User’s Guide for the Graphical User Interface

HP 64767
80186/8/XL/EA/EB
Emulation/Analysis

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987, 1992, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
Microtec is a registered trademark of Microtec Research Inc.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B3050-97000, December 1992
Edition 2 B3050-97001, February 1993
Edition 3 B3050-97002, January 1994

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of this
manual on the pages before the back cover.

80186/8/XL/EA/EB Emulation and
Analysis

The HP 64767 80186/188 emulator replaces the microprocessor in your embedded
microprocessor system, also calledttirget systenso that you can control
execution and view or modify processor and target system resources.

The emulator requires amulation analyzethat captures 48 channels of emulation
processor bus cycle information synchronously with the processor’s clock signal.
The HP 64706 (48 channel), the HP 64703 (64 channel), the HP 64704 (80
channel), or the HP 64794 (80 channel, dee memory) Emulation Bus Analyzer
meets this requirement.

The HP 64703 Emulation Bus Analyzer also has aextarnal analyzethat
captures up to 16 channels of data external to the emulator.

With the Emulator, You Can ...

* Plug into 80186/188/XL/EA/EB target systems.

» Download programs into emulation memory or target system RAM.

» Display or modify the contents of processor registers and memory resources.

* Run programs at clock speeds up to 20 MHz (with no wait-states from
emulation memory), set up software breakpoints, step through programs, and
reset the emulation processor.

With the Analyzer, You Can ...

» Trigger the analyzer when a particular bus cycle state is captured. States are
stored relative to the trigger state.

* Qualify which states get stored in the trace.

» Prestore certain states that occur before each normal store state.

» Trigger the analyzer after a sequence of up to 8 events have occurred.

» Capture data on signals of interest in the target system with the external
analyzer.

» Cause emulator execution to break when the analyzer finds its trigger condition.

With the HP 64700 Card Cage, You Can ...

Use the RS-422 capability of the serial port and an RS-422 interface card on
the host computer (HP 98659 for the HP 9000 Series 300) to provide
upload/download rates of up to 230.4K baud.

Easily upgrade HP 64700 firmware by downloading to flash memory.

With Multiple HP 64700s, You Can ...

Start and stop up to 16 emulators at the same time (up to 32 if modifications
are made).

Use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 card cages or to cause emulator execution in other HP 64700
card cages to break.

Use the HP 64700’s BNC connector to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition, or you can allow an external instrument to arm the analyzer or break
emulator execution.

With the Graphical User Interface, You Can ...

Use the emulator and analyzer under an X Window System that supports
OSF/Motif interfaces.

Enter commands using pull-down or pop-up menus.

Enter, recall, and edit commands using the command line pushbuttons.

Enter file names, recalled commands, recalled values, etc., using dialog boxes.
Set breakpoints by pointing the mouse cursor on a line in the mnemonic
memory display and clicking.

Create action keys for commonly used commands or command files.

With the Softkey Interface, You Can ...

Use the emulator and analyzer with a terminal or terminal emulator.
Quickly enter commands using softkeys, command recall, and command
editing.

In This Book

This book documents the Graphical User Interface and the Softkey Interface when
used with the HP 64767 80186/8/XL/EA/EB emulator and the HP 64703/4/6
analyzer. lItis organized into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 presents an overview of emulation and analysis and quickly shows
you how to use the emulator and analyzer.

Part 2. User’s Guide

Chapter 2 shows how to plug the emulator into a target system.

Chapter 3 shows you how to start and exit the HP 64700 interfaces.
Chapter 4 shows you how to enter commands.

Chapter 5 shows how to configure the emulator.

Chapter 6 shows how to use the emulator.

Chapter 7 shows how to use the analyzer.

Chapter 8 shows how to use the Software Performance Measurement Tool.
Chapter 9 shows how to use the external state analyzer.

Chapter 10 shows how to make coordinated measurements.

Chapter 11 shows how to change X resource settings.

Part 3. Reference

Chapter 12 describes emulator/analyzer interface commands.

Chapter 13 lists the error messages that can occur while using the

emulator/analyzer interface.

Chapter 14 lists the emulator specifications and characteristics.
Part 4. Concept Guide

Chapter 15 contains conceptual information on various topics.

Part 5. Installation Guide

Chapter 16 outlines the installation of the Graphical User Interface.
Chapter 17 shows you how to install or update emulator firmware.

Contents

Part 1

Quick Start Guide

Getting Started

The Emulator/Analyzer Interface — At a Glance

The Softkey Interface 24

Softkey Interface Conventions 25

The Graphical User Interface 26
Graphical User Interface Conventions 28

The Getting Started Tutorial 31

Step 1. Startthe demo 32

Step 2: Display the program in memory 33
Step 3: Run from the transfer address 34

Step 4: Step high-level source lines 35

Step 5: Display the previous mnemonic display 36
Step 6: Run until an address 37

Step 7: Display data values 38

Step 8: Display registers 39

Step 9: Step assembly-level instructions 40
Step 10: Trace the program 41

Step 11: Exit the emulator/analyzer interface 43

24

Contents

Part 2 User’s Guide

2 Plugging into a Target System

Step 1. Turn OFF power 49

Step 2. Unplug probe from demo target system 49

Step 3. Set up the probe for the clock source 50

Step 4. Plug the 8018x PGA emulator probe into the target system 53
Step 5. Connect the BGND flying lead 54

Step 6. Turn ON power 55

3 Starting and Exiting HP 64700 Interfaces

Starting the Emulator/Analyzer Interface 59

To start the emulator/analyzer interface 59

To start the interface using the default configuration 60

To run a command file on interface startup 61

To display the status of emulators 61

To unlock an interface that was left locked by another user 62

Opening Other HP 64700 Interface Windows 63

To open additional emulator/analyzer windows 63
To open the high-level debugger interface window 64
To open the software performance analyzer (SPA) interface window 64

Exiting HP 64700 Interfaces 65

To close an interface window 65
To exit a debug/emulation session 66

Contents

4 Entering Commands

Using Menus, the Entry Buffer, and Action Keys 69

To choose a pulldown menu item using the mouse (method 1) 70
To choose a pulldown menu item using the mouse (method 2) 71
To choose a pulldown menu item using the keyboard 71

To choose popup menu items 73

To place values into the entry buffer using the keyboard 74

To copy-and-paste to the entry buffer 74

To recall entry buffer values 77

To use the entry buffer 77

To copy-and-paste from the entry buffer to the command line entry area 78
To use the action keys 79

To use dialog boxes 79

To access help information 83

Using the Command Line with the Mouse 84

To turn the command line on or off 84

To enter a command 85

To edit the command line using the command line pushbuttons 86
To edit the command line using the command line popup menu 87
Torecall commands 88

To get help about the command line 88

Using the Command Line with the Keyboard 89

To enter multiple commands on one command line 89
Torecall commands 90

To edit commands 90

To access on-line help information 91

Using Command Files 92

To start logging commands to a command file 95
To stop logging commands to a command file 95
To playback (execute) a command file 96

Using Pod Commands 97

To display the pod commands screen 98
To use pod commands 98

Contents

Forwarding Commands to Other HP 64700 Interfaces 99

To forward commands to the high-level debugger 99
To forward commands to the software performance analyzer 100

Configuring the Emulator

Using the Configuration Interface 103

To start the configuration interface 104

To modify a configuration section 106

To store a configuration 108

To change the configuration directory context 109
To display the configuration context 110

To access help information 110

To exit the configuration interface 111

To load a configuration 111

Modifying the General Configuration ltems 112

To select the type of processor to emulate 112

To specify the target memory access size 113

To select the default physical to logical run address conversion 113
To restrict the emulator to real-time runs 114

To turn OFF the restriction to real-time runs 115

To enable/disable entry into the monitor after configuration 115

Selecting the Emulation Monitor Program 116

To select the background monitor program 117
To select the foreground monitor program 118
To use a custom foreground monitor program 120

Mapping Memory 122

To map memory ranges 122
To characterize unmapped ranges 125
To delete memory map ranges 126

Setting the Debug/Trace Options 127

To specify a processor clock rate greater than 16 MHz 127
To enable/disable breaks on writesto ROM 128
To include/exclude background states in the trace 128

10

Contents

6 Using the Emulator

Loading and Storing Absolute Files 131

To load absolute files 131
To load absolute files without symbols 132
To store memory contents into absolute files 132

Using Symbols 133

To load symbols 133

To display global symbols 134

To display local symbols 135

To display a symbol’'s parent symbol 139

To copy-and-paste a full symbol name to the entry buffer 140

Using Context Commands 141

To display the current directory and symbol context 142
To change the directory context 142
To change the current working symbol context 143

Executing User Programs 144

To run programs from the current PC 144

To run programs from an address 145

To run programs from the transfer address 145
To run programs from reset 145

To run programs until an address 146

To stop (break from) user program execution 147
To step high-level source lines 147

To step assembly-level instructions 148

To reset the emulation processor 149

Using Software Breakpoints 150

To display the breakpoints list 151

To enable/disable breakpoints 153
To set a permanent breakpoint 155
To set a temporary breakpoint 156
To set all breakpoints 157

To deactivate a breakpoint 157

To re-activate a breakpoint 158

To clear a breakpoint 160

To clear all breakpoints 162

11

Contents

Displaying and Modifying Registers 163

To display register contents 166
To modify register contents 167

Displaying and Modifying Memory 168

To display memory 168

To display memory in mnemonic format 169

To return to the previous mnemonic display 169
To display memory in hexadecimal format 170
To display memory in real number format 171
To display memory at an address 172

To display memory repetitively 173

To modify memory 173

Displaying Data Values 174

To display data values 174
To clear the data values display and add a new item
To add items to the data values display 175

Changing the Interface Settings 176

To set the source/symbol modes 176
To set the display modes 177

Using System Commands 179

To set UNIX environment variables 179

To display the name of the emulation module 180
To display the eventlog 180

To display the errorlog 181

To edit files 182

To copy information to a file or printer 185

To open a terminal emulation window 186

Using Simulated I/O 187
To display the simulated I/O screen 187
To use simulated I/O keyboard input 188

Using Basis Branch Analysis 189
To store BBA datato afile 189

175

12

Contents

7 Using the Emulation Analyzer

The Basics of Starting, Stopping, and Displayingcés 193

To start a trace measurement 194

To display the trace status 194

To stop a trace measurement 197

To display the trace 198

To position the trace display on screen 199
To change the trace depth 200

To modify the last

trace command entered 200

Qualifying Trigger and Store Conditions 201

To qualify the trigger state and position 206

To trigger on a number of occurrences of some state 208
To qualify states stored in the trace 209

To prestore states before qualified store states 210

To change the count qualifier 211

To trace until the analyzer is halted 213

To break emulator execution on the analyzer trigger 214

Using the Sequencer 215

To trigger after a sequence of states 215
To specify a global restart state 217
To trace "windows" of program execution 218

Modifying the Trace Display 220

To display the trace about a line number 221

To display the trace in absolute format 222

To display the trace in mnemonic format 223

To display the trace with high-level source lines 224

To display the trace with symbol information 226

To change column widths in the trace display 227

To display time counts in absolute or relative format 228
To display the trace with addresses offset 229

To return to the default trace display 230

To display external analyzer information 231

13

Contents

Saving and Restoring Traces 232

To save trace commands 232
To restore trace commands 233
To save traces 234

To restore traces 235

Making Software Performance Measurements

Activity Performance Measurements 239

To set up the trace command for activity measurements 241
To initialize activity performance measurements 242
To interpret activity measurement reports 246

Duration Performanckleasurements 254

To set up the trace command for duration measurements 255
To initialize duration performance measurements 257
To interpret duration measurement reports 259

Running Measurements and Creating Reports 263

To run performance measurements 263
To end performance measurements 264
To create a performance measurement report 265

Using the External State Analyzer

Setting Up the External Analyzer 269
To connect the external analyzer probe to the target system 270

Configuring the External Analyzer 273

To control the external analyzer with the emulator/analyzer interface
To specify the threshold voltage 275

To specify the external analyzer mode 276

To specify the slave clock mode 277

To define labels for the external analyzer signals 280

274

14

10

11

Contents

Making Coordinated Measurements

Setting Up for Coordinated Measurements 287

To connect the Coordinated Measurement Bus (CMB) 287
To connect to the rear panel BNC 289

Starting/Stopping Multiple Emulators 291

To enable synchronous measurements 291
To start synchronous measurements 292
To disable synchronous measurements 292

Using Trigger Signals 293

To drive the emulation analyzer trigger signal to the CMB 295

To drive the emulation analyzer trigger signal to the BNC connector 296
To drive the external analyzer trigger signal to the CMB 296

To drive the external analyzer trigger signal to the BNC connector 297
To break emulator execution on signal from CMB 297

To break emulator execution on signal from BNC 298

To break emulator execution on external analyzer trigger 298

To arm the emulation analyzer on signal from CMB 299

To arm the emulation analyzer on signal from BNC 299

To arm the emulation analyzer on external analyzer trigger 300

To arm the external analyzer on signal from CMB 300

To arm the external analyzer on signal from BNC 301

To arm the external analyzer on emulation analyzer trigger 301

Setting X Resources

To modify the Graphical User Interface resources 306
To use customized scheme files 310

To set up custom action keys 312

To set initial recall buffer values 313

To set up demos or tutorials 315

15

Contents

Part 3 Reference

12 Emulator/Analyzer Interface Commands

How Pulldown Menus Map to the Command Line 322
How Popup Menus Map to the Command Line 326
Syntax Conventions 328

Commands 329

break 330

bbaunld 331
cmb_execute 332

copy 333

copy io_port 336

copy local_symbols_in 338
copy memory 339

copy registers 341

copy trace 342

display 343

display data 345

display global_symbols 348
display io_port 349
display local_symbols_in 351
display memory 352
display registers 356
display simulated_io 357
display software_breakpoints 358
display trace 359

end 363

--EXPR-- 364

forward 367

help 368

load 370

log_commands 372
modify 373

modify configuration 374
modify io_port 375

modify keyboard to_simio 377
modify memory 378
modify register 381
modify software_breakpoints 382

16

Contents

performance_measurement_end 384
performance_measurement_initialize 385
performance_measurement_run 387
pod_command 389

QUALIFIER 391

RANGE 393

reset 395

run 396

SEQUENCING 398

set 400

specify 405

STATE 407

step 409

stop_trace 411

store 412

--SYMB-- 414

trace 423

TRIGGER 426

wait 428

WINDOW 430

Error Messages
Graphical/Softkey Interface Messages - Unnumbered 435
Graphical/Softkey Interface Messages - Numbered 452

Terminal Interface Messages 455

Emulator Messages 455

80186/8/XL/EA/EB Emulator Messages 457
General Emulator and System Messages 458
Analyzer Messages 471

Specifications and Characteristics

Emulator Specifications and Characteristics 476

Electrical 476
Physical 479
Environmental 479

17

Contents

External Analyzer Specifications 480

Part 4 Concept Guide

15 Concepts

X Resources and the Graphical User Interface 485

X Resource Specifications 485
How X Resource Specifications are Loaded 487
Scheme Files 489

Part 5 Installation Guide

16 Installation

Installing Hardware 498

Step 1. Connect the Emulator Probe Cables 500

Step 2. Install Boards into the HP 64700 Card Cage 503

Step 3. Plug the emulator probe into the demo target system 515
Step 4. Apply power to the HP 64700 517

Connecting the HP 64700 to a Computer or LAN 521

Installing HP 9000 Software 522

Step 1. Install the software from the media 522

Step 2. Verify the software installation 524

Step 3a. Start the X server and the Motif Window Manager (mwm) 525
Step 3b. Start HP VUE 525

Step 4. Set the necessary environment variables 525

18

17

Contents

Installing Sun SPARCsystem Software 528

Step 1. Install the software from the media 528

Step 2. Start the X server and OpenWindows 529
Step 3. Set the necessary environment variables 529
Step 4. Verify the software installation 531

Step 5. Map your function keys 532

Verifying the Installation 533

Step 1. Determine the logical name of your emulator 533
Step 2. Start the interface with the

emul700command 534

Step 3. Exit the Graphical User Interface 537

Installing/Updating Emulator Firmware

To update emulator firmware with "progflash" 541
To display current firmware version information 544
If there is a power failure during a firmware update 545

Glossary

Index

19

20

Part 1

Quick Start Guide

A one-glance overview of the product and a few task instructions to help you
comfortable.

21

Part 1

22

Getting Started

23

Chapter 1: Getting Started

The Emulator/Analyzer Interface — At a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Memory :mnemonic :file main (module) . "main.c"”
address data

Disp|ay area. 8000 0000 55 PUSH BP
8000 0001 8BEC MOV BP, SP
8000 0003 1E PUSH DS
000 0004 ©E8B210 MOV AX, #10B2H

80 007 SED8CK0606 MOV DS,AX | MOV 0006H, #01H
8000 00 C606060001 MOV BYTE PTR 0006H, #01H
8000 000E 9 NOP

8000 000F 9AQEQ06181 CALL FAR PTR S161EH

2000 0014 9A0800E181 CALL FAR PTR 81lE18H

8000 0019 90 NOP
8000 001A <C606070001 MOV BYTE PTR 0007H, #01H
8000 001F 90 NOP

8000 0020 9A06006ES81 CALL FAR PTR 8l6E6H
8000 0025 FFO&B305 INC WORD PTR 05BS8H

8000 00229 BAB210 MOV DX, #10B2H
. 8000 002C 90 HOP
Status line.
—_— STATUS : cWs: main."main.e": RS - R

display memory main mnemonic

Command line.

——

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/0O, global symbols, local symbols, pod commands
(the emulator’'s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

24

Chapter 1: Getting Started

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to bei
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

25

Chapter 1: Getting Started

Menu bar ——

Action keys

Entry buffer

Entry buffer recall
button.

Display area.

Scroll bar.

Status line. —__

Command line.

Command line entry

area.

Softkey pushbuttons

The Graphical User Interface

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain I_R/eca
Memory :mnemonic file = main{modulel. "main.c”
addre label da

31 exterh woid update_system!(); /#* update system wariables #/
32 extern woid interrupt_simi{}; /% simulate an interrupt */
33 extern woid do_sort(}; /#* sets up ascii array and call
34

35 main(}

36 i

97 init_system(};

35 proc_spec_initil;

33

186 while (truel

1A

182 update_system(};

183 num_checks++;

184 interrupt_sim{&num_checks)

185 if {graph?’

1686 graph_datal};

187 proc_specificl);

STATUS: 80C188EL--Running in monitor

isplay memory main mnemonic

Command: Cursor: |§.§é§<ﬁ§i%§§} |Forward |Clear to end |Clear |He|p

Command buttons. Includes commandCursor buttons for command line area
recall button. control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

26

Chapter 1: Getting Started

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the

entry buffer are used in that command. You can type values into the entry bu

or you can cut and paste values into the entry buffer from the display area or f

the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated 1/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold theselectmouse button to access popup menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and holdeteetmouse button to access the
Status Line popup menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

e« Command line entry area Allows you to enter commands from the
command line.

» Softkey pushbuttons Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
theselectmouse button to access the Command Line popup menu.

e Command buttons(includes command recall button). The commiaeturn
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

27

Chapter 1: Getting Started

The commandecall button allows you to recall previous or predefined
commands. When you click on the comm&uedtall button, a dialog box
appears that allows you to select a command.

e Cursor buttons for command line area control Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, popup menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

ChooséFile - Load - Configuration

means to first display tHele pulldown menu, then display thead cascade
menu, then select tl@onfiguration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

* The leftmost item in bold is the pulldown menu label.

+ If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

» The last item on the right is the actual menu choice to be made.

28

Chapter 1: Getting Started

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, w
may have different conventions for mouse buttons and key names, the Graphica
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Bindings:

Generic

Button Sun

Name HP 9000 SPARCsystem Description

paste left left Paste from the display
area to the entry buffer.

command paste middle! middle! Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton left left Actuates pushbuttons

select outside of the display area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

29

Chapter 1: Getting Started

The following tables show the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name

menu select
insert

delete
left-arrow
right-arrow
up-arrow
down-arrow
escape

TAB

HP 9000
extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow
escape

TAB

Sun SPARCsystem

extend char
insert char
delete char
left arrow
right arrow
up arrow
down arrow

escape

TAB

30

Chapter 1: Getting Started

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The tutorial examples presented in this
chapter make the following assumptions:

e The HP 64767 emulator and HP 64703 analyzer are installed into the
HP 64700 Card Cage, the HP 64700 is connected to the host computer, and the
emulator/analyzer interface software has been installed as outlined in the
"Installation” chapter.

* The emulator is plugged into the demo board.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

31

Chapter 1: Getting Started
Step 1. Start the demo

Step 1. Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

Change to the demo directory.

$ cd /usr/hp64000/demo/debug_env/hp64767 <RETURN>
Refer to the README file for more information on the demo program.

Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on a HP 9000 computer
and displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS".

Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (flusr/hp64000/etc/64700tab.net).

32

Chapter 1: Getting Started
Step 2: Display the program in memory

Step 2: Display the program in memory

1 If the symbol "main” is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main”.

2 ChooseDisplay - Memory - Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | < Demo > | Disp Sre () | Trace() | Run | Step Source
| < Your Key = | Make |Disp Sre Prev |Run Xfer til () | Break | Step Asm

{):imain Recal

Memory imnemonic :file = mainimodule). "main.c”
label data
extern wvoid update_system(}; /# update system wariables #/
extern wvoid interrupt_simi}; /4 simulate an interrupt */
extern void do_sorti); /% sets up ascii array and call

maini}

i
init_system{};
proc_spec_init{};

while (truel
i
update_system(};
num_check s++;
1684 interrupt_sim{&num_checks?;
185 if {graph?!
186 graph_datall;
187 proc_specificll;

STATUS: cws: main."main.c":

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

33

Chapter 1: Getting Started
Step 3: Run from the transfer address

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

» Click on theRun Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main <RETURN>
Memory mnemonic :file = mainimodulel. "main.c”
addre label data

31 extern void update_systemi); /% update system wvariables #/
32 extern woid interrupt_simi}; f* simulate an interrupt */
33 extern woid do_saortil); /* sets up ascii array and calls
94
35 main)

I
37 init_systemi);
35 proc_spec_initil;
33
1689 while {true)
181 i
18z update_systemi};
143 num_checks++;
164 interrupt_sim{&num_checksl;
165 if (graph?
166 graph_datall;
167 proc_specificl);

STATUS: B80C1885L--Running in monitor Software break: 08000:00000 ||

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor" (you may have to clicls¢fectmouse

button to remove temporary messages from the status line). When you run until an
address, a breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the current program counter.

34

Chapter 1: Getting Started
Step 4: Step high-level source lines

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

To step a source line from the current program counter, click @tépeSource
action key.

Or, using the command line, enter:

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

Step into the "init_system" function by continuing to step source lines, either by
clicking on theStep Sourceaction key, by clicking on th&gain action key which
repeats the previous command, or by enteringtife sourcecommand on the
command line.

Memory imnemonic :file = init_systemimodule). "init_system.c":
addre label data

26
27 void init_wal_arr{};
28
23 woid
34 init_systeml]}
31 i A% FUMCTION init_system() */
32 /% Initialize the target walues for temperature and humidity */
33 target_temp = 73;

> 34 target_humid = 45;
35
36 /% Intialize the variables indicating the current environment #/
37 /* conditions */
a8 current_temp = B8;
33 current_humid = 41;
48
41 /#% SJet starting directions for temp and humid #*/
42 temp_dir = up;

35

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

Step 5: Display the previous mnemonic display

Click on theDisp Src Prevaction key.

Or, using the command line, enter:
display memory mnemonic previous_display <RETURN>
This command is useful, for example, when you have stepped into a funtion that

you do not wish to look at—you can display the previous mnemonic display and
run until the source line that follows the function call.

36

Chapter 1: Getting Started
Step 6: Run until an address

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the popup menu lets
you run from the current program counter address until a specific source line.

» Position the mouse pointer over the line "proc_spec_init();", press and hold the
selectmouse button, and chooRen Until from the popup menu.

—'E Hewlett Packard Emulator/Analyzer: em8018x (i186x1) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo > | Disp Sre () | Trace() | Run | Step Source

| < Your Key = | Make |Disp Sre Prev |Run Xfer til () | Break | Step Asm

{):imain Recall
Memory imnemonic :file = mainimodulel. "main.c":

addre label data A
91 extern wvoid update_system(}; /# update system wariables #/
32 extern wvoid interrupt_simi}; /4 simulate an interrupt */

93 extern void do_sorti); /% sets up ascii array and call

Choose Action for Highlighted Line
ig? ”{Jhi le (truel Set/Clear Software Breakpoint
182 update_system(| Edit Source
1683 num_check s++; =
184 interrupt_simi Run Until
185 if {graph Trace After
186 graph_datal}
187 proc_specific()| Trace Before
| STATUS: cws: main. main.c": Trace About . E » -
} Trace Until f

Or, using the command line, enter:

run until main."main.c": line 98 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

37

Chapter 1: Getting Started
Step 7: Display data values

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click tigastemouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 ChooseDisplay - Data Values— New () int32.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>
Oata :update
addre label type data
1ABZ2 ASAZ |_num_checks int3z 4]

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

38

Chapter 1: Getting Started
Step 8: Display registers

Step 8: Display registers
You can display the contents of the processor registers.
» ChooseDisplay - Registers- basic

Or, using the command line, enter:

display registers <RETURN>

Registers

Mext C5:IP GHAG: BBAEH
flFz46 ¢ 1 =z p ¥ ip ABBE cs GEBE ds 1BB2 es 1811 == 1260
ax A174 bx 8174 cx 1811 dx BABH bp 7EEE =i BB46 di BB3C =p YEEB

39

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

» To step one instruction from the current program counter, click datépeAsm
action key.

Or, using the command line, enter:

step <RETURN>

Registers

Next C5:IF BOEQ:AAHEH
fl1F246 < i =z p *» ip ABAE cos BBEB ds 1862 es 1811 =s 1260
ax B174 bx B174 cx 1811 dx A@AE bp 7EEE =i BB46 di BA3C sp 7EEB

Step_PC 860GE: @BAEH CALL FAR PTR B1CGHEH

Next C5:IF BI1CE: BAHAH
fl1F246 < i =z p > ip ABAA os BICE ds 1882 es 1811 =s 1260
ax A174 bx B174 cox 1811 dx BABE bp YEEE =i BB46 di BB3C =p YEEZ

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

40

Chapter 1: Getting Started
Step 10: Trace the program

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete."

Click on theRecall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

To trigger on the address "main" and store states that occur after the trigger, choose
Trace - After ().

Or, using the command line, enter:

trace after main <RETURN>

Notice the message "Emulation trace started" appears on the status line. This

shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

Run the emulator demo program from its transfer address by choosing
Execution— Run - from Transfer Address.

Or, using the command line, enter:

run from transfer_address <RETURN>

41

Chapter 1: Getting Started
Step 10: Trace the program

Notice that now the message on the status line is "Emulation trace complete". This

shows the trigger state has been found and the analyzer trace memory has been
filled.

5 To view the captured states, choBésplay - Trace.

Or, using the command line, enter:

display trace <RETURN>

=0 More data off en
time count

Label: Address Opcode or Status w/ Source Lines
bBa=e: umnbol mrnemonic w/symbol relative
prog_main|_main 35H, opcode fetch ROM 246 n3

i itnain. e - line 1 thru 36 HHHHHEHERERH AR GEEE AR BB ER RS

n

+BA1 prog_main|_main FUSH BF 166 n3
+HEz prog_|maint+dd6E8 1 BBH, opcode fetch ROM 48, n3
+EA83 prog_|maint+BEEEZ ECH, opecode fetch ROM 288 nS
+6a4 stackheap+d7EER AEH, mem write 288 nS
+HA5 stackheaptd7EEY 7FH, mem write 2688 nS
+ABE prog_|maintBABE] MOV BF,SP 44, nS
+887 prog_|main+BBEE3 lEH, opcode fetch ROM 164 n3
+AB8 prog_|main+BABE3 PUSH OS5 166 nS
+HE83 prog_|main+tHEHE4 B8H, cpcede fetch ROM 44, nS

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

42

Chapter 1: Getting Started
Step 11: Exit the emulator/analyzer interface

Step 11: Exit the emulator/analyzer interface .

» To exit the emulator/analyzer interface and release the emulator, choose
File - Exit — Released

Or, using the command line, enter:

end release_system <RETURN>

43

44

Part 2

User’'s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

45

Part 2

46

Plugging into a Target System

47

CAUTION

Plugging the Emulator into a Target
System

This chapter describes the steps you must perform when connecting the emulator to
a target system:

1 Turn OFF power.

2 If the emulator is currently connected to the demo target system or a different
target system, unplug the emulator probe.

3 Plug the emulator probe into the target system.

4 Turn ON power (first the HP 64700, then the target system).

Possible Damage to the Emulator ProbeThe emulation probe contains devices

that are susceptible to damage by static discharge. Therefore, precautionary
measures should be taken before handling the microprocessor connector attached to
the end of the probe cable to avoid damaging the internal components of the probe
by static electricity.

We STRONGLY suggest using a ground strap when handling the emulator
probe. A ground strap is provided with the emulator.

48

Chapter 2: Plugging into a Target System
Step 1. Turn OFF power

Step 1. Turn OFF power

CAUTION Possible Damage to the EmulatorMake sure target system power is OFF and

make sure HP 64700 power is OFF before removing or installing the emulator.
probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target
system whose power is ON.

1 If the emulator is currently plugged into a different target system, turn that target system’s power OFF.

2 Turn emulator power OFF.

Step 2. Unplug probe from demo target system

1 If the emulator is currently connected to a different target system, unplug the emulator probe;
otherwise, disconnect the emulator probe from the demo target system.

49

Chapter 2: Plugging into a Target System
Step 3. Set up the probe for the clock source

Step 3. Set up the probe for the clock source

A 14-pin DIP socket located at the target connector end of the probe is used to
prepare the emulator probe for the type of clock source in the target system. The
figure below shows the connections that are made to the socket.

Target Sysfem

+5V
SKT_14_DIP
300mil
[—
[
e
Target System o largef Sysfem
OSCouT CLKIN
s
GROUND
Emulation Processor E nulation Processor
0scouT CLKIN 64767801

A jumper that connects the emulation processor OSCOUT and CLKIN pins to the
OSCOUT and CLKIN pins on the target connector is provided. You can use this
jumper if:

» The target system drives CLKIN with an oscillator.

» The target system has a low frequency crystal connected between the
OSCOUT and CLKIN pins.

However, if the target system has a high frequency crystal connected between the
OSCOUT and CLKIN pins, you may have to replace the jumper with either a
standard 14-pin oscillator of the desired frequency or a prototyping socket on which
a crystal and any capacitors or tank circuitry are assembled. (One such prototyping
socket is part number 20314-36-455 from Electronic Molding Corp., 96 Mill Street,
Woonsocket RI.)

50

Chapter 2: Plugging into a Target System
Step 3. Set up the probe for the clock source

Parasitic circuit parameters in the emulator/target interconnect may cause problems
when the target system uses a high frequency crystal. The frequency limit is very

much dependent on the target system. Under favorable conditions, operation at full
speed may be possible with the jumper.

If you can use the provided jumper, go on to Step 4; otherwise, perform the
following steps.

1 Remove plastic rivets that secure the plastic cover on the top of the emulator probe, and remoye the
cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

ADD PLASTIC
WASHERS TO
THESE TWO
POSITIONS ONLY

64767E10

51

Chapter 2: Plugging into a Target System
Step 3. Set up the probe for the clock source

2 Replace the jumper with either a standard 14-pin oscillator of the desired frequency or a prototyping
socket on which a crystal and any capacitors or tank circuitry are assembled.

3 Replace the plastic cover, and insert new plastic rivets (supplied with the emulator) to secure tluue cover.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

ADD PLASTIC
_ WASHERS TO
64767E10 THESE TwWO
POSITIONS ONLY

52

Chapter 2: Plugging into a Target System
Step 4. Plug the 8018x PGA emulator probe into the target system

Step 4. Plug the 8018x PGA emulator probe into
the target system

1 Install the emulator probe into the target system socket. Make sure that pin 1 of the connector
with pin 1 of the sockeDamage to the emulator will result if the probe is incorrectly installed.

80186/8/XL/EA/EB
EMULATOR
PROB_

TARGET SYSTEM
PIN A1

PGA SOCKET

G4767EQE

53

Chapter 2: Plugging into a Target System
Step 5. Connect the BGND flying lead

Step 5. Connect the BGND flying lead

CAUTION Damage to the Emulator Probe Will Result if the BGND Output Line is

Incorrectly Installed. When installing the BGND output line into the emulator
probe, make sure that the ground pin on the output line (labeled with a white dot) is

matched with the ground receptacle in the emulator probe.

use the BGND auxiliary output to signal the target system when the emulator is executing in the
background monitor. The BGND signal is low when the emulator is running in the background m
and high in the normal foreground mode.

1 If your target system checks for processor execution (for example, it has a watchdog timer) yoan can

onitor

HP 64767
EMULATION
PROBE

FLYING LEAD
64767EN

54

Chapter 2: Plugging into a Target System
Step 6. Turn ON p ower

Step 6. Turn ON power

1 Turn emulator power ON. .

2 Turn target system power ON.

55

56

Starting and Exiting HP 64700
Interfaces

57

Starting and Exiting HP 64700 Interfaces

You can use several types of interfaces to the same emulator at the same time to
give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer interface (which is also a separate product)
lets you make measurements that can help you improve the performance of your
software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator. Only one C
debugger interface window and one SPA window are allowed, but you can start
multiple emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are grouped into
the following sections:

e Starting the emulator/analyzer interface.
» Opening other HP 64700 interface windows.
e Exiting HP 64700 interfaces.

58

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Starting the Emulator/Analyzer Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in the "Installation" chapter.

This section describes how to:

« Start the interface.

» Start the interface using the default configuration.
* Run acommand file on interface startup.
» Display the status of emulators defined in the 64700tab.net file.

* Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

Use theemul700 <emul_name>ommand.

If /Jusr/hp64000/binis specified in your PATH environment variable (as shown in
the "Installation" chapter), you can start the interface witlenma/700
<emul_name>command. The "emul_name" is the logical emulator name given in
the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
and data in the fourth.

59

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Examples To start the emulator/analyzer interface for the 80186/8/XL/EA/EB emulator:

$ emul700 em8018x <RETURN>

The "em8018x" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/lusr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a '# character are ignored.

The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#

+ + +

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)

+ + +

'# lan: em8018x i186xI 21.17.9.143
serial: em8018x i186xI myhost /dev/iemcom23 OFF 9600 NONE XON 2 8

If you're currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in the "Error Messages" chapter.

To start the interface using the default
configuration

» Use theemul700 -d <emul_namexommand.

In theemul700 -d <emul_name>xommand, thed option says to use the default
configuration. Thed option is ignored if the interface is already running in
another window or on another terminal.

60

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

To run a command file on interface startup

Use theemul700 -c <cmd_file> <emul_namesommand.

You can cause command files to be run upon starting the interface by using th
<cmd_file> option to theemul700command.

Refer to the "Using Command Files" section in the "Entering Commands" cha
for information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup” command file:
$ emul700 -c startup em8018x <RETURN>
To display the status of emulators
Use theemul700 -lor emul700 -lvcommand.
The-l option of theemul700command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.
You can also use the option with the| option for a verbose listing of the status
information.

Examples To list, verbosely, the status of the emulator whose logical name is "em8018x":

$ emul700 -lv. em8018x <RETURN>

The information may be similar to:

em8018x - i186xI running; user = guest

description:

180c18xxx emulation w/64740EA, 1024Kb emul mem

user interfaces: xdebug, xemul, xperf, skemul, sktiming

device channel:

/dev/emcom23

61

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

Or, the information may be similar to:

em8018x - i186xI running; user = guest@myhost
description: 180c18xxx emulation w/64740EA, 1024Kb emul mem
user interfaces: xdebug, xemul, xperf, skemul, sktiming
internet address: 21.17.9.143

To unlock an interface that was left locked by
another user

» Use theemul700 -U <emul_namexommand.

The-U option to theemul700command may be used to unlock the emulators
whose logical names are specified. This command will fail if there currently is a
session in progress.

Examples To unlock the emulator whose logical name is "em8018x™:

$ emul700-U em8018x <RETURN>

62

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

Opening Other HP 64700 Interface Windows

TheFile - Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows if those products have been
installed (for example, the software performance analyzer (SPA) interface and
high-level debugger interface).

This section shows you how to:
» Open additional emulator/analyzer interface windows.
* Open the high-level debugger interface window.

» Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

To open additional Graphical User Interface windows, choose
File - Emul700- Emulator/Analyzer under Graphic Window®r enter the
emul700 <emul_name>xommand in another terminal emulation window.

To open additional conventional Softkey Interface windows, choose

File - Emul700- Emulator/Analyzer under Terminal Windowsr enter the
emul700 -u skemul <emul_namerzommand in another terminal emulation
window.

You can open additional Graphical User Interface windows, or terminal emulation
windows containing the Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first
window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

63

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

To open the high-level debugger interface window

* ChooseFile - Emul700- High-Level Debugger ...under "Graphic Windows", or
enter theemul700 -u xdebug <emul_nameezommand in another terminal

emulation window.
For information on how to use the high-level debugger interface, refer to the

debugger/emulatddser’s Guide

To open the software performance analyzer
(SPA) interface window

* ChooseFile - Emul700- Performance Analyzer ...under "Graphic Windows", or
enter theemul700 -u xperf <emul_name>ommand in another terminal
emulation window.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’'s Guide

64

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 764700 interfaces. You
can simply close one of the open interface windows, or you can exit the debug

session by closing all the open windows. When exiting the debug session, yo
lock the emulator so that you can continue later, or you can release the emula
system so that others may use it. This section describes how to:

* Close an interface window.

» Exit a debug/emulation session.

To close an interface window

In the interface window you wish to close, chobse - Exit — Window. In the
emulator/analyzer interface command line, enteetitlcommand with no options.

All other interface windows remain open, and the emulation session continues,
unless the window closed is the only one open for the emulation session. In that
case, closing the window ends the emulation session, but locks the emulator so that
other users cannot access it.

65

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

To exit a debug/emulation session

To exit the interface, save your configuration to a temporary file, and lock the
emulator so that it cannot be accessed by other users, ¢hlees&xit - Locked.
In the emulator/analyzer interface command line, entegriidockedcommand.

To exit the interface and release the emulator for access by other users, choose
File - Exit — Released In the emulator/analyzer interface command line, enter the
end release_systernommand.

If you exit the interface locked, the interface saves the current configuration to a
temporary file and locks the emulator to prevent other users from accessing it.
When you again start the interface with ¢éineul700command, the temporary file

is reloaded, and therefore, you return to the configuration you were using when you
quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry buffer
and command recall buffer. These recall buffer values will be present when you
restart the interface.

In contrast, if you end released, you must have saved the current configuration to a
configuration file (if the configuration has changed), or the changes will be lost.

66

Entering Commands

67

Entering Commands

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of

breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface,dbmmand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, you have even more in the command line.

This chapter shows you how to enter commands in each type of emulator/analyzer
interface. The tasks associated with entering commands are grouped into the
following sections:

« Using menus, the entry buffer, and action keys.
e Using the command line with the mouse.

e Using the command line with the keyboard.

e Using command files.

e Using pod commands.

e Forwarding commands to other HP 64700 interfaces.

68

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the Graphical User
Interface to enter commands. This section describes how to:

Choose a pulldown menu item using the mouse.

Choose a pulldown menu item using the keyboard.

Use the popup menus. .
Use the entry buffer.

Copy and paste to the entry buffer.

Use action keys.

Use dialog boxes.

Access help information.

69

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 1)

Position the mouse pointer over the name of the menu on the menu bar.
Press and hold tmmmmand selechouse button to display the menu.

While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow on
the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

70

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose a pulldown menu item using the
mouse (method 2)

Position the mouse pointer over the menu name on the menu bar.

Click thecommand selechouse button to display the menu.

Move the mouse pointer to the desired menu item. If the menu item has a ca
menu (identified by an arrow on the right edge of the menu button), then repe

previous step and then this step until you find the desired item.

Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

To choose a pulldown menu item using the
keyboard

To initially display a pulldown menu, press and holdrtteu seleckey (for
example, the "Extend char" key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, " for
"File". Type the character in lower case only.)

To move right to another pulldown menu after having initially displayed a menu,
press theight-arrow key.

71

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To move left to another pulldown menu after having initially displayed a menu,
press thdeft-arrow key.

To move down one menu item within a menu, presddia-arrow key.
To move up one menu item within a menu, pressipharrow key.

To choose a menu item, type the character in the menu item label that is underlined.
Or, move to the menu item using the arrow keys and then presRET@JRN>
key on the keyboard.

To cancel a displayed menu, pressiEBeapekey.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character in
the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item

has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to a
dialog box, you must position the mouse pointer somewhere inside the boundaries
of the dialog box. That is because the interkadoard focus policig set to

pointer. That just means that the window containing the mouse pointer receives the
keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to the "Setting X
Resources" chapter and the "Softkey.Input" scheme file for more information about
setting the X resources that control defining keyboard accelerators.

72

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To choose popup menu items

Move the mouse pointer to the area whose popup menu you wish to access. (If a
popup menu is available, the mouse pointer changes from an arrow to a hand.)

Press and hold ttselectmouse button.

After the popup menu appears (while continuing to hold down the mouse butt
move the mouse pointer to the desired menu item.

Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following popup menus are available in the Graphical User Interface:

Mnemonic Memory Display.
Breakpoints Display.

Global Symbols Display.
Local Symbols Display.
Status Line.

Command Line.

73

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To place values into the entry buffer using the
keyboard

Position the mouse pointer within the text entry area. (An "lI-beam" cursor will
appear.)

Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, prestnieu key
combination.

To copy-and-paste to the entry buffer

To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and clickghstemouse button.

To specify the exact text to copy to the entry buffer: press and hgddstemouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
pastemouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string

74

Note

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

contains only numbers 0 through 9 and characters "a" through "f*) automatically
has an "h" appended.

If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are a number of entry buffers being displayed, there
is actually only one entry buffer and it is common to all windows. That means you
can copy a symbol or an address from one window and then use it in another
window.

On a memory display or trace display, a symbol may not be completely displa
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

75

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Example To paste the symbol "num_checks" into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the paste mouse
button.

File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
() pum_checks IReca
A mouse click Memory :imnemonic :file = mainimodule). "main.c”:
. addre label dats
causes the interface 31 extern woid update_systemi}; /#* update system wariables #/
to expand the 32 extern woid interrupt_simi{}; /% simulate an interrupt */
. . . extern void do_sort(); /#* sets up ascii array and call
highlight to include
the symbol o ey
"num_checks" and init_system();
paste the symbol proc_spec_init};
into the entry buffer. 188 while (true)

181 i

182 update_system(};

183 num_check sga

184 interrupt_sim{&num_checks);
185 if {graph?’

1686 graph_datal};

187 proc_specificl);

STATUS: cws: main. " main.c”

76

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To recall entry buffer values

Position the mouse pointer over fRecall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startu

If you exit the emulation/analysis session with the interface "locked", recall buf
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer”, or "To
recall entry buffer values" task descriptions).

Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

77

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To copy-and-paste from the entry buffer to the
command line entry area

Place text to be pasted into the command line in the entry buffer text area.

You may do that by:
» Copying the text from the display area using the copy-and-paste feature.
» Enter the text directly by typing it into the entry buffer text area.

» Choose the text from the entry buffer recall dialog box.

Position the mouse pointer within the command line text entry area.

If necessary, reposition the cursor to the location where you want to paste the text.
If necessary, choose the insert or replace mode for the command entry area.

Click thecommand pastmouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed entry
buffers in all open windows, a paste from the entry buffer to the command line only
affects the command line of the window in which you are currently working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

78

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this make
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User Interface.
You can use the predefined action keys, but you'll really appreciate them when you
define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.
2 Edit the item in the text entry area (if desired).

3 Click on the "OK" pushbutton to make the selection and close the dialog box, click
on the "Apply" pushbutton to make the selection and leave the dialog box open, or
click on the "Cancel" pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

79

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Entry Buffer Recall ~ You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

* Most dialog boxes can be left on the screen between uses.

» Dialog boxes can be moved around the screen and do not have to be positioned
over the graphical interface window.

» If you iconify the interface window, all dialog boxes are iconified along with
the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the "Setting
X Resources" chapter).

80

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of Filter

filter-matching files
flrom the culrrgn; fusers/quest/demos/ debug_ernv/hpB47E7/* . ER

directory. .

. _ Files
A list of files fusersiguest/demoidebug_envihp64767/Config.EA
PerIOUS|y accessed fusersiguestidemo/debuq envihp84767/Configall.EA
during the emulation «Previous Files=
session. fusersiguestidemoldebug envihp&d767/Config.EA

. . usersfiquestidemolfdebuq envih
A single click on a

file name from either
list highlights the file
name and copies it tc
the text area. A

double click chooses
the file and closes thi ﬁ

dialog box.
g) 14

Load Emulation Configuration
what kind of file fusers/guest/dema/debug_env/hpB4767/Configal 1. EA,

Label informs you

selection you are
performing.

Text entry area. oK Filter Cancel

Text is either
copied here from
the recall list, or
entered directly.

Clicking this button Entering a new file filter Clicking this button
chooses the file name and clicking this button cancels the file selection
displayed in the text entry causes a list of files operation and closes the
area and closes the dialogmatching the new filter to dialog box.

box. be read from the directory.

81

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To use the Directory Selection dialog box:

Label informs you

of the type of list Emulator/Analyzer: Directory Selection

displayed.

A list of predefined Previous Working Directories

or previously ¥ Associated X Resource: "emul.i188xI*dirSelectSub.entries
accessed directories..{ #

HOME
%HPﬁqﬂﬂmmonitor

A single click on a HP&4000/demofdebug_envihp&d767
directory name from ..
the list highlights
the name and copies
it to the text area. A
double click chooses
the directory and
closes the dialog £
box.

Selection

Esers.-" guest/demos/ debug_enw/hpB47E7

Text entry area.

Directory name is
either copied here OK Apply
from the recall list,
or entered directly.

Clicking this button Clicking this button Clicking this button
chooses the directory chooses the directory cancels the directory
displayed in the text entrydisplayed in the text entryselection operation and
area and closes the dialogarea, but keeps the dialogcloses the dialog box.
box. box on the screen instead

of closing it.

82

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

To access help information

1 Display the Help Index by choositglp — General Topic...or Help - Command
Line....

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Inde
interface displays a window containing the help information. You may leave t
window on the screen while you continue using the interface.

83

Chapter 4: Entering Commands
Using the Command Line with the Mouse

Using the Command Line with the Mouse

When using the Graphical User Interface,dbemand lingortion of the interface

gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. Additionally, the graphical interface makes the softkey
labels pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with the keyboard is
the only way to enter commands.

This section describes how to:

e Turn the command line off/on.
* Enter commands.

» Edit commands.

* Recall commands.

» Display the help window.

To turn the command line on or off

To turn the command line on or off using the pulldown menu, choose
Settings— Command Line.

To turn the command line on or off using the status line popup menu: position the
mouse pointer within the status line area, press and hodelégeimouse button,
and choos€ommand Line Off from the menu.

To turn the command line off using the command line entry area popup menu:
position the mouse pointer within the entry area, press and haldldnmouse
button, and chooseommand Line Off from the menu.

Turns display of the command line area "on" or "off." On means that the command
line is displayed and you can use the softkey label pushbuttons, the command
return and recall pushbuttons, and the cursor pushbuttons for command line editing.

84

Chapter 4: Entering Commands
Using the Command Line with the Mouse

Off means the command line is not displayed and you use only the pulldown menus
and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some input at the command line that cannot be supplied another way.

To enter a command

Build a command using the softkey label pushbuttons by successively positioning
the mouse pointer on a pushbutton and clickingtishbutton selechouse button
until a complete command is formed.

Execute the completed command by clickingRleturn pushbutton (found near
the bottom of the command line in the "Command" group).

Or:

Execute the completed command using the Command Line entry area popup menu:
Position the mouse pointer in the command line entry area; press and hold the
selectmouse button until the Command Line popup menu appears; then, choose the
Execute Commandmenu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete wReturn pushbutton is not
halfbright. The interface does not check or act on a command, however, until the
command is executed. (In contrast, commands resulting from pulldown menu
choices and action keys are supplied with the needed carriage return as part of the
command.)

85

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line pushbuttons

To clear the command line, click t@dear pushbutton.

To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton.

To move to the right one command word or token, clickthvard pushbutton.
To move to the left one command word or token, clickBekup pushbutton.

To insert characters at the cursor position, presaseet key to change to
insertion mode, and then type the characters to be inserted.

To delete characters to the left of the cursor position, pres8HheKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, tli@rward pushbutton becomes halfbright
and unresponsive when the cursor reaches the end of the command string.
Similarly, theBackup pushbutton becomes halfbright and unresponsive when the
cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line popup
menu" and "To edit the command line using the keyboard" for information about
additional editing operations you can perform.

86

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To edit the command line using the command
line popup menu

To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold ge&ectmouse button until the Command Line popup
menu appears; chooSéear Entire Line from the menu.

To clear the command line from the cursor position to the end of the line: posit
the mouse pointer at the place where you want the clear-to-end to start; press
hold theselectmouse button until the Command Line popup menu appears; ch
Clear to End of Line from the menu.

To position the cursor and insert characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Insert Mode from the menu; type the characters to be inserted.

To replace characters at the current cursor location: position the mouse pointer in a
non-text area of the command line entry area; press and halel¢cénouse

button to display the Command Line popup menu; chBoséion Cursor,

Replace Modefrom the menu; type the characters to be inserted.

To position the cursor and replace characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
selectmouse button to display the Command Line popup menu; cRos#®on

Cursor, Replace Modefrom the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for information
about additional editing operations you can perform.

87

Chapter 4: Entering Commands
Using the Command Line with the Mouse

To recall commands

1 Click the pushbutton labeldgiecallin the Command Line to display the dialog box.

2 Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — pulldown menus, action
keys, and command line entries — are echoed to the command line entry area, the
contents of the Command Recall dialog box is not restricted to just commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the "Setting X
Resources" chapter).

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

» To display the help topic explaining the operation of the command line, press the
Help pushbutton located near the bottom-right corner of the Command Line area.

88

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

Using the Command Line with the Keyboard

When using the command line with the keyboard, you enter commands by pressing
softkeys whose labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

The command line also provides command completion. You can type the first few
characters of a command (enough to uniquely identify the command) and then
press <Tab>. The interface completes the command word for you.

Entering commands with the keyboard is easy. However, the interface provid
other features that make entering commands even easier. For example, you

» Enter multiple commands on one line.
* Recall commands.
» Edit commands.

» Access on-line help information.

Examples

To enter multiple commands on one command
line
Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the commands
are separated by semicolons (;).

To reset the emulator and break into the monitor:

reset ; break <RETURN>

89

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

Examples

To recall commands

Press <CTRL>r or <CTRL>b.

The most recent 20 commands you enter are stored in a buffer and may be recalled
by pressing <CTRL>r. Pressing <CTRL>b cycles forward through the recall buffer.

For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r <RETURN>

To edit commands

Use the <Left arrow>, <Right arrow>, <Tab>, <Shift><Tab>, <Insert char>, <Back
space>, <Delete char>, <Clear line>, and <CTRL>u keys.

The <Left arrow> and <Right arrow> keys move the cursor single spaces to the left
or right.

The <Tab> and <Shift><Tab> keys move the cursor to the next or previous word
on the command line.

The <Insert char> key enters the insert editing mode and allows characters or
command options to be inserted at the cursor location.

The <Back space> key deletes the character to the left of the cursor.
The <Delete char> key deletes the character to the right of the cursor.
The <Clear line> key deletes the characters from the cursor to the end of the line.

The <CTRL>u key erases the command line.

90

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

To access on-line help information

» Use thehelp or ? commands.

To access the command line’s on-line help information, type &ighgor ? on the
command line. You will notice a new set of softkeys. By pressing one of these
softkeys and <RETURN>, you can display information on that topic.

Examples To display information on the system commands:

help system_commands <RETURN>

Or:

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screen full
of information, you will have to press the space bar to see the next screen full, or
the <RETURN> key to see the next line, just as you do with the Widdé¢

command. After all the information on the particular topic has been displayed (or
after you press "g" to quit scrolling through information), you are prompted to press
<RETURN> to return to the command line.

91

Chapter 4: Entering Commands
Using Command Files

Using Command Files

You can execute a series of commands that have been stored in a command file.
You can create command files by logging commands while using the interface or
by using an editor on your host computer.

Once you create a command file, you can execute the file in the emulation
environment by typing the name of the file on the command line and pressing
<RETURN>.

Command files execute until an end-of-file is found or until a syntax error occurs.
You can stop a command file by pressing <CTRL>c or the <Break> key.

This section shows you how to:
» Start logging commands to a command file.
» Stop logging commands to a command file.

» Playback (execute) a command file.

Nesting Command Files

You can nest a maximum of eight levels of command files. Nesting command files
means one command file calls another.

Comments in Command Files

Text that follows a pound sign (#), up to the end of the line, is interpreted as a
comment.

Using the wait Command

When editing command files, you can inseait commands to pause execution of
the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

92

Chapter 4: Entering Commands
Using Command Files

Use thawait measurement_completeommand after changing the trace depth.
By doing this, when you copy or display the trace after changing the trace depth,
the new trace states will be available. Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters by using a
parameter declaration line preceding the commands in the command file. When the
command file is called, the system will prompt you for current values of the formal
parameters listed.

Parameters are defined as:

Passed Parameters These are ASCII strings passed to a command file. Any
continuous set of ASCII characters can be passed. Spaces separate the
parameters.

Formal Parameters -These are symbols preceded by an ampergahd (
which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for the formal
parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the parameter in
double quotes () or single quotes (). Thus, to pass the parameter HP 9000 to a
command file, you can use either "HP 9000" or 'HP 9000'.

The special paramet&®ArG_IEfT gets set to all the remaining parameters
specified when the command file was invoked. This lets you use variable size
parameter lists. If no parameters are &&rG_|EfT gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1

#

modify a location or list of locations in memory
and display the result

#

modify memory &ADDR words to & VALUE1 &ArG_IEfT
display memory &ADDR blocked words

93

Chapter 4: Entering Commands
Using Command Files

When you execute CMDFILE, you will be prompted with:

Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location to be
modified. You will then be prompted f&/ALUEL . If you enter, for example,
"0,-1,20, Offffh, 4+5*4", the first parameter "0,-1,20," is passe&MALUE1 and
the remaining parameters "Offffh," and "4+5*4" are pass&ias |EfT .

You can also pass the parameters when you invoke the command file (for example,
CMDFILE 1000h 0,-1,20, Offfth, 4+5*4).

Other Things to Know About Command Files

You should know the following about using command files:

1

Command files may contain shell variables. Only those shell variables
beginning with "$" followed by an identifier will be supported. An identifier is
a sequence of letters, digits or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{ }" or entered directly
following the "$" symbol. Braces are required when the identifier is followed
by a letter, a digit or an underscore that is not interpreted as part of its name.

For example, assume a directory named /users/softkeys and the shell variable
"S". The value of "S" is "soft". By specifying the directory as /users/${S}keys
the correct result is obtained. However, if you attempt to specify the directory
as /users/$Skeys, the Softkey Interface looks for the value of the variable
"Skeys". This is not the operators intended result. You may not get the
intended result unless Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in your
environment with the command "env".

Positional shell variables, such as $1, $2, and so on, are not supported. Neither
are special shell variables, such as $@, $*, and so on, supported.

You can continue command file lines. This is done by avoiding the line feed
with a backslash (). A line terminated by "\" is concatenated with any
following lines until a line that does not contain a backslash is found. A line
constructed in this manner is recognized and executed as one single command
line. If the last line in a command file is terminated by "\", it appears on the
command line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three quoting

94

Chapter 4: Entering Commands
Using Command Files

characters for shell commands which are double quotes ("), single quotes ('),
and the backslash symbol (\).

For example, the following three lines are treated as a single shell command.
The two hidden line feeds are ignored because they are inside the two single
quotes ():

lawk '/$/ { blanks++}
END { print blanks }

"an_unix_file .

To start logging commands to a command file

ChooseFile - Log - Record and use the dialog box to select a command file name.

Using the command line, enter tlog_commands to <filescommand.

To stop logging commands to a command file

ChooseFile - Log - Stop.

Using the command line, enter tlog_commands offtommand.

95

Chapter 4: Entering Commands
Using Command Files

To playback (execute) a command file

ChooseéFile - Log - Playback and use the dialog box to select the name of the
command file you wish to execute.

Using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the interface
cannot find the command file in the current directory, it searches the directories
specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

96

Chapter 4: Entering Commands
Using Pod Commands

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal Interface is the
low-level interface that resides in the firmware of the emulator.

A pod command used in the Graphical User Interface bypasses the interface and
goes directly to the emulator. Because some pod commands can cause the interface
to become out-of-sync with the emulator, or even cause the interface to terminate
abnormally, they must be used with care.

For example, if you change configuration items, the actual state of the emulat
no longer match the internal record the interface keeps about the state of the
emulator.

Issuing certain communications-related commands can prevent the interface from
communicating with the emulator and cause abnormal termination of the interface.

However, it is sometimes necessary to use pod commands. For example, you must
use a pod command to execute the emulap@rormance verification (pv)
routine. Performance verification is an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level interface if they
are used indiscriminately.

This section shows you how to:
» Display the pod commands screen.

* Use pod commands.

97

Chapter 4: Entering Commands
Using Pod Commands

To display the pod commands screen

ChooseDisplay — Pod Commands

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, Gettisgs- Pod
Command Keyboard

To use pod commands

To begin using pod commands, cho8s#tings— Pod Command Keyboard

To end using pod commands, click twspendpushbutton softkey.

TheSettings— Pod Command Keyboardcommand displays the pod commands
screen and activates the keyboard for entering pod command on the command line.

98

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

Forwarding Commands to Other HP 64700
Interfaces
To allow the emulator/analyzer interface to run concurrently with other HP 64700

interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfaces.

This background process also allows commands to be forwarded from one int
to another. Commands are forwarded usinddheard command available in the
command line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:
» Forward commands to the high-level debugger.

* Forward commands to the software performance analyzer.

Examples

To forward commands to the high-level debugger

Enter theforward debug "<command string>" command using the command
line.

To send the "Program Run" command to the debugger:
forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

99

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

To forward commands to the software
performance analyzer

» Enter theforward perf "<command string>" command using the command line.

Examples To send the "profile" command to the software performance analyzer:

. forward perf "profile” <RETURN>

100

Configuring the Emulator

101

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

» Using the configuration interface.

* Modifying the general configuration items.
» Selecting the emulation monitor program.
* Mapping memory.

e Setting the debug/trace options.

The simulated I/O feature and configuration questions are described in the
Simulated 1/0O User’s Guide

The external analyzer configuration questions are described in the "Using the
External State Analyzer" chapter.

The interactive measurement configuration questions are described in the "Making
Coordinated Measurements" chapter.

102

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

» Start the configuration interface.

* Modify a configuration section.

» Store a configuration.

» Change the configuration directory context.
» Display the configuration context.

» Access help information.

» Exit the configuration interface.

* Load a configuration.

This section describes emulator configuration in general terms. For information
about your emulator’s specific configuration questions, refer to the remaining
sections in this chapter.

103

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To start the configuration interface

ChooseModify — Emulator Config... from the emulator/analyzer interface
pulldown menu.

Using the command line, enter tmedify configuration command.

The configuration interface main menu (see example below) is displayed.

The configuration sections that are presented depend on the hardware and features
of your particular emulator.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you're using the Softkey Interface, you don't get a main menu from which to
choose configuration sections; however, the same display area and command line
are used to answer the configuration questions.

104

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Examples The 80186/8/XL/EA/EB emulator configuration interface main menu is shown
below.

mulator Configuration: Main Men

~Emulator Configuration Sections

&% General ltems
4> Monitor Type
<> Memory Map

Clicking on one of thes€
lines selects a particula <> DebugfTrace Options
configuration section. .

£ Simulated 10

~Analyzer Configuration Sections

<> External Analyzer

4> Interactive Measurement Specification

Clicking this button

presents the question Modify Apply to Exit
for the selected Section Emulator Window
configuration section.

Clicking this button Clicking this button Clicking this button
stores the current exits the configuration presents the on-line help.
configuration. interface.

105

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface main menu, and click the
"Modify Section" pushbutton.

3 Use the command line to answer the configuration questions.

If you're using the Softkey Interface:
The configuration questions in the "General Items" section are the first to be
asked.

To access the questions in the "Monitor Type" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Memory Map" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Debug/Trace Options" section, answer "yes" to
the "Modify debug/trace options?" question.

106

Chapter 5: Configuring the Emulator
Using the Configuration Interface

Each configuration section presents a window similar to the following.

File Display

The menu bar.

This configuration item allows you to set the processor type on the
547670 ewulator. This product can emulate any of the following:
B0C126EA, BEC18BER, BHC1BEXL, and BHCI1BEXKL. BACIBEXL emulation mode
afi be used for emulating the 8H186 and the BACIBG. H{HEC1E8KXL mode
can be used for emulating the BH188 and the SBC13EE.

Coﬂfiguration he|p < BHCI86EA -- Emulate BACIEEER processor.
. BHC188EA —- Emulate BHC1E8EA processar.
text display area. BECIBEML —- Emulate BECIBEKL, BOC1B6, and BB186 processors.

BEC188KL —— Emulate BHC188kL, BSAC183, and BALIS3 processors.

Emulator status

and error message STATUS: Configuring IBOC18xxx
line. Processor type for G4767A emulator ¥ BACIESKL

Command line text

entry area. [sec186xL:[soc188KL: [s0C186ER! [30C188ER] | 1 1 [RECALL |

Pushbutton softkeysi{ Command: Heanll Cursor: |Backup IFonl.rard |Clearto end:|Clear:

Command control
and cursor control
pushbuttons.

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return” command pushbutton to accept the answer that is
shown.

When you answer a configuration question, you are normally presented with the
next question in the section; however, there are some cases when a carriage return
is required, and you can supply it by clicking the "Return" command pushbutton or
by pressing the <RETURN> key.

107

Chapter 5: Configuring the Emulator
Using the Configuration Interface

At the last question of a configuration section, you are asked if you wish to return
to the main menu. You can click the "next_sec" softkey pushbutton to access the
guestions in the next configuration section.

To recall a configuration question, click the "RECALL" softkey pushbutton. If you
do this at the starting question of a configuration section, you are asked if you want
to return to the main menu.

In order for the emulator to recognize any configuration changes, the configuration
must be applied to the emulator.

To store a configuration

When answering the configuration questions, chédse- Store...from the
pulldown menu, and use the File Selection dialog box to name the configuration
file.

From the configuration interface main menu, click on the "Apply to Emulator"
button, and use the File Selection dialog box to name the configuration file.

If you're using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don't enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

The file to which the configuration is stored becomes the current configuration file.
The emulator only recognizes configuration changes when they are stored or loaded.

When modifying a configuration using the graphical interface, you can store your
answers at any time. This is useful for quickly verifying the effect a configuration
change has on the emulator.

Configuration information is saved in two files with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file, and the file with
the ".EB" extension is the "binary" or loadable copy of the file.

108

Chapter 5: Configuring the Emulator
Using the Configuration Interface

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

To change the configuration directory context

* When answering the configuration questions, chédse- Directory... from the
pulldown menu, and use the Directory Selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are st
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of the "Entering Commands" chapter.

109

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To display the configuration context

* When answering the configuration questions, ch@ssglay - Context...from the
pulldown menu.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

mulator Configuration: Current Conte

z Directory: fusers/guest/demofdebug_envihp&d767
k Configuration File: fusersfguestidemofdebug_envihp&4767/Config

To access help information

* When answering the configuration questions, chétedp — General Topic...from
the pulldown menu.

» From the configuration interface main menu, click on the "Help Topic" button.

110

Chapter 5: Configuring the Emulator
Using the Configuration Interface

To exit the configuration interface

When answering the configuration questions, chédse- Exit... from the
pulldown menu (or type <CTRL>X), and click "Yes" in the confirmation dialog box.

From the configuration interface main menu, click the "Exit Window" button, and
click "Yes" in the confirmation dialog box.

The confirmation dialog box only appears if changes have been made to the current
configuration.

When you choose "Yes" from the confirmation dialog box, any modifications
to the configuration which haven't been stored are lost. Choosing "No" from t
confirmation dialog box cancels the exit and keeps the emulator configuration
interface running.

To load a configuration

In the emulator/analyzer interface, chobde — Load — Emulator Config... from
the pulldown menu, and use the File Selection dialog box to specify the
configuration file to be loaded.

Using the command line, enter tload configuration <FILE> command.

This command loads previously created and stored configuration files.

111

Chapter 5: Configuring the Emulator
Modifying the General Configuration Iltems

Modifying the General Configuration Items

In order to modify the general configuration items, you must first start the
configuration interface and access the "General Items" configuration section (refer
to the previous "Using the Configuration Interface" section).

This section shows you how to:

» Select the type of processor to emulate.

» Set the target system memory access size.

» Select the default physical to logical run address conversion.
* Restrict to real-time runs.

* Turn OFF the restriction to real-time runs.

» Enable/disable entry into the monitor after configuration.

To select the type of processor to emulate

* Answer the "Processor type for 64767A/B emulator?" question.
When using the HP 64767A emulator:
Answer "80C186EA" to emulate the 80C186EA microprocessor.
Answer "80C188EA" to emulate the 80C188EA microprocessor.

Answer "80C186XL" to emulate the 80C186XL, 80C186, or 80186
MiCroprocessors.

Answer "80C188XL" to emulate the 80C188XL, 80C188, or 80188
Microprocessors.

When using the HP 64767B emulator:
Answer "80C186EB" to emulate the 80C186EB microprocessor.

Answer "80C188EB" to emulate the 80C188EB microprocessor.

112

Chapter 5: Configuring the Emulator
Modifying the General Configuration Items

To specify the target memory access size

Answer the "Target memory access size?" question.

When accessing target system memory locations, the access mode specifies the type
of microprocessor cycles that are used to read or write the value(s). For example,
when the access mode is byte and a target system location is modified to contain

the value 12345678H, byte instructions are used to write the byte values 12H, 34H,
56H, and 78H to target system memory.

Answer "bytes" if the emulator should make 8-bit accesses to target system
memory.

Answer "words" if the emulator should make 16-bit accesses to target system
memory.

To select the default physical to logical run
address conversion

Answer "yes" or "no" to the "Enable max segment algorithm for physical run
addresses?" question.

The run and step commands allow you to enter addresses in either logical form, that
is "segment:offset" (OFOOOH:OFFFFH, for example) or physical form (OFFFFFH,

for example). When you enter a physical address, the emulator must convert it to a
logical (segment:offset) address. Your answer to this configuration question sets the
default algorithm for this conversion.

Answer "no" to cause the conversion to make the segment part of the logical
address as small as possible. For example, OFFFFF becomes OF000:0FFFF.

Answer "yes" to cause the conversion to make the segment part of the logical
address as large as possible. For example, OFFFFF becomes OFFFF:000F.

If neither of these default algorithms is suitable, you can enter addresses in logical
format.

113

Chapter 5: Configuring the Emulator
Modifying the General Configuration Iltems

CAUTION

To restrict the emulator to real-time runs
Answer "yes" to the "Restrict to real-time runs?" question.

If your target system circuitry is dependent on constant execution of program code,
you should restrict the emulator to real-time runs. This will help insure that target
system damage does not occur. However, remember you can still execesethe
break, andstepcommands; you should use caution in executing these commands.

The default configuration does not restrict the emulator to real-time runs.
Therefore, the emulator might make temporary breaks into the monitor to complete
certain commands. However, you may wish to restrict runs to real-time to prevent
temporary breaks that might cause target system problems.

When runs are restricted to real-time and the emulator is running the user program,
all commands that cause a break (excegst break, run, andstepare refused.

The following commands are not allowed when runs are restricted to real-time and
the emulator is running the user program:

» Display/modify registers.
» Display/modify target system memory or I/O.
» Load/store target system memory.

If you want to enter one of these commands, you must first make an explicit break
into the monitor using thereak command.

Because the emulator contains dual-port emulation memory, commands that access
emulation memory are allowed while runs are restricted to real-time.

114

Chapter 5: Configuring the Emulator
Modifying the General Configuration Items

To turn OFF the restriction to real-time runs

Answer "no" to the "Restrict to real-time runs?" question.

All commands, regardless of whether or not they require a break to the emulation
monitor, are accepted by the emulator.

To enable/disable entry into the monitor after
configuration

Answer "yes" or "no" to the "Enter monitor after configuration?".

This question allows you to select whether the emulator will be running in the
monitor or held in the reset state on completion of the emulator configuration.

The answer to this configuration question is important in some situations. For
example, when the target system is turned off (and there is no external clock
signal), do not select reset to monitor. Otherwise, configuration will fail.

115

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor Program

Selecting the Emulation Monitor Program

In order to select the type of monitor program used by the emulator, you must first
start the configuration interface and access the "Monitor Type" configuration
section (refer to the previous "Using the Configuration Interface" section).

The emulation monitor program is an 80186 program that the emulation
microprocessor executes as directed by the HP 64700 system controller. The
emulation monitor program gives the system controller access to the target system.

For example, when you modify target system memory, the system controller writes

a command code to a communications area and switchH@gatts emulation

processor execution into the monitor program. The monitor program reads the
command code (and any associated parameters) from the communications area and
executes the appropriate machine instructions to modify the target system locations.
After the monitor has performed its task, emulation processor execution returns to
what it was doing before the break.

The emulation monitor program can execute out of a separate, internal memory
system known asackground memoryA monitor program executing out of
background memory is known apackground monitor program

The emulation monitor program can also execute out of the same memory system
as user programs. This memory system is knovioraground memorgnd is

made up of emulation memory and target system memory. A monitor program
executing out of foreground memory is known éasraground monitor program

The emulator only allows foreground monitor programs in emulation memory.

The emulator firmware includes both background and foreground monitor
programs and lets you select either. You can also load and use a customized
foreground monitor if needed.

This section shows you how to:
e Select the background monitor program.
» Select the foreground monitor program.

e Use a customized foreground monitor program.

116

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor Program

Comparison of Background and Foreground Monitor Programs

Monitor Program Characteristic Background Foreground
Takes up processor memory space No Yes
Allows the emulator to respond to target system No Yes

interrupts during monitor execution

Can be customized No Yes

To select the background monitor program

1 Answer "background" to the "Monitor type?" question.

2 Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

3 Re-map memory (see the following section on "Mapping Memory").

The default emulator configuration selects the background monitor program.

117

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor Program

To select the foreground monitor program

1 Answer "foreground” to the "Monitor type?" question.

2 Answer "yes" to the "Reset map (change of monitor type requires map reset)?"

guestion.

3 Enter the segment portion of the monitor program’s base address in response to the

"Monitor segment?" question.

4 Enter the offset portion of the monitor program’s base address in response to the

"Monitor offset?" question.

5 Answer "yes" or "no" to the "Lock Foreground Monitor memory to target?"

guestion.

6 Re-map memory (see the following section on "Mapping Memory").

Changing the monitor type causes the current memory map to be deleted.

When you select a foreground monitor, the emulator automatically loads the default
program, resident in emulator firmware, into emulation memory when the
configuration is applied to the emulator. The foreground monitor is reloaded every
time the emulator breaks into the monitor state from the reset state.

Unlike the background monitor, the foreground monitor runs within the same
address space as the user program, consuming a 4 Kbyte block of the 80186'’s
address range. The foreground monitor can run with target interrupts enabled.

When a foreground monitor program is selected, breaks to the monitor program
still cause a few cycles to execute in background.

Selecting the Monitor's Base Address

The "Monitor segment?" and "Monitor offset?" questions define the starting
address of the 4 Kbyte block of emulation memory used for the foreground
monitor. The address must reside on a 4 Kbyte boundary (in other words, an
address ending in 000H) and must be specified in hexadecimal.

118

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor Program

Locking Foreground Cycles to Target RDY

If you wish to synchronize monitor cycles to the target system (that is, interlock the
emulation and target system RDY on accesses to the monitor memory block),
answer "yes" to the "Lock Foreground Monitor memory to target?" question;
otherwise, answer "no".

Re-Mapping Memory

When you configure the emulator for a foreground monitor program, the memory
map is reset, and a 4 Kbyte block of emulation memory is automatically mapped
for the monitor program. You must re-map other memory ranges before loading
user programs.

119

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor Program

To use a custom foreground monitor program

Answer "user_foreground” to the "Monitor type?" question.

Answer "yes" to the "Reset map (change of monitor type requires map reset)?"
guestion.

Enter the segment portion of the monitor program’s base address in response to the
"Monitor segment?" question.

Enter the offset portion of the monitor program’s base address in response to the
"Monitor offset?" question.

Answer "yes" or "no" to the "Lock Foreground Monitor memory to target?"
guestion.

Enter the name of the monitor program absolute file in response to the "Monitor
filename?" question.

Re-map memory (see the following section on "Mapping Memory").

When customizing the foreground monitor, you must maintain the basic
communication protocol between the monitor program and the emulation system
controller. Comments in the monitor program source file detail sections that cannot
be changed.

The foreground monitor program is supplied with the interface software and can be
found in the following location:

$HP64000/monitor/fmonl186XL.s

A custom foreground monitor is downloaded when the configuration is applied to
the emulator. The custom foreground monitor is saved in the emulator (until the
monitor type is changed) and reloaded every time the emulator breaks into the
monitor state from the reset state.

120

Chapter 5: Configuring the Emulator
Selecting the Emulation Monitor Program

Note It is possible for foreground monitors to cause breaks. If these breaks occur
consistently within approximately 10 ms of monitor entry, the emulator will
become unresponsive. An example of this is a foreground monitor that accesses
guarded memory. Each time a break to the monitor occurs, an access of guarded
memory will occur, which in turn causes a break into the monitor, and so on. If this
happens, you must turn off power to the emulator and turn it on again.

121

Chapter 5: Configuring the Emulator

Mapping Memory

Mapping Memory

Because the emulator can use target system memory or emulation memory (or
both), it is necessary to map ranges of memory so that the emulator knows where to
direct its accesses.

Up to 16 ranges of memory can be mapped, and the resolution of mapped ranges is
1 Kbytes (that is, the memory ranges must begin on 1 Kbyte boundaries and must
be at least 1 Kbytes in length).

The emulator contains 1 Mbytes of emulation memory.

External direct memory access (DMA) to emulation memory is not permitted. The
emulation processor’s internal DMA modules can access emulation memory.

You should map all memory ranges used by your programs before loading
programs into memory.

In order to map memory, you must first start the configuration interface and access
the "Memory Map" configuration section (refer to the previous "Using the
Configuration Interface" section).

To map memory ranges

Enter the address range, memory type, and for emulation memory ranges you can
enter thdock or nolock attribute.

You can characterize memory ranges as emulation RAM, emulation ROM, target
system RAM, target system ROM, or as guarded memory.

Guarded memory accesses will cause emulator execution to break into the monitor
program.

Writes to locations characterized as ROM will cause emulator execution to break
into the monitor program if the "Break processor on write to ROM?" trace/debug
configuration option is enabled.

122

Chapter 5: Configuring the Emulator
Mapping Memaory

Writes to emulation ROM will be inhibited. Writes by user code to target system
memory locations mapped as ROM or guarded memory will result in a break to the
monitor but are not inhibited (that is, the write still occurs).

Emulation memory ranges can have the attriblte&:or nolock. Thelock

attribute specifies that emulation memory accesses in the range be synchronized to
the target system RDY signal. Thelock attribute specifies that emulation

memory accesses are not synchronized to the target RDY — it is the same as
specifying no attribute.

Examples Consider the following section summary from the linker load map output listing.

SEGMENT SUMMARY

SEGMENT CLASS
NMENT COMBINE

prog_main CODE
Public

GROUP START END LENGTH ALIG

80000 806C2 006C3 Word

lib CODE 806C4 8158A 00EC7 Word
Public

prog_init_system CODE 8158C 81641 000B6 Word
Public

prog_update_sys CODE 81642 81C5E 0061D Word
Public

prog_proc_spec CODE 81C60 81CAF 00050 Word
Public

env CODE 81CB0O 82ABC OOEOD Word
Public

libm CODE 82ABD 82ABD 00000 Byte
Public

libc CODE 82ABE 85FCB 0350E Word
Public

data 10B26 110DD 005B8 Word
Public

const 863AA 863EF 00046 Word
Public

??SEG 00010 00010 00000 Para

graph Public

mm_check 863A7 863A8 00002 Byte
Common

libcdata 10114 10B25 00A12 Word
Public

envdata 10000 1010F 00110 Word
Public

idata 110DE 110DE 00000 Byte
Public

udata 110DE 110DE 00000 Byte
Public

heap 110DE 120DD 01000 Word
Public

userstack 120DE 19FDD 07F00 Word
Public

libmconst 863A4 863A4 00000 Byte

123

Chapter 5: Configuring the Emulator

Mapping Memory

Public
interrupt
segment Private
libcconst

Public
libdata

Public
??DATAL

Common

??INIT

00000 00003 00004 Abs.

85FCC 863A3 003D8 Word

10110 10113 00004 Word
863A4 863A6 00003 Byte

Notice the CODE and ROM sections occupy locations 0 through 10H and 80000H
through 863EFH. Because the contents of these sections will eventually reside in
target system ROM, this area should be characterized as ROM when mapped. This
will prevent these locations from being written over accidentally. If breaks on

writes to ROM are enabled, instructions that attempt to write to these locations will
cause emulator execution to break into the monitor.

Also, notice the DATA sections occupy locations 10000H through 19fDDH. Since
these sections are written to, they should be characterized as RAM when mapped.

Enter the following commands to map memory for the above program.

delete all <RETURN>

0 thru 03ffh emulation rom <RETURN>
10000h thru 19fffh emulation ram <RETURN>
80000h thru 863ffh emulation rom <RETURN>

The resulting memory mapper screen is shown below.

Emulation memory block size = A3 bytes
type attribute
3FFH EMUL/ROM
13FFFH EMUL/RAM
863FFH EMUL/ROM

Entry

1 BH-
2 180BBH-
3 8608BH-

To synchronize emulation memory accesses in the range 0 through OFFFH, you
would enter the following command in place of the command above:

0 thru 3ffh emulation rom lock <RETURN>

124

Chapter 5: Configuring the Emulator
Mapping Memaory

To exit out of the memory mapper, enter:

end <RETURN>

Examples

To characterize unmapped ranges

Use thadefault softkey to characterize unmapped ranges.

Thedefault softkey in the memory mapper allows you to characterize unmapp
memory ranges. Unmapped memory ranges are treated as target system RA
default.

You can also characterize unmapped ranges as emulation RAM, emulation ROM,
target system ROM, or as guarded memory.

When you characterize unmapped ranges as emulation memory, you can include
thelock attribute, which specifies that emulation memory accesses be synchronized
to the target system RDY signal, or you can includettheck attribute, which

specifies that emulation memory accesses are not synchronized to the target RDY
(this is the same as specifying no attribute).

To characterize unmapped ranges as target RAM:
default target ram <RETURN>

To characterize unmapped ranges as guarded memory:

default guarded <RETURN>

To characterize unmapped ranges as emulation RAM:

default emulation ram nolock <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

125

Chapter 5: Configuring the Emulator
Mapping Memory

To delete memory map ranges

* Use thaleletesoftkey to delete mapped ranges.

Note that programs should be reloaded after deleting mapper terms. The memory
mapper may re-assign blocks of emulation memory after the insertion or deletion of
mapper terms.

Examples To delete term 1 in the memory map:

. delete 1 <RETURN>

To delete all map terms:

delete all <RETURN>

To exit out of the memory mapper, enter:

end <RETURN>

126

Chapter 5: Configuring the Emulator
Setting the Debug/Trace Options

Setting the Debug/Trace Options

In order to set the debug/trace options, you must first start the configuration
interface and access the "Debug/Trace Options" configuration section (refer to the
previous "Using the Configuration Interface" section).

This section shows you how to:
» Specify a processor clock rate greater than 16 MHz.

+ Enable/disable breaks on writes to ROM.

+ Include/exclude background states in the trace. .

To specify a processor clock rate greater than
16 MHz

» Answer "yes" to the "Will the processor clock rate be more than 16 MHz?"
question.

Some analysis modules must have time tagging turned OFF if the processor clock
rate will be greater than 16 MHz. If the analysis module in the HP 64700 cannot
count time above 16 MHz, time counting will be disabled.

127

Chapter 5: Configuring the Emulator
Setting the Debug/Trace Options

To enable/disable breaks on writes to ROM

Answer "yes" to the "Break processor on write to ROM?" question to enable
breaks; answer "no" to disable breaks.

When breaks on writes to ROM are enabled:
The emulator will break into the emulation monitor whenever the user program
attempts to write to a memory region mapped as ROM.

Even though execution breaks into the monitor, the memory location is
modified if it's in emulation ROM or target system RAM mapped as ROM.

When breaks on writes to ROM are disabled:
The emulator will not break to the monitor upon a write to ROM.

To include/exclude background states in the trace

Answer "background"” or "both" to the "Trace background or foreground
operation?" question to include background states in the trace; answer "foreground"
to exclude background states from the trace.

Answering "background" specifies that the analyzer trace only background cycles.
This is rarely a useful setting for user program debugging.

Answering "both" specifies that the analyzer trace both foreground and background
cycles. You may wish to specify this option so that all emulation processor cycles
may be viewed in the trace display.

Answering "foreground" specifies that the analyzer trace only foreground cycles.

128

Using the Emulator

129

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

* Loading absolute files.
* Using symbols.

» Executing user programs (starting, stopping, stepping, and resetting the
emulator).

» Using software breakpoints.

» Displaying and modifying registers.
» Displaying and modifying memory.
» Changing the interface settings.

* Using system commands.

130

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into the emulator
and storing memory contents into absolute files. This section shows you how to:

* Load absolute files into memory.
* Load absolute files without symbols.

» Store memory contents into absolute files.

Examples

To load absolute files

ChooseFile - Load - Executableand use the dialog box to select the absolute f

Using the command line, enter tbad <absolute_file>command.

You can load absolute files into emulation or target system memory. You can load
OMF-86 format absolute files. You can also load HP format absolute files. The
store memorycommand creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM, use the command lioatsemul_mem
syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command liloeld user_memsyntax.

If you want both emulation and target memory to be loaded, do not specify
emul_memor user_mem

To load the demo program absolute file, enter the following command:

load ecs.x <RETURN>

To load only portions of the absolute file that reside in target system RAM:

131

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

load user_mem absfile <RETURN>

To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile <RETURN>

To load absolute files without symbols

» ChooseFile - Load - Program Only and use the dialog box to select the absolute
file.

» Using the command line, enter toad <absolute_file> nosymbolsommand.

To store memory contents into absolute files

» Using the command line, enter ttere memorycommand.

You can store emulation or target system memory contents into HP format absolute
files on the host computer. Absolute files are stored in the current directory. If no
extension is given for the absolute file name, it is given a ".X" extension.

Examples To store the contents of memory locations 900H through 9FFH to an absolute file
on the host computer named "absfile":

store memory 900h thru 9ffth to absfile <RETURN>

After the command above, a file named "absfile.X" exists in the current directory
on the host computer.

132

Chapter 6: Using the Emulator
Using Symbols

Using Symbols

If symbol information is present in the absolute file, it is loaded along with the
absolute file (unless you use thesymbolsoption). Both global symbols and
symbols that are local to a program module can be displayed.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to the "Setting X Resources" chapter).

This section describes how to:

* Load symbols.

» Display global symbols.

» Display local symbols. .
» Display a symbol’'s parent symbol.

» Copy-and-paste a full symbol name to the entry buffer.

To load symbols

ChooseéFile - Load — Symbols Onlyand use the dialog box to select the absolute
file.

Using the command line, enter tbad symbols <absolute_filexxommand.

Unless you use theosymbolsoption when loading absolute files, symbols are
loaded automatically. However, if you did userbgymbolsoption when loading
the absolute file, you can load the symbols without loading the absolute file again.

This option is particularly useful for loading symbols for files located in target
ROM so that you can use symbols with that code.

133

Chapter 6: Using the Emulator

Using Symbols

Examples To load symbols from the demo program:
load symbols ecs.x <RETURN>
To display global symbols
ChooseDisplay — Global Symbols
Using the command line, enter ttisplay global_symbolscommand.
Listed are: address ranges associated with a symbol, the segment the symbol is
associated with, and the offset of that symbol within the segment.
If there is more than a screen full of information, you can use the up arrow, down
arrow, <NEXT>, or <PREV> keys to scroll the information up or down on the
display.

Examples To display global symbols in the demo program:

display global_symbols <RETURN>

Global symbols in ecs.x

Procedure symbols

Procedure name Address range __ Segment 0ffset
__display_message G1CB: BR85S - BAE3 e ABBA
__fflush G2AB: 32E8 - 3308 libe Aanan
__initdata G1CE: @0EE - BAGE3 ey Jala)s]e]
_bufsync G2AB: ZEAS - 2F@3 libe ABAD
_dbl_to_str 82AB: 186F - 2322 libe A4E1
_div_by_B_trap 81CE: BB5E - BBEC e BeEaa
_doprnt 82AB: BBF9 - 13BC libe HB7B
_exec_funcs 82AB: 34FA - 351E libe BE3A
_exit G1CB: @238 - B2F4 e Jala)a]e]
_exit_msg BICE: BZFE - B3239 Er ARAA
_findbuf G2AB: 243A - 24FB libe Jala)s]e]
_fp_trap G1CE: 8184 - BZAF ey Jala]a]5]
_getmemn g1CE: BOBE - BEBC e ABEA
_startup g1CB: BASC - ACEC e AEEA
_swrite 82AB: 3474 - 34BE libe ABAD
_wrtchk G2AB: 2354 - 2438 libe aaan

134

Chapter 6: Using the Emulator
Using Symbols

To display local symbols

When displaying symbols, position the mouse pointer over a symbol on the symbol
display screen and click tlselectmouse button.

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®esplay Local Symbolsfrom the popup
menu.

Position the mouse cursor in the entry buffer and enter the module whose local
symbols are to be displayed; then, chddsplay — Local Symbols ()

Using the command line, enter ttlisplay local_symbols_in <modulexommand.
To display the address ranges associated with the high-level program’s sourc

line numbers, you must display the local symbols in the file.

135

Chapter 6: Using the Emulator

Using Symbols

Examples

View the local
symbols associated
with the highlighted
symbol by choosing
this menu item.

To use the Symbols Display popup menu:

update_system
wait_for_io
write
write_hdwr

Global Symbols Display |

[=1akty
[=1akty

Display Local Symbols

Paplay Parent Symbols

Static symbols

¥
—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
{)i num_checks IRecaH
Global symbols in ecs.x
Procedure symbols A
Procedure name Address range __ Segment Of fset
82AB: 330A - 3433 libe Julz]ele}
un 11 81CB: BBC3 - BIZE ervy A473
BG4 ARA? — AAFE A

prog_up date_s s

prog_update_sys

Symbal name Cut Full Symbol Name __ Segment Of fset
OIY_F32A_L o . lib ABEA

DIV FG4A_L Edit File Defining Symbol lib e
OIv_I32A_L GHEC: A148 lib ABEA
OIv_I32B_L GHEC: ABS4 lib ABEA
OIv_UT3z2A_L GHEGEC: ABFA lib ABEA
OPAOO_L 8EEC: AREZ lib ABEA \ 4
OPOIY_L GHEC: A7 26 lib ABEA

| STATUS: 80C188EL--Running in monitor

136

Using the command line

To display local symbols in a module:

update_sys <RETURN>

display local_symbols_in

Chapter 6: Using the Emulator
Using Symbols

Procedure symbols
Procedure name
get_targets
graph_data
read_conditians
save_points
set_outputs
update_system
write_hdwr

Static symbeols

Symbals in update_sysimodule!

Address range __

8164: BAFE - BICS
G164:8543 - BEIE

Symbol name
_get_targets
_graph_data
_read_conditions
_sawve_points
_set_outputs
_update_suystem

Address range

Segment

prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys

Segment

prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys
prog_update_sys

To display local symbols in a procedure:

display local_symbols_in

update_sys.save_points <RETURN>

Procedure symbols
Procedure name
Block_1

ENTRY
ERIT
TEXTRAMGE

Frocedure special symbals
Procedure special name

Address range __

G164: 8424 - B445

Address range __

g164: 8417
G164: 8542
G164: 8417 - B542

Symbals in update_sysimodulel.save_points{procedure!

Segment
prog_update_sys

Segment

prog_update_sys
prog_update_sys
prog_update_sys

0ffset
B4z22

0ffset
B415
B548
B415

137

Chapter 6: Using the Emulator
Using Symbols

To display address ranges associated with the high-level source line numbers:

display local_symbols_in update_sys."update_sys.c":

<RETURN>

Symbols in update_sysimodule). "update_sys.c":

Source reference symbols

Line range Address range __ Segment 0ffset
#1-#47 G164: 0AAZ - BALS prog_update_sys BABA
#45-1#53 G164: 8813 - 8834 prog_update_sys Ba17
#54-156 G164: 8835 - BE5A prog_update_sys BB33
#57-1#53 G164: BA51 - @HER prog_update_sys BE4F
fEH-HER g164: BAS1 - BHS3 prog_update_sys BE7F
#tE1-#E1 G164: BAEA - AE3C prog_update_sys Bas3
#EZ-H#E3 G164: 8830 - @8RS prog_update_sys BE3E
#54-H#E4 A164: HAAE - AHE3 prog_update_sys BAR4
#E5-HE3 G164: 0AE4 - BAD3 prog_update_sys BAEZ
#E3-#72 G164: 8804 - BBEJ prog_update_sys Babz
B73-175 G164: BBER - BBEE prog_update_sys BBES
H7PE-H#77 g164: HAEF - BHFS prog_update_sys BEED
#rE-134 G1E64: HAFE - B1BZ prog_update_sys BEF 4
#35-4#35 g164: 6183 - @110 prog_update_sys B1d1
#35-1#33 G164:611E - B12C prog_update_sys B11c
#1HA-# 186 A164: 6120 - A133 prog_update_sys B17B

138

Chapter 6: Using the Emulator

Using Symbols

To display a symbol’s parent symbol

* When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and choo®&splay Parent Symbolsrom the popup

Examples

View the parent
symbol associated
with the highlighted
symbol by choosing
this menu item.

menu.
1 1
—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
{)i num_checks IRecaH
Symboals in update_sysimodulel.save_points{procedurel
Procedure symbols
Procedure name Address range __ Segment
Block_1 8164: 8424 - 8445 prog_update_sys
Procedure special sumbols
Procedure special name Address range __ Segment
NTRY 8164: 8417 prog_update_sys
8164: A542 prog_update_sys
ANGE 8164: 8417 - B542 prog_update_sys

Local Symbols Display

Display Local Symhbols
Display Parent Symhbols
Cut Full Symbol Hame

Edit File Defining Symbol

| sTATUS:

80C188XL--Running

in monitor

139

Chapter 6: Using the Emulator

Using Symbols

Examples

Copy the full name
of the highlighted
symbol to the entry
buffer by choosing
this menu item.

To copy-and-paste a full symbol name to the
entry buffer

When displaying symbols, position the mouse pointer over the symbol, press and
hold theselectmouse button, and chooSet Full Symbol Namefrom the popup
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that have
been truncated. Also, you are guaranteed of specifying the proper scope of the
symbol.

—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

{):iupdate_sysimodulel. save_points{procedure) IRecaH

Symbols in update_sysimodulel

Procedure symbols A

Procedure name Address range __ Segment Of fset

get_targets 8164: BBFE - B1CS prog_update_sys BEF4

graph_data 8164:8543 - BE1E prog_update_sys

read_conditions G164:81C6 - BZ6A prog_update_sys

= points A1R4: A417 — RH542 prog_update

prog_update_sys
prog_update_sys
prog_update_sys

Local Symhbols Display

Display Local Symbols
Display Parent Symbols

Static symbols

Symbal name
_get_targets
_graph_data

| Cut Full Symbol Name
Edit File Defining Symbol

Segment
prog_update_sys
prog_update_sys

_read_conditions 8164:81CE prog_update_sys
_save_points G164: 8417 prog_update_sys A415
_set_outputs 8164: 8266 prog_update_sys BA263 ¥
_update_system 8164: ABA2 prog_update_sys aaBEa

| STATUS: cws: update_sys Tl

140

Chapter 6: Using the Emulator
Using Context Commands

Using Context Commands

The commands in this section display and control the directory and symbol
contexts for the interface.

Directory context. The current directory context is the directory accessed by all
system references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories since
beginning the emulation session, the current directory context is that of the
directory from which you started the interface.

Symbol context. The emulator/analyzer interface and the Symbol Retrieval
Utilities (SRU) together support a current working symbol context. The current
working symbol represents an enclosing scope for local symbols. If symbols h
not been loaded into the interface, you cannot display or change the symbol ¢

This section shows you how to:
» Display the current directory and symbol context.
» Change the directory context.

* Change the symbol context.

141

Chapter 6: Using the Emulator
Using Context Commands

To display the current directory and symbol
context

* ChooseDisplay — Context.

» Using the command line, enter {w&d andpws commands.

The current directory and working symbol contexts are displayed, and also the
name of the last executable file from which symbols were loaded.

Example
. Emulator/Analyzer: Current Conte
; Directory: fusersiguest/demofdebuqg_env/hp84767
Directory context. t— Symbol File: fusersiguestfdemofdebug_envihp84767fecs.x
Executable from Symbol Scope: update_sys
which symbols were
last loaded.
Done
Symbol context.

To change the directory context

» ChooseFile - Context— Directory and use the dialog box to select a new directory.

* Using the command line, enter tbek<directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

142

Chapter 6: Using the Emulator
Using Context Commands

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

To change the current working symbol context

ChooseéFile - Context— Symbolsand use the dialog box to select the new
working symbol context.

Using the command line, enter thws <symbol_context>ommand. (Because
cwsis a hidden command and doesn’t appear on a softkey label, you have to
in.)

You can predefine symbol contexts and set the maximum number of entries f
Symbol Scope Selection dialog box by setting X resources (see the "Setting X
Resources" chapter).

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

143

Chapter 6: Using the Emulator
Executing User Programs

Executing User Programs

You can use the emulator to run programs, break program execution into the
monitor, step through the program by high-level source lines or by assembly
language instructions, and reset the emulation processor.

When displaying memory in mnemonic format, a highlighted bar shows the current
program counter address. When you step, the mnemonic memory display is
updated to highlight the new program counter address.

When displaying resisters, the register display is updated to show you the contents
of the registers after each step.

You can open multiple interface windows to display memory in mnemonic format
and registers at the same time. Both windows are updated after stepping.

This section describes how to:

e Start the emulator running the user program.
» Stop (break from) user program execution.

» Step through user programs.

* Reset the emulation processor.

To run programs from the current PC

* ChooseExecution— Run - from PC.

* Using the command line, enter thum command.

When the emulator is executing the user program, the message "Running user
program" is displayed on the status line.

144

Chapter 6: Using the Emulator
Executing User Programs

To run programs from an address

» Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution- Run - from ().

» Using the command line, enter tha from <address>command.

Examples To run from address 920H:

run from 920h <RETURN>

To run programs from the transfer address .

* ChooseExecution— Run - from Transfer Address.

* Using the command line, enter thum from transfer_address command.

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface astthasfer address

To run programs from reset

* ChooseExecution— Run - from Reset

* Using the command line, enter thum from reset command.

The run from reset command specifies a run from target system reset. Itis
equivalent to entering a reset command followed by a run command. The
processor will be reset and then allowed to run.

145

Chapter 6: Using the Emulator
Executing User Programs

A run from reset command can also be entered while the emulator is plugged into a
powered-down target system. In this case, the emulator will run from the normal
reset address (OFFFFOH) when the target system powers up and releases the
RESET input.

Examples

To run programs until an address

When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and holdstiectmouse button and
chooseRun Until from the popup menu.

Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choosExecution— Run - until ().

Using the command line, enter tha until <address>command.
When you run until an address, a software breakpoint is set at the address and the
program is run from the current program counter.

When using the command line, you can combine the various types of run
commands; for example, you can run from the transfer address until another
address.

To run from the transfer address until the address of the global symbol main:

run from transfer_address until address main <RETURN>

146

Chapter 6: Using the Emulator
Executing User Programs

To stop (break from) user program execution

* ChooseExecution- Break.

* Using the command line, enter thiwak command.

This command generates a break to the background monitor.

Software breakpoints and then until command allow you to stop execution at
particular points in the user program.

Examples To break emulator execution from the user program to the monitor:

break <RETURN>

To step high-level source lines

» ChooseExecution— Step Sourceand select one of the items from the cascade
menu.

» Using the command line, enter ttep sourcecommand.

When stepping through instructions associated with source lines, execution can
remain in a loop and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation you can abort the step command by
pressing <CTRL>c.

147

Chapter 6: Using the Emulator
Executing User Programs

Examples

To step through instructions associated with the high-level source lines at the
current program counter:

step source <RETURN>
To step through instructions associated with high-level source lines at address
"main":

step source from main <RETURN>

Examples

To step assembly-level instructions

ChooseExecution- Step Instruction and select one of the items from the cascade
menu.

Using the command line, enter ttepcommand.

The step command allows you to step through program execution an instruction or
a number of instructions at a time. Also, you can step from the current program
counter or from a specific address.

To step one instruction from the current program counter:
step <RETURN>

To step a number of instructions from the current program counter:

step 8 <RETURN>

To step a number of instructions from a specified address:

step 16 from 920h <RETURN>

148

Chapter 6: Using the Emulator
Executing User Programs

To reset the emulation processor

ChooseExecution- Reset

Using the command line, enter tlesetcommand.

Theresetcommand causes the processor to be held in a reset statebuesik,a
run, orstepcommand is entered. A CMB execute signal will also cause the
emulator to run if reset.

149

Chapter 6: Using the Emulator
Using Software Breakpoints

Note

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations. (Another way is to break user program execution on
the analyzer trigger.)

Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

Software breakpoints are handled by the 80186/188 single byte interrupt (SBI)
facility. When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with a breakpoint interrupt
instruction (INT 3).

When the INT 3 instruction executes, the emulator determines whether the SBI was
generated by an enabled software breakpoint or by a single-byte interrupt
instruction in your target program.

If the SBI was generated by a software breakpoint, execution breaks to the monitor,
and the breakpoint interrupt instruction (INT 3) is replaced by the original opcode.
A subsequent run or step command will execute from this address.

If the SBI was generated by a single-byte interrupt instruction in the target system,
execution still breaks to the monitor, and an "undefined breakpoint" status message
is displayed. To continue with program execution, you must run or step from the
target program'’s breakpoint interrupt vector address.

A valid user stack must exist to use breakpoints. In other words, SS and SP must
be correctly initialized before a breakpoint is executed.

Execution of the INT 3 instruction will cause an opcode fetch from the address
pointed to by entry 3 (doubleword address at 0CH) in the vector table. Make sure
that this address is mapped as something other than guarded memory.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore, software breakpoints cannot be
set in target memory while the emulator is reset, and they can never be set in target

150

Chapter 6: Using the Emulator
Using Software Breakpoints

ROM. (You can, however, copy target ROM to emulation memory by storing the
contents of target ROM to an absolute file, re-mapping the range as emulation
RAM, and loading the absolute file.)

This section shows you how to:
» Display the breakpoints list.
» Enable/disable breakpoints.
e Set a permanent breakpoint.
» Set a temporary breakpoint.
e Set all breakpoints.

» Deactivate a breakpoint.

» Re-activate a breakpoint. .
» Clear a breakpoint.

* Clear all breakpoints.

To display the breakpoints list

ChooseDisplay - Breakpoints or Breakpoints - Display.

Using the command line, enter tiisplay software_breakpointscommand.

The breakpoints display shows the address and status of each breakpoint currently
defined. If symbolic addresses are turned on (when setting the display modes), the
symbolic label associated with a breakpoint is also displayed. Also, the breakpoints
display shows whether the breakpoint feature is enabled or disabled.

151

Chapter 6: Using the Emulator
Using Software Breakpoints

Sof tware breakpoints :enabled

addre label taty
BHER HEAH maintmodule). "main.c": line 36 pending
BEEA BEART maintmodule). "main.c": line 97 permanent
GPEe ABEE maintmodule). "main.c": line 38 inactivated
G164 A417 update_sysimodule). "update_sys.c": line 258 temporary

The status of a breakpoint can be:

temporary Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
removed when the breakpoint is encountered.

pending Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
inactivated when the breakpoint is encountered.

permanent Which means the permanent breakpoint is active.

inactivated Which means the breakpoint has been inactivated somehow.
Temporary breakpoints are inactivated when they are
encountered during program execution. Both temporary and
permanent breakpoints may be inactivated using the breakpoints
display popup menu.

In the breakpoints display, a popup menu is available. You can set, inactivate, or
clear breakpoints as well as enable or disable the breakpoints feature from the
popup menu.

152

Chapter 6: Using the Emulator
Using Software Breakpoints

To enable/disable breakpoints

Choose th8reakpoints - Enable toggle.

When displaying the breakpoint list, press and hold&hectmouse button and
then choos&nable/Disable Software Breakpointgrom the popup menu.

Using the command line, enter tmedify software_breakpoints enableor
modify software_breakpoints disablecommand.

The breakpoints feature must be enabled before you can set, inactivate, or clear
breakpoints.

If breakpoints were set when the feature was disabled, they are "inactivated"
the feature is re-enabled, and you must set them again.

The emulator/analyzer interface will enable software breakpoints whenever the
XEnv_86_exceptsymbol is present in the symbol data base.

The run-time library provided with the 8086 C Cross Compiler uses software
breakpoints to interrupt program execution when exceptions (for example, divide
by zero) are encountered. If software breakpoints are disabled, exception
processing may result in "access to guarded memory" errors and/or other
unpredictable behavior. To prevent this, a special global symbol,
XEnv_86_exceptis included in the library.

When theXEnv_86_exceptsymbol is present, the 80186/8/XL/EA/EB emulator
writes a value to this location. The value tells the run-time library to use the INT 3
instruction to perform a software break.

153

Chapter 6: Using the Emulator
Using Software Breakpoints

To enable software breakpoints using the breakpoints display popup menu:

Examples
E E
—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
{):iupdate_sysimodulel. save_points{procedure) I Recall
Sof tware breakpoints :disabled
addre label taty A
5A8R BBEAG main{module). "main.c": line 36 inactivated
Bring up menu and 8EBA BRAAS main{module). "main.c": line 97 inactivated
.. 8RR BBAE main{module). "main.c": line 98 inactivated
choose this item to 8164 @417 update_sysimodule). "update_sys.c": line 258 inactiwvated
Change states. Choose Action for Highlighted Line
Fetfinacthvate Hreakpoint
Clegy {delete) Broahpoby
Choose Action for All Breakpoints
Enable/Disable Software Ereakpoints
Set Al Bregkpolnts
Clear {delete) All Breakpoints ¥
| STATUS: 80C188EL--Running in monitor
E E

154

Chapter 6: Using the Emulator
Using Software Breakpoints

To set a permanent breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to set the breakpoint and clicketeetmouse

button. Or, press and hold teelectmouse button and chooSet/Clear Software
Breakpoint from the popup menu.

Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints - Permanent ()

Using the command line, enter tmedify software_breakpoints set <address>
permanentcommand.

Permanent breakpoints are available if your version of HP 64700 system firm
is A.04.00 or greater.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

155

Chapter 6: Using the Emulator
Using Software Breakpoints

Examples To set permanent breakpoints using the mnemonic memory display popup menu:
E
—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI)
File Display Modify Execution Breakpoints Trace Settings Help
lick this [Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
Click t I,S Ine to set @ | = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
breakpoint.
() imain IRecaII
Memory :mnemonic :file = mainimodule). "main.c”:
Click this line to address lshel data A
| b kpoi 31 extern wvoid update_system(}; /% update system wvariables #/
Clear a brea pOInt' 3z extern void interrupt_sim(}; /% simulate an interrupt */
(Asterisks mark set 93 extern void do_sort(}; /% sets up ascii array and call
. 34
breakpoints.) 35 mainl)
36 {
97 init_system(};
* 98 proc_spec_init{};
33
: 168 while {true’
Br:mg uprll”pe.nu and 101 {
A2 update_system{);
choose this item to o + ~ | Choose Action for Highlighted Line
| 183 num_checks++;
set (or c.ear) a 184 interrupt_sim(&ndgayclear Software Breakpoint
breakpoint on the W e
. . . graph_datall; it Source
highlighted line. | proc_speci Ficl):
Run Until .
| STATUS: 86C188XL--Running in monitq BN N
; Trace After ;

To set a temporary breakpoint

» Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints — Temporary () (or Breakpoints - Set ()if your version of
HP 64700 system firmware is less than A.04.00).

» Using the command line, enter tmedify software_breakpoints set <address>
temporary or modify software_breakpoints set <addresseommand.

The breakpoints feature must be enabled before individual breakpoints can be set.

156

Chapter 6: Using the Emulator
Using Software Breakpoints

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

To set all breakpoints

When displaying the breakpoint list, position the mouse pointer within the

breakpoints display screen, press and holdefectmouse button, and chodSet
All Breakpoints from the popup menu. .

ChooseBreakpoints - Set All.

Using the command line, enter tmedify software_breakpoints secommand.

Breakpoints must be enabled before being set.

To deactivate a breakpoint

When displaying breakpoints, position the mouse pointer over the line displaying
the active breakpoint and click teelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

A deactivated breakpoint remains in the breakpoint list and can be re-activated
later. Deactivating a breakpoint is different than clearing a breakpoint because a
cleared breakpoint is removed from the breakpoints list.

157

Chapter 6: Using the Emulator
Using Software Breakpoints

To re-activate a breakpoint

* When displaying breakpoints, position the mouse pointer over the line displaying
the inactivated breakpoint and click gelectmouse button. Or, press and hold the
selectmouse button and chooSet/Inactivate Breakpointfrom the popup menu.

The "inactivated" breakpoint either becomes "temporary" (or "pending") if it was
set as a temporary breakpoint or "permanent” if it was set as a permanent
breakpoint.

158

Examples

Chapter 6: Using the Emulator

Using Software Breakpoints

To re-activate breakpoints using the breakpoints display popup menu:

Change status with a
mouse click on this
line (menu and
highlight do not
appear).

Choose this menu
item to change the
state of the
highlighted
breakpoint.

E164 B417

update

—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

() imain IRecaII

Sof tware breakpoints :enabled

addre label taty A
SHBE BARA mainimoduled. "main.c": line 36 permanent
g8B8 Bar3 mainimoduled. "main.c": line 37 inactivated
BHBA BAl4 mainimodulel. "main.c” line 1B2 permanent

noduled. "update line

Choose Action for Highlighted Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint

Choose Action for All Breakpoints

Enahble/Disable Software Ereakpoints
Set All Breakpoints
Clear (delete]) All Breakpoints

258

inactivated

| sTATUS:

80C188EL--Running in monitor

159

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear a breakpoint

When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to clear a currently set breakpoint (notice the
asterisk at the left of the line) and click g&ectmouse button. Or, press and hold

the selectmouse button and chooSet/Clear Software Breakpointfrom the

popup menu.

When displaying breakpoints, position the mouse pointer over the line displaying
the breakpoint you wish to clear, press and holgéfectmouse button, and
chooseClear (delete) Breakpointfrom the popup menu.

Place an absolute or symbolic address in the entry buffer; then choose
Breakpoints Clear ().

Using the command line, enter tmedify software_breakpoints clear <address>
command.

When you clear a breakpoint, it is removed from the breakpoints list.

160

Examples

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear a software breakpoint using the breakpoints display popup menu:

—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
() imain IRecaII
Sof tware breakpoints :enabled
. addre label taty A
Bnng up the menu SHBE BARA mainimoduled. "main.c": line 36 permanent
FPg 5AAR BBAST main{module). "main.c": line 37 inactivated
and choose this item BHBA BAl4 mainimodulel. "main.c” line 1B2 permanent
to clear the G154 941/ update_ odule : Fy———
highlighted Choose Action for Highlighted Line
breakpoint. —_—] Setflnactivate Breakpoint
-

Clear (delete) Breakpoint

Choose Action for All Breakpoints

Enahble/Disable Software Ereakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

| STATUS: 80C188EL--Running in monitor

161

Chapter 6: Using the Emulator
Using Software Breakpoints

To clear all breakpoints

» When displaying breakpoints, position the mouse pointer within the Breakpoints
Display screen, press and hold sieéectmouse button, and chooSéear (delete)
All Breakpoints from the popup menu.

» ChooseBreakpoints - Clear All.

» Using the command line, enter tmedify software_breakpoints clearcommand.

162

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Displaying and Modifying Registers
This section describes tasks related to displaying and modifying emulation
processor registers.

You can display the contents of an individual register or of all the registers. The
register classes and names are listed in the following table.

Register Class | Register Description
* ah, al, ax, bh, bl,| All Basic Registers
bx, ch, cl, cx, dh,
dl, dx, bp, si, di,
ds, es, ss, sp, ip,
cs, fl
gen ax, bx, cx, dx General Registers
seg ds, es, ss, cs Segment Registers
ptr bx, bp, si, di, ds,| Pointer Registers
es
pcs umcs Upper Memory Chip Select
(80186/8/XL/EA| Imcs Lower Memory Chip Select
Peripheral chip | pacs Address of Peripheral Chip Select Block
select registers)| mmcs Mid-Range Memory Chip Select
mpcs Mode of Peripheral Chip Selects
pcs gcs0-7st Generic Chip-Select 0-7 Start
(80186/8/EB gcs0-7sp Generic Chip-Select 0-7 Stop
Peripheral chip | Icsst Lower Chip-Select Start
select registers)| Icssp Lower Chip-Select Stop
ucsst Upper Chip-Select Start
ucssp Upper Chip-Select Stop
rf rfbase Refresh Base
(Refresh rftime Refresh Timer
controller rfcon Refresh Control
registers) rfaddr Refresh Address (80186/8/EB Only)

163

Chapter 6: Using the Emulator
Displaying and Modifying Registers

Register Class | Register Description
pic pollsts Poll Status
(Programmable | imask Interrupt Mask
interrupt primsk Priority Mask
controller inserv In-Service
registers) regst Interrupt Request
intsts Interrupt Status
tcucon Timer Control
dmaOcon DMA 0 Control (80186/8/XL/EA Only)
dmalcon DMA 1 Control (80186/8/XL/EA Only)
scucon Serial Control Unit (SCU) Control (80186/8/EB Only) INTO
iOcon Control
ilcon INT1 Control
i2con INT2 Control
i3con INT3 Control
i4con INT4 Control (80186/8/EB Only)
t0 tOcnt Count
(Timer O tOcmpa Max Count A
mode/control tOcmpb Max Count B
registers) tOcon Mode/Control
t1 tlcnt Count
(Timer 1 tlcmpa Max Count A
mode/control tlcmpb Max Count B
registers) tlcon Mode/Control
2 t2cnt Count
(Timer 2 t2cmpa Max Count A
mode/control t2cmpb Max Count B
registers) t2con Mode/Control
do dOsrcl Source Pointer Low
(DMA Channel | dOsrch Source Pointer High
O registers - dodstl Destination Pointer Low
80186/8/XL/EA | d0dsth Destination Pointer High
Only) dotc Transfer Count
dOcon Control Word

164

Chapter 6: Using the Emulator

Displaying and Modifying Registers

Register Class | Register Description
dl dlsrcl Source Pointer Low
(DMA Channel | disrch Source Pointer High
1 registers - d1dstl Destination Pointer Low
80186/8/XL/EA | dldsth Destination Pointer High
Only) dltc Transfer Count
dlcon Control Word
sO bOcmp Channel 0 Baud Rate Select
(Serial bOcnt Channel 0 Baud Rate Count
Controller sOcon Channel 0 Control
Channel 0 sOsts Channel 0 Status
registers -
80186/8/EB
Only)
sl blcmp Channel 1 Baud Rate Select
(Serial blcnt Channel 1 Baud Rate Count
Controller slcon Channel 1 Control
Channel 1 slsts Channel 1 Status
registers -
80186/8/EB
Only)
pl pldir Port 1 Pin Direction
(/O Port 1 plpin Port 1 Pin Value
registers - plcon Port 1 Pin Control
80186/8/EB plltch Port 1 Pin Latch
Only)
p2 p2dir Port 2 Pin Direction
(/O Port 2 p2pin Port 2 Pin Value
registers - p2con Port 2 Pin Control
80186/8/EB p2ltch Port 2 Pin Latch
Only)

165

Chapter 6: Using the Emulator
Displaying and Modifying Registers

To display register contents

* ChooseDisplay - Registers

* Using the command line, enter tilisplay registerscommand.

When displaying registers, you can display classes of registers and individual
registers.

166

Chapter 6: Using the Emulator
Displaying and Modifying Registers

To modify register contents

» ChoosaModify - Registers...and use the dialog box to name the register and
specify its value.

Clicking the "Recall" pushbutton fe
you select register names and values
from predefined or previously
specified entries.

Placing the mouse pointer in the tex Modify Register
entry area lets you type in the register Name | ax |Reca||
name and value.

Value IRecaII
To define the type of value, press and
hold thecommand selechouse I3 Read Current Register Value

button and drag the mouse to select
the value type.

[oK | Apply

Clicking this checkbox causes the
current value of the named register to
be placed in the "Value" text entry

area.

Clicking this button modifies Clicking this button cancels
Clicking this button modifies the the register to the value modification and closes the
register to the value specified and specified and leaves the dialogdialog box.
closes the dialog box. box open.

» Using the command line, enter tmedify register <register> to <value>
command.

167

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal formats and in
real number formats. You can also display the contents of memory in assembly
language mnemonic format.

This section shows you how to:

» Display memory.

» Display memory in mnemonic format.

» Display memory in mnemonic format at the current PC.
» Return to the previous mnemonic display.

» Display memory in hexadecimal format.

» Display memory in real number format.

» Display memory at an address.

» Display memory repetitively.

* Modify memory.

* Modify memory at an address.

To display memory

* ChooseDisplay - Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed, displays
memory as hexadecimal bytes beginning at address zero.

168

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory in mnemonic format

To display memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, chooBésplay -~ Memory - Mnemonic (), or, using the
command line, enter thiisplay memory <address> mnemonicommand.

To display memory at the current program counter address, choose
Display -~ Memory — Mnemonic at PC or, using the command line, enter the
display memory mnemonic at_pcommand.

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

Whether source lines, assembly language instructions, or symbols are include
the display depends on the modes you choose with the

Settings— Source/Symbols Modesr Settings— Display Modespulldown menu
items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

To return to the previous mnemonic display

ChooseDisplay - Memory - Mnemonic Previous

Using the command line, enter ttlisplay memory mnemonic previous_display
command.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint at the line following the function call, and run the
program from the current program counter.

169

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Examples

To display memory in hexadecimal format

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Memory — Hex () and select the size from the cascade menu.

Using the command line, enter ttisplay memory <address> blocked <size>
command.

This command displays memory as hexadecimal values beginning at the address in
the entry buffer.

To display memory in absolute word format:

display memory ascii_old_data absolute words <RETURN>

Memary twerds :absolute :update
addre label data :he iascii

1862 B18R _ascii_old_d 26:8
186z B18C 2BzA
186z B18E 3428 4
186z B13@ ABR33 L3
186z B132 5023 P#
1862 B134 7361 sa
1862 H136 3124 1
1862 ©138 aR33 .8
1862 B13R 26:8
186z B13C 2BzA
1862 B13E 3428 4
1862 B1RE R34 .4
1862 B1RZ 5323 St
1862 B1R4 6377 iw
18B2 H1AE 3332 3z
1862 B1RB aR34 .4
1862 HB1AR 26:8

170

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes <RETURN>

Memary :bytes :blocked :update
addre data ihe iascii

1862 HB18R-31 28 28 28 28 28 34 33 @A 43.
1862 B132-33 23 58 Bl 73 =28 31 35 @A P as 18 .
1862 B13A-A1 28 28 28 2B 28 34 34 @A 44 .
1862 B1AZ-A3 23 53 Y7 B3 32 33 34 @A tSwi 234.
1862 B1AR-EB1 28 28 28 2@ 28 34 35 @A 45.
18EZ B1BZ-B3 4C B BE 28 32 33 34 @A Len 234 .
18B2 H1BR-CI 28 28 28 28 28 34 37 @A 4 7.
1862 B1CzZ-C3 41 Y6 B 28 38 ZE 38 @A Av e a.6.
1862 B1CA-D1 28 28 28 28 28 34 3§ @A 48 .
186z B10z2-D3 28 28 28 2B =28 34 33 @A 43.
1862 B10R-E1] - I [546 .
1862 B1EZ-E3 B T [B 548 .
18BZ B1ER-F1 28 28 28 28 28 35 31 @A 51.
18BZ B1FZ-F3 28 28 28 28 28 35 32 @A 52 .
18B2 B1FA-B1 28 28 28 28 28 35 33 @A 53.
1862 B262-83 28 28 28 28 28 35 34 @A 54,
1862 B2BR-11 28 28 28 28 28 35 35 @A 35,

To display memory in real number format

Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - Real () and select the size from the cascade menu.

Using the command line, enter ttlisplay memory <address> real <size>
command.

Displays memory as a list of real number values beginning at the address in the
entry buffer. Short means four byte real numbers and long means eight byte real
numbers.

171

Chapter 6: Using the Emulator
Displaying and Modifying Memory

Examples To display memory in 64-bit real number format:
display memory real long <RETURN>
Memary :long real :update
addre label dats :real

1BB2 B18A _ascii_old_d 1. BE5236554840E0E - 307
1PB2 B192 1. 3457191852876 1E-307
1PB2 B19A 1. 12386340050327E- 307
1PB2 B1A2 1. 12366162967343E- 307
18B2 B1AA 1. 17943924636595E- 307
19B2 B1B2 1. 1236613875 1778E-307
18B2 B1BA 1. 2967439398313 1E-307
1@B2 B1C2 3. APEESE42 18367 7E-308
1BB2 B1CA 1. 34637978635398E- 307
1PB2 8102 1. 4813376323 1666E-307
1PB2 B10A 3. 8157330762 1553E- 308
1PB2 BIE2 3. 8157330762 1553E- 308
18B2 B1EA 3. 57200153434236E-308
1BB2 BIF2 1. 8128269393469 1E-307
18B2 BIFA 1. B684538464@953E - 307
1BB2 B2B2 1. 1248806928722 7E - 307
1PB2 B2ER 1. 17970753933495E - 307

To display memory at an address

» Place an absolute or symbolic address in the entry buffer; then, choose
Display—Memory - At ().

This command displays memory in the same format as that of the last memory
display command. If no previous command has been issued, memory is displayed
as hexadecimal bytes.

172

Chapter 6: Using the Emulator
Displaying and Modifying Memory

To display memory repetitively
ChooseDisplay - Memory - Repetitively.

Using the command line, enter ttisplay memory repetitively command.

The memory display is constantly updated. The format is specified by the last
memory display command.

This command is ignored if the last memory display command was a mnemonic
display.

To modify memory .

ChooseModify -~ Memory and complete the command using the command line.

To modify memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choosodify . Memory at () and complete the command
using the command line.

Using the command line, enter tmedify memory command.

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

173

Chapter 6: Using the Emulator
Displaying Data Values

Displaying Data Values

The data values display lets you view the contents of memory as data types. You
can display data values in the following formats:

bytes

8-bit integers

unsigned 8-bit integers
chars

words

16-bit integers

unsigned 16-bit integers
long words

32-bit integers

unsigned 32-bit integers

This section shows you how to:
» Display data values.
* Clear the data values display and add a new item.

* Add item to the data values display.

To display data values

ChooseDisplay - Data Values

Using the command line, enter tiisplay datacommand.

Items must be added to the data values display before you can use this command.

The data display shows the values of simple data types in the user program. When
the display mode setting turns ON symbols, a label column that shows symbol
values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor (for
example, encountering a breakpoint) cause the data values screen to be updated.

174

Chapter 6: Using the Emulator
Displaying Data Values

To clear the data values display and add a new
item

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- New () and select the data type from the cascade menu.

Using the command line, enter itisplay data <address>command.

To add items to the data values display

Place an absolute or symbolic address in the entry buffer; then, choose
Display - Data Values- Add () and select the data type from the cascade menu.

Using the command line, enter itisplay data , <address>ommand.

175

Chapter 6: Using the Emulator
Changing the Interface Settings

Changing the Interface Settings

This section shows you how to:
» Set the source/symbol modes.

* Set the display modes.

To set the source/symbol modes

To display assembly language mnemonics with absolute addresses, choose

Settings— Source/Symbol Modes. Absolute, or, using the command line, enter
theset source off symbols offommand.

To display assembly language mnemonics with absolute addresses replaced by
global and local symbols where possible, ch&ettings- Source/Symbol

Modes- Symbols or, using the command line, enter $ie¢ source off symbols
on command.

To display assembly language mnemonics intermixed with high-level source lines,

chooseSettings— Source/Symbol Modes. Source Mixed or, using the command
line, enter theset source on symbols ooommand.

To display only high-level source lines, cho&sttings- Source/Symbol

Modes- Source Only, or, using the command line, enter sie¢ source only
symbols oncommand.

The source/symbol modes affect mnemonic memory displays and trace displays.

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

» Source only for mnemonic memory displays.

» Source mixed for trace listing displays.

176

Chapter 6: Using the Emulator
Changing the Interface Settings

To set the display modes

» ChooseSettings- Display Modes...to open the display modes dialog box.

Press and hold trselect — - Source/Symbols View
mouse button and drag the

\
in M s Only =
mouse to select "Source Only", \SCW:W | Source Only
"Source Mixed", or "Off". Source in Tragé |Source Mixed =

Tah Expansion (2 to 15 Spaces) :

Clicking toggles whether &l Symbolie Add'w/

symbolic information is
displayed.

tMdnemonic Field
Move the mouse pointer to the . Lo
Symbols in Mnemonic Field

text entry area and type in the :
value. Descriptions of the W 148
s

modes follow. :

Source: (60 to 255) All Others: (1 to 80)
Clicking toggles auto update iii| Memory Displays (Except Mnemonic)
settings.

{il| Trace Display

I Default All Settings

Clicking this checkbox
changes all display mode | ok
settings to their defaults.

Clicking this button saves your Clicking this button saves Clicking this button cancels your
changes and closes the dialog your changes and leaves thehanges and closes the dialog box.
box. dialog box open.

177

Chapter 6: Using the Emulator
Changing the Interface Settings

Source/Symbols View

Source in Memoryspecifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Tracespecifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addressespecifies whether symbols are included in displays.

Tab Expansionsets the number of spaces displayed for tabs in source lines.

Source/Symbols View

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Fieldsets the maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Linessets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displaystoggles whether memory displays are automatically updated
after commands that change memory contents or whether you must enter memory
display commands to update the display. You may wish to turn off memory
display updates, for example, when displaying memory mapped 1/O.

Trace Displaystoggles whether trace displays are automatically updated when

trace measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

178

Chapter 6: Using the Emulator
Using System Commands

Using System Commands

With the Softkey Interface system commands, you can:

» Set UNIX environment variables while in the Softkey Interface.
» Display the name of the emulation module.

» Display the event log.

» Display the error log.

To set UNIX environment variables

* Using the command line, enter thet <VAR>command.

You can set UNIX shell environment variables from within the Softkey Interface
with theset <environment_variable> = <valuexommand.

Examples To set the PRINTER environment variable to "lp -s":

set PRINTER ="Ip -s" <RETURN>

After you set an environment variable from within the Softkey Interface, you can
verify the value of it by enteringet <RETURN>,

179

Chapter 6: Using the Emulator
Using System Commands

Examples

To display the name of the emulation module

Using the command line, enter th@me_of modulecommand.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

To display the name of your emulation module:

name_of module <RETURN>

The name of the emulation module is displayed on the status line.

To display the event log

ChooseDisplay - Event Log.

Position the mouse pointer on the status line, press and halel¢ltenouse
button, and then chooisplay Event Logfrom the popup menu.

Using the command line, enter tlisplay event_logcommand.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, software breakpoints and
trace commands).

180

Chapter 6: Using the Emulator
Using System Commands

To display the error log

* ChooseDisplay - Error Log .

» Position the mouse pointer on the status line, press and halel¢licenouse
button, and then chooSisplay Error Log from the popup menu.

» Using the command line, enter tilisplay error_log command.

The last 100 error messages that have occurred during the emulation session are

displayed.

181

Chapter 6: Using the Emulator
Using System Commands

To edit files

ChooseéFile - Edit - File and use the dialog box to specify the file name.

To edit a file based on an address in the entry buffer, place an address reference
(either absolute or symbolic) in the entry buffer; then, chBdse. Edit — At ()
Location.

To edit a file based on the current program counter, chtilese Edit — At PC
Location.

To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and holskleetmouse button, and
chooseEdit File At Symbol from the popup menu.

To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
selectmouse button, and choo&dit Source from the popup menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error if it cannot find a source file for the address.

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the "Setting X Resources" chapter
for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

182

Examples

Chapter 6: Using the Emulator
Using System Commands

To edit a file that defines a symbol:

E E
—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a EJ
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source
| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm
() imain IRecaII
ChOOSing this menu | [s1obal symbols in ecs.x
H : Procedure symbols
item _brlngs_ up a Procedure name Address range __ Segment
terminal window reallac B2AB:2C22 - 2056 libc
with an edit SESSION | | e e ———
open on the file sprintf Global Symbols Display libc
8 . i
where the :::TE: Display Local Symbols ?:Eg—mam
highlighted symb0| is | strrcmp Display Parent Symboby libe
. unlink =
defined. \\w Cut Full Symbol Name hrog_update_sys
walt_tor_i Edit File Defining Symbol i
write Lakts
write_hdwr 8164: 83658 - 8416 prog_update_sys
Static symbols
Symbal name Address range __ Segment
DIV_F32A_L BEEC: @178 lib
| STATUS: 80C188EL--Running in monitor Tl
E E

183

Chapter 6: Using the Emulator
Using System Commands

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted source

To edit afile at a source line:

curr_loct++;
if {curr_loc >

WUM_OF_OLD?Y curr loc = @:

J*BUGLILL 1%/

—'E Hewlett Packard Emulator/Analyzer: em8018x (i186xI) E a E
File Display Modify Execution Breakpoints Trace Settings Help
Action keys: | < Demo = | Disp Sre () | Trace() | Run | Step Source

| = Your Key = | tdake |Disp Sre Prev |Run Alertil () | Break | Step Asm

(): save_points IRecaII
Memory :mnemonic :file = update_sysimodule). "update_sys.c":

addre label dats A
262 MAKEEAR{ARGE Y ;
263
264 old_datalcurr_locl. temp = current_temp;
265 old_datalecurr_locl.humid = current_humid;

line exists.

268 Choose Action for Highlighted Line
ZE3 temp_tot=H; =
278 for (1=B; i<NUM_OF_OLD; i++) |SetfClear Software Breakpoint
S;é temp_tot += old_datalil Edit Source
273 old_datalcurr_loc]. ave_temp| Run Until
274
275 humid_tot=8; Trace After
276 for (i=@; i<NUM_DF_OLD; i++)
277 humidtot 1= old_datals| Toc Before
278 Trace About
| STATUS: 8OC188XL--Running in monitor Trace Until P |

184

Chapter 6: Using the Emulator
Using System Commands

To copy information to a file or printer

ChooseéFile - Copy, select the type of information from the cascade menu, and use
the dialog box to select the file or printer.

Using the command line, enter tt@py command.

ASCII characters are copied to the file or printer.
If you copy information to an existing file, it will be appended to the file.

Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option is use
for restricting the number of lines that are copied. Also, this option is useful fo
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same as
specified in the last display memory command. For example, if you copy memory
after displaying a range of memory in mnemonic format, the file would contain the
mnemonic memory information. If there is no previous display memory command,
the format used is a blocked hex byte format beginning at address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

IO Port ... Copies the contents of a range of I/O port locations. The format is the
same as specified in the last display 1/0 port command. For example, if you copy
I/O ports after displaying a range of them in byte format, the file would contain the
byte I/O port information. If there is no previous display I/O port command, the
format used is a blocked hex byte format beginning at address zero.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with ®Bettings— Source/Symbols Modesr
Settings— Display Modespulldown menu items. See the "Changing the Interface
Settings" section.

185

Chapter 6: Using the Emulator
Using System Commands

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use thie - Copy - Display ...command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been
loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named

(by an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from event log display.

To open a terminal emulation window

ChooseFile - Term...

This command opens a terminal window into the current working directory context.

186

Chapter 6: Using the Emulator
Using Simulated 1/10

Using Simulated 1/O

Simulated 1/O is a feature of the emulator/analyzer interface that lets you use the
same keyboard and display that you use with the interface to provide input to
programs and display program output.

To use simulated I/O, your programs must communicate with the simulated I/O
control address and the buffer locations that follow it. (The Hewlett-Packard AXLS
compilers, if your program uses I/O, automatically link with environment
dependent routines that communicate with the simulated 1/0 control address and
buffer.)

Also, before simulated 1/0O can work, the emulator must be configured to enable
polling of the simulated I/O control address and to define the control address

location.
This section shows you how to: .

» Display the simulated I/O screen.
» Use simulated I/0O keyboard input.

Refer to theSimulated 1/0 User’s Guidier complete details on how simulated 1/0
works.

To display the simulated I/O screen

ChooseDisplay — Simulated 10.

Before you can display simulated 1/O, polling for simulated I/O must be enabled in
the emulator configuration.

187

Chapter 6: Using the Emulator
Using Simulated 1/10

Examples

Simulated [/0 display Status messages disabled
display is open

A message tells you whether the display is open or closed. You can modify the
configuration to enable status messages.

To use simulated 1/0 keyboard input

* To begin using simulated /O input, cho&ettings— Simulated 10 Keyboard.

» To end simulated I/O and return to using the interface, useiipendsoftkey.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with turn
command line display back on.

If you are planning to use even a modest amount of simulated I/O input during an
emulation session, it might be a good idea to open another Emulator/Analyzer
window to be used exclusively for simulated I/O input and output.

188

Chapter 6: Using the Emulator
Using Basis Branch Analysis

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product. This
product is used to analyze the testing of your programs, create more complete test
suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:
» Store BBA data to afile.

Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
BBA product and how it works.

To store BBA data to a file

ChooseFile - Store— BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data” can be selected from the dialog box.

189

190

Using the Emulation Analyzer

191

Using the Emulation Analyzer

This chapter describes tasks you may wish to perform while using the emulation
analyzer. These tasks are grouped into the following sections:

» The basics of starting, stopping, and displaying traces.
» Qualifying trigger and store conditions.

» Using the sequencer.

» Modifying trace displays.

e Saving and restoring traces.

192

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The Basics of Starting, Stopping, and Displaying
Traces

This section describes the basic tasks that relate to starting and stopping trace
measurements.

When you start a trace measurement, the analyzer begins looking at the data on the
emulation processor’s bus and control signals on each analyzer clock signal. The
information seen on a particular clock is called a state.

When one of these states matches the "trigger state" you specify, the analyzer stores
states in trace memory. When trace memory is filled, the trace is said to be
"complete." The default trigger state specification is "any state," so when you start

a trace measurement after initializing the analyzer, the analyzer will "trigger" on the
first state it sees and store the following states in trace memory.

Once you start a trace measurement, you can view the progress of the measurement
by displaying the trace status.

In some situations, for example, when the trigger state is never found or when
analyzer hasn't filled trace memory, the trace measurement does not complete®
these situations, you can halt the trace measurement.

Once atrace is displayed, you can use the cursor keys and other keys to position the
trace list on the display. To speed up the display of traces, you can reduce the
depth of the trace list. Also, when entering trace commands, there is a special
command that allows you to recall and modify the last trace command entered.

This section describes how to:

e Start trace measurements.

» Display the trace status.

e Stop trace measurements.

« Display the trace.

» Position the trace display on the screen.
e Change the trace depth.

* Modify the last trace command entered.

193

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To start a trace measurement

Chooselrace - Everything.

Using the command line, enter tinace command.

Thetrace command tells the analyzer to begin monitoring the states which appear
on the trace signals. You will see a message that confirms that a trace is started.

The default trace command (simpfgice with no options) will trigger on any state,
store all captured states.

While the emulator is running the user program, you can start the default trace
measurement with the command:

trace <RETURN>
A message is displayed on the status line to show you that the "Emulation trace

[has] started", and another message will show you when the "Emulation trace [is]
complete”.

To display the trace status

ChooseDisplay - Status

Using the command line, enter ilisplay statuscommand.

In addition to the analyzer information shown on the status line (Emulation trace
started, Emulation trace complete, etc.), you can display complete analyzer status
with the command below.

194

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples To display the trace status:

display status <RETURN>

Status

Emulator Status
8AC1838L--Rurnning user program
Trace Status

Emulation trace complete
Arm ignered

Trigger in memory

Arm to trigger ¥

States 512 (512) B..511
Sequence term &
Ococurrence left 1

The first line of the emulation trace status display shows the user trace has be
"completed”; other possibilities are that the trace is still "running" or that the trace
has been "halted".

The "Arm ignored" line shows that the arm condition, which can be used to qualify
trace measurements, is ignored. Consequently, the "Arm to trigger" time is not
meaningful and a question mark is displayed. (The "Making Coordinated
Measurements" chapter explains arm conditions.)

The second line of the trace status display contains information on the arm
condition. If the analyzer is always armed, the message "Arm ignored" is

displayed. If the analyzer is to be armed by one of the internal signals, either the
message "Arm not received" or "Arm received" is displayed. The display indicates

if the arm condition happened any time since the most recent trace started, even if it
happened after the trace was halted or became complete.

The "Arm to trigger" line displays the amount of time between the arm condition
and the trigger. The time displayed will be from -0.04 microseconds to 41.943
milliseconds, less than -0.04 microseconds, or greater than 41.943 milliseconds. |If
the arm signal is ignored or the trigger is not in memory, a question mark (?) is
displayed.

195

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The "States" line shows the number of states that have been stored (out of the
number that is possible to store) and the line numbers that the stored states occupy.
(The trigger state is always stored on line 0.)

The "Sequence term" line of the trace status display shows the number of the term
the sequencer was in when the trace completed. Because adarbotthe last
sequence ternconstitutes the trigger, the number displayed is what would be the
next term (2 in the preceding example) even though that term is not defined. If the
trace is halted, the sequence term number just before the halt is displayed,;
otherwise, the current sequence term number is displayed. If the current sequence
term is changing too quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the number of
occurrences remaining before the primary branch can be taken out of the current
sequence term. If the occurrence left is changing too quickly to be read, a question
mark (?) is displayed.

196

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To stop a trace measurement

* Choosé€lrace - Stop.

* Using the command line, enter thtep_tracecommand.

You can, and most likely will, specify traces whose trigger or storage states are
never found. When this happens, the "Emulation trace complete" message is never
shown, and the trace continues to run ("Emulation trace running"). When these
situations occur, you can halt the trace measurement wigitahetracecommand.

Thestop_tracecommand is also useful to deactivate signals which are driven
when the trigger is found (refer to the "Making Coordinated Measurements"
chapter).

Examples To halt a trace measurement:

stop_trace <RETURN>

When thestop_tracecommand is entered, the message "Emulation trace halted" is
displayed.

197

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

Examples

To display the trace

Chooselrace - Display or Display - Trace.

Using the command line, enter tiisplay trace command.

You can display captured trace data withdtsplay trace command. The
available options to thdisplay trace command are described in the "Modifying
the Trace Display" section later in this chapter.

To display the trace:

display trace <RETURN>

race List F +=8)

Label: Address Opcgode or Status w/ Source Lines time count

Bas=e: umnbaol mnemonic w/symbal relative

st.Block_1+BBAIE IWSTRUCTIOWN--cpoode unawvailable 0 ———momm—o
+AA 1 st.Block_1+AAB1F EBH, opcode fetch ROM ge. n3
+882 st.Block_1+8881F JMP SHORT |Block_1.Block_1 128 nS
+HRA3 st.Block_1+HABZA EFH, opcode fetch ROM g6. n3
+884 =t.Block_l+BEEZ 1 98H, ocpecode fetch ROM 288 n3
+885 Block_l.Block_1 98H, cpcode fetch ROM 328 nS
+HAEE Bleck_l.Block_1 MNOP 166 nS
+8B7 =t.Block_l1+BBEAT1 FFH, cpcode fetch ROM 48. ns
+0A8 =t.Block_l+AAE11 IWC WORD PTR -BH4HLCEF] 168 nS
+HA3 st.Block_l1+AAA1Z 46H, opcode fetch ROM 46. n3
+H 1A st.Block_1+HAE13 FCH, opcode fetch ROM 2688 n3
+A11 st.Block_1+AAE14 98H, ocpcode fetch ROM 2686 nS
+H812 stackheap+B7EZE 1AH, mem read 3268 nS
+613 stackheap+A7EZT ABH, mem read 2688 nS
+814 st.Block_l+BBEELS 8BH, cpcode fetch ROM 2688 nS
+H15 | stackheap+B7E2E 1BH, mem write 2668 nS

The first column in the trace list contains the line number. The trigger is always on
line 0.

The second column contains the address information associated with the trace
states. Addresses in this column may be locations of instruction opcodes on fetch
cycles, or they may be sources or destinations of operand cycles.

The third column shows mnemonic information about the emulation bus cycle.

198

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

The next column shows the count information (time is counted by default).
"Relative" indicates that each count is relative to the previous state.

If your analyzer card contains external analysis (for example, HP 64703), the next
column shows the data captured on the external trace signals.

You can use the <NEXT> and <PREV> keys to scroll through the trace list a page
at a time. The <Up arrow> and <Down arrow> keys will scroll through the trace
list a line at a time. You can also display the trace list centered around a specific
line number (for examplelisplay trace 100 <RETURNS. Refer to the

"Modifying the Trace Display" section for more information on the trace list
display.

Note that when a trigger condition is found but not enough states are captured to fill
trace memory, the status line will show the trace is still running. You can display

all but the last captured state in this situation; you must halt the trace to display the
last captured state.

To position the trace display on screen

Use the scroll bar or the <Up arrow>, <Down arrow>, <PREV>, <NEXT>,
<CTRL>f, and <CTRL>g keys.

The trace display command can display up to 1024 states, not all of which can
appear on the screen at the same time. However, you can reposition the display on
the screen with the keys described below.

The <Up arrow> and <Down arrow> (or roll up and roll down) keys move the
display up or down on the screen one line at a time.

The <PREV> and <NEXT> (or page up and page down) keys allow you to move
the display up or down a page at a time.

The <CTRL>f and <CTRL>g keys allow you to move the display left or right,
respectively. These keys are used when the width of the address or
mnemonic/absolute columns is increased so that not all the trace display data can be
displayed across the screen.

199

Chapter 7: Using the Emulation Analyzer
The Basics of Starting, Stopping, and Displaying Traces

To change the trace depth

Using the command line, enter ttiisplay trace depthcommand.

Thedisplay trace depthcommand allows you to specify the number of states that
are displayed. By reducing the trace depth, you can shorten the time it takes for the
Softkey Interface to upload the trace information. You can increase the trace depth
to view more states of the current trace.

The maximum number of trace states is 1024 when counting is turned off, 512
otherwise. The minimum trace depth is 9.

If you wish to reduce the number of states that are displayedisgiiay trace
depth command must be entered beforetthee command. You cannot use this
command to reduce the number of states displayed in the current trace.

To modify the last trace command entered

Chooselrace - Trace Specand use the dialog box to select and edit a trace
command.

Using the command line, enter tinace modify_commandcommand.

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace specifications
present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see the "Setting X Resources" chapter).

Thetrace modify_commandcommand recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command,; also,
the last trace command is always available, no matter how many commands have
since been entered.

200

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Qualifying Trigger and Store Conditions

This section describes tasks relating to the qualification of trigger and storage states.

You can trigger on, or store, specific states or specific values on a set of trace
signals (which are identified by trace labels).

Also, you carprestorestates. The prestore qualifier is a second storage qualifier
used for storing states that occur before the normally stored states. Prestore is
useful for capturing entry points to procedures or for identifying where global
variables are accessed from.

This section describes how to:

* Qualify the trigger state and the trigger position in the trace.
e Trigger on a number of occurrences of some state.

* Qualify states stored in the trace.

» Prestore states before qualified store states.

» Change the count qualifier.

» Trace until the analyzer is halted.

» Cause the emulator to break into the monitor when the analyzer triggers.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions which consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

Bb Binary (example: 10010110b).
QgOo Octal (example: 3770 or 3770).
D d (default) Decimal (example: 2048d or 2048).

201

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Hh Hexadecimal (example: Oa7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don't care digits may be included in binary, octal, or hexadecimal numbers and
they are represented by the letdérer x. A zero must precede any numerical value
that begins with an "X".

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function
Operators Analysis specification expressions may contain operators. All

operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

, = Unary two’s complement, unary one’s complement. The
unary two's complement operator is not allowed on
constants containing don't care bits.

* 1, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don't care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don't care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&O0fff00h

202

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation Analyzer Trace Signals

When you qualify states, you specify values that should be found on the analyzer
trace signals. The emulation analyzer trace signals are described in the table that

follows.
Emulation Analyzer Trace Signals
Trace Signal Signal
Signals Name Description
0-19 A0-A19 Address Lines 0-19.
20-23 Processor S0-S3 1011 = Halt acknowledge cycle.
(S3 bond-out 1000 = Interrupt acknowledge cycle.
emulation processor | 1001 = I/O port read cycle.
specific) 1010 = I/O port write cycle.
1101 = Memory read cycle.
1110 = Memory write cycle.
1100 = Opcode fetch.
24 Processor BHE 0 = Bus High Enable.
25 Bus Grant 0 = Bus granted between previous state and this one.
26 Processor S6 0 = Processor cycle, 1 = DMA cycle.
27 Guarded Memory 0 = Guarded memory access.
28 ROM Access 0 = ROM access.
29 LOCK Asserted 0 = LOCK asserted.
30 Monitor/User 0 = Background, 1 = Foreground.
31 Execution/Bus Cycle | 0 = Executed instruction state, 1 = non-instruction states.
32-47 D0-D15 Processor Data 0-15. (Signals 40-47 not used with 8-bit

processors.)

203

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

State Qualifiers

Whenever a state can be specified in the trace command (trigger state, storage state,
prestore state, etc.), you will see the following softkeys that allow you to qualify the

state:

address The value following this softkey is searched for on the lines that
monitor the emulation processor’s address bus.

data The value following this softkey is searched for on the lines that
monitor the emulation processor’s data bus.

status The value following this softkey is searched for on the lines that

monitor other emulation processor signals.

When a value is specified without one of these softkeys it is assumed to be an
address value.

204

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Predefined Values for Qualifiers ~ When you specify status qualifiers for
analyzer states (by pressing #tatus softkey), you will be given the following
softkeys which are predefined values for the qualifiers.

Qualifier Status Bits (31..20) Description

bus 01xXXX XXXX XXXXb Bus cycle.

coproc O1XxXx XXxX XxXxxb Coprocessor cycle.

dma 01xxx X1xx xxxxb DMA cycle (for 80186/8/XL/EA).
dmaior 01xxx x1xx 1001b DMA 1/O port read cycle (for

80186/8/XL/EA).

dmaiow 01xxx x1xx 1010b DMA I/O port write cycle (for
80186/8/XL/EA).

dmamr 01xxx x1xx 1101b DMA memory read cycle (for
80186/8/XL/EA).

dmamw 01xxx x1xx 1110b DMA memory write cycle (for
80186/8/XL/EA).

exec 00XXX XXXX XXXXb Executed instruction state.

grd 01xxx 0xxx xxxxb Guarded memory access.

halt 01xxx xxxx 1011b Halt acknowledge cycle.

intack 01xxx xxxx 1000b Interrupt acknowledge cycle.

ioread 01xxx xxxx 1001b 1/O port read cycle.

iowrite 01xxx xxxx 1010b 1/0O port write cycle.

memread 01xxx xxxx 1101b Memory read cycle.

memwrite 01xxx xxxx 1110b Memory write cycle.

mon 0X0XX XXXX XXXXb Background monitor cycle.

opcode 01xxx xxxx 1100b Opcode fetch.

proc 01xxx X0xx xxxxb Processor (not DMA) cycle.
prochalt 01xxx xOxx 1011b Processor halt acknowledge cycle.
procinta 01xxx xOxx 1000b Processor int. acknowledge cycle.
procior 01xxx xOxx 1001b Processor 1/0 port read cycle.
prociow 01xxx xOxx 1010b Processor 1/0O port write cycle.
procmr 01xxx xOxx 1101b Processor memory read cycle.
procmw 01xxx xOxx 1110b Processor memory write cycle.
procopf 01xxx xOxx 1100b Processor opcode fetch.

procr 01xxx xOxx 1x01b Processor read cycle.

procw 01xxx xOxx 1x10b Processor write cycle.

rom 01xx0 xxxx Xxxxb Access to ROM cycle.

usr 0X1XX XXXX XxxXXb User (foreground) cycle.

These predefined values may be used as other values would be used. For example:

trace after status memwrite

is the same as:

trace after status 01xxxxxxx1110b

205

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To qualify the trigger state and position

Enter a trigger state specification in the entry buffer; then, chioase - After (),
Trace— About (), or Trace - Before ().

When displaying memory in mnemonic format, position the mouse pointer over the
source line where you want to set the trace trigger, press and heédatinouse

button and choosErace After, Trace Before or Trace About from the popup

menu.

Using the command line, enter tinace after, trace about, ortrace before
commands.

Tracing after the trigger state says states that occur after the trigger state should be
saved; in other words, the trigger is positioned at the top of the trace.

Tracing before the trigger state says states that occur before the trigger state should
be saved; in other words, the trigger is positioned at the bottom of the trace.

Tracing about the trigger state says states that occur before and after the trigger
state should be saved; in other words, the trigger is positioned at the center of the
trace.

When the analyzer counts time or states, the actual trigger position is within +/- 1
state of the number specified. When counts are turned OFF, the actual trigger
position is within +/- 3 states of the number specified.

Usually, when you enterteace aboutcommand, the trigger state (line 0) is

labeled "about". However, if there are three or fewer states before the trigger, the
trigger state is labeled "after". Likewise, if there are 3 or fewer states after the
trigger, the trigger state is labeled "before".

The state you define aftace after, trace about, ortrace beforeis the state that
will trigger the analyzer and cause states to be stored.

206

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples Suppose you want to look at the execution of the demo program after the call of the
"update_system()" function (main.c: line 102) occurs. To trigger on this address,
enter:

trace after address main."main.c": line 102 <RETURN>
set source on inverse_video on symbols on <RETURN>

display trace <RETURN>

0ffset=H More data of f screen

Label: Address Upcéde or Status w/ SJource Lines time count
Base: umnbol mnemonic w/symbal relative
pro|main. Block_1 3AH, opcede fetch RO 326 n5

B itnain.c - line 181 thru 102 fHESUSnE AR R

+B81 pra|main. ALL FAR FTR p|_update_system nS
+882 ma. Block_1+B68661 A2H, opcode fetch ROM 48. nS
+8683 ma. Block_1+B86862 B8H, cpcede fetch ROM 2688 nS
+H84 ma. Block_1+HEEEES G4H, opcede fetch ROM 268 nS
+HAS ma. Block_1+BAABA4 81H, opecede fetch ROM 2a8 nS
+HAG ma. Block_1+HAARAS FFH, opcode fetch ROM 268 n3
+dE7 stackheap+d7EEZ BEH, mem write 326 n3
+Ba5 stackheap+d7EES BHH, mem write 288 nS
+B83 stackheap+d7EER 13H, mem write 288 nS
+618 stackheap+d7EEL ABH, mem write 288 nS
+B11 p|_update_system 55H, copcede fetch ROM 244 nS

i fupdate_sys.c - line 1 thru 47 HEHBRHAHAHEHAHEHEHBRH SR A S

In the preceding trace list, line O (labeled "after") shows the beginning of the
program loop.

207

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To trigger on a number of occurrences of some
state

Use theoccurs <#TIMES> after specifying the trigger state.

When specifying a trigger state, you can include an occurrence count. The
occurrence count specifies that the analyzer trigger on the Nth occurrence of some
state.

The default base for an occurrence count is decimal. You may specify occurrence
counts from 1 to 65535.

To trigger on the 20th occurrence of the call of the "update_system()" function
(main.c: line 102):

trace after address main."main.c": line 102 occurs 20
<RETURN>

208

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To qualify states stored in the trace

Enter a storage state specification in the entry buffer; then, chicase- Only ().

Using the command line, use thiely option in thetrace command.

By default, all captured states are stored; however, you can qualify which states get
stored with thérace command’only option.

Analyzer memory is unloaded two states at a time. If you use a storage qualifier to
capture states that do not occur often, it's possible that one of these states has been
captured and stored but cannot be displayed because another state must be stored
before the pair can be unloaded. When this happens, you can stop the trace
measurement to see all stored states.

When the emulator is running the demo program, to stuyeaccesses of the
"target_temp" variable:

trace after main."main.c": line 102
only target temp <RETURN>

race List 0ffzet=0

Label: Address Opcode or Status w/ Source Lines time count

Base: umbol mnemonic w/synbol relative

pro|main.Black_1 3AH, opcede fetch ROM
+HA 1 dat|_target_temp 58H, mem read 2.63 mS
+HAZ dat|_target_temp 57H, mem write 6686 n3
+HAG dat|_target_temp 57H, mem read 2.6 u3
+EHES dat|_target_temp 57H, mem read 5.92 mS
+885 dat|_target_temp 57H, mem read 65.5 mS
+H8B8E dat|_target_temp 57H, mem read B8.12 uS
+887 dat|_target_temp 57H, mem read 4,36 uS
+E83 dat|_target_temp 57H, mem read 3.8 us
+AB3 dat|_target_temp 57H, mem read 28.7 mS
+EA 1A dat|_target_temp 56H, mem write 6686 n3
+A11 dat|_target_temp 56H, mem read 2.6 u3
+H12 dat|_target_temp 5EH, mem read 5.92 mS
+813 dat|_target_temp 5EH, mem read 65.5 mS
+814 dat|_target_temp 5EH, mem read 8.16 uS
+815 dat|_target_temp 5EH, mem read 4,36 uS

Notice the trigger state (line 0, labeled "after") is included in the trace list; trigger
states are always stored.

209

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples

To prestore states before qualified store states

Enter a storage state specification in the entry buffer; then, clicasze- Only ()
Prestore.

Use theprestore option in therace command.

Prestore allows you to save up to two states which precede a normal store state.
Prestore is turned off by default. However, you can usiabe command’s
prestore option to specify a prestore qualifier.

Prestore is useful when you want to find the cause of a particular state. For
example, if a variable is accessed from many different places in the program, you
can qualify the trace so that only accesses of that variable are stored. Then, you can
turn on prestore to find out where accesses of that variable originate from.

States which satisfy the prestore qualifier and the storage qualifier at the same time
are stored as normal states.

To storing only write accesses to the variable "target_temp" and prestore the two
previous states:

trace after main."main.c": line 102
only target_temp status memuwrite
prestore anything <RETURN>

210

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

0ffzet=0 More data off
Label: Address Opcode or Status w/ Source Lines time count
Base: umnbol mnemonic w/symbal relative
pr0|main. Block_1 3AH, opcode fetch ROM
pstore _target_tetB0EE] AAH, mem read
pstore ge.Block_2+BEHET C4H, opcode fetch ROM
+883 dat|_target_temp 45H, mem write 2.63 mS
pstore _target_tet+BHEH] BBH, mem read
pstore ge.Block_2+HEEHT C4H, opcede fetch ROM
+H8B8E dat|_target_temp 47H, mem write 254, mS
pstore _target_tet+BAAHE] AEH, mem read
pstore ge.Block_Z+B8887 C4H, opcode fetch ROM
+HAT dat|_target_temp 49H, mem write 183. mS
pstore _target_te+BEEE] HAH, mem read
pstore ge.Block_2+BEEET C4H, opeoode fetch ROM
+812 dat |_t arget_temp 4BH, mem write 138. mS
pstore _target_tet+HdEH] BEH, mem read
pstore ge.Block_2+HEEHT C4H, cpcede fetch ROM
+H15 dat |_target_temp 40H, mem write 187. mS

To change the count qualifier

Use thecounting option in therace command.

After initializing the analyzer, the default count qualifier is "off". When counting is
turned OFF, up to 1024 states can be stored in the trace.

When you count states, the counter is incremented each time the state is captured
(not necessarily stored) by the analyzer. When a state is counted, up to 512 states
can be stored in the trace.

You can only count time reliably if the processor clock speed is less than or equal
to 16 MHz. When time is counted, up to 512 states can be stored in the trace.

211

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

Examples Suppose you want to know how many loops of the program occur between calls of
the "do_sort" function. To change the count qualifier to count a state that occurs
once for each loop of the program, enter:

trace only do_sort status exec counting state
main."main.c": line 102 status exec <RETURN>

set source off <RETURN>

race List B More data off

Label: Address Opcode or Status state count
Base: umnbol mremonic wfsymbol relative
ge.Block_l+BEA11 FFH, opcode fetch ROM -

+dd1 prog_ma|_do_sort INSTRUCTION--opcode unawvailable
+HEz prog_ma|_do_sort INSTRUCTION--opcode unawvailable
+883 prog_ma|_do_sort IMNSTRUCTIOM--opcode unawailable
+B84 prag_ma|_do_sort INSTRUCTIOM--opcade unawailable
+B85 prog_ma|_do_sort INSTRUCTIOM--opcode unawailable
+HEE prog_ma|_do_sort INSTRUCTIOM--opcode unawailable
+BA7 prog_ma|_do_sort INSTRUCTIOM--opcode unavailable
+BA8 prog_ma|_do_sort INSTRUCTIOM--opcode unavailable
+Hd63 prog_ma|_do_sort INSTRUCTION--opcode unawvailable
+d16 prog_ma|_do_sort INSTRUCTION--opcode unawvailable
+H11 prog_ma|_da_sort INSTRUCTIOM--ocpeoode unawvailable
+812 praog_ma|_do_sort INSTRUCTIOM--opcade unawailable
+613 prog_ma|_do_sort INSTRUCTIOM--opcode unawailable
+814 prog_ma|_do_sort INSTRUCTIOM--opcode unawailable
+615 prog_ma|_do_sort INSTRUCTIOM--opcode unavailable

[N N N O N N N SO S N NN

The trace listing above shows that the program loops 4 times for each call of the
"do_sort" function.

212

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

To trace until the analyzer is halted

Chooselrace - Until Stop.

Using the command line, enter tinace on_haltcommand.

Thetrace on_haltcommand allows you to prevent triggering. In other words, the
trace runs until you enter tistop_tracecommand. Th&ace on_haltcommand
is the same as tracihgfore a state that never occurs.

Thetrace on_haltcommand is useful, for example, when you wish to trace the
states leading up to a break into the monitor. Suppose your program breaks on an
access to guarded memory. To trace the states that lead up to the break, enter the
trace on_haltcommand, and run the program. When the break occurs, the
emulator is running in the background monitor, and the analyzer is no longer
capturing states. To display the states leading up to the break, estepttieace
command (and thdisplay trace command if traces are not currently being
displayed).

When theon_halt option is used in a trace command, the trigger condition (and
position) options, as well as thepetitively andbreak_on_trigger options, cannot
be included in the command.

213

Chapter 7: Using the Emulation Analyzer
Qualifying Trigger and Store Conditions

. Examples

To break emulator execution on the analyzer
trigger

Enter a trigger state specification in the entry buffer; then, chioase - Until ().

When displaying memory in mnemonic format, position the mouse pointer over the
program line which you wish to trace before, press and hokkethetmouse
button and choosErace Until from the popup menu.

Using the command line, use threak_on_trigger option to therace command.
Thebreak_on_trigger option to thérace command allows you to cause the
emulator to break when the analyzer finds the trigger state.

Note that the actual break may be several cycles after the analyzer trigger.

To trace before source line 102 and cause the emulator to break into the monitor
when the analyzer triggers:

trace before address main."main.c": line 102
break_on_trigger <RETURN>

214

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Using the Sequencer

When you use the analyzer’'s sequencer, you can specify traces that trigger on a
series, or sequence, of states. You can specify a state which, when found, causes
the analyzer to restart the search for the sequence of states. Also, the analyzer’s
sequencer allows you to trace "windows" of code execution.

This section describes how to:

» Trigger on a sequence of states.

» Specify a global restart state.

» Trace "windows" of program execution.

The sequencing and windowing capabilities from within the Softkey Interface are
not as powerful or flexible as they are from within the Terminal Interface. For
example, in the Terminal Interface, you can specify different restart states for each
sequence term and you can set up a windowing trace specification where the
does not have to be in the window. If you do not find the sequencing flexibility
you need from within Softkey Interface, refer to 8486/8/XL/EA/EB Emulator
User’s Guide for the Terminal Interface

To trigger after a sequence of states

Use thdrace find_sequenceommand.

The analyzer's sequencer has several levels (also saliegnce terms Each
state in the series of states to be found before triggering, as well as the trigger state,
is associated with a sequence term.

The sequencer works like this: The analyzer searches for the state associated with
the first sequence term. When that state is captured, the analyzer starts searching
for the state associated with the second term, and so on. The last sequence term
used is associated with the trigger state. When the trigger state is captured the
analyzer is triggered. Up to seven sequence terms and an optional occurrence count
for each term are available.

215

Chapter 7: Using the Emulation Analyzer

Using the Sequencer

Examples

In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and finally the
"do_sort" function. Also, suppose you wish to store only opcode fetches of the
assembly language PUSH BP instruction (whose opcode is 55H) to show function
entry addresses.

To set up the sequencing trace specification, enter the following trace command.

trace find_sequence save_points status exec then
interrupt_sim status exec trigger about do_sort status
exec onlydata 0xx55h status procopf <RETURN>

set source off <RETURN>

3 More data off scree
Label: Address Opcode or Status time count
Base: umnbol mnemonic w/symbal relative
-A35 pro|_save_points 55H, opecode fetch RO 13.6 m5
-B34 pro|_save_points 55H, opcode fetch ROM 4.88 uS
sq adv pro|_save_points FUSH BF 166 n3
-B3z lib|DIV_F32A_L 55H, opcode fetch ROM 7.67 m5
-B31 lib| lib+BB2BS 55H, opcode fetch ROM 28.2 U5
-B38 lib| lib+BB4ER 55H, opcode fetch ROM 58.52 U5
-B23 lib|DIV_F32A_L 55H, opcode fetch ROM 311 us
-B28 lib| lib+BB2BS 55H, opcode fetch ROM 28.2 uS
-B27 lib| lib+BB4ER 55H, opcode fetch RiOM 58.48 U5
-B26 prog|_graph_data 55H, opcode fetch ROM 268. 1 u3
-B25 pro|_get_targets 55H, opcode fetch ROM 4.8 u3
-H24 p|_interrupt_sim 55H, opeoode fetch ROM 7.96 wu3
sq adv p|_interrupt_sim FUSH BF 128 nS
-822 prog_ma|_strcpyB 55H, opcede fetch ROM 3.43 w3
-8z1 p|_proc_specific 55H, copcede fetch ROM 7.84 Ul
-B28 p|_update_system 55H, opecede fetch ROM 4.24 m3

Notice the states that contain "sq adv" in the first column (you may have to press
<PREV> in order to see the states captured prior to the trigger). These are the

states associated with (or captured for) each sequence term. Just as the trigger state

is always stored in trace memory, the states captured in the sequence are always
stored if the trace buffer is deep enough.

Note that, when using a 80186 processor (with a 16-bit data bus), the trace
command above does not prestore all function entries because only low byte reads
of 55H are captured. You can qualify high byte reads of 55xxH or low byte reads
of Oxx55H by using the storage qualifaarly data Oxx55h status procopf or data
55xxh status procopf

216

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

Examples

To specify a global restart state

Use theaestart option to thérace command.

When using the analyzer's sequencer, an additional sequence restart term is also
allowed. This restart is a "global restart"; that is, it applies to all the sequence terms.

The restart term is a state which, when captured before the analyzer has found the
trigger state, causes the search for the sequence of states to start over. You can use
the restart term to make certain some state does not occur in the sequence that
triggers the analyzer.

In the demo program, suppose you wish to trigger on the following sequence of
events: the "save_points" function, the "interrupt_sim" function, and the "do_sort"
function. However, you only want to trigger when the "interrupt_sim" calls the
"do_sort" function. In other words, if the "proc_specific" function is entered be
the "do_sort" function is entered, you know "interrupt_sim" did not call "do_sor
this time, and the analyzer should start searching again from the beginning.

Again, suppose you wish to store only opcode fetches of the assembly language
PUSH BP instruction (whose opcode is 55H).

To set up this sequencing trace specification, enter the following trace command.

trace find_sequence save_points status exec then
interrupt_sim status exec restart proc_specific status
exec trigger about do_sort status exec only data 0x55h

status procopf <RETURN>

set source off <RETURN>

217

Chapter 7: Using the Emulation Analyzer

Using the Sequencer

race List

Label: Address Opcode or Status time count

Base: unbol mnemonic w/symbal relative

-Bar lib| lib+BB2B5 55H, opcode fetch RiOM 28.2 U5
-BaE lib| lib+BB4ER 55H, opcode fetch ROM 58.52 U5
-B[A5 prog|_graph_data 55H, opcode fetch ROM 268. 1 u3
-884 pro|_get_targets 35H, opcode fetch ROM 4.8 u3
-HE3 p|_interrupt_sim 55H, opeoode fetch ROM 7.96 wu3
sq adv p|_interrupt_sim PUSH BP 128 nS
-BE1 prog_ma|_dao_sart 55H, copcede fetch ROM 5.22 mS
prog_ma|_do_sort FUSH BF 1268 nS
+BA1 prog_ma|_strcpuyl 55H, opecode fetch RiOM 12.7 m5
+HAZ |_gen_ascii_data 55H, opcode fetch ROM 416. u3
+HE3 prog_ma|_5trcpga 55H, opcode fetch ROM 13.4 ug
+EHES |_gen_ascii_data 55H, opeoode fetch ROM 416. us
+885 prog_ma|_strcpyd 55H, opeoode fetch ROM 15.4 uS§
+B886 |_gen_ascii_data 55H, opcede fetch ROM 418. us
+887 prog_ma|_strcpyd 55H, copcede fetch ROM 1.4 u5
+HB8 |_gen_ascii_data 55H, opecede fetch ROM 418. us

Notice in the preceding trace (you may have to press <PREV> in order to see the
states captured prior to the trigger) that, in addition to states captured in the
sequence, "sqg adv" is also shown next to states which cause a sequencer restart.

To trace "windows" of program execution

Use theenableanddisable options to thérace command.

Windowing refers to the analyzer feature that allows you to turn on, or enable, the
capturing of states after some state occurs then to turn off, or disable, the capturing
of states when another state occurs. In effect, windowing allows you capture
"windows" of code execution.

Windowing is different than storing states in a rangedttg range option in the

trace command syntax) because it allows you to capture execution of all states in a
window of code whereas storing states in a range won't capture the execution of
subroutines that are called in that range or reads and writes to locations outside that
range.

When you use the windowing feature of the analyzer, the trigger state must be in
the window or else the trigger will never be found.

218

Chapter 7: Using the Emulation Analyzer
Using the Sequencer

If you wish to combine the windowing and sequencing functions of the analyzer,
there are some restrictions:

» Up to four sequence terms are available when windowing is in effect.
* Global restart is not available when windowing is in effect.

« Occurrence counts are not available.

Examples In the demo program, suppose you are only interested in the execution that occurs
within the switch statement of the "combsort" function. You could specify source
line number 229 as the window enable state and the source line number of the next
statement (line number 241) as the window disable state. Set up the windowing
trace specification with the following command.

trace enable main."main.c": line 229 status exec
disable main."main.c": line 241 status exec <RETURN>

set source on <RETURN>

1= More data off screen
time count

Label: Address Opcode ar Status wé Source Lines

Basze: yrmbol mremonic wdsymbal relative
+A32 Bl.Block_l+BBE1E EEH, opcode fetch ROM 368 nS
+A33 Bl.Block_l1+BBA1E JMP SHORT combsor.Block_1+8H36H 128 nS
+A34 Bl.Block_1+BBEBIC B4H, opcode fetch ROM g6. nS
+A35 Bl.Block_l+88E810 38H, opcode fetch ROM 288 nS
+A36 co. Block_1+BHR36 AlH, opcode fetch ROM 328 nS

g imain.c - line 233 thru 241 BERBHBHSUSUSSREHEREHERERARARARRE

sq adv co.Block_1+BBA36 MOV AX,BC1EH 164 nS
FHfERE R Emain.c - line 227 thru 223 BERBHHHHUHUHSHEHEREHERERARARARARE

itch)
sq adv co.Block_l+ABB30 IWSTRUCTION--opcode unavailable
+A39 co.Block_1+AAA3E lEH, opcode fetch ROM 126 nS

Notice in the resulting trace (you have to press the <NEXT> key) that the enable
and disable states have the "sq adv" string in the line number column. This is
because the windowing feature uses the analyzer's sequencer.

219

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Modifying the Trace Display

This section describes the options available when displaying trace lists.
This section describes how to:

» Display the trace about a line number.

» Display the trace in absolute format.

» Display the trace in mnemonic format.

» Display the trace with high-level source lines.

» Display the trace with symbol information.

* Change the column widths in the trace display.

» Display time counts in absolute or relative format.

» Display the trace with address information offset by a value.
» Return to the default trace display.

» Display the external analyzer information.

220

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace about a line number

Use the<LINE #> option to thelisplay trace command.

The<LINE #> trace display option allows you to specify the line number to be
centered in the display.

To display the trace about line number 149:

set default <RETURN>
display trace 149 <RETURN>

race List 0f t=H More data of f screen
Label: HAddress Opcode or Status time count
Base: he mremonic relative
+142 a1505 81H, opcode fetch RaH 286 n5
+143 G1506 CGH, opcode fetch RO 286 nS
+144 19FBS 58H, mem write 286 n3
+145 13FB3 81H, mem write 2688 n3
+146 15FBE EEH, mem write 288 nS
+147 19FB7 BBH, mem write 288 nS
+148 g15ER 55H, opcode fetch Ram 244 nS
+143 315E6 FUSH BF 168 n5
+154 A15E7 8BH, opcode fetch RaH 48, n3
+151 G15ES ECH, opcode fetch RO 286 nS
+152 19FB4 ECH, mem write 2688 n3
+153 19FES 7EH, mem write 2686 nS
+154 2157 HMOW EP,SP 2a. n5
+155 a15E9 1EH, opcode fetch R 1268 nS
+156 g15E3 FUSH 05 166 nS
+157 A15ER B3H, opcode fetch RO 44, nS

221

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace in absolute format

Use theabsoluteoption to thedisplay trace command.

Theabsolutetrace display option allows you to display status information in
absolute format (binary, hex, or mnemonic). @hsolute status mnemonic
display is the same as default mnemonic display, except that opcodes are not
disassembled.

To display the trace in absolute format with the status information as binary values:

display trace absolute status binary <RETURN>
race List 0f =M More data off =

Label: HAddress Data Absolute Status time count
bBase: he he binary relative
+142 81505 81 111818111188 286 nS
+143 81506 CE 111@1@1111@88 286 nS
+144 19FB8 58 11111@111118 280 nS
+145 19FBS 81 11111@111118 2686 n5
+146 19FBE 56 11111@111118 286 nS
+147 19FB7 BB 111118111118 2686 nS
+148 B15E6 55 11l@1a1i11aE8 244 nS
+143 B15E6 pE Blelialeilil 16A n5
+158 B15E7 BB 111@1@111188 48. nS
+151 B15E8 EC 111@1@1111@88 286 nS
+152 19FB4 EC 11111@111118 286 nS
+153 19FB5S JE 11111@111118 2686 n5
+154 B15E7 BB B1B11A1A1111 8a. nS
+155 B15E9 IE l1lBlB111168 1268 nS
+156 815E9 AE Blellalalllil 166 nS
+157 B15EA BE 111@1@111168 48, n5

222

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

Examples

To display the trace in mnemonic format

Use thannemonicoption to thalisplay trace command.

Themnemonictrace display option allows you to display the trace information in
mnemonic format (that is, opcodes and status). The default trace display is in
mnemonic format.

To display the trace in mnemonic format:

display trace mnemonic <RETURN>

race List 0f t=H More data of f screen
Label: HAddress Opcode or Status time count
Base: he mremonic relative
+142 a1505 81H, opcode fetch RaH 286 n5
+143 G1506 CGH, opcode fetch RO 286 nS
+144 19FBS 58H, mem write 286 n3
+145 13FB3 81H, mem write 2688 n3
+146 15FBE EEH, mem write 288 nS
+147 19FB7 BBH, mem write 288 nS
+148 g15ER 55H, opcode fetch Ram 244 nS
+143 315E6 FUSH BF 168 n5
+154 A15E7 8BH, opcode fetch RaH 48, n3
+151 G15ES ECH, opcode fetch RO 286 nS
+152 19FB4 ECH, mem write 2688 n3
+153 19FES 7EH, mem write 2686 nS
+154 2157 HMOW EP,SP 2a. n5
+155 a15E9 1EH, opcode fetch R 1268 nS
+156 g15E3 FUSH 05 166 nS
+157 A15ER B3H, opcode fetch RO 44, nS

223

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display the trace with high-level source lines

Use theset sourcecommand.

To include high-level source lines in the trace display, you must usetthe
command. Theetcommand allows you to include symbolic information in trace,
memory, register, and software breakpoint displays. s€eb@mmand affects all
displays for the current window.

Theset source on/off/onlycommand allows you to include source file information
in the trace list or memory mnemonic display. $herce onlyoption specifies
that only the source file information will be displayed.

When source lines are included, comments that contain file and line information
appear before the source lines.

Also, when source lines are turned on, three additional options are available in the
set command: inverse video, tabs are, and number of source lines.

Theinverse_videooption allows you to display source lines in inverse video.

Thetabs_areoption allows you to specify the number of spaces between tab stops
so that the appropriate number of spaces can be inserted for source lines. The
default value is eight. Values from two to 15 can be entered.

Typically, there are lines in the source file that are not associated with actual
instructions (declarations, comments, etc.). filn@ber_of_source_linesoption

allows you to specify the number of these source lines to be displayed for every
source line that is associated with an actual instruction. Only source lines up to the
the previous source line that corresponds to actual code will be displayed. The
default value is five. Values from one to 50 can be entered.

To display the trace with high-level source lines:

set source on <RETURN>
display trace <RETURN>

224

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

- ist 5 More data of f en
Label: Address Opcode or Status w/ Source Lines time count
Basze: he mnemonic relative
+142 81505 81H, opcode fetch Rat 286 nS
+143 81506 CEH, opcode fetch Fa 286 nS
+144 19FES 58H, mem write 2868 n3
+145 19FES 81H, mem write 2688 n3
+146 19FEER 5EH, mem write 2686 nS
+147 19FB7 BBH, mem write 288 nS
+148 B15ER 55H, opcode fetch RO 246 nS

i ini t_system.c - line BE thru [l s tus s ifudgifugifukusidi3: fukadigng ifinigifidig]
Returns: Mothing.
A R A R K K R KK R

wvoid

init_wal_arri}

!
+1419 815EE PUSH EP 168 nS
+154 315E7 8BH, ocpcode fetch Ra 4d. nS
+151 315ES ECH, ocpcode fetch Ra 284 nS

To set the number of source lines to be displayed at 12:

set source on number_of _source_lines 12 <RETURN>
display trace <RETURN>

race ; More data off en
Label: HAddress Opcode or Status w/ Source Lines time count
Base: he mremonic relative
Bl init_system.c - line BE thru G0 HENHEHAHAHAHARBHERERERERES

*

Description: This code initializes the wal_arr data structure.

*
w
* Parameters: none
*
References: Mone.
*

Returns: Mothing.
KA KKK K KKK K

woid

init_wal_arr(})

1
+1419 A15EE PUSH BF 166 nS
+154 g15E7 3BH, opcode fetch Ram 44, nS
+151 A15ER ECH, opcode fetch ROM 2688 nS

225

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

To display the trace with symbol information

Theset symbols on/oftommand allows you to specify that address information be
displayed in terms of program symbols.

Examples To display the trace with symbol information:

set source off symbols on <RETURN>
display trace <RETURN>

More data off -

Label: Address Opcode or Status time count

Base: umnbol mnemonic w/symbal relative

+143 pr|_init_va1_arr FUSH EBP 166 nS
+15H init_wal_at+dHAER] BBH, opcode fetch ROM 46. n3
+151 init_wval_at+tdBAERZ ECH, opcode fetch ROM 268 n3
+132 stackheap+d7EDG ECH, mem write 288 n3
+153 stackheap+d7EDY 7EH, mem write 288 nS
+154 init_wal_s+BAEA1 MOV BP,SP 8a. nS
+155 init_val_s+BB0883 lEH, opcode fetch ROM 128 nS
+156 init_wal_s+AAEA3 FUSH D3 168 n5
+157 init_val_s+B88084 B8H, opecede fetch ROM 4a. nS
+158 init_wal_at+BAERS B2H, opcode fetch ROM 268 n3
+153 stackheap+d7ED4 BzH, mem write 2686 n3
+164H stackheap+A7EDS 1BH, mem write 288 nS
+161 init_wval_s+BEEE4 MOV AX, #10B2H 2a. n5
+1E62 init_val_=+BBBBE lBH, opcode fetch ROM 126 nS
+163 init_val_s+BB80887 8EH, cpcede fetch ROM 2688 nS
+164 init_val_s+@8887 MOV DS, AR | 168 n5

226

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To change column widths in the trace display

* Use theset width command.

Theset width command allows you to change the width of the address and
mnemonic (or absolute) columns in the trace list. Values from one to 80 can be
entered.

When address information is being displayed in terms of symbols (in other words,
symbols on), you may wish to increase the width of the address column to display
more of the symbol information.

When trace information is displayed in mnemonic format, you can additionally
specify the width of symbols in the "Opcode or Status" column.

Examples To display the trace with the address column width set to 30 characters:

set width label 30 <RETURN>
display trace <RETURN>

race List 0f t=H More data off ser
Label: Address Opcode or Status
Base: umbo | mnemonic wi/synbols
+143 prog_init_sJstem|_init_va1_arr PUSH BF
+15H prog_init_s|init_val_arr+dd6g1 8BH, opcode fetch ROM
+151 prog_init_s|init_val_arr+@dB82 ECH, opcode fetch ROM
+132 userstack|stackheap+B7EDG ECH, mem write
+153 userstack|stackheap+td7ED? 7EH, mem write
+154 prog_init_s|init_wal_arr+@88E1 MOV BF, 5P
+155 prog_init_s|init_wal_arr+HEEE3 1EH, opcode fetch ROM
+156 prog_init_s|init_wal_arr+BAAE3 PUSH 05
+157 prog_init_s|init_wval_arr+HBAEE4 BEH, opcoode fetch ROM
+158 prog_init_s|init_val_arr+@d685 B2H, opcode fetch ROM
+153 userstack|stackheap+d7ED4 BzH, mem write
+164H userstack|stackheap+tB7EDS 1BH, mem write
+1E61 prog_init_s|init_wval_arr+B8EE4 MOV Ak, f16EZH
+1E62 prog_init_s|init_wal_arr+HAEEG 18H, opcode fetch ROM
+163 prog_init_s|init_wval_arr+H8EE7 8EH, cpcode fetch ROM
+164 prog_init_s|init_wal_arr+BBAE? MOV 05, AR

227

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To display time counts in absolute or relative
format

Use thecount option to thalisplay trace command.

Count information may be displayed two ways: relative (which is the default), or
absolute. When relative is selected, count information is displayed relative to the
previous state. When absolute is selected, count information is displayed relative to
the trigger condition.

Thecount absolute/relativetrace display option is not available when counting is
turned off in the trace command.

To display the trace with absolute time counts:

set default <RETURN>

display trace count absolute <RETURN>
st ¢ t =D pp——

Label: HAddress Opcode or Status time count
Base: he mhemonic _ absolute
+149 415EE FUSH BF + 27.8 u5
+154 G15E7 8BH, opcode fetch RO + 27.8 u5
+151 G15E8 ECH, opcode fetch RO + 28.8 u5
+152 19FE4 ECH, mem write + 8.2 usS
+153 19FBS 7EH, mem write + 28.4 uS
+154 a15E7 MOV EP,SP + 28.5 uS
+155 g15E3 1EH, opcode fetch Ra + 28.6 5
+156 315E3 FUSH D5 + 28.8 u5
+157 A15ER B8H, opcode fetch RaM + 28.8 u5
+158 G15ER B2H, opcode fetch RO + 29.8 u5
+153 19FB2 B2H, mem write + 29.2 us
+16H 19FB3 18H, mem write + 29.4 us
+161 B15EA MOV AX, #1ABZH + 29.5 uf
+162 A1GEC 18H, opcode fetch RO + 29.6 uS
+163 a1&ED 8EH, opcode fetch ROM + 29.8 uS
+164 B15ED MOV DS,Ax | + 3d.8 uS

228

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To display the trace with addresses offset

» Use theoffset_byoption to thalisplay trace command.

Theoffset_bytrace display option allows you to cause the address information in
the trace display to be offset by the amount specified. The offset value is subtracted
from the instruction’s physical address to yield the address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use theoffset_byoption to change the address information so that it again agrees
with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

Examples To display the trace with addresses offset by 815E6H:
display trace offset_by 815e6h <RETURN>

race List 0ff=et=B15EE More data off screen
Label: Address Opcode or Status time count
Basze: he mnemonic absolute
+143 BAERA PUSH BP + 27.8 U5
+154 BAEA 1 BBH, opcode fetch FaM + 27.8 U5
+151 BAERZ ECH, opcode fetch FaM + 28.8 U5
+152 953CE ECH, mem write + 28.2 us
+153 983CF 7EH, mem write + 28.4 ug
+154 BAEE1 MOV BP,SP + 2B.5 U5
+155 BaEE3 lEH, opcode fetch Ra + 28.6 5
+156 BAERI PUSH O3S + 28.8 5
+157 BABR4 BAH, opcode fetch Rat + 28.8 U5
+158 BABAS BZH, opcode fetch FaM + 23.8 U5
+153 353CC BzH, mem write + 23.2 us
+1EH 383C0 18H, mem write + 29.4 usS
+161 BAEE4 MOV Ax, #1BBZH + 29.5 U5
+162 BAEBAE 18H, opcode fetch R + 29.6 S
+163 BaEa7 8EH, cpcode fetch Ra + 23.8 5
+164 g8eR7 MOV DS, AR | + JH.B U5

229

Chapter 7: Using the Emulation Analyzer
Maodifying the Trace Display

Examples

To return to the default trace display

Use theset defaultcommand.

Theset defaultcommand allows you to return to the default display.

To return to the default trace display:

set default <RETURN>
race List 0ffset=H More data off]

Label: HAddress Opcode or Status time count
Base: he mremonic relative
+143 815E6 PFUSH BF 16A n5
+156 815E7 8BH, opcode fetch ROM 48, n3
+151 G15ES ECH, opcode fetch RO 286 nS
+152 19FB4 ECH, mem write 2688 n3
+153 19FB& 7EH, mem write 288 nS
+154 a15E7 HMOW EP,SP 8a. nS
+155 g15E9 lEH, opcode fetch Ram 126 nS
+156 315E3 FUSH D5 168 n5
+157 A15ER BAH, opcode fetch RaH 48, n3
+158 G15ER BZH, opcode fetch RO 286 nS
+153 13FB2 BZH, mem write 2688 n3
+1EH 19FE3 18H, mem write 2686 nS
+161 B15EA MOV AX, #1ABZH 2a. n5
+162 A15EC 18H, opcode fetch R 1268 nS
+163 g15ED 3EH, opcode fetch Ram 284 nS
+164 B1SED MOV DS, AR | 168 n5

230

Chapter 7: Using the Emulation Analyzer
Modifying the Trace Display

To display external analyzer information

» Use theexternal option to thelisplay trace command.

Theexternal trace display option allows you to include data from the external
analyzer in the trace list. External bits are displayed by default. If you do not wish
to have the external bits information in the display, you can turn them off.

The bits associated with the external analyzer labels may be displayed in binary or
hexadecimal format. Labels must be defined in the external analyzer configuration
(and prior to trace command entry) before they appear as softkey selections when
displaying the trace. Refer to the "To define labels for the external analyzer
signals" description in the "Using the External State Analyzer" chapter.

Examples To display the "xbits" column in binary format:

display trace external xbits binary <RETURN>

race List 0ffset=A Ey—
Label: Opcode or Status time count =bits
Base: mremonic relative binary
+143 P 166 nS BOBOBEEREDEDADAG
+156 8EH, opcode fetch ROM 4d. nS BO0O0BEEEEREDA0EG
+151 ECH, opcode fetch ROM 26868 nS BO0O0BEEEEREDA0EG
+152 ECH, mem write 2688 nS BEEHEEEEEREDARAG
+153 7EH, mem write 2688 nS DEBEEEEREDEDEADAD
+154 ,SF 8d. nS BABHEEEHEREDEDAD
+155 1EH, opcade fetch ROM 128 nS DO0OEEEEEREREREa
+156 5 166 nS BE0E0EEERERERARAD
+157 BE8H, opcode fetch RO 48. nS BOBOBEEREDEDADAG
+158 BzH, opcode fetch ROM 26868 nS BO0O0BEEEEREDA0EG
+155 B2H, mem write 2688 nS BEEHEEEEEREDARAG
+1E8 18H, mem write 2688 nS DEBEEEEREDEDEADAD
+161 ,H1BBZH 36, nS DEBEEEEREDEDEADAD
+162 18H, opcode fetch RO 128 nS BABHEEEHEREDEDAD
+163 8EH, opcode fetch ROM 268 nS DO0OEEEEEREREREa
+164 ,AX | 166 nS BE0E0EEERERERARAD

231

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

Saving and Restoring Traces

The emulator/analyzer interface allow you to save trace commands and trace lists.
You can restore trace commands in order to set up the same trace specification.
You can restore traces in order to view trace data captured in the stored trace.

This section describes how to:
e Save trace commands.

e Restore trace commands.
e Save traces.

* Restore traces.

Examples

To save trace commands

ChooséFile - Store— Trace Spec

Using the command line, enter thtere trace_specommand.

You can save a trace command to a "trace specification” file and reload it at a later
time.

The trace command is saved in a file named "tspecfile.TS" in the current directory.
The extension ".TS" is appended to trace specification files if no extension is
specified in thestore trace_specommand.

To store the current trace command:

store trace_spec tspecfile <RETURN>

232

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

To restore trace commands

* ChooseFile - Load - Trace Spec

* Using the command line, enter tbad trace_specommand.

Trace commands that are restored will always work, even if symbols have been
changed; however, once you modify the trace command, it may no longer work.

Loading a trace specification does not start the trace; to do this, you must enter the
trace command either by selecting it from the Trace Specification Selection dialog
box or by using th&race — Again pulldown menu item.

Examples To bring back the trace command saved in "tspecfile. TS" and perform a trace
measurement using it:

load trace_spec tspecfile <RETURN>

trace again <RETURN>

233

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

To save traces

* ChooseFile - Store— Trace Data

* Using the command line, enter thtere tracecommand.

You can save a trace to a trace file and reload it at a later time.

The trace is saved in a file named "trcfile. TR" in the current directory. The
extension ".TR" is appended to trace files if it is not specified isttre trace
command.

Examples To store the current trace:

store trace trcfile <RETURN>

234

Chapter 7: Using the Emulation Analyzer
Saving and Restoring Traces

To restore traces

* ChooseFile - Load — Trace Data

* Using the command line, enter tbad trace command.

The restored trace depth is the depth specified when the trace was stored and cannot
be increased. You may want to increase the trace depth before storing traces.

When a trace is loaded, the trace command is not restoredcefagainor trace

modify command will use the last trace command entered, not the command which
resulted in the loaded trace. Also, the trace status shown Oigfiey status

command does not reflect the loaded trace.

Examples To restore the "trcfile. TR" trace file:

load trace trcfile <RETURN>

The trace information stored in "trcfile. TR" is restored. You can view the trace as
you would any other trace.

235

236

Making Software Performance
Measurements

237

Note

Making Software Performance
Measurements

The Software Performance Measurement Tool (SPMT) is a feature of the Softkey
Interface that allows you to make software performance measurements on your
programs.

The SPMT allows you to make some of the measurements that are possible with the
HP 64708 Software Performance Analyzer and its Graphical User Interface
(HP B1487).

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using tberf32 report generator utility.

Two types of software performance measurements can be made with the SPMT:
activity measurements, and duration measurements.

This chapter describes tasks you perform while using the Software Performance
Measurement Tool (SPMT). These tasks are grouped into the following sections:

» Activity performance measurements.
» Duration performance measurements.

* Running performance measurements and creating reports.

Because the Software Performance Measurement Tool uses time count information
from the emulation analyzer, it can only be used if the processor clock speed is less
than or equal to 16 MHz.

238

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Activity Performance Measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (reads and writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement will
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address range,
you can get an idea of how much activity in other areas is caused by the code
measured. An activity measurement report of the code (prog), data, and stac
sections of a program is shown below.

Label

prog
Address Range ADEH thru 1261H

Memory Activity
State Percent Rel = 57.77 Abs = 57.77
Mean = 295.80 Sdv = 26.77
Time Percent Rel = 60.97 Abs = 60.97

Program Activity
State Percent Rel = 99.82 Abs = 99.82
Mean =511.10 Sdv = 0.88
Time Percent Rel = 99.84 Abs = 99.84

data
Address Range 6007AH thru 603A5H

Memory Activity
State Percent Rel = 30.51 Abs = 30.51
Mean = 156.20 Sdv = 31.87
Time Percent Rel = 28.09 Abs = 28.09

239

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State Percent Rel= 0.18 Abs= 0.18
Mean = 0.90 Sdv= 0.88
Time Percent Rel= 0.16 Abs= 0.16

stack
Address Range 40000H thru 43FFFH

Memory Activity
State Percent Rel= 11.72 Abs = 11.72
Mean = 60.00 Sdv = 29.24
Time Percent Rel = 10.94 Abs = 10.94

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

prog 57.77%
data 30.5100 **rkrkrkkikkkikk
stack 11.729p *k*
Graph of Memory Activity relative time percents >= 1
prog 60.97%
data 28.090f *¥kxkxkkdkikkkk
stack 10.94% *xxxxx

Graph of Program Activity relative state percents >=1
prog 99.82%

Graph of Program Activity relative time percents >=1
prog 99.84%

Summary Information for 10 traces

Memory Activity
State count

Relative count 5120

Mean sample 170.67

Mean Standard Dv 29.30

95% Confidence 12.28% Error tolerance
Time count

Relative Time - Us 2221.20

Program Activity
State count
Relative count 5120
Mean sample 170.67
Mean Standard Dv 0.58
95% Confidence 0.24% Error tolerance
Time count
Relative Time - Us 2221.20
Absolute Totals

240

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Absolute count - state 5120
Absolute count - time - Us 2221.20

This section describes how to:
» Set up the trace command for activity measurements.
» Initialize activity performance measurements.

» Interpret activity measurement reports.

To set up the trace command for activity
measurements

1 Specify a trace display depth of 512.

2 Trace after any state, store all states, and count time.

Before you initialize and run performance measurements, the current trace
command (in other words, the last trace command entered) must be properly

In general, you want to give the SPMT as many trace states as possible to
post-process, so you should increase the trace depth to the maximum number, as
shown in the following command.

If you wish to measure activity as a percentage of all activity, the current trace
command should be the default (in other wordge <RETURN>). The default

trace command triggers on any state, and all captured states are stored. Itis
important that time be counted by the analyzer; otherwise, the SPMT measurements
will not be correct. Also, since states are stored "after" the trigger state, the
maximum number of captured states appears in each trace list.

You can qualify trace commands any way you like to obtain specific information.
However, when you qualify the states that get stored in the trace memory, your
SPMT results will be biased by your qualifications; the percentages shown will be
of only those states stored in the trace list.

241

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Examples

To specify a trace depth of 512:
display trace depth 512 <RETURN>

To trace after any state, store all states, and count time:

trace counting time <RETURN>

To initialize activity performance measurements

Use theperformance_measurement_initializecommand.

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements. This is done by initializing the
performance measurement. You can initialize the performance measurement in the
following ways:

» Defaultinitialization (using global symbols if the symbols database is loaded).
+ Initialize with user-defined files.

» Initialize with global symbols.

» Initialize with local symbols.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Default Initialization

Entering theperformance_measurement_initializzzcommand with no options

specifies an activity measurement. If a valid symbolic database has been loaded,
the addresses of all global procedures and static symbols will be used; otherwise, a
default set of ranges that cover the entire processor address range will be used.

242

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Initialization with User Defined Ranges

You can specifically give the SPMT address ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initializecommand.

Address range files may contain program symbols (procedure name or static), user
defined address ranges, and comments. An example address range file is shown
below.

Any line which starts with a # is a comment.
All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symboll -> program_symbol2

"->" means thru. The above will define a range which starts with symboll
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 thru the end of symbol2.
dirl/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

Initialization with Global Symbols

When theperformance_measurement_initializecommand is entered with no

options or with thegylobal_symbolsoption, the global symbols in the symbols

database become the address ranges for which activity is measured. If the symbols
database is not loaded, a default set of ranges that cover the entire processor address
range will be used.

The global symbols database contains procedure symbols, which are associated
with the address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

Initialization with Local Symbols

When theperformance_measurement_initializecommand is entered with the
local_symbols_inoption and a source file name, the symbols associated with that
source file become the address ranges for which activity is measured. If the
symbols database is not loaded, an error message will occur telling you that the
source filename symbol was not found.

243

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

You can also use thecal_symbols_inoption with procedure symbols; this allows
you to measure activity related to the symbols defined in a single function or
procedure.

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frometieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

244

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Examples Suppose the "addr_ranges" file contains the names of all the functions in the "ecs"
demo program loop:

combsort
do_sort
gen_ascii_data
get_targets
graph_data
interrupt_sim
proc_specific
read_conditions
save_points
set_outputs
strcpy8
update_system
write_hdwr

Since these labels are program symbols, you do not have to specify the address
range associated with each label; the SPMT will search the symbol database for the
addresses of each label.

An easy way to create the "addr_ranges" file is to usediiyeglobal_symbols
command to copy the global symbols to a file named "addr_ranges"; then, fork a
shell to UNIX (by entering "! <RETURN>" on the Softkey Interface command

line) and edit the file so that it contains the procedure names shown above. Enter a
<CTRL>d at the UNIX prompt to return to the Softkey Interface.

To initialize the activity measurement with a user-defined address range file:

performance_measurement _initialize addr_ranges <RETURN>

245

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

To interpret activity measurement reports

* View the performance measurement report.

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The reports generated for activity measurements
show you the percentage of analyzer trace states that are in the specified address
range, as well as the percentage of time taken by those states. The performance
measurement must include four traces before statistics (mean and standard
deviation) appear in the activity report. The information you will see in activity
measurement reports is described below.

Memory Activity All activity found within the address range.
Program Activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the

execution of those instructions (reads and writes to memory, stack pushes, etc.).

Relative With respect to activity in all ranges defined in the performance
measurement.

Absolute With respect to all activity, not just activity in those ranges defined in
the performance measurement.

Mean Average number of states in the range per trace. The following equation is
used to calculate the mean:

states in_range
mean =
toral states

246

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Standard Deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

i=1

N
std dev = ’\/Nl__f X 3 Ssumq — N (mean)2

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.
Ssumgq Sum of squares of states in the range per trace.

Symbols Within Range Names of other symbols that identify addresses or
ranges of addresses within the range of this symbol.

Additional Symbols for Address Names of other symbols that also identify
this address.

Note that some compilers emit more than one symbol for certain addresses.
example, a compiler may emit "interrupt_sim" and "_interrupt_sim" for the first
address in a routine named interrupt_sim. The analyzer will show the first symbol

it finds to represent a range of addresses, or a single address point, and it will show
the other symbols under either "Symbols within range" or "Additional symbols for
address", as applicable. In the "interrupt_sim" example, it may show either
“interrupt_sim" or "_interrupt_sim" to represent the range, depending on which
symbol it finds first. The other symbol will be shown below "Symbols within

range" in the report. These conditions appear particularly in default measurements
that include all global and local symbols.

Relative and Absolute Counts Relative count is the total number of states
associated with the address ranges in the performance measurement. Relative time
is the total amount of time associated with the address ranges in the performance
measurement. The absolute counts are the number of states or amount of time
associated with all the states in all the traces.

247

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Examples

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

error pct, = m‘ x 100

Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of traces in the measurement.

Pm Mean of the means (i.e., mean sample).

Consider the following activity measurement report (generated with the commands
shown):

display trace depth 512 <RETURN>
trace counting time <RETURN>
performance_measurement _initialize addr_ranges <RETURN>

performance_measurement_run 20 <RETURN>
performance_measurement_end <RETURN>
Iperf32 | more

248

Chapter 8: Making Software Performance Measurements

Label

strcpy8
Address Range 800F8H thru 8016CH

Memory Activity
State Percent Rel = 21.89 Abs = 14.61
Mean = 74.80 Sdv =154.20
Time Percent Rel = 23.01 Abs = 14.88
Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00
set_outputs

Address Range 818ABH thru 819A7H

Memory Activity
State Percent Rel = 17.37 Abs = 11.59
Mean = 59.35 Sdv = 144.95
Time Percent Rel= 17.89 Abs = 11.57
Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00
update_system
Address Range 81642H thru 81735H

Memory Activity
State Percent Rel = 13.70 Abs = 9.14
Mean = 46.80 Sdv = 144.05
Time Percent Rel= 12.08 Abs = 7.81

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

do_sort

Address Range 805EFH thru 806C2H

Memory Activity
State Percent Rel = 12.63 Abs = 8.43

Mean = 43.15 Sdv =120.87
Time Percent Rel= 12.94 Abs = 8.37

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

proc_specific

Activity Performance Measurements

249

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Address Range 81C88H thru 81CAFH

Memory Activity
State Percent Rel= 6.82 Abs= 455
Mean = 23.30 Sdv =104.20
Time Percent Rel= 6.04 Abs= 3.90

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

read_conditions
Address Range 81806H thru 818AAH

Memory Activity
State Percent Rel= 5.79 Abs= 3.87
Mean = 19.80 Sdv = 88.55
Time Percent Rel= 5.96 Abs = 3.86

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

write_hdwr
Address Range 819A8H thru 81A56H

Memory Activity
State Percent Rel= 5.79 Abs= 3.87
Mean = 19.80 Sdv = 88.55
Time Percent Rel= 5.95 Abs= 3.85

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

gen_ascii_data
Address Range 8016DH thru 80322H

Memory Activity
State Percent Rel= 5.78 Abs = 3.86
Mean = 19.75 Sdv = 88.09
Time Percent Rel= 5.94 Abs= 3.84

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv= 0.00
Time Percent Rel= 0.00 Abs = 0.00

save_points
Address Range 81A57H thru 81B82H

Memory Activity

250

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

State Percent Rel= 5.77 Abs= 3.85
Mean = 19.70 Sdv = 88.10
Time Percent Rel= 5.95 Abs= 3.85

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

combsort
Address Range 80323H thru 805EEH

Memory Activity
State Percent Rel= 4.46 Abs= 2.98
Mean = 15.25 Sdv = 47.17
Time Percent Rel= 4.24 Abs= 274

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

get_targets
Address Range 81736H thru 81805H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

graph_data
Address Range 81B83H thru 81C5EH

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

interrupt_sim
Address Range 80051H thru 800F7H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

251

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

proc_spec_init
Address Range 81C60H thru 81C87H

Memory Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Program Activity
State Percent Rel= 0.00 Abs = 0.00
Mean = 0.00 Sdv = 0.00
Time Percent Rel= 0.00 Abs = 0.00

Graph of Memory Activity relative state percents >= 1

StGCyS 2189% *kkkkkkkkkk
set_outputs 17.37% ***xkkrxx
update_system 13.70% *rrxrrx
do_sort 12.63% *xiwkkx
proc_specific 6.82% ****
read_conditions 5.79% ***
write_hdwr 5.79% ***
gen_ascii_data 5.78% ***
save_points 5.77% ***
combsort 4.46% **

Graph of Memory Activity relative time percents >= 1

Stl’prS 23.010p *Fxkrkkkkkix
set_outputs 17.89% ***xkirrx
update_system 12.08% *rrrrx
do_sort 12,949 rriwkkx
proc_specific 6.04% ***
read_conditions 5.96% ***
write_hdwr 5.95% ***
gen_ascii_data 5.94% ***
save_points 5.95% ***
combsort 4.24% **

Graph of Program Activity relative state percents >= 1

Graph of Program Activity relative time percents >=1

Summary Information for 20 traces

Memory Activity

State count
Relative count 6834
Mean sample 24.41

252

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements
Mean Standard Dv 76.34
95% Confidence 146.45% Error tolerance

Time count
Relative Time - Us 1068.96

No hits within range, Summary not available for Program Activity

Absolute Totals
Absolute count - state 10240
Absolute count - time - Us 1652.72

The measurements for each label are printed in descending order according to the
amount of activity. You can see that the strcpy8 function has the most activity.
Also, you can see that no activity is recorded for several of the functions. The
histogram portion of the report compares the activity in the functions that account
for at least 1% of the activity for all labels defined in the measurement.

253

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Duration Performance Measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The analyzer trace command is set up to store only the entry
and exit states of the module to be measured (for example, a C function or Pascal
procedure). The SPMT provides two types of duration measurements: module
duration, and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

When using the SPMT to perform duration measurements, there should be only two
addresses stored in the trace memory: the entry address, and the exit address.
Recursion can place several entry addresses before the first exit address, and/or
several exit addresses before the first entry address. Duration measurements are
made between the last entry address in a series of entry addresses, and the last exit
address in a series of exit addresses (see the figure below). All of the entry and exit
addresses which precede these last addresses are assumed to be unused prefetches,
and are ignored during time measurements.

START - assumed prefetch

START - assumed prefetch

START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch Measure duration
END - assumed prefetch

END - last EXIT address -

START - assumed prefetch

START - assumed prefetch Measure duration
START - assumed prefetch

START - last ENTRY address -

END - assumed prefetch

END - assumed prefetch

When measuring a recursive function, module duration will be measured between
the last recursive call and the true end of the recursive execution. This will affect
the accuracy of the measurement.

254

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

If a module is entered at the normal point, and then exited by a point other than the
defined exit point, the entry point will be ignored. It will be judged the same as any
other unused prefetch, and no time-duration measurement will be made. Its time
will be included in the measure of time spent outside the procedure or function.

If a module is exited from the normal point, and then reentered from some other
point, the exit will also be assumed to be an unused prefetch of the exit state.

Note that if you are making duration measurements on a function that is recursive,
or one that has multiple entry and/or exit points, you may wind up with invalid
information.

This section describes how to:
» Set up the trace command for duration measurements.
» Initialize duration performance measurements.

* Interpret duration measurement reports.

To set up the trace command for duration
measurements

1 Specify a trace display depth of 512.

2 Trace after and store only function start and end addresses.

For duration measurements, the trace command must be set up to store only the
entry and exit points of the module of interest. Since the trigger state is always
stored, you should trigger on the entry or exit points. For example:

trace after symbol_entry or symbol_exit only
symbol_entry or symbol_exit counting time <RETURN>
CAUTION The previous command depends on the generation of correct exit address symbols

by the software development tools.

255

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Examples

Or:

trace after module_name start or module_name end only
module_name start or module_name end counting time
<RETURN>

Where "symbol_entry" and "symbol_exit" are symbols from the user program. Or,
where "module_name" is the name of a C function or Pascal procedure (and is
listed as a procedure symbol in the global symbol display).

To specify a trace display depth of 512:
display trace depth 512 <RETURN>

To set up the trace command for duration measurements on the interrupt_sim
function:

trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>

The trace specification sets up the analyzer to capture only the states that contain
the start address of the interrupt_sim function or the end address of the
interrupt_sim function. Since the trigger state is also stored, the analyzer is set up
to trigger on the entry or exit address of the interrupt_sim function. With these
states in memory, the analyzer will derive two measurements: time from start to
end of interrupt_sim, and time from end to start of interrupt_sim.

256

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

To initialize duration performance measurements

Use theperformance_measurement_initializecommand with thduration
option.

After you set up the trace command, you must tell the SPMT the time ranges to be
used in the duration measurement. This is done by initializing the performance
measurement. You can initialize the performance measurement in the following
ways:

* Initialize with user-defined files.

* Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Initialization with User Defined Ranges

You can specifically give the SPMT time ranges to use by placing the information
in a file and entering the file name in ferformance_measurement_initialize
command.

Time range files may contain comments and time ranges in units of microseco
(us), milliseconds (ms), or seconds (s). An example time range file is shown

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
355s 6.77s

us microseconds
ms milliseconds
s seconds

#

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

257

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Examples

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

Restoring the Current Measurement

Theperformance_measurement_initialize restoreommand allows you to
restore old performance measurement data frompetieut file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a performance
measurement simply by entering anotberformance_measurement_run

command. However, if you exit and reenter the emulation system, you must enter
the performance_measurement _initialize restoreommand before you can add

traces to a performance measurement. When you restore a performance
measurement, make sure your current trace command is identical to the command
used with the restored measurement.

Therestore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and savegberf.out files, then updated your software to a new version number, you
will not be able to restore ofgerf.out measurement files.

To initialize the duration measurement:

performance_measurement_initialize duration <RETURN>

258

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

To interpret duration measurement reports

View the performance measurement report.

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set of
specified time ranges. The information you will see in duration measurement
reports is described below.

Number of Intervals Number of "from address" and "to address" pairs (after
prefetch correction).

Maximum Time The greatest amount of time between the "from address" to the
"to address".

Minimum Time The shortest amount of time between the "from address" to the
"to address".

Average Time Average time between the "from address" and the "to address".
The following equation is used to calculate the average time:

amount of time for all intervals

mean = :
number of intervals

259

Chapter 8: Making Software Performance Measurements

Duration Performance Measurements

Standard Deviation

Deviation from the mean of time. The following equation

is used to calculate standard deviation:

_ 1
std dev = /\/NTf

Where:
N
mean

Ssumgq

N 2
X ¥ Ssumq — N (mean)
i=1

Number of intervals.
Average time.

Sum of squares of time in the intervals.

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’'s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’'s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om

error pct, = m‘ x 100

Mean of the standard deviations in each time range.

Table entry in Student’s "T" table for a given confidence
level.

Number of intervals.

260

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

Pm Mean of the means (i.e., mean of the average times in each

time range).

Examples Consider the following duration measurement report (generated with the commands

shown):

display trace depth
trace after

512 <RETURN>

interrupt_sim start or interrupt_sim end

only interrupt_sim start or interrupt_sim end counting
time <RETURN>
performance_measurement_initialize duration <RETURN>

performance_measurement_run
performance_measurement_end
Iperf32 | more

10 <RETURN>
<RETURN>

Time Interval Profile

From Address 80051
File main(module)."/users/guest/demo/debug_env/hp64767/main.c"
Symbolic Reference at _interrupt_sim

To Address 800F7
File main(module)."/users/guest/demo/debug_env/hp64767/main.c"
Symbolic Reference at interrupt_sim+A6

Number of intervals 1270

Maximum Time 592036.400 us

Minimum Time 39.760 us

Avg Time 63628.824 us

Statistical summary - for
Stdv 138114.65
95% Confidence 11.94% Error tolerance

10 traces

Graph of relative percents
1us 10 us 0.00%

10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1ms1.2s

.14.72% K*kkkkkkk
4.80% ***
0.00%

24.88% *kkkkkkkkkkkk
20.47% *kkkkkkkkk
10.16% **x**
0.00%

5.04% ***
9.69% *kkkk
5.12% ***
5.12% ***

0.00%

261

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

From Address 800F7
File main(module)."/users/guest/demo/debug_env/hp64767/main.c"
Symbolic Reference at interrupt_sim+A6

To Address 80051
File main(module)."/users/guest/demo/debug_env/hp64767/main.c"
Symbolic Reference at _interrupt_sim

Number of intervals 1270

Maximum Time 132505.760 us

Minimum Time 99983.480 us

Avg Time 109555.798 us

Statistical summary - for 10 traces
Stdv 14821.94
95% Confidence 0.74% Error tolerance

Graph of relative percents
1us 10 us 0.00%
10.1 us 100 us 0.00%
100.1 us 500 us 0.00%
500.1 us 1 ms 0.00%
1.001 ms 5 ms 0.00%
5.001 ms 10 ms 0.00%
10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 0.00%
80.1 ms 160 ms 100.00%
160.1 ms 320 ms 0.00%
320.1 ms 640 ms 0.00%
640.1 ms1.2s 0.00%

Two sets of information are given in the duration measurement report: module
duration and module usage.

The first set of information in the duration measurement report is the "module
duration" measurement. The module duration report shows that the amount of time
it takes for the interrupt_sim function to execute varies from 39.8 microseconds to
592 milliseconds. The average amount of time it takes for the interrupt_sim module
to execute is roughly 63.6 milliseconds.

The second set of information in the duration measurement report is the "module
usage" measurement. Module usage measurements show how much time is spent
outside the module of interest; they indicate how often the module is used. The
information shown in the first part of the duration report above shows that the
average amount of time spent outside the interrupt_sim function is about 109.6
milliseconds.

262

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

Running Measurements and Creating Reports

Several performance measurement tasks are the same whether you are making
activity or duration measurements.

This section describes how to:
¢ Run performance measurements.
e End performance measurements.

. Create a performance measurement report.

To run performance measurements

Use theperformance_measurement_rurcommand.

Theperformance_measurement_rurcommand processes analyzer trace data.
When you end the performance measurement, this processed data is dumped
binary "perf.out” file in the current directory. Tperf32 report generator utility is
used to read the binary information in the "perf.out" file.

If the performance_measurement_rurcommand is entered without a count, the
current trace data is processed. If a count is specified, the current trace command is
executed consecutively the number of times specified. The data that results from
each trace command is processed and combined with the existing processed data.
The STATUS line will say "Processing trace <NO.>" during the run so you will

know how your measurement is progressing. The only way to stop this series of
traces is by usingCTRL>c (sig INT).

The more traces you include in your sample, the more accurate will be your results.
At least four consecutive traces are required to obtain statistical interpretation of
activity measurement results.

263

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples

To run the performance measurement, enter the following command:
performance_measurement_run 20 <RETURN>
The command above causes 20 traces to occur. The SPMT processes the trace

information after each trace, and the number of the trace being processed is shown
on the status line.

Examples

To end performance measurements

Use theperformance_measurement_endommand.

Theperformance_measurement_endommand takes the data generated by the
performance_measurement_runcommand and places it in a file nanpexif.out

in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must renamepbd.out file before performing another
measurement.

Theperformance_measurement_endommand does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering anothguerformance_measurement_runcommand.

Once you have entered therformance_measurement_endommand, you can
use theperf32 report generator to look at the data saved ipéneout file.

Note that the "perf.out" file is a binary file. Do not try to read it with the UNIX
more or cat commands. Thperf32 report generator utility (described in the
following section) must be used to read the contents of the "perf.out" file.

To cause the processed trace information to be dumped to the "perf.out” file:

performance_measurement_end <RETURN>

264

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

To create a performance measurement report

Use theperf32 command at the UNIX prompt.

Theperf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). Theperf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and nperf32, or you can exit the Softkey
Interface and ruperf32.

Options to "perf32"

A default report, containing all performance measurement information, is generated
when theperf32 command is used without any options. The options available with
perf32 allow you to limit the information in the generated report. These options

are described below.

-h Produce outputs limited to histograms.

-S Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.
-f<file> Produce a report based on the information contained in

<file> instead of the information contained in perf.out.

For example, the following commands save the current performance measurement
information in a file called "perfl.out", and produce a histogram showing only the
program activity occupied by the functions and variables.

mv perf.out perfl.out <RETURN>
perf32 -hpf perfl.out <RETURN>

Options-h, -s, -p, and-m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

265

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

Examples Now, to generate a report from the "perf.out"” file, type the following on the
command line to fork a shell and run fhef32 utility:

Iperf32 | more

266

Using the External State Analyzer

267

Using the External State Analyzer

The HP 64703A analyzer provides an external analyzer with 16 external trace
channels. These trace channels allow you to capture activity on signals external to
the emulator, typically other target system signals. The external analyzer may be
configured as an extension to the emulation analyzer, as an independent state
analyzer, or as an independent timing analyzer.

When the external analyzer is configured as an independent state analyzer, the
emulator/analyzer interface does not control the external analyzer. However, you
can use pod commands to control the independent state analyzer via the terminal
interface. Refer to th#0186/8/XL/EA/EB Emulator User’s Guide for the Terminal
Interfacefor information on using the external analyzer when it is configured as an
independent state analyzer.

When the external analyzer is configured as an independent timing analyzer, you
must use a special Timing Analyzer Interface program. Refer Trttieg

Analyzer Interface User’s Guider information on using the external analyzer
when it is configured as an independent timing analyzer.

The tasks you perform with the external analyzer are grouped into the following
sections:

e Setting up the external analyzer.

» Configuring the external analyzer.

268

Chapter 9: Using the External State Analyzer
Setting Up the External Analyzer

Setting Up the External Analyzer

This section assumes you have already connected the external analyzer probe to the
HP 64700 Card Cage.

Before you can use the external analyzer, you must:

» Connect the external analyzer probe to the target system.
» Specify threshold voltages of external trace signals.

» Label the external trace signals.

» Select the external analyzer mode.

269

Chapter 9: Using the External State Analyzer
Setting Up the External Analyzer

To connect the external analyzer probe to the
target system

connector, and firmly press the connectors together.

1 Assemble the Analyzer Probe. The analyzer probe is a two-piece assembly, consisting of ribb
and 18 probe wires (16 data channels and the J and K clock inputs) attached to a connector. Eit
the ribbon cable may be connected to the 18 wire connector, and the connectors are keyed so th
only be attached one way. Align the key of the ribbon cable connector with the slot in the 18 wire

bn cable
ner end of
ey may

RIBBON CABLE

18 WIRE
CONNECTOR

270

Chapter 9: Using the External State Analyzer
Setting Up the External Analyzer

2 Attach grabbers to probe wires. Each of the 18 probe wires has a signal and a ground connecfion.
Each probe wire is labeled for easy identification. Thirty-six grabbers are provided for the signal and
ground connections of each of the 18 probe wires. The signal and ground connections are attached to the
pin in the grabber handle.

CONNECTING PIN

GRABBER HANDLE

271

Chapter 9: Using the External State Analyzer
Setting Up the External Analyzer

CAUTION Turn OFF target system power before connecting analyzer probe wires to the target

system. The probe grabbers are difficult to handle with precision, and it is

extremely easy to short the pins of a chip (or other connectors which are close

together) with the probe wire while trying to connect it.

3 You can connect the grabbers to pins, connectors, wires, etc., in the target system. Pull the hi
grabber towards the back of the grabber handle to uncover the wire hook. When the wire hook ig
the desired pin or connector, release the hilt to allow the grabber spring tension to hold the conne

t of the
around
ction.

HP PART NO. 10024A
- G CUP

272

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

Configuring the External Analyzer

After you have assembled the external analyzer probe and connected it to the
emulator and target system, the next step is to configure the external analyzer.

The external analyzer is a versatile instrument, and you can configure it to suit your
needs. For example, you can specify threshold voltage levels on the external
analyzer channels, and you can operate the external analyzer in several different
modes.

The default configuration specifies that the external analyzer is aligned with the
emulation analyzer. TTL level threshold voltages are defined, as well as an
external label named "xbits" which contains all 16 channels.

This section describes how to:

» Specify whether the emulation emulator/analyzer interface should control the
external analyzer.

» Specify the threshold voltages for the external channels.
» Select the external analyzer mode.

» Specify the slave clock mode when configured as an independent state
analyzer.

» Define labels for the external analyzer channels.

273

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

To control the external analyzer with the
emulator/analyzer interface

Enter themodify configuration command.
Answer "yes" to the "Modify external analyzer configuration?" question.

Answer the "Should emulation control the external bits?" question.

Answer "yes" if the emulation emulator/analyzer interface should control the
external analyzer. You must answer "yes" to access the remaining external
analyzer configuration questions. At the end of the configuration process the
external analyzer mode and threshold voltages will be set; existing labels will be
deleted, and only the labels specified in response to the questions below will be
defined.

Answer "no" if the emulation emulator/analyzer interface shouldn’t control the
external analyzer. If emulation does not control the external bits, the external
analyzer configuration will not be modified in any way by the emulation interface.

274

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

To specify the threshold voltage

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify external analyzer configuration?" question.

3 Answer "yes" to the "Should emulation control the external bits?" question.
4 Answer the "Threshold voltage for bits 0-7 and J clock?" question.

5 Answer the "Threshold voltage for bits 8-15 and K clock?" question.

The external analyzer probe signals are divided into two groups: the lower byte
(channels 0 through 7 and the J clock), and the upper byte (channels 8 through 15
and the K clock). You can specify a threshold voltage for each of these groups.

The default threshold voltages are specified ®s which translates to 1.40 volts.

Voltages may be in the range from -6.40 volts to 6.35 volts (with a 0.05V
resolution). You may also speciBMOS (which translates to 2.5 volts), BCL
(which translates to -1.3 volts).

275

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

To specify the external analyzer mode

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify external analyzer configuration?" question.
3 Answer "yes" to the "Should emulation control the external bits?" question.

4 Answer the "External analyzer mode?" question.

The default configuration selects the "emulation” external analyzer mode. In this
mode, you have 16 external trace signals on which data is captured synchronously
with the emulation clock.

The external analyzer may also operate as an independent state analyzer, or it may
operate as an independent timing analyzer if a host computer interface program is
used.

Answer "emulation” to select the emulation mode. In this mode, the external
analyzer becomes an extension of the emulation analyzer. In other words, they
operate as one analyzer. The external bits are clocked with the emulation clock.
External labels may be used in trace commands to qualify trigger, storage, prestore,
or count states. External labels may be viewed in the trace display.

Answer "state" to select the independent state mode of the external analyzer. The
external bits are not available for use from the emulation interface. You can,
however, use pod commands to control the external state analyzer in its
independent mode.

Answer "timing" to select the timing mode of the external analyzer. The external
bits are not available for use from the emulation interface. Because the pod
commands for the timing analyzer dump information in binary format, you will
need to use Timing Analyzer Interface, or other interface program, to capture the
timing analyzer data.

276

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

To specify the slave clock mode

1 Enter themodify configuration command.

2 Answer "yes" to the "Modify external analyzer configuration?" question.

3 Answer "yes" to the "Should emulation control the external bits?" question.
4 Answer "state" to the "External analyzer mode?" question.

5 Answer the "Slave clock mode for external bits?" question.

There are two modes of demultiplexing that can be set for the 16 channels of the
external analyzer: mixed clocks and true demultiplexing.

Answer "off" to turn slave clocks OFF. If the slave clock is "off", all 16 external
bits are clocked with the emulation clock.

Answer "mixed" to specify the mixed clock demultiplexing mode. In this mode,

the lower eight external bits (0-7) are latched when the slave clock (as specified by
your answers to the next four questions) is received. The upper eight bits and the
latched lower eight are then clocked into the analyzer when the emulation clo
received (see the figure below).

277

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

16 TRACE SIGNALS

|
IS
|
J
SLAVE CLOCK > SLAVE LATCH
) P
~— N~
® s
MASTER CLOCK [A4 AV MASTER (POD)
LATCH

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be latched at the same time as the upper 8 bits. If more than one
slave clock has appeared since the last master clock, only the first slave data will be
available to the analyzer (see the figure below).

MASTER
CLOCK m

o 4 L LT L
CLOCK

DATA LATCHED ON FOLLOWING SLAVE
FIRST SLAVE CLOCK CLOCKS IGNORED
AFTER LAST MASTER

CLOCK

278

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

Answer "demux" to specify the true demultiplexing mode. In this mode, only the
lower eight external channels (0-7) are used. The slave clock (as specified by your
answers to the next four questions) latches these bits and the emulation clock
samples the same channels again. The latched bits show up as bits 0-7 in the trace
data, and the second sample shows up as bits 8-15 (see the figure below).

8 TRACE SIGNALS

]
~]
|
S
SLAVE CLOCK > SLAVE LATCH
N
I
MASTER CLOCK A4 . MASTER (POD)

LATCH

EXAMPLE TIMING:

AD-AD ADDRESS DATA

SLAVE CLOCK }

MASTER CLOCK)

279

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

If no slave clock has appeared since the last master clock, the data on the lower 8
bits of the pod will be the same as the upper 8 bits. If more than one slave clock
has appeared since the last master clock, only the first slave data will be available to
the analyzer.

If the "mixed" or "true demultiplexing" slave clock modes are selected, answer the
"Edges of J (K,L,M) clock used for slave clock?" questions.

These four questions are asked when you select either the "mixed" or "demux"
slave clock mode. They allow you to define the slave clock. You can specify
rising, falling, both, or neither (none) edges of the J, K, L, and M clocks. When
several clock edges are specified, any one of the edges clocks the trace.

Clocks J and K are the external clock inputs of the external analyzer probe. The L
and M clocks are generated by the emulator. Typically, the L clock is the
emulation clock derived by the emulator and the M clock is not used.

To define labels for the external analyzer signals

Enter themodify configuration command.
Answer "yes" to the "Modify external analyzer configuration?" question.
Answer "yes" to the "Should emulation control the external bits?" question.

For each defined external label (there can be up to 8), answer the "name?", "start
bit?", "width?", and "polarity?" questions.

You can define up to eight labels for the 16 external data channels in the
configuration. These external analyzer labels can be used in trace commands, and
the data associated with these labels can be displayed in the trace list. One external
analyzer label, "xbits", is defined by the default configuration and is included in the
default trace list.

External labels can be defined with bits in the range of 0 through 15. The start bit
may be in the range 0 through 15, but the width of the label must not cause the label

280

Chapter 9: Using the External State Analyzer
Configuring the External Analyzer

to extend past bit 15. Thus, the sum of the start bit number plus the width must not
exceed 16.

The "polarity?" question allows you to specify positive or negative logic for the
external bits. In other words, positive means high=1, low=0. Negative means
low=1, high=0.

Once external labels are defined, they may be used in trace commands to qualify
events (if the emulation controls the external analyzer). Also, you can modify the
trace display to include data for the various trace labels.

Note that the Timing Analyzer Interface does not use the external labels defined in
the emulator/analyzer interface. You maintain labels for the timing analyzer within
the Timing Analyzer Interface itself.

281

282

10

Making Coordinated Measurements

283

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700 Card
Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

» Setting up for coordinated measurements.

» Starting and stopping multiple emulators.

» Driving trigger signals to the CMB or BNC.

» Stopping program execution on trigger signals.

* Arming analyzers on trigger signals.

284

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

08 oy

|

@ g rout
®

CMB Connector ——|

Comn canfig
1 o porrom ror

DTN o000

ol
s Iy

UL Awarne Juuy U
No 1o
o

| U r\ H |
U o
U v
© @
5V/230V Autoranging
~ ~ 600 VA Mox 7263 iz

64700E20

BNC Connector

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear panel
of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 connected to the CMB. This signal can be used to
trigger an analyzer. It can be used as a break source for the emulator.

READY The CMB READY line is high true. It is an open collector and performs
an ANDing of the ready state of enabled emulators on the CMB. Each emulator on
the CMB releases this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a synchronized start.

285

When CMB is enabled, each emulator is required to break to background when
CMB READY goes false, and will wait for CMB READY to go true before

returning to the run state. When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the CMB

can drive this line. It serves as a global interrupt and is processed by both the
emulator and the analyzer. This signal causes an emulator to run from a specified
address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and BNC
trigger lines have the same logical purpose: to provide a means for connecting the
internal trigger signals (trigl and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used directly as a break
condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

286

Chapter 10: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Setting Up for Coordinated Measurements

This section describes how to:
e Connect the Coordinated Measurement Bus.

» Connect the rear panel BNC.

To connect the Coordinated Measurement Bus
(CMB)

Caution Be careful not to confuse the 9-pin connector used for CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cablge for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connegt
and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are using a self-built calﬂ)le!

287

Chapter 10: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect the cables to the HP 64700 CMB ports.

(FEMALE)
(NC)

TWO EMULATORS

THREE EMULATORS, ETC

(FEMALE
(NO)

64700E14

288

Chapter 10: Making Coordinated Measurements
Setting Up for Coordinated Measurements

Number of HP 64700 Series
Emulators

Maximum Total Length of
Cable

Restrictions on the CMB
Connection

panel pullups connected. *

rear

2108 100 meters None.

9to 16 50 meters None.

9to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have

* A modification must be performed by your HP Customer Engineer.

Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

Caution

The BNC line on the HP 64700 accepts input and output of TTL levels only. (
levels should not be less than 0 volts or greater than 5 volts.) Failure to obse

these specifications may result in damage to the HP 64700 Card Cage.

289

Chapter 10: Making Coordinated Measurements
Setting Up for Coordinated Measurements

1 Connect one end of a 50 ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

t
' /0"
e
fr\gg
ALIGN SLOTS ON
SIDES OF PLUG
WITH TABS ON
SIDES OF JACK
t
' /0"
e
1idd

PUSH TOGETHER
AND TURN UNTIL
CONNECTORS LOCK

64700C15

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising g£dge is
the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a regeiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected ang
protected from TTL level signals when the emulator is powered down.

S

290

Chapter 10: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:
» Enable synchronous measurements.
e Start synchronous measurements.

» Disable synchronous measurements.

To enable synchronous measurements

Enter thespecify run command.

You can enable the emulator’s interaction with the CMB by usingptbeify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specifiedsieitigy run
command.

Note that when the CMB is being actively controlled by another emulatateine
command does not work correctly. The emulator may end up running in user
(NOT stepping). Disable CMB interaction (see "To disable synchronous
measurements” below) while stepping the processor.

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use thepecify tracecommand to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined bydpecify tracecommand will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message "CMB execute; emulation trace started".

291

Chapter 10: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

Examples

When you enter a normtthce command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

To enable synchronous measurements:
specify run from 1e8h <RETURN>

To trace when synchronous execution begins:

specify trace after address main <RETURN>

To start synchronous measurements

Enter thecmb_executecommand.

Thecmb_executecommand will cause the EXECUTE line to be pulsed, thereby
initiating a synchronous measurement. CMB interaction does not have to be
enabled in order to use either of these commands. (When you enable CMB
interaction, you only specify how the emulator will react to the CMB EXECUTE
signal.)

All emulators whose CMB interaction is enabled will break into the monitor when
any one of those emulators breaks into its monitor.

To disable synchronous measurements

Enter thespecify run disablecommand.

You can disable the emulator's interaction with the CMB by usinggheify run
disablecommand. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

292

Chapter 10: Making Coordinated Measurements
Using Trigger Signals

Using Trigger Signals

The HP 64700 contains two internal lines, trigl and trig2, over which trigger
signals can pass from the emulator or analyzer to other HP 64700s on the
Coordinated Measurement Bus (CMB) or other instruments connected to the BNC
connector.

You can configure the internal lines to make connections between the emulator,
analyzer, external analyzer (if its configured as an independent state or timing
analyzer), CMB connector, or BNC connector. Measurements that depend on these
connections are callédteractive measurements coordinated measurements

To configure the internal trigl and trig2 lines, you must entemtiaify
configuration command and then answer "yes" to the "Modify interactive
measurement specification?" question. When you do this, the following display
appears.

Interactive Measurement Specification
BN <4=P7-3> ——-% BMC €<=77-33 —=-
CMBT <<-?7-2» ——- CMBT <<-77-3> —-——
Trigl Trigz
Emulator <<-=—-== ——- Emulator <<-77--- -—-
Analyzer —————- Bro——=f Analyzer «<-77-3F ——
External Analyzer <<-77-¥: ——=/
MOTES:
1. The connections marked "77" are set up here in configuration.
2. driwve = ----r* receive = <{--—— (The display won"t change, howewer.]
3. The External Analyzer question is only asked when the External Analyzer
mode is state or timing.

This display illustrates the possible connections between the internal lines (trigl
and trig2) and the emulator, analyzer, and external devices.

Note that the "External Analyzer" option for "Trig2" only appears if you have
selected "state" or "timing" for the external analyzer mode.

Notice that the analyzer always drives trigl, and the emulator always receives trigl.
This provides for thbreak_on_trigger syntax of thérace command.

293

Chapter 10: Making Coordinated Measurements

Using Trigger Signals

You can use the trigl or trig2 line to make a connection between the analyzer and
the CMB connector or BNC connector so that, when the analyzer finds its trigger
condition, a trigger signal is driven on the HP 64700’s Coordinated Measurement
Bus (CMB) or BNC connector. This can also be done for the external analyzer
when it is configured as an independent state or timing analyzer.

You can use the trigl or trig2 line to make a connection between the emulator break
input and the CMB connector, BNC connector, analyzer, (or external analyzer

when configured as an independent state or timing analyzer) so that program
execution can break when a trigger signal is received from the CMB, BNC, or
analyzer.

You can use the trig2 line to make a connection between the analyzer and the CMB
connector or BNC connector so that the analyzer can be armed (that is, enabled)
when a trigger signal is received from the CMB or BNC connector. This can also
be done for the external analyzer when it is configured as an independent state or
timing analyzer.

You can use the trigl and trig2 lines to make several type of connections at the
same time. For example, when the analyzer finds its trigger condition, a signal is
driven on the trigl line. This signal may be used to stop user program execution,
but the trigger signal may also be driven on the CMB and BNC connectors.

Also, it's possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven on
the CMB and BNC connectors, signals can also be received from the CMB and
BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

You can disable connections made by the internal trigl and trig2 lines by
answering "neither" or "no" to the appropriate interactive measurement
configuration question.

294

Chapter 10: Making Coordinated Measurements
Using Trigger Signals

This section shows you how to:

» Drive the emulation analyzer trigger signal to the CMB.

» Drive the emulation analyzer trigger signal to the BNC connector.
» Drive the external analyzer trigger signal to the CMB.

» Drive the external analyzer trigger signal to the BNC connector.
» Break emulator execution on signal from CMB.

» Break emulator execution on signal from BNC.

» Break emulator execution on external analyzer trigger.

» Arm the emulation analyzer on signal from CMB.

* Arm the emulation analyzer on signal from BNC.

* Arm the emulation analyzer on external analyzer trigger.

» Arm the external analyzer on signal from CMB.

* Arm the external analyzer on signal from BNC.

» Arm the external analyzer on emulation analyzer trigger.

To drive the emulation analyzer trigger signal to
the CMB

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "receive" to the "Should CMBT drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation analyzer should drive trig2.

295

Chapter 10: Making Coordinated Measurements
Using Trigger Signals

To drive the emulation analyzer trigger signal to
the BNC connector

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.

3 Answer "receive" to the "Should BNC drive or receive Trigl?" question.

You could also drive the emulation analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the emulation
analyzer should drive trig2.

To drive the external analyzer trigger signal to
the CMB

1 Enter themodify configuration command.
2 Answer "yes" to the "Modify interactive measurement specification?" question.
3 Answer "receive" to the "Should CMBT drive or receive Trig2?" question.

4 Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

296

Chapter 10: Making Coordinated Measurements
Using Trigger Signals

To drive the external analyzer trigger signal to
the BNC connector

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "receive" to the "Should BNC drive or receive Trig2?" question.

Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

To break emulator execution on signal from CMB

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trigl?" question.

You could also break emulator execution on a trigger signal from the CMB ov
trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

297

Chapter 10: Making Coordinated Measurements

Using Trigger Signals

1

2

3

To break emulator execution on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should BNC drive or receive Trigl?" question.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

To break emulator execution on external analyzer
trigger

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "yes" to the "Should Emulator break receive Trig2?" question.

Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

When an emulator break occurs due to the analyzer trigger, the analyzer will stop
driving the internal signal that caused the break. Therefore, if trig2 is used both to
break and to drive the CMB TRIGGER (for example), TRIGGER will go true

when the trigger is found and then will go false after the emulator breaks.
However, if trigl is used to cause the break and trig2 is used to drive the CMB
TRIGGER, TRIGGER will stay true until the trace is halted or until the next trace
starts.

298

Chapter 10: Making Coordinated Measurements
Using Trigger Signals

To arm the emulation analyzer on signal from
CMB

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the emulation analyzer on signal from
BNC

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question..
Answer "drive" to the "Should BNC drive or receive Trig2?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

299

Chapter 10: Making Coordinated Measurements

Using Trigger Signals

To arm the emulation analyzer on external
analyzer trigger

Enter themodify configuration command.

Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "receive" to the "Should Analyzer drive or receive Trig2?" question.
Answer "drive" to the "Should External Analyzer drive or receive Trig2?" question.

Use thearm_trig2 option to thérace command.

To arm the external analyzer on signal from CMB

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should CMBT drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

300

Chapter 10: Making Coordinated Measurements
Using Trigger Signals

To arm the external analyzer on signal from BNC

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.
Answer "drive" to the "Should BNC drive or receive Trig2?" question.

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

To arm the external analyzer on emulation
analyzer trigger

Enter themodify configuration command.
Answer "yes" to the "Modify interactive measurement specification?" question.

Answer "drive" to the "Should Analyzer drive or receive Trig2?" question. .

Answer "receive" to the "Should External Analyzer drive or receive Trig2?"
guestion.

301

302

11

Setting X Resources

303

Setting X Resources

The Graphical User Interface is an X Window System application which means it is
aclientin the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). Itis an
interface between application programs you run on your system and the system
input and output devices.

An X resourcecontrols an element of appearance or behavior in an X application.
For example, in the graphical interface, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey in HP-UX or
{usr/openwin/lib/X11/app-defaults/HP64_Softkey in SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server's RESOURCE_MANAGER property. (Kndb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $SHOME/. Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the SHOME/.Xdefaulitsstfile
(typically containing resource specifications for a specific remote host) is read.

304

Chapter 11: Setting X Resources

Resource specifications included in the command line witkxthe option.
System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

User-defined scheme files located in directory SHOME/.HP64_schemes (note
the dot in the directory name).

Scheme filegroup resource specifications for different displays, computing
environments, and languages.

This chapter shows you how to:

Modify the Graphical User Interface resources.
Use customized scheme files.

Set up custom action keys.

Set initial recall buffer values.

Set up demos or tutorials.

Refer to the "X Resources and the Graphical Interface" section in the "Concepts"
chapter for more detailed information.

305

Chapter 11: Setting X Resources
To modify the Graphical User Interface resources

To modify the Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying its
X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX | Names the subdirectory for platform
SunOS specific schemes. This resource should he
(custom) set to the platform on which the X server is

running (and displaying the Graphical User
Interface) if it is different than the platform
where the application is running.

HP64_Softkey.colorScheme BW Names the color scheme file.
Color
(custom)

HP64_Softkey.sizeScheme Small Names the size scheme file which defineg
Large the fonts and the spacing used.
(custom)

HP64_Softkey.labelScheme Label Names to use for labels and button text.
$LANG The default uses the SLANG environment

(custom) variable if it is set and if a scheme file
named Softkey.$LANG exists in one of th
directories searched for scheme files;
otherwise, the default is Label.

D

HP64_Softkey.inputScheme Input Specifies mouse and keyboard operation
(custom)

306

Chapter 11: Setting X Resources

To modify the Graphical User Interface resources

Commonly Modified Application Resources

Resource Values Description
HP64_Softkey.lines 24 Specifies the number of lines in the main
(min. 18) display area.
HP64_Softkey.columns 100 Specifies the number of columns, in
(min. 80) characters, in the main display area.
HP64_Softkey.enableCmdline True Specifies whether the command line area|is
False displayed when you initially enter the
Graphical User Interface.
*editFile (example) vi| Specifies the command used to edit files.
%s
*editFileLine (example) vi| Specifies the command used to edit a file|at
+%d %s a certain line number.
*<proc>*actionKeysSub.keyDefs (paired list| Specifies the text that should appear on the
of strings) | action key push buttons and the commangs
that should be executed in the command |ine
area when the action key is pushed. Refer
to the "To set up custom action keys"
section for more information.
*<proc>*dirSelectSub.entries (list of Specifies the initial values that are placed|in
strings) theFile — Context— Directory popup recall
buffer. Refer to the "To set initial recall
buffer values" section for more information.
*<proc>*recallSub.entries (list of Specifies the initial values that are placed|i
strings) the entry buffer (labeled "():"). Refer to the

"To set initial recall buffer values" section
for more information.

307

Chapter 11: Setting X Resources
To modify the Graphical User Interface resources

The following steps show you how to modify the Graphical User Interface’s X
resources.

1 Copy part or all of the HP64_Softkey application defaults file to a temporary file.

The HP64_Softkey file contains the default definitions for the graphical interface
application’s X resources.

For example, on an HP 9000 computer you can use the following command to copy
the complete HP64_Softkey file to HP64_Softkey.tmp (note that the HP64_Softkey
file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is re-created each time
Graphical User Interface software is installed or updated. You can use the UNIX
diff command to check for differences between the new HP64_Softkey application
defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_schemes/old/HP64_Softkey.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:
vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to the
following.

! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

| Note: The application cannot be resized by using the window manager.

IHP64_Softkey.lines:

24

IHP64_Softkey.columns: 85

308

Chapter 11: Setting X Resources
To modify the Graphical User Interface resources

Edit the line containing "HP64_Softkey.lines" so that it is uncommented and is set
to the new value:

|
! The lines and columns set the vertical and horizontal dimensions of the

! main display area in characters, respectively. Minimum values are 18 lines
I'and 80 columns. These minimums are silently enforced.

|

| Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
IHP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you're not sure, you can check by enteringxtai -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:

xrdb -merge -nocpp HP64_Softkey.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append the
temporary file to your SHOME/. Xdefaults file. For example:

cat HP64_Softkey.tmp >> $HOME/.Xdefaults
4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the Graphical User Interface. Starting and exiting the
Graphical User Interface is described in the "Starting and Exiting HP 64700
Interfaces" chapter.

309

Chapter 11: Setting X Resources
To use customized scheme files

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

Create the $SHOME/.HP64_schemes/<platform> directory.

For example:

mkdir SHOME/.HP64_schemes
mkdir SHOME/.HP64_schemes/HP-UX

Copy the scheme file to be modified to the SHOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

Modify the $SHOME/.HP64_schemes/<platform>/Softkey.<scheme> file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is different
than the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the Graphical User
Interface. At least one resource must be defined in your color scheme file for it to
be recognized.

310

Chapter 11: Setting X Resources
To use customized scheme files

4 If your custom scheme file has a different name than the default, you must modify
the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource settings so
that your customized scheme files are used instead of the default scheme files.

For example, to use the "$SHOME/.HP64_schemes/HP-UX/Softkey.MyColor" color
scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":

HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources” section for
more detailed information on modifying resources.

311

Chapter 11: Setting X Resources
To set up custom action keys

To set up custom action keys

* Modify the "actionKeysSub.keyDefs" resource.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The first
string defines the text that should appear on the action key pushbutton. The second
string defines the command that should be sent to the command line area and
executed when the action key is pushed.

A pair of parentheses (with no spaces, that is "()") can be used in the command
definition to indicate that text from the entry buffer should replace the parentheses
when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "“()", in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A second
exclamation point ends the command string and allows additional options on the
command line.

Also, command files can be executed by placing the name of the file in the
command definition.

Finally, an empty action (") means to repeat the previous operation, whether it
came from a pulldown, a dialog, a popup, or another action key.

Examples

To set up custom action keys when the graphical interface is used with
80186/8/XL/EA/EB emulators, modify the "*i186xI*actionKeysSub.keyDefs"
resource:

*186xI*actionKeysSub.keyDefs: \

"Make"

"Load Pgm"
"Run Pgm"
"Trace after ()"
"Step Source"

"Again"

"cd /users/project2/8018x; !make! in_browser" \
"load configuration config.EA; load program2" \
"run from reset" \
"trace after (); display trace" \
"set source on; display memory mnemonic; step source" \

Refer to the previous "To modify Graphical User Interface resources" section for
more detailed information on modifying resources.

312

Chapter 11: Setting X Resources
To set initial recall buffer values

To set initial recall buffer values

* Modify the "entries" resource for the particular recall buffer.

There are six popup recall buffers present in the Graphical User Interface. The
resources for these popup recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders around
dialog box windows. The most natural setting for this resource is "title."

Popup Recall Buffer Resources

Recall Popup Resources Description
File - Context- Directory ... | *dirSelect.textColumns The default number of text
*dirSelect.listVisibleltemCount columns in the popup is 50.

*dirSelectSub.entries

The default number of visible

File - Context— Symbols ... | *symSelect.textColumns lines in the popup is 12.

*symSelect.listVisibleltemCount

*symSelectSub.entries The "entries” resource is

defined as a list of strings (see

Trace- Trace Spec ... *modtrace.textColumns -
the following example).

*modtrace.listVisibleltemCount
*modtraceSub.entries

Up to 40 unique values are

Entry Buffer (): *recall.textColumns saved in each of the recall
*recall.listVisibleltemCount buffers (as specified by the
*recallSub.entries resource settings

"*XcRecall.maxDepth: 40" and

Command Line command *recallCmd.textColumns "X cRecall.onlyUnique: True")

recall *recallCmd.listVisibleltemCount
*recallCmdSub.entries

Command Line pod/simio *recallKbd.textColumns
recall *recallKbd.listVisibleltemCount
*recallKbdSub.entries

313

Chapter 11: Setting X Resources
To set initial recall buffer values

Examples

To set the initial values for the directory selection dialog box when the Graphical
User Interface is used with 80186/8/XL/EA/EB emulators, modify the
"*186xI*dirSelectSub.entries" resource:

*186xI*dirSelectSub.entries: \
"$HOME" \
oy
"lusers/projectl" \
"lusers/project2/8018x"

Refer to the previous "To modify the Graphical User Interface resources" section
for more detailed information on modifying resources.

314

Chapter 11: Setting X Resources
To set up demos or tutorials

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying the
resources described in the following tables.

Demo Related Component Resources

Resource Value Description
*enableDemo False Specifies whethédtelp - Demo

True appears in the pulldown menu.
*demoPopupSub.indexFile /Xdemo/Index-topics Specifies the file containing thie list

of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the of the demo topic list popup.

*demoPopup.listVisibleltemCount 10 Specifies the length, in lines, of|the
demo topic list popup.

*demoTopic About demos Specifies the default topic in the
demo popup selection buffer.

315

Chapter 11: Setting X Resources
To set up demos or tutorials

Tutorial Related Component Resources
Resource Value Description
*enableTutorial False Specifies whether
True Help - Tutorial appears in the

pulldown menu.

*tutorialPopupSub.indexFile JXtutorial/Index-topics Specifies the file containing|the
list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the tutorial
topic list popup.

*tutorialPopup.listVisibleltemCount 10 Specifies the length, in lines,|of
the tutorial topic list popup.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial popup selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in the

Graphical User Interface.

Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use "\I' to produce inverse video
in the text, "\U" to produce underlining in the text, and "\N" to restore normal text.

Command files are executed when the "Press to perform demo (or tutorial)" button
(in the topic popup dialog) is pushed. A command file must have the same name as
the topic file with ".cmd" appended. Also, a command file must be in the same

directory as the associated topic file.

316

Chapter 11: Setting X Resources
To set up demos or tutorials

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the topic
which appears in the index popup and second the name of the file that is raised
when the topic is selected. For example:

"About demos" Jusers/guest/gui_demos/general

"Loading programs" /users/guest/gui_demos/loadprog

"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topicl), paths relative to the
directory in which the interface was started (for example, mydir/topic2), or paths
relative to the product directory (for example, ./Xdemo/general where the product
directory is something like /usr/hp64000/inst/emul/64767A).

3 Set the "*enableDemo" or "*enableTutorial" resource to "True".

4 Define the demo index file by setting the "*demoPopupSub.indexFile" or
"*tutorialPopupSub.indexFile" resource.

For example:
*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to the
directory in which the interface was started (for example, mydir/indexfile), or paths
relative to the product directory (for example, ./Xdemo/Index-topics where the
product directory is something like /usr/hp64000/inst/emul/64767A).

5 If you wish to define a default topic to be selected, set the "*demoTopic" or
"*tutorialTopic" resource to the topic string.

For example:
*demoTopic: "About demos"

Refer to the previous "To customize Graphical User Interface resources" secti
more detailed information on modifying resources.

317

318

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

319

Part 3

320

12

Emulator/Analyzer Interface .
Commands

321

Emulator/Analyzer Interface Commands

This chapter describes the emulator/analyzer interface commands in alphabetical
order. First, the syntax conventions are described and the commands are

summarized.

How Pulldown Menus Map to the Command Line

The following table shows the items available in the pulldown menus and the
command line commands to which they map.

Pulldown

Command Line

File - Context- Directory
File - Context— Symbols

File - Load - Emulator Config
File » Load - Executable

File - Load - Program Only
File - Load - Symbols Only

File - Store— Trace Data
File - Store-. Trace Spec
File - Store—. BBA Data

File - Copy - Display

File - Copy - Memory

File - Copy - Data Values
File -~ Copy- 10 Port

File » Copy - Trace

File -~ Copy - Registers

File - Copy - Breakpoints

File » Copy - Status

File — Copy - Global Symbols
File -~ Copy - Local Symbols ()
File » Copy - Pod Commands
File -~ Copy - Error Log

File . Copy - Event Log

cd
cws

load configuration

load <abs_file>

load <abs_file> nosymbols
load symbols

store trace
store trace_spec
bbaunload

copy display to

copy memory to

copy data to

copy io_port to

copy trace to

copy registers to

copy software_breakpoints to
copy status to

copy global_symbols to

copy local_symbols_in --SYMB-- to
copy pod_command to

copy error_log to

copy event _log to

322

Chapter 12: Emulator/Analyzer Interface Commands

Pulldown Command Line

File - Log - Playback <command file>

File - Log - Record log_commands to

File - Log - Stop log_commands off

File - Emul700- High-Level Debugger N/A

File - Emul700- Performance Analyzer N/A

File - Emul700- Emulator/Analyzer N/A

File - Emul700- Timing Analyzer N/A

File - Edit - File I'vi <file> ! no_prompt_before_exit

File - Edit - At () Location I'vi +<line> <file> ! no_prompt_before_exit
File - Edit -~ At PC Location Ivi +<line> <file> ! no_prompt_before_exit
File - Term !

File - Exit » Window (save session) end

File - Exit — Locked (all windows, save sessiongnd locked
File - Exit — Released (all windows, release end release_system

emulator)

Display - Context pwd, pws

Display - Memory display memory

Display - Memory — Mnemonic () display memory --EXPR-- mnemonic
Display - Memory — Mnemonic at PC display memory mnemonic at_pc

Display - Memory — Mnemonic Previous display memory mnemonic previous_display
Display - Memory - Hex () - bytes display memory --EXPR-- blocked bytes
Display - Memory — Hex () - words display memory --EXPR-- blocked words
Display - Memory - Hex ()- long display memory --EXPR-- blocked long
Display - Memory - Real ()- short display memory --EXPR-- real short
Display - Memory - Real ()-long display memory --EXPR-- real long

Display - Memory - At () display memory --EXPR--

Display - Memory - Repetitively display memory repetitively

Display - Data Values display data

Display - Data Values— New ()- <type> display data --EXPR-- <type>

Display - Data Values- Add () - <type> display data, --EXPR-- <type>

Display— 10 Port display io_port

Display - 10 Port () - bytes display io_port --EXPR-- thru --EXPR-- bytes
Display - 10 Port () - words display io_port --EXPR-- thru --EXPR-- words

323

Chapter 12: Emulator/Analyzer Interface Commands

Pulldown

Command Line

Display— Trace

Display— Registers
Display - Breakpoints
Display - Status

Display— Simulated 10
Display - Global Symbols
Display— Local Symbols ()
Display— Pod Commands
Display- Error Log
Display— Event Log

display trace

display registers

display software_breakpoints
display status

display simulated_io

display global_symbols

display local_symbols_in --SYMB--
display pod_command

display error_log

display event_log

Modify - Emulator Config
Modify - Memory

Modify — Memory at ()
Modify - 10 Port

Modify - 10 Port at ()
Modify - Register

modify configuration
modify memory

modify memory --EXPR--
modify io_port

modify io_port --EXPR--
modify register

Execution- Run - from PC
Execution— Run - from ()

Execution- Run - from Transfer Address

Execution— Run - from Reset
Execution— Run - until ()
Execution- Step Source-from PC
Execution- Step Source-from ()

Execution- Step Source- from Transfer

Address

Execution- Step Instruction - from PC
Execution- Step Instruction - from ()
Execution- Step Instruction - from Transfer

Address
Execution- Break
Execution- Reset

run
run from --EXPR--

run from transfer_address

run from reset

run until --EXPR--

step source

step source from --EXPR--

step source from transfer_address

step
step from --EXPR--
step from transfer_address

break
reset

324

Chapter 12: Emulator/Analyzer Interface Commands

Pulldown

Command Line

Breakpoints - Display
Breakpoints— Enable
Breakpoints - Permanent ()

Breakpoints - Temporary ()
Breakpoints - Set All

Breakpoints— Clear ()
Breakpoints — Clear All

display software_breakpoints
modify software_breakpoints enable/disable
modify software_breakpoints set --EXPR--

permanent

modify software_breakpoints set --EXPR--

temporary

modify software_breakpoints set
modify software_breakpoints clear --EXPR--
modify software_breakpoints clear

Trace - Display
Trace- Trace Spec
Trace - After ()
Trace - Before ()
Trace - About ()
Trace-Only ()
Trace- Only () Prestore
Trace - Again
Trace - Repetitively
Trace - Everything
Trace - Until ()
Trace - Until Stop
Trace- Stop

display trace

N/A (browses recall buffer for trace commands)

trace after STATE
trace before STATE
trace about STATE
trace only STATE

trace only STATE prestore anything

trace again

<previous trace spec> repetitively

trace

trace before STATE break_on_trigger

trace on_halt
stop_trace

Settings— Source/Symbol Modes. Absolute
Settings— Source/Symbol Modes. Symbols
Settings— Source/Symbol Modes. Source

Mixed

Settings— Source/Symbol Modes. Source

Only

Settings— Display Modes- Source Only
Settings— Pod Command Keyboard
Settings- Simulated 10 Keyboard

Settings— Command Line

set source off symbols off
set source off symbols on

set source on inverse_video on symbols on

set source only inverse_video off symbols on

set

display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio

N/A (toggles the command line)

325

Chapter 12: Emulator/Analyzer Interface Commands

How Popup Menus Map to the Command Line

The following tables show the items available in the popup menus and the
command line commands to which they map.

Mnemonic Memory Display Popup

Command Line

Set/Clear Breakpoint
Edit Source

Run Until

Trace After

Trace Before

Trace About

Trace Until

modify software_breakpoints set/clear --EXPR--
I'vi +<line> <file> ! no_prompt_before_exit

run until --EXPR--

trace after STATE

trace before STATE

trace about STATE

trace before STATE break _on_trigger

Breakpoints Display Popup

Command Line

Set/Inactivate Breakpoint

Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints

Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--
modify software_breakpoints clear --EXPR--

modify software_breakpoints enable/disable

modify software_breakpoints set

modify software_breakpoints clear

Symbols Display Popup

Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--

display local_symbols_in --SYMB--, display
global_symbols

N/A

Ivi +<line> <file> ! no_prompt_before_exit

326

Chapter 12: Emulator/Analyzer Interface Commands

Status Line Popup

Command Line

Remove Temporary Message
Display Error Log

Display Event Log

Command Line On/Off

N/A

display error_log
display event_log
(toggles command line)

Command Line Popup

Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command

Clear to End of Line

Clear Entire Line

Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key

<RETURN> key

<CTRL>e

<CTRL>u

(toggles command line)

327

Chapter 12: Emulator/Analyzer Interface Commands

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols show options available on the softkeys and other commands
that are available, but do not appear on softkeys (suoly_asommandsandwait).
These appear in the syntax diagrams as:

<g\ob0\,symbo\s>

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompts or references to other syntax
diagrams. Prompts are enclosed with angle brackets (< and >). References to other
diagrams are shown in all capital letters. Also, references to expressions are shown
in all capital letters, for example --EXPR-- and --SYMB-- (see those syntax
diagrams). These appear in the following syntax diagrams as:

<REGISTERS> ——EXPR——

Circles

Circles indicate operators and delimiters used in expressions and on the command
line as you enter commands. These appear in the syntax diagrams as:

)

The -NORMAL- Key

The softkey labeleeNORMAL- allows you exit the --SYMB-- definition, and
access softkeys that are not displayed when defining expressions. You can press
this key after you have defined an expression to view other available options.

328

Chapter 12: Emulator/Analyzer Interface Commands

Commands

Emulator/analyzer interface commands are summarized in the table below and
described in the following pages.

IUNIX_COMMAND
bbaunload

break

cd (change director§/)
cmb_execute
<command file2

copy datd

copy display

copy error_log

copy event_log

copy global_symbols
copy help

copy io_por

copy local_symbols_in
copy memory

copy pod_command
copy registe

copy software_breakpoints
copy status

copy trace
cws(change working symb8l)
display dat

display error_log

display event_log
display global_symbols
display io_por?

display local_symbols_in
display memorﬁ‘/
display pod_command
display registenjs
display simulated_?o
display software_breakpoints
display status

display trace

end

forward

help®

load <absolute_file>
load configuration

load emul_mem

load trace

load trace_spec

load user_memory
log_comman

modify configuration

L This option is not available in real-time mode.
2 This is only available when simulated 1/O is defined.
3 These commands are not displayed on softkeys.

4 This option is not available in real-time mode if addresses are in target system memory.

modify keyboard_to_sim?o
modify memor

modify registe

modify software breakpoin]ts
name_of _modu
performance_measurement_enc
performance_measurement_init
performance_measurement_run
pod_command

pwd (print working director)?)
pws (print working symbo?”)
reset

run

set

specify

step

stop_trace

store memory

store trace

store trace_spec

trace

wait>

329

Chapter 12: Emulator/Analyzer Interface Commands

break

See Also

break

break <RETURN>

This command causes the emulator to leave user program execution and begin
executing in the monitor.

The behavior obreak depends on the state of the emulator:

running Break diverts the processor from execution of your
program to the emulation monitor.

reset Break releases the processor from reset, and diverts
execution to the monitor.

running in monitor Théreak command does not perform any operation while
the emulator is executing in the monitor.

Thereset, run, andstep commands.

330

Chapter 12: Emulator/Analyzer Interface Commands
bbaunld

bbaunld

This command is available when the HP Branch Validator product is installed.
This basis branch analyzer (BBA) product is used to analyze the testing of your
programs, create more complete test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can use thisbaunload command to store the BBA information to a file. Then,
you can generate reports based on the stored information.

See Also Refer to theHP Branch Validator (BBA) User’s Guider complete details on the
bbaunload command syntax.

331

Chapter 12: Emulator/Analyzer Interface Commands
cmb_execute

cmb_execute

cmb__execute <RETURN>

Thecmb_executecommand causes the emulator to emit an EXECUTE pulse on its
rear panel Coordinated Measurement Bus (CMB) connector. All emulators
connected to the CMB (including the one sending the CMB EXECUTE pulse) and
configured to respond to this signal will take part in the measurement.

See Also Thespecify run andspecify tracecommands.

332

Chapter 12: Emulator/Analyzer Interface Commands

copy
copy
(o C e
% MEMORY
;>{ TRACE
%REG\STERS
\‘!—{ I0_PORT

L’<SDfTwDre,breakpomfs) —

= global_symbuols

L{ LOCAL_SYMBOLS IN }7
L{ help H<HELP,HLE> }—/

display

error_log

event_lay

N error-rog)
= (event oy
o stone)

status

prinfer <RETURN=>

UNIX_CMD

64767505

Use this command with various parameters to save or print emulation and analysis
information.

Thecopy command copies selected information to your system printer or listing
file, or directs it to an UNIX process.

333

Chapter 12: Emulator/Analyzer Interface Commands

copy

data
display
error_log
event_log

<FILE>

global_symbols
help
<HELP_FILE>

UNIX CMD

io_port

local_symbols_in

memory

noappend

Depending on the information you choose to copy, default values may be options
selected for the previous execution of display command. For example, if you
display memory locations 10h through 20h, then issug® memory to myfile
command, myfile will list only memory locations 10h through 20h.

The parameters are as follows:

Copies a list of memory contents formatted in various data types (see display data).
Copies the display to a selected destination.

Copies the most recent errors that have occurred.

Copies the most recent events that have occurred.

This prompts you for the name of a file where you want the specified information
to be copied. If you want to specify a file name that begins with a number, you
must precede the file name with a backslash. For exaogpe display to \12.10
<RETURN>

Copies a list of global symbols to the selected destination.
Copies the contents of the emulation help files to the selected destination.

This represents the name of the help file to be copied. Available help file names are
displayed on the softkey labels.

This represents an UNIX filter or pipe where you want to route the output of the
copy command. UNIX commands must be preceded by an exclamation point (!).
An exclamation point following the UNIX command continues command line
execution after the UNIX command executes. Emulation is not affected when
using an UNIX command that is a shell intrinsic.

Copies a list of the contents of I/O port locations to the selected destination.

Copies all the children of a given symbol to the selected destination. See the
--SYMB-- syntax page and tf&/mbolic Retrieval Utilities User’s Guider
information on symbol hierarchy.

Copies a list of the contents of memory to the selected destination.

This causes any copied information to overwrite an existing file with the same
name specified by <FILE>. If this option is not selected, the default operation is to
append the copied information to the end of an existing file with the same name
that you specify.

334

Chapter 12: Emulator/Analyzer Interface Commands

copy

noheader Copies the information into a file without headings.

pod_command This allows you to copy the most recent commands sent to the HP 64700 Series
emulator/analyzer.

printer This option specifies your system printer as the destination device fmwhe

command. Before you can specify the printer as the destination device, you must
define PRINTER as a shell variable. For example, you could enter the text shown
below after the "$" symbol:

$ PRINTER=Ip
$ export PRINTER
If you don’t want the print message to overwrite the command line, execute:

$ set PRINTER ="Ip -s"

registers Copies a list of the contents of the emulation processor registers to the selected
destination.

software Copies a list of the current software breakpoints to a selected destination.

_breakpoints

status Copies emulation and analysis status information.

to This allows you to specify a destination for the copied information.

trace Copies the current trace listing to the selected destination.

! An exclamation point specifies the delimiter for UNIX commands. An exclamation
point must precede all UNIX commands. A trailing exclamation point should be
used if you want to return to the command line and specify noheader. Otherwise,
the trailing exclamation point is optional. If an exclamation point is part of the
UNIX command, a backslash (\) must precede the exclamation point.

Examples See the following pages on variaegpy syntax diagrams.

See Also See the following pages on varicepy syntax diagrams.

335

Chapter 12: Emulator/Analyzer Interface Commands

copy io_port

copy io_port
copy = io_port Ft
f
——EXPR——
L(thru H{ —~ EXPR—— }/

)

N
This command copies the current values at 1/O port locations to the selected
destination.
The I/O port contents are copied in the same format as specified in the last display
memory command.
Contents of I/0 ports can be displayed if program runs are not restricted to
real-time. 1/O port contents are listed as an asterisk (*) when runs are restricted to
real-time.
Initial values are the same as those specified by the conuispoiay io_port 0
absolute bytes
Defaults are to values specified in the previdisplay io_port command.
The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

thru This option lets you specify a range of 1/0 port locations to be copied.

A comma used immediately after port in the command line appends the current
copy io_port command to the precedingsplay io_port command. The data

336

Chapter 12: Emulator/Analyzer Interface Commands
copy io_port

specified in both commands is copied to the destination specified in the current
command. Data is formatted as specified in the current command. The comma is
also used as a delimiter between I/O port address values.

Examples
copy io_port 1h , 45h , 60h thru 80h , Offh to printer
<RETURN>
copy io_port , CLEAR thru OUTPUT to iofile <RETURN>
See Also Thedisplay io_port andmodify io_port commands.

337

Chapter 12: Emulator/Analyzer Interface Commands
copy local_symbols_in

--SYMB--

Examples

See Also

copy local_symbols_in

\

(copy)—’roo\,symbo\s,mj To output o:‘ LOCAL_SYMBOLS_IN
= ——SYMB—— on ‘ COPY ‘d\ogrom

This command lets you copy local symbols contained in a source file and relative
segments (program, data, or common) to the selected destination.

Local symbols are symbols that are children of the particular file or symbol defined
by --SYMB--, that is, they are defined in that file or scope.

For additional information on symbols, refer to tH#&YMB-- syntax pages and the
Symbolic Retrieval Utilities User's Guide

--SYMB-- is the current working symbol.
The parameters are as follows:

This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’s Guidier
information on symbol hierarchy.

copy local_symbols_in mod_name to printer <RETURN>

copy local_symbols_in mod_name: fo linenumfile <RETURN>

Thedisplay local_symbols_inrcommand.

338

Chapter 12: Emulator/Analyzer Interface Commands
copy memory

copy memory

< copy D—{memory >>

——EXPR——

P p—

(D
)

To output of MEMORY
on COPY diagram

This command copies the contents of a memory location or series of locations to
the specified output.

The memory contents are copied in the same format as specified in the last display
memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

1 The address refers to guarded memory.

2 Runs are restricted to real-time, the emulator is running a user program, and
the address is located in user memory.

Values in emulation memory can always be displayed.

Initial values are the same as those specified by the conusgolay memory 0
blocked bytes offset_by 0

Defaults are to values specified in the previdisplay memory command.

339

Chapter 12: Emulator/Analyzer Interface Commands

copy memory

--EXPR--

Examples

See Also

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

A comma used immediately afteremory in the command line appends the
currentcopy memorycommand to the precedidgsplay memorycommand. The

data specified in both commands is copied to the destination specified in the current
command. Data is formatted as specified in the current command. The comma is
also used as a delimiter between values when specifying multiple memory
addresses.

copy memory start to printer <RETURN>

copy memory 0 thru 100h, start thru +5, 500H ,
target2 fo memlist <RETURN>

copy memory 2000h thru 204fh to memlist <KRETURN>

Thedisplay memory, modify memory, andstore memorycommands.

340

Chapter 12: Emulator/Analyzer Interface Commands
copy registers

copy registers

(copy)—{reg'sters)D

= To output of | REGISTERS
<CLASS> \ on COPY diagram
<RECGISTFR>

This command copies the contents of the processor registers to a file or printer.

Thecopy registerprocess does not occur in real-time. The emulation system must
be configured for nonreal-time operation to list the registers while the processor is
running.

With no options specified, the basic register class is copied. This includes the local
and global registers.

The parameters are as follows:
<CLASS> Specifies a particular class of the emulator registers.

<REGISTER>

Examples
copy registers basic to printer <RETURN>

copy registers to reglist <RETURN>

See Also Thedisplay registersandmodify registerscommands.

341

Chapter 12: Emulator/Analyzer Interface Commands
copy trace

copy trace

Com e

fromiﬁmeimumbea—!—{ <IINE #> }—!—Q%ruiﬁneimumber}!—{ <LINE #> b

Cf* To output of TRACE
on COPY diagram

This command copies the contents of the trace buffer to a file or to the printer.

Trace information is copied in the same format as specified in the last display trace
command.

Initial values are the same as specified by theliaptay trace command.
The parameters are as follows:
from_line_number This specifies the trace list line number from which copying will begin.

<LINE#> Use this withfrom_line_number andthru_line_number to specify the starting
and ending trace list lines to be copied.

thru_line_number Specifies the last line number of the trace list to include in the copied range.

Examples
copy trace to tlist <RETURN>
copy trace from_line_number 0 thru_line_number 5
to longtrac <RETURN>

See Also Thedisplay trace andstore trace commands.

342

Chapter 12: Emulator/Analyzer Interface Commands

data

error_log

display
display
> DATA }TJ <RETURN>
> TRACE

/
\—4 SOF TWARE_BREAKPOINTS }—/
ot conmers)

This command displays selected information on your screen.

You can use the <Up arrow>, <Down arrow>, <PREV>, and <NEXT> keys to

view the displayed information. For software_breakpoints, data, memory, and trace
displays you can use the <CTRL>g and <CTRL>f keys to scroll left and right if the
information goes past the edge of the screen.

Depending on the information you select, defaults may be the options selecte
the previous execution of tldgsplay command.

The parameters are as follows:

This allows you to display a list of memory contents formatted in various data types
(see thalisplay datapages for details).

This option displays the recorded list of error messages that occurred during the
emulation session.

343

Chapter 12: Emulator/Analyzer Interface Commands

display
event_log
global_symbols

local_symbols_in

memory

pod_command

registers

simulated_io

software
_breakpoints

status

trace

Examples

See Also

This option displays the recorded list of events.
This option lets you display a list of all global symbols in memory.

This option lets you display all the children of a given symbol. SeeSN&/B--
syntax page and tt&ymbolic Retrieval Utilities User's Guider details on symbol
hierarchy.

This option allows you to display the contents of memory.

This option lets you display the output of previously executed emulator pod
commands.

This allows you to display the contents of emulation processor registers.

This lets you display data written to the simulated 1/O display buffer after you have
enabled polling for simulated 1/0O in the emulation configuration.

This option lets you display the current list of software breakpoints.

This displays the emulator and trace status.

This displays the current trace list.

display event_log <RETURN>

display local_symbols_in mod_name <RETURN>

Thecopy command description and the following pages which describe the various
display commands.

344

Chapter 12: Emulator/Analyzer Interface Commands
display data

display data

(display D—{ data hY
to <RETURN> on
display diagram
;{EXPR L byte >
thru HEXPRM = word

= long

=

|

= int8

= int16
int32
u_int8
u_int16

u_int32

el

char

Thedisplay datacommand can display the values of simple data types in your
program. Using this command can save you time; otherwise, you would need to
search through memory displays for the location and value of a particular variable.

The address, identifier, and data value of each symbol may be displayed. You must
issue the commarskt symbols orto see the symbol names displayed.

In the first display data command after you begin an emulation session, you m
supply at least one expression specifying the data item(s) to display.

Thereafter, the display data command defaults to the expressions specified in the
last display data command, unless new expressions are supplied or appended (with
a leading comma).

345

Chapter 12: Emulator/Analyzer Interface Commands

display data

~EXPR--

thru --EXPR--

<TYPE>

byte
word

long

int8
int16
int32
u_int8
u_intlé
u_int32

char

Symbols are normally set off until you give the commseidsymbols on
Otherwise, only the address, data type, and value of the data item will be displayed.

The parameters are as follows:

A leading comma allows you to append additional expressions to the previous
display data command.

Commas between expression/data type specifications allow you to specify multiple
variables and types for display with the current command.

Prompts you for an expression specifying the data item to display. The expression
can include various math operators and program symbols. See the --EXPR-- and
--SYMB-- syntax pages for more information.

Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display both
single-dimensioned and multi-dimensioned arrays. Arrays are displayed in the
order specified by the language definition, typically row major order for most
Algol-like languages.

Specifies the format in which to display the information. (Data type information is
not available from the symbol database, so you must specify.)

Hex display of one 8 bit location.
Hex display of one 16 bit location.
Hex display of one 32 bit location.

Note that byte ordering in word and long displays is determined by the conventions
of the processor in use.

Display of one 8 bit location as a signed integer using two’s complement notation.
Display of two bytes as a signed integer using two’'s complement notation.
Display of four bytes as a signed integer using two’s complement notation.
Display of one byte as an unsigned positive integer.

Display of two bytes as an unsigned positive integer.

Display of four bytes as an unsigned positive integer.

Displays one byte as an ASCII character in the range 0 through 127. Control
characters and values in the range 128 through 255 are displayed as a period (.).

346

Examples

See Also

Chapter 12: Emulator/Analyzer Interface Commands
display data

display data Msg_A thru +17 char , Stack long <RETURN>
set symbols on <RETURN>
set width label 30 <RETURN>

display data ,Msg_B thru +17 char ,Msg_Dest thru +17
char <RETURN>

Thecopy dataandsetcommands.

347

Chapter 12: Emulator/Analyzer Interface Commands
display global_symbols

See Also

display global _symbols

display = global_symbols = To

‘ DISPLAY ‘diogrom

<RETURN>

on

This command displays the global symbols defined for the current absolute file.

Global symbols are symbols declared as global in the source file. They include
procedure names, variables, constants, and file names. Wiisplag

global_symbolscommand is used, the listing will include the symbol name and its
logical address.

Thecopy global_symbolzommand.

348

Chapter 12: Emulator/Analyzer Interface Commands
display io_port

display io_port

< display >—>< jo_port)—3

= ——EXPR——

thru H ——FXPR—— M
(N

N

J

repetitively

C* To | <RETURN> |on
DISPLAY diagram

blocked

bytes

words

This command displays the contents of the specified I/O port location or series of
locations.

Initial values are the same as specified by the command:

display io_port 0 absolute bytes

Defaults are values specified in a previdisplay io_port command.

The parameters are as follows:

absolute Formats the I/O port listing in a single column.
blocked Formats the I/O port listing in multiple columns.
bytes Displays the absolute or blocked I/O port listing as byte values.

349

Chapter 12: Emulator/Analyzer Interface Commands

display io_port
--EXPR--

repetitively

thru

words

Examples

See Also

An expression is a combination of nhumeric values, symbols, operators, and
parentheses, specifying an 1/O port address. See the EXPR syntax diagram.

Updates the I/O port listing display continuously. You should only use this to
monitor I/O ports while running user code, since it is very CPU intensive. To allow
updates to the current I/O ports display whenever I/O ports are modified, a file is
loaded, etc., use thset updatecommand.

This option lets you specify a range of 1/O port locations to be displayed. Use the
<Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view additional
memory locations.

Displays the absolute or blocked 1/O port listing as 16-bit word values.

A comma aftero_port in the command line appends the curdisplay io_port
command to the precedidisplay io_port command. The data specified in both
commands is displayed. The data will be formatted as specified in the current
command. The comma is also a delimiter between values when specifying multiple
addresses.

display io_port 2000h thru 202fh, 2100h blocked words
<RETURN>

Thecopy io_port andmodify io_port commands.

350

Chapter 12: Emulator/Analyzer Interface Commands
display local_symbols_in

display local_symbols_in

(display Hoco\,symbo\s,m = To | <RETURN> | on
M ——SYMB—— }j DISPLAY diagram

Displays the local symbols in a specified source file and their relative segment
(program, data, or common).

Local symbols of-SYMB-- are the ones which are children of the file and/or scope
specified by-SYMB--. That is, they are defined in that file or scope.

See the-SYMB-- syntax pages and tl&ymbolic Retrieval Utilities User’'s Guide
for further explanation of symbols.

Displaying the local symbols sets the current working symbol to the one specified.
The parameters are as follows:

--SYMB-- This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and ti&mbolic Retrieval Utilities User’s Guidier
more information on symbol hierarchy and representation.

Examples
display local_symbols_in mod_name <RETURN>
display local_symbols_in mod_name:main <RETURN>
See Also Thecopy local_symbols_ircommand.

351

Chapter 12: Emulator/Analyzer Interface Commands
display memory

display memory

< display >—>< memory

/
T—J —EXPR—-
%—I LC hru e —EXPR-- M
O,
- -

={ repefitively

\ = shart =

absolufe

= blocked
.'

—={ mnemonic
previaus_display

- _/

= To | <RETURN> | an
offgetbyH —EXPR-- }—jj

DISPLAY diagram

64767S04

This command displays the contents of the specified memory location or series of
locations.

352

Chapter 12: Emulator/Analyzer Interface Commands
display memory

The memory contents can be displayed in mnemonic, hexadecimal, or real number
format. In addition, the memory addresses can be listed offset by a value, which
allows the information to be easily compared to the program listing.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside the currently displayed address range. This feature works
even if stepping is performed in a different emulation window than the one
displaying memory mnemonic.

Pending software breakpoints are shown in the memory mnemonic display by an
asterisk (*) in the leftmost column of the assembly instruction or source line that
has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and assembly
code intermixed, or with source code only. Symbols also can be displayed in the
memory mnemonic string. (See the set command.)

Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previdisplay memory command.
The symbols and source defaults are:

set source off symbols off

The parameters are as follows:

absolute Formats the memory listing in a single column.

at_pc Displays the memory at the address pointed to by the current program counter value.
blocked Formats the memory listing in multiple columns.

bytes Displays the absolute or blocked memory listing as byte values.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and

parentheses, specifying a memory address or memory offset value. See the EXPR
syntax diagram.

long Displays memory in a 64-bit real number format or 32-bit long words when
preceded bylocked or absolute

353

Chapter 12: Emulator/Analyzer Interface Commands
display memory

mnemonic This causes the memory listing to be formatted in assembly language instruction
mnemonics with associated operands. When specifying mnemonic format, you
should include a starting address that corresponds to the first byte of an operand to
ensure that the listed mnemonics are correcetl§ource onlyis on, you will see
only the high level language statements and corresponding line numbers.

offset_by This option lets you specify an offset that is subtracted from each of the absolute
addresses before the addresses and corresponding memory contents are listed. You
might select the offset value so that each module appears to start at address 0000H.
The memory contents listing will then appear similar to the assembler or compiler
listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

previous_display Returns to display associated with the previous mnemonic memory display
command.

real Formats memory values in the listing as real numbers. (NaN in the display list
means "Not a Number.")

repetitively Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, since it is very CPU intensive. To allow
updates to the current memory display whenever memory is modified, a file is
loaded, software breakpoint is set, etc., ussehepdatecommand.

short Formats the memory list as 32-bit real numbers.

thru This option lets you specify a range of memory locations to be displayed. Use the
<Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view additional
memory locations.

words Displays the absolute or blocked memory listing as 16-bit word values.

, A comma aftememory in the command line appends the curdisplay memory
command to the precedidisplay memorycommand. The data specified in both
commands is displayed. The data will be formatted as specified in the current
command. The comma is also a delimiter between values when specifying multiple
addresses.

Examples You can display memory in real number and mnemonic formats:

354

See Also

Chapter 12: Emulator/Analyzer Interface Commands
display memory

display memory 2000h thru 202fh, 2100h real long
<RETURN>

display memory 400h mnemonic <RETURN>

set symbols on <RETURN>
set source on <RETURN>
display memory main mnemonic <RETURN>

The copy memory, modify memory, set andstore memorycommands.

355

Chapter 12: Emulator/Analyzer Interface Commands

display registers

<CLASS>
<REGISTER>

Examples

See Also

display registers

(display)——(registers To on
= <CLASS> DISPLAY diagram

= <REGISTER>

This command displays the current contents of the emulation processor registers.

If a stepcommand just executed, the mnemonic representation of the last
instruction is also displayed, if the current display is the register display. This
process does not occur in real-time. The emulation system must be configured for
nonreal-time operation to display registers while the processor is running. Symbols
also may be displayed in the register step mnemonic stringgssgmbol3.

With no options specified, the basic register class is displayed as the default. This
includes the local and global registers.

The parameters are as follows:
This allows you to display a particular class of emulation processor registers.

This displays an individual register or control register field.

display registers <RETURN>

display registers BASIC D2 <RETURN>

Thecopy registers modify registers, set andstepcommands.

356

Chapter 12: Emulator/Analyzer Interface Commands
display simulated_io

display simulated io

DISPLAY diagram

This command displays information written to the simulated I/O display buffer.

After you have enabled polling for simulated 1/0 during the emulation
configuration process, six simulated 1/0 addresses can be defined. You then define
files used for standard input, standard output, and standard error.

For details about setting up simulated 1/O, refer t&ineulated I/O User’'s Guide

Examples
display simulated_io <RETURN>

See Also Themaodify configuration andmodify keyboard_to_simiocommands.

357

Chapter 12: Emulator/Analyzer Interface Commands
display software_breakpoints

display software_breakpoints

(display)—*(softwore_breokpoints) <RETURN> on
L(offset by)——[——ExPR——}j DISPLAY diagram

~-EXPR--

offset_by

Examples

See Also

This command displays the currently defined software breakpoints and their status.

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending, inactivated, or unknown.

A pending breakpoint causes the processor to enter the emulation monitor upon
execution of that breakpoint. Executed breakpoints are listed as inactivated.
Entries that show an inactive status can be reactivated by executmgdifie
software_breakpoints secommand.

A label column also may be displayed for addresses that correspond to a symbol.
See thesetcommand for details.

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value for the breakpoint address. See the
--EXPR-- syntax diagram.

This option allows you to offset the listed software breakpoint address value from
the actual address of the breakpoint. By subtracting the offset value from the
breakpoint address, the system can cause the listed address to match that given in
the assembler or compiler listing.

display software_breakpoints <RETURN>

display software_breakpoints offset_by 1000H <RETURN>

Thecopy software_breakpoints modify software_breakpoints andset
commands.

358

Chapter 12: Emulator/Analyzer Interface Commands
display trace

display trace

< display >—>< frace p) Jepth >—>< <DEPTH®> |
s \% <LINE #> ~

mnemonic

~—{ absolute

mnemaonic

absolute
WY

external _label binary

hex

N=(offsel_by e —EXPR— b

64767S03

To | <RETURN=> | on
DISPLAY diagram » available when external labels are in use

This command displays the contents of the trace buffer.

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be listed
mnemonically or in hexadecimal or binary form.

359

Chapter 12: Emulator/Analyzer Interface Commands

display trace

absolute
count

absolute

relative

depth
<DEPTH#>

~-EXPR--

Addresses captured by the analyzer are physical addresses.

Theoffset_byoption subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate entrfjsketr
each instruction in the listed trace will appear as it does in the assembled or
compiled program listing.

Thecount parameter lists the time associated with a trace event either relative to
the previous event in the trace list or as an absolute count measured from the trigger
event.

Thesourceparameter allows display of source program lines in the trace listing,
enabling you to quickly correlate the trace list with your source program.

Initial values are the same as specified by the command:

display trace mnemonic count relative offset_by 0
<RETURN>

The parameters are as follows:

Lists trace information in hexadecimal format, rather than mnemonic opcodes.

This lists the time count for each event of the trace as the total time measured from
the trigger event.

This lists the time count for each event of the trace as the time measured relative to
the previous event.

This defines the number of states to be uploaded by the interface.

Note that after you have changed the trace depth, execute the cowaitand
measurement_completdefore displaying the trace. Otherwise the new trace states
will not be available.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses traced
by the emulation analyzer. See the EXPR syntax diagram.

360

Chapter 12: Emulator/Analyzer Interface Commands
display trace

external
binary Displays the external analyzer trace list in binary format.
<external This option displays a defined external analyzer label.
_label>
hex Displays the external analyzer trace list in hexadecimal format.
off Use this option to turn off the external trace list display.
then This allows you to display multiple external analysis labels. This option appears
when more than one external analyzer label is in use.
<LINE#> This prompts you for the trace list line number to be centered in the display. Also,
you can use <LINE#> witisassemble_from_line_number<LINE#> prompts
you for the line number from which the inverse assembler attempts to disassemble
data in the trace list.
mnemonic Lists trace information with opcodes in mnemonic format.
offset_by This option allows you to offset the listed address value from the address of the

instruction. By subtracting the offset value from the physical address of the
instruction, the system makes the listed address match that given in the assembler
or compiler listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Note that when using theet source onlycommand, the analyzer may operate more
slowly than when using theet source orcommand. This is an operating
characteristic of the analyzer:

When you use the commaset source onand are executing only assembly
language code (not high-level language code), no source lines are displayed.
The trace list will then fill immediately with the captured assembly language
instructions.

When usingset source onlyno inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with high-level
source code. This requires the emulation software to search for any captured
analysis data generated by a high-level language statement.

In conclusion, you should not set the trace listtbsource onlywhen tracing
assembly code. This will result in optimum analyzer performance.

361

Chapter 12: Emulator/Analyzer Interface Commands
display trace

status
binary Lists absolute status information in binary form.
hex Lists absolute status information in hexadecimal form.
mnemonic Lists absolute status information in mnemonic form.
Examples
display trace count absolute <RETURN>
display trace absolute status binary <RETURN>
display trace mnemonic <RETURN>
See Also Thecopy trace store trace andsetcommands.

362

Chapter 12: Emulator/Analyzer Interface Commands
end

end

<RETURN>

end

()

release_system

This command terminates the current emulation session.

You can end the emulation session and keep the emulator in a locked state. The
current emulation configuration is stored, so that you can continue the emulation
session on reentry to the emulator. You also can release the emulation system when
ending the session so that others may use the emulator.

Note that pressing <CTRL>d performs the same operation as presding
<RETURN>. Pressing <CTRL>\ or <CTRL>| performs the samenals
release_system <RETURN>

When the emulation session ends, control returns to the UNIX shell without
releasing the emulator.

The parameters are as follows:

locked This option allows you to stop all active instances of an emulator/analyzer interface
session in one or more windows and/or terminals. This option is not available
when operating the emulator in the measurement system.

release_system This option stops all instances of the emulator/analyzer interface in one or more
windows or terminals. The emulation system is released for other users. If you do
not release the emulation system when ending, others cannot access it.

Examples
end <RETURN>
end release_system <RETURN>
See Also The "Exiting the Emulator/Analyzer Interface" section in the "Starting and Exiting

HP 64700 Interfaces” chapter.

363

Chapter 12: Emulator/Analyzer Interface Commands

-EXPR--

--EXPR--

*\\¥% <DON'T CARE NUMBER>}
<NUMBER>

DON'T CARE
NUMBER

--NORMAL--

<0OP>

=y
d

en

An expression is a combination of humeric values, symbols, operators, and
parentheses used to specify address, data, status, executed address, or any other
value used in the emulation commands.

The function of an expression (--EXPR--) is to let you define the address, data,
status, or executed address expression that fits your needs. You can combine
multiple values to define the expression.

Certain emulation commands will allow the option of <+EXPR> after pressing a
thru softkey. This allows you to enter a range without retyping the original base
address or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

The parameters are as follows:

You can include "don’t care numbers" in expressions. These are indicated by a
number containing an "x." These numbers may be defined as binary, octal, decimal,
or hexadecimal. For example: 1fxxh, 17x70, and 011xxx10b are valid.

Note that "Don’t care numbers" are not valid for all commands.

This appears as a softkey label to enable you to return +&£tKER-- key. The
--NORMAL-- label can be accessed whenever defining an expression, but is only

364

<NUMBER>

<OP>

--SYMB--

end

start

<UNARY>

()

Chapter 12: Emulator/Analyzer Interface Commands
--EXPR--

valid when "C" appears on the status line, which indicates a valid expression has
been defined.

This can be an integer in any base (binary, octal, decimal, or hexadecimal), or can
be a string of characters enclosed with quotation marks.

This represents an algebraic or logical operand and may be any of the following (in
order of precedence):

mod modulo

* multiplication

/ division
logical AND

+ addition

- subtraction

| logical OR

This allows you to define symbolic information for an address, range of addresses,
or afile. See theSYMB-- syntax pages and ti&ymbolic Retrieval Utilities
User’s Guidefor more information on symbols.

This displays the last location where the symbol information may be located. For
example, if a particular symbol is associated with a range of addrersdes||
represent the last address in that range.

This displays first memory location where the symbol you specify may be located.
For example, if a particular symbol is associated with a range of addstases,
will represent the first address in that range.

This defines either the algebraic negation (minus) sign (-) or the logical negation
(NOT) sign ().

Parentheses may be used in expressions to enclose numbers. For every opening
parenthesis, a closing parenthesis must exist.

Note that when "C" appears on the right side of the status line, a valid express
exists. The-NORMAL-- key can be accessed at any time, but is only valid wh
"C" is on the command line.

Note that when thru softkey has been entered, a <+ EXPR> prompt appears.
This saves you from tedious repeated entry of long symbols and expressions. For
example:

365

Chapter 12: Emulator/Analyzer Interface Commands
--EXPR--

disp_buf thru +25

is the same as

disp_buf thru disp_buf + 25

Examples
05fxh

Offffh

disp_buf +5
symb_thl + (offset/ 2)
start

mod_name: line 15 end

See Also The SYMB syntax description.

366

Chapter 12: Emulator/Analyzer Interface Commands
forward

forward

<COMMAND>%4# <RETURN>

debug
H. Ce
~Co]
o

This command lets you forward commands to other HP 64700 interfaces that use
the "emul700dmn" daemon process to coordinate actions between the interfaces.

bms Sends messages to the Broadcast Message Server or BMS.

<COMMAND> An ASCII string, enclosed in quotes, that is the command to be forwarded to the
named interface.

debug Forwards command to the high-level debugger interface.

emul Forwards command to the emulator/analyzer interface.

perf Forwards commands to the software performance analyzer interface.

<UINAME> Forwards commands to a user interface name other than those available on the
softkeys.

Examples To send the "Program Run" command to the debugger:

forward debug "Program Run" <RETURN>

To send the "profile" command to the software performance analyzer:

forward debug "profile" <RETURN>

See Also TheUser’s Guidéor the interface to which you are forwarding commands.

367

Chapter 12: Emulator/Analyzer Interface Commands

help

help
= <HELP FILE> <RETURN>

Displays information about system and emulation features during an emulation
session.
Typing help or ? displays softkey labels that list the options on which you may
receive help. When you select an option, the system will list the information to the
screen.
Thehelp command is not displayed on the softkeys. You must enter it into the
keyboard. You may use a question mark in pladelgfto access the help
information.
The parameters are as follows:

<HELP_FILE> This represents one of the available options on the softkey labels. You can either
press a softkey representing the help file, or type in the help file name. If you are
typing in the help file name, make sure you use the complete syntax. Not all of the
softkey labels reflect the complete file name.

Examples

help system_commands <RETURN>
? run <RETURN>

This is a summary of the commands that appear on the softkey labels when you
typehelp or pres:

system_commands
run

trace

step

break

display

modify

load

368

store

copy

reset

stop_trace

end
software_breakpoints
registers

expressions (--EXPR--)
symbols (--SYMB--)
specify

cmb

cmb_execute

map

set

wait

pod _command
bbaunload

coverage

Chapter 12: Emulator/Analyzer Interface Commands
help

performance_measurement_initialize
performance_measurement_run
performance_measurement_end

369

Chapter 12: Emulator/Analyzer Interface Commands

load

load

load <FILE> // <RETURN=>
Cemimen)

user_mem

=y

noupdate

N trace - <FILE>
=~ canfiguration)

M
/
= symbol - <FILE> - noupdme)—/
J

;

This command transfers absolute files from the host computer into emulation or
target system RAM. With other parameters, the load command can load emulator
configuration files, trace records, trace specifications, or symbol files.

The absolute file contains information about where the file is stored. The memory
map specifies that the locations of the file are in user (target system) memory or
emulation memory. This command also allows you to access and display
previously stored trace data, load a previously created configuration file, and load
absolute files with symbols.

Note that any file specified by <FILE> cannot be named "configuration”,
"emul_mem", "user_mem", "symbols", "trace", or "trace_spec" because these are
reserved words, and are not recognized by the emulator/analyzer interface as
ordinary file names.

The absolute file is loaded into emulation memory by default.

370

Chapter 12: Emulator/Analyzer Interface Commands
load

The parameters are as follows:

configuration This option specifies that a previously created emulation configuration file will be
loaded into the emulator. You can follow this option with a file name. Otherwise
the previously loaded configuration will be reloaded.

emul_mem Loads only those portions of the absolute file that reside in memory ranges mapped
as emulation memory.

<FILE> This represents the absolute file to be loaded into either target system memory,
emulation memory (.X files are assumed), or the trace memory (.TR files are
assumed).

noabort This option allows you to load a file even if part of the file is located at memory
mapped as "guarded" or "target ROM" (trom).

nosymbols This option causes the file specified to be loaded without symbols.

noupdate This option suppresses rebuilding of the symbol data base when you load an

absolute file. If you load an absolute file, end emulation, then modify the file (and
relink it), the symbol database will not be updated upon reentering emulation and
reloading the file. The default is to rebuild the database.

symbols This option causes the file specified to be loaded with symbols.
trace This option allows you to load a previously generated trace file.
trace_spec This option allows you to load a previously generated trace specification.

Note that the current trace specification will be modified, but a new trace will not
be started. To start a trace with the newly loaded trace specificatiortracaer
again or specify trace again(nottrace). If you specifytrace, a new trace will

begin with the default trace specification, not the one you loaded.

user_mem Loads only those portions of the absolute file that reside in memory ranges mapped
as target memory.

Examples

load sortl <RETURN>

load configuration config3 <RETURN>
See Also Thedisplay trace command.

371

Chapter 12: Emulator/Analyzer Interface Commands

log_commands

<FILE>

noappend

off

to

Examples

See Also

log_commands

H <FILE> ‘L] <RETURN>

This command allows you to record commands that are executed during an
emulation session.

Commands executed during an emulation session are stored in a file until this
feature is turned off. This is a handy method for creating command files.

To execute the saved commands after the file is closed, type the filename on the
command line.

The parameters are as follows:

This represents the file where you want to store commands that are executed during
an emulation session.

If the named file is an existing file, this option causes the new commands to
overwrite any information present in the file. If this option is not specified, new
commands are appended to the existing contents of the file.

This option turns off the capability to log commands.

This allows you to specify a file for the logging of commands.

log_commands to logfile <RETURN>

log_commands off <RETURN>

Thewait command.

372

Chapter 12: Emulator/Analyzer Interface Commands
modify

modify

= MEMORY <RETURN>
-
\4-(CONFIGURATION }—J
H SOFTWARE BREAKPOINTS }—/
k!" KEYBOARD TO SIMIO }—j

This command allows you to observe or change information specific to the
emulator.

Themodify command is used to:

* Modify contents of memory (as integers, strings, or real numbers).
* Modify the contents of the processor registers.

* View or edit the current emulation configuration.

» Modify the software breakpoints table.

The following pages contain detailed information about the vanmasfy syntax
diagrams.

373

Chapter 12: Emulator/Analyzer Interface Commands

modify configuration

Examples

See Also

modify configuration

on MODIFY diagram

This command allows you to view and edit the current emulation configuration
items.

The configuration questions are presented in sequence with either the default
response, or the previously entered response. You can select the currently
displayed response by pressing <RETURN>. Otherwise, you can modify the
response as you desire, then press <RETURN>.

The default responses defined on powerup are displayed.

modify configuration <RETURN>

Theload configuration command.

374

Chapter 12: Emulator/Analyzer Interface Commands
modify io_port

modify io_port

(modify H 'oportHEXPRb

ERET=Y C o)
o)

<—>< to ——EXPR—— To output of 10 PORT
on MODIFY diagram

This command lets you write values to I/O port locations.

You canmodify the contents of individual I/O port locations to individual values.
Or, you can modify a range of I/O port locations to a single value or a sequence of
values.

Modify a series of 1/0O port locations by specifying the address of the first location

in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first I/O port location. The second value replaces the contents of the
next I/O port location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

A range of I/0O ports can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequ
This type of 1/O port modification is done by entering the limits of the memory
range to be modified (--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in the range ar
be changed.

Note that if the specified address range is not large enough to contain the new data,
only the specified addresses are modified.

375

Chapter 12: Emulator/Analyzer Interface Commands

modify io_port

bytes
--EXPR--

thru

to

words

Examples

See Also

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the 1/O port
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to I/O ports, the modification is aborted at the address
where the error occurred.

The default is to use the current display memory mode, if one is in effect.
Otherwise the default is to "byte."

The parameters are as follows:
Modify I/O ports with byte values.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

This option lets you specify a range of 1/0 port locations to be modified.

This lets you specify values to which the selected 1/0O port locations will be
changed.

Modify I/O port locations with 16-bit values.

A comma is used as a delimiter between values when modifying multiple 1/O port
addresses.

modify io_port 0 bytesto 12h <RETURN>
modify io_port datal thru DATA100 to OFFH <RETURN>

modify io_port DISPLAY thru DISPLAY+60H bytesto 1 , 2
, 3 ,4 ,5 , 6<RETURN>

Thecopy io_port anddisplay io_port commands.

376

Chapter 12: Emulator/Analyzer Interface Commands
modify keyboard_to_simio

modify keyboard _to_simio

< modify }D@eyboarditoisimio To output of

KEYBOARD TO SIMIO

on MODIFY diagram

This command allows the keyboard to interact with your program through the
simulated I/O software.

When the keyboard is activated for simulated 1/O, its normal interaction with
emulation is disabled. The emulation softkeys are blank and the softkey labeled
"suspend" is displayed on your screen. Pressiagend <RETURN>will

deactivate keyboard simulated 1/0 and return the keyboard to normal emulation
mode. For details about setting up simulated I/O, refer tBithelated 1/0 User's
Guide

See Also Thedisplay simulated_iocommand.

377

Chapter 12: Emulator/Analyzer Interface Commands

modify memory

modify memory

< modify >—>< memory H EXPRB

C (to) } <EXPR>

reo\ to D) } <REAL#>
Short
\ong J

% string H > { <STRING> }LA—<<RETURN>
on MODIFY diagram

This command lets you modify the contents of selected memory locations.

You canmodify the contents of individual memory locations to individual values.
Or, you can modify a range of memory to a single value or a sequence of values.

Modify a series of memory locations by specifying the address of the first location
in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first memory location. The second value replaces the contents of
the next memory location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

378

Chapter 12: Emulator/Analyzer Interface Commands
modify memory

A range of memory can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequence.
This type of memory madification is done by entering the limits of the memory
range to be modified (--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in the range are to
be changed.

Note that if the specified address range is not large enough to contain the new data,
only the specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the memory
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or target memory with
no monitor) the modification is aborted at the address where the error occurred.

For integer memory modifications, the default is to the current display memory
mode, if one is in effect. Otherwise the default is to "byte."

For real memory modifications, the default is to the current display memory mode,
if one is in effect. Otherwise the default is "word."

The parameters are as follows:

bytes Modify memory in byte values.
--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.
long Modify memory values as 32-bit long word values or 64-bit real values when
preceded byeal.
real Modify memory as real number values.
<REAL#> This prompts you to enter a real number as the value.
short Modify memory values as 32-bit real numbers.
words Modify memory values as 16-bit values.
string Modify memory values to the ASCII character string given by <STRING>.
<STRING> Quoted ASCII string including special characters as follows:
null \0

379

Chapter 12: Emulator/Analyzer Interface Commands
modify memory

newline \n

horizontal tab \t

backspace \b

carriage return \r

form feed \f

backslash \

single quote \

bit pattern \ooo (where 000 is an octal number)
thru This option lets you specify a range of memory locations to be modified.
to This lets you specify values to which the selected memory locations will be

changed.

words Modify memory locations as 32-bit values.

, A comma is used as a delimiter between values when modifying multiple memory
addresses.

Examples
modify memory datal bytesto OE3H,01H, 08H <RETURN>
modify memory datal thru DATA100 to OFFFFH <RETURN>
modify memory 0675H realto -1.303 <RETURN>
modify memory temp real long to 0.5532E-8 <RETURN>
modify memory buffer string to "Test\n\0" <RETURN>
See Also Thecopy memory, display memory, andstore memorycommands.

380

Chapter 12: Emulator/Analyzer Interface Commands
modify register

modify register

< modify }{ register \L j <REGISTER>
<CLASS> W

L(to >—>**EXPR —r—= To | <RETURN>

on MODIFY diagram

This command allows you to modify the contents of the emulation processor
internal registers.

The entry you specify for <REGISTER> determines which register is modified.
Individual fields of control registers may be modified.

Register modification cannot be performed during real-time operation of the
emulation processor. Break command or condition must occur before you can
modify the registers.

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a register value. For the floating-point registers, the value
is interpreted as a decimal real number. SeeE)XPR-- description.

<REGISTER> This represents the name of a register.
to Allows you to specify the values to which the selected registers will be changed.
Examples

modify register DX to 41H <RETURN>

See Also Thecopy registers display registers andmodify registerscommands.

381

Chapter 12: Emulator/Analyzer Interface Commands
modify software_breakpoints

modify software_breakpoints

(modify %offwore,breukpomrs}—)

(To | <RETURN>
on MODIFY diagram

===l CTy

temporary

64767502

This command changes the specification of software breakpoints.

Software breakpoints provide a way to accurately stop the execution of your
program at one or more instruction locations. When a software breakpoint is set,
the instruction that is normally at that location is replaced with an INT 3
instruction. When the software breakpoint is executed, control is passed to the
emulator’s monitor program, and the original instruction is restored in the user
program. Thus, execution is interrupted before the instruction at the specified
address is executed.

Operation of the program can be resumed after the breakpoint is encountered, by
specifying either aun or stepcommand.

If you modify software breakpoints while the memory mnemonic display is active,
the new breakpoints are indicated by &ih the leftmost column of the instruction
containing the breakpoint.

The software breakpoint facility may be completely disabled or enabled via the
"modify software_breakpoints" command. The default is "enabled".

382

Chapter 12: Emulator/Analyzer Interface Commands
modify software_breakpoints

The parameters are as follows:

clear This option erases the specified breakpoint address. If no breakpoints are specified
in the command, all currently specified breakpoints are cleared.

disable This option turns off the software breakpoint capability.

enable This option allows you to modify the software breakpoint specification.

--EXPR-- An expression is a combination of humeric values, symbols, operators, and
parentheses, specifying a software breakpoint address. See the EXPR syntax
diagram.

permanent Sets a permanent breakpoint. The software breakpoint instruction remains in the

program until the breakpoint is inactivated or removed.

set This option allows you to activate software breakpoints in your program. If no
breakpoint addresses are specified in the command, all breakpoints that have been
inactivated (executed) are reactivated.

temporary Sets a temporary breakpoint. When the break occurs, the original opcode is
replaced in the program.

, A comma is used as a delimiter between specified breakpoint values.

Examples
modify software_breakpoints enable <RETURN>
modify software_breakpoints set loopl end , loop2 end ,
OE40H <RETURN>
modify software_breakpoints clear <RETURN>
modify software_breakpoints set <RETURN>
See Also Thecopy software_breakpoints display memory mnemonic anddisplay

software_breakpointscommands.

383

Chapter 12: Emulator/Analyzer Interface Commands
performance_measurement_end

performance_measurement_end

<perform0nceimeqsurememtiemo <RETURN>

This command stores data previously generated by the
performance_measurement_runcommand, in a file named "perf.out" in the
current working directory.

The file named "perf.out" is overwritten each time this command is executed.
Current measurement data existing in the emulation system is not altered by this
command.

Examples
performance_measurement_end <RETURN>

See Also Theperformance_measurement_initializeandperformance_measurement_run
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

384

Chapter 12: Emulator/Analyzer Interface Commands
performance_measurement_initialize

activity

performance_measurement_initialize

<pem‘ormomcemeosurememt'm't'o'zeh o~ = <RETURN>

R

activity

duration

~—= restore

~—={ local symbols_in)—:

——=SYMB——

k><g\obc1\isymbo\s >

This command sets up performance measurements.

The emulation system will verify whether a symbolic database has been loaded. If

a symbolic database has been loaded, the performance measurement is set up with
the addresses of all global procedures and static symbols. If a valid database has not
been loaded, the system will default to a predetermined set of addresses, which
covers the entire emulation processor address range.

The measurement will default to "activity" mode.

Default values will vary, depending on the type of operation selected, and wh
symbols have been loaded.

The parameters are as follows:

This option causes the performance measurement process to operate as though an
option is not specified.

385

Chapter 12: Emulator/Analyzer Interface Commands
performance_measurement_initialize

duration

<FILE>

global_symbols

local_symbols_in

restore

--SYMB--

Examples

See Also

This option sets the measurement mode to "duration.” Time ranges will default to a
predetermined set (unless a user-defined file of time ranges is specified).

This represents a file you specify to supply user-defined address or time ranges to
the emulator.

This option specifies that the performance measurement will be set up with the
addresses of all global symbols and procedures in the source program.

This causes addresses of the local symbols to be used as the default ranges for the
measurement.

This option restores old measurement data so that a measurement can be continued
when using the sanieace command as previously used.

This represents the source file that contains the local symbols to be listed. This also
can be a program symbol name, in which case all symbols that are local to a
function or procedure are used. See the SYMB syntax diagram.

performance_measurement _initialize <RETURN>
performance_measurement _initialize duration <RETURN>

performance_measurement_initialize local_symbols_in
mod_name <RETURN>

Theperformance_measurement_rurandperformance_measurement_end
commands.

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

386

Chapter 12: Emulator/Analyzer Interface Commands
performance_measurement_run

performance_measurement_run

<RETURN>
= <COUNT>

This command begins a performance measurement.

~

<performomceimeoswememtirum

This command causes the emulation system to reduce trace data contained in the
emulation analyzer, which will then be used for analysis by the performance
measurement software.

The default is to process data presently contained in the analyzer.
The parameters are as follows:

<COUNT> This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and combine it
with existing data. This sequence will be repeated the number of times specified by
the COUNT option.

Note that thérace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the tlatault
commandtface <RETURN>).

For a duration measurement, you must set up the trace specification to store only
the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples
performance_measurement_run 10 <RETURN>
performance_measurement_run <RETURN>

See Also Theperformance_measurement_en@ndperformance_measurement_initialize

commands.

387

Chapter 12: Emulator/Analyzer Interface Commands
performance_measurement_run

Refer to the "Making Software Performance Measurements" chapter for examples
of performance measurement specification and use.

388

Chapter 12: Emulator/Analyzer Interface Commands
pod_command

pod _command

<RETURN>

‘ <PODCMD> '
= keyboard

Allows you to control the emulator through the direct HP 64700 Terminal Interface.

The HP 64700 Card Cage contains a low-level Terminal Interface, which allows
you to control the emulator’s functions directly. You can access this interface
usingpod_command The options tpod_commandallow you to supply only

one command at a time. Or, you can select a keyboard mode which gives you
interactive access to the Terminal Interface.

There are certain commands that you should avoid while using the Terminal
Interface througipod_command

sty Do not use. These commands will change the operation of the
» PO, Xp - .

communications channel, and are likely to hang the Softkey
Interface and the channel.

echo, mac Using these may confuse the communications protocols in use
on the channel.

Do not use. The pod will enter a wait state, blocking access| by

wait ’
the emulator/analyzer interface.
init, pv These will reset the emulator pod and force an end
’ release_system command.
t Do not use. The trace status polling and unload will become

confused.

To see the results of a particutend_command(the information returned by the
emulator pod), you usgisplay pod_command

Refer to the80186/8/XL/EA/EB Emulator User's Guide for the Terminal Interface
for information on using the Terminal Interface to control the emulator.

389

Chapter 12: Emulator/Analyzer Interface Commands

pod_command

keyboard

<POD_CMD>

suspend

Examples

See Also

The parameters are as follows:

Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. digglay pod_commandto see
the results returned from the emulator.

Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press <RETURN>.

This command is displayed once you have entered keyboard mode. Select it to stop
interactive access to the Terminal Interface and return to the Graphical User
Interface or Softkey Interface.

This example shows a simple interactive session with the Terminal Interface.

display pod_command <RETURN>

pod_command keyboard <RETURN>

cf <RETURN>

tsq <RETURN>

tcqg <RETURN>

Entersuspendto return to the Graphical User Interface or Softkey Interface.

Thedisplay pod_commandcommand.

Also see th&0186/8/XL/EA/EB Emulator User’s Guide for the Terminal Interface
and the Terminal Interface on-line help information.

390

Chapter 12: Emulator/Analyzer Interface Commands

or

RANGE

STATE

Examples

QUALIFIER
QUALIFIER
From

diagram

on TRACE diagram

TheQUALIFIER parameter is used witrace only, trace prestore and
TRIGGER to specify states captured during the trace measurement.

You may specify a range of states (RANGE) or specific states (STATE) to be
captured. You can continue to "or" states until the analyzer resources are depleted.
You can use only one RANGE statement in the etri@e command.

You can include "don’t care numbers." These contain an "X" preceded and/or
followed by a number. Some examples include 1fxxh, 17x70, and 011xxx10b.
"Don’t care numbers" may be entered in binary, octal, or hexadecimal base.

The default is to qualify on all states.
The parameters are as follows:

This option allows you to specify multiple states (STATE) to be captured during a
trace measurement. See the STATE syntax diagram.

This allows you to specify a range of states to be captured during a trace
measurement. See the RANGE syntax diagram.

This represents a unigue state that can be a combination of address, data, status, and
executed address values. See the STATE syntax diagram.

trace only address mod_name:read_input <RETURN>
trace only address range mod_name:read_input thru
output <RETURN>

391

Chapter 12: Emulator/Analyzer Interface Commands

QUALIFIER
trace only address range mod_name:clear thru read_input
<RETURN>

See Also Thetrace command.

392

Chapter 12: Emulator/Analyzer Interface Commands
RANGE

address

data

~-EXPR--

<external_label>

RANGE

RANGE

T e

QUALIFIER

9 a
> e
3

= address
H.~

<external label>

C—{EXPRH thru H**EXPR* F To output of RANGE
on | QUAIFIER | diagram

diagram

/

The RANGE parameter allows you to specify a condition for the trace
measurement, made up of one or more values.

Therange option can be used for state qualifier labREsngecan only be used
once in a trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the
Emulation Analyzer" chapter for a list of the predefined values that can be assigned
to the status state qualifiers.

Expression types are "address" when none is chosen.
The parameters are as follows:

The value following this softkey is searched for on the lines that monitor the
emulation processor’s address bus.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram for details.

This represents a defined external analyzer label.

393

Chapter 12: Emulator/Analyzer Interface Commands

RANGE

not

range

status

thru

Examples

See Also

This specifies that the analyzer search for the logical "not" of the specified range
(this includes any addresses not in the specified range).

This indicates a range of addresses to be specified (--EXPR-- thru --EXPR--).

The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

This indicates that the following address expression is the upper address in a range.

See thdérace command examples.

Thetrace command and the QUALIFIER syntax description.

394

Chapter 12: Emulator/Analyzer Interface Commands
reset

reset

This command suspends target system operation and reestablishes initial emulator
operating parameters, such as reloading control registers.

The reset signal is latched when the reset command is executed and released by
either therun or break command.

See Also Thebreak andrun commands.

395

Chapter 12: Emulator/Analyzer Interface Commands

run

run

N <RETURN>

= ——EXPR—
= fransfer_address
(e)

64767501

This command causes the emulator to execute a program.
If the processor is in a reset staitey will cause the reset to be released.

If the emulator is configured to run directly into user code out of reset, the monitor
will not be entered and part of your debug environment may be temporarily
disabled. A subsequent break into the monitor will restore it. See the "Enter
monitor from reset?" question in the configuration menu for more information.

If the from parameter and an address is specified, the processor will start running
your program at that address. Otherwise, the run will occur from the address
currently stored in the processor’s program counter.

A run from reset command will reset the processor and then allow it to run. Itis
equivalent to enteringr@setcommand followed by min command.

If the emulator is configured to participate in the READY signal on the CMB, then
this emulator will release the READY signal so that it will go TRUE if all other

HP 64700 emulators participating on that signal are also ready. See the
cmb_executecommand description.

Qualifying a run command with amtil parameter causes a software breakpoint to
be set before the program is run.

If you omit the address option (--EXPR--), the emulator begins program execution
at the current address specified by the emulation processor program counter. If an
absolute file containing a transfer address has just been loaded, execution starts at
that address.

The parameters are as follows:

396

Chapter 12: Emulator/Analyzer Interface Commands

run

address Specifies an address for a temporary register breakpoint that will be programmed
into one of the processor’s two breakpoint registers. Up to two addresses may be
specified.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

from This specifies the address from which program execution is to begin.

reset This option resets the processor prior to running.

transfer_address This represents the starting address of the program loaded into emulation or target
memory. The transfer address is defined in the linker map and is part of the symbol
database associated with the absolute file.

until Causes a software breakpoint to be set at the specified address before the program
is run.

Examples
run <RETURN>

run from 810H <RETURN>
run from COLD_START <RETURN>

run from transfer_address until 910H <RETURN>

See Also The stepcommand.

397

Chapter 12: Emulator/Analyzer Interface Commands

SEQUENCING
SEQUENCING
From frace
fax d
synfax diagram ~
{fmdfsequemte QUALIFIER }
occurs H <aTIMES> M
fhen /
resftarf H QUALIFIER ?—
Lets you specify complex branching activity that must be satisfied to trigger the
analyzer.
Sequencing provides you with parameters fotridaee command that let you
define branching conditions for the analyzer trigger.
You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to a
total of four sequence terms.
The analyzer default is no sequencing terms. If you select the sequencer using the
find_sequence parameter, you must specify at least one qualifying sequence term.
The parameters are as follows:
find_sequence Specifies that you want to use the analysis sequencer. You must enter at least one
qualifier.
QUALIFIER Specifies the address, data, status, or executed address value or value range that will

satisfy this sequence term if looking for a sequence (find_sequence), or will restart
at the beginning of the sequence (restart). See the QUALIFIER syntax pages for
further information.

398

occurs

<#TIMES>

then

restart

Examples

See Also

Chapter 12: Emulator/Analyzer Interface Commands
SEQUENCING

Selects the number of times a particular qualifier must be found before the analyzer
proceeds to the next sequence term or the trigger term. This option is not available
when trace windowing is in use. SeeWENDOW syntax pages.

Prompts you for the number of times a qualifier must be found.

Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

Selects global restart. If the analyzer finds the restart qualifier while searching for a
sequence term, the sequencer is reset and searching begins for the first sequence
term.

trace find_sequence Caller_3 then Write_Num restart
anly."anly.c": line 57 trigger after Results+0c4h
<RETURN>

Thetrace command and the QUALIFIER and WINDOW syntax descriptions.

399

Chapter 12: Emulator/Analyzer Interface Commands
set

@—‘ <VALUE>

0 (
J

langinfa

source

frace_on

C_IEE695

ADA

={ Inverse_videa

\\’Cfojs,ure H

<TABS> 5
~ -

\\——qumber,of,source,tmes H <NUMSRC=>

>

mnemonic

<WIDTH> ‘

source H <WIDTH=> }

| 1
{ symbols H <WIDTH> h

To | <RETURN> ‘GD‘ DISPLAY ‘d\ogrum

400

Chapter 12: Emulator/Analyzer Interface Commands
set

Controls the display format for the data, memory, register, software breakpoint, and
trace displays.With the set command, you can adjust the display format results for
various measurements, making them easier to read and interpret. Formatting of
source lines, symbol display selection and width, and update after measurement can
be defined to your needs.

The display command uses the set command specifications to format measurement
results for the display window. Another option to the set commddy VAR>

= <VALUE>, allows you to set and export system variables to the UNIX
environment.

The default display format parameters are the same as those set by the commands:

set update
set source off symbols off

You can return the display format to this state by entering:

set default

The parameters are as follows:
default This option restores all the set options to their default settings.
<ENV_VAR> Specifies the name of a UNIX environment variable to be set.

= The equals sign is used to equate the <ENV_VAR> parameter to a particular value
represented by <VALUE>.

inverse video
off This displays source lines in normal video.

on This highlights the source lines on the screen (dark characters on light background)
to differentiate the source lines from other data on the screen.

401

Chapter 12: Emulator/Analyzer Interface Commands

set

langinfo

ADA

C_IEE695

Note

memory

noupdate

number_of _
source_lines

In certain languages, you may have symbols with the same names but different
types. For example, in IEEE695, you may have a file named main.c and a
procedure named main. SRU would identify these as main(module) and
main(procedure). The commadigplay local_symbols_in mainvould cause an

error message to appear (Ambiguous symbol: main(procedure, module)). Users of
C tend to think the procedure is important and users of ADA tend to think the
module is important. By entering "langinfo" and "C", SRU will interpret the above
command to benain(procedure). With langinfo ADA, SRU will interpret the

above command to lmeain(module).

Identifies ANSI C as the language so SRU can use the C hierarchy to disambiguate
symbols.

Identifies ADA as the language so SRU can use the ADA hierarchy to
disambiguate symbols.

Identifies C_IEEE-695 as the language so SRU can use the C_IEEE-695 hierarchy
to disambiguate symbols.

An alternate method for making the langinfo specification is to use the environment
variable, HP64SYMORDER. By making the following entry in yquiofile, the
langinfo setting will always be C, for example.

$ HP64SYMORDER=C # | want to use the C disambiguating
hierarchy
$ export HP64SYMORDER # let children processes know
about it

Sets update option for memory displays only.

When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will not update when a new measurement
completes. Displays showing memory contents are not updated when a command
executes that could have caused the values in memory to change (modify memory,
load, etc.).

This allows you to specify the number of source lines displayed for the actual
processor instructions with which they correlate. Only source lines up to the
previous actual source line will be displayed. Using this option, you can specify
how many comment lines are displayed preceding the actual source line. The
default value is 5.

402

Chapter 12: Emulator/Analyzer Interface Commands

set
<NUMSRC> This prompts you for the number of source lines to be displayed. Values in the
range 1 through 50 may be entered.
source
off This option prevents inclusion of source lines in the trace and memory mnemonic
display lists.
on This option displays source program lines preceding actual processor instructions
with which they correlate. This enables you to correlate processor instructions with
your source program code. The option works for both the trace list and memory
mnemonic displays.
only This option displays only source lines. Processor instructions are only displayed in
memory mnemonic if no source lines correspond to the instructions. Processor
instructions are never displayed in the trace list.
symbols
off This prevents symbol display.
on This displays symbols. This option works for the trace list, memory, software
breakpoints, and register step mnemonics.
high Displays only high level symbols, such as those available from a compiler. See the
Symbolic Retrieval Utilities User's Guidler a detailed discussion of symbols.
low Displays only low level symbols, such as those generated internally by a compiler,
or an assembly symbol.
all Displays all symbols.
tabs_are This option allows you to define the number of spaces inserted for tab characters in
the source listing.
<TABS> Prompts you for the number of spaces to use in replacing the tab character. Values
in the range of 2 through 15 may be entered.
trace Sets update option for trace displays only.
update When using multiple windows or terminals, and specifying this option, the display

buffer in that window or terminal will be updated when a new measurement
completes. This is the default. Note that for displays that show memory contents,
the values will be updated when a command executes that changes memory
contents (such as modify memory, load, and so on).

403

Chapter 12: Emulator/Analyzer Interface Commands

set

<VALUE>

width

source

label

mnemonic

symbols

<WIDTH>

Examples

See Also

Specifies the logical value to which a particular UNIX environment variable is to
be set.

This allows you to specify the width (in columns) of the source lines in the memory
mnemonic display. To adjust the width of the source lines in the trace display,
increase the widths of the label and/or mnemonic fields.

This lets you specify the address width (in columns) of the address field in the trace
list or label (symbols) field in any of the other displays.

This lets you specify the width (in columns) of the mnemonic field in memory
mnemonics, trace list and register step mnemonics displays. It also changes the
width of the status field in the trace list.

This lets you specify the maximum width of symbols in the mnemonic field of the
trace list, memory mnemonic, and register step mnemonic displays.

This prompts you for the column width of the source, label, mnemonic, or symbols
field.

Note that <CTRL>f and <CTRL>g may be used to shift the display left or right to
display information which is off the screen.

set source on inverse_video on tabs_are 2 <RETURN>
set symbols on width label 30 mnemonic 20 <RETURN>
set PRINTER ="Ip -s" <RETURN>

set HP64KSYMBPATH="filel:procl
file2:proc2:code_block 1" <RETURN>

Thedisplay data, display memory, display software_breakpoints anddisplay
trace commands.

404

Chapter 12: Emulator/Analyzer Interface Commands
specify

specify

run <RETURN=>

—{ disable
--EXPR--

transfer_address

\% TRACE

This command preparesn ortrace command for execution, and is used with
thecmb_executecommand.

When you precederan or trace command withspecify, the system does not
execute your command immediately. Instead, it waits until until an EXECUTE
signal is received from the Coordinated Measurement Bus or until you enter a
cmb_executecommand.

If the processor is reset and no address is specifiadb aexecutecommand will
run the processor from the "reset" condition.

Note that theun specification is active until you entgpecify run disable The
trace specification is active until you enter anottege command without the
specify prefix.

The emulator will run from the current program counter address if no address
specified in the command.

405

Chapter 12: Emulator/Analyzer Interface Commands

specify
The parameters are as follows:
disable This option turns off the specify condition of thum process.
from
--EXPR-- This is used with thepecify run from command. An expression is a combination

of numeric values, symbols, operators, and parentheses, specifying a memory
address. See the EXPR syntax diagram.

This is used with thepecify run from command, and represents the address from
transfer_address which the program will begin running.

run This option specifies that the emulator will run from either an expression or from
the transfer address when a CMB EXECUTE signal is received.

TRACE This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

until Specifies an address where program execution is to stop. The emulator will set a
software breakpoint at this address and stop execution of your program when it
reaches this address and enter the monitor.

Examples

specify run from START <RETURN>

specify trace after address 1234H <RETURN>
See Also Thecmb_executecommand.

406

Chapter 12: Emulator/Analyzer Interface Commands

STATE
STATE
From

STATE on

QUALIFIER | diagram To output of | STATE

on QUALIFIER | diagram

——ExPr——

<external label>

——EXPR——

<STATUS>

CEDN T

——EXPR——

This parameter lets you specify a trigger condition as a unique combination of
address, data, status, and executed address values.

The STATE option is part of the QUALIFIER parameter totthee command,
and allows you to specify a condition for the trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in the "Using the
Emulation Analyzer" chapter for a list of the predefined values that can be assigned
to the status state qualifiers.

407

Chapter 12: Emulator/Analyzer Interface Commands

STATE

address

and

data

-EXPR--

<external_label>

not

status

<STATUS>

Examples

See Also

The default STATE expression type is address.
The parameters are as follows:

This specifies that the expression following is an address value. This is the default,
and is therefore not required on the command line when specifying an address
expression.

This lets you specify a combination of status and expression valuestahesis
specified in the state specification.

The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram.

This represents a defined external analyzer label.

This specifies that the analyzer will search for the logical "not" of a specified state
(this includes any address that is not in the specified state).

The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

This prompts you to enter a status value in the command line. Status values can be
entered from softkeys or typed into the keyboard. Numeric values may be entered
using symbols, operators, and parentheses to specify a status value. See the EXPR
syntax diagram.

trace before status write <RETURN>

trace about address 1000H status write <RETURN>

See thdrace command examples.

Thetrace command and the QUALIFIER syntax description.

408

Chapter 12: Emulator/Analyzer Interface Commands
step

step

step f
TonEers WJ
<RETURN>
——EXPR—— silently
= transfer_address

Thestepcommand allows sequential analysis of program instructions by causing
the emulation processor to execute a specified number of assembly instructions or
source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after eatbpcommand.

Source line stepping is implemented by single stepping assembly instructions until
the next PC is beyond the address range of the current source line. When
attempting source line stepping on assembly code (with no associated source line),
stepping will complete when a source line is found. Therefore, stepping only
assembly code may step forever. To abort stepping, press <CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that will

step is highlighted. The memory mnemonic display autopages to the new address if
the next PC goes outside of the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than one
displaying memory mnemonic.

If no value is entered for <NUMBER> times, only atepinstruction is executed
each time you press <RETURN>. Multiple instructions can be executed by ho
down the <RETURN> key. Also, the default step is for assembly code lines, n
source code lines.

If the from address option (defined by --EXPR-- or transfer_address) is omitted,
stepping begins at the next program counter address.

409

Chapter 12: Emulator/Analyzer Interface Commands

step

--EXPR--

from

<NUMBER>

silently

transfer_address

source

Examples

See Also

The parameters are as follows:

An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.

Use this option to specify the address from which program stepping begins.

This defines the number of instructions that will be executed bstépeommand.
The number of instructions to be executed can be entered in binary (B), octal (O or
Q), decimal (D), or hexadecimal (H) notation.

When you specify a number of steps, this option updates the register step
mnemonic only after stepping is complete. This will speed up stepping of many
instructions. The default is to update the register step mnemonic after each
assembly instruction (or source line) executes (if stepping is performed in the same
window as the register display).

This represents the starting address of the program you loaded into emulation or
target memory. The transfer_address is defined in the linker map.

This option performs stepping on source lines.

step <RETURN>

step from 810H <RETURN>
step 5 source <RETURN>
step 20 silently <RETURN>

step 4 from main <RETURN>

Thedisplay registers display memory mnemonic andset symbolscommands.

410

Chapter 12: Emulator/Analyzer Interface Commands
stop_trace

stop_trace

stop trace <RETURN>

This command terminates the current trace and stops execution of the current
measurement.

The analyzer stops searching for trigger and trace states. If trace memory is empty
(no states acquired), nothing will be displayed.

See Also Thetrace command.

411

Chapter 12: Emulator/Analyzer Interface Commands

store

~-EXPR--

<FILE>

memory

store

<FILE> H<RETURN>

-

[
\

oot
/)

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file.

Thestore command creates a new file with the name you specify, if there is not
already an absolute file with the same name. If a file represented by <FILE>
already exists, you must decide whether to keep or delete the old file. If you
respond withyesto the prompt, the new file replaces the old one. If you respond
with no, thestore command is canceled and no data is stored.

The transfer address of the absolute file is set to zero.
The parameters are as follows:

This is a combination of numeric values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR syntax diagram.

This represents a file name you specify for the absolute file identifier or trace file
where data is to be stored. If you want to name a file beginning with a number, you
must precede the file name with a backslash (\) so the system will recognize it as a
file name.

This causes selected memory locations to be stored in the specified HP64000
format file with a X extension.

412

Chapter 12: Emulator/Analyzer Interface Commands

store

thru This allows you to specify that ranges of memory be stored.

to Use this in thestore memorycommand to separate memory locations from the file
identifier.

trace This option causes the current trace data to be stored in the specified file Mith a
extension.

trace_spec This option stores the current trace specification in the specified file vith a
extension.

, A comma separates memory expressions in the command line.

Examples
store memory 800H thru 20FFH to TEMP2 <RETURN>
store memory EXEC thru DONE to \12.10 <RETURN>
store trace TRACE <RETURN>
Store trace_spec TRACE <RETURN>

See Also Thedisplay memory, display trace, andload commands.

413

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

--SYMB--

-—-5YMB--

proceddre

enfry_exit range

text_range

(Segmeme <SEG_NAME=> }—/
: FILE \»C line H <LINEn> }—/

FILE
<FILENAME>
. <[LENAME> .‘
= SCOPE *.
<SYMB>

<FILENAME>

SCOPE

% oo I
.

SCOPE

% <IDENTIFIER>

<TYPE>

414

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

This parameter is a symbolic reference to an address, address range, file, or other
value.

Note that if no default file was defined by executing the comrdapday
local_symbols_in --SYMB-; or with thecwscommand, a source file name
(<FILE>) must be specified with each local symbol in a command line.

Symbols may be:

» Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry and
exit points).

» Combinations of paths, filenames, and line numbers referencing a particular
source line.

» Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
These utilities build trees to identify uniqgue symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol request
will occur immediately. If you then change a module and reenter the emulation
environment without rebuilding the symbol database, the emulation software
rebuilds the changed portions of the database in increments as necessary.

The last symbol specified indisplay local_symbols_in --SYMB-<command, or
with thecwscommand, is the default symbol scope. The default is "none" if no
current working symbol was set in the current emulation session.

You also can specify the current working symbol by typing the cws command on
the command line and following it with a symbol name. gilte command
displays the current working symbol on the status line.

Display memory mnemonic also can modify the current working symbol.

415

Chapter 12: Emulator/Analyzer Interface Commands

--SYMB--

<FILENAME>

line

<LINE#>
<IDENTIFIER>
SCOPE

segment

<SEG_NAME>
(<TYPE>)

filename

module

procedure

static

task

The parameters are as follows:

This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was loaded,
then the default file is assumed (the last absolute file specified by a display
local_symbols_in command). A default file is only assumed when other parameters
(such adine) in the--SYMB-- specification expect a file.

This specifies that the following numeric value references a line number in the
specified source file.

Prompts you for the line number of the source file.
Identifier is the name of an identifier as declared in the source file.

Scope is the name of the portion of the program where the specified identifier is
defined or active (such as a procedure block).

This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.

Prompts you for entry of the segment name.

When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type a space
between the identifier name and the type specification. The type will be one of the
following:

Specifies that the identifier is a source file.

These refer to module symbols. For Ada, they are packages. Other language
systems may allow user-defined module names.

Any procedure or function symbol. For languages that allow a change of scope
without explicit naming, SRU assigns an identifier and tags it with type procedure.

Static symbols, which includes global variables. The logical address of these
symbols will not change.

Task symbols, which are specifically defined by the processor and language system
in use.

A colon is used to specify the UNIX file path from the line, segment, or symbol
specifier. When following the file name with a line or segment selection, there
must be a space after the colon. For a symbol, there must not be a space after the
colon.

416

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

Symbolic Retrieval Utilities (SRU)

The 80186 emulator interface software can read absolute files in HP-OMF and
OMF-86 formats. When you load a program for the first time, the emulator uses
the Symbolic Retrieval Utilities (SRU) to build a symbol database for each module.
This database associates symbol names and symbol type information (not data
types) with logical addresses. You will see a message on screen indicating the
module for which the database is being built.

Once a symbol database is created for a particular module, it does not need to be
rebuilt unless the module is changed. You can rebuild modules ussrgibléd

utility (see theSymbolic Retrieval Utilities User’s GuideOr, if you reenter

emulation without building symbols, the emulator software will automatically
rebuild portions of the symbol database as you reference symbols in modified
modules.

Global symbol information is immediately available for the file that you loaded.
To obtain local symbol information, you need to specify the module that contains
the symbols.

You can use the symbol names instead of addresses when entering expressions as
part of an emulation command. Therefore, you don’t have to remember
segment:offset information to make a measurement. Also, the emulator can display
symbols as part of a measurement, usingéhsymbols orcommand. This helps

you relate the measurement to your original program.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
Symbols are arranged in a "tree" structure that mimics the natural scoping of your
source language as much as possible.

Each absolute file has its own symbol tree. Each entry in the symbol tree has a type
and a name. If you are not sure what your "language tree" looks like, you can use
thesruprint program to print portions of your tree.

All emulation references to symbols (both input from the keyboard and output
displays) make use of the tree structure to show the scoping of symbols and t
make evident the symbols that have the same name but different scopes.

417

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

OMF-86 Examples. The following short C code example should help illustrate
how OMF-86 symbols are maintained by SRU and referenced in your emulation
commands.

File /users/dave/control.c:
int *port_one;

main ()

int port_value;

port_one = 255;
port_value = 10;

process_port (port_one, port_value);
} /* end main */

File /system/projectl/porthand.c:
process_port (int *port_num, int port_data)

static int i;
static int i2;

for (i=0;i<=64; i++) {
*port_num = port_data;
delay ();
i=3;
port_data = port_data + i;

} /* end of process_port */

File /system/projectl/utils.c:
delay()
{
intij;
int waste_time;
for (i = 0; i <= 256000; i++)
for (j = 0; j <= 256000; j++)
waste_time = 0O;
} /* end delay */

418

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

OMF-86 Symbol Tree. The OMF-86 symbol tree as built by SRU would appear
as follows (this is not a complete symbol tree):

/system/project1/utils.c
(filename)

delay
(procedure)

TEXTRANGE

(procspecial)
EXIT

(procspecial)

TEXTRANGE
(procspecial)

EXIT
(procspecial)

ENTRY
(procspecial)

/system/project!/porthand.c
(filename)

/users/dave/control.c
(filename)

ENTRY
(procspecial)
main (procedure)

process_port
(procedure

ENTRY TEXTRANGE
(procspecial) (procspecial)

QFT,D e (static) EXIT
(orocspecial)

SRU does not build tree nodes for variables that are dynamically allocated on
stack at run-time, such as i and j within the delay() procedure. SRU has no way of
knowing where these variables will be at run time and therefore cannot build a
corresponding symbol tree entry with run-time addresses.

419

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

Examples of referencing different symbols in the programs shown earlier are:

control.c:main
control.c:port_one

SRU Searches for Symbols. SRU has symbol-searching capability. It also
has the ability to explicitly set a "current working symbol" (cws), which allows you
to refer to symbols relative to the cws.

When the shell variabldP64KSYMBPATH is set to be a blank-separated list of
symbols, a "search list" is set. When a symbol is entered without the leading colon
or dot, which forces it to be global, the following happens:

The current working symbol (if there is one) is prefixed to the entered symbol. If
the resulting symbol exists, it will be the symbol that is used.

For each entry ilP64KSYMBPATH:

» Prefix the entry with the entered symbol. If the symbol exists, that is the
symbol to use.

» Otherwise, remove the last entry in HiB64KSYMBPATH s symbol and
repeat the previous step.

In addition to theHP64KSYMBPATH environment variable and cws, a search
algorithm to resolve symbol references on the command line is used. These actions
will occur when using the filename as an element of the symbol in the command
line.

e If the first element of the entered symbol is a filename, SRU will construct a
module name from the filename. The module is defined as the basename of the
filename, with the extension removed. For example, modulename
"PORTHAND" is derived from the path and filename
"Isystem/projectl/porthand.c".

— If the request was for the address of a line number, SRU will check to
see if the symbol <modulename>.<filename> exists. If it does, it will
assume that is the symbol you want. Otherwise, it will return the
message "symbol not found".

— If the request wasot for the address of a line number, SRU will check
to see if the symbol with the <filename> replaced with <modulename>

420

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

exists. If the new symbol exists, SRU will assume that is the symbol
you want. Otherwise, it will return the message "symbol not found".

» If no module was derived from the filename, SRU will return the message
"symbol not found".

You can reference different variables with matching identifiers by specifying the
complete scope. You can also save on keystrokes by specifying a scop&swith
For example, if you are making many measurements involving symbols in the file
"porthand.c", you could specify:

cws porthand.c:process_port

Then
i
BLOCK 1.i

are prefixed with "porthand.c:process_port" before the database lookup.

If a symbol search with the current working symbol prefix is not successful, the last
scope on the current working symbol is stripped. The symbol you specified is then
retested with the modified current working symbol. This does not change the
actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_1

and made a reference to symbol i2, the retrieval utilities attempt to find a symbol
called

porthand.c:process_port.BLOCK_1.i2

which would not be found.

The symbol utilities would then strip BLOCK_1 from the current working symb
yielding

porthand.c:process_port.i2

which is a valid symbol. If this is still not a valid symbol, this process is repeated
until the symbol is found or until there are no more elements in the cws.

421

Chapter 12: Emulator/Analyzer Interface Commands
--SYMB--

You can also specify the symbol type if conflicts arise. Although not shown in the
tree, assume that a procedure called "port_one" is also defined in "control.c". This
would conflict with the identifier "port_one" which declares an integer pointer.

SRU can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

See Also Thecopy local_symbols_iranddisplay local_symbols_incommands.

Also refer to theSymbolic Retrieval Utilities User’s Guider further information
on symbols.

For information about using a special default prefix for low-level symbols when
working with 3rd party symbols, see the i P64000/lib/sru/aux/langinfo.hp
That file also describes the language used to reduce ambiguous error messages.

422

Chapter 12: Emulator/Analyzer Interface Commands
trace

trace

trace
* = WINDOW = SEQUENCING

. again <RETURN>

= repetitively

= modify command

i
)

Gy
- TRIGGER I

\—C only —{ QUALIFIER }—/
%prestore

anything
break on_trigger
repetitively J

This command allows you to trace program execution using the emulation analyzer.

Note that the options shown can be executed once fotreaelcommand. Refer
to the TRIGGER and QUALIFIER diagrams for details on setting up a trace.

You can perform analysis tasks either by starting a program run and then spegq
the trace parameters, or by specifying the trace parameters first and then initi
the program run. Onceti@ce begins, the analyzer monitors the system busses
the emulation processor to detect the states specified timdeecommand.

When the trace specification is satisfied and trace memory is filled, a message will
appear on the status line indicating the trace is complete. You can then use display
trace to display the contents of the trace memory. If a previous trace list is on
screen, the current trace automatically updates the display. If the trace memory

423

Chapter 12: Emulator/Analyzer Interface Commands
trace

contents exceed the page size of the display, the <NEXT>, <PREV>, <Up arrow>,
or <Down arrow> keys may be used to display all the trace memory contents. You
also can press <CTRL>f and <CTRL>g to move the display left and right.

You can set up trigger and storage qualifications usingpéefy tracecommand.
The analyzers will begin tracing whererab_executecommand executes, which
causes an EXECUTE signal on the Coordinated Measurement Bus.

The analyzer will trace any state by default.
The parameters are as follows:

again This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using without the
again parameter will start a trace with the default specification rather than the
loaded specification.)

anything This causes the analyzer to capture any type of information.

arm_trig2 This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700s, or an HP 64700 and
another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation

configuration interactive measurement specification. When doing this, you must
specify that either BNC or CMBT drive trig2, and that the analyzer receive trig2.
See the chapter on "Making Coordinated Measurements" for more information.

break_on_trigger This stops target system program execution when the trigger is found. The
emulator begins execution in the emulation monitor. When using this option, the
on_halt option cannot be included in the command.

modify_command This recalls the last trace command that was executed.

on_halt When using this option, the analyzer will continue to capture states until the
emulation processor halts or untétap_tracecommand is executed. When this
option is used, thiereak_on_trigger, repetitively, andTRIGGER options cannot
be included in the command.

only This option allows you to qualify the states that are stored, as defined by
QUALIFIER .
prestore This option instructs the analyzer to save specific states that occur prior to states

that are stored (as specified with the "only" option).

424

Chapter 12: Emulator/Analyzer Interface Commands
trace

QUALIFIER This determines which of the traced states will be stored or prestored in the trace
memory for display upon completion of the trace. Events can be selectively saved
by usingtrace only to enter the specific events to be saved. When this is used,
only the indicated states are stored in the trace memory. See the QUALIFIER
syntax.

repetitively This initiates a new trace after the results of the previous trace are displayed. The
trace will continue until atop_traceor a newtrace command is issued. When
using this option, you cannot use tre _halt option.

SEQUENCING Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for the
trigger. You are limited to four sequence terms if windowing is enabled. See the
SEQUENCING syntax pages for more details.

TRIGGER This represents the event on the emulation bus to be used as the starting, ending, or
centering event for the trace. SeeTRGGER syntax diagram. When using this
option, you cannot include tloa_halt option.

WINDOW Selectively enables and disables analyzer operation based upon independent enable
and disable terms. This can be used as a simple storage qualifier. Or, you may use
it to further qualify complex trigger specifications. SeevMHBIDOW syntax
pages for details.

Examples
trace after 1000H <RETURN>
trace only address range 1000H thru 1004H <RETURN>
trace after address 1000H occurs 2 only address range
1000H thru 1004H break on_trigger <RETURN>

See Also Thecopy trace display trace, load trace, load trace_spegspecify trace store

trace, andstore trace_specommands.

425

Chapter 12: Emulator/Analyzer Interface Commands

TRIGGER
TRIGGER
From
TRACE
diagram e after N 1
QUALIFIER
H
To output of
occurs H <#TIMES> M on diagram
This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.
A trigger is a QUALIFIER. When you include thecursoption, you can specify
the trigger to be a specific number of occurrences of a QUALIFIER (see the
QUALIFIER syntax diagram).
The default is to trace after any state occurs once.
The parameters are as follows:
about This option captures trace data leading to and following the trigger qualifier. The
trigger is centered in the trace listing.
after Trace data is acquired after the trigger qualifier is found.
before Trace data is acquired prior to the trigger qualifier.
occurs This specifies a number of qualifier occurrences of a range or state on which the
analyzer is to trigger.
QUALIFIER This determines which of the traced states will be stored in trace memory.
<#TIMES> This prompts you to enter a number of qualifier occurrences.

426

Chapter 12: Emulator/Analyzer Interface Commands

TRIGGER
Examples
trace after MAIN <RETURN>
trace after 1000H thendata 5 <RETURN>
Also see thérace command examples.
See Also Thetrace command.

Also, refer to the "Making Coordinated Measurements" chapter.

427

Chapter 12: Emulator/Analyzer Interface Commands

wait

measurement
_complete

or

wait

= <RETURN>

<TIME> }—LCSGCOHdS\ *@—{meosurememticomp\ety
meosurememticomp\ete/ %orr—P{ <TIME> L\

. seconds

This command allows you to present delays to the system.

Thewait command can be an enhancement to a command file, or to normal
operation at the main emulation level. Delays allow the emulation system and
target processor time to reach a certain condition or state before executing the next
emulation command.

Thewait command does not appear on the softkey labels. You must typaithe
command into the keyboard. After you typait, the command parameters will be
accessible through the softkeys.

The system will pause until it receives a <CTRL>c signal.

Note that ifset intr <CTRL>c was not executed on your system, <CTRL>c
normally defaults to the backspace key. See your UNIX system administrator for
more details regarding keyboard definitions.

The parameters are as follows:

This causes the system to pause until a pending measurement completes (a trace
data upload process completes), or until a <CTRL>c signal is received. If a
measurement is not in progress,wet command will complete immediately.

This causes the system to wait for a <CTRL>c signal or for a pending measurement
to complete. Whichever occurs first will satisfy the condition.

428

Chapter 12: Emulator/Analyzer Interface Commands
wait

seconds This causes the system to pause for a specific number of seconds.
<TIME> This prompts you for the number of seconds to insert for the delay.

Note that avait command in a command file will cause execution of the command
file to pause until a <CTRL>c signal is received, if <CTRL>c is defined as the
interrupt signal. Subsequent commands in the command file will not execute while
the command file is paused. You can verify whether the interrupt signal is defined
as <CTRL>c by typingetat the system prompt.

Examples
wait <RETURN>

wait 5; wait measurement_complete <RETURN>

429

Chapter 12: Emulator/Analyzer Interface Commands

WINDOW

disable

enable

QUALIFIER

Examples

WINDOW

From trace
syntax diagram

{ enable H QUALIFIER }
disob\eH QUALIFIER M

Lets you select which states are stored by the analyzer.

WINDOW allows you to selectively toggle analyzer operation. When enabled, the
analyzer will recognize sequence terms, trigger terms, and will store states. When
disabled, the analyzer is effectively off, and only looks for a particular enable term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term occurs after
the analyzer is enabled, the analyzer will then stop storing states, and will not
recognize trigger or sequence terms. You may specify only one enable term and
one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you must
supply a qualifier term. If you then specify disable, you must specify a qualifier
term.

The parameters are as follows:

Allows you to specify the term which will stop the analyzer from recognizing states
once the enable term has been found.

Allows you to specify the term which will enable the analyzer to begin monitoring
states.

Specifies the actual address, data, status value or range of values that cause the
analyzer to enable or disable recognition of states. Note that the enable qualifier
can be different from the disable qualifier. Refer to the QUALIFIER syntax pages
for further details on analyzer qualifier specification.

trace enable _rand disable 0Oecch <RETURN>

430

Chapter 12: Emulator/Analyzer Interface Commands
WINDOW

See Also Thetrace command and the SEQUENCING and QUALIFIER syntax descriptions.

431

432

13

Error Messages

433

Error Messages

This chapter contains a list of error messages that may occur while operating the
emulator and analyzer.

Theerror log records error messages received during the emulation session. You
may want to display the error log to view the error messages. Sometimes several
messages will be displayed for a single error to help you locate a problem quickly.
To prevent overrun, the error log purges the oldest messages to make room for the
new ones.

To display the error log:
display error_log <RETURN>

Error messages are grouped into the following categories:
» Graphical/Softkey Interface Messages - Unnumbered
» Graphical/Softkey Interface Messages - Numbered

* Terminal Interface Messages

Note that Terminal Interface messages are passed along to the Graphical User
Interface (or Softkey Interface) and appear, with numbers, in the error log display.

434

Graphical/Softkey Interface Messages -
Unnumbered

Address range too small for request - request truncated
Cause: Too small of an address range is specified in a modify memory command.

Action: Specify a larger memory range.

Cannot create module file:
Cause: Insulfficient disk space for the module file.

Action: Check disk space under /usr/hp64000.

Cannot start. Ending previous session, try again

Cause: The host system could not start a new emulation session, and is ending the
previous session.

Action: After the previous session has ended, try starting a new emulation session.
If that fails, try "emul700 -u <logical name>" to unlock the emulator and cycle
power, if needed.

Cannot start. Pod initialization failed

Cause: The host system could not start a new emulation session because it could
not initialize the emulator.

Action: Cycle power on the emulator; verify that there are no red lights on the front
of the emulator. You may need to run the Terminal Interface "pv" command to
verify that the emulator is functioning properly before starting a new session.

Configuration not valid, restoring previous configuration
Configuration not valid, restoring default configuration

Cause: The modifications you tried to make to the emulator configuration are
valid, so the host system restored the previous configuration.

Action: See the "Configuring the Emulator" chapter for more information about
emulator configuration items and their settings.

435

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Configuration process QUIT

Cause: The configuration process ended because <CTRL>"\" (SIGQUIT signal)
was encountered. This is an easy way to exit configuration without saving any
changes.

Action: Try starting the emulation session again. If the problem persists, you may
need to cycle power on the emulator.

Connecting to <LOGICAL NAME>

Cause: This is a status message. The host system is making a communication
connection to the emulator whose logical name is defined in
/usr/hp64000/etc/64700tab.net or /usr/hp64000/etc/64700tab.

Continue load failed

Cause: The host system could not continue the previous emulation session because
it could not load the continue file.

Action: Try again. If the failure continues, call your HP Service Representative.

Continuing previous session, continue file loaded

Cause: This is a status message. An emulation session which was ended earlier
with theend command has been restarted. The host system reported that the session
was continued (using settings from the previous session) and that the continue file
loaded properly.

Continuing previous session, user interface defaulted

Cause: The previous emulation session was continued and the Softkey Interface
was set to the default state.

Could not create default configuration

Cause: The host system could not create a default configuration for the emulation
session.

Action: Check disk space under /usr/hp64000 and verify proper software
installation.

436

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Could not create <CONFIGURATION BINARY FILENAME>
Cause: The system could not create a binary emulation configuration file (file.EB).

Action: Check the file.EB write permission and verify that the specified directory
exists and is writeable.

Could not exec configuration process

Cause: The host system could not fork the configuration process or could not
execute the configuration process.

Action: Make sure that the host system is operating properly, and that all Softkey
Interface files were loaded properly during the installation process. Try starting the
emulation session again.

Could not load default configuration
Cause: The host system could not load the default configuration into the emulator.

Action: Cycle power on the emulator and run the Terminal Interface "pv"
(performance verification) command on the emulator to verify that it is functioning
properly. Also, verify proper software installation. If loading default configuration
still fails, then call your HP 64000 representative.

<CONFIGURATION FILENAME> does not exist

Cause: The configuration file you are trying to load does not exist.

Action: Try theload configuration command again using a valid configuration file
name.

Don'’t care number unexpected

Cause: While defining an expression in your command, you included a don't care
number (a binary, octal, decimal, or hexadecimal number containing "x"), which
was not expected. Don’t care numbers are not valid for all commands. See the
EXPR command syntax for more information about expressions.

Emulation analyzer defaulted to delete label

Cause: Analyzer trace labels were changed or modified while labels were in u
the trace specification.

437

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Enter the previous trace specification and try again.

Emul700dmn continuation failed

Cause: Communication between the emulator and the host system to continue the
emulation session failed.

Action: Check the data communication switch settings on the rear panel of the HP
64700 series emulator. If necessary, refer té1B&4700 Installation/Service
Guide

Emul700dmn executable not found

Cause: The emulation session could not begin because the host system could not
locate the HP 64700 emulator daemon process executable.

Action: Make sure that software installation is correct. Then try starting the
emulator again.

Emul700dmn failed to start

Cause: The emulation session could not begin because the host system could not
start the HP 64700 emulator daemon process.

Action: Make sure there is sufficient disk space under /usr/hp64000. Make sure the
host system is operating properly, that all Softkey Interface software has been
loaded correctly, and the data communication switch settings on the emulator rear
panel match the settings in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Emul700dmn message too large

Emul700dmn message too small

Emul700dmn queue and/or semaphores missing
Emul700dmn queue failure

Emul700dmn error in file operation

Emul700dmn queue full

Cause: The HP 64700 emulator daemon process command was too large for the
host system to process.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the

438

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

/usr/hp64000/etc/64700tab.net (or 64700tab) file. You may have to cycle power
and usemul700 -u ,logical nameo unlock the system.

Emul700dmn sem op failed, perhaps kernel limits too low

Cause: The host system could not start the emulation session; there may be too
many processes running on the host system.

Action: Make sure the host system is operating properly, and is not overloaded with
currently executing processes. Stop or remove some processes on the system. Also,
verify that the semaphore capabilities have been installed in the UNIX kernel. Then
try starting the emulation session again.

Emul700dmn version incompatible with this product

Cause: The emulation session could not begin because the version of the HP 64700
emulator daemon executable on host system is not compatible with the version of
the Softkey Interface you are using.

Action: Make sure the software has been properly installed. Then try starting the
emulator again.

<LOGICAL NAME>: End, continuing

Cause: This is a status message. The emulation session is being exitedemith the
command. When you restart the emulation session later, it will continue using the
same settings as in the session you just ended. The emulator logical name is located
in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

<LOGICAL NAME>: End, released

Cause: This is a status message. The emulation session is being exitedemith the
release_systencommand. When the session has ended, the emulator is released,
meaning that others can access and use it. When you restart the emulation session
later, the new session will use all default settings. The emulator logical name is
located in the /usr/hp64000/etc/64700tab.net (or 64700tab) file.

Ending released

Cause: This is a status message. The emulation session is being exitedemith t
release_systemThe emulator will be released for others to access and use it.

439

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Error: display size is <LINES> lines by <COLUMNS> columns. It must be at
least 24 by 80.

Cause: You tried to specify an incorrect window size.

Action: Set the window size accordingly, then start the emulation session. The size
of the window must be a minimum of 24 lines (rows) by 80 columns to operate an
emulation session.

Error in configuration process
Error starting configuration process
Cause: Unexpected configuration error.

Action: Verify proper software installation and call your HP 64000 representative.

Fatal error from function <ADDRESS OF FUNCTION>

Cause: This is an unexpected fatal system error.

Action: Cycle power on the emulator and start again. If this is a persistent problem,
call your HP 64000 representative.

File could not be opened

Cause: You tried to store or load trace data to a file with incorrect permission. Or
the analyzer could not find the file you specified, or else there were already too
many files open when you entered your command.

Action: Check the directory and file for correct read and write permission. Specify
a file that is accessible to the analyzer. Close the other files that are presently open.
File perf.out does not exist

Cause: You tried to execute the "restore" command to continue a previous software
performance measurement, and the SPMT software found that no
"performance_measurement_end" command was previously executed to create a
file from which "restore" could be performed.

Action: Execute a new SPMT measurement.

440

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

File perf.out not generated by measurement software

Cause: The file named perf.out exists in the current directory, but it was not created
by the "performance_measurement_end" command.

Action: Rename the old "perf.out" file, or move it to another directory.

HP64700 1/0 channel semaphore failure: <string>
Cause: Semaphore (ipc) facility not installed.

Action: Reconfigure the kernel to add ipc facility.

HP 64700 1/O error; communications timeout
Cause: This is a communication failure.

Action: Check power to the emulator and check that all cables are connected
properly. If you are using LAN and heavy LAN traffic is present, try setting the
environment variable to HP64700TIMEOUT="30" (or larger if needed). The value
is the number of seconds before timeout occurs. Then try running again.

HP64700 1/O error; connection timed out
Cause: A user abort occurred while attempting to connect via LAN.

Action: Possibly connecting to an emulator many miles away, be patient.

HP 64700 /O error; power down detected
Cause: The emulator power was cycled.

Action: Do not do this during a user interface session; this may force the user
interface to end immediately.

HP64700 1/0O channel busy; communications timed out

Cause: The communications channel is in use for an unusually long period of time
by another command.

Action: try again later.

441

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

lllegal status combination

Cause: You tried to specify combinations of status qualifiers in expressions
incorrectly when entering commands.

Action: Refer to the "Emulator/Analyzer Interface Commands" chapter for
information about syntax of commands.

lllegal symbol name

Cause: You tried to specify incorrect symbol names when entering commands.

Action: Specify correct symbol names. To see global symbol names, use the
display global_symbolscommand. To see local symbol names, use the
display local_symbols_in <SYMB>command.

Initialization failed
Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initialization load failed

Cause: The emulator could not be initialized.

Action: Make sure your data communication switch settings are correct, and that all
Softkey Interface software has been loaded properly. Cycle power on the emulator,
then try starting up the emulation session again.

Initializing emulator with default configuration

Cause: This is a status message. The host system started the emulation session and
initialized the emulator using the default configuration. The emulator is probably
operating correctly.

Initializing user interface with default config file

Cause: This is a status message. The host system started the emulation session and
Softkey Interface using the default configuration file. The emulator is probably
operating correctly.

442

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Insufficient emulation memory, memory map may be incomplete

Cause: You can map only the amount of emulation memory available in your
emulator. Trying to map additional unavailable memory may cause information to
be missing from your memory map.

Action: Modify your configuration and update the memory map to correctly reflect
the amount of emulation memory available.

Invalid answer in <CONFIGURATION FILENAME> ignored

Cause: You must provide acceptable responses to questions in the configuration file
(file.EA). The emulator ignored the incorrect response. Incorrect responses may
appear in configuration files when you have saved the configuration to a file, edited
it later, and tried reloading it into the emulator. This may also occur if you have
loaded a configuration file that you created while using another emulator, and the
response differs from the response required for this emulator.

Action: Examine your configuration file to check for inappropriate responses to
configuration file questions.

Inverse assembly file <INVERSE ASSEMBLER FILENAME> could not be
loaded

Inverse assembly file <INVERSE ASSEMBLER FILENAME> not found,
<filename>

Inverse assembly not available

Cause: The file does not exist.

Action: Reload your interface and/or real-time operating system software.

Inverse assembly not available
Cause: The inverse assembler for your emulator is missing.

Action: Verify proper software installation.

Joining session already in progress, continue file loaded

Cause: This is a status message. When operating the emulator in multiple
windows, a new emulation session is "joined" to a current session. In this cas
new session was able to continue because the continue file loaded properly.

443

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Joining session already in progress, user interface defaulted

Cause: When operating the emulator in multiple windows, a new emulation session
is "joined" to a current session. In this case, the new session used the user interface
default selections.

Load aborted

Cause: While loading a file into the emulator, an event occurred that caused the
host system to stop the load process.

Action: Use thalisplay error_log command to view any errors. If the problem
persists, make sure the host system and emulator are operating properly, and that
you are trying to load an acceptable file. See the "Emulator/Analyzer Interface
Commands" chapter for information about lieed command.

Load completed with errors

Cause: While loading a file into the emulator, one or more events occurred that
caused errors during the load process.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before you load the file again. If the
problem persists, make sure the host system and emulator are operating properly,
and that you are trying to load an acceptable file.

Measurement system not found

Cause: You tried to end the current emulation session and select another
measurement system module which could not be located by the host system.

Action: Either try theend select measurement_systecommand again or end and
release the emulation session.

Memory allocation failed, ending released

Cause: This is a fatal system error because the emulation session was unable to
allocate memory.

Action: You may need to reconfigure your UNIX kernel to increase the per process
maximum memory limit and available swap space. Reboot your UNIX system and
try starting a new session again.

444

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Memory block list unreadable

Memory range overflow
Cause: A modify memory command is attempted that would cross physical 0.

Action: Limit the modify memory command to not overflow physical O or break
the command into two separate modify commands.

No address label defined

Cause: The address trace label was somehow removed in the terminal interface
using thetlb command.

Action: End session and start again.

No more processes may be attached to this session

Cause: You can operate an emulator in four windows. Each time you start the
emulator in another window, a new process is attached to the current session.

Action: Do not try to use more than four windows. Once you have started the
emulator in four windows, you have reached the maximum number of processes
allowed for that emulator.

Not an absolute file
No absolute file: <file>
No absolute file, No database: <file>

Cause: You tried to load a file into the emulator that is not an executable or
absolute file, so the host system stopped the load process.

Action: Try your command again, and make sure you specify a valid absolute file
name to be loaded.

No symbols loaded
Cause: You tried to step through lines in the source file before symbols are loaded.

Action: Load symbols and try again, or use step with the "source" option (i.e. s
assembly language program).

445

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

No valid trace data
Cause: You tried to store trace data before a trace was completed.

Action: Wait until valid trace data is available before attempting to store a trace.

Not a valid trace file - load aborted
Cause: You tried to load a file.TR that was not created by the emulation session.

Action: Only load trace data files that were created by the emulator.

Not compatible trace file - load aborted
Cause: You tried to load a file.TR that was created by another type of emulator.

Action: Only load trace data files that were created by the same type of emulator.

Number of lines not in range: 1 <= valid lines <= 50
Cause: You tried to enter a number of lines that was outside the range from 1 to 50.

Action: Try entering the command again using a valid number of lines.

Number of spaces not in range: 2 <= valid spaces <= 15
Cause: You tried to enter a number of spaces outside the range from 2 to 15.

Action: Try entering the command again using a valid number of spaces.

opcode extends beyond specified address range
Cause: Memory disassembly is attempted on an address range that is too small.

Action: Display memory mnemonic using a large address range, or no address
range at all.

Perfinit - Absolute file (database) must be loaded line <LINE NUMBER>

Cause: No symbolic data base has been opened (or exists) for the target file when
you executed the "performance_measurement initialize" command.

Action: Make sure a data base has been loaded for the target file.

446

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Perfinit - error in input file line <LINE NUMBER> invalid symbol

You included a "label" file name with your "performance_measurement_initialize"
command, and that file contains an invalid symbol.

Action: Edit the file and correct the invalid symbol.

Perfinit - error in input file line <NUMBER>

Cause: You included an input file name with your
"performance_measurement_initialize" command, and that file contains a syntax
error.

Action: Edit the file and correct the syntax error.
Perfinit <—-EXPR— ERROR> line <LINE NUMBER>

Perfinit - File could not be opened

Cause: You specified a file as an option to "performance_measurement_initialize",
and the file you specified could not be found or opened by SPMT software.

Action: Make sure you entered the correct file name.

Perfinit - No events in file

Cause: You specified a file along with your "performance_measurement'initialize"
command that contained no events. Any measurement displayed from this file will
have NULL results.

Action: Either edit the file to add events, or use the default setup to start a new
measurement.

perf.out file could not be opened - created

Cause: The performance analyzer failed to open or create a file named "perf.out" in
response to your "performance_measurement_end" command.

Action: Free up some file space or correct the write permissions in your curre
working directory.

447

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Performance tool must be initialized

Cause: You tried to make a performance measurement when the Software
Performance Measurement Tool (SPMT) was not initialized.

Action: The Software Performance Measurement Tool (SPMT) must be initialized
before making performance measurements on your software. Use the
performance_measurement_initializecommand to initialize the SPMT.

Performance tool not initialized

Cause: The Software Performance Measurement Tool (SPMT) has not been
initialized.

Action: To make accurate activity or duration measurements on current data, use
the performance_measurement_initializecommand to initialize the SPMT before
running a performance measurement.

Question file missing or invalid
Cause: Some of the Softkey User Interface files are missing or are corrupted.

Action: Reinstall the host software and try starting the emulation session again.

Range crosses segment boundary

Cause: On a segment offset processor, an address range is specified that would
cross different segments.

Action: Break the memory command into multiple commands so that the address
ranges start and end in the same segment.
Read memory failed at <PHYSICAL ADDRESS> - store aborted

Cause: While storing memory from the emulator to a file, a read memory error
occurred.

Action: Use thalisplay error_log command to view any errors. You may need to
modify the configuration and map memory before storing the file again.

Session aborted

Cause: This will only happen when running multiple emulation windows and a
fatal system error occurs.

448

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Action: Find the window that caused the error and see the error message that it
displayed. All the additional windows will simply state "session aborted". Cycle
power on the emulator and enéenul700 -u <logical name=o make sure the
emulator is unlocked.

Session cannot be continued, ending released

Cause: The emulation session is ending automatically because it could not be
continued from the previous session. When the session has ended the emulator will
be released, meaning that others can access and use it.

Action: When you restart the emulation session later, the new session will use all
default settings.

Slave clock requires at least one edge

Cause: The analyzer has an invalid clock specification.

Action: Modify your configuration and try your command again.

Starting address greater than ending address
Cause: You specified a starting address that is greater than the ending address.

Action: Specify a starting address that is less than or equal to the ending address.

Starting new session, continue file loaded

Cause: This is a status message. The emulator was started using a new emulation
session, and the continue file loaded properly.

Starting new session, user interface defaulted

Cause: The emulator was started using a new emulation session, and the user
interface was set to default selections.

Action: Call your HP Service Representative.

Status unknown, run "emul700 -| <LOGICAL NAME>"
Cause: The host system cannot determine the status of the emulator.

Action: To verify communication between the emulator and the host system, and
display the emulator status, enter ¢éneul700 -I <logical name>ommand. The

449

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

emulator logical name is located in the /usr/hp64000/etc/64700tab.net (or
64700tab) file.

Stepping aborted; number steps completed: <STEPS TAKEN>

Cause: Stepping aborted because <CTRL>c or software breakpoint was hit,
guarded memory was accessed, or some other kind of error occurred.

Action: See the error log display for any abnormal errors. Correct those errors and
then step again.

Stepping complete

Cause: Stepping was completed successfully.

Step count must be 1 through 999
Cause: You tried to use a step count greater than 999.

Action: Use a step count less than 1000.

Symbols not accessible, symbol database not loaded

Cause: You specified a trace list with values expressed using symbols defined in
the source code modules, such as source on, and the database file has not been
loaded into emulation. Example: display trace symbols on.

Timeout in emul700dmn communication

Cause: The host system could not start the emulation session because the HP 64700
emulator process ran out of time before the emulator could start.

Action: You must presend_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Trace file not found
Cause: You tried to load trace data file that does not exist.

Action: Find the correct name and path of the trace data file and try again.

450

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Unnumbered

Unexpected message from emul700dmn

Cause: The host system could not start the emulation session because of an
unexpected message from the HP 64700 emulator process command.

Action: You must pressnd_release_systeno exit this emulation session

completely; then start a new session. Make sure the host system is operating
properly, that all Softkey Interface software has been loaded correctly, and the data
communication switch settings on the emulator rear panel match the settings in the
/usr/hp64000/etc/64700tab.net (or 64700tab) file.

Unknown expression type

Cause: While entering your command, you included an unknown expression type.
Action: See the EXPR command syntax for more information about expressions.
Then try entering your command again with a known expression type.

Unload trace data failed

Cause: An unexpected error occurred while waiting for a trace to be completed.

Action: End and release the session, and then try again.

Wait time failure, could not determine system time

Cause: The system call failed.

Action: Verify that 'date’ executes correctly from the UNIX prompt.
Warning: at least one integer truncated to 32 bits

Warning: at least one integer truncated to 16 bits
Warning: at least one integer truncated to 8 bits

Cause: The number entered was too large for the currently specified display or
access size.

Action: Try entering the command again using the correct size of number.

Width not in range: 1 <= valid width <= 80

Cause: You tried to specify the width of the field outside the range from 1 to 8(®

Action: Try entering the command again using a valid number for the width.

451

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Numbered

Graphical/Softkey Interface Messages - Numbered

These numbered messages can occur because of various problems with the
emulator/analyzer.

10315 Logical emulator name unknown; not found in 64700tab file

Cause: This message may occur while trying to start up the emulator. It indicates
that the emulator name specified could not be found in the 64700tab.net or
/etc/hosts files.

Action: Specify the name in one of these files.

10326 Emulator locked by another user

Cause: This message occurs when you try to start an emulation interface, but your
attempt failed because the emulator is being used by someone else.

Action: The current user must release the emulator.

10327 Cannot lock emulator; failure in obtaining the accessid
Cannot lock emulator; failure in <ERRNO MSG>

10328 Cannot unlock emulator; emulator not locked
Cause: You have issued a command to unlock an emulator that is not locked.

Action: The emulator is available now. You can start the interface.

10328 Cannot unlock emulator; lock file missing
10328 Cannot unlock emulator; semaphore missing

Cause: Lock semaphore missing.

Action: Verify existence and permissions of /usr/hp64000 directory. Cycle
emulator power and usenul700 -u <logical name>

10328 Cannot unlock emulator; emulator in use by user: <USER NAME>
Cause: The emulator is already in use by the named user.

Action: Current user must release the emulator.

452

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Numbered

10329 Emulator locked by user: <USER NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10330 Emulator locked by another user interface

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10331 HP64700 1/O channel in use by emulator: <LOGICAL NAME>

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10332 Cannot default emulator; already in use

Cause: You tried to start an emulator interface, but your attempt failed because the
emulator is already in use by someone else.

Action: Current user must release the emulator.

10350 Cannot interpret emulator output

Cause: There may be characters dropped in the information returned from the
emulator.

Action: Ignore this message unless it becomes frequent. If it becomes frequent, you
may have a fatal error; call your HP 64700 representative.

10351 Exceeded maximum 64700 command line length
Cause: Your command is longer than 240 characters.

Action: Shorten the command.

10352 Incompatible with 64700 firmware version

Cause: The installed interface firmware combination is incorrect or incompatible.

453

Chapter 13: Error Messages
Graphical/Softkey Interface Messages - Numbered

10360

10371

Action: Upgrade the interface software of product firmware.

Analyzer limitation; all range resources in use
Analyzer limitation; all pattern resources in use
Analyzer limitation; all expression resources in use

Cause: Your trace specification would use more than the maximum number of
resources available to the analyzer.

Action: Simplify the trace specification.

64700 command aborted

Cause: User abort occurred due to emulator being monopolized by another
command.

Action Don’t issue an abort.

454

Chapter 13: Error Messages
Terminal Interface Messages

40

61

Terminal Interface Messages

This section contains descriptions of error messages that can occur while using the
Terminal Interface. The error messages are listed in numerical order, and each
description includes the cause of the error and the action you should take to remedy
the situation.

The emulator can return messages to the display only when it is prompted to do so.
Situations may occur where an error is generated as the result of some command,
but the error message is not displayed until the next command (or a carriage return)
is entered.

A maximum number of 8 error messages can be displayed at one time. If more
than 8 errors are generated, only the last 8 are displayed.

Emulator Messages

Coverage measurement not supported

Cause: You attempted to use tow Terminal Interface command for an emulator
that does not provide coverage memory.

Restricted to real time runs

Cause: While the emulator is restricted to real-time execution, you have attempted
to use a command that requires a temporary break in execution to the monitor. The
emulator does not permit the command and issues this error message.

Action: You must break the emulator’s execution into the monitor before you can
enter the command.

Emulator is in the reset state

Cause: You have entered a command that requires the emulator to be running in
the monitor (for example, displaying registers).

Action: Enter thddreak command to cause the emulator to run in the monitor,
enter the command that caused the error again.

455

Chapter 13: Error Messages
Terminal Interface Messages

100

102

103

104

105

106

No response from monitor

Cause: The main cause of this error message is when the target system does not
assert RDY for target memory and 1/O accesses.

Action: Do not attempt to access target locations that don't return RDY.

Monitor failure; no clock input

Cause: The monitor is unable to run because no emulation processor clock is
available.

Action: Make sure a clock meeting the microprocessor’s specifications is input to
the clock pin of the target system probe.

Monitor failure; no processor cycles

Cause: The monitor is unable to run since the processor is not running. The
monitor is unable to determine the cause of the failure.

Action: If running in-circuit, troubleshoot the target system.

Monitor failure; bus grant

Cause: The monitor is unable to run. The emulation processor is not running
because it has granted the bus to another device.

Action: Wait until the processor has regained bus control, then retry the operation.

Monitor failure; halted

Cause: The monitor is unable to run because the processor is halted (due to an
external halt line or a halt instruction).

Action: Release the external halt and retry the operation. If the processor halted
due to a halt instruction, try tmesetcommand, then retry the operation.

Monitor failure; wait state

Cause: The monitor is unable to run because the processor is in a continuous wait
state.

Action: A continuous wait state may indicate target system problems.
Troubleshoot the wait line.

456

107

140

141

153

154

Chapter 13: Error Messages
Terminal Interface Messages

Monitor failure; bus error

Cause: The monitor is unable to run because the processor has encountered a bus
fault.

Action: Determine why the bus error was activated.

80186/8/XL/EA/EB Emulator Messages

The following error messages are unique to the HP 64767 emulator.

User code load module too big

Cause: This error occurs when the size of the user program absolute code is greater
than 1 Mbyte.

Action: Modify the user program so that the absolute code generated takes up less
than 1 Mbyte.

Foreground monitor load module too big

Cause: This error occurs when the size of the user foreground monitor program
absolute code is greater than 4 Kbytes.

Action: Modify the user foreground monitor program so that the absolute code
generated takes up less than 4 Kbytes.

Second term physically smaller than first term

Cause: This error occurs when specifying an address range (<addr> thru <addr>)
and the first address is higher than the second address.

Action: Make sure the first address is lower than the second address when
specifying address ranges.
Range terms must be same type (physical or logical)

Cause: This error occurs when specifying an address range (<addr> thru <addr>
and one address is specified as a logical address (segment:offset) while the o
address is specified as a physical address.

Action: Make sure that both addresses in the range are either logical or physica
addresses.

457

Chapter 13: Error Messages
Terminal Interface Messages

155

161

193

204

205

208

206

Range terms must be in same segment

Cause: This error occurs when specifying an address range (<segment:offset> thru
<segment:offset>) and the two segment values are different.

Action: Make sure the segment values are the same when specifying address
ranges using logical values.

IRET stack conflicts with Peripheral Control Block Location

Cause: An IRET instruction (which pops the IP, CS, and flag values from the
stack) is used when running or stepping user code. This error occurs when the
segment stack pointer points to the Peripheral Control Block.

Action: Either change the value of the segment stack pointer or relocate the
Peripheral Control Block.

i80C186/8EXx firmware not compatible with emulation probe

Cause: This status message indicates that the i80C186/8Ex emulator probe is not
properly connected to the cable coming from the emulator control card in the
frame. This renders the emulator completely unuseable.

General Emulator and System Messages
FATAL SYSTEM SOFTWARE ERROR
FATAL SYSTEM SOFTWARE ERROR

FATAL SYSTEM SOFTWARE ERROR
Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands which caused the error. Cycle
power on the emulator and reenter the commands. If the error repeats, call your
local HP Sales and Service office for assistance.

Incompatible compatibility table entry

Cause: The emulation firmware (ROM) is not compatible with the analysis or
system firmware in your HP 64700 system.

458

312

318

400

401

410

Chapter 13: Error Messages
Terminal Interface Messages

Action: The ROMs in your emulator must be compatible with each other for your
emulation system to work correctly. Contact your Hewlett-Packard Representative.
Ambiguous address: %s

Cause: Certain emulators support segmentation or function code information in
addressing. The emulator is unable to determine which of two or more address
ranges you are referring to, based upon the information you entered.

Action: Re-enter the command and fully specify the address, including
segmentation or function code information.

Count out of bounds: %s
Cause: You specified an occurrence count less than 1 or greater than 65535.

Action: Re-enter the command, specifying a count value from 1 to 65535.

Record checksum failure

Cause: During transfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry theransfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

Records expected: %s; records received: %s

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry thedransfer. If the failure is repeated, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.

File transfer aborted

Cause: Aransfer operation was aborted due to a break received, most likely a
<CTRL>c from the keyboard.

Action: If you typed <CTRL>c, you probably did so because you thought the
transfer was about to fail. Retry the transfer, making sure to use the correct
command options. If you are unsuccessful, make sure that the data

459

Chapter 13: Error Messages
Terminal Interface Messages

411

412

413

415

600

602

communications parameters are set correctly on the host and on the HP 64700, then
retry the operation.

Severe error detected, file transfer failed
Cause: An unrecoverable error occurred duritrgrasfer operation.

Action: Retry the transfer. If it fails again, make sure that the data
communications parameters are set correctly on the host and on the HP 64700.
Also make sure that you are using the correct command options, both on the
HP 64700 and on the host.

Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record durgigséer operation
was exceeded, therefore the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the
host, it is possible that line noise may cause the failure.

Transfer failed to start
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

Timeout, receiver failed to respond
Cause: Communication link or transfer protocol incorrect.

Action: Check link and transfer options.

Adjust PC failed during break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Break failed

Cause: Théreak command was unable to break the emulator to the monitor.

460

603

604

605

606

608

Chapter 13: Error Messages
Terminal Interface Messages

Action: Determine why the break failed, then correct the condition and retry the
command. See message 608.

Read PC failed during break
Cause: System failure or target condition.

Action: Try again.

Disable breakpoint failed: %s
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Undefined software breakpoint: %s

Cause: The emulator has encountered a software breakpoint in your program that
was not inserted with theodify software_breakpoints secommand.

Action: Remove the breakpoint instructions in your code before assembly and link.

Unable to run after CMB break
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Unable to break

Cause: This message is displayed if the emulator is unable to break to the monitor
because the emulation processor is reset, halted, or is otherwise disabled.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use
thebreak command to break to the monitor. If reset by the emulation system,
release that reset. If halted, tegetandbreak to get to the monitor. If thereis a
bus grant, wait for the requesting device to release the bus before retrying the
command. If there is no clock input, perhaps your target system is faulty. It's
possible that you have configured the emulator to restrict to real time runs, wh
will prohibit temporary breaks to the monitor.

461

Chapter 13: Error Messages
Terminal Interface Messages

610

611

612

613

614

615

Unable to run
Cause: System failure or target condition.

Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if the
CMB READY line goes false. The emulator breaks to the monitor. When CMB
READY is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor.

Action: None, information only.

Write to ROM break

Cause: This status message will be printed if you have enabled breaks on writes to
ROM and the emulation processor attempted a write to a memory location mapped
as ROM.

Action: None (except troubleshooting your program).

Analyzer Break

Cause: Status message.

Guarded memory access break

Cause: This message is displayed if the emulation processor attempts to read or
write memory mapped as guarded.

Action: Troubleshoot your program; or, you may have mapped memory incorrectly.

Software breakpoint: %s

Cause: This status message will be displayed if a software breakpoint is
encountered during a program run. The emulator is broken to the monitor. The
string %s indicates the address where the breakpoint was encountered.

462

Chapter 13: Error Messages
Terminal Interface Messages

616 BNC trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

617 CMB trigger break

Cause: This status message will be displayed if you have configured the emulator
to break on a CMB trigger signal and the CMB trigger line is activated during a
program run. The emulator is broken to the monitor.

618 trigl break

Cause: This status message will be displayed if you ugedhk on_trigger
syntax of theérace command and the analyzer has found the trigger condition while
tracing a program run. The emulator is broken to the monitor.

619 trig2 break

Cause: This status message will be displayed if you have used the inig2nal
line to connect the analyzer or external analyzer trigger output to the emulator
break input and the analyzer has found the trigger condition. The emulator is
broken to the monitor.

620 Unexpected software breakpoint

Cause: If you have enabled software breakpoints, this message is displayed if a
software breakpoint instruction is encountered in your program that was not
inserted by anodify software_breakpoints secommand and is therefore not in
the breakpoint table.

Action: Remove the breakpoint instructions in your code before assembly and link,
and use thenodify software_breakpoints seicommand to reinsert them after the
program is loaded into memory.

621 Unexpected step break
Cause: System failure.

Action: Run performance verification (Terminal Interfpeecommand).

463

Chapter 13: Error Messages
Terminal Interface Messages

622

623

624

626

628

628

630

%s

Cause: Monitor specific message.

CMB execute break

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run; the emulator must break before
running.

Action: This is a status message; no action is required.

Configuration aborted

Cause: Occurs when a <CTRL>c is entered while emulator configuration items are
being set.

Configuration failed; setting unknown: %s=%s
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

Guarded memory break: %s"

Cause: A memory access to a location mapped as guarded memory has occurred
during execution of the user program.

Action: Investigate the cause of the guarded memory access by the user program.

Write to ROM break: %s"

Cause: When the emulator is configured to break on writes to ROM, a memory
write access to a location mapped as ROM has occurred during execution of the
user program.

Action: Investigate the cause of the write to ROM by the user program. You can
configure the emulator so that it does not break on writes to ROM.

Register access aborted

Cause: Occurs when a <CTRL>c is entered during register display.

464

Chapter 13: Error Messages
Terminal Interface Messages

631 Unable to read registers in class: %s
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed.
Most likely, the emulator was unable to break to the monitor to perform the register
read. See message 608.

632 Unable to modify register: %s=%s
Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
modification. See message 608.

634 Display register failed: %s
Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that emulator was unable to break to the monitor to perform the register
display. See message 608.

636 Register not writable: %s
Cause: This error occurs when you attempt to modify a read only register.

Action: If this error occurs, you cannot modify the contents of the register with the
modify register command.

637 Register class cannot be modified: %s
Cause: You tried to modify a register class instead of an individual register.

Action: You can only modify individual registers. Refer todiplay registers
command description for a list of register names.

640 Unable to reset
Cause: Target condition or system failure.

Action: Check target system, and run performance verification (Terminal Interface
pv command).

465

Chapter 13: Error Messages
Terminal Interface Messages

650

651

653

661

663

664

Unable to configure break on write to ROM

Cause: The emulator controller is unable to configure for breaks on writes to
ROM, possibly because the emulator was left in an unknown state or because of a
hardware failure.

Action: Initialize the emulator or cycle power. Then reenter the command. If the
same failure occurs, call your HP sales and service office.

Unable to configure break on software breakpoints

Cause: The emulator controller cannot enable breakpoints, possibly because the
emulator is in an unknown state or because of a hardware failure.

Action: Initialize the emulator or cycle power, then re-enter the command. If the
same failure occurs, call your HP sales and service office.

Break condition configuration aborted

Cause: Occurs when <CTRL>c is entered during the configuration of break
conditions.

Software breakpoint break condition is disabled

Cause: You have attempted to set or clear a software breakpoint when software
breakpoints are disabled.

Action: You must enable software breakpoints before you can set them.

Specified breakpoint not in list: %s

Cause: You tried to clear a software breakpoint that was not previously set. The
string %s prints the address of the breakpoint you attempted to clear.

Action: You must first set a software breakpoint before it can be cleared.

Breakpoint list full; not added: %s

Cause: The software breakpoint table is already reached the maximum of 32
breakpoints. The breakpoint you just requested, with address %s, was not inserted.

Action: Clear breakpoints that are no longer in use. Then, set the new breakpoint.

466

665

666

667

668

669

670

671

Chapter 13: Error Messages
Terminal Interface Messages

Enable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Disable breakpoint failed: %s
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Breakpoint code already exists: %s

Cause: You attempted to insert a breakpoint; however, there was already a
software breakpoint instruction at that location which was not already in the
breakpoint table.

Action: Your program code is apparently using the same instructions as used by
the software breakpoints feature. Remove the breakpoint instructions from your
program code and use thmdify software_breakpoints secommand to insert
them.

Breakpoint not added: %s

Cause: You tried to insert a breakpoint in a memory location which was not
mapped or was mapped as guarded memory.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Breakpoint remove aborted

Cause: Occurs when <CTRL>c is entered when clearing a software breakpoint.

Breakpoint enable aborted

Cause: Occurs when <CTRL>c is entered when setting software breakpoints.

Breakpoint disable aborted

Cause: Occurs when <CTRL>c is entered when disabling software breakpoin

467

Chapter 13: Error Messages
Terminal Interface Messages

680

684

686

688

689

692

693

Stepping failed
Cause: Stepping has failed for some reason.

Action: Usually, this error message will occur with other error messages. Refer to
the descriptions of the accompanying error messages to find out more about why
stepping failed.

Failed to disable step mode

Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

Stepping aborted; number steps completed: %d

Cause: This message is displayed if a break was received dstegrammand
with a step count greater than zero. The break could have been due to any of the
break conditions or a <CTRL>c break. The number of steps completed is displayed.

Step display failed
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Break due to cause other than step

Cause: An activity other tharstepcommand caused the emulator to break. This
could include any of the break conditions or a <CTRL>c break.

Trace error during CMB execute
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified pdledy run command.

Action: None; information only.

468

Chapter 13: Error Messages
Terminal Interface Messages

694 Run failed during CMB execute
Cause: System failure or target condition.
Action: Run performance verification (Terminal Interfpeecommand), and
check target system.

700 Target memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system.

Action: In most cases, the problem results from the emulator’s inability to break to
the monitor to perform the operation. See message 608.

702 Emulation memory access failed
Cause: System failure.

Action: Run performance verification (Terminal Interfpgecommand).

707 Request access to guarded memory: %s

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Re-enter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. Or, you can remap memory so that the desired
addresses are no longer mapped as guarded.

710 Memory range overflow

Cause: Accessing a word or short word, for examigigay memory Offfffh
blocked word will cause a rounding error that overflows physical memory.

Action: Reduce memory display request.

725 Unable to load new memory map; old map reloaded
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

469

Chapter 13: Error Messages
Terminal Interface Messages

726

754

901

902

903

904

911

Unable to reload old memory map; hardware state unknown
Cause: System failure.

Action: Run performance verification (Terminal Interfpsecommand).

Memory modify aborted; next address: %s

Cause: This message is displayed if a break occurs during processmgdifya
memory command. The break could result from any of the break conditions
(except a software breakpoint) or could have resulted from a <CTRL>c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.
Invalid firmware for emulation subsystem

Cause: This error occurs when the HP 64700 system controller determines that the
emulation firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROM is installed in the emulation controller.
Invalid analysis subsystem; product address: %s

Cause: This error occurs when the HP 64700 system controller determines that the
analysis firmware (ROM) is invalid.

Action: This message is not likely to occur unless you have upgraded the ROMs in
your emulator. Be sure that the correct ROMs are installed in the analyzer board.

Invalid ET subsystem; product address: %s

Cause: Detects an invalid ET. Used only internally.

Invalid auxiliary subsystem; product address: %s

Cause: For future products.

Lab firmware for emulation subsystem

Cause: This message should never occur. It shows that you have an unreleased
version of emulation firmware.

470

912

913

914

1105

1106

1107

Chapter 13: Error Messages
Terminal Interface Messages

Lab firmware analysis subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of analysis firmware.

Lab firmware subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
version of system controller firmware.

Lab firmware auxiliary subsystem; product address: %s

Cause: This message should never occur. It shows that you have an unreleased
firmware version of the auxiliary subsystem.

Analyzer Messages

Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label
which is currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.

Unable to delete label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label which
is currently being used as a qualifier in the external state trace specification or is
currently specified in the external trace format.

Action: You stop the trace or must change the trace command before you can
delete the label.

Unable to delete label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to delete an external trace label
is currently being used as a qualifier in the external timing trace specification.

Action: Remove the label from the external timing analyzer specifications, an
then delete the label.

471

Chapter 13: Error Messages
Terminal Interface Messages

1108 Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace label
which is currently used as a qualifier in the emulation trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.

1109 Unable to redefine label; used by external state analyzer: <label>

Cause: This error occurs when you attempt to redefine an external trace label
which is currently used as a qualifier in the external state trace specification.

Action: You stop the trace or must change the trace command before you can
redefine the label.
1110 Unable to redefine label; used by external timing analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation or external
trace label which is currently being used as a qualifier in the external timing trace
specification.

Action: Remove the label from the external timing analyzer specifications, and
then redefine the label.
1301 External label in use: <label>

Cause: This error occurs when you attempt to select the external analyzer's
independent state mode while an external trace label is currently used as a qualifier
in the emulation analyzer trace specification.

Action: Remove any external trace label qualifiers from emulation trace
specifications before selecting the external analyzer’s independent state mode.
1304 Analyzer trace running

Cause: This error occurs when you attempt to change the external analyzer mode
while a trace is in progress.

Action: Halt the trace before changing the external analyzer mode.

472

1305

2021

2022

2030

2031

2032

Chapter 13: Error Messages
Terminal Interface Messages

CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified bpéeh#y trace
command).

Period not in 1/2/5 sequence: <period>

Cause: This error message occurs when the external timing sample period is not in
a 1/2/5 sequence; for example, 10ns, 20ns, 50ns, 100ns, 200ns, 500ns, 1us, 2us,
5us, etc. Some examples of invalid sample period specifications are: 12ns, 18ns,
25ns, 60ns, 80ns, etc.

Action: Use a number in the 1/2/5 sequence when specifying the external timing
sample period.
Sample period out of bounds: <bounds>

Cause: The external timing sample period must be between 10 ns and 50 ms (in a
1/2/5 sequence).

Action: Re-enter the command with the sample period between the bounds shown.

Negated patterns not allowed in timing

Cause: This error occurs when you attempt to specify a "not equals" expression
when defining the external timing trigger. You can only specify labels which equal
patterns (of 1's, 0's, or X's).

Action: Do not attempt to specify negated timing patterns.

Invalid trigger duration: <duration>

Cause: This error occurs when you attempt to specify an external timing trigger
duration which is in the valid range but is not a multiple of 10 ns.

Action: Re-enter the command with the trigger duration as a multiple of 10 ns.

Trigger duration out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigg
duration outside the valid range. A "greater than" duration must fall within the
range of 30 ns to 10 ms (and must be a multiple of 10 ns). A "less than" duration
must fall within the range 40 ns to 10ms (and must be a multiple of 10 ns).

473

Chapter 13: Error Messages
Terminal Interface Messages

Action: Re-enter the command with the trigger duration within the bounds shown.

2042 Trigger delay out of bounds: <bounds>

Cause: This error occurs when you attempt to specify an external timing trigger
delay outside the valid range. The external timing trigger delay must be between 0
and 10 ms (in 10 ns increments).

Action: Re-enter the command with the trigger delay within the bounds shown.

474

14

Specifications and Characteristics

475

Chapter 14: Specifications and Characteristics
Emulator Specifications and Characteristics

Emulator Specifications and Characteristics

This section contains the following types of emulator specifications and
characteristics:

» Electrical characteristics (including emulator timing).
» Physical characteristics.

* Environmental characteristics.

Electrical

This section describes the electrical characteristics of the HP 64767
80186/8/XL/EA/EB Emulator and the HP 64700 Card Cage.

Electrical Characteristics of the HP 64767 Emulator

Except as noted in the specifications, all electrical differences defined by Intel
between the 80C186 and XL processors also apply to the HP 64767 emulator as far
as compatibility with processors is concerned. Refer to Intel compatibility
documentation for differences between the processors.

Maximum clock speed: 20 MHz with no wait states required for emulation or
target memory.

Minimum clock speed: 1 MHz.

Power: 250 mA maximum from target system, all other power supplied by
card cage.

476

Chapter 14: Specifications and Characteristics
Emulator Specifications and Characteristics

Below are specifications for the HP 64767A/B that differ from the specifications
for the Intel B0C186EA/EB/XL processors.

DC Specifications: Min Max

Input low voltage -0.5v 0.8v

Input high voltage (HP 64767A) 2.0v Vce + 0.5V
Input high voltage (HP 64767B) 0.7 *Vcc Vce + 0.5V
Output high voltage

(AD pins 15 through 0: -15 mA) 2.4V

Output high voltage

(AD pins 15 through 0: -300A) Vce - 0.2V

Output high voltage

(HP 64767A - other pins: -2Q0A) Vcc - 0.5V

Output high voltage

(HP 64767A - other pins: -2.4 mA) 2.4V

Output high voltage

(HP 64767B - other pins: -2 mA) Vce - 0.5V

Low level input current (HOLD) -250A

High level input current (HOLD) 10pA

Pin capacitance approx 30 pF

477

Chapter 14: Specifications and Characteristics
Emulator Specifications and Characteristics

AC Specifications: Min Max
Read data setup time (Tdvcl) 15ns

Read data hold time (Tcldx) 8 ns

Address valid delay (Tclav) 4ns 32ns
Data valid delay (Tcldv) 4ns 32ns
Address valid to ALE low (Tavll) (Tclch - 15 ns)

Address valid to clock high (Tavch) -5ns

Address float delay (Tclaz) 30ns
Address float to LRD active (Tazrl) -10 ns

Data valid delay (Tcldv) 4ns 32ns
CLKOUT frequency 1 MHz 20 MHz

Note: A target system NMI request may be delayed by two clock cycles while
running user code or indefinitely while running in the background monitor.

Electrical Characteristics of the HP 64700
The electrical characteristics of the HP 64700 communication ports are as follows.

Communications

Serial Port RS-232-C DCE or DTE to 38.4 Kbaud.
RS-422 DCE to 460.8 Kbaud.

BNC (labeled Input. The signal must drive approximately 4 mA at 2 V. Edge

TRIGGER Sensitive. Minimum pulse width is approximately 25 ns.
IN/OUT) Output. Driven active high only; equals +2.4V into a 50 ohm
load.

478

CAUTION

Chapter 14: Specifications and Characteristics
Emulator Specifications and Characteristics

Physical

Emulator Dimensions

Width 325 mm (12.8 in.)
Height 173 mm (6.8 in.)
Length 389 mm (15.3in.)

Emulator Weight

HP 64749 8.2 kg (18 Ib)
Cable Length

Probe to approximately 914 mm (36 in.)
card cage

Communications
Serial Port 25-pin female type "D" subminiature connector.

CMB Port 9-pin female type "D" subminiature connector.

Possible damage to emulatorAny component used in suspending the emulator
must be rated for 30 kg (65 Ib) capacity.

Environmental

Temperature

Operating 0°C to +40°C
(+32°F to 104°F)

Non-operating -40°C to +70°C
(-40°F to 158°F)

Altitude

Operating/ 4 600m
Non-operating (15 000 ft)

479

Chapter 14: Specifications and Characteristics
External Analyzer Specifications

External Analyzer Specifications

Threshold Accuracy = +/- 50 mV.
Dynamic Range = +/- 10 V about threshold setting.
Minimum Input Swing = 600 mV pp.

Minimum Input Overdrive = 250 mV or 30% of threshold setting, whichever is
greater.

Absolute Maximum Input Voltage = +/- 40 V.
Probe Input Resistance = 100K ohms +/- 2%.
Probe Input Capacitance = approximately 8 pF.
Maximum +5 Probe Current = 0.650 A.

+5 Probe Voltage Accuracy = +5.0 +/- 5%.

External State Analyzer Specifications

Data Setup Time = 10 ns min.
Data Hold Time = 0 ns, typical.
Qualifier Setup Time = 20 ns min.
Qualifier Hold Time = 10 ns, typical.
Minimum Clock Width = 10 ns
Minimum Clock Period:
— No Tagging Mode = 40 ns (25 Mhz clock).
— Event Tagging Mode =50 ns (20 MHz clock).
— Time Tagging Mode = 60 ns (16 MHz clock).
Minimum Time from Slave Clock to Master Clock = 10 ns.

Minimum Time from Master Clock to Slave Clock =50 ns.

480

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

481

Part 4

482

15

Concepts

483

. Concepts

This chapter provides conceptual information on the following topics:

» Xresources and the Graphical User Interface.

484

Chapter 15: Concepts
X Resources and the Graphical User Interface

X Resources and the Graphical User Interface

This section contains more detailed information about X resources and scheme files
that control the appearance and operation of the Graphical User Interface. This
section:

» Describes the X Window concepts surrounding resource specification.

» Describes the Graphical User Interface’s implementation of scheme files.

X Resource Specifications

An X resource specification is a resource name and a value. The resource name
identifies the element whose appearance or behavior is to be defined, and the value
specifies how the element should look or behave. For example, consider the
following resource specification:

Application.form.row.done.background: red

The resource name is "Application.form.row.done.background:" and the value is
"red"_

Resource Names Follow Widget Hierarchy

A widgetis an OSF/Motif graphic device from which X applications are built. For
example, pushbuttons and menu bars are Motif widgets. Applications are built
using a hierarchy of widgets, and the application’s X resource names follow this
hierarchy. For example:

Application.form.row.done.background: red

In the resource name above, the top-level widget is named after the application.
One of the top-level widget’s children is a form widget, one of the form widget's
children is a row-column manager widget, and one of the row-column manager
widget's children is a pushbutton widget. Resource names show a path in the
widget hierarchy.

Each widget in the hierarchy is a member of a widget class, and the particular
instance of the widget is named by the application programmer.

485

Chapter 15: Concepts
X Resources and the Graphical User Interface

Class Names or Instance Names Can Be Used

When specifying resource names, you can use either instance names or class names.
For example, a "Done" pushbutton may have an instance name of "done" and a

class name of "XmPushButton". To set the background color for a hypothetical
"Done" pushbutton, you can use:

Application.form.row.done.background: red

Or, you can use:

Application.form.row.XmPushButton.background: red

Applications also have class and instance names. For example, an application may
have an instance name of "applic1" and a class name of "Application". To set the
background color for a hypothetical "Done" pushbutton only in the "applic1"
application, you can use:

applicl.form.row.done.background: red

Note that instance names are more specific than class names. That is, class names
may apply to many instances of the widget.

The class and instance names for the widgets in the Graphical User Interface can be
displayed by choosingelp - X Resource Namesnd clicking on the "All names"
button.

Wildcards Can Be Used

A wildcard may be used to match a resource specification to many different
widgets at once. For example, to set the background color of all pushbuttons, you
can use:

Application*XmPushButton.background: red

Note that resource names with wildcards are more general than those without
wildcards.

486

Chapter 15: Concepts
X Resources and the Graphical User Interface

Specific Names Override General Names

A more specific resource specification will override a more general one when
apply to a particular widget or application.

The names for the application and the main window widget in HP64_Softkey
applications have been chosen so that you may specify custom resource values that
apply in particular situations:

1 Apply to ALL HP64_Softkey applications:
HP64_Softkey*<resource>: <value>
2 Apply to specific types of HP64_Softkey applications:

emul*<resource>: <value> (for the emulator)
perf*<resource>: <value> (for the performance analyzer)

3 Apply to all HP64_Softkey applications, but only when they are connected to a
particular type of microprocessor:

186xI<resource>: <value> (for the 80186/188)
m68020<resource>: <value> (for the 68020)

4 Apply to a specific HP64_Softkey application connected to a specific
processor:

perf.il86xI*<resource>: <value> (for the 80186/188 perf. analyzer)
emul.m68020*<resource>: <value> (for the 68020 emulator)

If all four examples above are used for a particular resource, #3 will override #2 for
all applications connected to a 80186/188 emulator, and #4 will override #2, but
only for the specifically mentioned type of microprocessor.

When modifying resources, your resource paths must either match, or be more
specific than, those found in the application defaults file.

How X Resource Specifications are Loaded

When the Graphical User Interface starts up, it loads resource specifications from a
set of configuration files located in system directories as well as user-specific
locations.

487

Chapter 15: Concepts
X Resources and the Graphical User Interface

Application Default Resource Specifications

Default resource specifications for an application are placed in a system directory:
HP-UX {usr/lib/X11/app-defaults

SunOS /usr/openwin/lib/X11/app-defaults

The name of the Graphical User Interface application defaults file is HP64_Softkey
(same as the application class name). This file is well-commented and contains
information about each of the X resources you can modify. You can easily view
this file by choosingelp - Topic and selecting the "X Resources: App Default

File" topic. Do not modify the application defaults file; any changes to this file will
affect the appearance and behavior of the application for all users.

User-Defined Resource Specifications

User-defined resources (for any X application) are located in the X server's
RESOURCE_MANAGER property or in the user's 3HOME/.Xdefaults file.

Load Order

Resource specifications are loaded from the following places in the following order:

5 The application defaults file. For example,
{usr/lib/X11/app-defaults/HP64_Softkey when the operating system is HP-UX
or /usr/openwin/lib/X11/app-defaults/HP64_Softkey when the operating
system is SunOS.

6 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

7 The server's RESOURCE_MANAGER property. (Kngb command loads
user-defined resource specifications into the RESOURCE_MANAGER

property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

488

Chapter 15: Concepts
X Resources and the Graphical User Interface

8 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $SHOME/.Xdefaultsstfile
is read (typically contains resource specifications for a specific remote host).

9 Resource specifications included in the command line witkxthe option.

When specifications with identical resource names appear in different places, the
latter specification overrides the former.

Scheme Files

Several of the Graphical User Interface’s X resources idesdtifgme fileshat
contain additional X resource specifications. Scheme files group resource
specifications for different displays, computing environments, and languages.

Resources for Graphical User Interface Schemes
There are five X resources that identify scheme files:

HP64_Softkey.labelScheme:

Names the scheme file to use for labels and button text. Values can be: Label,
$LANG, or a custom scheme file name. The default uses the $LANG
environment variable if it is set and if a scheme file named Softkey.$LANG
exists in one of the directories searched for scheme files; otherwise, the default
is Label.

HP64_Softkey.platformScheme:

Names the subdirectory for the platform specific color, size, and input scheme
files. This resource should be set to the platform on which the X server is
running (and displaying the Graphical User Interface) if it is different than the
platform where the application is running. Values can be: HP-UX, SunOS,
pc-xview, or a custom platform scheme directory name.

HP64_Softkey.colorScheme:

Names the color scheme file. Values can be: Color, BW, or a custom scheme
file name.

489

Chapter 15: Concepts
X Resources and the Graphical User Interface

HP64_Softkey.sizeScheme:
Names the size scheme file which defines the fonts and the spacing used.
Values can be: Large, Small, or a custom scheme file name.
HP64_Softkey.inputScheme:
Names the input scheme file which specifies mouse and keyboard operation.
Values can be: Input, or a custom scheme file name.

The actual scheme file names take the form: "Softkey.<value>".

Scheme File Names

There are six scheme files provided with the Graphical User Interface. Their names
and brief descriptions of the resources they contain follow.

Softkey.Label Defines the labels for the fixed text in the interface. Such
things as menu item labels and similar text are in this file.
If the $3LANG environment variable is set, the scheme file
"Softkey. SLANG" is loaded if it exists; otherwise, the file
"Softkey.Label" is loaded.

Softkey.BW Defines theolor scheméor black and white displays. This
file is chosen if the display cannot produce at least 16
colors.

Softkey.Color Defines theolor scheméor color displays. This file is

chosen if the display can produce 16 or more colors.

Softkey.Large Defines theize schemghat is, the window dimensions
and fonts) for high resolution displays (1000 pixels or more
vertically).

Softkey.Small Defines theize schemghat is, the window dimensions
and fonts) for low resolution displays (less than 1000 pixels
vertically).

Softkey.Input Defines thimput scheméthat is, the button and key
bindings for the mouse and keyboard).

490

Chapter 15: Concepts
X Resources and the Graphical User Interface

Load Order for Scheme Files

Scheme files are searched for in the following directories and in the following
10 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

11 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

12 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Custom Scheme Files

You can modify scheme files by copying them to the directory for user-defined
schemes and changing the resource specifications in the file. For example, if you
wish to modify the color scheme, and your platform is HP-UX, you can copy the
/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color file to
$HOME/.HP64_schemes/HP-UX/Softkey.Color and maodify its resource
specifications.

You can create custom scheme files by modifying the X resource for the particular
scheme and by placing the custom scheme file in the directory for user-defined
schemes. For example, if the following resource specifications are made:

HP64_Softkey.platformScheme: HP-UX
HP64_Softkey.colorScheme: MyColor
The custom scheme file would be:

$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

491

492

Part 5

Installation Guide

Instructions for installing and configuring the product.

493

Part5

494

16

Installation

495

Installation

This chapter shows you how to install emulation and analysis hardware and
interface software. It also shows you how to verify installation by starting the
emulator analyzer interface for the first time. These installation tasks are described
in the following sections:

» Installing hardware.

e Connecting the HP 64700 to a computer or LAN.
» Installing HP 9000 software.

» Installing Sun SPARCsystem software.

» Verifying the installation.

Minimum HP 9000 Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on HP 9000 Series 300/400 and Series
700 workstations.

HP-UX For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series 9000/700
workstations, the minimum supported version of the operating system is version
8.01.

MotifflOSF For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default, so you do not have to
install them specifically for this product, but you should consult R#JX
documentation for confirmation and more information.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. Series 300
workstations should have a minimum performance equivalent to that of a
HP 9000/350. A color display is also highly recommended.

496

Chapter 16: Installation

From here, you should proceed to the section titled "Installation for HP 9000
Hosted Systems" for instructions on how to install, verify, and start the Graphical
User Interface on HP 9000 systems.

Minimum Sun SPARCsystem Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on Sun SPARCsystem workstations.

SunOS The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1 or 4.1.1 or greater. The tape uses the
QIC-24 data format.

64700 Operating Environment The Graphical User Interface requires version
A.04.10 or greater of the 64700 Operating Environment. (The Graphical User
Interface version is A.04.00.)

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. A color display is
also highly recommended.

From here, you should proceed to the section titled "Installation for Sun
SPARCsystems" for instructions on how to install, verify, and start the Graphical
User Interface on SPARCsystem workstations.

497

Chapter 16: Installation
Installing Hardware

Installing Hardware

This section describes how to install emulation and analysis hardware and how to
connect the emulator probe to the demo target system.

Equipment supplied

The minimum system contains:

 HP 64767A 80186/8/EA/XL Emulator Probe (which includes the demo target
system).

Or:

HP 64767B 80186/8/EB Emulator Probe (which includes the demo target
system).

* HP 64748C Emulation Control card.

» HP 64706A 48-Channel Emulation Bus Analyzer card.

 HP 64700 Card Cage.

Optional parts are:

* HP 64703A 64-Channel Emulation Bus Analyzer and 16-Channel External
State/Timing Analyzer (instead of HP 64706A).

* HP 64704A 80-Channel Emulation Bus Analyzer (instead of HP 64706A).

* HP 64794A Deep Memory Emulation Bus Analyzer (instead of HP 64706A).

Equipment and tools needed

In order to install and use the 80186/8/XL/EA/EB emulation system, you need:
* Flat-blade screwdriver.

498

Chapter 16: Installation
Installing Hardware

Installation overview

The following steps in the hardware installation process are described in this
section:

The steps in the installation process are:

1 Connectthe HP 64767 emulator probe to the HP 64748C emulator control card.
2 Install cards into the HP 64700 card cage.

3 Connect the emulator probe to the demo target system.

4 Apply power to the HP 64700.

Your emulation and analysis system may already be assembled (depending on how
parts of the system were ordered).

Antistatic precautions

Integrated-circuit boards contain electrical components that are easily damaged by
small amounts of static electricity. To avoid damage to the emulator cards, follow
these guidelines:

» If possible, work at a static-free workstation.
» Handle the boards only by the edges; do not touch components or traces.
* Use a grounding wrist strap that is connected to the HP 64700’s chassis.

499

Chapter 16: Installation
Installing Hardware

Step 1. Connect the Emulator Probe Cables

Three ribbon cables connect the HP 64748C emulation control card to the HP 64767 80186/8/XL/EA/EB
emulator probe.

The shortest cable connects from J1 of the emulation control card to J3 of the emulator probe. The
medium length cable connects from J2 of the emulation control card to J2 of the emulator probe.| The
longest cable connects from J3 of the emulation control card to J1 of the emulator probe.

1 Connect the emulator probe cables to the emulation control card.

EVULATION CONTROL CARD

EGRESS PANEL

PROBE CABLES

500

Chapter 16: Installation
Installing Hardware

2 When inserting cable connectors into the sockets, press inward on the connector clips so that they hook
into the sockets as shown.

PUSH IN ON CLIPS
SO THEY HOOK
INTO SOCKET

501

Chapter 16: Installation
Installing Hardware

3 Connect the other ends of the cables to the emulator probe.

CABLES

PROBE

TOP PLASTIC COVER

“ROBE

ACTIVE

BOTTOM PLASTIC COVER

DEMO BOARD

502

Chapter 16: Installation
Installing Hardware

Step 2. Install Boards into the HP 64700 Card
Cage

WARNING Before removing or installing parts in the HP 64700 Card Cage, make sure
that the card cage power is off and that the power cord is disconnected.

CAUTION Do NOT stand the HP 64700 on the rear panel. You could damage the rear panel
ports and connectors.

1 Use a ground strap when removing or installing boards into the HP 64700 Card Cage to reduce the
chances of damage to the circuit cards from static discharge. A jack on the rear panel of the HP 64700
Card Cage is provided for this purpose.

o I’ s

GROUND STRAP

o PLUG

77
#

@

64700E07

503

Chapter 16: Installation

Installing Hardware

2 Turn the thumb screw and remove the top cover by sliding the cover toward the rear and up.

LOOSEN THUMB SCREW
AND SLIDE COVER
TO REMOVE

|
||l"ll' "ln

64700E08

504

Chapter 16: Installation

Installing Hardware

505

3 Remove the side cover by unsnhapping the two latches and lifting off.

/

EMULATOR SIDE COVER
(ON BOTTOM PANEL

LATCHES

NUMBER HERE
INDICATES SLOT !

CARD SUPPORTS

mnnnn\
=y =Y Y

TAB SLOTS

4 Remove the card supports.

Chapter 16: Installation
Installing Hardware

5 First, completely loosen the four egress thumb screws.

To remove emulator cards, insert a flat blade screwdriver in the access hole and eject the emulator cards
by rotating the screwdriver.

EMULATOR CARD

FOUR EGRESS
THUMB SCREWS

PROBE CABLES

WITH FLAT BLADE SCREWDRIVER
EJECT EMULATOR CARD, EGRESS
64700802 AND PROBE CABLE AS AN ASSEMBLY

506

Chapter 16: Installation
Installing Hardware

6 Insert a screw driver into the third slot of the right side of the front bezel, push to release catch, and
pull the right side of the bezel about one half inch away from the front of the HP 64700. Then, dq the

approximately 2 inches.

same thing on the left side of the bezel. When both sides are released, pull the bezel toward you .

INSERT SCREW DRIVER INTO THIRD
SLOT OF FRONT BEZEL. PUSH

TO RELEASE CATCH AND

PULL BEZEL TOWARD YOU

@ FRONT PANEL
@ WITHOUT BEZEL
SHOWING CATCH

& |

SRy

507

Chapter 16: Installation
Installing Hardware

7 Lift the bezel panel to remove. Be careful not to put stress on the power switch extender.

LIFT BEZEL PANEL AND
TIP TOWARD YQOU TD
REMOVE

BE CAREFUL NOT TO
PUT STRESS ON POWER
SWITCH EXTENDER

8 If you're removing an existing analyzer card that provides external analysis, remove the right al
adapter board by turning the thumb screws counter-clockwise.

ngle

508

Chapter 16: Installation
Installing Hardware

9 To remove the analyzer card, insert a flat blade screwdriver in the access hole and eject the analyzer

card by rotating the screwdriver.

CJECT ANALYZER CARD

Do not remove the system control board. This board is used in all HP 64700 emulation and analysis
systems.

509

Chapter 16: Installation
Installing Hardware

10 Install HP 64704A and HP 64748C boards. The HP 64704A is installed in the slot next to the
controller board. The HP 64748C is installed in the second slot from the bottom of the HP 64700
boards are identified with labels that show the model number and the serial number.

To install a card, insert it into the plastic guides. Make sure the connectors are properly aligned;
press the card into mother board sockets. Check to ensure that the cards are seated all the way
sockets. If the cards can be removed with your fingers, the cards are NOT seated all the way int
mother board socket.

system
. These

then,
into the
) the

80 CHANNEL
ANALYZER CARD

64748C
EMULATION
\ CONTROL
CONTROL .
CARD | o
RGN
0.0 TaduCitg
\!Iﬁnn~n“ i!ﬁms
il 'Hﬁmﬂ
X ED ENE
it Hﬂ
i ﬂﬂ
h Il
CARDCAGE EW
j
.

64751E03

510

Chapter 16: Installation

Installing Hardware

11 Connect the +5 V power cable to the connector in the HP 64700 front panel.

POWER CONNECTION
FOR DEMO BOARD

511

Chapter 16: Installation
Installing Hardware

12 To reinstall the front bezel, be sure that the bottom rear groove of the front bezel is aligned with the
lip as shown below.

2 BE SURE BACK GROOVE
OF BEZEL IS ALIGNED
WITH LIP

PUSH FRONT BEZEL
INTO PLACE

512

Chapter 16: Installation
Installing Hardware

13 Install the card supports.

NUMBER HERE
INDICATES SLOT !

64700E01

14 To install the side cover, insert the side cover into the tab slots and fasten the two latches.

=MULATOR SIDE COVER

LATCHES
(ON BOTTOM PANEL)

W)

TAB SLOTS

513

Chapter 16: Installation
Installing Hardware

15 Install the top cover in reverse order of its removal, but make sure that the side panels of the
are attached to the side clips on the frame.

SIDE CLIP

l|I||||
ml" @
||u|||| &

lllluII||

64700EQ9

514

op cover

Chapter 16: Installation
Installing Hardware

Step 3. Plug the emulator probe into the demo
target system

1 With HP 64700 power OFF, connect the emulator probe cables to the demo target system. .

EMULATOR
PROBE

FPIN A1

DEMO BOARD

64767E05

515

Chapter 16: Installation
Installing Hardware

2 Connect the power supply wires from the emulator to the demo target system. The 3-wire cable has 1
power wire and 2 ground wiresVhen attaching the 3-wire cable to the demo target system, make
sure the connector is aligned properly so that all three pins are connected

POWER CONNECTION
FOR DEMO BOARD
FROM HP 64700A

ALIGN AND
CONNECT 64767E03

516

Chapter 16: Installation
Installing Hardware

Step 4. Apply power to the HP 64700

The HP 64700B automatically selects the 115 Vac or 220 Vac range. In the 115 Vac range, the
HP 64700B will draw a maximum of 345 W and 520 VA. In the 220 Vac range, the HP 64700B wi
draw a maximum of 335 W and 600 VA.

The HP 64700 is shipped from the factory with a power cord appropriate for your country. You sﬂould
verify that you have the correct power cable for installation by comparing the power cord you received
with the HP 64700 with the drawings under the "Plug Type" column of the following table.

If the cable you received is not appropriate for your electrical power outlet type, contact your
Hewlett-Packard sales and service office.

517

Chapter 16: Installation

Installing Hardware

Power Cord Configurations

Plug Type Cable Part No. Plug Description | Length in/cm Color
Opt 903 8120-1378 Straight 90/228 Jade Gray
124V ** * NEMA5-15P
: 8120-1521 o 90/228 Jade Gray
Opt 900 8120-1351 Straight 90/228 Gray
250V * BS136A
8120-1703 o 90/228 Mint Gray
Opt 901 8120-1369 Straight 79/200 Gray
250V * NZSS198/ASC
aﬁ Z 8120-0696 elog 87/221 Mint Gray
Opt 902 812001689 Straight 79/200 Mint Gray
250V *CEE7-Y11
8120-1692 elog 79/200 Mint Gray
f | ff Straight
" \Fg\ 8120-2857 (Shielded) 79/200 Coco
X Brown

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

518

Chapter 16: Installation
Installing Hardware

Power Cord Configurations (Cont'd)

Plug Type Cable Part No. Plug Description Length in/cm Color
Opt 906 8120-2104 Straight 79/20 Mint Gray
250V * SEV1011

8120-2296 1959-24507 79/200 Mint Gray
Q Type 12
O RS 90’
Opt 912 Straight 79/200 Mint Gray
220V *DHCK107
8120-2957 o 79/200 Mint Gray

Opt 917 8120-4600 Straight 79/200 Jade Gray
250V SABS164
8120-4211 elog 79/200

Opt 918 8120-4753 Straight Miti 90/230 Dark Gray
100V
8120-4754 o 90/230

.

* Part number shown for plug is industry identifier for plug only.
Number shown for cable is HP part number for complete cable including plug.
** These cords are included in the CSA certification approval for the equipment.

519

Chapter 16: Installation
Installing Hardware

1 Connect the power cord and turn on the HP 64700.

The line switch is a push button located at the lower left hand corner of the front panel. To turn QN
power to the HP 64700, push the line switch button in to the ON (1) position. The power light at the
lower right hand corner of the front panel will be illuminated.

64700E03

520

Chapter 16: Installation
Connecting the HP 64700 to a Computer or LAN

Connecting the HP 64700 to a Computer or LAN

Refer to theHP 64700 Series Installation/Service Guideinstructions on
connecting the HP 64700 to a host computer (via RS-422 or RS-232) or LAN
setting the HP 64700's configuration switches. (RS-422 and RS-232 are only
supported on HP 9000 Series 300/400 machines.)

521

Chapter 16: Installation
Installing HP 9000 Software

Installing HP 9000 Software

This section shows you how to install the Graphical User Interface on HP 9000
workstations. These instruction also tell you how not to install the Graphical User
Interface if you want to use just the conventional Softkey Interface.

This section shows you how to:
1 Install the software from the media.

2 Verify the software installation.
3 Start the X server and the Motif Window Manager (mwm), or start HP VUE.
4

Set the necessary environment variables.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the Softkey Interface instead of the Graphical User Interface,
you can save about 3.5 megabytes of disk space by not installing the XUI suffixed
filesets in the "64700 Operating Environment" and "<processor-type> Emulation
Tools" partitions. (Also, if you choose not to install the Graphical User Interface,
you will not have to use a special command line option to start the Softkey
Interface.)

Refer to the information on updating HP-UX in your HP-UX documentation for
instructions on viewing partitions and filesets and marking filesets that should not
be loaded.

The following sub-steps assume that you want to install all products on the tape.

522

Chapter 16: Installation
Installing HP 9000 Software

Become the root user on the system you want to update.
Make sure the tape’s write-protect screw points to SAFE.

Put the product media into the tape drive that will besthugce devicéor the
update process.

Confirm that the tape drive BUSY and PROTECT lights are on. If the PROTECT
light is not on, remove the tape and confirm the position of the write-protect screw.
If the BUSY light is not on, check that the tape is installed correctly in the drive
and that the drive is operating correctly.

When the BUSY light goes off and stays off, start the update program by entering
/etc/update

at the HP-UX prompt.

When the HP-UX update utility main screen appears, confirm that the source and
destination devices are correct for your system. Refer to the information on
updating HP-UX in your HP-UX documentation if you need to modify these values.

Select "Load Everything from Source Media" when your source and destination
directories are correct.

To begin the update, press the softkey <Select Iltem>. At the next menu, press the
softkey <Select Item> again. Answer the last prompt with

y

It takes about 20 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the results of the
update.

523

Chapter 16: Installation
Installing HP 9000 Software

Step 2. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load the
Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to successfully
start the Graphical User Interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for verifying
installation, but these checks can help to double-check the install process.

Verify the existence of thdP64_Softkeyfile in the/usr/lib/X11/app-defaults
subdirectory by entering
Is /usr/lib/X11/app-defaults/HP64_Softkeyat the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies that the
customize scripts executed because this file is created from other files during the
customize process.

Examine/usr/lib/X11/app-defaults/HP64_Softkeynear the end of the file to
confirm that there are resources specific to your emulator.

Near the end of the file, there will be resource strings that contain references to
specific emulators. For example, if you installed the Graphical User Interface for
the 80186/8/XL/EA/EB emulator, resource name strings will iE8x

embedded in them.

After you have verified the software installation, you must start the X server and an
X window manager (if you are not currently running an X server). If you plan to

run the Motif Window Manager (mwm), or similar window manager, continue with
Step 3a of these instructions. If you plan to run HP VUE, skip to Step 3b of these
instructions.

524

Chapter 16: Installation
Installing HP 9000 Software

Step 3a. Start the X server and the Motif Window
Manager (mwm)

If you are not already running the X server and a window manager, do so now
X server is required to use the Graphical User Interface because it is an X Windows
application. A window manager is not required to execute the interface, but, as a
practical matter, you must use some sort of window manager with the X server.

Start the X server by enterind1start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating system
documentation if you do not know about using X Windows and the X server.

After starting the X server and Motif Window Manager, continue with step 4 of
these instructions.

Step 3b. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE, do so
now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

Step 4. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "/usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/*, you need to set the HP64000 environment variable.

525

Chapter 16: Installation
Installing HP 9000 Software

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "sh" or "ksh"; if you're using "csh", environment variables are set
using the "setenv <VARIABLE> <value>" command.

Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server _number>.<screen_number>
export DISPLAY

For example:

DISPLAY=myhost:0.0; export DISPLAY

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

HP64000=/usr/hp64000; export HP64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

HP64000=/users/team/usr/hp64000; export HP64000

526

Chapter 16: Installation
Installing HP 9000 Software

3 Set the PATH environment variable to includeukghp64000/bindirectory by
entering

PATH=$PATH:$HP64000/bin; export PATH

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

4 Set the MANPATH environment variable to include tisehp64000/manand
usr/hp64000/contrib/mandirectories by entering

MANPATH=$MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

527

Chapter 16: Installation
Installing Sun SPARCsystem Software

Installing Sun SPARCsystem Software

This section shows you how to install the Graphical User Interface on Sun
SPARCsystem workstations. These instructions also tell you how not to install the
Graphical User Interface if you want to use just the conventional Softkey Interface.

This section shows you how to:
1 Install the software from the media.

2 Startthe X server and OpenWindows.

3 Set the necessary environment variables.
4 Verify the software installation.
5

Map your function keys.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.

However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you plan on using the conventional Softkey Interface instead of the Graphical

User Interface, you can save about 3.5 megabytes of disk space by not installing the
XUI suffixed filesets. (Also, if you choose not to install the Graphical User

Interface, you will not have to use a special command line option to start the

Softkey Interface.)

Refer to theSoftware Installation Notictor software installation instructions.
After you are done installing the software, return here.

528

Chapter 16: Installation
Installing Sun SPARCsystem Software

Step 2. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is require
run the Graphical User Interface because it is an X application.

Start the X server by enterifgsr/openwin/bin/openwinat the UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 3. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/*, you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you're using "csh"; if you're using "sh", environment variables are set in the
"<VARIABLE>=<value>; export <VARIABLE>" form.

The DISPLAY environment variable is usually set bydhenwin startup script.
Check to see that DISPLAY is set by entering

echo $DISPLAY
If DISPLAY is not set, you can set it by entering

setenv DISPLAY=<hostname>:<server_number>.<screen_number>

529

Chapter 16: Installation
Installing Sun SPARCsystem Software

For example:
setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
“I", you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr’hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

In -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries used

by the HP 64000 products. Again, if you installed relative to /users/team, you
would enter

setenv HP64000 /users/team/usr/hp64000
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

Set the PATH environment variable to includeubghp64000/bindirectory by
entering

setenv PATH ${PATH}:${HP64000}/bin

Includingusr/hp64000/binin your PATH relieves you from prefixing HP 64700
executables with the directory path.

530

Chapter 16: Installation
Installing Sun SPARCsystem Software

4 Set the MANPATH environment variable to include tise’hp64000/manand
usr/hp64000/contrib/mandirectories by entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}.${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

5 If the Graphical User Interface is to run on a SPARCsystem computer that is not
running OpenWindows, include the /usr/openwin/lib directory in
LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/ust/openwin/lib

Step 4. Verify the software installation

A number of product filesets were installed on your system during the software
installation process. Due to the complexity of installing on NFS mounted file
systems, a script that verifies and customizes these products was also installed.
This stand alone script may be run at any time to verify that all files required by the
products are in place in the file system. If required files are not found, this script
will attempt to symbolically link them from the $HP64000 install directory to their
proper locations.

* Run the scripgHP64000/bin/envinstall

531

Chapter 16: Installation
Installing Sun SPARCsystem Software

Step 5. Map your function keys

If you are using the conventional Softkey Interface, map your function keys by
following the steps below.

1 Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your SHOME directory.

2 Remove or comment out the following line from your .xinitrc file:

xmodmap -e 'keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out those
lines also.

3 Add the following to your .profile or .login file:

stty erase "H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be used
for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for the
Softkey Interface. All you have to do is set the KEYMAP variable. If you use
OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the directory
/usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of the
$PATH definition, and add the following line to your .profile:
setenv OPENWINHOME /usr/openwin

After you have mapped your function keys, you must start the X server and an X
window manager (if you are not currently running an X server).

532

Chapter 16: Installation
Verifying the Installation

Verifying the Installation

This section shows you how to:

» Determine the logical name of your emulator.
» Start the emulator/analyzer interface for the first time.

» Exit the emulator/analyzer interface.

Step 1. Determine the logical name of your
emulator

Thelogical nameof an emulator is a label associated with a set of communications
parameters in theHP64000/etc/64700tab.ndile. The 64700tab.net file is placed
in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.nett the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

Examples A typical entry for a 80186/8/XL/EA/EB emulator connected to the LAN would
appear as follows:
#

Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#

lan: em8018x i186xl 21.17.9.143

533

Chapter 16: Installation
Verifying the Installation

A typical entry for a 80186/8/XL/EA/EB emulator connected to an RS-422 port
would appear as follows:

#

| | | |Xpar|Parity|Flow|Stop|Char

Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type |Name| Device | | |XON

| | | |OFF | NONE |RTS |2 |8

#

”serial: em8018x

i186xI myhost /dev/iemcom23 OFF NONE RTS 2 8

Step 2. Start the interface with the emul700
command

Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN or to your host system.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

Wait a few seconds to allow the emulator to complete its startup initialization.

Choose a terminal window from which to start the Graphical User Interface.

Start the Graphical User Interface by entesngil700command and giving the
logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/binis in your path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, #r@aul700command will start the

534

Example

Chapter 16: Installation
Verifying the Installation

Graphical User Interface. Otherwigeul700starts the conventional Softkey
Interface.

You should include an ampersand ("&") with the command to start the Graphi
User Interface as a background process. Doing so frees the terminal window
you started the interface so that the window may still be used.

Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the conventional Softkey Interface under X Windows,
but you must include a command line argumeintail700to override the default
Graphical User Interface. Start the conventional interface by entering

emul700 -u skemul <logical name>

Suppose you have discovered that the logical name for a 80186/8/XL/EA/EB
emulator connected to the LAN is "em8018x". To start the Graphical User
Interface and begin communicating with that emulator, enter (assuming your
$PATH includesbHP64000/bir)

emul700 em8018x

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

535

Chapter 16: Installation
Verifying the Installation

ewlett Packard Emulator/Analyzer: em8018x (i186x1)

File Display Modify Execution Breakpoints Trace Settings Help

Action keys: | = Demo = | Disp Sre () | Trace () | Run | Step Source
< Your Key = | Make |Disp Src Prev |Hun Afertil() | Break | Step Asm

O Trecall

STATUS: Starting new session

536

Chapter 16: Installation
Verifying the Installation

Step 3. Exit the Graphical User Interface

Position the mouse pointer over the pulldown menu named "File” on the menu|
at the top of the interface screen.

Press and hold the command select mouse button until the File menu appears.

While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

537

538

17

Installing/Updating Emulator
Firmware

539

Installing/Updating Emulator Firmware

If you ordered the HP 64767 80186/8/XL/EA/EB emulator probe and the
HP 64748C emulation control card together, the control card contains the correct
firmware for the HP 64767.

However, if you ordered the HP 64767 and the HP 64748C separately, or if you are
using a HP 64748C that has been used previously with a different emulator probe,
you must download the correct firmware into the emulation control card.

The 80186/8/XL/EA/EB emulator firmware is included with the emulator/analyzer
interface software, and the program that downloads emulator firmware is included
with the HP B1471 64700 Operating Environment product.

(The firmware, and the program that downloads it into the control card, are also
included with the 80186/8/XL/EA/EB emulator probe on an MS-DOS format
floppies. The floppies are for users that do not have hosted interface software.)

Before you can update emulator firmware, you must have already installed the
emulator into the HP 64700, connected the HP 64700 to a host computer or LAN,
and installed the emulator/analyzer interface and HP B1471 software as described
in the "Installation" chapter.

This chapter describes how to:
* Update firmware with the "progflash" command.

» Display current firmware version information.

540

Chapter 17: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

To update emulator firmware with "progflash"

Enter theprogflash -v <emul_name> <products ...2ommand.

Theprogflash command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The-v option means "verbose". It causes progress status messages to be dis
during operation.

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file.

The <products> option names the products whose firmware is to be updated.

If you enter theorogflash command without options, it becomes interactive. If you
don't include the <emul_name> option, it displays the logical names in the
/usr/hp64000/etc/64700tab.net file and asks you to choose one. If you don't
include the <products> option, it displays the products which have firmware update
files on the system and asks you to choose one. (In the interactive mode, only one
product at a time can be updated.) You can abort the interpatiyash

command by pressing <CTRL>c.

progflash will print "Flash programming SUCCEEDED" and return O if it is
successful; otherwise, it will print "Flash programming FAILED" and return a
nonzero (error).

You can verify the update by displaying the firmware version information.

541

Chapter 17: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

Examples To update emulator firmware in the HP 64700 that contains the "em8018x"
emulator:

$ progflash <RETURN>

HPB1471-19309 A.05.00 03Jan94
64700 SERIES EMULATION COMMON FILES

A Hewlett-Packard Software Product
Copyright Hewlett-Packard Co. 1988

All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

RESTRICTED RIGHTS LEGEND

Use , duplication , or disclosure by the Governmentis subject to

restrictions as set forth in subparagraph (c) (1) (Il) of the Rights

in Technical Data and Computer Software clause at DFARS 52.227-7013.
HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

Logical Name Processor
1 em68k m68000
2 em80960 i80960
3 em8018x i186xI

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that contains the 80186/8/XL/EA/EB
emulator, enter "3".

Product
164700
2 64703/64704/64706/64740
364744
4 64760
564767

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64767 80186/8/XL/EA/EB emulator firmware, enter "5".

Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

542

Chapter 17: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash”

Checking System firmware revision...
Mainframe is a 64700B

Reading configuration from '/usr/hp64000/inst/update/64767.cfg’
ROM identifier address = 2FFFFOH

Required hardware identifier = 1IFF4H

Control ROM start address = 280000H

Control ROM size = 40000H

Control ROM width = 16

Programming voltage control address = 2FFFFEH

Programming voltage control value = FFFFH

Programming voltage control mask = OH

Rebooting HP64700...

Checking Hardware id code...

Erasing Flash ROM

Downloading ROM code: /usr/hp64000/inst/update/64767.X
Code start 280000H (should equal control ROM start)
Code size 2348CH (must be less than control ROM size)

Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED
$

You could perform the same update as in the previous example with the following
command:

$ progflash -v em8018x 64767 <RETURN>

543

Chapter 17: Installing/Updating Emulator Firmware
To display current firmware version information

To display current firmware version information

* Use the Terminal Interfaceer command to view the version information for
firmware currently in the HP 64700.

When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with thed_commandcommand. For example:

display pod_command <RETURN>
pod_command "ver" <RETURN>

Examples The Terminal Interfaceer command displays information similar to:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64767A (PPN: 64767A) Intel B0C186EA Emulator
Version: A.00.00 13Nov90 Lab Proto
Control: HP64748C ABG Control Board
Speed: 20 MHz
Memory: 1024 Kbytes

HP64740 Emulation Analyzer with External State/Timing Analyzer
Version: A.02.02 13Mar91

544

Chapter 17: Installing/Updating Emulator Firmware
If there is a power failure during a firmware update

If there is a power failure during a firmware
update
If there is a power glitch during a firmware update, some bits may be lost during

the download process, possibly resulting in an HP 64700 that will not boot up.
[J Repeat the firmware update process.

L] If the HP 64700 is connected to the LAN in this situation and you are unable to
connect to the HP 64700 after the power glitch, try repeating the firmware update
with the HP 64700 connected to an RS-232 or RS-422 interface.

545

546

Glossary

access mode Specifies the types of cycles used to access target system memory
locations. For example a "byte" access mode tells the monitor program to use
load/store byte instructions to access target memory.

active emulator probe An emulator probe that contains circuitry that allows t
emulator to more closely imitate the electrical characteristics of the microproc
thereby avoiding the timing problems that can occur with passive probes.

analyzer An instrument that captures data on signals of interest at discreet
periods.

background The emulator mode in which foreground operation is suspended so
the emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor address space.

background emulation monitor ~ An emulation monitor program that does not
execute as part of the user program, and therefore, operates in the emulator’s
background mode.

background memory Memory space reserved for the emulation processor
when it is operating in the background mode. Background memory does not take
up any of the processor’s address space.

display mode When displaying memory, this mode tells the emulator the size of
the memory locations to display. When modifying memory, the display mode tells
the emulator the size of the values to be written to memory.

embedded microprocessor system The microprocessor system that the
emulator plugs into.

emulation bus analyzer The internal analyzer that captures emulator bus cycle
information synchronously with the processor’s clock signal.

emulation monitor program A program that is executed by the emulation
processor which allows the emulation controller to access target system resources.

547

Glossary

For example, when you display target system memory locations, the monitor
program executes microprocessor instructions that read the target memory locations
and send their contents to the emulation controller.

emulator An instrument that performs just like the microprocessor it replaces, but
at the same time, it gives you information about the operation of the processor. An
emulator gives you control over target system execution and allows you to view or
modify the contents of processor registers, target system memory, and 1/0
resources.

foreground The mode in which the emulator is executing the user program. In
other words, the mode in which the emulator operates as the target microprocessor
would.

foreground emulation monitor ~ An emulation monitor program that operates
in the foreground emulator mode, and therefore, executes as if it were part of the
user program.

global restart When the same secondary branch condition is used for all terms in
the analyzer's sequencer, and secondary branches are always back to the first term.

prestore The analyzer feature that allows up to two states to be stored before
normally stored states. This feature is useful when you want to find the cause of a
particular state. For example, if a variable is accessed from many different places in
the program, you can qualify the trace so that only accesses of that variable are
stored and turn on prestore to find out where accesses of that variable originate
from.

primary sequencer branch ~ Occurs when the analyzer finds the primary branch
state specified at a certain level and begins searching for the states specified at the
primary branch’s destination level.

real-time Refers to continuous execution of the user program without
interference from the emulator. (Such interference occurs when the emulator
temporarily breaks into the monitor so that it can access register contents or target
system memory or 1/O.)

secondary sequencer branch Occurs when the analyzer finds the secondary
branch state specified at a certain level before it found the primary branch state and
begins searching for the states specified at the secondary branch’s destination level.

548

Glossary

sequence terms Individual levels of the sequencer. The analyzer provides 8
sequence terms.

sequencer The part of the analyzer that allows it to search for a certain sequence
of states before triggering.

sequencer branch Occurs when the analyzer finds the primary or secondary
branch state specified at a certain level and begins searching for the states specified
at another level.

target system The microprocessor system that the emulator plugs into.

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the external
analyzer) and stored in trace memory.

trigger The captured analyzer state about which other captured states are stored.
The trigger state specifies when the trace measurement is taken.

549

550

Index

about, trigger position specificatia?)6
absolute count, in the trace displag8
absolute files370
loading,131
loading without symbols] 32
storing memory contents intb32
absolute status, in the trace disp@32
access mod&4a7
access size (target memory}.3
action keys26
custom312
operation79
with command files312
with entry buffer,77, 79
activity measurements (SPMB39-253
additional symbols for address}7
confidence levelR48
error tolerance?48
interpreting report246
mean 246
relative and absolute coungsi7
standard deviatior247
symbols within range247
trace command setup41
address (analyzer state qualifier softk@@4, 393, 408
address qualifier04
address range file format (SPMT measuremeMs),
after, trigger position specificatioBD6
altitude, operating and non-operating environmeits,
analyzerb47
arming other HP 64700 Series analyzbrs,
breaking emulator execution into the monitbr,
breaking execution of other HP 64700 Series emuldors,
count qualifiers211
definition, 4

551

Index

general descriptior,

occurrence coung08

prestore qualifier210

state qualifiers204

storage qualifier209

trace at EXECUTE291

trigger condition206

using the,192
analyzer probe

assembling270

connecting to the target syste?72
analyzer status

occurrence left informatior,96

sequence term informatioh96
app-defaults directory

HP 9000 computergd38

Sun SPARCsystem computet838
application resource

SeeX resource
arm information,195
arm_trig2, in trace commandi24

B background547
emulation monitor547
memory,547
tracing,128
background execution, tracintR8
background memony,16
background monitor, 16
selecting,117
bases (number201
BBA data, store to file189
bbaunload command, synt®31
before, trigger position specificatia?06
BGND output line54
binary numbers201
BNC
connectorb, 284
trigger signal 286
break command,47
syntax,330
break on guarded memory accexs3

552

Index

breakpoints34
copying to a file,186
breaks on write to ROM,28

cables
emulator probe, length,79
power,517
cascade menu0
cautions
antistatic precautiong99
BNC accepts only TTL voltage leve239
CMB 9-pin port is NOT for RS-232Q287
emulator suspension rating of 29.5 &@9
make sure of BGND output pin alignmeb,
powering OFF the HP 647009
protect emulator against static dischadge,
real-time dependent target system circuitd4
rear panel, do not stand HP 64700508
changing
directory context in configuration windod09
directory context in emulator/analyzer winddw2
symbol context143
characteristics, emulatat76-479
characterization of memor$22
class name, X application$36
client, X,304
clocks
See alsslave clocks
closing, emulator/analyzer windowss
CMB (coordinated measurement b4
EXECUTE line,286, 332
HP 64700 connectio287
READY line, 285
signals 285
TRIGGER line,285
cmb_execute comman2i92, 332
color scheme306, 310, 490
column width, trace display optioR27
columns in main display area07
command button®7
command files372
other things to know abol84

553

Index

passing parametei$3
command line27

Command Recall dialog bo28

Command Recall dialog box, operati&s,

copy-and-paste to from entry buff@g

editing entry area with popup mergz,

editing entry area with pushbuttoB$,

entering commandsb

entry area27

executing command8p

help,88

keyboard use 089-91

on-line help91

recalling commands with dialog b8

turning on or off 84, 307
command paste mouse butt@f,
Command Recall dialog box operati&g,
command select mouse butt@s,
commands89

combining on a single command i1@9,

completion89

editing in command line entry are35-87

entering in command lin&5

executing in command lin85

keyboard entry89

line erase90

recall,90

recalling with dialog box38

summary 329

word selection90
communications ports

electrical characteristic4,/8

physical characteristic479
configuration (emulator)

background states, tracintf8

breaks on writes to ROM_28

monitor entry afterl15

monitor selection]16-121
configuration context, displaying10
configuration, emulator

exiting the interfacel 11

554

Index

loading from file,111
modifying a section]06
starting the interfacd,04
storing,108

context
changing directory in configuration windo®Q9
changing directory in emulator/analyzer winddw#?2
changing symboll43
displaying directory from configuration window10
displaying directory from emulator/analyzer winddw
displaying symbol142

coordinated measuremeri293

break_on_trigger syntax of the trace comm&93,
definition, 284
copy command333-335

data,334

display,334

error_log,334

event_log334

global symbols334

help,334

I/O ports,336-337

local_symbols_in338

memory,339-340

pod_command335

registers341

software breakpoint835

status 335

trace,342
copy-and-paste

addresseg5

from entry buffer,78

multi-window, 75, 78

symbol width,75

to entry buffer74

copying

display area to filel85
error log to file, 186
event log to file 186
global symbols to file186
local symbols to file186

555

Index

memory to file, 185
registers to file186
trace listing to file185
count absolute/relative, trace display opt@28
count qualifiers211
count, occurrence08
current working symbol (cws320
cursor button28
custom foreground monitor, selectirig0

data
copy command334
display command345-347
data (analyzer state qualifier softke304, 393, 408
data (external), trace display opti@31
data valuesl 74-175
adding items to the existing display;5
clearing the display and adding a new it&é¥b
copying to a file,185
displaying,38, 174
decimal number201
default trace command94
default trace display, returning @30
demos, setting uf315-317
demultiplexing, using slave clocks f&77
demux, slave clock mod279
depth of the trac00
device table file32, 59-60

dialog box,79
Command Recall, operatiod(, 88
Directory Selection]42

Directory Selection, operatioi9, 82
Entry Buffer Recall, operatiof,7, 80
File Selection, operatio80-81
Trace Specification Selection, operatig0
dimensions, emulato4,79
directory context
changing in configuration window09
changing in emulator/analyzer windo¥2
displaying from configuration window,10
displaying from emulator/analyzer windot2
Directory Selection dialog box operatiai9, 82

556

Index

display area?27
columns 307
copying to a file,185
lines,307-308
display command343-344
data,345-347
error_log,343
event_log344
global_symbols348
I/O ports,349-350
local_symbols_in351
memory,352-355
memory mnemonic33, 169
pod_command344
registers163-167, 356
simulated_io]187, 357
software_breakpoint858
status 194, 344
symbols,133
trace,198, 359-362
display mode547
display trace220-231
about line numbeg21
absolute forma22
count absolute/relativ@28
default,230
external data231
mnemonic format223
offset by,229
positioning, left/right199
positioning, up/down] 99
source line inclusiorg24
symbol information inclusiorg26
width of columns227
displays, copying334
don't care digits202
downloading absolute file§, 131
dual-port emulation memorg,14
duration measurements (SPMZp4-262
average time259
confidence leve260

557

Index

error tolerance260
interpreting report259
maximum time 259
minimum time,259

number of interval259
recursion consideration254
selecting 257

standard deviatior260
trace command setup55

editing
command line entry area with popup me3il,
command line entry area with pushbutt@&,
file, 182, 307
file at address]82, 307
file at program countef,82
file at symbol from symbols screet§2
file from memory display screeh82
electrical characteristics of the emulatbf6
embedded microprocessor systédi/
emul700, command to start the emulator/analyzer intei$8ce,
emulation bus analyzes47
emulation memory
dual-port,114
loading absolute fileq,31
synchronizing to target syste3
emulation monitor547
backgroundl117
foreground,118
function of,116
user foreground, 20
emulation session, exitin§6
emulation, external analyzer mo@&6
emulator 548
configuring the 102
device table file32, 59-60
dimensions479
electrical characteristic4,/6
environmental characteristics dff9
error messaged4b5
general descriptior,
multiple start/stop5, 291-292

558

physical characteristicd/9
plugging into a target systed
probe cable lengti#79
running from target reset45
specifications and characteristid36-479
status lines, predefined values 205
using the,130
weight, 479
emulator configuration
break processor on write to ROIR8
exiting the configuration interfacé11
foreground cycles, locking,19
foreground monitor locatiorl, 18
load command371
loading from file, 111
modify command374
modifying a configuration sectiodp6
monitor entry after]15
processor typel,12
restrict to real-time run4,14
run address conversiohl3
starting the configuration interface)4
storing,108
target memory access sidd.3
trace background/foreground operatib@8
emulator limitations, external DMA suppotg?2
emulator probe
active,547
cable length479
pin alignment53
emulator status, displayinj86
emulator/analyzer interface
exiting, 43, 65-66
running in multiple windows9
starting,59-62
end command}3, 66, 363
entry
pod command€8
simulated i0]188
entry buffer27
address copy-and-paste 16,

Index

559

Index

clearing,74
copy-and-paste fron78
copy-and-paste t@4
Entry Buffer Recall dialog bo2,7
Entry Buffer Recall dialog box, operatiofiy
multi-window copy-and-paste frorig
multi-window copy-and-paste t@5
operation/7
recall button27
recalling entriesy7
symbol width and copy-and-paste 15,
text entry,74
with action keys77, 79
with pulldown menus/7
Entry Buffer Recall dialog box operatidsi
environment variables (UNIX)
HP64KPATH,96
HP64KSYMBPATH,420
PATH, 59
Softkey Interface, setting while ih79
environmental characteristics of the emulad@®
eram, memory characterizatidr®2
erom, memory characterizatickf2
error messaged34
analyzerd71
emulator455
general and system error/statisg
Terminal Interface455
error_log
copy command334
copying to afile186
display command343
event_log63
copy command334
copying to afile186
display command344
EXECUTE
CMB signal,286
tracing at291
exit, emulator/analyzer interfacé3, 65-66
exiting

560

emulation sessioB6
emulator/analyzer window6b
expression201
--EXPR-- syntax364-366
external analyzer
configuration,273-281
general descriptior,
labels,274, 280
mode,276
should emulation control2,74
specifications480
using,268
external data, trace display opti@31

file
display area tal85
editing, 182
editing at addres482
editing at program countet82
editing at symbol from symbols scredé82
editing from memory display screet82
emulator configuratior,08
emulator configuration load,11
error log t0,186
event log to]186
global symbols to] 86
local symbols t0186
memory t0,185
registers t0186
trace listing to185
file extensions, .EA and .EB, configuration fil&88
file formats
address ranges for SPMT measuremeudt3,
time ranges for SPMT measuremeg@ty
File Selection dialog box operatidd0-81
firmware updatesh
firmware version544
foreground 548
emulation monitor548
foreground memory116
foreground monitor]1 16
advantages/disadvantag&$y

Index

561

Index

customizing,120

location of shipped file120

selecting,118
foreground operation, tracing28
formal parameters (command file8}
forward command, synta867
functions, step ovef,69

G global restart qualifiei217, 548
global symbol informatior417
global symbols33, 202, 348
copy command334
display commandl 34, 348
initializing the SPMT measurement wi?43
to file, 186
grabbers, connecting to analyzer prdbél,
ground strap48
guarded memory accessgg2, 213

H halfbright,85-86
halt, trace 197
hand pointer27, 73
hardware
HP 9000 memory need496
HP 9000 minimum performancé96
HP 9000 minimums overview96
SPARCsystem memory need87
SPARCsystem minimum performand®&,7
SPARCsystem minimums overvied97
help
command line88
copy command334
help index83
on-line,91
softkey driven informatiorg1
help command368-369
help index, displaying83
hexadecimal number202
HP 64700 Operating Environment, minimum vers#giy,
HP 9000
700 series Motif librarie}96
HP-UX minimum versior496

562

installing software522-527

minimum system requirements overviel96
HP 98659 RS-422 Interface Cafd,
HP-UX, minimum versior496
HP64KPATH, UNIX environment variablég
HP64KSYMBPATH environment variablé20

I/O ports
contents listed as asterisk (336
display command349-350
modify command336-337, 375-376
input
pod command$8
simulated 10,188
input scheme306, 490
installation, 496
hardware498-520
HP 9000 softwareg22-527
SPARCsystem softwarB28-532
instance name, X applicatios35-486
interactive measuremen93
interface, emulator configuration
exiting, 111
modifying a section106
starting,104
interface, exiting66
interrupts, 117
inverse video
graphical interface demol/tutorial file&16
source line display optio224

keyboard
accelerators?2
choosing menu itemg1
focus policy,72
pod command€8
simulated i0,188
keyboard_to_simio, modify commarg¥;7

label scheme306, 310, 490
labels
configuration file 281

Index

563

Index

LANG environment variablej90
LD_LIBRARY_PATH environment variablé&31
libraries, Motif for HP 9000/700196
line numbers (source file), symbol displa@b
line numbers (trace), displaying abd22,1
lines in main display ared8p7-308
list, trace,198
load command370-371
absolute files131
configuration 371
trace,234-235, 371
trace_spe@33, 371
local symbols202, 351
copy command338
display commandl 35, 351
initializing the performance measurement wah3
to file, 186
locating the monitor prograrii18
locked, end command optios6
log_commands commangl{2
logical run address, conversion from physical addredd &,
low-level symbols, default prefixd22

mapping memoryl22-126
memory,339-340
activity measurements (SPMP39, 246
characterization of,22
contents listed as asterisk (339
copy command339-340
display command352-355
displaying,168
displaying at an addresk/2
displaying repetitively173
dual-port emulation] 14
loading programs intd,31
mapping,122-126
mnemonic format display,69
modify command378-380
modifying, 173
re-assignment of emulation memory blocks in magii8,
store commandi12
to file, 185

564

memory mapper
block size 122
resolution122
memory recommendations
HP 9000496
SPARCsystem}97
menus
editing command line with popuf?y
hand pointer means pop&y,, 73
pulldown operation with keyboardl
pulldown operation with mous@p-71
messages
status 458
Terminal Interface errod55
mixed, slave clock mod&y77
mnemonic information in trace listing23
mnemonic memory displag3, 169
source/symbol modet76
modes, source/symbdl76
modify command373
configuration,374
I/O ports,375-376
keyboard to_simio377
memory,378-380
register,167, 381
software_breakpoint882-383
modify _command, trace command optiaf0
module duration measurements (SPMZBY
module usage measurements (SPNZH)
monitor (emulation)
backgroundl117
comparison of foreground/backgroudd,7
foreground,118
foreground monitor locatiori, 18
function of,116
selecting116-121
selecting entry after configuratiohl5
user foreground} 20
user foreground monitor filenam&20
Motif, HP 9000/700 requirement96
mouse

Index

565

Index

buttons 29

choosing menu itemgp-71
multi-window

copy-and-paste from entry buffé&ig

copy-and-paste to entry buff@g
multiple commands9
multiple emulator start/stop,

name_of module commantB0

nesting command file92

NORMAL key, 328, 364

nosymbols133

notes
"perf.out" file is in binary forma264
analyzer pipeline unloaded two states at a t@8,
breakpoint locations must contain opcodés), 155, 157
CMB EXECUTE and TRIGGER signal286
external timing analyzer does not use configuration labéls,
foreground monitors that cause bredkl
measurement errors on recursive/multiple entry routitiss,
only one range resource availal#63
re-assignment of emulation memory blocks by mag28,
some compilers emit more than one symbol for an add@48s,
step command doesn’t work when CMB enabRd,
trigger found but trace memory not filleth9

number base201

number of source lines, trace display opt2y

numerical value201

occurrence count208, 215
octal numbers201
offset by, trace display optio829
OMF-86
symbol exampleg118
symbol tree419
OMF-86 absolute file format,31
OMF-86 file format417
on-line help91
on_halt, trace command optidi1,3
only, trace command storage qualifi2d9
operating system
HP 64700 Series minimum versici97

566

HP-UX minimum versior496
SunOS minimum versiod97
operators202
output line, BGNDb4

parameter passing in command fil@3,

parent symbol, displaying from symbols screk39

paste mouse buttoR9
PATH, UNIX environment variablé&a9

perf.out, SPMT output file244, 258, 263-265, 384
perf32, SPMT report generator utili®38, 263-264

interpreting report246, 259
options,265
using the265

performance measurements

Seesoftware performance measurements
performance_measurement_end commaad,
performance_measurement_initialize comm&8&-386
performance_measurement_run commagd-388

physical characteristics of the emulat#9

physical run address, conversion to logical run addiéss,

platform
HP 9000 memory need496
HP 9000 minimum performancé96
SPARCsystem memory need87

SPARCsystem minimum performand&,7

platform scheme306, 489
plug-in,48
pod commands89-390

copy command335

copying to afile,186

display command344

display screerf8

keyboard input98
popup menus

command line editing witl87

hand pointer indicates presengeé, 73
positioning the trace display left/righit99
positioning the trace display up/dowlr§9
power cables

connecting517

correct typeb17

Index

567

Index

power failure during firmware update45
prestore qualifier210, 548
primary branches (analyzer sequencety
processor typ&0, 112
progflash exampleg42
program activity measurements (SPMA39, 246
program counter

mnemonic memory displagsd

running from,144
pulldown menus

choosing with keyboard,1

choosing with mousé&,0-71
pushbutton select mouse buttas,

Q QUALIFIER, in trace comman®91-392
qualifiers,204
count,211
prestore210
simple trigger206
slave clock277
storage209

R rad (physical run address default) emulator config. ifet8,
RAM, mapping emulation or targei22
range resource, note 393
RANGE, in trace comman893-394
READY, CMB signal,285
real-time runs548

commands not allowed duringl 4

restricting the emulator t4,14
recall buffer27

columns 313

initial content313-314

lines,313

recalling entries(7
recall, command0

dialog box,88
recall, trace specifications dialog b&d0
recursion in SPMT measuremert§4
registers

copy command341

display command356

568

Index

display/modify,163-167
displaying,39, 166
modify, 167
modify command381
to file, 186
relative count, in the trace displ@28
release_system, end command opt3,66, 108
repetitive display of memon,73
reset (emulator), commands which cause exit ffotf,
reset comman@95
reset, run from target45
resolution, memory mappetr22
resource
SeeX resource
RESOURCE_MANAGER propertyi88
restart term215, 217
restrict to real-time runs
emulator configuratiori, 14
permissible command$14
target system dependendy 4
ROM
mapping emulation or targei22
writes 10,122
RS-422, host computer interface cdrd,
run address, conversion from physical address,
run commandl44, 396-397
run from reset145

scheme files (for X resource8))5, 489
color scheme306, 310, 490
custom310-311, 491
input scheme306, 490
label scheme306, 310, 490
platform scheme306, 489
size scheme306, 490

scroll bar27

secondary branch expressiéag

select mouse butto89

selecting emulation monitot16-121

sequencer (analyzef§49
branch 549
terms,215, 549

569

Index

using the215-219
SEQUENCING, in trace commarigb8-399
server, X304, 488
set command}00-404, 417
shell variables94
sig INT, 263
signal considerationd,’6
signals, CMB285
simulated 1/0102, 377
display commandl 87, 357
keyboard input188
single-byte interrupt (SBIYL50
size scheme306, 490
slave clocks277
softkey driven help informatio®1
softkey pushbuttong7
softkeys 89
software
installation for HP 900(522-527
installation for SPARCsystems28-532
software breakpoint4,50-162
clearing,160
clearing all,162
copy command335
deactivating]157
display command358
enable/disable] 53
modify command382-383
opcode locationdl,55, 157
permanent, setting55
re-activating,158
ROM code 150
setting,156
setting all,157
software breakpoints list, displayinth1
software performance measureme8y, 239-266
absolute informatiorR46
activity measurement239-253
adding trace244, 258
duration,254-262
end,384

570

Index

ending,264
how they are mad@38
initialize, 385-386
initializing, 242, 257
initializing, default,242
initializing, duration measuremengg7
initializing, user defined range243, 257
initializing, with global symbols243
initializing, with local symbols243
memory activity 239, 246
module duration254
module usage54
program activity239, 246
recursion254
relative information246
restoring the current measuremet4, 258
run,387-388
running,263
trace command setup41
trace display deptt241
source lines
set command403
symbol display135
trace display224
trace display, number dt24
source/symbol modes, settiig,6
SPARCsystems
installing software528-532
minimum system requirements overviel9,/
SunOS minimum versiod97
specifications
emulator476-479
external analyzer80
specify command}05-406
SPMT (Software Performance Measurement Tool)
Seesoftware performance measurements
sq adv, captured sequence sta1&
SRU
symbol-searching capabilit}20
SRU (Symbolic Retrieval Utilities}15-417
srubuild,417

571

Index

sruprint,417
state, external analyzer mo@&6
STATE, in trace command07-408
static discharge, protecting the emulator probe agdi8st,
status
copy command335
display commandl 94, 344
status (analyzer state qualifier softke304, 394, 408
predefined values foR05
status line27
status line (displayB3
status, emulator, copying to a filk36
step command5s, 147-148, 409-410
step over169
stop_trace commanii97, 411
storage qualifier209
store commandi12-413
absolute files131-132
store trace comman@34-235
store trace_spec comma32

summary of command329
SunOS, minimum versiod97
switching
directory context in configuration windod09
directory context in emulator/analyzer winddw2
symbol context143
--SYMB-- syntax414-422
symbol context
changing 143
displaying,142
symbol databasd,17
symbol file, loading133
symbol scoping and referencird,7
symbol tree417
Symbolic Retrieval Utilities (SRU%17
symbols,133, 202
displaying,133
displaying parent from symbols scre#89
global to file,186
local to file,186
set command403

572

--SYMB-- syntax,414-422
trace display226
synchronous measuremerggl
syntax convention28
system requirements
HP 64700 minimum versiod97
HP 9000 overview496
HP-UX minimum versior496
OSF/Motif HP 9000/700 requiremerdf6
SPARCsystem overview97
SunOS minimum versiod97

t (start trace) command94
tabs are, source line display opti@a4
target memory
access sizd,13
loading absolute fileq,31
ROM, symbols for133
target reset, running frorh45
target systenb49
dependency on executing cod&4
plugging the emulator intd8
processor signal consideratioAZp
RAM and ROM,122
temperatures, operating and non-operating environmkfas,
terminal emulation window, opening36
threshold voltage,74-275
time range file format (SPMT measuremer2§);
timing
external analyzer mod276
trace,549
at EXECUTE,_291
copy command342
depth of 200
display command359-362
displaying the198
halting the 197
listing the, 198
listing to file,185
load command371
loading,234-235
on_halt,213

Index

573

Index

prestore qualifier210

recalling trace specificationg00

starting the194

stopping the197

storage qualifier209

storage qualifier with prestorg10

store command{13

storing,234-235

Trace Specification Selection dialog b800
trigger position206

trace commandi23-425

default,194
loading and storing232-233
setting up for SPMT measuremeras]

trace display220-231

about line numberg21
absolute forma22

count absolute/relativ@28
default,230

depth, SPMT measuremerizg,1
external data231

mnemonic format223

offset by,229

positioning, left/right 199
positioning, up/down].99
source line inclusior24
source/symbol modet76
symbol information inclusiorg26
width of columns227

trace signals (emulation analyz&3
trace status displal94
trace_spec

load command371
store command}13

tracing background operatici?8
tram, memory characterizatiot22
transfer addres&45

trigger,549

condition,206
position,206
position, accuracy 0206

574

Index

specifying a simple206
stop driving on breakk98
TRIGGER, CMB signal285
TRIGGER, in trace command26-427
trom, memory characterizatioh?2
TTL (softkey for specifying threshold voltage2y5
tutorials, setting uB15-317
type of processor to emulati, 2

uploading memons

user (target) memory, loading absolute fille&]
user foreground monitor, selectiig0

user programb438

values201

predefined for analyzer state qualifie285
version, firmware544
voltages, threshol@75

wait command428-429
command files, using 92
warnings, power must be OFF during installatB08
weight of the emulatod79
widget resource
SeeX resource
width of columns, trace display optid227
WINDOW, in trace command,30-431
window, terminal emulation, openint86
windows
exiting emulator/analyze6b
opening additional emulator/analyz68,
running the emulator/analyzer interface in multip,
workstation
HP 9000 memory need496
HP 9000 minimum performancé96
SPARCsystem memory need8y7
SPARCsystem minimum performand&,7
write to ROM break128

X client, 304

X resource304
$XAPPLRESDIR directory488
$XENVIRONMENT variable 489

575

Index

.Xdefaults file 488
/usr/hp64000/lib/X11/HP64_schemdS1
app-defaults file488
class name for applicationt36
class name for widget486
command line optiong89
commonly modified graphical interface resour&&8
defined,485
general form485
instance name for applicatio®86
instance name for widge#35
loading order488
modifying resources, general306-309
RESOURCE_MANAGER propert#88
scheme file system directod91
scheme files, Graphical User Interfad89
scheme files, named90
schemes, forcing interface to use cert489
Softkey.BW,490
Softkey.Color490
Softkey.Input490
Softkey.Label490
Softkey.Large490
Softkey.Small490
wildcard characte#86
xrdb, 488
xrm command line optiorl89
X server,304, 488
X Window System59
xbits, external analyzer lab@80
XEnv_68k_except symbol and effect on breakpoitis,

576

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer's facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground (safety ground) at
the power outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

WARNING

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).
.

Protective conductor terminal. For protection against electrical shock in case of a
OR fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,

—;— as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

“rame or chassis terminal. A connection to the frame (chassis) of the equipment
| OR I thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

V4

Alternating or direct current (power line).

4

Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	80186/8/XL/EA/EB Emulation and Analysis
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Plugging into a Target System
	Starting and Exiting HP 64700 Interfaces
	Entering Commands
	Configuring the Emulator
	Using the Emulator
	Using the Emulation Analyzer
	Making Software Performance Measurements
	Using the External State Analyzer
	Making Coordinated Measurements
	Setting X Resources

	Reference
	Emulator/Analyzer Interface Commands
	Error Messages
	Specifications and Characteristics

	Concept Guide
	Concepts

	Installation Guide
	Installation
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

