User’s Guide

HP B1476
68020/030
Debugger/Emulator

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damagesimection

with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1989-1992, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure bythe U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(¢)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level
of the software product at the time the manualisssed. Manproduct

updates and fixes do not require manual changes, and manual corrections may
be done without accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and margiahsev

Edition 1 B1476-97006, July 1992

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

Debugging C Programs for 68020/030
Microprocessors

The HP B1476 68020/030 Debugger/Emulator is a debugging tool for 68020
and 68030 mimprocessor code. The debugger loads and executes C programs
or assembly language programs on an@4P48 or HP 64747 emulator. The

code is executed in real time unless a specific feature of the debugger or
emulator requires halting the processor. The emulator functions as a
high-speed execution environment for the debugger.

With the Debugger, You Can ...

* Browse and edit C and C+ + source files.

* ViewC and C+ + functions on the stack.

* Monitor variables as the program executes.

* Viewassembly language code with source lines.

» Viewregisters and stack contents.

» Step through programs by C or C+ + source lines or by assembly language
instructions.

» Stop programs upon the execution of selected instructions or upon a read
or write of selected memory locations.

» Create conditional breakpoints using macros.

» Patch C or C+ + code without recoitipg.

» Collect microprocessor Isdevel data as thgrogram executes. You can
specify when data should be collected and which states get saved.

» Simulate input and output devices using your computer’s keyboard,
display, and file system.

+ Save and execute command files.

 Logdebugger commands and output.

« Examine the inheritance relationships of C+ + classes.

» Use the debugger, the emulator/analyzer, and the Software Performance
Analyzer together.

With the Graphical Interface You Can ...

* Use the debugger under an X Window System that supports O SF/Motif
interfaces.

» Enter debugger commands usindlfown orpop-up menus.

e Set source-level breakpoints using the mouse.

» Create custom action keys for commonly used debugger commands or
command files.

* Viewsource code, monitored data, registers, stack contents, and backtrace
information in separate windows on the debugger’s main display.

» Accesson-line help information.

* Quickly enter commands using the guided syntax of the standard interface.

With the Standard Interface You Can ...

» Use the debugger with a terminal or terminal emulator.

* Quickly enter commands using guided syntax, command recall, and
command editing.

* Viewsource code, monitored data, registers, stack contents, and backtrace
information in separate windows on the debugger’s main display.

» Define your own screens and windows in the debugger’s main display.

» Access on-line help information.

In This Book

This book is organized into five parts:

Part 1. Quick Start Guide

An overview of the debugger and a short lesson to get you started.

Part 2. User’s Guide

How to use the debugger to solve your problems.

Part 3. Concept Guide

Background information on X resources.

Part 4. Reference

Descriptions of what each debugger command does|slethow the
debugger works, and a list afrer messages.

Part 5. Installation

How to install the debugger software on your computer.

Vi

Contents

Part 1

Quick Start Guide

Getting Started with the Graphical Interface

The Graphical Interface at a Glance

Pointer and cursor shapes 5

The Debugger Window 6
Graphical Interface Conventions 8
Mouse Buttons 9

Platform Differences 10

The Quick Start Tutorial 11

The Demonstration Program 11

To prepare to run the debugger 12
To start the debugger 13

To activate display area windows 15
To run until main() 16

To scroll the Code window 17

To display a function 18
Torununtilaline 19

To edit the program 20

To display init_system() again 21
To set a breakpoint 21

To run until the breakpoint 22

To patch code usinga macro 23

To delete a single breakpoint 25
To delete all breakpoints 25

To step through a program 26

To run until a stack level 26

To step over functions 27

To step out of a function 27

To display the value of a variable 27
To change the value of a variable 28

Vii

Contents

To recall an entry buffer value 29

To display the address of a variable 30

To break on an access to a variable 31

To use the command line 32

To use a C printf command 32

To turn the command line off 33

To trace events following a procedure call 34
To see on-line help 35

To end the debugging session 36

2 Getting Started with the Standard Interface
The Standard Interface At a Glance 38

The Quick Start Tutorial 40

Before You Begin 40

The Demonstration Program 40

To copy the demonstration files 41

To start the debugger 42

To enter commands 43

To activate display area windows 43
To display main() 44

To display a subroutine 44

To set a breakpoint 45

To run the demo program 45

To step through the program 46

To step over functions 46

To delete a breakpoint 46

To display variables in their declared type 47
To display the address of a variable 47
To use a C printfcommand 48

To break on an access to a variable 48
To display blocks of memory 49

To monitor variables 50

To modify a variable by entering a C expression
To end the debugging session 51

viii

Contents

Part 2 User's Guide

3 Entering Debugger Commands

Using Menus, the Entry Buffer, and Action Keys 59

To choose a glidown menu item using the mouse (method 1) 59
To choose a diidown menu item using the mouse (method 2) 60
To choose a diidown menu item using the keyboard 61

To choose pop-up menu items 62

To use pop-up menu shortcuts 63

To place values into the entry buffer using the keyboard 63

To copy-and-paste to the entry buffer 63

To recall entry buffer values 65

To edit the entry buffer 66

To use the entry buffer 66

To copy-and-paste from the entry buffer to the command line entry area
To use the action keys 67

To use dialog boxes 68

To access help information 72

Using the Command Line with the Mouse 73

To turn the covqmand line on or off 74

To enter acommand 75

To edit the command line using the command line pushbuttons 76
To edit the command line using the command poe-up menu 77
To recall commands 77

To get help about the command line 78

Using the Command Line with the Keyboard 79

To enter debugger commands from the keyboard 79

To edit the command line 81

To recall commands using the command line recall feature 81
To display the help window 82

Viewing Debugger Status 84

Debugger Status 84
Indicator Characters 85
CPU Emulated 85
Current Module 85

Contents

Last Breakpoint 86
Trace Status 86
If pop-up menus don't pop up 87

Loading and Executing Programs

Compiling Programs for the Debugger 90

Using a Hewlett-Packard C Cross Compiler 90
Using Microtec Language Tools 92

Loading Programs and Symbols 94

To specify the location of C source files 94
To load programs 95

To load programs only 96

To load symbolsonly 97

To append programs 97

To specify demand loading of symbols 98

Stepping Through and Running Programs 100

To step through programs 100

To step over functions 101

To run from the current PC address 102
To run from a start address 102

To run until a stop (break) address 103

Using Breakpoints 105

To set a memory access breakpoint 105

To set an instruction breakpoint 107

To set a breakpoint for a C+ + object instance 109

To set a breakpoint for overloaded C+ + functions 110
To set a breakpoint for C+ + functions in a class 110

To clear selected breakpoints 111

To clear all breakpoints 112

To display breakpoint information 112

To halt program execution on return to a stack level 115

Restarting Programs 116

To reset the processor 116
To reset the program counter to the starting address 116

Contents

To reset program variables 117

Loading a Saved CPU State 118
To load a saved CPU state 118

Using the MC68030 Memory Management Unit 120

The deMMUer 120

The emulator/analyzer interface 120
Restrictions when using the MMU 120
To enable the MMU 121

Accessing the UNIX Operating System 122

To fork a UNIX shell 122
To execute a UNIX command 123

Using the Debugger and the Emulator Interface 124
To start the emulation interface from the debugger 124

Using simulator and emulator debugger products together

Using the Debugger with the Branch Validator 126
To unload Branch Validator data from programemory 126

Viewing Code and Data

Using Symbols 130

To add a symbol to the symbol table 130

To display symbols 131

To display symbols in all modules 132

To delete a symbol from the symbol table 132

Displaying Screens 134

To display the high-level screen 136

To display the assembly level screen 136

To switch between the high-level and assembly screens 136
To display the standard I/O screen 137

To display the next screen (activate a screen) 137

xXi

125

Contents

Displaying Windows 139

To change the active window 141

To select the alternate view of a window 142

To view information in the active window 143

To view information in the "More" lists mode 144
To copywindow contents to a file 145

Displaying C Source Code 146

To display C source code 146
To find first occurrence of a string 147
To find next occurrence of a string 147

Displaying Disassembled Assembly Code 149
To display assembly code 149

Displaying Program Context 150

To set current module and function scope 150

To display current module and function 151

To display debugger status 151

To display register contents 152

To display the function calling chain (stack backtrace) 153

To display all local variables of a function at the specified stack
(backtrace) level 157

To display the address of the C+ + object invoking a member function

Using Expressions 159

To calculate the value of a C expression 159

To display the value of an expression or variable 160
To display members of arsicture 161

To display the members of a C+ + class 162

To display the values of all members of a C+ + object 162
To monitor variables 163

To monitor the value of aregister 164

To discontinue monitoring specified variables 164
To discontinue monitoring all variables 165

To display C+ + inheritance relationships 165

To print formatted output to a window 166

To print formatted output to journal windows 166

Xii

158

Contents

Viewing Memory Contents 168

To compare two blocks of memory 168

To search a memory block for a value 168

To examine a memory area for invalid values 169
To display memory contents 170

How Simulated I/O Works 171

Simulated 1/0 Connections 172

Special Simulated I/O Symbols 173

To enable simulated 1/O 174

To disable simulated 1/O 175

To set the keyboard I/O mode to cooked 175
To set the keyboard I/O mode toraw 175

To control blocking of reads 176

To interpret keyboard readsas EOF 176

To redirect I/O 177

To check resource usage 178

To increase file resources 179

If problems occur when using simulated 1/0O 181

Making Trace Measurements

The Trace Function 184

To start a trace using the Code pop-up menu 190

To start a trace using the command line 190

To stop a trace in progress 191

To displayatrace 192

To specifytrace events 193

To delete trace events 194

To specify storage qualifiers 194

To specify trigger conditions 196

To halt program execution on the occurrence of a trigger 197

To remove a storage qualification term 198

To remove a trigger term 198

To trace code execution before and after entryinto a function 199
To trace data written to a variable 199

To trace data written to a variable and who wrote to the variable 200
To trace events leading up to writing a particular value in a variable 201
To execute a complex breakpoint using the trace function 202

To trace entryto and exit from modules 203

If tracing is not triggered as expected 205

Xiii

Contents

7 Editing Code and Data

Editing Files 208

To edit source code from the Code window 208

To edit an arbitraryfile 209

To edit a file based on an address in the entry buffer 209
To edit a file based on the current program counter 209

Patching Source Code 210

To change a variable using a C expression 210
To patch a line of code usinga macro 211

To patch C source code byinserting lines 212
To patch C source code by deleting lines 212

Editing Memory Contents 214

To change the value of one memory location 214
To change the values of a block of memory interactively 214
To copy a block of memory 215

To fill a block ofmemory with values 216
To compare two blocks of memory 216
To re-initialize all program variables 217

To change the contents of a register 217

Using Macros and Command Files

Using Macros 221

To display the Macro Operations dialog box 225
To define a new macro interactively using the graphical interface

To use an existing macro as a template for a new macro 226

To define a macro interactively using the command line 227
To define a macro outside the debugger 228

To edit an existing macro 228

To save macros 229

To load macros 229

If macros do not load 229

To callamacro 230

To call a macro from within an expression 231

To call a macro from within a macro 231

To call a macro on execution of a breakpoint 232

To call a macro when stepping through programs 234

225

Xiv

Contents

To stop a macro 235
To display macro source code 235
To delete a macro 236

Using Command Files 237

To record commands 238

To place comments in a command file 239

To pause the debugger 239

To stop conmand recording 240

To run a conmand file 240

To set command filereor handling 241

To append commands to an existing command file 242
To record commands and results irarjnal file 242

To stop conmand and result recording toaujnal file 243
To open a file or device for read or write access 243
To close the file associated with a window number 244
To use the debugger in batch mode 245

Configuring the Debugger

Setting the General Debugger Options 249

To display the Debugger Options dialog box 249

To list the debugger options settings 249

To specify whether command file commands are echoed tothradl

window 250

To set automatic alignment for breakpoints and disassembly 250

To set backtrace display of bad stack frames 251

To specify demand loading of symbols 252

To select the interpretation of numeric literals (decimal/hexadecimal) 252
To specify step speed 253

Setting the Symbolics Options 254

To display symbols in assembly code 254
To display intermixed C source and assembly code 255
To enable parameter checking in commands and macros 255

Setting the Display Options 257

To specify the Breakpoint window display behavior 257
To specify the View window display behavior 258
To specify the standard I/O window display behavior 258

Contents

To display half-bright or inverse video highlights 259
To display information a screen at a time (more) 259
To specify scroll amount 260

To store timing information when tracing 260

To mask fetches while tracing 261

Modifying Display Area Windows 262

To resize or move the active window 262

To move the Status window 263

To define user screens and windows 264

To display user-defined screens 265

To erase standard 1/0O and user-defined window contents 265
To remove user-defined screens and windows 266

Saving and Loading the Debugger Configuration 267

To save the current debugger configuration 267
To load a startup file 268

Setting X Resources 270

To modify the debugger’s graphical interface resources 272
To use customized scheme files 276

To set up custom action keys 278

To set initial recall buffer values 279

To set up demos or tutorials 280

10 Configuring the Emulator

To start the Emulator Configuration dialog box 285
To modify a configuration section 286

To store a configuration 287

To examine the emulator configuration 288

To change the configuration directory context 288
To display the configuration context 289

To access configuration help information 289

To exit the Emulator Configuration dialog box 289
To load a configuration file 290

To create or modify a configuration file 292

If an error occurs when loading a configuration file 292
To store an emulator configuration 293

Contents

Emulator Configuration Items 294

Memory 294

Emulation Monitor 294

Break Conditions 295

Other Configuration Items 295

To enter the monitor after configuration 296

To restrict to real-time runs 297

To enable the processor cachemory 298

To enable one wait state for emulation memory 299

To change the memory configuration 299

To enable the MC68030 Memory Mareagent Unit 300

To select and configure the MC68030 emulation rmmi 301
To select and configure the emulation monitor 301

To set up specifications for the emulation monitor 302
To assignimemory map terms 308

To modify the emulator pod configuration 316

To disable target system interrupts 317

To preset the interrupt stack pointer and Program Counter 317
To set the target memory access size 319

To modify the debug/trace options 320

To break the processor on a write to ROM 320

To define the software breakpoint vector 321

To trace background or foreground operation 322

To configure the analyzer clock 323

To modify the simulated I/O configuration 324

To modify the interactive measurement specification 325

Mapping The Foreground Monitor For Use With The
MC68030 MMU 326

To modify the MMU mappings to translate the monitor address
space 1:1 327

To modify a transparent translation register to map the monitor address
space 1:1 328

Xvil

Contents

Part 3

11

Concept Guide

X Resources and the Graphical Interface

An X resource is user-definable data 332

A resource specification is ame and a value 332

Don't worry, there are shortcuts 333

But wait, there is trouble ahead 334

Class and instance apply to applicationsaswell 335

Resource specifications are found in standard places 336
Loading order resolves conflicts between files 337

The app-defaults file documents the resources you can set 338
Scheme files augment other X oesce files 338

You can create your own seime files, if you boose 340

Scheme files continue the load sequence for duses 340

You can force the debugger’s graphical interface to use certain schemes
Resource setting - general procedure 342

Part 4

12

Reference

Debugger Commands
How Pulldown Menus Map to the Command Line 348
How Popup Menus Map to the Command Line 351

Command Summary 353

Breakpoint Commands 353
Session Control Commands 353
Expression Commands 354

File Commands 354

Memory Commands 355
Program Commands 356
Symbol Commands 356

Trace Commands 357

Window Commands 357

Xviii

340

Contents

Breakpt Access 358

Breakpt Clear_All 360

Breakpt Delete 361

Breakpt Instr 362

Breakpt Read 364

Breakpt Write 365

Debugger Directory 366

Debugger Execution Display_Status 367
Debugger Execution Environment FwdCmd 368
Debugger Execution Environment Load_Config 369
Debugger Execution Environment Modify_Config 370
Debugger Execution |O_System 371
Debugger Execution Load_State 374
Debugger Execution Reset_Processor 375
Debugger Host_Shell 376

Debugger Help 378

Debugger Level 379

Debugger Macro Add 380

Debugger Macro Call 383

Debugger Macro Display 384

Debugger Option Command_Echo 385
Debugger Option General 386
Debugger Option List 389

Debugger Option Symbolics 390
Debugger Option Trace 392

Debugger Option View 393

Debugger Pause 396

Debugger Quit 397

Expression C_Expression 399
Expression Display_Value 400
Expression Fprintf 403

Expression Monitor Clear_All 408
Expression Monitor Delete 409
Expression Monitor Value 410
Expression Printf 413

File Command 415

File Error_Conmand 416

File Journal 417

File Log 418

File Startup 420

File User_Fopen 423

XiX

Contents

File Window_Close 425

Memory Assign 426

Memory Block_Operation Copy 428
Memory Block_Operation Fill 429
Memory Block_Operation Match 431
Memory Block_Operation Search 433
Memory Block_Operation Test 435
Memory Display 437

Memory Register 439

Memory Unload_BBA 441
Program Context Display 444
Program Context Expand 445
Program Context Set 446

Program Display_Source 447
Program Find_Source Next 448
Program Find_Source Occurrence 449
Program Load 451

Program Pc_Reset 454

Program Run 455

Program Step 458

Program Step Over 460

Program Step With_Macro 462
Symbol Add 463

Symbol Browse 466

Symbol Display 467

Symbol Remove 472

Trace Again 474

Trace deMMUer 475

Trace Display 477

Trace Event Clear_All 483

Trace Event Delete 484

Trace Event List 485

Trace Event Specify 486

Trace Event Used_List 490

Trace Halt 491

Trace StoreQual 492

Trace StoreQual Event 496

Trace StoreQual List 498

Trace StoreQual None 499

Trace Trigger 500

Trace Trigger Event 504

13

Contents

Trace Trigger List 507
Trace Trigger Never 508
Window Active 509
Window Cursor 511
Window Delete 512
Window Erase 513
Window New 514
Window Resize 517
Window Screen_On 518
Window Toggle_View 519

Expressions and Symbols in Debugger Commands

Expression Elements 523

Operators 523
Constants 525

Symbols 530

Program Symbols 530
Debugger Symbols 531
Macro Symbols 531
Reserved Symbols 532
Line Numbers 532

Addresses 533

Code Addresses 533
Data and Assembly Level Code Addresses 533
Address Ranges 533

Keywords 535
Forming Expressions 536
Expression Strings 537

Symbolic Referencing 538

Storage Classes 538
Data Types 539
Special Casting 542
Scoping Rules 543

Contents

Referencing Symbols 543
Evaluating Symbols 547
Stack References 548

14 Reserved Symbols

15 Predefined Macros
break_info 558

byte 560

close 561
cmd_forward 562
dword 564

error 565

fgetc 566

fopen 567

key get 568

key stat 569
memchr 570
memclr 571

memcpy 572
memset 573

open 574

pod command 576
read 578

reg_str 579
showversion 580
strcat 581

strchr 582
strcmp 583
strcpy 584
stricmp 585
strlen 586
strncmp 587
until 588

when 589

word 590

write 591

xxii

Contents

16 Debugger Error Messages

17 Debugger Versions

Version A.05.00 612

Graphical User Interface 612

New Product Number 612

New Reserved Symbols 612

New Predefined Macro 612
Environment Variable Expansion 613
Target Program Function Calls 613
C++ Support 613

Simulated Interrupts Removed 613
Simulated I1/0 Changes 613

Support for68030 with MMU 613

Part 5 Installation Guide

18 Installation

Installation at a Glance 618

Supplied interfaces 618
Supplied filesets 619
Emulator/Analyzer Compatibility 619

To install software on an HP 9000 system 620

Required Hardware and Software 620
Step 1. Install the software 621

To install the software on a Sun SPARCsydiem 624

Required Hardware and Software 624
Step 1: Install the software 625
Step 2: Map your function keys 625

xxiii

Contents

To install the emulator hardware 627

To set up your software environment 628

To start the X server 628

To start HP VUE 629

To set environment variables 630

To find the logical name obyr emulator 632
To add an emulator to the 64700tab.net file 633
To add an emulator to the /etc/hosts file 634

To verify the software installation 635
To remove software 636

Configuring Terminals for Use with the Debugger 637

To configure HP terminals or bit-mapped displays 641

To configure the DEC VT100 terminal 643

To configure the VT220 terminal 645

To set the TERM environment variable 648

To set up control sequences 649

To resize a debugger window in an X-Window larger than 24 lines
by 80 columns 650

To resize a debugger window in a window larger than 24 lines
by 80 columns 651

XXiv

Part 1

Quick Start Guide

Part 1

Getting Started with the Graphical
Interface

How to get started using the debugger’s graphical interface.

Chapter 1: Getting Started with the Graphical Interface

When an X Window System that supports O SF/Motif interfaces is running on
the host computer, the debugger hagsphical interfaceghat provides

features such as pull-down apdp-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action kepoangp
recall buffers.

The debugger also hastndard interfacéor several types of terminals,

terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard. If you are using the
debugger’s standard interface, please skip to the chapter “Getting Started with
the Standard Interface”.

Some advanced commands are ndt-sited to menus. Those monands
are entered through temmand line The command line allows you to enter
standard interface commands in the graphical interface.

Chapter 1: Getting Started with the Graphical Interface

The Graphical Interface at a Glance .

Pointer and cursor shapes

Arrow

The arrow mouse pointer shows where the mouse is pointing.

Hand

The hand mouse pointer indicates that a pop-up menu is availablessingre
the right mouse button.

Hourglass

The hourglass mouse pointeeans "wait." If the debugger is busy executing a
program, you may stop it by pggng< Ctrl> -C.

Text

The "l-beam" keyboard cursor shows where text entered with the keyboard will
appear in the entry buffer or in a dialog box.

Command-line

The "box"' keyboard cursor on the command line shows where commands
entered with the keyboard will appear.

Chapter 1: Getting Started with the Graphical Interface

The Debugger Window

Menu bar——— File Display Modify Execution Breakpoints Window Settings Help
Actionkeys: | <Demo> |[Disp Src () |[DispSrcPC][Run |[RunTil()][RunXfer |
Action keyS < Your Key >|| Make CExpr() | Monitor () Step Step Over Step Out
Entry buffer ():|main Recall
Monitor 3 Backtrace———4—
1 num_checks *] 8. 80888408 :crtBientry
2 target_temp @ A
3 current_tem @
4 old_data [88]:temp 2]
Scroll bar 5 hunid °)
6 W 40
7 ave_humid ©.000Q00E+QQ
. 8 [81]1:temp]
Display are
Code 2
1 III***II***II***II***II***II***I****I****I****I***II***II***II***II***II**
2 A Hewlett-Packard Software Product
3 Copyright Hewlett-Packard Co. 1992
4
5 All Rights Reserved. Reproduction, adaptation, or translation without pri
& written permission is prohibited, except as allowed under copyright lawm |:|
7 LEREEEEES AR RS SRR SRR RS R R RS R R R R RS R R R R R RS R R R R R E RS R R R R RS RS
8 #include <stdio.h>
9 #include <string.h>
#include "update_sys.h"
#include “proc_spec.h”
III***II***II***II***II***II***I****I****I****I***II***II***II***II***II**
* This typedef is also found in demo.h but since demo.h is not included in|
* this file, this declaration appears here by itself.
ok ok ok o ok ok Ok ok o ok ok ok sk ROk ok ke i Ok ok ok s koK Ok ok e kK Ok o ok koK Ok ok sk Ok Ok Rk ROk ok i Ok Ok R s Ok Ok ok o ok ok Ok ok ok koK ok ok Ok Ok Ok k|
#define SHRINKFACTOR 1.3
#define LISTLEN NUM_OF_OLD*4+1 [l
Journal 1
W v
> File Command /fusr/hp64@86/cmdfiles/debug/examples.com
Status line—— “sratus: Command 68ECA30 MODULE: crtd BREAK #: @ TRC:Idle [1P]
>

Command lin

|Breakpt | |Debugger| |Express i Dl'll - |Memorgﬂ |Program| |St_.|mbu 1 | |N i I'IdDIlll |Trace|

Command Error_Command User_Fopen Journal Log Hindow_Close Startup

| Command: [Return][Recall Cursor: [Backup||[Forward][Clear to end][Clear]

Chapter 1: Getting Started with the Graphical Interface

Menu Bar. Provides pull-down menus from which you seleahaoands.
When menu items are not applicable, they appear half-bright and do not
respond to mouse clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons
and define the action to be performed. Action key labels and functions are
defined by setting X resources (see the “Configuring the Debugger” chapter).

Entry Buffer. Wherever you see "()"in a pull-down menu, the contents of the
entry buffer are used in that command. You can type values into the entry
buffer, or you can cut and paste values into the entry buffer from the display
area or from the command line entry area. You can also set up action keys to
use the contents of the entry buffer.

Display Area. This area of the screen is divided into windows which display
information such as high-level code, simulated input and output, and
breakpoints. To activate a window, click on its border.

In this manual, the word "window" usually refers to a window inside the
debugger display area.

Scroll Bar. Allows you to page or scroll up or down the information in the
active window.

Status Line. Displays the debugger status, the CPU type, the current

program module, the number of the last breakpoint, and the trace status. You
can press and hold the right mouse button to access the Status Line pop-up
menu.

Command Line. The command line area is similar to the command line in

the standard interface; however, the graphical interface lets you use the mouse
to enter and edit commands. You cantoff the canmand line if you only

need to use the pull-down menus.

Chapter 1: Getting Started with the Graphical Interface

Graphical Interface Conventions

This manual uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooseFile —~Load —-Executable...

means to select tHéle menu, then seletibad from the File menu, then
select theExecutable...item from the Load menu.

File

Context -4

Load t>Emulator Config ...
Store B|Executable ...

Copy Window I>{Program Only ... i
Log B[Symbols Only ...
Emul700 B> User-Defined Macros ...
Edit >

Term ...

Exit o4

Refer to the “Entering Debugger Commands” for specific information about
choosing menu items.

In this manual, the word "window" usually means a window inside the
debugger display area, rather than an X window.

Chapter 1: Getting Started with the Graphical Interface
Mouse Buttons

Mouse Buttons

Mouse Button Descriptions

Button Name General Function

left Selects pushbuttons. Pastes from the display area
to the entry buffer.

middle Pastes from the entry buffer to the command line
text area. If you have a two-button mouse, press
both buttons together to get the "middle button."

right Click selects first item in pop-up menus. Click on
window border activates windows. Press and hold
displays menus.

command select Displays pull-down menus. May be the left button
or right button, depending on the kind of
computer you have&See'Platform Differences.”

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

Platform Differences

A few mouse buttons and keyboard keys work differently between platforms.
This manual refers to those mouse button and keyboard bindings in a general
way. Refer to the following tables to find out the button names for the
computer you are using to run the debugger.

Mouse Button Bindings

Generic Button Name HP 9000 Sun SPARCsystem

command select left right

Keyboard Key Bindings

Generic Key Name HP 9000 Sun SPARCsystem
menu select extend char extend char
(diamond)
left-arrow left arrow left arrow
right-arrow right arrow right arrotv

MThese keys do not work while the cursor is in the main display area.

10

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

The Quick Start Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the debugger.

Perform the tasks in the sequence given; otherwise, your results may not be
the same as those shown here.

Some values displayed on your screen may vary from the values shown here.
The exercises and displays in this chapter were made using a HP 64747

40 MHz 68030/EC030 emulator. If you are using an emulator with a different
clock rate or the HP 64748 68020 emulator, the information displayed in some
windows on your screenithbe different.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental
control system (ECS). The system controls the temperature and humidity of a
room requiring accurate environmental control. The program continuously
looks at flags which tell it what action to take next.

Note Some commands are printed on two lines in this chapter. When entering
these commands, type the entire command on one line.

11

Chapter 1: Getting Started with the Graphical Interface
To prepare to run the debugger

To prepare to run the debugger

1 Check that the debugger has been installed on your computer. Installation is

described in the "Installation” chapter.

Find the logical name obyir emulator.

The emulator namemul68kis used in the examples in this chapter. If you
have given your emulator a different logicalme in the HB4700 emulator
device tabléusr/hp64000/etc/64700tab.netse your emulatorame or lan
address in the examples. See the section “To find the logical name of your
emulator” in the “Installation” chapter of this manual. SeeHIPe64700A

Card Cage Installation/Service Manufalr detailed information on installing
your emulator.

Find out where the debugger software is installed. If it is not installed under
"lusr/hp64000" then use "$HP64000" wherever "fusr/hp64000" is printed in this
chapter.

Check that "/usr/hp64000/bin" and "." are ouy $PATH environment
variable. (Type "echo $PATH"to see the value of $PATH.)

If the debugger software is installed on a different kind of computer than the
computer you are using, edit the "platformScheme"in the
/usr/hp64000/demo/debug_envihp64747/Xdefaults.demo or
/usr/hp64000/demo/debug_envihp64748/Xdefaults.demo file. For example, if
you are sitting at a Sun workstation which is networked to an HP 9000 Series
300 workstation, change the platform8aie to "SunOS".

12

Chapter 1: Getting Started with the Graphical Interface
To start the debugger

To start the debugger .

1 Change to the debugger demo directory:

cd /usr/hp64000/demo/debug_env/ <emulator>

where<emulator> is hp64747 for a 68030 or 68EC030 emulator, or hp64748
fora 68020 emulator.

2 Start the debugger by entering:
Startdebug emul68k

This will set some ensdnment variables, start the debugger, load a
configuration file, and load a program for you to look at.

If the logical name ofgur emulator is noemul68k then use the name of your
emulator instead afmul68k If you do not know the name adyr emulator,
see “To find the logical name odyr emulator” in the “Installation” chapter
of this manual.

The Startdebug script will ask you whetherhibald copy the demo files to
another directory.

Or, if you have installed the emulator/analyzer and Software Performance
Analyzer interfaces, you can use the following command to start all of the
interfaces:

Startall emul68k

Note If you were debugging your own program, you would need to entemenend
like:

db68k -e emul68k -C Config -c mycmd ecs

or, for the 68030/EC030 debugger/emulator:
db68030 -e emul68k -C Config -c mycmd ecs

13

Chapter 1: Getting Started with the Graphical Interface

To start the debugger

This command starts the debugger, which executes the command file
mycmd.conand loads the absolute fiées.x
See the “Loading and Executing Programs” chapter for more details.

W~ b W=

current_tem @

old_data [88]:temp *]
humid]

ave_temp 0.00000BE+00

ave_humid ©.000000E+00
[@1]:temp]

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | <Demo > Disp Srec () || Disp Src PC Run Run Til () Run Xfer
|< Your Key >| Make CExpr() Moenitor () Step Step Over Step Out
():|main |Recal
Monitor 3 Backtrace 4
num_checks @ 0. 00008400:crt@\entry
target_temp 8 A

1
2
3
4
5
6
7
8
9
1@
11
12
13
14
15
16
17

Code 2
f*tl***l*****t***tt**tl**tl**t**t***t***tl**tl**t***t***t**tl**tl**t***t**
A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translation without pri
written permission is prohibited, except as allowed under copyright law
ok ok ok ol ok o ok ok ok o ok ok ok ok ko ok ok ol ok ok ok ok ok ok Ok ok ok ok ok ok ok ok ok ok ok ok o o o ok ok ok ok ok ok ol ok ok ok ol ok ok ok ok ok ok ok K ok
#include <stdio.h>
#include <string.h>
#include "update_sys.h"
#include "proc_spec.h”
/**I***I**************I***I**************I***I**************I***I*********
* This typedef is also found in demo.h but since demo.h is not included in|
* this file, this declaration appears here by itself.

KK KKK K KKK KK R K KR K KR K K K K KK K R KK O K KKK KK R R K K KK KK OR K KKK K KK R K K R K K R R KK R R R K
#define SHRINKFACTOR 1.3
#define LISTLEN HUM_OF_OLD=4+1

Journal 1
W v

> File Command /usr/hp64008/cmdfiles/debug/examples.com

STATUS: Command 68ECO30 MODULE: crt@ BREAK #: 8 TRC:Idle L[41MP]

14

Chapter 1: Getting Started with the Graphical Interface
To activate display area windows

To activate display area windows .

Notice there are several windows in the main display area of the debugger.
The different windows contain different types of information from the
debugger. The active window has the thicker border.

Use the right mouse button to click on the border of the Monitor window.

Be sure to click only once (do not "double-click"). The Monitor window should
now have a thick border. Now activate the Code window:

Use the right mouse button to click on the border of the Code window.

If you click on the border of the active window, it will be expanded. Just click
again to showthe window in its normal size.

See the “Debugging Programs” chapter for a list of other ways to activate a
window.

15

Chapter 1: Getting Started with the Graphical Interface
To run until main()

To run until main()

1 Click on theRun Til () action key.

The Code window now shows tiheain () routine.

Clicking on theRun Til () action key runs the program until the line indicated
by the contents of thentry buffer

Locate thg): symbol. The area to the right of this symbol is the entry buffer.
When you started the demonstration program, the debugger loaded the entry
buffer with the value “main”.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: < Demo > Disp Src () || Disp Src PC Run Run Til () Run Xfer
|< Your Key >| Make C Expr() Monitor () Step Step Over Step Out
()|main | Recall
Monitor———————— 3 ———————Backtrace——————4—
1 num_checks 8 2. 888B8283C7crtB\<unknown>
2 target_temp 8 1. 08082316 startup’_startup rF s
3 current_tem @ 0. BOBO2CF2*main‘main
4 old_data [88]:temp a
E humid "]
[} ave_temp 9 ._.00PPABE+BQ
7 ave_humid B _P0BeBRE+G8
8 [61]:temp a

/* sets up ascili array and calls combs|

init_system(};
proc_spec_init{);

while {(true)

update_system(;
num_checks++;
interrupt_sim{(&num_checks);
if (graph?

graph_data{>;
proc_specific(};

Journal 1
> Program Run Until main v
(Temp> Break module main line 96

STATUS: InMon 68EC@G3@ MODULE: main BREAK #: 1 TRC:1dle L[4 TP]

16

Chapter 1: Getting Started with the Graphical Interface
To scroll the Code w indow

To scroll the Code window
To see more of the program you can:

Use the mouse to operate the vertical scroll bar:
_~ Click to go to top of file.
. «— Click te go up one line.
+«— Click to go up one page.

+— Drag slider to move
incrementally.

+— Click to go down one page.

+— Click to go down one line.
¥ «— Click to go to end of file.

Use the mouse to operate the horizontallSogpbuttons: [T

Use the < Page Up> and < Page Down> keys on your keyboard.

The scroll bar affects the contents of the active (highlighted) window.

You might notice that the scroll bar has a "sticky" slider which alwaysmst
to the center of the scroll bar. This is so that you can always do local
navigation even in very large programs. UseDiep Src () action key or the
Display-Source ()pull-down menu item to move larger distances.

17

Chapter 1: Getting Started with the Graphical Interface
To display a function

To display a function

1 Position the cursor over the callitot_system

2 Click the left mouse button.

This will place the string "init_system" into the entry buffer.

3 Click on theDisp Src () action key.

4 Scroll up one line to see the "init_system()" line.

You should now see the source code forititesystem(youtine in the Code

window.
File Display Modify Execution Breakpoints Window Settings Help
Action keys: | < Demo > || Disp Src () || Disp Src PC || Run || Run Til () || Run Xfer |
< Your Key > Make CExpr() Monitor () Step Step Over Step Out
():|init_system IRecaII
Monitor 3 Backtrace 4
1 num_checks 2] 2. 0098203C7crt@\<unknoun>
2 target_temp © 1. 00082316 startup_startup A
3 current_tem @ 8. 008@2CF2*main\main
4 old_data [80]:temp ")
5 humid @
6 ave_temp ©.000PR0E+B0
7 ave_humid ©.000000E+0Q
8 [B811:temp %]
30 init_system()
31 { /+ FUNCTION init_system() */
32 F* Initialize the target values for temperature and humidity */
33 target_temp = 73;
34 target_humid = 45;
35
36 F* Intialize the variables indicating the current environment */
37 /* conditions */
38 current_temp = 68;
39 current_humid = 41;
40
41 /* Set starting directions for temp and humid */
42 temp_dir = up;
43 humid_dir = up;
44
45 F* Initialize the variables that depict the current status of the */
46 /* computer room and what hardware needs to be on or off in the room *
Journal 1
> Program Context Set init_system v
> Program Display_Source init_system
STATUS: Command 68ECB3@ MODULE: init_system BREAK #: 1 TRC:Idle L4101

18

Chapter 1: Getting Started with the Graphical Interface
To run until a line

To run until a line

1 Position the cursor over line 34. The hand-shaped cursor meanibyaugp
menu is available.

2 Hold down the right mouse button to display the Code window pop-up menu.
Move the mouse tRun until, then release the button.

Line 34 should now be highlighted. Notice that "init_system" now appears in
the Backtrace window at level 0, which means thatpttogram counter is
inside thenit_system(¥unction.

File Display Modify Execution Breakpoints Window Settings Help
Actionkeys: | <Demo> |[Disp Src() |[DispSrePC][Run || RunTil()][RunXfer |

< Your Key > Make CExpr() Monitor () Step Step Over Step Out
():]init_system Recall

Monitor 3— —————Backtrace———4—

1 num_checks 2] 2. 8000203C7crt@\<unknown>

2 target_temp 8 1. 88082316 startup)_startup A
3 current_tem 8 @. BBOB2CF2*main\main

4 old_data [80]1:temp *]

5 humid *]

6 ave_temp 0 .06000PBE+08

7 ave_humid ©.0808GBE+08

8 [B811:temp *]

30 init_system()
/+ FUNCTION init_system() =/
/= Initialize the target values for temperature and humidity =/
target_temp = 73;
target_humid = 45;

Debugger Display

/* Intialize the var|Set/Delete Breakpoint je current environment */
f* conditions */ Edit source
current_temp = 68;
current_humid = 41; |Attach Macro ...

: | B Avtached Macro L)
/% Set starting dir = humid */
temp_dir = up; Run until
humid_dir = up;

Trace after

/* Initialize the vqTrace before the current status of the */
/* computer room and Trace about to be on or off in the room *

ITrace until

I 1
> Program Context Set init_system v
> Program Display_Source init_system

STATUS: Command 68ECO30 MODULE: init_system BREAK #: 1 TRC:ldle 41|

19

Chapter 1: Getting Started with the Graphical Interface

To edit the program

To edit the program

This step assumes you are using an HP Advanced Cross Language System
compiler (HP B1461/HP B1478). If you are using another compiler, skip this
step.

Suppose we wanted the initial valuetaxget_tempo be 74 instead of 73. The
debugger makes it easy to change the source code:

Place the cursor over the assignmenttget_temgline 33).

Hold the right mouse button and selEdit Source from the Code window
pop-up menu.

An editor will appear in a new X window. The default texttediisvi. You
can use a different text editor by editing the Xdefaults.demo file.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | < Demo > Disp Src () || Disp Src PC Run Run Til () Run Xfer

< Your Key > Make CExpr() Monitor () Step Step Over Step Out
()|init_system Recall

Monitor 3 Backtrace———4

1 num_checks @ W 3. 08608283C7?crt@\<unknown> —‘

2 target_temp 73 2. 00002316 startup_startup A
3 current_tem @

4 old_data [88]1:temp ’]

5 humid ’] s " "

#include update_sys.h

6 ave_temp o.eaf, - " -

7 ave_humid ©.00) #include demo.h

8 te1l:temp 8 lyoid init_val_arr();

Ivoid

38 init_system() init_systen()

31 /+ FUNCTION init_system() 7% FUNCTION init_s *
bl] _systen() */
§§ “ lmtla“zf the target vi /¥ Initialize the target values for t
target_temp = 73;

target_temp = 7Q;
target_hunid = 45;

target_humid = 45;

36 /% Intialize the variables /% Intialize the variables indicating
37 /* conditions */ /% conditions */
38 current_temp = 68; current_temp = 68:
39 current_humid = 41; current humid = 41-:
40 - ?
41 /* set_Stfrt‘"Q directions /¥ Set starting directions for temp a
:g ;em’.’adé'." = ups temp_dir = up;
umid_dir = up; ey 3 = .
44 humid_dir up;
45 /* Initialize the variable

/¥ Initialize the variables that depi

46 /> _computer room and uhat | "init_system.c" 100 lines, 3168 character

Journal 1
(Temp) Break module init_system line 34 W v
4[»

> Debugger Host_Shell vi +33 init_system.c

STATUS: Command 68EC@38 MODULE: init_system BREAK #: 1 TRC:Idle

20

Chapter 1: Getting Started with the Graphical Interface
To display init_system() again

3 Change the "73"to "74" .
4 Exit the editor.

5 Click on theMake action key.

The program Wl be re-compiled with the new value and reloaded into the
emulator.

To display init_system() again

» Click on theDisp Src() action key.

Since "init_system"is still in the entry buffer, tim&_system(youtine is
displayed.

You have now completed a edit-compile-load pesgming cycle.

To set a breakpoint
We want to run until just past the line that we changed.
1 Position the mouse pointer over line 42.

2 Click the right mouse button to set a breakpoint.

The breakpoint window is displayed, showing the breakpoint has been added.

An asterisk (*) appears in the first column of the Code window next to the
location of the breakpoint. Dots apppear in front of any other lines (such as
comments) associated with the breakpoint.

21

Chapter 1: Getting Started with the Graphical Interface
To run until the breakpoint

To run until the breakpoint

» Click on theRun Xfer action keyto run the program from its transfer address.

While the program is executing, the menus and buttons are "grayed out," and
an "hourglass" mouse pointer is displayed. You cannot enter debugger
commands while thprogram is executing. If you need to stop an executing
program, type< Ctrl> -C with the mouse pointer in the debugger X window.

After a few moments, line 42 will be highlighted, showing thedgram
execution stopped there.

The Journal window shows that a break occurred and which breakpoint it was.

File Display Modify Execution Breakpoints Window Settings Help
Actionkeys: | <Demo > | Disp Src() |[Disp SrcPC][Run][RunTil()]| Run Xfer |
[« YourKey>|[Make]| CExpr() |[Monitor() || Step || Step Over || Step Out |
(ylinit_sgstem IRecaH
Monitor 3 Backtrace——4—

1 num_checks 8 3. 8888283C7?crt@\<unknown>

2 target_temp 73 2. 80802316 startup’_startup A
3 current_tem 68 1. 90802CFC main\main

4 old_data [68]:temp %} B. 89883242 init_system\init_sy

5 humid -}

6 ave_temp 0.000600E+00

7 ave_humid ©.GOOEGRE+0R

8 [81]1:temp]

current_humid = 41;

/* Set starting directions for temp and humid =/

. 42 temp_dir = up;

humid_dir = up;

/* Initialize the variables that depict the current status of the */
/* computer room and what hardware needs to be on or off in the room *

func_neceded = 8;
hdwr_encode = 8;

/+Initialize the count of calls to update_state_of_system() =/
num_checks = 8;

/+ Initialize writing location in old_array =/
curr_loc = 8;

Journal 1
> Program Run v
Break # 1 on instr module init_system line 42

STATUS: Command 68ECP3@ MODULE: init_system BREAK #: 1 TRC:Idle L 41P]

22

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

To patch code using a macro

1 Position the cursor over line 38.

2 SelectAttach macro from the Code window pop-up menu.

38 current_temp = 68; n

39 current_humid = 41; Debugger Display
Set/Delete Breakpoint
Edit source

Attach Macro ...
Edit Attached Magro .
Run until

The Macro Operations dialog box appears. The macro "patch_temp"is
already selected. Before we attach the macro, let’s examine it:

=l

Debugger/Emulator: Macro Operations

Defined Macros

writep(port, size, value)
write(fildes, buf, nbyte)
<User-Defined Macros>
graph_on()
do_forward()
show_num()
atch_temp_arg(tem

Parameters:| IRecaII

Selected Macro

|patch_temp E

} |Aﬂach E |Cance||

3 Click on theEdit button in the dialog box.

This macro will seturrent_tempgo 71 each time the breakpoint is
encountered. The macro skips over tegignment in th@rogram source
code by setting the program counter to line 39. The return value it thie
macro to stop program execution after the macro.

23

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

Debugger Macro Add int patch_temp()
{

/* set the current_temp to be 71 degrees instead of what the code says */
current_temp = 71;

/* Restart execution at line # 39 -- Skips over the code too!! */
$Memory Register @PC = #39$;

/* Return value indicates continuation logic: 1=continue, O=break */
return(0);

4 EXxit the editor.

5 Click on theAttach button in the dialog box.

The plus sign ("+ ") in front of line 38 indicates that a macro has been attached
to a breakpoint at that line.

6 Click on theRun Xfer action keyto run the program.

File Display Modify Execution Breakpoints Window Settings Help
Actionkeys: | <Demo > Disp Src () || CExpr() Run Run til () Step Over
< Your Key > Make Disp Src PC|| Monitor () Step Run Xfer Step Out
()|init_system Recall
r Breakpoint 25— 4—
ADDRESS MOD/FNCT LINE TYPE COMMAND ARGUMENT
1 BBOO3242 init_sys #42 INST/H init_system\#42 A
2 00803232 init_sys #38 INST/H init_system\#38; pat
sy
8 [011:temp 2] ‘
34 target_humid = 45;
35
36 /* Intialize the variables indicating the current environment */
37 /* conditions */
+ 38 current_temp = 68;
39 current_humid = 41;
40
41 /* Set starting directions for temp and humid =/
* 42 temp_dir = up;
43 humid_dir = up;
44
45 /* Initialize the variables that depict the current status of the =/
46 /* computer room and what hardware needs to be on or off in the room *
47 func_needed = 8;
48 hdwr_encode = 8;
49
58 /*Initialize the count of calls to uidate_atate_uf_sistem() wf
Journal 1
Break # 1 on instr module init_system line 42 A
> Breakpt Instr init_system\#38; patch_temp()

STATUS: Command 68ECH30 MODULE: init_system BREAK #: 1 TRC:Idle L[4I1W]

24

Chapter 1: Getting Started with the Graphical Interface
To delete a single breakpoint

Notice thatcurrent_tempas shown in the Monitor window, is 71, not 68. .

To delete a single breakpoint

Once you set a breakpoint, program executidioneak each time the
breakpoint is encountered. If you don't want to break on a certain breakpoint
again, you must delete the breakpoint. Suppose you want to delete the
breakpoint that was previously set at line 4ihih system

Position the mouse over line 42.

Click the right mouse button to delete the breakpoint.

The breakpoint window shows the breakpoint has been deleted. The asterisk
in front of line 42 disappears.

To delete all breakpoints

Position the mouse pointer in the Breakpoint window.

Hold down the right mouse button to selBetlete All Breakpointsfrom the
Breakpoint window pop-up menu.

All breakpoints are deleted.

25

Chapter 1: Getting Started with the Graphical Interface
To step through a program

To step through a program

You can execute one source line (high-level mode) or one instruction
(assembly-level mode) at a time by stepping through the program.

Click on theStepaction key a few times.

If you want to try using a pull-down menu, selegecution-Step-from PC a
few times.

As the debugger steps through the program, you can see the PC progress
through the source code, as shown by the inverse video line in the Code
window.

To run until a stack level

Now we need to go back tnain(). You can run the program until it enters
main() by running to a stack level.

Position the mouse pointer over the line containing "main\main”in the
Backtrace window.

SelectRun Until Stack Level from the Backtrace pop-up menu.

The program counter is now backnrain(), on the call tgroc_spec_init()

Backtrac 4
AAAEA436Y cr 18N < unknown> _w

AAREAGEY startuph_startup

3.
2.
l.
a

. BE60 1651 Backtrace Display

Highlight{Toggle Window
Remove Window

Disp Source at Stack Level
Disp Vars at Stack Level
Run Until Stack Level

Fd

26

Chapter 1: Getting Started with the Graphical Interface
To step over functions

To step over functions .

You can either step through functions or step over functions. When you step
over a function, it is executed as a single program step.

Click on theStep Overaction key.

The next line ifmain() is highlighted. The routinproc_spec_init(was
executed as a single program step.

To step out of a function

Click on theStepaction key until the program counter isupdate_system()

Click on theStep Outaction key.

The program vil execute until it retirns fromupdate_system()

To display the value of a variable

Use the left mouse button to highlight "num_checks" in the Code window.

Click on theC Expr () action key.

In the Journal window, the current value of the variable is displayed in its
declared type (int). Notice that this is the same as the value displayed in the
Monitor window.

27

Chapter 1: Getting Started with the Graphical Interface
To change the value of a variable

To change the value of a variable

1 In the entry buffer, add "= 10" after "num_checks".

2 Click on theC Expr () action key.

The new value is displayed in the Journal window and in the Monitor window.

File Display Modify Execution Breakpoints Window Settings Help
Actionkeys: | <Demo> |[DispSrc() || CExpr() || Run || Runtil() || Step Over |
():| num_checks=18 Recall
Monitor 3 Backtrace——4—
1 num_checks 18 2. 8880263C7crt@\<unknoun>
2 target_temp 76 1. 880082316 startup_startup A
3 current_tem 7@ 9. 08882DBA mainimain
4 old_data [68] :-temp 78
5 humid 43
6 ave_temp 0 .000B00E+00
7 ave_humid ©.0000@8E+08
8 [01]:temp 65
Code 2—
10@ while (true)
1a1 {
182 update_system();
104 interrupt_sim({&num_checks);
185 if (graph)
106 graph_data();
107 proc_specific();
108 }
189 1}
11e
111 f**l*********l******l*********l*********l******l*********l******l**l******
112 * FUNCTION: interrupt_sim
113 = PARMS: counter -- loop counter passed in from main
114 = DESCRIPTION:
115 * create a simulation of a (usually) long interrupt service routine tha
116 * also has a duration profile to use with a SPA duration trigger.
Journal 1—
> Expression C_Expression num_checks=18 v
Result is: 18 Bx8A
STATUS: Cemmand 68ECO30 MODULE: main BREAK #: 1 TRC:ldle L[4 1P|

28

Chapter 1: Getting Started with the Graphical Interface
To recall an entry buffer value

To recall an entry buffer value

1 Click on theRecallbutton.
2 In the Recall dialog box, click the left mouse button on "num_checks".

3 In the Recall dialog box, click the left mouse buttonQif.

The string "num_checks"is now in the entry buffer.

='| Debugger/Emulator: Entry Buffer Value Selection

Previous Entry Buffer Values

@1

init_system
graph
interrupt_sim
init_val_arr
read_conditions
main

update system

hum_checks=10

(r

| num_checks, |

|

29

Chapter 1: Getting Started with the Graphical Interface
To display the address of a variable

To display the address of a variable

You can use the C address operator (&) to display the address of a program
variable.

1 Position the mouse pointer in the entry buffer.
2 Type "&"in the entry buffer so that it contains "&num_checks".

3 Click on theC Expr () action key.

The result is the address of the variatlen _checksThe address is displayed
in hexadecimal format.

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | <Demo > Disp Src () C Expr() Run Run til () Step Over
[« YourKey »]| Make Disp Src PC|[Monitor () Step Run Xfer Step Out
() | &num_checks IRecaII
Honitor 3 Backtrac 4
1 num_checks 10 2. 0008203C7crt@\<unknoun>
2 target_temp 76 1. 8@ee2316 startup_startup A
3 current_tem 70 @. 88082DBA mainmain
4 old_data [68]:temp 70
5 humid 43
6 ave_temp ©.000000E+00
7 ave_humid ©.00000BE+00
8 [811:temp 65
Cod 2
le0 while (true)
181 {
182 update_system();
104 interrupt_sim(&num_checks?};
165 if (graph)
166 graph_data();
1687 proc_specific();
108 }
189
110
111 /****II**II*****II*)0()l()l*****l(l()0()0()l()l*****l(l()0()0()l()l*****l(I**II*****II**II*****II*
112 = FUNCTION: interrupt_sim
113 = PARMS: counter -- loop counter passed in from main
114 = DESCRIPTION:
115 = create a simulation of a (usually) long interrupt service routine tha
116 = also has a duration profile to use with a SPA duration trigger.
Journal 1
> Expression C_Expression num_checks=18@ v
Result is: 18 @x8A
STATUS: Command 68ECO3@ HODULE: main BREAK #: 1 TRC:ldle L4IP]

30

Chapter 1: Getting Started with the Graphical Interface
To break on an access to a variable

To break on an access to a variable

If you started the debugger using thtartall script, skip this section. Access
breakpoints are disabled because the analyzer has been configured to use the
Trig2 trigger for other purposes.

You can also set breakpoints on a read, a write, or any access of a variable.
This helps to locate defects due to multiple functions accessing the same
variable. Suppose you want to break on the access of the variablechecks
("&num_checks" should 8tbe in the entry buffer.)

Set the breakpoint by selectiBgeakpoints —Set—Read/Write ().

File Display Modify Execution | Breakpoints | Window Settings Help
Actionkeys: | <Demo> || Disp .Qisplay (I Bun | Runtil() || Step Over |
[YourKeys|[Make |[Disp 125t B Instruction () [RunXfer][Step Out_|
- Delete () Read ()
() | &num_checks Delete Al Wite () IRecaII
Edit/Call Macro ... |Read/Write ()

Run the program by clicking on tRun action key.

When the program stops, the code window shows that the program stopped at
the next reference to the variallem_checkDue to the latency of the

emulation analyzer, the processor may halt up to two instruction cycles after
the breakpoint has been detected.

Tryrunning the program a few more times to see where it stops. (Notice that
num_checkgs passed by referenceitgerrupt_sim Sincecounterpoints to the
same address asim_checkghe debugger stops at referencesdonter)

Delete the access breakpoint. Selaidow —Breakpoints, place the mouse
in the Breakpoint window, press and hold the right mouse button, and choose
Delete All Breakpoints.

31

Chapter 1: Getting Started with the Graphical Interface
To use the command line

To use the command line

1 SelectSettings—=Command Line from the menu bar.

The command line area which appears at the bottom of the debugger window
can be used to enter complex commands using either the mouse or the
keyboard.

2 Build a command out of the command tokens which appear beneath the
command line entry area.

To use the command line with the mouse, click on the button for each
command token.

3 When the command has been built, type or select aiRet.

To use a C printf command

The command line’s Expssion Printf command prints the formatted output
of the command to theodirnal window using C format pameters. This
command permits type conversions, scaling, and positioning of output within
the Journal window.

» Using the command line, enter:
Expression Printf "%010d",num_checks

In this example, the value atim_checkss printed as a decimal integer with a
field width of 10, padded with zeros.

32

Chapter 1: Getting Started with the Graphical Interface
To turn the command line off

File Display Modify Execution Breakpoints Window Settings Help
Action keys: | <Demo > Disp Src () || CExpr() Run Run til () Step Over
< Your Key > Make Disp Src PC || Monitor () Step Run Xfer Step Out
():| #&num_checks Recall
Breakpoint 25 o
ADDRESS MOD/FNCT LINE TYPE COMHAND ARGUMENT
A
g [@11:temp 65
Cod 2
119 void
120 interrupt_sim(counter)
121 int *counter;
122 { 1
123 short outer;
124 short inner;
125 short limit;
126
127 limit = (*counter % 1@) * (xcounter ¥ 18) / 3;
128
129 for { outer = @; outer < limit; outer++)
130 for (inner = @; inner < 278; inner++)
131 inner++;
132
133 if (! { (*counter) % 4))
134 do_sort(old_data, ascii_old_data, limit % NUM_OF_OLD >;
135 1}
Journal 1
> Expression Printf "%818d",num_checks v
0000000011
STATUS: Command 68ECG3@ HODULE: main BREAK #: 1 TRC:Halted 1P]

> Expression Printf "%818d",num_checks |

_ [Memory] [Progran] [Symbel] [Hindow| [Trace]

C_Expression Fprintf Printf Monitor Display_Yalue

| Command: |Return||RecaII| Cursor: |§%zzc§su;}||Forward||Clear to end||CIear| |

To turn the command line off

1 Move the mouse pointer to the Status line.

2 Hold down the shift key and click the right mouse button.

The shift-click operation selects the second item from a pop-up menu, which
in this case i€ommand Line On/Off.

You can turn the acomand line on and off from the Settingdipdown menu,
the Status pop-up menu, and thencoand linegpop-up menu.

33

Chapter 1: Getting Started with the Graphical Interface
To trace events following a procedure call

To trace events following a procedure call

1 Position the mouse pointer over the calupzlate_system@n line 102.

2 SelectTrace After from the Code window pop-up menu.

182 update_system(); -
183 num_checks++; | Debugger Display
184 interrupt_sim(&num_chCEetalalNs Breakpoint
185 if (graph) .
186 graph_data(); Edit source
1087 proc_specific(); Attach Macro ...
igg } H Edit Attached Maeoro .
Run until
Trace after
Trace before
Trace about
Trace until

Run the program by clicking on tliRun action key.

Notice that the debugger interface is "grayed out” and that the mouse pointer
is an hourglass when the mouse is in the debugger X windownHziss that
the program is executing.

Wait for the status line to shoRC:Cmplt , then press Ctrl> -C in the
debugger window.

SelectWindow - Trace to see the bus states which occurred after the call to
update_system()

The trace listing will be displayed in the Trace Mode debugger window. If an
emulator/analyzer X window is active, it will display the trace listing. You can
scroll through the trace to see more bus states.

Press thec ESC> key twice to exit the trace display.

34

Chapter 1: Getting Started with the Graphical Interface
To see on-line help

Fiie Display Modify Execution Breskpoints Window Settings _%ﬁ_a%;sg
Actionkeys: < Danioo isp ${<:{}i OExpri) Rim Runtil{} Step {}w
< Yo Key»l Make Disp Sre PO Monitor () ! Step | Run ¥fer Step Out | :
g : ;
{¥imain ‘Recall
Trace Hode
In update_sys\get_targets. Line 95
Lines 96..99 if (temp_dir ==
Line 95 HAKEBAR(ARG3);
Lines 96..99 if (temp_dir ==
Reenter update_sys\get_targets
Line 95 HAKEBAR{ARG3) ;
ESC-ESC=0Quit mode F2=Hew Top
[81]:temp 74
Code 2
284 {
285 int 1=@; F* counter */
286 char bufl[16]1;
287 MAKEBAR(ARGT) ;
288
289 /* Clear the array first =/
290 for (i=@; i1 < NUM_OF_OLD#*4; i++)
291 strepy8(ascii_datalil, "CLEARED");
292
293 /* Generate the array to sort #*/
294 gen_ascii_data(data, ascii_data, size J;
295
296 /* Sort the array */
297 combsort(ascii_data J;
298
299 /* Print the floating point average temp also */
300 sprintf(buf, "Avek5_2f", aver_temp);
Journal 1—
» Trace Display
Trace mode entered. Press ESC-ESC to quit mode []

STATUS: TrcMode 68ECB3@ MODULE: main BREAK #: 8 TRC:DataOK

To see on-line help

1 SelectHelp -General Topic ...

2 SelectTo Use Help then click on th®©K button.

Spend a few minutes exploring the help topics, so that you can find them when
you need them.

35

Chapter 1: Getting Started with the Graphical Interface
To end the debugging session

To end the debugging session

Use thecommand seleechouse button to choo$s@e —Exit ~Released (all
windows, release emulator)

[File |

Context L

Load L

Store L

Copy Window >

Log L

Emul700 e

Edit [

Term ...

Exit | Window (save session) <Cirl>X

Locked (all windows, save session)
Released (all windows, release emulator) »

Or:

Using the command line, enter:
Debugger Quit Released

The debug session is ended and your system prompt is displayed. The Released
option unlocks the emulator so that other users on your system can use it.

This completes your introduction to t68020/030 debugger. You have used
many features of the debugger. For additional information on performing
tasks with the debugger, refer to the "User’s Guide" part of this manual. For
more detailed information on debugger commandsrenessages, etc., refer
to the "Reference" part of this manual.

36

Getting Started with the Standard
Interface

How to get started using the debugger’s character-based interface.

37

The Standard Interface At a Glance

The debugger hasstiandard interfacéor several types of terminals, terminal
emulators, and bitmapped displays. When using the standard interface,
commands are entered from the keyboard.

EN

Honitor 3 Backtrace

0. 60002000:crt0\entry

Display area

(= Sa B TR AL

d

r

FHEREREE R R R R R o o o o K K K ok o ok ok Rk ok

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1992

All Rights Reserved. Reproduction, adaptation, or translation without
written permission is prohibited, except as allowed under copyright

Journal 1—

Note: in startup routine. Press F8 to go to main.
> Debugger Directory Change_Horking Fusersfpaulg/foghorn/demo3®/debug_env/hpb

4747

. STATUS5: HWew emulation session, processor reset to monitor

Status line > [lebugger Directory Change Horking fusers/paulg/foghorn/demo30/debug_env/hpb4
Breakpt Expression File Memory Program Symbol Hindow Trace
Execution Host_Shell Hacro Option Pause Quit Level Directory ?{Help}

Command lin Command tokens Command look ahead

38

Chapter 2: Getting Started with the Standard Interface

Display area Can show assembly level screen, high-level screen, simulated
I/O screen, or user-defined screens. These screens contain windows that
display code, variables, the stack, registers, breakpoints, etc. You can use the
UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor ke
to scroll or page up or down the information in the active window.

Status line Displays the debugger status, the CPU, the current program
module, the number of the last breakpoint, and the trace status.

Command line. Commands are entered on the command line at the debugger
prompt (>) and executed by ping the< Return> key. Command tokens

are placed on the command line by typing a single letter, typically the first
uppercase letter of the token. The Tab and Shift-Tab keys allow you to move
the cursor on the command line forward or backward. The Clear line key
clears from the cursor position to the end of the line.JGw>-U key

clears the whole command line.

Command tokens The second line under the status line shows the tokens that
you can enter at the current location in thewomand line.

Command look ahead The third line under the status line shows tokens that
are available if you select the highlighted command token above.

39

Chapter 2: Getting Started with the Standard Interface

Note

The Quick Start Tutorial

This tutorial gives you step-by-step instructions on how to perform basic tasks
using the debugger.

Perform the tasks in the sequence given; otherwise, your results may not be
the same as those shown here.

Some values displayed on your screen may vary from the values shown here.
The exercises and displays in this chapter were made using a HP 64747

40 MHz 68030/EC030 emulator. If you are using an emulator with a different
clock rate or the HP 64748 68020 emulator, the information displayed in some
windows on your screenithbe different.

Before You Begin

This chapter assumes you have already installed the debugger as described in
the "Installation" chapter.

The emulator namemul68kis used in the examples in this chapter. If you
have given your emulator a different logicalme in the HFE4700 emulator
device tabléusr/hp64000/etc/64700tab.netse your emulatorame or lan
address in the examples. Seelttie64700A Card Cage Installation/Service
Manualfor detailed information on installingur emulator.

Some commands are printed on two lines in this chapter. When entering
these commands, type the entire command on one line.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental
control system (ECS). The system controls the temperature and humidity of a
room requiring accurate environmental control. The program continuously
looks at flags which tell it what action to take next.

40

Chapter 2: Getting Started with the Standard Interface
To copy the demonstration files

To copy the demonstration files

Before you can run the demonstration program, you must copy the debug

demo files to a new subdirectory. Perform the following steps to make the.
subdirectory and copy the demo files into it.

Make a subdirectory for the debugger demo files.

Make sure the present working directory is the one in which you wish to create
the subdirectory for the debugger demo files. Then, enter the command:

mkdir mydirectory

wheremydirectonyis the name ofgur debugger demo subdirectory.
Change to the debugger demo subdirectory:

cd mydirectory

Copythe demo files:

cp -r /lusr/hp64000/demo/debug_env/ <emulator> [*

All files that you need to run the demonstration program should now be in the
working directory.

41

Chapter 2: Getting Started with the Standard Interface

To start the debugger

Note

To start the debugger

Start the debugger by entering:

db68k -t -e emul68k -C Config
-c cmdfiles/debug/Cmd_dbstart ecs020

The-t option starts the debugger’s standard interface.
The-e emul68koption tells the debugger which emulator to use.

If the logical name ofgur emulator is noemul68k then use the name of your
emulator or the emulator’s lan address insteashodl68k

The-C ioconfigoption tells the debugger how to setmpmory mapping for
the program.

The-c cmdfiles/debug/Cmd_dbstarioption tells the debugger to execute the
Cmd_dbstart.concommand file.

Theecs020argument tells the debugger to load €te020.;absolute file.

Start the 68030/EC030 debugger/emulator using theand:

db68030 -t -e emul68k -C Config
-c cmdfiles/debug/Cmd_dbstart ecs030

This command starts execution of the debugger, which executes the command
file Cmd_dbstart.conand loads the absolute fiées.x

42

Chapter 2: Getting Started with the Standard Interface
To enter commands

To enter commands

1 Type the first letter of one of the command tokksted below the cmmand
entryline.

2 Type the first letter of the next command token, if any.

3 Type any necessary parameters. They are indicated on the command token
line in < angle brackets> .

4 Pres<Return> to enter the command.

You may edit the command you are entering. See the section “To edit the
command line” in the “Entering Debugger Commands” chapter for more
information on how to enter and edit commands.

Note
If a portion of the previous comand is stl visible on the conmand line,

press<CtrI>-E to clear to the end of the command line beforesging
<Return> .

To activate display area windows

Notice there are several windows in the main display area of the debugger.
The different windows contain different types of information from the
debugger. The active window has the thicker border. It isin the active window
that the scroll bar and the PAGE UP and PAGE DOWN keys have an effect.
There are several ways to activate a window in the display area.

» Pressthe F1 function key to activate the next higher numbered window or the
F2 function key to activate the next lower numbered window.

Or:

43

Chapter 2: Getting Started with the Standard Interface
To display main()

* Using the command line, enter the Window Active command.

Try changing the active window a few times. Activate the Code window when
you are done.

To display main()

* Enter the following command:
Program Display_Source main

Remember, to enter this command all you need to type is "P"then "D"then
"main” then<Return> .

Themain() function is displayed. Use the UP ARROW keyto see the
"main()" staement.

To display a subroutine
Notice thatmain() callsupdate_system()
* Enter the following command:
Program Display_Source update_system

Theupdate_systemunction is displayed. Use the UP ARROW keyto see
the "update_system()" statement.

44

Chapter 2: Getting Started with the Standard Interface
To set a breakpoint

To set a breakpoint

could set a breakpoint at the statement "update_system(juartbe
program.

Suppose you want to execute up to the caligdate system()To do this you .

Using the command line, enter:
Breakpt | nstr update_system

The breakpoint window is displayed, showing the breakpoint has been added.

An asterisk (*) appears in the first column of the Code window next to the
location of the breakpoint. The dot (.) in the first column of the previous lines
show the source lines associated with that breakpoint.

To run the demo program

Using the command line, enter:
Program Run

The journal window shows that a break occurred and which breakpoint it was.

Notice that the source file line at which the breakpoint was set is now in
inverse video. The inverse video line shows the current program counter.
You should now be viewing thgydate_system foutine.

45

Chapter 2: Getting Started with the Standard Interface
To step through the program

To step through the program

You can execute one source line (high-level mode) or one instruction
(assembly-level mode) at a time by stepping through the program.

Using the command line, enter:
Program Step

You can step again by just pressiReturn> .

As the debugger steps through the program, you can see the PC progress
through the source code, as shown by the inverse video line in the Code
window.

To step over functions

You can either step through functions or step over functions. When you step
over a function, it is executed as a single program step.

Using the command line, enter:

Program Step Over

To delete a breakpoint

Once you set a breakpoint, program executidioneak each time the
breakpoint is encountered. If you don't want to break on a certain breakpoint
again, you must delete the breakpoint. Suppose you want to delete the
breakpoint that was previously set at the statement "update_system()".

1 Run the program up to the breakpoint:

46

Chapter 2: Getting Started with the Standard Interface
To display variables in their declared type

Program Run

Using the command line, enter:

Breakpt Delete 1 .

The breakpoint window is displayed, showing the breakpoint has been deleted.

To display variables in their declared type

Whenever you specify a variable naméhwiut a C or debugger operator
prefix, it is displayed in its declared type.

Using the command line, enter:
Expression Display_Value current_temp

In the Journal window, the current value of the variable is displayed in its
declared type (int).

To display the address of a variable

You can use the C address operator (&) to display the address of a program
variable.

Using the command line, enter:
Expression Display_Value ¤t_temp

The result is the address of the variahleent_tempThe address is displayed
in hexadecimal format.

47

Chapter 2: Getting Started with the Standard Interface
To use a C printf command

To use a C printf command

The Expression Printf command prints the formatted output of the command
to the Journal window using C format pareters. This command permits
type conversions, scaling, and positioning of output within the Journal window.

Using the command line, enter:
Expression Printf "%010d",current_temp

In this example, the value ofirrent_temps printed as a decimal integer with a
field width of 10, padded with zeros.

The Expression Fprintf command can be used to print formatted output to a
file or user-defined window.

To break on an access to a variable

You can also set breakpoints on a read, a write, or any access of a variable.
This helps to locate defects due to multiple functions accessing the same
variable. Suppose you want to break on the access of the variable
¤t_temp.

Set the access breakpoint:

Breakpt Access ¤t_temp

Run the program:
Program Run

When the program stops (after approximately ten seconds), the code window
shows that the program stopped at the next reference to the variable
current_tempDue to the latency of the emulation analyzer, the processor may
halt up to two instruction cycles after the breakpoint has been detected.

48

Chapter 2: Getting Started with the Standard Interface
To display blocks of memory

Tryrunning the program (just presReturn>) a few more times to see

where it stops. If the program had a pointer to the variable, it would stop
there, too.

Delete the access breakpoint.

Using the command line, enter:

Breakpt Delete 1

To display blocks of memory

You can display structures and arraysiamory as well as ranges of memory
locations that encompass several variables.

Using the command line, enter:
Memory Display Byte ¤t_temp

The debugger displays a block of memory starting at the address of the
variablecurrent_temp

The C address operat8ris used because the Memory Display command is an
assembly-level command and expects a memory address as its argument.

49

Chapter 2: Getting Started with the Standard Interface

To monitor variables

To monitor variables

The Expression Monitor Value nomand allows you to mottdr a variable’s
value during execution of your program.

Using the command line, enter:
Expression Mbnitor Value current_temp

The value oturrent_temps now displayed in the Monitor window.

To modify a variable by entering a C expression

The Expression C_Expression command calculates the value of a Gstxpre

or modifies a C variable if the C expression contains the assignment operator
(=). This command recognizes variable types and shigmment expression
specified behave according to the rules of C.

Using the command line, enter:
Expression C_Expression current_temp = 99

Notice that the value aurrent_tempn the Monitor window has changed to
the number you entered.

50

Chapter 2: Getting Started with the Standard Interface
To end the debugging session

To end the debugging session

Enter:

Debugger Quit Released

The debug session is ended and your system prompt is displayed. The emulator
is released so that other people can use it.

This completes your introduction to t68020/030 debugger. You have used
many features of the debugger. For additional information on performing
tasks with the debugger, refer to the "User’s Guide" part of this manual. For
more detailed information on debugger commandsrenessages, and so on,
refer to the "Reference" part of this manual.

51

Chapter 2: Getting Started with the Standard Interface
To end the debugging session

52

Part 2

User’'s Guide

Part 2

54

Entering Debugger Commands

How to enter debugger commands using the mouse or the keyboard.

55

Entering Debugger Commands

This chapter shows you how to enter debugger commands using the graphical
interface or the standard interface. The tasks are grouped into the following
sections:

* Using menus, the entry buffer, and action keys.
* Using the command line with the mouse.
* Using the command line with the keyboard.

Thegraphical interfaceprovides an easy way to entemomands using a mouse.
It lets you use pull-down amgbp-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action kepoangp
recall buffers, and other advanced features. To use the graphical interface,
your computer must be running an X Window System that supports
OSF/Motif interfaces.

The debugger also hastndard interfacéor several types of terminals,
terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard.

When using the graphical interface, doenmand ling@ortion of the interface
gives you the option of entering commands in the same manner as they are
entered in the standard interface. If you are using the standard interface, you
can only enter commands from the keyboard using the command line.

56

Chapter 3: Entering Debugger Commands

Function Key Commands

You can enter commonly used commands quickly asdygay pressing the
function keys F1 through F8 on your keyboard. Function keys can be used in
the graphical interface as well as the standard interface. The following table
and figure describe the commands associated with the function keys.

If you are using the debugger on a Sun SPARCsystem, refer to the
“Installation" chapter for information on mapping function keys.

Function Key Commands

Function Menu Equivalent, Description

Key Command Line Equivalent

F1 Display—Next Window, Activate the next higher numbered window.
Window Active Next

F2 Display-Previous Window Activate the next lower numbered window.
Window Active Previous

F3 Settings—High Level Debugor Switch between assembly-level and
Settings—Assembly Level Debug high-level mode.
Debugger Level

F4 Right click on active window border, Select the alternate display of the active
Window Toggle_View window.

F5 Help-Command Line.., Access on-line help.
Debugger ? (Help)

F6 Display-Simulated /0O, Access the standard I/O screen. Also access
Window Screen_On Next any existing user-defined screens.

F7 Execution-Step Instruction -from PC, Execute one C source line (high-level
Program Step mode), or execute one microprocessor

instruction (assembly-level mode).

F8 Execution-Step Source-from PC, Execute one C source line, but treat whole

Program Step Over functions as a single line (high-level mode);

execute one microprocessor instruction, but
treat whole subroutines as a single
instruction.

57

Chapter 3: Entering Debugger Commands

Command Line Control Character Functions

Press the control kesCtrl> simultaneously with th8, CEF,GL,QR S,
U, or\ keys to execute the operations listed in the following table. (The letter
keys may be upper- or lower-case.)

Command Line Control Character Functions

Control Function

<Ctrl> B Recall command reverse.

<Ctrl>C Abort the current cmmand and retrn to debugger camand mode.
<Ctrl> E Clear to end of command line.

<Ctrl> F Shift contents of active window to right.

<Ctrl> G Shift contents of active window to left.

<Ctrl> L Redraw screen.

<Ctrl> Q Resume output to screen.

<Ctrl>R Recall previous command.

<Ctrl> S Suspend output to screen.

<Ctrl> U Clear command line

<Ctrl>\ End the debug session (same as Debugger Quit Released command)

The Journal Window

The debugger displays debugger commands entered from the keyboard in the
Journal window. The Journal window also displays warning and informational
messages from the debugger and output generated by commands. This
window is available in both the high-level and assembly-level screens.

58

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the debugger’s
graphical interface to enter commands. This section describes how to:

e Choose a plitdown menu item using the mouse.
* Choose a plitrdown menu item using the keyboard.

e Use the pop-up menus.

* Use action keys.

* Use the entry buffer.

» Copyand paste to the entry buffer.
* Use dialog boxes.

» Access help information.

To choose a pull-down menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.
2 Press and hold theommand selechouse button to display the menu.

3 While continuing to hold down the mouse button, move the mouse pointer to
the desired menu item. If the menu item has a cascade menu (identified by an
arrow on the right edge of the menu button), then continue to hold the mouse
button down and move the mouse pointer toward the arrow on the right edge
of the menu. The cascade menu will display. Repeat this step for the cascade
menu until you find the desired menu item.

4 Release the mouse button to select the menu choice.

59

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Note

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some menu items have an ellipsis (“...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message boxwhen the
menu item is chosen.

Thecommand seledtutton can be either the left or right button, depending
on the computer you are using. The “Getting Started with the Graphical
Interface” chapter has a table which explains which button to use.

To choose a pull-down menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.
Click thecommand seleechouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a
cascade menu (identified by an arrow on the right edge of the menu button),
then repeat the previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of
the menu and click the mouse button.

Some menu items have an ellipsis (“...”) as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu
item is chosen.

60

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pull-down menu item using the
keyboard

To initially display a pull-down menu, press and holdithenu seledtey (for
example, the “Extend char” key on a HP 9000 keyboard) and then type th
underlined character in the menu label on the menu bar. (For example, “
“File”. Type the character in lower case.)

To move right to another pull-down menu after having initially displayed a
menu, press theght-arrow key.

To move left to another pull-down menu after having initially displayed a
menu, press thieft-arrow key.

To move down one menu item within a menu, pressith-arrow key.
To move up one menu item within a menu, pressifiarrow key.

To choose a menu item, type the character in the menu item label that is
underlined. Or, move to the menu item using the arrow keys and then press
the< RETURN> key on the keyboard.

To cancel a displayed menu, presskEseapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to
move within or between menus. For each menu or menu item, the underlined
character in the menu or menu item label is the keyboard mnemonic
character. Notice the keyboard mnemonic is not always the first character of
the label. If a menu item has a cascade menu attached to it, then typing the
keyboard mnemonic displays the cascade menu.

Some menu items have an ellipsis (“...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu
item is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard
input to a dialog box, you must position the mouse pointer somewhere inside
the boundaries of the dialog box. That is because the intéwgbeard focus

61

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

policyis set topointer That just means that the window containing the mouse
pointer receives the keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard
accelerators which are keyboard shortcuts for selected menu items. Refer to
the “Setting X Resources” chapter and the “Debug.Inputésahfile for

more information about setting the X resources that control defining
keyboard accelerators.

To choose pop-up menu items

Move the mouse pointer to the area whose pop-up menu you wish to access.
(If a pop-up menu is available, the mouse pointer changes from an arrowto a
hand.)

Press and hold the right mouse button.

After the pop-up menu appears (while continuing to hold down the mouse
button), move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some pop-up menus which are available include:
» Display-area Windows.
+ Status Line.

e Command Line.

62

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use pop-up menu shortcuts

To choose the first item in a pop-up menu, click the right mouse button.

To choose the second item in a pop-up menu, hold down 8iaft> keyand
click the right mouse button.

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An “lI-beam” cursor
will appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the
< Ctrl> U key combination.

To copy-and-paste to the entry buffer

To copy and paste a "word" of text, position the mouse pointer over the word
and click the left mouse button.

To specify the exact text to copyto the entry buffer, position the mouse
pointer over the first character to copy, then hold the left mouse button while
dragging the mouse pointer over the text. When you release the mouse
button, the highlighted text will appear in the entry buffer.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

63

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Note

Example

If you have several graphical interface windows connected to the emulator,
then a copy-and-paste action in any window causes the text to appear in all
entry buffers in all windows. That is because although there are several entry
buffers being displayed, there is actually only one entry buffer, which is shared
by all windows. You can use this to copy a symbol or an address from one
window to another window.

On a memory display or trace display, you may need to scroll the display to
show more characters of a symbol.

The interface displays absolute addresses as hexvalues. If you copy and paste
an address from the display to the entry buffer, you must add a trailing “h” to
make the interface interpret it as a hex value when you use the entry buffer
contents with a command.

Text pasted into the entry buffer replaces that which is currently there. You
cannot use paste to append text to text already in the entry buffer. You can
retrieve previous entry buffer values by using Rezall button.

See “To copy-and-paste from the entry buffer to the command line entry area”
for information about pasting the contents of the entry buffer into the
command line entry area.

To paste the symbol “update_system” into the entry buffer from the interface
display area, position the mouse pointer over the symbol and then click the
left mouse button.

|():| init_system IRecaIII

N

9% {
97 linit_systen@F

98 proc_speceinit();

64

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

1 Position the mouse pointer over tRecall button just to the right of the entry
buffer text area, and click the mouse button to bring up the Entry Buffer
Value Selection dialog box.

2 In the dialog box, click on the string you want.

3 In the dialog box, click on the "OK" button.

The Entry Buffer Value Selection dialog box contains a list of previous values
from the entry buffer. You can also predefine entries for the Entry Buffer
Value Selection dialog box and define the maximum number of entries by
setting X resources (refer to the “Setting X Resources” chapter).

If you decide not to change the contents of the entry buffer, click on the
"Cancel" button in the dialog box.

If you want the Entry Buffer Value Selection dialog boxto remaibhe after

you make a selection, press "Apply'instead of "OK". You may drag the dialog
boxto another location on your display so that it does not cover the debugger
window.

See the following “To use dialog boxes” section for information about using
dialog boxes.

65

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To edit the entry buffer

To position the keyboard cursor, click the left mouse button or use the arrow
keys.

To clear the entry buffer, typeCtrl> -U.
To delete characters, press thBackspace>or < Delete char> keys.

To delete several characters, highlight the characters to be deleted using the
left mouse button, then press th8ackspace>or < Delete char> keys.

To use the entry buffer

Place information into the entry buffer (see the previous “To place values into
the entry buffer using the keyboard”, “To copy-and-paste to the entry buffer”,
or “To recall entry buffer values” task descriptions).

Choose the menu item, or click the action key, that uses the contents of the
entry buffer.

The contents of the entry buffer will be used wherever the "()" symbol appears
in a menu item or action key.

To copy-and-paste from the entry buffer to the
command line entry area

1 Position the mouse pointer within the command line text entry area.

66

Note

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

2 If necessary, reposition the keyboard cursor to the location where you want to

paste the text.
If necessary, choose the insert or replace mode for thenemd entry area.

Click the middle mouse button to paste the text into the command line en
area at the current cursor position.

You should paste to the monand lineonlywhen the command line is

expecting an address or a string. The characters from the entry buffer will be
treated as if they were typed from the keyboard. If the command line is
expecting keyword tokens, pasting can have unexpected results. For example,
pasting "delta" into an empty command lind generate a "Debugger

Execution Load_State ta" command!

Although a paste from the display area to the entry buffer affects all displayed
entry buffers in all open windows, a paste from the entry buffer to the
command line only affects the command line of the window in which you are
currently working.

See “To copy-and-paste to the entry buffer” for information about pasting
information from the display into the entry buffer.

To use the action keys

If the action key uses the contents of the entry buffer, place the desired
information in the entry buffer.

Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this
makes it possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the debugger’s
graphical interface. You can use the predefined action keys to make, load,

67

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

run, and step through the demo program. Youll really appreciate action keys
when you define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter
“Setting X Resources” for more information about creating action keys.

To use dialog boxes

Click on an item in the dialog box list to copy the item to the text entry area.
Edit the item in the text entry area (if desired).

Click on the “OK” pushbutton to make the selection and close the dialog box,
click on the “Apply’ pushbutton to make the selection and leave the dialog
box open, or click on the “Cancel” pushbutton to cancel the selection and
close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing
file name or specify a new file name.

Entry Buffer Recall You can recall a previously used entry buffer text string,
a predefined entry buffer text string, or a newly entered
entry buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to
the command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

68

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

» Dialog boxes can be moved around the screen and do not have to be
positioned over the graphical interface window.

» Ifyou iconify the interface window, all dialog boxes are iconified along
with the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to th
“Setting X Resources” chapter).

In file names, you may use a tilde a@ghand for your home directory.

69

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

Examples To use the File Selection dialog box:

='| Debugger/Emulator: File Selection

File Filter
fusr/hp648808/demo/debug_env/hpbd747/+ EA

The file filter selects
specific files. —

[

A list of

filter-matching files Files

from the current ustfhp64000/demoldebug_envihp64747/Config EA 4]
directory. || lusrhpe4000/demoidebug_envihp64747iConfigall. EA

A list of files ustfhp64000/demoidebug_envihp64747/myMMUon.EA
previously accessed <Previous Files>_

during the ustfhp64000{/inst/emul/runtime/0F 061926.lan/default.EA

emulation session__ |l fustfhp64000/demoidebug_envihp64747/Config.EA

A single click on a
file name from
either list highlights
the file name and
copies it to the text 7 |
area. A double click || EX - |

chooses the_ file and Load Configuration
closes the dialog

box. fusr/hp64088/demo/debug_env/hpb4747/

oK Filter Cancel

Label informs you
what kind of file
selection you ar

performing.

Text entry area. Text is Clicking this button Entering a new file Clicking this button

either copied here chooses the file name filter and clicking this cancels the file

from the recall list, or displayed in the text button causes a list of selection operation

entered directly. entry area and closes files matching the new and closes the dialog
the dialog box. filter to be read from box.

the directory.

70

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you ='| Debugger/Emulator: Directory Selection
of the type of list]]]]
displayed. Previous Working Directories

, , i To customize the initial list of entries lock for "dirSelectSub”
A single click on a L in the file $HP64000/lib/X 11/app-defaults!HP64_Debug
directory name # and add your own definition to your . Xdefaults file.
from the list # Use the File->Edit->File pulldown to edit these files.

highlights the name o
and copies it to the $HOME

text area. A double .. _
click chooses the $HP&4000/monitor

the dialog box. fusrthp64000/demo/debug envihps4747
A list of predefined

or previously
accessed directories.

Selection
fusr/hp6406@0/demo/debug_env/hpbd4747

== Goncel] |

| | I
Text entry area. Clicking this button Clicking this button Clicking this button

Directory name is chooses the directory chooses the directory cancels the directory
either copied here displayed in the text displayed in the text selection operation
from the recall list, or entryarea and closes entryarea, but keeps and closes the dialog
entered directly. the dialog box. the dialog boxon the box.

screen instead of

closing it.

71

Chapter 3: Entering Debugger Commands

Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Displaythe Help Index by choositglp ~General Topic ...or
Help -~Command Line ...

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help

Index, the interface displays a window containing the help information. You
may leave the window on the screen while you continue using the interface.

Examples

To see more information on howto use the on-line help, cliddap, then
click onGeneral Topics ...then click on "To Use Help", then click on the

"OK" button.

=] Debugger/Emulator: Help Topics Index

General Topic ...

Command Line ...
Version ...

X Resource Names .|

Topics
--General Information--

The Interface ... At a Glance
ICommon Questions & Answers
IAction Keys

ICommand Line Operation

I(): Entry Buffer

Dialog Boxes

Pop-up Menus

[For More Information

Glossary

[To Set or Clear Breakpoints
To Set a Variable

--Menu Bar--

Pulldown Menus Quick Reference

Selection

|T0 Use Help,

Choose a topic of interest from the Help Index.

Cancel

= Help: Topics

To Use Help

Use the menu to see information about the debugger’s graphical
user interface.

To see more text, move the mouse to the scrollbar on the right side
of the window. Hold the right mouse button while you move the mouse up

and doun.

To move the help window, move the mouse to the iitle bar.
Hold the right mouse butten while you drag the window.

To get help on another topic, click on that topic then click on the
button in the ESTSREYSEHSIEEN uindou.

To save a help topic in a file which you can print or view at later
time, click on the CENEEKTHEBE button. A file selection dialog box

will ask you to name the file in which to save the information.

72

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the graphical interface, tlanmand lingortion of the interface
gives you the option of entering commands in the same manner as they are
entered in the standard interface. Additionally, the graphical interface ma
the command tokens pushbuttons so commands may be entered using th
mouse.

If you are using the standard interface, the command line is the only way to
enter commands.

This section describes how to:

e Turn the conmand line off/on.
 Enter commands.

» Edit commands.

* Recall commands.

» Displaythe help window.

73

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

To turn the command line on or off

To turn the command line on or off using the down menu, boose
Settings=Command Line.

To turn the cemmand line on or off using the status lp@p-up menu:
position the mouse pointer within the status line area, press and hold the right
mouse button, and choo€emmand Line On/Off from the menu.

To turn the cexmand line on or off with a single mouse click, hold the
< Shift> key and click on the status line.

To turn the conmand line off using the command line entry guea-up
menu: position the mouse pointer within the entry area, press and hold the
right mouse button, and chooS8emmand Line On/Off from the menu.

To turn the cammand line on with the keyboard: place the mouse pointer in
the display area and press any alphanumeric key.

"On" means that the command line is displayed and you can use the command
token pushbuttons, the commanduretand recall pushbuttons, and the

cursor pushbuttons for command line editing. "Off" means the command line
is not displayed and you can use only the pull-downgomtup menus and the
action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the debugger window. The status line is not part of the command
line and continues to be displayed whether the command line is on or off.

Choosing certain pull-down menu items while thencoand line is off causes
the command line to baitned on. That is because the menu item chosen
requires some input at thernmand line that aanot be supplied another way.

74

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

To enter a command

1 Build a command using the command token pushbuttons byssinsly
positioning the mouse pointer on a pushbutton and clicking the left mouse
button until a complete command is formed.

2 Execute the completed command by clicking Return pushbutton (found
near the bottom of the command line in the “Commamdug).

Or:

Execute the completed command using the Command Line entrgapeap
menu: Position the mouse pointer in the command line entry area; press and
hold the right mouse button until the Command Lpog@-up menu appears;
then, choose thExecute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of partial commands or command tokens.
You know a command is complete when “<uet> " appears on one of the
command token pushbuttons. The interface does not check or act on a
command, however, until the command is executed. (In contrast, commands
resulting from menu choices and action keys are supplied with the needed
carriage return as part of thensmand.)

75

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

To edit the command line using the command line
pushbuttons

To clear the command line, click ti#ear pushbutton.

To clear the command line from the cursor position to the end of the line,
click theClear to endpushbutton.

To move to the right one command word or token, clickRtravard
pushbutton.

To move to the left one command word or token, clickBhekup pushbutton.

To insert characters at the cursor position, prestndest char keyto change
to insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pressBaekspace>
key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

When moving by words left or right, th®rward pushbutton becomes
half-toned and unresponsive when the cursor reaches the end ofrtinaind
string. Similarly, theBackup pushbutton becomes half-toned and
unresponsive when the cursor reaches the beginning of th@aod.

See “To edit the command line using the mouse and the commarnpb firep
menu” and “To edit the command line using the keyboard” for information
about additional editing operations you can perform.

76

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

To edit the command line using the command line
pop-up menu

To clear the command line: position the mouse pointer within the Command
Line entry area; press and hold the right mouse button until the Comman
Line pop-up menu appears; cho@ear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line:
position the mouse pointer at the place where you want the clear-to-end to
start; press and hold the right mouse button until the Commandbioeip
menu appears; choo&tear to End of Line from the menu.

To position the cursor at the next token or the previous token: press and hold
the right mouse button until the Command Lptp-up menu appears;
choose~orward Tab or Backward Tab from the menu.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

See “To edit the command line using the mouse and the command line
pushbuttons” and “To edit the command line using the keyboard” for
information about additional editing operations you can perform.

To recall commands

Click the pushbutton labeldglecallin the Command Line to display the
dialog box.

Choose a cmmand from the buffelist. (You can also enter amonand
directly into the text entry area of the dialog box.)

Because all command entry methods in the interface — menus, action keys,
and command line entries — are echoed to the command line entry area, the

77

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

contents of the Command Recall dialog box is not restricted to commands
entered directly into the command line entry area.

The Command Recall dialog box containsaof interface caamands
executed during the debugger session as well as any predefined commands
present at interface startup.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the “Setting X
Resources” chapter).

See “To use dialog boxes” for information about using dialog boxes.

To get help about the command line

To display the help topic explaining the operation of the command line, select
Help —General Topic ..—~Command Line Operation.

* To display the command line help menu, sekégdp ~Command Line ...

78

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

Commands are entered on the command line at the deburggapt (>) and
executed by pressing tkeReturn> key. Command tokens are entered by
typing a single letter, typically the first uppercase letter of the token.

The third and fourth lines of the status window displayomand tokens. The
third line shows the tokens that you can enter at the current location in th
command line. Theolrth line shows tokens that are available if you select
the highlighted command token on the third line. The command token lines
provide you with a look ahead feature, showing you the debugganeods
available to you at anytime.

This section describes how to:
 Enter commands.

» Edit commands.

* Recall commands.

» Access on-line help information.

To enter debugger commands from the keyboard

Build a command using direct keyboard entry by sssively typing letters
corresponding to comand tokens until a complete command is formed.

Execute a completed command using the keyboard, pressRatirn> key
on the keyboard.

You can enter commands anytime the cursor is displayed on the command
line. You can enter only one debugger command at a time.

Debugger commands have the following syntax:

command [qualifier...] [parameter...]

79

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

Note

To enter a command keyword, type the first letter of the keyword. For
example, to enter the commabédbugger L evel Assemptype the letters D, L,
and A. The following commandilappear on the ammand line:

Debugger Level Assembly

Press< Return> to enter (execute) the command.

In command examples, the letter you must type is highlighted in bold type.

In cases where you can select from more than one keyword beginning with the
same letter, type the first uppercase letter of the desired keyword. For
example, typ@to seleciOn andF to select &F.

Enter qualifier keywords in the same way as command keywords. Qualifiers
provide the debugger with information on how to execute thentand.
Qualifiers are normally single words that immediately follow the command
name. For example, in the command:

Program Find_Source Next Backward

the qualifierBackwardcauses the debugger to search the file from the current
position in the file towards the beginning of the file for a specified string.

Type parameters in their entirety from the keyboard. Parameters must be
separated from the command or qualifier keyword by at least one space.
Parameters describe the object of the command and are typically Gsopee

that represent values or addresses used by the command. For example, in the
command:

Expression Display_Value &system_is_running

the paramete&system_is_runningpecifies the address of the variable
system_is_running

80

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

To edit the command line

To clear the command line, pres€tri> U.

To clear the command line from the cursor position to the end of the line,
press< Ctrl> E.

To move to the right one command word, pre3sb> .

To move left or right character-by-character, pressthand - keys.

To delete characters to the left of the cursor position, press the
< BACKSPACE> key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

To recall commands using the command line
recall feature

To recall commands from the command line, presst@&l> R key
combination. Continue to pres<CtrI> R to move from the most recently
executed commands backward to earlier commands.

To move forward in the recall list, pres<tri> B.

The command line recall feature is available to you, but it is not as easyto use
or as flexible as the Command Recall dialog boxin the graphical interface.
You must search through monands in a linear fashion instead of going
directly to the command you want in the dialog box. The depth of the recall
list is predefined and caot be controlled by you. The recidt may contain
duplicate entries that you must scroll past and that take up room in the recall

81

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

list. Finally, you canot predefine entries for the redit — the list only
contains the most recent commands executed during the emulaggionse

To display the help window

Press the function kéib.

Or:

Enter the command
Debugger ?

This command displays a menu of debugger commands, command parameters,
function keys, and other debugger features. Descriptions for each topic may be
obtained by positioning the cursor on the first letter of any topic in the help
menu and pressing tkeReturn> key.

The debugger’s help window is context sensitive. When you display the help
window, the cursor is located on the last command you entered before
displaying the help window. The debugger assumes you need help with this
command. PressReturn> to display information about the command.

Pressing< Return> or < Down> displays information on the next item in the
help menu. PressingUp> displays information about the previous item in
the help menu.

You can move the cursor to the first command of a command type
(Breakpoint, Debugger, etc.) by entering the first letter of the command type.
For example, to move to cursor to the entry for the first window command,
enter:

w

82

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

The cursor will be positioned at the Window Activeraoand entry. Then you
can use the cursor keys to select the window command you need help with and
press< Return> to display information on that command.

Press thé5 function key one time or press the escap&gc>) key twice to
exit the help window. (Note that you cannot exit the graphical interface help
window this way.)

83

Chapter 3: Entering Debugger Commands

Viewing Debugger Status

Viewing Debugger Status

The status line shows you what the debugger is doing. The status line:

Contains information about the operation being performed by the
debugger.

Contains indicators to warn you about special conditions.

Shows the microprocessor being emulated.

Shows the program module associated with the current program counter.
Shows the number of the last breakpoint that occurred.

Shows the trace measurement status.

The status line is always present in both the graphical interface and the
standard interface.

The debugger displays the status line in the following format:
STATUS:<Status> [J][L]]W] CPU MODULE: <module> BREAK #: <#> TRC:<Trc_status>
[R]

Debugger Status

The Status entry (< Status>) on the status line shows what type of operation
the debugger is doing. The possible types of debugger operations are:

Command The debugger is accepting a debugger command.
Define The debugger is accepting a macro definition.
Execute The debugger is executing target environment instructions.

The debugger displayxecuteon the status line when you
enter the Program Run command or the Program Step

command.
Include The debugger is reading commands from a command file.
InMon The debugger is executing in the monitor.
Input The debugger is reading data from an input port.

84

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

Macro The debugger is executing a macro.
Output The debugger is writing data to an output port.
Paused The debugger is in the paused state after execution of the

Debugger Pause command.

Reading The debugger is reading an executable file or a C sourc
into the debugger’'s memory.

Working The debugger is executing internal debugger operations.

Indicator Characters

The Warning indicator (W) indicates that the program counter isnot ona C
source line boundary. The debugger displays a warning when it detects a
breakpoint, an instruction halt, or an instruction error between lines.

The Log indicator (L) indicates that commands are being logged to a log file.

The Journal indicator (J) indicates that everything appearing in the Journal
window is being written to a journal file.

The Register indicator (R) indicates that a register variable is being used, but
its lifetime is not known by the debugger. The debugger displays an R when
the variable is referenced, indicating that the values being used for this
variable may not be valid.

CPU Emulated
The CPU entryindicates which microprocessor is being emulated.

If you are using a 68030 emulator, the status line will show "@8BUGf the
MMU is not enabled, and "68030" if the MMU is enabled.

Current Module

The MODULE: entry names theinarent module (< module>). The current
module is the module pointed to by the program counter. If the program
counter points outside of the known code area associated with the program,

85

Chapter 3: Entering Debugger Commands

Viewing Debugger Status

Last Breakpoint

The BREAK # entry indicates the number of the last breakpoint that
occurred, or (0) zero if execution was not terminated with a breakpoint.

Trace Status

The TRC:< Trc_status> entry indicates the status of the trace measurement
function. The possible values feifrc_status> are:

AwtTrg

BrkRWA

Cmplt
DataOK
Halted

Idle

Setup

Trgrd

A trace measurement is progress, but the trigger
condition has not been detected.

An access breakpoint has been set and will be used as the
trigger in the next trace measurement.

A trace measurement has completed.
The trace buffer contains valid data.
TheTrace Halt command was used to halt the trace.

No trace measurement has been executed duringithent
debug session.

A trace measurement has been set up (specified), and will
start on the next program run or program stepro@and.

This status message appears only before the first trace
measurement in a debugson.

A trace measurement ispnogress, and the trigger has
been detected.

86

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

If pop-up menus don’t pop up

When you hold the right mouse button down, a pop-up menu does not appear.
Here are some things to check:

[] Check that the mouse pointer is hand-shaped.

Some areas of the screen do not have pop-up menus.

[] Check that your mouse buttons are not being redefined by your window
manager.

If you are usingnwm to redefine your mouse buttons, delete the redefinition
from your .mwmrc file.

[] If you are using an older window manager sucmam, look in

/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Debug.Input

Copythe line
HP64_Debug*whichButton: Button5

to your .Xdefaults file. Change the 5to a 3.

87

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

88

Loading and Executing Programs

Howto load a program into the debugger and control its execution.

89

Note

Compiling Programs for the Debugger

Using a Hewlett-Packard C Cross Compiler

Use the default compile mode when compiliogtarget programs for use
with the debugger. The default settings generate executable files (.x file
extension) in the HP-MRBEE-695 file format required by the debugger.
The default option settings force a stack frame to be built for every function
call, which is required for stack backtracing.

The “Getting Started” chapter of 68020 C Cross Compiler User's Guide
the 68030 C Cross Compiler User's Guigwes an example of how to compile a
simple program and execute it in the B&747A/748A envionment.

Do not use the-h option when compiling and linkingoyr program for the
debugger. Thehoption causes the compiler to generate HP 64000 file
formats. Use the default settings which generate executable files in the
HP-MRI IEEE-695 file format required by the debugger. The debugger
extracts all symbolic information from the executable (.x) file.

Using Environment Dependent Files

The HP 64903/B1461 and HP 64907/B1478 C Cross Comjpiteréde
environment dependent files that support the@4P47A/748A emulation
environment. The debugger has the same simulated 1/O capabilities as the
HP 64000 Series emulators. The sameremvnent dependent files are used
for both the debugger and emulator environments. These environment
dependent routines affect the following areas of C mogning:

e program setup
» dynamic memory allocation
e program input and output

The "Environment Dependent Routines" chapter ofa8@20 C Cross
Compiler Referencer the68030 C Cross Compiler Refereramscribes the
environment dependent routines supplied with the compiler.

90

Note

Chapter 4: Loading and Executing Programs
Compiling Programs for the Debugger

Using Optimizing Modes

If you use the optimizing modes (-O or —OT), function calls that do not have
automatic variables will not have stackifnes. As a result, the stack backtrace
window will not contain entries for such functions. Additionally, the

optimizing modes will cause the compiler to generate code which is not easily
debugged.

When initially compiling gprogram for the debugger, you should turn off all

optimizations to avoid confusion when using the debugger. After program
flow and all basic algorithms have been debugged, you can recompile the

program with all optimizations turned on.

When you compile with all optimizations on, one or more of the following
problems may occur while using the debugger:

e Target program execution in the debugger may not appear to correctly
reflect the logical flow of the program.

» The debugger may not stop execution at a high-level breakpoint or may
stop execution at the wrong location in the program.

» The debugger may not be able to display local variables.

Forcing Variables to be Placed in Memory

The default compiler settings automatically create register variables for statics
and frequently used variables. Some debugger functions such as breakpoints
will not work with register variables. The compiler optid¥c, -Fturns off

the compiler’'s automatic creation of register variables, forcing the compiler to
assign these variablesteemory. This enables greater functionality of some
debugger commands. After debuggingiycode, you can then recompile your
code without these options for greater efficiency.

Using Math Libraries

Although FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code that
will run interchangeably in both the debugger/emulator and
debugger/simulator, use the C compiler’s floating point library routines.

91

Chapter 4: Loading and Executing Programs
Compiling Programs for the Debugger

These libraries contain routines that do not use FPU instructions, thereby
allowing them to execute properly in both debugging environments.

References

The “Getting Started” chapter of ti88020 C Cross Compiler User's Guide
gives an example of how to compile a simple program and execute it in the
debugger environment.

The “Command Syntax’ chapter of t68020 C Cross Compiler User's Guide
gives detailed descriptions of compiler options.

The “Environment Dependent Routines” chapter of@8@20 C Cross
Compiler Referencdescribes the environment dependent routines supplied
with the compiler.

Using Microtec Language Tools

The debugger is designed to work with the HP Advanced Cross Language
System. However, you can also use the Microtec Research, Inc. language tools
with the debugger.

Microtec’s language tools are quite similar to the HP language tools. The
input syntax and code generated by the HP and Microtec assemblers, linkers,
and librarians are identical with few exceptions.

The language tools available from Microteare themcc68kC compiler, the
ccc68kC+ + compiler, thesm68kassembler, thimk68k linker, and the
lib68k librarian.

Using the Microtec Commands

For instructions on how to compile and assemble programs using the Microtec
language tools, refer to thepplication Note for Hewlett-Packard 68xxx Product
Interfaces and Microtec Research Inc. 68xxx Language Tbhis application

note is available from your Hewlett-Packard sales representative.

Assembler Defaults

You should be aware of these differences between asm68ksé8kt a

Command-line syntax. The differences are minor. See thelm® man
pages for a description of the comméame options.

92

Chapter 4: Loading and Executing Programs
Compiling Programs for the Debugger

Case sensitivity. as68k is case sensitive by default, asm68k is not. Use the
command line flag "-fcase" to make asm68k case sensitive.

Symbols in HP-MRI IEEE-695 files. The HP assembler places local
symbols in the output object file by default, asm68k does not. Use the
command line flag "-fd’ with asm68k to generate local symbols.

The HP assembler places global symbols in the debug part by default. There is
no way to do this with Microtec’s asm68k. This information is needed by

emul700/SRU toarrectly scope symbols. Thus youlfind that some
symbols may be incorrectly scoped when using the emulator with the Micr
assembler.

Linker Defaults

You should be aware of these differences between Ink68k and 1d68k:

Output file format. 1d68k produces HP-MRIHEE-695 by default. Ink68k
products Motorola S-Records by default. To generate an HP-MRIE}695
(.x) format absolute file, use thel command line option offi flag.

Local symbols. 1d68k provides local symbols in absolute file by default, but
Ink68k does not. The command line fléigand optionH also set thel flag
which will cause Ink68k to generate local symbols.

Support files. 1d68k and Ink68k have different default locations and
environment variables used to locate linker command files and libraries.

Librarian Defaults

ar68k usesa as the default library suffix. lib68k usdib as the default library
suffix.

The Microtec MCC68K Compiler

mcc68Kk is very different from the HP compilers. Studythe Microtec
documentation if you need specific information about mcc68k.

93

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

Loading Programs and Symbols

This section shows you how to:

» Specify the location of C source files.

* Load programs.

* Load programs only (without symbols).

» Load symbols only (without the program).
* Append programs.

» Specifydemand loading of symbols.

Example

To specify the location of C source files

Before you start the debugger, set the HP64_DEBUG_PATHa@mment
variable.

The location of C source files can be defined to the debugger with the UNIX
shell variableHP64_DEBUG_PATH If HP64_DEBUG_PATH is defined, the
debugger only searches for the files in the path(s) specified in

HP64 DEBUG_PATH, in the order in which they are listed.

The% character can be included in the path to cause the debugger to search
the location of the source files recorded in the absolute file.

IfHP64_DEBUG_PATH is not defined, the debugger searche®forcs files
in the following sequence:

1 their location at compile time (this information is recorded in the
absolute file)

2 the current directory (if the required source files are not found in their
compile location)

The shell variable definition:

94

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

HP64_DEBUG_PATH=/users/proj/src:/users/proj/mysrc:%
export HP64_DEBUG_PATH

causes the debugger to search paths for C source files in the following order:

3 lusers/projlsrc
4 Jusers/proj/mysrc
5 the paths specified in the absolute file at compile time

If you use the csh shell (most Sun systems) sesenvinstead ofxport to set
the variable.

To load programs

When starting the debugger, enter the executable file name as the last term in
the db68k command line.

$ db68k -e emul68k <abs_file>

Or:

SelectFile -Load -Executable then use the File Selection dialog boxto select
the executable file.

Or:

Using the command line, enter:
Program Load Default <file_name>

When you load an absolute file, the debugger:
1 Removes all previous program symbols.

2 Removes all previously set breakpoints.
3 Resetsthe program counter (PC).
4

Loads the full symbol set.

95

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

5 Loadsthe new executable module.

Absolute files contain executable object code. They must have a file name
extension ofx. You do not need to specify thefile extension when entering
the absolute file name.

Examples To load the executable fikrs.x

$ db68k -e emul68k ecs

Or:

Program Load Default ecs

To load programs only

» SelectFile -Load -Program Only ..., then use the File Selection dialog boxto
select the absolute file.

Or:

» Using the command line, enter:
Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and press the
< Return> key.

The code will be loaded thiout loading symbols or resetting the PC.

If you are re-loading a program, you may need to restore some debugger
settings; for example, you might need to re-specify variables for the Monitor
window.

96

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

To load symbols only

Use the -1 option to the db68k command when starting the debugger.
$ db68k -e emul68k -I <absolute_file> <RETURN>

Or:

SelectFile sLoad -Symbols Only .., then use the File Selection dialog boxt.
select the absolute file.

Or:

Using the command line, enter:
Program Load New Symbols_only No_Pc_Set <absolute_file>

Enter the name of the absolute file whose symbols are to be loaded, and press
the< Return> key.

Only symbolic information is loaded from the absolute file.

To append programs

Using the command line, enter:

Program Load Append

Select either All, Code_Only, or Symbols_Only. Then, select either Pc_Set or
No_Pc_Set. Finally, enter the name of the absolute file to be appended, and

press thes Return> key.

All both code and symbols are loaded.

97

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

Examples

Code_Only only code from the absolute file is loaded.
Symbols_Only only symbols from the absolute file are loaded.

Pc_Set the program counter (PC) is set to the transfer address
found in the absolute file.

No_Pc_Set the program counter (PC) is not changed.

When you append a program, it is loaded without deleting the existing
program.

To append the program “module2.X’ to the current program without setting
the program counter:

Program Load Append Al No_Pc_Set module2

To specify demand loading of symbols

Use the -d option when starting the debugger.

The -d option turns oneinand loading of symbols, loading some symbol
information on an as-needed, demansdibaather than during the initial load
of the .xfile.

Symbol information for global symbols, local symbols in the source module
containing main, and local symbols in assembly modules are loaded during the
initial load of the .xfile. Local symbolsin C source modules other than that
module which contains main are loaded either when the user explicitly
references the module or when the program is stopped with the program
counter in the module. The primary advantageewfidnd load is that it lets

you load and debug programs that otherwise would not be loaded because of
very large amounts of symbol information.

There are several side effects of demand loading. The debugger command
Memory Unload_BBA is disabled. Type mismatchogs may not be detected
during the initial load of the .xfile. Global symbols may have leading

98

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

underscores stripped depending on whether they were defined/referenced in a
C or assembly source module.

Examples To specify demand loading of symbols when starting the debugger:

$ db68k -e emul68k -d <RETURN>

99

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

Stepping Through and Running Programs
The various Program Run command options can be combined to make
complexrun-time control scamands for gur program.
This section shows you how to:
e Step through programs.
» Step over functions.
. * Run from the current PC address.
* Run from a start address.

* Run until a stop address.

To step through programs

» Click on theStepaction key.

Or:

» SelectExecution-Step—from PC.

Or:

» Using the command line, enter:
Program Step

And press the Return> key.

Your program executes one C source line (high-level mode) or one machine
instruction (assembly-level mode) at a time from the address contained in the
program counter (PC). When the prograrisca function, stepping continues

in the called function.

100

Note

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

You can specify a starting address with the Program Step command. You can
also specify a step count to cause the debugger to step multiple lines or
instructions in your program.

If the debugger steps into an HP library routine, run until the stack level above
the level of the library routine. Use the Program Run Untite@and or the
Backtrace window pop-up menu.

The debugger updates the screen after each instruction or line is execute
The highlighted line in the Code window (which indicates the value of the
program counter) is the location of the next line to be executed. Ifa
breakpoint is encountered, single-stepping is halted.

You can also use function ké&y to single-step.

To step over functions

Click on theStep Overaction key.

Or:

SelectExecution-Step Over—from PC.

Or:

Using the command line, enter:
Program Step Over

And press the Return> key.

The debugger steps through the program one line or one instruction at a time.
However, if the debugger encounters a C function or assembly-level JSR or
CALL instruction, it stops stepping, executes the JSR or CALL instruction,
and then continues stepping when the called subroutine returns.

101

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

You can also use function k&g to step over functions.

To run from the current PC address

» Click on theRun action key.

Or:

* SelectExecution-Run —from PC.

Or:

» Using the command line, enter:
Program Run

And press the Return> key.

The program runs until:

* The program encounters a permanent or temporary breakpoint.
* An error occurs.

* A STOP instruction is encountered.

* You presx Ctrl>-C.

* The program terminates normally.

You can run from the current program counter address to resume program
execution after the program has been stopped.

To run from a start address

1 Enter the start address into the entry buffer.

102

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

2 SelectExecution-Run -from ().

Or:

* Using the command line, enter:
Program Run From <start_addr>

Type in the start address, and presstiReturn> key.

The program runs until:

* The program encounters a permanent or temporary breakpoint.
* An error occurs.

* A STOP instruction is encountered.

* You presx Ctrl>-C.

e The program terminates normally.

Running from a start address in high-level mode may cause unpredictable
results if the compiler startup routine is bypassed.

To run until a stop (break) address

1 Enter the stop address into the entry buffer.

2 SelectExecution-»Run -until () or click on theRun Til () action key.
Or:

* Using the command line, enter:
Program Run Until <break_addr>

Type in the stop address and, optionally, a pass count, and press the
< Return> key.

103

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

Note

Examples

The break address (< break_address>) acts asgotany instruction
breakpoint. It is automatically cleared when program execution is halted.

The pass count (< ga_ount>) paameter specifies the number of times the
break address is executed before the program is halted. For example, a pass
count of three Wl cause theprogram to break on the fourth execution of the
break address.

Multiple break addresses are OR’ed. In other words, if you specify more than
one break address, the program runs until either address is encountered.

The debugger/emulator implements instruction breaks using software
breakpoints. Therefore, break addresses cannot be specified for addresses in
target ROM.

To run the program until either line 20 or line 90 is encountered, whichever
occurs first.

Program Run Until #20,#90

To run from the current program counter address until the break address
update_state_of systesiencountered twice:

Program Run Until update_state_of system %%?2

The Until option in the command sets a pomary breakpoint at address
update_state_of systenThe pass count pameter % %2 specifies that the

debugger is to stop program execution on the second access to address
update_state_of_system

104

Chapter 4: Loading and Executing Programs
Using Breakpoints

Using Breakpoints

The debugger implements access, read, and write breakpoints using analyzer
hardware.

The debugger implements instruction breakpoints using software breakpoints.
This section shows you how to:

» Set a memory access breakpoint (read, write, or either).

* Set an instruction breakpoint. .
* Clear selected breakpoints.

* Clear all breakpoints.

» Display breakpoint information.

To set a memory access breakpoint

Enter the address (which may be a symbol) in the entry buffer. Select
Breakpoints -Setand selecRead Write , or Read/Write.

Or:

Using the command line, entBreakpt, select the type of accessto break on
(Read, Write, or Access), enter the address of the memory location, and press
the< Return> key.

The access types have the following meanings:

Read break on read accesses.
Write break on write accesses.
Access break on either read or write accesses.

105

Chapter 4: Loading and Executing Programs

Using Breakpoints

Note

Access breakpoints cause the debugger to halt program execution each time
the target program reads from or writes to the speaifiechory location(s).
Memory locations can contain code or data.

The debugger uses the emulation analyzer to implement access breakpoints.
The analysis hardware has eight single breauess and one range break
resource. Each breakpointrosmand uses one or more of the analysis
resources.

The following commands each use one asialyreak resurce:

» Breakpt Access < addr>
* Breakpt Read < addr>
* Breakpt Write < addr>

The commandreakpt Access <addr>..<addr> uses the one range
break resource.

The commandBreakpt Read <addr>..<addr> or Breakpt Write
<addr>..<addr> use the analysis range o@sce and four anadis break
resources.

If you request more access breakpoints than there are available in the analysis
hardware, the messaBeeakpoint limit exceededlill be displayed on your

screen. Ifthis happens, you must delete an existing analysis breakpoint before
you can enter a new one.

Due to the latency of the emulation analyzer, the procesdralt from 0 to

2 instruction cycles after the breakpoint is detected. Due to the processor’s
prefetch feature, it is possible for hardware breaks to occur on addresses of
instructions that are not executed.

An address can be accessed without the address appearing on the bus. In this
case, a break will not occur. Be sure to read the "Limitations to the Trace
Function"section in the introduction to the "Making Trace Measurements"
chapter.

The emulator user interface may specify a trace that overrides a debugger
access breakpoint. The debugger interface will set up the access breakpoint
trace when a run or stepramnand isssued only if the analyzer is natrcently

in use. Using both access breakpoints in the debugger and trace features in the
emulator is not recommended.

106

Chapter 4: Loading and Executing Programs
Using Breakpoints

Examples To cause execution to halt each time the program reads from or writes to the
variable current_temp:

Breakpt Access ¤t_temp

To cause execution to halt each time the program reads from the variable
current_temp:

Breakpt Read ¤t_temp

To cause execution to halt each time the program writes to the variable
current_temp:

Breakpt Wite ¤t_temp

To set an instruction breakpoint

» Position the mouse pointer in the code window over the line at which you wish
to set a breakpoint. Either click the right mouse button, or press and hold the
right mouse button to display the Debugger Display pop-up menu and choose
Set/Clear Breakpointfrom the menu.

Or:

» Enter the instruction address into the entry buffer, then select
Breakpoints - Set-Instruction ().

Or:

» Using the command line, enter:
Breakpt | nstr <addr>

Enter the address of the instruction location, and press Return> key.

The instruction breakpoint causes the debugger to halt program execution
each time the target program attempts to execute an instruction at the

107

Chapter 4: Loading and Executing Programs

Using Breakpoints

Note

specified memory location(s). The debugger halts program execution before
the program executes the instruction at the breakpoint address.

If you specify a range, the debugger sets breakpoints on the first byte of each
instruction within the specified range.

Set breakpoints are marked with asterisks “*” in the code window. In the
high-level mode, dots “.” show the source lines associated with a breakpoint.

Instruction breakpoints are implemented using the emulator’s software
breakpoint capability. You can set up to 32 software breakpoints. These
breakpoints are implemented by replacing the program opcode with a BKPT
instruction. Executing the BKPT instruction causes program control to be
transferred to the emulation monitor, stopping the program.

Because a BKPT instruction must replace the instructionvegraory
location, software breakpoints can only be set in:

e Emulation RAM.
e Emulation ROM.
» Target system RAM.

Software breakpoints cannot be set in target ROM. Software breakpoints
cannot be used to detect data accesses.

The default setting of the debugger optlign_Bp(align breakpoint) isFF.
Setting the option t®n causes breakpoints to be aligned based on the
assembly language instructions foundriemory at the time the breakpoints

are set. If multiple breakpoints exist in the same program area, their
alignment may be incorrect. Make sure &ilgn_Bpoption is set t@FF to

prevent breakpoint alignment problems. See the “Configuring the Debugger”
chapter for more information.

108

Note

Examples

Chapter 4: Loading and Executing Programs
Using Breakpoints

Setting an instruction breakpoint inmemory area mapped as emulation

ROM is allowed because the debugger can write to emulation ROM addresses.
Setting an instruction breakpoint immeemory area mapped as target ROM is
allowed if you answeno to the configuration questiddreak processor on

write to ROM?The breakpoint will be recorded in the breakpoint window.
However, if the target memory area is made up of ROM chips in the specified
memory area, the BKPT instruction cannot be writtem&mory. Therefore,

the breakpoint will never be executed.

If you answelyes to the configuration questidBreak processor on write to
ROM?, you are not permitted to set breakpoints in areas mapped as targ
ROM.

To set an instruction breakpoint at line 82 of the current module:

Breakpt | nstr #82

Example

To set a breakpoint for a C+ + object instance

Use the dot or arrow operator to specify the object andnégraber function.

This allows you to set a breakpoint for a member function only when it is
invoked for a given object or instance.

To break when functioofuncis invoked by object instan@®bjl, enter:

Breakpoint | nstr cobjl.cfunc

To do this the hard way, you could enter:

Breakpoint | nstr C::cfunc\@entry;when (C::cfunc\this==
&cobjl)

109

Chapter 4: Loading and Executing Programs

Using Breakpoints

Example

To set a breakpoint for overloaded C+ +
functions

To set a breakpoint at one of the functions when you know the argument type,
supply the argument type following the functicanme.

To set a breakpoint at one of the functions when you don't know which
argument type you want, just use the name of the function. The debugger will
list the choices with a menu in theurnal window.

To set a breakpoint for the functigrint (which is not in a class) fdloat
arguments, entaarint (float) in the entry buffer and select
Breakpoints -»Set ().

Another way to set a breakpoint for the functprimt is to enteprint in the
entry buffer, seledBreakpoints -»Set (), then type the number of "print
(float);" from the menu in the Journal window.

Examples

To set a breakpoint for C+ + fu nctions in a class

Set a breakpoint for the C+ + class.

To set breakpoints for all member functions of the atissnameenter
“classname::" in the entry buffer, then seaakpoints -Set () from the
menu bar.

Or, using the command line, enter:

Breakpoint | nstr classname::

110

Chapter 4: Loading and Executing Programs
Using Breakpoints

To clear selected breakpoints

Position the mouse pointer in the Code window over the line at which you
wish to clear a breakpoint. Click the right mouse button.

Or:

Position the mouse pointer in the Code window over the line at which you
wish to clear a breakpoint. Hold the right mouse button and ssd¢/€lear
Breakpoint.

Or:

Position the mouse pointer in the Breakpoint window over the breakpoint you
wish to clear. Hold the right mouse button and sdbetete Breakpoint

Or:

Enter the breakpoint number into the entry buffer, the select
Breakpoints -»Delete ()

Or:

Using the command line, enter:
Breakpt Delete <brkpt_nmbr>

Enter the breakpoint number, and presstiReturn> key.

The debugger assigns a breakpoint number to each breakpoint. The debugger
uses this number to remove the breakpoint.

The < brkpt_nmbr> is the number of the breakpoint displayed in the
debugger breakpoint window. Enter a range of breakpoint numbers

(< brkpt_nmbr> ..< brkpt_nmbr>) to remove more than one breakpoint at a
time. When you delete a breakpoint, all following breakpoints are
renumbered.

111

Chapter 4: Loading and Executing Programs
Using Breakpoints

Examples To delete breakpoint number 1:

Breakpt Delete 1

To clear all breakpoints

» SelectBreakpoints »Delete All.
Or:

» SelectDelete All Breakpointsfrom the Breakpoints window pop-up menu.
Or:

» Using the command line, enter:
Breakpt Clear_All

And press the Return> key.

To display breakpoint information

» SelectWindow -Breakpoints.
Or:

» Using the command line, enter:
Wndow Active Breakpoint

And press the Return> key.

112

Chapter 4: Loading and Executing Programs
Using Breakpoints

The debugger displays the breakpoint window when:

* You enter a breakpoint command.
* You execute the Window Active Breakpoint command.
* You use function keys F1/F2 to activate next/previous windows.

The Breakpoint window temporarily overlays the top portion of the screen.

When made active, this window displays breakpoint information including:

» Breakpoint number.

» Breakpoint address.

* Name of the module or function containing the breakpoint (in high-le
mode).

* Module line number (in high-level mode).

» Breakpoint type.

 Command arguments entered with the breakpoint command.

The following paragraphs describe each field in the breakpoint window.

Breakpoint number

The debugger assigns a breakpoint number (#) when you execute a breakpoint
command. The debugger uses this number as a label to reference or clear each
breakpoint.

Breakpoint address

The breakpoint address (ADDRESS) shows the memory location of the
breakpoint. The debugger displays the address as a hexadecimal value.

Module/function

The module/function field (MOD/FNCT) displays either the name of the
module containing the breakpoint or the name of a function if you qualified
the breakpoint with a function name. If you specify a module name with a
breakpoint command, the name must be followed by a line number (for
examplemainl#80). The field width is eight characters. The debugger
truncates field entries greater than eight characters in length to eight
characters.

113

Chapter 4: Loading and Executing Programs

Using Breakpoints

Line number

The line number entry (LINE) displays a module line number if you set a
breakpoint in a high-level module. If the compiler did not generate executable
code for the C statement at the line number specified, the debugger examines
the source code and sets a breakpoint on the next line number for which the
compiler generated executable code.

In the code window, the debugger places asterisks beside all line numbers that
are associated with breakpoints. The debugger places period symbelside

line numbers that are specified as breakpoints, but have no code associated
with them.

Breakpoint type

The breakpoint type (TYPE) describes what type of breakpoint is set:
instruction, read, write, or access. In assembly-level mode, the debugger sets
instruction breakpoints on microprocessor instruction addresses. In high-level
mode, the debugger sets instruction breakpoints on source line numbers. The
debugger flags instruction breakpoints with(assembly-level) otH

(high-level). When switching between modes, these flags are useful for
differentiating between the different types of breakpoints.

Command argument

The debugger records arguments (COMMAND ARGUMENT) in the
breakpoint window as you entered them on the command line. Line numbers,
addresses, symbol names, and macro names all appear in this field. For more
information about breakpoints, see the specific breakpoint command
descriptions in the “Debugger Commands” chapter.

114

Chapter 4: Loading and Executing Programs
Using Breakpoints

To halt program execution on return to a stack
level

» SelectRun Until Stack Level from the Backtrace window pop-up menu.
Or:

1 Set a stack level breakpoint.

2 Run the program.

3 If desired, delete the breakpoint that was just encountered.

Example Assume that you want to run the program until it returns tortaim()
function. You can determine where to set a breakpoint on return to main by
using the stack level information in the backtrace window (you may have to
activate this window in order to see the information in it).

There is a number next to the functimin() in the backtrace window. This
is the current stack level afain(). This is the address of the machine level
instruction immediately following the call initialize_system

Place the mouse pointer over the line in the backtrace window that lists
"main." Hold the right button and seléRtin Until Stack Level.

Or, using the command line and assumimajn() is at stack level 1, enter:

Breakpoint | nstr @1

This command W causeprogram execution to stop when the program returns
to the functiormain. The at sign (@) is a debugger operator that causes the
debugger to interpret the number 1 as a stack level.

Executing the Breakpt Instr command causes the debugger to update and
display the Breakpoint window. The breakpoint you just entered is shown in
the Breakpoint window. Now use the appropriatewotands taun the

program and delete the breakpoint.

115

Chapter 4: Loading and Executing Programs
Restarting Programs

Restarting Programs

This section shows you how to:
* Reset the processor.
* Reset the program counter to the starting address.

* Reset program variables.

To reset the proce ssor

* SelectExecution-Reset to Monitor.

Or:

» Using the command line, enter:
Debugger Execution Reset_Processor

And press the Return> key.

Resetting the processor resets the microprocessor to its initial state and leaves
the microprocessor running in the monitor.

To reset the pr ogram counter to the starting
address

* SelectExecution—Set PC to Transfer.

Or:

116

Chapter 4: Loading and Executing Programs
Restarting Programs

* Using the command line, enter:

Program Pc_Reset

And press the Return> key.

The program counter is reset to the transfer address of your absolute file. The
next Program Run or Program Step command entertddwi afrom address
will restartprogram execution at the beginning of the program.

To reset pr ogram variables

* Reload your program.

Memory is not reinitialized when you reset the processor or reset the program
counter. Therefore, program variables are not reset to their original values.
To reset program variables after resetting the processor or program counter,
reload your program.

For faster loading, you can load only the program. The debugger retains
symbol information. You do not have to reload symbol information if symbol
addresses have not changed.

For information on loading programs, refer to the previous “Loading
Programs and Symbols” section.

117

Chapter 4: Loading and Executing Programs
Loading a Saved CPU State

Loading a Saved CPU State

State files are used to save the current CPU stag¢enOry image and register
values) of a debug session. Though state files can only be created from within
a debugger/simulator session, you can use them to restore a CPU state in
either a debugger/simulator or debugger/emulator session.

This section shows you how to:

« Load a saved CPU state.

To load a saved CPU state

Ensure that the emulator is configured correctly for the code you are restoring
and that debugger parameters that affect the emulator (such as breakpoints)
are set to appropriate values.

Load symbolic information from same absolute file that was in the simulator
when the CPU state was saved. (The debugger/simulator does not save
symbolic information.)

Load the save file. Usingthe command line, enter:
Debugger Execution Load_State

Enter the name of the file from which the CPU stéteudd be loaded, and
press the< Return> key.

The memory contents and register values saved with the debugger/simulator
Debugger Execution Save_State command ateres from the specified

state file. If you do not specify a file name, the debugger uses the default file
db68k.sayfor 68020) ordbh68040.sayfor 68030).

The Debugger Execution Load_State command does ntotregsreakpoints,
macros, or pseudo register values. After redefining any breakpoints, macros,
and pseudo registers, you are ready to continue your debuggsigrse

118

Chapter 4: Loading and Executing Programs
Loading a Saved CPU State

If your program uses simulated /O, it may not function properly on entering
the debugger/emulator because the simulated /O initialization may not have

occurred.

Examples To restoreanemory contents and register values saved in save file
"sessionl.sav":

Debugger Execution Load_State sessionl

119

Chapter 4: Loading and Executing Programs
Using the MC68030 Memory Management Unit

Using the MC68030 Memory Management Unit

The deMMUer

The deMMUer in the analyzer reverses the translations made by the MMU
before sending addresses to the analyzer. The debugger interface can use the
deMMUer to translate physical addresses to logical addresses.

Your HP emulator and analyzer can give you complete support for a static
memory management system, and partigiport for a non-paged, dynamic
memory management systemowf HP emulator Wl let you run a paged,
dynamic system, but the analyzer will not be ableufgp®rt features such as
symbolic addresses or source code display.

The emulator/analyzer interface

If your target system uses the 830 MMU, you Bould use the emulator’s
graphical user interface along with the debugger’s graphical user interface.

The HP B1479 MC68030 Graphical User Interfacevides additional
commands to help you design and f@stgrams which use the MMU. In
addition, the68020/030 Graphical User Interface Users Gudiscusses MMU
progamming and deMMUer operation in detail.

Restrictions when using the MMU

The following restrictions apply when using the MC68030 emulator with the
MMU turned on:

» Use aforeground monitor.
* The foreground monitor must not be write protected.

* Map the foreground monitor to address space that the MMU translates
1:1 (logical= physical).

These restrictions are necessary because the emulator must be able to find the
monitor code whether the MMU is turned on or off.

120

Chapter 4: Loading and Executing Programs
Using the MC68030 Memory Management Unit

To enable the MMU

Make sure that the tranlation tables are valid. These translation tables must be
set up by your target system software.

Enable the MMU in the emulator by answering the "Enable the MMU?"
guestion in the emulator configuration or by loading the translation control
register.

When you enable the MMU, the debugger status line will change from
"68EC030" to "68030."

Load the translation tables into the deMMUer by entering the following
command on the debugger’s command line:

Trace de MMUer Load Verbose

Enable the deMMUer by entering the following command on the debugger’s
command line:

Trace de MMUer Enable

After the deMMUer is loaded, any change to the MMU will make the
deMMUer out of date. If you change the MMU, remember to re-load the
deMMUer.

The target programilWbe interrupted while the deMMUer is being loaded.
The analyzer wilproduce strange results if it is making a trace while the
deMMUer is being loaded.

121

Chapter 4: Loading and Executing Programs
Accessing the UNIX Operating System

Accessing the UNIX Operating System

This section shows you how to:
* Fork a UNIX shell.

« Execute a UNIX command.

To fork a UNIX shell

SelectFile - Term.

A terminal emulation window will be created.

Or:

Using the command line, enter:
Debugger Host_Shell

And press the Return> key.

The Debugger Host_Shell command lets you teporarily leave the
debugging environment by forking a UNIX shell. The shell created is
whatever the shell variab®HEL L is expanded to. In this mode, you may
enter operating system commands.

The Debugger Host_Shell command does not end the debuggemset
suspends program operation. To return to the debugger,<e@tdr -D or
typeexit atthe UNIX prompt, and press tkeReturn> key.

122

Chapter 4: Loading and Executing Programs
Accessing the UNIX Operating System

Examples

To execute a UNIX command

Using the command line, enter:
Debugger Host_Shell

Type in the UNIX command, and press thReturn> key.

When using the graphical interface, a terminal emulation window will be
opened and the UNIX commandie executed in that window (as specifie
by the “shellCommand” X reairce).

When using the standard interfasgloutfrom the command is written to the
journal window. stderris not captured. Commands writinggmerrwill
corrupt the display. Interactive UNIX sumandsannotbe used in this mode.

To display the current working directory, enter:

Debugger Host_Shell pwd

123

Chapter 4: Loading and Executing Programs
Using the Debugger and the Emulator Interface

Using the Debugger and the Emulator Interface

The debugger and the emulator interface can use the emulator hardware at the
same time.

You should be aware of a few incastencies between the emulator and the
debugger interfaces:

* Modifying registers in one interface will not affect the register content in
the other interface. For example, modifying register DO in the emulator
does not change the contents of DO in the debugger interface. The PC
register is an exception to this rule.

» Loading an executable file in the debugger interface will septbgram
counter to the transfer address by default. Loading an executable in the
emulator interface does not set the program counter.

To start the emulation interface from the
debugger

Proceed with your debuggingsston until you get to the point where you need
to use an emulator analysis feature.

» Ifyou are using the graphical interface, choose
File ~Emul700-Emulator/Analyzer.

» Ifyou are using the standard interface, enter
Debugger Host_Shell

Then, at the operating system prompt, type:

emul700 <emulator_name>

When you are done using the emulator, eetel thenexit to return to the
debugger’s standard interface.

124

Chapter 4: Loading and Executing Programs
Using simulator and emulator debugger products together

Using simulator and emulator debugger products
together

You can continue a debugging session started in the debugger/simulator in the
debugger/emulator by following the steps listed below:

1 In the debugger/simulator, use thebugger Execution Save_State

command to save theirentmemory contents and register values. .
2 Quit the simulator session using thebugger Quit command.
3 Start the debugger/emulator.

4 Load the save file created with tBebugger Execution Save_State
command using thBebugger Execution Load_State command. This
will restorememory and processor registers to the state you saved in the
debugger/simulator.

125

Chapter 4: Loading and Executing Programs
Using the Debugger with the Branch Validator

Using the Debugger with the Branch Validator

The Hewlett-Packard Branch Validator (BBA) is an interactive tool that helps
you rapidly determine which branches of a program have not been taken.
With the missed branches identified, you can modify your ssipa tests to
ensure software reliability.

The branch analysis information is collected byr6grams that have been
compiled using thbacpppreprocessor.

To unload Branch Validator data from program
memory

SelectFile -Store—~BBA Data ... Then choose a fileame from the File
Selection dialog box.

Or:

Using the command line, enter:
Memory Unload_BBA All

And press the Return> key.

This command unloads branch arsiyinformation associated with all
absolute files loaded.

The default file name isbadump.data

The BBA preprocessor (-b option) must be used at compile time in order for
this information to exist in programemory.

Once this information has been unloaded, it can be formatted with the BBA
report generatohbarep(see theHP Branch Validator for AXLS C User's
Guide.

126

Note

Chapter 4: Loading and Executing Programs
Using the Debugger with the Branch Validator

The Unload_BBA command is disabled when the debugger option
Demand_Load i®©n. If Demand_Load isFF but the program was loaded
with Demand_Load On, the Memory Unlo®BA command vill generate a
BBA file with incomplete information. See the Debugger Option General
command description in this manual for more information on the
Demand_Load option.

127

Chapter 4: Loading and Executing Programs
Using the Debugger with the Branch Validator

128

Viewing Code and Data

How to find and display source code andmory contents.

129

Chapter 5: Viewing Code and Data
To add a symbol to the symbol table

Using Symbols

This section shows you how to:
* Add a symbol to the symbol table.
» Display symbols.

» Delete a symbol from the symbol table.

Example

To add a symbol to the symbol table

Using the command line, enter:
Symbol Add

Enter the symbol data type, the symbol name, and optionally the base address
and the initial value; then, press th&®eturn> key.

Two type of symbols can be added:

» Program symbols, which are identical to variables defined in a C or
assembly program. These symbols must be given base addresses.

» Debugger symbols, which may be used to aid and control the flow of the
debugger. These symbols are specified without a base address, and only
debugger commands and C exggiens in macros can refer to them. They
cannot be referenced by the program in tangeinory.

To add a program symboamed EOF of type int (default) at target memory
address 9ff0h and set the memory location to value -1:

Symbol Add EOF Address 9ffOh Fil_Mem -1

130

Chapter 5: Viewing Code and Data
To display symbols

To display symbols

» SelectDisplay-Symbols- to display information about the symbol in the
entry buffer.

Or:

» Using the command line, enter:
Symbol Display Default

Enter the symbol, module, or function name; then, press Return> key.
Symbols and associated information are displayed in the journal window.

When displaying a symbol in the current module, the debugger looks for the
symbol in the current module. If there is no module qualifier, all symbols with
the specified nameilvbe displayed, including global symbols and symbols
local to the module.

The wildcard character may be placed at the end of a symbol name to
represent zero or more characters. If used with no symbol riasgeated
the same asthat is, all symbols are displayed.

Examples To display the symbol 'updateSys’in the current module:

Symbol Display Default updateSys

Symbol Display Default updateSys
@ecs\\updateSys : Type is High level module.
Code section = 00001436 thru 00001C21

To display all symbols in module 'updateSys”.
Symbol Display Default updateSys\

> Symbol Display Default updateSys\
Root is: updateSys

@ecs\\updateSys : Type is High level module.
Code section = 00001436 thru 00001C21
updateSys\update_state_of system
: Type is Global Function returning void.

131

Chapter 5: Viewing Code and Data
To display symbols in all modules

Address = 00001436 thru 00001513
update_state_of\refresh
: Type is Local int.
Address = Frame + 8
update_state_oflinterval_complete
: Type is Local int.
Address = Frame + 12

To display symbols in all modules

With "\"in the entry buffer, sele®@isplay-All Symbols ().
Or:
Using the command line, enter:

Symbol Display Default\

Examples

To delete a symbol from the symbol table

Using the command line, enter:
Symbol Remove <symb_name>

Enter the symbol, module, or function name; then, press Return> key.

The specified symbols are removed from the symbol table. Only program
symbols and user-defined debugger symbols can be deleted from the symbol
table.

To delete symbol ‘current_targets’in function ‘alter_settings”

Symbol Remove alter_settings\current_targets

132

Chapter 5: Viewing Code and Data
To delete a symbol from the symbol table

To delete all symbols in module 'updateSys™

Symbol Remove updateSys\

To delete all symbols in all modules:

Symbol Remove \

133

Chapter 5: Viewing Code and Data
To delete a symbol from the symbol table

Displaying Screens

A debugger screen is what you see in the display area. Each debugger screen
may contain one or more debugger windows. A debugger window is a
predefined physical area on the screen containing specific debugger
information.

The debugger has three predefined screens. Each predefined screen has a
correspondingame and number. The predefined screens and their associated
names and numbers digted below:

Screen Name Screen Number
High-level screen 1
Assembly-level screen 2
Standard I/O screen 3

This section shows you how to:

» Displaythe high-level screen.

» Displaythe assembly level screen.

» Switch between the high-level and assembly screens.
» Displaythe standard I/O screen.

» Displaythe next screen (activate a screen).

High-Level Screen

The debugger automatically displays the high-level screen when an executable
(.X) file containing the C function main() is loaded from the UNDxhooand
line with the db68k command. This screen has nine windows:

e journal
 code

e monitor

» backtrace
e status

» breakpoint
e error

* help

134

Chapter 5: Viewing Code and Data
To delete a symbol from the symbol table

e view

The high-level screen displays high-level source code and stack backtrace
information including the calling sequence of functions and function nesting
levels.

Assembly-Level Screen

The debugger automatically displays the assembly-level screen when an
executable (.x) file is loaded from within the debugger or the executable file
does not contain the C source function main(). This screen has ten windows:

e journal

* code

* monitor

* register

e stack

e status

* breakpoint
e error

« help

* view

The assembly-level window displays assembly-level code and processor register
and stack information.

Standard 1/O Screen

The debugger displays the standard I/O screen when your program requests
interactive input from the standard input device (stdin), or directs output to
the standard output device (stdout). It may also be displayed usikgthe
function key. This screen has five windows:

e status

* breakpoint
e error

* help

* view

You can also access the standard I/O screen as a window (window No. 20).

The standard I/O window emulates a dumb terminal. It can be moved about
the display, but it can be no larger than 24 rows by 80 columns.

135

Chapter 5: Viewing Code and Data
To display the high-level screen

To display the high-level screen
» SelectSettings—High Level Debug
Or:

» Using the command line, enter:

Wndow Screen_On High_Level

To display the assembly level screen

» SelectSettings—-Assembly Level Debug
Or:
» Using the command line, enter:

Wndow Screen_On Assembly Level

To switch between the high-level and assembly
screens

* Press thé&3 function key.

Or:

136

Chapter 5: Viewing Code and Data
To display the standard I/O screen
* Using the command line, enter:
Debugger Level

You can also use the Window New and the Window Active commands to
display a different screen.

To display the standard 1/O screen .
* Press thé&6 function key.

Or:
+ SelectWindow -Simio.

Or:
» Using the command line, enter:

Whdow Screen_On Stdio

The standard 1/O screen is displayed when your program requests interactive
input from the standard input device (keyboard) or when your program writes
information to the standard output device.

To display the next screen (activate a screen)

* Press thé&6 function key.

Or:

137

Chapter 5: Viewing Code and Data
To display the next screen (activate a screen)

* Using the command line, enter:
Whdow Screen_On Next

The next higher-numbered screen will be displayed. Either the high-level or
the assembly-level screen will be displayed, not both.

The debugger screens are numbered as follows:

Screen Name Screen Number

High-level screen 1
Assembly-level screen 2
Standard I/O screen 3
User-defined screens 4-

138

Chapter 5: Viewing Code and Data
To display the next screen (activate a screen)

Displaying Windows

This section shows you how to:

» Change the active window.

+ Select the alternate view of a window.
e Set the cursor position for a window.

A debugger window is a predefined physical area on the screen. The debugger
has 18 predefined windows. Each window displays information specific to its

associated name (for example, the breakpoint window displays breakpoin.

information).

Each of the 18 predefined windows has a correspondingerand number.

All windows (except the log file and journal file windows, which are files) also
have an associated screen number. The following table lists the predefined
windows and their associated names and numbers.

139

Chapter 5: Viewing Code and Data
To display the next screen (activate a screen)

Window Name Window Screen
Number Number

journal (high—level) 1 1

code (high—level) 2 1
monitor (high—level) 3 1
backtrace 4 1
status (high—level) 5 1
journal (assembly-level) 10 2

code (assembly-level) 11 2
monitor (assembly-level) 12 2
register (assembly-level) 13 2
stack 14 2
status (assembly—level) 15 2
standard /O 20 3

view 24 1,2,3
breakpoint 25 1,2,3
error 26 1,2,3
help 27 1,2,3
log file 28 none
journal file 29 none

The code window displays C source code in high-level mode. The code
window displays disassembled machine code in assembly-level mode. The C
source code that generated the assembly code can be interleaved with the
assembly-level code.

When disassembled code is displayed, the address and machine code of a
disassembled instruction are displayed on the left side of the window as
hexadecimal values. For instructions over 6 bytes in length, bytes 7 through n
are replaced by ellipsis.).

The stack window displays the stack beginning at the memory location pointed
to by the debugger stack pointer @SP. This window is available only within
the assembly-level screen.

140

Chapter 5: Viewing Code and Data
To change the active window

To change the active window

* Use thecommand selechouse button to click on the border of the window
you wish to activate.

Or:

» Select the window you want to make active from\tiedow - menu.

Or:

* Use the command line to select a window:
Whdow Active <window>

where<window> is the name of the window to be made active, and press the
< Return> key.

The debugger uses a highlighted or thick border for the active window. The
cursor keys, scroll bar, and function k&4 (select the alternate display) only
operate in the active window.

If you are using a terminal without graphics caipabs, the active window is
indicated by single dashes around the border (other windows all have borders
of equals signs).

The window number is displayed in the upper right border of the window.

Examples To make the high-level backtrace window active:

Window —Backtrace

Or:

Wndow Active High_Level Backtrace

To make the breakpoint window active:

Wndow Active Breakpoint

141

Chapter 5: Viewing Code and Data
To select the alternate view of a window

To make user window 57 active:

Whdow Active User_Window 57

Example

To select the alternate view of a window

Click on the border of the active window with tb@mmand selechouse
button.

Or:

Press thé4 function key.

Or:

Using the command line, enter:
Wndow Toggle View

Or:

Using the command line, enter:

Wndow Toggle View <Window>

where<Window> is the name of the window whose alternate view is to be

displayed, and press tkeReturn> key.

The typical default alternate view of a window is an enlarged view of the
window, letting you view more information. Repeating the command switches
between the normal view and the alternate view of the active window.

To display the alternate view of the assembly level code window:

Whdow Toggle View Assembly Code

142

Chapter 5: Viewing Code and Data
To view information in the active window

To view information in the active window

Use the scroll bar.

Or:

Use the cursor control keys.

Press thec Up> or < Down> cursor keyto move up or down in the window
one line at a time.

Press thec Page Down> (< Next>) or < Page Up> (< Prev>) key to move
the window one-half of the window length at a time.

Press thec Home> or < End> (< Shift> < Home>) keyto position the
window at the beginning or end of the information displayed in the window.

Type< Ctrl> -F or< Ctrl> -G to shift the contents of the active window to the
right or left.

The following table describes the functions of the cursor control keys in the
active window and the command line window.

143

Chapter 5: Viewing Code and Data
To view information in the 'More" lists mode

Key

Description

—

N
!

Prev

Next

Home

End (Shift Home
Insert char
Delete char

Undo

)

Move to right in data field of command.
Highlight token to the right in status line window.

Move to left in data field of command.
Highlight token to the left in status line window.

Move up one line in window.

Move down one line in window.

Move up one half window.

Move down one half window.

Move to the top of the active window (except stack window).
Move to bottom of window (except for stack window).

Put keyboard in insert mode for editing data field of command.
Delete character within data field of command.

Back tab.

The Home and End (Shift-Home) keys have additional functions when used
with the code and stack windows. The following table describes how the
Home and End (Shift-Home) keys work in these active windows.

Active Window Home Key End Key
Code Move to top of module Move to bottom of module
Stack Move to current stack pointer (SP) Move to curraarhé pointer (FP)

To view information in the 'More" lists mode

If the "--More--" prompt is printed at the bottom of a window, the debugger is
waiting to display more than one screen of information.

144

Chapter 5: Viewing Code and Data
To copy window contents to a file

Press the space bar to display the next screen of information.
Press thes Return> key to display the next line.

Press "Q"to end the "More" display.

If you try to enter a command while the debugger is displaying thi®ote--"
prompt, the coomand vill not be executed until the "More" display has ended.

You can turn the "Moréist mode off or on with th&ettings-Debugger

Options dialog box.
For more information, see your operating system documentation anctiee .

command.

To copy window contents to a file

SelectFile ~Copy Window .

Or:

From the command line, enter the following commands:

File User_Fopen Append99 File< file_name >
Expression Fprintf 99, "%w",< window_number >
File Whdow_ Close 99

145

Chapter 5: Viewing Code and Data
To display C source code

Displaying C Source Code

This section shows you how to:
« Displaythe C source code.
* Find first occurrence of a string.

* Find next occurrence of a string.

Examples

To display C source code

Display the high-level screen (see the instructions in the previous “Displaying
Screens” section).

Display source code at the location in the entry buffer by selecting
Display-Source () Or click on theDisp Src () action key.

Or, using the command line, enter:

Program Display_Source

Enter the line number or function name of the code you wish to display, and
press the Return> key.

To display the C source code at line number 1:

Program Display_Source #1

To display the C source code at functioain
Program Display_Source main
To display C+ + source code at overloaded C+ + funatfang you can

either give the name of the function and select the definition from a menu, or
you can specify the definition by entering the argument type:

146

Chapter 5: Viewing Code and Data
To find first occurrence of a string

Program Display_Source cfunc (float)

To find first occurrence of a string

1 Displaythe high-level screen (see the instructions in the previous “Displaying
Screens” section).

2 Enter the string in the entry buffer. .

3 SelectDisplay-Source Find Fwd ()or Display—Source Find Back ().

Or, using the command line, enter:

Program Find_Source Cccurrence <Direction>

Select either Forward or Backward as the direction, enter the line number or
string you wish to find, and press thdReturn> key.

Example To find the first occurrence of the string “main”:

Program Find_Source Cccurrence Forward main

To find next occurrence of a string

» SelectDisplay-Source Find Again

Or:

147

Chapter 5: Viewing Code and Data
To find next occurrence of a string
* Using the command line, enter:
Program Find_Source Next <Direction>

Select either Forward or Backward as the direction, and pressRetirn>
key.

Example To find the next occurrence of a string:

Program Find_Source Next Forward

148

Chapter 5: Viewing Code and Data
To display assembly code

Displaying Disassembled Assembly Code

Coprocessor Support

External devices must be supported by your target system. No support is
provided by the debugger/emulator.

68881/68882 Floating-Point Unit. The debugger does not disassemble the
68881 FPU insuction set. It does not contain features that allow FPU
register display or modification.

While FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code
will run interchangeably in both the debugger/emulator and
debugger/simulator, use the C compiler’s floating point library routines.
These libraries contain routines that do not use FPU instructions, thereby
allowing them to execute properly in both debugging environments.

68851 Memory Management Unit. The debugger does not support the
68851 MMU.

To display assembly code

SelectSettings—Assembly Level Debug
Or:

Using the command line, enter:
Wndow Screen_On Assembly Level

The Code window will show disassembled insructions.

149

Chapter 5: Viewing Code and Data
To set current module and function scope

Displaying Program Context

This section shows you how to:

* Set current module and function scope.

» Display current module and function.

» Display debugger status.

» Displayregister contents.

» Displaythe function calling chain (stack backtrace).

» Display all local variables of a function at the specified stack (backtrace)
level.

Examples

To set current module and function scope

SelectFile ~Context-Symbols .., enter the module or function name in the
dialog box, and click on the OK pushbutton.

Or:

Using the command line, enter:
Program Context Set

Enter the module or function name, and presstReturn> key.

The module and function scope is used by the debugger to uniquely identify
symbols. For example, several functions may have local variables with the
same names. When you use that variable namt®wi naming the function,
the debugger assumes you mean the variable inuttierd module or function
scope.

To select module “updateSys” as the current module:

150

Chapter 5: Viewing Code and Data
To display current module and function

Program Context Set updateSys

To select function “updateSys\paint_display” as the current function:

Program Context Set updateSys\paint_display

To set the program context to the module at which the program counter is
pointing:

Program Context Set

To display current module and function .

SelectDisplay-Context. Click on the Done pushbutton when you wish to
stop displaying the information.

Or:
Using the command line, enter:

Program Context Display

The current module, function, and line number are displayed in the journal
window.

To display debugger status

SelectWindow - Status.

Or:

151

Chapter 5: Viewing Code and Data
To display register contents

* Using the command line, enter:
Debugger Execution Display_Status

The following information is displayed in the view window (which temporarily
overlays the top portion of the screen):

* Product version.

e Current working directory.
e Current logfile in use.

e Current journal file in use.
e Startup file used.

The viewwindow is also used to display trace data and information about trace
command or event status. When trace data is displayed, a trace status
character may be displayed in front of the trace line. The following table
defines the trace status characters.

Trace List Status Characters

Character Description
* The indicated trace line is the trigger condition.
+ The indicated trace line is in the middle of a C statement,

that is, not the first assembly language statement in the C
source stament.

! The data in the trace buffer line does not match the data in
memory.

? The trace line may be a prefetch.

To display register contents

» SelectWindow -Registers

Or:

152

Note

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

SelectModify -Registers

Or:

Using the command line, enter:
Wndow Active Assembly Registers

The register window shows the current values of the microprocessor’s registers
and several debugger variables. The microprocessor register values are labeled
with their standard names. The debugger displays all values in hexadeci

format unless otherwise noted.

If you are running just the debugger the Registers window is available only
within the assembly-level screen. If the emulator/analyzer graphical interface is
active, Window —Registerswill display registers in the emulator window.

The information displayed in the register window varies with different
microprocessors. See the “Reserved Sysilahapter for more information
about debugger variables.

To display the function calling chain (stack
backtrace)

SelectWindow —Backtrace.
Or:

Using the command line, enter:

Wndow Active High_Level Backtrace

153

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

The backtrace window displays the function calling chain, from the compiler
startup routine to the current function in high-level mode.

This window displays (from left to right):

* Function nesting level.

» Return address to theliag function.
» Frame status character.

* Module containing the function.

* Function name.

Function Nesting Level. The nesting level of the current function is always
0, the calling function always 1, etc.

You may reference the nesting level when setting a breakpoint. For example,
to cause the program to execute until it returns to the second nested function,
enter the command:

Program Run Until @2

Another way to execute until a stack level is reached is to cHws&ntil
Stack Levelin the Backtrace window pop-up menu.

Return Address. The return address field displays the return address of the
calling function.

Frame Status Character. One of several characters immediately precedes a
function name in the backtrace window. These frame status characters and
their descriptions are listed in the table below.

154

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

Character Description

Space The debugger is executing within a function.

The program counter is at a label. Typically, this is an
assembly language function point.

* The function has been entered, but the function prolog has
not been executed. The debugger cannot locate local
symbols in the function until the prolog has been executed.

? The frame is questionable. For example, this is displayed
when a function has been stripped of debug information.

! The frame is not valid.
The debugger is at the start of an interrupt routine.

+ The debugger is executing an interrupt routine.

Module Name. If the function is in a known module, the backtrace window
displays the module name. If theogram counter is pointing to an address
that is not contained in a module known to the debugger, the module field in
the backtrace window displays a string of question marks (????7??7?).

Function Name. Ifthe return address of a function is inside a known

function, the debugger displays the function name. Ifthe address is outside of
all known functions, the function field in the backtrace window will display
<unknown>. This is the case with the compiler startup module crt0, because
it is assembly code and contains no debug information.

Backtrace Information. Whenever a break occurs in program execution, the
backtrace window is updated. When updating the window, the debugger
generates backtrace information as described in the following paragraphs.
The backtrace window is displayed only in the high-level screen.

Nesting level 0. Nesting level 0 information is based solely on the
current value of the processor’s program counter (PC).
The address shown at this level is the value of the PC.
The module and function shown at this level are
selected because the value of the PC falls within their
code spaces.

155

Chapter 5: Viewing Code and Data
To display the function calling chain (st

Nesting level 1.

Nesting levels 2
through n.

Functions with no

stack frame.

Assembly language
functions.

ack backtrace)

When program execution breaks on an address that has
an associated public label (for example, a function entry
point), nesting level 1 information is based on the
processor SP. The debugger assumes that the SP is
pointing to the return address because the label is
assumed to be a function entry point and no stack frame
has yet been established. With no staaknfe available,
the return address of thellaag function is at the top of
the stack. This return address is the address at level 1.
The module and function shown are based on this
address, that is, the address falls within their code
spaces.

When program execution breaks on an address that has
no associated public label, nesting level 1 is based on
the processor’s &me pointer (register A6). In this case,
the stack location four bytes above the location pointed
to by register A6 contains the return address of the
calling function. This address is the address shown at
level 1;the module and function shown are based on
this address.

Nesting levels 2 through n are always based on existing
stack frames. A stack frame is generated for each frame
on the stack, based on saved frame pointers. Nesting
levels are generated until backtracing of the stack
encounters a zerodme pointer. This occurs when the
stack frame associated with the compiler startup
routines crtO/crtl is encountered.

If a function has no stack frame (due to cdling with

the -O option), the function that called it does not
appear in the backtrace window at any stack level other
than levels O or 1.

Assembly language functions that set up stack frames
appear in the backtrace window, but the information
shown is incomplete. Since high level debug
information is not present in such handwritten
functions, the stack frame appears as a questionable

156

Chapter 5: Viewing Code and Data
To display all local variables of a function at the specified st ack (backtrace) level

frame. Additionally, there is no function name
associated with the frame, i.e., it is displayed as
<unknown>.

To display all local variables of a function at the
specified stack (backtrace) level

» SelectDisp Vars at Stack Levelfrom the Backtrace window pop-up menu.

—
» Using the command line, enter:

Program Context Expand <@stack_level>

Enter the stack level preceded byasign (@), and press tkeReturn> key.

The values of the parameters passed to the function and the function’s local
variables are displayed in the Journal window.

Example To display local variables at stack level 1, position the cursor over "1."in the
Backtrace window, and hold the right mouse button. Move the mouRispio
Vars at Stack Leveland release the button.

Or, use the command line to enter:

Program Context Expand @1

157

Chapter 5: Viewing Code and Data
To display the address of the C+ + object invoking a member function

. Example

To display the address of the C+ + object
invoking a member function

Display the value of the functiontkis pointer.

If the program has stopped at a function, you can find out the address of the
object which invoked the function.

The program counter must besidethe function; otherwise you may see a
"Local variable not alive" error message.

To see the address of the object that invokecttinecfunction in clas€,
enter the following string in the entry buffer:

C::cfunc\this

then selecDisplay-Var/Expression ().

158

Chapter 5: Viewing Code and Data
To calculate the value of a C expression

Using Expressions

This section shows you how to:

» Calculate the value of a C expression.

» Displaythe value of an expression or variable.
* Monitor variables.

« Discontinue monitoring specified variables.

» Discontinue monitoring all variables.

e Print formatted output to a window.

e Print formatted output to journal windows.

To calculate the value of a C expression

* Enter the expression in the entry buffer, then sdédésplay-C Expression ()

Or:

» Using the command line, enter:
Expression C_Expression

Enter the C expression to be calculated, and press Return> key.
The value of the C expression is displayed in the journal window.

If the C expression is an assignmentestant, the Expsion C_Expression
command sets the value of the C variable.

Examples To calculate the value of time”.

159

Chapter 5: Viewing Code and Data
To display the value of an expression or variable

Expression C_Expression time
Result is: data address 000091DC {time_struct}

To calculate the value of membaours’ of structure time”:

Expression C_Expression time->hours
Resultis: 4 0x04

To assign the value 1 to 'system risnning’:

Expression C_Expression system_is_running = 1
Resultis: 1 0x01

Examples

To display the value of an expression or variable

Use the mouse to copy the expression or variable into the entry buffer, then
selectDisplay—Var/Expression ().

Or:

Using the command line, enter:
Expression Display_Value

Enter the expression or variable whose value is to be displayed, and press the
< Return> key.

The value of the expression or variable is displayed in the journal window.

The contents of an item, such as an array, are displayed instead of the C value
of the item which is its address.

To display the value of the variable 'systemrisning”.

Expression Display_Value system_is_running
01h

160

Chapter 5: Viewing Code and Data
To display members of a structure

To display the address of the variable 'systenruisning’
Expression Display_Value &system_is_running
000091F0

To display the address of the C structure time”:

Expression Display_Value time
000091DC

To display the values of the memberstofisture time”

Expression Display_Value *time
hours 4

minutes 0

seconds 20

To display the name of theirent program module:

Expression Display_Value @module

To display the name of theiaent program function:

Expression Display_Value @function

To display members of a structure

1 Copythe name of thersicture into the entry buffer.
2 Add an asterisk (*) in front of theame of the sucture.

3 SelectDisplay-Var/Expression ().

If you are using the command line, use ExpressiorDisplay Value
command.

161

Chapter 5: Viewing Code and Data
To display the members of a C+ + class

Example

To display the names of the memberstafistureastruct use the following
expression in the entry buffer:

*astruct

The * operator tells the debugger to displaythembers of thetsucture,
rather than the address of the structure.

Example

To display the members of a C+ + class

Using the command line, enter

Symbol Display Options Search_all End_Options
<class_name >\

This will display the type, siz@rotection, and overloading of eagctember of
class_name

To display the members of claSsenter:

Symbol Display Options Search_all End_Options C\

To display the values of all members of a C+ +
object

Enter the name of the C+ + object in the entry buffer and select
Display-Var/Expression ().

Or:

162

Chapter 5: Viewing Code and Data
To monitor variables
* Using the command line, enter:
Expression Display_Value < object >

Remember, you are displaying the values imbject so you need to run the
program to the point where the object is created. To displaptmebers of a
class, see "To display the members of a C+ + class."

Example To display the members of objembjin classC, enter "cobj"in the entry
buffer and seledDisplay— Var/Expression ().

To monitor variables

» Enter the variable to be monitored in the entry buffer and click on the
Monitor () action key.

Or:

» Enter the variable to be monitored in the entry buffer and select
Display—Monitor () .

Or:
» Using the command line, enter:
Expression Mbonitor Value

Enter the variable to be monitored, and presstReturn> key.

The monitor window displays monitored variable egsiens. This window
can be displayed in both the high-level and assembly-level screens.

163

Chapter 5: Viewing Code and Data
To monitor the value of a register

Example

Variables in the monitor window are updated each time the debugger stops
executing the program. (The program is not considered to be "stopped"when
a breakpoint with an attached macro is encountered.)

To monitor the value of variable ‘current_temp”

Expression Mbnitor Value current_temp

Example

To monitor the value of a register

Monitor a register just as you would a variable.

To monitor the value of register D2, enter "@D2" in the entry buffer and
selectDisplay—Monitor () .

Or, using the command line, enter

Expression Monitor Value @D2.

To discontinue monitoring specified variables

SelectDelete Variablein the Monitor window pop-up menu.

Or:
Using the command line, enter:
Expression Mbnitor Delete

Enter the number of the variable (shown in the monitor window) that should
no longer be monitored, and press thReturn> key.

164

Chapter 5: Viewing Code and Data
To discontinue monitoring all variables

The variable is removed from the monitor window.

Example To stop monitoring variable 2 in the monitor window:

Expression Mbonitor Delete 2

To discontinue monitoring all variables

» SelectDelete All Variablesin the Monitor window pop-up menu.
Or:

» Using the command line, enter:
Expression Monitor Clear_All

All variables are removed from the monitor window.

To display C+ + inheritance relationships

» Enter the name of a C+ + class in the entry buffer, then select
Display-Symbols—Browse C+ + Class ()

Or:

» Using the command line, enter:
Symbol Browse

Enter the name of the C+ + class to be displayed, and pressRéteirn>
key.

165

Chapter 5: Viewing Code and Data
To print formatted output to a window

Examples

To print formatted output to a window

Using the command line, enter:
Expression Fprintf

Enter the number of the user-defined window, the format string (enclosed in
quotes), and the arguments; then, presstReturn> key.

The formatted output is written to the user-defined window. This command is
similar to the C fprintf function.

The debugger associates the log file window (window no. 28) with a log (.com)
file so that you can write output to that window using the Expression Fprintf
command. This window is not displayed. It is used only for writing to a
command file.

The debugger associates the journal file window (window no. 29) with a
journal file so that it can write journal window output to the journal (.jou) file.
Additional output may be written to the journal file by writing to window 29.

To print the value o¥arto user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print the string in double quotes to user window 57 followed by the floating
point value of temperature’ with a precision of 2:

Expression Fprintf 57,"The value of 'temperature’ is:
%.2f \n",temperature

To print formatted output to journal windows

Using the command line, enter:

Expression Printf

166

Chapter 5: Viewing Code and Data
To print formatted output to journal windows

Enter the format string (enclosed in quotes) and the arguments; then, press
the< Return> key.

The formatted output is written to the journal window. Thisiotand is
similar to the C printf function.

Examples To print the value o¥arto the journal window as a single character:

Expression Printf "%c",var

To print the string in double quotes to the journal window followed by the
floating point value of temperature’ with a precision of 2:

Expression Printf "The value of 'temperature’ is: %.2f
\n",temperature

167

Chapter 5: Viewing Code and Data
To compare two blocks of memory

Viewing Memory Contents

This sections explains how to to view, compare, and search blocks of memory.

Example

To compare two blocks of memory

Using the command line, enter:
Memory Block Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what
happens when a mismatch is found, enter the address range to be compared
and the starting address of the range that it is compared to; then, press the
< Return> key.

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To search a memory block for a value

Using the command line, enter:
Memory Block Operation Search <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select
either Once or Repeatedly to specify when the search should stop, enter the

168

Chapter 5: Viewing Code and Data
To examine a memory area for invalid values

address range and the value that is to be searched for, and press the
< Return> key.

Example To search for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when the esgiom is found or address 10ffh
is reached:

Memory Block Operation Search Wbrd Once
1000h..+0xff = 'gh’

To examine a memory area for invalid values .

* Using the command line, enter:
Memory Block Operation Test <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select
either Once or Repeatedly to specify when the search should stop, enter the
address range and the value that should be found in the range, and press the
< Return> key.

Example To test for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when a word not matching thessipras
found:

Memory Block Operation Test Wird Once 1000h..+0xff =
'gh’

169

Chapter 5: Viewing Code and Data
To display memory contents

To display memory contents

» SelectDisplay-Memory .

Or:
» Using the command line, enter:
Memory Display <Format>

Select either Mnemonic, Byte, Word, or Long as the format in which memory
contents are to be displayed.

If you are using the command line, enter the starting address or the address
range of the memory whose contents are to be displayed, and press the
< Return> key.

Examples To display disassembled memory in the code window starting at the symbol
" emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mhemonic _emeg_shutdown

To display memory in byte format in the journal window starting at the symbol
‘current_humid’;

Memory Display Byte current_humid

170

Chapter 5: Viewing Code and Data
To display memory contents

Using Simulated 1/O

Simulated 1/0 (SIMIO) lets programs use the UNIX file system, run UNIX
commands, and use the keyboard and displayfoutiand output.

Your programs can use SIMIO means of the I/O libraries and erainment
dependent routines provided with the BP461/HP B1478 C Cross Compiler.
Your programs use the library functions when they open, close, read, or write
to files, etc. These simulated 1/O functions are identical in both the
debugger/emulator and debugger/simulator to let you write programs that will
function correctly in both environments. Refer to the "Environment
Dependent Routines" chapter of your compiler manual for information on
using the C SIMIO libraries.

Your programs can also use SIMIOmgans of user-written assembly code.
If you are developing programs that use SIMIO from assembly code, refer to
the Simulated 1/0 User's Guidier a complete description of SIMIO protocol.

This chapter shows you how to:
+ Enable simulated I/O.

+ Disable simulated I/O.

* Set the keyboard I/0O mode.
* Redirect I/O.

» Check resource usage.

* Increase file resources.

» Displaythe simulated I/0O system report.

How Simulated 1/0O Works

Communication between your program running in the emulation system and
the SIMIO process takes place through contiguous single-byte leregttory
locations. The first memory location is called the Control Address (CA). The
Control Address and the memory locations that follow it are called the CA
buffer.

171

Chapter 5: Viewing Code and Data
To display memory contents

Control Address buffers are less than or equal to 260 bytes in size. A
maximum of 256 bytes of information can be transferred between the debugger
and the host system at one time. Some simulated I/O commands require four
additional bytes for command parameters.

The debugger supports only one Control Address (CA) for doing SIMIO
operations. This buffer is namegstemio_buih the HP B1461/HP B1478 C

I/O libraries. Assembly code users who want to use SIMIO with the debugger
must label their Control Address asystemio_bufthe compiler prefixes

symbols with an underscore).

Communication between a program and the simulated 1/O process is a series
of requests by the program and responses by the SIMIO process:

The program places a SIMIO monand in the CA buffer and then waits
for a return code to be placed in the first byte of the CA.

The SIMIO process fdis the CA buffermemory. When it finds a
command, the SIMIQrocess executes themmmand. When the SIMIO
process completes themmmand, the first byte of the CA buffer is changed
to the command retn code.

Simulated I/O Connections

The SIMIO system supports three types of I/O connections. These are:

» Keyboard and display.
* UNIX files.
* UNIX processes.

Display and Keyboard

The debugger provides a windowmed stdio which functions as thermal

display output for target programs. The screen can be opened for output from
target programs via SIMIO with the specialme/dev/simio/display This

name appears to be an UNIX file name. However, it is really a name reserved
by the debugger to indicate the internal screen. The keyboard is accessed by

the special namklev/simio/keyboard

UNIX Files

UNIX files are accessed by their names from the tgsgegram running in
the debugger in the same way they are accessed by host software. The file
operations of open, close, read, write, and seek are supported by the SIMIO

172

Chapter 5: Viewing Code and Data
To display memory contents

protocol. When opening a sam on an UNIX file, SIMIO spports the same
control parameters for file creation and blocking 1/0 that are available to host
programs.

UNIX Processes

UNIX processes can be run as subprocesses to the debugger with their input
and output directed to the user program. Subprocesses are controlled from the
user program by a Process ldentification number (PID). This lets the user
program check specific subprocesses, send them signals, or stop them. This
subprocess fality allows userprograms to take advantage of the powerful
software and execution environment of the host UNIX system. Host programs
can be used to process data for a debugger user program or to simulate
portions of the software that are not available in the user program.

Because simulated 1/O lets the debugger execute UNIX commands, the
debugger can communicate with other host system 1/O devices, such as
printers, plotters, modems, etc.

For more information on using UNIX processes, refer to the description of
theexec_cmd(Junction in the "Environment Dependent Routines" chapter of
the 68020 C Cross Compiler Refererar68030 C Cross Compiler Reference
manual.

Special Simulated I/O Symbols

User Program Symbols

The following symbols are user program symbols that are used by the SIMIO
system to process the simulated I/O protocol:

systemio_buf This symbol indicates the start of the Control Address buffer.

Simulated I/O Reserved Symbols

The following names are reserved by the SIMIO system amadlotebe used for
your file names. The SIMIO system recognizes these names and uses special
processing to direct the 1/O to th@oper location:

stdin This name W be replaced by theame $ored in the stdin_ame. This
name is set via the Stdio_Redirect command.

173

Chapter 5: Viewing Code and Data
To enable simulated 1/O

stdout This name Wi be replaced by theame s$ored in the stdout_ame.
This name is set via the Stdio_Redirect command.

stderr This name W be replaced by theame sored in the stderr_ame.
This name is set via the Stdio_Redirect command.

/dev/simio/keyboard This name refers to the keyboard while greduct is
running interactively.

/dev/simio/display This name refers to the stdio display window while the
product is running interactively.

To enable simulated I/O

Using the command line, enter:
Debugger Execution | O_System Enable

When SIMIO is enabled, polling for simio manand begins. In the
debugger/emulator, the host computer periodically reads the memory in the
emulator or target system to detect simio commassised by the user code.
SIMIO behavior in the debugger is identical to that described iSimalated

I/0 User's Guidewith the exception that only one control address is supported
by the debugger. The control address must be nagsteimio_buf
(_systemio_buh assembly code).

SIMIO is also enabled if the "Enable polling for simulated I/O?" emulator
configuration question was answenggs and "Simio control address 1"is
_systemio_buf.

174

Chapter 5: Viewing Code and Data
To disable simulated I/O

To disable simulated 1/0

* Using the command line, enter:

Debugger Execution | O_System Disable

To set the keyboard I/O mode to cooked

* Using the command line, enter: .

Debugger Execution | O_System Modde Cooked

In the Cooked mode, the keyboard input is processed. This lets you type and
then edit the line to correct errors. When the final line is composed, press the
< Return> keyto enter the line. Once the line is entered, it is read by the
target program. Onlythe characters from the final line and the carriage return
character are passed as input. If program execution is interrupted by entering
< Ctrl> -C before the line is entered, the characters on the input line are lost.

See also "To set the keyboard 1/O mode to raw"

To set the keyboard I/O mode to raw

* Using the command line, enter:
Debugger Execution | O_System Mode Raw

In the Raw mode, each character you type is sent directly to the target
program that is reading from the keyboard. Characters are not echoed as they
are typed. Anyinput editing, such as backspace, must be handled by the target

175

Chapter 5: Viewing Code and Data
To control blocking of reads

See also

program. The only special character that cannot be sent to the target program
is < Ctrl> -C which is used to interrupt the debugger’s execution of the
program.

"To set the keyboard I1/0O mode to cooked"

See also

To control blocking of reads

Set theO_NDELAYflag in thestartup()routine.

The flagO_NDELAYis passed to the functiapen()to control whether or

not reads from the keyboard will bloekaiting for characters When the
keyboard is functioning in COOKED mode, this flag is ignored; all reads wait
for the line to be composed and entered. When set in RAW mode, the
keyboard can be read in a blocking or non-blocking manner, based on the
value of the control fla@_NDELAY

This flag can only be set when opening the stream; it may not be changed after
the file stream is open. This flag can be set in the compilepized routine
startup(). This routine opens gtams stdin, stdout, and stderr.

The chapter titled "Environment Dependent Routines" in68620 C Cross
Compiler Referencer 68030 C Cross Compiler Referemoanual.

To interpret keyboard reads as EOF

Using the command line, enter:

Debugger Execution | O_System Keyboard EOF

176

Chapter 5: Viewing Code and Data
To redirect 1/0O

This causes the debugger to interpret any further keyboard reads as being at
the end of file.

In cooked mode, pressirgCtrl> -D is equivalent to entering theebugger
Execution 10_System Keyboard EOF command.

To redirect I1/0

To redirect the three I/O streams and to resat program to the startup
address, perform the following steps.

Redirect the three I/O streams by changing the translation names for the
streams. Using the command line, enter:

Debugger Execution | O_System Stdio_Redirect

<"stdin_name","stdout_name","stderr_name">

Enter the new names for standamgut, standard output, and standard error;
then, press the Return> key.

Reset the program counter to the startup address. Sslsaition-Set PC to
Transfer. Or, using the command line, enter:

Program Pc_Reset

When the target program starts execution from the normal compiler startup
address, the standard C startup libraries open the following three 1/0 streams:

* stdin
* stdout
» stderr

The debugger uses an internal table to determine where the streantsise
opened. Each of the names (stdin, stdout, andr3tdas an associated
translation name:

e stdin_name
e stdout_name
e stderr_name

177

Chapter 5: Viewing Code and Data
To check resource usage

Examples

The translation name contains the name of a file to use when the target
requests opening of any of these stdio streams. By default, stdin_name
containgdev/simio/keyboar(the keyboard), and translations stdout_name and
stderr_name contaildev/simio/displaythe standard 1/0O (stdio) screen).

These translations are used only when opening the streams. Timey ba
used to redirect the streams after they have been opened. Thetaggam
must be rerun from the startup address to allow the stdiarss to be
reopened if the translations have been changed.

To redirect the standard input file to the keyboard, the standard output file to
the display, and the standard error file to file Jusers/project/errorfile’.

Debugger Execution | O_System Stdio_Redirect

"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"

Program Pc_Reset

To redirect the standard input file to temp.dat’, the standard output file to
‘cmdout.dat’, and the standard error file to file ‘errorlog.err’.

Debugger Execution | O_System Stdio_Redirect

"temp.dat","cmdout.dat","errorlog.err"

Program Pc_Reset

To check resource usage

Using the command line, enter:
Debugger Execution | O_System Report

The command displays the simulated I/O status, keyboard mode, and the
translation names used for stdin, stdout, and stderr.

The SIMIO system has the following default resource limitations:

178

Chapter 5: Viewing Code and Data
To increase file resources

* 40 open files
* 4 subprocesses

To increase file resources

Change to director§80200r 68030in path/ust/hp64000/includesing thecd
command.

Change the value of macF®OPEN_MAXfrom 12 to the new maximum
number of open files (the limit is 40) in figdio.husing an editor on your
system.

Change to directory

/usr/hp64000/env/hp64748/qffor 68020)
or

Jusrihp64000/env/hp64747/<for 68030/E CO30)

using thecd command.
Recompile filestartup.cusing the command:
€c68020 -Ouc startup.c

Or
cc68030 -Ouc startup.c

Archive file startup.ousing the command:

ar68k -r startup .. lenv.a
or
ar68030 -r startup .. lenv.a

179

Chapter 5: Viewing Code and Data
To increase file resources

Caution

You can increase the simulated I/O file limit by modifying the startup code for
your compiler. The code must be modified from the UNIX shell. The
maximum number of open SIMIO files descriptors can be increased to 40.

Compiler startup files compiled with the modifisio.hheader file will run

onlyin the debugger environment. Emulators which do not have the debugger
interface do not support the increased number of open SIMIO file descriptors.
Call to the SIMIO function open()ilMail in this environment if 12 file

descriptors have already been allocated.

180

Chapter 5: Viewing Code and Data
If problems occur when using simulated 1/0

If problems occur when using simulated 1/0

[] ifthe target program stops ("hangs") while reading from the keyboard with the
O_NDELAYflag set, or if programs do not appear to be getting proper input
from the keyboard, check the keyboard mode setting.

181

Chapter 5: Viewing Code and Data
If problems occur when using simulated 1/0

182

Chapter 6: Making Trace Measurements

Making Trace Measurements

How to use the debugger to trace the execution of a program in the emulator.

183

Chapter 6: Making Trace Measurements

This chapter shows you how to:

» Start traces.

» Stop traces.

« Displaytraces.

» Specifytrace events.

* Delete trace events.

» Specify storage qualifiers.

» Specify trigger conditions.

» Halt program execution on the occurrence of a trigger.
 Remove a storage qualification term.

+ Remove a trigger term.

The Trace Function

The trace function uses the emulation analyzer in your emulator to capture
processor bus cycle information synchronously with the processor’s clock
signal. A trace is a collection of these captured states.

You can make simple trace measurements using the Code wptajpup
menu. Usingthis menu, you can trace states before and after a line of code is
executed.

If you need to make a simple trace measurement, skip thisdetéch follow
and turn to '"To start a trace using the Code pop-up menu."

You can make complex trace measurements using the command line Trace
command. You can tell the debugger exactly which stateste by defining
trigger events (a series of events which will start the trace)tanage
qualifications (which kinds of states to store).

If you will be making many detailed traceeasurements, yolsuld set up
your traces using the emulator user interface rather than the debugger
interface.

184

Chapter 6: Making Trace Measurements

Default Trace Specification

The default trigger condition is "never". You can make a default trace
measurement by entering tieace Againcommand. When you use the
default trace condition, qualified bus cycles are collected continuously until
you halt the measurement. The trace buffdithen contain the bus states
prior to the halt.

Trace Events

Trace measurement parameters are specified as events. An event is a bus state
consisting of a combination of address, data, and status values.

Address and Data Values. Address and data values may be specified as
32-bit values or a range of of 32-bit values. You can specify a mask to mark
valid bits in addresses or data to define "don't care"values. You can also
specify the logical "NOT" of an address or data value.

Status Values. Status values are the types of bus activities, such as:
Read or write operations.

Memory access size.
Function codes.

Cycle types.

You can also specify the logical "NOT" of a status value.

Trace Trigger

A trigger specifies the bus events that cause the debugger to make a trace
measurement. The debugger lets you trigger on the detection of a single
event, an OR’ed combination of events, or after a sequence of events are
detected. You can specify a sequence of events, the last of which is the
triggering event. You can also trigger on the Nth occurrence of an event,
where N is a number you specify with tbeunt parameter in th&race
Trigger Event command.

You can position the trigger event at the start of the trace buffer, centered in
the trace buffer, or at the end of the trace buffer.

185

Chapter 6: Making Trace Measurements

Storage Quialification

A storage qualifier defines which bus cyclall be sored when you make a

trace measurement. You can specify that only cyde®sponding to certain
values be stored in the trace buffer. These values can be addresses, a range of
addresses, data values, status values (the type of bus activity), or an OR’ed
combination of values. You can also specify the logical NOT of the specified
value to be the storage qualifier, that is, any condition that does not match the
specification. You can specify that the trace function store up to two
instruction fetch cycles preceding the qualified state (prestore).

Trace Resources

The trace function uses the emulation analyzer to implement its
measurements. The analyzer puts the following limitations auress
available for trace specifications:

» Onerange resource.
» Eight event resources.
* Seven sequence terms.

If you enter a range value that can be expressed as a "dont care" value (for
example address 0x100 to Ox1ff), the debugger uses one of the eight
event resources, rather than the range resource. Complex event specifications,
such as combinations ¢&f andNot terms, can use multiple event resources.

Up to seven sequential events can be specified in a trigger specification.

Trace Status

The status of the trace measurement is indicated on the debugger status line
bythe TRC.<Trc_status> field. The possible values f&iTrc_status>
are:

AwtTrg A trace measurement is progress, but the trigger
condition has not been detected.

BrkRWA An access breakpoint has been set and will be used as the
trigger in the next trace measurement.

Cmplt A trace measurement has completed.

186

Chapter 6: Making Trace Measurements

DataOK The trace buffer contains valid data.
Halted TheTrace Halt command was used to halt the trace.
Idle No trace measurement has been executed duringithent

debug session.

Setup A trace measurement has been set up (specified), and will
start on the next program run or program stepro@and.
This status message appears only before the first trace
measurement in a debugson.

Trgrd A trace measurement ispmogress, and the trigger has
been detected.

Trace status characters

When trace data is displayed, a trace status character may be displayed in fron
of the trace line. The following table defines the trace status characters.

Trace List Status Characters

Character Description
* The indicated trace line is the trigger condition.
+ The indicated trace line is in the middle of a C statement,

that is, not the first assembly language statement in the C
source stament.

! The data in the trace buffer line does not match the data in
memory.

? The trace line may be a prefetch.

Access Breakpoints

If you have set access breakpoints with the Breakpt Access, Breakpt Read, or
Breakpt Write commands, the trace functiot iwterpret the breakpoints as

trace trigger terms. When you step or run your program after setting an access
breakpoint, the trace measurement is started automatically. Yowta

187

Chapter 6: Making Trace Measurements

define a trace trigger while an access breakpoint is active. This will cause an
error condition.

Note The emulator user interface may specify a trace that overrides a debugger
access breakpoint. The debugger interface will set up the access breakpoint
trace when a run or stepramnand isssued only if the analyzer is natrcently
in use. Using both access breakpoints in the debugger and trace features in the
emulator is not recommended.

Limitations to the Trace Function

There are limitations to the trace function imposed on the debugger by the use
of a foreground monitor and when triggering on C variables and instruction
fetches.

Limitations when Using a Foreground Monitor. When you use a
foreground monitor, the trace function may capture monitor activity as well as
your target program activity.

Limitations when Triggering on C Variables. The emulator’s analysis
hardware watches bus cycles, and triggers on specified bus values. However,
bus cycles do not always map directly to C variables. This limitation takes two
forms:

The first form occurs when an access to a C variable requires multiple bus
cycles. In addition to requiring multiple bus cycles, the number of cycles and
the contents of the data bus on each cycle varies with the memory bus width,
data size, and data address alignment.

To illustrate thigproblem, consider @2-bit variablefoo at the odd word

address 0x1002. A write of value 0x01023ffffb@ will take multiple bus

cycles. The following table shows the number of cycles and the contents of the
data bus on each cycle for the three possit#enory bus widths.

188

Chapter 6: Making Trace Measurements

Memory Bus Width

Bus
Cycle 8 Bits 16 Bits 32 Bits
addr (data) addr (data) addr (data)
1 100201020102) 100901020102)) 100901020102))
2 100802023f02) 10Qafff 3fff) 10Qafff 3fff)
3 10Qafff 3fff)
4 10@8f ffff)

The number of cycles and the data bus values will vary dependimgorory
bus width, data size, and data address alignment. You must consider these
factors when specifying triggers containing both address and data values.

The second form of problem occurs when a C variable is written, but the
address never appears on the bus. To demonstrate this problem, consid
32-bit C variablefoo at addres®x1002 and a 'wild pointer" pointing to
addres®x1000 . A 32-bit write indirecthrough the pointer M overwrite

part of variablegfoo , but if the memory bus width is 32 bits, the addregpof
(0x1002) will never appear on the address bus. Similarly, a write indirect
through a wild pointer pointing to addre®s1004 will overwrite part offoo
without the address dbo appearing on the bus. This limitation can be
overcome by specifying an address range when triggering on a symbol that you
suspect is being modified by a wild pointer.

Limitations when Triggering on Instruction Fetches. Instructions located
on odd word address boundaries can be traced by specifying address values
with the mask operator. For examplefpid is located on an odd word
address boundary, theromnand:

Trace Trigger Address | s foo &= Oxfffffffc

will let the trace function trigger on variabfieo . The mask operator can also
be specified as shown in the following command:

Trace Trigger Address Is foo &=~3

The tilde operator~) performs the one’s complement operationina C
expression.

The debugger will apply theparopriate mask for all instruction fetches if you
use the Debugger Option Trace Fetch_Align command.

189

Chapter 6: Making Trace Measurements
To start a trace using the Code pop-up menu

To start a trace using the Code pop-up menu

1 Position the mouse pointer over the line of code which should trigger the trace.

2 Hold down the right mouse button and select one ofithee items from the
Code window pop-up menu.

3 When '"TRC:Cmplt"appears on the status line, stop execution of the program
if it is not already halted.

4 SelectWindow —Trace to see the trace information.

5 Use the keyboard arrow keys or the scroll bar to scroll through the trace
information. Press ESC> < ESC>to exit trace mode.

This will trace the execution of code near the line you selected.

You can choose any one of the following:

» Trace after will trace what happens after the selected line is executed.

» Trace beforewill trace what happens before the selected line is executed.

» Trace aboutwill trace what happens before and after the selected line is
executed.

» Trace until will trace what happens before the selected line is executed.
When the selected line is reached, execution is stopped automatically.

To start a trace using the command line

A trace measurement is started on the ftigigram Step or Program
Run command following the specification of a trigger torage qualifier, or
after aTrace Again command.

190

Chapter 6: Making Trace Measurements
To stop a trace in progress

The Trace Again command starts the trace using the last trace specification
you set up or the default trace specification if you have not set up a trace in the
current debug ssion. The default specification is:

Trace StoreQual None
Trace Trigger Never

The default specification causes the trace to execute continuously, storing all
bus states in the trace buffer, until you stop the trace by enteringrtireastd:

Trace Halt
If you have set up a trace specification, the trace function behavior is
determined by your specification.

The debugger must be in command modaifyarget program is halted and
the wordCommands displayed on the status line) in order for you to enter
trace command.

To stop a trace in progress

Using the command line, enter:
Trace Halt

And press the Return> key.

If the trace trigger specification is defined to Trace Trigger Never ,
the trace function wiltun continuously until you halt the trace.

If you have defined a trace trigger specification, the trace function stops
automatically when the trace trigger specification is detected and the trace
buffer is full.

191

Chapter 6: Making Trace Measurements

To display a trace

Examples

To display a trace

SelectWindow - Trace.

Or:

In the emulator/analyzer window, sel@&isplay—Trace.

Or:

Using the command line, enter:
Trace Display

And press the Return> key.

The default trace display shows the high-level program source lines
corresponding to the trace states and entries and exits from modules.

Display options allow you to display entry to and exit from modules, assembly
language instructions, data read and write cycles, and the raw uninterpreted
data collected by the trace function.

ThelLine(s) option allows you to specify a range of lines in the trace buffer
to be copied to a specified debugger window or the first state to be displayed in
the trace window.

To view source lines, their corresponding assembly language instructions, and
data read and write cycles:

Trace Display Mdules Source Assembly Data

To copythe raw data in lines -20rbugh + 20 of the trace buffer to a log file
you have opened:

Trace Display Lines -20..20 <Tab> Raw CQutputTo 28

28 is the window number for the log file.

192

Chapter 6: Making Trace Measurements
To specify trace events

To display the raw data starting with the trigger state in the trace window and
cause the debugger to enter trace mode:

Trace Display Lines 0 <Tab> Raw
To exit trace mode, press theEsc> key twice. This action returns the

debugger to command mode where you can enter commands from the
keyboard.

To specify trace events

* Using the command line, enter:

Trace Event Specify <event_nmbr> <Tab>
<event_definition>

And press the Return> key.

You use trace events as terms in the trace trigger specification and in the
storage qualification specification. The event definition can be address values,
data values, status values, or a logically AND’ed combination of the above.

Examples Address event To define event 1 to be the address of function
update_state_of_system:

Trace Event Specify 1 <Tab> Address |Is
update_state_of_system

Status event To define event 2 to be any bus cycle corresponding to an
instruction fetch from supervisenemory space:

Trace Event Specify 2 <Tab> Status |s FnCde Supr CycTyp
Fetch

Combined address and status eventlo define event 3 to be a write access of
variable current_humid:

193

Chapter 6: Making Trace Measurements
To delete trace events

Trace Event Specify 3 <Tab> Address Is
¤t_humid <Tab> Status |s Wite

To delete trace events

* Using the command line, enter:
Trace Event Delete <event_nmbr>

Enter the number of the event you wish to delete, and pressRbturn>
key.

If you attempt to delete an event that is assigned torage qualification
term or trigger term, the debugger will display aroe message on your
screen. You cannot delete events that asggaed asterage qualifiers or
trigger terms. You can, however, modify these events by entering a new
specification.

Examples To delete event 2:

Trace Event Delete 2

To specify storage qualifiers

* Using the command line, enter:
Trace StoreQual Event <event_nmbr>

Enter the number of the event previously defined with the Trace Event Specify
command, and press theReturn> key.

You can specify a single event or an OR’ed combination of events in the trace
storage qualification specification.

194

Chapter 6: Making Trace Measurements
To specify storage qualifiers

If you specify the Prestore function, the trace function stores the two
instruction fetch bus cycles immediately preceding the qualified states being
stored.

Examples To store either of two events:

Trace Event Specify 1 <Tab> Address |Is
update_state_of_system

Trace Event Specify 3 <Tab> Address |Is
¤t_humid <Tab> Status |s Wite

Trace StoreQual Event1<Tab> O3

The debugger will thertare cdls to functionupdate_state_of systeom write
accesses to variabéeirrent_humid

To store accesses tipdate_state of _systemtong with the two bus cycles
immediately preceding the accesses:

Trace StoreQual Address | s update_state_of system <Tab>
Prestore

The prestore operation helps you determine what instructions caused an
access to a variable or function.

Note that in the preceding example, we defined the qualifying event in the
Trace StoreQual ecomand rather than using an event defined previously with
the Trace Event Specify command. When you define the qualifying event in
the Trace StoreQual oumand, you can specify only a single event. You
cannot use an OR’ed combination of events as the storage qualification
condition.

195

Chapter 6: Making Trace Measurements
To specify trigger conditions

Examples

To specify trigger conditions

Using the command line, enter:
Trace Trigger Event <event_nmbr>

Enter the number of the event previously defined with the Trace Event Specify
command, and press theReturn> key.

You can specify a single event, an OR’ed combination of events, a specified
number of occurrences of a single event or an OR’ed combination of events,
or a sequence of events (maximum of seven) in the trace trigger specification.
If you specify a sequence of more than seven events, the debuggerpatdes
with an error message indicating that the specification is too complex.

You can define the trigger event in the Trace Trigger command rather than
using an event defined previously with the Trace Event Specify command.
When you define the qualifying event in the Trace Trigger command, you can
specify only a single event. You cannot use an OR’ed combination of events, a
sequence of events, or multiple occurrences of an event as the trigger
condition.

Trigger on a single event To trigger on the occurrence of a call to function
update_state _of system

Trace Event Specify 1 <Tab> Address |Is
update_state_of_system

Trace Trigger Eventl

Trigger on a sequence of eventsTo trigger on a call to function
update_state _of system followed by a write access to variable
current_humid

Trace Event Specify 1 <Tab> Address |Is
update_state_of_system

Trace Event Specify 3 <Tab> Address |Is
¤t_humid <Tab> Status |s Wite

196

Chapter 6: Making Trace Measurements
To halt program execution on the occurrence of a trigger

Trace Trigger Event1 <Tab> Then 3

Trigger on an OR’ed combination of events To trigger on a call to function
update_state _of system or a write access to variabderrent_humid

Trace Event Specify 1 <Tab> Address Is
update_state_of_system

Trace Event Specify 3 <Tab> Address |Is
¤t_humid <Tab> Status |s Wite

Trace Trigger Eventl <Tab> O3

Trigger on the nth occurrence of an event To trigger on the fifth call to
function update_state _of system

Trace Trigger Event 1 <Tab> Count 5

Examples

To halt program execution on the occurrence of a
trigger

Enter the keywordBrkOnTrg in your trace trigger specification to halt
program execution on occurrence of the trigger condition.

To break on a write to memory locaticarrent_humid

Trace Trigger Event3 <Tab> BrkOnTrg PosnTrig End

When you start your program, the debugg#lrexecute thegrogram until the
trigger condition is detected. Then the debugger will halptiogram. The
keywordsPosnTrig End cause the trigger to be stored at the end of the
trace buffer, allowing you to view events leading up to the trigger.

197

Chapter 6: Making Trace Measurements
To remove a storage qualification term

To remove a storage qualification term

Using the command line, enter:
Trace StoreQual None

And press the Return> key.

This command rderes the storage qualification to its default value, that is, all
bus cycles will betsred in the trace buffer. If you specified events defined
with the Trace Event Specify command, the events are removed from the
storage qualification specification, bigmain defined.

To remove a trigger term

Using the command line, enter:
Trace Trigger Never

And press the Return> key.

This command réeres the trace trigger to its default value. Events in trigger
terms defined with the Trace Event Specify command are disabled as trigger
terms, but are not removed as events. The Trace Trigger Never command
causes the trace function to never trigger. The traceumlbontinuously

until you stop the trace using the Trace Halhooand.

198

Chapter 6: Making Trace Measurements
To trace code execution before and after entry into a function

To trace code execution before and after entry
into a function

Specify the trigger condition.

Trace Trigger Address |s function_name <Tab> Status |Is
FnCde Prog PosnTrig Center

Run the program.

When the trace is completed (the command liflecontain the message
TRC:Cmplt), presCTRL C to halt program execution and entenooand

- .
Display the trace data.

To trace data written to a variable

Define trace event 1 to be a write access to the range of addresses
corresponding to the variable.

Trace Event Specify 1 <Tab> Address |Is
&variable ..+sizeof(variable)-1 <Tab> Status |s Wite

By using thesizeof operator, we can specify an address range the size of the
variable to ensure that we capture all bytegasfable

Assignvariable as the trigger and storage qualification terms.
Trace Trigger Eventl

Trace StoreQual Eventl

199

Chapter 6: Making Trace Measurements
To trace data written to a variable and who wrote to the variable

3 Start program execution.

4 Complete the trace.

The the TRC status on the status line will changERG:Trgrd to indicate
that the first write has taken place.

You may do one of two things to complete the trace:
* To see a full buffer of writes, wait until the status changddC:Cmplt .

* To see the trace without waiting, presstrl> -C to return to coomand
mode, then halt the trace by entering:

Trace Halt

5 Displaythe trace information.

To trace data written to a variable and who wrote
to the variable

1 Define trace event 1 to be a write access to the range of addresses
corresponding to the variable.

Trace Event Specify 1 <Tab> Address Is
&variable ..+sizeof(variable)-1 <Tab> Status |s Wite

2 Assign the variable as the trigger andrage qualification terms.
Trace Trigger Eventl
Trace StoreQual Eventl <Tab> Prestore

Note that we added thierestore keyword to the Trace StoreQual

command. Theérestore keyword in the storage qualification definition will
cause the trace function to capture the last two fetch cycles before the write to
current_humid , enabling you to see which routine is writing to the variable.

200

Chapter 6: Making Trace Measurements
To trace events leading up to writing a particular value in a variable

3 Start program execution.

4 Complete the trace.

The the TRC status on the status line will changERG:Trgrd to indicate
that the first write has taken place.

You may do one of two things to complete the trace:
* To see a full buffer of writes, wait until the status changddC:Cmplt .

* To see the trace without waiting, presstrl> -C to return to coomand
mode, then halt the trace by entering:

Trace Halt
5 Halt the trace measurement.

6 Displaythe trace information.

To trace events leading up to writing a particular
value in a variable

To trace events leading up to writing the value O (zero) to the element
seconds in a structure pointed to lByne , perform the following steps.

1 Define event 1 to be the write of a data value of 0 to the least-significant word
of the integer valuseconds .

Trace Event Specify 1 <Tab> Address Is
&time_struct.seconds <Tab> Datals 0 <Tab> Status |Is
Wite

2 Assign event 1 to be the trace trigger, and position the trigger at the end of the
trace buffer so that states leading up to the trigger will be captured.

Trace Trigger Eventl <Tab> PosnTrig End

201

Chapter 6: Making Trace Measurements
To execute a complex breakpoint using the trace function

3

Disable any storage qualification terms to cause the trace function to store all
states.

Trace StoreQual None
Start program execution and the trace.

Program Run

When the trace is completed (the command liflecontain the message
TRC:Cmplt), presCTRL C to halt program execution and entensoand
mode.

Display the trace information.

Example

1

To execute a complex br eakpoint using the trace
function

The trace function can be used to execute a complex breakpoint in your target
program.

Define event 6 to be a write of value 0x3c (60 decimal) to the least-significant
word of the integer valuseconds .

Trace Event Specify 6 <Tab> Address |Is
&time_struct.seconds <Tab> Data |sO0x3c Status |s Wite

Define event 7 to be a write to the least-significant word of the integer value
minutes .

Trace Event Specify 7 <Tab> Address Is
&time_struct.minutes <Tab> Status |s Wite

202

Chapter 6: Making Trace Measurements
To trace entry to and exit from modules

3 Define the trace trigger as event 6 followed by event 7, and position the trigger
at the center of the trace buffer so that states leading up to the trigger and
following the trigger will be captured.

Trace Trigger Event6 <Tab> Then7 <Tab> BrkOnTrg
PosnTrig Center

The keywordBrkOnTrg causes the debugger to halt program execution when
the trigger condition is detected.

4 Start the trace measurement.
Program Run

The program vil run until the trigger condition is detected and then halt.

5 Display the trace buffer.
Trace Display Line(s)0 <Tab> Source Assembly Data

Note that the minutes count is updated at line O in the trace display. The
trigger specification has allowed us to see the program activity leading up this
event. Press thReturn key orF7 function keyto scroll through the data
source line by source line. Note that the highlighted line in the code window
tracks the first line displayed in the trace display. PresBéHanction keyto
change the direction of tracking in the trace display.

To trace entry to and exit from modules

1 Define event 5 to be any instruction fetch with an opcode valde®f where
X isa dont care value.

Trace Event Specify 5 <Tab> Data | s 0x4e50 &= OxfffO
<Tab> Status |s CycTyp Fetch

203

Chapter 6: Making Trace Measurements
To trace entry to and exit from modules

The dont care condition is specified by specifying a mask in the data
specification &=is the mask operator. This value corresponds to the LINK
and UNLK instructions.

2 Define event 5 as the trace storage qualifier.

Trace StoreQual Event5

3 Restore the trace trigger to its default value.

Trace Trigger Never

4 Start the program and trace.

Program Run

5 Let the program run for a moment, then pi@$&L C to halt program
execution and enter command mode.

6 Stop the traceneasurement.

Trace Halt

7 Displaythe trace information.
Trace Display Modules Assembly

The display should show entries and exits of modules and the assembly code
that was captured in the trace buffer. The code shoulsistasf only LINK
and UNLK instructions.

Note This method of viewing entries and exits of modules may not work for all code.
It will depend on howgur compiler generates code and which compiler
options you choose.

204

Chapter 6: Making Trace Measurements
If tracing is not triggered as expected

If tracing is not triggered as expected

If you are using 16-bitnemory, you need to make fetches appear to be on
longword boundaries. Use thenemand line Debugger Option Trace
Fetch_Align command to mask the fetch addresses.

205

Chapter 6: Making Trace Measurements
If tracing is not triggered as expected

206

Chapter 7: Editing Code and Data

Editing Code and Data

How to use the debugger to make permanent or temporary changes to source
code, memory contents, and registers.

207

Chapter 7: Editing Code and Data
To edit source code from the Code window

Editing Files

The graphical interface gives you a number of context-dependent and
context-independent editing commands. From several screens, you can bring
up the source file that contains the source line or symbol you are viewing in
the display.

The interface will hoose the “vi” editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the chapter “Configuring
the Debugger” for more information about setting this resource.

Remember to re-compile

When you use the editor to change a source code file, jonueed to
re-compile the source file. You can recompile with a click of the mouse if you
define theMake action key to compile the target program.

To edit source code from the Code window

Place the mouse pointer over the line you want to edit. Sedéctource
from the Code window pop-up menu.

The debugger will start the edr in a new X window. The cursor in the editor
window will be on the same line of code as the mouse pointer in the Code
window.

After editing the file, you quit the edit session by the standard method for the
editor used.

You will need to re-compile theoarce file. You can recompile with a click of
the mouse if you define thdake action key to compile the target program.

208

Chapter 7: Editing Code and Data
To edit an arbitrary file

To edit an arbitrary file

1 SelectFile -Edit -File.

2 Using the file selection dialog box, enter the name of the file you wish to edit;
then, click on the OK pushbutton.

After editing the file, you quit the edit session by the standard method for the
editor used.

To edit a file b ased on an address in the e ntry
buffer

1 Place an address reference (either absolute or symbolic) in the entry buff.

2 SelectFile -Edit -At () Location.

The interface determines which source file contains the code generated for the
address in the entry buffer and opens an edit session on the file.

To edit a file b ased on the currentp rogram
counter

» SelectFile -Edit -At PC Location.

The interface determines which source file generated the address currentlyin
the program counter and opens an editi®® on that source file. The

interface willissue an gor if it cannot find a source file for the address in the
PC.

209

Chapter 7: Editing Code and Data
To change a variable using a C expression

Patching Source Code

When you change source code by editing the C source file, you need to
re-compile.

The debugger provides several ways to patch your program without
re-compiling:

» Change a variable’s value using a C expression.

* Applya patch using a breakpoint macro.

To change a variable using a C expression

Enter a C expression in the entry buffer.

A good way to do this is to highlight an expression from your source code
using the left mouse button. When you release the button, the expression will
appear in the entry buffer. Now edit the expression to have the desired value.

Click on theC Expr () action key. Or seled@isplay—C Expressionfrom the
menu bar.

The value of the variable will be changed until gfregram modifies it. You
can continuously monitor the variable’s value if you display it in the Monitor
window (use theMonitor () action key or th&xpressionMonitor Value
command).

Or:

Using the command line enter:

Expression C_Expression <expression>

210

Chapter 7: Editing Code and Data
To patch a line of code using a macro

To patch a line of code using a macro

1 Set a breakpoint at the line you wish to patch.

An easywayto set the breakpoint is to click the right mouse button on the line
in the Code window.

2 Attach a macro to the breakpoint.

ChooseAttach Macro ... from the Code window pop-up menu.

3 Write a macro to patch the code.

In the Macro Operations dialog box, enter the name of a new macro and click
on theEdit button.

The macro may contain any number of C expressions and debugger com

The last two lines of the macro should be:

$Modify Register @PC = # next_line $;

return(1)

wherenext_lineis the number of the line after the breakpoint. Return 0

instead of 1 if you want the debugger to stop after the macro is executed.

Exit the editor as usual, then click on ttgach button in the Macro
Operations dialog box.

Now whenever the breakpoint line is encountered, the debudgereeute
the macro before the patched line is executed. The macro will execute your
patch code, then skip to the next line.

211

Chapter 7: Editing Code and Data
To patch C source code by inserting lines

To patch C source code by inserting lines

1 Define a macro containing the inserted statements. The macrgnovite a

return value of 1 (true) in order for the program to continue after the macro is
executed.

Set a breakpoint on the C line following the point where the insertion should
occur and attach the macro to the breakpoint.

Start your program.

The program vil run until the breakpoint is encountered. The debugger will
then interpret and execute the C staénts in the macro, and continue
executing the program.

Example

To patch C source code by deleting lines

Write a macro that sets the program counter to point to the first line of code
beyond the lines of code that you want to delete. The macro must provide a
return value of 1 (true) in order for the program to continue after the macro is
executed.

Set a breakpoint on the first line to be deleted and specify the macro with that
breakpoint.

Start your program.

The program Wl run until the breakpoint is encountered. The macro will
then set the program counter to the line specified in the macro. Program
execution will then continue, skipping tbeogram lines between the
breakpoint and line specified in the macro.

Consider the following code:

212

Chapter 7: Editing Code and Data
To patch C source code by deleting lines

25 count=5;

26 for (i=0; i < MAXNUM; i++)
27 |

28 array[i]=1;

29 count=count+2;

30 k=count*i;

31 }

To delete lines 29 and 30, and insert a new line incremeodungtby one, you
could write the following macro:

Debugger Macro Add patch_29()
{

count++;
$Expression C_Expression @PC = #31$;
return(1);

To execute the code patch, enter the command:

Breakpt | nstr #29;patch_29()

and run your program.

213

Chapter 7: Editing Code and Data
To change the value of one memory location

Editing Memory Contents

This section shows you how to:

* Change memory location values.
» Copya block of memory.

* Fill a block ofmemory with values.
e Compare two blocks of memory.

* Change the contents of a register.

* Unload BBA data from programemory.

To change the value of one memory location

1 SelectModify ~Memory.

Or, using the command line, enter:
Memory Assign <Size>
2 Using the command line, select either Byte, Word, or Long as the size of the

memory location, and enter the expression that assigns a value to an address,
and press the Return> key.

To change the values of a block of memory
interactively

1 SelectModify ~Memory.

Or, using the command line, enter:

214

Chapter 7: Editing Code and Data
To copy a block of memory

Memory Assign <Size>

2 Using the command line, select either Byte, Word, or Long as the size of the
memory location, enter the address of the beginning of the block, and press
the< Return> key.

This starts the interactive memory modification mode.

3 Enter the value for the location displayed in the Journal window and press the
< Return> key.

4 To exit this mode, press tkeReturn> key without entering a value.

Example To display the contents of memory location 1000h and allow interactive
modification of memory contents:

Memory Assign Byte 1000h
00001000 = 0x48 72:

To copy a block of memory
1 Using the command line, enter:
Memory Block_Operation Copy
2 Enter the address range of the memoryto be copied, followed by a comma.

3 Enter the starting address of the destination and pressRe&urn> key.

Example To copy the block of memory starting at address 1000h and ending at address
10ffh to a block of the same size starting at address 5000h:

Memory Block Operation Copy 1000h..10ffh,5000h

215

Chapter 7: Editing Code and Data
To fill a block of memory with values

Example

To fill a block of memory with values

Using the command line, enter:
Memory Block Operation Fil <Size>

Select either Byte, Word, or Long as the size of the memory locations, enter
the expression that assigns a value to locations in a range of addresses, and
press thes Return> key.

To fill memory locations 1000tough1007h with the long pattern
61626364, 65666768:

Memory Block Operation Fill Long 0x1000..+7="abcdefgh’

Example

To compare two blocks of memory

Using the command line, enter:
Memory Block Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what
happens when a mismatch is found, enter the address range to be compared
and the starting address of the range that it is compared to; then, press the
< Return> key.

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

216

Chapter 7: Editing Code and Data
To re-initialize all program variables

To re-initialize all program variables

SelectFile ~Load -Program Only .., then use the File Selection dialog boxto
select the absolute file.

Or:

Using the command line, enter:
Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and press the
< Return> key.

The code will be loaded thiout loading symbols or resetting the PC.

The debugger does not save the initial values of variables. The only way t
restore the initial values is to re-load the program. After re-loading the
program, you may need to restore some debugger settings; for example,
might need to re-specify variables for the Monitor window.

To change the contents of a register

SelectModify -Register. This will display the Modify Register dialog box.

Or:

Using the command line, enter:
Memory Register

On the command line, enter the name of the register and the value to which
the register’s contents should be changed, and pressRbtirn> key.

Registers may also be modified by usingé@istet' in a C_expression.

217

Chapter 7: Editing Code and Data
To change the contents of a register

Example

To modify register values interactively:

Memory Register

The program counter (PC) is displayed in the journal window. You can
modify the PC by entering a value (10a4h in this example) at the cursor

prompt and prssing< Return>. The PC will be modified, and the next
register will be displayed:

@pc =0x000010B8 4280: 10a4h
@sp =0x00015DB4 89524:

Press< Return> without entering a value to exit this mode.
To set the value of register @d1 to 44h:
Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

218

Using Macros and Command Files

How to use macros and command files to make debugging easier.

219

Chapter 8: Using Macros and Command Files

The debugger provides several ways for you to simplify tasks that you do often.

Macros are C-like functions. You can call macros individually, attach
them to breakpoints, or automatically execute them with each program
step. Macros are especially useful for temporarily patching C code.

Command filescontain series of debugger commands. The debugger can
read a command file and execute the commamuisd there as if they

were entered directly into the interface command line. Command files are
useful for setting up the debugger, for executing a program to a certain
point, and for automated testing.

Action keys are shortcut definitions or "hotkeys" which allow you to add
new commands to the graphical interface. Action keys are useful for
simplifying frequently-used commands, for making the debugger easier to
use for co-workers who do not frequently use a debugger, and for making
the debugger into a framework for demos and tutorials.

220

Chapter 8: Using Macros and Command Files
Using Macros

Using Macros

A macro is a C-like function consisting of debuggemooands and C
statements and expg®ons.

Macros are most often used to:
 Patch C source code.

Often, bugs found with the debugger can be temporarily patched with C
source statments in macros. You do not have to exit the debugger, edit
the source code, recompile and link, and then reenter the debugger.
Instead, you can make a temporary patch by using breakpoint macros.

* Return values to expssions.

» Create conditional breakpoints.

» Execute commands after egotogram step aomand.
+ Execute a set of commands.

Macros can:

* Have input paameters (macro arguments).

» Define macro local variables.

e Contain C statements and exps®ns.

» Refer to target variables and registers.

» Refer to user-defined variables.

e Have return values.

e Call other macros.

e Can be used in expressions (if they return values).
» Execute most debugger commands.

Macros cannot:

» Define global variables.

» Define static variables.

* Berecursive.

» Define other macros.

e Contain the conditional operator (expression ? expression : expression).

Macros can be called:

» Byspecifying the macro name in an exggien.

» Bycalling the macro from within another macro.
» With the Debugger Macro Call command.

* With the Breakpt command.

» With the Program Step With_Macro command.

221

Chapter 8: Using Macros and Command Files

Using Macros

Caution

This section shows you how to:

+ Define a macro.

+ Call a macro.

e Stop a macro.

» Display macro source code.

» Patch C source code by using macros.

« Delete a macro.

Saving and re-using macros

You can define and save macros interactively during a debugger session.

Macro limits

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macro interactively, the debugger does not
respond to more than 78 characters on a line. When readimgraaoad file,

the debugger stops recognizing characters 2fiBrcharacters have been read
on a line.

The maximum number of lines allowed in a macro depends on the complexity
of the lines. Macros with too many lines (too complex) will faitdg 92 'Not
enough memory for expressianill be displayed.

A maximum of 40 parameters may be specified in a macro definition.

Once you have defined a macro, you can use it any time during the debugging
session, whenever that set of commands or statements is needed.

The pseudoregister @cycles is not implemented in the emulation
environment. Macros written for execution in both the simulation and
emulation environments must not refer@xycles

Macro comments

Macros support C coments (introduced by the charactérand terminated
with the charactery).

222

Chapter 8: Using Macros and Command Files
Using Macros

Macro arguments

You can use formal macro arguments throughout the macro definition. They
are replaced at execution time by the actual parameters present in the macro
call. The actual parameter is coerced to hreasponding formal pameter

type. If coercion is not possible, arr@r occurs.

You must list the macro’s arguments (if any), along with their associated types,
when you define the macro. For example, the following listing defines
arguments for the built-in macro strcpy():

Debugger Macro Add int strcpy(target, source)
char *target;
char *source;

Macro variables

Variables that are local to the macro may be created within the macro. The
definition of local variables follows the rules of C, with the exception that you
cannot define variables with initializers. Variables may be defined to have a
simple type, or they may be of type array or pointer. Derived types (such as
structures and unions), enumerated types, and typedefs are not legal within
macros.

The macro processor does not recognize the C keywords extern, auto, st
and register. The macro processor reports an error if these C keywords a
used. Static variables are not scoped within a macro. However, symbols
created with the Symbol Add command (debugger symbols) are globally
scoped, and can be accessed from within a macro. Register variables (such as
@PC) may also be accessed from within a macro.

Target program symbols can also be accessed from within a macro. Variables
which are globally scoped within the target program can be accessed directly.
File static, function static, and automatic variables can be accessed directly
onlyif the current context of the debugger is the module or function in which
they are scoped. Otherwise, they require a module or function name as a
gualifier before they can be accessed. For example, assume the following
definition exists in your target program, in a file called init.c:

static int i; /* file static */
foo(int parm)

static int j; [* function static */
auto intk; [* function local */

223

Chapter 8: Using Macros and Command Files
Using Macros

If a macro is executed while the PC is pointing into the function foo(),

variables i, j, and k can be directly accessed. Ifthisis not the case, i must be
accessed with a module qualifier, such as init\i. The function static j must be
accessed as init\foo\j. The automatic k can be accessed as init\foo\k if the stack
frame for bo() is alive.

Macro control flow statements

Macros support the following C control flow statents:

o If-else

e While and For

 Do-while

» Break and Continue in While, For, and Do statements.

However, macros cannot contain conditional egpiens of the form:

<expression>?<expression>:<expression>

Macro return values

Macros support the C “return” sexhent for retirning values.

If a breakpoint macro returns a nonzero value, program execution continues.
If it returns a zero value, program execution is halted. If a macro does not
return a value, it should be declared as void when it is defined.

Macros containing debugger commands

You can create macros that contain only a sequence of debugger commands.
Macros containing only debugger commands are similar to command files.
You can use these macros to set up complexinitialization conditions.

You cannot use the following oimands in macros:

e Program Run
 Program Step

* Program Step Over
 Debugger Host_Shell
 Debugger Macro Add
e Symbol Add

e Symbol Remove

224

Chapter 8: Using Macros and Command Files
Using Macros

 File Command
» Debugger Quit

To display the Macro Operations dialog box

SelectBreakpoints —Edit/Call Macro from the menu bar.

Or:

SelectAttach Macro from the Code window pop-up menu.

The Macro Operations dialog box allows you to call predefined macros, edit or
call existing user-defined macros, and create new macros.

To define a new macro interactively using the .
graphical interface

Display the Macro Operations dialog box.
Move the mouse pointer to the Selected Macro entry area.

Type< Ctrl> -U to clear the Selected Macro entry area, then type the name of
the macro you wish to create.

When you press Return> or click on theEdit button, the debugger will
display an editor window.

A "skeleton" macro will appear in the édli window.

Edit the macro definition.

225

Chapter 8: Using Macros and Command Files
Using Macros

When you exit the editor, save the macro under the defaaienlf you save it
under a different name, the macro may be lost.

See Also See '"To use an existing macro as a template for a new macro" if you want to
use an existing macro as the basis for a new macro.

Example To create an macro called "test_macro", seBeetkpoints —Edit/Call Macro
and enter "test_macro" in the Selected Macro area. NowpiRstIrn> or
click on theEdit button. Edit the macro in the editor window. If you are using
thevi editor, exit using the "ZZ" camand. The new macréisuld now appear
at the end of the Defined Macros list.

To use an existing macro as a template for a new
macro

1 Displaythe Macro Operations dialog box.
2 In the dialog box, select the macro you wish to use as a template.
3 Click on theEdit button.

4 In the editor, change theame of the macro.

Now you may edit the parameters and body of the macro.

When you exit the editor, the macrdlwe saved under the nevame. The
original macro will not be changed.

226

Chapter 8: Using Macros and Command Files
Using Macros

To define a macro interactively using the
command line

Enter the Debugger Macro Add command followed by an optional return
type, and then a macro name. The macro name must be followed by
parentheses; the parentheses can optionally enclose macro arguments
separated by commas.

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

Enter the text of the macro body.
[[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]

End the macro definition with a period as the first and only character on a
line. The macro is checked for syntax errors as soon as the period is

encountered. If an error is found within a macro, the macro definition is ngt
saved. The macro must be completely reentered.

Your completed macro definition should have the following syntax:

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

[[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]

Debugger commands can be embedded in the macro by enclosing the
commands betwee®icharacters. For example,

$Expression C_Expression @PC = #313;
No standard C library functions are available from within a macro. However,

there are built-in macros available in the debugger that perform similar
functions (refer to the "Predefined Macros" chapter).

227

Chapter 8: Using Macros and Command Files

Using Macros

To define a macro outside the debugger

Using a text editor on your host system, define the macro.
Save the macro definition in a command file (< filename> .com).
Start the debugger.

Load the command file into the debugger using the File Command command.

As the macro is loaded into the debugger, the macro processor parses the
macro, looking for syntax errors. If the macro definition contains no errors, it
is loaded into the debugger’s symbol table.

If an error is detected, the macro processor reports the error and quits loading
the command file. The macro remains undefined.

The number of macros that you can define is limited only by the available
memory on your host computer system.

To edit an existing macro

If you want to edit a macro attached to a breakpoint, sEgitAttached
Macro from the Code window pop-up menu.

Or:
Display the Macro Operations dialog box.
Select the macro you want to edit.

Click on the Edit button.

228

Chapter 8: Using Macros and Command Files
Using Macros

Remember to save the macro under the default file name when you leave the
editor (use the "ZZ" or "wqg!" ammand invi).

To save macros

» SelectFile -~Store-User-Defined Macros...

The File Selection dialog box will be displayed so that you bawse a file in
which to save the macros. The debugger will automatically acttha
extension to the file name.

The debugger will save all of theyr user-defined macros to a file.

The debugger does not provide a way to save only selected macros. If you want
to save macros in separate files, you can create the macros using a text editor.

To load macros

» SelectFile —Load -User-Defined Macros...

Choose the macro file to load from the File Selection dialog box.

If macros do not load

[} Check that the macros do not directly access local program variables.

When the debugger loads macros which access local program variables, the
debugger does not know which local scope to use to define the macro.

229

Chapter 8: Using Macros and Command Files

Using Macros

If you need to access local program variables in a macro, pass them to the
macro as parameters.

Example

To call a macro

SelectBreakpoints —Edit/Call Macro ... »Call.

Or:

Using the command line, enter:
Debugger Macro Call

Enter the name of the macro to be called, and press®eturn> key.

When a macro is called with the Debugger Macro Call command, its return
value is ignored. Macros are typically called in this manner for the side effects
they generate.

If you have the following macro definition:

Debugger Macro Add void stackchk()
/* The symbols 'stack’ and 'TopOfStack’ exist in the compiler’s */
/* environment library, and are addresses which indicate the */
/* bottom and the top of the system stack. The symbol @sp is a */
/* debugger reserved symbol which contains the current value of */
[* the processor’s stack pointer. */

$Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
$Expression Printf "%d bytes of stack available", @sp - stack$;

the command:
Debugger Macro Call stackchk()

displays, in the journal window, the amount of stack used and the amount of
stack left.

230

Chapter 8: Using Macros and Command Files
Using Macros

To call a macro from within an expression

» Enter a macro call as part of any expression entered on the command line of
the debugger.

The debugger will evaluate the macro and use itgnetalue when evaluating
the rest of the expression.

Example If you have the following macro definition:

Debugger Macro Add int power(x,y)
int X
int vy;
t.
int i /* Loop counter */
int multiplier; /* Value x is multiplied by */

/* Multiply x by itself y -1 times */
for (i = 1, multiplier = x; i < y;i++)
X *= multiplier;

/* Return x My */
return x;

}

The command:

Expression Display_Value 33.3 + power(2,3)

will call and evaluate the macro, displaying the value 41.3 in the debugger’s
journal window.

To call a macro from within a macro

* You can call a macro from within a macro when they are part of an expression.

The following restrictions apply to calling macros from within a macro:

* The macro called must have been previously defined.

231

Chapter 8: Using Macros and Command Files

Using Macros

Example

e The macro cannot call itself.

If you have the following macro definition:

Debugger Macro Add int ten_to_the(y)
int vy;

return power(10,y); }

the macro will computé&0**y by calling the previously defined macpawer().

To call a macro on execution of a breakpoint

SelectAttach Macro from the Code window pop-up menu.

Or:

When using the command line to set a breakpoint, add a semicolon (;) and the
name of the macro to the command.

When setting breakpoints, you can attach a macro to the breakpoint.
Whenever the breakpoint is encountered, the macro is executed. Depending
on the return value of the macro, program executidireither ¢op or

continue.

» Ifthe macro returns zero, program execution stops at the breakpoint.

» Ifthe macro returns a nonzero value, program execution continues at the
breakpoint.

Macros attached to breakpoints can test program or user-defined variables
before determining whether execution should break or not (by returning zero
or nonzero values, respectively).

Macro control flow statements within a breakpoint macro can alter execution
flowin the target environment based on target or debugger variable values.
You can also include C expressions in macros. By using control flow
statements and C exg®0ons in macros, you can patch your C programs.

232

Chapter 8: Using Macros and Command Files
Using Macros

Example The following example shows how return values can be used to conditionally
control a breakpoint. The example uses the Debugger Macro Add and
Breakpt Write commands to define a breakpoint that occurs only when the
target variable days becomes greater than 31.

Debugger Macro Add int daycheck()

if (days > 31)
return O;
else
return 1;

Breakpt Write &days; daycheck()

When the break occurs, the macro is executed. If days is less than or equal to
31, program execution continues. If days is greater than 31, program execution
stops.

If you have the following macro definition:

Debugger Macro Add int break_when(stopfunction, min, max)
char *stopfunction;

int min;

int max;

/* Debugger symbol @function is a char pointer to the name */
[* of the current function. Compare the current function */

/* with the function name passed, using the built-in macro */

/* memcmp(). */

if (Istremp(@function,stopfunction))
if ((global_var > min) && (global_var <max))

$Expression Printf "global_var: %d\n", global_var$;
return O;

/* Not in specified function, return 1 so that program will */
/* continue executing.
return 1;

the command:

Breakpt Wite &global_var; break_when("foo", 256,512)

will set a write breakpoint on the global variaglebal_var Whenever the
program writes talobal_var the macrdoreak_when(js executed with the
parameterfoo", 256, and512 The macro returns the value 1 until the value
of global_varfalls between 256 and 512 because of a writgldlal_varin the
functionfoo(). The macro then returns 0, causing the program to halt.

233

Chapter 8: Using Macros and Command Files

Using Macros

Example

To call a macro when stepping through programs

» SelectExecution-Step-with Macro

Or:

Using the command line, enter:
Program Step Wth_Macro

Enter the name of the macro to be called, and press®eturn> key.

You can use the Program Step With_Macro command to execute a macro
after the step occurs. Calling a macro in this manner is useful in tracking
down subtle bugs.

If the functionfoo() was corrupting automatic variabl@slexandch on the
stack, the following macro and commands could be used to identify the line
where the corruption was occurring:

Debugger Macro Add void auto_check()
if ((index < 0 || index > 80) || (ch < 32 || ch > 126))
$Window Screen_On High_Level$;
$Expression Printf "Autos corrupted!!'\n"$;
$Expression Printf "index: %d ch: %c\n", index, ch$;
}
Program Run Until foo

Program Step Wth_Macro auto_check()

234

Chapter 8: Using Macros and Command Files
Using Macros

To stop a macro

* Press< Ctrl>-C.

Macros can be halted during execution by pressi@yl> -C.

Caution < Ctrl> -C will stop execution of a macro. F®ng< Ctrl>-C may interrupt a
code-patching macro before it completes execution. If this occurs, you cannot
restart program execution within the macro where it stopped.

To display macro source code

* ChooseEdit in the Macro Operations dialog box.

Or:

» Using the command line, enter:
Debugger Macro Display <macro_name>

Enter the name of the macro you want to display, and pressRe&urn>
key.

This command Wl write the macro surce to the journal window. If you want
to write the macro source to a user-defined window or to a file, you can specify
an optional user window number as the destination.

Example To write the source for macro auto_check() to user window 51:

Debugger Macro Display auto_check() ,51

235

Chapter 8: Using Macros and Command Files
Using Macros

To delete a macro

* Using the command line, enter:
Symbol Remove <macro_name>

Enter the name of the macro you want to delete, and pressRbeirn> key.

Use the Breakpt Delete command to remove the breakpoint that called the
macro.

236

Chapter 8: Using Macros and Command Files
Using Command Files

Using Command Files

A command file is an ASCII file containing debugger commands.

You can create command files from within the interface by logging commands
to a command file as you execute the commands, or you can create or modify
command files outside the interface with an ASCII textadi

The debugger can read a command file and execute the comroandgiiere
as if they were entered directly into the interface command line.

Command files can also call other command files and the interfhexecute
the called file like a subroutine of thellozg file.

This section shows you how to:
 Record commands.

» Place commentsin a command file.
» Pause the debugger.

* Stop conmand recording.

* Run acommand file.

» Set command filereor handling.

* Append commands to a command file.
 Record commands and results tmarpal file.

» Stop recording ammands and results toaurnal file.
* Open afile or device for read or write access.

* Close the file associated with a window number.

* Use the debugger in batch mode.

237

Chapter 8: Using Macros and Command Files
Using Command Files

To record commands

* Use the -command_fil@ption to the db68k or db68030rammand when
starting the debugger. (The debugger appends the file extensioto
command_filg

$ db68k -e <emulator_id> -| <command_file> <RETURN>

Or:

» SelectFile ~Log-Record Commands Using the file selection dialog bog,
enter the name of the file to which the commaniidbe saved, and click on
the OK pushbutton.

Or:

» Using the command line, enter:

File Log On
Enter the name of the file to which commandshe saved, and press the

< Return> key.

All commands, whether they are entered from the menus or the command
line, are recorded to tHegfile. If a command causes arrer, both the
command and thereor code are recorded asements.

Example To start logging commands to file “cmdfilel.com”

File Log Oncmdfilel

238

Chapter 8: Using Macros and Command Files
Using Command Files

To place comments in a command file

* Using the command line, enter:
File Log Comment

Enter the comment thahsuld be placed in the oumand file, and press the
< Return> key.

In the command file, the comment is prefixed with a semicolon (;).

When editing command files, you can also use C-style comments (introduced
by the characters /* and terminated with the characters */).

Example To place the comment “Place this comment in a command file.” in the
command file:

File Log Comment Place this comment in the command file.

To pause the debugger

* Using the command line, enter:
Debugger Pause

And press the Return> key.
The debugger is paused until you enter the spacebar.

You can also specify that the debugger pause for a number of seconds by using
the Debugger Pause Time command.

The Debugger Pause commands are useful when executing command files.

239

Chapter 8: Using Macros and Command Files
Using Command Files

To stop command recording

SelectFile -Log »Stop Command Recording
Or:

Using the command line, enter:

File Logo FF

And press the Return> key.

The command file is closed.

To run a command file

Use the -command_fil@ption to the db68k command when starting the
debugger. (Theommand_filanust end with thecomextension.)

$ db68k -e <emulator_id> -c <command_file> <RETURN>

Or:

SelectFile sLog —Playback Using the file selection dialog box, enter the name
of the command file, and click on the OK pushbutton.

Or:

Using the command line, enter:
File Command

Enter the name of the command file from which debugger commahbts w
executed, and press theReturn> key.

240

Chapter 8: Using Macros and Command Files
Using Command Files

The debugger will begin executingmmandsdund in the coomand file as if
those commands were entered directly into the interface. The debugger will
continue to execute commands until it reaches the end of the file or, perhaps,
until an error occurs, depending on thenenand file eror handling mode

(see “To set command file®r handling”).

To interrupt playback of a comand file, press the Ctrl> -c key combination.
(If the graphical interface is being used, the mouse pointer must be within the
interface window.)

Example To start executing command from the file “cmdfilel.com”:

File Command cmdfilel

To set command file error handling

* Using the command line, enter:

File Error_Command <Handling_Mode>

Select either Abort_Read, Continue_Read, or Quit_Debugger error handling
mode, and press theReturn> key.

When an error occurs while executing ancoand file:
Abort_Read causes the debugger to stop reading thenand file.

Continue_Read causesthe debugger to continue executing the command file
with the next command.

Quit_Debugger causes the debugger session to end.

241

Chapter 8: Using Macros and Command Files
Using Command Files

To append commands to an existing command file

* Using the command line, enter:
File Log Append

Enter the name of the file to which commandshe appended, and press the
< Return> key.

Example To append command to the file “cmdfilel.com”:

File Log Append cmdfilel

To record commands and results in a journal file

» Use the -jourmnal_file option to the db68k command when starting the
debugger. (The debugger appends the file extenjsioto journal_file))
$ db68k -e <emulator_id> -j <journal_file> <RETURN>
Or:

» SelectFile ~Log—Record Journal. Enter the name of the file to which the
commands and resultslbbe saved, and click on the OK pushbutton.

Or:
» Using the command line, enter:
File Journal On

Enter the name of the file to which commands and resiiltsaxsaved, and
press thes Return> key.

242

Chapter 8: Using Macros and Command Files
Using Command Files

Journal files are similar to acomand files. They contain debugger commands
entered during a debug session. Journal files also contain any output
generated by debugger commandsurdal files contain everything that is
written to the journal window during a debugsien.

Example To start recording commands and results to fibeifpall.jou”:

File Journal Onjournall

To stop command and result recording to a
journal file

» SelectFile -Log-Stop Journal Recording

Or:

» Using the command line, enter:

File Journalo FF

And press the Return> key.

To open a file or device for read or write access

* Using the command line, enter:
File User_Fopen

Select the open option, window number, and file name; then, press the
< Return> key.

243

Chapter 8: Using Macros and Command Files
Using Command Files

After opening a file using the File User_Fopen Append or File User_Fopen
Create command, you can use the Egpi@n Fprintf command to write
information to the file. Files opened for reading may be read from the built-in
macro fgetc(). See the "Predefined Macros" chapter of this manual for a
complete description of this macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

Example To open user window 57 and redirect any data written to window 57 to the file
varTrace.out”.
File User_Fopen Create 57 File varTrace.out
To close the file associated with a window number
Using the command line, enter:
File Whdow_ Close
Enter the window number associated with the file when it was opened, and
press thes Return> key.
Example To close the file associated with user window number 57:

File Whdow_Close 57

244

Chapter 8: Using Macros and Command Files
Using Command Files

To use the debugger in batch mode

* Use the -b and -command_fil@ptions to the db68k command when starting
the debugger.

When using the debugger in batch mode, stdin, stdout, and stderr are disabled.
The -b option must be accompanied by the -c option and a debugger command
file. Allcommands are read from the command file. No user interaction with
the debugger is allowed. In batch mode, the debugger can be executed as a
background process. This mode is commonly used for automatic testing.

Example
$ db68k -b -e <emulator> -c <command_file>

245

Chapter 8: Using Macros and Command Files
Using Command Files

246

Chapter 9: Configuring the Debugger

Configuring the Debugger

How to change the appearance and behavior of the debugger.

247

Chapter 9: Configuring the Debugger

Configuring the debugger

These tasks are grouped into the following sections:

Setting the general debugger options.

Setting the symbolics options.

Setting the display options.

Modifying display area windows.

Saving and loading the debugger configuration.

Setting X resources.

Some options can be set using either the Debugger Options dialog box or the
command line. Other options can be set only using the command line.

248

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

Setting the General Debugger Options

This section describes how to:
» Displaythe Debugger Options dialog box.
» List the debugger options settings.

» Change debugger options settings.

To display the Debugger Options dialog box

SelectSettings—-Debugger Optionsfrom the menu bar.

You can change settings in the Debugger Options dialog box by clicking on
the appropriate buttons.

To list the debugger options settings .

SelectSettings—-Debugger Options ...

Or:

Using the command line, enter:
Debugger Option List

And press the& Return> key.

The following information is displayed:

> Debugger Option List
Processor = 68EC030
Intermixed =0On
Assem_Symbols = On

249

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

Step_Speed =0

Radix = Decimal_Input, Decimal_Output
Stdio_Window = Swap

Check_Args =oFF

Align_Bp = oFF
Breakpt_Window = Swap
More =0n
Highlight = Inverse

Frame_Stop = oFF
Command_Echo = oFF
View_Window = Swap
Demand_Load = oFF
Amt_Scroll =1
Trace_Counts = Nothing
Fetch_Align = Long

To specify whether command file commands are
echoed to the Journal window

Using the command line, enter:
Debugger Option Command_Echo

Select On or oFF, and press thReturn> key.

On Command file commands are echoed to thedal window.
oFF Command file commands are not echoed to ¢lienhl
window.

To set automatic alignment for breakpoints and
disassembly

In the Debugger Options dialog box, click on the Align Breakpoints button to

toggle alignment.

Or:

250

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

* Using the command line, enter:
Debugger Option General Align_Bp
Select On or oFF, and press thReturn> key.
On Debugger automatically aligns breakpoints or locations to
be displayed in mnemonic format to the beginning of

instructions.

oFF Breakpoints are not automatically aligned.

To set backtrace display of bad stack frames

* In the Debugger Options dialog box, click on the Framnog $utton to toggle
display of bad stack frames.

Or:

» Using the command line, enter: .

Debugger Option General Frame_Stop

Select On or oFF, and press thReturn> key.
On Only consecutive valid stack frames are displayed.

oFF All stack frames, including bad frames, are displayed.

251

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

To specify demand loading of symbols

* Using the command line, enter:
Debugger Option General Demand_Load
Select On or oFF, and press thReturn> key.

On Symbol information is loaded on an as-needed basis.

oFF All symbol information is loaded.

To select the interpretation of numeric literals
(decimal/hexadecimal)

* In the Debugger Options dialog box, hold tmenmand selechouse button
down on the button for "Input Radix" or "Output Radix". Release the button
to select "Decimal” or "Hex".

Or:

» Using the command line, enter:
Debugger Option General Radix

Select Decimal or Hex, and press thBeturn> key.

If you select Hex, any number you want interpreted as decimal must be
terminated with & (for example, specify 32 as 32T).

Binary numbers are not available when you select Hex.

Floating point and enumeration type values are not affected.

252

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

To specify step speed

* Using the command line, enter:
Debugger Option General Step_Speed <numb 0..100>

Enter the step speed number (from 0 to 100), and pressRe&urn> key.

Higher numbers represent slower speeds.

253

Chapter 9: Configuring the Debugger
Setting the Symbolics Options

Setting the Symbolics Options

This section shows you how to:
» Display symbols in assembly code.
» Displayintermixed C source and assembly code.

e Enable parameter checking in commands and macros.

To display symbols in assembly code

In the Debugger Options dialog box, click on the Assembly Symbols button to
toggle assembly symbol display.

Or:
Using the command line, enter:
Debugger Option Symbolics Assem_symbols

Select On or oFF, and press thReturn> key.

On Symbols are displayed instead of addresses wherever
possible.
oFF Addresses are displayed.

254

Chapter 9: Configuring the Debugger
Setting the Symbolics Options

To display intermixed C source and assembly
code

In the Debugger Options dialog box, click on the Intermixed Source/Assembly
button to toggle source display.

Or:

Using the command line, enter:
Debugger Option Symbolics | ntermixed

Select On or oFF, and press thReturn> key.
On Assembly code is intermixed with C source code.

oFF Only C source code is displayed.

To enable parameter checking in commands and
macros

In the Debugger Options dialog box, click on the Check Parameters button to
toggle parameter checking.

Or:
Using the command line, enter:
Debugger Option Symbolics Check_ Args

Select On or oFF, and press thReturn> key.

255

Chapter 9: Configuring the Debugger
Setting the Symbolics Options

On When an assignment is made, the debugger warns you if the
assignment contains a C type mismatch.

oFF The debugger does not perform any argument checking.

256

Chapter 9: Configuring the Debugger
Setting the Display Options

Setting the Display Options

This section shows you how to:

» Specify the Breakpoint window display behavior.
» Specifythe View window display behavior.

» Display half-bright or inverse video highlights.

» Displayinformation a screen at a time (more).

» Specify the standard 1/0O window display behavior.

» Specify scroll amount.

To specify the Breakpoint window display
behavior

In the Debugger Options dialog box, hold tlenmand selechouse button
down on the Breakpoint Window button. Release the button to select On
Swap.

Or:

Using the command line, enter:
Debugger Option View Breakpt Window
Select On or Swap, and press thReturn> key.

On The Breakpoint window is displayed at all times.

Swap The Breakpoint window is only displayed when you set or
delete a breakpoint or when you display breakpoints.

257

Chapter 9: Configuring the Debugger
Setting the Display Options

To specify the View window display behavior

In the Debugger Options dialog box, hold tlenmand selechouse button
down on the View Window button. Release the button to select On or Swap.

Or:

Using the command line, enter:
Debugger Option View View_Window

Select On or Swap, and press thReturn> key.
On The View window is displayed at all times.
Swap The View window is only displayed when you activate the

View window or when you enter the Debugger Execution
Display_Status command breakpoints.

To specify the standard I/O window display
behavior

In the Debugger Options dialog box, hold tlenmand selechouse button
down on the Stdio Window button. Release the button to select On or Swap.

Or:
Using the command line, enter:
Debugger Option View Stdio_Window

Select On, oFF, or Swap; then, press¢ieturn> key.

On The Stdio window is displayed at all times.

258

Chapter 9: Configuring the Debugger
Setting the Display Options

oFF The Stdio window is only displayed when function kéys
pressed or when the Window Screen_On Stdio command is
entered.

Swap The Stdio window is displayed when a program writes to it
and removed when the program returns to themand
mode.

To display half-bright or inverse video highlights

In the Debugger Options dialog box, hold tlenmand selechouse button
down on the Highlighting button. Release the button to select Inverse or Half
Bright.

Or:
Using the command line, enter:

Debugger Option View Highlight

Select Half_Bright or Inverse, and press thReturn> key. .

To display information a screen at a time (more)

In the Debugger Options dialog box, hold tlenmand selechouse button
down on the More List Mode button. Release the button to select On or Off.

Or:

259

Chapter 9: Configuring the Debugger
Setting the Display Options
* Using the command line, enter:
Debugger Option View More
Select On or oFF, and press thReturn> key.
On Information is listed one screen at a time.

oFF Information is listed all at once.

To specify scroll amount

* Using the command line, enter:
Debugger Option View Amt_Scroll <numb 0..50>

Enter the number of lines for information to be scrolled (from 0 to 50), and
press thes Return> key.

To store timing information when tracing
* In the Debugger Options dialog box, select a Trace Counts option.
Or:

» Using the command line, enter:
Debugger Option Trace Count

Select Time or Nothing and pres®eturn> .

260

Chapter 9: Configuring the Debugger
Setting the Display Options

Time Use half of trace memory to store timing information.

Nothing Use all of trace memory to store bus states.

To mask fetches while tracing

In the Debugger Options dialog box, select a Fetch Mask option.

Or:

Using the command line, enter:
Debugger Option Trace Fetch_Align

Select Byte, Word, or Long and presReturn> .

Fetch addresses will be masked so that all fetches on the seleatediby
size can trigger traces.

261

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

Modifying Display Area Windows

You can reformat display-area screens by modifying their windows. For
example, you can reformat the high-level screen by resizing and moving the
high-level Code, Monitor, Backtrace, Journal, and Breakpoint windows. You
can also resize and move the alternate view of these windows.

This section shows you how to:

» Resize or move the active window.

* Move the Status window.

» Define user screens and windows.

» Display user-defined screens.

» Erase standard I/O and user-defined window contents.

« Remove user-defined screens and windows.

To resize or move the active window

Using the command line, enter:
Wndow Resize

And press thet Return> key.

TypeT to position the top-left corneB,to position the lower-right corner, or
Mto move the window without resizing it; then, use the cursor keys to move
the window or window border. When the window is at the desired location,
press thes Return> key to save the new coordinates.

If you make a mistake while resizing the window, pi@SR&L C or presEsc
twice to restore the previous coordinates.

262

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

The Window Resize command is used to move or alter the size of any existing
window, except for the Status window. Use the Window New command to
move the Status window.

When you use the Window Resize command omidrenal view of a window,
the normal dimensions are modified. When you use the command on the
alternate view of a window, the alternate dimensions are modified.

You can enter resize commands when any screen is displayed. However, the
debugger does not display commands on the standard 1/O screen or on any
user-defined screen.

Examples

To move the Status window
The Status window cannot be moved in the graphical interface.

Using the command line in the standard interface, enter:

Wndow New

Specify window number 5 to move the high-level Status window (or windo
number 15 to move the assembly level Status window), select Tab followe
High_Level (or Assembly), enter the new coordinates for the Status windo
and press the Return> key.

The Status window cannot be resized. The difference between the bottom row
coordinate and top row coordinate must be 3.

A high-level program must be loaded in order to move the high-level status
screen.

Be sure to move any windows that occupy the screen area to which you are
moving the Status window. Otherwise, the Status window will be hidden
behind these windows.

To move the high-level Status window to the top of the display (upper left
corner at 0,0 and lower right corner at 3,78):

263

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

Wndow New 5 <tab> High_Level 0,0,3,78

To move the assembly-level Status window to the bottom of the display:

Wndow New 15 <tab> Assembly 19,0,22,78

Caution

To define user screens and windows

Using the command line, enter:
Wndow New

Enter the window and screen parameters, and pressRieturn> key.

The debugger lets you define your own screens and windows so that you have
flexibility in displaying debugger information.

User-defined windows must be assigned a number greater than or equal to 50,
and less than or equal to 256. Numbers below 50 are reserved for predefined
debugger screens and windows.

When you make a new window with the Window New commandnthenal

view and alternate view dimensions are set identically. The debugger allocates
a buffer with enougimemory to contain the entire window. Therefore, the
window with the largest dimensions (normally the alternate view) should be
defined first to allocate sufficient memory.

To display a user-defined screen, useWiedow Screen_On command or
press function kely6.

When making a new window on the high-level or assembly-level screens, be
careful not to enter coordinates thall vesult in a window that covers the
status line and command line. On a stan@&®dolumn terminal display, a
row coordinate may be between 0 and 23. Creating a window with a bottom
row coordinate greater than 18lwause part or all of the status and
command lines to be covered.

264

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

Examples To make a user window numbered 57 in user screen 4 with the upper-left
corner of the window at coordinates 5,5 and the lower-right corner of the
window at coordinates 18,78:

Whdow New 57 <tab> User_Screen 4 <tab> Bounds 5,5,18,78

If user screen 4 does not exists, the debugger automatically creates it.

To display user-defined screens

* Using the command line, enter:
Wndow Screen_On User_Screen <screen_nmbr>

Enter the user screen number, and presstReturn> key.

Examples To display user screen 4:

Whdow Screen_On User_Screen 4

To erase standard 1/0O and user-defined window
contents

* Using the command line, enter:
Whdow Erase <user window_nmbr>

Enter the user window number (the standard I/O window number is 20) whose
contents you wish to clear, and press¢hHeeturn> key.

If you do not specify a window number or if you specify 0, the active
user-defined window is cleared. This command is useful in macros.

265

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

Examples To erase the contents of user window 57:

Whdow Erase 57

To remove user-defined screens and windows

* Using the command line, enter:
Whdow Delete <user window _nmbr>

Enter the number of the window to be removed, and pressReturn> key.

To remove a user-defined screen, remove all windows associated with that
screen.

You cannot remove predefined debugger windows and screens.

Examples To remove a user-defined screen that has three windows (numbers 50, 55, and
73):

. Whndow Delete 50
Whdow Delete 55

Whdow Delete 73

266

Chapter 9: Configuring the Debugger
Saving and Loading the Debugger Configuration

Saving and Loading the Debugger Configuration

Information regarding debugger options and screen configurations can be
saved in astartup file Startup files can be created only from within the
debugger.

This section shows you how to:
» Save the current debugger configuration.

* Load a startup file.

To save the current debugger configuration

Use the menu select mouse button to chddlse.Store—Startup (.rc) file
(as default) The information is saved in file “db68k.rc” (for 68020 debug
sessions) or file “db68030.rc” (for 68030 debug sessions) inutrerct
directory.

Or:

Use the menu select mouse button to chédlse.Store—Startup (.rc) file.
Using the file selection dialog box, enter the name of the file to which start
information should be saved; then, click on the OK pushbutton.

Or:

Using the command line, enter:
File Startup <startup_file>

Enter the name of the file in which the startup informatioousd be saved,
and press the Return> key. If you do not specify the name of the startup file,
the default value will be used.

This command also saves the window and screen settings.

267

Chapter 9: Configuring the Debugger
Saving and Loading the Debugger Configuration

Examples

When saving window and screen settings that have been customized for a
particular type of terminal, name the startup file the same as the TERM
environment variable setting. If no startup file is loaded when starting the
debugger, the debugger will automatically search for startup filesed
“J$TERM.rc” (in the current directory) or “SHOME/.$TERM.rc” (in the
home directory). files.

To save the current debugger state in a file called “my_state.rc”:
File Startup my_state
To save, in you home directory, window and screen settings that have been

customized for the 2392, 2392a, 2392A, hp2392, hp2392a, or hp2392A
terminal types:

File Startup ~/.2392

To load a startup file

Use the -startup_fileoption to the db68k command when starting the
debugger.

$ db68k -e <emulator_id> -s <startup_file> <RETURN>

The debugger’s startup options and window specifications are configured as
described irstartup_file

Thestartup_filemust end with the .rc extension and can be created only from
within the debugger.

If no startup file is named, the following files are searched for in order. The
first one that exists will be used ($HOME and $TERM are UNIX
environment variables).

db68k.rc (for 68020 debug sessions) or flb68030.rc (for 68030
debug sessions) in the current directory

J$TERM.rc in the current directory

$HOME/.$TERM.rc

268

Chapter 9: Configuring the Debugger
Saving and Loading the Debugger Configuration

If no startup file is found, reasonable defaulii§lve used.

Examples To start the debugger and load the state saved in the startup file “my_state.rc”:

$ db68k -e emul68k -s my_state.rc <RETURN>

269

Chapter 9: Configuring the Debugger

Setting X Resources

Setting X Resources

The debugger’s graphical interface is an X Window System application which
means it is @lientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

An X resourcecontrols an element of appearance or behavior in an X
application. For example, in the graphical interface, one resource controls the
text in action key pushbuttons as well as the action performed when the
pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a
set of configuration files. Resources specifications in later files override those
in earlier files. Files are read in the following order:

1 The application defaults file. For example,
Jusr/lib/X11/app-defaults/HP64_Debugin HP-UX or
lusr/lopenwin/lib/X11/app-defaults/HP64_Debug in SunOS.

2 The $XAPPLRESDIR/HP64_Debug file. (The XAPPLRESDIR
environment variable defines a directory containing system-wide custom
application defaults.)

3 The server's RESOURCE_MANAGER property. (Ttrdb command
loads user-defined resource specifications into the
RESOURCE_MANAGER property.)

Ifno RESOURCE_MANAGER property exists, user defined resource
settings are read from the $SHOME/.Xdefaults file.

4 The file named by the XENVIRONMENT ema@nment variable.

Ifthe XENVIRONMENT variable is not set, the $H OME/. Xdefauitsst
file (typically containing resource specifications for a specific remote host)
is read.

270

Chapter 9: Configuring the Debugger
Setting X Resources

5 Resource specifications included in thentpand line with thexrm
option.

6 System scheme files in directory /usr@4p00/lib/X11/HP64_sames.

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_s@mes.

8 User-defined scheme files located in directory $H OMEG# Bclemes
(note the dot in the directoryame).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

This section shows you how to:

* Modify the debugger’s graphical interface resources.
* Use customized scheme files.

e Set up custom action keys.

« Set initial recall buffer values.

* Set up demos or tutorials.

Refer to the “X Resources and the Graphical Interface” chapter for more
detailed information.

271

Chapter 9: Configuring the Debugger
Setting X Resources

To modify the debugger’s graphical interface
resources
You can customize the appearance of an X Windows application by modifying

its X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Debug.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This m@srce should bﬁ
(custom) set to the platform on which the X server

is running (and displaying the debuggers
graphical interface) if it is different than
the platform where the application is

running.
HP64_Debug.colorScheme BW Names the color scheme file.
Color
(custom)
HP64_Debug.sizeScheme Small Names the size scheme file which defings
Large the fonts and the spacing used.
(custom)
HP64_Debug.labelScheme Label Names to use for labels and button tex.

SLANG The default uses the $LANG

(custom) environment variable ifit is set and if a
scheme file named Debug.$LANG exists
in one of the directories searched for
scheme files; otherwise, the default is
Label.

HP64_DebugriputScheme Input Specifies mouse and keyboard operatign.
(custom)

272

Chapter 9: Configuring the Debugger

Setting X Resources

Commonly Modified Application Resources

n}

is

ed

Resource Values Description
HP64_Debug.enableCmdline True Specifies whether the command line ar
False is displayed when you initially enter the
debugger’s graphical interface.
*editFile (example) | Specifies the command used to edit files.
vi %s
*editFileLine (example) | Specifies the command used to edit a file
vi + %d %s | at a certain line number.
*< proc> *actionKeysSub.keyDefs (pairdidt | Specifies the text that should appear on
of strings) | the action key pushbuttons and the
commands thath®uld be executed in th
command line area when the action ke
pushed. Refer to the “To set up custom
action keys” section for more informatign.
*< proc> *dirSelectSub.entries ligt of Specifies the initial values that are plac
strings) in theFile ~Context-Directory pop-up
recall buffer. Refer to the “To set initial
recall buffer values” section for more
information.
*< proc> *recallEntrySub.entries ligt of Specifies the initial values that are plac
strings) in the entry buffer (labeled “():"). Refer

to the “To set initial recall buffer values’
section for more information.

273

Chapter 9: Configuring the Debugger
Setting X Resources

The following steps show you how to modify the debugger’s graphical
interface’s X resources.

1 Copy part or all of the HP64_Debug application defaults file to g teaTy
file.

The HP64_Debug file contains the default definitions for the graphical
interface application’s X resources.

For example, on an HP 9000 computer you can use the follownmead to
copy the complete HP64_Debug file to HP64_Debug{ngie that the
HP64_Debugfile is severhlindred lines long):

cp /usr/lib/X11/app-defaults/HP64_Debug HP64_Debug.tmp

NOTE: The HP64_Debug application defaults file is re-created each time
debugger’s graphical interface software is installed or updated. You can use
the UNIX diff command to check for differences between the new
HP64_Debug application defaults file and the old application defaults file that
is saved as /usr/hp64000/lib/X11/HP64 esttes/old/HB4_Debug.

2 Modify the temporaryfile.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:
vi HP64_Debug.tmp

Search for the string “HP64_Debug.lines”. Ydwald see lines similar to the
following.

|
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines

I'and 80 columns. These minimums are silently enforced.
|

| Note: The application cannot be resized by using the window manager.

IHP64_Debug.lines: 24
IHP64_Debug.columns: 85

Edit the line containing “"HP64_Debug.lines” so that it is umoeented and is
set to the new value:

! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines

274

Chapter 9: Configuring the Debugger
Setting X Resources

I'and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

HP64_Debug.lines: 36
IHP64_Debug.columns: 85

Save your changes and exit the editor.

3 Ifthe RESOURCE_MANAGER property exists (as is the case with HP VUE
— if you're not sure, you can check by enteringxtdb -query command), use
thexrdb command to add the rasrces to the RESOURCE_MANAGER
property. For example:

xrdb -merge -nocpp HP64_Debug.tmp

Otherwise, ifthe RESOURCE_MANAGER property does not exist, append
the temporary file to your $HOME/.Xdefaults file. For example:
cat HP64_Debug.tmp >> $HOME/.Xdefaults

4 Remove the temporary file.

5 Start or restart the debugger’s graphical interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the debugger’s graphical interface.

275

Chapter 9: Configuring the Debugger
Setting X Resources

To use customized scheme files

Scheme files are used to set platform specifioueses that deal with color,
fonts and sizes, mouse and keyboard operation, and labels and titles. You can
create and use customized scheme files by following these steps.

1 Create the $3HOME/HP64_seimes/< platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

2 Copythe scheme file to be modified to the
$HOME/.HP64_schmes/< platform> directory.

Label scheme files are not platform specific; therefore, theyls be placed
in the $HOME/.HP64_s@mes directory. All other scheme filéssild be
placed in the SHOME/.HP64_semes/< platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Debug.Color
$HOME/.HP64_schemes/HP-UX/Debug.MyColor

Note that if your custom seime file has the same name as the default scheme
file, the load order requires resources in the custom file to explicitly override
resources in the default file.

3 Modify the $SHOME/.HP64_sames/< platform> /Debug.< scheme> file.

For example, you could modify the
“SBHOME/.HP64_sckemes/HP-UX/Debug.MyColor” file to change the

defined foreground and background colors. Also, since thenseliile name

is different than the default, you could comment out variousures settings

to cause general foreground and background color definitions to apply to the
debugger’s graphical interface. At least one resource must be defined in your
color scheme file for it to be recognized.

276

Chapter 9: Configuring the Debugger
Setting X Resources

4 If your custom schme file has a different name than the default, you must
modify the scheme resirce definitions.

The debugger’s graphical interface application defaults file contains resources
that specify which scheme files are used.olftycustom schme files are

named differently than the default scheme files, you must modify these
resource settings so that your customize@sthfiles are used instead of the
default scheme files.

For example, to use the “SHOME/.HP64_soies/HP-UX/Debug.MyColor”
color scheme file you would set the “B# Debug.colorS@me” resurce to
“MyColor”:

HP64_Debug.colorScheme: MyColor

Refer to the previous “To customize debugger’s graphical interface resources”
section for more detailed information on modifying resources.

277

Chapter 9: Configuring the Debugger
Setting X Resources

To set up custom action keys

* Modify the “actionKeysSub.keyDefs” resource.

The “actionKeysSub.keyDefs” resource defindisteof paired strings. The

first string defines the text that should appear on the action key pushbutton.
The second string defines the command thau&d be sent to the oumand

line area and executed when the action key is pushed.

A pair of parentheses (with no spaces, that is “()") can be used in the
command definition to indicate that text from the entry buffensdd replace
the parentheses when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, “()”, in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using the Debugger Host_Shell command.

Also, command files can be executed by using the File Command command.

Finally, an empty action (") means to repeat the previous operation, whether
it came from a plrdown, a dialog, op-up, or another action key.

Examples To set up custom action keys, modify the “debug*actionKeysSub.keyDefs”
resource:

debug*actionKeysSub.keyDefs: \
"Init Demo" "F C initDemo" \
"Make" "D H make demo" \
"Load Pgm" "PLDecs"\
"Display Source" "W AHC"\
"Run Until ()* "PRU(Q)"\
"Step" "PS"\
"Again”

Refer to the previous “To modify debugger’s graphical interface resources”
section for more detailed information on modifying resources.

278

Chapter 9: Configuring the Debugger
Setting X Resources

To set initial r ecall buffer values

Modify the “entries” resource for the particular recall buffer.

Some of the resources for the pop-up recall bufferéstesl in the following
table:

Pop-up Recall Buffer Resources

Recall Pop-up

Resources

Entry Buffer ():

*recallEntrySub.entries

File ~Context-Directory ... *dirSelectSub.entries
Modify -Register; Recall Value *modRegDB*recallSub.entries
Command Line command recall *recallCmdSub.entries

Value

Macro Operations dialog box; Recall *macroDB_popup*recdSub.entries

Example

Other X resources for the recall buffers are described in the supplied
application defaults file.

The window manager resource “*transientDecoration” controls the borde
around dialog boxwindows. The most natural setting for this resource is
“title.”

To set the initial values for the directory selection dialog box, modify the
“debug*dirSelectSub.entries” resource:

debug*dirSelectSub.entries: \
"$HOME" \
oy
"lusers/projectl" \
"lusers/project2/code”

Refer to the previous “To modify the debugger’s graphical interface
resources” section in this chapter for more detailed information on modifying
resources.

279

Chapter 9: Configuring the Debugger
Setting X Resources

To set up demos or tutorials

You can add demos or tutorials to the debugger’s graphical interface by
modifying the resources described in the following tables.

Demo Related Component Resources

Resource Value Description
*enableDemo False Specifies whetheldelp ~Demo

True appears in the pull-down menu.
*demoPopupSub.indexFile IXdemo/Index-topics Specifies the file containing the

list of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the demo topic lisbop-up.

*demoPopupistVisibleltemGunt | 10 Specifies the length, in lines, of
the demo topic lispop-up.

*demoTopic About demos Specifies the default topic in the
demo pop-up selection buffer.

280

Chapter 9: Configuring the Debugger
Setting X Resources

Tutorial Related Component Resources

Resource Value Description
*enableTutorial False Specifies whether
True Help -Tutorial appears in the

pull-down menu.

*tutorialPopupSub.indexFile [Xtutorial/Index-topics Specifies the file containing
the list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the
tutorial topic listpop-up.

*tutorialPopuplistVisibleltemGount | 10 Specifies the length, in lines,
of the tutorial topic list

pop-up.

*tutorialTopic About tutorials Specifies the default topic in
the tutorial pop-up selection
buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials i
the debugger’s graphical interface.

1 Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use “\I"gooduce inverse
video in the text, “\U” to produce underlining in the text, and “\N” to restore
normal text.

Command files are executed when the “Press to perform dentotorial)”

button (in the topic pop-up dialog) is pushed. Aooand file must have the
same name as the topic file with “.cmd” appended. Also, a command file must
be in the same directory as the associated topic file.

281

Chapter 9: Configuring the Debugger

Setting X Resources

2

Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the
topic which appears in the index pop-up and secondabheerof the file that is
raised when the topic is selected. For example:

"About demos" /users/guest/gui_demos/general

"Loading programs" /users/guest/gui_demos/loadprog

"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topicl), paths relative to
the directory in which the interface was started (for example, mydir/topic2), or
paths relative to the product directory (for example, ./Xdemo/general where

the product directory is something like /us@dp00/inst/db68k/64748A).

Set the “*enableDemo” or “*enableTutorial” resource to “True”.

Define the demo index file by setting the “*demoPopupSub.indexFile” or
“*tutorialPopupSub.indexFile” resource.

For example:

*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to
the directory in which the interface was started (for example, mydir/indexfile),
or paths relative to the product directory (for example, ./Xdemo/Index-topics

where the product directory is something like
fusr/hp64000/inst/db68k/64748A).

If you wish to define a default topic to be selected, set the “*demoTopic” or
“*tutorialTopic” resource to the topic string.

For example:

*demoTopic: "About demos"

Refer to the previous “To customize debugger’s graphical interface resources”
section for more detailed information on modifying resources.

282

10

Configuring the Emulator

How to configure the emulator for your target system.

283

Each target system differs in the way it uses the procassmpry, and

memory mapped I/O devices. During system development, your needs for
emulator resources may change as your target system design matures. You can
allocate emulator resources using debuggermands. This reairce

allocation is called the emulator configuration.

There are three ways to configure the emulator:
* Load a configuration file into the emulator.
» Change the configuration using the Emulator Configuration dialog box.

* Change the configuration using tbebuggefExecutionEnvironment
Modify_Config command from the command line.

The Emulation Configuration dialog box is available both in the
debugger/emulator graphical interface and in the emulator/analyzer graphical
interface.

284

Chapter 10: Configuring the Emulator

To start the Emulator Configuration dialog box

» SelectModify ~Emulator Config... in either the debugger/emulator or
emulator/analyzer graphical interface.

The Emulator Configuration main menu and an Emultor Configuration
window are displayed. The Emulator Configuration dialog box may be left
running while you are using the debugger.

Examples The Emulator Configuration main menu is shown below.

Clicking on one of
these lines selects a
particular
configuration section.

Clicking this button

presents the questions ———|

for the selected
configuration section.

Emulator Configuration

-Emulator Configuration Sections

4 General ltems

< Monitor Type

< Memory Map

<» Emulator Pod Settings
<» Debug/Trace Options
< Simulated 10

-Analyzer Configuration Sections

<» External Analyzer

<> Interactive Measurement Specification

kModify Store Exit Help

pd] |

E 2 i i 1 E

/ \

Clicking this button Clicking this button Clicking this button

stores the current exits the Emulator presents the on-line
configuration. Configuration dialog help.
box.

285

Chapter 10: Configuring the Emulator

To modify a configuration section

1 Start the emulator Emulator Configuration dialog box.

2 Click on a section name in the Emulator Configuration main menu, and click

the "Modify" pushbutton.

3 Use the command line in the Emulator Configuration window to answer the

configuration questions.

Each configuration section presents a window similar to the following.

The menu bar.
\

Configuration help
text display area.

Emulator status and

error message Iine.\

Command line text
entry area.

Pushbutton softkeys
\

Command control

=| Emulator Configuration: hplsdyu (m68030) =100

File Display Help

Fnable or disable the 68830 instruction and data cache in hardware.
This configuration item enakles or disables the on-chip instruction and
data cache memory by controlling the /CDIS signal. [If ensbled, the user’s
/CDIS signal and the Cache Control Register (CACR) determine whether the
cache is ultimately enabled. [f disabled, the emulator will assert the
/CDIS signal to prevent the target system from enabling the cache.

Enabling the on-chip instruction & data cache memory improves performance
of the processor and can greatly reduce the activity on the processor’s
external bus.

Disabling the on-chip instruction & data cache memory will force the
processor to always access external memory. The cache should be disabled
whenever tracing program execution to force all external memory accesses
to be wvisible to the analyzer.

STATUS: Configuring M68038/ECO30

Frable the B8A30 instruction & data cache? no

[yes || o || | | | | |

|| RecaLL |

 Command: Cursor: [Backup|[Forward][Clear to end|[Clear] [Help]

and cursor contml/
pushbuttons.

286

Chapter 10: Configuring the Emulator

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return"monand pushbutton to accept the answer
that is shown.

When you answer a configuration question, you are normally presented with
the next question in the section; however, there are some cases when a
carriage return is required, and you can supply it by clickindrétarn

command pushbutton or by ping the< Return> key.

At the last question of a configuration section, you are asked if you wish to
return to the main menu. You can click the "next_sec" softkey pushbutton to
access the questions in the next configuration section.

To recall a configuration question, click tRECALL softkey pushbutton. If
you do this at the starting question of a configuration section, you are asked if
you want to return to the main menu.

In order for the emulator to recognize any configuration changes, the
configuration must be stored.

To store a configuration

When answering the configuration questions, chdalse-Store...from the
pull-down menu, and use the File Selection dialog boxatoethe
configuration file.

From the Emulator Configuration dialog box main menu, click on the "Sto
button, and use the File Selection dialog boxto name the configuration file.

The file to which the configuration is stored becomes the current
configuration file. The emulator only recognizes configuration changes when
they are stored or loaded.

When modifying a configuration, you can choose to store your answers at any
time.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Entering Commands" chapter.

287

Chapter 10: Configuring the Emulator

To examine the emulator configuration

1 SelectModify —Emulator Config... to display the Emulator Configuration

dialog box.

2 Click on the configuration section you wish to examine.

3 Click on theReturn button or press Return> on your keyboard to page

through the configuration questions without changing their values.

4 At the end of the configuration section, click yasto return to the Emulator

Configuration dialog box (main menu).

5 Click on Exit Window.

This procedure allows you to examine the emulator configuration without
changing it.

If you accidentally change one of the configuration items, don't worry. As long
as you do not click oApply to Emulator, any changes you make will not be
saved. Just click oMeswhen the debugger asks "Your changilbe

lost—Exit configuration?"

To change the configuration directory context

* When answering the configuration questions, chdalse-Directory... from

the pull-down menu, and use the Directory Selection dialog boxto specify the
new directory.

The directory context specifies the directory to which configuration files are
stored and from which they are loaded.

The Emulator Configuration dialog box directory context is separate from the
debugger interface directory context. Changing one does not affect the other.

288

Chapter 10: Configuring the Emulator

To display the configuration context

When answering the configuration questions, chdusplay-Context...from
the pull-down menu.

The current directory context and the current configuration files are displayed
in a window. Click thédone pushbutton when you wish to close the window.

To access configuration help information

When answering the configuration questions, chdtep —~General Topic...
from the pull-down menu.

From the Emulator Configuration dialog box main menu, click on the "Help"
button.

To exit the Emulator Configuration dialog box

When answering the configuration questions, chddlse-Exit... from the
pull-down menuyor type < CTRL> X), and clickfesin the confirmation

dialog box.

From the Emulator Configuration dialog box main menu, clickBxie
button, and clickresin the confirmation dialog box.

Any modifications made to the configuration which haven't been stored are
lost. ChoosingNo from the confirmation dialog box cancels the exit and keeps
the emulator Emulator Configuration dialog box running.

289

Chapter 10: Configuring the Emulator

To load a configuration file

Use theC command line option when starting the debugger.

Or:

Use a default configuration file.

Or:

SelectFile -Load —.Emulator Config.

Or:

Using the command line, enter

Debugger Execution Environment Load_Config

The emulation configuration file contains configuration information for the
emulator. The debugger/emulator accepts files generated by the emulation
software or by an editor. The debugger usesBAesuffixed file (ASCII

format) to load emulator configurations.

If you do not specify a configuration file (€@ option is given) and the
emulator is locked at startup, the configuration saved when you left the
emulator locked is used. No default configuration is loaded.

If you do not specify the -C option and the emulator is not locked, the
debugger searches for a default configuration file in the following sequence:

1 configuration filedefault.EAin the current directory.
2 configuration filedefault.EAin the $HOME directory.

3 configuration file/lusr/fhp64000/inst/emul/64748A/userconfig.&iA
/usr/hp64000/inst/emul/64747A/userconfig.EA

4 configuration file/usr/hp64000/inst/emul/64748A/default.BA
/usr/hp64000/inst/emul/64747A/default.lpPovided with the emulator.

290

Note

Examples

Chapter 10: Configuring the Emulator

Default configuration files are also supplied with the HP 64907/B1478
68030/EC030 C compiler and HP 64903/B1461 68020 C compiler. Nowld
copy the appropriate default configuration file for youemory configuration
into your directory andame itdefault.EA These files are located in
directories:

/usr/hp64000/env/hp64748
/usr/hp64000/env/hp64747

The file userconfig.EA is not supplied with the debugger. This file name refers
to a configuration file that you may create and put in directory
/usr/hp64000/inst/emul/64748A or

/usr/hp64000/inst/emul/64747A

The following examples show a few ways to load a configuration file:

db68k -e test -C srwcfg.EA

Run the debugger using emulator "test" and configuration file
"srwcfg.EA"

db68k -e m68020

Run the debugger using emulator "m68020" and use the default
configuration file named "default.EA" in the current working
directory.

If "default.EA" does not exist in the current directory, the debug
searches for a default configuration file in the sequence descri
previously in this chapter, in the section titled "To Configure the
Emulator”.

Debugger Execution Environment Load_Config "mycnfig"

Load the emulation configuration file "mycnfig.EA" (from within
the debugger).

291

Chapter 10: Configuring the Emulator

To create or modify a configuration file

Use the Emulator Configuration dialog boxto set up the configuration, then
save the configuration usirgle —Store~Emul Config.

Or:

* Change the configuration using tbebuggefExecutionEnvironment
Modify_Config command from the command line.

Or:

Edit a configuration file using a text editor.

If you use a text editor to create a configuration file, be use to give the file a
name with the file extensiolcA. The.EA file extension tells the debugger
that the file is an ASCII configuration file.

If an error occurs when loading a configuration
file

Load a different configuration file.

Or:

1 Exit the debugger.
2 Modify the configuration file using a text editor.

3 Return to the debugger

292

Caution

See also

Chapter 10: Configuring the Emulator

If you reload a configuration using tiiebugger Execution

Environment Load_Config command, the contents of memaoiijl e
changed. Even if the new configuration memory map is identical to the old
memory map, you must reload the contents of memory.

The Softkey Interface User's Guidier your emulator
68020 C Cross Compiler Reference
68030 C Cross Compiler Reference

To store an emulator configuration

Click on theStore button in the Emulator Configuration dialog box.

You may use any legal file name.

The configuration you have created will be saved in two files, each with the
name you specify, as follows:

» <filename> .EA is an ASCII version of the configuration file that is saved
when you modify the configuration. You can make changes to this file
outside the emulation environment by using a text editor.

» <filename> .EB is a binary version of the configuration file that is crea
from the .EA file. It can be loaded quickly and is used when you start t
emulator or load a configuration. If you modify the .EA file using a text
editor, be sure to delete the .EB file with the sam®@ so that it il be
re-created and include your changes.

293

Chapter 10: Configuring the Emulator
Emulator Configuration Items

Emulator Configuration Items

Memory

The emulator must know how your target systeagmory resources are
allocated. You can use emulation memory for some memory ranges. This is
useful in the early stages of target system design.

In the MC68020 emulator, ibyr target system runs at more than 25 MHz,
emulation memory requires one wait state (except for the 4 Kbytes of
dual-portmemory, which willrun at 33 MHz without wait states).

In the MC68030/EC030 emulator, emulatimemory always requires one wait
state for synchronous and burst modes. If your target system runs at more than
25 MHz, target memory accesses will also require one wait state for
synchronous and burst modes.

You can choose to interlock the emulation and target sySt8ACK signals
(andSTERM for the MC68030/EC030) for emulatiaremory cycles and
monitor bus cycles (foreground monitor only on the 83G30/ECO030). For
emulation memory, the interlock is enabled for only the blocks that require it.

Emulation Monitor

The emulation monitor is used to implement some emulator features. For
example, display or modification of emulation or target system memory is
done by the monitor. You can choose either a foreground or background
monitor, and the base address where the monitor resides. (See the book
Concepts of Emulation and Analyimt you received with your HP emulator
for more information on foreground and background monitors.)

If youre using the MC68020 emulator with the baakgnd monitor, the

emulator makes the background cyclissiie to the target system. These

cycles appear in a 4 Kbyte range that begins with the base address you set for
the monitor. The MG8030/EC030 emulator doesnt make backmd cycles
visible to the target system. For these systems, you can set a “keep-alive
address” from which the bada@ind monitor Wl periodically read a byte

during monitor operation.

If you select a foreground monitor, you can choose a default foreground
monitor that is resident in the emulator, or you can design a custom

294

Chapter 10: Configuring the Emulator
Emulator Configuration Items

foreground monitor to support your special target system needs. You can also
specify the interrupt priority mask to use during foreground monitor
execution.

A foreground monitor must be used when the MMU of@B@30 is enabled.

If the background monitor selected when you attempt to enable the MMU, the
foreground monitor W be selected, by default. If you have t68030
emulator/analyzer graphical interface, you may wish to read the "Using
MC68030 Memory Managment" chapter in th@é8020/030 Graphical User
Interface User's Guide

Break Conditions

Software and hardware breakpoints allow you to terminate your program and
start the monitor.

Software breakpoints use one of the BKPT instructions (BKPT 1..7). You can
choose—via configuration—which instruction is used. The BKPT 0 instruction
is not used by the emulator.

Other Configuration Items

The emulation configuration lets you set up the emulator to restrict your
target program to real-time runs; these ignomam@ands that teporarily
interrupt execution of your target program. This is important for systems that
require nonstop, real-time execution of the target program.

You can disable the processor caoemory. The emulation-bus analyzer
can't trace instructions (or data) that are fetched from the cache. This can
make trace displays difficult to interpret. When you disable the cache, all
instructions and data are fetched from the processor buses, and therefor
appear in the trace list.

You can block target system interrupts from the processor. This can help you
troubleshoot problems with spurious interrupts or allow you to delay testing
of interrupt service routines.

An Execution-Run -From Resetcommand usually causes the emulation
processor to fetch its stack pointer and program counter values from the reset
vector addresses. Under certain run conditions (such as an emulator reset,
followed by a break to monitor, followed by a rummomand), the emulation
processor can't fetch its stack pointer and program counter values from the

295

Chapter 10: Configuring the Emulator
Emulator Configuration Items

reset vector addresses. In the emulation configuration questions, you will
specify the appropriate values for the stack pointer and program counter so
that they can be supplied by the emulator when they can't be fetched from the
reset vector addresses.

To enter the monitor after configuration

You can allow the emulator to remain in the reset state after you complete the
configuration process, or you can have it begin executing in the monitor.

In the "General Items" configuration section, answer the question:

Enter monitor after configuration?

yes means that the emulatoilMbreak to the monbor (from
reset) when you finish the configuration session. (This is the
default.)

no means that the emulatoilwemain reset when you finish

the configuration session.

296

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To restrict to real-time runs

The emulator uses the emulation monitor program to implement some
features, such as register displays. When the emulation processor executes the
monitor, it is not executing your target system program. This may cause
problems in target systems that need real-time program execution
(uninterrupted execution of your target system program).

» Answer the question:
Restrict to real-time runs?

yes means the emulatoribhstop running your target system
program only with the reset, break, run, and step
commands. Other commands that require a break to
monitor wil be ignored. Also, thd®isplay-Memory
command W be ignored if the address argument requires
access to standard emulation memory (not dual-ported) or
target system memory.

no means all commands are accepted. The emulation monitor
may be entered at any point during execution of your target
system program to perform regeiments of your
commands. This is the default.

CAUTION If your target system could bachaged because the emulator isaftning
target system code continuously, ansyesto this configuration question.

This configuration item doesnt affect hardware breakpoints, such as: break on
write to ROM, break on analyzer trigger, or break on access to guarded
memory. It also doesnt affect the emulator’s response to software breakpoints.

297

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To enable the processor cache memory

The MC6802(processor has a cache that stores the most recently used
instructions. The M68030/ECO03(@rocessor has an instruction cache like the
MC68020, and additionally has a cache for recently used data. When enabled,
processor caches increase processor performance.

The emulation-bus analyzer can't trace transactions that are completed using
the processor’s internal cache. Without these transactions, the analyzer may
show confusing trace displays, or it may fail to trigger. This happens when the
code you are tracing is a small loop where all of the instructions and operands
fit within the cache(s) and the processor registers.

For the MC68020 emulator, answer the question:

Enable the 68020 instruction cache?

For the MC68030/EC030 emulator, answer the question:
Enable the 68030 instruction & data cache?

no means the@rocessor Wl always access externalemory for
instructions and data. The analyzéll e able to capture
all bus cycles; this will improve readaility of the trace list.
Processor performance will be reduced.

yes means maximurprocessor performancelvbe obtained. If
you are making analyzer trace measurements, you may need
to experiment to find suitable trigger combinations.

The emulator uses th@DIS signal according to the answer you give to this
configuration question. If you answeo, the emulator asser@DIS to disable
the cache(s). If you answges the target system is allowed to use @i2lS
signal and the cache control register (CACR) enable bit to determine when
the cache(s) are enabled.

If you would like to enable the cache(s) during execution of most of your
target program, but disable them during accesses to a speeifiory block,

you can use thei memory map attribute (available only on the
MC68030/EC030 emulat). This allows you to trace state executions within a

298

Chapter 10: Configuring the Emulator
Emulator Configuration Items

specific memory range while obtaining maximum system performance in the
remaining memory ranges. See “Tssgnmemory map terms” later in this
chapter.

To enable one wait state for emulation memory

In the MC68020 emulator, emulatiomemory doesn't require any wait states

for clock speeds under 25 MHz. One wait state is needed when the clock speed
is above 25 MHz (except for the dual-parémory, which willrun at 33 MHz

without wait states).

The MC68030/EC030 emulator always requires one wait state fonreymaus
and burst memory accesses to emulation memory. When the clock speed is
above 25 MHz, the emulatonustadd a wait state for synchronous and burst
mode accesses to target system memory.

Answer the question:
Is speed of external clock faster than 25 MHz?

yes for clock speeds above 25 MHz. (This is the default.) This
ensures that emulation memory has enough time to respond
to the memory access. Otherwise, emulator operation will
be erratic.

no for clock speeds below 25 MHz. Emulation memory
accesses will be madetivbut adding wait states.

To change the memory configuration

Each target system allocates memory and I/O as needed by the application. As
the system design matures, memory locations and requirements may change.
The emulator has flexible memory resources that allow you to configure the
emulator to support your needs. For example, the initial target system design

299

Chapter 10: Configuring the Emulator
Emulator Configuration Items

may not support externalemory, but after a change in the application
definition, more program code might be required, needing extaremory.

While the design is being changed, you can develop your program using
emulation memory to simulate target system memory.

» Answer the question:
Modify memory configuration?

yes leads you into the memory, MMU (for MC68030), and
monitor configuration questions.

no skips to the “Modify the emulator pod configuration?”
configuration question. This is the default.

To enable the MC68030 Memory Management Unit

The MC68030 MMU can managepaogram that occupies a large space in
logical (virtual) memory while running it from a much smaller space in
physical memory.

» Answer the question:

Enable the MMU?

yes lets the MMU of the MC68030 control pleiment of
the program in physicahemory space. With a valid
entryin the translation control register, the target
system will be able to enable and disable the MMU
during program execution by using the /MMUDIS
signal.

no disables the MMU in the emulation processor. The
/MMUDIS signal from the target system will be
ignored. The STATUS lineiWidentify your emulator
as MC68ECO030 after the configuration modification is
complete.

300

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To select and configure the MC 68030 emulation
monitor

If you are using the MC68020 or MC6BEC030 emulator, skip to the next step.
The emulation monitor is used to perform emulation functions, such as
display and modification of emulation and target system memory. You must
use a foreground monitor when the MMU is enabled, either the foreground
monitor supplied with the emulator, or a foreground monitor of your own
design.

Make sure the foreground monitor is mappedemory address space that

has a 1:1 translation. You can define a 1:1 translation for the monitor address
space by modifying the content of the translation tables in the emulation
processor MMU. Refer to "Mapping The Foreground Monitor For Use With
The MC68030 MMU" at the end of this chapter fortimistions on how to

modify the translation tables or transparent translation registers in the
MC68030 MMU.

» Answer the question:

Monitor type (with MMU enabled)?

foreground selects the default foreground monitor that is supplied
with your emulator.

user_foreground selects a custom foreground monitor. .

To select and configure the emulation monitor

If you are using an MC68030 with the MMU enabled, skip to the next step.
The emulation monitor is used to perform emulation functions such as display
and modification of emulation or target system memory.

» Answer the question:

Monitor type?

301

Chapter 10: Configuring the Emulator
Emulator Configuration Items

background selects the background monitor.

foreground selects the default foreground monitor that is built-in to
the emulator.

user_foreground allows you to load a custom emulation monitor.

To set up specifications for the emulation monitor

The background monitor overlays processor address space and doesn't use any
processomemory resources. It is the simplest monitor to use, and is
guaranteed to be compatible with the emulator. However, interrupts are
disabled (including level 7) when the emulator is running in background.

Some target system designs fail to operate properly under this condition.

With these target systems, you will need to use a foregd monitor.

When you select a foreground monitor, the emulator maps the 4 Kbyte block
of dual-portmemory for the monitor. You can't use any portion of the
dual-port address range for any other purpose. Doingllsdestroy the

monitor.

There are two selections you can make when choosing a foreground monitor.
One is thdoreground monitor that is resident in the emulator. If this

monitor doesn'meet pur needs, you can modify the monitor source code
(supplied with the emulator), and save it under a differamey such as
myforeground. To select it, you willltoose theuser_foregroundmonitor.

Within the next few questions, you will tell the emulator tlaene you

assigned togur user_foreground monitor.

If you have trouble with emulation monitor functions, you can reload the
monitor. Simply reset the emulation processor and tbs®re a newun or
break command. Either the default foregnd, user_foreground, or
background monitor W be loaded when thprocessor transitions out of
emulator reset. The monitor thaitlwe loaded will depend on the answer
you gave to the Monitor type question earlier.

Background and foreground monitors both use the trace exception vector
(located at offset 24 in the vector table) to implementstepcommand.

302

Chapter 10: Configuring the Emulator
Emulator Configuration Items

More information on emulation monitors is given in the b@acepts of
Emulation and Analysishat you received with your HP emulator.

Reset Map question. If you changed the monitor type, you need to answer the
guestion:

Reset map (change of monitor type requires map reset)?

no to discard your monitor changes and return to the
configuration question on monitor type.

yes to keep your monitor changes. Timemory map is reset.

When you change monitor types, the emulation processor is reset, and you
must reset the memory map. You will have to create amemwory map later

in the configuration process. If you choose not to reset the map, the interface
will return to the “Monitor type?” question to give you an opportunity to
review your choice or make a different choice.

Periodic Read question. If you choose a foreground monitor, skip to question
4. If you choose thbackground monitor for the MG8030/EC030 (with

MMU disabled), and you would like to have it read a byte from the target
system, periodically, answer the question:

Do you want periodic read accesses while in background

monitor?
yes proceeds to the next configuration question, which allo
you to specify the address to be read.
no disables periodic background monitor reads from the target

system.

The background monitor for the MM8030/ECO030 can periodically read a byte
from the target system if your system requires this service. The
MC68030/EC030 emulator does mairmally drive background monitor

cycles to the target system. Some target systems need background monitor
cycles. For example, your target system may have a watchdog timer that will
time out if a specific address isn't read periodically. Other target systems may
have a block of dynamic RAM that needs to be refreshed at regular intervals.

303

Chapter 10: Configuring the Emulator
Emulator Configuration Items

3 Read Specifier questions. If you answeyeslto the periodic read question,
answer the next two questions:

Address for read cycles?

Enter a hexadecimal address from 0 to OffffffffH.

Function code for read cycles?

Select a function code from the softkeys.

Whenever it is executing, the background monitdirperiodically read a byte
from the location you specify with your answer to the above two questions.

4 Monitor Filename question. If you selected the backghd monitor, skip to
question 6. If you selected thiser_foregoundmonitor type, you need to
answer this question:

Monitor filename?

Specify the name of the absolute file containiagrycustom foreground
monitor code (such asyyforeground).

5 Interrupt Priority question. If you selected tioeeground or
user_foregroundmonitor type, you need to answer the question:

Interrupt priority level for default foreground
monitor?

or

Interrupt priority level for user foreground monitor?

Enter a number from 0 to 7 in answer to the above question. Set the interrupt
priority level low enough to allow your target system to function correctly, yet
high enough to avoid exssive interupt procesing.

The emulator uses a level 7, non-maskable interrupt to interrupt the target
system and break into the monitor. When the foreground monitor is not
executing critical code (such as monitor entry and exit), the foreground
monitor wll set the interupt priority mask to the value given as an answer to

304

Chapter 10: Configuring the Emulator
Emulator Configuration Items

this question, or to the interrupt level that was in effect before monitor entry,
whichever is greater.

This configuration item is ignored if you choose the background monitor. You
can also block all target system interrupts.

Example Suppose your target system has a disk device driver that uses interrupt level 5,
and the service routine must be run to prevent target systerageé. To allow
interrupts of higher priority than level 4 to be serviced during foreground
monitor execution, enter:

Modify memory configuration? yes

Monitor type? foreground

Reset map (change of monitor type requires map reset)?
yes

Interrupt priority level for default foreground
monitor? 4

6 Base Address question. If you're using the MC68030/EC030 emulator with
theforeground or user_foregroundmonitor, or the M@&8020 emulator with
any monitor type, you must set the base address where the moifliber w
loaded. Answer the question:

Monitor’s base address?

Enter a hexadecimal address on a 4 Kbyte boundary (XX000K).

Background monitor

When you select the background monitor, the emulator uses overlay
memory to load the monitor. This overl@mgmory doesn't use any
processomemory space. You might ask, "If the emulation monitor is in
backgroundnemory, why would | care about its base address?" In most
cases, you won't care. The reason this question is offered when you are
using the background monitor with an &8)20 emulator is to solve the
following problem, if it occurs.

In the MC68020 emulator, the address, data and coritaiiess are driven
to the target system during background monitor operation. Background
write cycles appear as reads to the target system. These false target system

305

Chapter 10: Configuring the Emulator
Emulator Configuration Items

reads may cause unpredictable results to some I/O and target system
memory addresses. You can relocate the background monitor (using this
configuration item) so that these read cycles won't occur in address space
occupied by I/O or other target system hardware. For example, if your
target system hardware occupies address space from OH through 4FFFH,
you might answer this question with 5000H.

In the MC68030/EC030 emulator, this question is not asked for the
background monitor. Bus cycles aren't driven to the target system by the
background monitor unless you requested them in the periodic read
guestion, earlier.

Foreground monitor

For both the MC68020 and MC68030/EC030 emulators, this

configuration item sets the base address where the monitor is loaded.
When you select a foreground monitor, the emulator loads the foreground
monitor into the 4 Kbyte block of dual-port emulatiovemory. It resets

the memory map, and creates a map term at the address you specified
when you answered the "Monitor’s base address?" question. You cant
delete or alter this map term by using the map configuration commands.
Instead, you must change the monitor configuration by modifying your
answers to the monitor configuration questions.

If you did not change the monitor type but did change the monitor base
address, you need to answer the question:

Reset map (change of monitor type requires map reset)?

as described in the Reset Map question (1) of this procedure.

Interlocking Signals question. If you're using the MC68030/EC030 emulator
with theforeground or user_foregroundmonitor, or the M@&8020 emulator
with any monitor type, you can interlock emulator and target DSACKs for
monitor cycles.

For the MC68020 emulator, answer the question:

Enable the DSack Interlock?

For the MC68030/EC030 emulator, answer the question:

Enable signal interlocking on monitor accesses?

306

Chapter 10: Configuring the Emulator
Emulator Configuration Items

yes interlocks emulator and target system cycle termination
signals for monitor accesses.

no terminates monitor accesses with only the
emulator-generated cycle termination signals.

When you enable interlocking, emulation monitor cycles aren't terminated
until the target syste@@SACK (DSACK or STERM for the

MC68030/ECO030) is received. The emulatdlt also repond toBERR

signals from the target system. If you disable interlocking, emulator-generated
signals will terminate the cycle and the target system signals wilhioedgd.

This configuration item only applies to the map term defined for the monitor.
For other memory ranges, refer to "To assiggmory map terms."

If you enable the interlock, and the monitor is in an address range where the
target system does not retUurSACK (or STERM), the emulator willtep. If

this happens, use tlxecution—Reset to Monitorcommand to reset the
processor. Then disable the interlock.

Remember that emulation maor bus cycles areisible to the target system
(except when you are using the MC68030/ECO030 with a waakgl monitor).

If you disable the interlock, your target system may operate erratically if it is
not prepared for the emulation monitor bus cycles.

If you did not change the monitor type nor the monitor base address, but you
did change the answer to this interlocking signals question, you will need to
answer the question:

Reset map (change of monitor type requires map reset)?

as described in the Reset Map question (1) of this procedure.

307

Chapter 10: Configuring the Emulator
Emulator Configuration Items

< lower>, < upper>

To assign memory map terms

The memory map should be on screen. You need to specify the location and
type of various memory regions used by your programs and your target system.
The emulator needs this information to:

» Orient buffers for data transactions with emulation memory and the target
system.

» Reserve emulation memory blocks.

» Identify the types of the memory blocks so that configuration items such
as write to ROM break will operatewectly.

The emulation memory configuration is presented as a memory mapping
screen. The emulator has seven available map terms.

Assignmemory to a specific address range by entering

<lower> [thru < upper>] < fcode> < memory_type> < attribute> .

Parameters in the above command are defined in the following pages.

Specifies an address range aligned with 256-bgtebaries. If you omit the
< upper> address, a 256-byte block is allocated, starting at the lower address.

To specify an address beginning on a 256-bgtentdary, enter an address
ending in 00. To specify an address ending on a 256-bytedary, enter an
address ending in FFH.

Because of the way the emulation memory system is designed, the amount of
memory used by each map term corresponds to the nearest block size
available, not the amount specified by the address range. To help you to better
understand this, the next few paragraphs decribe the physical design of
emulator memory.

There is one 4 Kbyte block of dual-ported emulatioemory on the emulator
probe. (Dual-portetheans the emulation controller can access memory
locations without interfering with program execution). This block can be
mapped by specifying thap attribute after the map address and memory type
specification. If you use a foreground monitor, il ine loaded into this space
and you won't be able to map this memory for any other purpose.

308

Chapter 10: Configuring the Emulator
Emulator Configuration Items

If you specify an address range less than 4K withdfhattribute, all 4K is
allocated because that is the minimum block size for that memory. If you
specify a block size less than 4K and the dual-pwmory is unmapped, the
emulator will use thatnemory to more closely match the requested address
range to the block size.

In the MC68020 emulator, the dugdrt memory does not require wait states,
even when you use the emulator at 33 MHz. The dualtpemoryis 16 bits
wide.

In the MC68030/EC030 emulator, the dpalrt memory runs at the same
speed as target system accesses. The dualr@nbry in this emulator is 32
bits wide.

In addition to the 4K of dual-porhemory, there are also two memory sockets
on the probe. Thismemory is not dual-ported; the monitor is used to read and
write the locations when you display or modify this memory. The bus width for
this memoryis 32 bits. You can install 256-Kbyte or 1-Mbyte SRA&Mory
modules in these sockets.

The following table lists the possible installation combinatioma@fory
modules. For each installation, the “Blocks Available” indicates the minimum
amount ofimemory that will be allocated if you specify a map term with that
block size or less. If you need to use emulation memory, you should examine
your target system design and instaimory in the way that will maximize

block usage. (See the examples.)

309

Chapter 10: Configuring the Emulator
Emulator Configuration Items

Installation Memory slot 0? Memory slot 12 Blocks Available
1 256K 256K 4-64K, 2-128K
o1 256K M 4-64K, 2-512K
3 M 256K 4-256K, 2-128K
4 M M 4-256K, 2-512K
5 256K Empty 4-64K

6 1M Empty 4-256K

7 Empty 256K 2-128K

8 Empty M 2-512K

L nstallation 2 is not recommended because it does not allocate blocks as well as installation 3.
2\|f you look down at the component side of the probe with the cables leading towardseyoory
slot O is to your left anchemory slot 1 is to your right. lllustrations in t68020/030 Graphical User
Interface User's Guidenanual identify the locations of slot 0 and slot 1.

310

< fcode>

< memory_type>

< attribute>

Chapter 10: Configuring the Emulator
Emulator Configuration Items

Specifies a function code space for the memory as follows:

< fcode> Description

program Program space

data Data space

user User space
supervisor Supervisor space
user program User program space
user data User data space

supervisor program
supervisor data

Supervisor program space
Supervisor data space

Specifies the location and type of memory. The choices are as follows:

Type value

Memory Assigned

emulation ram
emulation rom
target ram
target rom
guarded

Emulation RAM
Emulation ROM
Target System RAM
Target System ROM
Guarded memory

Attributes control specific functionality on a term-by-term basis. Attributes

can be the following:

dp places this block in the special 4-Kbyte block of dual-port
emulation memory on the probe. (Dual-porteemory can
be accessed by the host controller without the emulation
monitor program, whiclmeans thatgur program executes
uninterrupted during the access.)

dsi causes target system and emulafBACKs to be
interlocked. (The MC68030/EC030 emulator also interlocks
the STERM signals when you choodsi.)

ci asserts th€lIN line to the MC68030/EC030 for all
addresses in this memory block. This prevents caching of

311

Chapter 10: Configuring the Emulator
Emulator Configuration Items

accesses to this block. This attribute is available only on the
MC68030/EC030 emulator.

If you specify thedsi attribute, the emulator waits for both the emulation
memory data to become valid and the target syR&HACK to be returned
before it terminates an emulation memory cycle. This makes the bus cycle
length identical to that of your target system, so that timitigpethe same. If
your target system does not retBACK in the address range mapped to
emulation memory, don't use thisi attribute because the system wibs to
wait for the targeDSACK. (See “To Interlock Emulator and Tardg@8ACKs
for Monitor Cycles” for more information.) For the M8030/EC030
emulator, the target systeBTERM signal is also used for cycle termination if
you specify thealsi attribute.

If you don't specify thalsi attribute when you map a memory block, the target
DSACK andBERR signals (an@TERM for the MC68030/ECO030) are
ignored on accesses to that block.

If you specify theci attribute (MC68030/EC030 emulator only), tGHN

(cache inhibit input) line is asserted for accesses tonleatory block. This
prevents instructions or data from tmaémory block from being loaded into
the processor cachmemory. If you need to disable caching for all memory
accesses, such as when you are tracing activity in all of the address ranges,
answemo to the question “Enable the 68030tinstion and data cache”.

The attributes that are valid with a given term depend on the emulator
(MC68020 or MC68030/EC030) and what kindhoémory the term applies to
(emulation or target).

In addition to the base attributes, the interface defines some combinations of
attributes for you. The following two tables list the base and combination
attributes for the two emulators, and indicate the memory type for which each
attribute is valid.

312

Chapter 10: Configuring the Emulator
Emulator Configuration Items

MC68020 (HP 64748)

Attribute Description Emulation Target
Memory Memory

dp Use dual-porinemory. Yes No

dsi Interlock DSACKs Yes No

dp_dsi Use dual-porhemory and Yest No
interlock DSACKs

1. Onlyvalid for the 4K dual-pornemory.

MC68030/EC030 (HP 64747)

Attribute Description Emulation Target

Memory Memory

dp Use dual-porinemory. Yes No

dsi Interlock DSACKs and STERM Yes No

ci Inhibit caching Yes Yes

dp_dsi Use dual-porhemory and Yest No
interlock DSACKs and STERM

dp_ci Use dual-ponnemory and inhibit Yest No
caching

dsi_ci Interlock DSACKs and STERM Yes No
and inhibit caching

dp_dsi_ci Use dugbort memory, interlock Yest No

DSACKs and STERM, and inhibit
caching

1. Onlyvalid for the 4K dual-pornemory.

313

Chapter 10: Configuring the Emulator
Emulator Configuration Items

» Assign thememory map default by enterindgfault < type>.

where< type> may be one of:
guarded

target rom
target ram

The default map term tells the emulator how to treat all address ranges not
otherwise covered by existing memory map terms. You may want to know
when the processor accesses a nonexistemtory location during a program
run. Use thegguarded map type to do this. The emulator will break to monitor
and display a message when a guarded memory access occurs.

» Delete a particular memory map term by entedaigte < term# >
where< term# > isin the range 1-7.

or
Remove all memory map terms and reset the map by tyeiete all.

If you want to add a term that overlaps an address range that is already
represented by an existing term, you must either redefine or delete the existing
term.

» End the mapping session by enteramgl

314

Example

Chapter 10: Configuring the Emulator
Emulator Configuration Items

Suppose you're using the emulator in-circuit, and therd &layte 1/Oport at
1c000 hexin gur target system. You have ROM in your target system from O
throughffff hex. Also, you want to use the dupbrt emulatiormemory at

20000 hex:

1c000h thru 1cOffh target ram
0 thru Offffh target rom
20000h thru 20fffh emulation ram dp

Remember that when you use the backignd monitor, the dual-port)
emulation memory is available for your target programs.

The relationship between memory ranges and the block sizes of memory is
easier to understand by looking at an example. Suppose you have Installation
1 from the table of installation combinations of memory modules earlier in
this chapter. Then you enter the following map commands:

0 thru 7fffh emulation ram

20000h thru 3f000h emulation ram
40000h thru 4ffffh emulation ram
50000h thru 500ffh emulation ram
default target ram

If you haven't used the dual-port emulation RAM, the first map term that will
fit is assigned to thahemory. In this example, that is the last term you defined
(the range from 50000..500ff). The entire 4 Kbyte block is reseh@uaigh you
specified only a 256-byte range. Two 64K blocks and one 128K block are used
from the other emulation memory, leaving two 64K blocks and one 128K
block. One of the 64K blocks is used for the first map term, but 32K of tha
block is unused and unavailable. The third term uses the other 64K block.
second term uses part of the 128K block, leaving the rest unavailable.

Mapper resolution is independent of block allocation. In the above example, if
you haddefault guardedand your program accesse@00h, the emulator
would do a guarded memory break.

Combinations of regular emulation memory and dual-port emulatiemory

may be confusing when you look at analysis displays. Assume you have
installation 3 from the table. Suppose you reset the map, and then mapped a
range covering 260 Kbytes:

0 thru 40fffh emulation ram

315

Chapter 10: Configuring the Emulator
Emulator Configuration Items

The emulator will allocate on256K block from the SRAMnemory modules
and will use the 4-Kbyte, duglert memory for the rest of the range. Onlyone
mapper term is created (without ttg attribute). This combination of SRAM
and dual-pormemory affects the MC68020 emulator differently from the way
it affects the MC68030/EC030 emulator. The MC68020 ¢ghwat-memory is
16-bits wide, whichmeans you Wl see a change fror82-bit to 16-bit fetches as
the processor crosses the boundary between thenemoory types. The
MC68030/EC030 dugbortmemory is 32 bits wide, but you may still see a
speed difference for dual-partemory accesses by the MC68030/EC030.

You can use function codes when mapping memory. For example, you might
want to map separate ranges for user and supervisor function codes:

1000 thru 1fffh supervisor emulation ram
1000 thru 1fffh user emulation ram

Then, to load programsamed spprog.x and userprog.xinto the supervisor
and user memory spaces, you would use the commands:

load supprog fcode s
load userprog fcode u

To modify the emulator pod configuration

You can define the way the emulator interacts with the target system interface
by modifying the emulator pod configuration.

Answer the question:
Modify emulator pod configuration?

yes to enter the series of emulator pod configuration questions.

no to bypass the emulator pod configuration questions and
skip to the debug/trace options. (This is the default.)

316

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To disable target system interrupts

You may want to disable target system interrupts if your target system
interrupt logic doesn't work correctly or isn't finished. You may also want to
disable these interrupts if the service routines and vectors assighad. You
may want to enable the interrupts if youre ready to test your interrupt
handling routines.

Answer the question:
Respond to target system interrupts?

yes to allow target system interrupts to be received by the
processor. (This is the default.)

no to block target system interrupts from the emulation
processor.

Target system interrupts are always disabled during background monitor
execution. The foreground monitor also disables interrupts during certain
critical routines, such as monitor entry and exit.

You can enable interrupts during themainder of foregund execution. See
the section on selecting and configuring the emulation monitor earlier in this
chapter.

To preset the interrupt stack pointer and Program
Counter

Normally, if you run the emulator from reset, the processor fetches the values
at offsets 0 and 4 from the vector table and loads these values into the
interrupt stack pointer and program counter registers. It then begins running
from the program counter address value. (To run from reset, select
Execution»Run —.From Reset)

317

Chapter 10: Configuring the Emulator
Emulator Configuration Items

There are cases where the interrupt stack pointer and program counter cannot
be fetched from the reset vector table. For example, if you reset the emulator,
break to the monitor, and then run the emulator, the stack pointer and
program counter valuesiivnot be read from theormal locations. Your

answers to the following two questions will allow the emulatouupsy the

needed values for the stack pointer and program counter.

1 Answer the question:
Reset value for Interrupt Stack Pointer?

Enter a 32-bit hexadecimal address for the initial value of the ISP. This value
usually should correspond to the value loaded at offset 0 of your vector table.
The default value is 1H. Since this is an invalid value, you must change it to a
valid even address.

2 Answer the question:
Reset value for Program Counter?

Enter a 32-bit hexadecimal address for the initial value of the PC. This value
usually should correspond to the value loaded at offset 4 of your vector table.
The default value is Offffffff hex, which is invalid. You must change it to a valid
even address.

This configuration item is provided as a convenience. You can adisbnlpe
same thing by using modifying registers to set the PC and ISP values while in
the monitor.

Example Assume that the memory range f0O tffffuis mapped agmulation ram and
reserved as stack space in your design. To set the interrupt stack pointer to f40
hexand the initial program counter400h, answer the questions as follows:

Reset value for Interrupt Stack Pointer? 0f40h
Reset value for Program Counter? 0400h

318

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To set the target memory access size

When you display or modify target system memory or emulation memory that
is not dual-port, the emulator makes the 68820 or MC68030/EC030
processor execute the monitor to read or write targahory locations. The
access mode determines whether the emulator uses byte, word, or long word
instructions for thenemory accesses.

Answer the question:

User memory access size?

bytes to have the monitor use byte data type for accesses to target
memory.
words to have the monitor use word data type for accesses to

target memory.

longs to have the monitor use long word data type for accesses to
target memory.

If you see messages advising of a mismatch betwesmory access size and
the amount of data supplied when you modigmory or load programs, you
may need to change your answer to this configuration question.

319

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To modify the debug/trace options

You can define certain break conditions for the emulator and choose whether
to trace only target program cycles or all program cycles.

Answer the question:
Modify debug/trace options?

yes to access the debug/trace configuration questions.

no to accept the current debug/trace configuration and skip to
the simulated I/O configuration.

To break the processor on a write to ROM

If your program writes to a location mapped to emulation ROM, there is
probably a logic error. You can have the emulator stop execution of your
target program when this event occurs.

Answer the question:
Break processor on write to ROM?

yes to cause the emulator to break into the monitor when a
write to emulation or target ROM is detected.

no to ignore any writes to emulation or target ROM.

The memoryin the emulation or target system will be changeddngssor
writes, even if that memory has been mapped as ROM.

320

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To define the software breakpoint vector

The MC68020 and MC68030/EC030 emulators use the BKRTuictgon to
implement software breakpoints. The BKPT instruction has eigtgiple
data operands. You can choose from seven of these for the software
breakpoint function.

Answer the question:
Vector number for software breakpoint (1..7)?

Enter a number in the range of 1 through 7 to use as the data value for the
BKPT instruction. The default setting is 7. The BKPT 0 vector cannot be used
as the software breakpoint vector.

When using the emulator in most target systems, the default (7) will work fine.
Some target systems use the processor BKPT instruction to implement certain
features, and in these systems, BKPT 7 may already have been assigned to
implement target system features. When using the emulator in these target
systems, you may want to choose a different breakpoint vector number to
implement software breakpoints in your emulator.

Regardless of the BKPT vector number you choose, the emuldlt@recess
it, as follows:

When you define a breakpoint, the emulator saves the instruction at the
address where the breakpoint is to be set and then writes a BKPT instruc
at that address.

When the BKPT instruction is encountered during target program executiom,
the processor executes a breakpoint acknowledge cycle. The emulator forces
the breakpoint to be taken, and then provides a monitor entry vector during
the breakpoint vector fetch to allow the processor to enter the emulation
monitor. The monitor replaces the BKPT instruction with the instruction that
was saved earlier, and clears the breakpoint status.

Changing this configuration item disables any active breakpoints from the
emulator breakpoint table.

321

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To trace background or foreground operation

Normally, you'll use the emulation-bus analyzer to trace only your target
program execution. However, sometimes you may want to analyze execution of
the emulation monitor to help solve a problem with the interaction of the
target system and the emulator.

» Answer the question:
Trace background or foreground operation?

foreground to trace only target program cycles. (This includes the
foreground monitor.)

background to trace only emulation monitor cycles, and only if you are
using the background monitor.

both to trace both target program cycles and emulation
background monitor cycles.

322

Chapter 10: Configuring the Emulator
Emulator Configuration Items

To configure the analyzer clock

The emulation-bus analyzer can capture bus cycles at data rates up to 25 MHz.
The trace state and time counters are limited to lower speeds. TR@OT
processor is set to a slow analyzer clock by default, and does not need to be
modified because the data rate is sufficiently low, even at the maximum clock
rate of 33 MHz.

By default, the MC68030/ECO030 analyzer data rate is serydast. This
processor has more complicated reqaients due to the burst and
synchronous access modes. The analyzer can capture all types of bus cycles
correctly up to the maximum clock rate of 40 MHz, but it cannot count states
or time at those higher speeds for certain bus cycle types.

Answer the question:

Set the analyzer speed:

slow for a data rate less than or equal to 16.67 MHz.
fast for a data rate between 16.67 and 20 MHz.
veryfast for a data rate between 20 and 25 MHz.

The worst-case situation occurs during a zero-wait state burst cycle. The data
rate for burst cycles is given by the equation:

Processor Clock Rate

Data Rate® (14 imberof wait stateh

To determine the correct answer to this question in thé3030/EC030
emulator, calculate the maximum data rate by using the above equation.
Remember that the emulator always inserts one wait state for direyraus

and burst accesses to emulation memory, and also must insert one wait state
for synchronous and burst accesses to tangghory when the external clock

is greater than or equal to 25 MHz. Then choose the data rate option
according to the data rate you calculate.

323

Chapter 10: Configuring the Emulator
Emulator Configuration Items

The trace state and time count qualifiers are limited by the analyzer data rate
settings as follows:

Analyzer clock rate Analyzer speed Valid count qualifier
setting options
clocks 16.67 MHz slow counting < state>
counting time
clocks 20 MHz fast counting < state>
clocks 25 MHz very fast counting off
Example Suppose you are running the B&830/ECO3@rocessor at 40 MHz. You

have answered “yes” to the configuration question “Is speed of external clock
faster than 25 MHz?” because target memory requires one wait state for
synchronous/burst accesses over 25 MHz. The resulting data rate is 20 MHz so
you answer the configuration question as follows:

Set analyzer speed: fast

Note that you can use only thething debugger trace option. You cannot
count time because the analyzer clock speed is too high.

To modify the simulated I/O configuration

The Softkey Interface provides a simulated 1/0O cdgihat you can use to
test certain 1/0-dependent parts of your program before target system
hardware is complete.

» Answer the question:
Modify simulated 1/O configuration?

yes to modify the simulated 1/0 configuration.

324

Chapter 10: Configuring the Emulator
Emulator Configuration Items

no to accept the current simulated 1/0 configuration and skip
to the interactive measurement configuration questions.
(This is the default.)

If you answelyesto this question, you will see a series of several more
guestions whose answers define the simulated 1/0 configuration. See the
Simulated I/Omanual for details on configuring and using simulated 1/O.

To modify the interactive measurement
specification
The HP 64700 Series emulators have internal trigger signals that allow you to

coordinatemeasurements with associatedioments. The interactive
measurement specification defines these trigganections.

Answer the question:
Modify interactive measurement specification?

yes to review and/or change the interactive measurement
specification.

no to bypass the interactive measurement specification and
skip to saving the configuration file.

If you answelyesto this question, you will see a series of several questions,
whose answers define the interactive measurement specification. To give
proper answers to these questions, refer to Chapter 6 in this manual. It
explains how to make coordinateteasurements.

325

Chapter 10: Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC 68030 MMU

Mapping The Foreground Monitor For Use With
The MC68030 MMU

To use the memory management feature of th&8030 emulator, you have

to use a foreground monitor that is mapped 1:1 (logical address = physical
address). The reason that 1:1 monitor mapping is important is that the
MC68030 MMU may be enabled or disabled at any timeolly yarget system
during execution of your target program; whether or not the MMU is enabled,
the emulator must be able to enter the foreground monitor to provide
emulation features. There are two ways to map the address range 1:1 where
the foreground monitor is located:

* Modifythe mapping tables in the MMU to maintain a 1:1 mapping of the
memory address space where the foreground monitor is located. Make
sure the mappings used for the foreground monitor are not write
protected.

* Use one of the two transparent translation registers (TTO or TT1) to
control the block where the foreground monitor is located. You must
remember to set the Read/Write Mask bit (RWM) to 1. Transparent
translation registers can be set to translate only read accesses or only write
accesses. To use a transparent translation register to control the address
space of the foreground monitor, both read and write accesses must be
enabled (byignoring the R/W bit).

326

Chapter 10: Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC 68030 MMU

See Also

To modify the MMU mappings to translate the
monitor address space 1:1

In the operating system that sets up the MMU for your target program, set
aside a 4 Kbyte address space to contain the foreground monitor.

or

After the operating system for your target program has set up the MMU, but
before you enable the MMU (with an appropriate TC register value), modify
the MMU translation tables to ensure that the foreground monitor resides in
logical address space that will be translated 1:1 to physical address space.

When you modify the content of any MMU mapping table, remember that the
tables are located in physical address space. You must enter your modification
commands by using physical addresses.

Select an address space to contain your foreground monitor that is higher than
the address space used for your target program and 1/O. illluiptimize

deMMUer resources by using them first to reverse-translate your target
address space.

If you are mapping page sizes smaller than 4 Kbytes through the MMU
mapping tables, ensure 1:1 translations for all of the pages that contain
portions of the emulation foreground monitor.

"To modify the MMU mappings to translate the monitor address space 1:!.-
the emulator/analyzer manual.

327

Chapter 10: Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC 68030 MMU

Examples

To modify a transparent translation register to
map the monitor address space 1:1

Modify the value of a transparent translation register to the base address you
specified for the foreground monitor, or the first address within the range to
be occupied by the foreground monitor.

Where transparent translation register may be TTO or TT1, and the first
address must begin on a 4-Kbyte boundary (hexadecimal number ending in
000H).

To map the foreground monitor to 1:1 address space beginndd§@0000H
by using TTO, configure the base address:

Monitor's base address? 08000000h
Then set register TTO to 08008777h. Thikmvap 8000000..8ffff

transparently (1:1). Thisis a 16M block, the smallest that can be specified in a
transparent translation register.

328

Part 3

Concept Guide

Part 3

330

11

X Resources and the Graphical
Interface

An introduction to X resources.

331

Chapter 11: X Resources and the Graphical Interface

X Resources and the Graphical Interface

This chapter helps you to understand how to set the X resources that control
the appearance and operation of the debugger’s graphical interface. This
chapter:

* Givesyou an explanation of the X Window concepts surrounding resource
specification.

» Givesyou an explanation of the implementation of scheme files as used by
the debugger’s graphical interface.

The debugger’s graphical interface is an X Window System application which
means it is @lientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

An X resource is user-definable data

A resource is a user-definable piece of data that controls the operation or
appearance of an X Windows application. A resource may applyto an
application (application-specific resources) or it may apply to the objects
called widgets from which the application is constructed. That is particularly
true of standard widget resources that control the appearance of an
application. For example, most widgets have a standard resource that allows
the user to specify the font used to display text on objects like buttons, menus,
and labels.

An application-specific resource is defined by the application developer and
may control such things as the mode of operation of an application. For
example, you can use an application-specific resource for the debugger’s
graphical interface to control whether to start the interface with the command
line on or the command line off.

A resource specification is a name and a value

Each resource in an application hassae and a value. Because an X
Window System application is constructed from widgets, a resoaroe is

332

Chapter 11: X Resources and the Graphical Interface

closely associated with the names of the widgets that make up the application.
Each application begins with a top-level widget that is the parent of all other
widgets in the application. The name of the top-level widget is usually the
same as that of the application. This top-level widget may have a number of
widgets “beneath” it that are called children of the top-level widget. The
names for these widgets are most often chosen for their mnemonic value.
These children can also in turn have child widgets. A resowtenthen, is
simply a name of a piece of data for the lowest-level widgeplked with a

string of widget names picked up from each of the widgets along the path
starting with the top-level widget and going down to the lowest-level widget.

The data name and widget names within @auese rame are separated from
each other by dots. The resoureene itself is terminated by a colon. A
resource value is simply the data value itself. Ignoring the widgaes and
data name for the moment, a commorotgse for most widgets is color. A
data value for color might be “blue.”

To put this all together, a resource string for the foreground color for the
“quit” pushbutton displayed on an application called “tracker” might look like
the following:

tracker.panel.control.quit.foreground: white

Don't worry, there are shortcuts

As you might guess, specifying resources for applications with many levels of
widgets can be difficult and error-prone. For that reason, you can use a
shortened notation. To fully understand how the notation works, however,
you must first understand abonstance nameandclass names

An instance nam& a name given to a particular widget by an application
developer. You have already seen instance names used. The name “quit’
instance name for a pushbutton widget used by the developer of the “trac
application from the last example. An instance name makes the pushbut
widget named “quit” unique from other pushbutton widgets in the “tracker”
application.

A class namés a general name for all widgets of a particular type. For
example, the class name for the O SF/Motif pushbutton widget is
XmPushButton. When you refer to a widget in an application by its class
name, you are referring to all widgets of that class in the application, and not
to just a particular widget.

333

Chapter 11: X Resources and the Graphical Interface

Instead of specifying the foreground color for the tracker quit button by using
a resource ame made up of instance names as in the last example, you could
instead use a class name, as follows:

tracker.panel.control. XmPushbutton.foreground: white

Using class names in this way makes it easier to spectfyress because it
relieves you from having to discover the names of particular widgets in an
application. A long string of instance names or class namab &sleing

string of names, however. Fortunately, a wildcard helps to makétntest a
true shortcut. The wildcard is an asterisk ("*"). It can be used to replace any
number of class or instance names in auese rame. The last example could
now be shortened to either of the following:

tracker*XmPushButton.foreground: white

tracker*quit.foreground: white

But wait, there is trouble ahead

An X Window System application maintains a complete list adueses, and

the application knows the complete instance and class names for each
resource. Because you can specify resource values using shortened notation,
the application, when starting up, must match specified values to individual
resources. Some general rules apply:

» Either a class name or instance name from the request must match each
class or instance name in the applicatidistsof reources.

» Entries prefixed by a dot are more specific and therefore have precedence
over entries prefixed by an asterisk.

» Instance names are more specific and therefore have precedence over class
names.

» Matching is done from left to right. Instance or class names appearing at
the beginning of the specification have precedence over those later in the
specification.

As you can quickly see, resource matching favors specific resoanceshover
general resourceames. General rearce rames, especially those involving
class names, can have unexpected and unintended effects. Consider the last
example again. The resource specification

334

Chapter 11: X Resources and the Graphical Interface

tracker*XmPushButton.foreground: white

may not only set the foreground color of the quit button on the control panel
of the application to white — it could also set the foreground colors for any
pushbutton anywhere in the application. That is because the combination of
the wildcard and the use of the class name make thasres specification

match a resource request for any pushbutton in the application.

The second of the two specifications in the example does not completely solve
the problem either. Suppose there was another button elsewhere in the
application with the instance name of “quit.” (Duplicating instance names is
correct as long as the widget paths to two different widgets of the same name
are different.) The second specification of

tracker*quit.foreground: white

could match a resource request for that button as well because the wildcard
allows the specification to match a number of different widget paths through
the application.

Resource specification is usually a matter of trial and error. The following
resource is probably specific enough to set just the foreground color for the
quit button on the control panel:

tracker*control*quit.foreground: white

To view the resources in the debugger’s graphical interface, you can choose
Help -»X Resource Namesnd click on the “All names” button.

Class and instance apply to applications as well

Just as there are classes and instances of widgets, there are classes and
instances of X Window applications. Resource specifications can be
constructed in such a way that they apply to a whole class of applications,
just to an instance of those applications.

The class name for the debugger graphical integacducts isHP64_Debug
The instance of the class that this debugger graphical interface falls under is
calleddebug A few examples are in order.

» For agiven resource (called <resource>), the following specification
applies to all debugger/emulator interface products for all processors:

335

Chapter 11: X Resources and the Graphical Interface

HP64_Debug*<resource>: <value>

» The following specification applies to all debugger/emulator products
connected t®&8000 emulators:

HP64_Debug.m68000*<resource>: <value>

» Finally, the following specification applies to all debugger/emulator
graphical interfaces connected@®000 emulators:

debug.m68000*<resource>: <value>

According to the precedence rules for resource matching, the first
specification is the most general and would be overridden by either of the
following two.

Resource specifications are found in standard places

There are a number of conventions for putting X resources in standard places
so that applications can find them and use them when starting up. The least
complicated model has the default resources for an application in a file in a
system directory and user-defined resources in a file in the user's SHOME
directory.

The system directory for application default files is:
HP-UX lusr/lib/X11/gp-defaults

SunOS /usr/openwin/lib/X 11/pp-defaults

The name of the default file is the same as the class name for the application
and is also called the app-defaults file (for example, HP64_Debug is the name
of the debugger’s graphical interface’s application defaults file). The name of
the file in the user’s $HOME directory.ldefaults Both files contain lists of
resource specifications. The app-defaults file contains only resources for a
specific application. The .Xdefaults file usually contains resource
specifications for a number of different applications.

Also, it is possible for X resurce specifications to point scheme filein
which other X resources are specified.

Why is it necessary to have at least two files? The application developer must
supply a set of default resource values so that the applicaifiat least

336

Chapter 11: X Resources and the Graphical Interface

execute in the absence of user-defined resources. The developer does so in the
app-defaults file. These defaults should not be changed by individual users
because doing so affects the appearance and behavior of the application for all
users of the application. Yet a user must have a location to put resources to
override the default resources so the user can customize the application
according to the user’s needs or desires. The .Xdefaults file is that place.

Loading order resolves conflicts between files

If there are two files, then which resource specification from which file
controls the resource in the application? That problem is solved by adhering
to a loading order for files. Again, in the simple form, the application first
loads the application default file and then loads the usédsfaultsile. Any
resource specifications in the .Xdefaults file with exactly the same resource
name as resirce specifications in the application default file replace those
from the application default file in the resource database. In that way, the
resources specified by the user override the default resources in the
application default file.

However, there are more than two places in which applications look for
resource specifications when starting up. The followindig af the
standard places, in order, that an application looks to find resources:

1 The application default file.

The application default file for the graphical interface is called
HP64_Debug This file is created at software installation time and placed
in the system application defaults directory.

2 $XAPPLRESDIR/< class>

This environment variable defines an alternative directory path leadin
customized class files. Useful for directing the application to system-
custom files.

3 RESOURCE_MANAGER property. Some X servers have a resource
property associated with the root window for the server. Resources are
added to the resource property database by wsilg (HP VUE is an
example.) The server can use this property to access those resources.

Ifno RESOURCE_MANAGER property exists, then
$HOME/.Xdefaults is read. The primary and probably best method for
creating or adding to this file is by copying part or all of the app-defaults
file into the .Xdefaults file.

337

Chapter 11: X Resources and the Graphical Interface

4 $XENVIRONMENT file. This environment variable defines a file that
contains resource specifications.

If the XENVIRONMENT variable is not set, then
$HOME/.Xdefaultshostis read.

5 Command line options

Resources can be specified on thewotand line by using therm
command line option. The application strips these arguments out and
sets these resources beforegag the rest of the oumand line on to the
application.

Remember, load order specifies the precedence foures overrides. A
resource found later in the load order overrides a resource found earlier in
the load order if the resource specifications match each other.

The app-defaults file documents the resources you can set

TheHP64_Debudile is complete, well-commented, and a goodgrce of
reference for graphical interface resources. Thé4Pebug file kould be
your primary source of information about setting graphical interface
resources. This file can bes#g viewed from the help topic menu byaosing
Help -General Topicand selecting the “X Resources: Setting” topic.

To further assist you with setting X magces, there is also another topic on

the help menu pull-down that yohauld use. Chooddelp -X Resource

Namesto display the class and instance name for the graphical interface in a
dialog box. From the dialog box, you can also display all widget class and
instance names for all widgets that make up the debugger’s graphical interface.
In most cases, you will not need to delve that far into the widget tree, but it is
there if you choose to.

In addition to the app-defaults file, the graphical interface scteame files
Resources are not duplicated betweeresahfiles and the H&2_Debug file.
You may wish to set resources found in theeseh files as well, so you need to
understand how scheme files relate to the interface and to the other X
resource files.

Scheme files augment other X resource files

Hewlett-Packard realizes that the debugger’s graphical interface wilinbi@
environments made up of workstations with different display capabilities and

338

Chapter 11: X Resources and the Graphical Interface

even in environments with different types of computers (platforms) running
the X Window System. The debugger’s graphical interface, unlike many other
X applications, makes determinations about display hardware as to the
platform type, the resolution of the display, and whether the display is color or
monochrome. The interface then loads the appropriatareefiles to allow

the interface to come up in a reasonable way based on the hardware.

There are sixscheme files. Their names and a brief description of the
resources they contain follows:

Debug.Label Defines the labels for the fixed text in the interface.
Such things as menu item labels and similar text are in
this file. If the $LANG environment variable is set, the
scheme file “Debug.$LANG” is loaded if it exists;
otherwise, the file “Debug.Label” is loaded.

Debug.BW Defines the color scheme for black and white displays.
This file is chosen if the display cannot produce at least
16 colors.

Debug.Color Defines the color scheme for color displays. This file is

chosen if the display can produce 16 or more colors.

Debug.Input Defines the button and key bindings for the mouse and
keyboard.
Debug.Large Defines the window dimensions and fonts for high

resolution display (1000 pixels or more vertically).

Debug.Small Defines the window dimensions and fonts for low
resolution displays (less than 1000 pixels vertically).

Debug.Label (or Debug.$LANG) resides in the directory
/usr’hp64000/lib/X11/HP64 _scheme€Ehis directory is the upper level directo
for scheme files. The other five files are in subdirectories below this one
named by platfornfor operating system). For example, the 80 scheme
files are in the subdirectofysr/hp64000/lib/X11/HP64_schemes/HP-UX

Like the app-defaults file, these scheme files are system fileshaddsnot be
modified directly.

339

Chapter 11: X Resources and the Graphical Interface

You can create your own scheme files, if you choose

The debugger’s graphical interface supports user-definedrezfiles. The
interface searches two places for user-defined scheme files and loads any it
finds after loading the system scheme files. Refer to any of the scheme files
mentioned for information about where to place your owesahfiles.

Scheme files continue the load sequence for X resources

Scheme files extend the load order for finding Xorgges. System seme file
resources override all other resources gathered so far, and user-defined
scheme files, inurn, override the system smme files. Continuing from the
load order list previously, the sete files follow, in the order

6 /usr/hp64000/lib/X11/HP64_semes/Debug.Label
/usr/hp64000/lib/X11/HP64_semes/< platform> /Debug.< scheme>

7 $XAPPLRESDIR/HP64_s@mes/Debug.Label
$XAPPLRESDIR/HP64_sdmes/< platform> /Debug.< scheme>

Just as $XAPPLRESDIR can point to a system-wide app-defaults file, so
can it point to a set of system-wide scheme files.

8 $HOME/.HP64_schmes/Debug.Label
$HOME/.HP64_scames/< platform> /Debug.< scheme>

Please note the dot (.) in the “.HP64 esttes” directory name.

You can force the debugger’s graphical interface to use
certain schemes

Five application-specific resources allow you to force the interface to use
certain schemes. The msces and what they control are as follows:

HP64_Debug.platformSeme:

Controls the platform scheme chosen by the interface. Thisires is
particularly useful in mixed-platform environments where you might be
executing the interface remotely on an HP 9000 computer, but displaying
the interface on a Sun SPARCsystem computer. In this situation, you may
wish to set the resource to use the SunO8mehso that you can use the
same key and mouse button bindings as other Sun OpenWindows
applications.

340

Chapter 11: X Resources and the Graphical Interface

The value of this resource is actually ttemre of a subdirectory under
/usr/hp64000/lib/X11/HP64_seimes or one of the alternative directories
for scheme files. You can createuy own file and subdirectory under
/usr/hp64000/lib/X11/HP64_selmedor alternative) and then set this
resource to choose that subdirectory instead of the standard platform
subdirectory.

Values can be: HP-UX, SunOS, or the name of a sub-directory containing
custom scheme files.

HP64_Debug.colorSeme:

Chooses the black and white or colorestie.

Values can be: Color, BW, or the name of a custom scheme file.
HP64_DebugriputScleme:

Chooses the keyboard and mouse bindings.

Values can be: Input or theame of a custom scheme file.

HP64_Debug.sizeSeme:
Chooses the large or small sche for fonts and sizes.

Values can be: Large, Small, or the name of a custom scheme file.

HP64_Debug.labelSeme:

Chooses a different label saime for fixed text. Again, this rearce is
affected by the $LANG variable.

Values can be: Label, SLANG (if this environment variable is set and
there is a Debug.$LANG scheme file), or the name of a custom scheme
file.

These resources are in the app-defaults file. To override these resources
them in your.Xdefaultfile.

Again, setting X resources is a trial and error process. Thengfiles used
by the debugger’s graphical interface simplify the process by collecting related
resources in specific files.

To recap the organization:

341

Chapter 11: X Resources and the Graphical Interface

* The app-defaults file contains resources that control the operation of the
interface. To override a resource in this file, copy the resource to your
Xdefaults file and change it there.

* Resources that control the appearance of the display and keyboard and
mouse button bindings for your platform are in theesah files. Copythe
scheme files to anpgropriate place and modify the resources found in
them to change the look of the interface.

If you would rather place these resources in your .Xdefaults file,
remember the load order. Make theowxe rame in the .Xdefaults file
more specific or it will be overridden by the one in theesgh file.

The app-defaults file and the scheme files anmerypest sources of reference
for help with modifying individual resources.

Resource setting - general procedure

Application specific resources

If you plan to modify an application-specific resource, you should look in the
HP64_Debug file for information about that oeisce.

Ifthe RESOURCE_MANAGER property exists (as is the case with

HP VUE), copy the complete HP64_Debug file, or just the part you are
interested in, to a temporary file. Modify the resource in your temporary file
and save the file. Then, merge the temporaryfile into the
RESOURCE_MANAGER property with thedb -merge < filename>
command.

Ifthe RESOURCE_MANAGER property does not exist, copy the complete
HP64_Debugfile, or just the part you are interested inptw)X defaultfile.
Modify the resource in your .Xdefaults file and save the file.

Finally, if the debugger’s graphical interface is currently executing, you must
exit and restart the interface for the change to have any effect.

General resources

If you plan to modify a general resource that could not be found in the
HP64_Debugfile, look to the seme files for information about that
resource. A general disssion of the kinds of information found in the

342

Chapter 11: X Resources and the Graphical Interface

scheme files can betind in the previous “Seme files augment other
resources” section.

Copy the appropriate seme file to one of the alternative directories and
make the modifications there. (If you are using $XAPPLRESDIR, make sure
the variable is set and exported.) Save the file. If the debugger’s graphical
interface is currently executing, you must exit the application and restart it to
see the results of your change.

343

Chapter 11: X Resources and the Graphical Interface

344

Part 4

Reference

Part 4

346

12

Debugger Commands .

Detailed descriptions of command line commands.

347

Chapter 12: Debugger Commands

How Pulldown Menus Map to the Command Line

Pulldown

Command Line

File -.Context-Directory

File -~Context—Symbols

File —~Load —Emulator Config

File —~Load —Executable

File —~Load —Program Only

File -~Load -Symbols Only

File ~Load —User-Defined Macros
File - Store-Startup (.rc) file (as default)
File - StoreStartup (.rc) file

File »Store-User-Defined Macros
File -~Store~BBA Data

File -~Copy Window -

File —~Log —Playback

File -Log -Record Commands

File -Log -»Stop Command Recording
File ~Log —»Record Journal

File -Log —Stop Journal Recording

File ~Emul700-Emulator/Analyzer (Graphic)

File ~Emul700-Emulator/Analyzer (Term)
File - Edit -File

File -Edit -At () Location

File -Edit -At PC Location

File >Term

File -Exit ~Window

File -Exit —Locked

File -Exit -Released

Debugger Directory Change_Working
Program Context Set

Debugger Execution Environment Load_Config
Program Load Default

Program Load New Code_OnlyNo_Pc_Set
Program Load New Symbols_OnlyNo_Pc_Set
File Command < filename>

File Startup

File Startup < filename>

N/A

Memory Unload_BBA < filemme>

File User_Fopen Append < win> File < filename>
File Command

File Log On < filename>

File Log oFF

File Journal On

File Journal oFF

N/A

N/A

Debugger Host_Shell < editor>

Debugger Host_Shell < editor_dine>
Debugger Host_Shell < editor_dine>
Debugger Host_Shell

Debugger Quit Yes

Debugger Quit Locked

Debugger Quit Released

348

Chapter 12: Debugger Commands

Pulldown

Command Line

Display-Context
Display—~Memory -Mnemonic ()
Display—-Memory -byte
Display—-Memory —word
Display—Memory -long
Display-Source ()
Display-Source at PC
Display-Source Find Fwd ()
Display-Source Find Back ()
Display-Source Find Again
Display-C Expression ()
Display-Var/Expression ()
Display—Monitor Variable
Display-All symbols ()
Display-Symbols-.Data & Macros ()

Display-Symbols-Functions & Labels ()
Display-Symbols—Modules ()

Display—-Symbols-Browse C+ + Class ()
Display-Error Log

N/A

Memory Display Mnemonic
Memory Display Byte
Memory Display Word
Memory Display Long
Program Display_Source
Program Context Set

Program Find_Source Occurrence Forward

Program Find_Source Occurrence Backward

Program Find_Source Next
Expression C_Expression

Expression Display Value

Expression Monitor Value

Symbol Display Default

Symbol Display Options Data¯os
End_Options

Symbol Display Options Functions&labels

End_Options

Symbol Display Options Modules End_Options

Symbol Browse
N/A

Modify —Emulator Config
Modify —C Expression ()
Modify ~Memory

Modify ~Memory at ()
Modify —~Register

Debugger Execution Environment Modify_Config

Expression C_Expression < variable> =
Memory Assign

Memory Assign Long

Expression C_Expression @reg

Execution-Run -from PC
Execution-Run -from ()
Execution-Run —from Transfer Address
Execution-Run -from Reset

Execution-Run -until ()
Execution-Step Over-
Execution-Step-
Execution-Reset to Monitor
Execution-Set PC to Transfer

Program Run

Program Run From

Program PC_Reset - Program Run
Debugger Execution Reset_Processor
Program Run

Program Run Until

Program Step Over

Program Step

Debugger Execution Reset_Processor
Program Pc_Reset

349

Chapter 12: Debugger Commands

Pulldown

Command Line

Breakpoints »Set-Instruction ()
Breakpoints »Set-Read ()
Breakpoints - Set-Write ()
Breakpoints - Set—Read/Write ()
Breakpoints —»Delete ()
Breakpoints »Delete All
Breakpoints - Edit/Call Macro

Breakpt Instr
Breakpt Read
Breakpt Write
Breakpt Access
Breakpt Delete
Breakpt Clear_All
N/A

Window -

Window Active < window name>

Settings—High Level Debug
Settings—-Assembly Level Debug
Settings—-Debugger Options
Settings-Command Line

Debugger Level High_Level
Debugger Level Assembly
N/A

N/A

350

Chapter 12: Debugger Commands

How Popup Menus Map to the Command Line

Code window pop-pup

Command Line

Set/Delete Breakpoint
Attach Macro

Edit Attached Macro
Edit source

Run until

Trace After

Trace Before
Trace About

Trace Until

Breakpt Instr or Breakpt Delete

N/A

N/A

N/A

Program Run Until # < line_number>
Trace Trigger Address Is # < line_number>
Is CycTyp Fetch PosnTrig Start

Trace Trigger Address Is # < line_number>
Is CycTyp Fetch PosnTrig End

Trace Trigger Address Is # < line_number>
Is CycTyp Fetch PosnTrig Center

Trace Trigger Address Is # < line_number>
Is CycTyp Fetch BrkOnTrg PosnTrig End

Status

Status

Status

Status

Default window pop-up

Command Line

Highlight/Toggle Window

Remove Window

Window Active/ < window_name>
Window Toggle_View
N/A

Breakpoint window pop-up

Command Line

Delete Breakpoint
Delete All Breakpoints

Breakpt Delete < brkpt_nmbr>
Breakpt Clear All

Monitor window pop-pup

Command Line

Delete Variable
Delete All Variables

Expression Monitor Delete < number>
Expression Monitor Clear_All

351

Chapter 12: Debugger Commands

Backtrace window pop-up

Command Line

Disp Source at Stack Level
Disp Vars at Stack Level
Run Until Stack Level

Program Context Set @< level>
Program Context Expand @< level>
Program Run Until @< level>

Status Line Popup

Command Line

Command Line On/Off
Remove Temporary Message

N/A
N/A

Command Line Popup

Command Line

Forward Tab
Backward Tab
Execute Command
Clear to End of Line
Clear Entire Line
Command Line On/Off

< Tab>

< Shift> -< Tab>
< Return>

< Ctrl> -E

< Ctrl>-U

N/A

352

Chapter 12: Debugger Commands

Command Summary

Breakpoint Commands

Breakpoint commands control execution gfragram.

Command Definition

Breakpt Access Set a breakpoint on access (read/write) of an address
Breakpt Clear_All Clear all breakpoints

Breakpt Delete Delete specified breakpoints

Breakpt Instr Set an instruction breakpoint

Breakpt Read Set a breakpoint on a read from an address

Breakpt Write Set a breakpoint on a write to an address

Session Control Commands

The session control commands select debugger operating modes, set debugger
session options, define and display macros, allow access to the host operating
system, and end debugger sessions.

Command Definition
Debugger ? Access debugger on-line help
Debugger Directory Display or change present working directory

Debugger Execution Display_Status Display current directory and files in use
Debugger Execution Environment Configure and control emulation environment

Debugger Execution |O_System Control debugger simulated I/O

Debugger Execution Load_State Restore previously saved debuggesssen
Debugger Execution Reset_ProcessorSimulate microprocessor reset

Debugger Host_Shell Enter HP-UX operating system environment
Debugger Level Select debugger mode (high-level or assembly)
Debugger Macro Add Create a macro

Debugger Macro Call Call a macro

Debugger Macro Display Display macro source code

Debugger Option Set or list debugger options for this session
Debugger Pause Pause debugger session

Debugger Quit Terminate a debugging session

353

Chapter 12: Debugger Commands

Expression Commands

Expression commands calculate exgsien values, print formatted output to a
window, and monitor variables.

Command

Definition

Expression C_Expression
Expression Display_Value
Expression Fprintf
Expression Monitor Clear_All
Expression Monitor Delete
Expression Monitor Value
Expression Printf

Calculate the value of a C expression

Display the value of an expression or variable
Print formatted output to a window
Discontinue monitoring all variables
Discontinue monitoring specified variables
Monitor variables

Print formatted output to Journal window

File Commands

File commands read amdocess command files, open files or devices for
writing, log debugger commands to a file, and save debugger startup
parameters.

Command

Definition

File Command

File Error_Canmand
File Journal

File Log

File Startup

File User_Fopen
File Window_Close

Read in and process arnsmand file

Set command filereor handling

Copy Journal window output to a journal file
Record debugger commandstes in a file

Save the default startup options

Open a file or device for read or write access
Close the file associated with a window number

354

Chapter 12: Debugger Commands

Memory Commands

Memory commands do operations on the targetapimcessor’snemory.

Command Definition

Memory Assign Change the values of memory locations
Memory Block_Operation Copy Copya memory block

Memory Block_Operation Fill Filla memory block with values

Memory Block_Operation Match Compare two blocks of memory
Memory Block_Operation Search Search a memory block for a value

Memory Block_Operation Test Examine memory area for invalid values
Memory Display Display memory contents

Memory Register Change the contents of a register
Memory Unload_BBA Unload BBA data from programemory

355

Chapter 12: Debugger Commands

Program Commands

Program commands load and exequtegrams, control program execution,
display source code and program variables, and set or cancel program

interrupts.

Command Definition
Program Context Set Specify current module and function scope
Program Context Display Display all local variables of a function
Program Context Expand Display all local variables of a function at

the specified stack (backtrace) level
Program Display_Source Display C source code
Program Find_Source Occurrencd-ind first occurrence of a string
Program Find_Source Next Find next occurrence of a string
Program Interrupt Add Simulate an interrupt
Program Interrupt Remove Cancel all pending interrupts
Program Load Load an absolute file for debugging
Program Pc_Reset Reset the program starting address
Program Run Start or continue program execution
Program Step Execute a number of instructions or lines
Program Step With_Macro Execute macro after each instruction step

Symbol Commands

Symbol commands add, remove, and display symbols.

Command Definition

Symbol Add Add a symbol to the symbol table
Symbol Browse Browse C+ + class

Symbol Display Display symbol, type, and address
Symbol Remove Delete a symbol from the symbol table

356

Chapter 12: Debugger Commands

Trace Commands

Trace commands let you do bus level tracingoafryprogram activity with bus
cycle store qualification of data.

Command Definition

Trace Again Start a trace using the last defined trigger and qualification terms
Trace Display Display trace information in the View window

Trace Event Clear_All Clear (remove) all defined events

Trace Event Delete Delete specified events

Trace Event List List terms (conditions) of specified event

Trace Event Specify Define an event (combination of bus conditions)

Trace Event Used_List List summary of trace events in the View window

Trace Halt Stop the current trace

Trace StoreQual Specify the bus conditions to be stored (captured)

Trace StoreQual Event Specify a previously defined event to be stored (captured)
Trace StoreQual List List the current storage qualification terms

Trace StoreQual None Disable current storage qualification terms (store everything)
Trace Trigger Specify the bus conditions to be used to trigger (start) a trace
Trace Trigger Event Specify a previously defined event to be used as the trigger
Trace Trigger List List the current trigger terms in the View window

Trace Trigger Never Disable current trigger terms (start trace on any bus state)

Window Commands

Window commands do operations on the debugger windows.

Command Definition

Window Active Activate a window

Window Cursor Set the cursor position for a window
Window Delete Remove a user-defined window or screen
Window Erase Clear data from a window

Window New Make a new screen or window

Window Resize Change the size of a window

Window Screen_On Activate a screen

Window Toggle_View Select the alternate display of a window

357

Chapter 12: Debugger Commands
Breakpt Access

Breakpt Access

(Breakpt >—>< Access

C‘ <addr> \‘ j \' j <Return>
..<addr> ;<macro_ call>

The Breakpt Access command sets an access breakpoint at the specified
memory location (< addr>) or range (< addr> ..< addr>). The access
breakpoint halts program execution each time the target program attempts to
read from or write to the specified memory location or range. Memory
locations may contain code or data.

You can attach a macro to a breakpoint using the optional < macro_call>
parameter. See the chapter titled “Using Macros and Command files”.

Each time the debugger detects an access of the address or range, it does the
following:

1 Suspends program execution.

Sometimes execution may stop a few instructions past the instruction
causing the access. This is called "skid."

2 Executes a macro (if you attached one to the breakpoint). Depending on
the macro return value, the debugger does one of the following actions:

— Ifthe macro return value is true (nonzero), the debugger resumes
execution with the next instruction after the instruction that
caused the read or write to the memory location. No breakpoint
information is displayed.

— Ifthe macro return value is false (zero), the debugger returns to
command mode and displays breakpoint information.

3 Returnsto command mode if no macro was attached and displays
breakpoint information.

358

Note

See Also

Examples

Chapter 12: Debugger Commands
Breakpt Access

Interaction with trace commands

The Breakpt Access command and Trace Trigger command both require use
of emulation analyzer resources. If access breakpoints are active (indicated by
the messag@RC: BrkRWA on the status line), then a Trace Trigger

command may not be entered. If a trace trigger is active, a Breakpt Access
command may not be entered.

If a trace is started using the emulator interface, debugger read/write/access
breakpoints will be disabled until the trace has been completed. It is
recommended not to use the debugger read/write/access breakpoints and the
emulator interface trace specification feature at the same time.

The Breakpt Access command sets up a trace with the trigger at the end of the
trace buffer, using the current storage qualification. You can display the trace
after the break occurs to see the cycles leading up to the break.

Breakpt Clear_All Breakpt Write
Breakpt Delete Program Run
Breakpt Instr Program Step

Breakpt Read

To set a breakpoint on accesses of addresses ‘assign_vdutougjh
‘assign_vectors’'+ 16:

Breakpt Access &assign_vectors..+16

To set a breakpoint of access of the address of the variable ‘current_temp”.
Breakpt Access ¤t_temp

To stop program execution when the value of variable system_running is
read as TRUE:

Breakpt Access &system_running; when (system_running==1)

The predefined macro when’is executed when the breakpoint is encountered.

359

Chapter 12: Debugger Commands
Breakpt Clear_All

Breakpt Clear_All

() (Clear Al)
Breakpt Clear All } <Return>

The Breakpt Clear_All command clears (removes) all defined breakpoints.

See Also
Breakpt Access Breakpt Write
Breakpt Delete Program Run
Breakpt Instr Program Step
Breakpt Read

Examples To remove all defined breakpoints:

Breakpt Clear_all

360

Chapter 12: Debugger Commands
Breakpt Delete

Breakpt Delete

<brkpt nmbr> L j <Return>
.<brkpt _nmbr>

The Breakpt Delete command deletes (removes) one or more previously set
breakpoints. When you set a breakpoint, the debugger assigns it a breakpoint
number. Use this breakpoint number (< brkpt_nmbr>) to remove a specific
breakpoint. You can delete a group of breakpoints by specifying a range of
breakpoint numbers (< brkpt_nmbr> ..< brkpt_nmbr>). The debugger
displays the breakpoint numbers in the Breakpoint window.

When you remove a breakpoint, the Breakpoint window displays the
remaining breakpoints. Any breakpoints following the one removed are

renumbered.

See Also
Breakpt Access Breakpt Write
Breakpt Clear_All Program Run
Breakpt Instr Program Step
Breakpt Read

Examples To delete breakpoint number 2:

Breakpt Delete 2 .

To delete breakpoint numbers 3 through 5:

Breakpt Delete 3..5

361

Chapter 12: Debugger Commands
Breakpt Instr

Breakpt Instr

C Breakpt)——(Instr

C

<addr>

Note

\' j \‘ j <Return>
..<addr> ;<macro _call>

The Breakpt Instr command sets artinstion breakpoint at a specified

memory location (< addr>) or range (< addr> ..< addr>). The instruction
breakpoint halts program execution each time the target program attempts to
execute an instruction at the specifradmory location(s). If you specify a

range, the debugger sets breakpoints on the first byte of each instruction
within the specified range or (in high-level mode) the first instruction of each
line within the range.

If you set a breakpoint for an overloaded C+ + function, the debugger will ask
you to choose which definition of the function to use. You can also specify the
argument type of the function definition in parentheses after the function
name in the Breakpt Instr command.

The debugger/emulator cannot set instruction breakpoints on address
locations in target ROM.

You can attach a macro to a breakpoint using the optional < macro_call>
parameter. See the “Using Macros and Command Files” chapter.

The debugger performs the following actions when it encounters an
instruction breakpoint:

1 Suspends program execution before the program executes the instruction
at the breakpoint address.

2 Executes a macro (if you attached one when you set the breakpoint).
Depending on the macro return value, the debugger does one of the
following actions:

362

See Also

Examples

Chapter 12: Debugger Commands
Breakpt Instr

— Ifthe macro return value is true (nonzero), the debugger resumes
execution starting at the instruction where the break occurred. No
breakpoint information is displayed.

— Ifthe macro return value is false (zero), the debugger returns to
command mode whout executing the instruction where the break
occurred and displays breakpoint information.

3 Returnsto command mode whout executing the instruction where the
break occurred if no macro was attached and displays breakpoint

information.
Breakpt Access Breakpt Write
Breakpt Clear_All Program Run
Breakpt Delete Program Step

Breakpt Read

To set an instruction breakpoint at line 82 of the current module:

Breakpt | nstr #82

To set an instruction breakpoint at line 83 of the current module only when
the system is running (using the predefined macro when’:

Breakpt | nstr #83; when (system_running)

To set an instruction breakpoint starting at address 10deh and ending at
address 10e4h:

Breakpt | nstr 10deh..10e4h

To set instruction breakpoints beginning on lines 15 through 25 of modul
initSystem’:

Breakpt | nstr initSystem\#15..#25

363

Chapter 12: Debugger Commands
Breakpt Read

Breakpt Read

(Breakpt >—>< Read

C

<addr>

See Also

Examples

\‘ j \' j <Return>
..<addr> ;<macro_ call>

The Breakpt Read command sets a read breakpoint. The read breakpoint halts
program execution each time the target program attempts to read data from
the specified memory location (< addr>) or range (< addr> ..< addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

Breakpt Access

To set a breakpoint on reads from variable 'system_running”

Breakpt Read &system_running

To set aread breakpoint starting at the address of variable 'current_temp’and
ending 8 bytes after the address of current_temp”:

Breakpt Read ¤t_temp..+8

To stop program execution when the value of variable system_running is read
as TRUE:

Breakpt Read &system_running; when (system_running==1)

364

Chapter 12: Debugger Commands
Breakpt Write

Breakpt Write

(Breokpt >—>< Write

C‘ <addr> \' f \' J <Return>
..<addr> ;<macro_call>

The Breakpt Write command sets a write breakpoint. The write breakpoint
halts program execution each time the targemory attempts to write data to
the specified memory location (< addr>) or range (< addr> ..< addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

See Also Breakpt Access

Examples To set a breakpoint to occur when the program writes a false value to variable
'system_isrunning’
Breakpt Wite &system_running; when (system_running==00)
To set a write breakpoint starting at the address of global variable
‘current_temp’and ending 8 bytes after the address of ‘current_temp”

Breakpt Wite ¤t_temp..+8

365

Chapter 12: Debugger Commands

Debugger Directory

Debugger Directory

(Debugger)—»(Directory Show_Working) J <Return>

Examples

Chonge_Working>—> <directory>

The Debugger Directory command displays or changesutrerct working
directory. When you specify tHghow_Workingarameter, the debugger
displays the current working directory in the journal window. When you
specify theChange_Workingarameter with a directory name, the debugger
makes that directory the current working directory.

Changing the working directory will change thement working directory in
all interfaces connected to the emulator.

To display the current working directory:

Debugger Directory Show_Working

To change the current working directory to /users/project/sources:

Debugger Directory Change_Working /users/project/sources

366

Chapter 12: Debugger Commands
Debugger Execution Display_Status

Debugger Execution Display_Status

Debugger = Display Status = <Return>

The Debugger Execution Display_Status command activates the debugger
View window and displays the following status information:

Version of debugger

Current working directory

Current log file

Current journal file

Startup file used in current debugsen
Loaded absolute files

If no files have been loaded, the absolute file will besing from the display.

If multiple executable files have been loaded using the Program Load Append
command, they il be displayed in the View window. You may need to toggle
the window (click on the window border) to see all of the files.

Example To display product version, current working directory, and current log,
journal, startup, and absolute files in the View window:

Debugger Execution Display_Status

367

Chapter 12: Debugger Commands
Debugger Execution Environment FwdCmd

See Also

Debugger Execution Environment FwdCmd

<DebuggerHExecuTion}v@nvirommemf FwdCmd >—)
s

~— Emul yal }“<command>“H <Refurn>
—{ Perf
BMS
—— Debug
\‘C Ul_name)% ‘<Ul name=>" H <[aob=> }—/

The Debugger Execution Environment FwdCmd command enables you to
forward commands to other interfaces which are using the same emulator.

The other interfaces are:

Emul Emulator/analyzer interface. If several emulator
interfaces are sharing the emulator, the command will
be forwarded to the most recently started interface.

Perf Software Performance Analyzer.
BMS Broadcast Message Server (the Softbench Gateway).
Debug Debugger. This sends a command back to the debugger

you are using.

Ul_name An interface described by a string. The command will
be forwarded to an interface specified by a debugger or
target string array (char *).

If an interface of the type specified is currently running, thersroand> will
be executed there and any erroilslve displayed in that interface.

Predefined macro "cmd_forward".

368

Chapter 12: Debugger Commands
Debugger Execution Environment Load_Config

Debugger Execution Environment Load_Config

Debugger j—= Execut‘on)—@mv’rommem})
C{LoodComf% <''config file"> H <Return>

The Debugger Execution Environment Load_Config command loads an
emulation configuration file for the emulator. The emulation configuration

file contains configuration information for the emulator. The
debugger/emulator accepts files generated by the emulation software or by an
editor.

Note You cannot use tilde expansion when specifying emulator configuration files
with theDebugger Execution Environment Load_Config < "config_file">
command because the configuration file name must be enclosed in quotation
marks. However, you may use shell environment variables.

See Also The "Configuring the Emulator” chapter for detailed information on the
modify configuration command.

Example To load the emulation configuration file "mycnfig" (from within the debugger):

Debugger Execution Environment Load_Config "mycnfig"

Or, if "myenfig" is in another directory:

Debugger Execution Environment Load_Config
"$HOME/project/mycnfig"

369

Chapter 12: Debugger Commands
Debugger Execution Environment Modify _Config

Debugger Execution Environment Modify_Config

Debugger * = Emvwrommembé@oj\fnyDmﬂgD—“ <Return=

The Debugger Execution Environment Modify_Config command starts a
process which allows you to modify the current emulator configuration.

See Also The “Configuring the Emulator” chapter in this manual.

370

Chapter 12: Debugger Commands
Debugger Execution IO_System

Debugger Execution IO_System

Debugger ExecutionHO_System)U

-

“—={ Enable

7 <Return>

L><Stdio_Redirec‘D—*‘ <"stdin__name","stdout _name","stderr_name'> }—/

N Report)

— Keyboard EOF)

The Debugger Execution IO_System command enables you to configure the
simulated I/O system to use the host system keyboard, display, and file system
to simulate 1/0O devices for your target program.

Debugger Execution |0_System Enable

The Debugger Execution 10_System Enable command enables the debugger
simulated I/O system. Remember, you also need to configure the emulator for
simulated I/O polling and addresses.

Debugger Execution |0_System Disable

The Debugger Execution 10_System Disable command disables the debu
simulated I/O system.

Debugger Execution |O_System Stdio_Redirect

The Debugger Execution 10_System Stdio_Redirect command allows you to
define the standard 1/O input (< stdirmame>), output (< stdout_name>),
and error (< stderr_ame>) files/devices. These are file/device names in the

371

Chapter 12: Debugger Commands
Debugger Execution I0_System

See Also

host computer file system. Two special filenames allow you to access the
system keyboard (/dev/simio/keyboard) and the system display
(/dev/simio/display).

Debugger Execution |O_System Mode

The Debugger Execution 10_System Mode command selects how keyboard
I/O input is processed. Keyboard I1/O may be either cooked or raw.

Cooked Mode. In cooked mode, the target program gets input from the
keyboard in the form of lines. Editing operations, such as backspace, line Kill,
etc., on inputis done bythe debugger. WReturn or CTRL D is entered,

the line is passed to the target program by the simulated 1/0O system. The
keyboard input is echoed to the screen during the editing operation. If
program execution is interrupted by enterin@Gtrl> -C before the line is
entered, the characters on the input line are lost.

Raw Mode. In raw mode, each keystroke is passed from the keyboard to the
simulated I/O system with no praseng. No carriage retn is needed to enter
characters and no editing operations are available. In the raw mode any
character is valid, includinGTRL D. No characters are echoed to the screen
upon entry. The only special character that cannot be sent to the target
program i< CtrlI> -C which is used to interrupt the debugger’s execution of
the program.

Debugger Execution I0_System Keyboard_EOF

The Debugger Execution 10_System Keyboard_EOF command causes the
keyboard to return EOF (end offile). The keyboardatn is marked as being
at EOF. Further reads from the keyboard return EOF.

Debugger Execution |O_System Report

The Debugger Execution 10_System Reporhowand displays the status of
the simulated I/O system.

The "Using Simulated 1/0" section in the "Viewing Code and Data" chapter.
The "Environment-Dependent Routines" chapter in@®@20 C Cross
Compiler Referencer 68030 C Cross Compiler Referemoanual.

372

Chapter 12: Debugger Commands
Debugger Execution IO_System

Examples To enable simulated 1/O:

Debugger Execution | O_System Enable

To disable simulated I/O:

Debugger Execution | O_System Disable

To redirect the standard input file to the keyboard, the standard output file to
the display, and the standard error file to file Jusers/project/errorfile’.

Debugger Execution | O_System Stdio_Redirect
"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"

To redirect the standard input file to temp.dat’, the standard output file to
‘cmdout.dat’, and the standard error file to file ‘errorlog.err”.

Debugger Execution | O_System Stdio_Redirect

"temp.dat","cmdout.dat","errorlog.err"

To set data input mode to cooked:

Debugger Execution | O_System Mdde Cooked

373

Chapter 12: Debugger Commands
Debugger Execution Load_State

Debugger Execution Load_State

<Debugger>—'<Execution)—{Lood_Stote) L j <Return>
<save_file>

Example

The Debugger Execution Load_State commantbres thememory contents
and register values saved with the debugger/simulator Debugger Execution
Save_State command. If you do not specify a file name (< save_file>), the
debugger uses the default filb68k.savor the 68020 and the filgh68040.sav
for the 68030.

To restoranemory contents and register values saved in save file "session1":

Debugger Execution Load_State sessionl

374

Chapter 12: Debugger Commands
Debugger Execution Reset Processor

Debugger Execution Reset_Processor

Debugger * = Reset Processor } <Return>

The Debugger Execution Reset_Processormmand resets the
microprocessor to its initial state. It performs the following operations:

1 The program counter is loaded from exception vector 1 at location 4.

2 The interrupt stack pointer is loaded from exception vector 0 at location O
in memory.

3 The status register is reset as follows;

— the trace bits are cleared,

— the supervisor bit is set to 1,

— the master bit is set to 0,

— the interrupt priority mask is set to level 7.
All other bits in the status register are set to 0.

The vector base register is set to 0.
The cache control register is set to O.
Any pending interrupt or exception is cleared.

Registers A0-A6 and DO-D7 are set to 0.

© 00 N o O b

The emulator breaks into the emulation monitor.

Note Memory is not reinitialized by the Debugger Execution Reset_Processor
command. Therefore, C variables are not reset to their original values. Use the
Program Load New Code_Only command to reset C variables.

See Also Program Pc_Reset

Example To reset the microprocessor:

Debugger Execution Reset_Processor

375

Chapter 12: Debugger Commands

Debugger Host_Shell

Debugger Host_Shell

(:Debugger:>4%i:Hosf,SheH :}:>

<command>

<Refturn>

NoPrompt

The Debugger Host_Shell command enables you tpoearily leave the
debugging environment by forking an operating system shell or to execute a
single UNIX operating system command from within the debugger. The type
of shell forked is based on the shell variable SHELL. In this mode, you may
enter operating-system commands. Tareto the debugger, ent&TRL D

or typeexit and press thReturn key.

INBrowser

NaPrompft

You can execute operating system commands from within the debugger by
entering a single operating system command with the debiggrrgger
Host_Shell command. If you are using the graphical interface, the
operating system command is executed in a "cmdscript" window. Press

< Return> to close the window. If you are using the standard intersadeut
from the command is written to theurnal window andtderris not

captured. Commands writing sdderrwill corrupt the display. Interactive
commandgannotbe used in this mode.

The following options are available only in the graphical user interface:

InBrowser

Directs stderr and stdout of the command into text browser windows.

376

See Also

Examples

Chapter 12: Debugger Commands
Debugger Host_Shell

Wait

Suspends the interface until the command completes.
NoPrompt

When the command completes, the "cmdscript" window is closed

immediatelly.

Debugger Quit

To temporarily exit the debugger to the UNIX operating systemmncand
mode:

Debugger Host_Shell

To write the current working directory to the journal window:

Debugger Host_Shell pwd

377

Chapter 12: Debugger Commands

Debugger Help

Debugger Help

Debugger

Example

S ?(Help) <Return>

This command displays the dine help screen. The debuggeiovides orline

help for all debugger commands, debugger command arguments, and debugger
function keys. You can access on-line help by entering themand

Debugger ? or by pressing thE5 function key.

If you are using the graphical interface, a Help dialog box will be displayed. If
you are using the standard interface, a menu will appear in the display area.

If you enter the commanBebugger ? in the standard interface, the

debugger puts the cursor at the top of the topic list in the help menu. If you
press thd=5 function key, the debugger puts the cursor at the entry for the
command displayed on the command line (if one is displayed). Otherwise, the
cursor is positioned at the top of the topic list. You can select topics from the
help menu in two ways:

» Use the cursor keys to move to the desired topic and preBethm
key.

* Type the first letter of the desired topic. This positions the cursor at that
topic. Then press thReturn key.

Use theReturn keyto see more topics in alphabetical order.

To exit help in the standard interface, pressEbe (escape) key twice or
press function kelg5.

To display the debugger help screen:
Debugger ?

378

Chapter 12: Debugger Commands
Debugger Level

Debugger Level

Debugger - Level

<Return>

Assembly

- H

igh Level

The Debugger Level command selects either high-level mode or
assembly-level mode for debugging. When debugging programs containing C
modules, you can switch back and forth between the two modes. If the
program contains no high-level modules asigle to the debugger, the
debugger displays an error message if you attempt to select high-level mode.

If no parameters are specified with this command, the mode is switched back
and forth between the two modes, performing the same function &8the
function key.

Examples To select the assembly-level debug mode:

Debugger Level Assembly

To select the high-level debug mode:

Debugger Level High_Level

To switch to the alternate debug mode:

Debugger Level

379

Chapter 12: Debugger Commands
Debugger Macro Add

Debugger Macro Add

(Debugger)—{ Macro }={ Add \‘

C‘ <macro_name>

J

<type>

@ ‘@—» <Return>
L <param_list> j

The Debugger Macro Add command defines a macro.

The name of the macro is specifieddiyacro_name>. The result type of the
macro is specified bytype> . If a type is not specified, it defaults to type int.
A parenthesized list of pameterg<param_list>) may optionally follow
the macro name. Parameter names must be composed of alphanumeric
characters. A maximum of 40 parameters is allowed.

When you enter the Debugger Macro Add command, ¢dluenhl window is
automatically enlarged, and the debugger displays the macro text prompt
character (>) indicating that you can enter the macro body.

Note If the stdio screen or a user-defined screen is active when the Debugger Macro
Add command isssued, thedurnal window wl not become active. Keyboard
input at this point Vll be interpreted by the debugger as the macro definition.

To terminate the macro definition, a period (.) must be entered as the first and
only character on a line.

The macro definition consists of all lines entered after the mamerand
before the terminating period. The macro definition consists ofdhecs
lines of the macro (the macro body) and optional formal arguments. The
syntax for the macro body is:

{macro_statement; [macro_statement;]...}

380

Chapter 12: Debugger Commands
Debugger Macro Add

The curly braces ({}) are required punctuation. Formal arguments can be
used throughout the macro definition, and are later replaced by the actual
arguments in the macro call.

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macros interactively, the debugger does not
respond to more than 78 characters on a line. When readimgraaoad file,

the debugger stops recognizing characters 2fiBrcharacters have been read
on a line.

The maximum number of lines allowed in a macro depends on the complexity
of the lines. Macros with too many lines (too complex) will fardg 92 'Not
enough memory for expressianill be displayed.

A macro is similar to a C function. The body can contain anylegal C statement
(except the SWITCH and GOTO statements). The statements IF, ELSE, DO,
WHILE, FOR, RETURN, BREAK, and CONTINUE can be used to control
program flow within a macro, just as in C. Macros have return types and can
be used in expressions.

Note Debugger commands may be used in macro definitions; they are indicated by
placing a dollar sign ($) at the beginning and the end of a command sequence.
For example, the following command sequences are legal in macro definitions:

$Program Find_Source Occurrence Forward system$;
or

$

Memory Assign Long &time=12

Program Find_Source Occurrence Forward system
$;

Macros can be executed by specifying the macro name on the command line in
a Debugger Macro Call command, in an egsien, or with a breakpoint
command.

Macros can be removed using the command:

Symbol Remove <macro_name>

See Also Breakpt Access
Breakpt Instr
Breakpt Read
Breakpt Write

381

Chapter 12: Debugger Commands

Debugger Macro Add

Example

Debugger Macro Call

Debugger Macro Display

Program Run

Symbol Remove

The “Using Macros and Command Files” chapter
The “Predefined Macros” chapter in this manual.

Debugger Macro Add int power(x, y)

int x;
int vy;
int i /* Loop counter */
int multiplier; /* Value x is multiplied by */

/* Multiply x by itself y -1 times */
for (i = 1, multiplier = x; i <y; i++)
X *= multiplier;

/* Return x My */
return x;

Debugger Macro Add void stackchk()

/* The symbols 'stack’ and 'TopOfStack’ exist in the compiler’s */
/* environment library, and are addresses which indicate the */
/* bottom and the top of the system stack. The symbol @sp is a */
/* debugger reserved symbol which contains the current value of */
[* the processor’s stack pointer. *

$Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
$Expression Printf "%d bytes of stack available", @sp - stack$;

382

Chapter 12: Debugger Commands
Debugger Macro Call

Debugger Macro Call

(Debugger)—{ Macro >—>< Call H <macro_call> H <Return>

See Also

Example

The Debugger Macro Call commandisa macro previously defined by the
Debugger Macro Add command or a macro built into the debugger.

Debugger Macro Add
Debugger Macro Display
Symbol Remove

To call the previously defined macro 'stackchk()*

Debugger Macro Call stackchk()

383

Chapter 12: Debugger Commands
Debugger Macro Display

Debugger Macro Display

C

See Also

<macro_name> \' j <Return>
,<user window nmbr>

The Debugger Macro Display command displays thece code for the

named macro. If a window number is specified (< user_window_nmbr>), the
macro source is written to the file or user-defined window associated with the
number. If you do not specify a window number, the macro source is written to
the Journal window.

Macro source for built-in macros cannot be displayed.

Debugger Macro Add
File Command
Symbol Display

Examples

To display the source for macro 'stackchk’in user-defined window 57:

Debugger Macro Display stackchk,57

To display the source for macro 'stackchk’in the Journal window:

Debugger Macro Display stackchk

384

Chapter 12: Debugger Commands
Debugger Option Command_Echo

Debugger Option Command_Echo

CDebugger)—{ Option)—{Commond_Echo " <Return>

oFF

The Debugger Option Command_Echo command controls whether or not
commands executed from a command file are echoed (copied) toutreal
window. If theoFF parameter is specified, only the results (if any) of a
command are copied to theurnal window. If theOnparameter is specified,
both the command and its results (if any) are echoed tootliradl window.
The default setting i®n

Examples To turn OFF echo to the Journal window oftmands executed from a
command file:

Debugger Option Command_Echo oFF

To turn ON echo to the Journal window ofimmands executed from a
command file:

Debugger Option Command_Echo On

385

Chapter 12: Debugger Commands
Debugger Option General

Debugger Option General

CDebugger)—{ Option >—{Cenerol >>

<Return>

Demand_Load
Step_Speed <nmbr 0..100> /

The Debugger Option General command changes the default values for the
following debugger startup options for the current debuggisgjce:

Align_Bp Aligns breakpoints with processor instruction start
Frame_Stop Controls stack walking

Demand_Load Enables/disables demand loading of symbols
Radix Interprets numbers as decimal or hex
Step_Speed Specifies the stepping speed

Use the Debugger Option List command to display threemt option values.

To permanently change any option default values, first use the Debugger
Option command to change the value(s) and then use the File Startup

386

Note

Chapter 12: Debugger Commands
Debugger Option General

command to save the new default values in a startup file. See the File Startup
command for more information.

Align_Bp

The Align_Bp option controls automatic alignment of low-level breakpoints
and automatic alignment of disassembly. If the Align_Bp option is séfito

the debugger locates what it interprets as the starting address of all
instructions in a module (by disassembling code from the beginning of the
module). If you try to set the breakpoint at an address other than the start of
an instruction, the debugger moves the breakpoint to the beginning of the next
instruction and displays a warning. If you try to disptagmory mnemonically

from an address other than the start of an instruction, the debugger moves the
disassembly address to the beginning of an instruction. No Warning is
displayed. If the Align_Bp option is set t&-F, the debugger lets you set the
breakpoint at any address. The default settingis

If multiple breakpoints exist in the same program areaAdigtdd_Bp is set
to On their alignment may be incorrect. Make sure fiign_Bp option is
set tooFF to prevent breakpoint alignment problems.

Frame_Stop

When you set the Frame_Stop optionQn if the debugger encounters a bad
stack frame, it displays only the valid stack frames below the bad frame in the
Backtrace window. When you set the Frame_Stop optiaFt the debugger
displays all frames, including the bad frame. The default settiofgAs

Demand_Load

When the Demand_Load option is setQq the debugger loads some symbol
information on an as-needed, demansdibaather than during the initial

loading of the executable (.x) file. Symbol information for global symbols,
local symbols in the source module containing main, and local symbols in
assembly modules are loaded during the initial load of the executable file.
Local symbols in C source modules other than that module which contains
main are loaded when the debugger explicitly references the module or when
the program is stopped with the program counter set to an address in the
module. Demand loading lets you load and deginograms that you could not

387

Chapter 12: Debugger Commands
Debugger Option General

See Also

Example

otherwise load because of very large amounts of symbol information. The
default setting for Demand_LoadasF.

There are several side effects of demand loading. The debugger command
Memory Unload_BBA is disabled. Type mismatehogs may not be detected
during the initial load of the executable (.x) file. Global symbols may have
leading underscores stripped, depending on whether they were defined or
referenced in a C or assembly source module.

Radix

The radix option causes the debugger to interpret numeric literals, including
integers and addresses, as either decimal or hexadecimal values. By default,
numeric literals are interpreted as decimal values.

If you setRadix to hexadecimal, any number you want interpreted as decimal
must be terminated with(for example, specify 32 as 32T). Binary numbers
are not available wheRadix is set to hexadecimal. Floating point and
enumeration type values are not affected by the radix option.

The Output parameter lets you specify whether the output of the Ezpre
Display_Value, Expression Monitor Value, and Program Context Expand
command is displayed in decimal or hexadecimal format.

Step Speed

The Step_Speed option specifies the stepping speed. The stepping speed can
be in the range of 0 to 100 units. Higher numbers represent slower speeds.
This option affects the Program Step command. The default value is 0.

File Startup
Debugger Option List

To align assembly-level breakpoints at the beginning of an instruction:

Debugger Option General Align_ Bp On

388

Chapter 12: Debugger Commands
Debugger Option List

Debugger Option List

The Debugger Option List commalfists the arrent debugger option values
in the Journal window. Thiést will be similar to the sample list shown in the
example.

See Also Debugger Option Command_Echo
Debugger Option General
Debugger Option Symbolics
Debugger Option View

Examples To list the errent debugger option settings in the Journal window:

Debugger Option List

> Debugger Option List
Processor =68020
Intermixed =0On
Assem_Symbols = On
Step_Speed =0
Radix = Decimal_Input, Decimal_Output
Stdio_Window = Swap
Check_Args =oFF

Align_Bp = oFF
Breakpt_Window = Swap
More =0n
Highlight = Inverse

Frame_Stop = oFF
Command_Echo = oFF
View_Window = Swap
Demand_Load = oFF
Amt_Scroll =1
Trace_Counts = True
Fetch_Align = Byte

389

Chapter 12: Debugger Commands
Debugger Option Symbolics

Debugger Option Symbolics

(Debugger >—>< Option HSymbolics))

Assem_Symbols <Return>

Intermixed

Check Args

The Debugger Option Symbolics command changes the default values for the
following debugger symbol options and C source line display options for the
current debugging ssion:

Assem_Symbols Displays symbols in assembly code
Intermixed Intermixes C source with assembly code
Check_Args Enables parameter checking in commands and macros

Use the Debugger Option List command to display threemt option values.

To permanently change any option default values, first use the Debugger
Option command to change the value(s) and then use the File Startup
command to save the new default values in a startup file. See the File Startup
command for more information.

Assem_Symbols

The Assem_Symbols option causes symbols instead of memory addresses to be
displayed in the disassembled code whenever possible. Syminelsrare

placed to the right of the disassembled code for immediate values. This is done
because there is no sure way of telling if the immediate value was represented
by the symbol at assembly time. This option is seDidy default.

390

Chapter 12: Debugger Commands
Debugger Option Symbolics

Intermixed

The Intermixed option intermixes C source code with the assembly code
generated for each respective C statement. This option is off by default.

Check_Args

The Check_Args option controls parameter checking in commands and
macros. lfoFF is selected, the debugger does not do any argument checking. If
Onis selected, the debugger warns you when an assignment is made which
contains a C type mismatch. This option is off by default.

See Also File Startup

Examples To display symbol names instead of address values in disassembled code:

Debugger Option Symbolics Assem_Symbols On

To turn OFF display of C source lines in assembly-level Code window:

Debugger Option Symbolics | ntermixedo FF

To enable debugger expression parameter checking:

Debugger Option Symbolics Check Args On

391

Chapter 12: Debugger Commands
Debugger Option Trace

Debugger Option Trace

<Debugger)——< Option }(Trace

<Refurn>

See Also

Feich_Align

The Debugger Option Trace command changes the default behavior of
bus-level tracing.

Count
If Count isNothing , all of the trace memory will be used toe bus states.

If Count isTime, half of the trace memory will be used tore timing
information.

The debugger interface does not display timing information. Use the
emulator/analyzer interface to display timing.

Fetch_Align

The Fetch_Align option allows you to trigger a trace on an instruction’s
address which never appears on the bus. For example, this might happen
when an instruction for a processor witB2zbit bus lies between longword
boundaries. The Fetch_Align operation masks address values so that they
appear to occur on the boundaries appropriate for the processor’s bus width.

Defaults are Count Nothing and Fetch_Align Long. If you are ubinlit
memory with a 68030, yolthsuld specify Fetch_Align Word.

Information about "equivalent addresses" in your analyzer manual.

392

Chapter 12: Debugger Commands
Debugger Option View

Debugger Option View

Debugger — . View

\{Brec kaWimdow\ _ On <Return>
~—= Highlight %\HO\LBmght —"
Inverse

k{ More _ On —

= Stdio_Window

= Amt_Scroll = <nmbr W..50>‘/

The Debugger Option View command changes the default values for the
following debugger display options for the current debuggisgisa:

Breakpt_Window
View_Window
Highlight

More
Stdio_Window
Amt_Scroll

Use the Debugger Option List command to display threemt option values.

To permanently change any of the default values, first use the appropriate
Debugger Option command to change the value(s) and then use the File
Startup command to save the new default values in a startup file. See the File
Startup command for more information.

393

Chapter 12: Debugger Commands
Debugger Option View

Breakpt_Window

The Breakpt_Window option controls the display of the breakpoint window.

The Onsetting causes the Breakpoint window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
breakpoint is set or deleted.

If you specify theSwapsetting, the window is not automatically displayed.
You must set or delete a breakpoint or enter the Window Active Breakpoint
command to display the window. The default settin§vigp.

View_Window
The View_Window option controls the display of the view window.

The Onsetting causes the View window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
Debugger Execution Display_Status command is executed.

If you specify theSwapsetting, the window is not automatically displayed.
You must enter the Debugger Execution Display_Status command or the
Window Active View command to display the window. The default setting is
Swap.

Highlight

The Highlight option determines whether highlighted information in
debugger windows is displayed in half-bright video or inverse video. The
default is Inverse.

More

The More option controls how information resulting from a debugger
command idisted to the durnal window.

If the More option isOn, information is listed one screen at a time in the
Journal window, in the same way as the momarmo@and in the Unix operating
system works.

If the More option iFF, all information resulting from a debugger command
is written to the display at once, making it difficult to view information greater
than the number of lines available in the Journal window. The default setting
isOn

394

Chapter 12: Debugger Commands
Debugger Option View

Stdio_ Window
The Stdio_Window option controls the display of the Stdio window.

The Swapsetting causes the Stdio window to be displayed when a program
writes to it and to be removed when the program returns to thenend
mode.

The Onsetting causes the Stdio window to be displayed at all times. The
window may be hidden by other windows but will be displayed whgrogram
is writing to it.

If the oFF setting is selected, the window is not automatically displayed. You
must press function ké¥6 or enter the commandindow Screen_On
Stdio to display the window.

The default setting iSwap

Amt_Scroll

The Amt_Scroll option controls the amount that the Journal and Stdio
windows are scrolled when written to. When the output reaches the bottom of
the window, the data scrolls up one line by default. You can specify a number
of lines from one to 50.

Examples To set the Swap option so that the Breakpoint window is displayed only when
the Window Active Breakpoint command is executed:

Debugger Option View Breakpt Window Swap

To set the View_Window option so that the view window is always displayed:

Debugger Option View View_Window On

395

Chapter 12: Debugger Commands

Debugger Pause

Debugger

See Also

Examples

Debugger Pause

J } <Return>
Time >—> <seconds>

The Debugger Pause Time command pauses the debugger for the specified
number of seconds or (if you enter the Debugger Pause commidnoditvihe
Time parameter) pauses the debugger until you press the space bar,

CTRL C, or the escape keféc) twice.The Debugger Pause command is
useful when executing command files.

File Command

To pause the debugger for ten seconds:

Debugger Pause Time 10

To pause the debugger until the space bar, CTRL C, or Esc-Esc is pressed:

Debugger Pause

396

Chapter 12: Debugger Commands
Debugger Quit

See Also

Debugger Quit

<Return>

S8
= Locked
(eemer)

The Debugger Quit command ends a debuggisgiee without saving the
session. If you enter the commabdbugger Quit Yes , the debugging
session is immediately ended.

The Debugger Quit command does not save the debuggisigseUse the
File Startup command to save themnt set of debugger startup options and
window parameters in a startup file.

Yes Option

The Yes option terminates only this interface to the emulator. If this is the
only interface using the emulator, the emulator will be left locked.

Locked Option

The Locked option lets you lock the emulation hardware (and a connected
target system) so that other users cannot access the hardware until it is
explicitly released.

This option will cause all interfacesrenected to the emulator to disconnect.

Released Option

The Released option releases the emulation hardware to other users on
host computer system.

This option will cause all interfacesrenected to the emulator to disconnect.

Debugger Host_Shell

397

Chapter 12: Debugger Commands
Debugger Quit

Examples To terminate the debugging session immediately:

Debugger Quit Yes

To terminate the debugging session and release the emulator hardware so that
other users can access it:

Debugger Quit Released

To terminate the debugging session and lock the emulator hardware so that

other users cannot access it:

Debugger Quit Locked

398

Chapter 12: Debugger Commands
Expression C_Expression

Expression C_Expression

The Expression C_Expression command calculates the value of most valid C
expressions or assigns a value to a variable. The result is displayed in floating
point or in decimal, hexadecimal, and ASCII formats.

The Expression C_Expression command can be used to set C variables by
specifying a C assignment statent. This command recognizes variable types,
and the assignment expressions specified behave according to the rules of C.

Note The Expression C_Expression commanaa evaluate conditionals of the
form:

<expression>?<expression>:<expression>

Examples To calculate the value of time’and display the result "data address 000091DC
{time_struct}":

Expression C_Expression time

To calculate the value of membépurs’ of structure ‘time’and display the
result "4 Ox04"

Expression C_Expression time->hours

To assign the value 1 to 'system risnning’ and display the result "1 0x01":

Expression C_Expression system_is_running = 1

399

Chapter 12: Debugger Commands
Expression Display_Value

Expression Display Value

Note

\\\‘ 4/(/ <Return>

.<expr>

The Expression Display_Value command displays esgio@s and their values
in the Journal window. All expssions displayed with this command are
displayed according to their type as shown in the following list:

Type

Ints
Longs
Shorts
Chars

Pointers
Enums

Arrays

Structures
Quoted String
Hex Byte
HexWord

Hex Double Word
Float

Double

Display Format

32-bit signed decimal numbers

32-bit signed decimal numbers

16-bit signed decimal numbers

8-bit characters (unsigned hexadecimal numbers if not
printable)

32-bit unsigned numbers

Name of Enumerator constant (enumerator value if
name not defined)

All elements

All members

All characters as typed, in by double quotes ("")
8-bit hexadecimal

16-bit hexadecimal

32-bit hexadecimal

32-bit floating point

64-bit floating point

The contents of an item such as an array is displayed instead of the C value of
the item, which is its address.

400

Chapter 12: Debugger Commands
Expression Display_Value

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the vafiatpés a
character array, the following command results in elem#ags/10]
throughflags/30] being displayed:

Expression Display_Value flags+10..+30

Note that the command first evaluaftigys[10] to a character, and uses
this as the base of the address rafdggs[30] s also evaluated to a
character. It is used as the end of the address range.

Any expression can be type cast to display it in a different format. All values
that make up a complextype are printed. For example, if the vaciaiieis
a long, the following statement displays it aparfcharacter array:

Expression Display_Value (char[4])&count

To display the contents of a character array as a string, cast the variable using
the quoted string cast, as shown in the following example:

Expression Display_Value (Q S)buf

If the type of the expression is unknown, it defaults to type byte. See the
“Expressions and Symbols in Debugger Commands” chapter for more
information about type casting.

See Also Expression Fprintf
Expression Monitor Value
Expression Printf
Memory Display

Examples To display the value of the variable 'systemrisining” 01h

Expression Display_Value system_is_running

To display the address of the variable 'systenrtuisning’ 000091F0

Expression Display_Value &system_is_running

To display the address of the C structure 'tii80091DC

401

Chapter 12: Debugger Commands
Expression Display_Value

Expression Display_Value time

To display the values of the memberstofisture time”
hours 4

minutes 0

seconds 20

Expression Display_Value *time

To display the name of theirent program module:

Expression Display_Value @module

To display the name of theirent program function:

Expression Display_Value @function

402

Chapter 12: Debugger Commands
Expression Fprintf

Expression Fprintf
Fprintf >—> <window__nmbr>)
C* S'<format _string>" <Return>

,<argument>

The Expression Fprintf command prints formatted output to the specified
user-defined window. Formatted output may be written to a file that has been
opened by the File User_Fopen command. The Bgwa Fprintf command

is similar to the C fprintf function.

This command allows type conversions, scaling, and positioning of output in a
file or in a window. The window number must have been previously assigned
by a File User_Fopen or Window New command or the window number must
be the log file number (28) or journal file number (29), if opened.

The command requires a format string as the second parameter. The format
string may contain both text and argument conversion specifications.
Whenever a conversion specification is encountered, the next argument is
converted according to the specification, and the result is copied to the output
window.

The conversion specifiers are similar to those in C and have the following
format:

%[—] [digits] [.[digits]] [I] conversion_char
where:

% indicates the start of a conversion specification.

403

Chapter 12: Debugger Commands

Expression Fprintf

digits

digits

indicates that the result of conversion is to be left-justified
within the field.

is a string of one or more decimal characters. Thedigis

is a minimum field width. The field will be at least this many
characters wide, padded if necessary. The padding is
normally on the left. Whenr-"is used, padding is on the
right. The field is padded with blanks unless the first digit in
digitsis a0; then the field is padded with zeros.

separates two digit strings and must be specified if a second
digit string is used.

(second occurrence) is the maximum field width. For
strings, it is the maximum number of characters to print; for
fand e notations, it is the maximum number of fractional
decimal places to print. For g notation, it is the number of
significant digits to be printed.

indicates that a conversion character (d, x, or u)
corresponds to a long argument.

Conversion Characters

Conversion characters are listed in the following table with a detailed
description of each character.

Char

e E

Description
The argument is converted to character format.
The argument is converted to decimal format.

The float or double argument is converted to the format
[-]d.ddde+dd , where the number of digits after the
decimal point is equal to the precision. If precision is zero,
no decimal point is printed. The default precision is 6. The
E conversion character produces a number with E instead of
e introducing the exponent. The exponent always contains
at least two digits.

404

0,G

Chapter 12: Debugger Commands
Expression Fprintf

The double argument is converted to decimal notation in
the formatf—]ddd.ddd , where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, it is 6 by default; if the
precision is explicitly zero, no decimal point appears. If
there is a decimal point, at least one digit appears before it.

The double argument is printed in f or e notation, or in F or
E notation when G is used. The precision specifies the
number of significant digits. The notation used depends on
the value converted; e or E notation will be used only if the
exponent resulting from the conversion is less than -3 or
greater than or equal to the precision. Trailing zeros are
removed from the result; a decimal point appears onlyifit is
followed by a digit.

The argument is either the debugger internal variable
@HLPC, or a high level line number preceded bythe
character. Source lines are formatted as strings according to
%s rules. (Note: See @HLPC in the "Reserved Symbols"
chapter of this manual.)

The argument is an instruction address. The disassembled
instruction is treated as a string.

The argument is a string. The characters from the string are
copied to the output untila NULL character is encountered
or the maximum number of characters specified have been
printed.

The argument is converted to unsigned decimal format.

The argument is displayed according to its type.

The argument is is a window number. The current conte
of the window are written to the specified window.

The argument is converted to hexadecimal. Letters are
displayed in upper caseéxis not printed before the value.

405

Chapter 12: Debugger Commands

Expression Fprintf

X The argument is converted to hexadecimal. Letters are
displayed in lower case.

% The charactedo is substituted for the field. Any other
non-conversion character followin@is printed %% is
used to genera¥ in the output as a literal character.

Conversion characters are case-sensitive. Values printed in E notation have
the following format:

[-]d.d...E{+|-}dd

Eachdrepresents a decimal digit. The number is first scaled so that one digit
appears to the left of the decimal point. The number of digits in the fractional
part is six by default, or the maximum field width if specified. The sign of the
mantissa is printed only if the number is negative. The sign of ghanext is
always printed.

Values printed in F notation have the following format:

[d....d..

Eachdrepresents a decimal digit. The number of digits in the fractional part is
six by default or the maximum field width if specified. The number of digits
printed depends on the number of significant digits in the number.

Because floating point values are passed as parameters, they are converted to
double precision. Parameters musiplbemoted to double presion values as

a requirement of the C language. Other values passed as parameters may also
be converted.

The Expression Fprintf command uses the format string to decide how many
arguments to print. The number of conversion specifications must equal the
number of arguments. If there are too many arguments, some of them will not
be printed. If there are too few arguments, the value printed cannot be
determined.

If the argument type does not correspond to its conversion field specification,
arguments may be converted incorrectly.

See the Expression Printf command for dst@bout conversion specifiers.

406

Chapter 12: Debugger Commands
Expression Fprintf

See Also Expression Printf
File Journal
File Log
File User_Fopen
Window New

Examples To print value of var’to user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print the string in double quotes to user window 57 followed by the floating
point value of temperature’ with a precision of 2:

Expression Fprintf 57,"The value of 'temperature’ is:
%.2f \n",temperature

To print source line 24 to user window 55:

Expression Fprintf 55,"%h",#24

To print the contents of the assembly-level stack window to user window 256:

Expression Fprintf 256,"%w",14

407

Chapter 12: Debugger Commands
Expression Monitor Clear_All

See Also

Examples

Expression Monitor Clear_All

The Expression Monitor Clear_All oomand sops monitoring of all
expressions being monitored with the E>xggien Monitor Value cmmand
and removes all expressions from the Monitor window.

Expression Fprintf
Expression Monitor Delete
Expression Monitor Value
Expression Printf

Memory Display

To stop monitoring all expssions:

Expression Monitor Clear_All

408

Chapter 12: Debugger Commands
Expression Monitor Delete

Expression Monitor Delete

Expression

See Also

<display nmbr> L J <Return>
..<display _nmor>

The Expression Monitor Delete monand sops monitoring of specified
expressions being monitored with the E>xggien Monitor Value cmmand
and removes those expressions from the Monitor window.

When an expression is monitored using the Esgiosn Monitor Value
command, it is ssigned a line number, which is displayed in the Monitor
window. These assigned line numbers are used to specify the expression or
group of expresions to be deleted (removed). All monitored espians can

be deleted with the Expression Monitor Clear_Almoand.

Expression Fprintf
Expression Monitor Clear_All
Expression Monitor Value
Expression Printf

Memory Display

Examples

To stop monitoring expssion 2 in the Monitor window:

Expression Mbonitor Delete 2

To stop monitoring expssions 3 through 6 in the Monitor window:

Expression Monitor Delete 3..6

409

Chapter 12: Debugger Commands
Expression Monitor Value

Expression Monitor Value

(Expression Monitor D—{ Value <expr> \‘

..<expr>

()
2/

<Return>

;<display _nmbr> L
..<display _nmbr>

The Expression Monitor Value namand mortors the specified expssions
as the target program is executing. Egsiens are updated and displayed in
the Monitor window each time the debugger stops executing the program.

Up to seventeen lines, selected by the display line range parameter
(;< display_nmbr> ..< display_nmbr>), can be displayed in the Monitor
window.

Variables located in registers are shown withbeetween their names and
values.

All expressions monitored with thiseonand are displayed according to their
type as follows:

Type Display Format

410

Chapter 12: Debugger Commands
Expression Monitor Value

Ints 32-bit signed decimal numbers

Longs 32-bit signed decimal numbers

Shorts 16-bit signed decimal numbers

Chars 8 bit characters (unsigned hexadecimal numbers if not
printable)

Pointers 32-bit unsigned numbers

Enums Name of Enumerator constant (enumerator value if
name not defined)

Arrays All elements if enough lines, else first element

Structures All members if @ough lines, else first element

Quoted String Characters surrounded by double quotes ("")

Hex Byte 8-bit hexadecimal

Hex Word 16-bit hexadecimal

Hex Double Word 32-bit hexadecimal

Float 32-bit floating point

Double 64-bit floating point

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the vafiaggés a
character array, the following command displays 20 characters.

Expression Monitor Value flags+10..+29

Any expression can be type cast to display its value in a different format. For
example, if the variable count is a long value, the followingest@nt causes
count to be displayed as a four character array:

Expression Mbnitor Value (char[4])&count

If the type of the expression is unknown, it defaults to type byte.

Only 17 lines can be displayed in the data window. By default, a single line is
used to display monitored exmons. If an array is monitored, only the
elements that will fit on one line will be displayed. Ifteusture is monitored,
only the first member iWbe displayed. To display an entire array trusture,

a display line range may have to be specified. If all lines in the data windo
filled, you must use the Expression Monitor Deletmouand to delete an
expression before monitoring another one.

If you do not specify a display line range, the next available line in the data
window is selected to display the monitored variable. If you specify one line,

411

Chapter 12: Debugger Commands
Expression Monitor Value

the expression is displayed on that line. If you specify a range of lines, the
amount of data thatilMit on those lines is displayed.

See Also Expression Monitor Clear_All
Expression Monitor Delete
Symbol Display
Examples To monitor the value of variable ‘current_temp”

Expression Monitor ~ Value current_temp

To monitor the value of the threeembers intsucture ‘time’and display
them on Monitor window lines 4 through 6:

Expression Monitor Value *time;4..6

To monitor the contents of string buf:

Expression Monitor Value (Q S)buf

412

Chapter 12: Debugger Commands
Expression Printf

Expression Printf

C‘ "<format _string>" <Return>

,<argument>

The Expression Printf command prints formatted output to dlenal
window.

See the Expression Fprintf command for a detailed description.

See Also Expression Fprintf
File User_Fopen

Examples To print the string in double quotes to the journal window followed by the
floating point value of temperature’ with a precision of 2:

Expression Printf "The value of 'temperature’ is: %.2f
\n"temperature

To print source line 24 to the Journal window:

Expression Printf "%h",#24

To print the name of thaucrent module to the Journal window:

Expression Printf "%s",@module

To print the disassembled instruction at add2®&0h to the durnal window
as a string:

413

Chapter 12: Debugger Commands
Expression Printf

Expression Printf "%m", 2030h

00002030 2040 MOVEA.L DO,A0

To print the contents of the assembly-level stack window to the Journal
window:

Expression Printf "%w",14

> Expression Printf "%w",14
00043FC8=00000690

FP->00043FC4=00043FF0
00043FC0=000604AC
00043FBC=00000001

SP->00043FB8=00000001

414

Chapter 12: Debugger Commands
File Command

File Command

The File Command command reads the file specified by < file_name> and
executes the commands contained in the fillhasgh they were entered from
the keyboard. Commands in the file are executed until the end of the file is
reached. Input then continues from the previous source. The previous source
can be the keyboard or another command file.

This command is commonly used to read macro definitions from a file, to set
up I/O ports, or to change window displays.

File Command commands may be nested up to 16 levels deep.

If the filename coaists of alphanumeric characters, a period, or a backslash,
double quotation marks are optional. Otherwise, quotation marks must
enclose the file name. If a filename extension is not specified, the debugger
automatically appends a default extensicam

Command files can be executed at debugger startup using the -c option, from
the command line during a debuggingsien, or from a startup file.

See the File Startup command description for information about how to
automatically execute a command file when the debugger is started.

See Also File Log
File Startup
The “Using Macros and Command Files” chapter.

Example To execute command file varTrace.com™

File Command varTrace

415

Chapter 12: Debugger Commands

File Error_Command

File Error_Command

< File HErroriCommcmd

<Return>

See Also

Examples

= Abort Read =
= Continue Read
= Quit Debugger

The File Error_Comand command sets the command filmehandling

mode. The command specifies what action the debugger takes whaomman e
occurs while reading a command fikgbort_Reacdcauses the debugger to

return to the coomand line after anreor and wait for keyboard input. This is
the default actionContinue_Readauses the debugger to continue to the next
command in the command file after ama. Quit_Debuggecauses the

debugger to end the debugging session when an error occurs (as if you typed
Debugger Quit Yes).

File Command
File Log

To return to the cmmand line after anreor and wait for keyboard input:

File Error_ Command Abort Read

To continue to the next command in the command file afterram:e

File Error_Command Continue_Read

To exit the debugger when an error occurs:

File Error_Command Quit_Debugger

416

Chapter 12: Debugger Commands
File Journal

File Journal

. g N .
(File >—>< Journal On) <file_name> <Return>
Append)
ofF)

The File Journal ammand copies the information written to treudnal
window output into a journal file specified by < fileame> . The default
journal filerame extensionjou will be appended to < filaame> . Thequrnal
file provides a history of your debuggings®n.

File Journal On opens a journal file for writing. If a file already exists
with the specified file name, new information is appended to the end of the
existing file.

File Journal Append opens an existing file. New information is
appended to the end of the existing file.

File Journal oFF closes the journal file.

A window number (29) is assigned to tlajnal file so that output can be
written to that file using the Expression Fprintf command.

See Also Expression Fprintf

Examples To make and open journal file 'debugl.jou’ for writing:

File Journal Ondebugl

To close the currently open journal file:

File Journalo FF

To open existing journal file 'debugl.jou’ for writing and append new
information at the end of the file:

File Journal Append debugl

417

Chapter 12: Debugger Commands

File Log

File Log

(File)——(Log

<file_name> <Return>

See Also

Comment>—> <comment _text>

The File Log command records useput in a conmand file, specified by
<file_name> . The default filename extensioamwill be appended to

< filename> . The File Log command allows an interactive debuggsioseto
be logged as a command file which can beimeat a later time.

File Log On opens a file for writing. If the specified file already exists, the
file is overwritten by the new data.

File Log Append reopens a logging file to allow new information to be
added to the end of the file.

File Log oFF terminates logging to the file.

File Log Comment places a string of text in the file as a comment. If a log
file is not open, File Log Comment commands amoigd by the debugger.

All successful commands are written to the log file so the file can later be used
as a command file.

Commands which are entered but not successfully completed, are written to
the .com file as comments along with theirog codes.

User input is recorded in the log file until the Log oFfmooand is executed.

A window number (28) is assigned to the log file so that output can be written
to that file using the Expression Fprintf command.

Expression Fprintf
File Error_Canmand

418

Chapter 12: Debugger Commands
File Log

Examples To make and open log file logl.com’for writing:

File Log Onlogl

To close the currently open log file:

File Logo FF

To open existing log file logl.com’for writing and append new information at
the end of the file:

File Log Append logl

To place the comment This is a comment string’in the log file:

File Log Comment This is a comment string.

If a log file is not open, this command inared.

419

Chapter 12: Debugger Commands

File Startup

File Startup

j k j v} <Return>
<startup file> ,<command file>

The File Startup command saves therent debugger startup options and
window parameters in a startup file specified by < startup_file>. When you
start a debugging session and specify the startup file with the -s option of the
db68k command, the startup options and window parameters you stved w
the default parameters in that debuggirgsam.

A startup file has an extension.af appended to the end of it. If you do not
specify a startup file name, the startup options are saved in a file named
db68k.rc (Or db68030for the 68030/EC030.)

You can modify default debugger startup option values with the Debugger
Option command and window parameters with the Window commands.

The following information is contained in the startup file.

420

See Also

Examples

Chapter 12: Debugger Commands

File Startup
Option Command Default Setting
Parameters
Align_Bp oFF
Amt_Scroll 1
Assem_Symbols On
Breakpt_window Swap
Check_Args oFF
Command_Echo On
Demand_Load On
Exceptions Stop
Frame_Stop oFF
Highlight Inverse
Intermixed oFF
More On
Processor 68020 or 68030/EC030
Radix Decimal_Input, Decimal_Output
Stdio_Window Swap
Step_Speed 0
View_Window Swap

Window Information Window sizes, user windows, and
window locations

You can specifya command file to be executed when the debugger starts. If
you specify a command file, it executes after the debugger is started. Command
files may perform other operations at startup, such as I/O port setup and
macro definition.

Debugger Option
File Command
Window New
Window Resize

To save the current set of debugger startup options and windampgars in
startup file 'my_start_file.rc’

File Startup my_start_file

421

Chapter 12: Debugger Commands
File Startup

To save the current set of debugger startup options and windeampgars in
startup file ‘'my_start_file.rc’and execute the command file initDemo.com’

whenever the debugger is started using 'my_start_file.rc’.

File Startup my_start_file , initDemo

422

Chapter 12: Debugger Commands
File User_Fopen

File User_Fopen

< , j (/ A ;

File User Fopen = Append <window nmbr>
e)
(e)
<—~ <Tab> 4 File D <file_name> <Return>

The File User_Fopen command opens the file specified by < file_name> for
reading or writing and assigns a window number to it.

¥

The File User_Fopen Append command opens an existing file for
writing, adding new information at the end of the file.

The File User_Fopen Create command creates a new file for writing.
The File User_Fopen Read command opens an existing file for reading.

After opening a file using the File User_Fopen Append or File User_Fopen
Create command, you can use the Egpian Fprintf command to write
information to the file. Files opened for reading may be read from the built-in
macro fgetc(). See the "Predefined Macros" chapter of this manual for a
complete description of this macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

See Also Expression Fprintf
File Window_Close
Window Delete
Window New

423

Chapter 12: Debugger Commands

File User_Fopen

Examples

To open user window 57 and redirect any data written to window 57 to the file
varTrace.out”.

File User_Fopen Create 57 File varTrace.out

To open user window 57 and append any data written to window 57 to the
existing file varTrace.out”.

File User_Fopen Append57 File varTrace.out

To open file temp.dat’ for reading, accessing the file as user window 52:

File User_Fopen Read52 Filetemp.dat

424

Chapter 12: Debugger Commands
File Window_Close

File Window_Close

W‘mdowiﬁose\ <file_window num> <Return>

The File Window_Close command closes a device or file which was previously
opened with the File User_Fopen command. The Window Delete command
may also be used for this purpose.

See Also File User_Fopen
Window Delete

Example To close file associated with user window number 57:

File Whdow_Close 57

425

Chapter 12: Debugger Commands

Memory Assign

Memory Assign

<addr>

<Return>

=<expr>

=<expr_string>

Note

Debugger/emulators cannot modifyemory locations in target ROM

The Memory Assign ammand changes the contents of the memory location
specified by<addr> to the value or values defined by the expressiexpr>

or expression stringexpr_string>. The size of the memory elements to be
modified is specified by one of the size qualifiers (Byte, Word, or Long).

Expression strings are specified as ASCII characters enclosed in quotation
marks and/or as a list of values separated bywas. Exprssions and
expression string elements will beibcated or padded as required, based on
the size qualifier.

Memory values can be entered interactively if you do not define a value on the
command line. When a value is not specified, the contents of the specified
memory locations are displayed in hexadecimal and decimal. You can change
the existing value by entering any legal expression followed by a carriage
return. The nexinemory location and its contents are then displayed. The
return key entered without a valudlwause the coomand to terminate.

The Memory Assign ammand does not recognize variable typing. It is
intended to be used as an assembly-level memory setting routine. For example,

426

Chapter 12: Debugger Commands
Memory Assign

assume that the variabdeuntis a long integer. If you want to set the value of
count equal to 5, the oomand

Memory Assign Long count=5

will not work. The canmand vill set thememory location referenced by the
value of count equal to 5, not the contents of the variable. To set the value of
count equal to 5, use the followingmmand:

Memory Assign Long &count=5

The Expression C_Expression commahdidd be used to set C variables.
This command recognizes variable types and the specifiedssipmne behave
according to the rules of C. The command:

Expression C_Expression count=5

will set count equal to 5.

See Also Expression C_Expression
Memory Register

Examples To display the contents of memory location 1000h and allow interactive
modification of memory contents:
00001000 = 0x48 72:

Memory Assign Byte 1000h
To change the contents of memory locations 206@butgh2005h to 00, 41,

00, 42, 00, 43, and change the contents of locations 2006h/2007h to the value
of 'system_isrunning”.

Memory Assign Word 2000h=41h,42h,43h,system_is_running

427

Chapter 12: Debugger Commands
Memory Block_Operation Copy

Memory Block_Operation Copy

(Memory)—{Block_Operotion)——(Copy H <addr>..<addr> b

Note

See Also

Examples

C——@——{ <addr> H <Return>

Debugger/emulators cannot copynh@mory locations in target ROM.

The Memory Block_Operation Copy command copies the contents of the
memory range specified kyaddr>..<addr> to a block of the same size
starting at the memory location specifieddmddr> .

Memory Assign

Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test

To copy the block of memory starting at address 1000h and ending at address
10ffh to a block of the same size starting at address 5000h:

Memory Block Operation Copy 1000h..10ffh,5000h
To copy the block of memory starting at the address of the structure

‘current_targets’and ending 15 bytes after this address to a bloo&mbry
starting at the address of the structure 'default_targets:

Memory Block Operation Copy ¤t_targets..+0xf,
&default_targets

428

Chapter 12: Debugger Commands
Memory Block_Operation Fill

Memory Block_Operation Fill

< Memory)—{BIock_Operotion)—{ Fill

C‘ <addr>..<addr> <Return>

<expr>

<expr_string>

Note Debugger/emulators cannalt imnemory locations in target ROM.

The Memory Block_Operation Fill comand fils the range omemory
locations specified by the address rargaldr>..<addr> with the value or
values specified by an expressioaxpr> or an expression string
<expr_string>. If no expression is given, the debugger fills the specified
memory locations with zeros. The specified size qualifier (Byte, Word, or
Long) determines the size of the value.

If you specify a single expression value, the debugger fillstdmory area
with that value. If you enter an expression string, the debugger fills the
memory area with the specified string pattern.

An expression string is a list of values separated yneas and can include
ASCII characters enclosed in quotation marks. All egpi@ns in an
expression string are padded or truncated to the size specified by the size
qualifiers if they do not fit the specified size evenly.

If the number of values in an expression string is less than the number of bytes
in the specified address range, the debugger repeatedly places the list of values

429

Chapter 12: Debugger Commands
Memory Block_Operation Fill

in memory until all designated memory locations are filled. If you specify more
values than can be contained in the specified address range, the debugger
ignores the excess values.

See Also Memory Assign
Memory Block_Operation Copy
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test
Memory Register

Examples To fill memory locations 1000tough1007h with the long pattern
61626364, 65666768:

Memory Block Operation Fill Long 0x1000..+7="abcdefgh’

To fill the memory area starting at location 1000h and ending at location 10ffh
with zeros:

Memory Block Operation Fill Byte 0x1000..0x10ff

430

Chapter 12: Debugger Commands
Memory Block_Operation Match

Memory Block _Operation Match

(Memory)——(Block_OperotionD—{ Mateh Repeat On_Mismatch
Stop_On_ Mismatch
J

<Return>

<addr>..<addr> y <addr>

The Memory Block_Operation Match command compares the contents of two
blocks of memory to determine their similarities or differences. The command
compares the block of memory specified by the address range
<addr>..<addr> with the same size block starting<aaddr> .

The debugger displays differences between the two blocks of memory,
mismatched values and addresses, in the Journal window. If the contents of the
two blocks of memory are the same, the debugger displays the message
Memory blocks are the same

The Memory Block_Operation Match Stop_On_Mismatcmowand halts

when a mismatch is found. If the Memory Block_Operation Match
Repeat_On_Mismatch command is selected, the comparison continues until
the end of the block.

When you execute the Memory Block_Operation Match
Stop_On_Mismatch/Repeat_On_Mismatcimenand wihout specifying an

address range, the debugger continues comparing the address range specified
in the previous Memory Block_Operation Match Stop_On_Mismatch

command starting from where ddnd the last mismatch.

See Also Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Search
Memory Block_Operation Test

431

Chapter 12: Debugger Commands
Memory Block _Operation Match

Examples

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To execute the previous Memory Block_Operation Match
Stop_On_Mismatch ecomand starting from where ibfind the last mismatch:

Memory Block Operation Match Stop_On_Mismatch

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop at the end of thmemory block:

Memory Block_Operation Match Repeat_On_Mismatch
1000h..10ffh,5000h

432

Chapter 12: Debugger Commands
Memory Block_Operation Search

Memory Block_Operation Search

(Memory)—{BIock_Operotion)—{ Search

=|| <Return>

Repeatedly

\‘{ <addr>..<addr>

<expr_string>

The Memory Block_Operation Search command searches the block of
memory specified by addr>..<addr> for the specified expressiarexpr> or
expression stringexpr_string>. The size qualifier (Byte, Word, or Long)

specifies the size of an expression or each expression in an expression string. A
Memory Block_Operation Search command givethout paameters

continues the search of a previous Memory Search command given with the
Once qualifier. The Repeatedly qualifier causes the search to repeat.

You can specify expression strings as ASCII characters enclosed in quotation
marks and/or as a list of values separated bywas. If the strings do not fit

the specified size evenly, all expressions in an expression string will be padded
or truncated to the size specified by the size qualifiers.

If you specify the Once qualifier, the search stops when the &sipreis
found. If you specify the Repeatedly qualifier, the debugger repeatedly
searches for the specified expression, displaying each match until it reach
end of the block or until you pre€§RL C.

When you execute the Memory Block_Operation Search command with the
Once qualifier, subsequent Memory Block_Operation Search commands that
are executed without exggsion parameters cause the debugger to continue
searching through the originally specified address range starting from where it
found the last match. If the ex@@on or expression string is not found in the
specified block, the debugger displays the messlagdound

433

Chapter 12: Debugger Commands
Memory Block_Operation Search

See Also

Examples

Memory Display

Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Test
Program Find First

Program Find Next

To search for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when the esgiom is found or address 10ffh
is reached:

Memory Block Operation Search Wbrd Once
1000h..+0xff = 'gh’

To execute the previous Memory Block_Operation Search command starting
from where it found the last match:

Memory Block Operation Search Wbrd Once

To search for the hexadecimal value '65666768’in long format in the address
range 1000hHrough 10ffh and stop at the end of the address range:

Memory Block_Operation Search Long Repeatedly
0x1000..0x10ff=0x65666768

434

Chapter 12: Debugger Commands
Memory Block_Operation Test

Memory Block_Operation Test

(Memory HBIock_Operotion)——(Test

=|| <Return>

Repeatedly

\‘{ <addr>..<aoddr>

The Memory Block_Operation Test command examines the specified memory
locations specified byaddr..addr> to verify that the value(s) defined by

<expr> or <expr_string> exist throughout the specifiedemory area. When

the debugger finds a mismatch, it displays the mismatched address and value.
The size qualifier (Byte, Word, or Long) specifies the size of an expression or
expression in a string.

<expr_string>

If you enter a single expression value, the debugger tests the memory area for
that value. If you specify an expression string, the debugger tests the memory
area to verify that it is filled with the values found in the egpi@n string.

You can specify expression strings either as ASCII characters enclosed in
guotation marks or as a list of values separated imyeas. If they do not
evenly fit the specified size, all expressions in an expression string will be
padded with zero-valued bytes to the size specified by the size qualifier.

Once Qualifier

If you specify the Once qualifier, the test stops when a mismatch is found.

you execute the Memory Block_Operation Test command with the Once
gualifier specified, subsequekitemory Block_Operation Test . .. Once
commands that are specifiediout paameters Wl continue testinghrough

the address range originally specified, beginning with the last address tested. A
Memory Block_Operation Test command givemhaiut paemeters continues

435

Chapter 12: Debugger Commands
Memory Block_Operation Test

the test of a previous Memory Block_Operation test command given with the
Once qualifier, beginning with the last address tested.

Repeatedly Qualifier

If you specify the Repeatedly qualifier, the debugger continues testing the
specified value(s) for mismatches until the end of the block is reached, or until
you entetCTRL C.

Examples To test for the expression 'gh’in the memory range from address 1000h
through address 10ffh and stop when a word not matching thessimréas
found:

Memory Block Operation Test Wird Once 1000h..+0xff =
'gh’
To execute the previous Memory Block_Operation Test command starting

from where it found the last mismatch:

Memory Block Operation Test Word Once

To test for the hexadecimal value 65666768’ in long format in the address
range 1000hHrough 10ffh and stop at the end of the address range:

Memory Block_Operation Test Long Repeatedly
0x1000..0x10ff=0x65666768

Mismatched values are displayed in the Journal window.

436

Chapter 12: Debugger Commands
Memory Display

Memory Display

< Memory)—{ Display >>

-

—={ Mnemonic < 7 <Return>

<addr>
= Byte
\-' <addr>
\" ..<addr>

The Memory Display displays the contents of the specified memory locations.

NN

Mnemonic Option

TheMnemonicption displays memory in assembly language mnemonics
starting at the memory location specified<sddr> . If you do not specify an
address, the debugger displays memory beginning with the address pointed to
by the program counter. Thismonand functions only in the assembly-level
mode.

If you have executed the Debugger Options Symbolics Intermixed On
command, Casurce code linesilbe intermixed with the assembly language
code (when applicable). If you have executed the Debugger Options Sym
Assem_Symbols On command, symbol referenékbevdisplayed with the
assembly language code.

ThePrev, Next Up, andDownkeys may be used when the Code window is

active to display instructions with higher or lower addresses. Note that the
Prevand Up keys do not function when disassembling addresses outside of the
target program.

437

Chapter 12: Debugger Commands

Memory Display

Note

See Also

Examples

If the Align_bp option is set t@®n, the address of the first instruction in the
assembly Code window may be incorrect after executing the Memory Display
Mnemonic command.

Byte, Word, and Long Options

The byte, word, or long qualifier option displays the contents of memory
locations specified byaddr>..<addr> in the Journal window in both
hexadecimal and ASCII formats. The debugger representgrintable ASCI|
characters by a period (.). The debugger displays memory contents in the size
specified by the size qualifier (Byte, Word, or Long).

If you specify an address range, the debugger displays all memory locations in
that range.

If you specify a single address, the debugger displays two lines of data.

If you do not specify any parameters, the debugger displays the next 80 bytes
(five lines) of data after the previously displayed address range.

The memory contents are displayed in the Journal window. The alternate view
of the Journal window is displayed if more than two lines are copied to the
display.

Expression Display_Value
Symbol Display

To display disassembled memory in the Code window starting at the symbol
" emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mhemonic _emeg_shutdown

To display memory in word format in the Journal window starting at the
symbol time’and ending 15 bytes after time”

Memory Display Word time..+0xf

438

Chapter 12: Debugger Commands
Memory Register

Memory Register

] j <Return>
@<reg_name> =<value>

The Memory Register command changes the contents of a register, status flag,
or other processor variables such as pc or sp. The new contents are defined by
<value>.

The PC (program counter) is displayed or changed if you do not specify a
register name.

If you do not specify a value in the command, values are entered interactively.
You can enter multiple register values interactively. The debugger displays
contents of the specified register in binary, hexadecimal, or decimal, as
appropriate for the register. You can change the existing value by entering any
legal expression and pressing fRReturn key.

Pressing th®eturn key without specifying a register value terminates the
command.

All register names are preceded with an @ sign. A compisttef the
reserved words that you can use with this command is given in the "Reserved
Symbols" chapter of this manual.

See Also Memory Assign

Examples To modify register values interactively:

Memory Register

439

Chapter 12: Debugger Commands

Memory Register

The program counter (PC) is displayed in the Journal window. You can
modify the PC by entering a value (10a4h in this example) at the cursor
prompt and prssing Retirn. The PC il be modified, and the next register
will be displayed:

@pc =0x000010B8 4280: 10a4h
@sp =0x00015DB4 89524:

To set the value of register @d1 to 44h:
Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

To set the value of the lower 32-bits of the CRIdt pointer to 0800174B4:
Memory Register @CRP_L = 0x000174B4

440

Chapter 12: Debugger Commands
Memory Unload_BBA

Memory

Memory Unload_BBA

Unload BBA

-} <Return>
Load_File <"load_file"> ’j LC H< 'dump_ flle“>}j

Note

You must have the HP Branch Validator product for the processor you are
debugging code for installed on your system in order to use timsend.

If you do not have the HP Branch Validator for your processor, the debugger
will display the following eror message when you attempt to execute this
command:

error code = 141

No valid BBA spec file for <processor> processor

The Memory Unload_BBA aommand unloads ts&s branch analysis (BBA)
information from progranmemory. The BBA preprocessor (-b option) must
be used at compile time in order for this information to exist in program
memory. The file nambbadump.datés used as the default name of all dump
files if none is specified in the oumand.

Once this information has been unloaded, it can be formatted with the BBA
report generatohbarep(see theHP Branch Validator for AXLS C User’s
Guide.

441

Chapter 12: Debugger Commands
Memory Unload_BBA

Note The Unload_BBA command is disabled when the debugger option
Demand_Load i®©n. If Demand_Load isFF but the program was loaded
with Demand_Load On, the Memory Unlo&®BA command vill generate a
BBA file with incomplete information. See the Debugger Option General
command description in this manual for more information on the
Demand_Load option.

Memory Unload_BBA All

The Memory Unload_BBA All coomand unloads branch ansi/information
associated with all absolute files loaded into thebiladump.data

This command lets yotun bbarepwithout specifying a file ame. The file
namebbadump.datas used as the default name of all dump files.

Memory Unload_BBA All To < "dump_file">

The Memory Unload_BBA All To < "dump_file"> eomand unloads branch
analysis information associated with all absolute files loaded into
<"dump_file">.

Memory Unload_BBA Load_File < 'load_file">

The Memory Unload_BBA Load_File oomand unloads only ls&s branch
information associated with the specified absolute file (< "load_file">) into
the filebbadump.data

This command lets youn bbarepwithout specifying a file ame. The file
namebbadump.datas used as the default name of all dump files.

Memory Unload_BBA Load_File < 'load_file"> To <'dump_file'>

The Memory Unload_BBA Load_File <"load_file"> To <"dump_file">
command unloads only bs branch information associated with the specified
absolute file (< "load_file">) into the file < "dump_file"> .

Examples To unload all branch analysis information into file "bbadump.data™

Memory Unload_BBA All

442

Chapter 12: Debugger Commands
Memory Unload_BBA

To unload all branch analysis information into file "mydata™:

Memory Unload_BBA All To "mydata"

To unload branch analysis information associated with absolute file a.out.x
into file "bbadump.data™

Memory Unload BBA Load_file "a.out"

To unload branch analysis information associated with absolute file a.out.x
into file "mydata";

Memory Unload_BBA Load_file "a.out" To "mydata”

443

Chapter 12: Debugger Commands
Program Context Display

Example

Note

Program Context Display

Display <Return>

The Program Context Display command displays tireent module,
function, and line number in the Journal window. The current module is the
one pointed to by the program counter.

This command Wl display both the view context, as set by a Program Context
Set command, and the context of thuerent program counter, if the two are
different.

To display the current module, function, and line number:

Program Context Display

Current context is: @ecs\\main\main On line 81

See “Expression Elements” section of the “Expressions and Symbols in
Debugger Commands” chapter for a description of debugger operators.

If the PC does not point to a valid module, an alternate context is displayed.
The alternate context is the name of the executable file that has been loaded
into the debugger.

444

Chapter 12: Debugger Commands
Program Context Expand

Program Context Expand

(Progrom)—{ Context)——(Expand >—> @<stack_level> = <Return>

The Program Context Expand command displays values of the parameters
passed to a function, and the local variables in a function. The values are
displayed in the Journal window.

To display a function’s calling pameters and local variables, specify the
function’s stack level preceded by an at sign (@). The Backtrace window in
high-level mode displays the function calling chain from the rpaggram to

the current function. The debugger displays the function stack (nesting) level
beside each function name. Thement function is level 0, the caller is always

1, etc.

You can use the Program Context Expand command to display the local
variables and parameters of any function shown in the backtrace window. The
calling pammeters and local variables are asilele on the Cun-time stack

for functions in a directly-called chain from the main program to the current
function.

See Also Expression Display_Value
Expression Monitor
Symbol Display

Example To display local variables and calling pareters of the function at stack level
2:

Program Context Expand @2

445

Chapter 12: Debugger Commands
Program Context Set

Program Context Set

Program Context Set) <Return>

<module _name>

<function _name>

The Program Context Set command changes the default module and function
(context). The current module (the one to which the program counter is
pointing) is the default when functions are referenced without a module or
function qualifier.

The default module reverts to the current module when you invoke any
command that causpsogram execution, or if you execute the Program
Context Set command thiout a paameter.

Example To select module 'updateSys’ as the current module:

Program Context Set updateSys

446

Chapter 12: Debugger Commands
Program Display_Source

Program Display_Source

(Progrom}@isploy_Source) <Return>

#<line_nmbr>

<function _name>

The Program Display_Sourcemmmand displays Cosirce code in the Code
window beginning at the specified line or function. This command works in
high-level mode only. If you do not specify a line number or function name,
the debugger displays the line pointed to by the program counter.

You can display lines or functions in other modules by preceding them with a
module name. Thllext Page , Prev Page , Uparrow, andDownarrow keys

may be used when the Code window is active to display code at higher or lower
line numbers.

This command does not change therent program context.

See Also Memory Display Mnemonic
Program Context Set
Program Find_Source

Examples To display line 82 of the current module in the Code window:

Program Display_Source #82

To display the source code for function 'update_state_of _system’in the C
window:

Program Display_Source update_state_of system

To display line 25 of module updateSys:
Program Display_Source updateSys\#25

447

Chapter 12: Debugger Commands
Program Find_Source Next

Program Find_Source Next

(Progrom)—{Find_Source Next) <Return>

See Also

Example

. Forward '
B

ackward

The Program Find_Source Nextnemand searches a high-levelisce
program for the next occurrence of the string specified in the last Program
Find_Source Occurrencermonand. When the debugger finds the string, it
displays the line containing the string at the top of the Code window.

If you specifyForward, the debugger searches forward through the file for the
string.

If you specifyBackward the debugger searches backward through the file for
the string.

If neither Forward nor Backward is specified, the debugger searches forward
through the file for the string.

If the debugger cannot find the specified string, it displays the mestagg "
not found. The screen remains unchanged.

Program Find_Source Occurrence

To find the next forward occurrence of the string specified in the last Program
Find_Source Occurrencemmnand:

Program Find_Source Next

448

Chapter 12: Debugger Commands
Program Find_Source Occurrence

Program Find_Source Occurrence

CE G GRS s CTD
Backward
<string> <Return>
\\‘{ H#<line_nmbr> }J

The Program Find_Source Occurrencenotand searches a high-levelusce

file for the first occurrence of the specified string. If you provide a line

number, the debugger searches for the string starting at the given line number.
If you do not specify a line number, the string search starts at the top of the
Code window.

If you specifyForward, the debugger searches forward through the file for the
string.

If you specifyBackward the debugger searches backward through the file for
the string.

You must enclose strings containing nonalphanumeric characters in quotation
marks. Quotation marks are not required if the string consists of only
alphanumeric characters.

If the debugger finds an occurrence of the string, it displays the line containing
the string at the top of the Code window. If the string does not exist or the
debugger cannot find it, the debugger displays the messizigg hot found

The screen remains unchanged.

You can use the Program Find_Source Nerimm@and to search for the next
occurrence of the specified string.

If you specify a line number with a module reference, the debugger displays the
source code for that module in the Code window.

See Also Program Display_Source
Program Find_Source Next

449

Chapter 12: Debugger Commands
Program Find_Source Occurrence

Examples To search forward through the current module for the string time”.

Program Find_Source Cccurrence Forward 'time’

To search backward through the current module for the string time’, starting
at line 237:

Program Find_Source Cccurrence Backward 'time’,#237

To search forward through the module ‘main’, for the string
system_isrunning, beginning at line 1:

Program Find_Source Cccurrence Forward
"system_is_running", main\#1

450

Chapter 12: Debugger Commands
Program Load

Program Load

(Program >—>< Load

Default

S
Code_Only

Symbols_ Only

<absolute file> L j
,<root>
\‘ J L j <Return>
&<buase addr> ;<section>,...

The Program Load command loads the specified executable module into the
debugger.

Default Parameter

When you specify the Default parameter, the debugger:

» removes all previous program symbols
» removes all previously set breakpoints
» resetsthe program counter (PC)

» loadsthe full symbol set

* loadsthe executable module

New/Append Parameters

TheNewparameter loads a ngwogram, removing any old program that may
have been loaded. TiNewparameter optionally allows you to load the

451

Chapter 12: Debugger Commands

Program Load

program image, the program symbols, or both. The program counter can be
set from the transfer address in the load file or ignored.

TheAppendparameter loads anothgrogram without deleting the existing
program.

If you enter the Program Load command with KNewor
Appendparameter, the following qualifiers are available:

All Both the program image and program symbols to be
loaded.

Code_Only Only the program image is loaded.

Symbols_Only Only th@rogram symbols are loaded.

Pc_Set The program counter is set from the transfer address in
the load file.

No_Pc_Set The program counter is not reset.

Using the All or Symbols_Only qualifiers along with the Pc_Set qualifier
resets static variables for a complete restart.

The optional root pameter (,<oo0t>) allows you to specify an alternate
name for theoot of the symbol tree.

The base address (&< base_addr>) allows PC relative code to be sipifted
loading.

The section list (;< section>) enables partial loading of absolute file sections,
i.e., prog, data, const, etc. The symbols for all sectidlhbeweloaded.

Resetting Program Variables

To reset static and global program variables after entering a Debugger
Execution Reset_Processor or Program Pc_Resanhemd, you must reload
your program by using the Program Loadnenand. For faster loading, specify
Program Load New Code_Only. The debugger retains symbol information.
You do not have to reload symbol information if symbol addresses have not
changed.

The address where the object module will be loaded is specified at link time.
However, the address can be changed by specifying a new base address.

452

Chapter 12: Debugger Commands
Program Load

See Also Debugger Execution Reset_Processor
Program Pc_Reset
Debugger Option General Demand_Load

Examples To load absolute file ‘ecs’, remove all existing program symbols, reset the
program counter, and load the full symbol set:

Program Load Default ecs

To load only the program image of the prog section of absolute file ‘ecs’
without resetting the program counter:

Program Load New Code_Only No_Pc_Set ecs;prog

453

Chapter 12: Debugger Commands
Program Pc_Reset

Program Pc_Reset

() (Pe Reset)
Program Pc Reset <Return>

The Program Pc_Reset command reset@thgram counter to the transfer
address from the absolute file. This causes the next Program Run or Program
Step command to restart execution at the beginning gitbigram. The

command does not clear breakpoints.

See Also Debugger Execution Reset_Processor
Program Load
Program Run

Example To reset the program counter to the transfer address from the absolute file:

Program Pc_Reset

454

Chapter 12: Debugger Commands
Program Run

Program Run

< Program H Run >>

\~< From)—'<5Tortuddr>

= <break_addr> \'
%% <pass_count= N

()
N

: <Return>
,<macro call> }—j

The Program Run command starts or continues tamgaram execution. The
program runs until it encounters a permanent or temporary breakpoint, an
error, or a stop instruction, or until you pr&sgRL C.

The Program Run command may be used to resume executioprafyeam
execution has been suspended.

Program Run From

The Program Run From command beginggram execution at the specified
start address < start_addr> .

Using the Program Run From command to specify a starting address in
high-level mode may cause unpredictable results if the compiler startup
module is bypassed.

455

Chapter 12: Debugger Commands

Program Run

Note

See Also

Program Run fromReset

Resets processor and then starts execution as the processor does when reset.

Program Run Until

The Program Run Until command begpr®gram execution at the current
program counter address and breaks at the specified address.

Break Address

The break address (< break_addr>) acts as adeany instruction
breakpoint. It is automatically cleared when program execution is halted.
Multiple break addresses are ORed. For example, the command

Program Run Until #20,#90 Return

causes the program to run until either line 20 or line 90 is encountered,
whichever occurs first.

The debugger/emulator implements instruction breaks using software
breakpoints. Therefore, break addresses cannot be specified for addresses in
target ROM.

Pass Count

The pass count (< ga_ount>) specifies the number of times the break

address is executed before the program is halted. For example, a pass count of
three will cause thprogram to break on the fourth execution of the break
address.

Macro Calls

If specified, a macro (< macro_name>) is invoked when th@teary break
occurs.

Breakpt Access
Breakpt Clear_All
Breakpt Delete

456

Chapter 12: Debugger Commands
Program Run

Breakpt Instr
Breakpt Read
Breakpt Write
Program Pc_Set
Program Step

Examples To execute the target program starting at address 'main’.

Program Run From main

To begin program execution at the current program counter address and run
until line 110 of the errent module:

Program Run Until #110

To begin program execution at the current program counter address, run until

the program returns to thelliag function of the arrent function, and then
execute the macro read_val’

Program Run Until @1;read_val()

457

Chapter 12: Debugger Commands

Program Step

Program Step

(Progrom)——(Step >> 7 <Return>

From >—’ <start_addr> -
\' ,<step_ count> j
Count
\—“ <step_count> ‘/

Note

The Program Step command executes the specified numbetrotinsns or
lines, beginning with the location identified with < start_addr> . In high-level
mode, single-stepping is done one C source line at a time. In assembly-level
mode, single-stepping is done one machine instruction at a time. When the
program cls a function, stepping continues in the called function.

If you do not specify a starting address, single-stepping begins at the address
contained in the program counter.

If you do not specify a step count (< step_count>), the debugbjertiver
step one C source line or one machine instruction.

If the debugger steps into an HP library routine, you can then use the Program
Run Until @1 (stack level 1) commandrn to the end of the library routine.

Program Step From

The Program Step From command executes oralict®on or line, beginning
with the location specified by < start_addr> . If you do not specify the optional
step count (< step_count>), the debugger executes one line or one instruction.

458

Chapter 12: Debugger Commands
Program Step

Program Step Count

The Program Step Countroenand executes the specified number of either
instructions or lines, starting at the location pointed to by the program
counter.

The debugger updates the screen after each instruction or line is executed. If a
breakpoint is encountered, single-stepping is halted.

You can also use function ké&y to single-step.

See Also Breakpt Instr
Program Run
Program Step Over
Program Step With_Macro

Examples To step four source lines, starting at line 39:

Program Step From #39,4

To step ten source lines (high-level mode) or ten processor instructions
(assembly-level mode), starting at the program counter address:

Program Step Count 10

To step one source line (high-level mode) or one processor instruction
(assembly-level mode), starting at the program counter address:

Program Step

459

Chapter 12: Debugger Commands

Program Step Over

Program Step Over

(Progr@m)—{ Step >—>(Over >\ <Return>

From >—> <start _addr>
\-— ,<step count> j

Count
\' <step count> J

The Program Step Over command executes the numbertiafétiens or lines
specified, but executes through functiofissahat is, the called function is
executed without stepping through it. Execution begins at the specified
starting address.

When the debugger encounters a C function or assembly-level JSR
instruction, it stops stepping, executes the function or JSR, and then continues
stepping when the called subroutine returns.

In high-level mode, the debugger executes one C source line at a time. In
assembly-level mode, the debugger executes one microprocessor instruction at
atime.

If you do not specify a starting address, single-stepping begins at the address
contained in the program counter.

If you do not specify a step count (< step_count>), the debugtjertiver
step one C source line or one machine instruction.

Program Step Over From

The Program Step Over From command executes otrei@i®n or line,
beginning with the location specified by < start_addr> . If you do not specify
the optional step count (< step_count>), the debugger executes one line or
one instruction.

460

Chapter 12: Debugger Commands
Program Step Over

Program Step Over Count

The Program Step Over Countnemand executes the specified number of
either instructions or lines, starting at the location pointed to by the program
counter. The debugger updates the screen after each instruction or line is
executed. If the debugger encounters a breakpoint, it halts single-stepping.

You can also use function k& to single-step over functions.

See Also Breakpt Instr
Program Run
Program Step Count
Program Step From
Program Step With_Macro

Examples To step four source lines, starting at line 39, and execute through any function
calls:

Program Step Over From #39,4
To step ten source lines (high-level mode) or ten processor instructions

(assembly-level mode), starting at the program counter address, and execute
through any function di:

Program Step Over Count 10

To step one source line (high-level mode) or one processor instruction
(assembly-level mode), starting at the program counter address, and execute
through any function di:

Program Step Over

461

Chapter 12: Debugger Commands
Program Step With_Macro

Program Step With_Macro

<Progrom>—>< Step }{WithiMcho} <macro_call> = <Return>

See Also

Example

The Program Step With_Macro command single stepsugh the program

and executes the specified mackxaor(acro_call>) after each instruction or
high-level line. Program execution continues if the macro returns a nonzero
value.

Single-stepping is done by C source line in high-level mode and by
microprocessor instruction in assembly-level mode.

Program Run
Program Step From
Program Step Over

To step through the program one source line (high-level mode) or one
processor instruction (assembly-level mode) at a time, executing the macro
read_var after each step:

Program Step Wth_Macro read_var()

462

Chapter 12:
Symbol Add

Symbol Add

(Symbol)——(Add)L j <symbol name>
<type>

{Address} <target mem address>)

<Return>

{Fill_l\/lem <value>

The Symbol Add command creates a symbol and adds it to the debugger
symbol table. When defining a symbol, you must declare the symbol's name. It
may be any name not previously used.

Type

You can optionally assign any valid C data type < type> to the symbol. If you
do not assign a data type, the symbol type defaults to type int.

If the symbol type is a pointer, the initial value must be a data address. If the
type is an array, the initial value must be a string of values separated by
commas and/or enclosed in quotation marks. If fewer values are given tha
fill the array, the pattern is repeated until the entire array is filled.

When initializing symbols, the symbol type is not used. Only the size is used. If
a char array is defined, it is filled with the specified pattern in the same way as
with the Memory Block_Operation Fill omand. A zero is not appended to
char arrays. The size is not determined by the string as in C. Complex values
such as floating point representation are not recognized.

463

Chapter 12:
Symbol Add

See Also

Examples

Program Symbols

Program symbols are specified with a base address (Address
<target_memory_address>). The base address references an address in target
memory. Program symbols are identical to variables defined in a C or assembly
language program. The value of a program symbol is placed in taegeory.

If an initial value is specified for the program symbol, the value is loaded in the
memory location referenced by the symbol. If an initial value is not specified,

the memory location referenced by the symbol is not changed.

Debugger Symbols

Debugger symbols are specified without a base address and are not associated
with a target memory address. Debugger symbols may be used to aid and
control the flow of the debugger. They are located at a fixed location in
debugger memory. Only debugger commands and C &s{pres in macros can

refer to debugger symbols. They cannot be referenced by the program in target
memory.

If an initial value is specified for the debugger symbol, the value is loaded in
the memory location referenced by the symbol. If an initial value is not
specified, the memory location referenced by the symbol is set to zero.

Debugger Macro Add
Symbol Display
Symbol Remove

To add a program symbol of type int (default) at targetmory address 9ffOh
and set the memory location to value -1:

Symbol Add EOF Address 9ffOh Fil_Mem -1

To add a debugger symbol named strl of type char referencing an
eight-character array and fill the array with string 'abcdefgh’.

Symbol Add char str1[8] Fil_Mem 'abcdefgh’

To add a debugger symbol of type shaatmed s1 andlfthe memory location
with value 0x10203:

Symbol Add short s1 Fil_Mem 0x10203

464

Chapter 12:
Symbol Add

In this example, we assigned a value to the symbol that is too large for the
specified type. In this case, the debugger fillsrtteanory location with the
lower bytes of the specified value. Executing the command:

Expression Printf "%x",s1

shows that the value is 203, the lower two bytes of the specified value.

465

Chapter 12:
Symbol Browse

Symbol Browse

< Symbal D—{ Browse >—’<Ctass,ngme>* <RETURN>

The Symbol Browse command displays the parents and children ofa C+ +
class. The inheritance relationship is displayed in the Journal window.

Example To display the parents and children of the C+ + diass type:

Symbol Browse fruit

466

Chapter 12:
Symbol Display

Symbol Display

Symbol Display

Default
,, = Data¯os > K End Options

= Functions&labels

—={ Modules :

P

—{ Search_All :

H <symbol name> <Return>

W .
k{ReseWediSymbo\s\

The Symbol Display command displays symbols and associated information in
the Journal window.

467

Chapter 12:
Symbol Display

To display symbols in all modules, specify a backslash as the command
argument.

Symbol Display Default\

To displays all symbols in a specified module or function, enter a module
name or function name followed by a backslash.

Symbol Display Default memset\

The wildcard character may be placed at the end of a symbol name with any
option. The* can be used to represent zero or more characters. If used with
no symbol name, is treated the same ashat is, all symbols are displayed.

If you enter a symbol namethiout a module specification, the debugger looks
for the symbol in the current module. If there is no module qualifier, all

symbols with the specified naméhbe displayed, including global symbols

and symbols local to the module. Global symbols are not attached to a module.

Symbol Display Default dest

If you specify a structureame using the Types option, the debugger shows all
members in thetsucture and their types.

Default

If you specify Default, the debugger displays all types of symbols.
Options

The following options may be specified to display subsets of symbols.

Data¯os displays symbol namtmage class, data type, and
addresses of data and macro symbols.

Functions&labels displays symbol nammrsige class, data type, return
type, and addresses of functions and labels.

Modules displays names, module type (high-level, assembly-level,
or non-loaded), and section addresses of modules.

Types displays all symbol types.

468

Chapter 12:
Symbol Display

Search_All displays symbols of all types in all roots (contexts).
Wide shows symbol names only in multicolumn (compressed)
format.

If you do not specify any options, the debugger displays all symbols.

Warnings

When you execute the Symbol Display Warnings command, the debugger
displays type mismatches. Mismatches occur when global variables are
declared with different types in different modules or global functions are
declared with different return types or argument counts in different modules.
The command displays all mismatches and the names of the modules in which
the symbols are declared.

Reserved_Symbols
If you specify Reserved_Symbols, the debugger displays processor reserved
symbols, registers, and internal debugger variables.

See Also Symbol Add
Symbol Remove

Examples To display the symbol 'updateSys’in the current module:

Symbol Display Default updateSys

Symbol Display Default updateSys
@ecs\\updateSys : Type is High level module.
Code section = 00001436 thru 00001C21

To display all symbols in module 'updateSys”.
Symbol Display Default updateSys\

> Symbol Display Default updateSys\
Root is: updateSys

@ecs\\updateSys : Type is High level module.
Code section = 00001436 thru 00001C21
updateSys\update_state_of system
: Type is Global Function returning void.
Address = 00001436 thru 00001513

469

Chapter 12:
Symbol Display

update_state_of\refresh
: Type is Local int.
Address = Frame + 8
update_state_oflinterval_complete
: Type is Local int.
Address = Frame + 12

To display all modules in the current symbol tree:

Symbol Display Options Mdules End_Options\

Symbol Display Options Modules End_Options \
Root is: @ecs

31 source and 23 assembler modules, 28 source procedures.
Filename = ecs.x
@ecs\\main : Type is High level module.

Code section = 00001050 thru 00001121

Code section = 00000100 thru 0000010B
@ecs\\initSystem : Type is NON-LOADED module.

Code section = 00001122 thru 00001435

To display all function and labels in module 'main’.

Symbol Display Options Function&labels End_Options main\

To display all reserved symbols:

Symbol Display Reserved_Symbols

To display all symbols in module systemint in compressed format (symbol
names only):

Symbol Display Options Wde End_Options systemint\

Symbol Display Options Wide End_Options systemint\
Root is: systemint

systemint\ system_interrupt function
struct_system_clock hours minutes
seconds struct_system_clock *

tick_clock function argument_1 system_interrupt
tick_clock time reg_paraml
increment

To display all data and macros found within any symbol tree (that is, search \\,
@a.out\\, @filel\\ etc.):

470

Chapter 12:
Symbol Display

Symbol Display Options Data&Macros Search_All
End_Options \

Symbol Display Options Data¯os Search_All End_Options \
Root is: @ecs
31 source and 23 assembler modules, 30 source procedures.
Filename = ecs.x

update_state_of\refresh
: Type is Local int.
Address = Frame + 8
update_state_oflinterval_complete
: Type is Local int.
Address = Frame + 12

To display data type struct_temp_settings:

Symbol Display Options Types End_Options
struct_temp_settings\

Symbol Display Options Types End_Options struct_temp_settings\
Root is: struct_temp_settings

@ecs\struct_temp_settings
: Type is Type definition of Structure, size
=8.
struct_temp_set\temp : Type is Member of type float.
Offset = 0
struct_temp_set\humid : Type is Member of type int.
Offset = 4

To display any type mismatches detected in the user program during program
loading, along with the address of the symbol that has the mismatch:

Symbol Display \Warnings

2 mismatches.
getOplnput\system_off: Type is Global Function returning void.

Address = 000024AE to 000025ED

***] modules mismatched ***

Modules:’'main’
updateSys\write_output_command

: Type is Global Function returning void.

Address = 00001944 to 0000197B

*** 1 modules mismatched ***

Modules: 'getOplnput’

471

Chapter 12:
Symbol Remove

Symbol Remove

< Symbol)——(Remove)—ﬁ <symbol_name> I\ =|| <Return>
@f

The Symbol Remove command removes the specified symbol from the symbol
table. Only program symbols and user-defined debugger symbols can be
deleted from the symbol table.

To delete all symbols within a named module or function, append a backslash
(\) to the module or function name (< symbol_name>).

Symbol Remove updateSys\

Entering a backslash without a module or functiame deletes all symbols in
all modules.

Symbol Remove \

If you specify a symbol name thiout a module specification, the debugger
looks for the symbol in the current module.

If you specify more than one symbol to be deleted or if the specified symbol
has local symbols (for example, when a macro is deleted), the debugger
requests confirmation. Entering after the symbol namgrovides automatic
confirmation of the request. This option is useful in command files.

The debugger lets you add a debugger symbol with the same name as a target
module’s local symbol or a predefined macro’s local symbol. If you do add a
debugger symbol with same name as a local symbol, you must specify the
entire symbol name with the Symbol Remove command in order to remove it.
For example, if you added the debugger synaitel_settingsvhen running the
demonstration program, you must entatter_settingsnstead oflter_settings

to delete the symbol because there is a local symbol alter_settings in target
module updateSys. Otherwise the error message# 152, Gnnot delete:

more than one symbol with this nameelisplayed.

472

Chapter 12:
Symbol Remove

See Also Symbol Add
Symbol Display
Examples To delete symbol ‘current_targets’in function ‘alter_settings”

Symbol Remove alter_settings\current_targets

To delete all symbols in module 'updateSys”.
Symbol Remove updateSys\

To delete symbol ‘alter_settings’in module 'updateSys".

Symbol Remove updateSys\alter_settings

In this example, the symbol being removed is a function which contains other
symbols. The debugger prompts you with the message This symbol has a
sub-tree. Delete with sub-tree? (Y/N)'. Enter 'Y'to delete the symbol and its
sub-tree. If you respond with 'N’, the manand is canceled.

To delete all symbols in all modules:

Symbol Remove \

473

Chapter 12:
Trace Again

Trace Again

< N / . N\
Trace = Again *} <Return>

The Trace Again starts a trace using the last (previous) trace specification.
The trace starts on the next program run or stepncand.

If no trace has been previously specified, this command is equivalent to
entering afrace Trigger Never command, and states are collected until
you enter alrace Halt command.

Example To start a new trace using the last trace specification:

Trace Again

474

Chapter 12:
Trace deMMUer

Trace deMMUer

~ deMMUer <Return=>

= Load w
~—~" Verbose

~——{ Enable

Disable

fm

The Trace deMMUer command allows you tmose between tracing physical
addresses and tracing logical addresses.

You must enable the MMU before tracing MMU activity. T68020/030
Graphical User Interface User's Guidkescribes how to use the emulator
configuration commands and the TC register to enable the MMU.

Load

The Trace deMMUer Load command reads the MMU registers and MMU
tables, and loads the deMMUer with the appropriate information to
reverse-translate physical addresses to logical addresses.

The Verbose option shows a list of the physical addresses that can be
translated by the deMMUer.

Enable

The Trace deMMUer Enable commanuds on the deMMUer. Physical
addresses on the emulation bus will be translated to logical addresses.

Disable

The Trace deMMUer Disable commandns off the deMMUer. Physical
addresses on the emulation bus will not be translated.

475

Chapter 12:
Trace deMMUer

See Also The "Using MC68030 Memory Manament" chapter in th&é8020/030
Graphical User Interface User's Guide

Examples To translate physical to logical addresses, make sure that the MMU has been
set up, then enter:

Trace de MMUer Load Verbose
Trace de MMUer Enable

To stop translating physical to logical addresses, enter:

Trace de MMUer Disable

476

Chapter 12:
Trace Display

Trace Display

< Trace >——(Display <Refurn>
| OutputTo >—~<<w1dowmmbr>>j

~

i

0

\¥< Line(s) H<STGFLHHE> } <Tab>
(e

Modules J

Source

el

Assembly

Raw

The Trace Display command displays trace information in the specified
window. If no window is specified, the trace output will go to the Trace Mode
window, and the debugger willl enter "trace mode."

477

Chapter 12:
Trace Display

Data may be displayed (interpreted) in several ways: from module and
function entry and exit points, to raw bus data. The default display will show
modules and source line references only.

Trace mode

In trace mode, the trace information is displayed in the View window. You
cannot enter debuggermomands from the command line while in trace mode.
To return to debugger oomand mode, press tliesc key twice.

In trace mode, you can use the cursor keys to scroll the trace information in
the View window. Use the Next and Prev keys to page through the trace
output.

Function keys Function keys1, F3, F4 andF5 do their normal functions
when you are in trace mode. Howevef,(Next Window) activates only the
Code or Trace Mode windows. You can use f3dunction key to switch
between the high-level and assembly-level displays in the Code window when
tracking trace data.

F2, F6, F7, andF8 have special functions when in the trace mode. Function
keyF2 lets you enter a new line number to display at the top of the trace list
display. TheF6 function key changes the track direction (backward or
forward) in the trace window. The7 function key scrolls the trace list up or
down in the Trace Mode window and updates the Code window so that the
highlighted line corresponds to the new first line displayed in the Trace Mode
window. TheF8 function key toggles the top line high-level module
identification on or off to allow an extra line of trace information to be
displayed. The top line high-level module identification must be on to enable
tracking.

Tracking source code The debugger gives you the capability torelate

the data in the trace display with source code displayed in the Code window.
To view trace information in relationship to the source code, select a line in
the trace list with the cursor and then priedor theReturn key. This

updates the Code window so that the highlighted line in the code window
corresponds to the first line displayed in the Trace Mode windowskPigs-7

or theReturn key again scrolls the trace list in the Trace Mode window and
updates the Code window so that the highlighted line corresponds to the new
first line displayed in the Trace Mode window.

Press thé&6 function key to change the track direction (backward or forward)
in the Trace Mode window. The trace direction is indicated on the bottom

478

Chapter 12:
Trace Display

border of the Trace Mode window 6r v). The symbols show which direction
the search wilproceed through the trace buffer to find the next high-level or
assembly code line (depending on the Code window selected). If the trace
window has no lines that correspond to code lines, the sedfgiroceed to
the end of the trace buffer.

If you have specified storage qualifiers, the trace data may not track
sequentially with the lines in the code display.

Directing output to a specified window or file

Use the OutputTo keyword to redirect trace output to a window or file other
than the View window. The following values are valid window numbers for
trace output:

1 high-level Journal window

10 assembly-level Journal window
24 View window

28 log file

29 journal file

50 - 256 user-defined windows

Line(s) keyword

Use the Line(s) keyword to specify a range of lines to be copied from the trace
buffer to the specified window. For example, to copy lines —hidugh —90
from the trace buffer to the journal file, enter thenooand:

Trace Display Line(s)-110..—90 <Tab> CQutputTo 29

You cannot specify a line range for trace output when entering trace mode.
However, you may specify the first line to display in trace mode. For example,
to display the trace buffer starting at line -110, enter timencand:

Trace Display Line(s)-110 .

479

Chapter 12:
Trace Display

Display qualifiers

The following display qualifiers let you select what information is written to
the output window and how the information is formatted.

Line(s)

Modules

Source

Assembly

Data

Raw

Specifies the starting line or the range of lines to display or
copy. Line O is the trigger cycle. You cannot specify a range
when entering trace mode.

Displays names of module the trace lines are in, entering, or
re-entering. This is useful for showing general program flow.

Display the source lines and line numbers corresponding to
instruction fetches.

Displays assembly language instructions. Information is
displayed symbolically when possible.

Displays address, value, and read/write status for data
accesses. Information is displayed symbolically when
possible.

Display the frame number, address, data and status for a bus
cycle with no interpretation of the data.

Displaying status information Status information is displayed
mnemonically in the trace list. The following table describes the mnemonics
that may be displayed.

Mnemonic

Description

Function Code Space

User
Supv

Prog
Data

Cycle occurred in user space
Cycle occurred in supervisor space

Cycle occurred in program space
Cycle occurred in data space

480

Chapter 12:
Trace Display

FCO Cycle used function code 0

FC3 Cycle used function code 3

FC4 Cycle used function code 4

CPU Cycle refers to CPU space
Cycle Type

Code Fetch Cycle was a code fetch
DMA cycle Cycle was a DMA cycle

Read Cycle was a read cycle

Write Cycle was a write cycle

Copr Cycle was a coprocessor cycle
Termination

ds8 DSACK 8 bit port

ds16 DSACK 16 bit port

ds32 DSACK 32 bit port

strm Synchronous terminatior68030/68EC030 only)
68030 MMU

tablewalk Tablewalk cycle for 68030 MMU

log Logical address

phy Physical address
Other

Berr Bus error cycle

Rtry Retry cycle

bgnd Background monitor cycle

Halt Halt cycle (68020 only)
Data size

Byte 1 byte

Word 2 bytes

Long 4 bytes

byt 3 bytes

Trace status character When trace data is displayed, a trace status
character may be displayed in front of the trace line. The following table
defines the trace status characters.

481

Chapter 12:
Trace Display

Trace List Status Characters

Character Description
* The indicated trace line is the trigger condition.
+ The indicated trace line is an assembly language statement

within a high-level statement, that is, not the first assembly
language statement in the high-levelisce stagment.

! The data field in the trace buffer line does not match the
data in memory.

? The trace line may be a prefetch.

Examples

To display source lines, their corresponding assembly language instructions,
and data read and write cycles:

Trace Display Mdules Source Assembly Data

To copy the raw data in lines -20rbugh + 20 of the trace buffer to a log file
you have opened:

Trace Display Lines -20..20 <Tab> Raw CQutputTo 28

482

Chapter 12:
Trace Event Clear_All

Trace Event Clear_All

The Trace Event Clear_All command clears (removes) all specified events that
are not used by the trigger or store qualifier.

<Return>

¥

See Also Trace Event Delete

Examples To clear (remove) all defined trace events:

Trace Event Clear All

483

Chapter 12:
Trace Event Delete

Trace Event Delete

* = Delete w—> <event nmbr> —= <Return>

The Trace Event Delete command deletes (removes) a previously defined
event specification. You cannot delete an event that is used by the trigger or
store qualifier.

See Also Trace Event Clear_All
Trace Event Specify

Examples To delete event 2:

Trace Event Delete 2

484

Chapter 12:
Trace Event List

Trace Event List

< Trace >—>< Event >—>< List >—9 <evemt7mmbr>% <Return>

The Trace Event List commautdts the definition of the event specified by
< event_nmbr> in the Viewwindow. The definition includes address, data,
and status. The command used to define the evéisted, as well as an
indication if the event is used by the trigger or qualifier.

See Also Trace Event Specify

Examples To list the definition of event 3 in the View window:

Trace Event List3

485

Chapter 12:
Trace Event Specify

Trace Event Specify

< Trace)——< Event >——< Specify H<@vem,mmbr> H <Tab> B

= <addr_spec>

The Trace Event Specify command defines an event (detectable bus condition
to be used for trace qualifying or triggering. The event number
(< event_nmbr>) must be a number between 1 and 30 inclusive. Bus

486

Chapter 12:
Trace Event Specify

conditions may be address values, data values, or status values. The event is
true if all of the terms defined in the event are true at the same time.

Event conditions

Three types of conditions can be specified in an event definition. The three
condition types are:

Address The value that appears on the address bus. The address term
matches an address, range of addresses, or out-of-range
addresses.

Data The value that appears on the data bus. The data term

matches a data value or range of values. The data size is that
of the data field as specified by the analyzer. This typically
matches the processor bus size.

Status The type of bus activity, for example: instruction fetch, read,
write, CPU, etc.

If you use the keyworts , the event is defined as the specification that
follows. If you use the keywordot , the event is defined as the logical NOT of
the specification that follows, that is, any condition that does not match the
specification. For example, if you enter the specification:

Trace Event Specify 1 <Tab> Address | s 0x10b6..0x123d
event 1 is defined to be any address in the range 0x10b6 throl@@®dOxf
you enter the specification:

Trace Event Specify 1 <Tab> Address Not 0x10b6..0x123d
event 1 is defined to be any addrestsidethe range 0x10b6 through123d.

Address and data values

Address values<addr_spec>) and data valuesflata_spec>) are

specified as 32-bit values or a range of 32-bit values denoted.b§gu can

specify address values using module names, symbols, and high-level line
numbers. See the “Expressions and Symbols in Debugger Commands” chapter
for detailed information on how to specify addresses.

487

Chapter 12:
Trace Event Specify

See Also

Examples

A mask can be used to specify a range with a 32-bit value that marks valid bits
in addresses or data. For example, to specify only addresses in the range
000015xxh (where xxare "dont care" values), you could enter the command:

Trace Event Specify 4 <Tab>A ddress |Is
0x1500 &= Oxffffff00

The&=isthe bit mask operator. This range could also have been specified as
0x1500..0x15ff

Status values

Status conditions are the types of bus activities you wish to specify. The
following keywords are used to specify the status condition:

Read specifies read operation

Write specifies write operation

Size specifies access size (byte, word, or long)

FnCde specifies function code (data or program, supervisor or user
mode)

CycTyp specifies cycle type (Fetch or CPU)

Addresses specified witha a CycTyp of Fetch will be masked to the size
specified by Debugger Option Trace Fetch_Align.

Trace Event Clear_All

Trace Event Delete

Trace Event List

Debugger Option Trace Fetch_Align

To define event 1 to be the address of function update_state_of system:

Trace Event Specify 1 <Tab> Address Is
update_state_of_system

488

Chapter 12:
Trace Event Specify

To define event 2 to be any bus cycle corresponding to an instruction fetch
from supervisor memory space:

Trace Event Specify 2 <Tab> Status |s FnCde Supr CycTyp
Fetch

To define event 3 to be a write access of variable current_humid:

Trace Event Specify 3 <Tab> Address |Is
¤t_humid <Tab> Status |s Wite

If an 8-bit wide 1/0 port at 8&x0010h has a "data valid" bit at bit 3, you can
specify a trace event when the "data valid" bit is read by entering:

Trace Event Specify 5 <Tab> Address |Is
0f0000010 &= 0xfOOOffff <Tab> Data |s Ox8 &= Oxff

489

Chapter 12:

Trace Event Used_List

Trace

See Also

Examples

Trace Event Used_List

; ={ Used List = <Return>

The Trace Event Used_List commalisdls the numbers of the events that are
currently defined and whether or not the event is being used (specified in a
Trace Trigger or Trace StoreQual definition).

Trace Event Specify
Trace Trigger Event
Trace StoreQual Event

To list the arrently defined events and their status (used or not used):

Trace Event Used List

490

Chapter 12:
Trace Halt

Trace Halt

(O o)
Trace = Halt <Return>

The Trace Halt commandops (terminates) the trace currently being
executed. If a trace is not in progress, thimowand has no effect. After
executing this command, you can display any trace data collected.

See Also Trace Again
Examples To stop the current trace:
Trace Halt

491

Chapter 12:
Trace StoreQual

Trace StoreQual

<Return>

Trace StoreQual

(e o s [

4 N
<addr_spec> /
<data_spec> I /

" M
w
/|
J

The Trace StoreQual oumand immediately specifies the bus conditions to be
stored (captured) in the trace buffer. Bus conditions may be address values,

492

Chapter 12:
Trace StoreQual

data values, or status values. When you define a storage qualifier, you are
essentially defining an event. You can also useTtlaee Event Specify
command to define an event, and then uselthee StoreQual Event
command to use the specified event amsaagie qualifier term.

Storage qualifier conditions

Three types of conditions can be specified as storage qualifiers. The three
condition types are:

Address The value that appears on the address bus
Data The value that appears on the data bus
Status The type of bus activity, for example, instruction fetch, read,

write, CPU, etc.

If you use the keyworts , bus cycles matching the specification that follows
are stored in the trace buffer. If you use the keywitat, the storage qualifier

is defined as the logical NOT of the specification that follows, that is, any bus
cycles that do not match the specification are stored in the trace buffer. For
example, if you enter the specification:

Trace StoreQual Address | s 0x10b6..0x123d

the storage qualifier is defined to be any address in the range 0x10b6 through
0x123d. If you enter the specification:

Trace StoreQual Address Not 0x10b6..0x123d

the storage qualifier is defined to be any addoessidethe range 0x10b6
through 0423d.

Address and data values

Address values<addr_spec>) and data valuesflata_spec>) are
specified as 32-bit values or a range of 32-bit values denoted.b§gu can
specify address values using module names, symbols, and high-level line
numbers. See the “Expressions and Symbols in Debugger Commands”
chapter for detailed information on how to specify addresses.

A mask can be used to specify a range with a 32-bit value that marks valid bits
in addresses or data. For example, to store only addresses in the range

493

Chapter 12:
Trace StoreQual

Note

0x000015xx (where xx are "don't care" values), you could enter the
command:

Trace StoreQual Address Is
0x1500 &= Oxffffff00

where&=is the bit mask operator.

This format is used because the C language does not have a way to represent a
dont care literal.

Execute thébebugger Execution Environment Unrestricted

command before specifying an event with an address to ensure that the
analyzer interprets the chip selects properly for the address. See the
description of thddebugger Execution Environment

Unrestricted command.

Status values

Status conditions are the types of bus activities you wish to specify. The
following keywords are used to specify the status condition:

Read specifies read operation

Write specifies write operation

Size specifies access size (byte, word, or long)

FnCde specifies function code (data or program, supervisor or user
mode)

CycTyp specifies cycle type (Fetch or CPU)

Addresses specified with a CycTyp of Fetch will be masked to the size specified
by Debugger Option Trace Fetch_Align.

494

Chapter 12:
Trace StoreQual

Prestore

SpecifyingPrestore in your storage qualifier definition causes the trace
function to store up to two instruction fetch cycles preceding the qualified
condition being stored. This lets you view the instructions leading up to the
qualified state.

See Also Trace StoreQual Event
Trace StoreQual List
Trace StoreQual None
Debugger Option Trace Fetch_Align

Examples To store accesses tpdate_state of systemong with the two bus cycles
immediately preceding the accesses.

Trace StoreQual Address | s update_state of system
Prestore

To store only instruction fetches with an opcode valudedk wherex is a
dont care value:

Trace StoreQual Data | s 0x4e50 &= OxfffO <Tab> Status
I's CycTyp Fetch

The dont care condition is specified by specifying a mask in the data
specification.&=is the mask operator. This value corresponds to the LINK
and UNLK instructions.

495

Chapter 12:
Trace StoreQual Event

Trace StoreQual Event

(Trace = StoreQual %i

- <Return>

= Prestore

The Trace StoreQual Eventromand lets you specify an event or
combination of events defined with tffeace Event Specify command
as the storage qualifier.

Events

Each event that you define using the Trace Event Specify commassigsed

an event number between 1 and 30. This number (< event_nmbr>) is used to
assign an event to be tosage qualification term. The storage qualification

term can be a single event or a logically OR'ed combination of events.

Prestore

SpecifyingPrestore in your storage qualifier definition causes the trace
function to store up to two instruction fetch cycles preceding the qualified
condition being stored. This lets you view the instructions leading up to the
qualified state.

See Also Trace StoreQual
Trace StoreQual List
Trace StoreQual None

Examples To store only states matching event 1 defined with the Trace Event Specify
command and the last two tngction fetches preceding each of these states:

Trace StoreQual Event1 <Tab> Prestore

496

Chapter 12:
Trace StoreQual Event

To store only states matching event 1 or event 2 defined with the Trace Event
Specify command:

Trace StoreQual Event1 <Tab> a3

497

Chapter 12:
Trace StoreQual List

Trace StoreQual List

= StoreQual ﬁ—? <Return>

The Trace StoreQual List oumand displays theucrent storage qualification
definition in the View window.

See Also Trace StoreQual
Trace StoreQual event

Examples To list the airrent storage qualification definition in the View window:

Trace StoreQual List

498

Chapter 12:
Trace StoreQual None

Trace StoreQual None

The Trace StoreQual Nonermmand causes the trace functiontors all bus
cycles (no trace qualification).

See Also Trace StoreQual
Trace StoreQual event

Examples To store all bus cycles (no trace qualification):

Trace StoreQual None

499

Chapter 12:
Trace Trigger

Trace Trigger

C Trace)—-(Trigger

-

<Return>

[<Tabs |
I <Tab>
Not
/
y
S J
/

500

Chapter 12:
Trace Trigger

The Trace Trigger command specifies the bus conditions to be used as the
trigger condition. Bus conditions may be address values, data values, or status
values. When you define a trigger, you are essentially defining an event. You
can also use th€race Event Specify command to define an event, and
then use thdrace Trigger Event command to use the specified event as
the trigger event.

Trigger conditions

Three types of conditions can be specified in triggers. The three condition
types are:

Address The value that appears on the address bus
Data The value that appears on the data bus
Status The type of bus activity, for example, instruction fetch, read,

write, interrupt acknowledge, etc.

If you use the keyworts , bus cycles matching the specification that follows
are used as the trigger event. If you use the keyWNotd the trigger is defined

as the logical NOT of the specification that follows, that is, any bus cycle that
does not match the specification is the trace trigger. For example, if you enter
the specification:

Trace Trigger Address | s 0x10b6..0x123d

the trigger is defined to be any address in the range 0x10b6 throl@2BdOk
you enter the specification:

Trace Trigger Address Not Ox10b6..0x123d

the trigger is defined to be any addresssidethe range 0x10b6 through
0x123d.

Address and data values

Address values<addr_spec>) and data valuesflata_spec>) are
specified as 32-bit values or a range of 32-bit values denoted.b§gu can
specify address values using module names, symbols, and high-level line
numbers. See the “Expressions and Symbols in Debugger Commands”
chapter for detailed information on how to specify addresses.

501

Chapter 12:
Trace Trigger

A mask can be used to specify a range with a 32-bit value that marks valid bits
in addresses or data. For example, to trigger only on addresses in the range
0x000015xx (where xx are "don't care" values), you could enter the
command:

Trace Trigger Address |s
0x1500 &= Oxffffff00

where&=is the bit mask operator.

Status values

Status conditions are the types of bus activities you wish to specify. The
following keywords are used to specify the status condition:

Read specifies read operation

Write specifies write operation

Size specifies access size (byte, word, or long)

FnCde specifies function code (data or program, supervisor or user
mode)

CycTyp specifies cycle type (Fetch or CPU)

Addresses specified witha a CycTyp of Fetch will be masked to the size
specified by Debugger Option Trace Fetch_Align.

Breaking on triggers

Enter theBrkOnTrg keyword to cause the user program to halt when the
trigger term is detected.

Trigger position

Enter thePosnTrig keyword to specify the position of the trigger condition
in the trace buffer. You can specify the trigger position to be one of the
following:

Start The trigger is at the start of the trace buffer.

502

See Also

Examples

Chapter 12:
Trace Trigger

Center The trigger is centered in the trace buffer.

End The trigger is at the end of the trace buffer.

The trigger state will always be line number 0 in the trace list.

Interaction with trace commands

The Trace Trigger, Breakpt Access, Breakpt Read, and Breakpt Write
commands all require use of emulation analyzesueses. If access
breakpoints are active (indicated by the mes§a€: BrkRWA on the status
line), then a Trace Trigger command may not be entered. If a trace trigger is
active, access breakpoints may not be entered.

The Breakpt commands set up a trace with the trigger at the end of the trace
buffer, using the current storage qualification. You can display the trace after
the break occurs to see the cycles leading up to the break.

Breakpt Access

Breakpt Read

Breakpt Write

Trace Trigger Event

Trace Trigger List

Trace Trigger None

Debugger Option Trace Fetch_Align

To trigger the trace measurement on entry into function
update_state _of system and position the trigger state in the center of
the trace memory buffer:

Trace Trigger Address | s update_state of system Status
I s FnCde Prog PosnTrig Center

To trigger the trace measurement on theuommce of a write to variable
time_struct.seconds, and halt (break) program execution on detection of
trigger condition:

Trace Event Specify 6 <Tab> Address |Is
&time_struct.seconds <Tab> Data |sO0x3c Status |s Wite
<Tab> BrkOnTrg

503

Chapter 12:
Trace Trigger Event

Trace Trigger Event

C Trace)—{ Trigger)——C Event

g— <event _nmbr> 7 <Return>
\—@= <Tab> A—>

Count <# times> "
S <Tab> <—>

N v

.

The Trace Trigger Event command lets you specify an event or combination of
events defined with th&race Event Specify command as a trigger
condition. The trigger condition can be a single event, a logically OR’ed
combination of events, a specified number of occurrences of an event or
combination of events, or a sequence of the preceding conditions. The
complexity of the specification is limited by the analyzer.

\\

Event Number

Each event that you define using the Trace Event Specify commassigsed
an event number between 1 and 30. This number (< event_nmbr>) is used to
assign an event to be a trigger term.

504

Chapter 12:
Trace Trigger Event

Keywords

Or TheOr keyword lets you specify a logically OR’ed
combination of events as the trigger condition.

Count TheCount keyword specifies the number of times
(<nmbr_times>) an event or OR’ed combination of
events must occur before the debugger proceeds to the next
trigger sequence term or before the trigger condition is
completed<nmbr_times> must be a value in the range of
1 to 65535.

Then TheThen keyword lets you specify a sequence of terms in
the trace specification.

BrkOnTrg TheBrkOnTrg keyword causes the user program to halt
when the trigger term is detected.

PosnTrig ThePosnTrig keyword is used with the Start Center, and
End keywords to specify the position of the trigger
condition in the trace buffer.

Start TheStart keyword specifies the start of the trace buffer as
the trigger position.

Center TheCenter keyword specifies the center of the trace buffer
as the trigger position.

End TheEnd keyword specifies the end of the trace buffer as the

trigger position.
The trigger state will always be line number 0 in the trace list.
See Also Trace Trigger

Trace Trigger List
Trace Trigger None

Examples To trigger on the occurrence of event 1 which has been previously defined with
the Trace Event Specify command:

505

Chapter 12:
Trace Trigger Event

Trace Trigger Eventl

To trigger on the occurrence of either event 1 or event 3 (events 1 and 3 must
have been previously defined with the Trace Event Specify command):

Trace Trigger Event 1 <Tab> O3

To trigger on the fifth occurrence of event 3 following an occurrence of event

1 (events 1 and 3 must have been previously defined with the Trace Event
Specify command):

Trace Trigger Event 1 <Tab> Then 3 <Tab> Count5

506

Chapter 12:
Trace Trigger List

Trace Trigger List

The Trace Trigger List command displays tlierent trigger definition in the
View window.

See Also Trace Trigger
Trace Trigger List
Trace Trigger None

Examples To list the arrent trigger definition in the View window:

Trace Trigger List

507

Chapter 12:
Trace Trigger Never

Trace Trigger Never

The Trace Trigger Never command sets the trace function up to collect states
until you stop the trace using the Trace Halhooand. Collection starts on
the next program run or stepromand.

See Also
Trace Halt

Examples To collect states continuously until the trace is stopped using the Trace Halt
command:

Trace Trigger Never

Collection starts on the next program run or staproand.

508

Chapter 12:
Window Active

Window Active

CWmeW) “(Active >3

High_Level

= Codc <Return>

) —

» Journal

= Assembly » Codc

= Stack

\
\

= Monitor

= Journal

il

= Registers

Breakpoint Y,

User_Window <user window_nmbr> |——

The Window Active command activates the specified window. The border of
the active window is highlighted. The Code window is active by default within
the high level and low level screens.

509

Chapter 12:
Window Active

The Next and Previous parameters specify the next higher-numbered or
lower-numbered window relative to the active window.

The cursor keys and the F4 function key only operate in the active window.

The Error, Help, and Status windows cannot be made active.

See Also Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To make the high-level Backtrace window active:

Wndow Active High_Level Backtrace

To make the assembly Code window active:

Wndow Active Assembly Code

To make user window 57 active:

Whdow Active User_Window 57

510

Chapter 12:
Window Cursor

Window Cursor

C Window)——(Cursor)—» <user_ window nmbr> — <tab>)

Position >—> <line,col> —= <Return>

The Window Cursor command sets the cursor position in the window
specified by < user_window_nmbr> . The top left corner of the window is
represented by coordinates 0,0.

Subsequent output to the window begins at the cursor position.

Only user-defined windows and the standard 1/0O window (window No. 20) may
be specified with this command.

See Also Window Active
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To move the cursor to line 5, column 22 in the Stdio window:

Whdow Cursor 20 Position 5,22

To move the cursor to line 3, column 0 in user window 57:

Whdow Cursor 57 Position 3,0

511

Chapter 12:
Window Delete

Window Delete

<Window >——< Delete)L j <Return>
<user window nmbr>

See Also

Example

The Window Delete command removes a windpassibly a screen) defined
previously with the Window New command. Remove a window by entering the
window's associated window number. If you do not specify a window number
or if you specify 0, the active window is removed.

Remove screens by removing all windows associated with that screen. For
example, if a user-defined screen has three windows and you delete all three
windows, the screen will be deleted as well. See the "Displaying Screens" and
"Displaying Windows" sections of the "Viewing Code and Data" chapter for
more information about window and screen numbers. Predefined debugger
windows and screens cannot be removed.

Files opened with the File User_Fopen command may also be closed with this
command.

File User_Fopen

File Window_Close
Window Active
Window Cursor
Window Erase
Window Open
Window Resize
Window Screen_On
Window Toggle View

To delete user window 57:

Whdow Delete 57

512

Chapter 12:
Window Erase

Window Erase

Erase \' f <Return>
<user_window _nmbr>

The Window Erase command clears all displayed information in the specified
window. It then places the cursor in the specified window to the 0,0 position. If
you do not specify a window number or if you specify 0, the active user-defined
window is cleared. Only user-defined windows and the standard I/O screen
(window No. 20) can be cleared. This command is primarily for use within
macros.

See Also Window Active
Window Cursor
Window Delete
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To clear all displayed information in the Stdio window:

Wndow Erase 20

To clear all displayed information in user window 57:

Whdow Erase 57

513

Chapter 12:
Window New

Window New

New >—> <user window nmbr> % <tab>
~={ High Level
—= Assembly
= Stdio

k><tjser78<:reem>—> <screen _nmbr> <tab> { Bounds

L <top row,left col,bottom row,right col> <Return>

The Window New command makes (creates) new windows and screens. It may
also be used to move existing windows to a new location within a screen.
Windows must be assigned a number between 50 and 256 inclusive. Numbers 1
through 49 are reserved for predefined debugger windows. The bounds
parameter specifies both the window size and location on the screen.

Window coordinates 0,0 correspond with the upper-left corner of the screen.

Note When making new window, be careful not to enter coordinates tha¢sult
in a window that will cover the status line andmsoand line.

On a standard 80-column by 24-row terminal display, a @wdinate may be
between 0 and 23. However, creating a window whose bottom row coordinate
is greater than 18 will cause part or all of the status line to be covered.

514

Chapter 12:
Window New

Command Parameters

Definition of the Window New command parameters are as follows:

Parameter Definition Range
<user_window_nmbr> Window number 50 to 256 inclusive
<user_screen_nmbr> User_Screen 4 to 256 inclusive
<top row> Upper row coordinate 0 to N-1inclusive
< left col> Left column coordinate 0 to N-1inclusive
< bottom row> Lower row coordinate 0 to N-1inclusive
<right col> Right column coordinate 0to N-1inclusive
N is the number of rows or columns on your display. The value of N is dependent on display|type.

Note The Window New commandilifail if row or column oordinates are greater
than the screen boundary. For example, thrermandwWindow New 15
Assembly 36,1,39,84ill fail if you have an 80 column by 40 row screen. The
commandWindow New 15 Assembly 36,0,39® work.

Alternate Window Views

To create alternate views of a user-defined window, follow the procedure
outlined below.

1 Execute thaVindow New command to define a window with specific size
parameters.

2 Execute th&Vindow Toggle_View command, or press function kE#.

3 Execute th&Vindow Resize command to redefine the previously
defined window with new size parameters. The new size parameters must
be smaller than the previously assignedapaeters.

See Also Expression Fprintf
File User_Fopen
Window Active
Window Cursor
Window Delete
Window Erase
Window Resize

515

Chapter 12:
Window New

Window Screen_On
Window Toggle_View

Examples To make a new user window, number it 57, and display it in user screen 4 with
upper-left corner at coordinates 5,5 and the lower right corner at coordinates
18,78:

Whdow New 57 User Screen 4 Bounds 5,5,18,78
To make a new user window, number it 55, and display it in the high-level

screen with upper-left corner at coordinates 5,5 and the lower right corner at
coordinates 10,20:

Wndow New 55 High_Level 5,5,10,20

To move the high level status line window to the top of the displayin the
standard interface:

Wndow New5 High_Level 0,0,3,78

For this command to execute, the high-level window must be displayed and the
difference between the bottom row coordinate and top row coordinate (3 — 0)
must equal three (3). You cannot move the status line if you are using the
graphical interface.

516

Chapter 12:
Window Resize

Window Resize

Window - Resize <Return>

The Window Resize command lets you change the size and position of the
active window interactively. The cursor keys (left, right, up, and down arrows)
move either the top left corner, or the bottom right corner of the window.

To reposition the top left corner, présand position the top left corner of
the window using the cursor control keys.

To reposition the lower right corner of the window, pfi@sed use the cursor
control keys to position the lower right corner.

To move the window without resizing it prédand use the cursor control
keys to move the window on the screen.

Press th&keturn keyto save the new coordinates.
Pres€CTRL C or Esc Esc to restore the previous coordinates.

If an alternate window view is selected, the size alterations are made to the
alternate view.

Note The Window Resize command can be used to alter the size of any existing
window, including the predefined debugger windows, with the exception of the
Status Line or Viewwindow. In the standard interface (but not in the
graphical interface), the Status Line window can be moved or resized using the
Window New command.

See Also Expression Fprintf
File User_Fopen
other Window commands

517

Chapter 12:

Window Screen On

Window Screen_On

Screen On

e

See Also

~——{ High Level) 7 <Return>
~—{ Assembly }
~——{ Stdio)
= Next)

Example

NN

User Screen <screen_nmbr>

The Window Screen_On command displays the selected screen. You can also
use function ke¥6 to display a screen.

If the high level screen is displayed, the debugger is placed in the high level
mode. Likewise, when you display the assembly level screen, the debugger is
placed in the low level mode.

Window Active Window New
Window Cursor Window Resize
Window Delete Window Toggle_View

Window Erase

To activate the Assembly-level screen and place the debugger in low level
mode:

Wndow Screen_On Assembly

518

Chapter 12:
Window Toggle View

Window Toggle_View

Toggle_View) 7 <Return>

Code
Monitor

Assembly Code

Stack

-

High_Level

Monitor

Journal

Registers

st

L\\\

~——{ Breakpoint)
—{ View)
= Stdio)
—’(USGF_WithW>—’ <user_window_nmbr>

The Window Toggle_View command selects the alternate view of a window.
Typically, this is an enlarged view of the window. If you do not specify a
window number or if you specify 0, the active window is the default.

When you execute the Window Toggle_View command, the display alternates
between the two views of the window.

519

Chapter 12:
Window Toggle View

You can also use th®4 function key to alternate views of the active window.

To create alternate views of a user-defined window, follow the procedure
outlined in the Window New command description.

See Also Window Active
Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On

Examples To display the alternate view of the active window:

Wndow Toggle View

To display the alternate view of the high-level Code window:

Wndow Toggle View Hgh Level Code

To display the alternate view of user window 57:

Wndow Toggle View User_Window 57

520

13

Expressions and Symbols in
Debugger Commands

A description of the expressions and symbols you can use in debugger .
commands.

521

Chapter 13: Expressions and Symbols in Debugger Commands

Expressions and Symbols in Debugger Commands

This chapter discusses the following language elements used in debugger
commands:

» Expression elements.
* Formatting expressions.
» Symbolic referencing.

Debugger commands use standard C operators and syntax. This chapter
describes the elements of C expressions and how expressions are structured. It
also discusses memory and variable referencing.

522

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

Expression Elements

Most debugger commands require simple C esgioms that evaluate to a

scalar value. Simple C expressions are the same as standard algebraic
expressions. These expressions evaluate to a single scalar value. Expressions
consist of the following elements:

e operators

e constants

e program symbols
» debugger symbols
* Dbuilt-in symbols

* macros

* keywords

* registers

+ addresses

* addressranges

* line numbers

Debugger commands allow any legal C egsien. The following paragraphs
describe elements of C expressions used in debugger commands.

Operators

The debugger supports most standard C language operators and special
debugger operators.

C Operators

C operators include arithmetic operators, relational operators, assignment
operators, and structure, union, and array operators. The followinditable
these operators in order of precedence (first line of the table is the highest
precedence).

523

Chapter 13: Expressions and Symbols in Debugger Commands

Expression Elements

Supported C Operators

Operators

Order of Association

O ->.

Left to right

~ | ++ -- sizeof (type) - * & Right to left

* | %
+ —
<< >>

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right

= 4= = *= [= Y= &= M= |= <<= >>= Right to left

Left to right

C+ + Operators

The debugger also supports C+ + operators: :;, ., ->, and &.

Debugger Operators

The debugger uses some characters as special debugger operators. These
debugger operators and their descriptions are listed in the following table:

524

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

Debugger Operators

Operator Description

[References the contents of a memory location. For example:

Expression Display_Value [0x20b0]

Identifies a line number. For example:

Program Run Until #82

@ Identifies a stack level, reserved symbols, or symbol tree root. For example:

Program Display_Source @2
(stack level)

Expression Display_Value @module
(reserved symbol)

Symbol Display Default @ecs\\
(symbol tree root)

Identifies a character constant.
Identifies a character string constant.

\ Qualifies a symbol reference. For example:

Program Run Until updateSys\#20

\\ Specifies an executable file as the root of a symbol tree. The specified file must be
loaded into the debugger. For example:

Program Context Set @ecs\\main

Constants

A constant is a fixed quantity. Constants may be integers, floating point
values, or character string constants.

525

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

Integer Constants.

An integer constant may be defined as a sequence of numeric characters
optionally preceded by a plus or minus sign. If unsigned, the debugger
assumes the value is positive.

Positive integer constants may range between 0 and 2**31-1. When a constant
is negative, its two's complement representation is generated. Negative
integer constants may range to —2**31.

Constants can be specified as binary, decimal, or hexadecimal values. This is
done by placing a prefix or suffix descriptor before or after the constant. The
following table lists the legal prefixes or suffixes that may be specified with
integer constants to denote a specific base.

Integer Constant Prefixes and Suffixes

Constant Prefix Suffix Base Digit

Type Descriptor Descriptor

Binary b, B 2 0-1
Decimal t, T 10 0-9
Hexadecimal 0x,0X h,H 16 0-9, A-F, a-f

Hexadecimal constants starting with the letters A through F (or a through f)
must be prefixed with a zero. Otherwise, the debugger attempts to interpret
the value as a symbol name.

By default, the debugger interprets integer constants as decimal values. To
change the radix default to hexadecimal, you can use the Debugger Option
General Radix Hexadecimal command.

If you change the radix default to hexadecimal, you must terminate any
number you want interpreted as a decimal value wiftoat. (For example,
specify decimal 32 as 32T).

Note You cannot use binary numbers when the radix is hexadecimal.

The debugger truncates values larger than that which can be contained in an
element of an expression or command. The debugger extends values less than
that allowed in the element. The truncation and extension are both
implemented according to the rules of C.

526

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

The examples given in the following table show the use of prefix and suffix
descriptors.

Prefix and Suffix Descriptor Examples

Constant Decimal Mode Hexadecimal Mode
73T Decimal Decimal

OEFF1h Hexadecimal Hexadecimal

10b Binary Hexadecimal
0x2214 Hexadecimal Hexadecimal

23C3 Illegal Hexadecimal

123 Decimal Hexadecimal

Floating Point Constants

The debugger represents floating point constants internally in standard IEEE
binary format. All floating point calculations follow the rules of C. The
debugger treats all floating point constants as double precision values
internally.

Floating point constants specified on the debugger command line must have
the following syntax:

[sign] integer_part.[fractional_part] [exponent]
where signis an optional plus (+) or minus (-) sign.
integer_partconsists of one or more decimal digits.
.is a decimal point.
fractional_partmay be zero or more decimal digits.

exponents an optional exponent, which is letter E (or e)
followed by an integer part.

When specifying a floating point constant, the debugger uses a more restrg
syntax than the C language. The debugger always requires an integer pa
a decimal point.

527

Chapter 13: Expressions and Symbols in Debugger Commands

Expression Elements

Examples: 76.3e-1 76.3 -0.3el1
76.3E+0 76.e5 0.3
76.3E2 76. 0.

Character Strings and Character Constants

Character Strings. A character string is a sequence of one or more ASCI|
characters enclosed in double quotation marks or two or more characters
enclosed in single quotes. If the string has more than one character,
subsequent ASCII characters atered in consecutive bytes.

When a character string is referenced in a C expression, the debugger
substitutes an address pointer to the string in the expression.

Character Constants. A character constant is a single character enclosed in
single quotation marks.

When a character constant is referenced in a C expression, the debugger
substitutes the actual ASCII character value in the ege, not the address
of the character.

Non-printable characters. Some non-printable characters may be

embedded in both character strings and character constants enclosed in double
guotation marks (") by using the escape sequences listed in the table which
follows. Escape sequences are indicated by a backslash (V).

The backslash is interpreted as a character in character strings enclosed in
single quotation marks ().

Any characters other than those listed in the following table argpirgted
literally if preceded by a backslash. For example, to have literal double
guotation marks in a string, enclose the string in double quotation marks and
use the escape sequence for double quotes shown above. For example:

"This is a \"string\" using embedded double quotation
marks"

To have literal single quotation marks in a character string, enclose the string
in double quotation marks. For example:

"This is a string that's using a single embedded
guotation mark"

528

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

Non-Printable Character Escape Sequences

Sequence ASCII Name Hex Value Description

\b BS 08 Back Space

\f FF oC Form Feed

\n NL OA New Line

\r CR oD Carriage Return

\t HT 09 Horizontal Tab

\" " 22 Double Quote

\ \ 5C Backslash

number — xnumber Hex Character Value

" \xnumber must be entered in the forrhamnwherennis a two digit hexadecimal value. For
example:x0f , not Ixf

Note The debugger automatically terminates character strings enclosed in quotation
marks with a null character. However, when you use a character string with a
Memory Assign or Memory Block_OperationiflFSearch, or Test)
command, the debugger uses only the characters within the quotation marks
(null characters are not added).

529

Chapter 13: Expressions and Symbols in Debugger Commands

Symbols

Symbols

A symbol (also called an identifier) is a name that identifies a location in
memory. It consists of a sequence of characters that idpndiyam and
debugger variables, macros, keywords,registers, memory addresses, and line
numbers.

Symbols may be up to 40 characters in length. The first character in a symbol
must be alphabetic, an underscorkg 6r an at sign@). The characters

allowed in a symbol include upper and lower case alphabetic characters,
numeric characters, dollar sigr§ (at signs @), or underscores . No

other characters may be used in symbols. The debugger differentiates between
upper case and lower case characters in a symbol.

The following sections describe the different categories of symbols used by the
debugger.

Program Symbols

Program symbols are identifiers associated with a source program. They
consist of symbolic variable datames and function names that the
progammer defined when writing thewsrce program. All symbols that were
defined in the source program can be passed to the debugger and referenced
during a debugging session. Note that preprocessnes are not symbols.

The compiler includes all program symbol information in the resulting output
object module file by default. When you load an executable file for debugging,
the debugger places all program symbols into the debugger symbol table by
default. The debugger preserves symbol types and treats the symbols
according to their type.

The debugger may be instructed to load only global symbols at load time,
loading local symbols as they are referenced. This behavior is known as
symbols on demandR efer to the description of the Debugger Option General
Demand_Load command in the “Debugger Commands” chapter for more
information onsymbols on demand

Normally, the compiler prefixes a leading underscore to all global program
symbols. This is done to distinguish program symbols from reserved assembler
names. If the debugger has loaded all symbols, two symlibtevavailable;

the high-level symbol (for examplmain), and its low-level

530

Chapter 13: Expressions and Symbols in Debugger Commands
Symbols

counterpart(mairn). However, with symbols on demand, only the high-level
symbol is availablenfain).

Debugger Symbols

Debugger symbols can be added during a debugging session using the Symbol
Add command. The debugger treats debugger symbols as global symbols.
When you create a debugger symbol, you must assigraitn@g nYou may
optionally assign it a type. An initial value may also be given to a debugger
symbol. If you do not specify an initial value, the initial value defaults to zero.

Debugger symbols are stored in the debuggeemory and are not associated
with the processor targatemory.

Macro Symbols

You can use macros to:

» Create complex user commands.
» Patch your source code temporarily.
» Displayinformation in user-defined windows.

A macro is similar to a C function. It has a nameymnetype, optional
arguments, optional macro local symbols, and a sequence of statements.

There are two types of macro symbols:

* Macro names.
* Macro local symbols.

Macro Names

Macro names identify a macro. Yossign macro ames with the Debugger
Macro Add command.

Macro Local Symbols

Macro local symbols are local variables and parameters defined within macros.
They are declared when you create a debugger macro with the Debugger
Macro Add command. A macro local symbol can be accessed only by the
macro in which it is defined. It is created when the macro is executed. Th
macro local symbol has an undefined initial value.

531

Chapter 13: Expressions and Symbols in Debugger Commands
Symbols

Reserved Symbols

Reserved symbols are reserved words that represent processor registers, status
bits, and debugger control variables. These symbols are always recognized by
the debugger. You can use reserved symbols any time during a debugging
session. Reserved symbols have special meanings within the debugger
command language. Theywet be defined and used for other purposes. To
avoid conflict with other symbols, the names of all reserved symbols begin with

a commercial at sign@).

See the “Reserved Symbols” chapter for a complete list of reserved symbols
and their descriptions.

Line Numbers

Line numbers can be used to refer to lines of code in your original source
program. The compiler generates line numbers by default.

Line number references must be preceded by a poundisigr-or example:

Program Run Until #82

When you refer to a source line number, the debugger translates it to the
address of the first instruction generated by the compiler for that &rstat.

If a C source line did not generate executable code, a reference to that line
number actually refers to the next line that did generate executable code.

To reference a line number that is in a module other than the current one,
precede the line number with a module name. For example:

Breakpt | nstr updateSys\#332

If supported by your compiler, you can debug multipleestants on one line.
A dot qualifier () identifies the sequence of a statement on tlece line. A
colon qualifier () identifies a column number within the source line.
Hewlett-Packard cross assemblers do not support-statement debugging.

532

Chapter 13: Expressions and Symbols in Debugger Commands
Addresses

Addresses

An address may be represented by any C expression that evaluates to a single
value. The C expression can contain symbols, constants, line numbers, and
operators.

Code Addresses

Code addresses refer to the executable portion of a program. In high level
mode, expressions that evaluate to a code address cannot contain numeric
constants or operators.

Data and Assembly Level Code Addresses

Data addresses refer to the data portion of a program. Data address and
assembly level code address expressions may be represented by most legal C
expressions. There are no restrictions on constants or operators.

Address Ranges

An address range is a range of memory bounded by two addresses. You specify
an address range with a starting address, two peripdsnd an ending

address. These addresses can be actual memory locations, line numbers,
symbols, or expressions that evaluate to addresses in memory.

You can also specify a byte offset as the ending address parameter. If you
specify a byte offset, the debugger adds the specified number of bytes to the
starting address and uses the resulting address as the ending address. You
must precede a byte offset with a plus sign.(

You may specify module names before symbols and line numbers to override
the default module.

The following examples show how to specify address ranges.

To set instruction breakpoints starting at line number 80 and ending at lin
number 90:

Breakpt Instr #80..4#90

533

Chapter 13: Expressions and Symbols in Debugger Commands
Addresses

To display code as bytes starting at line number 82 and ending at address 10d0
(hex):

Memory Display Byte #82..0x10d0

To display code as bytes, starting at memory locétiakn clockand ending at
20 bytes padtiick_clock

Memory Display Byte tick_clock..+20

534

Chapter 13: Expressions and Symbols in Debugger Commands
Keywords

Keywords

Keywords are macro conditional statements that can be used in a macro
definition. These keywords are very similar to the C language conditional
statements. You amot redefine keywords or use them in any other context.
The debugger keywords are listed below.

IF

ELSE

FOR
WHILE

DO

BREAK
CONTINUE
RETURN

535

Chapter 13: Expressions and Symbols in Debugger Commands
Forming Expressions

Forming Expressions

The debugger groups exmons into two classes:
» Assemblylanguage expressions used in assembly level mode.

» Source language expgons used in either assembly level mode or high
level mode.

When you use a source language espian to express a code address in high
level mode, it can consist only of a single symbol or a single line number.
Source language ex@m®ons cannot contain numeric constants or operators.
This restriction reduces confusion when entering high level expressions.
There are no restrictions on source language egpres that evaluate to data
addresses or on assembly language expressions.

Examples of legal and illegabsrce language code exgsons in high level
mode are shown below.

Legal # 80
main

lllegal #80+ 3
main+ 10

With several commands, the size of an egpien can be specified by size
qualifiers. The size qualifiers are explained in the “Debugger Commands”
chapter.

You may use C+ + classes in expressions.

Floating point calculations follow the rules of C. Single precision numbers are
converted to double precision, the specified operation is done, and the result
is translated back to single precision.

Note Anyvalue can be treated as an address. For example, a character value (byte)
can be treated as an address. You should be careful when using values as
addresses.

Examples of valid expressions are shown in the following table.

536

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Strings

Valid Expressions

Expression Meaning

#7 Line number reference (code address)

i Symbol reference (value or address)

x+ (y*5) Arithmetic operation (value or address)
default_targets[2] Array reference (value or address)
assign_vectors Function name reference (code address)

Expression Strings

An expression string is a list of values separated mneas. The expssion

string can contain expressions and ASCII character strings enclosed in
guotation marks. For several commands, each value in anssiprestring

can be changed to the size specified by the size qualifiers. If you change the
size, the debugger pads elements that do not fit evenly. Examples of
expression strings are shown in the following table.

Expression String Examples

String Results

1,2,"abc" Values 1 and 2, and ASCII values of abc.

3+ 4, time, macl() Value 7, value of time, results of calling the macro 'macl.
"1xyz123’ ASCII values.

537

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

Symbolic Referencing

The debugger references symbols in a different manner than the standard C
language definition. Therefore, understanding how variables are allocated and
stored inmemory is important. The following sections describe symbol

storage classes and data types. These sections are followed bysaialisoun:

* Referencing symbols with root, module, and functiames.
» Making stack references.

In the following paragraphs, the notion of a 'module’is synonymous with a file
in C. In fact, the module name is simply the basename obiees file with
no suffix.

Storage Classes

All variables and functions in a C source program have a storage class that
defines how the variable or function is created and accessed. The storage

classes are:

» extern (global)
» static

* automatic

* register

C preprocessor symbols are not available to the debugger. The following
paragraphs describe each storage class used in a C source program.

Extern (global)

Global variables in a C program are declared outside of a function and are
accessible to all functionst@age for these variables is allocated only once.
Thereatfter, references are made to the previously allocated space.

Global functions can be called from any other function.

Static

Static variables in a C program are allocated permanent storage and can be
local to a module or local to a function.

538

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

In C, static variables local to a module can only be accessed by functions in
that module. In the debugger, static variables local to a module can be
accessed either when a function is active in that module or when the variable is
qualified by the module name in which it is defined. A static variable that is
local to a function can only be accessed by the function in which it was
declared, unless it is qualified by the module and function in which it is defined.

Static functions can only be accessed when the function is in the current
module, unless the function is qualified by the module in which it is defined.

Automatic

Automatic variables are declared inside a function and are accessible onlyto
that function. Storage for these variables is allocated on the stack when the
function is called and released when the function returns. Automatic variables
do not have an initial value (their values are not retained between function
calls).

You can access an automatic (local) variable when it is local to the current
function, or when its function is on the stack. Use the stack-level prefix
@< stack_level>to access an automatic variable in a function on the stack.

Register

Register variables are also declared inside a function and are accessible onlyto
that function. Storage for these variables is allocated in a specific hardware
register when the function is called and released when the function returns.
Register variables do not have an initial value (their values are not retained
between function calls).

A register variable is accessible when it is local to threent function, or
when its function is on the stack.

Note Breakpoints cannot be set on accesses to register variables. If you need to set
breakpoints on a variable, make sure that it is allocated on the stack by
declaring its type as automatic.

Data Types

All symbols and expressions have an associated data type. Assembly language
modules may contain variables with the types BYTE, WORD, or LONG. The

539

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

debugger treats these types as unsigned char, unsigned short int, and unsigned
long, respectively. A segment attribute indicates whether a variable was
defined in a code segment or a data segment.

Source language modules may contain any valid C language data type. The
data types for each type of module are listed in the following tables. The

ranges of values are decimal representations.

Assembly Level Data Types

Type Size Range
BYTE (unsigned char) 8 bits, unsigned 0to 255
WORD (unsigned short int) 16 bits, unsigned 0 to 65535

LONG (unsigned long)

32 bits, unsigned

0to 4294967295

High Level Scalar Data Types

Type Size Range

char 8 bits, signed —1281to0 127

unsigned char 8 bits, unsigned 0to 255

short int 16 bits, signed —32768 to 32767

unsigned short int 16 bits, unsigned 0 to 65535

int 32 bits, signed —2147483648 to 2147483647
unsigned int 32 bits, unsigned 0 to 4294967295

long 32 bits, signed —2147483648 to 2147483647
unsigned long 32 bits, unsigned 0 to 4294967295

enum 8-32 bits, unsigned 0to 4294967295

pointer 32 bits, unsigned 0 to 4294967295

float 32 bits 1.18x1038t0 3.4x10 %8
double 64 bits 9.46x10°%t0 1.79x16 308

540

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

High Level Complex Data Types

Type Size

struct Combined size of members (plusgshle padding)
union Size of largest member

array Combined size of elements

Type Conversion
The debugger does data type conversions under the following conditions:

* When two or more operands of different types appear in an expression,
the debugger does data type conversion according to the rules of C.

 When arguments are passed to a macro function, the debugger converts
the types of the macro’s arguments to the types defined in the macro.

* When the data type of an operand is forced by type casting, the debugger
converts the data type.

* When a specific type is required by a command, the value is converted by
the debugger according to the rules of C.

Type Casting

Type casting forces the conversion of a debugger symbol or expression to a
specified data type. The debugger converts the resulting value of the
expression to the specified data type, as if the expression was assigned to a
variable of that type. The debugger does not alter the contents of the variable.

You can cast debugger symbols and expressions into different types using the
following syntax:

(typename) expression

For example, the following symbol is cast to type char:

(char) prime

The following example casts the variable expression ptr__char to type int:

(int) ptr__char

541

Chapter 13: Expressions and Symbols in Debugger Commands

Symbolic Referencing

Unlike C, the debugger allows casting to an array. The following example
casts the address of the symbol int_value to an array of four chars:

(char[4]) &int_value

This type of casting to an array can be used with both the Expression
Display_Value and Expression Monitor_Valueramands.

Special Casting

In addition to the standard C type casts, the following assembly level casts are
also recognized by the debugger’s expression handler.

(QS)

This type cast coerces an expression into a quoted string. For example,
assuming the symbol int_val has a value of 0x61626364,

Expression Display_Value (Q S) &int_val

causes int_val to be displayed as "abcd". Note that the expression evaluates to
an address because the (Q S) type cast is semantically synonymous with the C
type cast (char *).

(1A)

This type cast coerces an expression into an instruction address. For example,
assuming the symbol int_val has a value of 0x400,

Breakpt | nstr (I A) int_val
sets an instruction breakpoint at addreg€0x

(H D)

This type cast coerces an expression into a long word (4 bytes) and displays the
value in hexadecimal format. For example, assuming the symbol char_val has
a value of Ox3F,

Expression Display_Value (H D) char_val

will cause char_val to be displayed a®@30003F.

542

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

(HW)

This type cast coerces an expression into a word (2 bytes). For example,
assuming the symbol int_val has the value 0x12345678,

Expression Display_Value (H W) int_val
will cause int_val to be displayed as 0x5678.

(H B)

This type cast coerces an expression into a byte. For example, assuming the
symbol int_val has a value of 0x12345678,

Expression Display_Value (H B) int_val

will cause int_val to be displayed as 0x78.

Scoping Rules

References to symbols follow the standard scoping rules of C. For example, if
the symbol X' is referenced, the debugger searches its symbol table for X using
the following priority:

* Avariable local to the current macro (if any).

» Avariable local to the current function (if any).
» Avariable static to the current module (if any).
» A global variable or debugger symbol.

Referencing Symbols

Symbols are qualified (and therefore referenced) according to their context.
Context in the debugger is defined by a symbol tree and, if applicable, by a
module and function name.

Root Names

Within the debugger, the symbol table is represented as a hierarchical tre
with each level representing a scoping level. There are two types of symbo
trees which exist within the debugger:

* non-program symbol tree
e program symbol tree

543

Chapter 13: Expressions and Symbols in Debugger Commands

Symbolic Referencing

Note

Non-program symbol tree. This tree is composed of non-program symbols.
Only one non-program symbol tree exists. This tree is made up of:

» debugger symbols (@pc, @sp, etc.)

* macros

» user-defined debugger symbols

The root rmme of this tree i8.

Program symbol tree. The second type of symbol tree is the program
symbol tree. The debugger allows up to 30 program trees. This tree is made
up of symbols which exist in the target program. Since there may be multiple
program trees within the debugger, the root of a program tree is specified as
@absfile\\ where absfile is the name of the executable file with its suffix
stripped. For example, the roceame of theprogram tree associated with the
executable file a.out.xwould be @a_out\\.

Anyembedded "’ characters in a file name are converted to underscores. This
prevents conflicts with the '’ structure operator. For example, the module
name of surce file myfile.bar.c would be myfile_bar.

There is no method for generating a list of multiptegram trees.

If two or more executable files with the same name are loaded, the debugger
appends an underscore and number to one of the files to make theunoag n
unambiguous. For example, loading two a.out.x files would result in the
creation of two program trees, with rocdmes a_out and a_out_1.

Whenever the PC is pointing to the code space of a program, thearmetatf

the program’s symbol tree is tlearrentroot. A shorthand notation for
specifying the current root is the symbdFror example, if the debugger is
invoked without loading an executable file, the current root wouM ldich
would be synonymous with However, once an executable file (a.out.x) is
loaded with the PC set to an address within the executable’s code space, the
current root become®@a_out\\ which would be synonymous with

The reserved symbol "@root" points to a character string representing the
name of theerrent root, and the symbol "@file" points to theame of the file
containing the current PC. These may be empty strings (") if the PC is outside
of any defined symbol database.

544

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

Module Names

The C language does not contain the concept of a module. Within the context
of the debugger, a module is a scoping level which is identical to the scoping
level of a file in C. Module names (which are generated by the compiler), are
derived from source fileames by removing the suffix of thewgce file. For
example, the module name associated with thece file myfile.c would be

myfile. Module names are used to qualify symbol references within the
program symbol tree. When used as such, they are separated from any
following function name by &

Note If files in two directories have the same name, thilynave identical module
names. Since the debuggenpat distinguish between the two modules, all
references will resolve to the last loaded module.

Assembly level modules with multiple code sections. If assembly

language modules have more than one code section, the debugger breaks the
module down into sub-modules. For example, if the source file myfile.s had
three code sections, the modules myfile, myfile_2, and myfile_3 would appear
in the program'’s symbol tree. This module separation only affects the address
ranges of the module, not the scoping, i.e. all symbols scoped under the file
myfile.s would be scoped under module myfile.

Context. Some symbol references are dependent on the current context. See
the examples in the following tables. The current context is based on the PC
and consists of theuerent root, current module, and current function. To
display the current context, execute thenaoand:

Program Context Display Return

545

Chapter 13: Expressions and Symbols in Debugger Commands

Symbolic Referencing

Symbolic Referencing With Explicit Roots

Example

Comment

Symbol Display Default \\

Symbol Display Default @a_out\\

Symbol Display Default \

Symbol Display Default
@a_out\\mod1

Symbol Display Default \mod1

Symbol Display Default
@a_out\mod1\

Symbol Display Default \mod1\
Breakpt Instr @a_out\\mod1\funcl

Breakpt Instr \mod1\funcl

Symbol Display Default
@a_out\\mod1\funcl\

Symbol Display Default
\mod1\func1\

Breakpt Access
@a_out\mod1\funcl)j

. Breakpt Access \mod1\funcl)j

Display symbols scoped under the non-program
root.

Display symbols scoped under the program root
a_out

Display symbols scoped under the current root.

Display symbol information for moduleodl
scoped under program roatout

Display symbol information for moduleodl
scoped under the current root.

Display symbols scoped under modaied1lin
program roota_out

Display symbols scoped under modaied1lin
the current root.

Set a breakpoint at the entry point to function
funclin modulemodlin program root_out

Set a breakpoint at the entry point to function
funclin modulemodlin the current root.

Display symbols scoped under functifumclin
modulemodlin program roof_out

Display symbols scoped under functifumclin
modulemodlin the current root.

Set a breakpoint on accesses of varigbtmped
under functiorfunclin modulemodlin
program root_out

Set a breakpoint on accesses of varigbtmped
under functiorfunclin modulemodlin the
current root.

546

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

Symbolic Referencing With Explicit Roots

Example Comment

Notes:

The variablenodlmust be a module name.
The variabldunclmust be a function name.
The example pairs are equivalent if the current roat aut

Symbolic Referencing Without Explicit Roots

Example Comment

Symbol Display Default x Display symbol information for all symbols
namedx at any scoping level in any root.

Breakpt Access x Set a breakpoint at thefound using the scoping
rules described in this chapter.

Symbol Display Default x\ Display symbol information for global symbxwl
in the current root and all symbols scoped under
X. X may be a variable, function, or module name.

Breakpt Instr x\#18 Set a breakpoint at line 18 of module

Symbol Display Default x\y Display symbol information for local variabje
in functionx (or functionyin modulex) in the
current context.

Symbol Display Default x\y\ Display symbol information for local variabje
in functionx (or functionyin modulex) in the
current context and for all symbols scoped under
Xy.

Breakpt Access x\y\j Set a breakpoint at local variallim functiony
in modulexin the current root.

Evaluating Symbols

The debugger evaluates symbols in expressions using the rules of the C
language as follows:

547

Chapter 13: Expressions and Symbols in Debugger Commands

Symbolic Referencing

 Function names and labels evaluate to addresses.

» Variables generally evaluate to the contents of the memory location at the
address of the variable (the exception is unsubscripted array names which
evaluate to addresses.)

The examples in the following table show the differences in evaluation of these
symbol types.

Symbol Evaluation Examples

Example

Comment

Breakpt Instr foo

Breakpt Access &i

Breakpt Access a

Breakpt Access a[3]

The symbofoois a function name. The
breakpoint is set at the addres$axf

i is a variable. Therefore, the debugger evaluates
the symbol as the value bfather than the
address off. The & operator causes the
breakpoint to be set on the address of

ais an array. The breakpoint is set at the address
of the first element of the array.

A breakpoint is set at the address specified in
a[3], not the address of a[3].

Breakpt Access &a[3] A breakpoint is set at the address of a[3].

Stack References

When a function is invoked in C, space is allocated on the stack for local
variables. If one function calls another function, all information is saved on
the stack to continue execution when the called function returns. The caller
function is now nested.

You can reference variables and functions on the stack implicitly or explicitly.

Implicit Stack References

The default compiler setting allocates storage for all local variablesin a C
program in registers, if sible. Variables that naot be stored in registers
are allocated storage on the stack. With the debugger, you can implicitly
reference variables on the stack as follows:

548

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

» To refer to variables on the stack in the current function, specify the name
of the variable. For example:

» Torefer to alocal variable in a nested function, specify the function name
followed by a backslash and then the name of the local variable, for
examplemain\i

Explicit Stack References

A function is allocated storage on the stack when it is executing, or when it has
called another function. To refer to functions and variables on the stack
explicitly, you must specify the function’s nesting level preceded by a
commercial at sign (@). The backtrace window in high-level mode displays
nesting level information (for example, if the current function is @O0, llisga
function is @1, etc.). You mayreference functions on the stack as follows:

» Torefer to the address that the function will continue to execute from,
specify the function nesting level preceded by an at sign (@). For
example, the commarRrogram Run Until @ Bxecutes the program until
the current function returns to its caller.

* To refer explicitly to a local variable in a nested function, specify the
function nesting level followed by a backslash and then the name of the
variable. For example, the commalxbression Display Value @ 3\str
references the local variable 'str’ of the function at nesting level 3.

e Toreference a function itself, enter the command Program Context
Expand followed by a space and then the function nesting level. For
example, the commarRfogram Context Expand @displays all
information about the function at the specified level for that particular
invocation. This information includes the name of the function, the
current line number, and all local variables in the function and their
values. See the Program Context Expand command syntax description in
the "Debugger Commands" chapter for more information.

549

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

550

14

Reserved Symbols

551

Chapter 14: Reserved Symbols

The symbols listed in this chapter are predefined, reserved symbols for the
68020/030 debugger/emulator. Symbols identified with an asterisk (*) are used
only with the 6803@rocessor. Reserved symbols cannot be deleted by the user.

Note that reserved symbols may be entered in either upper or lower case
characters.

552

Chapter 14: Reserved Symbols

Reserved Symbols

Symbol Meaning Maximum Value
@AO-A7 Address Registers OXFFFFFFFF
@ACO Access Control Register 0 (68EC030 only) FBEKFFFFF
@AC1 Access Control Register 1 (68EC030 only) FBKFFFFF
@ACUSR Access Control Unit Status Register (68EC030 only) FF&¥
@C Carry Flag 1
@CAAR Cache Address Register OXFFFFFFFF
@CACR Cache Control Register OxF
@CCR Condition Codes Register Ox1F
@CRP_H CPU Root Pointer (upp&2-bits) (68030 only) XFFFFFFF
@CRP_L CPU Root Pointer (lower 32-bits) (68030 only) FBEFFFFF
@DO0-D7 Data Registers OXFFFFFFFF
@DFC Destination Function Code 7
@ENTRY Address of first executable statement in function
@FILE Name of file containingurrent PC,

@FUNCTION Pointer to current function name

@HLPC High-Level Program Counter(line number) 32767

@I Interrupt Mask 7

@ISP Interrupt Stack Pointer PKFFFFFF
@M Master/Interrupt Flag 1

@MMUSR’ MMU Status Register (68030 only) OXEE47
@MODULE Pointer to current module name

@MSP Master Stack Pointer OXFFFFFFFF
@N Negative Flag 1

@PC Program Counter PKFFFFFF
@ROOT Name ofoot of symbol tree represented by PC

@S Supervisor State Flag 1

@SFC Source Function Code FFFFFFF
@SP Stack Pointer OXFFFFFFFF
@SR Status Register OXFFFF
@SRP_H Supervisor Root Pointer (upp82-bits) (68030 only)

@SRP_L Supervisor Root Pointer (lower 32-bits) (68030 only)

@SSP Supervisor Stack Pointer OXFFFFFFFF
@T0 Trace 0 Flag 1

@T1 Trace 1 Flag 1

@TC Translation Control Register

@TT0 Transparent Translation Register 0 (68030 only)

@TTL Transparent Translation Register 1 (68030 only)

@USP User Stack Pointer OXFFFFFFFF
@V Overflow Flag 1

553

Chapter 14: Reserved Symbols

Reserved Symbols

Symbol Meaning Maximum Value
@VBR Vector Base Address OXFFFFFFFF
@X Extend Flag 1
@z Zero Flag 1

554

15

Predefined Macros

555

Predefined Macros

Predefined macros are provided with the debugger. These predefined macros
provide commonly used functions to help in debugging your program. The
predefined macros available for your uselated in the “Predefined

Debugger Macros” table and are described on the following pages.

The following predefined debugger macros provide services to the SIMIO
system and internal debugger functions. They are not designed for use by the
debugger user. These namélslve displayed if you check the debugger’s
predefined macro list using the Symbol Displagncoand:

bbaunload
emul_special
hpsimio
hp_redirect
hpnosimio
hpioctl
hpeofkbd
hpioreport
hpsimlock
load_config
quit_debugger
shell_escape

556

Chapter 15: Predefined Macros

Predefined Debugger Macros

Macro

break_info
byte

call

close
cmd_forward
dword
error

fgetc
fopen

key get
key_stat
memchr
memclr
memcpy
memset
open
pod_command
read
reg_str
showversion
strcat
strchr
stremp
strcpy
stricmp
strlen
strncmp
until

when

word

write

Description

Display information about a breakpoint

Return a byte value at the specified address

Call target function (not implemented in this product)
Close a UNIX file

Send a command to another attached emulator interface
Return a long value at the specified address

Display error message

Reads character from file

Open a file and associate it with a user window

Get (read) a key from the keyboard

Check keyboard for availability of key

Search for character in memory

Clear memory bytes

Copy characters from memory

Set the value of characters in memory

Open a UNIX file for reading and/or writing

Pass a command to the emulator terminal interface
Read from a system file

Get the register value using the register name in the string
Show the software version number for the debugger product
Concatenate two strings

Locate first occurrence of a character in a string
Compare two strings

Copy a string

Comparison of two strings without case distinction
String length

Limited comparison of two strings

Run until expression is true

Break when expression is true

Return a word value at the specified address

Write to a system file

557

Chapter 15: Predefined Macros
break_info

. break_info

Function

Return information about a breakpoint

Synopsis

int break_info (addr)
unsigned long *addr;

Description

The break_info macro returns the address and type of a breakpoint if it is
called when a breakpoint is encountered. The macro returrd2tbi¢
representation of the breakpoint address used by the debugger and the
following values for breakpoint type:

-1 The cause of the breakpoint is unknown.

0 A breakpoint did not cause this macro call.

1 The breakpoint was caused by a read from the address.

2 The breakpoint was caused by a write to the address.

3 The breakpoint was caused by an access (read/write status

unknown) of the address.

4 The breakpoint was caused by an instruction breakpoint.

Diagnostics

None.

558

Chapter 15: Predefined Macros

Example

If you have the following code segment:
main()

auto i,j,k;
i=1;
j=3;
k=i+]j;

and you execute the following command file:

Debugger Macro Add int print_info()

unsigned long address;
int reason;

reason = break_info(&address);

$Expression Printf "Breakpoint at %8x. Reason: %d\n",
address,reason$;

return(1);

Program Run Until main
Program Step

Breakpt Read &i;print_info()
Breakpt Write &k;print_info()
Breakpt Access &j;print_info()
Program Run

break_info

the debugger will display the breakpoint address and type value iautregj

window.

559

Chapter 15: Predefined Macros
byte

m -

Function

Return a byte value at the specified address

Synopsis

unsigned char byte (addr)
void *addr;

Description

The byte macro returns a byte value of themory contents at the specified
address. The value of the expressaldris computed and used as the address.

Diagnostics

The byte value of the memory contents at the specified address is returned.

560

Chapter 15: Predefined Macros
close

close

Function

Close a UNIX file

Synopsis

int close(fildes)
int fildes;

Description

The close macro closes a UNIX file. This macro is an interface to the UNIX
system caltlose(2) Refer to theHP-UX Reference Manuébr detailed
information.

Diagnostics

If the system call to close(2) is successful, 0 is returned. Otherdvise,
returned and a system generated error message is written to the journal
window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses close().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int close_files(infile, outfile)
int infile; /* file descriptor to close */
int outfile; /*file descriptor to close */

/* close input file */
infile = close(infile);
if (infile == -1)
return 0; /* close failed */

/* close output file */
outfile = close(outfile);
if (outfile == -1)
return 0; /* close failed */

return 1; /* both files were closed successfully */

561

Chapter 15: Predefined Macros

cmd_forward

cmd_forward

Function

Send a comand to another attached emulator interface.

Synopsis
int cmd_forward (ui_id, command)

char *ui_id;
char *command;

Description

This macro sends the strisgmmando the interfaceaii_id. Interfaceui_id
will then interpretcommandas input to its cmmand line.

This macro provides a way for the target program to senmumands to an
emulator interface, as well as allowing control of all interfaces from a common
point.

The interfaces that are currently supported are:
Emul Emulator/analyzer interface. If several emulator

interfaces are sharing the emulator, the command will
be forwarded to the most recently started interface.

Perf Software Performance Analyzer.
BMS Broadcast Message Server (the Softbench Gateway).
Debug Debugger. This sends a command back to the debugger

you are using.

If an interface of the type specified is currently running, theroand vill be
executed there and any errorifl be displayed there.

Diagnostics

A zero isreturned ifii_id is not attached to the emulator. A one is returned if
ui_idis attached.

562

Chapter 15: Predefined Macros
cmd_forward

Examples

To start execution of an emulator interface command file at the beginning
sub-programmainj enter:

Breakpoint | nstr main5; cmd_forward ("emul",
"my_command_file")

To provide a target function to send arsoand to a user interface, compile
the following function into your target program:

void send_command (ui, cmd)
char *ui, *cmd;

{
return;
}
Then set a breakpoint with a macro call:
Breakpoint | nstr send_command\@ENTRY; cmd_forward
(ui,cmd)

When execution reaches the first statemesemd_commandthe command
cmdwill be sent to user interfaes. Execution will halt ifui was not attached,
and will continue otherwise.

563

Chapter 15: Predefined Macros
dword

. dword

Function

Return a long value at the specified address

Synopsis

unsigned long dword (addr)
void *addr;

Description

The dword macro returns a LONG (4-byte) value ofriteanory contents at
the specified address. The value of the expressilonis computed and used
as the address.

Diagnostics

The LONG value of the memory at that address is returned.

564

Chapter 15: Predefined Macros
error

error

Function

Display error message

Synopsis

void error(level, text, parm)
int level;

char *text;

long parm;

Description

The error() macro is used to display error messages due to errors generated
within macroslevelmust have a value of 1, 2, ont&xtis a string which can
contain one %d format character, whpeem is the associated integer value.

levelcan be used to indicate the severity of the error by its value. The following
explains the values available fievel and the associated action taken by
error().

1 textis displayed in the journal window.

2 textis displayed in the journal window and the macro halts program
execution.

3 An error box pops ugextis displayed within the box, and the macro halts
program execution.

565

Chapter 15: Predefined Macros
fgetc

fgetc

Function

Reads character from file

Synopsis

int fgetc(vp_num)
int vp_num;

Description

The macro fgetc() returns the next character in the file associated with the
window number vp_num. The window number must be a result of the File
User_Fopen command. The value -1 isiraed on end of file.

566

Chapter 15: Predefined Macros
fopen

fopen

Function

Open a file and associate it with a user window

Synopsis

int fopen(vp_num, filename, mode)
int vp_num;

char *filename;

char *mode;

Description

The macro fopen() opens a file and associates it with a user-defined window.
This macro is equivalent to the File User_Fopen debugger comifiiandme

is the name of the file to be openetbdeis a string that specifies the mode in
which the file is opened. Valid modes are:

“r Open file for reading only

W Open file for reading and/or writing (existing file contents
are erased)

a" Open file for appending

Diagnostics

If successful, a window number is returned. The error eBdéndicates that
the window is already open or that the window number is out of range. The
error code 101 is retirned for other errors; for example, if the file to be read
does not exist.

567

Chapter 15: Predefined Macros
key get

Function

Get a key from the keyboard

Synopsis

unsigned short key_get()

Description

The macro key_get() reads a key from the keyboard. It returns only after a key
is available. The return value is the value of the key.

568

Chapter 15: Predefined Macros
key stat

key stat .

Function

Check keyboard for availability of key

Synopsis

unsigned short key_stat()

Description

The key_stat() macro checks the keyboard to see if a key is available to read. It
returns 0 if no key is available. The first pending key is returned if any keys are
available.

Diagnostics

The value -1 is returned if the macradga

569

Chapter 15: Predefined Macros

memchr

memchr

Function

Search for character in memory

Synopsis

char *memchr (strl, byte_value, count)
char *strl;

char byte_value;

unsigned count;

Description

The memchr macro locates the charabyge valuen the firstcountbytes of
memory areatrl.

Diagnostics

The memchr macro retns a pointer to the first occurrence of character
byte_valuen the firstcountcharacters in memory arefil. If byte valuedoes
not occur, memchr ratns a NULL pointer. For debugger variables, -1
(OXFFFFFFFF) is retrned ifbyte_valueloes not occur.

570

Chapter 15: Predefined Macros
memclr

memclr

Function

Clear memory bytes

Synopsis

char *memclr (dest, count)
char *dest;
unsigned count;

Description

The memclr macro sets the figiuntbytes in memory aredestto zero.

Diagnostics

The memclr macro raetnsdest

571

Chapter 15: Predefined Macros
memcpy

memcpy

Function

Copy characters from memory

Synopsis

char *memcpy (dest, src, count)
char *dest,

char *src

unsigned count;

Description

The memcpy macro copiesuntcharacters from memory arsato dest

Diagnostics

The memcpy macro retnsdest

572

Chapter 15: Predefined Macros
memset

memset

Function

Set the value of characters in memory

Synopsis

char *memset (dest, byte_value, count)
char *dest;

char byte_value;

unsigned count;

Description

The memset macro sets the ficeuntcharacters in memory ardastto the

value of charactebyte_value

Diagnostics

The memset macro netnsdest

573

Chapter 15: Predefined Macros

open

open

Function

Open a UNIX file for reading and/or writing

Synopsis

int open(path,oflag)
char *path;
int oflag;

Description

Theopen()macro opens a UNIX file, returning an UNIX file descriptuath
is the name of the file to be openeflagis the mode in which the file will be
opened. The possible modes maydoenfd in the header file
{usrfinclude/fentl.hSome useful modes are:

read only
write only
read/write
no delay
append
create 256 (HP-UX) or 512 (SunOS)
truncate 512 (HP-UX) or 1024 (SunOS)

o A~ADNEFO

These modes may be combined be adding the appropriate values together.

This macro is an interface to the UNIX system oakn(2) Refer to the
HP-UX Reference Manu#&br detailed information.

Diagnostics

If the system call to open(2) is successful, the system file descriptor is
returned. Otherwisel is returned and a system generated error message is
written to the journal window of the debugger.

574

Chapter 15: Predefined Macros
open

Example

The following command file segment defines two global debugger symbols
includes the definition of a user-defined macro that uses open().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int open_files(infile, outfile)
char *infile; /* file to read from */
char *outfile; /* file to write to */
{

/* open input file in read only mode */

infile = open(infile, 0);

if (infile == -1)

return O; /* open failed */

[* create output file in read/write mode */
outfile = open(outfile, 258);
if (outfile == -1)

return O; /* open failed */

return 1; /* both files were opened successfully */

575

Chapter 15: Predefined Macros

pod_command

Caution

pod _command

Function

Send terminal interface commands to the emulator

Synopsis

int pod_command(command, response)
char *command, *response;

Description

The pod_command macro sends the stringpimmando the emulator, and
puts any response texti@sponself multiple lines of text are returned, the
lines are separated fasponsavith a new line \pn) character. Ifesponsés a
null pointer Q), any response is ignored.

This macro is primarily for diagnostic purposes. Use of this macro to send
terminal interface commands that change the state of the emulator or analyzer
may produce unexpected abbllSUPPORTED behavior.

Diagnostics

If the commangroduces no error, this macro returns a one (1). Otherwise,
the macro returns a zero (0) and the debugger displays the error or errors in
the debugger error window.

Make sure that theesponsestring is large enough to hold any data returned
from the emulator. Responses put into debugger varialildseviruncated to
the maximum length of the debugger string. The debugger will not give an
error indication.

576

Chapter 15: Predefined Macros
pod_command

Examples
To get the first 99 characters of emulator version information:

Symbol Add char resp[100]
Debugger Macro Call pod_command("ver",resp)
Expression Printf "%s",resp

To send the emulator "help" command antbige output:

Debugger Macro Call pod_command("help",0)

To send an invalid command to the emulator:

Debugger Macro Call pod_command("silly",0)

577

Chapter 15: Predefined Macros

read

read

Function

Read from a system file

Synopsis

int read(fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

The read macro reads from a system file. This macro is an interface to the
UNIX system calread(2). Refer to theHP-UX Reference Manu#br detailed
information.

Diagnostics

If the system call to read(2) is successful, the number of bytes read is returned.
Otherwise;1is returned and a system generated error message is written to
the journal window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses read().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int foo(infile, outfile)
int infile; /*file descriptor to read from */
int outfile; /*file descriptor to write to */

char buf[80];

while (fread(infile, buf, 80))
write(outfile, buf, 80);

578

Chapter 15: Predefined Macros
reg_str

reg_str

Function

Get register value

Synopsis

unsigned long reg_str(strl)
char *strl;

Description

The reg_str macro gets the contents of a register using a string variable
representation of its name. This is nosgible using standard debugger
commands. The register value isugted by the macro.

Diagnostics

If the string does not contain a valid register name, an unknown vélbe w
returned and the debuggeitiwisplay an €ror message in the debugger error
window.

Examples
To display the value of register DO:

Symbol Add char reg_name[10]
Debugger Macro Call strcpy(reg_name,"@D0")
Expression Display_Value reg_str(reg_name)

To display the value of register D1:
Expression Display_Value reg_str("@D1")

To display the value of register D1:

Expression C_Expression reg_str("@D1")

579

Chapter 15: Predefined Macros
showversion

. showversion

Function

Show the software version number for the debugger product
Synopsis
void showversion ()

Description

The showversion macro lists the software version numbewofor gebugger
product.

580

Chapter 15: Predefined Macros
strcat

strcat

Function

Concatenate two strings

Synopsis

char *strcat (dest, src)
char *dest, *src;

Description

The strcat macro appends a string to the end of another string. The string in
srcis appended to the stringdiestand a pointer tdestis returned.

Diagnostics

No checking is done on the sizedufst

581

Chapter 15: Predefined Macros

strchr

strchr

Function

Locate first occurrence of a character in a string

Synopsis

char *strchr (strl, byte_value)
char *strl;
char byte_value;

Description

The strchr macro returns a pointer to the first occurrence of the character
byte_valuen the stringstrl, if byte_valueoccurs instrl

Diagnostics

If the charactebyte_valuas not found, strchr returns a NULL pointer. For
debugger variables, -1 (OXFFFFFFFF) isureted ifbyte_valueloes not occur.

582

Chapter 15: Predefined Macros
strcmp

strcmp

Function

Compare two strings

Synopsis

unsigned long strcmp (strl, str2)
char *strl,
char *str2;

Description

The strecmp macro compares strings in lexicographic order. Lexicographic
order means that characters are compared based on their internal machine
representation. For example, because an ASCII ‘A’is 41 hexadecimal and an
ASCII B’is 42 hexadecimal, 'A’is less than 'B".

The stringsstrl andstr2 are compared and a result is returned according to the
following relations:

relation result

sl< s2 negative integer
sl= s2 zero

sl> s2 positive integer

Diagnostics

Strings are assumed to be NULL terminated or to be within the array
boundaries. The comparison is always signed, regardless of how the string is
declared.

583

Chapter 15: Predefined Macros
strepy

strcpy

Function

Copy a string

Synopsis

char *strcpy (dest, src)
char *dest,
char *src;

Description

The strcpy macro copiescto destuntil the NULL character is moved.
(Copying from the right parameter to the left resemblessaigmment
statement.) A pointer tdestis returned.

Diagnostics

No checking is done on the sizedufst

584

Chapter 15: Predefined Macros
stricmp

stricmp

Function

Comparison of two strings without case distinction

Synopsis

unsigned long stricmp (strl, str2,)
char *strl;
char *str2;

Description

The stricmp macro comparesl with str2 without case distinction. This
means that the strings "ABC" and "abc" are considered to be identical.

The stringsstrl andstr2 are compared and a result is returned according to the
following relations:

relation result

sl< s2 negative integer
sl= s2 zero

sl> s2 positive integer

Diagnostics

Strings are assumed to be NULL terminated or to be within the array
boundaries because the comparison is limited to the number of stated
characters. The comparison is always signed, regardless of how the string is
declared.

585

Chapter 15: Predefined Macros
strlen

strlen

Function

String length

Synopsis

unsigned long strlen (strl)
char *strl;

Description

The strlen macro returns the length of a string. It returns the lengtti,of
excluding the NULL character.

Diagnostics

If strlis not properly terminated by a NULL character, the length returned is
invalid.

586

Chapter 15: Predefined Macros
strncmp

strncmp

Function

Limited comparison of two strings

Synopsis

unsigned long strncmp (strl, str2, count)
char *strl;

char *str2;

unsigned count;

Description

The strncmp macro compares strings in lexicographic order. Lexicographic
order means that characters are compared based on their internal machine
representation. For example, because an ASCII ‘A’is 41 hexadecimal and an
ASCII B’is 42 hexadecimal, 'A’is less than 'B".

Thecountin the synopsis above specifies the maximum number of characters
to be compared.

The stringsstrl andstr2 are compared and a result returned according to the
following relations:

relation result

sl< s2 negative integer
sl=s2 zero

sl> s2 positive integer

Diagnostics

Strings are not required to be NULL terminated or to fit within the array
boundaries because the comparison is limited to the number of stated
characters. Less thawwuntcharacters will be compared if the strings are
smaller tharcountcharacters. The comparison is always signed, regardless of
how the string is declared.

587

Chapter 15: Predefined Macros

until

until

Function

Run until expression is true

Synopsis

char until (boolean)
int boolean;

Description

The until macro returns a zero whiesoleanis nonzero. The Until macro is

used with the Program Run and Program Step With_Macro commands. It
halts execution when the expression passed is true, and continues when the
expression passed is false. Any C expression resulting in a value may be used.

Example

Program Run Until #3 #17 ,printf ;until (i==3 || X <)

The command above sets tganary breakpoints at line numbers 3 and 17 in
the current module and at entry to the funciaintf. When any one of these
locations is encountered by the executing program, the debuijgeiow and
check theuntil conditional statements. If the variablie equal to 3, or the
variablexis less thaly, a break will occur. Otherwisprogram execution
continues.

588

Chapter 15: Predefined Macros
when

when

Function

Break when expression is true

Synopsis

char when (boolean)
int boolean;

Description

The when macro returns a zero whemleanis nonzero; it returns a one
whenbooleanis zero. This macro is used with the Breakpt Instr command.
When used with this commangkogram execution #halt when the stated
expression is true, and will continue when the stated egune is false. Any C
expression resulting in a value may be used.

Example

Breakpt | nstr strcpy;when(*str==0)

This command sets a breakpoint at the entry point ofdh&nestrcpy Each
time the breakpoint occurs, the when macro is executed. The macro causes
program execution to stop when the byte pointed tsthiy zero.

589

Chapter 15: Predefined Macros
word

word

Function

Return a word value at the specified address

Synopsis

unsigned short int word (addr)
void *addr;

Description

The word macro returns a WORD (2-byte) value ofrtteamory at the
specified address. The value of the expresaudris computed and used as
the address.

Diagnostics

The WORD value of the memory at that address is returned.

590

Chapter 15: Predefined Macros
write

write

Function

Write to a system file

Synopsis

int write(fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

The write macro writes to a system file. This macro is an interface to the
UNIX system callwrite(2). Refer to theHP-UX Reference Manu#dr detailed
information.

Diagnostics

If the system call to write(2) is successful, the number of bytes written is
returned. Otherwisel is returned and a system generated error message is
written to the journal window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses write().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int foo(infile, outfile)
int infile; /*file descriptor to read from */
int outfile; /*file descriptor to write to */

char buf[80];

while (fread(infile, buf, 80))
write(outfile, buf, 80);

591

Chapter 15: Predefined Macros
write

592

16

Debugger Error Messages

A list of the eror messages generated by the debugger.

593

Chapter 16: Debugger Error Messages

The debugger displays the error window whenever it detectsimeod eror.
The debugger displays an error message and a pointer to the location where it
detected the error.

This chapter lists and describes theoe messages and warninigsued by the
debugger. These errors dited numerically with possibleer solutions.

594

10

11

Chapter 16: Debugger Error Messages

Invalid characters follow command.

A command was entered with meect characters or with more characters
than were expected. Check the command name and re-enter the comma

This command is not implemented yet.

The command specified isirently not supported, butibhbe implemented in
a later release.

Unknown switch.

An attempt was made to specify a switch that does not exist. Check the
command syntax for the switchagported.

Argument missing, expected.

A command was enteredtout an argument that is required to execute the
command. Check the syntax description for the command and enter the
command again with theerect argument specification.

Invalid argument, expected.

The argument specified is not valid for this command. Check command syntax
and re-enter the command with a valid argument.

Unexpected separator encountered.

The argument separator is not valid in this context. Check the syntax and enter
the correct separator.

Unknown expression character.

The specified expression character is not recognized by the debugger. Check
the syntax and enter the correct egsien character.

Missing’) ’,’] ’, or '} "in expression.

The matching right parentheses, right bracket, or right curly brace in the
specified expression is missing. Check the expression and adppiopaiate
right delimiter.

595

Chapter 16: Debugger Error Messages

12

13

14

15

16

17

18

Missing’(’,'[’, or "{ "in expression.

The matching left parentheses, left bracket, or left curly brace in the specified
expression is missing. Check the expression and adggrepriate left
delimiter.

Missing end quote.

The second quotation mark for a character string is missing at the end of the
line. Terminate the character string with an ending quotation mark.

Invalid expression element.

An expression element was specified incorrectly. The error windibdisplay

the expression specified and place a pointer at the position where the invalid
element is located. Check the syntax description and re-enter the command.
Possible erors include: invalid value, issing operand, missing operator, and
unknown operand combination.

Invalid filename.

The filename specified could not be created. Valid filenames are dependent
upon your host computer system.

Invalid line number.

The line number specified is not valid. Line numbers must be preceded with a
pound sign#), and must be in a valid range. This errdlt @ccur if you enter
a pound sign followed by zero or if you enter a pound sign without a number.

Invalid address value.

This error indicates that a value was used for an address that cannot be
interpreted as an address (for instance, a floating point number).

Invalid structure member.

A member name was given that is not a member of the spedifiediige.
Member names must be members of the specifiedttsire.

596

19

20

21

22

23

24

25

Chapter 16: Debugger Error Messages

Invalid instruction address.

This error occurs mainly in high-level mode. In high-level mode, this error will

occur if the instruction address is not a functi@me or line number. Code

addresses in high-level mode may not be numeric or expressions. In
assembly-level mode, most instruction address values are legal.

Invalid port value.

The specified port does not exist, or the port value was not specified with the

Memory Inport Assign conmand. Port values must be specified with the

Memory Inport Assign canmand.

The values are not correct for this expression.

An attempt was made to use an operand type that is not allowed for this
operator. Operators must match operands according to the C language

specifications.

Upper bound less than lower bound.

An attempt was made to specify a lower bound that is greater than the upper

bound. The upper bound must be greater than the lower bound.

Upper bound missing.

An attempt was made to specify a lower bound without an upper bound. The

upper bound must be specified.

Function symbol ranges not allowed.

An attempt was made to specify a range from one function to another in

high-level mode. Function to line number is allowed.

Range not of addresses.

A print or trace command was entered, but the specified range contained a

value instead of an address. Place an amperganidefore the symbol name

in the range.

597

Chapter 16: Debugger Error Messages

26

27

28

29

30

31

32

33

Invalid screen specification.

The command entered contains a screen specification that does not
correspond to the screen where the specified window is located, or the
specified screen does not exist. The screen number should be verified.

Invalid window specification.

You tried to create or alter the size of a window, but the screen number,
window number, or size coordinates wélkegal. See the Window Open
command for valid window specifications.

Invalid cast. Must use format '(type)".

This error indicates that type casting was attempted outside of arssigpre
or without being enclosed in parentheses. Types can only be used in
expressions as casts, and must be enclosed in parentheses.

Unknown special key.

A key was pressed that the debugger does not recognize.

Start line invalid.

The starting line for the Program Find_Sourceotand may be omitted, or
may be any valid line optionally within a module.

Invalid exception vector.

You tried to specify an exception vector that is invalid. In a Program Interrupt
Add command, the optional exception vector must be in the range @5%t0

Invalid trace speed.

An attempt was made to specify a step speed with the debugger Option
General Step_Speed command that is not in the valid range. Tracing speed
ranges from 0 to 100.

Must be ON or OFF.

An attempt was made to specify an invalid argument with an option. Options
can be switched to ON or OFF.

598

34

51

52

53

54

55

56

57

Chapter 16: Debugger Error Messages

Cannot divide by zero.

An attempt was made to divide by zero within an expression of Expression
Display_Value or Expression C_Expression.

This command cannot be used in this mode.

A command that is noupported in the current mode wasued. The
Program Display_Source eonand is onlyspported in high-level mode, and
the Memory Display Mnemonic command is onkpported in assembly-level
mode.

Switches cannot be used together.

Two switches of the same group were given. Only one switch per group may be
specified.

Invalid switch given for this command.

The specified qualifier is not associated with the specified command. Check
the command syntax and re-enter the command.

Value too large.

A value that is out of range was specified. Values must be in the valid range for
the command.

Instruction expressions are invalid in this mode.

An expression was used for a code address in high-level mode. Only a single
line number or function symbol may be used in high-level mode.

Module not found.

The specified module name does not exist. Specify a valid module name.

Line number not found.

The line number specified does not exist in the current module. If the line
number exists in a different module, the module name must be specified.

599

Chapter 16: Debugger Error Messages

58 Symbol not found.

The symbol name was enteredanectly, or the symbol does not exist. The
symbol name may have been mistyped.

59 Macro not found.

The specified macro has not been defined, or an invalid macro name was
entered. Check the macro name, or define the macro and re-enter the macro
name.

60 File not found.

The specified file does not exist in the current directory, or in the search
directories. Check the current directory for the fdere that was specified. A
typing error may have occurred.

61 Structure member not found.

The specified structunmember does not exist in the specifiedisture.
Check the structure definition for timeember that was specified. A typing
error may have occurred.

62 Numeric addresses not allowed in this mode.

An attempt was made to specify an invalid address value.

63 Line numbers from different modules.

Line numbers from different modules were specified. Only one module
specification may be given.

64 Range addresses of different types.
Not used.
65 Port input does not come from file or string.

You cannot rewind an input port that does not get its input from a file or a
string.

600

66

67

68

69

Chapter 16: Debugger Error Messages

Port output does not go to a file.

Only port output directed to a file may be rewound with the Memory Port

Rewind Output command.

This breakpoint is already set.

An attempt was made to set a breakpoint that already exists. The current

breakpoint must be deleted before it can be reset.

Port value not found.

A port was specified that has not been created with the Memory IngsigrA

or Memory Outport Asign caonmand.

Address in range already specified as Read_Only or Guarded.

An address that was previously specified with a Memory Map Read_Only or
Memory Map Guarded command was specified. Memory Map Read_Only and
Memory Map Guarded commands can only act on Write_Read areas.

Arguments do not match any Read_Only or Guarded area.

The arguments specified with a Memory Map Write_Read command do not
match the corresponding Memory Map Read_Only or Memory Map Guarded
command. The arguments must match exactly. Entering a Memory Map
command wihout arguments gives a map of Read_Only and Guarded areas.

Address range contains unacceptable breakpoints.

An illegal breakpoint was specified.

Bad size specification for window.

An illegal size specification was given for a window. See the Window New
command for thearrect size specifications.

Cannot repeat a cycle count of zero.

A Program Interrupt Add comand qualifier canot request that an interrupt
occur every zero cycles; this would cause an infinite loop.

601

Chapter 16: Debugger Error Messages

74

75

76

77

78

79

80

81

82

Invalid level number. Must be 1to 7.

The Program Interrupt Add oomand, as well as tH#8020 family of
microprocessors, permit 7 levels of interrupts.

Attempt to delete nonexistent breakpoint(s).

You tried to clear a breakpoint that was not previously set. Check that the
breakpoint was set, or not already cleared.

Symbol not available from this scope unreferenced.

You must reference the symbol with a qualified function or module name.

Symbol with this name already exists.

You tried to define a symbol that was previously defined. Another name
should be used.

Cannot create this symbol.

An error occurred when trying to create the symbol. Check that it is valid as a
symbol name.

Symbol is not a module.

An attempt was made to enter a symbol when a module was expected.

Invalid stack level.

This error indicates that a stack level was specified that is greater than the
current stack nesting.

Not a source procedure.

An attempt was made to enter an illegal function with the Program Context
Set command. The Program Context Set command requires either a module
name or agurce procedureame.

Cannot delete this symbol.

Registers and predefined symbols cannot be deleted.

602

83

84

91

92

93

94

95

96

Chapter 16: Debugger Error Messages

Invalid processor name.

This error indicates that you specified a processor other than one supported by

your debugger. See your user’s guide ftisiaof supported microprocessors.

Breakpoint limit exceeded.

The number of breakpoints allowed has been exceeded. This breakpoint has

not been set.

Internal command/expression processor error.

An internal memory error has occurred.

Not enough memory for expression.

The expression specified requires more memory than there is available. Try

clearing breakpoints or deleting macros to obtain more memory.

Invalid memory/register address.

An attempt was made to read or write to inaccessible targatory. Target

memory that is protected cannot be read from or written to.

Source is not available for this module.

An attempt was made to access source code in an assembly language module.

Use the Debugger Level command or B8function key to switch to
assembly-level mode to display this module.

Cannot build source table.

There is not sufficient memory available to build the source table for source

display.

Cannot read absolute file.

An attempt was made to load a file that is not an absolute object module. The

code may need to be compiled, assembled, or linked.

603

Chapter 16: Debugger Error Messages

97

98

99

100

101

102

103

104

Cannot build disassembly table.

There is not sufficient memory available to build the disassembly table for
up-arrow and page-up support in the disassembler.

Cannot split monitor lines.

An attempt was made to monitor different elements on the same line. Only
one element per line may be monitored.

No empty lines available.

An attempt was made to specify a line number with the Expression Monitor
Value command, but the entire window is alrealdlyd. The number of lines

in the data window is limited to 17. Use the Expression Monitor Delete
command to delete some of the lines.

No available windows.

This error indicates that the numbers allocated for user-defined windows have
all been used. Some windows must be deleted before creating another
user-defined window.

Cannot open file.

An attempt was made to open a file that does not exist.

Local variable not alive.

A local variable was specified, but the function containing the variable is not
active (current or nested).

No source level information available.

The source file for the specified source module cannot be found.

Alog or journal file is already open.

An attempt was made to open a new log file when one is already in use. Close
the existing log file with the File Log Off command before opening a new log
file.

604

105

106

107

108

109

110

111

112

113

Chapter 16: Debugger Error Messages

Not a color monitor.

Not used.

Not enough memory.

This error indicates that not enougiemory was available for the specified
command.

Terminated when processing absolutalé.

This error indicates that an invalid control value was encountered in loading
the ".x"file.

At start of function, no local variables yet.

This error indicates that arguments and local variables are not available to the
debugger at this time. They are available when the prolog to the function has
been executed.

Local already defined.

This error indicates that a local variable has been defined twice in a macro
definition. One definition of the variable must be deleted.

This argument not defined.

This error indicates that an argument was declared that was not defined on the
command line with the Debugger Macro Add command.

This macro is in use already.

Macros cannot be called recursively.

This is not allowed outside of a macro.

Keywords are allowed in macros only.

Cannot begin execution from a macro.

Program Run, Program Step With_Macro, Program Step, and Program Step
Over are not allowed from within macros. The PC may be altered with the
Memory Register @PC= command.

605

Chapter 16: Debugger Error Messages

114

115

116

117

118

119

121

122

123

This command not allowed from a macro.

Some commands are not allowed from a macro, such as Debugger Host_Shell
and Debugger Macro Add.

Invalid float expression, results in NAN.

A floating point expression resulted in a non-number.

Cannot convert float value.

Float value is too large to convert to an integer.

Help file unavailable.

This error indicates that the help file, "db68k.hlp", was not found.

Unsupported float type.

A floating point type other than 32 or 64 bit has been defined.

Cannot get address of register or constant.

An attempt was made to find the address of a register or constant. One
example is: Expression Display_Value &@al.

Cannot open command file for reading.

This error indicates that themwonand file specified eemot be found.

Include file name too long.

This error indicates that the filame specified (including its pathname) is too
long to be handled by the debugger’s internal buffers. Limit the number of
characters in the filename specification, or move the file to the default
directory.

Could not read source line.

This error indicates that there was an error reading the C source file.

606

Chapter 16: Debugger Error Messages

124 Cannot create file for logging.

This error indicates that there was an error when trying to create the specified
log file or that the current directory does not have write p&sion.

125 Write error occurred while writing to a file.

This error indicates that the disk is probably full.

126 Cannot open startup file < startupfile> .

This error indicates that the debugger could not open the specified setup file.
The filename may have beensspelled, or the filemme does not exist.

127 Invalid number of arguments for macro.

This error indicates that an incorrect number of arguments was specified in
the call or too many parameters were used in the macro definition.

128 Cannot show built-in macros.

This error indicates that predefined macros cannot be shown with the
Debugger Macro Display command. They have no text.

129 Runtime error in macro.

This error indicates that an error occurred when executing a macro.

130 Command not implemented in simulator version.

This error indicates that themmnand enteredilnot work in this version of
the debugger.

131 ‘option chip"not implemented in this version.
This error indicates that "option chipflwot work in this version of the
debugger.

132 Breakpoint adjusted to location.

This error indicates that the breakpoint has been moved to an address at the
start of an instruction. See the Debugger Option General Align_Bmend
syntax description in the "Debugger Commands" chapter.

607

Chapter 16: Debugger Error Messages

133

134

135

136

137

141

142

Error return from child process.

This error indicates that an error was returned when interacting with the host
system through the Debugger Host_Shetfhotand.

This command cannot be executed from batch mode.

This error indicates that themmnand enteredilvnot work in batch mode.

No search string available.

