

Or, using the command line, enter:

display trace <RETURN>

) set=H More data of f screen
Label: Address Opcgode or Status w/ Source Lines time count
Base: umbiol mnemonic w/synbol relative

Bt titmain. e - line 1 thru 96 HEGHAHHEEAEEGH AR E A HAHHERA RS HA LS
Ll i pt
and calls combs

prog|main.main LINK AE, EHERL
sysstack+dE3F35 BAEE supr data wr word 48 nS
+6Az2 sysstack+BAIF3A B6E4 supr data wr waord 468 nS
+0833 prog|main+BAEERZ BABE supr prog 468 nS
BB Emain. c - line 37 BEHHRERHEHEHERARAREREREER AR AR AR AR BRHRRR RSB S

init_system(};

+B84 prog|maint@BEEE4 TSR init.init_system 4868 nS
+BA5 sysstack+dA3F34 BAEE supr data wr word 48 nS
+0AE sysstack+BA3FIE EFFB supr data wr word 48 nS
+887 prog|main+008006 BAEE supr prog 48 nS

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

42

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

Step 11: Display memory at an address in a
register

Click on theDisp @REGaction key.

Or, using the command line, enter the name of the command file:

mematreg <RETURN>
A command file dialog box appears (or a prompt appears in the command line).

Move the mouse pointer to the dialog box text entry area, type "A7", and click on
the "OK" button.

Or, if the prompt is in the command line:
A7 <RETURN>

Memary :Bsp rbytes :blocked :update

addre dats he iascii
BBEF7C-83 A BB BE Y8 B8 BA BB @B ... p
ABEF34-8B A BB 77 28 B8 BA 8B 20 Cooow
BABEFBC-93 A B8 EF 94 B8 ©BA @F EA P
BABEF34-3B A B8 EF FB B8 BA A6 B4 PR«
BBEF3IC-A3 Al BE BA AR B8 BA AR @0 P
BBEFA4-AB A B BA AR B8 BA 77 EB P TR
BBEFAC-B3 A B BA AR B8 BA A 30 B

HEEFB4-BB L 1 O - = N | I 15

HABEFBC-C3 Ag B8 B Al A8 BE @A 15 G e e
ABEFC4-CB Ag B8 BA A @8 BA A8 48 P
HBEFCC-03 45| 5] 77 28 4[] 55 Ja]5] 55| PN TTR
HEEFO4-08 Jal5] 5] Ba [] 5[] 55] Jats|
AHEFOC-ES 55| J5L5] 515 e J5L5] 58] 77 25
HAHEFE4-EB 55| J5L5] aa 2e J5L5] 58] 77 ES A
HHEFEC-F3 Ag EA 76 54 J5L5] aa EF Fa Lo
HEEFF4-FB Ag B8 B4 36 B8 @@ @@ @0
HEEFFC-H3 *k *k * ok * ok *k * *

£ E -

m - = -

43

Chapter 1: Getting Started
Step 12: Patch assembly language code

Step 12: Patch assembly language code

ThePatch () action key lets you patch code in your program.
1 With "main” still in the entry buffer, click on tHeun Xfer til () action key.

2 To display memory with assembly-level instructions intermixed with the high-level
source lines, click on thRisp Src & Asm action key.

Memory :Bsp fmnemonic :file = maintmodule). "main.c”:
addre label data
3 extern woid interrupt_simil; f#* simulate an interrupt #/
33 extern woid do_sartil); /% sets up ascii array and calls
34
35 main}

{
pr|main.main 4E560068 LINE A&, fHEERE

init_system(};

4EB3BEAELS ISR init.init_system
proc_spec_init(};
4EB3ABEARLA ISR p.proc_spec_init

while (truel
4E71 WOP
i
update_systemi};
4EB3BEAELS ISR up. update_system

rum_checks++;

3 Click on thePatch () action key.

A window appears and tivé editor is started. Add the line:
LINK A6,#1234h

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN>" to apply the patch.

44

Chapter 1: Getting Started
Step 12: Patch assembly language code

Memory :Bsp fmnemonic :file = mainimodule). "main.c”
addre label data
32 extern void interrupt_sim{}; /% simulate an interrupt */
33 extern void do_sartil); /#% sets up ascii array and calls
34
35 maini}

{
pr|main.main 4E561234 LINK AE, tA1234

init_systemi};

4EB3AEEALS ISR init.init_system
proc_spec_init(};
4EB3AEEALA ISR p.proc_spec_init

while (truel
4E71 WOP
i
update_systemi);
4EB3AEEALS ISR up. update_system

rum_checks++;

Notice in the emulator/analyzer interface that the instruction at address "main" has
changed.

Click on thePatch () action key again.

A window running thevi editor again appears, allowing you to modify the patch
code that was just created. Modify the line you added previously to:

LINK A6,#0

Exit out of the editor, saving your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN>" to apply the patch.

Notice in the emulator/analyzer interface that the instruction at address "main" has
been changed back to what it was originally.

When patching a single address, make sure the new instruction takes up the same
number of bytes as the old instruction; otherwise, you may inadvertently modify
code that follows.

45

Chapter 1: Getting Started
Step 12: Patch assembly language code

5 Type "main+4 thru main+15" in the entry buffer.

By entering an address range in the entry buffer (that is, <address> thru <address>)
before clicking on th@atch () action key, you can modify a patch template file
which allows you to insert as much or as little code as you wish.

6 Click on thePatch () action key again.

A window running thevi editor again appears. Suppose you want to patch the
demo program so that the proc_spec_init() funtion is called before the init_system()
function. Suppose also that there is memory available at address 8800H. Edit the
patch template file as shown below.

; PCHS700 Assembly Patch File: PCHmain+4.s

Date : Tue Jun 30 14:06:06 MDT 1992
; Dir : /users/guest/demo/debug_env/hp64742
; Owner: guest

INCLUDE PCHSINC.s
ORG main+4
BRA patchl ;You may want to change this name!
ORG 8800h ;You MUST set this address!
patchl NOP
; i You may need to modify labels and operands of the 111
; il following code to match your assembler syntax i
; 1l Patching Range: main+4 thru main+15

JSR _proc_spec_init

JSR _Init_system
BRA main+16 ;You MUST set this address also!

Notice that symbols can be used in the patch file. Exit out of the editor, saving
your changes.

The file you just edited is assembled, and the patch main menu appears. Type "a
<RETURN>" to apply the patch.

You can step through the program to view execution of the patch.

46

Chapter 1: Getting Started
Step 13: Exit the emulator/analyzer interface

Step 13: Exit the emulator/analyzer interface .

» To exit the emulator/analyzer interface and release the emulator, choose
File - Exit — Released

Or, using the command line, enter:

end release_system <RETURN>

47

48

Part 2

User’'s Guide

49

Part 2

50

Starting and Exiting HP 64700
Interfaces

51

Starting and Exiting HP 64700 Interfaces

You can use several types of interfaces to the same emulator at the same time to
give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer interface (which is also a separate product)
lets you make measurements that can help you improve the performance of your
software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator. Only one C
debugger interface window and one SPA window are allowed, but you can start
multiple emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are grouped into
the following sections:

e Starting the emulator/analyzer interface.
» Opening other HP 64700 interface windows.
e Exiting HP 64700 interfaces.

52

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface sof
must have already been installed as described in the "Installation" chapter.

This section describes how to:

« Start the interface.

» Start the interface using the default configuration.

* Run acommand file on interface startup.

» Display the status of emulators defined in the 64700tab.net file.

* Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use theemul700 <emul_name>ommand.

If /Jusr/hp64000/binis specified in your PATH environment variable (as shown in
the "Installation" chapter), you can start the interface witlenma/700
<emul_name>command. The "emul_name" is the logical emulator name given in
the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
and data in the fourth.

53

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Examples To start the emulator/analyzer interface for the 68000 emulator:

$ emul700 em68000 <RETURN>

The "em68000" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

'# lan: em68000 m68000 21.17.9.143
serial: em68000 m68000 myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in the "Error Messages" chapter.

To start the interface using the default
configuration

» Use theemul700 -d <emul_namexommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

54

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

To run a command file on interface startup

* Use theemul700 -c <cmd_file> <emul_namerommand.

You can cause command files to be run upon starting the interface by using the
<cmd_file> option to theemul700command.

Refer to the "Using Command Files" section in the "Entering Commands" chapter
for information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup” command file:

$ emul700 -c startup em68000 <RETURN>

To display the status of emulators

¢ Use theemul700 -loremul700 -lvcommand.

The-l option of theemul700command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.

You can also use the option with the| option for a verbose listing of the status
information.

Examples To list, verbosely, the status of the emulator whose logical name is "em68000":

$ emul700 -lv. em68000 <RETURN>

The information may be similar to:

em68000 - m68000 running; user = guest
description: M68000 emulation, w/64740EA, 60Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
device channel: /dev/emcom23

55

Chapter 2: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Or, the information may be similar to:

em68000 - m68000 running; user = guest@myhost
description: M68000 emulation, w/64740EA, 60Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
internet address: 21.17.9.143

To unlock an interface that was left locked by
another user

» Use theemul700 -U <emul_namexommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. This command will fail if there currently is a
session in progress.

Examples To unlock the emulator whose logical name is "em68000":

$ emul700-U em68000 <RETURN>

56

Chapter 2: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows if those products have been
installed (for example, the software performance analyzer (SPA) interface and
high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Window®r enter the
emul700 <emul_name>xommand in another terminal emulation window.

To open additional conventional Softkey Interface windows, choose

File - Emul700- Emulator/Analyzer under Terminal Windowsr enter the
emul700 -u skemul <emul_namerzommand in another terminal emulation
window.

You can open additional Graphical User Interface windows, or terminal emulation
windows containing the Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

57

Chapter 2: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

To open the high-level debugger interface window

enter theemul700 -u xdebug <emul_nameezommand in another terminal

. * ChooseFile - Emul700- High-Level Debugger ...under "Graphic Windows", or
emulation window.

For information on how to use the high-level debugger interface, refer to the
debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

* ChooseFile - Emul700- Performance Analyzer ...under "Graphic Windows", or
enter theemul700 -u xperf <emul_name>ommand in another terminal
emulation window.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

58

Chapter 2: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 764700 interfaces. Y|
can simply close one of the open interface windows, or you can exit the debu
session by closing all the open windows. When exiting the debug session, yo
lock the emulator so that you can continue later, or you can release the emulation
system so that others may use it. This section describes how to:

* Close an interface window.

» Exit a debug/emulation session.

To close an interface window

In the interface window you wish to close, chobse - Exit — Window. In the
emulator/analyzer interface command line, enteetitlcommand with no options.

All other interface windows remain open, and the emulation session continues,
unless the window closed is the only one open for the emulation session. In that
case, closing the window ends the emulation session, but locks the emulator so that
other users cannot access it.

59

Chapter 2: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

To exit a debug/emulation session

To exit the interface, save your configuration to a temporary file, and lock the
emulator so that it cannot be accessed by other users, ¢hlees&xit - Locked.
In the emulator/analyzer interface command line, entegriidockedcommand.

To exit the interface and release the emulator for access by other users, choose
File - Exit — Released In the emulator/analyzer interface command line, enter the
end release_systernommand.

If you exit the interface locked, the interface saves the current configuration to a
temporary file and locks the emulator to prevent other users from accessing it.
When you again start the interface with ¢éineul700command, the temporary file

is reloaded, and therefore, you return to the configuration you were using when you
quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry buffer
and command recall buffer. These recall buffer values will be present when you
restart the interface.

In contrast, if you end released, you must have saved the current configuration to a
configuration file (if the configuration has changed), or the changes will be lost.

60

Entering Commands

61

Entering Commands

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, you have even more in the command line.

This chapter shows you how to enter commands in each type of emulator/analyzer
interface. The tasks associated with entering commands are grouped into the
following sections:

« Using menus, the entry buffer, and action keys.
e Using the command line with the mouse.

e Using the command line with the keyboard.

e Using command files.

e Using pod commands.

e Forwarding commands to other HP 64700 interfaces.

62

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the Graphical User
Interface to enter commands. This section describes how to:

* Choose a pulldown menu item using the mouse.
» Choose a pulldown menu item using the keyboard.

* Use the popup menus.

» Use the entry buffer.

» Copy and paste to the entry buffer.
* Use action keys.

* Use dialog boxes.

» Access help information.

63

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 1)

Position the mouse pointer over the name of the menu on the menu bar.
Press and hold tmmmmand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

64

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.

Click thecommand selechouse button to display the menu. .

Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu button), then repeat the
previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and holdrtteu seleckey (for
example, the "Extend char" key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, " for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

65

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then presRET@JRN>
key on the keyboard.

To cancel a displayed menu, pressiEBeapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkadoard focus policig set to

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to the "Setting X
Resources" chapter and the "Softkey.Input" scheme file for more information about
setting the X resources that control defining keyboard accelerators.

66

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose popup menu items

Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold ttselectmouse button.

After the popup menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:
* Mnemonic Memory Display.

» Breakpoints Display.

» Global Symbols Display.

* Local Symbols Display.

+ Status Line.

« Command Line.

67

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, prestnieu key
combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

68

Note

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are a number of entry buffers being displayed,
is actually only one entry buffer and it is common to all windows. That means
can copy a symbol or an address from one window and then use it in another
window.

On a memory display or trace display, a symbol may not be completely displayed
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

69

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Example To paste the symbol "num_checks" into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the paste mouse
button.

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: = Demo = | Disp Sre () | Trace () | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |
¥ | rum_checks Recall

A mouse click Memory :imnemonic :file = mainimodule). "main.c”:

. addre label dats

causes the interface 31 extern woid update_systemi}; /#* update system wariables #/

to expand the 32 extern woid interrupt_simi{}; /% simulate an interrupt */

h|ghl|ght to include extern woid do_sort(}; /% sets up ascii array and calls

the symbol o ey

"num_checks" and init_system();

paste the symbol proc_spec_init};

into the entry buffer. while (true)

i

update_system(};
num_check sga
interrupt_sim{&num_checks);
if {graph?’

graph_datal};
proc_specificl);

cws: main. main.c

70

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startup.

If you exit the emulation/analysis session with the interface "locked", recall buffer
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

71

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by:
» Copying the text from the display area using the copy-and-paste feature.
» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.

Position the mouse pointer within the command line text entry area.

If necessary, reposition the cursor to the location where you want to paste the text.
If necessary, choose the insert or replace mode for the command entry area.

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

72

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
You can use the predefined action keys, but you'll really appreciate them when you
define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.
2 Edit the item in the text entry area (if desired).

3 Click on the "OK" pushbutton to make the selection and close the dialog box, click
on the "Apply" pushbutton to make the selection and leave the dialog box open, or
click on the "Cancel" pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

73

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the graphical interface window.

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the "Setting
X Resources" chapter).

74

Examples

The file filter selects
specific files.

A list of
filter-matching files
from the current
directory.

A list of files
previously accessed
during the emulation
session.

A single click on a

file name from either

list highlights the file
name and copies it t
the text area. A

double click chooses

the file and closes th
dialog box.

Label informs you
what kind of file
selection you are
performing.

Text entry area.
Text is either
copied here from
the recall list, or
entered directly.

Clicking this button
chooses the file name
displayed in the text entry causes a list of files

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the File Selection dialog box:

mulator/Analyzer: File Selectio

File Filter
fusers/quest/demos/ debug_ernv/hpB47427/ %, ER

Files

fusersiquestidemo/debugq_envihp&d742/Config.EA
fusersiguestidemofdebuq envihp&d4742/Configall.EA
=Previous Files=
fusrfhp&d4000finstfemuliruntime/0F0&61928.lan/default.EA
usersiguestidemoldebug envfh

=

Load Emulation Configuration
fusers/guest/demo/debug_env/hpB4742/Config. EA,

QK

Filter Cancel

Entering a new file filter
and clicking this button

Clicking this button
cancels the file selection
operation and closes the

area and closes the dialogmatching the new filter to dialog box.

box.

be read from the directory.

75

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you
of the type of list
displayed.

A list of predefined
or previously
accessed directorie

A single click on a
directory name fro
the list highlights
the name and copies
it to the text area. A
double click chooses
the directory and
closes the dialog
box.

Text entry area.
Directory name is
either copied here
from the recall list,
or entered directly.

Clicking this button
chooses the directory
displayed in the text entrydisplayed in the text entryselection operation and

Emulator/Analyzer: Directory Selectio

Previous Working Directories

Associated X Resource: "emul.m&8000* dirSelectSub.entri
&

HOME
HP&4000/monitor
HP&4000/demofdebug_envihp&d742

usersfiquestidemolfdebuq envihp&4742

=

Selection

Esers.-" guest/demos/ debug_env/hpB474E

QK

Apply

Clicking this button
chooses the directory

Clicking this button
cancels the directory

area and closes the dialogarea, but keeps the dialogcloses the dialog box.

box.

box on the screen instead
of closing it.

76

Chapter 3: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Display the Help Index by choositglp — General Topic...or Help - Command
Line....

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

77

Chapter 3: Entering Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the Graphical User Interface,dbemand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. Additionally, the graphical interface makes the softkey
labels pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with the keyboard is
the only way to enter commands.

This section describes how to:

e Turn the command line off/on.
* Enter commands.

» Edit commands.

* Recall commands.

» Display the help window.

To turn the command line on or off

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodelégeimouse button,
and choos€ommand Line Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

Turns display of the command line area "on" or "off." On means that the command
line is displayed and you can use the softkey label pushbuttons, the command
return and recall pushbuttons, and the cursor pushbuttons for command line editing.

78

Chapter 3: Entering Commands
Using the Command Line with the Mouse

Off means the command line is not displayed and you use only the pulldown menus
and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes
command line to be turned on. That is because the menu item chosen requir
some input at the command line that cannot be supplied another way.

To enter a command

Build a command using the softkey label pushbuttons by successively positioning
the mouse pointer on a pushbutton and clickingtishbutton selechouse button
until a complete command is formed.

Execute the completed command by clickingRleturn pushbutton (found near
the bottom of the command line in the "Command" group).

Or:

Execute the completed command using the Command Line entry area popup menu:
Position the mouse pointer in the command line entry area; press and hold the
selectmouse button until the Command Line popup menu appears; then, choose the
Execute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete wReturn pushbutton is not
halfbright. The interface does not check or act on a command, however, until the
command is executed. (In contrast, commands resulting from pulldown menu
choices and action keys are supplied with the needed carriage return as part of the
command.)

79

Chapter 3: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pushbuttons

To clear the command line, click t@dear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton.

To move to the right one command word or token, clickthvard pushbutton.
To move to the left one command word or token, clickBekup pushbutton.

To insert characters at the cursor position, presaseet key to change to
insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pres8HheKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, tli@rward pushbutton becomes halfbright
and unresponsive when the cursor reaches the end of the command string.
Similarly, theBackup pushbutton becomes halfbright and unresponsive when the
cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line popup
menu" and "To edit the command line using the keyboard" for information about
additional editing operations you can perform.

80

Chapter 3: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line popup menu

To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold geectmouse button until the Command Line popup
menu appears; chooSéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line: position
the mouse pointer at the place where you want the clear-to-end to start; press and
hold theselectmouse button until the Command Line popup menu appears; choose
Clear to End of Line from the menu.

To position the cursor and insert characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Insert Mode from the menu; type the characters to be inserted.

To replace characters at the current cursor location: position the mouse pointer in a
non-text area of the command line entry area; press and halel¢cénouse

button to display the Command Line popup menu; chBoséion Cursor,

Replace Modefrom the menu; type the characters to be inserted.

To position the cursor and replace characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Replace Modefrom the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for information
about additional editing operations you can perform.

81

Chapter 3: Entering Commands
Using the Command Line with the Mouse

To recall commands

1 Click the pushbutton labeldgiecallin the Command Line to display the dialog box.

2 Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — pulldown menus, action
keys, and command line entries — are echoed to the command line entry area, the
contents of the Command Recall dialog box is not restricted to just commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

» To display the help topic explaining the operation of the command line, press the
Help pushbutton located near the bottom-right corner of the Command Line area.

82

Chapter 3: Entering Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

When using the command line with the keyboard, you enter commands by pressing
softkeys whose labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

The command line also provides command completion. You can type the first
characters of a command (enough to uniquely identify the command) and the

press <Tab>. The interface completes the command word for you.

Entering commands with the keyboard is easy. However, the interface provides
other features that make entering commands even easier. For example, you can:

» Enter multiple commands on one line.
* Recall commands.
» Edit commands.

» Access on-line help information.

To enter multiple commands on one command
line
» Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the commands
are separated by semicolons (;).

Examples To reset the emulator and break into the monitor:

reset ; break <RETURN>

83

Chapter 3: Entering Commands
Using the Command Line with the Keyboard

Examples

To recall commands

Press <CTRL>r or <CTRL>b.

The most recent 20 commands you enter are stored in a buffer and may be recalled
by pressing <CTRL>r. Pressing <CTRL>b cycles forward through the recall buffer.

For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r <RETURN>

To edit commands

Use the <Left arrow>, <Right arrow>, <Tab>, <Shift><Tab>, <Insert char>, <Back
space>, <Delete char>, <Clear line>, and <CTRL>u keys.

The <Left arrow> and <Right arrow> keys move the cursor single spaces to the left
or right.

The <Tab> and <Shift><Tab> keys move the cursor to the next or previous word
on the command line.

The <Insert char> key enters the insert editing mode and allows characters or
command options to be inserted at the cursor location.

The <Back space> key deletes the character to the left of the cursor.
The <Delete char> key deletes the character to the right of the cursor.
The <Clear line> key deletes the characters from the cursor to the end of the line.

The <CTRL>u key erases the command line.

84

Chapter 3: Entering Commands
Using the Command Line with the Keyboard

Examples

To access on-line help information

Use thehelp or ? commands.

To access the command line’s on-line help information, type &ighgor ? on the
command line. You will notice a new set of softkeys. By pressing one of thes
softkeys and <RETURN>, you can display information on that topic.

To display information on the system commands:

help system_commands <RETURN>

Or:

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screen full
of information, you will have to press the space bar to see the next screen full, or
the <RETURN> key to see the next line, just as you do with the Widdé¢

command. After all the information on the particular topic has been displayed (or
after you press "g" to quit scrolling through information), you are prompted to press
<RETURN> to return to the command line.

85

Chapter 3: Entering Commands
Using Command Files

Using Command Files

You can execute a series of commands that have been stored in a command file.
You can create command files by logging commands while using the interface or
by using an editor on your host computer.

Once you create a command file, you can execute the file in the emulation
environment by typing the name of the file on the command line and pressing
<RETURN>.

Command files execute until an end-of-file is found or until a syntax error occurs.
You can stop a command file by pressing <CTRL>c or the <Break> key.

This section shows you how to:
» Start logging commands to a command file.
» Stop logging commands to a command file.

» Playback (execute) a command file.

Nesting Command Files

You can nest a maximum of eight levels of command files. Nesting command files
means one command file calls another.

Comments in Command Files

Text that follows a pound sign (#), up to the end of the line, is interpreted as a
comment.

Using the wait Command

When editing command files, you can inseait commands to pause execution of
the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

86

Chapter 3: Entering Commands
Using Command Files

Use thawait measurement_completeommand after changing the trace depth.
By doing this, when you copy or display the trace after changing the trace depth,
the new trace states will be available. Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters by using
parameter declaration line preceding the commands in the command file. Wh
command file is called, the system will prompt you for current values of the for
parameters listed.

Parameters are defined as:

Passed Parameters These are ASCII strings passed to a command file. Any
continuous set of ASCII characters can be passed. Spaces separate the
parameters.

Formal Parameters -These are symbols preceded by an ampergahd (
which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for the formal
parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the parameter in
double quotes () or single quotes (). Thus, to pass the parameter HP 9000 to a
command file, you can use either "HP 9000" or 'HP 9000'.

The special paramet&®ArG_IEfT gets set to all the remaining parameters
specified when the command file was invoked. This lets you use variable size
parameter lists. If no parameters are &&rG_|EfT gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1

#

modify a location or list of locations in memory
and display the result

#

modify memory &ADDR words to & VALUE1 &ArG_IEfT
display memory &ADDR blocked words

87

Chapter 3: Entering Commands
Using Command Files

When you execute CMDFILE, you will be prompted with:

Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location to be
modified. You will then be prompted f&/ALUEL . If you enter, for example,
"0,-1,20, Offffh, 4+5*4", the first parameter "0,-1,20," is passe&MALUE1 and
the remaining parameters "Offffh," and "4+5*4" are pass&ias |EfT .

You can also pass the parameters when you invoke the command file (for example,
CMDFILE 1000h 0,-1,20, Offfth, 4+5*4).

Other Things to Know About Command Files

You should know the following about using command files:

1

Command files may contain shell variables. Only those shell variables
beginning with "$" followed by an identifier will be supported. An identifier is
a sequence of letters, digits or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{ }" or entered directly
following the "$" symbol. Braces are required when the identifier is followed
by a letter, a digit or an underscore that is not interpreted as part of its name.

For example, assume a directory named /users/softkeys and the shell variable
"S". The value of "S" is "soft". By specifying the directory as /users/${S}keys
the correct result is obtained. However, if you attempt to specify the directory
as /users/$Skeys, the Softkey Interface looks for the value of the variable
"Skeys". This is not the operators intended result. You may not get the
intended result unless Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in your
environment with the command "env".

Positional shell variables, such as $1, $2, and so on, are not supported. Neither
are special shell variables, such as $@, $*, and so on, supported.

You can continue command file lines. This is done by avoiding the line feed
with a backslash (). A line terminated by "\" is concatenated with any
following lines until a line that does not contain a backslash is found. A line
constructed in this manner is recognized and executed as one single command
line. If the last line in a command file is terminated by "\", it appears on the
command line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three quoting

88

Chapter 3: Entering Commands
Using Command Files

characters for shell commands which are double quotes ("), single quotes ('),
and the backslash symbol (\).

For example, the following three lines are treated as a single shell command.
The two hidden line feeds are ignored because they are inside the two single
quotes ():

lawk '/$/ { blanks++}
END { print blanks }

"an_unix_file

To start logging commands to a command file

ChooseFile - Log - Record and use the dialog box to select a command file name.

Using the command line, enter tlog_commands to <filescommand.

To stop logging commands to a command file

ChooseFile - Log - Stop.

Using the command line, enter tlog_commands offtommand.

89

Chapter 3: Entering Commands
Using Command Files

To playback (execute) a command file

ChooseéFile - Log - Playback and use the dialog box to select the name of the
command file you wish to execute.

Using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the interface
cannot find the command file in the current directory, it searches the directories
specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

90

Chapter 3: Entering Commands
Using Pod Commands

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal Interface is the
low-level interface that resides in the firmware of the emulator.

A pod command used in the Graphical User Interface bypasses the interface
goes directly to the emulator. Because some pod commands can cause the i
to become out-of-sync with the emulator, or even cause the interface to termin|
abnormally, they must be used with care.

For example, if you change configuration items, the actual state of the emulator will
no longer match the internal record the interface keeps about the state of the
emulator.

Issuing certain communications-related commands can prevent the interface from
communicating with the emulator and cause abnormal termination of the interface.

However, it is sometimes necessary to use pod commands. For example, you must
use a pod command to execute the emulap@rormance verification (pv)
routine. Performance verification is an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level interface if they
are used indiscriminately.

This section shows you how to:
» Display the pod commands screen.

* Use pod commands.

91

Chapter 3: Entering Commands
Using Pod Commands

To display the pod commands screen

ChooseDisplay — Pod Commands

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, Gettisgs- Pod
Command Keyboard

To use pod commands

To begin using pod commands, cho8s#tings— Pod Command Keyboard

To end using pod commands, click twspendpushbutton softkey.

TheSettings— Pod Command Keyboardcommand displays the pod commands
screen and activates the keyboard for entering pod command on the command line.

92

Chapter 3: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfa

This background process also allows commands to be forwarded from one inté
to another. Commands are forwarded usinddheard command available in the
command line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

Examples

To forward commands to the high-level debugger

Enter theforward debug "<command string>" command using the command
line.

To send the "Program Run" command to the debugger:
forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

93

Chapter 3: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

» Enter theforward perf "<command string>" command using the command line.

. Examples To send the "profile" command to the software performance analyzer:
forward perf "profile” <RETURN>

94

Configuring the Emulator

95

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

» Using the configuration interface.

* Modifying the general configuration items.

» Selecting the emulation monitor program.

* Mapping emulation and target system memory.
» Configuring the emulator pod.

» Setting the debug/trace options.

The simulated I/O feature and configuration questions are described in the
Simulated 1/0 User’s Guide

The external analyzer configuration questions are described in the "Using the
External State Analyzer" chapter.

The interactive measurement configuration questions are described in the "Making
Coordinated Measurements" chapter.

Configuring for Operation in the Target System

After you plug the emulator into a target system and turn on power to the
HP 64700, you need to configure the emulator so that it operates properly with your
target system.

Map memory. Because the emulator can use target system memory or emulation
memory (or both), it is necessary to map ranges of memory so that the emulator
knows where to direct its accesses.

You can synchronize emulation memory accesses to the target system in order to
more closely imitate target system memory. For example, if emulation memory
replaces slower target system memory that requires wait states, synchronizing

96

Chapter 4: Configuring the Emulator

emulation memory to the target system causes wait states to be inserted on
emulation memory accesses as they would be on target system memory accesses.

You specify the synchronization of emulation memory differently depending on
which emulator you're using: If you're using the HP 64744 emulator, you use the
dti attribute when mapping emulation memory ranges, and you answer a
configuration question to make the specification for monitor program cycles. If
you're using the HP 64742/3 emulators, you answer a configuration question to
make the specification for all emulation memory and background monitor cycles.

Select the target system clock as the emulator’s clock source. When
plugging the emulator into a target system, the emulator should use the target
system clock. When using the HP 64744 emulator, this is not applicable becau
the emulator must either be plugged into a target system or the demo board which
provides a clock.

Set the reset value of the supervisor stack pointer register. Because the
stack is used when the emulator transitions into the run state, steps, etc., after
emulation reset, the supervisor stack pointer must point to RAM.

If you're emulating a 68HC001 or 68EC000 microprocessor, should the

emulator operate in 16-bit mode or 8-bit mode? In other words, what is

the target system data bus width? This is only applicable when using the HP 64744
emulator which supports 68HC001 and 68EC000 emulation.

Is there circuitry in the target system that requires programs to run in
real-time? Some emulator commands cause temporary breaks to the monitor
program, typically to access microprocessor register values or target system
memory. If the target system requires that programs run in real-time, you must
restrict the emulator to real-time runs.

Should the emulator respond to target system interrupts when

running programs? If so, you must enable the emulator’s response to target
system interrupts; otherwise, you must disable the emulator’s response to target
system interrupts.

Should the emulator respond to target system interrupts when

running in the monitor program? If so, you must use a foreground monitor
program since target system interrupts are always ignored during background
operation (refer to the "Selecting the Emulation Monitor Program” section later in
this chapter). You must also enable the emulator’s response to target system

97

Chapter 4: Configuring the Emulator

interrupts. If it's not important that the emulator respond to target system interrupts
when running in the monitor, you can use the background monitor.

Is there circuitry in the target system that constantly monitors bus

cycle execution (for example, memory refresh circuitry or a watchdog

timer)? If so, you should drive background cycles to the target system.
(Foreground monitor cycles appear at the target interface exactly as if they were
bus cycles caused by a user program.)

Should bus arbitration be allowed? Generally, the answer to this question

will be "yes". However, you may disable bus arbitration in order to isolate target
system problems. For example, if you have a situation where the processor never
seems to execute any code, you can disable bus arbitration to check and see if
arbitration circuitry in your target system might be contributing to the problem.

98

Chapter 4: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

» Start the configuration interface.

* Modify a configuration section.

» Store a configuration.

» Change the configuration directory context.
» Display the configuration context.

» Access help information.

» Exit the configuration interface.

* Load a configuration.

This chapter describes emulator configuration in general terms. For information
about your emulator’s specific configuration questions, refer to your emulator
User’'s Guide

99

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface main menu (see example below) is displayed.

The configuration sections that are presented depend on the hardware and features
of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface, you don't get a main menu from which to
choose configuration sections; however, the same display area and command line
are used to answer the configuration questions.

100

Chapter 4: Configuring the Emulator
Using the Configuration Interface

Examples The 68000 emulator configuration interface main menu is shown below.

mulator Configuration: Main Men

~Emulator Configuration Sections

& General Items
<> Monitor Type

<> Memory Map

Clicking on one of the <> Emulator Pod Settings
lines selects a particula

configuration section. <> DebugfTrace Options
2 Simulated 10

~Analyzer Configuration Sections

<> External Analyzer

<> Interactive Measurement Specification

Clicking this button
presents the questions Modify Apply to Exit

for the selected Section Emulator Window
configuration section.

Clicking this button Clicking this button Clicking this button
stores the current exits the configuration presents the on-line help.
configuration. interface.

101

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface main menu, and click the
"Modify Section" pushbutton.

3 Use the command line to answer the configuration questions.

If you're using the Softkey Interface:
The configuration questions in the "General Items" section are the first to be
asked.

To access the questions in the "Monitor Type" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Memory Map" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Emulator Pod Settings" section, answer "yes" to
the "Modify emulator pod configuration?" question.

To access the questions in the "Debug/Trace Options" section, answer "yes" to
the "Modify debug/trace options?" question.

102

The menu bar.

Configuration help

text display area.

Emulator status an
error message line.

Command line text

entry area.

Pushbutton softke

Command control
and cursor control
pushbuttons.

Chapter 4: Configuring the Emulator
Using the Configuration Interface

Each configuration section presents a window similar to the following.

“Erter monitor after configuration” is selected, the emulator
l attempt to enter the monitor after configuration is complete.

Modify configuration will fail and the previous configuration wll be
restored if "yes" is selected and the emulator is umable to enter the
monitor.

AAMFLE: if you are using an external clock and the target system i

turned of f {ie. no clock signall, answer "no

STATUS: Configuring HG8000/68HC001/68ECO00

Enter monitor after configuration {using external clockl? no

E yes n no n IE I E IE Ig H RECALL I
Command: ' Cursor Backup| Fonl.rard| Clear to end| Clear

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return” command pushbutton to accept the answer that is
shown.

When you answer a configuration question, you are normally presented with the
next question in the section; however, there are some cases when a carriage return
is required, and you can supply it by clicking the "Return" command pushbutton or
by pressing the <RETURN> key.

103

Chapter 4: Configuring the Emulator
Using the Configuration Interface

At the last question of a configuration section, you are asked if you wish to return
to the main menu. You can click the "next_sec" softkey pushbutton to access the
guestions in the next configuration section.

To recall a configuration question, click the "RECALL" softkey pushbutton. If you
do this at the starting question of a configuration section, you are asked if you want
to return to the main menu.

In order for the emulator to recognize any configuration changes, the configuration
must be applied to the emulator.

To store a configuration

When answering the configuration questions, chédse- Store...from the
pulldown menu, and use the File Selection dialog box to name the configuration
file.

From the configuration interface main menu, click on the "Apply to Emulator"
button, and use the File Selection dialog box to name the configuration file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don't enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

The file to which the configuration is stored becomes the current configuration file.
The emulator only recognizes configuration changes when they are stored or loaded.

When modifying a configuration using the graphical interface, you can store your
answers at any time. This is useful for quickly verifying the effect a configuration
change has on the emulator.

Configuration information is saved in two files with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file, and the file with
the ".EB" extension is the "binary" or loadable copy of the file.

104

Chapter 4: Configuring the Emulator
Using the Configuration Interface

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

To change the configuration directory context

* When answering the configuration questions, chédse- Directory... from the
pulldown menu, and use the Directory Selection dialog box to specify the new

directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

105

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To display the configuration context

* When answering the configuration questions, ch@ssglay - Context...from the
pulldown menu.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

mulator Configuration: Current Conte

z Directory: fusersiguest/demofdebug_envihp&d742
k Configuration File: fusersfguestidemofdebug_envihp&4742/Config

To access help information

* When answering the configuration questions, chétedp — General Topic...from
the pulldown menu.

» From the configuration interface main menu, click on the "Help Topic" button.

106

Chapter 4: Configuring the Emulator
Using the Configuration Interface

To exit the configuration interface

When answering the configuration questions, chédse- Exit... from the
pulldown menu (or type <CTRL>X), and click "Yes" in the confirmation dialog box.

From the configuration interface main menu, click the "Exit Window" button, and
click "Yes" in the confirmation dialog box.

The confirmation dialog box only appears if changes have been made to the c-
configuration.

When you choose "Yes" from the confirmation dialog box, any modifications made
to the configuration which haven’t been stored are lost. Choosing "No" from the
confirmation dialog box cancels the exit and keeps the emulator configuration
interface running.

To load a configuration

In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the File Selection dialog box to specify the
configuration file to be loaded.

Using the command line, enter tload configuration <FILE> command.

This command loads previously created and stored configuration files.

107

Chapter 4: Configuring the Emulator
Modifying the General Configuration Iltems

Modifying the General Configuration Items

In order to modify the general configuration items, you must first start the
configuration interface and access the "General Items" configuration section (refer
to the previous "Using the Configuration Interface" section).

This section shows you how to:

» Select the emulator clock source (HP 64742/3).

» Enable/disable entry into the monitor after configuration.
* Restrict to real-time runs.

* Turn OFF the restriction to real-time runs.

» Select the inverse assembly syntax for mnemonic displays.

To select the emulator clock source (HP 64742/3)

* Answer "external” or "internal” to the "Micro-processor clock source?" question.

You should always select the external clock option when using the emulator
in-circuit to synchronize the emulator with your target system.

Your target system clock must conform to the specifications for the 68000
microprocessor. The maximum clock speed with the HP 64743 emulator is
16 MHz. The HP 64742 emulator has a maximum clock speed of 12.5 MHz.

Note that changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the "Enter monitor
after configuration?" question is answered.

Answering "internal” to the "Micro-processor clock source?" question selects the
emulator’s internal clock oscillator.

108

Chapter 4: Configuring the Emulator
Modifying the General Configuration Items

To enable/disable entry into the monitor after
configuration

Answer "yes" or "no" to the "Enter monitor after configuration?".

This question allows you to select whether the emulator will be running in the
monitor or held in the reset state on completion of the emulator configuration.

The answer to this configuration question is important in some situations. For
example, when you select the external clock (HP 64742/3 only) and the target
system is turned off, do not select reset to monitor. Otherwise, configuration will
fail. When you select an external clock source, this question becomes "Enter
monitor after configuration (using external clock)?" and the default answer
becomes "no".

CAUTION

To restrict the emulator to real-time runs
Answer "yes" to the "Restrict to real-time runs?" question.

If your target system circuitry is dependent on constant execution of program code,
you should restrict the emulator to real-time runs. This will help insure that target
system damage does not occur. However, remember you can still execesethe
break, andstepcommands; you should use caution in executing these commands.

The default configuration does not restrict the emulator to real-time runs.
Therefore, the emulator might make temporary breaks into the monitor to complete
certain commands. However, you may wish to restrict runs to real-time to prevent
temporary breaks that might cause target system problems.

When runs are restricted to real-time and the emulator is running the user program,
all commands that cause a break (exocegst break, run, andstepare refused.

109

Chapter 4: Configuring the Emulator
Modifying the General Configuration Iltems

The following commands are not allowed when runs are restricted to real-time and
the emulator is running the user program:

» Display/modify registers.
» Display/modify target system memory.
» Load/store target system memory.

If you want to enter one of these commands, you must first make an explicit break
into the monitor using thereak command.

Because the emulator contains dual-port emulation memory, commands that access
emulation memory are allowed while runs are restricted to real-time.

To turn OFF the restriction to real-time runs

* Answer "no" to the "Restrict to real-time runs?" question.

All commands, regardless of whether or not they require a break to the emulation
monitor, are accepted by the emulator.

To select the inverse assembly syntax

* Answer "64870" or "64845" to the "Inverse assembly syntax to use?" question.
The HP 64742/3 emulators accept absolute files generated by either of
Hewlett-Packard’s software development tool sets.

» HP 64819 68000/10 C Cross Compiler
HP 64845 68000/10 Cross Assembler and Linker

» HP 64902 68000 C Cross Compiler
HP 64870 68000/10/20 Assembiler/Linker/Librarian

110

Chapter 4: Configuring the Emulator
Modifying the General Configuration Items

The assembly language syntax used by the HP 64845 assembler does not use
Motorola assembly language syntax. For example, you use brackets instead of
parentheses around address registers and the PC in address register and program
counter indirect address modes. The HP 64870 assembler uses Motorola syntax.

This configuration question lets you select which syntax the inverse assembler
should use in mnemonic memory, trace, and register displays.

111

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

Selecting the Emulation Monitor Program

In order to select the type of monitor program used by the emulator, you must first
start the configuration interface and access the "Monitor Type" configuration
section (refer to the previous "Using the Configuration Interface" section).

This section shows you how to:

» Use the background monitor program.

* Use a foreground monitor program.

» Synchronize monitor cycles to the target system (HP 64744).
» Disable the synchronization of monitor cycles (HP 64744).

When you power up the emulator, or when you initialize it, the background monitor
is used by default. You can also configure the emulator to use a foreground
monitor. Before the background and foreground monitors are described, you
should understand the foreground and background emulator modes as well as the
function of the emulation monitor program.

The Background Emulator Mode

Background is the mode in which emulation processor execution does not appear
normally on the emulator probe. Background cycles may be driven to the target
system or hidden from the target system. When background cycles are driven, they
appear as reads. When background cycles are hidden, the emulator appears to the
target system to be in a suspended state. In background mode, the emulation
microprocessor executes out of background memory.

The Foreground Emulator Mode

Foreground is the mode in which all emulation processor cycles appear on the
emulation probe, and the emulator executes as if it were a real microprocessor. The
emulator is in foreground when it executes user programs. In foreground mode, the
emulation microprocessor typically executes out of target system or emulation
memory.

112

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

The Function of the Monitor Program

The monitor program is the interface between the emulation system controller and
the target system. The emulation system controller uses its own microprocessor to
accept and execute emulation, system, and analysis commands. The monitor
program is executed by the emulation microprocessor.

The monitor program makes possible emulation commands which access target
system resources. (The only way to access target system resources is through the
emulation processor.) For example, when you enter a command to modify tar
system memory, it is the execution of monitor program instructions that cause
new values to be written to target system memory.

When the emulation system controller recognizes that an emulation command
needs to access target system resources, it writes a command code to a
communications area and breaks the emulation processor execution into the
monitor program. The monitor program reads this command (and any associated
parameters) from the communications area and executes the appropriate
instructions to access these target system resources.

The Background Monitor

On emulator power-up, or after initialization, the emulator uses the background
monitor program. The background monitor program executes entirely in the
backgrouncemulator mode. The background monitor does not occupy processor
address space.

The Foreground Monitor

You can configure the emulator to use a foreground monitor program. When a
foreground monitor is selected, it executes inféinegroundemulator mode. The
foreground monitor occupies processor memory space and executes as if it were
part of the user program.

When you use a foreground monitor, breaks into the monitor still cause the
emulator to execute a number of cycles in background. The difference between the
foreground monitor and the background monitor is that when the background
monitor is used, all monitor functions are executed in background; when the
foreground monitor is used, the monitor functions are executed in foreground.

113

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

The foreground monitors are supplied with the interface software and can be found

in the following path:

/usr/hp64000/monitor/*

The monitor program naméchon68000.Sshould be assembled and linked with
the HP 64845 68000/10 Cross Assembler/Linker, and the monitor named

Mfmon68000.sshould be assembled and linked with the HP 64870 assembler.

You may customize the foreground monitor if necessary; however, you must

maintain the basic communications protocol between the monitor and the emulation
system controller. Comments in the monitor program source file detail sections

that cannot be changed.

Comparison of Background and Foreground Monitor Programs

Monitor Program Characteristic Background Foreground

Takes up processor memory space No Yes

Allows the emulator to respond to target system No Yes

interrupts during monitor execution

Can be customized No Yes

Can be used when performing coordinated measurements Yes No

with other emulators

Resident in emulator firmware Yes No, must be
assembled, linked,

and loaded

114

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

To use the background monitor program

Answer "background" to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

If you're using the HP 64744 emulator, answer the "Enable /MONDTACK
interlocking?" question (see the following descriptions on synchronizing monit
cycles).

Re-map memory (see the following section on "Mapping Memory").

When you select the background monitor program, a memory overlay is created
and the background monitor is loaded into that area.

Changing the monitor configuration resets the memory map, so you must re-map
memory.

You can use the emulator pod configuration questions listed below to specify how
the emulator will drive the target system during background monitor execution.

» "Drive background cycles to target system?"
» "Value for address bits A23-A8 during background cycles?"
* "Function code for background cycles?"

115

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

10

11

To use a foreground monitor program

Edit the monitor program source file to define its base address.
Assemble and link the monitor program.

Start the configuration interface and access the "Monitor Type" section.
Answer "foreground" to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

Enter the base address of the monitor in response to the "Monitor address?"
guestion.

Answer "none" or "supervisor" to the "Monitor function code?" question.

Enter the name of the monitor program absolute file in response to the "Monitor
filename?" question.

If you're using the HP 64744 emulator, answer the "Enable /MONDTACK
interlocking?" question (see the following descriptions on synchronizing monitor
cycles).

Re-map memory (see the following section on "Mapping Memory").

Modify the TRACE exception vector to point to the TRACE_ENTRY symbol in
the monitor program so that you can step through the user program.

The foreground monitor program’s base address should be on any 4 Kbyte
boundary (address ending in 000H) except OH (since that's the location of the
vector table). An ORG statement in the foreground monitor source file defines the
base address. Also, the base address is specified when configuring the emulator to
use a foreground monitor program.

116

Examples

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

When using the HP 64742/3 emulators, the monitor program’s base address should
be on a 2 Kbyte boundary unless you are using the HP 64170 memory board with

1 Mbyte memory modules, which requires the base address to be on an 8 Kbyte
boundary.

When you select a foreground monitor, a block of emulation memory is
automatically mapped with the function code specified.

The monitor program absolute file will be loaded after you have answered all the
configuration questions. Only the memory reserved for the monitor is loaded
configuration. Therefore, you should not link the foreground monitor to the us
program. If the symbol database must contain both monitor and user progral
symbols, create a different absolute file linking the monitor and user program.
load this file after configuration.

In order to step through programs when using a foreground monitor, you must
modify the TRACE vector (24H) in the processor’'s exception vector table. The
TRACE exception vector must point to the TRACE_ENTRY label in the
foreground monitor program.

The following examples of how to set up and use a foreground monitor program
assume the HP 64870 or HP B1464 68000/08/10/20/302
Assembler/Linker/Librarian is installed on the host computer.

To copy the foreground monitor program source file

$ cp /usr/hp64000/monitor/Mfmon68000.s . <RETURN>

To edit the monitor program source

$ chmod 644 Mfmon68000.s <RETURN>
$ vi Mfmon68000.s <RETURN>

The monitor will be loaded at 10000H, so the modify ORG statement near the top
of the file to look like this:
ORG 010000H * START MONITOR ON 4K BOUNDARY OTHER THAN ZERO

Notice that the ORG statement is indented from the left margin; if it is not indented,
the assembler will interpret the ORG as a label and will generate an error when
processing the address portion of the statement.

117

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

To assemble and link the monitor program enter the following commands
(which assume thatisr/hp64000/binis defined in the PATH environment
variable):

$ as68k -L Mfmon68000.s > Mfmon68000.lis <RETURN>
$ 1d68k-c Mfmon68000.k -L> Mfmon68000.map <RETURN>

Where the "Mfmon68000.k" linker command file is:

name Mfmon68000
load Mfmon68000.0
end

To configure the emulator to use a foreground monitor programaccess the
configuration questions, and answer the questions as shown below.

Inverse assembly syntax to use? 64870

Modify memory configuration? yes

Monitor type? foreground

Reset map (change of monitor type requires map reset)? yes
Monitor address? 10000h

Monitor file name? Mfmon68000

Re-map memory for the emulator demo program by entering the following mapper
commands:

0 thru 5fffth emulation rom <RETURN>
7000h thru Oefffh emulation ram <RETURN>
end <RETURN>

Configuration file name? fmoncfg

To load the demo program absolute fileenter the following command using the
command line:

load ecs <RETURN>

To modify the TRACE exception vector to point to the TRACE_ENTRY label
in the monitor program (so that the emulator can single-step), enter the following
commands using the command line:

load symbols Mfmon68000 <RETURN>

118

Chapter 4: Configuring the Emulator
Selecting the Emulation Monitor Program

modify memory 24h longto Mfmon68000.s:TRACE_ENTRY
<RETURN>

Now, you are ready to use the emulator.

To synchronize monitor cycles to the target
system (HP 64744) .

Answer "yes" to the "Enable /IMONDTACK interlocking?" question.

The termination of monitor cycles, that is, accesses to the locations that the monitor
program occupies, will not occur until the target system provides a /DTACK or
/VPA (if the microprocessor being emulated supports /VPA).

When using the background monitor, background cycles must be driven to the
target system in order for the "Enable /MONDTACK interlocking?" configuration
setting to have an effect. A /BERR signal from the target system will also
terminate a monitor cycle and cause the emulator to begin execution of the bus
error handler.

To disable the synchronization of monitor cycles
(HP 64744)

Answer "no" to the "Enable /MONDTACK interlocking?" question.

Monitor cycles, that is, accesses to the locations that the monitor program occupies,
are terminated by an emulator-generated /DTACK signal.

119

Chapter 4: Configuring the Emulator

Mapping Memory

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

When mapping memory, there a couple terms that you should be familiar with:
Mapper ranges— the maximum number of address ranges that can be
mapped.

Resolution— the minimum size address range that can be mapped.

Block size— the smallest amount of emulation memory that can be allocated
by the mapper.

120

Chapter 4: Configuring the Emulator
Mapping Memaory

The following table summarizes these parameters for the various emulators and

emulation memory configurations.

Emulation Memory Configurations
Emulator, Amount of memory Mapper Block size Resolution | Foreground
ranges monitor
block size
HP 64742, 128 Kbytes 7 512 bytes 512 bytes 2 Kbytes
HP 64743, 128 Kbytes 7 1 Kbyte 1 Kbyte 2 Kbytes
HP 64742/3, 512 Kbytes 7 1 Kbyte 1 Kbyte 2 Kbytes
HP 64743 w/HP 64170 and 1 or 2 7 2 Kbytes 256 bytes 2 Kbytes
HP 64171A memory modules
(256 Kbytes each)
HP 64743 w/HP 64170 and 1 or 2 7 8 Kbytes 1 Kbyte 8 Kbytes
HP 64171B memory modules (1 Mbyte
each)
HP 64744, 60 Kbytes base memory and 16 4 Kbytes 4 Kbytes 4 Kbytes
up to 2 additional memory modules —
either HP 64171A (256 Kbytes) or HP
64171B (1 Mbyte)
Mhis also the boundary on which the monitor’s base address must be located.

Notice the resolution can be smaller than the block size. In this case, it's possible
for emulation memory to be wasted. For example, suppose the resolution is 256
bytes and the block size is 2 Kbytes; if you map an emulation memory range that is

2304 bytes long (2 Kbytes + 256 bytes), the mapper will allocate 4 Kbytes of
emulation memory, 1792 bytes (2 Kbytes - 256 bytes) of which are unused.

Direct memory access (DMA) to emulation memory is not permitted.

You should map all memory ranges used by your programs before loading
programs into memory.

121

Chapter 4: Configuring the Emulator

Mapping Memory

In order to map memory, you must first start the configuration interface and access
the "Memory Map" configuration section (refer to the previous "Using the
Configuration Interface" section).

To map memory ranges

Enter the address range, memory type, and if you're using the HP 64744 emulator
you can also enter thi attribute for emulation memory ranges.

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the monitor
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if the "Break processor on write to ROM?" trace/debug
configuration option is enabled.

Writes to emulation ROM will be inhibited. Writes by user code to target system
memory locations mapped as ROM or guarded memory will result in a break to the
monitor but are not inhibited (that is, the write still occurs).

When using the HP 64744 emulator:

Emulation memory ranges can havedtieattribute which specifies that accesses

in that range be synchronized with the target system. This means the termination of
accesses in the range will not occur until the target system provides a /DTACK or
/VPA. A /BERR signal from the target system will also terminate an emulation
memory cycle and cause the emulator to begin execution of the bus error handler.

For emulation memory accesses that are not synchronized to the target system (that
is, accesses to ranges that are mapped withodtita#ribute), you can either

allow the emulator to respond to target system /BERR signals by answering "yes"

to the "Enable Bus Error on emulation memory accesses?" emulator pod
configuration question, or cause the emulator to ignore target system /BERR

signals by answering "no".

122

Chapter 4: Configuring the Emulator
Mapping Memaory

Examples Consider the following section summary from the linker load map output listing.

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
ABSOLUTE DATA 00000000 0000002F 00000030 O (BYTE)

0 NORMAL 00000030 00000030 00000000 2 (WORD)

env NORMAL CODE 00000400 0000098A 0000058B 2 (WORD)

prog NORMAL CODE 0000098C 00000A73 000000E8 2 (WORD)

const NORMAL ROM 00000A74 00000AD6 00000063 2 (WORD)

lib NORMAL CODE 00000AD8 00000E39 00000362 2 (WORD)

libc NORMAL CODE 00000E3A 00000E99 00000060 2 (WORD)

libm 00000E9A 0000OE9A 00000000 O (BYTE)

mon NORMAL CODE 00000E9A 00000FE3 0000014A 2 (WORD)

envdata NORMAL DATA 00007000 00007055 00000056 4 (LONG)

data NORMAL DATA 00007056 00007076 00000021 2 (WORD)

idata 00007077 00007077 00000000 O (BYTE)

udata 00007077 00007077 00000000 O (BYTE)

libdata NORMAL DATA 00007078 0000707B 00000004 4 (LONG)

libcdata NORMAL DATA 0000707C 00007106 0000008B 2 (WORD)

mondata NORMAL DATA 00007108 0000712B 00000024 2 (WORD)

heap NORMAL DATA 0000712C 0000A129 O00002FFE 4 (LONG)

stack NORMAL DATA 0000B0O0O0 O0OOEFFF 00004000 4 (LONG)

Notice the ABSOLUTE DATA, CODE, and ROM sections occupy locations 0
through OFE3H. Because the contents of these sections will eventually reside in
target system ROM, this area should be characterized as ROM when mapped. This
will prevent these locations from being written over accidentally. If breaks on

writes to ROM are enabled, instructions that attempt to write to these locations will
cause emulator execution to break into the monitor.

Also, notice the DATA sections occupy locations 7000H through OEFFFH. Since
these sections are written to, they should be characterized as RAM when mapped.

Enter the following commands to map memory for the above program.

delete all <RETURN>
0 thru Offfth emulation rom <RETURN>
7000h thru Oefffh emulation ram <RETURN>

The resulting memory mapper screen is shown below.

Emulation memaory blocks: available =
y range
1 AH- FFFH EMUL/ROM
2 7BEBH- EFFFH EMUL/RAM

function code attribute

123

Chapter 4: Configuring the Emulator

Mapping Memory

To synchronize emulation memory accesses in the range 0 through OFFFH, you
would enter the following command in place of the command above:

0 thru Offfth emulation rom dti <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

Examples

To characterize unmapped ranges

Use thadefault softkey to characterize unmapped ranges.

Thedefault softkey in the memory mapper allows you to characterize unmapped
memory ranges. Unmapped memory ranges are treated as target system RAM by
default. Unmapped memory ranges cannot be characterized as emulation memory.

To characterize unmapped ranges as target RAM:
default target ram <RETURN>

To characterize unmapped ranges as guarded memaory:

default guarded <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

124

Chapter 4: Configuring the Emulator
Mapping Memaory

To delete memory map ranges

* Use thaleletesoftkey to delete mapped ranges.

Note that programs should be reloaded after deleting mapper terms. The memory
mapper may re-assign blocks of emulation memory after the insertion or deletion of
mapper terms.

Examples To delete term 1 in the memory map: .

delete 1 <RETURN>

To delete all map terms:

delete all <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

125

Chapter 4: Configuring the Emulator
Mapping Memory

To map memory ranges that use function codes

» Specify function codes with address ranges when mapping memory.

Function code information lets you further characterize memory blocks as
Supervisor, user, supervisor program, supervisor data, user program, or user data
space. When you specify function codes with mapper ranges, the 68000 function
code outputs (FCO, FC1, FC2) are decoded to select particular blocks of memory.
Function codes let you overlay address ranges. When you specify function codes
as part of the address, the emulator memory mapper knows that overlaid blocks are
different memory regions and will define them separately.

If you specify a function code when mapping a range of memory, you must include
the function code when referring to locations in that range. If you don't include the
function code, an "ambiguous address" error message is displayed.

If you use different function codes, it's possible to map address ranges that overlap.
When address ranges with different function codes overlap, you must load a
separately linked module for the space associated with each function code. The
modules are linked separately because linker errors occur when address ranges
overlap.

When address ranges are mapped with different function codes, and there are no
overlapping ranges, your program modules may exist in one absolute file.

However, you have to use multiple load commands—one for each function code
specifier. This is necessary to load the various sections of the absolute file into the
appropriate function code qualified memory ranges. When you do this, be sure that
all address ranges not mapped (that is, the "other" memory mapper term) are
mapped as target RAM. When "other" is mapped as guarded, guarded memory
access errors (from the attempt to load the absolute file sections that are outside the
specified function code range) can prevent the absolute file sections that are inside
the specified function range from being loaded.

126

Examples

Chapter 4: Configuring the Emulator
Mapping Memaory
Suppose you're developing a system with the following characteristics:
* Input port at 100 hex.
* Output port at 400 hex.
* Supervisor program from 1000 through 1fff hex.
e Supervisor data from 2000 through 2fff hex.
» User program from 3000 through 3fff hex.
e User data from 3000 through 3fff hex.

Notice that the last two terms have address ranges that overlap. You can use
function codes to cause these terms to be mapped to different blocks of memory.

Suppose also that the only things that exist in your target system at this time are the
input and output ports and some control logic; no memory is available. You can
reflect this by mapping the I/O ports to target system memory space and the rest of
memory to emulation memory space with the following mapper commands:

Oh thru Offfh targetram <RETURN>
1000h thru 1fffh supervisor program emulation rom

<RETURN>

2000h thru 2fffh supervisor data emulation ram <RETURN>
3000h thru 3fffh user program emulation ram <RETURN>
3000h thru 3fffh user data emulation ram <RETURN>

After the configuration is saved, display memory at 1000H by entering the
following command (using the command line):

display memory 1000h blocked bytes <RETURN>

Notice that an "ambiguous address" error occurs because the "sp" function code
was not included with the address. The following command should have been
entered instead:

display memory fcode sp 1000h blocked bytes <RETURN>

127

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

Configuring the Emulator Pod

In order to configure the emulator pod, you must first start the configuration
interface and access the "Emulator Pod Settings" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:

» Synchronize emulation memory cycles to the target system (HP 64742/3).
. » Disable the synchronization of emulation memory cycles (HP 64742/3).

* Enable/disable bus arbitration.

* Include bus arbitration tags in the trace.

» Exclude bus arbitration tags from the trace.

» Enable/disable /BERR response on certain types of emulation memory cycle.

» Enable/disable response to target system interrupts.

» Set the reset value of the Supervisor Stack Pointer.

e Set the processor data bus width.

» Set the target system memory access size.

» Drive background cycles to the target system.

» Stop driving background cycles to the target system.

To synchronize emulation memory cycles to the
target (HP 64742/3)

* Answer "yes" to the "Interlock emulator /DTACK with user /IDTACK?" question.

An emulation memory cycle will not end until the target system asserts the
/DTACK or /VPA (valid peripheral address) signals. Note the following
relationships to other configuration items:

128

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

If a /BERR signal occurs during an emulation memory cycle when bus error
response is enabled (see the following "Enable Bus Error on emulation
memory accesses?" question), then the cycle will be terminated, and the
emulation processor will begin executing the bus error handler.

If you have enabled background monitor cycles to be driven to the target
system (see the following "Drive background cycles to the target system?"
guestion), the target system must still provide a /DTACK or /VPA signal as if
it were a normal user program access to emulation memory.

If you are not operating the emulator in-circuit, all emulation and background
monitor accesses are completed by the emulator generated /DTACK signal,
regardless of the answer to this configuration question.

To disable synchronization of emulation memory
cycles (HP 64742/3)

Answer "no" to the "Interlock emulator /DTACK with user [IDTACK?" question.

Emulation and background monitor accesses are terminated with a /DTACK signal
generated by the emulator.

To enable/disable bus arbitration

Answer "yes" to the "Enable bus arbitration?" question to enable target system bus
arbitration; answer "no" to disable the target bus arbitration.

When bus arbitration is enabled:
The emulator responds to the /BR (bus request) and /BGACK (bus grant
acknowledge) signals from the target system just like the microprocessor.

The emulator does not support DMA (direct memory access) to emulation
memory.

129

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

When bus arbitration is disabled:
The emulator ignores the /BR and /BGACK signals from the target system.

To include bus arbitration tags in the trace

1 Answer "yes" to the "Enable bus arbitration?" question to enable target system bus

arbitration.

Answer "yes" to the "Tag bus arbitration for analyzer?" question.

When bus arbitration tagging is enabled (and a trace has been started), the
emulation analyzer will store a single trace state (and label it as a bus arbitration
state) every time your target system goes through a bus arbitration sequence.

You can qualify analyzer status as a bus arbitration sequence by using the qualifier
status Oxx011xxxbor status dma For example, to trigger on the arbitration, you
could enter the following command:

trace after status dma <RETURN>

To exclude bus arbitration tags from the trace

1 Answer "yes" to the "Enable bus arbitration?" question to enable target system bus

arbitration.

2 Answer "no" to the "Tag bus arbitration for analyzer?" question.

If any bus arbitration sequence occurs, it will be ignored by the analyzer.

130

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

To enable/disable /BERR response on emulation
memory accesses

Answer "yes" or "no" to the "Enable Bus Error on emulation memory accesses?"
guestion.

The emulator will always respond to the /BERR signal during target system
memory cycles.
When /BERR response is enabled:

If your target system asserts the /BERR signal during certain types of
emulation memory cycles (as explained below), the emulation processor
terminates the cycle and begins executing your bus error handler.

When /BERR response is disabled:

The emulator ignores assertion of the /BERR signal from the target system
during certain types of emulation memory accesses (as explained below).

The types of emulation memory cycles that this configuration question applies to
are different depending on the emulator you're using.

When using the HP 64744 emulator:

This question applies to emulation memory accesses that are not interlocked with
the target system /DTACK.

When emulation memory accesses are interlocked with the target /DTACK (by
using thedti attribute when mapping emulation memory), a /BERR signal from the
target system will always terminate an emulation memory cycle and cause the
emulator to begin execution of the bus error handler.

When using HP 64742/3 emulators:

This question applies to emulation memory accesses when the target system
/IDTACK is interlocked with the emulation system /DTACK.

If the target and emulation /DTACKSs are not interlocked, the emulator will not
respond correctly to the /BERR signal from the target system.

131

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

To enable/disable response to target system
interrupts

Answer "yes" to the "Respond to target system interrupts?" question to enable the
emulator’s response; answer "no" to disable the emulator’s response.

When enabled, the emulator responds to target system interrupts during foreground
operation. Target system interrupts are always ignored during background
operation.

All 68000 systems require a vector table to process system conditions such as
divide by zero or trace traps. You need to provide such a vector table to manage
these conditions. Exception processing attempted without a vector table will cause
unpredictable behavior.

To set the reset value for the Supervisor Stack
Pointer

Enter an even address in response to the "Reset value of Supervisor Stack Pointer?"
question.

In order for the emulator to transition into the run state, to step, or to perform other
functions after emulation reset, the supervisor stack pointer must be set to an
appropriate value.

The value specified must be a 32-bit hexadecimal even address. This address
should reside in an otherwise unused emulation or target system RAM area.

Upon the first transition from emulation reset into the emulation monitor, the
supervisor stack pointer register is set to the value specified.

Note that a target system reset that occurs during background monitor operation
will not affect the supervisor stack pointer value.

Note that when you use a foreground monitor, the reset value of the supervisor
stack pointer must be at least six bytes away from a guarded memory area. If the

132

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

reset value of SSP is not six bytes away from a guarded area, a "Stack is in guarded
memory" error will occur when you attempt to run the program.

To set the processor data bus width (HP 64744)

Answer "16-bit" to the "Processor data bus width?" question to set 16-bit mod
answer "8-bit" to set 8-bit mode.

This configuration option is only valid for 68HC001/68EC000 emulation. When
emulating the 68000, the 16-bit mode is the only valid selection.

When an 8-bit data bus width is specified, target memory is always accessed as
bytes, and the "Target memory access size?" configuration question is not asked.

To specify the target memory access size

Answer the "Target memory access size?" question.

When accessing target system memory locations, the access mode specifies the type
of microprocessor cycles that are used to read or write the value(s). For example,
when the access mode is byte and a target system location is modified to contain

the value 12345678H, byte instructions are used to write the byte values 12H, 34H,
56H, and 78H to target system memory.

Answer "bytes" if the emulator should make 8-bit accesses to target system
memory.

Answer "words" if the emulator should make 16-bit accesses to target system
memory.

133

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

To drive background cycles to the target system

1 Answer "yes" to the "Drive background cycles to the target system?" question.

2 Select the A23-A8 values for driven background cycles by entering a hexadecimal
word value in response to the "Value for address bits A23-A8 during background
cycles?" question. (When using the HP 64742/3 emulators, you must enter a
hexadecimal byte value for address bits A23-A16.)

3 Select the function code for driven background cycles by responding to the
"Function code for background cycles?" question.

These questions are only asked when you are using a background monitor.

When background cycles are driven to the target system, all of the emulation
processor’'s address, data and control strobes are driven. Writes to background
memory will appear as reads to the target system.

When specifying a value for the upper address bits, you should choose an address
block which will not interfere with your target system circuitry such as memory
management units or cache memory.

The function code specified can be:
supr prog (FC2-FC0=110)

supr data (FC2-FC0=101)
user prog (FC2-FC0=010)

user data(FC2-FC0=001)

Choose a function code that will not cause target system hardware such as memory
management units to behave in an unpredictable manner.

134

Chapter 4: Configuring the Emulator
Configuring the Emulator Pod

To stop driving background cycles to the target
system

» Answer "no" to the "Drive background cycles to the target system?" question.

The emulator will appear to the target system as if it is between bus cycles while it

is operating in the background monitor. .

135

Chapter 4: Configuring the Emulator
Setting the Debug/Trace Options

Setting the Debug/Trace Options

In order to set the debug/trace options, you must first start the configuration
interface and access the "Debug/Trace Options" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:
+ Enable/disable breaks on writes to ROM.

» Specify which TRAP instruction is used for software breakpoints
(HP 64742/3/4).

* Include/exclude background states in the trace.

To enable/disable breaks on writes to ROM

Answer "yes" to the "Break processor on write to ROM?" question to enable
breaks; answer "no" to disable breaks.

When breaks on writes to ROM are enabled:
The emulator will break into the emulation monitor whenever the user program
attempts to write to a memory region mapped as ROM.

The emulator will prevent the processor from actually writing to memory
mapped as emulation ROM; however, it cannot prevent writes to target system
RAM locations which are mapped as ROM, even though the write to ROM
break is enabled.

When breaks on writes to ROM are disabled:

The emulator will not break to the monitor upon a write to ROM.

The emulator will not modify the memory location if it is in emulation ROM.

136

Chapter 4: Configuring the Emulator
Setting the Debug/Trace Options

To specify which TRAP instruction is used for
software breakpoints

Enter a value in response to the "Trap number for software breakpoint (0..0FH)?"
guestion.

You can answer with values from 0 through OFH to specify the particular TRAR

instruction used for software breakpoints. The value indicates the exception v
to use in processing the trap.

Use this configuration option if you have inserted other TRAP instructions in your
code with varying exception vector values. The configuration option allows you to
specify a different exception vector than the ones previously inserted. The
emulation monitor then responds normally to execution of a breakpoint.

When you change the answer to this configuration question, any software
breakpoints currently defined are disabled. (The software breakpoint trap
instructions currently in memory would be different than the new value you have
specified.)

To include/exclude background states in the trace

Answer "background" or "both" to the "Trace background or foreground
operation?" question to include background states in the trace; answer "foreground"
to exclude background states from the trace.

Answering "background" specifies that the analyzer trace only background cycles.
This is rarely a useful setting for user program debugging.

Answering "both" specifies that the analyzer trace both foreground and background
cycles. You may wish to specify this option so that all emulation processor cycles
may be viewed in the trace display.

Answering "foreground" specifies that the analyzer trace only foreground cycles.

137

138

Using the Emulator

139

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

* Loading absolute files.
* Using symbols.

» Executing user programs (starting, stopping, stepping, and resetting the
emulator).

» Using software breakpoints.

» Displaying and modifying registers.
» Displaying and modifying memory.
» Changing the interface settings.

* Using system commands.

140

Chapter 5: Using the Emulator
Loading and Storing Absolute Files

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into the emulator
and storing memory contents into absolute files. This section shows you how to:

* Load absolute files into memory.
* Load absolute files without symbols.

» Store memory contents into absolute files.

To load absolute files

» ChooseFile - Load — Executableand use the dialog box to select the absolute file.

* Using the command line, enter tbad <absolute_file>command.

You can load absolute files into emulation or target system memory. You can load
IEEE-695 format absolute files. You can also load HP format absolute files. The
store memorycommand creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM, use the command lioatsemul_mem
syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command liloeld user_memsyntax.

If you want both emulation and target memory to be loaded, do not specify
emul_memor user_mem

Examples To load the demo program absolute file, enter the following command:

load ecs.x <RETURN>

141

Chapter 5: Using the Emulator
Loading and Storing Absolute Files

To load only portions of the absolute file that reside in target system RAM:

load user_mem absfile <RETURN>

To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile <RETURN>

To load absolute files without symbols

» ChooseFile - Load - Program Only and use the dialog box to select the absolute
file.

» Using the command line, enter thad <absolute_file> nosymbolsommand.

To store memory contents into absolute files

* Using the command line, enter ttere memorycommand.

You can store emulation or target system memory contents into HP format absolute
files on the host computer. Absolute files are stored in the current directory. If no
extension is given for the absolute file name, it is given a ".X" extension.

Examples To store the contents of memory locations 900H through 9FFH to an absolute file
on the host computer named "absfile":

store memory 900h thru 9ffth to absfile <RETURN>

After the command above, a file named "absfile.X" exists in the current directory
on the host computer.

142

Chapter 5: Using the Emulator
Using Symbols

Using Symbols

If symbol information is present in the absolute file, it is loaded along with the
absolute file (unless you use thesymbolsoption). Both global symbols and
symbols that are local to a program module can be displayed.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to the "Setting X Resources" chapter).

This section describes how to:

* Load symbols. .
» Display global symbols.

» Display local symbols.

» Display a symbol’'s parent symbol.

» Copy-and-paste a full symbol name to the entry buffer.

To load symbols

ChooseéFile - Load — Symbols Onlyand use the dialog box to select the absolute
file.

Using the command line, enter tbad symbols <absolute_filexxommand.

Unless you use theosymbolsoption when loading absolute files, symbols are
loaded automatically. However, if you did userbgymbolsoption when loading
the absolute file, you can load the symbols without loading the absolute file again.

This option is particularly useful for loading symbols for files located in target
ROM so that you can use symbols with that code.

143

Chapter 5: Using the Emulator

Using Symbols

Examples To load symbols from the demo program:
load symbols ecs.x <RETURN>
To display global symbols
ChooseDisplay — Global Symbols
Using the command line, enter ttisplay global_symbolscommand.
Listed are: address ranges associated with a symbol, the segment the symbol is
associated with, and the offset of that symbol within the segment.
If there is more than a screen full of information, you can use the up arrow, down
arrow, <NEXT>, or <PREV> keys to scroll the information up or down on the
display.

Examples To display global symbols in the demo program:

display global_symbols <RETURN>

Global symbels in ecs.=

Procedure symbols

Procedure name Address range __ Segment 0ffset
__fflush AA4734 - Ba4520 libe jala]ala]
_bufsync ABZFBE - EEZFE3 libe jala]al]
_dbl_tao_str AA3Z226 - EE374B libe 24z
_doprnt AB33CE - BE46F3 libe BE3E
_exec_Funcs AAZ956 - BEZS7E libe BBE3Z
_Findbuf AB4B82E - BH48CS libe jal]elz]
_startup AHESSE - BEEEEF e BaEE
_swrite Ad4AB4 - BE4AEI libe ja]a]a]
_wrtchk AB4RER - BE4B55 libe jala]ala]
_xf1sbuf AA4B36 - EE4C1B libe jala]al]
atexit ABZ2324 - BEZ355 libe jal]ala]
calloc ABZE34 - BHZECD libe B4BE
clear_screen AAE95z - BEBESET e B1CAH
close ARREZZ - BEBBS7 ey BE3A
cambsort AH1278 - BE1470 prog B2AC
do_sort AH1434 - BALSZY prog B4E3

144

Chapter 5: Using the Emulator
Using Symbols

To display local symbols

When displaying symbols, position the mouse pointer over a symbol on the symbol
display screen and click tlselectmouse button.

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®esplay Local Symbolsfrom the popup
menu.

Position the mouse cursor in the entry buffer and enter the module whose loc
symbols are to be displayed; then, chddsplay — Local Symbols ()

Using the command line, enter ttlisplay local_symbols_in <modulexommand.

To display the address ranges associated with the high-level program’s source file
line numbers, you must display the local symbols in the file.

145

Chapter 5: Using the Emulator
Using Symbols

Examples To use the Symbols Display popup menu:

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

Recall

Global symbols in ecs.x
Procedure symbols
Procedure name Address range __ Segment Of fset

View the local

. BEZF7E - HBZFE? libe aaBEa
symbols associated ; BAAAAC - BAAAF1 erw B324
Wlth the hlghllghted updatEe_:s.l:l:z.'r_e.m AAT1S08 - HA1RSY prog HEBE

. wait_for_io Global Symbols Display | erw ABEA
symbol by choosing | ..z = B B154
this menu item. write_hdur Display Local Symbols prog A29A

Paplay Parent Symbols

Static symbols
Symbaol name Cut Full Symbol Mame Segment 0f fset

s Edit File Defining Symbol | "==F oRaR

JSR_ENTRY man ABEA
L_1_I0_check_loaop HEETIZ e HEHER
L_2_I10_exit_loop HEEYIE e HEHER
MONITOR_MESSAGE ABE174 - ABE1YY mondata ABEA
TaopOfHeap A11FFE ABEA k 4
TopOfStack BEF ARG heap aaBEa
STATUS: Build successful; no warnings were issued

146

Chapter 5: Using the Emulator
Using Symbols

Using the command line
To display local symbols in a module:

display local_symbols_in update_sys <RETURN>

Symbals in update_sysimodule!
Procedure symbols

Procedure name Address range __ Segment 0ffset

get_targets AHIG3E - ARL72Y prog BACC
graph_data AR13058 - BALAAF prog B4BE6
read_conditions AALYZE - BE17CO prog B15C
save_points AALSEC - @H1301 prog B31A
set_outputs AAL704 - BE1865 prog Bzaz
update_system ARL15058 - BHLEIY prog BEBEE
write_hdwr AR13EC - BEIBES prog B29A

Filename sumbals
Filename
update_sys.c

To display local symbols in a procedure:

display local_symbols_in update_sys.save_points <RETURN>

Symbals in update_sysimodulel.save_points{procedure’
Procedure special symbols

Procedure special name Address range __ Segment 0ffset

ENTRY AR13EC prog A3 1A
EXIT AR1304 prog A3FE
TEXTRAMGE AALBEC - BE1S01 prog A3 1A

147

Chapter 5: Using the Emulator
Using Symbols

To display address ranges associated with the high-level source line numbers:

display local_symbols_in update_sys."update_sys.c":

<RETURN>

Symbols in update_sysimodule). "update_sys.c":

Source reference symbols

Line range Address range __ Segment 0ffset
#1-#47 AB1508 - BB1SF7 prog ABAG
#45-H53 AB15F8 - BB1GAE prog AB26
#54-#56 A016EC - BB1G617 prog A83A
#57-#53 AB1618 - BB1637 prog AB46
HEE-HER AB1E38 - BBIE3D prog ABEE
#E1-HE1 AB1E3E - BB1E4D prog ABEC
#E2-HE3 BE1E4E - BBIES3 prog AB7C
#E4-#54 AE1654 - BE1GG]1 prog gagz
#E5-#E8 AB1662 - BBIGEY3 prog A838
#E3-#72 AB1674 - BB16G7 prog ABA2
#73-875 A01638 - BB1680 prog ABBE
H76-077 A8 168E prog ABBC
#78-#34 AB1E3E - BBIEBI prog ABCC
#95-#35 AB1EBA - BB1E01 prog ABED
#96-#39 AB1E02 - BB1E07 prog A1a8
#1a6-# 188 AE1608 - BB1609 prog @186

148

Chapter 5: Using the Emulator
Using Symbols

Examples

View the parent
symbol associated

with the highlighted
symbol by choosing
this menu item.

To display a symbol’s parent symbol

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup
menu.

ewlett Packard Emulator/Analyzer: em68000 (m68000)

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

num_checks Recall

—

Symboals in update_sysimodulel.save_points{procedurel
Procedure special symbols

Procedure special name Address range __ Segment Of fset
ENTRY AB18EC prog A31A
ERIT A6 1306 prog A3FE

EXTRAMGE BE18EC - BA1301 prog
Local Symbols Display

Display Local Symhbols

Display Parent Symhbols
Cut Full Symbol Hame
Edit File Defining Symbol

STATUS: cws: update_sys.save_points

149

Chapter 5: Using the Emulator

Using Symbols

Examples

Copy the full name
of the highlighted

symbol to the entry
buffer by choosing
this menu item.

To copy-and-paste a full symbol name to the
entry buffer

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that have
been truncated. Also, you are guaranteed of specifying the proper scope of the
symbol.

ewlett Packard Emulator/Analyzer: em68000 (m68000)

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

update_sysimodulel. save_points{procedurel Recall

—

Symbols in update_sysimodulel
Procedure symbols

Procedure name Address range __ Segment Of fset
get_targets BA163E - AH1727 prog BAACC
graph_data AA1308 - AHIASF prog

read_conditions AE172E - BALYCO prog
points ARIRFC — AR1ANT prog B31A

set_output Local Symbols Display :prog AzEz
BEBE
Display Local Symbols S:gg A29A

Display Parent Symbols
| Cut Full Symbol Name
Edit File Defining Symbol

Filename symbals
Filename
update_sys.c

STATUS: cws: update_sys

150

Chapter 5: Using the Emulator
Using Context Commands

Using Context Commands

The commands in this section display and control the directory and symbol
contexts for the interface.

Directory context. The current directory context is the directory accessed by all
system references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories since
beginning the emulation session, the current directory context is that of the
directory from which you started the interface.

Symbol context. The emulator/analyzer interface and the Symbol Retrieval
Utilities (SRU) together support a current working symbol context. The curren
working symbol represents an enclosing scope for local symbols. If symbols h

not been loaded into the interface, you cannot display or change the symbol context.

This section shows you how to:
» Display the current directory and symbol context.
» Change the directory context.

* Change the symbol context.

151

Chapter 5: Using the Emulator
Using Context Commands

To display the current directory and symbol
context

* ChooseDisplay — Context.

» Using the command line, enter {w&d andpws commands.

The current directory and working symbol contexts are displayed, and also the
name of the last executable file from which symbols were loaded.

. Example

Directory context.

Emulator/Analyzer: Current Conte

Directory: fusersiguest/demofdebug_envihp&4742

t— Symbol File: fusersfguestidemofdebug_envihp64742fecs.x
Executable from — i Symbol Scope: update_sys
which symbols were
last loaded. -

Done

Symbol context.

To change the directory context

» ChooseFile - Context— Directory and use the dialog box to select a new directory.

* Using the command line, enter tbek<directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

152

Chapter 5: Using the Emulator
Using Context Commands

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select the new
working symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to
in.)

You can predefine symbol contexts and set the maximum number of entries for the
Symbol Scope Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

153

Chapter 5: Using the Emulator
Executing User Programs

Executing User Programs

You can use the emulator to run programs, break program execution into the
monitor, step through the program by high-level source lines or by assembly
language instructions, and reset the emulation processor.

When displaying memory in mnemonic format, a highlighted bar shows the current
program counter address. When you step, the mnemonic memory display is
updated to highlight the new program counter address.

When displaying resisters, the register display is updated to show you the contents
of the registers after each step.

You can open multiple interface windows to display memory in mnemonic format
and registers at the same time. Both windows are updated after stepping.

This section describes how to:

e Start the emulator running the user program.
» Stop (break from) user program execution.

» Step through user programs.

* Reset the emulation processor.

To run programs from the current PC

* ChooseExecution— Run - from PC.

* Using the command line, enter thum command.

When the emulator is executing the user program, the message "Running user
program" is displayed on the status line.

154

Chapter 5: Using the Emulator
Executing User Programs

To run programs from an address

» Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - from ().

» Using the command line, enter tha from <address>command.

Examples To run from address 920H:

run from 920h <RETURN> .

To run programs from the transfer address

* ChooseExecution— Run - from Transfer Address.

* Using the command line, enter thum from transfer_address command.

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface astthasfer address

To run programs from reset

* ChooseExecution— Run - from Reset

* Using the command line, enter thum from reset command.

When you run from reset, the emulator drives the target reset line and begins
executing from the contents of exception vector 0 (this will occur within a few

155

Chapter 5: Using the Emulator
Executing User Programs

cycles of the /RESET signal). When the target system /RESET line becomes active
and then inactive, the 68000 registers are initialized to their reset values.

Examples

To run programs until an address

When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and holdstiectmouse button and
chooseRun Until from the popup menu.

Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution— Run - until ().

Using the command line, enter tha until <address>command.
When you run until an address, a software breakpoint is set at the address and the
program is run from the current program counter.

When using the command line, you can combine the various types of run
commands; for example, you can run from the transfer address until another
address.

To run from the transfer address until the address of the global symbol main:

run from transfer_address until address main <RETURN>

156

Chapter 5: Using the Emulator
Executing User Programs

Examples

To stop (break from) user program execution

ChooseExecution- Break.

Using the command line, enter thiwak command.

This command generates a break to the background monitor.

Software breakpoints and then until command allow you to stop execution at
particular points in the user program.

To break emulator execution from the user program to the monitor:

break <RETURN>

To step high-level source lines

ChooseExecution- Step Sourceand select one of the items from the cascade
menu.

Using the command line, enter ttep sourcecommand.

When stepping through instructions associated with source lines, execution can
remain in a loop and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation you can abort the step command by
pressing <CTRL>c.

157

Chapter 5: Using the Emulator
Executing User Programs

Examples

To step through instructions associated with the high-level source lines at the
current program counter:

step source <RETURN>
To step through instructions associated with high-level source lines at address
"main":

step source from main <RETURN>

Examples

To step assembly-level instructions

ChooseExecution- Step Instruction and select one of the items from the cascade
menu.

Using the command line, enter ttepcommand.

The step command allows you to step through program execution an instruction or
a number of instructions at a time. Also, you can step from the current program
counter or from a specific address.

To step one instruction from the current program counter:
step <RETURN>

To step a number of instructions from the current program counter:

step 8 <RETURN>

To step a number of instructions from a specified address:

step 16 from 920h <RETURN>

158

Chapter 5: Using the Emulator
Executing User Programs

To reset the emulation processor

ChooseExecution- Reset

Using the command line, enter tlesetcommand.

Theresetcommand causes the processor to be held in a reset statebuesik,a
run, orstepcommand is entered. A CMB execute signal will also cause the
emulator to run if reset.

159

Chapter 5: Using the Emulator
Using Software Breakpoints

Note

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations.

Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

Software breakpoints are implemented in the 68000 emulators by replacing
opcodes with TRAP instructions. You can configure the emulator to use one of 16
different TRAP instructions for software breakpoints. The default emulator
configuration specifies that the TRAP #0FH is used for software breakpoints.

In the 68010 emulator, software breakpoints are implemented by replacing opcodes
with the BKPT (breakpoint illegal) instruction.

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore, software breakpoints cannot be
set in target memory while the emulator is reset, and they can never be set in target
ROM. (You can, however, copy target ROM to emulation memory by storing the
contents of target ROM to an absolute file, re-mapping the range as emulation
RAM, and loading the absolute file.)

When you set a software breakpoint, the emulator replaces the opcode at the
address specified with the TRAP (68000) or BKPT (68010) instruction. When the
emulator detects a read from the appropriate vector table location (TRAP or BKPT
instruction has executed in the user program), execution breaks to the monitor.

If the TRAP (68000) or BKPT (68010) was generated by a software breakpoint, a
message containing the address of the breakpoint is displayed on the status line,
and, if the breakpoint is temporary, the original opcode is restored in the user
program. If the breakpoint is permanent, it remains active. A subsequeort
stepcommand will execute from the breakpoint address.

If the TRAP (68000) or BKPT (68010) was not inserted as the resuihotidy
software_breakpoints secommand (in other words, it is part of the user

program), the "Undefined software breakpoint" message is displayed on the status
line. To continue with program execution, you must run or step from the user
program’s TRAP instruction vector address.

160

Chapter 5: Using the Emulator
Using Software Breakpoints

Another way to break user program execution at a certain point is to break on the
analyzer trigger.

CAUTION Software breakpoints should not be set, cleared, enabled, or disabled while the
emulator is running user code. If any of these commands are entered while the
emulator is running user code, and the emulator is executing code in the area where
the breakpoint is being modified, program execution may be unreliable.

When using the HP 64742/3 emulators:

In the HP 64742/3 emulators, all read accesses to the software breakpoint

TRAP vector location will cause the emulator to break into background Only

the read associated with the TRAP instruction will cause a proper transfer to
monitor. All other accesses will result in undefined execution. Therefore, if
software breakpoints are enabled, the TRAP vector should not be accessed by any
instruction other than a TRAP. Note that this includes boot-up code that attempts to
perform a checksum over the vector table afide status of the emulator may

become undefinegdandthe monitor program may become unusable

This section shows you how to:
» Display the breakpoints list.
» Enable/disable breakpoints.
» Set a permanent breakpoint.
» Set a temporary breakpoint.
» Set all breakpoints.

» Deactivate a breakpoint.

* Re-activate a breakpoint.

» Clear a breakpoint.

» Clear all breakpoints.

161

Chapter 5: Using the Emulator
Using Software Breakpoints

To display the breakpoints list

ChooseDisplay - Breakpoints or Breakpoints - Display.

Using the command line, enter tiisplay software_breakpointscommand.

The breakpoints display shows the address and status of each breakpoint currently
defined. If symbolic addresses are turned on (when setting the display modes), the
symbolic label associated with a breakpoint is also displayed. Also, the breakpoints
display shows whether the breakpoint feature is enabled or disabled.

Software breakpoints :enabled
addre label taty
BREFDZ maintmodule). "main.c": line 36 temporary
BAREFOC maintmodule). "main.c": line 33 pending
BAEAFE4 mainimodule). "main.c”: line 1B2 permanent
A 1ABE Bsp maintmodule). "main.c": line 187 inactivated
The status of a breakpoint can be:
temporary Which means the temporary breakpoint has been set but not

encountered during program execution. These breakpoints are
removed when the breakpoint is encountered.

pending Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
inactivated when the breakpoint is encountered.

permanent Which means the permanent breakpoint is active.

inactivated Which means the breakpoint has been inactivated somehow.
Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary and
permanent breakpoints may be inactivated using the breakpoints
display popup menu.

In the breakpoints display, a popup menu is available. You can set, inactivate, or
clear breakpoints as well as enable or disable the breakpoints feature from the
popup menu.

162

Chapter 5: Using the Emulator
Using Software Breakpoints

To enable/disable breakpoints

Choose th8reakpoints - Enable toggle.

When displaying the breakpoint list, press and hold&hectmouse button and
then choos&nable/Disable Software Breakpointgrom the popup menu.

Using the command line, enter tmedify software_breakpoints enableor
modify software_breakpoints disablecommand.

The breakpoints feature must be enabled before you can set, inactivate, or cle
breakpoints.

If breakpoints were set when the feature was disabled, they are "inactivated" when
the feature is re-enabled, and you must set them again.

The emulator/analyzer interface will enable software breakpoints whenever the
XEnv_68k_exceptsymbol is present in the symbol data base.

The run-time library provided with the 68000 C Cross Compiler uses software
breakpoints to interrupt program execution when exceptions (for example, divide
by zero) are encountered. If software breakpoints are disabled, exception
processing may result in "access to guarded memory" errors and/or other
unpredictable behavior. To prevent this, a special global symbol,
XEnv_68k_exceptis included in the library.

When theXEnv_68k_exceptsymbol is present, the 68000 emulator writes a value
to this location. The value tells the run-time library which TRAP instruction to use
to perform a software break.

163

Chapter 5: Using the Emulator
Using Software Breakpoints

Examples To enable software breakpoints using the breakpoints display popup menu:

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |
() |main Recall
Sof tware breakpoints :disabled
addre label taty
BaAFDZ mainimoduler.” o' line 36 inactivated
Bring up menu and ARBFOC mainimoduled.” = line 38 inactivated
h his i BARFE4 mainimoduler.” o' line B2 inactivated
choose this item to A8 18BE Bsp maintmodulel.” =S line 187 inactivated

change states.

Choose Action for Highlighted Line

Fetfinactheate Breakpoint

Clegy {delete) Breakpoby

Choose Action for All Breakpoints
Enable/Disable Software Breakpoints
Fet Al Bregkpoints

Clear {delete]) All Ereakpoints
STATUS: M68000--5tepping complewe

164

Chapter 5: Using the Emulator
Using Software Breakpoints

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to set the breakpoint and clicketeetmouse

button. Or, press and hold teelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent ()

Using the command line, enter tmedify software_breakpoints set <address>
permanentcommand.

Permanent breakpoints are available if your version of HP 64700 system firmware
is A.04.00 or greater.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

165

Chapter 5: Using the Emulator
Using Software Breakpoints

Examples

Click this line to set &

breakpoint.

Click this line to
clear a breakpoint.

(Asterisks mark set

breakpoints.)

Bring up menu and
choose this item to
set (or clear) a
breakpoint on the
highlighted line.

To set permanent breakpoints using the mnemonic memory display popup menu:

File Display Modify Execution Breakpoints Trace Settings Help

< Demo = | Disp Sre () |
tdake

Trace() |
| Disp Sre Prev| Run Xferto)|

|: Step Source |
Break | Step Asm |

Run

Recall

Memory :Bsp imnemonic (file = mainimoduled. "main.c”:

addre label data F Y
31 extern wvoid update_system(}; /% update system wvariables #/
32 extern void interrupt_sim(}; /% simulate an interrupt */
33 extern woid do_sorti); /% sets up ascii array and calls
34
35 main(}
36 i
97 init_system(};
98 proc_spec_init{};

33
1688 while (truel
181 i

update_systemi);
num_checks++;
interrupt_simf{&nu

Choose Action for Highlighted Line
Set/Clear Software Breakpoint
Edit Source
Run Until
Trace After

if (graphi
graph_datall;
proc_specificll);

M68000--5tepping complete

To set a temporary breakpoint

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints — Temporary () (or Breakpoints - Set ()if your version of
HP 64700 system firmware is less than A.04.00).

Using the command line, enter tmedify software_breakpoints set <address>
temporary or modify software_breakpoints set <addresseommand.

The breakpoints feature must be enabled before individual breakpoints can be set.

166

Chapter 5: Using the Emulator
Using Software Breakpoints

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

To set all breakpoints

When displaying the breakpoint list, position the mouse pointer within the .
breakpoints display screen, press and holdefectmouse button, and chodSet

All Breakpoints from the popup menu.

ChooseBreakpoints - Set All.

Using the command line, enter tmedify software_breakpoints secommand.

Breakpoints must be enabled before being set.

To deactivate a breakpoint

When displaying breakpoints, position the mouse pointer over the line displaying
the active breakpoint and click teelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

A deactivated breakpoint remains in the breakpoint list and can be re-activated
later. Deactivating a breakpoint is different than clearing a breakpoint because a
cleared breakpoint is removed from the breakpoints list.

167

Chapter 5: Using the Emulator
Using Software Breakpoints

To re-activate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the inactivated breakpoint and click gelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

The "inactivated" breakpoint either becomes "temporary" (or "pending") if it was
set as a temporary breakpoint or "permanent” if it was set as a permanent
breakpoint.

168

Examples

Change status with a

mouse click on this
line (menu and
highlight do not
appear).

Choose this menu
item to change the
state of the
highlighted
breakpoint.

Chapter 5: Using the Emulator
Using Software Breakpoints

To re-activate breakpoints using the breakpoints display popup menu:

Display Modify Execution Breakpoints Trace Settings Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

Recall

Sof tware breakpoints :enabled
addre label taty F Y
ARBF02 mainimoduled. "main.c": line 36 permanent
HRBFE4 mainimodulel. "main.c": line 1B2 permanent

HE1ARE Bsp mainimoduled. "main.c": line 1BY inactivated

Choose Action for Highlighted Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint

Choose Action for All Ereakpoints
Enable/Disable Software Breakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

M68000--5tepping complete

169

Chapter 5: Using the Emulator
Using Software Breakpoints

To clear a breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to clear a currently set breakpoint (notice the
asterisk at the left of the line) and click g&ectmouse button. Or, press and hold

the selectmouse button and chooSet/Clear Software Breakpointfrom the

popup menu.

When displaying breakpoints, position the mouse pointer over the line displaying
the breakpoint you wish to clear, press and holgéfectmouse button, and
chooseClear (delete) Breakpointfrom the popup menu.

Place an absolute or symbolic address in the entry buffer; then choose
Breakpoints Clear ().

Using the command line, enter tmedify software_breakpoints clear <address>
command.

When you clear a breakpoint, it is removed from the breakpoints list.

170

Chapter 5: Using the Emulator
Using Software Breakpoints

Examples To clear a software breakpoint using the breakpoints display popup menu:

File

Display Modify Execution Breakpoints Trace

Settings Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

Recall

Sof tware breakpoints :enabled

. addre label taty A
Bnng up the menu ARBF02 mainimoduled. "main.c": line 36 permanent
i HRBFE4 mainimodulel. "main.c": line 1B2 permanent
and choose this item

HE1ARE Bsp mainimoduled. "main.c": line 1BY permanent

to clear the Choose Action for Highlighted Line
highlighted Set/lnactivate Breakpoint
breakpoint. Clear (delete) Breakpoint

Choose Action for All Breakpoints

Enable/Disable Software Ereakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

STATUS: M68000--5tepping complete

171

Chapter 5: Using the Emulator
Using Software Breakpoints

To clear all breakpoints

» When displaying breakpoints, position the mouse pointer within the Breakpoints
Display screen, press and hold sieéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

» ChooseBreakpoints - Clear All.

» Using the command line, enter tmedify software_breakpoints clearcommand.

172

Chapter 5: Using the Emulator
Displaying and Modifying Registers

Displaying and Modifying Registers

You can display and modify the contents of emulation processor registers. Most
emulators have at least a BASIC class of registers. Some emulators have additional
register classes whose register contents can be displayed and modified. Consult
your emulator-specific Softkey Interface documentation for a definition of the
register classes.

This section shows you how to:

» Display register contents.

* Modify register contents. .

To display register contents

ChooseDisplay - Registers

Using the command line, enter tiiisplay registerscommand.

When displaying registers, you can display classes of registers and individual
registers.

173

Chapter 5: Using the Emulator
Displaying and Modifying Registers

To modify register contents

» ChoosaModify - Registers...and use the dialog box to name the register and
specify its value.

Clicking the "Recall" pushbutton fe
you select register names and values
from predefined or previously
specified entries.

: Modify Registe

Placing the mouse pointer in the tex ~Modify Register

entry area lets you type in the register mﬁ:\ | Recal

name and value.
Value I Recall

To define the type of value, press and

hold thecommand selechouse /IE Read Current Register Value
button and drag the mouse to select
the value type.

| | OK |Apply |Cance|

Clicking this checkbox causes the
current value of the named register to
be placed in the "Value" text entry

area.
Clicking this button modifies Clicking this button cancels

Clicking this button modifies the the register to the value modification and closes the

register to the value specified and specified and leaves the dialogdialog box.

closes the dialog box. box open.

» Using the command line, enter tmedify register <register> to <value>
command.

174

Chapter 5: Using the Emulator
Displaying and Modifying Memory

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal formats and in
real number formats. You can also display the contents of memory in assembly
language mnemonic format.

This section shows you how to:

» Display memory.

» Display memory in mnemonic format.

» Display memory in mnemonic format at the current PC.

» Return to the previous mnemonic display. .
» Display memory in hexadecimal format.

» Display memory in real number format.

» Display memory at an address.

» Display memory repetitively.

* Modify memory.

* Modify memory at an address.

To display memory

ChooseDisplay - Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed, displays
memory as hexadecimal bytes beginning at address zero.

175

Chapter 5: Using the Emulator
Displaying and Modifying Memory

To display memory in mnemonic format

To display memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, chooBésplay -~ Memory - Mnemonic (), or, using the
command line, enter thiisplay memory <address> mnemonicommand.

To display memory at the current program counter address, choose
Display -~ Memory — Mnemonic at PC or, using the command line, enter the
display memory mnemonic at_pcommand.

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

Whether source lines, assembly language instructions, or symbols are included in
the display depends on the modes you choose with the

Settings— Source/Symbols Modesr Settings— Display Modespulldown menu
items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

To return to the previous mnemonic display

ChooseDisplay - Memory - Mnemonic Previous

Using the command line, enter ttlisplay memory mnemonic previous_display
command.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint at the line following the function call, and run the
program from the current program counter.

176

Chapter 5: Using the Emulator
Displaying and Modifying Memory

Examples

To display memory in hexadecimal format

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Memory — Hex () and select the size from the cascade menu.

Using the command line, enter ttisplay memory <address> blocked <size>
command.

This command displays memory as hexadecimal values beginning at the address in
the entry buffer.

To display memory in absolute word format:

display memory ascii_old_data absolute words <RETURN>
Memory :Bsp fwords rabsolute :update

addre label data :he iascii
ABY20C _ascii_old_d 2628

AB72DE 2BzA

AB7ZEA 26834 4
AB7ZEZ 3564 5.
AB7ZE4 2628

HB7ZER 2628

AB72E8 20834 4
a872ER Joea a.
AB72EC 2628

AB72EE 3734 74
AB7ZFA 2E36 .B
AB7ZFZ 3364 g.
AB7ZF4 2628

HB7ZF6 2628

AB72F8 2837 7
AB872FA 3564 .
AB72FC 2628

177

Chapter 5: Using the Emulator
Displaying and Modifying Memory

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes <RETURN>

Memary :@sp rbytes :blocked :update

addre dats the iascii
aBy20C-E3 28 28 =28 28 28 34 35 @4

ABY2E4-EB 28 28 =28 28 28 34 38 @4

ABY2EC-F3 ¢ 28 37 34 =2E 36 33 @A 74
ABY2F4-FB 28 28 28 Z@ 28 37 35 @4

ABY2FC-B3 28 28 28 2@ zZ8 34 36 @4

ABY364-6E 28 28 28 2@ 28 34 385 @4

ARY3BC-13 28 28 37 34 2 37 32 @4 74
AB7314-1B 28 28 28 28 28 37 35 @4

ABy31C-23 28 28 28 28 28 34 36 @4

ABY324-26 2 28 =28 zZ8 =28 34 3¥ @A

ARY32C-33 2@ 28 37 34 2E 37 38 @4 74
ABY334-36 o) < N N [T

ABY33C-43 2B 28 28 2@ zZ8 34 37 @4

AB7Y344-4B 28 28 28 2@ 28 34 36 @4

ARY34C-53 28 28 37 34 2 37 32 @4 74
A87354-56 o B | I [-

ABY35C-63 28 28 =28 28 28 34 33 @4

B e e e e o I A =y I U
W@ MM~ DO~ mAr) 00w

To display memory in real number format

» Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - Real () and select the size from the cascade menu.

* Using the command line, enter tilisplay memory <address> real <size>
command.

Displays memory as a list of real number values beginning at the address in the
entry buffer. Short means four byte real numbers and long means eight byte real
numbers.

178

Chapter 5: Using the Emulator
Displaying and Modifying Memory

Examples To display memory in 64-bit real number format:
display memory real long <RETURN>
Memary :Bsp :long real :update

addre label data :real
BR720C _ascii_old_d E.81347981574268E- 154
BR72E4 B.@13479B1574370E- 154
BR72EC B. 4708340035533 154
BR72F 4 6.813479019883 16E- 154
BR72FC B.@1347901574302E- 154
BR7304 B.@1347981874370E- 154
887360 6. B4708848043978E- 154
BR73 14 E.813479819003 16E- 154
BR731C E.@1347981574302E- 154
BR7324 B.@13479B1574336E- 154
BR732C B. 4708340044 15 1E- 154
BB7334 6. 8134790198E350E- 154
BR733C B.@1347901874336E- 154
BR7344 B.@1347981874302E- 154
BB734C 6. B4708848043978E- 154
BR7354 E.81347901908829E- 154
BR735C E. 8134798 15744B4E- 154

To display memory at an address

» Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - At ().

This command displays memory in the same format as that of the last memory
display command. If no previous command has been issued, memory is displayed
as hexadecimal bytes.

179

Chapter 5: Using the Emulator
Displaying and Modifying Memory

To display memory repetitively
ChooseDisplay - Memory - Repetitively.

Using the command line, enter tilisplay memory repetitvelycommand.

The memory display is constantly updated. The format is specified by the last
memory display command.

This command is ignored if the last memory display command was a mnemonic
display.

To modify memory

ChooseModify -~ Memory and complete the command using the command line.

To modify memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choosodify . Memory at () and complete the command
using the command line.

Using the command line, enter tmedify memory command.

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

180

Chapter 5: Using the Emulator
Displaying Data Values

Displaying Data Values

The data values display lets you view the contents of memory as data types. You
can display data values in the following formats:

bytes

8-bit integers

unsigned 8-bit integers
chars

words

16-bit integers

unsigned 16-bit integers

long words

32-bit integers

unsigned 32-bit integers
This section shows you how to:
» Display data values.

* Clear the data values display and add a new item.

* Add item to the data values display.

To display data values

ChooseDisplay - Data Values

Using the command line, enter tiisplay datacommand.

Items must be added to the data values display before you can use this command.

The data display shows the values of simple data types in the user program. When
the display mode setting turns ON symbols, a label column that shows symbol
values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor (for
example, encountering a breakpoint) cause the data values screen to be updated.

181

Chapter 5: Using the Emulator
Displaying Data Values

To clear the data values display and add a new
item

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- New () and select the data type from the cascade menu.

Using the command line, enter itisplay data <address>command.

To add items to the data values display

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- Add () and select the data type from the cascade menu.

Using the command line, enter itisplay data , <address>ommand.

182

Chapter 5: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes .

To display assembly language mnemonics with absolute addresses, choose

Settings— Source/Symbol Modes. Absolute, or, using the command line, enter
theset source off symbols offommand.

To display assembly language mnemonics with absolute addresses replaced by
global and local symbols where possible, ch&ettings- Source/Symbol

Modes- Symbols or, using the command line, enter $ie¢ source off symbols
on command.

To display assembly language mnemonics intermixed with high-level source lines,

chooseSettings— Source/Symbol Modes. Source Mixed or, using the command
line, enter theset source on symbols ooommand.

To display only high-level source lines, cho&sttings- Source/Symbol

Modes- Source Only, or, using the command line, enter sie¢ source only
symbols oncommand.

The source/symbol modes affect mnemonic memory displays and trace displays.

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

183

Chapter 5: Using the Emulator
Changing the Interface Settings

To set the display modes

» ChooseSettings- Display Modes...to open the display modes dialog box.

mulator/Analyzer: Display Modes

Press and hold treelectmouse - Source/Symbols View

button and drag the mouse to—= WI Seurce Only =
Source in Trace |Source Mixed =

select "Source Only", "Source
Tab Expansion (2 to 15 Spaces)

Mixed", or "Off".
|| Symbolic Addresses

Clicking toggles whether
symbolic information is ~Field Widths
displayed.

Move the mouse pointer to the Symbols in Mnemonic Field

text entry area and type in the :
value. Descriptions of the W 148

modes follow. Source: (60 to 255) All Others: (1 to 80)

~Auto Update

Clicking toggles auto update —iiill Memory Displays (Except Mnemonic)
settings.] Trace Display

.: Default All Settings

Clicking this checkbox change
all display mode settings to
their defaults.

Clicking this button saves your Clicking this button saves Clicking this button cancels your
changes and closes the dialog your changes and leaves thehanges and closes the dialog box.
box. dialog box open.

184

Chapter 5: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Source/Symbols View

Label Field sets the width (in characters) of the address field in the trace list o
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displaystoggles whether memory displays are automatically updated
after commands that change memory contents or whether you must enter memory
display commands to update the display. You may wish to turn off memory
display updates, for example, when displaying memory mapped 1/O.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

185

Chapter 5: Using the Emulator
Using System Commands

Using System Commands

With the Softkey Interface system commands, you can:

» Set UNIX environment variables while in the Softkey Interface.
» Display the name of the emulation module.

» Display the event log.

» Display the error log.

Examples

To set UNIX environment variables

Using the command line, enter thet <VAR>command.

You can set UNIX shell environment variables from within the Softkey Interface
with theset <environment_variable> = <valuexommand.

To set the PRINTER environment variable to "lp -s":
set PRINTER ="|p -s" <RETURN>

After you set an environment variable from within the Softkey Interface, you can
verify the value of it by enteringet <RETURN>,

186

Chapter 5: Using the Emulator
Using System Commands

To display the name of the emulation module

» Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

Examples To display the name of your emulation module:

name_of module <RETURN>
The name of the emulation module is displayed on the status line. .

To display the event log

* ChooseDisplay - Event Log.

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooisplay Event Logfrom the popup menu.

* Using the command line, enter tilisplay event_logcommand.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, software breakpoints and
trace commands).

187

Chapter 5: Using the Emulator
Using System Commands

To display the error log

* ChooseDisplay - Error Log .

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooSisplay Error Log from the popup menu.

» Using the command line, enter tilisplay error_log command.

The last 100 error messages that have occurred during the emulation session are
. displayed.

188

Chapter 5: Using the Emulator
Using System Commands

To edit files

ChooseéFile - Edit - File and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place an address reference
(either absolute or symbolic) in the entry buffer; then, chBdse. Edit — At ()
Location.

To edit a file based on the current program counter, chtilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, posit
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the "Setting X Resources" chapter
for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

189

Chapter 5: Using the Emulator
Using System Commands

Examples

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the

highlighted symbol is

defined.

To edit a file that defines a symbol:

File Display Modify Execution Breakpoints Trace Settings Help

| Run
Break |

|: Step Source |

< Demo = | Disp Sre () | Trace()
tdake | Disp Sre Prev| Run Xferto)|

Action keys:

Step Asm |

= Your Key = |
()

Global symbols in ecs.x
Procedure symbols
Procedure name

Recall

main

Address range Segment

realloc ARZ0CH - AB2ES3 libe

points AE18EC - AB1301 prog H31A
set_outputs Global Symbols Display prag AzAz
sprintf - libe aaBEa
stropyd Display Local Symbols prog 184
strncmp Ssplay Parent Symbols libe Beeo
unlink e A3z24
update_system | Cut Full Symbol Name prog Jalala]
oz~ [EditFile Defining Symbol o e
write_hdwr AA186C - AH18ES prog B23A
Static symbols
Symbal name Address range __ Segment Of fset
?AS BAEF 158 heap aaBEa k 4
JSR_ENTRY AR4062 mon aaBEa

STATUS: M68000--Running in monitor

190

Chapter 5: Using the Emulator
Using System Commands

To edit afile at a source line:

File Display Modify Execution Breakpoints Trace Settings

Help

Action keys: < Demo = | Disp Sre () | Trace() | Run | Step Source |

= Your Key = | tdake | Disp Sre Prev| Run Xferto)| Break | Step Asm |

():‘save_points

Recall

1Bsp imremonic :file = update_sys{modulel. "update_sys.c”
label data

MAKEBAR{ARGE) ;

old_datalcurr_locl. temp = current_temp;
old_datalecurr_locl.humid = current_humid;

curr_loct++;

if {ecurr_loc » NUM_OF_OLDY curr_loc = B; /#BUGIIII 1%/
Choose Action for Highlighted Line

temp_tot=H;
for (i=B;i<NUM_0OF_0OLD; i++)| Set/Clear Software Breakpoint

temp_tot += old_datali Edit Source

. . Memory
Choosing this menu addre
§ H 262
item .brlngs_ up a P
terminal window 264
with an edit session 269
open on the file

268
where the 569
highlighted source g;?
line exists. 772

273
274
275
276
277
278

old_datalcurr_locl. ave_tem Run Until

humid_tot=@; Trace After
for (i=@; i<NUM_OF_OLD; i++)

humid_tot += old_datal] Trace Before

Trace About

STATUS:

Trace Until

M68000--Running in monitor

191

Chapter 5: Using the Emulator
Using System Commands

To copy information to a file or printer

ChooseéFile - Copy, select the type of information from the cascade menu, and use
the dialog box to select the file or printer.

Using the command line, enter tt@py command.

ASCII characters are copied to the file or printer.
If you copy information to an existing file, it will be appended to the file.

Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option is useful
for restricting the number of lines that are copied. Also, this option is useful for
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with ®Bettings— Source/Symbols Modesr
Settings— Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thide — Copy - Display ...command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

192

Chapter 5: Using the Emulator
Using System Commands

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been
loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named
(by an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from event log display. .

To open a terminal emulation window

ChooseFile - Term...

This command opens a terminal window into the current working directory context.

193

Chapter 5: Using the Emulator

Using Simulated 1/10

Using Simulated 1/O

Simulated 1/O is a feature of the emulator/analyzer interface that lets you use the
same keyboard and display that you use with the interface to provide input to
programs and display program output.

To use simulated I/O, your programs must communicate with the simulated I/O
control address and the buffer locations that follow it. (The Hewlett-Packard AXLS
compilers, if your program uses I/O, automatically link with environment
dependent routines that communicate with the simulated 1/0 control address and
buffer.)

Also, before simulated 1/0O can work, the emulator must be configured to enable
polling of the simulated I/O control address and to define the control address
location.

This section shows you how to:
» Display the simulated I/O screen.
» Use simulated I/0O keyboard input.

Refer to theSimulated 1/0 User’s Guidier complete details on how simulated 1/0
works.

To display the simulated I/O screen

ChooseDisplay — Simulated 10.

Before you can display simulated 1/O, polling for simulated I/O must be enabled in
the emulator configuration.

194

Chapter 5: Using the Emulator
Using Simulated 1/10

Examples

Simulated I/0 display Status messages disabled
display i= open

A message tells you whether the display is open or closed. You can modify the
configuration to enable status messages.

To use simulated 1/0 keyboard input

* To begin using simulated /O input, cho&ettings— Simulated 10 Keyboard.

» To end simulated I/O and return to using the interface, useiipendsoftkey.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with turn
command line display back on.

If you are planning to use even a modest amount of simulated I/O input during an
emulation session, it might be a good idea to open another Emulator/Analyzer
window to be used exclusively for simulated I/O input and output.

195

Chapter 5: Using the Emulator
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

196

Using the Emulation Analyzer

197

Using the Emulation Analyzer

This chapter describes tasks you may wish to perform while using the emulation
analyzer. These tasks are grouped into the following sections:

» The basics of starting, stopping, and displaying traces.
» Qualifying trigger and store conditions.

» Using the sequencer.

» Modifying trace displays.

e Saving and restoring traces.

198

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The Basics of Starting, Stopping, and Displaying
Traces

This section describes the basic tasks that relate to starting and stopping trace
measurements.

When you start a trace measurement, the analyzer begins looking at the data on the
emulation processor’s bus and control signals on each analyzer clock signal. The
information seen on a particular clock is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete." The default trigger state specification is "any state," so when you start

a trace measurement after initializing the analyzer, the analyzer will "trigger" on the
first state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the measu
by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn't filled trace memory, the trace measurement does not complete. In
these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keys to position the
trace list on the display. To speed up the display of traces, you can reduce the
depth of the trace list. Also, when entering trace commands, there is a special
command that allows you to recall and modify the last trace command entered.

This section describes how to:

e Start trace measurements.

» Display the trace status.

e Stop trace measurements.

« Display the trace.

» Position the trace display on the screen.
e Change the trace depth.

* Modify the last trace command entered.

199

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter tinace command.

Thetrace command tells the analyzer to begin monitoring the states which appear
on the trace signals. You will see a message that confirms that a trace is started.

The default trace command (simpfgice with no options) will trigger on any state,
store all captured states.

While the emulator is running the user program, you can start the default trace
measurement with the command:

trace <RETURN>
A message is displayed on the status line to show you that the "Emulation trace

[has] started", and another message will show you when the "Emulation trace [is]
complete”.

To display the trace status

ChooseDisplay - Status

Using the command line, enter ilisplay statuscommand.

In addition to the analyzer information shown on the status line (Emulation trace
started, Emulation trace complete, etc.), you can display complete analyzer status
with the command below.

200

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples To display the trace status:

display status <RETURN>

Status

Emulator Status
MEEEAA--Running user program
Trace Status

Emulation trace complete
Arm ignored

Trigger in memory

Arm to trigger 7

States 512 (512} H..511
Sequence term £
Occurrence left 1

The first line of the emulation trace status display shows the user trace has been
"completed”; other possibilities are that the trace is still "running” or that the trace
has been "halted".

The "Arm ignored" line shows that the arm condition, which can be used to qualify
trace measurements, is ignored. Consequently, the "Arm to trigger" time is not
meaningful and a question mark is displayed. (The "Making Coordinated
Measurements" chapter explains arm conditions.)

The second line of the trace status display contains information on the arm
condition. If the analyzer is always armed, the message "Arm ignored" is

displayed. If the analyzer is to be armed by one of the internal signals, either the
message "Arm not received" or "Arm received" is displayed. The display indicates

if the arm condition happened any time since the most recent trace started, even fif it
happened after the trace was halted or became complete.

The "Arm to trigger" line displays the amount of time between the arm condition
and the trigger. The time displayed will be from -0.04 microseconds to 41.943
milliseconds, less than -0.04 microseconds, or greater than 41.943 milliseconds. |If
the arm signal is ignored or the trigger is not in memory, a question mark (?) is
displayed.

201

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The "States" line shows the number of states that have been stored (out of the
number that is possible to store) and the line numbers that the stored states occupy.
(The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the term
the sequencer was in when the trace completed. Because adarbotthe last
sequence ternconstitutes the trigger, the number displayed is what would be the
next term (2 in the preceding example) even though that term is not defined. If the
trace is halted, the sequence term number just before the halt is displayed,;
otherwise, the current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the current
sequence term. If the occurrence left is changing too quickly to be read, a question
mark (?) is displayed.

202

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To stop a trace measurement

* Choosé€lrace - Stop.

* Using the command line, enter thtep_tracecommand.

You can, and most likely will, specify traces whose trigger or storage states are
never found. When this happens, the "Emulation trace complete" message is never
shown, and the trace continues to run ("Emulation trace running"). When these
situations occur, you can halt the trace measurement wigitahetracecommand.

Thestop_tracecommand is also useful to deactivate signals which are driven
when the trigger is found (refer to the "Making Coordinated Measurements"
chapter).

Examples To halt a trace measurement:

stop_trace <RETURN>

When thestop_tracecommand is entered, the message "Emulation trace halted" is
displayed.

203

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To display the trace

Chooselrace - Display or Display - Trace.

Using the command line, enter tiisplay trace command.

You can display captured trace data withdtsplay trace command. The
available options to thdisplay trace command are described in the "Modifying
the Trace Display" section later in this chapter.

To display the trace:
display trace <RETURN>

race List Of +=f More data of f screen

Label: Address Opcode or Status w/ Source Lines time count

Base: umnbol mnemonic w/symbal relative

update_sy+AABERES WORP —memee e
+AB1 update_sytBEABEA NOP 468 nS
+062 update_sy+@BEBSC CMP.L D4,01 ge8 nS
+883 update_sy+BEEEEE BLT.B p|update_system+BOEBEEE 466 nS
+AB4 update_sy+BEABYE NOP 4688 nS

ittt topdate_sys.c - line Bl #ttdnangngnnnnntntndn gty

+AB5 update_sytBEABSS AODQ.L #1,01 alale] n3
+086 update_syt+HBEBES NOF 488 n3
+0@7 update_sy+HBEBER NOF 488 n3
+088 update_sg+BEBESC CHMF.L 04,01 st} n3
+883 update_sy+BEEEEE BLT.B p|update_system+BOEBEEE 466 nS
+818 update_sy+@BEB7E NOP 4@ nS

g tttupdate_sys.c - line L g g g e e

countert+;

+A11 update_sy+BEABSS AODO.L #1,01 alale] n3

The first column in the trace list contains the line number. The trigger is always on
line 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles.

The third column shows mnemonic information about the emulation bus cycle.

204

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The next column shows the count information (time is counted by default).
"Relative" indicates that each count is relative to the previous state.

If your analyzer card contains external analysis (for example, HP 64703), the next
column shows the data captured on the external trace signals.

You can use the <NEXT> and <PREV> keys to scroll through the trace list a page
at a time. The <Up arrow> and <Down arrow> keys will scroll through the trace
list a line at a time. You can also display the trace list centered around a specific
line number (for examplelisplay trace 100 <RETURNS. Refer to the

"Modifying the Trace Display" section for more information on the trace list
display.

Note that when a trigger condition is found but not enough states are captured to fill
trace memory, the status line will show the trace is still running. You can display

all but the last captured state in this situation; you must halt the trace to display the
last captured state.

To position the trace display on screen

Use the scroll bar or the <Up arrow>, <Down arrow>, <PREV>, <NEXT>,
<CTRL>f, and <CTRL>g keys.

You can reposition the display on the screen with the keys described below.

The <Up arrow> and <Down arrow> (or roll up and roll down) keys move the
display up or down on the screen one line at a time.

The <PREV> and <NEXT> (or page up and page down) keys allow you to move
the display up or down a page at a time.

The <CTRL>f and <CTRL>g keys allow you to move the display left or right,
respectively. These keys are used when the width of the address or
mnemonic/absolute columns is increased so that not all the trace display data can be
displayed across the screen.

205

Chapter 6: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To change the trace depth

Using the command line, enter ttiisplay trace depthcommand.

Thedisplay trace depthcommand allows you to specify the number of states that
are displayed. By reducing the trace depth, you can shorten the time it takes for the
Softkey Interface to upload the trace information. You can increase the trace depth
to view more states of the current trace.

The minimum trace depth is 9.

If you wish to reduce the number of states that are displayedisgiiay trace
depth command must be entered beforetthee command. You cannot use this
command to reduce the number of states displayed in the current trace.

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter tinace modify_commandcommand.

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see the "Setting X Resources" chapter).

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command,; also,
the last trace command is always available, no matter how many commands have
since been entered.

206

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you carprestorestates. The prestore qualifier is a second storage qualifier
used for storing states that occur before the normally stored states. Prestore is
useful for capturing entry points to procedures or for identifying where global
variables are accessed from.

This section describes how to:

* Qualify the trigger state and the trigger position in the trace.
e Trigger on a number of occurrences of some state.

* Qualify states stored in the trace.

» Prestore states before qualified store states.

» Change the count qualifier.

» Trace until the analyzer is halted.

» Cause the emulator to break into the monitor when the analyzer triggers.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions which consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 3770).
D d (default) Decimal (example: 2048d or 2048).

207

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an "X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function
Operators Analysis specification expressions may contain operators. All

operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&O0fff00h

208

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the analyzer
trace signals. The emulation analyzer trace signals are described in the table that
follows.

209

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Emulation Analyzer Trace Signals
Trace Signal Signal
Signals Name Description
0 uDS Upper Data Strobe (AO)
1-23 Al1-A23 Address Lines 1-23
31 GRDAC_L Guarded Memory Access Cycle
30 ROMAC_L ROM Memory Access Cycle
29 TFC2 Function Codes 0-2. These lines to the analyzer are derived from the
28 TFC1 68000 processor’s function code lines. During normal foreground
27 TFCO operation (user program or a foreground monitor), the processor function
code lines are passed directly to the analyzer. When a DMA tag cygle is
generated, an illegal function code pattern is driven to the analyzer fo
indicate the tag. Two other illegal function code patterns are used during
emulation monitor operations to generate additional status information.
The modified function code meanings are:
000 - Monitor Program Space
001 - User Data Space
010 - User Program Space
011 - DMA tag cycle status
100 - Monitor Data Space
101 - Supervisor Data Space
110 - Supervisor Program Space
111 - Interrupt Acknowledge
26 VMA 6800 peripheral cycle
25 RDIWR High Read/Low Write
24 BW High Byte Access/Low Word Access
32-47 D0-D15 Processor Data 0-15

210

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

State Qualifiers

Whenever a state can be specified in the trace command (trigger state, storage state,
prestore state, etc.), you will see the following softkeys that allow you to qualify the
state:

address The value following this softkey is searched for on the lines that
monitor the emulation processor’s address bus.

data The value following this softkey is searched for on the lines that
monitor the emulation processor’s data bus.

status The value following this softkey is searched for on the lines that
monitor other emulation processor signals.

When a value is specified without one of these softkeys it is assumed to be an
address value.

Predefined Values for Qualifiers ~ When you specify status qualifiers for
analyzer states (by pressing thatus softkey), you will be given the following
softkeys which are predefined values for the qualifiers.

Qualifier Status Bits (31..24) Description
byte Oxxxx xxx1b byte cycle

cyc6800 0xxxx xOxxb 6800 cycle

data 0xxx0 1xxxb data cycle

dma 0xx01 1xxxb bus released to DMA device
grd 00xxx xxxxb guarded memory

intack 0xx11 1xxxb interrupt acknowledge

prog 0xxx1 Oxxxb program cycle

read Oxxxx xx1xb memory read

super 0xx1x xxxxb supervisor cycle

supdata 0xx10 1xxxb supervisor data

supprog 0xx11 Oxxxb supervisor program

user 0xx0x xxxxb user cycle

userdata O0xx00 1xxxb user data

userprog 0xx01 Oxxxb user program

word Oxxxx xxx0b word cycle

write Oxxxx xx0xb memory write

wrrom 0x0xx xx0xb write to rom

These predefined values may be used as other values would be used. For example:

trace after status write

is the same as:

trace after status Oxxxxxx0xb

211

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To qualify the trigger state and position

Enter a trigger state specification in the entry buffer; then, chioase - After (),
Trace— About (), or Trace - Before ().

When displaying memory in mnemonic format, position the mouse pointer over the
source line where you want to set the trace trigger, press and heédatinouse

button and choosErace After, Trace Before or Trace About from the popup

menu.

Using the command line, enter tinace after, trace about, ortrace before
commands.

Tracing after the trigger state says states that occur after the trigger state should be
saved; in other words, the trigger is positioned at the top of the trace.

Tracing before the trigger state says states that occur before the trigger state should
be saved; in other words, the trigger is positioned at the bottom of the trace.

Tracing about the trigger state says states that occur before and after the trigger
state should be saved; in other words, the trigger is positioned at the center of the
trace.

When the analyzer counts time or states, the actual trigger position is within +/- 1
state of the number specified. When counts are turned OFF, the actual trigger
position is within +/- 3 states of the number specified.

Usually, when you enterteace aboutcommand, the trigger state (line 0) is

labeled "about". However, if there are three or fewer states before the trigger, the
trigger state is labeled "after". Likewise, if there are 3 or fewer states after the
trigger, the trigger state is labeled "before".

The state you define aftace after, trace about, ortrace beforeis the state that
will trigger the analyzer and cause states to be stored.

212

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples Suppose you want to look at the execution of the demo program after the call of the
"update_system()" function (main.c: line 101) occurs. To trigger on this address,
enter:

trace after address main."main.c": line 101 <RETURN>
set source on inverse_video on symbols on <RETURN>

display trace <RETURN>

0ffzet=0 More data off =
Label: Address Opcgode or Status w/ Source Lines time count
Basze: umnbaol mnemonic w/symbal relative
BHEi A HEHEmain. c - line 181 thru 102 HEGHEHEHEHEHAG AU AU HUHEHEH ARG R HY

update_sy
main+dEAE1Z ISR up. update_system == =————————=
prog|main+AEEE 14 BABE supr praog 4868 nS
+A82 prog|maintd@@a16 1508 supr prog 48 nS
gt itupdate_sys.c - line 1 thru 47 gRugnftsssans gt

+B83 up.update_system AE, #EBEEE

+6a4 sysstack+dA3FIA BAEE supr data wr word 48 nS
+BA5 sysstack+dE3F 32 BFER supr data wr word 48 nS
+8E6 update_syt@BAEAEZ BABE supr prog 4668 nS

In the preceding trace list, line O (labeled "after") shows the beginning of the
program loop.

213

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To trigger on a number of occurrences of some
state

Use theoccurs <#TIMES> after specifying the trigger state.

When specifying a trigger state, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of some
state.

The default base for an occurrence count is decimal. You may specify occurrence
counts from 1 to 65535.

To trigger on the 20th occurrence of the call of the "update_system()" function
(main.c: line 101):

trace after address main."main.c": line 101 occurs 20
<RETURN>

214

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To qualify states stored in the trace

» Enter a storage state specification in the entry buffer; then, chicose- Only ().

» Using the command line, use thely option in thetrace command.

By default, all captured states are stored; however, you can qualify which states get
stored with thérace command’only option.

Examples When the emulator is running the demo program, to stuyeaccesses of the
"target_temp" variable:

trace after main."main.c": line 101
only target temp <RETURN>

race List 0ffset=8 Mare data of f screen
Label: Address Opcgode or Status w/ Source Lines time count
H umnbaol mnemonic w/symbal relative

BHgHEdE R Emain.c - line 141 thru 162 BELHEHSUHHRRSRESHERHSHEEHSBESHSRY

update_systemi);
izl ~rog|maintBBEE1Z ISR eREEEEEE mmmmemee o
+BH81 dat|_target_temp BAS4 supr data rd waord 2.68 mS
+0A2 dat|_target_temp BAS3 supr data wr word [EalE] nS
+H83 dat|_target_temp BAS3 supr data rd word fas]g] nS
+0A4 dat|_target_temp BAS3 supr data rd word 3.45 mS
+HAS dat|_target_temp BAS3 supr data rd word 38.5 mS
+HA66 dat|_target_temp BA53 supr data rd word 3.6 us
+@E7 dat|_target_temp BBA53 supr data rd word 1.8 us
+BA5 dat|_target_temp BAS3 supr data rd waord 1.8 us
+BA3 dat|_target_temp BAS3 supr data rd waord 21.2 mS
+018 dat|_target_temp BASZ supr data wr word [EalE] nS
+611 dat|_target_temp BASZ supr data rd word fas]g] nS
+012 dat|_target_temp BASZ supr data rd word 3.45 mS

Notice the trigger state (line 0, labeled "after") is included in the trace list; trigger
states are always stored.

215

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To prestore states before qualified store states

Enter a storage state specification in the entry buffer; then, clicasze- Only ()
Prestore.

Use theprestore option in therace command.

Prestore allows you to save up to two states which precede a normal store state.
Prestore is turned off by default. However, you can usiabe command’s
prestore option to specify a prestore qualifier.

Prestore is useful when you want to find the cause of a particular state. For
example, if a variable is accessed from many different places in the program, you
can qualify the trace so that only accesses of that variable are stored. Then, you can
turn on prestore to find out where accesses of that variable originate from.

States which satisfy the prestore qualifier and the storage qualifier at the same time
are stored as normal states.

To storing only write accesses to the variable "target_temp" and prestore the two
previous states:

trace after main."main.c": line 101
only target_temp status write
prestore anything <RETURN>

216

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Label:
Base:

pstore
pstore
+0E3

pstore
pstore
+BAG

pstore
pstore
+B83

pstore
pstore

+A12

race List

Address
umnbol

mnemonic

w/ sumbal

3 More data off screen
Opcode or Status w/ Source Lines

time count
relative

Bt #ftdmain. e - line

updat a_: t
prog|main+BEEE 12
dat|_target_temp
get_targe+tAEEE3E

dat|_target_temp
dat|_target_temp
get_targetARBAZE
dat|_target_temp
dat|_target_temp
get_targe+HAHEESE
dat|_target_temp
dat|_target_temp
get_targe+tHEEE3E
dat|_target_temp

161 thru

KA KK
supr data rd
fewaw , (AZ2)+
supr data wr
supr data rd
Hewww (AZ2)+
supr data wr
supr data rd
fewwn, (AZ2)+
supr data wr
supr data rd
frwkd (AZ2)+

supr data wr

word

ward
word

word
word

word
word

word

162 HHUBUESUBRAS SRS SHEHRRERERSHSRHERY

wvpa

2,68 m5
63.1 m5
183. mS
4.2 mS

To change the count qualifier

Use thecounting option in therace command.

After initializing the analyzer, the default count qualifier is "time", which means
that the time between states is saved.

When you count states, the counter is incremented each time the state is captured

(not necessarily stored) by the analyzer.

When using an analyzer that can only store 1024 states, counting time or states

reduces the trace buffer depth to 512 states.

217

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples Suppose you want to know how many loops of the program occur between calls of
the "do_sort" function. To change the count qualifier to count a state that occurs
once for each loop of the program, enter:

trace only do_sort
counting state main."main.c": line 101 <RETURN>

set source off <RETURN>

race List ffset=H More data off
Label: Address Opcode or Status state count
Base: umnbol mremonic wfsymbol relative

set_outputBBBA34 BLT.E pro|set_outputs+BBBAEZC 00 o——--m———----
+HA 1 pro|main.do_sort LINK AE, B4+
+HAZ pro|main.do_sort LINK AE, B4+
+HAG prolmain.do_sort LINK AE, H¥***
+884 pro|main. da_sart LINK AE, Ha*xx
+885 pro|main.dao_sort LINK AG, Hesx+
+B886 pro|main.do_sort LINK AE, H#*%+
+HB7 pro|main.do_sort LIHK AG, Ha**s
+E83 prolmain.do_sort LINHK AG, Ha*xs
+HAT pro|main.do_sort LINK AE, B4+
+E 1R pro|main.do_sort LINK AE, H¥***
+A11 pro|main.da_sart LINK AE, H**%*
+812 pro|main. da_sart LINK AE, Ha*xx
+813 pro|main.dao_sort LINK AG, Hesx+
+814 pro|main.do_sort LINK AE, H#*%+
+H15 pro|main.do_sort LIHK AG, Ha**s

B N N N S S S A

The trace listing above shows that the program loops 4 times for each call of the
"do_sort" function.

218

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To trace until the analyzer is halted

Chooselrace - Until Stop.

Using the command line, enter tinace on_haltcommand.

Thetrace on_haltcommand allows you to prevent triggering. In other words, the
trace runs until you enter tistop_tracecommand. Th&ace on_haltcommand
is the same as tracihgfore a state that never occurs.

Thetrace on_haltcommand is useful, for example, when you wish to trace the
states leading up to a break into the monitor. Suppose your program breaks on an
access to guarded memory. To trace the states that lead up to the break, enter the
trace on_haltcommand, and run the program. When the break occurs, the
emulator is running in the background monitor, and the analyzer is no longer
capturing states. To display the states leading up to the break, estepttieace
command (and thdisplay trace command if traces are not currently being
displayed).

When theon_halt option is used in a trace command, the trigger condition (and
position) options, as well as thepetitively andbreak_on_trigger options, cannot
be included in the command.

Also, note that this does not work the same when using a foreground monitor
because the analyzer continues to capture states when the break to monitor occurs
(unless the code that causes the break also causes processor to halt). In this case,
you can use the command line to enter a trace command that stores only states
outside the range of the foreground monitor program (for exatrgde, only not

range <mon_start_addr> thru <mon_end_addr> on_haljt

219

Chapter 6: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To break emulator execution on the analyzer
trigger

Enter a trigger state specification in the entry buffer; then, chioase - Until ().

When displaying memory in mnemonic format, position the mouse pointer over the
program line which you wish to trace before, press and hokkethetmouse
button and choosErace Until from the popup menu.

Using the command line, use threak_on_trigger option to therace command.
Thebreak_on_trigger option to thérace command allows you to cause the
emulator to break when the analyzer finds the trigger state.

Note that the actual break may be several cycles after the analyzer trigger.

To trace before source line 101 and cause the emulator to break into the monitor
when the analyzer triggers:

trace before address main."main.c": line 101
break_on_trigger <RETURN>

220

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

Using the Sequencer

When you use the analyzer’'s sequencer, you can specify traces that trigger on a
series, or sequence, of states. You can specify a state which, when found, causes
the analyzer to restart the search for the sequence of states. Also, the analyzer’s
sequencer allows you to trace "windows" of code execution.

This section describes how to:

» Trigger on a sequence of states.

» Specify a global restart state.

» Trace "windows" of program execution.

The sequencing and windowing capabilities from within the Softkey Interface
not as powerful or flexible as they are from within the Terminal Interface. For
example, in the Terminal Interface, you can specify different restart states for
sequence term and you can set up a windowing trace specification where the
does not have to be in the window. If you do not find the sequencing flexibility
you need from within Softkey Interface, refer to &€©00 Emulator User's Guide

for the Terminal Interface

To trigger after a sequence of states

Use thdrace find_sequenceommand.

The analyzer's sequencer has several levels (also saliegnce terms Each
state in the series of states to be found before triggering, as well as the trigger state,
is associated with a sequence term.

The sequencer works like this: The analyzer searches for the state associated with
the first sequence term. When that state is captured, the analyzer starts searching
for the state associated with the second term, and so on. The last sequence term
used is associated with the trigger state. When the trigger state is captured the
analyzer is triggered. Up to seven sequence terms and an optional occurrence count
for each term are available.

221

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

Examples In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and finally the
"do_sort" function. Also, suppose you wish to store only opcode fetches of the
assembly language LINK A6,#0 instruction (data values that equal 4E56H) to show
function entry addresses.

To set up the sequencing trace specification, enter the following trace command.

trace find_sequence save_points then interrupt_sim
trigger about do_sort onlydata 4e56h <RETURN>

set source off <RETURN>

race List ffset=H More data off
Label: Address Opcode or Status time count
Base: umnbol mremonic wfsymbol relative

-A12 upda.set_outputs LINE AG, s —eeee e
-Al1 updat.write_hdwr LINK AG, H#***
sq adv upda.save_points LINK AG, Hass+
sq adv ma.interrupt_sim LINK AE, fax®x
-HE8 pr.proc_specific LINK AE, fax®x
-BE7 up.update_system LINK AE, fwsx
-HEE upda.get_targets LINK AE, fwsx
-HAS .read_conditions LINK AE, H****
-Ad4 upda.set_outputs LINE AG, Hssx
-AA3 updat.write_hdwr LINK AG, B###*
-Baz upda. save_points LINK AG, Ha*xs
-HA1 ma.interrupt_sim LINK AE, H**sx
pro|main. da_sart LINK AE, H¥*%*
+681 pro|main.strocpyS LINK AG, fon s
+H82 pro|main.stropyd LINK AE, fwsx
+BA3 pro|main.stropyd LINK AB, ok

[}

[N
bt BRI g I R w I p S R BN R g
(=]
=
=2
w

[4E)
=
m
C

w

[WN)
=
m
[y

w

Notice the states that contain "sq adv" in the first column (you may have to press
<PREV> in order to see the states captured prior to the trigger). These are the
states associated with (or captured for) each sequence term. Just as the trigger state
is always stored in trace memory, the states captured in the sequence are always
stored if the trace buffer is deep enough.

222

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

Examples

To specify a global restart state

Use theaestart option to thérace command.

When using the analyzer's sequencer, an additional sequence restart term is also
allowed. This restart is a "global restart"; that is, it applies to all the sequence terms.

The restart term is a state which, when captured before the analyzer has found the
trigger state, causes the search for the sequence of states to start over. You can use
the restart term to make certain some state does not occur in the sequence that
triggers the analyzer.

In the demo program, suppose you wish to trigger on the following sequence
events: the "save_points" function, the "interrupt_sim" function, and the "do_s
function. However, you only want to trigger when the "interrupt_sim" calls the
"do_sort" function. In other words, if the "proc_specific" function is entered be
the "do_sort" function is entered, you know "interrupt_sim" did not call "do_sort"
this time, and the analyzer should start searching again from the beginning.

Again, suppose you wish to store only opcode fetches of the assembly language
LINK A6,#0 instruction (data values that equal 4E56H).

To set up this sequencing trace specification, enter the following trace command.

trace find_sequence save_points then interrupt_sim
restart proc_specific trigger about do_sort only data
4e56h <RETURN>

set source off <RETURN>

223

Chapter 6: Using the Emulation Analyzer

Using the Sequencer

race List t)

Label: Address Opcode or Status time count

Base: umnbol mnemonic w/symbal relative

-AE7? up.update_system LINE AG, Hssx 4.17 m5
-BBG upda. get_targets LINK AG, Hass+ 16.4 u3
-AAS .read_conditions LINK AG, B###* 2.6 m5
-d84 upda.set_outputs LINK AE, fax®x G.63 m3
-BE3 updat.write_hdwr LINK AE, H¥*%* 35.2 mS
sq adv upda.save_points LINK AE, fwsx 7.71 m5
sq adv ma.interrupt_sim LINK AE, fwsx 5,15 m3
pro|main.do_sort LIHK AE, H**** 5.71 m5
+BA1 prolmain.strocpyS LINK AG, Hssx 7.22 mS
+HEz pro|main. strcpyd LINK AG, Hass+ JHE. ug
+HE3 pro|main.strepyd LINK AG, Ha*xs M6, ug
+B84 pra|{main.strepyd LINK AE, fax®x 366. us
+BAS pra|{main.strepyd LINK AE, fax®x 366. us
+BEE pro|main.stropyd LINK AE, fwsx 366. us
+BE7 pro|main.stropyd LINK AE, fwsx 366, u5
+BA8 pro|main.stropyd LINK AE, Hwsx 366, us

Notice in the preceding trace (you may have to press <PREV> in order to see the
states captured prior to the trigger) that, in addition to states captured in the
sequence, "sqg adv" is also shown next to states which cause a sequencer restart.

To trace "windows" of program execution

Use theenableanddisable options to thérace command.

Windowing refers to the analyzer feature that allows you to turn on, or enable, the
capturing of states after some state occurs then to turn off, or disable, the capturing
of states when another state occurs. In effect, windowing allows you capture
"windows" of code execution.

Windowing is different than storing states in a rangedttg range option in the

trace command syntax) because it allows you to capture execution of all states in a
window of code whereas storing states in a range won't capture the execution of
subroutines that are called in that range or reads and writes to locations outside that
range.

When you use the windowing feature of the analyzer, the trigger state must be in
the window or else the trigger will never be found.

224

Chapter 6: Using the Emulation Analyzer
Using the Sequencer

If you wish to combine the windowing and sequencing functions of the analyzer,
there are some restrictions:

» Up to four sequence terms are available when windowing is in effect.
* Global restart is not available when windowing is in effect.

« Occurrence counts are not available.

Examples In the demo program, suppose you are only interested in the execution that occurs
within the switch statement of the "combsort" function. You could specify source
line number 228 as the window enable state and the source line number of the next
statement (line number 240) as the window disable state. Set up the windowing
trace specification with the following command.

trace enable main."main.c": line 228 disable
main."main.c": line 240 <RETURN>

set source on <RETURN>

race List 0ffset=H More data of f
Label: Address Opcode or Status w/ Source Lines time count
Base: ymbio] mremeonic w/symbal relative
for (top=len-gap,i=H; i < top; i++}
sq adv |combsort+HBABEZ MOVER.L DO3,AR8 [115] nS

gt Emain. e - line 227 thru 223 BHEGHHGHRSHHESUEHRBRERSHGSRSR RS

form to
3 { gap)

sq adv |combsort+BBEAASA . (A3, 06
+d15 dalmain.switches AR supr data rd word 486 n3
+H16 . switches+BABRAZ AAEZ supr data rd werd 480 nS
+817 | combsort+B8B63C CMPI.L #E6EE00BEE, DA 488 nS
+618 . switches+BABRAZ ABEE supr data wr weord 480 nS
+819 da|main.switches ABEE supr data wr weord 480 nS
+H2H data|main. gap AHEE supr data rd werd 480 nS
+B21 main. gap+AEEaE2 AE1S supr data rd werd 48H nS
+H22 combsort+HAEEIE BHEE supr prog 48H nS
+H23 combsort+BABBAR AAEE supr prog 488 nS

Notice in the resulting trace (you have to press the <NEXT> key) that the enable
and disable states have the "sq adv" string in the line number column. This is
because the windowing feature uses the analyzer's sequencer.

225

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Modifying the Trace Display

This section describes the options available when displaying trace lists.
This section describes how to:

» Display the trace about a line number.

» Display the trace, disassembling from a line number.

» Display the trace in absolute format.

» Display the trace in mnemonic format.

» Display the trace with high-level source lines.

» Display the trace with symbol information.

* Change the column widths in the trace display.

» Display time counts in absolute or relative format.

» Display the trace with address information offset by a value.
» Return to the default trace display.

» Display the external analyzer information.

226

Chapter 6: Using the Emulation Analyzer

Modifying the Trace Display

Examples

To display the trace about a line number

Use the<LINE #> option to thelisplay trace command.

The<LINE #> trace display option allows you to specify the line number to be

centered in the display.

To display the trace about line number 72:

set default <RETURN>
display trace 72 <RETURN>

race List t More data off screen
Label: HAddress Opcode or Status time count
Base: he mnemonic relative
+BE5 BALS7E 4EE3 supr prog 488 n3
+HE6 BE7GFE BB supr data rd word 486 n3
+HE7 BE7EFA BE17 supr data rd word 486 n3
+B65 BALS7E AHBE supr prog 488 n3
+BE3 BAYEFA AEEE supr data wr word 488 nS
+B78 BAYEFS AEEE supr data wr word 4@ nS
+B71 BAL157A 1534 supr prog 48 nS
+H72 BA1534 4ESE supr prog 4688 nS
+B73 BAEF A5 AAEA supr data wr word 488 n3
+874 BBEFEA 157C supr data wr word 486 n3
+Hd75 BE1536 BERE supr prog 486 n3
+B7E BA1535 ZB7C supr praog 488 nS
+B77 BAEF 54 AEEE supr data wr word 488 nS
+675 BAEF 36 EFEC supr data wr word 4@ nS
+673 BA153A HEHE supr prog 48 nS
+H3H BA153C 7158 supr prog 4688 nS

227

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace, disassembling from a line
number

Use thalisassemble_from_line_numbeoption to thedisplay trace command.

The "disassemble_from_line_number" trace display option causes the inverse
assembler to attempt to begin disassembling the trace information from the
specified line number. This option is required for inverse assemblers that cannot
uniquely identify opcode fetch states on the processor bus.

If the line number specified is not an opcode fetch state, the disassembled
information will be incorrect.

To display the trace, disassembling from line number 72:

display trace disassemble_from_line_number 72 <RETURN>

t More data off screen
Label: HAddress Opcode or Status time count
Base: he mnemonic relative
+872 BE1534 LINK AE, #BABAG 406 n3
+B73 BAEF A5 AAEA supr data wr word 488 n3
+874 BBEFEA 157C supr data wr word 486 n3
+Hd75 BE1536 BERE supr prog 486 n3
+876 BE1538 MOVER.L #BEBAB7 158, AB 466 nS
+B77 BAEF 34 AEEE supr data wr word 4@ nS
+675 BAEF 36 EFEC supr data wr word 488 nS
+673 BA153A HEHE supr prog 48 nS
+H3H BA153C 7158 supr prog 488 n3
+8581 BB153E MOVEQ.L #0@0@0A08E,01 486 n3
+852 BE15A8 NOP 486 n3
+0583 BE15A2 ™MOVE.L D1,08 466 n3
+8584 BE15A4 ADO.L 08,08 466 nS
+885 BE15A6 ADO.L D1,08 406 nS
+056 BE15AE LSL.L #2,0@ 406 n3
+8587 BB15AR MOVE.W #BEB041,086(R8,04.L) ged n3

228

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace in absolute format

Use theabsoluteoption to thedisplay trace command.

Theabsolutetrace display option allows you to display status information in
absolute format (binary, hex, or mnemonic). @hsolute status mnemonic
display is the same as default mnemonic display, except that opcodes are not
disassembled.

To display the trace in absolute format with the status information as binary values:

display trace absolute status binary <RETURN>
More data off

Label: HAddress Oata Absclute Status time count
Base: he he binary relative
+872 BE 1594 4E56 1111A11A8 486 n5
+873 BEEFEE AAEA 11181168 B1515] nS
+874 BEEFEA 157C 111A11@84 B1515] nS
+B75 PP 1536 BAEE 11118118 460G nS
+B76 AP 1538 287C 11118118 486 n5
+877 BBEF B4 BAEE 11181168 486 nS
+878 HEEF 86 EFBC 11181164 48 nS
+879 BB 153A AAEE 11118118 486 n5
+B88 BB 153C 7158 1111A11A8 486 n5
+881 BB 153E 7268 11118118 B1515] nS
+B82 BB 15AA 4E71 1111A118 460G nS
+B83 BB 15A2 2861 11118118 486 n5
+B84 BB 15A4 DAsE 11118118 486 n5
+B85 BB 15A6 DAgl 1111A11A8 486 nS
+B86 BE15A8 ESBE 1111@11@ 48 nS
+B87 BB 15AA 31BC 1111Ad1A8 fais]g] n5

229

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace in mnemonic format

Use thannemonicoption to thalisplay trace command.

Themnemonictrace display option allows you to display the trace information in
mnemonic format (that is, opcodes and status). The default trace display is in

mnemonic format.

To display the trace in mnemonic format:

display trace mnemonic

<RETURN>

Label:
Base:
+872
+873
+874
+875
+B876
+877
+878
+873
+888
+881
+B82
+B83
+B84
+B85
+B86
+887

More data of f screen

Address Opcode or Status time count
he mnemonic relative
BE1534 LINK AE, #0ABAG 488 n3
BREFEE BB supr data wr word 488 n3
BBEEFEA 157C supr data wr word 488 n3
BA1536 AHEE supr praog 466 nS
BE1598 MOVER.L #BEBAB7 158, A6 4688 nS
BAEF 34 AEEE supr data wr word 48H nS
BAEF 36 EFEC supr data wr werd 48 nS
BA153A AAEA supr prog 486 n5
BE153C 7158 supr prog 488 n3
BE153E MOVEQ.L #0@0@0agad, 01 468 nS
BE15A8 NOP 4688 nS
BE15A2 MOVWE.L D1,08 488 nS
BE15A4 ADO.L 08,08 4688 nS
BE15SA6 ADO.L D1,0@ 48 nS
BB15A8 LSL.L #2,06 4688 nS
BE15AR MOVE.W #0B041, 086(ARE, 0. L) [aal5] n3

230

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace with high-level source lines

Use theset sourcecommand.

To include high-level source lines in the trace display, you must usetthe
command. Theetcommand allows you to include symbolic information in trace,
memory, register, and software breakpoint displays. s€eb@mmand affects all
displays for the current window.

Theset source on/off/onlycommand allows you to include source file information
in the trace list or memory mnemonic display. $herce onlyoption specifies
that only the source file information will be displayed.

When source lines are included, comments that contain file and line information
appear before the source lines.

Also, when source lines are turned on, three additional options are available i
set command: inverse video, tabs are, and number of source lines.

Theinverse_videooption allows you to display source lines in inverse video.

Thetabs_areoption allows you to specify the number of spaces between tab stops
so that the appropriate number of spaces can be inserted for source lines. The
default value is eight. Values from two to 15 can be entered.

Typically, there are lines in the source file that are not associated with actual
instructions (declarations, comments, etc.). filn@ber_of_source_linesoption

allows you to specify the number of these source lines to be displayed for every
source line that is associated with an actual instruction. Only source lines up to the
the previous source line that corresponds to actual code will be displayed. The
default value is five. Values from one to 50 can be entered.

To display the trace with high-level source lines:

set source on <RETURN>
display trace <RETURN>

231

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

More data off)
Label: HAddress Opcode or Status w/ Source Lines time count
Base: he mnemonic relative

Bl init_system.c - line BE thru G0 HENHEHAHAHAHARBHERERERERES
* Returns: Mothing.
KR K K S KK K 6 S KK K KK K K S K K K K KK K K K K K K

woid

imit_val_arr()

{
+@72 BE1534 LINK AE, toanan 48 nS
+H73 BAEF 35 AREA supr data wr word 4688 nS
+674 BAEFAA 157C supr data wr word 488 n3
+@75 BE1536 BB supr prog 486 n3
+876 BB1538 MOVER.L #BEBAB7 158, A6 4688 nS
+B77 BAEF 54 AEEE supr data wr word 488 nS
+B75 BAEF 36 EFEC supr data wr word 488 nS
+673 BA153A AEEE supr prog 4@ nS
+H3H Ba153Cc 7158 supr prog 48 nS

B tinit_system.c - line g1 thru G2 HHpistsran sttt

To set the number of source lines to be displayed at 12:

set source on number_of _source_lines 12 <RETURN>
display trace <RETURN>

race List =F More data of f screen
Label: HAddress Opcode or Status w/ Source Lines time count
Base: he mremonic relative

BRgHu R init_system.c - line 66 thru 08 HERHGRESHEAHEEEEERESSRSRY

*
Description: This code initializes the wal_arr data structure.

Parameters: none

*
*
*
*
* References: Mone.
*
* Returns: Mothing.

KR K K S KK K 6 S KK K KK K K S K K K K KK K K K K K K

woid

imit_val_arr()

{
+@72 BE1534 LINK AE, toanan 48 nS
+H73 BAEF 35 AREA supr data wr word 4688 nS
+674 BAEFAA 157C supr data wr word 488 n3

232

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace with symbol information

Theset symbols on/oftommand allows you to specify that address information be
displayed in terms of program symbols.

To display the trace with symbol information:

set source off symbols on <RETURN>
display trace <RETURN>

More data off]
Label: Address Opcode or Status time count
Base: umnbol mnemonic w/symbal relative
+H72 ini.init_wal_arr LINK AE, #EEARR 4@8 nS
+@873 sysstack+Bd3F 58 ABEA supr data wr word 486 n3
+874 sysstack+Bd3FEA 157C supr data wr word 486 n3
+B75 init_wval_ +HEEEEZ ABEA supr prog 488 n3
+876 init_val_+BBEBE4 MOVEAR.L #BBEEET 1S5S, AE 488 nS
+B77 sysstack+Bd3F a4 ABEA supr data wr word 4@ nS
+675 sysstack+Hd3F3E EF8C supr data wr word 48 nS
+673 init_wal_ +HAAEAG ABBA supr prog 4688 nS
+H3H init_wal_ +HAAEAS 7158 supr prog 488 n3
+8581 init_val_+@BEEEA MOVEQ.L #E0BDEEBEE, 01 468 nS
+A82 init_wal_+BEABAC NOP 4688 nS
+B883 init_val_+HBEBEE MOVE.L DI1,08 488 nS
+884 init_val_+HBEB18 ADD.L D@,08 488 nS
+B85 init_wval_+@B@812 ADD.L D1,08 4688 nS
+086 init_wal_+@@EB14 LSL.L #2,08 48 nS
+887 init_wval_+HBEB16 MOVE.W H#E0841,808(AH, 06, L) =151} nS

233

Chapter 6: Using the Emulation Analyzer

Maodifying the Trace Display

To change column widths in the trace display

* Use theset width command.

Theset width command allows you to change the width of the address and
mnemonic (or absolute) columns in the trace list. Values from one to 80 can be

entered.

When address information is being displayed in terms of symbols (in other words,
symbols on), you may wish to increase the width of the address column to display

more of the symbol information.

When trace information is displayed in mnemonic format, you can additionally

specify the width of symbols in the "Opcode or Status" column.

Examples To display the trace with the address column width set to 30 characters:
set width label 30 <RETURN>
display trace <RETURN>

race List More data off =

Label: Address Opcode or Status
Basze: umbol mremonic w/symbaol
+A72 prog|init_sgstem.init_val_arr LINE AG, #EERAR
+@73 stack | sysstack+dB3F38 BB supr data wr word
+d74 stack | sysstack+BA3FEA 157C supr data wr word
+B75 prog|init_wal_arr+BAEEAZ AEEE supr prog
+876 prog|init_wal_arr+B@80884 MOVEA.L #OBABBE7158, A0
+677 stack|sysstack+BA3F34 BEHE supr data wr word
+675 stack|sysstack+BA3FEE EFEC supr data wr word
+673 prog|init_wval_arr+BABEAG ABEE supr prog
+HA56 prog|init_val_arr+BEABASG 7158 supr prog
+8581 prog|init_wal_arr+B@08EA MOVED.L #O080800EEE,01
+B52 prog|init_wal_arr+BABEAC MOP
+883 prog|init_wal_arr+BABEBEE MOVE.L DO1,08
+884 prog|init_wal_arr+BABE1IA ADD.L DA, 04
+B885 prog|init_wal_arr+BABE1Z AOOD.L 01,08
+HBE prog|init_wval_arr+BABE14 LSL.L #2, 04
+8587 prog|init_wval_arr+B@8816 MOVE.W #B0E41,BEE(AE,08.L)

234

Chapter 6: Using the Emulation Analyzer
Modifying the Trace Display

To display time counts in absolute or relative
format

» Use thecount option to thalisplay trace command.

Count information may be displayed two ways: relative (which is the default), or
absolute. When relative is selected, count information is displayed relative to the
previous state. When absolute is selected, count information is displayed relative to
the trigger condition.

Thecount absolute/relativetrace display option is not available when counting is
turned off in the trace command.

Examples To display the trace with absolute time counts:

set default <RETURN>

display trace count absolute <RETURN>

t More data off en
Label: HAddress Opcode or Status time count
Base: he mnemonic absolute
+872 BE1534 LINK AE, #0ABAG + 28.8 uJ5
+@873 BREFEE AEEE supr data wr word + 29.2 ug
+874 BBEFEA 157C supr data wr word + 29.B ug
+B75 BA1536 ABEE supr prog + 38.8 u5
+876 BE1538 MOVER.L #BEBAB7 158, AB + 38.4 U5
+B77 BAEF 34 ABEAE supr data wr word + 38.8 5
+675 BAEF 36 EFEC supr data wr werd + 3.2 5
+673 BA153A ABEE supr prog + 3.6 5
+H3H BA153C 7158 supr prog + d2.8 U5
+8581 BE153E MOVEQ.L #0@0@0agad, 01 + 32.4 uJ5
+852 BE15A8 NOP + 32.8 uJ5
+883 BE15A2 MOVE.L D1,08 + 33.2 J5
+8584 BE15A4 ADO.L 08,08 + 33.6 U5
+885 BE15A6 ADO.L D1,08 + 34.8 U5
+A86 BE15AE LSL.L #2,0@ + 344 WS
+8587 BB15AR MOVE.W #BEB041,086(R8,04.L) + 35.2 45

235

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace with addresses offset

Use theoffset_by option to thalisplay trace command.

Theoffset_bytrace display option allows you to cause the address information in
the trace display to be offset by the amount specified. The offset value is subtracted
from the instruction’s physical address to yield the address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use theoffset_byoption to change the address information so that it again agrees
with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

To display the trace with addresses offset by 1594H:
display trace offset_by 1594h <RETURN>

race List 0ffset=1594 More data off

Label: HAddress Opcode or Status time count

Base: he mnemonic relative

+872 BEaEEE LINK AE, #0ABAG 488 n3
+@873 BE03F 4 BB supr data wr word 486 n3
+874 BBE0OIFE 157C supr data wr word 486 n3
+B75 BaBEAZ AHBE supr prog 488 n3
+876 BEREE4 MOVER.L #BEBAB7 158, AB 488 nS
+B77 BA03FA AEEE supr data wr word 4@ nS
+675 BanaFz EFEC supr data wr werd 48 nS
+673 BABBRAG AAEE supr prog 4688 nS
+H3H BABRAS 7158 supr prog 488 n3
+8581 BEREEA MOVEQ.L #0@0a0a0ad, 01 468 nS
+852 BEEEEC NOP 4688 nS
+883 HERERE MOVE.L D1,08 488 nS
+8584 BE@E1@ ADO.L 08,08 488 nS
+885 BE@El2 ADO.L D1,08 4688 nS
+056 pEBEl4 LSL.L #2,0@ 48 nS
+8587 AERE16 MOVE.W #068041,086(AR8,04.L) =151} nS

236

Chapter 6: Using the Emulation Analyzer

Modifying the Trace Display

Examples

To return to the default trace display

Use theset defaultcommand.

Theset defaultcommand allows you to return to the default display.

To return to the default trace display:

set default <RETURN>
race List 0ffset=H More data off]

Label: HAddress Opcode or Status time count
Base: he mnemonic relative
+872 BE1534 LINK AE, #0ABAG 488 n3
+@873 BREFEE BB supr data wr word 486 n3
+d74 BBEEFEA 157C supr data wr word 486 n3
+B75 BA1536 AHEE supr praog 488 nS
+876 BE1598 MOVER.L #BEBAB7 158, A6 4688 nS
+677 BAEF 34 AEEE supr data wr word 488 nS
+675 BAEF 36 EFEC supr data wr werd 48 nS
+673 BA153A AAEA supr prog 488 n3
+H5H BE153C 7158 supr prog 486 n3
+8581 BE153E MOVEQ.L #0@0@0agad, 01 468 nS
+852 BE15A8 NOP 4688 nS
+883 BE15A2 MOVWE.L D1,08 488 nS
+884 BE15A4 ADO.L 08,08 4688 nS
+@585 BE15SA6 ADO.L D1,0@ 48 nS
+0586 BB15A8 LSL.L #2,06 4688 nS
+8587 BE15AR MOVE.W #0B041, 086(ARE, 0. L) [aal5] n3

237

Chapter 6: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display external analyzer information

Use theexternal option to thalisplay trace command.

Theexternal trace display option allows you to include data from the external
analyzer in the trace list. External bits are displayed by default. If you do not wish
to have the external bits information in the display, you can turn them off.

The bits associated with the external analyzer labels may be displayed in binary or
hexadecimal format. Labels must be defined in the external analyzer configuration
(and prior to trace command entry) before they appear as softkey selections when
displaying the trace. Refer to the "To define labels for the external analyzer
signals" description in the "Using the External State Analyzer" chapter.

To display the "xbits" column in binary format:

display trace external xbits binary <RETURN>

race List More data off screen
Label: Opcode or Status time count =bits
Basze: mnemonic relative binary
+872 AE, #0E0AD 488 nS BABEEEOEEEEEDEDA0
+@73 supr data wr word 488 n3S HAEHEREEREEHEREEE
+d74 supr data wr word 488 n3S AREEREEREEREEEEE
+875 supr prog 488 nS BABEEEEEEEEDED A0
+B876 L #BEBAB7 158, AB 4688 nS BABBEHEEEHEDED A0
+677 supr data wr word 48 nS BABEEEEEEEBREREG
+675 supr data wr word 48y nS AHHEHEERHEREEEEE
+873 supr prog 488 nS BABBEEOEEEEEDEDAE
+8568 supr prog 488 nS BABEEOEEEEEDEDA0
+881 L #BEBaga@aa, 01 468 nS BABEEE0EEEEERED A0
+852 4688 nS BABEEENEEEEEEED A
+883 01,08 488 nS BABEEEEEEEEDED A0
+884 0e, 08 4688 nS BABBEHEEEHEDED A0
+8585 01,08 488 nS BABEEEOEEEEEREREE
+8586 #z2,08 46868 nS BABEEEEEHEERERER
+8587 HoBE41, BEadAE, 08, L) [&5]] nS BABEEEOEEEEEDEDA0

238

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

Saving and Restoring Traces

The emulator/analyzer interface allow you to save trace commands and trace lists.
You can restore trace commands in order to set up the same trace specification.
You can restore traces in order to view trace data captured in the stored trace.

This section describes how to:
e Save trace commands.

e Restore trace commands.
e Save traces.

* Restore traces.

To save trace commands

* ChooseFile - Store— Trace Spec

* Using the command line, enter thtere trace_specommand.

You can save a trace command to a "trace specification” file and reload it at a later
time.

The trace command is saved in a file named "tspecfile.TS" in the current directory.
The extension ".TS" is appended to trace specification files if no extension is
specified in thestore trace_specommand.

Examples To store the current trace command:

store trace_spec tspecfile <RETURN>

239

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

To restore trace commands

* ChooseFile - Load - Trace Spec

* Using the command line, enter tbad trace_specommand.

Trace commands that are restored will always work, even if symbols have been
changed; however, once you modify the trace command, it may no longer work.

Loading a trace specification does not start the trace; to do this, you must enter the
trace command either by selecting it from the Trace Specification Selection dialog
box or by using th&race — Again pulldown menu item.

Examples To bring back the trace command saved in "tspecfile. TS" and perform a trace
measurement using it:

load trace_spec tspecfile <RETURN>

trace again <RETURN>

240

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

To save traces

* ChooseFile - Store— Trace Data

* Using the command line, enter thtere tracecommand.

You can save a trace to a trace file and reload it at a later time.

The trace is saved in a file named "trcfile. TR" in the current directory. The
extension ".TR" is appended to trace files if it is not specified isttre trace
command.

Examples To store the current trace:

store trace trcfile <RETURN>

241

Chapter 6: Using the Emulation Analyzer
Saving and Restoring Traces

Examples

To restore traces

ChoosedFile - Load - Trace Data

Using the command line, enter tload trace command.

The restored trace depth is the depth specified when the trace was stored and cannot
be increased. You may want to increase the trace depth before storing traces.

When a trace is loaded, the trace command is not restoredcefagainor trace

modify command will use the last trace command entered, not the command which
resulted in the loaded trace. Also, the trace status shown Oigfiey status

command does not reflect the loaded trace.

To restore the "trcfile.TR" trace file:
load trace trcfile <RETURN>

The trace information stored in "trcfile. TR" is restored. You can view the trace as
you would any other trace.

242

Making Software Performance
Measurements

243

Making Software Performance
Measurements

The Software Performance Measurement Tool (SPMT) is a feature of the Softkey
Interface that allows you to make software performance measurements on your
programs.

The SPMT allows you to make some of the measurements that are possible with the
HP 64708 Software Performance Analyzer and its Graphical User Interface
(HP B1487).

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using tberf32 report generator utility.

Two types of software performance measurements can be made with the SPMT:
activity measurements, and duration measurements.

This chapter describes tasks you perform while using the Software Performance
Measurement Tool (SPMT). These tasks are grouped into the following sections:

» Activity performance measurements.
» Duration performance measurements.

* Running performance measurements and creating reports.

244

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Activity Performance Measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (reads and writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement wil
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address rang

you can get an idea of how much activity in other areas is caused by the code being
measured. An activity measurement report of the code (prog), data, and stack
sections of a program is shown below.

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77
Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv = 0.88
Time Percent Rel = 99.84 Abs = 99.84

data
Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

245

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16

stack
Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel= 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

prog 57.77%
data 30.5100 **rkrkrkkikkkikk
stack 11.729p *k*
Graph of Memory Activity relative time percents >= 1
prog 60.97%
data 28.090f *¥kxkxkkdkikkkk
stack 10.94% *xxxxx

Graph of Program Activity relative state percents >=1
prog 99.82%

Graph of Program Activity relative time percents >=1
prog 99.84%

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals

246

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Absolute count - state 5120
Absolute count - time - Us 2221.20

This section describes how to:
» Set up the trace command for activity measurements.
» Initialize activity performance measurements.

» Interpret activity measurement reports.

To set up the trace command for activity
measurements

1 Specify a trace display depth of 512.

2 Trace after any state, store all states, and count time.

Before you initialize and run performance measurements, the current trace
command (in other words, the last trace command entered) must be properly set up.

In general, you want to give the SPMT as many trace states as possible to
post-process, so you should increase the trace depth to the maximum number, as
shown in the following command.

If you wish to measure activity as a percentage of all activity, the current trace
command should be the default (in other wordge <RETURN>). The default

trace command triggers on any state, and all captured states are stored. Itis
important that time be counted by the analyzer; otherwise, the SPMT measurements
will not be correct. Also, since states are stored "after" the trigger state, the
maximum number of captured states appears in each trace list.

You can qualify trace commands any way you like to obtain specific information.
However, when you qualify the states that get stored in the trace memory, your
SPMT results will be biased by your qualifications; the percentages shown will be
of only those states stored in the trace list.

247

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Examples

To specify a trace depth of 512:
display trace depth 512 <RETURN>

To trace after any state, store all states, and count time:

trace counting time <RETURN>

To initialize activity performance measurements

Use theperformance_measurement_initializecommand.

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements. This is done by initializing the
performance measurement. You can initialize the performance measurement in the
following ways:

» Defaultinitialization (using global symbols if the symbols database is loaded).
+ Initialize with user-defined files.

» Initialize with global symbols.

» Initialize with local symbols.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Default Initialization

Entering theperformance_measurement_initializzzcommand with no options

specifies an activity measurement. If a valid symbolic database has been loaded,
the addresses of all global procedures and static symbols will be used; otherwise, a
default set of ranges that cover the entire processor address range will be used.

248

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Initialization with User Defined Ranges

You can specifically give the SPMT address ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initializecommand.

Address range files may contain program symbols (procedure name or static), user
defined address ranges, and comments. An example address range file is shown
below.

Any line which starts with a # is a comment.

All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

"->" means thru. The above will define a range which starts with symboll
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 thru the end of symbol2.

dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

Initialization with Global Symbols

When theperformance_measurement_initializecommand is entered with no

options or with thegylobal_symbolsoption, the global symbols in the symbols

database become the address ranges for which activity is measured. If the symbols
database is not loaded, a default set of ranges that cover the entire processor address
range will be used.

The global symbols database contains procedure symbols, which are associated
with the address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

Initialization with Local Symbols

When theperformance_measurement_initializecommand is entered with the
local_symbols_inoption and a source file name, the symbols associated with that
source file become the address ranges for which activity is measured. If the
symbols database is not loaded, an error message will occur telling you that the
source filename symbol was not found.

249

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

You can also use thecal_symbols_inoption with procedure symbols; this allows
you to measure activity related to the symbols defined in a single function or
procedure.

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frometieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

250

Examples

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Suppose the "addr_ranges" file contains the names of all the functions in the "ecs"
demo program loop:

combsort
do_sort
gen_ascii_data
get_targets
graph_data
interrupt_sim
proc_specific
read_conditions
save_points
set_outputs
strcpy8
update_system
write_hdwr

Since these labels are program symbols, you do not have to specify the address
range associated with each label; the SPMT will search the symbol database for the
addresses of each label.

An easy way to create the "addr_ranges" file is to usediiyeglobal_symbols
command to copy the global symbols to a file named "addr_ranges"; then, for
shell to UNIX (by entering "! <RETURN>" on the Softkey Interface command
line) and edit the file so that it contains the procedure names shown above. E
<CTRL>d at the UNIX prompt to return to the Softkey Interface.

To initialize the activity measurement with a user-defined address range file:

performance_measurement _initialize addr_ranges <RETURN>

251

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

To interpret activity measurement reports

* View the performance measurement report.

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The reports generated for activity measurements
show you the percentage of analyzer trace states that are in the specified address
range, as well as the percentage of time taken by those states. The performance
measurement must include four traces before statistics (mean and standard
deviation) appear in the activity report. The information you will see in activity
measurement reports is described below.

Memory Activity All activity found within the address range.
Program Activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the

execution of those instructions (reads and writes to memory, stack pushes, etc.).

Relative With respect to activity in all ranges defined in the performance
measurement.

Absolute With respect to all activity, not just activity in those ranges defined in
the performance measurement.

Mean Average number of states in the range per trace. The following equation is
used to calculate the mean:

states in_range
mean =
toral states

252

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Standard Deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

i=1

N
std dev = ’\/Nl__f X 3 Ssumq — N (mean)2

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.
Ssumgq Sum of squares of states in the range per trace.

Symbols Within Range Names of other symbols that identify addresses or
ranges of addresses within the range of this symbol.

Additional Symbols for Address Names of other symbols that also identify
this address.

Note that some compilers emit more than one symbol for certain addresses. For
example, a compiler may emit "interrupt_sim" and "_interrupt_sim" for the first
address in a routine named interrupt_sim. The analyzer will show the first symbol

it finds to represent a range of addresses, or a single address point, and it will show
the other symbols under either "Symbols within range" or "Additional symbols for
address", as applicable. In the "interrupt_sim" example, it may show either
“interrupt_sim" or "_interrupt_sim" to represent the range, depending on which
symbol it finds first. The other symbol will be shown below "Symbols within

range" in the report. These conditions appear particularly in default measurements
that include all global and local symbols.

Relative and Absolute Counts Relative count is the total number of states
associated with the address ranges in the performance measurement. Relative time
is the total amount of time associated with the address ranges in the performance
measurement. The absolute counts are the number of states or amount of time
associated with all the states in all the traces.

253

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Examples

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct, = m‘ x 100

Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of traces in the measurement.

Pm Mean of the means (i.e., mean sample).

Consider the following activity measurement report (generated with the commands
shown):

display trace depth 512 <RETURN>
trace counting time <RETURN>
performance_measurement _initialize addr_ranges <RETURN>

performance_measurement_run 20 <RETURN>
performance_measurement_end <RETURN>
Iperf32 | more

254

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Label

strcpy8
Address Range 10DCH thru 113CH

Memory Activity
State Percent Rel = 20.98 Abs = 15.49
Mean = 79.30 Sdv =151.55
Time Percent Rel = 20.32 Abs = 15.47

Program Activity
State Percent Rel = 24.57 Abs = 19.67
Mean = 100.70 Sdv = 193.47
Time Percent Rel = 23.14 Abs = 18.74

set_outputs
Address Range 18B2H thru 1964H

Memory Activity
State Percent Rel = 20.32 Abs = 15.00
Mean = 76.80 Sdv =187.57
Time Percent Rel = 20.55 Abs = 15.64

Program Activity
State Percent Rel = 18.74 Abs = 15.00
Mean = 76.80 Sdv =187.57
Time Percent Rel = 19.32 Abs = 15.64

write_hdwr
Address Range 196CH thru 19FAH

Memory Activity
State Percent Rel = 20.32 Abs = 15.00
Mean = 76.80 Sdv = 187.57
Time Percent Rel = 20.55 Abs = 15.64

Program Activity
State Percent Rel = 18.74 Abs = 15.00
Mean = 76.80 Sdv =187.57
Time Percent Rel = 19.32 Abs = 15.64

update_system
Address Range 1678H thru 1748H

Memory Activity
State Percent Rel = 13.55 Abs = 10.00
Mean = 51.20 Sdv =157.59
Time Percent Rel = 13.71 Abs = 10.43

Program Activity
State Percent Rel = 12.53 Abs = 10.03
Mean = 51.35 Sdv = 157.54
Time Percent Rel= 12.91 Abs = 10.46

do_sort
Address Range 14EEH thru 159CH

255

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Memory Activity
State Percent Rel= 6.77 Abs= 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.85 Abs= 5.21

Program Activity
State Percent Rel= 6.25 Abs = 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.44 Abs= 5.21

proc_specific
Address Range 1COAH thru 1C34H

Memory Activity
State Percent Rel= 6.77 Abs = 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.85 Abs= 5.21

Program Activity
State Percent Rel= 6.25 Abs = 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.44 Abs= 5.21

read_conditions
Address Range 17F8H thru 18AAH

Memory Activity
State Percent Rel= 6.77 Abs = 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.85 Abs= 5.21

Program Activity
State Percent Rel= 6.25 Abs = 5.00
Mean = 25.60 Sdv =114.49
Time Percent Rel= 6.44 Abs= 5.21

combsort
Address Range 12A8H thru 14E6H

Memory Activity
State Percent Rel= 4.15 Abs = 3.07
Mean = 15.70 Sdv = 32.69
Time Percent Rel= 3.98 Abs= 3.03

Program Activity
State Percent Rel= 6.25 Abs = 5.00
Mean = 25.60 Sdv = 53.97
Time Percent Rel= 5.61 Abs= 454

gen_ascii_data
Address Range 1144H thru 12A0H

Memory Activity
State Percent Rel= 0.36 Abs= 0.26

256

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Mean= 1.35 Sdv= 4.18
Time Percent Rel= 0.33 Abs= 0.25

Program Activity
State Percent Rel= 0.44 Abs= 0.35
Mean = 1.80 Sdv= 5.58
Time Percent Rel= 0.39 Abs= 0.31

get_targets
Address Range 1750H thru 17FOH

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

graph_data
Address Range 1B08H thru 1BD4H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

interrupt_sim
Address Range 1028H thru 10D4H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

save_points
Address Range 1A02H thru 1BOOH

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity

257

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

strcpy8 20.980p *kkrkrkkkk
set_outputs 20.320p *xkrrkkhkk
write_hdwr 20.320p *rxxxkkrax
update_system 13.550p *rkkkrx
do_sort 6.77% ***x
proc_specific 6.77% ****
read_conditions 6.77% ****
combsort 4.15% **

Graph of Memory Activity relative time percents >= 1

strcpy8 20.320f *krkwkikkk
set_outputs 20.550p *kkkkkkkkkk
write_hdwr D0.550p *rrkkkkkss
update_system 13.710p *rkkkrx
do_sort 6.85% ****
proc_specific 6.85% ****
read_conditions 6.85% ****
combsort 3.98% **

Graph of Program Activity relative state percents >= 1

strcpy8 D4 570 *kkrkkikkkkik
set_outputs 18.740p *rxxxxxxxx
write_hdwr 18.740p *xxxxxxrxx
update_system 12.530f *kkkkkk
do_sort 6.25% ***
proc_specific 6.25% ***
read_conditions 6.25% ***
combsort 6.25% ***

Graph of Program Activity relative time percents >=1

strcpy8 23 140 *kkkkkikkkik
set_outputs 10.320p *xkkkkrrrk
write_hdwr 10,320 *xkkkkkkkx
update_system 12.910p *rrxrrx
do_sort 6.44% ***
proc_specific 6.44% ***
read_conditions 6.44% ***
combsort 5.61% ***

Summary Information for 20 traces

Memory Activity
State count

Relative count 7559

Mean sample 29.07

Mean Standard Dv 81.89

95% Confidence 131.89% Error tolerance
Time count

Relative Time - Us 3976.40

258

Chapter 7: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State count
Relative count 8197
Mean sample 31.53
Mean Standard Dv 86.86
95% Confidence 129.00% Error tolerance
Time count
Relative Time - Us 4230.80
Absolute Totals
Absolute count - state 10240
Absolute count - time - Us 5225.16

The measurements for each label are printed in descending order according to the
amount of activity. You can see that the strcpy8 function has the most activity.
Also, you can see that no activity is recorded for several of the functions. The
histogram portion of the report compares the activity in the functions that account
for at least 1% of the activity for all labels defined in the measurement.

259

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Duration Performance Measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The analyzer trace command is set up to store only the entry
and exit states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration, and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Recursion can place several entry addresses before the first exit address, and/or
several exit addresses before the first entry address. Duration measurements are
made between the last entry address in a series of entry addresses, and the last exit
address in a series of exit addresses (see the figure below). All of the entry and exit
addresses which precede these last addresses are assumed to be unused prefetches,
and are ignored during time measurements.

START - assumed prefetch

START - assumed prefetch

START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch Measure duration
END - assumed prefetch

END - last EXIT address -

START - assumed prefetch

START - assumed prefetch Measure duration
START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch

When measuring a recursive function, module duration will be measured between
the last recursive call and the true end of the recursive execution. This will affect
the accuracy of the measurement.

260

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

If a module is entered at the normal point, and then exited by a point other than the
defined exit point, the entry point will be ignored. It will be judged the same as any
other unused prefetch, and no time-duration measurement will be made. Its time
will be included in the measure of time spent outside the procedure or function.

If a module is exited from the normal point, and then reentered from some other
point, the exit will also be assumed to be an unused prefetch of the exit state.

Note that if you are making duration measurements on a function that is recursive,
or one that has multiple entry and/or exit points, you may wind up with invalid
information.

This section describes how to:
» Set up the trace command for duration measurements.
» Initialize duration performance measurements.

* Interpret duration measurement reports.

To set up the trace command for duration
measurements

1 Specify a trace display depth of 512.

2 Trace after and store only funtion start and end addresses.

For duration measurements, the trace command must be set up to store only the
entry and exit points of the module of interest. Since the trigger state is always
stored, you should trigger on the entry or exit points. For example:

trace after symbol_entry or symbol_exit only
symbol_entry or symbol_exit counting time <RETURN>
CAUTION The previous command depends on the generation of correct exit address symbols

by the software development tools.

261

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Examples

Or:

trace after module_name start or module_name end only
module_name start or module_name end counting time
<RETURN>

Where "symbol_entry" and "symbol_exit" are symbols from the user program. Or,
where "module_name" is the name of a C function or Pascal procedure (and is
listed as a procedure symbol in the global symbol display).

To specify a trace display depth of 512:
display trace depth 512 <RETURN>

To set up the trace command for duration measurements on the interrupt_sim
function:

trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>

The trace specification sets up the analyzer to capture only the states that contain
the start address of the interrupt_sim function or the end address of the
interrupt_sim function. Since the trigger state is also stored, the analyzer is set up
to trigger on the entry or exit address of the interrupt_sim function. With these
states in memory, the analyzer will derive two measurements: time from start to
end of interrupt_sim, and time from end to start of interrupt_sim.

262

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

To initialize duration performance measurements

» Use theperformance_measurement_initializecommand with thduration
option.

After you set up the trace command, you must tell the SPMT the time ranges to be
used in the duration measurement. This is done by initializing the performance
measurement. You can initialize the performance measurement in the following
ways:

* Initialize with user-defined files.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Initialization with User Defined Ranges

You can specifically give the SPMT time ranges to use by placing the informat]
in a file and entering the file name in ferformance_measurement_initialize
command.

Time range files may contain comments and time ranges in units of microseconds
(us), milliseconds (ms), or seconds (s). An example time range file is shown below.

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds
ms milliseconds
s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

263

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Examples

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frompetieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

To initialize the duration measurement:

performance_measurement_initialize duration <RETURN>

264

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

To interpret duration measurement reports

View the performance measurement report.

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The information you will see in duration measurement
reports is described below.

Number of Intervals Number of "from address" and "to address" pairs (after
prefetch correction).

Maximum Time The greatest amount of time between the "from address" to the
"to address".

Minimum Time The shortest amount of time between the "from address" to the
"to address".

Average Time Average time between the "from address" and the "to address
The following equation is used to calculate the average time:

amount of time for all intervals

mean = :
number of intervals

265

Chapter 7: Making Software Performance Measurements

Duration Performance Measurements

Standard Deviation

Deviation from the mean of time. The following equation

is used to calculate standard deviation:

_ 1
std dev = /\/NTf

Where:
N
mean

Ssumgq

N 2
X ¥ Ssumq — N (mean)
i=1

Number of intervals.
Average time.

Sum of squares of time in the intervals.

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’'s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om

error pct, = m‘ x 100

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence
level.

Number of intervals.

266

Chapter 7: Making Software Performance Measurements
Duration Performance Measurements

Pm Mean of the means (i.e., mean of the average times in each
time range).
Examples Consider the following duration measurement report (generated with the commands
shown):
display trace depth 512 <RETURN>
trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>
performance_measurement _initialize time_ranges duration
<RETURN>

performance_measurement_run 10 <RETURN>
performance_measurement_end <RETURN>
Iperf32 | more

Time Interval Profile

From Address 10D4
File main(module)."/users/guest/demo/debug_env/hp64742/main.c"
Symbolic Reference at interrupt_sim+AC

To Address 1028
File main(module)."/users/guest/demo/debug_env/hp64742/main.c”
Symbolic Reference at main.interrupt_sim

Number of intervals 2550

Maximum Time 93962.240 us

Minimum Time 62013.440 us

Avg Time 71536.150 us

Statistical summary - for 10 traces
Stdv 14601.99
95% Confidence 0.79% Error tolerance

Graph of relative percents
1us 10 us 0.00%
10.1 us 100 us 0.00%
100.1 us 500 us 0.00%
500.1 us 1 ms 0.00%
1.001 ms 5 ms 0.00%
5.001 ms 10 ms 0.00%
10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 70.24%
801 ms 160 ms 2976% kkkkkkkkhhkkkkkk
160.1 ms 320 ms 0.00%
320.1 ms 640 ms 0.00%
640.1ms1.2s 0.00%

267

Chapter 7: Making Software Performance Measurements

Duration Performance Measurements

From Address 1028

File main(module)."/users/guest/demo/debug_env/hp64742/main.c"

Symbolic Reference at main.interrupt_sim
To Address 10D4

File main(module)."/users/guest/demo/debug_env/hp64742/main.c"

Symbolic Reference at interrupt_sim+AC
Number of intervals 2550
Maximum Time 413450.240 us
Minimum Time 181.200 us
Avg Time 45558.284 us

Statistical summary - for 10 traces
Stdv 94452.14

95% Confidence 8.05% Error tolerance

Graph of relative percents
1us 10 us 0.00%

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

0.00%

15.0200 **rrkkrk

5.02% ***

25.06% **xkxkkdkdkik
14.980p *rrrrrrx

15.06% **rrkkrx
0.00%

10.000%p *****
4.94%
5.02% ***
4.90% ***

0.00%

Two sets of information are given in the duration measurement report: module
duration and module usage.

The first set is the "module usage" measurement. Module usage measurements
show how much time is spent outside the module of interest; they indicate how
often the module is used. The information shown in the first part of the duration
report above shows that the average amout of time spent outside the interrupt_sim
function is about 71.5 milliseconds.

The second set of information in the duration measurement report is the "module

duration" measurement. The module duration report shows that the amount of time

it takes for the interrupt_sim function to execute varies from 181.2 microseconds to
413.5 milliseconds. The average amount of time it takes for the interrupt_sim
module to execute is roughly 45.6 milliseconds.

268

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

Running Measurements and Creating Reports

Several performance measurement tasks are the same whether you are making
activity or duration measurements.

This section describes how to:
¢ Run performance measurements.
e End performance measurements.

. Create a performance measurement report.

To run performance measurements

Use theperformance_measurement_rurcommand.

Theperformance_measurement_rurcommand processes analyzer trace data.

When you end the performance measurement, this processed data is dumped to the
binary "perf.out” file in the current directory. Tperf32 report generator utility is

used to read the binary information in the "perf.out" file.

If the performance_measurement_rurcommand is entered without a count, the
current trace data is processed. If a count is specified, the current trace command is
executed consecutively the number of times specified. The data that results from
each trace command is processed and combined with the existing processed data.
The STATUS line will say "Processing trace <NO.>" during the run so you will

know how your measurement is progressing. The only way to stop this series of
traces is by usingCTRL>c (sig INT).

The more traces you include in your sample, the more accurate will be your results.
At least four consecutive traces are required to obtain statistical interpretation of
activity measurement results.

269

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples

To run the performance measurement, enter the following command:
performance_measurement_run 20 <RETURN>
The command above causes 20 traces to occur. The SPMT processes the trace

information after each trace, and the number of the trace being processed is shown
on the status line.

Examples

To end performance measurements

Use theperformance_measurement_endommand.

Theperformance_measurement_endommand takes the data generated by the
performance_measurement_runcommand and places it in a file nanpexif.out

in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must renamepbd.out file before performing another
measurement.

Theperformance_measurement_endommand does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering anothguerformance_measurement_runcommand.

Once you have entered therformance_measurement_endommand, you can
use theperf32 report generator to look at the data saved ipéneout file.

Note that the "perf.out" file is a binary file. Do not try to read it with the UNIX
more or cat commands. Thperf32 report generator utility (described in the
following section) must be used to read the contents of the "perf.out" file.

To cause the processed trace information to be dumped to the "perf.out” file:

performance_measurement_end <RETURN>

270

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

To create a performance measurement report

Use theperf32 command at the UNIX prompt.

Theperf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). Theperf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and nperf32, or you can exit the Softkey
Interface and ruperf32.

Options to "perf32"

A default report, containing all performance measurement information, is generated
when theperf32 command is used without any options. The options available with
perf32 allow you to limit the information in the generated report. These options

are described below.

-h Produce outputs limited to histograms.

-S Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.
-f<file> Produce a report based on the information contained in

<file> instead of the information contained in perf.out.

For example, the following commands save the current performance measurement
information in a file called "perfl.out", and produce a histogram showing only the
program activity occupied by the functions and variables.

mv perf.out perfl.out <RETURN>
perf32 -hpf perfl.out <RETURN>

Options-h, -s, -p, and-m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

271

Chapter 7: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples Now, to generate a report from the "perf.out"” file, type the following on the
command line to fork a shell and run fhef32 utility:

Iperf32 | more

272

Using the External State Analyzer

273

Using the External State Analyzer

The HP 64703A analyzer provides an external analyzer with 16 external trace
channels. These trace channels allow you to capture activity on signals external to
the emulator, typically other target system signals. The external analyzer may be
configured as an extension to the emulation analyzer, as an independent state
analyzer, or as an independent timing analyzer.

When the external analyzer is configured as an independent state analyzer, the
emulator/analyzer interface does not control the external analyzer. However, you
can use pod commands to control the independent state analyzer via the terminal
interface. Refer to th@8000 Emulator User’s Guide for the Terminal Interféme
information on using the external analyzer when it is configured as an independent
state analyzer.

When the external analyzer is configured as an independent timing analyzer, you
must use a special Timing Analyzer Interface program. Refer Trttieg

Analyzer Interface User’s Guider information on using the external analyzer
when it is configured as an independent timing analyzer.

The tasks you perform with the external analyzer are grouped into the following
sections:

e Setting up the external analyzer.

» Configuring the external analyzer.

274

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

Setting Up the External Analyzer

This section assumes you have already connected the external analyzer probe to the
HP 64700 Card Cage.

Before you can use the external analyzer, you must:

» Connect the external analyzer probe to the target system.
» Specify threshold voltages of external trace signals.

» Label the external trace signals.

» Select the external analyzer mode.

275

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

To connect the external analyzer probe to the
target system

connector, and firmly press the connectors together.

1 Assemble the Analyzer Probe. The analyzer probe is a two-piece assembly, consisting of ribb
and 18 probe wires (16 data channels and the J and K clock inputs) attached to a connector. Eit
the ribbon cable may be connected to the 18 wire connector, and the connectors are keyed so th
only be attached one way. Align the key of the ribbon cable connector with the slot in the 18 wire

bn cable
ner end of
ey may

RIBBON CABLE

18 WIRE
CONNECTOR

276

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

2 Attach grabbers to probe wires. Each of the 18 probe wires has a signal and a ground connecfion.
Each probe wire is labeled for easy identification. Thirty-six grabbers are provided for the signal and
ground connections of each of the 18 probe wires. The signal and ground connections are attached to the
pin in the grabber handle.

CONNECTING PIN

SO

GRABBER HANDLE

GROUND

277

Chapter 8: Using the External State Analyzer
Setting Up the External Analyzer

CAUTION Turn OFF target system power before connecting analyzer probe wires to the target

system. The probe grabbers are difficult to handle with precision, and it is

extremely easy to short the pins of a chip (or other connectors which are close

together) with the probe wire while trying to connect it.

3 You can connect the grabbers to pins, connectors, wires, etc., in the target system. Pull the hi
grabber towards the back of the grabber handle to uncover the wire hook. When the wire hook ig
the desired pin or connector, release the hilt to allow the grabber spring tension to hold the conne

t of the
around
ction.

HP PART NO. 10024A
- IC. CLP

278

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

Configuring the External Analyzer

After you have assembled the external analyzer probe and connected it to the
emulator and target system, the next step is to configure the external analyzer.

The external analyzer is a versatile instrument, and you can configure it to suit your
needs. For example, you can specify threshold voltage levels on the external
analyzer channels, and you can operate the external analyzer in several different
modes.

The default configuration specifies that the external analyzer is aligned with the
emulation analyzer. TTL level threshold voltages are defined, as well as an
external label named "xbits" which contains all 16 channels.

This section describes how to:

» Specify whether the emulation emulator/analyzer interface should control the
external analyzer.

» Specify the threshold voltages for the external channels.
» Select the external analyzer mode.

» Specify the slave clock mode when configured as an independent state
analyzer.

» Define labels for the external analyzer channels.

279

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To control the external analyzer with the
emulator/analyzer interface

Enter themodify configuration command.
Answer "yes" to the "Modify external analyzer configuration?" question.

Answer the "Should emulation control the external bits?" question.

Answer "yes" if the emulation emulator/analyzer interface should control the
external analyzer. You must answer "yes" to access the remaining external
analyzer configuration questions. At the end of the configuration process the
external analyzer mode and threshold voltages will be set; existing labels will be
deleted, and only the labels specified in response to the questions below will be
defined.

Answer "no" if the emulation emulator/analyzer interface shouldn’t control the
external analyzer. If emulation does not control the external bits, the external
analyzer configuration will not be modified in any way by the emulation interface.

280

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To specify the threshold voltage

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify external analyzer configuration?" question.

3 Answer "yes" to the "Should emulation control the external bits?" question.
4 Answer the "Threshold voltage for bits 0-7 and J clock?" question.

5 Answer the "Threshold voltage for bits 8-15 and K clock?" question.

The external analyzer probe signals are divided into two groups: the lower byte
(channels 0 through 7 and the J clock), and the upper byte (channels 8 through 15
and the K clock). You can specify a threshold voltage for each of these groups.

The default threshold voltages are specified ®s which translates to 1.40 volts.

Voltages may be in the range from -6.40 volts to 6.35 volts (with a 0.05V
resolution). You may also speciBMOS (which translates to 2.5 volts), BCL
(which translates to -1.3 volts).

281

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To specify the external analyzer mode

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify external analyzer configuration?" question.
3 Answer "yes" to the "Should emulation control the external bits?" question.

4 Answer the "External analyzer mode?" question.

The default configuration selects the "emulation” external analyzer mode. In this
mode, you have 16 external trace signals on which data is captured synchronously
with the emulation clock.

The external analyzer may also operate as an independent state analyzer, or it may
operate as an independent timing analyzer if a host computer interface program is
used.

Answer "emulation” to select the emulation mode. In this mode, the external
analyzer becomes an extension of the emulation analyzer. In other words, they
operate as one analyzer. The external bits are clocked with the emulation clock.
External labels may be used in trace commands to qualify trigger, storage, prestore,
or count states. External labels may be viewed in the trace display.

Answer "state" to select the independent state mode of the external analyzer. The
external bits are not available for use from the emulation interface. You can,
however, use pod commands to control the external state analyzer in its
independent mode.

Answer "timing" to select the timing mode of the external analyzer. The external
bits are not available for use from the emulation interface. Because the pod
commands for the timing analyzer dump information in binary format, you will
need to use Timing Analyzer Interface, or other interface program, to capture the
timing analyzer data.

282

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

To specify the slave clock mode

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify external analyzer configuration?" question.

3 Answer "yes" to the "Should emulation control the external bits?" question.
4 Answer "state" to the "External analyzer mode?" question.

5 Answer the "Slave clock mode for external bits?" question.

There are two modes of demultiplexing that can be set for the 16 channels of the
external analyzer: mixed clocks and true demultiplexing.

Answer "off" to turn slave clocks OFF. If the slave clock is "off", all 16 external
bits are clocked with the emulation clock.

Answer "mixed" to specify the mixed clock demultiplexing mode. In this mode
the lower eight external bits (0-7) are latched when the slave clock (as specifi
your answers to the next four questions) is received. The upper eight bits and
latched lower eight are then clocked into the analyzer when the emulation clo
received (see the figure below).

283

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

16 TRACE SIGNALS
|

N
e
SLAVE CLOCK F ‘SLAVE LATCH
) —
— ~
® S
MASTER CLOCK MASTER (POD)
LATCH

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be latched at the same time as the upper 8 bits. If more than one
slave clock has appeared since the last master clock, only the first slave data will be
available to the analyzer (see the figure below).

o 4L b
CLOCK

yS S T N S IR I B
CLOCK

DATA LATCHED ON FOLLOWING SLAVE
FIRST SLAVE CLOCK CLOCKAS IGNORED
AFTER LAST MASTER

CLOCK

284

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

Answer "demux" to specify the true demultiplexing mode. In this mode, only the
lower eight external channels (0-7) are used. The slave clock (as specified by your
answers to the next four questions) latches these bits and the emulation clock
samples the same channels again. The latched bits show up as bits 0-7 in the trace
data, and the second sample shows up as bits 8-15 (see the figure below).

8 TRACE SIGNALS

|
S
S
SLAVE CLOCK SLAVE LATCH
7
S
MASTER CLOCK Av4 AV MASTER (POD)

LATCH

EXAMPLE TIMING:

AD—AD ADDRESS

SLAVE CLOCK |

MASTER CLOCK +

285

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be the same as the upper 8 bits. If more than one slave clock
has appeared since the last master clock, only the first slave data will be available to
the analyzer.

If the "mixed" or "true demultiplexing" slave clock modes are selected, answer the
"Edges of J (K,L,M) clock used for slave clock?" questions.

These four questions are asked when you select either the "mixed" or "demux"
slave clock mode. They allow you to define the slave clock. You can specify
rising, falling, both, or neither (none) edges of the J, K, L, and M clocks. When
several clock edges are specified, any one of the edges clocks the trace.

Clocks J and K are the external clock inputs of the external analyzer probe. The L
and M clocks are generated by the emulator. Typically, the L clock is the
emulation clock derived by the emulator and the M clock is not used.

To define labels for the external analyzer signals

Enter themodify configuration command.
Answer "yes" to the "Modify external analyzer configuration?" question.
Answer "yes" to the "Should emulation control the external bits?" question.

For each defined external label (there can be up to 8), answer the "name?", "start
bit?", "width?", and "polarity?" questions.

You can define up to eight labels for the 16 external data channels in the
configuration. These external analyzer labels can be used in trace commands, and
the data associated with these labels can be displayed in the trace list. One external
analyzer label, "xbits", is defined by the default configuration and is included in the
default trace list.

External labels can be defined with bits in the range of 0 through 15. The start bit
may be in the range 0 through 15, but the width of the label must not cause the label

286

Chapter 8: Using the External State Analyzer
Configuring the External Analyzer

to extend past bit 15. Thus, the sum of the start bit number plus the width must not
exceed 16.

The "polarity?" question allows you to specify positive or negative logic for the
external bits. In other words, positive means high=1, low=0. Negative means
low=1, high=0.

Once external labels are defined, they may be used in trace commands to qualify
events (if the emulation controls the external analyzer). Also, you can modify the
trace display to include data for the various trace labels.

Note that the Timing Analyzer Interface does not use the external labels defined in
the emulator/analyzer interface. You maintain labels for the timing analyzer within
the Timing Analyzer Interface itself.

287

288

Making Coordinated Measurements

289

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

» Setting up for coordinated measurements.

» Starting and stopping multiple emulators.

» Driving trigger signals to the CMB or BNC.

» Stopping program execution on trigger signals.

* Arming analyzers on trigger signals.

290

CMB Connector ——| (OB oy _‘

BNC Connector

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

T ety Trigger nvout
@

Comn canfig
1 o porrom ror

N AT

ol
s Iy

UL Awarne Juuy U
No 1o
o

| U r\ H |
U o
U v
© @
5V/230V Autoranging
~ ~ 600 VA Mox 7263 iz

64700E20

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear panel
of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 connected to the CMB. This signal can be used to
trigger an analyzer. It can be used as a break source for the emulator.

READY The CMB READY line is high true. It is an open collector and performs
an ANDing of the ready state of enabled emulators on the CMB. Each emulator on
the CMB releases this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a synchronized start.

291

When CMB is enabled, each emulator is required to break to background when
CMB READY goes false, and will wait for CMB READY to go true before

returning to the run state. When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the CMB

can drive this line. It serves as a global interrupt and is processed by both the
emulator and the analyzer. This signal causes an emulator to run from a specified
address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and BNC
trigger lines have the same logical purpose: to provide a means for connecting the
internal trigger signals (trigl and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used directly as a break
condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

292

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Setting Up for Coordinated Measurements

This section describes how to:
e Connect the Coordinated Measurement Bus.

» Connect the rear panel BNC.

To connect the Coordinated Measurement Bus
(CMB)

Caution Be careful not to confuse the 9-pin connector used for CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cablge for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connegtors
and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are using a self-built calﬂ)le!

293

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect the cables to the HP 64700 CMB ports.

(FEMALE)
(NC)

TWO EMULATORS

THREE EMULATORS, ETC

(FEMALE
(NO)

64700E14

294

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Number of HP 64700 Series Maximum Total Length of Restrictions on the CMB
Emulators Cable Connection

2108 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear

panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear
panel pullups connected. *

* A modification must be performed by your HP Customer Engineer.
Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

Caution The BNC line on the HP 64700 accepts input and output of TTL levels only. (
levels should not be less than 0 volts or greater than 5 volts.) Failure to observe
these specifications may result in damage to the HP 64700 Card Cage.

295

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect one end of a 50 ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

Ut
el m/o
g

1

ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK

PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700C15

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising g£dge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a regeiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected ang
protected from TTL level signals when the emulator is powered down.

S

296

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:
» Enable synchronous measurements.
e Start synchronous measurements.

» Disable synchronous measurements.

To enable synchronous measurements

Enter thespecify run command.

You can enable the emulator’s interaction with the CMB by usingptbeify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specifiedsieitigy run
command.

Note that when the CMB is being actively controlled by another emulatateine
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction (see "To disable synchronous
measurements” below) while stepping the processor.

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use thepecify tracecommand to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined bydpecify tracecommand will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message "CMB execute; emulation trace started".

297

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Examples

When you enter a normtthce command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

To enable synchronous measurements:
specify run from 1e8h <RETURN>

To trace when synchronous execution begins:

specify trace after address main <RETURN>

To start synchronous measurements

Enter thecmb_executecommand.

Thecmb_executecommand will cause the EXECUTE line to be pulsed, thereby
initiating a synchronous measurement. CMB interaction does not have to be
enabled in order to use either of these commands. (When you enable CMB
interaction, you only specify how the emulator will react to the CMB EXECUTE
signal.)

All emulators whose CMB interaction is enabled will break into the monitor when
any one of those emulators breaks into its monitor.

To disable synchronous measurements

Enter thespecify run disablecommand.

You can disable the emulator's interaction with the CMB by usinggheify run
disablecommand. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

298

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

Using Trigger Signals

The HP 64700 contains two internal lines, trigl and trig2, over which trigger
signals can pass from the emulator or analyzer to other HP 64700s on the
Coordinated Measurement Bus (CMB) or other instruments connected to the BNC
connector.

You can configure the internal lines to make connections between the emulator,
analyzer, external analyzer (if its configured as an independent state or timing
analyzer), CMB connector, or BNC connector. Measurements that depend on these
connections are callédteractive measurements coordinated measurements

To configure the internal trigl and trig2 lines, you must entemtiaify
configuration command and then answer "yes" to the "Modify interactive
measurement specification?" question. When you do this, the following display
appears.

Interactive Measurement Specification
BN <4=P7-3> ——-% BMC €<=77-33 —=-
CMBT <<-?7-2» ——- CMBT <<-77-3> —-——
Trigl Trigz
Emulator <{-—=-=-= -—- Emulator <<-77--- --—-
Analyzer —————- Bro——=f Analyzer «<-77-3F ——
External Analyzer <<-77-¥r ——=/
NOTES:
1. The connections marked "77" are set up here in configuration.
2. driwve = ----Fr receive = <{i{---— (The display won"t change, howewer.}
3. The External Analyzer question is only asked when the External Analyzer
mode is state or timing.

This display illustrates the possible connections between the internal lines (trigl
and trig2) and the emulator, analyzer, and external devices.

Note that the "External Analyzer" option for "Trig2" only appears if you have
selected "state" or "timing" for the external analyzer mode.

Notice that the analyzer always drives trigl, and the emulator always receives trigl.
This provides for thbreak_on_trigger syntax of thérace command.

299

Chapter 9: Making Coordinated Measurements

Using Trigger Signals

You can use the trigl or trig2 line to make a connection between the analyzer and
the CMB connector or BNC connector so that, when the analyzer finds its trigger
condition, a trigger signal is driven on the HP 64700’s Coordinated Measurement
Bus (CMB) or BNC connector. This can also be done for the external analyzer
when it is configured as an independent state or timing analyzer.

You can use the trigl or trig2 line to make a connection between the emulator break
input and the CMB connector, BNC connector, analyzer, (or external analyzer

when configured as an independent state or timing analyzer) so that program
execution can break when a trigger signal is received from the CMB, BNC, or
analyzer.

You can use the trig2 line to make a connection between the analyzer and the CMB
connector or BNC connector so that the analyzer can be armed (that is, enabled)
when a trigger signal is received from the CMB or BNC connector. This can also
be done for the external analyzer when it is configured as an independent state or
timing analyzer.

You can use the trigl and trig2 lines to make several type of connections at the
same time. For example, when the analyzer finds its trigger condition, a signal is
driven on the trigl line. This signal may be used to stop user program execution,
but the trigger signal may also be driven on the CMB and BNC connectors.

Also, it's possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven on
the CMB and BNC connectors, signals can also be received from the CMB and
BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

You can disable connections made by the internal trigl and trig2 lines by
answering "neither" or "no" to the appropriate interactive measurement
configuration question.

300

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

This section shows you how to:

» Drive the emulation analyzer trigger signal to the CMB.

» Drive the emulation analyzer trigger signal to the BNC connector.
» Drive the external analyzer trigger signal to the CMB.

» Drive the external analyzer trigger signal to the BNC connector.
» Break emulator execution on signal from CMB.

» Break emulator execution on signal from BNC.

» Break emulator execution on external analyzer trigger.

» Arm the emulation analyzer on signal from CMB.

* Arm the emulation analyzer on signal from BNC.

* Arm the emulation analyzer on external analyzer trigger.

» Arm the external analyzer on signal from CMB.

* Arm the external analyzer on signal from BNC.

» Arm the external analyzer on emulation analyzer trigger.

To drive the emulation analyzer trigger signal to
the CMB

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "receive" to the "Should CMBT drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation analyzer should drive trig2.

301

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To drive the emulation analyzer trigger signal to
the BNC connector

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.

3 Answer "receive" to the "Should BNC drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the emulation
analyzer should drive trig2.

To drive the external analyzer trigger signal to
the CMB

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.
3 Answer "receive" to the "Should CMBT drive or receive Trig2?" question.

4 Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

302

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To drive the external analyzer trigger signal to
the BNC connector

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "receive" to the "Should BNC drive or receive Trig2?" question.

Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

To break emulator execution on signal from CMB
Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question..
Answer "drive" to the "Should CMBT drive or receive Trigl?" question.
You could also break emulator execution on a trigger signal from the CMB over the

trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

303

Chapter 9: Making Coordinated Measurements

Using Trigger Signals

1

2

3

To break emulator execution on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should BNC drive or receive Trigl?" question.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

To break emulator execution on external analyzer
trigger

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "yes" to the "Should Emulator break receive Trig2?" question.

Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

When an emulator break occurs due to the analyzer trigger, the analyzer will stop
driving the internal signal that caused the break. Therefore, if trig2 is used both to
break and to drive the CMB TRIGGER (for example), TRIGGER will go true

when the trigger is found and then will go false after the emulator breaks.
However, if trigl is used to cause the break and trig2 is used to drive the CMB
TRIGGER, TRIGGER will stay true until the trace is halted or until the next trace
starts.

304

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To arm the emulation analyzer on signal from
CMB

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the emulation analyzer on signal from
BNC

Enter themodify configuration command. .

Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should BNC drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

305

Chapter 9: Making Coordinated Measurements

Using Trigger Signals

To arm the emulation analyzer on external
analyzer trigger

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.
Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the external analyzer on signal from CMB

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

306

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

To arm the external analyzer on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should BNC drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

To arm the external analyzer on emulation
analyzer trigger

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question..
Answer "drive" to the "Should Analyzer drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

307

308

10

Setting X Resources

309

Setting X Resources

The Graphical User Interface is an X Window System application which means it is
aclientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). Itis an
interface between application programs you run on your system and the system
input and output devices.

An X resourcecontrols an element of appearance or behavior in an X application.
For example, in the graphical interface, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey in HP-UX or
{usr/openwin/lib/X11/app-defaults/HP64_Softkey in SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server's RESOURCE_MANAGER property. (Kndb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $SHOME/. Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the SHOME/.Xdefaulitsstfile
(typically containing resource specifications for a specific remote host) is read.

310

Chapter 10: Setting X Resources

Resource specifications included in the command line witkxthe option.
System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

User-defined scheme files located in directory SHOME/.HP64_schemes (note
the dot in the directory name).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

This chapter shows you how to:

Modify the Graphical User Interface resources.
Use customized scheme files.

Set up custom action keys.

Set initial recall buffer values.

Set up demos or tutorials.

Refer to the "X Resources and the Graphical Interface" section in the "Concepts"
chapter for more detailed information.

311

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

To modify the Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying its
X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This resource should he
(custom) set to the platform on which the X server is

running (and displaying the Graphical User
Interface) if it is different than the platform
where the application is running.

HP64_Softkey.colorScheme BW Names the color scheme file.
Color
(custom)

HP64_Softkey.sizeScheme Small Names the size scheme file which defineg
Large the fonts and the spacing used.
(custom)

HP64_Softkey.labelScheme Label Names to use for labels and button text.
$LANG The default uses the SLANG environment

(custom) variable if it is set and if a scheme file
named Softkey.$LANG exists in one of th
directories searched for scheme files;
otherwise, the default is Label.

D

HP64_Softkey.inputScheme Input Specifies mouse and keyboard operation
(custom)

312

Chapter 10: Setting X Resources

To modify the Graphical User Interface resources

Commonly Modified Application Resources

Resource Values Description
HP64_Softkey.lines 24 Specifies the number of lines in the main
(min. 18) display area.
HP64_Softkey.columns 100 Specifies the number of columns, in
(min. 80) characters, in the main display area.
HP64_Softkey.enableCmdline True Specifies whether the command line area|is
False displayed when you initially enter the
Graphical User Interface.
*editFile (example) vi| Specifies the command used to edit files.
%s
*editFileLine (example) vi| Specifies the command used to edit a file|at
+%d %s a certain line number.
*<proc>*actionKeysSub.keyDefs (paired list| Specifies the text that should appear on the
of strings) | action key push buttons and the commangs
that should be executed in the command |ine
area when the action key is pushed. Refer
to the "To set up custom action keys"
section for more information.
*<proc>*dirSelectSub.entries (list of Specifies the initial values that are placed|in
strings) theFile — Context— Directory popup recall
buffer. Refer to the "To set initial recall
buffer values" section for more information.
*<proc>*recallSub.entries (list of Specifies the initial values that are placed|in
strings) the entry buffer (labeled "():"). Refer to the

"To set initial recall buffer values" section
for more information.

313

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

The following steps show you how to modify the Graphical User Interface’s X
resources.

1 Copy part or all of the HP64_Softkey application defaults file to a temporary file.

The HP64_Softkey file contains the default definitions for the graphical interface
application’s X resources.

For example, on an HP 9000 computer you can use the following command to copy
the complete HP64_Softkey file to HP64_Softkey.tmp (note that the HP64_Softkey
file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is re-created each time
Graphical User Interface software is installed or updated. You can use the UNIX
diff command to check for differences between the new HP64_Softkey application
defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_schemes/old/HP64_Softkey.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:
vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to the
following.

! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

| Note: The application cannot be resized by using the window manager.

IHP64_Softkey.lines:

24

IHP64_Softkey.columns: 85

314

Chapter 10: Setting X Resources
To modify the Graphical User Interface resources

Edit the line containing "HP64_Softkey.lines" so that it is uncommented and is set
to the new value:

|
! The lines and columns set the vertical and horizontal dimensions of the

! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

|

| Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
IHP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you're not sure, you can check by enteringxtai -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:

xrdb -merge -nocpp HP64_Softkey.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append the
temporary file to your SHOME/. Xdefaults file. For example:

cat HP64_Softkey.tmp >> $HOME/.Xdefaults
4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the Graphical User Interface. Starting and exiting t
Graphical User Interface is described in the "Starting and Exiting HP 64700
Interfaces" chapter.

315

Chapter 10: Setting X Resources
To use customized scheme files

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

Create the $SHOME/.HP64_schemes/<platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

Copy the scheme file to be modified to the SHOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

Modify the $SHOME/.HP64_schemes/<platform>/Softkey.<scheme> file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is different
than the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the Graphical User
Interface. At least one resource must be defined in your color scheme file for it to
be recognized.

316

Chapter 10: Setting X Resources
To use customized scheme files

4 If your custom scheme file has a different name than the default, you must modify
the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource settings so
that your customized scheme files are used instead of the default scheme files.

For example, to use the "$SHOME/.HP64_schemes/HP-UX/Softkey.MyColor" color
scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":

HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

317

Chapter 10: Setting X Resources
To set up custom action keys

Examples

To set up custom action keys

Modify the "actionKeysSub.keyDefs" resource.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The first
string defines the text that should appear on the action key pushbutton. The second
string defines the command that should be sent to the command line area and
executed when the action key is pushed.

A pair of parentheses (with no spaces, that is "()") can be used in the command
definition to indicate that text from the entry buffer should replace the parentheses
when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "“()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A second
exclamation point ends the command string and allows additional options on the
command line.

Also, command files can be executed by placing the name of the file in the
command definition.

Finally, an empty action (") means to repeat the previous operation, whether it
came from a pulldown, a dialog, a popup, or another action key.

To set up custom action keys when the graphical interface is used with 68000
emulators, modify the "*m68000*actionKeysSub.keyDefs" resource:

*m68000*actionKeysSub.keyDefs: \

"Make"

"Load Pgm"
"Run Pgm"
"Trace after ()"
"Step Source"

"Again"

"cd /users/project2/68k; Imake! in_browser" \
"load configuration config.EA; load program2" \
"run from reset" \
"trace after (); display trace" \
"set source on; display memory mnemonic; step source" \

Refer to the previous "To modify Graphical User Interface resources" section for
more detailed information on modifying resources.

318

Chapter 10: Setting X Resources
To set initial recall buffer values

To set initial recall buffer values

* Modify the "entries" resource for the particular recall buffer.

There are six popup recall buffers present in the Graphical User Interface. The
resources for these popup recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders around
dialog box windows. The most natural setting for this resource is "title."

Popup Recall Buffer Resources

Recall Popup Resources Description
File - Context- Directory ... | *dirSelect.textColumns The default number of text
*dirSelect.listVisibleltemCount columns in the popup is 50.

*dirSelectSub.entries

The default number of visible

File - Context— Symbols ... | *symSelect.textColumns lines in the popup is 12.

*symSelect.listVisibleltemCount

*symSelectSub.entries The "entries” resource is

defined as a list of strings (see

Trace- Trace Spec ... *modtrace.textColumns -
the following example).

*modtrace.listVisibleltemCount
*modtraceSub.entries

Up to 40 unique values are

Entry Buffer (): *recall.textColumns saved in each of the recall
*recall.listVisibleltemCount buffers (as specified by the
*recallSub.entries resource settings

"*XcRecall.maxDepth: 40" and

Command Line command *recallCmd.textColumns "X cRecall.onlyUnique: True")

recall *recallCmd.listVisibleltemCount
*recallCmdSub.entries

Command Line pod/simio *recallKbd.textColumns
recall *recallKbd.listVisibleltemCount
*recallKbdSub.entries

319

Chapter 10: Setting X Resources
To set initial recall buffer values

Examples

To set the initial values for the directory selection dialog box when the Graphical
User Interface is used with 68000 emulators, modify the

"*m68000*dirSelectSub.entries" resource:
*m68000*dirSelectSub.entries: \

"$HOME" \

oy

"lusers/projectl" \

"lusers/project2/68k"

Refer to the previous "To modify the Graphical User Interface resources" section
for more detailed information on modifying resources.

320

Chapter 10: Setting X Resources
To set up demos or tutorials

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying the
resources described in the following tables.

Demo Related Component Resources

Resource Value Description
*enableDemo False Specifies whethédtelp - Demo
True appears in the pulldown menu.

*demoPopupSub.indexFile

/Xdemo/Index-topics

Specifies the file containing thie list

of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the of the demo topic list popup.
*demoPopup.listVisibleltemCount 10 Specifies the length, in lines, of|the

demo topic list popup.

*demoTopic

About demos

Specifies the default topic in the
demo popup selection buffer.

321

Chapter 10: Setting X Resources
To set up demos or tutorials

Tutorial Related Component Resources
Resource Value Description
*enableTutorial False Specifies whether
True Help - Tutorial appears in the

pulldown menu.

*tutorialPopupSub.indexFile JXtutorial/Index-topics Specifies the file containing|the
list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the tutorial
topic list popup.

*tutorialPopup.listVisibleltemCount 10 Specifies the length, in lines,|of
the tutorial topic list popup.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial popup selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in the

Graphical User Interface.

Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use "\I' to produce inverse video
in the text, "\U" to produce underlining in the text, and "\N" to restore normal text.

Command files are executed when the "Press to perform demo (or tutorial)" button
(in the topic popup dialog) is pushed. A command file must have the same name as
the topic file with ".cmd" appended. Also, a command file must be in the same

directory as the associated topic file.

322

Chapter 10: Setting X Resources
To set up demos or tutorials

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the topic
which appears in the index popup and second the name of the file that is raised
when the topic is selected. For example:

"About demos" Jusers/guest/gui_demos/general

"Loading programs" /users/guest/gui_demos/loadprog

"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topicl), paths relative to the
directory in which the interface was started (for example, mydir/topic2), or paths
relative to the product directory (for example, ./Xdemo/general where the product
directory is something like /usr/hp64000/inst/emul/64742A).

3 Set the "*enableDemo" or "*enableTutorial" resource to "True".

4 Define the demo index file by setting the "*demoPopupSub.indexFile" or
"*tutorialPopupSub.indexFile" resource.

For example:
*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to the
directory in which the interface was started (for example, mydir/indexfile), or paths
relative to the product directory (for example, ./Xdemo/Index-topics where the
product directory is something like /usr/hp64000/inst/emul/64742A).

5 If you wish to define a default topic to be selected, set the "*demoTopic" or
"*tutorialTopic" resource to the topic string.

For example:
*demoTopic: "About demos"

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

323

324

Part 3

Reference

325

Part 3

326

11

Emulator/Analyzer Interface
Commands

327

Emulator/Analyzer Interface Commands

This chapter describes the emulator/analyzer interface commands in alphabetical
order. First, the syntax conventions are described and the commands are
summarized.

How Pulldown Menus Map to the Command Line

The following table shows the items available in the pulldown menus and the
command line commands to which they map.

328

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown

Command Line

File - Context- Directory

File - Context— Symbols

File - Load - Emulator Config
File - Load - Executable

File - Load - Program Only
File - Load - Symbols Only
File - Store— Trace Data

File - Store— Trace Spec

File - Store— BBA Data

File - Copy - Display

File - Copy - Memory

File - Copy - Data Values
File - Copy- Trace

File » Copy - Registers

File - Copy - Breakpoints

File » Copy - Status

File - Copy - Global Symbols
File » Copy - Local Symbols ()
File » Copy - Pod Commands
File -~ Copy - Error Log

File -~ Copy - Event Log

File - Log - Playback

File - Log - Record

File - Log - Stop

File - Emul700- High-Level Debugger
File - Emul700- Performance Analyzer

File - Emul700- Emulator/Analyzer
File - Emul700- Timing Analyzer
File - Edit - File

File - Edit - At () Location

File - Edit -~ At PC Location

File -~ Term

File - Exit - Window (save session)

cd

cws

load configuration

load <abs_file>

load <abs_file> nosymbols
load symbols

store trace

store trace_spec

bbaunload

copy display to

copy memory to

copy data to

copy trace to

copy registers to

copy software_breakpoints to
copy status to

copy global_symbols to

copy local_symbols_in --SYMB-- to
copy pod_command to

copy error_log to

copy event_log to
<command file>
log_commands to
log_commands off

N/A

N/A

N/A

N/A

Ivi <file> ! no_prompt_before_exit

I vi +<line> <file> ! no_prompt_before_exit
Ivi +<line> <file> ! no_prompt_before_exit

!
end

File - Exit — Locked (all windows, save sessiongnd locked

File - Exit — Released (all windows, release

emulator)

end release_system

329

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown Command Line
Display— Context pwd, pws
Display - Memory display memory

Display— Memory - Mnemonic ()
Display— Memory — Mnemonic at PC

Display— Memory - Mnemonic Previous

Display— Memory - Hex () - bytes
Display— Memory - Hex () »words
Display— Memory - Hex () long
Display— Memory - Real ()- short
Display— Memory - Real ()- long
Display— Memory - At ()

Display - Memory - Repetitively
Display - Data Values

Display - Data Values- New ()- <type>
Display - Data Values- Add () - <type>
Display - Trace

Display - Registers

Display - Breakpoints

Display - Status

Display - Simulated 10

Display - Global Symbols

Display - Local Symbols ()

Display - Pod Commands

Display- Error Log

Display - Event Log

display memory --EXPR-- mnemonic
display memory mnemonic at_pc
display memory mnemonic previous_display
display memory --EXPR-- blocked bytes
display memory --EXPR-- blocked words
display memory --EXPR-- blocked long
display memory --EXPR-- real short
display memory --EXPR-- real long
display memory --EXPR--

display memory repetitively

display data

display data --EXPR-- <type>

display data, --EXPR-- <type>

display trace

display registers

display software_breakpoints

display status

display simulated_io

display global_symbols

display local_symbols_in --SYMB--
display pod_command

display error_log

display event_log

Modify - Emulator Config
Modify - Memory

Modify — Memory at ()
Modify — Register

modify configuration
modify memory

modify memory --EXPR--
modify register

330

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown Command Line
Execution— Run - from PC run

Execution— Run - from () run from --EXPR--
Execution- Run - from Transfer Address run from transfer_address
Execution— Run - from Reset run from reset

Execution— Run - until () run until --EXPR--
Execution- Step Source»from PC step source

Execution- Step Source-from () step source from --EXPR--
Execution- Step Source-from Transfer step source from transfer_address
Address

Execution- Step Instruction - from PC step

Execution- Step Instruction - from () step from --EXPR--

Execution- Step Instruction - from Transfer step from transfer_address
Address

Execution- Break break

Execution- Reset reset

Breakpoints - Display display software_breakpoints

Breakpoints— Enable modify software_breakpoints enable/disable

Breakpoints— Permanent () modify software_breakpoints set --EXPR--
permanent

Breakpoints— Temporary () modify software_breakpoints set --EXPR--
temporary

Breakpoints Set Al modify software_breakpoints set

Breakpoints - Clear () modify software_breakpoints clear --EXPR--

Breakpoints — Clear All modify software_breakpoints clear

Trace - Display display trace

Trace- Trace Spec N/A (browses recall buffer for trace commands)

Trace - After () trace after STATE

Trace - Before () trace before STATE

Trace- About () trace about STATE

Trace-Only () trace only STATE

Trace- Only () Prestore trace only STATE prestore anything

Trace— Again trace again

Trace - Repetitively <previous trace spec> repetitively

Trace - Everything trace

Trace- Until () trace before STATE break_on_trigger

Trace - Until Stop trace on_halt

Trace - Stop stop_trace

331

Chapter 11: Emulator/Analyzer Interface Commands

Pulldown

Command Line

Settings— Source/Symbol Modes- Absolute
Settings— Source/Symbol Modes, Symbols
Settings— Source/Symbol Modes, Source
Mixed

Settings— Source/Symbol Modes, Source
Only

Settings— Display Modes- Source Only
Settings— Pod Command Keyboard
Settings— Simulated 10 Keyboard
Settings—» Command Line

set source off symbols off
set source off symbols on
set source on inverse_video on symbols on

set source only inverse_video off symbols on

set

display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio
N/A (toggles the command line)

How Popup Menus Map to the Command Line

The following tables show the items available in the popup menus and the
command line commands to which they map.

Mnemonic Memory Display Popup

Command Line

Set/Clear Breakpoint
Edit Source

Run Until

Trace After

Trace Before

Trace About

Trace Until

modify software_breakpoints set/clear --EXPR--
I'vi +<line> <file> ! no_prompt_before_exit

run until --EXPR--

trace after STATE

trace before STATE

trace about STATE

trace before STATE break_on_trigger

Breakpoints Display Popup

Command Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints

Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--
modify software_breakpoints clear --EXPR--

modify software_breakpoints enable/disable

modify software_breakpoints set

modify software_breakpoints clear

332

Chapter 11: Emulator/Analyzer Interface Commands

Symbols Display Popup

Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--

display local_symbols_in --SYMB--, display
global_symbols

N/A

I'vi +<line> <file> ! no_prompt_before_exit

Status Line Popup

Command Line

Remove Temporary Message
Display Error Log

Display Event Log

Command Line On/Off

N/A

display error_log
display event_log
(toggles command line)

Command Line Popup

Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command

Clear to End of Line

Clear Entire Line

Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key

<RETURN> key

<CTRL>e

<CTRL>u

(toggles command line)

333

Chapter 11: Emulator/Analyzer Interface Commands

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols show options available on the softkeys and other commands
that are available, but do not appear on softkeys (suoly_asommandsandwait).
These appear in the syntax diagrams as:

<g\ob0\,symbo\s>

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompts or references to other syntax
diagrams. Prompts are enclosed with angle brackets (< and >). References to other
diagrams are shown in all capital letters. Also, references to expressions are shown
in all capital letters, for example --EXPR-- and --SYMB-- (see those syntax
diagrams). These appear in the following syntax diagrams as:

<REGISTERS> ——EXPR——

Circles

Circles indicate operators and delimiters used in expressions and on the command
line as you enter commands. These appear in the syntax diagrams as:

)

The -NORMAL- Key

The softkey labeleeNORMAL- allows you exit the --SYMB-- definition, and
access softkeys that are not displayed when defining expressions. You can press
this key after you have defined an expression to view other available options.

334

Chapter 11: Emulator/Analyzer Interface Commands

Commands

Emulator/analyzer interface commands are summarized in the table below and
described in the following pages.

IUNIX_COMMAND
bbaunload

break

cd (change director§/)
cmb_execute
<command file2

copy datd

copy display

copy error_log

copy event_log

copy global_symbols
copy help

copy local_symbols_in
copy memorﬁ‘/

copy pod_command
copy registe

copy software_breakpoints
copy status

copy trace
cws(change working symb8l)
display dat

display error_log

display event_log
display global_symbols
display local_symbols_in
display memory

display pod_command
display registe

display simulated_?o
display software_breakpoints
display status

display trace

end

forward

help®

load <absolute_file>
load configuration

load emul_mem

load trace

load trace_spec

load user_memory
Iog_command%

modify configuration
modify keyboard_to_sim?o

L This option is not available in real-time mode.
2 This is only available when simulated 1/O is defined.
3 These commands are not displayed on softkeys.

4 This option is not available in real-time mode if addresses are in user memaory.

modify memorg
modify registe

modify software breakpoin]ts
name_of_modu%
performance_measurement_enc
performance_measurement_init
performance_measurement_rur
pod_command

pwd (print working director)?)
pws (print working symbo?”)
reset

run

set

specify

step

stop_trace

store memory

store trace

store trace_spec

trace

wait>

335

Chapter 11: Emulator/Analyzer Interface Commands

break

See Also

break

break <RETURN>

This command causes the emulator to leave user program execution and begin
executing in the monitor.

The behavior obreak depends on the state of the emulator:

running Break diverts the processor from execution of your
program to the emulation monitor.

reset Break releases the processor from reset, and diverts
execution to the monitor.

running in monitor Théreak command does not perform any operation while
the emulator is executing in the monitor.

Thereset, run, andstep commands.

336

Chapter 11: Emulator/Analyzer Interface Commands
bbaunld

bbaunld

This command is available when the HP Branch Validator product is installed.
This basis branch analyzer (BBA) product is used to analyze the testing of your
programs, create more complete test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can use thisbaunload command to store the BBA information to a file. Then,
you can generate reports based on the stored information.

See Also Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
bbaunload command syntax.

337

Chapter 11: Emulator/Analyzer Interface Commands
cmb_execute

cmb_execute

cmb__execute <RETURN>

Thecmb_executecommand causes the emulator to emit an EXECUTE pulse on its
rear panel Coordinated Measurement Bus (CMB) connector. All emulators
connected to the CMB (including the one sending the CMB EXECUTE pulse) and
configured to respond to this signal will take part in the measurement.

See Also Thespecify run andspecify tracecommands.

338

Chapter 11: Emulator/Analyzer Interface Commands
copy

copy

data L to %
\—*{ MEMORY
% TRACE
¥—{ REGISTERS
\F’GDHWGFE,NEGKDOWS>—/

global_symbols
HLOCAL,SYMBOLSJN ‘ —

help <HELP_FILE> }—/
~—={ display

N

error_log

evenf_log

~—{ pod_command
~— status

prinfer <RETURN=>

HP_UX_CMD

Use this command with various parameters to save or print emulation and analysis
information.

Thecopy command copies selected information to your system printer or listing
file, or directs it to an UNIX process.

339

Chapter 11: Emulator/Analyzer Interface Commands

copy

data

display
error_log
event_log

<FILE>

global_symbols

help

<HELP_FILE>

UNIX CMD

local_symbols_in

memory

noappend

Depending on the information you choose to copy, default values may be options
selected for the previous execution of display command. For example, if you
display memory locations 10h through 20h, then issug® memory to myfile
command, myfile will list only memory locations 10h through 20h.

The parameters are as follows:

This allows you to copy a list of memory contents formatted in various data types
(see display data).

This allows you to copy the display to a selected destination.
This allows you to copy the most recent errors that occurred.
This allows you to copy the most recent events that occurred.

This prompts you for the name of a file where you want the specified information
to be copied. If you want to specify a file name that begins with a number, you
must precede the file name with a backslash. For exaogp display to \12.10
<RETURN>

This lets you copy a list of global symbols to the selected destination.

This allows you to copy the contents of the emulation help files to the selected
destination.

This represents the name of the help file to be copied. Available help file names are
displayed on the softkey labels.

This represents an UNIX filter or pipe where you want to route the output of the
copy command. UNIX commands must be preceded by an exclamation point (!).
An exclamation point following the UNIX command continues command line
execution after the UNIX command executes. Emulation is not affected when
using an UNIX command that is a shell intrinsic.

This lets you copy all the children of a given symbol to the selected destination.
See the-SYMB-- syntax page and tt&ymbolic Retrieval Utilities User’'s Guide
for information on symbol hierarchy.

This allows you to copy a list of the contents of memory to the selected destination.

This causes any copied information to overwrite an existing file with the same
name specified by <FILE>. If this option is not selected, the default operation is to
append the copied information to the end of an existing file with the same name
that you specify.

340

noheader

pod_command

printer

registers

software
_breakpoints

status
to

trace

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
copy

This copies the information into a file without headings.

This allows you to copy the most recent commands sent to the HP 64700 Series
emulator/analyzer.

This option specifies your system printer as the destination device fmwhe
command. Before you can specify the printer as the destination device, you must
define PRINTER as a shell variable. For example, you could enter the text shown
below after the "$" symbol:

$ PRINTER=Ip
$ export PRINTER

If you don’t want the print message to overwrite the command line, execute:

$ set PRINTER ="Ip -s"

This allows you to copy a list of the contents of the emulation processor registers to
the selected destination.

This option lets you copy a list of the current software breakpoints to a selected
destination.

This allows you to copy emulation and analysis status information.
This allows you to specify a destination for the copied information.
This lets you copy the current trace listing to the selected destination.

An exclamation point specifies the delimiter for UNIX commands. An exclamation
point must precede all UNIX commands. A trailing exclamation point should be
used if you want to return to the command line and specify noheader. Otherwise,
the trailing exclamation point is optional. If an exclamation point is part of the
UNIX command, a backslash (\) must precede the exclamation point.

See the following pages on variaegpy syntax diagrams.

See the following pages on varicepy syntax diagrams.

341

Chapter 11: Emulator/Analyzer Interface Commands
copy local_symbols_in

--SYMB--

Examples

See Also

copy local_symbols_in

\

(copy)—’roo\,symbo\s,mj To output o:‘ LOCAL_SYMBOLS_IN
= ——SYMB—— on ‘ COPY ‘d\ogrom

This command lets you copy local symbols contained in a source file and relative
segments (program, data, or common) to the selected destination.

Local symbols are symbols that are children of the particular file or symbol defined
by --SYMB--, that is, they are defined in that file or scope.

For additional information on symbols, refer to tH#&YMB-- syntax pages and the
Symbolic Retrieval Utilities User's Guide

--SYMB-- is the current working symbol.
The parameters are as follows:

This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’s Guidier
information on symbol hierarchy.

copy local_symbols_in mod_name to printer <RETURN>

copy local_symbols_in mod_name: fo linenumfile <RETURN>

Thedisplay local_symbols_inrcommand.

342

Chapter 11: Emulator/Analyzer Interface Commands
copy memory

copy memory

< copy >—’< memory

N
—-EXPR--
Y '
L/ N

- To outpaf of MEMORY
an _arPy diagram

This command copies the contents of a memory location or series of locations to
the specified output.

The memory contents are copied in the same format as specified in the last display
memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

1 The address refers to guarded memory.

2 Runs are restricted to real-time, the emulator is running a user program, a
the address is located in user memory.

Values in emulation memory can always be displayed.

Initial values are the same as those specified by the conusgolay memory 0
blocked bytes offset_by 0

Defaults are to values specified in the previdisplay memory command.

343

Chapter 11: Emulator/Analyzer Interface Commands

copy memory

--EXPR--

FCODE

Examples

See Also

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

A comma used immediately afteremory in the command line appends the
currentcopy memorycommand to the precedidgsplay memorycommand. The

data specified in both commands is copied to the destination specified in the current
command. Data is formatted as specified in the current command. The comma is
also used as a delimiter between values when specifying multiple memory
addresses.

copy memory start to printer <RETURN>

copy memory 0 thru 100h, start thru +5, 500H ,
target2 fo memlist <RETURN>

copy memory 2000h thru 204fh to memlist <KRETURN>

Thedisplay memory, modify memory, andstore memorycommands.

344

Chapter 11: Emulator/Analyzer Interface Commands
copy registers

copy registers

(copy)—{reg'sters)D

= To output of | REGISTERS
<CLASS> \ on COPY diagram
<RECGISTFR>

This command copies the contents of the processor registers to a file or printer.

Thecopy registerprocess does not occur in real-time. The emulation system must
be configured for nonreal-time operation to list the registers while the processor is
running.

With no options specified, the basic register class is copied. This includes the local
and global registers.

The parameters are as follows:
<CLASS> Specifies a particular class of the emulator registers.

<REGISTER>

Examples
copy registers global to printer <RETURN>

copy registers to reglist <RETURN>

See Also Thedisplay registersandmodify registerscommands.

345

Chapter 11: Emulator/Analyzer Interface Commands
copy trace

copy trace

Com e

fromiﬁmeimumbea—!—{ <IINE #> }—!—Q%ruiﬁneimumber}!—{ <LINE #> b

Cf* To output of TRACE
on COPY diagram

This command copies the contents of the trace buffer to a file or to the printer.

Trace information is copied in the same format as specified in the last display trace
command.

Initial values are the same as specified by theliaptay trace command.
The parameters are as follows:
from_line_number This specifies the trace list line number from which copying will begin.

<LINE#> Use this withfrom_line_number andthru_line_number to specify the starting
and ending trace list lines to be copied.

thru_line_number Specifies the last line number of the trace list to include in the copied range.

Examples
copy trace to tlist <RETURN>
copy trace from_line_number 0 thru_line_number 5
to longtrac <RETURN>

See Also Thedisplay trace andstore trace commands.

346

Chapter 11: Emulator/Analyzer Interface Commands
display

data

error_log

display

display DATA 7 <RETURN=>

= SIMULATED_IO
H SOFTWARE _BREAKPOINTS }—J

error_log

This command displays selected information on your screen.

You can use the <Up arrow>, <Down arrow>, <PREV>, and <NEXT> keys to

view the displayed information. For software_breakpoints, data, memory, and trace
displays you can use the <CTRL>g and <CTRL>f keys to scroll left and right if
information goes past the edge of the screen.

Depending on the information you select, defaults may be the options selecte
the previous execution of tldgsplay command.

The parameters are as follows:

This allows you to display a list of memory contents formatted in various data types
(see thalisplay datapages for details).

This option displays the recorded list of error messages that occurred during the
emulation session.

347

Chapter 11: Emulator/Analyzer Interface Commands

display
event_log
global_symbols

local_symbols_in

memory

pod_command

registers

simulated_io

software
_breakpoints

status

trace

Examples

See Also

This option displays the recorded list of events.
This option lets you display a list of all global symbols in memory.

This option lets you display all the children of a given symbol. SeeSN&/B--
syntax page and tt&ymbolic Retrieval Utilities User's Guider details on symbol
hierarchy.

This option allows you to display the contents of memory.

This option lets you display the output of previously executed emulator pod
commands.

This allows you to display the contents of emulation processor registers.

This lets you display data written to the simulated 1/O display buffer after you have
enabled polling for simulated 1/0O in the emulation configuration.

This option lets you display the current list of software breakpoints.

This displays the emulator and trace status.

This displays the current trace list.

display event_log <RETURN>

display local_symbols_in mod_name <RETURN>

Thecopy command description and the following pages which describe the various
display commands.

348

Chapter 11: Emulator/Analyzer Interface Commands
display data

display data

< display >——< data
fo <RETURN=> on
[display diagram

-EXPR-- l
"(thru H --EXPR-- M N shorf g

&—/ word

o)
e)

N—""int16

\'/ u_int8

T)
T

N u_int32

N
)

Thedisplay datacommand can display the values of simple data types in your
program. Using this command can save you time; otherwise, you would need to
search through memory displays for the location and value of a particular vari

The address, identifier, and data value of each symbol may be displayed. You
issue the commarskt symbols orto see the symbol names displayed.

In the first display data command after you begin an emulation session, you must
supply at least one expression specifying the data item(s) to display.

Thereafter, the display data command defaults to the expressions specified in the
last display data command, unless new expressions are supplied or appended (with
a leading comma).

349

Chapter 11: Emulator/Analyzer Interface Commands

display data

~EXPR--

thru --EXPR--

<TYPE>

byte
word

long

int8
int16
int32
u_int8
u_intlé
u_int32

char

Symbols are normally set off until you give the commseidsymbols on
Otherwise, only the address, data type, and value of the data item will be displayed.

The parameters are as follows:

A leading comma allows you to append additional expressions to the previous
display data command.

Commas between expression/data type specifications allow you to specify multiple
variables and types for display with the current command.

Prompts you for an expression specifying the data item to display. The expression
can include various math operators and program symbols. See the --EXPR-- and
--SYMB-- syntax pages for more information.

Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display both
single-dimensioned and multi-dimensioned arrays. Arrays are displayed in the
order specified by the language definition, typically row major order for most
Algol-like languages.

Specifies the format in which to display the information. (Data type information is
not available from the symbol database, so you must specify.)

Hex display of one 8 bit location.
Hex display of one 16 bit location.
Hex display of one 32 bit location.

Note that byte ordering in word and long displays is determined by the conventions
of the processor in use.

Display of one 8 bit location as a signed integer using two’s complement notation.
Display of two bytes as a signed integer using two’'s complement notation.
Display of four bytes as a signed integer using two’s complement notation.
Display of one byte as an unsigned positive integer.

Display of two bytes as an unsigned positive integer.

Display of four bytes as an unsigned positive integer.

Displays one byte as an ASCII character in the range 0 through 127. Control
characters and values in the range 128 through 255 are displayed as a period (.).

350

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
display data

display data Msg_A thru +17 char , Stack long <RETURN>
set symbols on <RETURN>
set width label 30 <RETURN>

display data ,Msg_B thru +17 char ,Msg_Dest thru +17
char <RETURN>

Thecopy dataandsetcommands.

351

Chapter 11: Emulator/Analyzer Interface Commands
display global_symbols

See Also

display global _symbols

display = global_symbols = To

‘ DISPLAY ‘diogrom

<RETURN>

on

This command displays the global symbols defined for the current absolute file.

Global symbols are symbols declared as global in the source file. They include
procedure names, variables, constants, and file names. Wiisplag

global_symbolscommand is used, the listing will include the symbol name and its
logical address.

Thecopy global_symbolzommand.

352

Chapter 11: Emulator/Analyzer Interface Commands
display local_symbols_in

display local_symbols_in

(display Hoco\,symbo\s,m = To | <RETURN> | on
M ——SYMB—— }j DISPLAY diagram

Displays the local symbols in a specified source file and their relative segment
(program, data, or common).

Local symbols of-SYMB-- are the ones which are children of the file and/or scope
specified by-SYMB--. That is, they are defined in that file or scope.

See the-SYMB-- syntax pages and tl&ymbolic Retrieval Utilities User’'s Guide
for further explanation of symbols.

Displaying the local symbols sets the current working symbol to the one specified.
The parameters are as follows:

--SYMB-- This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’s Guidier
more information on symbol hierarchy and representation.

Examples
display local_symbols_in mod_name <RETURN>
display local_symbols_in mod_name:main <RETURN>
See Also Thecopy local_symbols_ircommand.

353

Chapter 11: Emulator/Analyzer Interface Commands
display memory

display memory

< displa)—{ memary

-~

[EexPr— | L
FCODE thru H ——EXPR-- M

O

~{ repetitively

=y

absolute

—{ mnemonic

previous_displuy

<RETURN>
offset byH ——EXPR-- Mj D\SPLAY diagram

This command displays the contents of the specified memory location or series of
locations.

354

absolute
at_pc
blocked
bytes
--EXPR--

Chapter 11: Emulator/Analyzer Interface Commands
display memory

The memory contents can be displayed in mnemonic, hexadecimal, or real number
format. In addition, the memory addresses can be listed offset by a value, which
allows the information to be easily compared to the program listing.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside the currently displayed address range. This feature works
even if stepping is performed in a different emulation window than the one
displaying memory mnemonic.

Pending software breakpoints are shown in the memory mnemonic display by an
asterisk (*) in the leftmost column of the assembly instruction or source line that
has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and assembly
code intermixed, or with source code only. Symbols also can be displayed in the
memory mnemonic string. (See the set command.)

Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previdisplay memory command.
The symbols and source defaults are:

set source off symbols off

The parameters are as follows:

Formats the memory listing in a single column.

Displays the memory at the address pointed to by the current program counte
Formats the memory listing in multiple columns.

Displays the absolute or blocked memory listing as byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or memory offset value. See the EXPR
syntax diagram.

355

Chapter 11: Emulator/Analyzer Interface Commands

display memory

FCODE

long

mnemonic

offset_by

previous_display

real

repetitively

short

thru

words

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

Displays memory in a 64-bit real number format or 32-bit long words when
preceded bylocked or absolute

This causes the memory listing to be formatted in assembly language instruction
mnemonics with associated operands. When specifying mnemonic format, you
should include a starting address that corresponds to the first byte of an operand to
ensure that the listed mnemonics are correcetl§ource onlyis on, you will see

only the high level language statements and corresponding line numbers.

This option lets you specify an offset that is subtracted from each of the absolute
addresses before the addresses and corresponding memory contents are listed. You
might select the offset value so that each module appears to start at address 0000H.
The memory contents listing will then appear similar to the assembler or compiler
listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Returns to display associated with the previous mnemonic memory display
command.

Formats memory values in the listing as real numbers. (NaN in the display list
means "Not a Number.")

Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, since it is very CPU intensive. To allow
updates to the current memory display whenever memory is modified, a file is
loaded, software breakpoint is set, etc., uss¢hepdatecommand.

Formats the memory list as 32-bit real numbers.

This option lets you specify a range of memory locations to be displayed. Use the
<Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view additional
memory locations.

Displays the absolute or blocked memory listing as 16-bit word values.

A comma aftememory in the command line appends the curdisplay memory
command to the precedingsplay memorycommand. The data specified in both
commands is displayed. The data will be formatted as specified in the current

356

Chapter 11: Emulator/Analyzer Interface Commands
display memory

command. The comma is also a delimiter between values when specifying multiple
addresses.

Examples You can display memory in real number and mnemonic formats:

display memory 2000h thru 202fh, 2100h real long
<RETURN>

display memory 400h mnemonic <RETURN>

set symbols on <RETURN>
set source on <RETURN>
display memory main mnemonic <RETURN>

See Also Thecopy memory, modify memory, set andstore memorycommands.

357

Chapter 11: Emulator/Analyzer Interface Commands

display registers

<CLASS>
<REGISTER>

Examples

See Also

display registers

(display)——(registers To on
= <CLASS> DISPLAY diagram

= <REGISTER>

This command displays the current contents of the emulation processor registers.

If a stepcommand just executed, the mnemonic representation of the last
instruction is also displayed, if the current display is the register display. This
process does not occur in real-time. The emulation system must be configured for
nonreal-time operation to display registers while the processor is running. Symbols
also may be displayed in the register step mnemonic stringgssgmbol3.

With no options specified, the basic register class is displayed as the default. This
includes the local and global registers.

The parameters are as follows:
This allows you to display a particular class of emulation processor registers.

This displays an individual register or control register field.

display registers <RETURN>

display registers BASIC D2 <RETURN>

Thecopy registers modify registers, set andstepcommands.

358

Chapter 11: Emulator/Analyzer Interface Commands
display simulated_io

display simulated io

DISPLAY diagram

This command displays information written to the simulated I/O display buffer.

After you have enabled polling for simulated 1/0 during the emulation
configuration process, six simulated 1/0 addresses can be defined. You then define
files used for standard input, standard output, and standard error.

For details about setting up simulated 1/O, refer t&ineulated I/O User’'s Guide

Examples
display simulated_io <RETURN>

See Also Themaodify configuration andmodify keyboard_to_simiocommands.

359

Chapter 11: Emulator/Analyzer Interface Commands
display software_breakpoints

display software_breakpoints

(display)—*(softwore_breokpoints) <RETURN> on
L(offset by)——[——ExPR——}j DISPLAY diagram

~-EXPR--

offset_by

Examples

See Also

This command displays the currently defined software breakpoints and their status.

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending, inactivated, or unknown.

A pending breakpoint causes the processor to enter the emulation monitor upon
execution of that breakpoint. Executed breakpoints are listed as inactivated.
Entries that show an inactive status can be reactivated by executmgdifie
software_breakpoints secommand.

A label column also may be displayed for addresses that correspond to a symbol.
See thesetcommand for details.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value for the breakpoint address. See the
--EXPR-- syntax diagram.

This option allows you to offset the listed software breakpoint address value from
the actual address of the breakpoint. By subtracting the offset value from the
breakpoint address, the system can cause the listed address to match that given in
the assembler or compiler listing.

display software_breakpoints <RETURN>

display software_breakpoints offset_by 1000H <RETURN>

Thecopy software_breakpoints modify software_breakpoints andset
commands.

360

Chapter 11: Emulator/Analyzer Interface Commands
display trace

display trace

(display H trace)) {_ depth H <DEPTH#> }

<LINE #>

disussemble_from_line_number H <LINE #> ’—\

~—=(mnemonic
—={ absolute

= binary
{namoric)

external*

external_label

%offset,byH ——EXPR—— b

To | <RETURN> | on
DISPLAY diagram * available when externa labels are in use

This command displays the contents of the trace buffer.

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be listed
mnemonically or in hexadecimal or binary form.

361

Chapter 11: Emulator/Analyzer Interface Commands

display trace

absolute
count

absolute

relative

depth
<DEPTH#>

disassemble
_from_line
__number

~-EXPR--

Addresses captured by the analyzer are physical addresses.

Theoffset_byoption subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate entrfjsketr
each instruction in the listed trace will appear as it does in the assembled or
compiled program listing.

Thecount parameter lists the time associated with a trace event either relative to
the previous event in the trace list or as an absolute count measured from the trigger
event.

Thesourceparameter allows display of source program lines in the trace listing,
enabling you to quickly correlate the trace list with your source program.

Initial values are the same as specified by the command:

display trace mnemonic count relative offset_by 0
<RETURN>

The parameters are as follows:

Lists trace information in hexadecimal format, rather than mnemonic opcodes.

This lists the time count for each event of the trace as the total time measured from
the trigger event.

This lists the time count for each event of the trace as the time measured relative to
the previous event.

This defines the number of states to be uploaded by the interface.

Note that after you have changed the trace depth, execute the cowaitand
measurement_completdefore displaying the trace. Otherwise the new trace states
will not be available.

Displays the trace at a certain line number and disassembles instruction opcodes.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses traced
by the emulation analyzer. See the EXPR syntax diagram.

362

external
binary

<external
_label>

hex
off

then

<LINE#>

mnemonic

offset_by

Chapter 11: Emulator/Analyzer Interface Commands
display trace

Displays the external analyzer trace list in binary format.

This option displays a defined external analyzer label.

Displays the external analyzer trace list in hexadecimal format.
Use this option to turn off the external trace list display.

This allows you to display multiple external analysis labels. This option appears
when more than one external analyzer label is in use.

This prompts you for the trace list line number to be centered in the display. Also,
you can use <LINE#> witisassemble_from_line_number<LINE#> prompts

you for the line number from which the inverse assembler attempts to disassemble
data in the trace list.

Lists trace information with opcodes in mnemonic format.

This option allows you to offset the listed address value from the address of the
instruction. By subtracting the offset value from the physical address of the
instruction, the system makes the listed address match that given in the assembler
or compiler listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Note that when using theet source onlycommand, the analyzer may operate more
slowly than when using theet source orcommand. This is an operating
characteristic of the analyzer:

When you use the commaset source onand are executing only assembly
language code (not high-level language code), no source lines are display
The trace list will then fill immediately with the captured assembly languag
instructions.

When usingset source onlyno inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with high-level
source code. This requires the emulation software to search for any captured
analysis data generated by a high-level language statement.

In conclusion, you should not set the trace listtbsource onlywhen tracing
assembly code. This will result in optimum analyzer performance.

363

Chapter 11: Emulator/Analyzer Interface Commands
display trace

status
binary Lists absolute status information in binary form.
hex Lists absolute status information in hexadecimal form.
mnemonic Lists absolute status information in mnemonic form.
Examples
display trace count absolute <RETURN>
display trace absolute status binary <RETURN>
display trace mnemonic <RETURN>
See Also Thecopy trace store trace andsetcommands.

364

Chapter 11: Emulator/Analyzer Interface Commands
end

end

<RETURN>

end

()

release_system

This command terminates the current emulation session.

You can end the emulation session and keep the emulator in a locked state. The
current emulation configuration is stored, so that you can continue the emulation
session on reentry to the emulator. You also can release the emulation system when
ending the session so that others may use the emulator.

Note that pressing <CTRL>d performs the same operation as presding
<RETURN>. Pressing <CTRL>\ or <CTRL>| performs the samenals
release_system <RETURN>

When the emulation session ends, control returns to the UNIX shell without
releasing the emulator.

The parameters are as follows:

locked This option allows you to stop all active instances of an emulator/analyzer interface
session in one or more windows and/or terminals. This option is not available
when operating the emulator in the measurement system.

release_system This option stops all instances of the emulator/analyzer interface in one or more
windows or terminals. The emulation system is released for other users. If you do
not release the emulation system when ending, others cannot access it.

Examples
end <RETURN>
end release_system <RETURN>
See Also The "Exiting the Emulator/Analyzer Interface" section in the "Starting and Exiting

HP 64700 Interfaces” chapter.

365

Chapter 11: Emulator/Analyzer Interface Commands

-EXPR--

--EXPR--

*\\¥% <DON'T CARE NUMBER>}
<NUMBER>

DON'T CARE
NUMBER

--NORMAL--

<0OP>

=y
d

en

An expression is a combination of humeric values, symbols, operators, and
parentheses used to specify address, data, status, executed address, or any other
value used in the emulation commands.

The function of an expression (--EXPR--) is to let you define the address, data,
status, or executed address expression that fits your needs. You can combine
multiple values to define the expression.

Certain emulation commands will allow the option of <+EXPR> after pressing a
thru softkey. This allows you to enter a range without retyping the original base
address or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

The parameters are as follows:

You can include "don’t care numbers" in expressions. These are indicated by a
number containing an "x." These numbers may be defined as binary, octal, decimal,
or hexadecimal. For example: 1fxxh, 17x70, and 011xxx10b are valid.

Note that "Don’t care numbers" are not valid for all commands.

This appears as a softkey label to enable you to return +&£tKER-- key. The
--NORMAL-- label can be accessed whenever defining an expression, but is only

366

<NUMBER>

<OP>

--SYMB--

end

start

<UNARY>

()

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

valid when "C" appears on the status line, which indicates a valid expression has
been defined.

This can be an integer in any base (binary, octal, decimal, or hexadecimal), or can
be a string of characters enclosed with quotation marks.

This represents an algebraic or logical operand and may be any of the following (in
order of precedence):

mod modulo

* multiplication

/ division
logical AND

+ addition

- subtraction

| logical OR

This allows you to define symbolic information for an address, range of addresses,
or afile. See theSYMB-- syntax pages and ti&ymbolic Retrieval Utilities
User’s Guidefor more information on symbols.

This displays the last location where the symbol information may be located. For
example, if a particular symbol is associated with a range of addrersdes||
represent the last address in that range.

This displays first memory location where the symbol you specify may be located.
For example, if a particular symbol is associated with a range of addstases,
will represent the first address in that range.

This defines either the algebraic negation (minus) sign (-) or the logical negation
(NOT) sign ().

Parentheses may be used in expressions to enclose numbers. For every ope
parenthesis, a closing parenthesis must exist.

Note that when "C" appears on the right side of the status line, a valid expression
exists. The-NORMAL-- key can be accessed at any time, but is only valid when
"C" is on the command line.

Note that when thru softkey has been entered, a <+ EXPR> prompt appears.
This saves you from tedious repeated entry of long symbols and expressions. For
example:

367

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

disp_buf thru +25

is the same as

disp_buf thru disp_buf + 25

Examples
05fxh

Offffh

disp_buf +5
symb_thl + (offset/ 2)
start

mod_name: line 15 end

See Also The SYMB syntax description.

368

Chapter 11: Emulator/Analyzer Interface Commands
FCODE

FCODE

%

s
k»(sdy
e
()

The function code is used to define the address space being referenced. Select the
appropriate function code from those listed below.

d Data space.

none Causes the emulator to ignore the function code bits.
p Program space.

S Supervisor space.

sd Supervisor data space.

sp Supervisor program space.

u User space.

ud User data space.

up User program space.

369

Chapter 11: Emulator/Analyzer Interface Commands
FCODE

Examples To copy a portion of user data memory to a file:
copy memory fcode udlO0OOHthru 1fffH to mymem <RETURN>
To modify a location in program memory:

modify memory fcode p5000hlong to 12345678h <RETURN>

370

Chapter 11: Emulator/Analyzer Interface Commands
forward

forward

<COMMAND>%4# <RETURN>

debug
H. Ce
~Co]
o

This command lets you forward commands to other HP 64700 interfaces that use
the "emul700dmn" daemon process to coordinate actions between the interfaces.

bms Sends messages to the Broadcast Message Server or BMS.

<COMMAND> An ASCII string, enclosed in quotes, that is the command to be forwarded to the
named interface.

debug Forwards command to the high-level debugger interface.

emul Forwards command to the emulator/analyzer interface.

perf Forwards commands to the software performance analyzer interface.

<UINAME> Forwards commands to a user interface name other than those available on the
softkeys.

Examples To send the "Program Run" command to the debugger:

forward debug "Program Run" <RETURN>

To send the "profile" command to the software performance analyzer:

forward debug "profile" <RETURN>

See Also TheUser’s Guidéor the interface to which you are forwarding commands.

371

Chapter 11: Emulator/Analyzer Interface Commands

help

help
= <HELP FILE> <RETURN>

Displays information about system and emulation features during an emulation
session.
Typing help or ? displays softkey labels that list the options on which you may
receive help. When you select an option, the system will list the information to the
screen.
Thehelp command is not displayed on the softkeys. You must enter it into the
keyboard. You may use a question mark in pladelgfto access the help
information.
The parameters are as follows:

<HELP_FILE> This represents one of the available options on the softkey labels. You can either
press a softkey representing the help file, or type in the help file name. If you are
typing in the help file name, make sure you use the complete syntax. Not all of the
softkey labels reflect the complete file name.

Examples

help system_commands <RETURN>
? run <RETURN>

This is a summary of the commands that appear on the softkey labels when you
typehelp or pres:

system_commands
run

trace

step

break

display

modify

load

372

store

copy

reset

stop_trace

end
software_breakpoints
registers

expressions (--EXPR--)
symbols (--SYMB--)
specify

cmb

cmb_execute

map

set

wait

pod _command
bbaunload

coverage

Chapter 11: Emulator/Analyzer Interface Commands
help

performance_measurement_initialize
performance_measurement_run
performance_measurement_end

373

Chapter 11: Emulator/Analyzer Interface Commands

load

load

load <FILE> // <RETURN=>
Cemimen)

user_mem

=y

noupdate

N trace - <FILE>
=~ canfiguration)

M
/
= symbol - <FILE> - noupdme)—/
J

;

This command transfers absolute files from the host computer into emulation or
target system RAM. With other parameters, the load command can load emulator
configuration files, trace records, trace specifications, or symbol files.

The absolute file contains information about where the file is stored. The memory
map specifies that the locations of the file are in user (target system) memory or
emulation memory. This command also allows you to access and display
previously stored trace data, load a previously created configuration file, and load
absolute files with symbols.

Note that any file specified by <FILE> cannot be named "configuration”,
"emul_mem", "user_mem", "symbols", "trace", or "trace_spec" because these are
reserved words, and are not recognized by the emulator/analyzer interface as
ordinary file names.

The absolute file is loaded into emulation memory by default.

374

configuration

emul_mem

<FILE>

noabort

nosymbols

noupdate

symbols
trace

trace_spec

user_mem

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
load

The parameters are as follows:

This option specifies that a previously created emulation configuration file will be
loaded into the emulator. You can follow this option with a file name. Otherwise
the previously loaded configuration will be reloaded.

Loads only those portions of the absolute file that reside in memory ranges mapped
as emulation memory.

This represents the absolute file to be loaded into either target system memory,
emulation memory (.X files are assumed), or the trace memory (.TR files are
assumed).

This option allows you to load a file even if part of the file is located at memory
mapped as "guarded" or "target ROM" (trom).

This option causes the file specified to be loaded without symbols.

This option suppresses rebuilding of the symbol data base when you load an
absolute file. If you load an absolute file, end emulation, then modify the file (and
relink it), the symbol database will not be updated upon reentering emulation and
reloading the file. The default is to rebuild the database.

This option causes the file specified to be loaded with symbols.
This option allows you to load a previously generated trace file.
This option allows you to load a previously generated trace specification.

Note that the current trace specification will be modified, but a new trace will not
be started. To start a trace with the newly loaded trace specificatiortracaer
again or specify trace again(nottrace). If you specifytrace, a new trace will

begin with the default trace specification, not the one you loaded.

Loads only those portions of the absolute file that reside in memory ranges m
as target memory.

load sortl <RETURN>

load configuration config3 <RETURN>

Thedisplay trace command.

375

Chapter 11: Emulator/Analyzer Interface Commands

log_commands

<FILE>

noappend

off

to

Examples

See Also

log_commands

H <FILE> ‘L] <RETURN>

This command allows you to record commands that are executed during an
emulation session.

Commands executed during an emulation session are stored in a file until this
feature is turned off. This is a handy method for creating command files.

To execute the saved commands after the file is closed, type the filename on the
command line.

The parameters are as follows:

This represents the file where you want to store commands that are executed during
an emulation session.

If the named file is an existing file, this option causes the new commands to
overwrite any information present in the file. If this option is not specified, new
commands are appended to the existing contents of the file.

This option turns off the capability to log commands.

This allows you to specify a file for the logging of commands.

log_commands to logfile <RETURN>

log_commands off <RETURN>

Thewait command.

376

Chapter 11: Emulator/Analyzer Interface Commands

modify
modify
MEMORY] <RETURN=>

REGISTER

CONFIGURATION -

SOFTWARE _BREAKPOINTS =

((f(!

KEYBOARD_TO_SIMID -

This command allows you to observe or change information specific to the
emulator.

Themodify command is used to:

* Modify contents of memory (as integers, strings, or real numbers).
* Modify the contents of the processor registers.

* View or edit the current emulation configuration.

» Modify the software breakpoints table.

The following pages contain detailed information about the vanmasfy syntax
diagrams.

377

Chapter 11: Emulator/Analyzer Interface Commands

modify configuration

Examples

See Also

modify configuration

on MODIFY diagram

This command allows you to view and edit the current emulation configuration
items.

The configuration questions are presented in sequence with either the default
response, or the previously entered response. You can select the currently
displayed response by pressing <RETURN>. Otherwise, you can modify the
response as you desire, then press <RETURN>.

The default responses defined on powerup are displayed.

modify configuration <RETURN>

Theload configuration command.

378

Chapter 11: Emulator/Analyzer Interface Commands
modify keyboard_to_simio

modify keyboard _to_simio

< modify }D@eyboarditoisimio To output of

KEYBOARD TO SIMIO

on MODIFY diagram

This command allows the keyboard to interact with your program through the
simulated I/O software.

When the keyboard is activated for simulated 1/O, its normal interaction with
emulation is disabled. The emulation softkeys are blank and the softkey labeled
"suspend" is displayed on your screen. Pressiagend <RETURN>will

deactivate keyboard simulated 1/0 and return the keyboard to normal emulation
mode. For details about setting up simulated I/O, refer tBithelated 1/0 User's
Guide

See Also Thedisplay simulated_iocommand.

379

Chapter 11: Emulator/Analyzer Interface Commands

modify memory

modify memory

<mod\fy >—=—< memory —-EXPR--

——EXPR--

(to >C+ <REAL#>

ong

\——C string >——< to >+ <STRING> }LTD <RETURN>
on MODIFY diagram

==y

This command lets you modify the contents of selected memory locations.

You canmodify the contents of individual memory locations to individual values.
Or, you can modify a range of memory to a single value or a sequence of values.

Modify a series of memory locations by specifying the address of the first location
in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first memory location. The second value replaces the contents of
the next memory location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

380

bytes
--EXPR--

FCODE

long

real
<REAL#>
short
words

string

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

A range of memory can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequence.
This type of memory madification is done by entering the limits of the memory
range to be modified (--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in the range are to
be changed.

Note that if the specified address range is not large enough to contain the new data,
only the specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the memory
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or target memory with
no monitor) the modification is aborted at the address where the error occurred.

For integer memory modifications, the default is to the current display memory
mode, if one is in effect. Otherwise the default is to "byte."

For real memory modifications, the default is to the current display memory mode,
if one is in effect. Otherwise the default is "word."

The parameters are as follows:
Modify memory in byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

Modify memory values as 32-hit long word values or 64-bit real values when
preceded byeal.

Modify memory as real number values.

This prompts you to enter a real number as the value.
Modify memory values as 32-bit real numbers.
Modify memory values as 16-hit values.

Modify memory values to the ASCII character string given by <STRING>.

381

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

<STRING> Quoted ASCII string including special characters as follows:

null \0

newline \n

horizontal tab \t

backspace \b

carriage return \r

form feed \f

backslash \

single quote \

bit pattern \ooo (where 000 is an octal number)
thru This option lets you specify a range of memory locations to be modified.
to This lets you specify values to which the selected memory locations will be

changed.

words Modify memory locations as 32-bit values.

, A comma is used as a delimiter between values when modifying multiple memory
addresses.

Examples
modify memory datal bytesto OE3H,01H, 08H <RETURN>
modify memory datal thru DATA100 to OFFFFH <RETURN>
modify memory 0675H realto -1.303 <RETURN>
modify memory temp real long to 0.5532E-8 <RETURN>
modify memory buffer string to "Test\n\0" <RETURN>
See Also Thecopy memory, display memory, andstore memorycommands.

382

Chapter 11: Emulator/Analyzer Interface Commands
modify register

~-EXPR--

<REGISTER>

to

Examples

See Also

modify register

< modify }{ register \L j <REGISTER>
<CLASS> W

L(to >—>**EXPR —r—= To | <RETURN>

on MODIFY

diagram

This command allows you to modify the contents of the emulation processor
internal registers.

The entry you specify for <REGISTER> determines which register is modified.
Individual fields of control registers may be modified.

Register modification cannot be performed during real-time operation of the
emulation processor. Break command or condition must occur before you can
modify the registers.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a register value. For the floating-point registers, the value
is interpreted as a decimal real number. SeeE)XPR-- description.

This represents the name of a register.

Allows you to specify the values to which the selected registers will be change

modify register D2 to 41H <RETURN>

Thecopy registers display registers andmodify registerscommands.

383

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

modify software_breakpoints

< modify)——Csoﬁworehreokpmms))

M FCOD= };% --EXPR--

={ permanent

emoron)

(0 To | <RETURN>
o1 MODIFY diagram

This command changes the specification of software breakpoints.

Software breakpoints provide a way to accurately stop the execution of your
program at one or more instruction locations. When a software breakpoint is set,
the instruction that is normally at that location is replaced with a TRAP instruction.
When the software breakpoint is executed, control is passed to the emulator’s
monitor program, and the original instruction is restored in the user program. Thus,
execution is interrupted before the instruction at the specified address is executed.

Operation of the program can be resumed after the breakpoint is encountered, by
specifying either aun or stepcommand.

If you modify software breakpoints while the memory mnemonic display is active,
the new breakpoints are indicated by &ih the leftmost column of the instruction
containing the breakpoint.

The software breakpoint facility may be completely disabled or enabled via the
"modify software_breakpoints" command. The default is "enabled".

384

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

The parameters are as follows:

clear This option erases the specified breakpoint address. If no breakpoints are specified
in the command, all currently specified breakpoints are cleared.

disable This option turns off the software breakpoint capability.

enable This option allows you to modify the software breakpoint specification.

--EXPR-- An expression is a combination of humeric values, symbols, operators, and
parentheses, specifying a software breakpoint address. See the EXPR syntax
diagram.

permanent Sets a permanent breakpoint. The software breakpoint instruction remains in the

program until the breakpoint is inactivated or removed.

set This option allows you to activate software breakpoints in your program. If no
breakpoint addresses are specified in the command, all breakpoints that have been
inactivated (executed) are reactivated.

temporary Sets a temporary breakpoint. When the break occurs, the original opcode is
replaced in the program.

, A comma is used as a delimiter between specified breakpoint values.

Examples
modify software_breakpoints enable <RETURN>
modify software_breakpoints set loopl end , loop2 end ,
OE40H <RETURN>
modify software_breakpoints clear <RETURN>
modify software_breakpoints set <RETURN>
See Also Thecopy software_breakpoints display memory mnemonic anddisplay

software_breakpointscommands.

385

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_end

performance_measurement_end

<perform0nceimeqsurememtiemo <RETURN>

This command stores data previously generated by the
performance_measurement_runcommand, in a file named "perf.out" in the
current working directory.

The file named "perf.out" is overwritten each time this command is executed.
Current measurement data existing in the emulation system is not altered by this
command.

Examples
performance_measurement_end <RETURN>

See Also Theperformance_measurement_initializeandperformance_measurement_run
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

386

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

activity

performance_measurement_initialize

<pem‘ormomcemeosurememt'm't'o'zeh o~ = <RETURN>

R

activity

duration

~—= restore

~—={ local symbols_in)—:

——=SYMB——

k><g\obc1\isymbo\s >

This command sets up performance measurements.

The emulation system will verify whether a symbolic database has been loaded. If

a symbolic database has been loaded, the performance measurement is set up with
the addresses of all global procedures and static symbols. If a valid database has not
been loaded, the system will default to a predetermined set of addresses, whi

covers the entire emulation processor address range.

The measurement will default to "activity" mode.

Default values will vary, depending on the type of operation selected, and whether
symbols have been loaded.

The parameters are as follows:

This option causes the performance measurement process to operate as though an
option is not specified.

387

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

duration

<FILE>

global_symbols

local_symbols_in

restore

--SYMB--

Examples

See Also

This option sets the measurement mode to "duration.” Time ranges will default to a
predetermined set (unless a user-defined file of time ranges is specified).

This represents a file you specify to supply user-defined address or time ranges to
the emulator.

This option specifies that the performance measurement will be set up with the
addresses of all global symbols and procedures in the source program.

This causes addresses of the local symbols to be used as the default ranges for the
measurement.

This option restores old measurement data so that a measurement can be continued
when using the sanieace command as previously used.

This represents the source file that contains the local symbols to be listed. This also
can be a program symbol name, in which case all symbols that are local to a
function or procedure are used. See the SYMB syntax diagram.

performance_measurement _initialize <RETURN>
performance_measurement _initialize duration <RETURN>

performance_measurement_initialize local_symbols_in
mod_name <RETURN>

Theperformance_measurement_rurandperformance_measurement_end
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

388

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

performance_measurement_run

<RETURN>
= <COUNT>

This command begins a performance measurement.

~

<performomceimeoswememtirum

This command causes the emulation system to reduce trace data contained in the
emulation analyzer, which will then be used for analysis by the performance
measurement software.

The default is to process data presently contained in the analyzer.
The parameters are as follows:

<COUNT> This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and combine it
with existing data. This sequence will be repeated the number of times specified by
the COUNT option.

Note that thérace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the tlatault
commandtface <RETURN>).

For a duration measurement, you must set up the trace specification to store only
the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples
performance_measurement_run 10 <RETURN>
performance_measurement_run <RETURN>

See Also Theperformance_measurement_en@ndperformance_measurement_initialize

commands.

389

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

390

Chapter 11: Emulator/Analyzer Interface Commands
pod_command

pod _command

<RETURN>

‘ <PODCMD> '
= keyboard

Allows you to control the emulator through the direct HP 64700 Terminal Interface.

The HP 64700 Card Cage contains a low-level Terminal Interface, which allows
you to control the emulator’s functions directly. You can access this interface
usingpod_command The options tpod_commandallow you to supply only

one command at a time. Or, you can select a keyboard mode which gives you
interactive access to the Terminal Interface.

There are certain commands that you should avoid while using the Terminal
Interface througipod_command

sty Do not use. These commands will change the operation of the
» PO, Xp - .

communications channel, and are likely to hang the Softkey
Interface and the channel.

echo, mac Using these may confuse the communications protocols in use
on the channel.

Do not use. The pod will enter a wait state, blocking access| by

wait ’
the emulator/analyzer interface.
init, pv These will reset the emulator pod and force an end
’ release_system command.
t Do not use. The trace status polling and unload will become

confused.

To see the results of a particutend_command(the information returned by the
emulator pod), you usgisplay pod_command

Refer to theé68000 Emulator User’s Guide for the Terminal Interféare
information on using the Terminal Interface to control the emulator.

391

Chapter 11: Emulator/Analyzer Interface Commands

pod_command

keyboard

<POD_CMD>

suspend

Examples

See Also

The parameters are as follows:

Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. digglay pod_commandto see
the results returned from the emulator.

Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press <RETURN>.

This command is displayed once you have entered keyboard mode. Select it to stop
interactive access to the Terminal Interface and return to the Graphical User
Interface or Softkey Interface.

This example shows a simple interactive session with the Terminal Interface.

display pod_command <RETURN>

pod_command keyboard <RETURN>

cf <RETURN>

tsq <RETURN>

tcqg <RETURN>

Entersuspendto return to the Graphical User Interface or Softkey Interface.

Thedisplay pod_commandcommand.

Also see th&8000 Emulator User’s Guide for the Terminal Interfacd the
Terminal Interface on-line help information.

392

Chapter 11: Emulator/Analyzer Interface Commands

or

RANGE

STATE

Examples

QUALIFIER
QUALIFIER
From

diagram

on TRACE diagram

TheQUALIFIER parameter is used witrace only, trace prestore and
TRIGGER to specify states captured during the trace measurement.

You may specify a range of states (RANGE) or specific states (STATE) to be
captured. You can continue to "or" states until the analyzer resources are depleted.
You can use only one RANGE statement in the etri@e command.

You can include "don’t care numbers." These contain an "X" preceded and/or
followed by a number. Some examples include 1fxxh, 17x70, and 011xxx10b.
"Don’t care numbers" may be entered in binary, octal, or hexadecimal base.

The default is to qualify on all states.
The parameters are as follows:

This option allows you to specify multiple states (STATE) to be captured during a
trace measurement. See the STATE syntax diagram.

This allows you to specify a range of states to be captured during a trace
measurement. See the RANGE syntax diagram.

This represents a unigue state that can be a combination of address, data, st
executed address values. See the STATE syntax diagram.

trace only address mod_name:read_input <RETURN>
trace only address range mod_name:read_input thru
output <RETURN>

393

Chapter 11: Emulator/Analyzer Interface Commands

QUALIFIER
trace only address range mod_name:clear thru read_input
<RETURN>

See Also Thetrace command.

394

Chapter 11: Emulator/Analyzer Interface Commands
RANGE

address

data

~-EXPR--

<external_label>

RANGE

RANGE

T e

QUALIFIER

9 a
> e
3

= address
H.~

<external label>

C—{EXPRH thru H**EXPR* F To output of RANGE
on | QUAIFIER | diagram

diagram

/

The RANGE parameter allows you to specify a condition for the trace
measurement, made up of one or more values.

Therange option can be used for state qualifier labREsngecan only be used
once in a trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the
Emulation Analyzer" chapter for a list of the predefined values that can be assigned
to the status state qualifiers.

Expression types are "address" when none is chosen.
The parameters are as follows:

The value following this softkey is searched for on the lines that monitor the
emulation processor’s address bus.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram for details.

This represents a defined external analyzer label.

395

Chapter 11: Emulator/Analyzer Interface Commands

RANGE

not

range

status

thru

Examples

See Also

This specifies that the analyzer search for the logical "not" of the specified range
(this includes any addresses not in the specified range).

This indicates a range of addresses to be specified (--EXPR-- thru --EXPR--).

The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

This indicates that the following address expression is the upper address in a range.

See thdérace command examples.

Thetrace command and the QUALIFIER syntax description.

396

Chapter 11: Emulator/Analyzer Interface Commands
reset

reset

This command suspends target system operation and reestablishes initial emulator
operating parameters, such as reloading control registers.

The reset signal is latched when the reset command is executed and released by
either therun or break command.

See Also Thebreak andrun commands.

397

Chapter 11: Emulator/Analyzer Interface Commands

run

run

run <RETURN>

from ——EXPR--

transfer_address
until

—-EXPR--

FCODE

This command causes the emulator to execute a program.
If the processor is in a reset staitey will cause the reset to be released.

If the emulator is configured to run directly into user code out of reset, the monitor
will not be entered and part of your debug environment may be temporarily
disabled. A subsequent break into the monitor will restore it. See the "Enter
monitor from reset?" question in the configuration menu for more information.

If the from parameter and an address is specified, the processor will start running
your program at that address. Otherwise, the run will occur from the address
currently stored in the processor’s program counter.

A run from reset command will reset the processor and then allow it to run. Itis
equivalent to enteringr@setcommand followed by min command.

If the emulator is configured to participate in the READY signal on the CMB, then
this emulator will release the READY signal so that it will go TRUE if all other

HP 64700 emulators participating on that signal are also ready. See the
cmb_executecommand description.

Qualifying a run command with amtil parameter causes a software breakpoint to
be set before the program is run.

If you omit the address option (--EXPR--), the emulator begins program execution
at the current address specified by the emulation processor program counter. If an
absolute file containing a transfer address has just been loaded, execution starts at
that address.

The parameters are as follows:

398

address

--EXPR--

FCODE

from
reset

transfer_address

until

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
run

Specifies an address for a temporary register breakpoint that will be programmed
into one of the processor’s two breakpoint registers. Up to two addresses may be
specified.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This specifies the address from which program execution is to begin.
This option resets the processor prior to running.

This represents the starting address of the program loaded into emulation or target
memory. The transfer address is defined in the linker map and is part of the symbol
database associated with the absolute file.

Causes a software breakpoint to be set at the specified address before the program
is run.

run <RETURN>
run from 810H <RETURN>
run from COLD_START <RETURN>

run from transfer_address until 910H <RETURN>

Thestepcommand.

399

Chapter 11: Emulator/Analyzer Interface Commands

SEQUENCING
SEQUENCING
From frace
fax d
synfax diagram ~
{fmdfsequemte QUALIFIER }
occurs H <aTIMES> M
fhen /
resftarf H QUALIFIER ?—
Lets you specify complex branching activity that must be satisfied to trigger the
analyzer.
Sequencing provides you with parameters fotridaee command that let you
define branching conditions for the analyzer trigger.
You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to a
total of four sequence terms.
The analyzer default is no sequencing terms. If you select the sequencer using the
find_sequence parameter, you must specify at least one qualifying sequence term.
The parameters are as follows:
find_sequence Specifies that you want to use the analysis sequencer. You must enter at least one
qualifier.
QUALIFIER Specifies the address, data, status, or executed address value or value range that will

satisfy this sequence term if looking for a sequence (find_sequence), or will restart
at the beginning of the sequence (restart). See the QUALIFIER syntax pages for
further information.

400

occurs

<#TIMES>

then

restart

Examples

See Also

Chapter 11: Emulator/Analyzer Interface Commands
SEQUENCING

Selects the number of times a particular qualifier must be found before the analyzer
proceeds to the next sequence term or the trigger term. This option is not available
when trace windowing is in use. SeeWENDOW syntax pages.

Prompts you for the number of times a qualifier must be found.

Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

Selects global restart. If the analyzer finds the restart qualifier while searching for a
sequence term, the sequencer is reset and searching begins for the first sequence
term.

trace find_sequence Caller_3 then Write_Num restart
anly."anly.c": line 57 trigger after Results+0c4h
<RETURN>

Thetrace command and the QUALIFIER and WINDOW syntax descriptions.

401

Chapter 11: Emulator/Analyzer Interface Commands
set

@—‘ <VALUE>

0 (
J

langinfa

source

frace_on

C_IEE695

ADA

={ Inverse_videa

\\’Cfojs,ure H

<TABS> 5
~ -

\\——qumber,of,source,tmes H <NUMSRC=>

>

mnemonic

<WIDTH> ‘

source H <WIDTH=> }

| 1
{ symbols H <WIDTH> h

To | <RETURN> ‘GD‘ DISPLAY ‘d\ogrum

402

default

<ENV_VAR>

inverse video
off

on

Chapter 11: Emulator/Analyzer Interface Commands
set

Controls the display format for the data, memory, register, software breakpoint, and
trace displays.With the set command, you can adjust the display format results for
various measurements, making them easier to read and interpret. Formatting of
source lines, symbol display selection and width, and update after measurement can
be defined to your needs.

The display command uses the set command specifications to format measurement
results for the display window. Another option to the set commddy VAR>

= <VALUE>, allows you to set and export system variables to the UNIX
environment.

The default display format parameters are the same as those set by the commands:

set update
set source off symbols off

You can return the display format to this state by entering:

set default

The parameters are as follows:
This option restores all the set options to their default settings.
Specifies the name of a UNIX environment variable to be set.

The equals sign is used to equate the <ENV_VAR> parameter to a particular value
represented by <VALUE>.

This displays source lines in normal video.

This highlights the source lines on the screen (dark characters on light backgr
to differentiate the source lines from other data on the screen.

403

Chapter 11: Emulator/Analyzer Interface Commands

set

langinfo

ADA

C_IEE695

Note

memory

noupdate

number_of _
source_lines

In certain languages, you may have symbols with the same names but different
types. For example, in IEEE695, you may have a file named main.c and a
procedure named main. SRU would identify these as main(module) and
main(procedure). The commadigplay local_symbols_in mainvould cause an

error message to appear (Ambiguous symbol: main(procedure, module)). Users of
C tend to think the procedure is important and users of ADA tend to think the
module is important. By entering "langinfo" and "C", SRU will interpret the above
command to benain(procedure). With langinfo ADA, SRU will interpret the

above command to lmeain(module).

Identifies ANSI C as the language so SRU can use the C hierarchy to disambiguate
symbols.

Identifies ADA as the language so SRU can use the ADA hierarchy to
disambiguate symbols.

Identifies C_IEEE-695 as the language so SRU can use the C_IEEE-695 hierarchy
to disambiguate symbols.

An alternate method for making the langinfo specification is to use the environment
variable, HP64SYMORDER. By making the following entry in yquiofile, the
langinfo setting will always be C, for example.

$ HP64SYMORDER=C # | want to use the C disambiguating
hierarchy
$ export HP64SYMORDER # let children processes know
about it

Sets update option for memory displays only.

When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will not update when a new measurement
completes. Displays showing memory contents are not updated when a command
executes that could have caused the values in memory to change (modify memory,
load, etc.).

This allows you to specify the number of source lines displayed for the actual
processor instructions with which they correlate. Only source lines up to the
previous actual source line will be displayed. Using this option, you can specify
how many comment lines are displayed preceding the actual source line. The
default value is 5.

404

Chapter 11: Emulator/Analyzer Interface Commands

set
<NUMSRC> This prompts you for the number of source lines to be displayed. Values in the
range 1 through 50 may be entered.
source
off This option prevents inclusion of source lines in the trace and memory mnemonic
display lists.
on This option displays source program lines preceding actual processor instructions
with which they correlate. This enables you to correlate processor instructions with
your source program code. The option works for both the trace list and memory
mnemonic displays.
only This option displays only source lines. Processor instructions are only displayed in
memory mnemonic if no source lines correspond to the instructions. Processor
instructions are never displayed in the trace list.
symbols
off This prevents symbol display.
on This displays symbols. This option works for the trace list, memory, software
breakpoints, and register step mnemonics.
high Displays only high level symbols, such as those available from a compiler. See the
Symbolic Retrieval Utilities User's Guidler a detailed discussion of symbols.
low Displays only low level symbols, such as those generated internally by a compiler,
or an assembly symbol.
all Displays all symbols.
tabs_are This option allows you to define the number of spaces inserted for tab characters in
the source listing.
<TABS> Prompts you for the number of spaces to use in replacing the tab character.
in the range of 2 through 15 may be entered.
trace Sets update option for trace displays only.
update When using multiple windows or terminals, and specifying this option, the display

buffer in that window or terminal will be updated when a new measurement
completes. This is the default. Note that for displays that show memory contents,
the values will be updated when a command executes that changes memory
contents (such as modify memory, load, and so on).

405

Chapter 11: Emulator/Analyzer Interface Commands

set

<VALUE>

width

source

label

mnemonic

symbols

<WIDTH>

Examples

See Also

Specifies the logical value to which a particular UNIX environment variable is to
be set.

This allows you to specify the width (in columns) of the source lines in the memory
mnemonic display. To adjust the width of the source lines in the trace display,
increase the widths of the label and/or mnemonic fields.

This lets you specify the address width (in columns) of the address field in the trace
list or label (symbols) field in any of the other displays.

This lets you specify the width (in columns) of the mnemonic field in memory
mnemonics, trace list and register step mnemonics displays. It also changes the
width of the status field in the trace list.

This lets you specify the maximum width of symbols in the mnemonic field of the
trace list, memory mnemonic, and register step mnemonic displays.

This prompts you for the column width of the source, label, mnemonic, or symbols
field.

Note that <CTRL>f and <CTRL>g may be used to shift the display left or right to
display information which is off the screen.

set source on inverse_video on tabs_are 2 <RETURN>
set symbols on width label 30 mnemonic 20 <RETURN>
set PRINTER ="Ip -s" <RETURN>

set HP64KSYMBPATH="filel:procl
file2:proc2:code_block 1" <RETURN>

Thedisplay data, display memory, display software_breakpoints anddisplay
trace commands.

406

Chapter 11: Emulator/Analyzer Interface Commands
specify

specify

run <RETURN=>

—{ disable

——EXPR--

fransfer_address

= until --EXPR-- }-/

% TRACE

This command preparestan ortrace command for execution, and is used with
thecmb_executecommand.

When you precederan or trace command withspecify, the system does not
execute your command immediately. Instead, it waits until until an EXECUTE
signal is received from the Coordinated Measurement Bus or until you enter a
cmb_executecommand.

If the processor is reset and no address is specifidb aexecutecommand will
run the processor from the "reset" condition.

Note that theun specification is active until you entgpecify run disable The
trace specification is active until you enter anottese command without the
specify prefix.

The emulator will run from the current program counter address if no address is
specified in the command.

407

Chapter 11: Emulator/Analyzer Interface Commands

specify

disable
from

--EXPR--

FCODE

transfer_address

run

TRACE

until

Examples

See Also

The parameters are as follows:

This option turns off the specify condition of thum process.

This is used with thepecify run from command. An expression is a combination
of numeric values, symbols, operators, and parentheses, specifying a memory
address. See the EXPR syntax diagram.

The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

This is used with thepecify run from command, and represents the address from
which the program will begin running.

This option specifies that the emulator will run from either an expression or from
the transfer address when a CMB EXECUTE signal is received.

This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

Specifies an address where program execution is to stop. The emulator will set a
software breakpoint at this address and stop execution of your program when it
reaches this address and enter the monitor.

specify run from START <RETURN>

specify trace after address 1234H <RETURN>

Thecmb_executecommand.

408

Chapter 11: Emulator/Analyzer Interface Commands

STATE
STATE
From
STATE on
QUALIFIER | diagram To output of | STATE
on QUALIFIER | diagram
%

<external label>

——EXPR——

not

<STATUS>

——EXPR——

<STATUS>

I
.

——EXPR——

This parameter lets you specify a trigger condition as a unique combination of
address, data, status, and executed address values.

The STATE option is part of the QUALIFIER parameter totthee command,

and allows you to specify a condition for the trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the

Emulation Analyzer" chapter for a list of the predefined values that can be assigned

to the status state qualifiers.

409

Chapter 11: Emulator/Analyzer Interface Commands

STATE

address

and

data

-EXPR--

<external_label>

not

status

<STATUS>

Examples

See Also

The default STATE expression type is address.
The parameters are as follows:

This specifies that the expression following is an address value. This is the default,
and is therefore not required on the command line when specifying an address
expression.

This lets you specify a combination of status and expression valuestahesis
specified in the state specification.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram.

This represents a defined external analyzer label.

This specifies that the analyzer will search for the logical "not" of a specified state
(this includes any address that is not in the specified state).

The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

This prompts you to enter a status value in the command line. Status values can be
entered from softkeys or typed into the keyboard. Numeric values may be entered
using symbols, operators, and parentheses to specify a status value. See the EXPR
syntax diagram.

trace before status write <RETURN>

trace about address 1000H status write <RETURN>

See thdrace command examples.

Thetrace command and the QUALIFIER syntax description.

410

Chapter 11: Emulator/Analyzer Interface Commands
step

step

step

<NUMBER=>

sgurce

L ——EXPR——
FCODE % Truﬂsfer address

<RETURN>

silently

Thestepcommand allows sequential analysis of program instructions by causing
the emulation processor to execute a specified number of assembly instructions or
source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after eatbpcommand.

Source line stepping is implemented by single stepping assembly instructions until
the next PC is beyond the address range of the current source line. When
attempting source line stepping on assembly code (with no associated source line),
stepping will complete when a source line is found. Therefore, stepping only
assembly code may step forever. To abort stepping, press <CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that wil
step is highlighted. The memory mnemonic display autopages to the new add
the next PC goes outside of the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than one
displaying memory mnemonic.

If no value is entered for <NUMBER> times, only atepinstruction is executed

each time you press <RETURN>. Multiple instructions can be executed by holding
down the <RETURN> key. Also, the default step is for assembly code lines, not
source code lines.

411

Chapter 11: Emulator/Analyzer Interface Commands

step
If the from address option (defined by --EXPR-- or transfer_address) is omitted,
stepping begins at the next program counter address.
The parameters are as follows:
--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.
FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.
from Use this option to specify the address from which program stepping begins.
<NUMBER> This defines the number of instructions that will be executed bstdpeommand.
The number of instructions to be executed can be entered in binary (B), octal (O or
Q), decimal (D), or hexadecimal (H) notation.
silently When you specify a number of steps, this option updates the register step

mnemonic only after stepping is complete. This will speed up stepping of many
instructions. The default is to update the register step mnemonic after each
assembly instruction (or source line) executes (if stepping is performed in the same
window as the register display).

transfer_address This represents the starting address of the program you loaded into emulation or
target memory. The transfer_address is defined in the linker map.

source This option performs stepping on source lines.

Examples
step <RETURN>

step from 810H <RETURN>
step 5 source <RETURN>
step 20 silently <RETURN>

step 4 from main <RETURN>

See Also Thedisplay registers display memory mnemoni¢ andset symbolscommands.

412

Chapter 11: Emulator/Analyzer Interface Commands
stop_trace

stop_trace

stop trace <RETURN>

This command terminates the current trace and stops execution of the current
measurement.

The analyzer stops searching for trigger and trace states. If trace memory is empty
(no states acquired), nothing will be displayed.

See Also Thetrace command.

413

Chapter 11: Emulator/Analyzer Interface Commands
store

store

} <—ILE> H <RETURN>

—-EXPR--

~| ~-EXPR--

(N
o/

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file.

Thestore command creates a new file with the name you specify, if there is not
already an absolute file with the same name. If a file represented by <FILE>
already exists, you must decide whether to keep or delete the old file. If you
respond withyesto the prompt, the new file replaces the old one. If you respond
with no, thestore command is canceled and no data is stored.

The transfer address of the absolute file is set to zero.
The parameters are as follows:

--EXPR-- This is a combination of numeric values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the syntax
diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

<FILE> This represents a file name you specify for the absolute file identifier or trace file
where data is to be stored. If you want to name a file beginning with a number, you

414

Chapter 11: Emulator/Analyzer Interface Commands
store

must precede the file name with a backslash (\) so the system will recognize it as a

file name.

memory This causes selected memory locations to be stored in the specified HP64000
format file with a. X extension.

thru This allows you to specify that ranges of memory be stored.

to Use this in thestore memorycommand to separate memory locations from the file
identifier.

trace This option causes the current trace data to be stored in the specified fileWdth a
extension.

trace_spec This option stores the current trace specification in the specified file viith a
extension.

, A comma separates memory expressions in the command line.

Examples
store memory 800H thru 20FFH to TEMP2 <RETURN>
store memory EXEC thru DONE to \12.10 <RETURN>
store trace TRACE <RETURN>
Store trace_spec TRACE <RETURN>

See Also Thedisplay memory, display trace andload commands.

415

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

--SYMB--

-—-5YMB--

proceddre

enfry_exit range

text_range

(Segmeme <SEG_NAME=> }—/
: FILE \»C line H <LINEn> }—/

FILE
<FILENAME>
. <[LENAME> .‘
= SCOPE *.
<SYMB>

<FILENAME>

SCOPE

% oo I
.

SCOPE

% <IDENTIFIER>

<TYPE>

416

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

This parameter is a symbolic reference to an address, address range, file, or other
value.

Note that if no default file was defined by executing the comrdapday
local_symbols_in --SYMB-; or with thecwscommand, a source file name
(<FILE>) must be specified with each local symbol in a command line.

Symbols may be:

» Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry and
exit points).

» Combinations of paths, filenames, and line numbers referencing a particular
source line.

» Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
These utilities build trees to identify uniqgue symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol request
will occur immediately. If you then change a module and reenter the emulation
environment without rebuilding the symbol database, the emulation software
rebuilds the changed portions of the database in increments as necessary.

Further information regarding the SRU and symbol handling is available in the
Symbolic Retrieval Utilities User’'s Guidé\lso refer to that manual for
information on thedP64KSYMBPATH environment variable.

The last symbol specified indisplay local_symbols_in --SYMB-<command, or
with thecwscommand, is the default symbol scope. The default is "none" if no
current working symbol was set in the current emulation session.

You also can specify the current working symbol by typing the cws command
the command line and following it with a symbol name. file command
displays the current working symbol on the status line.

Display memory mnemonic also can modify the current working symbol.

417

Chapter 11: Emulator/Analyzer Interface Commands

--SYMB--

<FILENAME>

line

<LINE#>
<IDENTIFIER>
SCOPE

segment

<SEG_NAME>
(<TYPE>)

filename

module

procedure

static

task

The parameters are as follows:

This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was loaded,
then the default file is assumed (the last absolute file specified by a display
local_symbols_in command). A default file is only assumed when other parameters
(such adine) in the--SYMB-- specification expect a file.

This specifies that the following numeric value references a line number in the
specified source file.

Prompts you for the line number of the source file.
Identifier is the name of an identifier as declared in the source file.

Scope is the name of the portion of the program where the specified identifier is
defined or active (such as a procedure block).

This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.

Prompts you for entry of the segment name.

When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type a space
between the identifier name and the type specification. The type will be one of the
following:

Specifies that the identifier is a source file.

These refer to module symbols. For Ada, they are packages. Other language
systems may allow user-defined module names.

Any procedure or function symbol. For languages that allow a change of scope
without explicit naming, SRU assigns an identifier and tags it with type procedure.

Static symbols, which includes global variables. The logical address of these
symbols will not change.

Task symbols, which are specifically defined by the processor and language system
in use.

A colon is used to specify the UNIX file path from the line, segment, or symbol
specifier. When following the file name with a line or segment selection, there
must be a space after the colon. For a symbol, there must not be a space after the
colon.

418

Examples

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The following short C code example should help illustrate how symbols are
maintained by SRU and referenced in your emulation commands.

File /users/dave/control.c:

int *port_one;
main ()

int port_value;

port_ptr = port_one;
port_value = 10;

process_port (port_ptr, port_value);
} /* end main */

File /system/projectl/porthand.c:
#include "utils.c"

void process_port (int *port_num, int port_data)

static int i;
static int i2;

for (i=0;i<=64; i++) {
i2=i*2;
*port_num = port_data + i2;
delay();
{

static int i;
i=3;

port_’data = port_data + i;
} /* end of process_port */

File /system/projectl/utils.c:
delay()

intij;
int waste_time;

for (i = 0; i <= 256000; i++)
for (j = 0; j <= 256000; j++)
waste_time = 0O;
} /* end delay */

419

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

The symbol tree as built by SRU might appear as follows, depending on the object
module format and compiler used:

/users/dave/control.c
(filename)
port_one (static) main (procedure)

ENTRY TEXTRANGE
procspecial) (procspecial
/system/ project1/porthand.c
(filename)
EXIT
{procspecial

process_port /system/project1/ utils.c
(procedure) filename)

delay

ENTRY TEXTRANGE
procspecial) (procspecial
ENTRY BLOCK 1
procspecial) (procedure) -
{procspecial

{procspecial

EXIT
(procspecial

@ TEXTRANGE

Note that SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the delay () procedure.

420

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

SRU has no way of knowing where these variables will be at run time and therefore
cannot build a corresponding symbol tree entry with run time address.

Here are some examples of referencing different symbols in the above programs:

control.c:main
control.c:port_one
porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module format; the HP
object module format does not support referencing of include files that generate
program code.

porthand.c:process_port.i
porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching identifiers by
specifying the complete scope. You also can save typing by specifying a scope with
cws. For example, if you are making many measurements involving symbols in the
file porthand.c, you could specify:

cws porthand.c:process_port

Then:
i
BLOCK 1.i

are prefixed with porthand.c: process_port before the database lookup.

If a symbol search with the current working symbol prefix is unsuccessful, the last
scope on the current working symbol is stripped. The symbol you specified is then
retested with the modified current working symbol. Note that this does not change
the actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK 1

421

Chapter 11: Emulator/Analyzer Interface Commands

--SYMB--

See Also

and made a reference to symbol i2, the retrieval utilities attempt to find a symbol
called

porthand.c:process_port.BLOCK_1.i2
which would not be found. The symboal utilities would then strip BLOCK_1 from
the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although not shown in the
tree, assume that a procedure called port_one is also defined in control.c. This
would conflict with the identifier port_one which declares an integer pointer. SRU
can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

Thecopy local_symbols_iranddisplay local_symbols_incommands.

Also refer to theSymbolic Retrieval Utilities User’s Guider further information
on symbols.

422

Chapter 11: Emulator/Analyzer Interface Commands
trace

trace

trace
* = WINDOW = SEQUENCING

. again <RETURN>

= repetitively

= modify command

i
)

Gy
- TRIGGER I

\—C only —{ QUALIFIER }—/
%prestore

anything
break on_trigger
repetitively J

This command allows you to trace program execution using the emulation analyzer.

Note that the options shown can be executed once fotreaelcommand. Refer
to the TRIGGER and QUALIFIER diagrams for details on setting up a trace.

You can perform analysis tasks either by starting a program run and then spe

the trace parameters, or by specifying the trace parameters first and then initiating
the program run. Onceti@ce begins, the analyzer monitors the system busses of
the emulation processor to detect the states specified timdeecommand.

When the trace specification is satisfied and trace memory is filled, a message will
appear on the status line indicating the trace is complete. You can then use display
trace to display the contents of the trace memory. If a previous trace list is on
screen, the current trace automatically updates the display. If the trace memory

423

Chapter 11: Emulator/Analyzer Interface Commands
trace

contents exceed the page size of the display, the <NEXT>, <PREV>, <Up arrow>,
or <Down arrow> keys may be used to display all the trace memory contents. You
also can press <CTRL>f and <CTRL>g to move the display left and right.

You can set up trigger and storage qualifications usingpéefy tracecommand.
The analyzers will begin tracing whererab_executecommand executes, which
causes an EXECUTE signal on the Coordinated Measurement Bus.

The analyzer will trace any state by default.
The parameters are as follows:

again This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using without the
again parameter will start a trace with the default specification rather than the
loaded specification.)

anything This causes the analyzer to capture any type of information.

arm_trig2 This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700s, or an HP 64700 and
another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation

configuration interactive measurement specification. When doing this, you must
specify that either BNC or CMBT drive trig2, and that the analyzer receive trig2.
See the chapter on "Making Coordinated Measurements" for more information.

break_on_trigger This stops target system program execution when the trigger is found. The
emulator begins execution in the emulation monitor. When using this option, the
on_halt option cannot be included in the command.

modify_command This recalls the last trace command that was executed.

on_halt When using this option, the analyzer will continue to capture states until the
emulation processor halts or untétap_tracecommand is executed. When this
option is used, thiereak_on_trigger, repetitively, andTRIGGER options cannot
be included in the command.

only This option allows you to qualify the states that are stored, as defined by
QUALIFIER .
prestore This option instructs the analyzer to save specific states that occur prior to states

that are stored (as specified with the "only" option).

424

Chapter 11: Emulator/Analyzer Interface Commands
trace

QUALIFIER This determines which of the traced states will be stored or prestored in the trace
memory for display upon completion of the trace. Events can be selectively saved
by usingtrace only to enter the specific events to be saved. When this is used,
only the indicated states are stored in the trace memory. See the QUALIFIER
syntax.

repetitively This initiates a new trace after the results of the previous trace are displayed. The
trace will continue until atop_traceor a newtrace command is issued. When
using this option, you cannot use tre _halt option.

SEQUENCING Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for the
trigger. You are limited to four sequence terms if windowing is enabled. See the
SEQUENCING syntax pages for more details.

TRIGGER This represents the event on the emulation bus to be used as the starting, ending, or
centering event for the trace. SeeTRGGER syntax diagram. When using this
option, you cannot include tloa_halt option.

WINDOW Selectively enables and disables analyzer operation based upon independent enable
and disable terms. This can be used as a simple storage qualifier. Or, you may use
it to further qualify complex trigger specifications. SeevMHBIDOW syntax
pages for details.

Examples
trace after 1000H <RETURN>
trace only address range 1000H thru 1004H <RETURN>
trace after address 1000H occurs 2 only address range
1000H thru 1004H break on_trigger <RETURN>

See Also Thecopy trace display trace, load trace, load trace_spegspecify trace store

trace, andstore trace_specommands.

425

Chapter 11: Emulator/Analyzer Interface Commands

TRIGGER
TRIGGER
From
TRACE
diagram e after N 1
QUALIFIER
H
To output of
occurs H <#TIMES> M on diagram
This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.
A trigger is a QUALIFIER. When you include thecursoption, you can specify
the trigger to be a specific number of occurrences of a QUALIFIER (see the
QUALIFIER syntax diagram).
The default is to trace after any state occurs once.
The parameters are as follows:
about This option captures trace data leading to and following the trigger qualifier. The
trigger is centered in the trace listing.
after Trace data is acquired after the trigger qualifier is found.
before Trace data is acquired prior to the trigger qualifier.
occurs This specifies a number of qualifier occurrences of a range or state on which the
analyzer is to trigger.
QUALIFIER This determines which of the traced states will be stored in trace memory.
<#TIMES> This prompts you to enter a number of qualifier occurrences.

426

Chapter 11: Emulator/Analyzer Interface Commands

TRIGGER
Examples
trace after MAIN <RETURN>
trace after 1000H thendata 5 <RETURN>
Also see thérace command examples.
See Also Thetrace command.

Also, refer to the "Making Coordinated Measurements" chapter.

427

Chapter 11: Emulator/Analyzer Interface Commands

wait

measurement
_complete

or

wait

= <RETURN>

<TIME> }—LCSGCOHdS\ *@—{meosurememticomp\ety
meosurememticomp\ete/ %orr—P{ <TIME> L\

. seconds

This command allows you to present delays to the system.

Thewait command can be an enhancement to a command file, or to normal
operation at the main emulation level. Delays allow the emulation system and
target processor time to reach a certain condition or state before executing the next
emulation command.

Thewait command does not appear on the softkey labels. You must typaithe
command into the keyboard. After you typait, the command parameters will be
accessible through the softkeys.

The system will pause until it receives a <CTRL>c signal.

Note that ifset intr <CTRL>c was not executed on your system, <CTRL>c
normally defaults to the backspace key. See your UNIX system administrator for
more details regarding keyboard definitions.

The parameters are as follows:

This causes the system to pause until a pending measurement completes (a trace
data upload process completes), or until a <CTRL>c signal is received. If a
measurement is not in progress,wet command will complete immediately.

This causes the system to wait for a <CTRL>c signal or for a pending measurement
to complete. Whichever occurs first will satisfy the condition.

428

Chapter 11: Emulator/Analyzer Interface Commands
wait

seconds This causes the system to pause for a specific number of seconds.
<TIME> This prompts you for the number of seconds to insert for the delay.

Note that avait command in a command file will cause execution of the command
file to pause until a <CTRL>c signal is received, if <CTRL>c is defined as the
interrupt signal. Subsequent commands in the command file will not execute while
the command file is paused. You can verify whether the interrupt signal is defined
as <CTRL>c by typingetat the system prompt.

Examples
wait <RETURN>

wait 5; wait measurement_complete <RETURN>

429

Chapter 11: Emulator/Analyzer Interface Commands

WINDOW

disable

enable

QUALIFIER

Examples

WINDOW

From trace
syntax diagram

{ enable H QUALIFIER }
disob\eH QUALIFIER M

Lets you select which states are stored by the analyzer.

WINDOW allows you to selectively toggle analyzer operation. When enabled, the
analyzer will recognize sequence terms, trigger terms, and will store states. When
disabled, the analyzer is effectively off, and only looks for a particular enable term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term occurs after
the analyzer is enabled, the analyzer will then stop storing states, and will not
recognize trigger or sequence terms. You may specify only one enable term and
one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you must
supply a qualifier term. If you then specify disable, you must specify a qualifier
term.

The parameters are as follows:

Allows you to specify the term which will stop the analyzer from recognizing states
once the enable term has been found.

Allows you to specify the term which will enable the analyzer to begin monitoring
states.

Specifies the actual address, data, status value or range of values that cause the
analyzer to enable or disable recognition of states. Note that the enable qualifier
can be different from the disable qualifier. Refer to the QUALIFIER syntax pages
for further details on analyzer qualifier specification.

trace enable _rand disable 0Oecch <RETURN>

430

Chapter 11: Emulator/Analyzer Interface Commands
WINDOW

See Also Thetrace command and the SEQUENCING and QUALIFIER syntax descriptions.

431

432

12

Error Messages

433

Error Messages

This chapter contains a list of error messages that may occur while operating the
emulator and analyzer.

Theerror log records error messages received during the emulation session. You
may want to display the error log to view the error messages. Sometimes several
messages will be displayed for a single error to help you locate a problem quickly.
To prevent overrun, the error log purges the oldest messages to make room for the
new ones.

To display the error log:
display error_log <RETURN>

Error messages are grouped into the following categories:
» Graphical/Softkey Interface Messages - Unnumbered
» Graphical/Softkey Interface Messages - Numbered

* Terminal Interface Messages

Note that Terminal Interface messages are passed along to the Graphical User
Interface (or Softkey Interface) and appear, with numbers, in the error log display.

434

Graphical/Softkey Interface Messages -
Unnumbered

Address range too small for request - request truncated
Cause: Too small of an address range is specified in a modify memory command.

Action: Specify a larger memory range.

Cannot create module file:
Cause: Insulfficient disk space for the module file.

Action: Check disk space under /usr/hp64000.

Cannot start. Ending previous session, try again

Cause: The host system could not start a new emulation session, and is ending the
previous session.

Action: After the previous session has ended, try starting a new emulation session.
If that fails, try "emul700 -u <logical name>" to unlock the emulator and cycle
power, if needed.

Cannot start. Pod initialization failed

Cause: The host system could not start a new emulation session because it could
not initialize the emulator.

Action: Cycle power on the emulator; verify that there are no red lights on the front
of the emulator. You may need to run the Terminal Interface "pv" command to
verify that the emulator is functioning properly before starting a new session.

Configuration not valid, restoring previous configuration
Configuration not valid, restoring default configuration

Cause: The modifications you tried to make to the emulator configuration are not
valid, so the host system restored the previous configuration.

Action: See the "Configuring the Emulator" chapter for more information about the
emulator configuration items and their settings.

435

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Configuration process QUIT

Cause: The configuration process ended because <CTRL>"\" (SIGQUIT signal)
was encountered. This is an easy way to exit configuration without saving any
changes.

Action: Try starting the emulation session again. If the problem persists, you may
need to cycle power on the emulator.

Connecting to <LOGICAL NAME>

Cause: This is a status message. The host system is making a communication
connection to the emulator whose logical name is defined in
/usr/hp64000/etc/64700tab.net or /usr/hp64000/etc/64700tab.

Continue load failed

Cause: The host system could not continue the previous emulation session because
it could not load the continue file.

Action: Try again. If the failure continues, call your HP Service Representative.

Continuing previous session, continue file loaded

Cause: This is a status message. An emulation session which was ended earlier
with theend command has been restarted. The host system reported that the session
was continued (using settings from the previous session) and that the continue file
loaded properly.

Continuing previous session, user interface defaulted

Cause: The previous emulation session was continued and the Softkey Interface
was set to the default state.

Could not create default configuration

Cause: The host system could not create a default configuration for the emulation
session.

Action: Check disk space under /usr/hp64000 and verify proper software
installation.

436

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Could not create <CONFIGURATION BINARY FILENAME>
Cause: The system could not create a binary emulation configuration file (file.EB).

Action: Check the file.EB write permission and verify that the specified directory
exists and is writeable.

Could not exec configuration process

Cause: The host system could not fork the configuration process or could not
execute the configuration process.

Action: Make sure that the host system is operating properly, and that all Softkey
Interface files were loaded properly during the installation process. Try starting the
emulation session again.

Could not load default configuration
Cause: The host system could not load the default configuration into the emulator.

Action: Cycle power on the emulator and run the Terminal Interface "pv"
(performance verification) command on the emulator to verify that it is functioning
properly. Also, verify proper software installation. If loading default configuration
still fails, then call your HP 64000 representative.

<CONFIGURATION FILENAME> does not exist

Cause: The configuration file you are trying to load does not exist.

Action: Try theload configuration command again using a valid configuration file
name.

Don'’t care number unexpected

Cause: While defining an expression in your command, you included a don't care
number (a binary, octal, decimal, or hexadecimal number containing "x"), whic
was not expected. Don’t care numbers are not valid for all commands. See th
EXPR command syntax for more information about expressions.

Emulation analyzer defaulted to delete label

Cause: Analyzer trace labels were changed or modified while labels were in use in
the trace specification.

437

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Enter the previous trace specification and try again.

Emul700dmn continuation failed

Cause: Communication between the emulator and the host system to continue the
emulation session failed.

Action: Check the data communication switch settings on the rear panel of the HP
64700 series emulator. If necessary, refer té1B&4700 Installation/Service
Guide

Emul700dmn executable not found

Cause: The emulation session could not begin because the host system could not
locate the HP 64700 emulator daemon process executable.

Action: Make sure that software installation is correct. Then try starting the
emulator again.

Emul700dmn failed to start

Cause: The emulation session could not begin because the host system could not
start the HP 64700 emulator daemon process.

Action: Make sure there is sufficient disk space under /usr/hp64000. Make sure the
host system is operating properly, that all Softkey Interface software has been
loaded correctly, and the data communication switch settings on the emulator rear
panel match the settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn queue and/or semaphores missing
Emul700dmn queue failure

Emul700dmn error in file operation

Emul700dmn queue full

Cause: The HP 64700 emulator daemon process command was too large for the
host system to process.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the

438

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

/usr/hp64000/etc/64700tab.net (or 64700tab) file. You may have to cycle power
and usemul700 -u ,logical nameo unlock the system.

Emul700dmn sem op failed, perhaps kernel limits too low

Cause: The host system could not start the emulation session; there may be too
many processes running on the host system.

Action: Make sure the host system is operating properly, and is not overloaded with
currently executing processes. Stop or remove some processes on the system. Also,
verify that the semaphore capabilities have been installed in the UNIX kernel. Then
try starting the emulation session again.

Emul700dmn version incompatible with this product

Cause: The emulation session could not begin because the version of the HP 64700
emulator daemon executable on host system is not compatible with the version of
the Softkey Interface you are using.

Action: Make sure the software has been properly installed. Then try starting the
emulator again.

<LOGICAL NAME>: End, continuing

Cause: This is a status message. The emulation session is being exitedemith the
command. When you restart the emulation session later, it will continue using the
same settings as in the session you just ended. The emulator logical name is located
in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

<LOGICAL NAME>: End, released

Cause: This is a status message. The emulation session is being exitedemith the
release_systencommand. When the session has ended, the emulator is released,
meaning that others can access and use it. When you restart the emulation session
later, the new session will use all default settings. The emulator logical name i
located in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Ending released

Cause: This is a status message. The emulation session is being exitedemith the
release_systemThe emulator will be released for others to access and use it.

439

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Error: display size is <LINES> lines by <COLUMNS> columns. It must be at
least 24 by 80.

Cause: You tried to specify an incorrect window size.

Action: Set the window size accordingly, then start the emulation session. The size
of the window must be a minimum of 24 lines (rows) by 80 columns to operate an
emulation session.

Error in configuration process
Error starting configuration process
Cause: Unexpected configuration error.

Action: Verify proper software installation and call your HP 64000 representative.

Fatal error from function <ADDRESS OF FUNCTION>

Cause: This is an unexpected fatal system error.

Action: Cycle power on the emulator and start again. If this is a persistent problem,
call your HP 64000 representative.

File could not be opened

Cause: You tried to store or load trace data to a file with incorrect permission. Or
the analyzer could not find the file you specified, or else there were already too
many files open when you entered your command.

Action: Check the directory and file for correct read and write permission. Specify
a file that is accessible to the analyzer. Close the other files that are presently open.
File perf.out does not exist

Cause: You tried to execute the "restore" command to continue a previous software
performance measurement, and the SPMT software found that no
"performance_measurement_end" command was previously executed to create a
file from which "restore" could be performed.

Action: Execute a new SPMT measurement.

440

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

File perf.out not generated by measurement software

Cause: The faile named perf.out exists in the current directory, but it was not
created by the "performance_measurement_end" command.

Action: Rename the old "perf.out" file, or move it to another directory.

HP64700 1/0 channel semaphore failure: <string>
Cause: Semaphore (ipc) facility not installed.

Action: Reconfigure the kernel to add ipc facility.

HP 64700 1/O error; communications timeout
Cause: This is a communication failure.

Action: Check power to the emulator and check that all cables are connected
properly. If you are using LAN and heavy LAN traffic is present, try setting the
environment variable to HP64700TIMEOUT="30" (or larger if needed). The value
is the number of seconds before timeout occurs. Then try running again.

HP64700 1/O error; connection timed out
Cause: A user abort occurred while attempting to connect via LAN.

Action: Possibly connecting to an emulator many miles away, be patient.

HP 64700 /O error; power down detected
Cause: The emulator power was cycled.

Action: Do not do this during a user interface session; this may force the user
interface to end immediately.

HP64700 1/0O channel busy; communications timed out

Cause: The communications channel is in use for an unusually long period of
by another command.

Action: try again later.

441

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

lllegal status combination

Cause: You tried to specify combinations of status qualifiers in expressions
incorrectly when entering commands.

Action: Refer to the "Emulator/Analyzer Interface Commands" chapter for
information about syntax of commands.

lllegal symbol name

Cause: You tried to specify incorrect symbol names when entering commands.

Action: Specify correct symbol names. To see global symbol names, use the
display global_symbolscommand. To see local symbol names, use the
display local_symbols_in <SYMB>command.

Initialization failed
Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initialization load failed

Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initializing emulator with default configuration

Cause: This is a status message. The host system started the emulation session and
initialized the emulator using the default configuration. The emulator is probably
operating correctly.

Initializing user interface with default config file

Cause: This is a status message. The host system started the emulation session and
Softkey Interface using the default configuration file. The emulator is probably
operating correctly.

442

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Insufficient emulation memory, memory map may be incomplete

Cause: You can map only the amount of emulation memory available in your
emulator. Trying to map additional unavailable memory may cause information to
be missing from your memory map.

Action: Modify your configuration and update the memory map to correctly reflect
the amount of emulation memory available.

Invalid answer in <CONFIGURATION FILENAME> ignored

Cause: You must provide acceptable responses to questions in the configuration file
(file.EA). The emulator ignored the incorrect response. Incorrect responses may
appear in configuration files when you have saved the configuration to a file, edited
it later, and tried reloading it into the emulator. This may also occur if you have
loaded a configuration file that you created while using another emulator, and the
response differs from the response required for this emulator.

Action: Examine your configuration file to check for inappropriate responses to
configuration file questions.

Inverse assembly file <INVERSE ASSEMBLER FILENAME> could not be
loaded

Inverse assembly file <INVERSE ASSEMBLER FILENAME> not found,
<filename>

Inverse assembly not available

Cause: The file does not exist.

Action: Reload your interface and/or real-time operating system software.

Inverse assembly not available
Cause: The inverse assembler for your emulator is missing.

Action: Verify proper software installation.

Joining session already in progress, continue file loaded

Cause: This is a status message. When operating the emulator in multiple
windows, a new emulation session is "joined" to a current session. In this case, the
new session was able to continue because the continue file loaded properly.

443

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Joining session already in progress, user interface defaulted

Cause: When operating the emulator in multiple windows, a new emulation session
is "joined" to a current session. In this case, the new session used the user interface
default selections.

Load aborted

Cause: While loading a file into the emulator, an event occurred that caused the
host system to stop the load process.

Action: Use thalisplay error_log command to view any errors. If the problem
persists, make sure the host system and emulator are operating properly, and that
you are trying to load an acceptable file. See the "Emulator/Analyzer Interface
Commands" chapter for information about lieed command.

Load completed with errors

Cause: While loading a file into the emulator, one or more events occurred that
caused errors during the load process.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before you load the file again. If the
problem persists, make sure the host system and emulator are operating properly,
and that you are trying to load an acceptable file.

Measurement system not found

Cause: You tried to end the current emulation session and select another
measurement system module which could not be located by the host system.

Action: Either try theend select measurement_systecommand again or end and
release the emulation session.

Memory allocation failed, ending released

Cause: This is a fatal system error because the emulation session was unable to
allocate memory.

Action: You may need to reconfigure your UNIX kernel to increase the per process
maximum memory limit and available swap space. Reboot your UNIX system and
try starting a new session again.

444

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Memory block list unreadable

Memory range overflow
Cause: A modify memory command is attempted that would cross physical 0.

Action: Limit the modify memory command to not overflow physical O or break
the command into two separate modify commands.

No address label defined

Cause: The address trace label was somehow removed in the terminal interface
using thetlb command.

Action: End session and start again.

No more processes may be attached to this session

Cause: You can operate an emulator in four windows. Each time you start the
emulator in another window, a new process is attached to the current session.

Action: Do not try to use more than four windows. Once you have started the
emulator in four windows, you have reached the maximum number of processes
allowed for that emulator.

Not an absolute file
No absolute file: <file>
No absolute file, No database: <file>

Cause: You tried to load a file into the emulator that is not an executable or
absolute file, so the host system stopped the load process.

Action: Try your command again, and make sure you specify a valid absolute file
name to be loaded.

No symbols loaded
Cause: You tried to step through lines in the source file before symbols are lo

Action: Load symbols and try again, or use step with the "source" option (i.e. step
assembly language program).

445

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

No valid trace data
Cause: You tried to store trace data before a trace was completed.

Action: Wait until valid trace data is available before attempting to store a trace.

Not a valid trace file - load aborted
Cause: You tried to load a file.TR that was not created by the emulation session.

Action: Only load trace data files that were created by the emulator.

Not compatible trace file - load aborted
Cause: You tried to load a file.TR that was created by another type of emulator.

Action: Only load trace data files that were created by the same type of emulator.

Number of lines not in range: 1 <= valid lines <= 50
Cause: You tried to enter a number of lines that was outside the range from 1 to 50.

Action: Try entering the command again using a valid number of lines.

Number of spaces not in range: 2 <= valid spaces <= 15
Cause: You tried to enter a number of spaces outside the range from 2 to 15.

Action: Try entering the command again using a valid number of spaces.

opcode extends beyond specified address range
Cause: Memory disassembly is attempted on an address range that is too small.

Action: Display memory mnemonic using a large address range, or no address
range at all.

Perfinit - Absolute file (database) must be loaded line <LINE NUMBER>

Cause: No symbolic data base has been opened (or exists) for the target file when
you executed the "performance_measurement initialize" command.

Action: Make sure a data base has been loaded for the target file.

446

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Perfinit - error in input file line <LINE NUMBER> invalid symbol

You included a "label" file name with your "performance_measurement_initialize"
command, and that file contains an invalid symbol.

Action: Edit the file and correct the invalid symbol.

Perfinit - error in input file line <NUMBER>

Cause: You included an input file name with your
"performance_measurement_initialize" command, and that file contains a syntax
error.

Action: Edit the file and correct the syntax error.
Perfinit <—-EXPR— ERROR> line <LINE NUMBER>

Perfinit - File could not be opened

Cause: You specified a file as an option to "performance_measurement_initialize",
and the file you specified could not be found or opened by SPMT software.

Action: Make sure you entered the correct file name.

Perfinit - No events in file

Cause: You specified a file along with your "performance_measurement'initialize"
command that contained no events. Any measurement displayed from this file will
have NULL results.

Action: Either edit the file to add events, or use the default setup to start a new
measurement.

perf.out file could not be opened - created

Cause: The performance analyzer failed to open or create a file named "perf.o
response to your "performance_measurement_end" command.

Action: Free up some file space or correct the write permissions in your curren
working directory.

447

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Performance tool must be initialized

Cause: You tried to make a performance measurement when the Software
Performance Measurement Tool (SPMT) was not initialized.

Action: The Software Performance Measurement Tool (SPMT) must be initialized
before making performance measurements on your software. Use the
performance_measurement_initializecommand to initialize the SPMT.

Performance tool not initialized

Cause: The Software Performance Measurement Tool (SPMT) has not been
initialized.

Action: To make accurate activity or duration measurements on current data, use
the performance_measurement_initializecommand to initialize the SPMT before
running a performance measurement.

Question file missing or invalid
Cause: Some of the Softkey User Interface files are missing or are corrupted.

Action: Reinstall the host software and try starting the emulation session again.

Range crosses segment boundary

Cause: On a segment offset processor, an address range is specified that would
cross different segments.

Action: Break the memory command into multiple commands so that the address
ranges start and end in the same segment.
Read memory failed at <PHYSICAL ADDRESS> - store aborted

Cause: While storing memory from the emulator to a file, a read memory error
occurred.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before storing the file again.

Session aborted

Cause: This will only happen when running multiple emulation windows and a
fatal system error occurs.

448

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Find the window that caused the error and see the error message that it
displayed. All the additional windows will simply state "session aborted". Cycle
power on the emulator and enéenul700 -u <logical name=o make sure the
emulator is unlocked.

Session cannot be continued, ending released

Cause: The emulation session is ending automatically because it could not be
continued from the previous session. When the session has ended the emulator will
be released, meaning that others can access and use it.

Action: When you restart the emulation session later, the new session will use all
default settings.

Slave clock requires at least one edge

Cause: The analyzer has an invalid clock specification.

Action: Modify your configuration and try your command again.

Starting address greater than ending address
Cause: You specified a starting address that is greater than the ending address.

Action: Specify a starting address that is less than or equal to the ending address.

Starting new session, continue file loaded

Cause: This is a status message. The emulator was started using a new emulation
session, and the continue file loaded properly.

Starting new session, user interface defaulted

Cause: The emulator was started using a new emulation session, and the user
interface was set to default selections.

Action: Call your HP Service Representative.

Status unknown, run "emul700 -| <LOGICAL NAME>"
Cause: The host system cannot determine the status of the emulator.

Action: To verify communication between the emulator and the host system, and
display the emulator status, enter ¢éneul700 -I <logical name>ommand. The

449

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

emulator logical name is located in the /usr/hp64000/etc/64700tab.net (or
64700tab) file.

Stepping aborted; number steps completed: <STEPS TAKEN>

Cause: Stepping aborted because <CTRL>c or software breakpoint was hit,
guarded memory was accessed, or some other kind of error occurred.

Action: See the error log display for any abnormal errors. Correct those errors and
then step again.

Stepping complete

Cause: Stepping was completed successfully.

Step count must be 1 through 999
Cause: You tried to use a step count greater than 999.

Action: Use a step count less than 1000.

Symbols not accessible, symbol database not loaded

Cause: You specified a trace list with values expressed using symbols defined in
the source code modules, such as source on, and the database file has not been
loaded into emulation. Example: display trace symbols on.

Timeout in emul700dmn communication

Cause: The host system could not start the emulation session because the HP 64700
emulator process ran out of time before the emulator could start.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Trace file not found
Cause: You tried to load trace data file that does not exist.

Action: Find the correct name and path of the trace data file and try again.

450

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Unexpected message from emul700dmn

Cause: The host system could not start the emulation session because of an
unexpected message from the HP 64700 emulator process command.

Action: You must pressnd_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Unknown expression type

Cause: While entering your command, you included an unknown expression type.
Action: See the EXPR command syntax for more information about expressions.
Then try entering your command again with a known expression type.

Unload trace data failed

Cause: An unexpected error occurred while waiting for a trace to be completed.

Action: End and release the session, and then try again.

Wait time failure, could not determine system time
Cause: The system call failed.

Action: Verify that 'date’ executes correctly from the UNIX prompt.

Warning: at least one integer truncated to 32 bits
Warning: at least one integer truncated to 16 bits
Warning: at least one integer truncated to 8 bits

Cause: The number entered was too large for the currently specified display or
access size.

Action: Try entering the command again using the correct size of number.

Width not in range: 1 <= valid width <= 80
Cause: You tried to specify the width of the field outside the range from 1 to 80.

Action: Try entering the command again using a valid number for the width.

451

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Numbered

Graphical/Softkey Interface Messages - Numbered

These numbered messages can occur because of various problems with the
emulator/analyzer.

10315 Logical emulator name unknown; not found in 64700tab file

Cause: This message may occur while trying to start up the emulator. It indicates
that the emulator name specified could not be found in the 64700tab.net or
/etc/hosts files.

Action: Specify the name in one of these files.

10326 Emulator locked by another user

Cause: This message occurs when you try to start an emulation interface, but your
attempt failed because the emulator is being used by someone else.

Action: The current user must release the emulator.

10327 Cannot lock emulator; failure in obtaining the accessid
Cannot lock emulator; failure in <ERRNO MSG>

10328 Cannot unlock emulator; emulator not locked
Cause: You have issued a command to unlock an emulator that is not locked.

Action: The emulator is available now. You can start the interface.

10328 Cannot unlock emulator; lock file missing
10328 Cannot unlock emulator; semaphore missing

Cause: Lock semaphore missing.

Action: Verify existence and permissions of /usr/hp64000 directory. Cycle
emulator power and usenul700 -u <logical name>

10328 Cannot unlock emulator; emulator in use by user: <USER NAME>
Cause: The emulator is already in use by the named user.

Action: Current user must release the emulator.

452

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Numbered

10329 Emulator locked by user: <USER NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10330 Emulator locked by another user interface

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10331 HP64700 1/O channel in use by emulator: <LOGICAL NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10332 Cannot default emulator; already in use

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10350 Cannot interpret emulator output

Cause: There may be characters dropped in the information returned from the
emulator.

Action: Ignore this message unless it becomes frequent. If it becomes frequent, you
may have a fatal error; call your HP 64700 representative.

10351 Exceeded maximum 64700 command line length
Cause: Your command is longer than 240 characters.

Action: Shorten the command.

10352 Incompatible with 64700 firmware version

Cause: The installed interface firmware combination is incorrect or incompatible.

453

Chapter 12: Error Messages
Graphical/Softkey Interface Messages - Numbered

10360

10371

Action: Upgrade the interface software of product firmware.

Analyzer limitation; all range resources in use
Analyzer limitation; all pattern resources in use
Analyzer limitation; all expression resources in use

Cause: Your trace specification would use more than the maximum number of
resources available to the analyzer.

Action: Simplify the trace specification.

64700 command aborted

Cause: User abort occurred due to emulator being monopolized by another
command.

Action Don’t issue an abort.

454

Chapter 12: Error Messages
Terminal Interface Messages

20

21

40

Terminal Interface Messages

This section contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order, and each
description includes the cause of the error and the action you should take to remedy
the situation.

The emulator can return messages to the display only when it is prompted to do so.
Situations may occur where an error is generated as the result of some command,
but the error message is not displayed until the next command (or a carriage return)
is entered.

A maximum number of 8 error messages can be displayed at one time. If more
than 8 errors are generated, only the last 8 are displayed.

Emulator Messages

Attempt to change foreground monitor map term

Cause: When configuring the emulator to use a foreground monitor, a memory
range is automatically mapped for the monitor’'s use. You attempted to alter that
term when mapping memory.

Action: Try using another memory range for the new map term. If you need to
have the range used by the foreground monitor, then switch to a background
monitor, delete the old foreground monitor map term, and add the new term. Now
you can return to using a foreground monitor; remember you will need to reload the
monitor code.

Insufficient emulation memory
Cause: You have attempted to map more emulation memory than is available.

Action: Reduce the amount of emulation memory that you are trying to map.

Restricted to real time runs

Cause: While the emulator is restricted to real-time execution, you have attempted
to use a command that requires a temporary break in execution to the monitor. The
emulator does not permit the command and issues this error message.

455

Chapter 12: Error Messages
Terminal Interface Messages

Action: You must break the emulator’s execution into the monitor before you can
enter the command.

61 Emulator is in the reset state

Cause: You have entered a command that requires the emulator to be running in
the monitor (for example, displaying registers).

Action: Enter thddreak command to cause the emulator to run in the monitor, and
enter the command that caused the error again.

80 Stack pointer is odd

Cause: You have attempted to modify the stack pointer to an odd value for a
processor that expects the stack to be aligned on a word boundary (such as the
68000).

Action: Modify the stack pointer to an even value.

81 Stack is in guarded memory

Cause: Your stack pointer pointed to a location in memory mapped as guarded;
you then attempted to run or step the emulation processor. The emulator was
unable to access the stack to complete the transition from the monitor to the user
program or vice versa.

Action: Either remap memory so the stack pointer points to a location in RAM, or
change the stack pointer value (either with your program or by configuring the
emulator’s stack pointer value on reset) to point to a location in RAM.

82 Stack is in target ROM

Cause: Your stack pointer pointed to a location in memory mapped as target ROM;
you then attempted to run or step the emulation processor. The emulator was
unable to access the stack to complete the transition from the monitor to the user
program or vice versa.

Action: Either remap memory so the stack pointer points to a location in RAM, or
change the stack pointer value (either with your program or by configuring the
emulator’s stack pointer value on reset) to point to a location in RAM.

456

83

84

102

103

104

Chapter 12: Error Messages
Terminal Interface Messages

Stack is in emulation ROM

Cause: Your stack pointer pointed to a location in memory mapped as emulation
ROM; you then attempted to run or step the emulation processor. The emulator

was unable to access the stack to complete the transition from the monitor to the
user program or vice versa.

Action: Either remap memory so the stack pointer points to a location in RAM, or
change the stack pointer value (either with your program or by configuring the
emulator’s stack pointer value on reset) to point to a location in RAM.

Program counter is odd

Cause: You attempted to modify the program counter to an odd value using the
modify registerscommand on a processor which expects even alignment of
opcodes.

Action: Modify the program counter only to even numbered values.

Monitor failure; no clock input

Cause: The monitor is unable to run because no emulation processor clock is
available.

Action: Make sure a clock meeting the microprocessor’s specifications is input to
the clock pin of the target system probe.
Monitor failure; no processor cycles

Cause: The monitor is unable to run since the processor is not running. The
monitor is unable to determine the cause of the failure.

Action: If running in-circuit, troubleshoot the target system. If running out of
circuit, reinitialize the emulator and try the procedure again.

Monitor failure; bus grant

Cause: The monitor is unable to run. The emulation processor is not running
because it has granted the bus to another device.

Action: Wait until the processor has regained bus control, then retry the operation.

457

Chapter 12: Error Messages
Terminal Interface Messages

105

106

107

140

141

Monitor failure; halted

Cause: The monitor is unable to run because the processor is halted (due to an
external halt line or a halt instruction).

Action: Release the external halt and retry the operation. If the processor halted
due to a halt instruction, try tlesetcommand, then retry the operation.

Monitor failure; wait state

Cause: The monitor is unable to run because the processor is in a continuous wait
state.

Action: A continuous wait state may indicate target system problems.
Troubleshoot the wait line. If you were running out of circuit, try initializing the
emulator, then retry the procedure.

Monitor failure; bus error

Cause: The monitor is unable to run because the processor has encountered a bus
fault (such as the 68000 /BERR line).

Action: Release the /BERR line and determine why it was activated.

68000 Emulator Messages

The following error messages are unique to the 68000 emulator.

Supervisor stack pointer not initialized

Cause: The supervisor stack pointer was not initialized to a value on the transition
from emulation reset to the monitor.

Action: Modify the emulator configuration to define a supervisor stack pointer
lying within an area mapped as RAM and reserved for stack space, and make the
transition from emulator reset to the monitor. Or, you can modify the supervisor
stack pointer directly by modifying the SSP register.

Foreground monitor operating in USER mode

Cause: The foreground monitor was found operating in the 68000 user program
state.

458

Chapter 12: Error Messages
Terminal Interface Messages

Action: Reset the emulator. Check your foreground monitor source code to verify
that it keeps the processor in the supervisor state and does not make transitions into
the user program state.

142 Supervisor stack in guarded memory at <address>

Cause: The supervisor stack either was defined in or grew into a memory range
mapped as guarded.

Action: Reset the emulator. Then, define the supervisor stack pointer within a
memory range mapped as emulation or target RAM and allow sufficient room for
the stack to grow as procedures are activated and deactivated.

143 Supervisor stack is in ROM at <address>

Cause: The supervisor stack either was defined in or grew into a memory range
mapped as ROM.

Action: Reset the emulator. Then, define the supervisor stack pointer within a
memory range mapped as emulation or target RAM and allow sufficient room for
the stack to grow as procedures are activated and deactivated.

145 BERR occurred during background operation

Cause: A bus error was encountered while the emulator was executing the
background monitor.

Action: Reset the emulator.

146 BERR during background access to supervisor stack

Cause: A bus error occurred while the emulation monitor was attempting to push
or pop data on the supervisor stack.

Action: Define the supervisor stack pointer within a memory range mapped as
emulation or target RAM and allow sufficient room for the stack to grow as
procedures are activated and deactivated.

147 RESET during background operation

Cause: A target system RESET occurred while the emulator was executing in the
background monitor.

459

Chapter 12: Error Messages
Terminal Interface Messages

149

204

205

208

206

312

Action: Verify the register state is as expected, if so, you may continue with no
further action. If not, reset the emulator from the emulation system.
Unexpected stack format on background entry

Cause: The stack format word was different from that expected upon normal
background entry.

Action: Set up the desired register states; or, reset the emulator.

General Emulator and System Messages
FATAL SYSTEM SOFTWARE ERROR
FATAL SYSTEM SOFTWARE ERROR

FATAL SYSTEM SOFTWARE ERROR
Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats, call your
local HP Sales and Service office for assistance.

Incompatible compatibility table entry

Cause: The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 system.

Action: The ROMs in your emulator must be compatible with each other for your
emulation system to work correctly. Contact your Hewlett-Packard Representative.
Ambiguous address: %s

Cause: Certain emulators support segmentation or function code information in
addressing. The emulator is unable to determine which of two or more address
ranges you are referring to, based upon the information you entered.

Action: Re-enter the command and fully specify the address, including
segmentation or function code information.

460

Chapter 12: Error Messages
Terminal Interface Messages

318 Count out of bounds: %s
Cause: You specified an occurrence count less than 1 or greater than 65535.

Action: Re-enter the command, specifying a count value from 1 to 65535.

400 Record checksum failure

Cause: During &ransfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry theransfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

401 Records expected: %s; records received: %s

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry theransfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.

410 File transfer aborted

Cause: Aransfer operation was aborted due to a break received, most likely a
<CTRL>c from the keyboard.

Action: If you typed <CTRL>c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the correct
command options. If you are unsuccessful, make sure that the data
communications parameters are set correctly on the host and on the HP 64700, then
retry the operation.

411 Severe error detected, file transfer failed

Cause: An unrecoverable error occurred duritvgrasfer operation.

Action: Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Also make sure that you are using the correct command options, both on the
HP 64700 and on the host.

461

Chapter 12: Error Messages
Terminal Interface Messages

412

413

415

600

602

603

604

Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record durgngséer operation
was exceeded, therefore the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the
host, it is possible that line noise may cause the failure.

Transfer failed to start
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

Timeout, receiver failed to respond
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

Adjust PC failed during break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Break failed
Cause: Théreak command was unable to break the emulator to the monitor.

Action: Determine why the break failed, then correct the condition and retry the
command. See message 608.

Read PC failed during break
Cause: System failure or target condition.

Action: Try again.

Disable breakpoint failed: %s

Cause: System failure or target condition.

462

Chapter 12: Error Messages
Terminal Interface Messages

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

605 Undefined software breakpoint: %s

Cause: The emulator has encountered a software breakpoint in your program that
was not inserted with theodify software_breakpoints secommand.

Action: Remove the breakpoint instructions in your code before assembly and link.

606 Unable to run after CMB break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

608 Unable to break

Cause: This message is displayed if the emulator is unable to break to the monitor
because the emulation processor is reset, halted, or is otherwise disabled.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use
thebreak command to break to the monitor. If reset by the emulation system,
release that reset. If halted, tegetandbreak to get to the monitor. If thereis a

bus grant, wait for the requesting device to release the bus before retrying the
command. If there is no clock input, perhaps your target system is faulty. It's also
possible that you have configured the emulator to restrict to real time runs, which
will prohibit temporary breaks to the monitor.

610 Unable to run
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

611 Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if the
CMB READY line goes false. The emulator breaks to the monitor. When CMB

463

Chapter 12: Error Messages
Terminal Interface Messages

612

613

614

615

616

617

READY is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor.

Action: None, information only.

Write to ROM break

Cause: This status message will be printed if you have enabled breaks on writes to
ROM and the emulation processor attempted a write to a memory location mapped
as ROM.

Action: None (except troubleshooting your program).

Analyzer Break

Cause: Status message.

Guarded memory access break

Cause: This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action: Troubleshoot your program; or, you may have mapped memory incorrectly.

Software breakpoint: %s

Cause: This status message will be displayed if a software breakpoint is
encountered during a program run. The emulator is broken to the monitor. The
string %s indicates the address where the breakpoint was encountered.

BNC trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

CMB trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a CMB trigger signal and the CMB trigger line is activated during a
program run. The emulator is broken to the monitor.

464

Chapter 12: Error Messages
Terminal Interface Messages

618 trigl break

Cause: This status message will be displayed if you usedghk on_trigger
syntax of thérace command and the analyzer has found the trigger condition while
tracing a program run. The emulator is broken to the monitor.

619 trig2 break

Cause: This status message will be displayed if you have used the inig2nal
line to connect the analyzer or external analyzer trigger output to the emulator
break input and the analyzer has found the trigger condition. The emulator is
broken to the monitor.

620 Unexpected software breakpoint

Cause: If you have enabled software breakpoints, this message is displayed if a
software breakpoint instruction is encountered in your program that was not
inserted by anodify software_breakpoints secommand and is therefore not in
the breakpoint table.

Action: Remove the breakpoint instructions in your code before assembly and link,
and use thenodify software_breakpoints seicommand to reinsert them after the
program is loaded into memory.

621 Unexpected step break
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

622 %s

Cause: Monitor specific message.

623 CMB execute break

Cause: This message occurs when coordinated measurements are enabled
EXECUTE pulse causes the emulator to run; the emulator must break before
running.

Action: This is a status message; no action is required.

465

Chapter 12: Error Messages
Terminal Interface Messages

624

626

628

628

630

631

632

Configuration aborted

Cause: Occurs when a <CTRL>c is entered while emulator configuration items are
being set.

Configuration failed; setting unknown: %s=%s
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Guarded memory break: %s"

Cause: A memory access to a location mapped as guarded memory has occurred
during execution of the user program.

Action: Investigate the cause of the guarded memory access by the user program.

Write to ROM break: %s"

Cause: When the emulator is configured to break on writes to ROM, a memory
write access to a location mapped as ROM has occurred during execution of the
user program.

Action: Investigate the cause of the write to ROM by the user program. You can
configure the emulator so that it does not break on writes to ROM.

Register access aborted

Cause: Occurs when a <CTRL>c is entered during register display.

Unable to read registers in class: %s
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform the register
read. See message 608.

Unable to modify register: %s=%s

Cause: The emulator was unable to modify the register you requested.

466

634

636

637

640

650

Chapter 12: Error Messages
Terminal Interface Messages

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
modification. See message 608.

Display register failed: %s
Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
display. See message 608.

Register not writable: %s
Cause: This error occurs when you attempt to modify a read only register.

Action: If this error occurs, you cannot modify the contents of the register with the
modify register command.

Register class cannot be modified: %s
Cause: You tried to modify a register class instead of an individual register.

Action: You can only modify individual registers. Refer todiplay registers
command description for a list of register names.

Unable to reset
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Unable to configure break on write to ROM

Cause: The emulator controller is unable to configure for breaks on writes to
ROM, possibly because the emulator was left in an unknown state or because
hardware failure.

Action: Initialize the emulator or cycle power. Then reenter the command. If the
same failure occurs, call your HP sales and service office.

467

Chapter 12: Error Messages
Terminal Interface Messages

651

653

661

663

664

665

666

Unable to configure break on software breakpoints

Cause: The emulator controller cannot enable breakpoints, possibly because the
emulator is in an unknown state or because of a hardware failure.

Action: Initialize the emulator or cycle power, then re-enter the command. If the
same failure occurs, call your HP sales and service office.

Break condition configuration aborted

Cause: Occurs when <CTRL>c is entered during the configuration of break
conditions.

Software breakpoint break condition is disabled

Cause: You have attempted to set or clear a software breakpoint when software
breakpoints are disabled.

Action: You must enable software breakpoints before you can set them.

Specified breakpoint not in list: %s

Cause: You tried to clear a software breakpoint that was not previously set. The
string %s prints the address of the breakpoint you attempted to clear.

Action: You must first set a software breakpoint before it can be cleared.

Breakpoint list full; not added: %s

Cause: The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address %s, was not inserted.

Action: Clear breakpoints that are no longer in use. Then, set the new breakpoint.

Enable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Disable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

468

667

668

669

670

671

680

684

Chapter 12: Error Messages
Terminal Interface Messages

Breakpoint code already exists: %s

Cause: You attempted to insert a breakpoint; however, there was already a
software breakpoint instruction at that location which was not already in the
breakpoint table.

Action: Your program code is apparently using the same instructions as used by
the software breakpoints feature. Remove the breakpoint instructions from your
program code and use thmdify software_breakpoints secommand to insert
them.

Breakpoint not added: %s

Cause: You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Breakpoint remove aborted

Cause: Occurs when <CTRL>c is entered when clearing a software breakpoint.

Breakpoint enable aborted

Cause: Occurs when <CTRL>c is entered when setting software breakpoints.

Breakpoint disable aborted

Cause: Occurs when <CTRL>c is entered when disabling software breakpoints.

Stepping failed
Cause: Stepping has failed for some reason.

Action: Usually, this error message will occur with other error messages. Ref
the descriptions of the accompanying error messages to find out more about
stepping failed.

Failed to disable step mode

Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

469

Chapter 12: Error Messages
Terminal Interface Messages

6386 Stepping aborted; number steps completed: %d

Cause: This message is displayed if a break was received dategrammand
with a step count greater than zero. The break could have been due to any of the
break conditions or a <CTRL>c break. The number of steps completed is displayed.

688 Step display failed
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

689 Break due to cause other than step

Cause: An activity other tharstepcommand caused the emulator to break. This
could include any of the break conditions or a <CTRL>c break.

692 Trace error during CMB execute
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

693 CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified pdledy run command.

Action: None; information only.

694 Run failed during CMB execute
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

700 Target memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

470

702

707

710

725

726

754

Chapter 12: Error Messages
Terminal Interface Messages

Action: In most cases, the problem results from the emulator’s inability to break to
the monitor to perform the operation. See message 608.

Emulation memory access failed
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

Request access to guarded memory: %s

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Re-enter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. Or, you can remap memory so that the desired
addresses are no longer mapped as guarded.

Memory range overflow

Cause: Accessing a word or short word, for examigiglay memory Offffffff
blocked word will cause a rounding error that overflows physical memory.

Action: Reduce memory display request.

Unable to load new memory map; old map reloaded
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

Unable to reload old memory map; hardware state unknown
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

Memory modify aborted; next address: %s

Cause: This message is displayed if a break occurs during processigdifya
memory command. The break could result from any of the break conditions
(except a software breakpoint) or could have resulted from a <CTRL>c break.

471

Chapter 12: Error Messages
Terminal Interface Messages

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

901 Invalid firmware for emulation subsystem

Cause: This error occurs when the HP 64700 system controller determines that the
emulation firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROM is installed in the emulation controller.

902 Invalid analysis subsystem; product address: %s

Cause: This error occurs when the HP 64700 system controller determines that the
analysis firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROMs are installed in the analyzer board.

903 Invalid ET subsystem; product address: %s

Cause: Detects an invalid ET. Used only internally.

904 Invalid auxiliary subsystem; product address: %s

Cause: For future products.

911 Lab firmware for emulation subsystem

Cause: This message should never occur. It shows that you have an unreleased
version of emulation firmware.

912 Lab firmware analysis subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of analysis firmware.

913 Lab firmware subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of system controller firmware.

472

914

1105

1106

1107

1108

Chapter 12: Error Messages
Terminal Interface Messages

Lab firmware auxiliary subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Analyzer Messages

Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.
Unable to delete label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external state trace specification or is
currently specified in the external trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.
Unable to delete label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external timing trace specification.

Action: Remove the label from the external timing analyzer specifications, and
then delete the label.

Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace lab
which is currently used as a qualifier in the emulation trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.

473

Chapter 12: Error Messages
Terminal Interface Messages

1109

1110

1301

1304

1305

2021

Unable to redefine label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to redefine an external trace label
which is currently used as a qualifier in the external state trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.

Unable to redefine label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation or external
trace label which is currently being used as a qualifier in the external timing trace
specification.

Action: Remove the label from the external timing analyzer specifications, and
then redefine the label.

External label in use: <label>

Cause: This error occurs when you attempt to select the external analyzer's
independent state mode while an external trace label is currently used as a qualifier
in the emulation analyzer trace specification.

Action: Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’s independent state mode.
Analyzer trace running

Cause: This error occurs when you attempt to change the external analyzer mode
while a trace is in progress.

Action: Halt the trace before changing the external analyzer mode.

CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified bpebiy trace
command).

Period not in 1/2/5 sequence: <period>

Cause: This error message occurs when the external timing sample period is not in
a 1/2/5 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns, 500ns, 1us, 2us,

474

2022

2030

2031

2032

2042

Chapter 12: Error Messages
Terminal Interface Messages

5us, etc. Some examples of invalid sample period specifications are: 12ns, 18ns,
25ns, 60ns, 80ns, etc.

Action: Use a number in the 1/2/5 sequence when specifying the external timing
sample period.
Sample period out of bounds: <bounds>

Cause: The external timing sample period must be between 10 ns and 50 ms (in a
1/2/5 sequence).

Action: Re-enter the command with the sample period between the bounds shown.

Negated patterns not allowed in timing

Cause: This error occurs when you attempt to specify a "not equals" expression
when defining the external timing trigger. You can only specify labels which equal
patterns (of 1's, 0's, or X's).

Action: Do not attempt to specify negated timing patterns.

Invalid trigger duration: <duration>

Cause: This error occurs when you attempt to specify an external timing trigger
duration which is in the valid range but is not a multiple of 10 ns.

Action: Re-enter the command with the trigger duration as a multiple of 10 ns.

Trigger duration out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
duration outside the valid range. A "greater than" duration must fall within the
range of 30 ns to 10 ms (and must be a multiple of 10 ns). A "less than" duration
must fall within the range 40 ns to 10ms (and must be a multiple of 10 ns).

Action: Re-enter the command with the trigger duration within the bounds shg

Trigger delay out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
delay outside the valid range. The external timing trigger delay must be between 0
and 10 ms (in 10 ns increments).

Action: Re-enter the command with the trigger delay within the bounds shown.

475

Chapter 12: Error Messages
Terminal Interface Messages

476

Part 4

Concept Guide

477

Part 4

478

13

Concepts

479

Concepts

This chapter provides conceptual information on the following topics:

» Xresources and the Graphical User Interface.

480

Chapter 13: Concepts
X Resources and the Graphical User Interface

X Resources and the Graphical User Interface

This section contains more detailed information about X resources and scheme files
that control the appearance and operation of the Graphical User Interface. This
section:

» Describes the X Window concepts surrounding resource specification.

» Describes the Graphical User Interface’s implementation of scheme files.

X Resource Specifications

An X resource specification is a resource name and a value. The resource name
identifies the element whose appearance or behavior is to be defined, and the value
specifies how the element should look or behave. For example, consider the
following resource specification:

Application.form.row.done.background: red

The resource name is "Application.form.row.done.background:" and the value is
"red"_

Resource Names Follow Widget Hierarchy

A widgetis an OSF/Motif graphic device from which X applications are built. For
example, pushbuttons and menu bars are Motif widgets. Applications are built
using a hierarchy of widgets, and the application’s X resource names follow this
hierarchy. For example:

Application.form.row.done.background: red

In the resource name above, the top-level widget is named after the application.
One of the top-level widget’s children is a form widget, one of the form widget's
children is a row-column manager widget, and one of the row-column manager
widget's children is a pushbutton widget. Resource names show a path in the
widget hierarchy.

Each widget in the hierarchy is a member of a widget class, and the particular
instance of the widget is named by the application programmer.

481

Chapter 13: Concepts
X Resources and the Graphical User Interface

Class Names or Instance Names Can Be Used

When specifying resource names, you can use either instance names or class names.
For example, a "Done" pushbutton may have an instance name of "done" and a

class name of "XmPushButton". To set the background color for a hypothetical
"Done" pushbutton, you can use:

Application.form.row.done.background: red

Or, you can use:

Application.form.row.XmPushButton.background: red

Applications also have class and instance names. For example, an application may
have an instance name of "applic1" and a class name of "Application". To set the
background color for a hypothetical "Done" pushbutton only in the "applic1"
application, you can use:

applicl.form.row.done.background: red

Note that instance names are more specific than class names. That is, class names
may apply to many instances of the widget.

The class and instance names for the widgets in the Graphical User Interface can be
displayed by choosingelp - X Resource Namesnd clicking on the "All names"
button.

Wildcards Can Be Used

A wildcard may be used to match a resource specification to many different
widgets at once. For example, to set the background color of all pushbuttons, you
can use:

Application*XmPushButton.background: red

Note that resource names with wildcards are more general than those without
wildcards.

482

Chapter 13: Concepts
X Resources and the Graphical User Interface

Specific Names Override General Names

A more specific resource specification will override a more general one when both
apply to a particular widget or application.

The names for the application and the main window widget in HP64_Softkey
applications have been chosen so that you may specify custom resource values that
apply in particular situations:

1 Apply to ALL HP64_Softkey applications:
HP64_Softkey*<resource>: <value>
2 Apply to specific types of HP64_Softkey applications:

emul*<resource>: <value> (for the emulator)
perf*<resource>: <value> (for the performance analyzer)

3 Apply to all HP64_Softkey applications, but only when they are connected to a
particular type of microprocessor:

m68000<resource>: <value> (for the 68000)
m68020<resource>: <value> (for the 68020)

4 Apply to a specific HP64_Softkey application connected to a specific
processor:

perf. m68000*<resource>: <value> (for the 68000 perf. analyzer)
emul.m68020*<resource>: <value> (for the 68020 emulator)

If all four examples above are used for a particular resource, #3 will override #2 for
all applications connected to a 68000 emulator, and #4 will override #2, but only
for the specifically mentioned type of microprocessor.

When modifying resources, your resource paths must either match, or be more
specific than, those found in the application defaults file.

How X Resource Specifications are Loaded

When the Graphical User Interface starts up, it loads resource specifications fi
set of configuration files located in system directories as well as user-specific
locations.

483

Chapter 13: Concepts
X Resources and the Graphical User Interface

Application Default Resource Specifications

Default resource specifications for an application are placed in a system directory:
HP-UX {usr/lib/X11/app-defaults

SunOS /usr/openwin/lib/X11/app-defaults

The name of the Graphical User Interface application defaults file is HP64_Softkey
(same as the application class name). This file is well-commented and contains
information about each of the X resources you can modify. You can easily view
this file by choosingelp - Topic and selecting the "X Resources: App Default

File" topic. Do not modify the application defaults file; any changes to this file will
affect the appearance and behavior of the application for all users.

User-Defined Resource Specifications

User-defined resources (for any X application) are located in the X server's
RESOURCE_MANAGER property or in the user's 3HOME/.Xdefaults file.

Load Order

Resource specifications are loaded from the following places in the following order:

5 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

6 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

7 The server's RESOURCE_MANAGER property. (Kngb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

484

Chapter 13: Concepts
X Resources and the Graphical User Interface

8 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $SHOME/.Xdefaultsstfile
is read (typically contains resource specifications for a specific remote host).

9 Resource specifications included in the command line witkxthe option.

When specifications with identical resource names appear in different places, the
latter specification overrides the former.

Scheme Files

Several of the Graphical User Interface’s X resources idesdtifgme fileshat
contain additional X resource specifications. Scheme files group resource
specifications for different displays, computing environments, and languages.

Resources for Graphical User Interface Schemes
There are five X resources that identify scheme files:

HP64_Softkey.labelScheme:

Names the scheme file to use for labels and button text. Values can be: Label,
$LANG, or a custom scheme file name. The default uses the $LANG
environment variable if it is set and if a scheme file named Softkey.$LANG
exists in one of the directories searched for scheme files; otherwise, the default
is Label.

HP64_Softkey.platformScheme:

Names the subdirectory for the platform specific color, size, and input scheme
files. This resource should be set to the platform on which the X server is
running (and displaying the Graphical User Interface) if it is different than the
platform where the application is running. Values can be: HP-UX, SunOS,
pc-xview, or a custom platform scheme directory name.

HP64_Softkey.colorScheme:

Names the color scheme file. Values can be: Color, BW, or a custom scheme
file name.

485

Chapter 13: Concepts
X Resources and the Graphical User Interface

HP64_Softkey.sizeScheme:
Names the size scheme file which defines the fonts and the spacing used.
Values can be: Large, Small, or a custom scheme file name.
HP64_Softkey.inputScheme:
Names the input scheme file which specifies mouse and keyboard operation.
Values can be: Input, or a custom scheme file name.

The actual scheme file names take the form: "Softkey.<value>".

Scheme File Names

There are six scheme files provided with the Graphical User Interface. Their names
and brief descriptions of the resources they contain follow.

Softkey.Label Defines the labels for the fixed text in the interface. Such
things as menu item labels and similar text are in this file.
If the $3LANG environment variable is set, the scheme file
"Softkey. SLANG" is loaded if it exists; otherwise, the file
"Softkey.Label" is loaded.

Softkey.BW Defines theolor scheméor black and white displays. This
file is chosen if the display cannot produce at least 16
colors.

Softkey.Color Defines theolor scheméor color displays. This file is

chosen if the display can produce 16 or more colors.

Softkey.Large Defines theize schemghat is, the window dimensions
and fonts) for high resolution displays (1000 pixels or more
vertically).

Softkey.Small Defines theize schemghat is, the window dimensions
and fonts) for low resolution displays (less than 1000 pixels
vertically).

Softkey.Input Defines thimput scheméthat is, the button and key
bindings for the mouse and keyboard).

486

Chapter 13: Concepts
X Resources and the Graphical User Interface

Load Order for Scheme Files

Scheme files are searched for in the following directories and in the following order:
10 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

11 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

12 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Custom Scheme Files

You can modify scheme files by copying them to the directory for user-defined
schemes and changing the resource specifications in the file. For example, if you
wish to modify the color scheme, and your platform is HP-UX, you can copy the
/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color file to
$HOME/.HP64_schemes/HP-UX/Softkey.Color and maodify its resource
specifications.

You can create custom scheme files by modifying the X resource for the particular
scheme and by placing the custom scheme file in the directory for user-defined
schemes. For example, if the following resource specifications are made:

HP64_Softkey.platformScheme: HP-UX
HP64_Softkey.colorScheme: MyColor
The custom scheme file would be:

$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

487

488

Part 5

Installation Guide

489

Part5

490

14

Installation

491

Installation at a Glance

Before you can use the Graphical User Interface, you may need to install emulator
hardware, and you have to install the interface software. You also need to verify
the installation of the interface software and understand how to start the Graphical
User Interface for the first time.

This chapter is not intended to be a complete installation guide for all of the
just-mentioned tasks. This chapter concentrates on information, not found in other
places, that is necessary for the installation or operation of the interface.

Installation Overview for HP 9000 Hosted Systems

Users of HP 9000 hosted systems should follow the instructions in the section titled
"Installation for HP 9000 Hosted Systems". Briefly, those instructions tell you to do
the following:

1 If necessary, install emulator, analyzer, or memory cards in the HP 64700
Series Cardcage according to the instructions found iHFh@4700 Series
Installation/Service Guide

2 Connect the emulator to your system and configure the emulator to
communicate via the LAN (or RS-422 or RS-232) with the HP 9000 according
to instructions also found in théP 64700 Series Installation/Service Guide

3 Install the Graphical User Interface and supporting HP 64700 Series software
according to instructions found in this chapter. Alternatively, you may install
the Softkey Interface and choose not to install the Graphical User Interface.

4 Verify the software installation according to instructions given in the
"Installation for HP 9000 Hosted Systems" section of this chapter.

5 Start the interface according to instructions given in the "Installation for
HP 9000 Hosted Systems" section of this chapter.

6 Exitthe interface and go on to other chapters in this book.

Minimum HP 9000 Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on HP 9000 Series 300/400 and Series
700 workstations.

492

Chapter 14: Installation
Installation at a Glance

HP-UX For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series 9000/700
workstations, the minimum supported version of the operating system is version
8.01.

MotifflOSF For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default, so you do not have
to install them specifically for this product, but you should consult &utJX
documentation for confirmation and more information.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. Series 300
workstations should have a minimum performance equivalent to that of a
HP 9000/350. A color display is also highly recommended.

From here, you should proceed to the section titled "Installation for HP 9000
Hosted Systems" for instructions on how to install, verify, and start the Graphical
User Interface on HP 9000 systems.

493

Chapter 14: Installation
Installation at a Glance

Installation Overview for Sun SPARCsystems

Users of Sun SPARCsystems should follow the instructions in the section titled
"Installation for Sun SPARCsystems". Briefly, those instructions tell you to do the
following:

7 If necessary, install emulator, analyzer, or memory cards in the HP 64700
Series Cardcage according to the instructions found iHFEh@4700 Series
Installation/Service Guide

8 Connect the emulator to your system and configure the emulator to
communicate via the LAN with the hosted workstation according to
instructions also found in théP 64700 Series Installation/Service Guide

9 Install the Graphical User Interface and supporting HP 64700 Series software
according to instructions found in this chapter. Alternatively, you may install
the Softkey Interface and choose not to install the Graphical User Interface.

10 Verify the software installation according to instructions given in the
"Installation for Sun SPARCsystems" section of this chapter.

11 Start the interface according to instructions given in the "Installation for Sun
SPARCsystems" section of this chapter.

12 Exit the interface and go on to other chapters in this book.

Minimum Sun SPARCsystem Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on Sun SPARCsystem workstations.

SunOS The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1 or 4.1.1 or greater. The tape uses the
QIC-24 data format.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. A color display is
also highly recommended.

From here, you should proceed to the section titled "Installation for Sun
SPARCsystems" for instructions on how to install, verify, and start the Graphical
User Interface on SPARCsystem workstations.

494

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Installation for HP 9000 Hosted Systems

Follow these instructions to install the Graphical User Interface on HP 9000
workstations. You can also follow these instructions through Step 4 to find out
how not to install the Graphical User Interface if you want to use just the Softkey
Interface.

Step 1. Install the hardware in the HP 64700
Series Cardcage

Turn to theHP 64700 Series Installation/Service Guate follow the instructions
for installing emulator, memory, or analyzer cards in the HP 64700 Series
Cardcage. It may be that you already have installed the cards in the cardcage or
your cardcage came with cards already installed.

If you have already installed the hardware and software and connected the emulator
to your host system, skip to Step 5 to verify the software installation. Otherwise,
continue with Step 2 of these instructions.

Step 2. Configure the emulator for the
communication channel
Turn to theHP 64700 Series Installation/Service Guatal follow the instructions

for configuring the emulator to communicate via LAN, RS-422, or RS-232.
(RS-422 and RS-232 are only supported on HP 9000 Series 300/400 machines.)

When you have configured the emulator to communicate via the channel you have

chosen, continue with Step 3 of these instructions.

495

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 3. Connect the emulator to your system

Turn to theHP 64700 Series Installation/Service Guate follow the instructions
for connecting the emulator to your system. You can connect the emulator via
LAN, RS-422, or RS-232.

When you have connected the emulator to your host system, continue with Step 4
of these instructions.

Step 4. Install the software

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the Softkey Interface instead of the Graphical User Interface,
you can save about 3.5 megabytes of disk space by not installing the XUI suffixed
filesets in the "64700 Operating Environment" and "<processor-type> Emulation
Tools" partitions. (Also, if you choose not to install the Graphical User Interface,
you will not have to use a special command line option to start the Softkey
Interface.)

Refer to the information on updating HP-UX in your HP-UX documentation for
instructions on viewing partitions and filesets and marking filesets that should not
be loaded.

The following sub-steps assume that you want to install all products on the tape.

1 Become the root user on the system you want to update.

2 Make sure the tape’s write-protect screw points to SAFE.

496

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Put the product media into the tape drive that will besthugce devicéor the
update process.

Confirm that the tape drive BUSY and PROTECT lights are on. If the PROTECT
light is not on, remove the tape and confirm the position of the write-protect screw.
If the BUSY light is not on, check that the tape is installed correctly in the drive
and that the drive is operating correctly.

When the BUSY light goes off and stays off, start the update program by entering
/etc/lupdate

at the HP-UX prompt.

When the HP-UX update utility main screen appears, confirm that the source and
destination devices are correct for your system. Refer to the information on
updating HP-UX in your HP-UX documentation if you need to modify these values.

Select "Load Everything from Source Media" when your source and destination
directories are correct.

To begin the update, press the softkey <Select Iltem>. At the next menu, press the
softkey <Select Item> again. Answer the last prompt with

y

It takes about 20 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the results of the
update.

497

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 5. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load the
Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to successfully
start the Graphical User Interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for verifying
installation, but these checks can help to double-check the installation process.

Verify the existence of thdP64_Softkeyfile in the/usr/lib/X11/app-defaults
subdirectory by entering
Is /usr/lib/X11/app-defaults/HP64_Softkeyat the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies that the
customize scripts executed because this file is created from other files during the
customize process.

Examine/usr/lib/X11/app-defaults/HP64_Softkeynear the end of the file to
confirm that there are resources specific to your emulator.

Near the end of the file, there will be resource strings that contain references to
specific emulators. For example, if you installed the Graphical User Interface for
the 68000 emulator, resource name strings will na&@000embedded in them.

After you have verified the software installation, you must start the X server and an
X window manager (if you are not currently running an X server). If you plan to

run the Motif Window Manager (mwm), or similar window manager, continue with
Step 6a of these instructions. If you plan to run HP VUE, skip to Step 6b of these
instructions.

498

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 6a. Start the X server and the Motif Window

Manager (mwm)

If you are not already running the X server and a window manager, do so now. The
X server is required to use the Graphical User Interface because it is an X Windows

application. A window manager is not required to execute the interface, but, as a
practical matter, you must use some sort of window manager with the X server.

Start the X server by enterind1start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating system
documentation if you do not know about using X Windows and the X server.

After starting the X server and Motif Window Manager, continue with step 7 of
these instructions.

Step 6b. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE, do so
now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

499

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 7. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "/usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/", you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "sh" or "ksh"; if you're using "csh", environment variables are set
using the "setenv <VARIABLE> <value>" command.

Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server_number>.<screen_number>
export DISPLAY

For example:

DISPLAY=myhost:0.0; export DISPLAY

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

HP64000=/usr/hp64000; export HP64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

500

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

HP64000=/users/team/usr/hp64000; export HP64000

Set the PATH environment variable to includeusghp64000/bindirectory by
entering

PATH=$PATH:$HP64000/bin; export PATH

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

Set the MANPATH environment variable to include tise’hp64000/manand
usr/hp64000/contrib/mandirectories by entering

MANPATH=3MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

501

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 8. Determine the logical name of your
emulator

Thelogical nameof an emulator is a label associated with a set of communications
parameters in theHP64000/etc/64700tab.ndile. The 64700tab.net file is placed
in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.nett the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

Examples A typical entry for an 68000 emulator connected to the LAN would appear as
follows:

#.

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#

lan: em68000 m68000 21.17.9.143

A typical entry for an 68000 emulator connected to an RS-422 port would appear as

follows:
#
| | | |Xpar|Parity|Flow|Stop|Char
Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type |Name| Device | | |XON| |
| | | |OFF | NONE |RTS |2 |8
#

“serial: em68000 mM68000 myhost /deviemcom23 OFF NONE RTS 2 8

502

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 9. Start the interface with the emul700
command

Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN or to your host system.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

Wait a few seconds to allow the emulator to complete its startup initialization.
Choose a terminal window from which to start the Graphical User Interface.

Start the Graphical User Interface by enteringetinel700command and giving
the logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/binis in you path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, graul700command will start the
Graphical User Interface. Otherwiseul700starts the Softkey Interface.

You should include an ampersand ("&") with the command to start the Graphical
User Interface as a background process. Doing so frees the terminal window where
you started the interface so that the window may still be used.

Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the Softkey Interface under X Windows, but you must
include a command line argumenetmul 700to override the default Graphical
User Interface. Start the Softkey Interface by entering

503

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

emul700 -u skemul <logical name>

Example Suppose you have discovered that the logical name for a 68000 emulator connected
to the LAN is "em68000". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bir

emul700 em68000

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

ewlett Packard Emulator/Analyzer: em68000 (m6800

File Display Modify Execution Breakpoints Trace Sefttings Help

Action keys: < Demo = | Disp Sre () | Trace () | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xfer to)| Break | Step Asm |

() |main Recall

504

Chapter 14: Installation
Installation for HP 9000 Hosted Systems

Step 10. Exit the Graphical User Interface

Position the mouse pointer over the pulldown menu named "File” on the menu bar
at the top of the interface screen.

Press and hold treammand selechouse button until the File menu appears.

While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

505

Chapter 14: Installation
Installation for Sun SPARCsystems

Installation for Sun SPARCsystems

Follow these instructions to install the Graphical User Interface on Sun
SPARCsystem workstations. You can also follow these instructions through Step 4
to find out how to prevent installation of the Graphical User Interface if you only
plan to use the Softkey Interface.

Step 1. Install the hardware in the HP 64700
Series Cardcage

Turn to theHP 64700 Series Installation/Service Guate follow the instructions
for installing emulator, memory, or analyzer cards in the HP 64700 Series
Cardcage. It may be that you already have installed the cards in the cardcage or
your cardcage came with cards already installed.

If you have already installed the hardware and software and connected the emulator
to your host system, skip to Step 5 to verify the software installation. Otherwise,
continue with Step 2 of these instructions.

Step 2. Configure the emulator for the
communication channel
Turn to theHP 64700 Series Installation/Service Guatal follow the instructions

for configuring the emulator to communicate via LAN. (RS-422 and RS-232 are
only supported on HP 9000 Series 300/400 machines.)

When you have configured the emulator to communicate via LAN, continue with
Step 3 of these instructions.

506

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 3. Connect the emulator to your system

Turn to theHP 64700 Series Installation/Service Guate follow the instructions
for connecting the emulator to your system. You can connect the emulator via LAN.

When you have connected the emulator to your host system, continue with Step 4
of these instructions.

Step 4. Install the software

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the Softkey Interface instead of the Graphical User Interface,
you can save about 3.5 megabytes of disk space by not installing the XUI suffixed
filesets. (Also, if you choose not to install the Graphical User Interface, you will
not have to use a special command line option to start the Softkey Interface.)

Refer to theSoftware Installation Notictor software installation instructions.
After you are done installing the software, return here.

507

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 5. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is required to
run the Graphical User Interface because it is an X application.

 Start the X server by enteritigsr/openwin/bin/openwinat the UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 6. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/*, you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "csh"; if you're using "sh", environment variables are set in the
"<VARIABLE>=<value>; export <VARIABLE>" form.

1 The DISPLAY environment variable is usually set byahenwin startup script.
Check to see that DISPLAY is set by entering

echo $DISPLAY
If DISPLAY is not set, you can set it by entering

setenv DISPLAY=<hostname>:<server_number>.<screen_number>

508

Chapter 14: Installation
Installation for Sun SPARCsystems

For example:
setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries used

by the HP 64000 products. Again, if you installed relative to /users/team, you
would enter

setenv HP64000 /users/team/usr/hp64000
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

Set the PATH environment variable to includeubghp64000/bindirectory by
entering

setenv PATH ${PATH}:${HP64000}/bin

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

509

Chapter 14: Installation
Installation for Sun SPARCsystems

4 Set the MANPATH environment variable to include tise’hp64000/manand

usr/hp64000/contrib/mandirectories by entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}.${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

If the Graphical User Interface is to run on a SPARCsystem computer that is not
running OpenWindows, include the /usr/openwin/lib directory in
LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/ust/openwin/lib

Step 7. Verify the software installation

A number of product filesets were installed on your system during the software
installation process. Due to the complexity of installing on NFS mounted file
systems, a script that verifies and customizes these products was also installed.
This stand alone script may be run at any time to verify that all files required by the
products are in place in the file system. If required files are not found, this script
will attempt to symbolically link them from the $HP64000 install directory to their
proper locations.

* Run the scripgHP64000/bin/envinstall

510

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 8. Map your function keys

If you are using the Softkey Interface, map your function keys by following the
steps below.

Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your SHOME directory.

Remove or comment out the following line from your .xinitrc file:

xmodmap -e 'keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out those
lines also.

Add the following to your .profile or .login file:

stty erase "H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be used
for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for the
Softkey Interface. All you have to do is set the KEYMAP variable. If you use
OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the directory
/usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of the
$PATH definition, and add the following line to your .profile:
setenv OPENWINHOME /usr/openwin

After you have mapped your function keys, you must start the X server and an
window manager (if you are not currently running an X server).

511

Chapter 14: Installation
Installation for Sun SPARCsystems

Examples

#.

Step 9. Determine the logical name of your
emulator

Thelogical nameof an emulator is a label associated with a set of communications
parameters in theHP64000/etc/64700tab.ndile. The 64700tab.net file is placed
in the directory as part of the installation process.

Display the 64700tab.net file by entering
more $HP64000/etc/64700tab.nett the UNIX prompt.

Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

A typical entry for an 68000 emulator connected to the LAN would appear as
follows:

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#

lan:

em68000

m68000 21.17.9.143

512

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 10. Start the interface with the emul700
command

Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

Wait a few seconds to allow the emulator to complete its startup initialization.
Choose a terminal window from which to start the Graphical User Interface.

Start the Graphical User Interface by enteringetinel700command and giving
the logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/binis in your path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, graul700command will start the
Graphical User Interface. Otherwiseul700starts the Softkey Interface.

You should include an ampersand ("&") with the command to start the Graphical
User Interface as a background process. Doing so frees the terminal window where
you started the interface so that the window may still be used.

Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the Softkey Interface in a terminal emulation window,
but you must include a command line argumeintall700to override the default
Graphical User Interface. Start the Softkey Interface by entering

513

Chapter 14: Installation
Installation for Sun SPARCsystems

emul700 -u skemul <logical name>

Example Suppose you have discovered that the logical name for a 68000 emulator connected
to the LAN is "em68000". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bir

emul700 em68000

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

ewlett Packard Emulator/Analyzer: em68000 (m6800

File Display Modify Execution Breakpoints Trace Sefttings Help

Action keys: < Demo = | Disp Sre () | Trace () | Run | Step Source |
= Your Key = | tdake | Disp Sre Prev| Run Xfer to)| Break | Step Asm |

() |main Recall

new session

514

Chapter 14: Installation
Installation for Sun SPARCsystems

Step 11. Exit the Graphical User Interface

Position the mouse pointer over the pulldown menu named "File” on the menu bar
at the top of the interface screen.

Press and hold treammand selechouse button until the File menu appears.

While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

515

516

Glossary

access mode Specifies the types of cycles used to access target system memory
locations. For example a "byte" access mode tells the monitor program to use
load/store byte instructions to access target memory.

analyzer An instrument that captures data on signals of interest at discreet
periods.

background The emulator mode in which foreground operation is suspended so
the emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor address space.

background emulation monitor ~ An emulation monitor program that does not
execute as part of the user program, and therefore, operates in the emulator’s
background mode.

background memory Memory space reserved for the emulation processor
when it is operating in the background mode. Background memory does not take
up any of the microprocessor’'s address space.

display mode When displaying memory, this mode tells the emulator the size of
the memory locations to display. When modifying memory, the display mode tells
the emulator the size of the values to be written to memory.

embedded microprocessor system The microprocessor system which the
emulator plugs into.

emulation bus analyzer The internal analyzer that captures emulator bus cycle
information synchronously with the processor’s clock signal.

emulation monitor program A program that is executed by the emulation
processor which allows the emulation controller to access target system resources.
For example, when you display target system memory locations, the monitor
program executes microprocessor instructions that read the target memory locations
and send their contents to the emulation controller.

517

Glossary

emulator An instrument that performs just like the microprocessor it replaces, but
at the same time, it gives you information about the operation of the processor. An
emulator gives you control over target system execution and allows you to view or
modify the contents of processor registers, target system memory, and 1/0
resources.

foreground The mode in which the emulator is executing the user program. In
other words, the mode in which the emulator operates as the target microprocessor
would.

global restart When the same secondary branch condition is used for all terms in
the analyzer's sequencer, and secondary branches are always back to the first term.

prestore The analyzer feature that allows up to two states to be stored before
normally stored states. This feature is useful when you want to find the cause of a
particular state. For example, if a variable is accessed from many different places in
the program, you can qualify the trace so that only accesses of that variable are
stored and turn on prestore to find out where accesses of that variable originate
from.

primary sequencer branch Occurs when the analyzer finds the primary branch
state specified at a certain level and begins searching for the states specified at the
primary branch’s destination level.

real-time Refers to continuous execution of the user program without
interference from the emulator. (Such interference occurs when the emulator
temporarily breaks into the monitor so that it can access register contents or target
system memory or 1/O.)

secondary sequencer branch ~ Occurs when the analyzer finds the secondary
branch state specified at a certain level before it found the primary branch state and
begins searching for the states specified at the secondary branch’s destination level.

sequence terms Individual levels of the sequencer. The HP 64705A analyzer
provides 8 sequence terms.

sequencer The part of the analyzer that allows it to search for a certain sequence
of states before triggering.

518

Glossary

sequencer branch Occurs when the analyzer finds the primary or secondary
branch state specified at a certain level and begins searching for the states sp
at another level.

target system The microprocessor system which the emulator plugs into.

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the external
analyzer) and stored in trace memory.

trigger The captured analyzer state about which other captured states are stored.
The trigger state specifies when the trace measurement is taken.

519

520

Index

about, trigger position specificatia?i] 2
absolute count, in the trace displags
absolute files374
loading,141
loading without symbols42
storing memory contents intb42
absolute status, in the trace disp@239
access mod&l17
access size (target memory33
action keys26
custom318
operationy/3
with command files318
with entry buffer,71, 73
activity measurements (SPMBR45-259
additional symbols for addre2§3
confidence leve254
error tolerance?54
interpreting report52
mean 252
relative and absolute coungh3
standard deviatior253
symbols within range253
trace command setup47
address (analyzer state qualifier softk@f)l, 395, 410
address lines driven during backgrouhd4
address overlays, memory mappihg6
address qualifierg11
address range file format (SPMT measuremep$),
after, trigger position specificatiop12
ambiguous address error messagé,
analyzerb17
arming other HP 64700 Series analyzbrs,
breaking emulator execution into the monitbr,
breaking execution of other HP 64700 Series emuldiors,

521

Index

count qualifiers217
definition, 4
dma status qualified,30
general descriptior,
occurrence coungl14
prestore qualifier216
state qualifiers211
storage qualifier15
tagging bus arbitratiord,30
trace at EXECUTE297
trigger condition212
using the,198
analyzer probe
assembling276
connecting to the target syste?78
analyzer status
occurrence left informatior202
sequence term informatio202
app-defaults directory
HP 9000 computerg84
Sun SPARCsystem computef84
application resource
SeeX resource
arm information201
arm_trig2, in trace commandi24

B backgroundl12-113, 517
address driver,34
driving target system during34
emulation monitor517
memory,517
tracing,137
background execution, tracint37
background function codes drivet84
background monitor 13
selecting112-119
bases (number207
bbaunload command, synt®37
before, trigger position specificatio?] 2
BERR, response to during target memory cydas,
binary numbers207
BKPT, software breakpoint instruction (6801050

522

Index

BNC
connectorb, 290
trigger signal292
break command,57
syntax,336
break on guarded memory acces)
breakpoint illegal instructiori,60
breakpoints34
screen to file192
TRAP instruction137
breaks on write to ROM,36
bus arbitration
configure emulator’s responsg9
status qualifier130
tagging,130
tagging and the dma analyzer status qualifi®,
using configuration to isolate target problé8,
bus error response by emulatt?2, 131
bus width (data), setting33

cascade meng4
cautions
BNC accepts only TTL voltage leve95
CMB 9-pin port is NOT for RS-232@93
real-time dependent target system circuitg9
changing
directory context in configuration windod05
directory context in emulator/analyzer winddvs2
symbol context153
characterization of memor$22
class name, X application$32
client, X,310
clock source selection, emulator configuratib®g
clocks
See alsslave clocks
closing
emulator/analyzer windows9
CMB (coordinated measurement b0
EXECUTE line,292, 338
HP 64700 connectio293
READY line, 291
signals,291

523

Index

TRIGGER line,291
cmb_execute comman2i98, 338
color scheme312, 316, 486
column width, trace display optio234
columns in main display area]3
command button27
command files376
other things to know abol88
passing parametei&y
command line27
Command Recall dialog bo28
Command Recall dialog box, operatia,
copy-and-paste to from entry buff@g,
editing entry area with popup mer@i,
editing entry area with pushbutto®§),
entering command39
entry area27
executing commandg9
help,82
keyboard use 083-85
on-line help 85
recalling commands with dialog b2
turning on or off,78, 313
command paste mouse butt@8,
Command Recall dialog box operati@d,
command select mouse butt@s,
commands83
combining on a single command li1@3
completion83
editing in command line entry are)-81
entering in command lin€9
executing in command liné9
keyboard entry83
line erase84
map,127
recall,84
recalling with dialog box32
summary 335
word selection84
comparison of foreground/background monitads}
configuration (emulator)

524

Index

A23-A8 values for driven background cyclé34
background states, tracint37
breaks on writes to ROM36
bus arbitration enable/disableg9
bus arbitration tagging,30
bus error respons&31
bus error response by emulatb??
data bus width133
drive background cycles to targ&84
DTACK interlock,128
DTACK interlock for monitor119
function codes for driven background cycl&34
inverse assembly syntak] 0
monitor entry after109
monitor selection]12-119
supervisor stack pointer reset vallig2
target system interrupts enable/disab®&?
TRAP instruction for breakpoint,37
configuration context
displaying from configuration windovt06
configuration, emulator
exiting the interfacel 07
loading from file, 107
modifying a section102
starting the interfacd,00
storing,104
context
changing directory in configuration windohQ5
changing directory in emulator/analyzer winddw?2
changing symboll 53
displaying directory from configuration windowQ6
displaying directory from emulator/analyzer windds2
displaying symbol152
coordinated measuremer289
break on_trigger syntax of the trace comma9@,
definition, 290
copy command339-341
data,340
display,340
error_log,340
event_log340

525

Index

global symbols340
help,340
local_symbols_in342
memory,343-344
pod_command341
registers345

software breakpoint841
status341
trace, 346
copy-and-paste
addresse$9
from entry buffer,72
multi-window, 69, 72
symbol width,69
to entry buffer68
copying
breakpoints screen to fil&92
data values screen to filE92
display area to file192
emulator status screen to fil93
error log to file,193
event log to file193
global symbols to file]193
local symbols to file193
memory to file, 192
pod commands screen to file93
registers to file192
trace listing to file,L92
count absolute/relative, trace display opt@85
count qualifiers217
count, occurrencl14
cursor buttons28

data
copy command340
display command349-351
data (analyzer state qualifier softke3},1, 395, 410
data (external), trace display opti@383
data bus width] 33
data value
screen to file192

526

Index

data values}81-182
adding items to the existing displayg2
clearing the display and adding a new it&&g

displaying,181
data values, displaying§8
decimal number207

default trace comman@p0
default trace display
returning to237
demos, setting u@21-323
demultiplexing, using slave clocks f@83
demux, slave clock mod285
depth of the trac06
device table file32, 53-54
dialog box,73
Command Recall, operatiory, 82
Directory Selection] 52
Directory Selection, operatio3, 76
Entry Buffer Recall, operatioiml, 74
File Selection, operatio@4-75
Trace Specification Selection, operatig6
directory context
changing in configuration windowvt05
changing in emulator/analyzer windo¥2
displaying from configuration windovt06
displaying from emulator/analyzer windo®§2
Directory Selection dialog box operatiot8, 76
display area27
columns 313
lines,313-314
screen to file192
display command347-348
data,349-351
error_log,347
event_log348
global_symbols352
local_symbols_in353
memory,354-357
memory mnemonic33, 176
pod_command348
registers173-174, 358

527

Index

simulated_i0359
software_breakpoint860
status200, 348
symbols,143
trace,204, 361-364
display mode517
display trace226-238
about line numbeg27-228
absolute forma229
count absolute/relativ@35
default,237
external data238
mnemonic format230
offset by,236
positioning, left/right205
positioning, up/down205
source line inclusiorg31
symbol information inclusior33
width of columns234
displaying
registers173
simulated io screeri94, 196
displays, copying340
DMA limitations, 129
don't care digits208
downloading absolute file§, 141
driving background cycles to target systdi34
DTACK interlock,122, 128, 131
for monitor,119
DTACK when out-of-circuit,129
dual-port emulation memorg,10
duration measurements (SPMZ$0-268
average time265
confidence leveR266
error tolerance?66
interpreting report65
maximum time 265
minimum time,265
number of interval265
recursion consideration260
selecting263

528

Index

standard deviatior266
trace command setup6l

editing
command line entry area with popup mesi,
command line entry area with pushbutt@e,
file, 189, 313
file at addressl89, 313
file at program countef,89
file at symbol from symbols screet89
file from memory display screeh89
embedded microprocessor systéiy
emul700, command to start the emulator/analyzer intef$&ce,
emulation bus analyzes17
emulation memoryl21
dual-port,110
loading absolute filed,41
size of,121
synchronizing to target syste?2
emulation monitor517
foreground or backgroundi12-119
function of,113
emulation session
exiting, 60
emulation, external analyzer mo@82
emulator 518
bus error respons&31
configuring the 96
data bus width133
device table file32, 53-54
error messageg4b5
general descriptior,
multiple start/stop5, 297-298
running from target resetb5
status lines, predefined values 2t,1
using the 140
emulator configuration
address driven during backgrouid4
background cycles driven to targe4
break processor on write to ROWB6
bus arbitration129
bus arbitration tagging,30

529

Index

bus error respons&22
bus error response by emulatbs,l
clock selection108
data bus width133
DTACK interlock,128
DTACK interlock for monitor119
exiting the configuration interfac&)7
function codes driven during backgrouag4
inverse assembly syntak]0
load command375
loading from file,107
modify command378
modifying a configuration sectiofhp2
monitor entry after109
restrict to real-time run4,09
starting the configuration interfac)0
storing,104
supervisor stack pointer reset vallig2
target memory access sii83
target system interrupts enable/disab®&?
trace background/foreground operatib87
TRAP instruction for breakpoint,37
emulator limitations129
DMA support,121
emulator status
displaying,193
emulator/analyzer interface
exiting, 47, 59-60
running in multiple windows53
starting,53-56
enable/disable target system interrup&2
end command}7, 60, 365
entry
pod command®2
simulated 10195
entry buffer27
address copy-and-paste 66,
clearing,68
copy-and-paste fron72
copy-and-paste t&8
Entry Buffer Recall dialog bo27

530

Entry Buffer Recall dialog box, operatiofl
multi-window copy-and-paste frori2
multi-window copy-and-paste t69
operation,/1
recall button27
recalling entriesy1
symbol width and copy-and-paste &6,
text entry 68
with action keys71, 73
with pulldown menus/71
Entry Buffer Recall dialog box operatiord
environment variables (UNIX)
HP64KPATH,90
HP64KSYMBPATH,417
PATH, 53
Softkey Interface, setting while ih86
eram, memory characterizatidr®2
erom, memory characterizatick®2
error log
to file, 193
error messaged34
analyzerd73
emulator455
general and system error/stat)
Terminal Interface455
error_log
copy command340
display command347
event log
to file, 193
event_logh7
copy command340
display command348
EXECUTE
CMB signal,292
tracing at297
exit, emulator/analyzer interfacé/, 59-60
exiting
emulation sessioG0
emulator/analyzer windowSs9
expression07

Index

531

Index

--EXPR-- syntax366-368
external analyzer
configuration,279-287

general descriptior,
labels,280, 286
mode,282

should emulation control280
using,274
external data, trace display opti@38

F file
breakpoints screen th92
data values screen tt92
display area tal92
editing,189
editing at addres4,89
editing at program countet89
editing at symbol from symbols screé89
editing from memory display screet89
emulator configuratiori,04
emulator configuration load 07
emulator status screen 493
error log t0,193
event log t0]193
global symbols ta]193
local symbols t0193
memory t0,192
pod commands screen 93
registers t0192
trace listing to192
file extensions
.EA and .EB, configuration filed04
file formats
address ranges for SPMT measuremets,
time ranges for SPMT measureme83
File Selection dialog box operatiorg-75
firmware updatesh
foreground112-113, 518
foreground monitor]1 13
advantages/disadvantagé4
customizing,114
emulator modes when usirntj,3

532

example of usingl17

location of shipped fileg,14

memory space requiretil4

selecting112-119

single-step processdr16-117
foreground operation, tracing37
formal parameters (command file8Y,
forward command, synta871
function code lines to analyz&x10
function codes

driven during background,34

mapping memoryl26

memory mappingl26

monitor,116

need for separately linked modul&26
functions, step ovef,76

global restart qualifiei223, 518
global symbols33, 208, 352
copy command340
display commandi44, 352
initializing the SPMT measurement wi49
to file, 193
grabbers
connecting to analyzer prot&7
guarded memory accessgg2, 126, 219

halfbright, 79-80
halt, trace203
hand pointer27, 67
hardware
HP 9000 memory need493
HP 9000 minimum performancé93
HP 9000 minimums overview92
SPARCsystem memory need84
SPARCsystem minimum performand84
SPARCsystem minimums overvied94
help
command line82
copy command340
help index,77
on-line,85

Index

533

Index

softkey driven informatiorg§5
help command372-373
help index, displaying;7
hexadecimal number208
HP 9000
700 series Motif librariegt93
HP-UX minimum versior493
installing software495-505
minimum system requirements overviel92
HP 98659 RS-422 Interface Cafd,
HP-UX
minimum version493
HP64KPATH, UNIX environment variablép
HP64KSYMBPATH environment variablé17

IEEE-695 absolute file format4l
input
pod command$?2
simulated 10195
input scheme312, 486
installation
at a glance492-494
HP 9000 overview492
HP 9000 specific instruction495-505
SPARCsystem specific instructiofi)6-515
SPARCsystems overview94
instance name, X applicatios31-482
interactive measuremen99
interface
exiting, 60
interface, emulator configuration
exiting, 107
modifying a section]102
starting,100
interlock DTACK, 122, 128
for monitor,119
interrupts, 114
enable/disable from target systei32
inverse assembly syntax, emulator configuratid,
inverse video
graphical interface demo/tutorial file&22
inverse video, source line display opti@3,1

534

Index

keyboard
choosing menu itemsp
pod command$92
simulated i0195
keyboard accelerator§6
keyboard focus policyg6
keyboard_to_simio, modify commarg79

label scheme312, 316, 486
labels
configuration file 287
LANG environment variable}86
LD_LIBRARY_PATH environment variablég10
libraries
Motif for HP 9000/700493
limitations, DMA,129
line numbers (source file), symbol displagb
line numbers (trace)
displaying about228
line numbers (trace), displaying abd27
lines in main display ared13-314
list, trace,204
load command374-375
absolute files141
configuration,375
trace,241-242, 375
trace_spe240, 375
local symbols208, 353
copy command342
display commandi 45, 353
initializing the performance measurement wah9
to file, 193
locked, end command optiodn)
log_commands comman8y/6

map command,27
mapper ranged,20
mapping memory]20-127
memory,343-344
activity measurements (SPMB45, 252
characterization of 22
contents listed as asterisk (343

535

Index

copy command343-344
display command354-357
displaying,175
displaying at an addresk?9
displaying repetitively180
dual-port emulatiori. 10
loading programs intd,41
mapping,120-127
mnemonic format display,76
modify command380-382
modifying, 180
re-assignment of emulation memory blocks in magis,
store command}15
to file, 192
memory mapping
block size 120
function code specificatioi26
overlaid addresse$26
resolution,120
using emulation memory in place of tardety
memory recommendations
HP 9000493
SPARCsystem}94
memory refrest98
menus
editing command line with popufl
hand pointer means popgy,, 67
pulldown operation with keyboar@5
pulldown operation with mousé4-65
messages
status 460
Terminal Interface errod55
mixed, slave clock mod&83
mnemonic information in trace listing30
mnemonic memory displag3, 176
mnemonic memory display, setting the source/symbol ma8as,
modes, source/symbdI83
modify
registers174
modify command377
configuration,378

536

Index

keyboard_to_simio379
memory,380-382
register, 383
software_breakpoint884-385
modify_command, trace command optiaf6
module duration measurements (SPMZBQ
module usage measurements (SPN2EY)
monitor (emulation)
address 0f]116
foreground monitor filenamé@16
foreground or background12-119
foreground/background comparisdii4
function code selectiod,16
function of,113
selecting112-119
selecting entry after configuratiob)9
Motif
HP 9000/700 requiremen#93
mouse
choosing menu item8&5
mouse button9
mouse, choosing menu itenbd,
multi-window
copy-and-paste from entry bufféi2
copy-and-paste to entry buff&9
multiple commands33
multiple emulator start/stop,

name_of module commantB7

nesting command file§6

NORMAL key, 334, 366

nosymbols143

notes
"perf.out" file is in binary forma70
breakpoint locations must contain opcodes, 167
CMB EXECUTE and TRIGGER signal292
external timing analyzer does not use configuration lap@is,
measurement errors on recursive/multiple entry routi@&s,
only one range resource availal#es
re-assignment of emulation memory blocks by mag25,
selecting internal clock forces resEd8
some compilers emit more than one symbol for an add®&3s,

537

Index

step command doesn’t work when CMB enabRs,

trigger found but trace memory not fille2D)5
number base207
number of source lines, trace display opt2si
numerical value207

occurrence countl14, 221
octal numbers207
offset by, trace display optio836
on-line helpB85
on_halt, trace command opticd1,9
only, trace command storage qualifiét5
operating system
HP-UX minimum version493
SunOS minimum versiod94
operators208
overlaid addresses
memory mappingl26
overview
HP 9000 installatior492
installation,492-494
SPARCsystems installatiof94

parameter passing in command filg8,
parent symbol
displaying from symbols screet%9
paste mouse buttoR9
PATH, UNIX environment variablé&3
perf.out, SPMT output file250, 264, 269-271, 386
perf32, SPMT report generator utili44, 269-270
interpreting report52, 265
options,271
using the71
performance measurements
Seesoftware performance measurements
performance_measurement_end commagd,

performance_measurement_initialize comm&8d-388

performance_measurement_run comma&s8;390
platform
HP 9000 memory need493
HP 9000 minimum performanc493
SPARCsystem memory need84

538

Index

SPARCsystem minimum performand®84
platform scheme312, 485
pod commands91-392

copy command341

display command348

display screer2

keyboard input92

screen to file193
popup menus

command line editing wittg1

hand pointer indicates presen2e, 67
positioning the trace display left/rigi205
positioning the trace display up/doviaf)s
prestore216
prestore qualifier216
prestore qualifier16, 518
primary branches (analyzer sequencety
processor data bus widtt33
processor typé&4
program activity measurements (SPMd35, 252
program counter

mnemonic memory displag4

running from,154
pulldown menus

choosing with keyboard5

choosing with mous&4-65
pushbutton select mouse buttés,

QUALIFIER, in trace comman®93-394
qualifiers,211

count,217

prestore216

simple trigger212

slave clock283

storage215

RAM, mapping emulation or targei22
range resource, note 895

RANGE, in trace comman895-396
ranges, memory mappé20

READY, CMB signal 291

real-time executior18

539

Index

real-time runs
commands not allowed duringy] 0
restricting the emulator t409
recall buffer27
columns 319
initial content,319-320
lines,319
recalling entriesy1
recall, command4
dialog box,82
recall, trace specifications dialog b@06
recursion in SPMT measuremeris)
registers
copy command345
display command358
display/modify,173-174
displaying,173
modify, 174
modify command383
to file, 192
registers, displayin@9
relative count, in the trace displ@®385
release_system, end command opth),60, 104
repetitive display of memory.80
reset (emulator), commands which cause exit fi®8,
reset comman@97
reset SSP and foreground monitt32
reset value for supervisor stack poinf32
reset, run from target55
resolution, memory mappeir20
resource
SeeX resource
RESOURCE_MANAGER propertyl84
restart term221, 223
restrict to real-time runs
emulator configuratior,09
permissible commandp9
target system dependendg9
ROM
mapping emulation or targei22
writes 10,122

540

RS-422, host computer interface cédid,
run command] 54, 398-399
run from reset]55

scheme files (for X resource§)l1, 485
color scheme312, 316, 486
custom316-317, 487
input scheme312, 486
label scheme312, 316, 486
platform scheme312, 485
size schemeg12, 486

scroll bar 27

secondary branch expressiéig

select mouse butto89

selecting emulation monitot12-119

sequencer (analyze§18
branch519
terms,221, 518
using the221-225

SEQUENCING, in trace commar#)0-401

server, X310, 484

set command}02-406

shell variables38

sig INT, 269

signals, CMB291

simulated 1/096, 379
display command359

simulated io
displaying screeri,94, 196
keyboard input195

size scheme312, 486

slave clocks283

softkey driven help informatio85

softkey pushbuttong7

softkeys 83

software
installation for HP 9000495-505
installation for SPARCsystems06-515

software breakpoint4,60-172
clearing,170
clearing all 172
copy command341

Index

541

Index

deactivating167
display command360
enable/disablel 63
modify command384-385
opcode locationd, 65, 167
permanent, setting,65
re-activating, 168
ROM code, 160
selection of TRAP instructior,37
setting,166
setting all,167
setting while running user codes1
software breakpoints list, displayint2
software performance measuremep#s, 245-272
absolute informatiorg52
activity measurement245-259
adding trace250, 264
duration,260-268
end,386
ending,270
how they are mad@44
initialize, 387-388
initializing, 248, 263
initializing, default,248
initializing, duration measuremenf§3
initializing, user defined range®49, 263
initializing, with global symbols249
initializing, with local symbols249
memory activity 245, 252
module duration260
module usage60
program activity245, 252
recursion260
relative information252
restoring the current measureme@0, 264
run,389-390
running,269
trace command setup47
trace display deptt247
source lines
set command405

542

Index

symbol display145
trace display231
trace display, number 31
source/symbol modes, settiri@3
SPARCsystems
installing software506-515
minimum system requirements overviel94
SunOS minimum versiod94
specify command07-408
SPMT (Software Performance Measurement Tool)
Seesoftware performance measurements
sq adv, captured sequence stap2
SRU (Symbolic Retrieval Utilities}17-418
SSP unaffected by target resets during backgrdig,
Stack is in guarded memory, error messaga,
stack pointer (supervisor), reset vallig2
state, external analyzer mo@82
STATE, in trace command09-410
status
copy command34l
display command200, 348
status (analyzer state qualifier softke3d1, 396, 410
predefined values fog11
status line27
status line (displayh7
status, emulator
screen to file193
step command5, 157-158, 411-412
step overl76
stop_trace commangd3, 413
storage qualifier15
store commandi14-415
absolute files141-142
store trace commang41-242
store trace_spec comma39
summary of command335
SunOS

minimum version494
supervisor stack pointer, reset vallig2
switching

directory context in configuration windod05

543

Index

directory context in emulator/analyzer windds?2

symbol context153
--SYMB-- syntax416-422
symbol context
changing 153
displaying,152
symbol file, loading143
symbols,143, 208
displaying,143
displaying parent from symbols scre&A9
global to file,193
local to file,193
set command}05
--SYMB-- syntax,416-422
trace display233
synchronous measuremergsy
syntax conventiong34
system requirements
HP 9000 overview492
HP-UX minimum version493
OSF/Motif HP 9000/700 requirement§3
SPARCsystem overviewt94
SunOS minimum versiod94

t (start trace) commangp0
tabs are, source line display opti@g1l
tagging bus arbitratior,30
target memory
access sizd,33
loading absolute filed,41
ROM, symbols for143
target reset, running frorh55
target systenf19
dependency on executing cod69
interrupts, enable/disabl&32
RAM and ROM,122
terminal emulation window, opening93
threshold voltage280-281
time range file format (SPMT measuremer26j3
timing
external analyzer mod282
trace,519

544

Index

at EXECUTE,297
copy command346
depth of 206
display command361-364
displaying the204
halting the 203
listing the,204
listing to file,192
load command375
loading,241-242
on_halt,219
prestore qualifier216
recalling trace specification806
starting the200
stopping the203
storage qualifier215
storage qualifier with prestor216
store command}15
storing,241-242
Trace Specification Selection dialog b806
trigger position212
trace command}23-425
default,200
loading and storing239-240
setting up for SPMT measuremertdy
trace display226-238
about line numberg27-228
absolute forma29
count absolute/relativ@35
default,237
depth, SPMT measuremerig,7
external date238
mnemonic format230
offset by,236
positioning, left/right205
positioning, up/dowrn205
source line inclusiorg31
symbol information inclusior233
width of columns234
trace display, setting the source/symbol motig3,
trace signals (emulation analyz&()9

545

Index

trace status displag00
trace_spec

load command375

store command}15
tracing background operatioh37
tram, memory characterizatiot2
transfer addres4b5
TRAP instruction

selecting for software breakpoinis7

software breakpoints (680060
trigger,519

condition,212

position,212

position, accuracy 0212

specifying a simpleg12

stop driving on brealk304
TRIGGER, CMB signal291
TRIGGER, in trace command26-427
trom, memory characterizatioh?22
TTL (softkey for specifying threshold voltagea$ 1
tutorials

setting up321-323

undefined software breakpoiii0

uploading memons

user (target) memory, loading absolute fille&l
user progrant18

values 207

predefined for analyzer state qualifie2$,1
vector table132
voltages, threshol@81

wait command428-429

command files, using 186
watchdog timer98
widget resource

SeeX resource
width of columns, trace display optid234
window

exiting emulator/analyzeb9
WINDOW, in trace command,30-431

546

window, terminal emulation, openint93
windows
opening additional emulator/analyzgr,
running the emulator/analyzer interface in multipe,
workstation
HP 9000 memory need493
HP 9000 minimum performancé93
SPARCsystem memory need94
SPARCsystem minimum performand84
write to ROM break136

X client, 310

X resource310
$XAPPLRESDIR directory484
$XENVIRONMENT variable 485
Xdefaults file 484
/usr/hp64000/lib/X11/HP64_schemdsy/
app-defaults file484
class name for applicatiord32
class name for widget482
command line optiongl85
commonly modified graphical interface resour@ds
defined,481
general form481
instance name for applicatio32
instance name for widge#31
loading order484
modifying resources, generally12-315
RESOURCE_MANAGER property#34
scheme file system directod@7
scheme files, Graphical User Interfad85
scheme files, named86
schemes, forcing interface to use cert4d@h
Softkey.BW,486
Softkey.Color486
Softkey.Input486
Softkey.Label486
Softkey.Large486
Softkey.Small486
wildcard characte®82
xrdb, 484
xrm command line optior85

Index

547

Index

X server,310, 484

X Window System53

xbits, external analyzer lab&86

XEnv_68k_except symbol and effect on breakpoidt@s,

548

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not

WARNING

replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).
.

Protective conductor terminal. For protection against electrical shock in case of a
OR fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,

—;— as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

“rame or chassis terminal. A connection to the frame (chassis) of the equipment
| OR I thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

V4

Alternating or direct current (power line).

4

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	68000 Emulation and Analysis
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Starting and Exiting HP 64700 Interfaces
	Entering Commands
	Configuring the Emulator
	Using the Emulator
	Using the Emulation Analyzer
	Making Software Performance Measurements
	Using the External State Analyzer
	Making Coordinated Measurements
	Setting X Resources

	Reference
	Emulator/Analyzer Interface Commands
	Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty
	Safety

