
User’s Guide

HP B3081B
Real-Time OS Measurement
Tool for VRTX32 and VRTXsa

Notice

Hewlett-Packard makes no warranty of any kind with regard to this

material, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1992, 1994, 1995 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

VRTX, VTRX32, and VRTXsa are trademarks of Ready Systems.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c)
(1)(ii) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo
Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

2

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version
level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition 1 B3081-97001, June 1994

Edition 2 B3081-97002, August 1995

3

Measurements for the VRTX Real-Time
Operating System

The HP B3081B Real-Time Operating System Measurement Tool for VRTX32
and VRTXsa supports the 68000/68302, 68020/68030/68040, and
68331/68332/68340/68360/68010 VRTX32 and VRTXsa Operating Systems
from Ready Systems.

The RTOS Measurement Tool is a collection of files that are used with your
real-time OS application and the HP 64700 emulation/analysis system to view

4

program execution in the context of the real-time OS. For example, you can
view service calls and their parameters, task switches, clock ticks, and
dynamic memory usage.

By linking your real-time OS application with an "instrumented" service call
library (an interface library with instructions that write to a data table), you
can capture writes to the data table with the HP 64700 emulation bus
analyzer. A special inverse assembler decodes the captured information and
displays it in an easy-to-read format. You can also use the software
performance analyzer to measure time taken by tasks.

Command files are provided for common RTOS measurements, and you can
run them by clicking on action keys. You can also create custom command
files and action keys for your own RTOS measurements.

With an Emulation Bus Analyzer, You Can ...

• View problems at the task level.
• Use one button point-and-click commands (or run command files in the

command line).
• Display the real-time OS trace with the native service call mnemonics of

your OS.
• Track all OS service calls and display entry parameters and return values.
• Capture task switches caused by OS service calls or system clock ticks.
• Understand how interrupts are affecting your high level task flow.
• Stop program execution if any OS service call ever fails.
• Identify which tasks access a shared function or variable.
• Trigger when a certain message is sent to a specified mailbox.
• Capture activity after task A switches into task B in sequence.
• Detect attempts to free invalid memory segments.
• Display location of local stacks.
• Track all dynamic memory allocation and freeing.
• Trigger on stack overflow.

With the Software Performance Analyzer, You Can ...

• Perform time profiling of task durations in your application.
• Measure time spent in OS kernel versus application tasks.
• Measure the percentage of time spent in each application task.
• Stop program execution if a task exceeds a maximum time.
• Find out how often each OS service call is invoked.

5

In This Book

This book describes the HP B3081B Real-Time Operating System
Measurement Tool for the VRTX32 and VRTXsa Operating Systems from
Ready Systems.

This book assumes you are familiar with the Emulator/Analyzer interface,
whether it be the graphical interface or the terminal emulation based softkey
interface.

This book is organized into three parts whose chapters are described below.

Part 1. User’s Guide

Chapter 1 explains how to prepare your application to use the RTOS
measurement tool.
Chapter 2 describes how to make RTOS measurements in the
emulator/analyzer interface.
Chapter 3 describes how to make RTOS measurements in the Software
Performance Analyzer interface.
Chapter 4 shows you how to customize the RTOS Measurement Tool.

Part 2. Concept Guide

Chapter 5 describes how the RTOS measurement tool works.

Part 3. Installation Guide

Chapter 6 shows you how to install the RTOS emulation product on
HP 9000 Series 300/400/700 computers and on Sun SPARCsystem
computers.

6

Contents

Part 1 User’s Guide

1 Preparing Your Application for RTOS Measurements

Step 1: Make a new source directory 16
Step 2: Retrieve the RTOS source files 17
Step 3: Create the task table 18
Step 4: Create the Software Performance Analyzer initialization file 20
Step 5: Add the RTOS measurement files to your application 21
Step 6: Build the new application file 23
Step 7: Start the emulator interface 24
Step 8: Configure the emulator and load the application 25
Step 9: Test the RTOS measurement tool 26
Step 10: Test the Software Performance Analyzer 27

Suggestions for Easier Software Development 28

To add rtos_edit to your makefile 28
To write a VRTX32 configuration table 29
To write a VRTXsa configuration table 31

2 Making RTOS Measurements with the Emulator/Analyzer

Tracking the Flow of OS Activity 36

To track all service calls (including device calls) 37
To track all service calls plus the stack activity 38
To track all OS calls before an error occurs 39
To track everything 40

Tracking Particular OS Service Calls 41

To track all queue calls 42
To track all queue calls (include task switches) 43
To track all flag calls 44
To track all flag calls (include task switches) 45

7

To track all semaphore calls 46
To track all semaphore calls (include task switches) 47
To track all mutex calls (include task switches) 48
To track a single service call 49
To track two service calls 50

Tracking Particular Tasks 51

To track a single task and all OS activity within it 52
To track four tasks and all OS activity within them 53
To track about a specific task switch 54
To track about a specific task sending a message to a specific queue 55
To trace before a flag is received by a specific task 56
To track activity after a function is reached 57
To track activity about the access of a variable by a specific task 58
To display task and queue names 59

Tracking Accesses to Functions or Variables 60

To track which tasks access a specific function or variable 61

Tracking Dynamic Memory Usage 62

To track only stack data 63
To track all memory calls (include task switches) 65

Displaying Traces 66

To switch to a normal trace display 67
To switch to the RTOS trace display 68

3 Making RTOS Measurements with the SPA

Making Time Profile Measurements 74

To define SPA events for tasks, service calls, and user events 74
To display a time histogram of task events 75
To show a table of SPA events 76
To display a count histogram of task events 77
To measure only data from a specific task 78
To show a table of service call invocations 79
To show a normal function duration histogram 80
To show a histogram of task and user events 81

Contents

8

Coordinating Measurements with the Emulator 82

To break on task time overflow 82
To disable the SPA trig2 83

Handling Multiple Projects on One Machine 84

To set up unique SPA windows for multiple projects 84

4 Customizing the RTOS Measurement Tool

Creating Your Own RTOS Measurements 87

Data Table Description 87
Data Table Contents 92
To set up trace commands to capture RTOS information 93
To place your measurements in command files 97
To place your measurements on action keys 98

Part 2 Concept Guide

5 How the RTOS Measurement Tool Works

Instrumented Code for Real-Time OS Tracking 105

Service Call Tracking (for VRTX Assembly Based RTOS) 105
Service Call Tracking (for VRTXsa "C" Based RTOS) 107
Task Switch Tracking 107
Clock Ticks 108
Selective Tracking 108
OS Overhead Tracking 108
Stack and Memory Tracking 109
User-Defined Areas 109
RTOS Symbol Names 110
The Data Table 111
Extra Memory Locations 112
Symbolic Task and Queue Names in RTOS Traces 113

Contents

9

How OS Service Calls are Captured and Displayed 116

Inverse Assembler 116
Instrumented Library Writes to the Data Table 116
Data Table Writes Captured by Analyzer 117
Parameters Displayed with Mnemonics 117
Service Call Entry and Exit and Task Switches 118
Inverse Assemblers are Tailored to the OS 118

Part 3 Installation Guide

6 Installation

To install HP 9000 software 123
To install Sun SPARCsystem software 125

Contents

10

Part 1

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a
few basic concepts.

11

Part 1

12

1

Preparing Your Application for
RTOS Measurements

13

Preparing Your Application for RTOS
Measurements

Requirements

Before preparing your application for RTOS measurements, you should have
already:

• Installed the emulator, emulation bus analyzer, and Graphical User
Interface as described in their User’s Guide manuals. The
emulator/analyzer interface software must be version C.05.20 or greater.
Note that if you have installed another Graphical User Interface after you
installed the HP B3081B Real-Time Operating System Measurement
Tool, you must re-run the HP B3081B "customize" script.

• Installed the HP B3081B Real-Time Operating System Measurement Tool
as outlined in the "Installation" chapter of this manual.

If you wish to make profile measurements on RTOS tasks and service calls,
you should have already:

• Installed the HP 64708A Software Performance Analyzer and its interface
software (HP B1487) as described in the Software Performance

Analyzer User’s Guide.

It’s helpful if you are already familiar with your emulator, the software
performance analyzer, and their interfaces before preparing your
multi-tasking application for real-time operating system measurements. It’s
best if you have already loaded and run the application under the emulator.

With the emulator/analyzer interface already running, you should see four
new entries under the File→Emul700 pulldown menu: VRTX32

Emulator/Analyzer ..., VRTXsa Emulator/Analyzer ..., VRTX32

Performance Analyzer ..., and VRTXsa Performance Analyzer If
you do not see these new entries, review the installation procedure to make
sure it was done correctly, and make sure the /system/B3081B/customize
script was run. If you still do not see these new entries, contact your
Hewlett-Packard representative.

14

VRTX Versions

This product is compatible with VRTX32 version 1.08 and VRTXsa version
4.0. Note that these version numbers are not the same as the version number
of Spectra or Velocity.

Task list control file

Both the emulator/analyzer interface and the Software Performance Analyzer
need to know the names of the tasks in your application. The
emulator/analyzer looks for the task names in the file "tables.s". The Software
Performance Analyzer looks in your "s_init" file.

A script, called rtos_edit_<os>, has been provided to help you create the
"tables.s" and "s_init" files. The first time you run the script, it will save the
names of the tasks in a task list control file. As you make changes to your
application, keep the task list control file up-to-date and re-run the
rtos_edit_<os> script so that the Real-Time Operating System
Measurement Tool can track all of the application’s tasks.

Preparing your application for RTOS measurements

To prepare your application for real-time operating system measurements
with the emulation bus analyzer and the software performance analyzer, take
the following steps:

1 Make a new source directory.
2 Retrieve the RTOS measurement source files.
3 Create the task table.
4 Create the Software Performance Analyzer initialization file.
5 Add the RTOS measurement files to your application.
6 Build the new application file.
7 Start the emulator interface.
8 Configure the emulator and load the application.
9 Test the RTOS measurement tool.
10 Test the Software Performance Analyzer.

The remainder of this chapter describes these steps in detail.

Chapter 1: Preparing Your Application for RTOS Measurements

15

Step 1: Make a new source directory

• Make a new directory, for example ".../hprtos_src", to hold the
instrumented code which needs to be linked to your existing
application.

Create the directory somewhere convenient for linking its files to your
application.

Chapter 1: Preparing Your Application for RTOS Measurements

16

Step 2: Retrieve the RTOS source files

If you have already installed the RTOS Measurement Tool, source files will be
found under the $HP64000/rtos/B3081A (VRTX) or $HP64000/rtos/B3081B
(VRTXsa) directory. If you haven’t installed the product, refer to the
"Installation" chapter.

During installation, you set the environment variable HP64000 to the
directory in which the HP 64000 software has been installed. This directory
is "/usr/hp64000" unless you installed the software in a directory other than
the root directory.

1 Copy the product files into the directory that was created in Step 1.

The files are found under$HP64000/rtos/B3081A (VRTX) or
$HP64000/rtos/B3081B (VRTXsa). You must copy the following files:

VRTXsa
track_os.s
track_il.c
HPIL.h

VRTX
track_os.s

Chapter 1: Preparing Your Application for RTOS Measurements

17

Step 3: Create the task table

To create the task table and the Software Performance Analyzer initialization
file, you will need a task list control file. The "rtos_edit_<os>" script will
create this file for you when you use the "-i" (initialize) option.

• If you have not prepared a task list control file, run the
$HP64000/bin/rtos_edit_vrtxsa or $HP64000/bin/rtos_edit_vrtx script.
Type:

rtos_edit_vrtx -i -tables <task_name_file>

or

rtos_edit_vrtxsa -i -tables <task_name_file>

where <task_name_file> is the name of the task list control file to be created.

The "rtos_edit_<os>" script asks you for the task IDs in your application.
Enter the ID numbers of the tasks you use in your application. These are the
IDs that are defined as parameters to the following OS service calls:

sc_tcreate() Create a task.
sc_tecreatec() Create a task (extended call).

• If you have prepared a task list control file, run the
$HP64000/bin/rtos_edit_vrtxsa or $HP64000/bin/rtos_edit_vrtx script.
Type:

rtos_edit_vrtx -tables <task_name_file>

or

rtos_edit_vrtxsa -tables <task_name_file>

Running the "rtos_edit_<os>" script creates your application specific
"tables.s" file. This assembly language file will contain information that
customizes the RTOS tool for your application. This file will be assembled
and linked in with your application code. Tables.s allows a "bucket" to be

Chapter 1: Preparing Your Application for RTOS Measurements

18

created in memory for each task entry you define. Information is written to
the buckets when task switches occur.

The "rtos_edit_<os>" script may be run any time you wish to add or delete
task ID information.

If a task list control file does not exist, running "rtos_edit_<os> -i" will create
a task list control file. If the file already exists, it will not be modified.

You can edit the task list control file to add or delete task ID information. You
can use any text editor, such as vi or emacs, to edit the file. If you make any
changes, be sure to run the "rtos_edit_<os>" script to create a new task table
and Software Performance Analyzer initialization file.

See Also Page 28 for instructions on how to add the "rtos_edit_<os>" script to your
makefile.

Chapter 1: Preparing Your Application for RTOS Measurements

19

Step 4: Create the Software Performance Analyzer
initialization file

1 Create the "s_init" file. Type:

rtos_edit_vrtx -s_init <task_name_file>

or

rtos_edit_vrtxsa -s_init <task_name_file>

where <task_name_file> is the name of the task list control file which you
created in Step 3.

The "s_init" file will be created in your home directory as "~/.rtos/vrtx/s_init"
or "~/.rtos/vrtxsa"~/.rtos/vrtx/s_init". This is a command file that customizes
the Software Performance Analyzer system to your application.

Note that each user has a separate "s_init" file. This allows individual users to
track different sets of functions and tasks, if they wish.

The contents of the any existing s_init file will be lost. If you have several
task list control files, you may want to make a copy of the s_init file before
using rtos_edit with a new task list control file. In this case, be careful that
the correct s_init file is installed before you start an emulator interface.

Chapter 1: Preparing Your Application for RTOS Measurements

20

Step 5: Add the RTOS measurement files to your
application

For VRTX32:

1 Add "track_os.s" and "tables.s" into your makefile and linker files.

"Track_os.s" contains assembly language code that allows a user to call the
VRTX OS service call routines from a high-level "C" language. This file also
contains special code that writes out RTOS information to the analyzer
anytime an OS service call is invoked.

This file must replace the VRTX-to-"C" language interface code previously
used in the application.

The data table that resides in "track_os.s" and spans from the symbol
"HP_RTOS_TRACK_START" through "HP_RTOS_TRACK_END" only needs
to be in an address range that is writeable. Because the data table is never
read from, the values written to it don’t have to be stored; therefore, no real
physical memory is needed.

The VRTX-to"C" language interface routines in the file "track_os.s" have been
validated with the HP and the Microtec Research "C" compilers. To use this
product with a different compiler, you should edit the "track_os.s" file to
match the parameter passing protocol of the desired compiler.

2 Change your VRTX configuration table so the task switching callout
field, CFTSWITCH, has a pointer to the "_SWITCH_CALLOUT"
routine and the task start callout field, CFSCREATE, has a pointer to
"_START_CALLOUT" routine. (Both routines are defined in
"track_os.s".) Refer to your VRTX manual for more information on
VRTX configuration tables.

Chapter 1: Preparing Your Application for RTOS Measurements

21

For VRTXsa:

1 Add "track_os.s", "track_il.c" and "tables.s" into your makefile and
linker files.

The data table that resides in "track_os.s" and spans from the symbol
"HP_RTOS_TRACK_START" through "HP_RTOS_TRACK_END" only needs
to be in an address range that is writeable. Because the data table is never
read from, the values written to it don’t have to be stored; therefore, no real
physical memory is needed.

2 Add the header file "HPIL.h" to every .c source file that contains
VRTXsa service calls.

This header file redirects the VRTXsa service routine to an HP routine that
will provide tracking measurements.

3 Change your VRTXsa configuration table so the task switching
callout field, CFTSWITCH, has a pointer to the
"_SWITCH_CALLOUT" routine and the task start callout field,
CFTSTART, has a pointer to "_START_CALLOUT" routine. (Both
routines are defined in "track_os.s".) Refer to your VRTXsa manual
for more information on VRTXsa configuration tables.

4 Define the version of VRTXsa you are using.

If you are using version 3.x, add the following directive to your source code:

#DEFINE HP_VRTXsa_V3

If you are using version 4.x, add the following directive:

#DEFINE HP_VRTXsa_V4

Chapter 1: Preparing Your Application for RTOS Measurements

22

Step 6: Build the new application file

• Rebuild your application with the new files. The service routines
defined in "track_os.s" (for VRTX) or "track_il.c" (for VRTXsa) have
been defined according to the VRTXsa standard so your application
should require no changes.

Chapter 1: Preparing Your Application for RTOS Measurements

23

Step 7: Start the emulator interface

• Start the RTOS emulation window using the "emulrtos_vrtx" or
"emulrtos_vrtxsa" script found in "$HP64000/bin":

emulrtos_[vrtx|vrtxsa] [-c <command_file>]
 [-xrm <resource_string>] [-quiet]
 [-p <PROCESSOR> [8|16|32]]
 <emulator_name> &

This is a script which sets up a few things before calling emul700 with your
given emulator name. The command and the options you choose should all be
entered on one line.

The "emulrtos_vrtx" or "emulrtos_vrtxsa" script does the following before
calling emul700 with your given emulator name:

1 Sets HP64000 if it is not already set.

2 Sets HP64RTOSIAL based on the determined bus width.

3 Defines the environment variable HP64KPATH so the command files
related to the action keys are found.

4 Defines the PATH variable so shell scripts needed by command files will
be found.

If you have used the emul700 command to start the emulator/analyzer
interface, you can choose the File→Emul700→VRTX/VRTXsa RTOS

Measurement Tool pulldown menu item to open the RTOS emulation
window. This will work only if the $HP64RTOSIAL environment variable has
been set. If you need to find out how to set the $HP64RTOSIAL variable,
examine the "emulrtos_<os>" script.

Chapter 1: Preparing Your Application for RTOS Measurements

24

Step 8: Configure the emulator and load the
application

• Now, load an emulator configuration and your application program
into the emulator.

A few notes on the configuration:

1 You MAY set the emulator to be restricted to real-time runs. The RTOS
measurements are done without breaking into the emulation monitor.

2 You may use either a foreground or background monitor.

You are now ready to test your application.

See Also The Emulator/Analyzer User’s Guide for information about loading
configuration files and application programs.

Chapter 1: Preparing Your Application for RTOS Measurements

25

Step 9: Test the RTOS measurement tool

1 Click the Track OS calls action key.

2 Start your application running from its start address (assuming the
start address has initialization code and starts your root task).

You should now see a trace display of your root task setting up application
tasks and performing any other initializations.

If you page down the display, you will see all of the root task’s OS activity and
possibly the start of your application’s tasks.

3 Click the Track OS calls action key again to see a "running
snapshot" of what your application is currently doing.

The action keys for RTOS measurements are described in the "Making RTOS
Measurements with the Emulator/Analyzer" chapter.

26

Step 10: Test the Software Performance Analyzer

If your HP 64700 emulation system includes a Software Performance
Analyzer, you can test it by performing the following steps.

1 Bring up SPA window by choosing the File→Emul700→SPA for

VRTX/VRTXsa pulldown menu item.

2 If you wish to make cross-trigger measurements between SPA and
the emulation system, make sure the emulation configuration for
"Should Analyzer drive or receive Trig2?" is set to "Receive".

To do this, choose Modify→Emulator Config.... Choose Interactive

Measurement Specification. For Analyzer on Trig2, select Receive.

3 In Step 4, when you ran the "rtos_edit_vrtx" or "rtos_edit_vrtxsa"
script, a command file "s_init" should also have been created. If not,
rerun the script.

4 Click the Initialize action key in SPA to define the events that
correspond to each task. This uses the command file "s_init" that you
just created.

5 Click the Time Tasks action key to see a dynamic histogram of the
currently running tasks.

If your application isn’t running, start it running from the emulation window
either before or after the action key is pressed.

If you have multiple projects on one machine, you’ll need to set up unique
SPA windows for each project. For more information, refer to the "Handling
Multiple Projects on One Machine" section of the "Making RTOS
Measurements with the SPA" chapter.

See Also Refer to your emulator/analyzer User’s Guide for information on modifying
the emulator configuration.

Chapter 1: Preparing Your Application for RTOS Measurements

27

Suggestions for Easier Software Development

• Add rtos_edit to your makefile.
• Use the sample configuration tables.

To add rtos_edit to your makefile

The "rtos_edit_<os>" script must be run every time you add or delete a task.
To simplify this process, you can add rtos_edit to your makefile.

• Add the following dependencies to your makefile:

~/.rtos/vrtx/s_init: <task_file_name>
 rtos_edit_vrtx -s_init <task_file_name>

tables.s: <task_file_name>
 rtos_edit_vrtx -tables <task_file_name>

Or, for VRTXsa,
~/.rtos/vrtxsa/s_init: <task_file_name>
 rtos_edit_vrtxsa -s_init <task_file_name>

tables.s: <task_file_name>
 rtos_edit_vrtxsa -tables <task_file_name>

Chapter 1: Preparing Your Application for RTOS Measurements

28

To write a VRTX32 configuration table

• To simplify writing your configuration table, refer to the following
example.

#include "demo.h"

#define m133 1

#define USER_MON_TRACE_ENTRY 0x40800

void root();
void os_error_func();
void SWITCH_CALLOUT();
void START_CALLOUT();

/*--*/
#define VRTX_CODE ((INT32) 0x0E000)

/*--*/
/* Important vectors
/*--*/
#define V_BUSERR 2 /* Bus error */
#define V_ADDRERR 3 /* Address error */
#define V_TRACE 9 /* Trace */
#define V_TRAP11 43 /* Trap 11 - VRTX call */
#define VECTOR64 64 /* Vector 64 - address 0x100 */

/*--*/
/* Configuration table
/*--*/
struct vrtx_conf
 {
 INT32 workspace_addr; /* VRTX Workspace start address */
 INT32 workspace_size; /* VRTX Workspace length */
 INT16 sys_stack_size; /* VRTX system stack size in bytes */
 INT16 int_stack_size; /* Interrupt stack size in bytes */
 INT16 cntrl_blk_count; /* Max # of event flag groups & semaphores */
 INT16 reserve1; /* Reserve 1 */
 INT32 reserve2; /* Reserve 2 */
 INT16 comp_disable; /* Disable interrupts value (0 = default = 7) */
 INT16 user_stack_size; /* User stack size */
 INT32 reserve3; /* Reserve 3 */
 INT16 user_task_count; /* Max number of tasks */
 INT16 reserve4; /* Reserve 4 */
 INT32 txrdy_driver; /* TXRDY driver address */
 INT32 tcreate_callout; /* Callout at task creation */
 INT32 tdelete_callout; /* Callout at task deletion */
 INT32 tswitch_callout; /* Callout at task switch */
 INT32 comp_vect_tbl; /* Component vector table */
 } nc;

/*--*/
/* Value template for configuration table
/*--*/

Chapter 1: Preparing Your Application for RTOS Measurements

29

static struct vrtx_conf vrtx_conf_values =
 {0x1F000, /* VRTX Workspace start address */
 0x20000, /* VRTX Workspace length */
 0x01000, /* VRTX system stack size in bytes */
 0x00800, /* Interrupt stack size in bytes */
 5, /* Max # of event flag groups & semaphores */
 0, /* Reserve 1 */
 0, /* Reserve 2 */
 0, /* Disable interrupts value (0 = default = 7) */
 0x1000, /* User stack size */
 0, /* Reserve 3 */
 11, /* Max number of tasks */
 0, /* Reserve 4 */
 (INT32)0, /* TXRDY driver address */
 (INT32) START_CALLOUT, /* Callout at task creation */
 0, /* Callout at task deletion */
 (INT32) SWITCH_CALLOUT, /* Callout at task switch */
 0 /* Component vector table */
 };

/**/
/* */
/* Perform initial reset functions */
/* */
/**/
void init_config()
{
 INT32 *v_page; /* Pointer to vector page */

#ifdef M68340
 v_page = (INT32 *)0x38000; /* Base vector page at
0x38000 */
#else
 v_page = (INT32 *)0; /* Base vector page at
zero */
#endif

 /*--*/
 /* Set up the vector page
 /*--*/
 v_page[V_TRACE] = USER_MON_TRACE_ENTRY;
 v_page[V_TRAP11] = VRTX_CODE;
 v_page[VECTOR64] = (INT32) &vrtx_conf_values;
}

Chapter 1: Preparing Your Application for RTOS Measurements

30

To write a VRTXsa configuration table

• To simplify writing your configuration table, refer to the following
example.

/* #define M68K 1
*/

#include "demo.h"
#include "target.h"
#include "vrtxvisi.h"

#define m133 1

#define USER_MON_TRACE_ENTRY 0x40800

extern void SWITCH_CALLOUT();
extern void START_CALLOUT();
extern void init_application();

extern CFTBL v32_configuration_table;

/*--*/
/* Important vectors
/*--*/
#define V_BUSERR 2 /* Bus error */
#define V_ADDRERR 3 /* Address error */
#define V_TRACE 9 /* Trace */
#define V_TRAP11 43 /* Trap 11 - VRTX call */
#define VECTOR64 64 /* Vector 64 - address 0x100 */

/*--*/
/* Configuration table
/*--*/
/* defined in file vrtxvisi.h */

/*--*/
/* Value template for configuration table
/*--*/
struct CFTBL vrtx_conf_values =
 {(unsigned char *) 0x15400, /* VRTX Workspace start address */
 0x09FFF, /* VRTX Workspace length */
 0x00700, /* VRTX system stack size in bytes */

#ifdef M68020
 0x00100, /* Interrupt stack size in bytes */
#endif
#ifdef M68302
 0, /* Interrupt stack size in bytes */
#endif

 5, /* Control block count */
 3, /* number of memory partitions */
 256, /* idle task stack size */
 10, /* number of

Chapter 1: Preparing Your Application for RTOS Measurements

31

queues */
 0, /* Disable interrupts value (0 = default = 7) */
 0x0070, /* User stack size */
 11, /* Max allowed task ID */

#ifdef M68020
 target_mc68020, /* target type from file target.h */
#endif
#ifdef M68302
 target_mc68302,
#endif

 11, /* Max number of tasks */
 0, /*
configuration options */
 0, /* TXRDY driver address */
 &START_CALLOUT, /* Callout at task creation */
 0, /* Callout at task deletion */
 &SWITCH_CALLOUT, /* Callout at task switch */
 (unsigned char *) 0, /* Component vector table */
 0, /* Reserved */
 0, /* Reserved */
 0, /* Reserved */
 0 /* Reserved */
 };

/**/
/* */
/* Perform initial reset functions */
/* */
/**/
void init_config()
{
 int err;
 INT32 *v_page; /* Pointer to vector page */

#ifdef M68340
 v_page = (INT32 *)0x38000; /* Base vector page at
0x38000 */
#endif
#ifdef M68020
 v_page = (INT32 *)0; /* Base vector page at
zero */
#endif
#ifdef M68302
 v_page = (INT32 *)0; /* Base vector page at
zero */
#endif

 /*--*/
 /* Set up the vector page
 /*--*/
 v_page[VECTOR64] = (INT32) &vrtx_conf_values;

 v32_configuration_table = vrtx_conf_values;
 vrtx_init(&err);
 init_application();
}

Chapter 1: Preparing Your Application for RTOS Measurements

32

2

Making RTOS Measurements with
the Emulator/Analyzer

33

Making RTOS Measurements with the
Emulator/Analyzer

Action keys for
RTOS
measurements.

Service call entry.

Service call exit.

Task switch.

Clock tick.

Parameters
(decoded if
possible).

Time stamp.

RTOS measurements are easy to set up and use. To set up a measurement
you simply point and click on the appropriate action key (which runs a
command file), and the setup is done automatically. If parameters are

34

required, you are prompted for them. In the graphical interface, these
prompts appear as dialog boxes in which you can either type or cut-and-paste
the required parameters.

You can modify the provided command files and set up action keys for your
own RTOS measurements (refer to the "Creating Your Own RTOS
Measurements" chapter for more information).

Interpreting the measurement output is also very easy. All OS service calls
are displayed just as they appear in the OS vendor’s manual. Input
parameters and return values are decoded into their English language
equivalents wherever possible.

Real-time OS measurements in the emulator/analyzer interface are made
using the HP 64700 series emulation bus analyzers. The analyzer traces
real-time OS activity such as service calls, task switches, and dynamic
memory usage.

Each state stored in the trace has a time stamp that shows relative or
absolute time. This is useful for verifying the system clock tick interval,
measuring non-running time of tasks, and understanding the timing needs of
various communications mechanisms such as sending a message or
responding to a flag.

The RTOS Measurement Tool comes with a default set of measurements that
appear as action keys and are grouped into the following sections:

• Tracking the flow of OS activity.

• Tracking particular OS service calls.

• Tracking particular tasks.

• Tracking accesses to functions or variables.

• Tracking dynamic memory usage.

• Displaying traces.

Additional measurements exist as command files and can be put on action
keys or run directly from the command line. A complete list of these
measurements can be found in the files $HP64000/rtos/B3081B/CMDLIST16
or CMDLIST32 (depending on whether a 16- or 32-bit processor is being
used).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer

35

Tracking the Flow of OS Activity

The HP 64700 series emulation bus analyzer can measure the real-time task
flow that is occurring in your system. As your application calls into the
real-time OS kernel through OS service calls, the emulation bus analyzer
captures the activity including the value of input and output parameters and
the return value. If the OS switches context into another task, the analyzer
can also capture this information. One simple measurement monitors the
service call return values while tracking OS activity and stops if a failure is
ever detected; this helps designers guard against unchecked return values.

This section shows you how to:

• Track all service calls (including device calls).

• Track all service calls plus the stack activity.

• Track all OS calls before an error occurs.

• Track everything.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

36

To track all service calls (including device calls)

• Click on the Track OS calls action key (or run the e_trkcalls

command file by entering it on the command line).

This command takes a trace of all OS service calls and task switches.

Service call entry.

Service call exit.

Parameters
(decoded if
possible).

Task switch. Return value. Time stamp.

Note that there are entry and exit arrows on the left of the screen to show
when a service call is entered and, on a separate line, to show when a service
call is exited. This is important since an OS service call may switch to
another task while in the OS and not return to the calling service call for a
long time, if ever.

As much of the trace information as possible is decoded. The OS service calls
are decoded into the same mnemonics that appear in the OS manual. The
parameters and return values that are associated with service calls are
displayed. The parameter variable names also appear as they do in the OS
manual decoded into their English mnemonics. Some of the parameter
values and all return values are also decoded whenever there are a finite
number of responses as listed in the OS manual. If the return value at a
service call is zero (0), meaning the call was successful, no return value is
printed. Any non-zero return values are printed with their English decoding.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

37

To track all service calls plus the stack activity

• Click on the Track OS +stack action key (or run the e_trk_stack

command file by entering it on the command line).

This measurement is useful not only if you want to see the stack usage as you
enter and exit tasks but also if you want to see what service calls may have
changed the stack usage. It will give you all service call activity plus show
you when the task switches occur and how much stack is used on entering
and exiting each task.

For more information on stack activity measurements, see the "Tracking
Dynamic Memory Usage" section that follows.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

38

To track all OS calls before an error occurs

• Click on the Trace before Err action key (or run the e_before_err

command file by entering it on the command line).

One common problem for software developers is the habit of not checking
return values from system service calls that "should" never fail.
Unfortunately, when one does fail it then can become very difficult to locate.

This command lets you use the analyzer to continuously monitor the system
and check if any service call ever fails, even if the developer is not checking
that return value.

When the trace completes, you can see the activity that occurred before the
failed service call, and the error return value itself is decoded into an easily
readable error message as described in the OS kernel manual.

Note: The trace may be modified to break emulator execution on any error
occurrence by adding "break_on_trigger" to the end of the trace specification
either on the command line or in the command file.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

39

To track everything

• Click on the Track Everything action key (or run the e_trkall

command file by entering it on the command line).

This action key is used so that service calls, task switches, clock ticks, stack
activity, and user-defined events are all tracked and displayed in the trace.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

40

Tracking Particular OS Service Calls

There are also RTOS measurements provided to track particular types of
service call activity or OS resources such as flags, messages, or semaphores.
You can also track individual service calls.

This section shows you how to:

• Track all queue calls.

• Track all queue calls (include task switches).

• Track all flag calls.

• Track all flag calls (include task switches).

• Track all semaphore calls.

• Track all semaphore calls (include task switches).

• Track a single service call.

• Track two service calls.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

41

To track all queue calls

• Click on the Only Queues action key (or run the e_onlyqs

command file by entering it on the command line).

This action key is used if you are interested in all queue activity. No other
types of calls are tracked (neither are task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

42

To track all queue calls (include task switches)

• Click on the Tasks & Queues action key (or run the e_trackqs

command file by entering it on the command line).

This action key is used if you are only interested in queue activity but want to
know the task context also.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

43

To track all flag calls

• Click on the Only Flags action key (or run the e_onlyflgs command
file by entering it on the command line).

This action key is used if you are interested in all flag activity. No other types
of calls are tracked (neither are task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

44

To track all flag calls (include task switches)

• Click on the Tasks & Flags action key (or run the e_trackflgs

command file by entering it on the command line).

The command above traces only flags and task switches so you can see what
tasks use flags and how they effect system flow.

The display shows that task 7 is receiving flag signals from the other tasks.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

45

To track all semaphore calls

• Click on the Only Semaphores (VRTX) action key (or run the
e_onlysms (VRTX) command file by entering it on the command
line).

This action key is used if you are interested in all semaphore activity. No
other types of calls are tracked (neither are task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

46

To track all semaphore calls (include task switches)

• Click on the Tasks & Semaphrs action key (or run the e_tracksms

command file by entering it on the command line).

This action key is used if you are only concerned about semaphore calls and
the task context.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

47

To track all mutex calls (include task switches)

• Click on the Tasks & Mutexs (VRTXsa) action key (or run the
e_trackmuts (VRTXsa) command file by entering it on the command
line).

This action key is used if you are only concerned about mutex calls and the
task context.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

48

To track a single service call

• Click on the Only Call X action key (or run the e_onecall command
file by entering it on the command line).

You are prompted for the name of the service call you wish to track. Enter
the service call name in all lower-case characters.

This action key is used if you have a specific service call you want to track
and have no need of the context in which the calls are made.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

49

To track two service calls

• Click on the Only Calls X & Y action key (or run the e_twocalls

command file by entering it on the command line).

You are prompted for the names of the two service calls you wish to track.
Enter the service call names in all lower-case characters.

You may track just the relationship between two service calls with this action
key. For example, the above trace shows who is sending messages with
"sc_qpost" and who is receiving them with "sc_qaccept".

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

50

Tracking Particular Tasks

Using the powerful sequence triggering capability of the HP 64700 series
emulation bus analyzers, several RTOS measurements allow you to capture a
very specific sequence of events or very rare events. For example, one
point-and-click measurement watches for a user-defined message being sent
to a specific mailbox; this could help detect a very rare message occurrence.
Another point-and-click sequence measurement triggers only when 4 (or
less) specific tasks are switched into and out of in any order.

This section shows you how to:

• Track a single task and all OS activity within it.

• Track four tasks and all OS activity within them.

• Track about a specific task switch.

• Track about a specific task sending a message to a specific queue.

• Trace before an event is received by a specific task.

• Track activity after a function is reached.

• Track activity about the access of a variable by a specific task.

• To display task and queue names.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

51

To track a single task and all OS activity within it

• Click on the Only Task X action key (or run the e_trk1task

command file by entering it on the command line).

You are prompted for the ID of the task that you want to trace. You can type
in the ID of the task you are interested in, or in the graphical interface, by
using the cut buffer, you can cut and paste a task ID from the screen into the
dialog box.

Notice that the time stamp on the right hand side of the screen gives a useful
indication of the time between task exit and the next entry into this same
task. In this example, the elapsed time was 191 milliseconds.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

52

To track four tasks and all OS activity within them

• Click on the Only Tsk W,X,Y,Z action key (or run the e_trk4task

command file by entering it on the command line).

You can use this command to track OS activity within up to four tasks. One,
two, or three tasks can also be tracked by entering duplicate IDs. For
example, if you wanted to track only tasks 2 and 3, enter 2 in the first dialog
box and 3 in the remaining dialog boxes.

You can also edit the command file to create two new command files which
would be used specifically for tracking two or three tasks.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

53

To track about a specific task switch

• Click on the Task switch A->B action key (or run the e_AthenB

command file by entering it on the command line).

This measurement will trace when the kernel switches from one desired task
immediately into another desired task. The dialog box first prompts for the
task that is being switched out of then prompts again for the task that is
being switched into.

When the trace completes, you can see the activity before and after the task
switch occurred. This type of measurement may lead you to a problem
surrounding a task switch.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

54

To track about a specific task sending a message to a
specific queue

• Click on the Tsk A msg->Que X action key (or run the
e_tsk2queue command file by entering it on the command line).

You are prompted first for the task ID and then for the queue ID to which the
task sends a message.

This measurement is useful if you have a task that sends a message to a
specific queue intermittently and you either want to verify that the message
gets sent or you want to see the service call context under which the
message is sent.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

55

To trace before a flag is received by a specific task

• Click on the Tsk A <- Flag X action key (or run the e_tskrcv_flg

command file by entering it on the command line).

You are prompted first for the task ID and then for the numeric value
designating the flag(s). The flag number may be entered in decimal,
hexadecimal, or binary, the latter two being followed by "h" and "b",
respectively. These numeric entries may also include don’t care values such
as 10XX0X11b.

This measurement allows you to view the context under which a specific flag
is received by a specific task. In the above example, we have captured a
trace when task 7 received flag 0001.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

56

To track activity after a function is reached

• Click on the Task A: FuncX action key (or run the e_afterfunc

command file by entering it on the command line).

The normal "C" source code tracing is still available whenever you need to see
your actual application code. In fact you can use an RTOS trigger point to
then capture source code activity.

This command will trace into a source code function but only when it has
been called from a certain task. You are first prompted for the calling task
and then the desired function.

You can easily return to the RTOS trace display by clicking on the Disp

RTOS Trace action key (or by entering the display trace real_time_os

command on the command line) and making another RTOS measurement.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

57

To track activity about the access of a variable by a
specific task

• Click on the Task A: VarX action key (or run the e_aftervar

command file by entering it on the command line).

You are prompted first for the task ID and then for the variable name which
the task accesses.

This measurement allows you to see when a specific variable is accessed by a
specific task and the source code context under which the variable is
accessed.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

58

To display task and queue names

1 Place task and queue names in the absolute file.

If you are using the HP cross compiler, do this by defining symbols using an
"ASM" pragma in the C source file.

For example,
/* Place the task and queue names in the symbol table */
#pragma ASM
XDEF ROOT_TASK
XDEF QUEUE1
ROOT_TASK EQU $A1
QUEUE1 EQU $B0
#pragma END_ASM

2 Define the USE_USER_MAPPING symbol.

This symbol can be created by including the following line in the linker
command file:
public USE_USER_MAPPING=$03FF

Code containing OS calls can be difficult to read because tasks, queues, and
other objects are identified by the numeric value. This difficulty is overcome
by using C define statements to attach names (symbols) to tasks and queues.

Symbolic task and queue names can be displayed for VRTX32 only.

See also "Symbolic Task and Queue Names in RTOS Traces" in the chapter, "How the
RTOS Measurement Tool Works."

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

59

Tracking Accesses to Functions or Variables

Another useful RTOS measurement identifies which tasks are accessing a
shared global variable or calling a shared function.

This section shows you how to:

• Track which tasks access a specific function or variable.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

60

To track which tasks access a specific function or
variable

• Click on the Task?: Func/VarX action key (or run the e_qtskfunc

command file by entering it on the command line).

You are prompted for a function or variable name.

All tasks that call a specific function or access a specific variable can be
tracked with this measurement.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

61

Tracking Dynamic Memory Usage

Tracking dynamic memory usage has always been difficult in an embedded
design. With these new real-time operating system measurement tools,
however, even these debugging headaches become easy to solve.

The basic measurement set displays the size and location of a memory
segment whenever the system allocates a new block of memory. The system
also reports whenever a previously allocated block of memory is freed and
gives an error if a corrupt pointer is ever detected. This allows you to detect
memory allocation problems.

Stack allocation information (that is, stack pointer) is also provided. With
this information, you can use the analyzer to monitor for stack overflow
conditions.

This section shows you how to:

• Track only stack data.

• Track all memory calls (include task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

62

To track only stack data

• Click on the Stack Usage action key (or run the e_stack command
file by entering it on the command line).

You can enter this command before you run your application from its startup
address to capture the initialization of the application which shows you
where each local stack is allocated.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

63

If you perform this same measurement while the application is running, you
see the amount of stack used every time a task switch occurs. This gives you
a quick indication of potential stack usage problems.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

64

To track all memory calls (include task switches)

• Click on the Memory Usage action key (or run the e_memory

command file by entering it on the command line).

This command simply tracks all service calls for memory allocation, giving
you an idea of general memory usage.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

65

Displaying Traces

The normal "C" source code tracing is still available whenever you need to see
your actual application code. You can switch between the normal "C" source
code display and the RTOS measurements display with a simple click of an
action key or by entering a display trace command.

This section shows you how to:

• Switch to a normal trace display.

• Switch to the RTOS trace display.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

66

To switch to a normal trace display

• Click on the Disp NonRTOS Trc action key (or run the
e_normtrace command file by entering it on the command line, or
enter the display trace mnemonic command on the command line).

Writes to the data
table.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

67

To switch to the RTOS trace display

• Click on the Disp RTOS Trace action key (or enter the display

trace real_time_os command on the command line).

Service call entry.

Service call exit.

Task switch.

Parameters
(decoded if
possible). Time stamp.

Note that there are entry and exit arrows on the left of the screen to show
when a service call is entered and, on a separate line, to show when a service
call is exited. This is important since an OS service call may switch to
another task while in the OS and NOT return to the calling service call for a
long time, if ever.

As much of the trace information as possible is decoded. The OS service calls
are decoded into the same mnemonics that appear in the OS manual. The
parameters and return values that are associated with service calls are
displayed. The parameter variable names also appear as they do in the OS
manual decoded into their English mnemonics. Some of the parameter
values and all return values are also decoded whenever there are a finite
number of responses as listed in the OS manual.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

68

You may have noticed that the line numbers in the first column of the display
are not sequential. This is because several trace states may be disassembled
for each line in the RTOS trace display.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

69

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

70

3

Making RTOS Measurements with
the SPA

71

Making RTOS Measurements with the SPA

Action keys for
RTOS
measurements.

The HP 64708A Software Performance Analyzer (SPA), a plug-in card for the
HP 64700 emulation system, provides valuable OS-level profiling
measurements. This makes finding bottlenecks simple. In addition, the
number of times each task is called can be displayed, providing valuable
information on system "thrashing". Also, the number of times each OS
service call is invoked from your application can be tracked, helping to isolate
bottlenecks from over-utilized system features.

The Software Performance Analyzer can also detect when a task has
exceeded a maximum preset time duration. When combined with the cross
triggering capabilities of the emulation system, you are able to capture a
historical trace showing the sequence of events leading up to the overflow

72

and/or the system can be halted to allow browsing through the current state
of the system.

If you have multiple projects on one machine, you’ll need to set up unique
SPA windows for each project.

These tasks are grouped into the following sections:

• Making time profile measurements.

• Coordinating measurements with the emulator.

• Handling multiple projects on one machine.

Chapter 3: Making RTOS Measurements with the SPA

73

Making Time Profile Measurements

By measuring the time between writes made to task entry and exit locations,
the Software Performance Analyzer (SPA) can provide time interval
measurements for the tasks in your application as well as for the OS.

The time duration of each task can be displayed in an easy to read histogram.
Cumulative, maximum, and minimum time spent in each task can be
displayed in a table.

This section shows you how to:

• Define SPA events for tasks, service calls, and user events.

• Display a time histogram of task events.

• Show a table of SPA events.

• Display a count histogram of task events.

• Measure only data from a specific task.

• Show a table of service call invocations.

• Show a normal function duration histogram.

• Show a histogram of task and user events.

To define SPA events for tasks, service calls, and user
events

• Click on the Initialize action key (or run the s_init command file by
entering it on the command line).

These instructions assume you have generated an s_init command file by
running the tool "rtos_edit_vrtx" or "rtos_edit_vrtxsa".

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

74

To display a time histogram of task events

• Click on the Time Tasks action key (or run the s_timetasks

command file by entering it on the command line).

You see that the task IDs are listed in SPA, and a histogram showing the
amount of time each task is taking is being displayed. This is very useful for
detecting system bottlenecks.

Note that one line of the histogram is labeled "OS_Time". This indicates how
much time the application is spending in the OS kernel itself. This OS
overhead measurement has some limitations however. Refer to the "OS
Overhead Tracking" section in the "How the RTOS Measurement Tool Works"
chapter for more information.

Another line is labeled "Measure_Ovrhd". This indicates approximately how
much intrusion is caused by the RTOS measurement tool routines. The
amount of time spent in measurement overhead caused by the RTOS tool is
typically less than 1%.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

75

To show a table of SPA events

• Choose the Display→Table pulldown menu item (or enter the
display table command on the command line).

A raw numbers view of the accumulated data is displayed.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

76

To display a count histogram of task events

• Click on the Count Tasks action key (or run the s_counttasks

command file by entering it on the command line).

The histogram shows the the number of times each task is entered (and
exited). This can be very useful for detecting system "thrashing" between
tasks.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

77

To measure only data from a specific task

• Click on the TaskX: Servcalls action key (or run the s_taskwindow

command file by entering it on the command line).

This displays a histogram of the number of times each service call is invoked
from a single task.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

78

To show a table of service call invocations

• Click on the Count Srvc Calls action key (or run the s_countsrvcls

command file by entering it on the command line).

This displays a histogram of the number of times each service call is invoked
from all tasks.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

79

To show a normal function duration histogram

• Click on the FunctionDuration action key (or run the s_funcdur

command file by entering it on the command line).

This performs a normal function duration profile measurement.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

80

To show a histogram of task and user events

• Click on the Tsk & User Evnts action key (or run the s_tasknuser

command file by entering it on the command line).

This measurement includes any user-defined events you may have set up.
The example above shows that user event "UserIntr_1" uses 3.50% of the
system time.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

81

Coordinating Measurements with the Emulator

During a Software Performance Analyzer duration measurement, the SPA can
generate a trig2 signal if the event being measured executes for too long a
period of time. This signal can be used by the emulator to stop the
application program, or it can be used by the emulation analyzer to trace
activity up to that point.

This combination of events allows you to stop the application program when
a task exceeds a certain amount of continuous execution time and/or track
activity that leads up to the break.

This section shows you how to:

• Break on task time overflow.

• Disable the SPA trig2.

To break on task time overflow

You can also set up a coordinated measurement between the software
performance analyzer and the emulation bus analyzer. For example, you
might like to capture a trace and then break into the emulation monitor if a
certain task ever takes longer than a specified maximum time. Tracing
before the time overflow will show a history of what led up to the time
overrun.

1 In the emulation window, click on the Before SPA trig2 action key.

Or (in the emulation window), run the e_spatrig command file by entering it
on the command line.

You have now set up the analyzer to capture a trace when a signal is received
from SPA. Note that the trace has started but has not completed because it
is waiting for the trig2 signal as its trigger point.

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

82

2 In the SPA window, click on the Trig2 on Overflw action key.

You can now set up SPA to detect the time overflow and then send the
appropriate signal to the emulation window. The dialog box again prompts
you for specific information. The first box prompts you for a task ID.

3 In the dialog box, type the ID number of the task; then, click the "OK"
pushbutton.

Another dialog box now appears asking you for the maximum time limit to be
watching for. Type in the number of milliseconds that is the maximum time
you want the given task to ever continuously execute.

4 In the dialog box, type in the limit; then, click the "OK" pushbutton.

After a while you see that the emulator is running in monitor due to a time
overflow break from SPA. The status line of the emulation window shows a
"trig2 break" which came from SPA. The trace has completed and shows you
a historical trace of what led up to the time overflow. Notice that the
application has just entered the task which you specified.

To disable the SPA trig2

• In the SPA window, click on the Disable Trig2 action key.

This action key must be pressed whenever cross-trigger measurements to the
emulator are no longer desired.

Note Until the trig2 signal from SPA is disabled, the signal will be continually sent
to the emulation system. This may result in unexpected behavior such as
continually breaking into the monitor or traces being started but not
completing.

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

83

Handling Multiple Projects on One Machine

In order to run multiple sessions—one for each unique application—of the
RTOS product on one machine, a couple of changes need to be made. These
changes are required because a command file for the Software Performance
Analyzer contains application specific commands that set up intervals for
each task.

To set up unique SPA windows for multiple projects

• If more than one project is using the RTOS Measurement Tool, you
need to make sure the Initialize action key calls a command file
specific to your currently loaded application.

1 Run the $HP64000/bin/rtos_edit_vrtx or $HP64000/bin/rtos_edit_vrtxsa
script.

2 Rename the s_init file which was generated by the script.

Repeat steps 1 and 2 above for all of your projects.

3 Before you start the emulator window for a given project, set the
perf.Vrtx*actionKeysSub.keyDefs X resource so that the Initialize

action key calls the appropriate s_init file.

Here are two ways to set an X resource:

• Edit the $HOME/.HP64_schemes/Softkey.Label file, as described on page
98.

• Place the X resource definition in a file, and run "xrdb -merge
<filename>".

Note that all of the action keys are set in a single X resource, so you need to
set all of the Software Performance Analyzer action keys along with the
changed Initialize action key.

If you are using several different real-time operating systems, and a project is
the only one which uses a particular operating system, you do not need to
make any changes for that project.

Chapter 3: Making RTOS Measurements with the SPA
Handling Multiple Projects on One Machine

84

4

Customizing the RTOS Measurement
Tool

85

Customizing the RTOS Measurement Tool

You can customize the RTOS Measurement Tool to create your own RTOS
measurements. You can set up your own trace commands that capture
particular writes to the data table, put these commands in command files,
and set up action keys that run these command files.

Though the level of intrusion introduced by the "instrumented" service call
library is very limited, you can customize the RTOS Measurement Tool to
further limit the intrusion if it becomes a problem.

These tasks are grouped into the following sections:

• Creating your own RTOS measurements.

• Limiting the intrusion caused by instrumented service calls.

86

Creating Your Own RTOS Measurements

Real-time OS measurements in the emulator/analyzer interface are made by
using the emulation bus analyzer to capture writes made to a data table.
Instructions in the "track_il.c" and "track_os.s" files write values to the data
table when:

Tasks start.
Tasks switch.
Service calls are entered and exited.

Any states captured by the emulation bus analyzer outside the range of the
data table are interpreted as non-RTOS states.

When you display the RTOS trace, the inverse assembler looks at the
information written to the data table, and, since it knows how these locations
are defined, it interprets the information and presents it in an easy to read
form on the trace display.

In order to understand how to make your own RTOS measurements, you
must understand what writes to each of the locations in the data table mean.
Once you understand this, you will be able to enter your own trace
commands to capture the RTOS information you’re looking for.

If your measurements will be made often, you can create your own command
files and add your own action keys to the emulator/analyzer interface.

Data Table Description

The data table reserves space for information saved when tasks start, when
tasks switch, and when service call functions are entered or exited.

There are also locations for device service call, stack, user-defined, clock tick,
and error checking information.

The part of the "track_os.s" source file that reserves space for the data table
is shown below.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

87

**
* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of ’traced’ data is dependent -=- *
* -=- on the relative offsets of symbols -=- *
**
 ; The name of this symbol MUST NOT CHANGE!!!
HP_RTOS_TRACK_START ; It is required that the interface find this
 ; symbol and pass it’s value to the Interpreter
 ; so the beginning of this table is known.
_HPOS_TASK_EXIT DS.L 1
_HPOS_TASK_ENTRY DS.L 1

- Task Management -
_HPOS_sc_tcreate_Entry DS.L 3
_HPOS_sc_tcreate_Exit DS.L 2
_HPOS_sc_tecreate_Entry DS.L 8 ;VRTXsa
_HPOS_sc_tecreate_Exit DS.L 2 ;VRTXsa
_HPOS_sc_tdelete_Entry DS.L 2
_HPOS_sc_tdelete_Exit DS.L 1
_HPOS_sc_tsuspend_Entry DS.L 2
_HPOS_sc_tsuspend_Exit DS.L 1
_HPOS_sc_tresume_Entry DS.L 2
_HPOS_sc_tresume_Exit DS.L 1
_HPOS_sc_tpriority_Entry DS.L 2
_HPOS_sc_tpriority_Exit DS.L 1
_HPOS_sc_tinquiry_Entry DS.L 1
_HPOS_sc_tinquiry_Exit DS.L 5
_HPOS_sc_lock_Entry DS.L 1
_HPOS_sc_lock_Exit DS.L 1
_HPOS_sc_unlock_Entry DS.L 1
_HPOS_sc_unlock_Exit DS.L 1
_HPOS_sc_delay_Entry DS.L 1
_HPOS_sc_delay_Exit DS.L 1

- Memory Allocation -
_HPOS_sc_gblock_Entry DS.L 1
_HPOS_sc_gblock_Exit DS.L 2
_HPOS_sc_rblock_Entry DS.L 2
_HPOS_sc_rblock_Exit DS.L 1
_HPOS_sc_pcreate_Entry DS.L 4
_HPOS_sc_pcreate_Exit DS.L 2
_HPOS_sc_pdelete_Entry DS.L 2 ;VRTXsa
_HPOS_sc_pdelete_Exit DS.L 1 ;VRTXsa
_HPOS_sc_pextend_Entry DS.L 3
_HPOS_sc_pextend_Exit DS.L 1
_HPOS_sc_pinquiry_Entry DS.L 1 ;VRTXsa
_HPOS_sc_pinquiry_Exit DS.L 4 ;VRTXsa
_HPOS_sc_halloc_Entry DS.L 2 ;VRTXsa
_HPOS_sc_halloc_Exit DS.L 2 ;VRTXsa
_HPOS_sc_hcreate_Entry DS.L 3 ;VRTXsa
_HPOS_sc_hcreate_Exit DS.L 2 ;VRTXsa
_HPOS_sc_hdelete_Entry DS.L 2 ;VRTXsa
_HPOS_sc_hdelete_Exit DS.L 1 ;VRTXsa
_HPOS_sc_hfree_Entry DS.L 2 ;VRTXsa
_HPOS_sc_hfree_Exit DS.L 1 ;VRTXsa
_HPOS_sc_hinquiry_Entry DS.L 1 ;VRTXsa
_HPOS_sc_hinquiry_Exit DS.L 4 ;VRTXsa

- Communication & Synchronization -
_HPOS_sc_post_Entry DS.L 2
_HPOS_sc_post_Exit DS.L 1
_HPOS_sc_pend_Entry DS.L 2

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

88

_HPOS_sc_pend_Exit DS.L 2
_HPOS_sc_accept_Entry DS.L 1
_HPOS_sc_accept_Exit DS.L 2
_HPOS_sc_maccept_Entry DS.L 1 ;VRTXsa
_HPOS_sc_maccept_Exit DS.L 1 ;VRTXsa
_HPOS_sc_mcreate_Entry DS.L 1 ;VRTXsa
_HPOS_sc_mcreate_Exit DS.L 2 ;VRTXsa
_HPOS_sc_mdelete_Entry DS.L 2 ;VRTXsa
_HPOS_sc_mdelete_Exit DS.L 1 ;VRTXsa
_HPOS_sc_minquiry_Entry DS.L 1 ;VRTXsa
_HPOS_sc_minquiry_Exit DS.L 2 ;VRTXsa
_HPOS_sc_mpend_Entry DS.L 2 ;VRTXsa
_HPOS_sc_mpend_Exit DS.L 1 ;VRTXsa
_HPOS_sc_mpost_Entry DS.L 1 ;VRTXsa
_HPOS_sc_mpost_Exit DS.L 1 ;VRTXsa

_HPOS_sc_qpost_Entry DS.L 2
_HPOS_sc_qpost_Exit DS.L 1
_HPOS_sc_qjam_Entry DS.L 2
_HPOS_sc_qjam_Exit DS.L 1
_HPOS_sc_qpend_Entry DS.L 2
_HPOS_sc_qpend_Exit DS.L 2
_HPOS_sc_qaccept_Entry DS.L 1
_HPOS_sc_qaccept_Exit DS.L 2
_HPOS_sc_qbrdcst_Entry DS.L 2 ;VRTXsa
_HPOS_sc_qbrdcst_Exit DS.L 1 ;VRTXsa
_HPOS_sc_qcreate_Entry DS.L 2
_HPOS_sc_qcreate_Exit DS.L 2
_HPOS_sc_qdelete_Entry DS.L 2 ;VRTXsa
_HPOS_sc_qdelete_Exit DS.L 1 ;VRTXsa
_HPOS_sc_qecreate_Entry DS.L 3
_HPOS_sc_qecreate_Exit DS.L 2
_HPOS_sc_qinquiry_Entry DS.L 1
_HPOS_sc_qinquiry_Exit DS.L 3

_HPOS_sc_fcreate_Entry DS.L 1
_HPOS_sc_fcreate_Exit DS.L 2
_HPOS_sc_fdelete_Entry DS.L 2
_HPOS_sc_fdelete_Exit DS.L 1
_HPOS_sc_fpost_Entry DS.L 2
_HPOS_sc_fpost_Exit DS.L 1
_HPOS_sc_fpend_Entry DS.L 4
_HPOS_sc_fpend_Exit DS.L 2
_HPOS_sc_fclear_Entry DS.L 2
_HPOS_sc_fclear_Exit DS.L 2
_HPOS_sc_finquiry_Entry DS.L 1
_HPOS_sc_finquiry_Exit DS.L 2

_HPOS_sc_saccept_Entry DS.L 1 ;VRTXsa
_HPOS_sc_saccept_Exit DS.L 1 ;VRTXsa
_HPOS_sc_screate_Entry DS.L 2
_HPOS_sc_screate_Exit DS.L 2
_HPOS_sc_sdelete_Entry DS.L 2
_HPOS_sc_sdelete_Exit DS.L 1
_HPOS_sc_spost_Entry DS.L 1
_HPOS_sc_spost_Exit DS.L 1
_HPOS_sc_spend_Entry DS.L 2
_HPOS_sc_spend_Exit DS.L 1
_HPOS_sc_sinquiry_Entry DS.L 1
_HPOS_sc_sinquiry_Exit DS.L 2

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

89

**
* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of ’traced’ data is dependent -=- *
* -=- on the relative offsets of symbols -=- *
**

- Real-Time Clock -
_HPOS_sc_adelay_Entry DS.L 2 ;VRTXsa
_HPOS_sc_adelay_Exit DS.L 1 ;VRTXsa
_HPOS_sc_gclock_Entry DS.L 1 ;VRTXsa
_HPOS_sc_gclock_Exit DS.L 4 ;VRTXsa
_HPOS_sc_sclock_Entry DS.L 3 ;VRTXsa
_HPOS_sc_sclock_Exit DS.L 1 ;VRTXsa
_HPOS_sc_gtime_Entry DS.L 1
_HPOS_sc_gtime_Exit DS.L 1
_HPOS_sc_stime_Entry DS.L 1
_HPOS_sc_stime_Exit DS.L 1
_HPOS_sc_tslice_Entry DS.L 1
_HPOS_sc_tslice_Exit DS.L 1
_HPOS_ui_timer_Entry DS.L 1
_HPOS_ui_timer_Exit DS.L 1

- Character I/O -
_HPOS_sc_getc_Entry DS.L 1
_HPOS_sc_getc_Exit DS.L 1
_HPOS_sc_putc_Entry DS.L 1
_HPOS_sc_putc_Exit DS.L 1
_HPOS_sc_waitc_Entry DS.L 1
_HPOS_sc_waitc_Exit DS.L 1
_HPOS_sc_acceptc_Entry DS.L 1 ;VRTXsa
_HPOS_sc_acceptc_Exit DS.L 2 ;VRTXsa
_HPOS_ui_rxchr_Entry DS.L 1
_HPOS_ui_rxchr_Exit DS.L 1
_HPOS_ui_txrdy_Entry DS.L 1
_HPOS_ui_txrdy_Exit DS.L 2

- Initialization -
_HPOS_vrtx_init_Entry DS.L 1
_HPOS_vrtx_init_Exit DS.L 1
_HPOS_vrtx_go_Entry DS.L 1
_HPOS_vrtx_go_Exit DS.L 1
_HPOS_sc_gversion_Entry DS.L 1 ;VRTXsa
_HPOS_sc_gversion_Exit DS.L 1 ;VRTXsa

_HPOS_SRVC_DEVICES ; Label to make tracing easier

_HPOS_T_START_NAME DS.L 1
_HPOS_T_ENTRY_STACK DS.L 1
_HPOS_T_EXIT_STACK DS.L 1
_HPOS_T_STACK_VAR1 DS.L 1
_HPOS_T_STACK_VAR2 DS.L 1
_HPOS_T_STACK_VAR3 DS.L 1
_HPOS_T_STACK_VAR4 DS.L 1

_HPOS_TASK_BKT_UNDEF DS.L 1

_HPOS_SRVC_DEV_STACK ; Label to make tracing easier

_HPOS_USER_DEFENTRY1 DS.L 1 ; data entries to be used for
_HPOS_USER_DEFEXIT1 DS.L 1 ; either SPA intervals or
_HPOS_USER_DEFENTRY2 DS.L 1 ; for general program tracking
_HPOS_USER_DEFEXIT2 DS.L 1
_HPOS_USER_DEFENTRY3 DS.L 1
_HPOS_USER_DEFEXIT3 DS.L 1
_HPOS_USER_DEFENTRY4 DS.L 1
_HPOS_USER_DEFEXIT4 DS.L 1

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

90

_HPOS_USER_DEFENTRY5 DS.L 1
_HPOS_USER_DEFEXIT5 DS.L 1
_HPOS_USER_DEFENTRY6 DS.L 1
_HPOS_USER_DEFEXIT6 DS.B 3

HP_RTOS_TRACK_END ;End of list indicator
_HPOS_END_OF_DATA_AREA DS.B 1

_HPOS_CLOCK_TICK DS.L 1

_HPOS_CHECK_ERRORS DS.L 1

**
* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of ’traced’ data is dependent -=- *
* -=- on the relative offsets of symbols -=- *
**

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

91

Data Table Contents

The types of values that are written to the data table are:

HPOS_TASK_EXIT
HPOS_TASK_ENTRY

The ID number of the task being exited or entered is written to these
locations. By triggering on specific data values written to these locations,
you can trigger on a particular task’s entry or exit.

HPOS_<svc_call_sym>_Entry
HPOS_<svc_call_sym>_Exit

The parameters passed to, or returned from, a service call are written to
these locations.

When creating your own RTOS trace commands, be sure to store writes
through the full range of the symbol; once the inverse assembler sees the
first word written to these locations, it expects an exact number of
subsequent writes to follow.

HPOS_T_<stack_info_sym>

Stack information is written to these locations by the task start and task
switch callout routines.

When including stack information in the RTOS trace, store writes to the
entire range identified by the T_ symbols.

HPOS_CLOCK_TICK

This location is written to as system clock ticks are sent into the OS
kernel. You have to instrument your clock interrupt service routine
(ISR) to see this functionality.

HPOS_CHECK_ERRORS

Error return codes are written to this location when service calls exit.

HPOS_USER_DEF[ENTRY|EXIT]n

These locations are reserved for tracking user-defined activity. For more
information, refer to the "How the RTOS Measurement Tool Works"
chapter.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

92

To set up trace commands to capture RTOS
information

• Use the "only" syntax of the trace command to specify the storage
qualifier.

The most basic thing to realize about capturing RTOS information with the
emulation bus analyzer is that you only want to store writes to the data table.
Any other stored state will be displayed in the RTOS trace display as a
non-RTOS state.

Virtually all the trace commands you enter to capture RTOS information will
specify that "only" a range of locations in the data table or "only" a range and
other specific locations in the data table are to be stored in the trace. (If you
wish to look at all code execution you will store all states.)

One exception to this guideline is the ability to capture both writes to the
data table and your application code execution excluding execution of the
actual VRTX code itself. This can usually be accomplished by storing all
activity not in the range of the VRTX code (that is, trace only address not

range <VRTX_start> thru <VRTX_end>). Once the analyzer has captured
this data, you may find it helpful to use two emulation windows
simultaneously: one to display the normal source code trace, and the other to
display the RTOS trace.

• Use the "after", "about", or "before" syntax of the trace command if
you wish to trigger the analyzer on a certain event or occurrence in
your program. The option you choose specifies the position of the
trigger point in trace memory.

• Use the "find_sequence" syntax of the trace command if you wish to
trigger the analyzer on a certain sequence of events or occurrences in
your program.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

93

• Use the "enable" and "disable" syntax of the trace command to
capture only certain parts (in other words, windows) of program
execution.

When using data qualifiers to identify the entry or exit of a particular task,
remember the emulation bus analyzer captures 16 bits of data per state when
used with 16-bit processors and 32 bits of data per state when used with
32-bit processors. Because long word (32-bit) task IDs are written to
HPOS_TASK_ENTRY and HPOS_TASK_EXIT, you must capture the write of
the high-order word or low-order word to identify a particular task when
using a 16-bit processor.

Examples To track only queue and flag service calls:

trace only address range HPOS_sc_qpost_Entry thru
HPOS_sc_screate_Entry-1 <RETURN>

This captures all writes to the data table that correspond to any flag or queue
service calls.

To track only queue and flag service calls including task switches

(for 16-bit processors):

trace only address range HPOS_sc_qpost_Entry thru
HPOS_sc_screate_Entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_EXIT+2 or HPOS_TASK_ENTRY or
HPOS_TASK_ENTRY+2 <RETURN>

This captures the same data table writes as the previous command and also
the task entries and exits.

To track only queue and event service calls including task switches

(for 32-bit processors):

trace only address range HPOS_sc_qpost_Entry thru
HPOS_sc_screate_Entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_ENTRY <RETURN>

This captures the same data table writes as the previous command, but it is
for 32-bit processors.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

94

To track only task 2 and queue service calls (for 16-bit processors):

trace enable address HPOS_TASK_ENTRY+2 data 2h disable
address HPOS_TASK_EXIT+2 data 2h only address range
HPOS_sc_qpost_Entry thru HPOS_sc_fcreate_Entry-1 or
HPOS_TASK_EXIT <RETURN>

This trace starts or resumes capturing data when 0002H is written to the
second word of the task entry location and halts data capturing when 0002H
is written to the second word of the task exit location. While enabled to
capture data, the only states captured are the data table accesses that
correspond to queue service calls or the first word of the task exit location.

To track only task 2 and queue service calls (for 32-bit processors):

trace enable address HPOS_TASK_ENTRY data 2h disable
address HPOS_TASK_EXIT data 2h only address range
HPOS_sc_qpost_Entry thru HPOS_sc_fcreate_Entry-1
<RETURN>

This is the same as the previous command, except the starts and halts are
done on the HPOS_TASK_ENTRY and HPOS_TASK_EXIT locations since the
full 32-bit ID is written in one cycle for 32-bit processors.

To trigger before an error return in task 3 (for 16-bit processors):

trace find_sequence HPOS_TASK_ENTRY+2 data 3h restart
HPOS_TASK_EXIT+2 data 3h trigger before
HPOS_CHECK_ERRORS data not 0 only address range
HP_RTOS_TRACK_START thru HP_RTOS_TRACK_END <RETURN>

Starting (enabling) and halting (disabling) are done the same way as in
previous commands, but now instead of capturing data, a specific event (in
this case, a write of something other than zero (0) to
HPOS_CHECK_ERRORS) is looked for as the trigger to complete the trace.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

95

To trigger before an error return in task 3 (for 32-bit processors):

trace find_sequence HPOS_TASK_ENTRY data 3h restart
HPOS_TASK_EXIT data 3h trigger before HPOS_CHECK_ERRORS
data not 0 only address range HP_RTOS_TRACK_START thru
HP_RTOS_TRACK_END <RETURN>

This is the same as the previous command, but it is for 32-bit processors.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

96

To place your measurements in command files

1 If your measurement is similar to a measurement that already exists
on the action keys (and therefore in a command file), the best way to
create the new command file is to copy and modify the similar
command file.

2 Add the directory that contains your custom command files to the
HP64KPATH environment variable.

Examples Suppose you want to create a command file for an RTOS measurement that
tracks a particular task and all the queue service calls that occur during the
task. Notice that this is similar to the provided RTOS measurement that
tracks only task X, except that you want to limit the service calls that are
stored in the trace to just queue service calls.

First copy the existing command file.

$ cp $HP64000/rtos/B3081B/action_keys_302/e_trk1task
e_trk1tsknqs <RETURN>

The storage qualifier part of the command you wish to create is:

... only address range HPOS_sc_qpost_Entry thru
HPOS_sc_fcreate_Entry-1 <RETURN>

So, edit the "e_trk1tsknqs" command file so that only writes to the locations
above are stored in the trace.

If your command file is placed in the $HOME/rtoscmdf directory, you should
set the HP64KPATH environment variable as follows:

If you’re using "sh" or "ksh":

$ HP64KPATH=$HP64KPATH:$HOME/rtoscmdf; export HP64KPATH
<RETURN>

If you’re using "csh":

$ setenv HP64KPATH ${HP64KPATH}:$HOME/rtoscmdf <RETURN>

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

97

To place your measurements on action keys

• Save the measurement in a command file.

Follow the instructions in the previous "To place your measurements in
command files" section

• Create a "$HOME/.HP64_schemes" directory:

$ cd <RETURN>
$ mkdir .HP64_schemes <RETURN>
$ cd .HP64_schemes <RETURN>

This directory must be in your home directory. Note the dot (.) in the
".HP64_schemes" directory name.

• Copy the system-wide X resources "scheme" file to "Softkey.Label" in
the directory you just created:

$ cp $HP64000/inst/rtos/vrtx/HP64_schemes/Softkey.App
Softkey.Label <RETURN>

The system-wide scheme file is stored in the directory
"$HP64000/inst/rtos/<os>/HP64_schemes". Copy the "Softkey.App" file.

• Edit the action key definitions.

The "actionKeysSub.keyDefs" X resource defines a list of paired strings. The
first string defines the text that appears on the action key pushbutton. The
second string defines the command or, in the case of the RTOS measurement
tool, the command file that should be sent to the command line area and
executed when the action key is pushed.

The command files associated with action keys typically set up trace
commands that capture real-time OS activity. If parameters are required, the
command files prompt you for them. Also, some command files have
commands that extract information from memory.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

98

Earlier versions of the "emulrtos_<os>" script used the emul700 -xrm option
to set up the action keys. You can still use this method if you wish, by using a
-xrm option with the "emulrtos_<os>" script, but you must be sure to define
all of the action keys you want to use. This is because all of the action key
definitions are part of a single X resource string.

Example Suppose you wish to create an action key for the command file created in the
previous "To place your measurements in command files" section.

Edit your "Softkey.Label" file.

vi $HOME/.HP64_schemes/Softkey.Label

Add a line that defines the action key label "Tsk X & Queues" and the location
of the command file. In this case, add the line:

\"Tsk X & Queues\" \"e_trk1tsknqs\" \

as part of the "keyDefs" resource definition.

You may also set the "actionKeys.numColumns" resource to manage the
number of rows of action keys.

The next time you start the emulator/analyzer interface, the new action key
will appear. Clicking on the new action key will cause the associated
command file to be run.

See Also Your HP Emulator/Analyzer Graphical Interface User’s Guide or
Debugger/Emulator User’s Guide for more information on setting X
resources.

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

99

100

Part 2

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

101

Part 2

102

5

How the RTOS Measurement Tool
Works

103

How the RTOS Measurement Tool Works

The RTOS measurement tool lets you perform a real-time trace of all calls
and returns between your application and a Real-Time Operating System
(RTOS). The RTOS measurement tool works with the HP 64700 series
emulation bus analyzer and includes a specially developed inverse assembler.
The trace display is easily readable and includes a fully interpreted display of
all parameters passed into and returned from the RTOS along with possibly
other pertinent data.

The following topics are discussed in this chapter:

• Instrumented code for real-time OS tracking.

• How OS service calls are captured and displayed.

104

Instrumented Code for Real-Time OS Tracking

In order to make RTOS measurements, a few instructions must be added to
the application program. The level of intrusion introduced by these
instructions is minimal, typically 3 to 5 data write instructions.

Service Call Tracking (for VRTX Assembly Based RTOS)

Tracking of service calls takes advantage of the fact that there is usually an
interface library which allows a high-level language application to call an
assembly language based RTOS (such as VRTX). This library is a set of
functions that correspond directly to each routine available from the RTOS.
We will refer to these functions as service calls of the RTOS.

Each function in the library is accessible via a normal high-level subroutine
call. The function is responsible for taking parameters off the stack and
placing values into proper registers. A "trap" instruction is then executed to
pass control to the RTOS which interprets the registers and determines
which of its own functions needs to be run. (The D0 register is usually set in
the interface function to arbitrate which function in the RTOS is being
requested.)

In order to track service calls, code has been added to each service call in the
interface library. This code writes the contents of the registers that are used
to specific known locations within a defined data table. The data table has
defined offsets within it for each parameter of each function. (For VRTX, the
data table requires about 1000 bytes.)

So for each function, any register that has been set with a specific value to be
passed to the RTOS has its value written to a location unique to that function
and parameter. This is accomplished through a simple MOVEM instruction
which writes all registers that have been assigned values by the service call to
a specific memory location in the data area. One MOVEM is done right before
the "trap" instruction and one is done upon return.

When running an application that uses the "instrumented" interface library
(that is, the interface library to which code has been added for RTOS
measurements), tracing the address range of the defined data table captures
all data being passed into and returned from each and every service call.

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

105

When trace information is captured, a RTOS specific inverse assembler
decodes the information and displays the intimate details of the interaction
between an application and a RTOS.

The data table needed for a specific RTOS relates directly to the number of
functions available from a RTOS and the number of parameters passed to and
returned from such a RTOS. For each function, there is a set of long words
associated with the call to the function and a set for the return from the
function.

For instance, in the VRTX RTOS, there is a function called "sc_tcreate()"
which creates a task. There are 5 registers which are assumed to be set
before trapping to the kernel and 1 output register which is set by the kernel
before it returns. One of the 5 input registers is D0 whose contents, as noted
above, specify the function VRTX should execute. Because the function is
already identified by the data table locations being written to, it is not
necessary to write out the value of D0. Consequently, only 4 long words are
reserved for register values written when the "sc_tcreate" function is called.
Upon return, the register contains information specific to the call; therefore,
1 long word is reserved for the "sc_tcreate" return value.

The portion of the code in the "instrumented" interface library for the
"sc_tcreate" call would look like:
MOVEM.L D1-D3/A0,HPOS_sc_tcreate_Entry ; write out input data
TRAP #VRTXTRAP ; trap to the kernel
MOVEM.L D0-D1,HPOS_sc_tcreate_Exit ; write out return data

and the respective data area declarations would look like:
HPOS_sc_tcreate_Entry DS.L 4
HPOS_sc_tcreate_Exit DS.L 1

Notice that a single MOVEM instruction can move multiple register values to
the data area.

Instructions added for service call tracking represent the most minimal
intrusion while giving you almost complete knowledge of the interaction
between your application and the RTOS kernel. The information that’s
missing is knowledge about the tasks running and when task switches take
place. You can add task information by writing a "task switch callout" routine.

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

106

Service Call Tracking (for VRTXsa "C" Based RTOS)

For real-time operating systems whose main calling mechanism is through
high-level function calls like "C", the above instrumentation method is slightly
different. In this case, a ".h" header file is used to call an HP supplied
function in place of the RTOS function in the user’s code. This HP function
writes out the necessary information to the data table using high-level
language assignments and then calls the real OS function in a "daisy-chain"
fashion. An example of an HP supplied function is:
int
HPIL_sc_create(void (*task)(void*), int tid, int pri, int *errp)
{
int retval;

 HPOS_sc_tcreate_Entry[0] = (int) task;
 HPOS_sc_tcreate_Entry[1] = (int) tid;
 HPOS_sc_tcreate_Entry[2] = (int) pri;
 retval = sc_tcreate(task, tid, pri, errp);
 HPOS_sc_tcreate_Exit[0] = (int) *errp;
 HPOS_sc_tcreate_Exit[1] = (int) retval;

 HPOS_CHECK_ERRORS = (int) *errp;

 return(retval);
}

Task Switch Tracking

The task switch callout routine is a hook provided by the RTOS vendor. It
allows a user to define a routine to be called every time a task switch occurs.
Upon calling the routine, two registers are set with pointers to the task
control blocks of the task exiting and the task being entered.

For the simplest task switch tracking, the callout routines need only consist
of two instructions: one writing out the task ID of the task being exited, one
writing the task ID of the task being entered. This means the data area must
have two positions for task entry and exit.

For software performance analysis support, a little more needs to be done.
The software performance analyzer needs separate memory locations for the
start and end of each interval it is measuring. Since each task needs to be
measured, each task must have its own unique start and end memory
locations. The callout routine must write to these unique locations
depending on which tasks are switching. In the callout routine, the task ID is
used as an index to a special task data buckets area where there is a unique
location for every task’s exit and entry. This data area is application
dependent and must be modified with the application’s task IDs. The

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

107

"rtos_edit_vrtx" or "rtos_edit_vrtxsa" script creates the file "tables.s" which
defines these task buckets.

Clock Ticks

There are two methods for tracking clock ticks. First, if the application uses
the sc_tslice() OS service call, clock tick information is automatically
available since this service call is instrumented.

However, some applications may choose not to use the "C" interface function
for this feature and may write the associated interrupt service routine (ISR)
directly in assembly language code for speed reasons. In this case, the
interrupt service routine should be instrumented with a simple
MOVE.W Dx,HPOS_CLOCK_TICK instruction before the trap to VRTX.
(Make sure it is a word write to the HPOS_CLOCK_TICK location.) The
memory location corresponding to CLOCK_TICK is placed at the end of the
data table so it may be simply included or excluded from the range of
memory accesses stored in the trace.

Selective Tracking

With the data area for service calls defined, it is possible to selectively trace
certain functions. The only limiting factors are the resources of the
emulation bus analyzer which allow you to track any range (of any size) along
with any 8 distinct memory locations. The 8 locations may be consecutive
which, in essence, provides another range for needed cases.

OS Overhead Tracking

In order to get some idea of how efficient an application is, that is, to see how
much time is spent switching tasks as opposed to executing them, the
software performance analyzer can display a dynamic histogram of the time
spent in the OS kernel.

This is done, as is the service call tracking, by adding simple MOVE
instructions to the service call routines. The first MOVE instruction,
executed just before the trap to the kernel, writes to a location that
represents the start of the OS interval. The second MOVE instruction,
executed just after the return from the trap, writes to a location that
represents the end of the OS interval. The software performance analyzer
measures the time between these writes as time spent in the OS kernel.

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

108

Note Using this method, some kernel time may be missed due to clock ticks. The
time spent processing clock ticks is minimal and consistent, so this time is of
little consequence. Additional kernel time is missed when task switches
occur because the task has used up its time slice. If excessive timeouts
occur, the measurement of the kernel’s accumulated time will be slightly low.

Stack and Memory Tracking

Stack information such as pointers and bytes used can be tracked
dynamically as an application runs. The necessary data is mostly written out
during the task switch callout routine. For this to work, there are several
things that must be done before the application is running and switching
tasks:

1 The "bucket" table must be filled with all the IDs of the application’s
tasks. This creates a data area that will be used to save the task’s stack
values.

2 The task start callout routine will save several data items: the task ID
number, the memory locations in the Task Control Block that hold the
stack pointer values, and the task bucket’s address. Also, data is written
to a special area in the general data area so the stack creation
information can be captured and seen in the trace display at startup time.

Once the application is switching tasks, the task switch callout routine uses
the previously saved data to keep track of stacks. In the callout routine, the
task being pre-empted and the task being started running are found by
indexing via the task ID to the saved task bucket’s address. This address is
used to access stack data. The stack data can then be written out and
interpreted by the RTOS inverse assembler to display the stack bytes used on
exit from a task and entry to a task.

User-Defined Areas

At the bottom of the general data table is a set of user-definable locations.
There are twelve locations which an application can use in any way. These
locations are intended to allow you to track other parts of an application
while simultaneously following the kernel activity.

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

109

A good example use of this facility would be to instrument the entry and exit
of your application’s interrupt service routines. By doing this, you could get a
histogram in SPA of the time spent in any interrupt service routine.

If a write is done to any of these locations, the captured data is displayed as a
hex number and, if possible, translated to ASCII characters. This allows
easier debugging since seeing "Loop" in a display easily reminds you what
part of the application you just executed versus seeing "0x4c6f6f70" and
trying to mentally translate a number to a location of code.

Note If you are capturing on a range that includes any of the 12 user-defined
locations, all of these locations must be written to with longword writes in
order for the trace display to work correctly.

RTOS Symbol Names

When your application includes the instrumented service calls, the data area
included has many global symbols names. In order to keep these names from
conflicting with your application’s symbol names, the symbols all have one of
three standard prefixes: "HPOS_", "HP_RTOS_" or "_HPOS_". The most
common standard prefix for the data area symbols is "HPOS_". The only
symbols which do not use that prefix are _START_CALLOUT, and
_SWITCH_CALLOUT.

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

110

The Data Table

Task Entry (1 long word)
Task Exit (1 long word)
Service Call 1 Entry (n1 longs)
Service Call 1 Exit (n1’ longs)
Service Call 2 Entry (n2 longs)
Service Call 2 Exit (n2’ longs)
Service Call 3 Entry (n3 longs)
Service Call 3 Exit (n3’ longs)
 .
 .
 .
Service Call N Entry (nN longs)
Service Call N Exit (nN’ longs)
Clock Tick (1 word)
Task Name (1 long)
Queue Name (1 long)
Semaphore Name (1 long)
Region Name (1 long)
Stack Task Name (1 long)
Stack Supr Size (1 long)
Stack Supr Ptr (1 long)
Stack User Size (1 long)
Stack User Ptr (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

111

Extra Memory Locations

Kernel Overhead Start (1 word)
Kernel Overhead End (1 word)
 Task Buckets (created by macro)
Task_abcd ’abcd’
Enter_Task_abcd (1 long word) ;SPA interval starting address
Exit_Task_abcd (1 long word) ;SPA interval ending address
MStack_Siz_abcd (1 long word) ;Master stack size
MStack_Ptr_abcd (1 long word) ;Master stack ptr
MStack_Lmt_abcd (1 long word) ;Master stack limit
UStack_Siz_abcd (1 long word) ;User stack size
UStack_Ptr_abcd (1 long word) ;User stack ptr
UStack_Lmt_abcd (1 long word) ;User stack limit
Tid_abcd (1 long word) ;Task id number
Task_name_abcd EQU ’name’ ;task name symbol

Task_cdef ’cdef’
Enter_Task_cdef (1 long word) ;SPA interval starting address
 ...
Task_name_cdef EQU ’cdef’ ;task name symbol

Task_efgh ’efgh’
Enter_Task_efgh (1 long word) ;SPA interval starting address
 ...
 .
Task_name_xyzz EQU ’xyzz’ ;task name symbol

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

112

Symbolic Task and Queue Names in RTOS Traces

Code containing OS calls can be difficult to read because tasks, queues, and
other objects are identified by the numeric value.

For VRTX32, this difficulty can be overcome by using C define statements to
attach names (symbols) to tasks and queues.

/* defines allow C code to use symbolic task and queue names */

#define ROOT_TASK 0xA1
#define QUEUE1 0xB0

/***/
/* FUNCTION */
void init_application()
/**/
/* DESCRIPTION Create the root task which will create everything else.
/*
/* RETURN Nothing
/**/
{
 static int errp;
 /* start the root task */
 sc_tcreate(&root_task, ROOT_TASK, 10, &errp);

 /* create a 1st queue */
 sc_qecreate(QUEUE1,3,FIFO,&errp);

 /* Remove this task (self) since it is no longer needed */
 sc_tsuspend(0, 0, &errp);

}

The symbolic association provided by the #define statments only exist during
compilation. The symbols defined by #define during compilation do not exist
in the absolute file.

In following trace fragment, tasks and queues are identified by the numerical
value assigned to them. The trace would be more easily understood if the
names assigned by the #define statments were displayed.
+001 - sc_tcreate(task_addr=1CE4,
400. mS
 tid=A1, priority=A)
+004 <- sc_tcreate()
65.80 uS
+005 -> sc_qecreate(qid=B0, qsize=3, opt=FIFO)
7.00 uS
+008 <- sc_qecreate()
24.76 uS
+009 -> sc_tsuspend(SELF)
5.76 uS
+010 <- sc_tsuspend()
18.48 uS
+011 ---Exited Task : Tid = 00 --------------------------------
31.80 uS

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

113

+012 ---Begin Task : Tid = A1 --------------------------------
1.36 uS

Displaying task and queue names in the RTOS trace

The RTOS trace will contain task and queue names when:

• the absolute contains task and queue names

• the absolute contains the symbol USE_USER_MAPPING

How to place task and queue names in the absolute

The task and queue names can be placed in the absolute file with several
lines of assembly code. The use of the HP cross-compiler "ASM" pragma
allow the assembly code to be placed in the C source file.
/* Place the task and queue names in the symbol table */
#pragma ASM
XDEF ROOT_TASK
XDEF QUEUE1
ROOT_TASK EQU $A1
QUEUE1 EQU $B0
#pragma END_ASM

The USE_USER_MAPPING symbol

The RTOS inverse assembler has been modified to decode the user defined
queue and task names. The definition of the symbol "USE_USER_MAPPING"
enables the the decoding of queue and task names. This symbol can be
created by including the following line in the linker command file.
public USE_USER_MAPPING=$03FF ; causes IAL to map names to user
defined symbols
public USE_USER_MAPPING=$03FF ; causes IAL to map names to user
defined symbols

The RTOS trace with symbolic task and queue names is much easier to
understand.
+001 - sc_tcreate(task_addr=p|demo.root_task,
341. mS
 tid=A1 :ROOT_TASK, priority=A)
+004 <- sc_tcreate()
65.84 uS
+005 -> sc_qecreate(qid=B0 :QUEUE1, qsize=3, opt=FIFO)
7.00 uS
+008 <- sc_qecreate()
24.76 uS
+009 -> sc_tsuspend(SELF)
5.76 uS
+010 <- sc_tsuspend()
18.48 uS
+011 ---Exited Task : Tid = 00 --------------------------------

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

114

31.80 uS
+012 ---Begin Task : Tid = A1 :ROOT_TASK----------------------
1.36 uS

Limitations

User-defined names are not displayed when using the softkey interface.

The user-defined names are imposed upon the program name space. The
user-defined names are mapped to address that may conflict with other
symbols in the programs address map.

Symbols can be mapped to either a single address or to an address range.
Symbols mapped to address ranges will not conflict to task and queue names
which are mapped to a single address.

The symbol USE_USER_SYMBOLS is mapped to 0x3ff. This is the last byte in
the vector table of the Motorola 68000 family processors. This address was
chosen because it is uncommon to map this address to a symbol. The
symbolic task and queue names will not be displayed unless you define this
symbol. The task and queue symbols are mapped to the numbers used to
represent them. It is up to the user to choose numbers that do not represent
address to which other symbols have been mapped.

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

115

How OS Service Calls are Captured and
Displayed

The RTOS Measurement Tool uses the emulation bus analyzer and software
performance analyzer to capture operating system software activity in
real-time. The captured data is actually a series of memory writes to a data
table. These writes can contain encoded information about an OS service call
that was just executed or a task switch that just occurred.

When an RTOS action key is pressed in the emulator/analyzer interface, a
command file sets up the analyzer to capture the writes to the data table. By
setting up the analyzer to capture only writes to selected areas of the data
table, you can track specific OS activity or look for a specific sequence of
activity.

Inverse Assembler

In the same way that bus cycle information is decoded into assembly
language mnemonics in a normal trace display, writes to the data table are
decoded into OS service call mnemonics in the RTOS trace display. The
software mechanism that decodes information captured by the emulation bus
analyzer is called an Inverse Assembler (IA).

A short example should help. First, let’s assume the segment of a user’s
application that makes an OS service call looks as follows:
.
.
queue_id = 2;
message = 1234;
sc_qpost(queue_id, message, &return_value);
.
.

The function "sc_qpost()" is an OS service call that sends a message to a
specific queue.

Instrumented Library Writes to the Data Table

Because the user has substituted our instrumented interface library in place
of the original OS interface library, the call to "sc_qpost" causes additional
code to execute. This code simply writes information to the data table that

116

identifies the OS service call being executed, the parameters being passed
into it, and upon return, writes out the return value from the OS kernel.

Data Table Writes Captured by Analyzer

By clicking on an action key (or running a command file), the emulation bus
analyzer is automatically set up to capture memory writes to the data table.
The captured data represents the flow of activity into and out of the OS
kernel through OS service calls. For the example above, the inverse
assembler would decode the captured data and display it as:
.
.
-> sc_qpost(qid=00000002, message=00001234)
<- sc_qpost()
.
.

Parameters Displayed with Mnemonics

Using the example above, a few more details of inverse assembly can be
described. First, you can see that the actual parameter values were captured
by the analyzer and are displayed in the trace. Note further that each
parameter is preceded by a mnemonic that indicates what the parameter is.
The queue ID parameter value of 2 is preceded with a "qid=". These are the
same parameter mnemonics that the OS vendor uses in their OS manual.
This allows very easy interpretation of the trace parameters without needing
to reference the OS manual.

Chapter 5: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

117

Service Call Entry and Exit and Task Switches

Another point of interest is the entry (->) and exit (<-) arrows. This is where
an RTOS trace most greatly differs from a normal source code trace.

Since a real-time OS is used in part to manage application execution at a
higher level, it has the capability to switch execution from one task to
another whenever any OS service call is executed. This may happen for any
number of reasons based on changing task priorities, the sending and waiting
for messages at queues, or a task using up a given time slice.

Given this behavior, application code that evokes an OS service call may not
immediately return from that service call but may instead begin executing
code in another task. For example, when the "sc_qpost()" OS service call in
the previous trace example sent a message to the queue, if another task of
higher priority was waiting for a message at that same queue, then that task
would now resume executing and the trace would look something like the
following:
.
.
-> sc_qpost(qid=00000002, message=00001234)
--- Exited Task : tid = 0x0004 -------------
--- Next Task : tid = 0x0007 -------------
<- sc_qaccept(msg=00001234)
.
.

You can see that task 4, which sent the message has now exited and task 7,
which had been waiting for a message with the "sc_qaccept()" OS service
call, has now started up again. You can also see in the return parameter of
the "sc_qaccept()" call that it did indeed receive the same message that was
sent.

Inverse Assemblers are Tailored to the OS

Note that the examples above use the inverse assembler for the VRTX
real-time OS. Each RTOS Measurement Tool has a unique inverse assembler
that is tailored to the particular real-time OS.

Chapter 5: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

118

Part 3

Installation Guide

Instructions for installing and configuring the product.

119

Part 3

120

6

Installation

121

Installation

This chapter describes the installation of RTOS emulation software that runs
on UNIX workstations.

The RTOS emulation product is an extension to the HP 64700 Series
emulator and Graphical User Interface (or Softkey Interface) products.

If you have ordered the emulator, interface, and RTOS emulation products
together (or just the interface product and the RTOS emulation product), the
software products are on the same media. In this case, refer to the
installation instructions in your Graphical User Interface User’s Guide.

If you have ordered the emulator interface and RTOS emulation products
separately, install the emulator interface first. Then, install the RTOS
emulation product using the instructions in this chapter.

This chapter shows you how to:

• Install HP 9000 software.

• Install Sun SPARCsystem software.

When the Real-Time OS Measurement Tool is installed, you will have an
enhanced emulation window with four additional entries available in the
File→Emul700 pulldown menu: VRTX Emulator/Analyzer... and VRTX

Performance Analyzer ... for both the VRTX32 and VRTXsa products.
These entries will, respectively, bring up a new emulation window and bring
up a Performance Analyzer window, each with RTOS action keys defined.
You can do anything in these windows that you would normally do.

Note If you have installed another Graphical User Interface after you installed the
HP B3081B Real-Time Operating System Measurement Tool, you must re-run
the HP B3081B "customize" script.

122

To install HP 9000 software

Perform the following steps to install HP 64700 Series software on the
HP 9000 Workstation:

1 Check the HP-UX operating system version

HP 64700 Series software requires an HP-UX operating system version of
7.03 or greater. To determine the version of your HP-UX operating system,
enter the command:

uname -a <RETURN>

If the version number of the HP-UX operating system is less than 7.03, you
must update the operating system to 7.03 or higher before you can use the
RTOS emulation product.

Refer to the "Updating HP-UX" chapter of the HP-UX System

Administration Tasks manual for detailed information on updating your
system.

2 Become the root user on the system you want to update.

3 Make sure the tape’s write-protect screw points to SAFE.

4 Put the "HP 64700 Series Products" update tape in the tape drive that
will be the "source device".

5 Be sure that the tape drive BUSY and PROTECT lights are on. If
either the PROTECT or BUSY light is off, check the tape’s
write-protect screw or the tape drive for proper operation. The tape
drive will condition the tape for about three minutes or less for
shorter tapes.

6 When the BUSY light stays off for at least 10 seconds, start the update
program by typing:

/etc/update

Chapter 6: Installation
To install HP 9000 software

123

7 When the HP-UX Update Utility Main Menu screen appears, make
sure that the source and destination devices are correct. The
defaults are:

/dev/update.src (for Series 300 and 400 Workstations)

/ (for the destination directory)

8 If you do not use the defaults, change the "source device" and/or
"destination directory" as appropriate.

9 Select Load Everything from Source Media when your
source and destination directories are correct.

10 To begin the update, press the softkey <Select Item> . At the next
menu, press the softkey <Select Item> again. Answer the last
prompt with

y

and press <RETURN>. It takes about 10 minutes to read the tape.

11 When the installation is complete, read /tmp/update.log to see the
results of the update.

Chapter 6: Installation
To install HP 9000 software

124

To install Sun SPARCsystem software

Refer to the Software Installation Guide operating notice for instructions
on installing software on Sun SPARCsystem computers.

Refer to the Graphical User Interface User’s Guide for additional
instructions on installing the Emulator/Analyzer interface software.

Chapter 6: Installation
To install Sun SPARCsystem software

125

Chapter 6: Installation
To install Sun SPARCsystem software

126

Glossary

bucket a portion of a memory area to which information about a particular
task or queue is saved.

callout routine a mechanism provided by the real-time OS that allows you
to execute a routine at certain points in the application, for example, when a
task starts or when a task switch occurs.

data table the table to which real-time OS information is written while the
application executes in real time. The emulation bus analyzer captures
writes to the data table and decodes the stored trace information in an
easy-to-read display.

device call a service call that communicates with an I/O device.

emulation bus analyzer the analyzer that captures information on the
processor bus as programs execute. This analyzer is used to capture writes
to the data table which are then decoded to provide RTOS measurement
information.

instrumented service call library an interface library with callout
routines and instructions that write to the data table and save information in
task and queue buckets.

interface library a library of assembly language routines which allow a
high-level language application to call an assembly language based real-time
operating system.

inverse assembler software that decodes hexadecimal machine code
values into mnemonics that are easy to read. In the case of the RTOS
measurement tool, writes to the data table are decoded into real-time OS
mnemonics.

task an independent program or process that executes under the real-time
operating system.

127

service call a call, made by a task, to a function in the real-time OS kernel.

software performance analyzer an instrument that records information
about events that occur during program execution. The software
performance analyzer is used to compare time spent in different program
modules.

Glossary

128

Index

A about, trace command option, 93
action keys, 98
actionKeys.numColumns, X resource, 99
actionKeysSub.keyDefs, X resource, 98
after, trace command option, 93

B background emulation monitor, 25
before, trace command option, 93
break_on_trigger (in trace command), 39
bucket, 18, 109, 127
buckets, 107
bytes used on stack, 109

C callout routine, 127
callout routines

task start, 21-22
task switch, 21-22, 106-107, 109

clock ticks, 40, 87, 92, 108-109
command files, 97
configuration table, 29
coordinated measurements, 82-83
count histogram display of task events, 77
custom RTOS measurements, 87-99
customize script, 14

D data bus width, 94
data table, 21-22, 87, 105, 111, 127

description, 87
#DEFINEs for VRTX version, 22
device call, 127
device calls, 37
disable, trace command option, 94
duration (function), show histogram, 80
dynamic memory usage, tracking, 62-65

E emul700 command, 24
emulation bus analyzer, 5, 14, 34, 82, 87, 117, 127

129

resources of, 108
emulation monitor, 25
emulrtos, emulator startup script, 24
enable, trace command option, 94
environment variables, 24

HP64000, 17
HP64KPATH, 97
PATH, 24
PROCESSOR, 24

error checking information, 87, 92
error return, 39
event, received by specific task, 56
events (SPA)

defining for tasks, 74
table display, 76

events (task)
count histogram display, 77
time histogram display, 75

F files
HPIL.h, 17, 22
RTOS source, 17
tables.s, 18, 21-22
track_il.c, 17, 22, 87
track_os.s, 17, 21-22, 87

find_sequence, trace command option, 93
flag calls, 44-45
flag numbers, 56
foreground emulation monitor, 25
function

any task using a, 61
specific task using a, 57

function duration histogram, show normal, 80

G glossary, 127-128

H histogram
normal function duration, 80
task events, 81
user events, 81

histogram display of task events
count, 77

130

time, 75
HP64000 environment variable, 17
HP64KPATH environment variable, 97
HP64RTOSIAL environment variable, 24
HP_VRTXsa_V3, V4, 22
HPIL.h file, 17, 22

I installation, 122
HP 9000 software, 123-124
Sun SPARCsystem, 125

instrumented service call library, 105-106, 116, 127
interface library, 105, 116, 127
intrusion, 105
inverse assembler, 87, 104, 106, 109, 116, 118, 127
invocations (service call), show table, 79

M makefile, 28
Measure_Ovrhd in SPA, 75
memory calls, 65
memory usage, 109
memory usage, tracking, 62-65
memory, extra locations, 112
message, from specific task to specific queue, 55
mnemonics in RTOS trace display, 117
monitor, emulation, 25
mutex calls, 48

N names
queue, 59, 113
task, 59, 113

non-RTOS states, 87, 93

O only, trace command option, 93
operating system versions supported, 123
OS overhead tracking, 108
OS_Time in SPA, 75
overflow, task time, 82
overhead (OS) tracking, 108

P PATH environment variable, 24
prepare for RTOS measurements, 14
PROCESSOR environment variable, 24
processor type, 24

Index

131

Q queue calls, 42-43

R real-time runs, emulator restriction, 25
requirements, 14
RTOS information, trace commands to capture, 93
RTOS measurement tool

how it works, 104
overview, 4
testing, 26

RTOS measurements
creating your own, 87-99
emulator/analyzer, 34
preparing for, 14
software performance analyzer, 72

RTOS source files, 17
RTOS symbol names, 110
rtos_edit script, 18, 84

S sc_tcreate() function, 106
scripts

customize, 14
rtos_edit, 18, 84

selective tracking, 108
semaphore calls, 47
service calls, 37, 40, 87, 105, 107, 116-118, 128

entry and exit, 118
parameters, 92
show table of invocations, 79
single call tracking, 49
two call tracking, 50

software performance analyzer, 5, 14, 72, 107-108, 128
testing, 27

software versions, 123
source files, RTOS, 17
SPA events

See events (SPA)
stack activity, 38, 40
stack information, 87, 92
stack pointers, 109
stack usage, 63, 109
storage qualifiers in trace commands, 93

Index

132

supported system versions, 123
symbol names, 110

T table display of SPA events, 76
table of service call invocations, 79
tables.s file, 18, 21-22
Task Control Block, 109
task events histogram, 81
task names, 113
task names, displaying, 59
task start callout routine, 21-22, 87
task switch callout routine, 21-22, 87, 106-107, 109
task switches, 40, 92, 107, 109, 118

in flag call tracking, 45
in memory call tracking, 65
in mutex call tracking, 48
in queue call tracking, 43
in semaphore call tracking, 47
specific task switch tracking, 54

task time overflow, 82
tasks, 127

defining, 18
four task tracking, 53
naming, 18
single task tracking, 52
SPA data for specific task, 78
SPA event definition, 74
time interval measurements, 74-81

time histogram display of task events, 75
time interval measurements, 74-81
time overflow, task, 82
time slice, 109
time stamp, 35
trace commands

about option, 93
after option, 93
before option, 93
disable option, 94
enable option, 94
find_sequence option, 93
only option, 93
storage qualifier, 93

Index

133

trace commands to capture RTOS information, 93
trace display

mnemonics in, 117
normal, 67
RTOS, 68

traces, displaying, 66-70
track_il.c file, 17, 22, 87
track_os.s file, 17, 21-22, 87
tracking

memory, 109
OS overhead, 108
selective, 108
stack, 109

trig2 break, 83
trig2 signal, 27, 82

disabling, 83
type of processor, 24

U USE_USER_MAPPING symbol, 59, 114
user events histogram, 81
user-defined areas in data table, 109
user-defined data table locations, 87, 92

V variable
any task accessing a, 61
specific task accessing a, 58

versions, VRTXsa, 22

X X resources, 99
actionKeys.numColumns, 99
actionKeysSub.keyDefs, 98

Index

134

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of installation.
During the warranty period, HP will, at its option, either repair or replace
products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and
taxes for products returned to HP from another country. HP warrants that its
software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the instrument, or
software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

	Measurements for the VRTX Real-Time Operating System
	In This Book
	Contents
	User’s Guide
	Preparing Your Application for RTOS Measurements
	Making RTOS Measurements with the Emulator/Analyzer
	Making RTOS Measurements with the SPA
	Customizing the RTOS Measurement Tool

	Concept Guide
	How the RTOS Measurement Tool Works

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

