Developer's Guide

HP B3082A
Custom Real-Time OS
Measurement Tool

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damagesimection

with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1992, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.
Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure bythe U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of
the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A. Rights fonon-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level
of the software product at the time the manualisssed. Manproduct

updates and fixes do not require manual changes, and manual corrections may
be done without accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and margiahsev

Edition 1 B3082-97000, December 1992

Creating a Measurement Tool for a
Custom Real-Time OS

Program Code and Data

v .

7,

Buck

Application
Code

Data Saved
In Memaory

Instrumented

Service Call
Library

7

Assembler

Emulator/Analyzer
Interface

No Physical
Memary
Necessary

RTOS
Trace
Display

- RTOS

Measurement

SPA
Profile
Meus.

Tool

B3082B02

This product lets you create an 188700 emulation/analysis-based
measurement tool for a custom real-time operating system.

An RTOS measurement tool lets users yigagram execution in the context
of the real-time OS. For example, users can view service calls and their
parameters, task switches, clock ticks, and dynamic memory usage.

In order to provide real-time O8easurements, you must 'insment"the
real-time OS code, for example, by inserting instructions that write to a data
table when service calls enter and exit.

With the HP 64700 emulation bus analyzer, the user captures writes to the
data table. When the user displays the real-time OS trace, a special inverse
assembler that you create decodes the captured information and displays it in
an easy-to-read format.

You can also "instrument” real-time OS code so that users can measure time
taken by tasks with the software performance analyzer.

You can make RTOS measurements easy for the user by creating command
files that run when action keys are clicked.

In This

Book

This book describes the HP B3082A Custom Real-Time Operating System
Measurement Tool. It assumes you areilfiamwith the Emulator/Analyzer

interface, wh
based softke

Part2. U
Part 3. R

ether it be the graphical interface or the terminal emulation
yinterface. This book is organized into five parts:

Part 1. Quick Start Guide

ser’'s Guide
eference

Part 4. Concept Guide
Part 5. Installation Guide

Ifyou ...

Then goto ...

Need to install the Custom
RTOS Measurement Tool.

Part 5. The "Installation" chapter describes howto install t
Custom RTOS Measurement Tools software.

ne

Are unfamiliar with RTOS
measurement tools.

Part 1. The Custom RTOS Measurement Tool comes with
demo. The first chapter shows you howto use the demo R
measurement tool, and the second chapter shows you hov
modify the demo RTOS measurement tool to adupert for
a new OS service call.

a
Tos
to

Are familiar with the demo
RTOS measurement tool and g
ready to create your own RTOS
measurement tool.

Part 2. The chaptersin this part show you how to modify y
r®S code, create an inverse assembler, and set up

Emulator/Analyzer and Software Performance Analyzer

commands to perform real-time OS measurements.

pur

Need information on the inverse
assembly language (IAL)
instructions.

> Part 3. This reference information includes descriptions of
IAL instructions and the error messages that can occur wh
building the inverse assembler.

the
en

Would like more information
about the demo RTOS
measurement tool.

Part 4. The chapter in this part provides more detail abou
howthe demo RTOS measurement tools works.

Contents

Part 1 Quick Start Guide

1 Using the Demo RTOSMeasurement Tool

RTOS Measurement Tools — At a Glance 18
Product Overview 20

Making RTOS Measurements with the Emulator/Analyzer 24

Step 1: Change to the demo directory 24

Step 2: Start the Emulator/Analyzer interface 25

Step 3: Load the emulator configuration 26

Step 4: Load the real-time OS demo program 26

Step 5: Trace data table writes and display the real-time OS trace 27
Step 6: Run the program 27

Step 7: Use other action keys 28

RTOS Measurements with the SPA 29

Step 7: Start the Software Performance Analyzer Interface 29
Step 8: Define events for OStasks 30

Step 9: Execute a time profile SPdeasurement 31

Step 10: Use other action keys 32

Exiting and Releasing the HP 64700 Interfaces 33
Step 11: Exit and release the HP 64700 interfaces 33

Contents

2

Modifying the Demo RTOSMeasurement Tool

Instrumenting OS Code for a New Service Call 37

Step 1: Copythe demo OSfiles 37

Step 2: Add an entryin the data table 38
Step 3: Instrument the service call 39
Step 4: Re-build your application 40

Modifying the Inverse Assembler 41

Step 5: Copythe demo inverse assembler files 41
Step 6: Add code to the inverse assembler 42
Step 7: Re-build the inverse assembler 45

Step 8: Install the inverse assembler 45

Modifying Related Scripts and Command Files 47

Step 9: Add an entryin "create_12_call"and "create_12_call32"
Step 10: Add an entryin "spabasecmd" 48
Step 11: Create a new"s_init"file 49

47

Part 2

User's Guide

Modifying a Custom OS for Real-Time Measurements
Emulation Bus Analyzer Measurements 54
Software Performance Analyzer Measurements 55

Guidelines for OS Code Instrumentation 57

Comment Infumented Code 57
Use Descriptive Symbol Names 58

Contents

Instrumenting Code for Real-Time OS Tracking 59

To track service calls 60

To track task switches 63

To track clock ticks 67

To track OS overhead 69

To track stack and memory 72

Organizing the Data Table 73
Group Locations for Easy Tracking 74
Create User-Defined Areas 74

Organizing the Task Data Buckets 75
Re-Building the OS and the Application 77

Writing the RTOS Inverse Assembler Code
The Demo RTOS Inverse Assembler 81

Writing IAL Code 82

IAL Instructions 82
IAL Operands 83
IAL Program Control 85

Writing RTOS Inverse Assembler Code 87

To define strings, variables, and number formats 88

To assign data table locations to variables 90

To decode address information from the trace 93

To decode data information and output to the trace display 95

Building and Installing the RTOS Inverse Assembler 101

To build the RTOS inverse assembler 101
To install the RTOS inverse assembler 102

Contents

5 Making RTOS Measurements withthe Emulator/Analyzer

Analyzer Resource Limitations 104
Trace Command Overview 105

Tracing Writes to the Data Table 107

To track everything 109

To track task switches and service calls 109

To track groups of servicelte 110

To track a single service call 110

To include task switches when selectively tracking 111

To track two service calls 112

To track a single task and all OS activity within it 113

To track four tasks and all OS activity within them 114

To track about a specific task switch 116

To track about a specific task sending a message to a specific queue 117
To track activity after a function isreached 118

To track activity about the access of a variable by a specifictask 119
To track which tasks access a specific function or variable 120

To track all memory calls (including task switches) 121

Displaying Traces 122

To switch to a normal trace display 123
To switch to the RTOS trace display 124

Making RTOS Measurements withthe SPA

SPA Data Table Requirements 127
SPA Command Overview 127
Demo Data Table Entries for SPA 128

Making Time Profile Measurements 129

To define SPA events for tasks, service calls, and user events 130
To display a time histogram of task events 133

To show a table of SPA events 134

To display a count histogram of task events 134

To measure only data from a specifictask 135

To show a table of service call invocations 136

To show a normal function duration histogram 137

To show a histogram of task and user events 139

10

Contents

Coordinating Measurements with the Emulator 140

To configure the emulation analyzer to receive trig2 140
To break on task time overflow 141
To disable the SPA trig2 143

Automating RTOS Measurements
Demo Action Keys and Related Command Files 146

Using Command Files 149

To place youmeasurements in command files 149

To use command file parameters to pass in variables 150
To use shell scripts from within command files 151

To define command file search directories 152

Using Action Keys 154

To place youmeasurements on action keys 154
To modify interface startup scripts 157

Installing New Custom OS Product Files

To answer install_rtos questions 161
To reinstall the original HP Custom RTOS product 162

Part 3

Reference

Inverse Assembler Language (IAL) Instructions

Instruction Set Summary 166

Executable Instructions 166
Pseudo Instructions 168
Predefined Communication Variables 169

11

Contents

Instruction Descriptions 170

ABORT - Leave inverse assembler 171

ADD - Add to accumulator 172

AND - Logical AND with accumulator 173

ASCII/ASC (Pseudo) - Define ASCII string 174

CALL - Transfer program control to label WRETURN 175
CASE_OF - Conditional testing of variable or accumulator 176
COMPLEMENT - One’s complement on accumulator 178
CONSTANT/CONST (Pseudo) - Define constant 179
DECREMENT - Decrement variable 180

DEFAULT_WIDTH (Pseudo) - Default width of display field 181
EXCLUSIVE_OR - Exclusive OR with accumulator 182
EXTRACT_BIT - Extract from accumulator 183
FETCH_POSITION - Get column number 184

FORMAT (Pseudo) - Format accumulator 185

GOTO - Transfer program control, no RETURN 186

IF - Compare operands 187

IF_NOT_MAPPED - Check for symbol in default map 188
INCLUSIVE_OR - Logical OR with accumulator 190
INCREMENT - Increment variable 191

INPUT - Input data 192

LOAD - Load accumulator 194

MAPPED_WIDTH (Pseudo) - Define maximum width of display = 195
MARK_STATE - Analysis state display control 196
MAX_INSTRUCTION (Pseudo) - Limit instruction execution 197
NEW_LINE - Begin generating a new output line 198

NOP - No operation 199

OUTPUT - Output to output buffer 200

POSITION - Position column pointer 201

QUALIFY_MASK/ VALUE (Pseudos) - Set qualify specifications 202
RETURN - Return 203

ROTATE - Rotate accumulator contents 204

SEARCH_LIMIT (Pseudo) - Limit analysis search 205

SET - Set variable 206

STORE - Store value in accumulator 207

SUBTRACT - Subtract from accumulator 208

TAG_WITH - Flag analysis states 209

TWOS COMPLEMENT - Two's complement on accumulator 210
VARIABLE/VAR (Pseudo) - Define and initialize a variable 211

12

10

IAL Builder Error Messages

Contents

Part 4

Concept Guide

11 Demo RTOS Measurerant Tool Details

The "rtos_edit" Script 221
The "rtos_emul" Startup Script

The "rtos_spa" Startup Script

230
237

Scripts Run by the Action Key Command Files 241

create_12 call 241
create_12 call32 243
get_task_number 246

Part 5

12

Installation Guide

Installation

To install HP 9000 software 251
To install Sun SPAR Csystem software

Glossary

Index

253

13

14

Part 1

Quick Start Guide

A one-glance overview of the product and a few task instructions to help y«
get comfortable.

15

Part 1

16

Using the Demo RTOS Measurement
Tool

17

RTOS Measurement Tools — At a Glance

Hewlett Packard Performance Analyzer: emB68302 (mB6830

File Display Events Profile Settings Help

Action keys: Initialize Time Tasks Count Srve Calls ;| Trig2 on Overflw
FunctionDurationi| TaskX: Servecalls Count Tasks Tsk & User Evnts Disable Trig2

Histagram: Interval Duration Run Time: 14:48 Stability: 1861
Mame (sort? time) Time VA 4 A 127 16 y
> 7 Task_8888 156.8 s| 17.71| N

& Task_BBAS 156.8 5| 17.71| I

5 Task_BB@4 156.8 5| 17.71| I

4 Task_0BA3 156.6 <[17.71| N

3 Task_o@@2 121.4 s| 13.79| I

2 Task_oB@1 76.2 5| 7.90| I

8 Task_@887 44.3 s| 5.03| I

1 Task_8B@@ 9. 0us| B.88
Undefined Addresze 2 2]
Totals Absslute 888.8 <| 188% B 4% 8% 12% 6% 28%

File Display Modify B ints Trace Setti

Action keys: Track QS calls Track Everything :| Task switch A->B Help RTOS
| Memory Usage QOnly Call X Only Calls X & ¥ i|Tsk A msg—=>Que X}| Custom OS Trace
ment in process §
<UserDefinable1> | Only Task X | Qnly Tsk W,XY,Z | Task A: VarX | NonCustom Trace
| <UserDefinable2> | Tasks & Queues | Only Queues | Task A: FuncX | Before SPA trig2

()imain

DFfset=H

Real Time Operating System

with symbol

=F te NON-RTOS: addr=1EFFA dats=BEEE27BE = ————————o—e—

+ag1 - task_create(index=B0BEAEED, entry=ta.knl_null_task 447. us
queus=NULL, stack_top=1384, stack_botr=1180
priority=088BB864, name=""null_task’ "}

+A23 <~ task_createl() 184, us

+@25 -7 task_create{index=0B0EREE], entry=taskl.tst_task_l J2.2 s
qusus:dat_taskl_quaua, stack_top=2184, stack_bot=1384
priority=BEBBEEE4, name=""taskl’’}

+043 <~ task_create(} 34.6 0S5

+A45 -> task_create(index=0BABAEAZ, entry=taskZ.tst_task_2 3.1 ug
quaua=dat‘7task27quaua, stack_top=2384, stack_bot=2184
priority=HBEBAGAES, name=""task2 ")

+063 <= task_create(} 94.6 uS

+065 - task_create{index=000BBBE3, entry=task3.tst_task_3 J2.1 us
queueZdat‘_taska_queue, stack_top=3184, stack_bot=2384
priority=HBABABEZ, name=""task3 ")

STATUS: HE8302--Running user program Emulation trace complete Alw] g

More data off en
time count

A Real-Time Operating System (RTOS) Measurement Tool uses the

HP 64700 emulation bus analyzer and software performance analyzer (SPA) to
capture operating system software activity in real-time. It includes a specially
developed inverse assembler that uses the trace display to show program flow
information. The captured and displayed data is actually a series of memory
writes to a data table. The histograms displayed by SPA are derived from
specialtask bucketsvhich are groups ahemory locations for each known

task, that are written to lwallout routinesthat run when tasks switch. The

inverse assembler, modification of code to do the memory writes, data table,

Chapter 1: Using the Demo RTOS Measurement Tool
RTOS Measurement Tools — At a Glance

task buckets, and callout routines are the items developers must customi
create their own RTOS Measurement Tool. Oaat®n keyswhich make
common measurements available at the click of a button, are defined, a
complete, easy to use, OS knowledgeable tool will be created.

When using an RTOS measurement tool with an Emulation Bus Analyzer,
you can:

* Viewproblems at the task level.

* Use one button point-and-click commarfdsrun canmand files in the
command line).

» Displaythe real-time OS trace with the native service call mnemonics of
your OS.

» Track all OS service calls and display entrygraeters and ratn values.

e Capture task switches caused by OS service calls or system clock ticks.

* Understand how interrupts are affecting your high level task flow.

» Stop program execution if any OS service call evis.fa

« ldentify which tasks access a shared function or variable.

e Trigger when a certain message is sent to a specified mailbox.

e Capture activity after task A switches into task B in sequence.

e Detect attempts to free invalid memory segments.

» Display location of local stacks.

e Track all dynamic memory allocation and freeing.

e Trigger on stack overflow.

When using an RTOS measurement tool with a Software Performance
Analyzer, you can:

« Perform time prdfing of task durations ingur application.
 Measure time spent in OS kernel versus application tasks.
 Measure the percentage of time spent in each application task.
e Stop program execution if a task exceeds a maximum time.

* Find out how often each OS service call is invoked.

19

Note

Getting Started

The HP B3082A Custom Real-Time OS Measuent Tool comes with a
small custom OS and a demo RTOS measurement tool. Aftellimgtae
product, you can start the emulator/analyzer interface, load the custom OS
and application code, and perform real-time OS measurements.

If you have installed the Software Performance Analyzer (SPA) HP 64708 into
the HP 64700A Card Cage and you have installed the HP B1487B SPA
Interface on your computer, you can perform prafieasurements on RTOS
tasks and service calls.

Once you have seen the types of measurements you can perform with a RTOS
measurement tool, the next chapter shows you how to modify the demo RTOS
measurement tool to includepport for an additional OS service call.

These tutorial tasks are described in the following sections:
* Making RTOS Measurements with the Emulator/Analyzer
* Making RTOS Measurements with the SPA

The demo OS code is for 68000 fanpghocessors. You must rewrite assembly
language code in the demo if you're using other microprocessors.

Product Overview

The Custom RTOS Measurement Tool is designed to help someone with an
application connected to some Real-Time Operating System understand the
interaction between the those two pieces of code.

What the tool presents to the user is an ordered list of events along with time
stamps for each of the events. Each event consists of either a function call or
return from a service call (in other words, a call from the application to the

OS) or a task switch. This list of events is presented to the user in the "trace"
window of the emulator. Each "event"has been captured by the analyzer and

20

the data captured is interpreted by a special inverse assembler which disp
the data in an OS unique form.

By viewing the specially displayed trace, a user is able to see what parame
were passed to the OS from the application, what values were returned, when
the application switched to another task, which task it switched to, and what
was the first OS interaction of the new task. All of this is repeated for the
whole trace and a better understanding of the flow progransily eatained.

All of this capability is done solely by "ilmmenting" code with a few memory
writes. Since it is just "data writes" that create the special trace, the flow of the
data is explained below.

Normally, when an application calls the OS, it passearpaters to the OS,
and the OS interprets the paneters depending on the function (that is,
service call) being used. For the RTOS measurement tool, right before
control is passed to the OS, all of the parameters are written to a unique
location in a data table. (There is a "unique"location for every function call
and return defined for the OS.)

A trace has been set up to capture any writes to this data table so the analyzer
saves all of the parameters being passed to the OS along with the relative time
at which they are being passed. Since the address is part of the information
saved bythe analyzer and the address was a unique location, it is known which
function has been called (via the address), what parameter values were passed
(via the data), and at what relative time this call occurred (via the time stamp).
On return from the function, a similar thing occurs and the return function,
parameters values, and relative time are also known.

Now, in between the call and the return, the OS may decide the some other
task needs to be run. Ifthe new task originally called the OS through some
service call, it is going to return through that call. In the same manner as
described before, all return datdlwe captured by the analyzer. Theoblem

is that, although the call and returns of functions are now known, the task that
is currently making those kisiis not known. This is where the "switch callout”
routine is used. Before the return is done, a routine defined as the switch
callout will be called first. Thisoutine has the task IDs of the two tasks being
switched and writes these two IDs to two more unique locations in the data
table. Since the IDs are unique and the locations are unique, the information
stored by the analyzerilntell which task ended, which task started anew, and

at what relative time the switch occurred. This gives all of the basic
information needed for knowledge of the application/task-OS interaction.

21

Program Code and Data

Application
Code

, Supporf
Routines
/

Instrumented
Service Call
Library

v/

Assembler
V

Emulator/Analyzer

Inferface

No Physical

Me nory
Necessary

RTOS
Trace
Display

- RTOS

Measurement

SPA
Profile
Meas

Tool

64749802

Some extra work may be done in the switch callout routine to also write the
task IDs out to locations unique to the task ID (not just unique to whether the
task was ending or starting). This gives a start and end point for "intervals" to
be used by SPA in determining the length of time that each task executes.

22

Now that the interaction data is captured, how can it be displayed? A spe
inverse assembler can be written and installed which, when controlling th

trace display, will intepret the analyzer data in an OS specific manner. Go

back to the data, values have been written to specific locations in the data
table. Since the inverse assembler is written, and must be written, with
complete knowledge of the data table layout, all the inverse assembler needs is
the starting address of the table to know the addresses of all other locations.
Now, if the captured data is given to the special inverse assembler, it will

match any captured addresses to the addresses it knows as data table locations.
If a match occurs, the assembler knows it has data/parameter values for a
specific function. The inverse assembler can then output the function name,
the parameter names with their associated values, and the relative time.
Similarly, for task switching, so long as the task switch locations for entry and
exit are part of the data table, the inverse assembler will output some message
like "Task Ending: task id = x"where "X"is the ID written by the switch callout
routine to the entry/exit data table locations.

This is generally how the RTOS measurement tool works. There are a few
extra details that need to be known, but these are covered in the manual’s
chapters. The RTOS measurement tool simply prets special data writes
to a table and displays them in the trace window with ASCII texbéating
where the data came from.

23

Chapter 1: Using the Demo RTOS Measurement Tool
Making RTOS Measurements with the Emulator/Analyzer

Making RTOS Measurements with the
Emulator/Analyzer

Before you can use the demo RTOS measurement toolhpuldshave
already:

» Installed the emulator, emulation bus analyzer, and Graphical User
Interface as described in théiser's Guidemanuals. The
emulator/analyzer interface software must be version C.05.00 or greater.

* Installed the HP B30xx Real-Time Operating System Measurement Tool
as outlined in the "Installation" chapter of this manual.

It's helpful if you are already familiar withoyr emulator and its interface
before using the demo RTOS measurement tool.

Step 1: Change to the demo directory

* Change to the directory that contains the demo OS code.

If you have already installed the Custom RTOS Measurement Tool, the demo
files will be in the $HP64000/rtd3B082A/src directory. If you haven't
installed the product, refer to the "Installation" chapter.

$ cd $HP64000/rtos/B3082A/src <RETURN>

During installation, you set the environment variable HP64000 to the
directory in which the HP 64000 software has been installed. This directoryis
"lusr/hp64000" unless you installed the software in a directory other than the
root directory.

24

Chapter 1: Using the Demo RTOS Measurement Tool
Making RTOS Measurements with the Emulator/Analyzer

Step 2: Start the Emulator/Analyzer interface

With the emulator/analyzer interface already running, you can open the RTOS
emulation window by choosing théle ~Emul700-Custom RTOS Emul
pulldown menu item.

If you do not see th€ustom RTOS Emul ...andCustom RTOS SPA ..entries
under the-ile ~Emul700 pulldown menu, review the installation procedure to
make sure it was done correctly, and make sure the /s{#2882/customize
script was run. If you 8t do not see these new entries, contact your
Hewlett-Packard representative.

If the emulator/analyzer interface is not already running, you can start the
RTOS emulation window using the "rtos_emul" script found in
"$HP64000/bin". This is a simple script which sets up a few things before
callingemul700with your given emulatorame. The syntaxfor using this
script is:

rtos_emul [-c <command_file>] PROCESSOR
<emulator_name>

The PROCESSOR type of your emulator (for exam@8802 or 68020) is
needed to run the "rtos_emul" script. You can either enter it on themaad

line or let the script prompt you for it. If you dont want to enter the processor
or be prompted for it every time, you may edit the script as@ya a value to

the variable PROCESSOR.

The "emulator_name"is the logical emulator name given in thé47B0
emulator device table file ($HP64000/etc/64700tab.net).

Opening the RTOS emulation window does several things:
1 Action keys are defined for easy "one click" measurements.

2 Environment variables are set so the command files related to the action
keys are found.

3 The PATH variable is set so shell scripts needed by command ifilbs w
found.

25

Chapter 1: Using the Demo RTOS Measurement Tool
Making RTOS Measurements with the Emulator/Analyzer

Step 3: Load the emulator configuration

* ChooseFile ~Load —~Emulator Config... from the pulldown menu, and use the
File Selection dialog box to specify the configuration file to be loaded.

Or:

» Using the command line, enter tload configuration < FILE> command.

For example, if youre using the 68302 emulator:

load configuration config_302.EA <RETURN>

A few notes on configuring emulators for RTOS measurements:

1 You MAY set the emulator to be restricted to real-time runs. The RTOS
measurements are donehwaut breaking into the emulation monitor.

2 You may use either a foreground or background monitor.

Step 4: Load the real-time OS demo program

* ChooseFile -Load —Executableand use the dialog box to select the absolute
file.

* Using the command line, enter tload < absolute_file> command.

For example, if youre using the 68302 emulator:

load test302.x <RETURN>

26

Chapter 1: Using the Demo RTOS Measurement Tool
Making RTOS Measurements with the Emulator/Analyzer

Step 5: Trace data table writes and display the
real-time OS trace

» Click theTrack OS callsaction key.

This runs the "e_trkds" command file which contains the following
Emulator/Analyzer commands:

trace only address range HP_RTOS_TRACK_START thru HPOS_USER_DEFENTRY-1
display trace real_time_os

The service call portion of the data table in the demo OS code begins at the
address HP_RTOS TRACK_START and ends at the address before
HPOS _USER_DEFENTRY.

Thedisplay trace real_time_oscommand causes the RTOS inverse assembler
to be used to decode the data captured by the analyzer. Information about the
operation of the real-time OS is displayed in an easy-to-read format.

Step 6: Run the program

» Position the mouse pointer in the entry buffer and enter the address "main®;
then, choos&xecution-Run -from ().

Or:
» Using the command line, enter the following command:

run from main <RETURN>

27

Chapter 1: Using the Demo RTOS Measurement Tool
Making RTOS Measurements with the Emulator/Analyzer

A real-time OS trace similar to the following will be shown.

race List

Label: Real Time Operating System time count
Baze: with symbol relative
after HOW-RTOS: addr=1EFFA datz=AEBAZ7AR ——mmmmem oo
+HA 1 - task_createfindex=BAAAEEEE, entry=ta.knl_null_task 447. u3

gqueus=NULL, stack_top=1384, stack_bot=1158
priority=BEABABES, name=""rull_task’ ")
+823 <{- task_create() 184, us
+825 -* task_createlindex=HOABEAA], entry=taskl.tst_tashk_l 32.2 us
queue=dat|_task1_queue, stack_top=2184, stack_bot=1354
priority=BERBABE4, name=""taskl’ "}
+H43 <- task_create() 94.6 u3
+H45 - task_createflindex=BAAAEEEZ, entry=taskZ.tst_task_z 3z2.1 u3
queue=dat|_task2_queue, stack_top=2384, stack_bot=2184
priority=BEBBABEI, name=""task2” ")
+BE63 <{- task_create() 34.6 us
+BES -+ task_createlindex=HOAHEEES, entry=task3.tst_task_3 22.1 us
queue=dat|_task3_queue, stack_top=3184, stack_bot=2354
priority=BERBABEZ, name=""task3’ "}

Step 7: Use other action keys

» Click other action keys to view other sample RTOS measurements.

When the sample RTOS measurements require parametersiyoe w
prompted for task or queue IDs (for example, 1, 2, 3, etc.) or service call
names (for example, send_message, get_message, etc.). In the graphical
interface, enter the parameters and click the OK button. In the terminal or
terminal emulation based softkey interface, enter the parameters on the
command line.

Note that the "Memory Usage" action key will not work until you have
completed the changes described in the tutorial in the "Modifying the Demo
RTOS Measurement Tool" chapter.

28

Chapter 1: Using the Demo RTOS Measurement Tool
RTOS Measurements with the SPA

RTOS Measurements with the SPA .

If you wish to make profileneasurements on RTOS tasks and serviltg, aa
addition to installing the emulator/analyzer interface and the HP B3082
product, you should have already:

» Installed the HP 64708A Software Performance Analyzer and its interface
software (HP B1487) as described in 8a&ftware Performance Analyzer
User's Guide

It's helpful if you are already familiar with the software performance analyzer
and its interface before using the demo RTOS measurement tool.

Step 7: Start the Software Performance Analyzer
Interface

Bring up SPA window by choosing tiiée - Emul700-Custom RTOS SPA
pulldown menu item.

You can also bring up the SPA window using the "rtos_spa" sonpid in
"$HP64000/bin". This is a simple script which sets up a few things before
callingemul700 -u xperfwith your given emulatorame. The syntax for using
this script is:

rtos_spa [-c <command_file>] <emulator_name>

29

Chapter 1: Using the Demo RTOS Measurement Tool
RTOS Measurements with the SPA

Step 8: Define events for OS tasks

» Click thelnitialize action key.

This runs thes'_init" canmand file which contains the following SPA
commands:

define single_event named Task_0001 interval HPOS_Tenter_0001 thru HPOS_Texit_0001
define single_event named Task_0002 interval HPOS_Tenter_0002 thru HPOS_Texit_0002
define single_event named Task_0003 interval HPOS_Tenter_0003 thru HPOS_Texit_0003
define single_event named Task_0004 interval HPOS_Tenter_0004 thru HPOS_Texit_0004
define single_event named Task_0005 interval HPOS_Tenter_0005 thru HPOS_Texit_0005
define single_event named Task_0006 interval HPOS_Tenter_0006 thru HPOS_Texit_0006
define single_event named Task_0007 interval HPOS_Tenter_0007 thru HPOS_Texit_0007
#

define single_event named OS_Time interval HPOS_Start Ovrhd thru HPOS_Stop_Ovrhd
define single_event named Measure_Ovrhd interval HPOS_ Start_Intrusion thru \
HPOS_Stop_Intrusion

#

define single_event named Srvccall_task_create interval HPOS_task_create_Entry thru \
HPOS_task_create_Exit

define single_event named Srvccall_send_message interval HPOS_send_message_Entry thru \
HPOS_send_message_Exit

define single_event named Srvccall_get_message interval HPOS_get_message_Entry thru \
HPOS_get_message_Exit

define single_event named Srvccall_alloc_message interval HPOS_alloc_message_Entry \
thru HPOS_alloc_message_Exit

define single_event named Srvccall_free_message interval HPOS_free_message_Entry thru \
HPOS_free_message_Exit

#

define single_event named Userintr_1 interval HPOS_USER_DEFENTRY thru \
HPOS_USER_DEFENTRY+3h

define single_event named Userintr_2 interval HPOS_USER_DEFENTRY+4 thru \
HPOS_USER_DEFENTRY+7h

define single_event named UserIntr_3 interval HPOS_USER_DEFENTRY+8 thru \
HPOS_USER_DEFENTRY+0bh

define’single_event named Userlintr_4 interval HPOS_USER_DEFENTRY+0ch thru \
HPOS_USER_DEFENTRY+0fh

define’single_event named UserlIntr_5 interval HPOS_USER_DEFENTRY+10h thru \
HPOS_USER_DEFENTRY+13h

define single_event named UserIntr_6 interval HPOS_USER_DEFENTRY+14h thru \
HPOS_USER_DEFENTRY+17h

30

Chapter 1: Using the Demo RTOS Measurement Tool
RTOS Measurements with the SPA

Step 9: Execute a time profile SPA measurement

Click theTime Tasksaction key.

This runs the "s_timetasks"monand file which contains the following SPA

commands:

stop_profile

select_events matching "Task_*"
setup_measurement enable off
setup_measurement disable off

profile interval_duration
display histogram data time

wait 2

display histogram sort_events time

display histogram rescale current_max

A time profilemeasurement similar to the followingiMoe shown.

Histogram: Interval Ouration Run Time: 16:43 Stability: 16BY
_Mame f{sort? time? Time y: 2 4% = 127 16 L
> 7 Task_BBAE 177.7 = (7. 71|

E Task_ARAAS 177.7 < (7. 71|

5 Task_PRA4 177.7 =| 17.71| I

4 Task_PRA3 177.7 =| 17.71| I

3 Task_ARAZ 138.4 =| 13. 79| I

2 Task_B861 ga.1 s| 7.9 | I

§ Task_BB87 8.5 =| 5. 03| I

1 Task_B@0AE B.8us| @.00
Undefined Addresss 2 2
Tatals Absolute 1.BAE3s| 1@EZ 8% 41 B8 12% 16% 2ax

31

Chapter 1: Using the Demo RTOS Measurement Tool
RTOS Measurements with the SPA

. Step 10: Use other action keys

» Click other action keys to view other sample RTOS measurements.

32

Chapter 1: Using the Demo RTOS Measurement Tool
Exiting and Releasing the HP 6 4700 Interfaces

Exiting and Releasing the HP 64700 Interfaces .

The Emulator/Analyzer and SPA interfaces are exited and released in the
same way.
This section shows you how to:

 Exit and release the HP 64700 interfaces.

Step 11: Exit and release the HP 64700 interfaces

To exit the interface and release the emulator for access by other users, choose
File -Exit ~Released

Or:

In the emulator/analyzer interface command line, enter the following
command:

end release_system <RETURN>

33

34

Modifying the Demo RTOS
Measurement Tool

35

Note

Modifying the Demo RTOS
Measurement Tool

There is a service call in the demo OS which hasn't been instrumented in any
of the files. This chapter shows you how to instrument that service call in the
demo OS code and modify the demo inverse assembler.

This section helps you better understand all the connections needed in
producing a fullmneasurement tool forour own custom real-time operating
system.

These tutorial tasks are described in the following sections:
» Instrumenting OS Code for a New Service Call
* Modifying the Inverse Assembler

* Modifying Related Command Files and Scripts

The demo OS code is for 68000 fanpghocessors. You must rewrite assembly
language code in the demo if you're using other microprocessors.

36

Chapter 2: Modifying the Demo RTOS Measurement Tool
Instrumenting OS Code for a New Service Call

Instrumenting OS Code for a New Service Call

This section shows you how to:
 Copythe demo OSfiles.
* Add an entryin the data table.

* |Instrument the service call.

* Re-build your application.

Step 1: Copy the demo OS files

Make a new directory to hold the custom OS files.

For example:

$ mkdir $HOME/rtos_demo <RETURN>

$ mkdir $HOME/rtos_demo/src <RETURN>

Change to the OS demo directory you just created.

For example:

$ cd $HOME/rtos_demo/src <RETURN>

Copythe demo files to the current directory.

$ cp $HP64000/rtos/B3082A/src/* . <RETURN>

Change permissions on the copied files.

$ chmod 644 * <RETURN>

37

Chapter 2: Modifying the Demo RTOS Measurement Tool
Instrumenting OS Code for a New Service Call

When installed, these files are given read-only permissions to prevent them
from accidentally being removed. You must change the permissions so that
you are able edit the files and save your changes (that is, read and write the
files).

Step 2: Add an entry in the data table

In the data table file, "table.c", add locations for the instrumentation of the
"alloc_memory()" call.

Locations are needed for both the entry and exit of the routine. Because two
parameters are passed in, the location for the entry needs two positions. For
the return, there is one return value but there is also the return code of the
function. Therefore, we also need two locations for the exit. The code added
should look like:

long HPOS_alloc_mem_Entry[2];
long HPOS_alloc_mem_EXxit[2];

The position of the entries is relevant. Please note where you placed them.
(Suggested is immediately after the "free_message" entries.)

38

Chapter 2: Modifying the Demo RTOS Measurement Tool
Instrumenting OS Code for a New Service Call

Step 3: Instrument the service call

1 The information being passed into and returned from a function needs to
written to the data table. You do this by "instrumenting"the system calls i
"mikeos.c".

If you find it necessary, you can write out all three inputs so you can see the
value of the memory pointer also. The example below only instruments for
the two parameters that actually have "data". Foraokgine
"allocate_memory()", the instrumentation should look like:

long allocate_memory(int region_id, int size, char **mem_area)
long ret_value = NO_ERROR_RET;
/* INSTRUMENTATION */

HPOS_alloc_mem_Entry[0] = region_id;
HPOS_alloc_mem_Entry[1] = size;

/* INSTRUMENTATION */
HPOS_alloc_mem_EXxit[0] = ret_value;
HPOS_alloc_mem_Exit[1] = (long) *mem_area;

return(ret_value);

2 Dont forget to add definitions of the two symbols:

extern long HPOS_alloc_mem_Entry([];
extern long HPOS_alloc_mem_Exit[];

39

Chapter 2: Modifying the Demo RTOS Measurement Tool
Instrumenting OS Code for a New Service Call

Step 4: Re-build your application

Use themake command to re-buildour application.

The "Makefile" included with the demo OS code includes the targets "test302",
"test340", and "test020" for the 68302, 68340, and 68020 emulators,
respectively. The different targets are necessary because different compilers
are used when generating code for the different emulators. For example, if
you are using the 68302 emulator, enter tharoand:

$ make test302 <RETURN>
This will create the demo executable and include all of the changes you just

made to the application. (The demo make file assumes you have the
appropriate HP AXLS C compiler.)

40

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying the Inverse Assembler

Modifying the Inverse Assembler

This section shows you how to:
* Copythe demo inverse assembler files.
* Add code to the inverse assembler.

 Re-build the inverse assembler.

* |nstall the inverse assembler.

Step 5: Copy the demo inverse assembler files

Make a new directory to hold the inverse assembler language source files.

For example:

$ mkdir $HOME/rtos_demol/interpreter <KRETURN>
(The SHOME/rtos_demo directory was created earlier in Step 1.)

Change to the inverse assembler source directory you just created.

For example:

$ cd $HOME/rtos_demolinterpreter <RETURN>
Copythe inverse assembler files to the current directory.

$ cp $HP64000/rtos/B3082A/interpreter/* . <RETURN>
Change permissions on the copied files.

$ chmod 644 * <RETURN>

41

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying the Inverse Assembler

When installed, these files are given read-only permissions to prevent them
from accidentally being removed. You must change the permissions so that
you are able edit the files and save your changes (that is, read and write the
files).

Step 6: Add code to the inverse assembler

Add a string definition for the function call in the "ial.S" source file.

Instead of defining strings, you could simply output the string in the function;
however, it's good to have all the strings defined in a common place for the
sake of consistency and to make modification of the inverse assembler easy.
Add the following line with the rest of the string definitions.

ALLOC_MEM_STR ASCIlI "alloc_memory"

The ASCII ingruction associates ame with a string. Inverse assembler
language instructions that follow can use tlene instead of a string operand.

Add an entry and exit variable for the function.

These variables are needed to keep the actual addresses of the table entries.
Once set, these variables will be used to compare with every trace state to see
if the state begins a set of states that describes an "allocate memory" event
(either an entry or an exit of the function "allocate_memory()".)

ALLOC_MEM_ENTRY VARIABLE 0

ALLOC_MEM_EXIT VARIABLE 0

The VARIABLE instruction defines and initializes an inter82tbit 4orage
location that can be used by the inverse assembler.

Add the IAL code that will set the variable’s values to the actual addresses
where the table entries are located within memory.

It is imperative that this code be added in the same relative place that the table
entries appear in the table. This is because the code starts with the address of
the beginning of the table and the rest of the entries addresses are calculated
by just adding offsets from the previous address value. Since the "allocate

42

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying the Inverse Assembler

memory"table entry was placed after the "free message" entry, you must add
code immediately after the calculation of the latter's address. Therefore, add:

STORE FREE_MESSAGE_EXIT

ADD 4
Added code: STORE ALLOC_MEM_ENTRY
Added code: ADD 8
Added code: STORE ALLOC_MEM_EXIT
Added code: ADD 8

STORE STRING_ARRAY
ADD 12

The STORE instruction copies the contents of the accumulator to the variable
identified in the instruction operand. The ADD instruction adds the operand
value to the accumulator and leaves the result in the accumulator. The
accumulator is a 32-bitarage location through which arithmetic and logical
operations are performed.

Add the IAL code that checks for the "allocate memory" data dump.

Whenever the inverse assembler is called, it looks at the address of the state
passed in, compares it with the known addresses of the table entries and
decides if the first part of a known "function data dump"has occurred.

In order to keep consistency, add the code that checks for "allneamery"
data right after the code that checks for "free message" data. The code checks
for both entry and exit since they are separate events:

IF 31,0.= FREE_MESSAGE_EXIT THEN GOTO FREE_MESSAGE_RTN

Added code: IF 31,0 = ALLOC_MEM_ENTRY THEN GOTO ALLOC_MEMORY_FNC
Added code: IF 31,0 = ALLOC_MEM_EXIT THEN GOTO ALLOC_MEMORY_RTN

IF 31,0 = USER_NUMERIC1 THEN GOTO USER_DEFINED_FNC

The IF instructions above compare bits 31 through 0 of the accumulator
(which has been loaded with an address value captured by the analyzer) with
the values previously stored in the variables. Ifthe accumulator and variable

43

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying the Inverse Assembler

contents are equal, program control goes to the instruction label specified; if
they're not equal program control goes to the instruction that follows.

Write the ALLOC_MEMORY_FNC and ALLOC_MEMORY_RTN IAL
routines that display the captured data.

Once it is determined that a "function data dump" has occurred for the
"allocate_memory()" function, the captured trace data needs to be interpreted
and displayed in a readable form. The IAL routine
"ALLOC_MEMORY_FNC"will do this for this entry and
"ALLOC_MEMORY_RTN"will do this for the exit.

The first state of the captured trace will hold the "region_id" data and the next
state will hold the "size" data. A string is output telling theapagter’'s name
before the actual value is output. So the function will be:

ALLOC_MEMORY_FNC
OUTPUT CALL_STRING
OUTPUT ALLOC_MEM_STR
OUTPUT “(region_id="
CALL OUT_RELO_HEX
OUTPUT ", size="
CALL OUT_REL1_HEX
GOTO END_CALL

The OUTPUT instruction copies information to the "Real Time Operating
System" column in the Emulator/Analyzer trace display. The operand of the
OUTPUT instruction can be a string or ame previously defined for a string
with an ASCII ingruction. The CALL instruction transfers program control
to the instruction label specified.

Notice that the routines"OUT_RELO HEX"and "OUT_REL1 HEX"have
been used. These are common routines that have been defined for both the
version of the inverse assembler for 16gsibcessors, "146.S", and the

version of the inverse assembler for 32gribcessors, "182.S".

For the "exit" display, only the parameters beingireed vill be displayed by
the IAL function-specific function. The return valuéle displayed by the
code associated with 'ERROR_CODE_END™".

ALLOC_MEMORY_RTN
OUTPUT RETURN_STRING
OUTPUT ALLOC_MEM_STR
OUTPUT "(memarea_ptr="
CALL OUT_REL1_HEX
GOTO ERROR_CODE_END

44

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying the Inverse Assembler

These are all the changes necessary. The IAL needs to be reassembled and
installed, and your application needs to be rebuilt with the changed service call
library.

Step 7: Re-build the inverse assembler

Make either the 16- or 32-bit version of the inverse assembler.

The "Makefile" included with the demo inverse assembler code concatenates
the "ial.S" source file with either 'iB6.S" or "ial32.S" (versions of the common
routines forl6- or 32-bitprocessors) before assembling the combined file to
the inverse assembler.

To make the inverse assembler for 16gdvicessors:

$ makeiall6 <RETURN>

To make the inverse assembler for 32dvicessors:

$ makeial32 <RETURN>

Step 8: Install the inverse assembler

Become the root user.

Enter themake command with the@gpropriate target.

The make file included with the demo inverse assembler code also provides
targets to install the inverse assembler in the appropriate emulator interface
directory.

To install the inverse assembler for the 68302 emulator interface:

$ make install302 <RETURN>

45

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying the Inverse Assembler

To install the inverse assembler for the 68020 emulator interface:

$ make install020 <RETURN>

To install the inverse assembler for the 68340 emulator interface:

$ make install340 <RETURN>

Now, if you start the Emulator/Analyzer interface, load the demo OS program,
and trace data table writes as described earlier in this chapter youll be able to
see the "alloc_memory()" service call in the RTOS trace display.

46

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying Related Scripts and Command Files

Modifying Related Scripts and Command Files

This section shows you how to:

 Addan entryin "create_12_call"and "create_12_call32".
* Add an entryin "spabasecmd".

e Create anew"s_init"file.

Step 9: Add an entry in 'create_12_call"and
‘create_12_ call32"

Change to the $HP64000/rtos/B3082A directory.

$ cd $HP64000/rtos/B3082A <RETURN>

Edit either the file for 16-biprocessors or the file f@&2-bit processors.

If you have a 16-bit mioprocessor, edit the "create_call" script. Change
the lines:

free_message) funcname=HPOS_free_message
nextfunc=HPOS_String_array

To:

free_message) funcname=HPOS_free_message
nextfunc=HPOS_alloc_mem # changed

aIIoc_mer’ﬁory) funcname=HPOS_alloc_mem # added
nextfunc=HPOS_String_array # added
" # added

47

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying Related Scripts and Command Files

Or, if you have a 32-bit mioprocessor, edit the "creatE2_call32" script.
Change the lines:

free_message) funcname=HPOS_free_message
dataspace=2
nextfunc=HPOS_String_array

To:

free_message) funcname=HPOS_free_message
dataspace=2
nextfunc=HPOS_alloc_mem # changed

aIIoc_mer"ﬁory) funcname=HPOS_alloc_mem # added

dataspace=4 # added
nextfunc=HPOS_String_array # added
" # added

These two scripts are used by command files to create trace specifications that
will track 1 or 2 specific functions.

Step 10: Add an entry in "spabasecmd"

Change to the $HP64000/rtos/B3082A/action_keys directory.

$ cd $HP64000/rtos/B3082A/action_keys <RETURN>

Edit the "spabasecmd"file.

You must edit this file so the setup of the SPA intervals will include the
"allocate_memory"interval. To do this, insert the following line:

define single_event named Srvccall_alloc_mem interval \
HPOS_alloc_mem_Entry thru HPOS_alloc_mem_Exit

The "spabasecmd"file is used by the "rtos_edit" script when creating the
"s_init" command file.

48

Chapter 2: Modifying the Demo RTOS Measurement Tool
Modifying Related Scripts and Command Files

Step 11: Create a new 's_init"file

Run the $HP64000/bin/rtos_edit script to creatya new "s_init" file.

$ $HP64000/bin/rtos_edit <RETURN>

When prompted, enter the task numbers 1 through 8. Don't request a special
user environment.

After the script has completed and you have started the Emulator/Analyzer
and SPA interfaces, the action keys "Only Call X"and "Only Calls X & Y"in
the Emulator/Analyzer interface will work for the "allocate_memory" function,
and the function will show up in the SPA histograms.

49

50

Part 2

User’'s Guide

A complete set of task instructions and problem-solving guidelines, with a
basic concepts.

51

Part 2

52

Modifying a Custom OS for
Real-Time Measurements

53

Modifying a Custom OS for Real-Time
Measurements

Because the Emulation Bus Analyzer has only 8 state qualifier resources and 1
range qualifier resource, it would be ingsible for the analyzer to capture OS
activity at discrete locations for each service call, task switch, etc.

However, if the OS code is modified so that it writes information about service
calls, task switches, etc. to a single data area, the analyzer can capture thisOS
information using only the single range qualifier resource.

The Software Performance Analyzer makes time prafié@asurements by
keeping track of time between accesses of two locations. Because tasks don't
always enter and exit at the same point, you can modify OS code so that pairs
of locations are written to when tasks enter and exit. You can also modify the
OS code if you wish to measure other things like OS overhead or RTOS
measurement tool intrusion.

This OS code modification for real-time measurements is also known as
instrumentinghe OS code.

This chapter describes the following aspects of modifying a custom OS for
real-time measurements:

* Guidelines for OS Code Instrumentation

* Instrumenting Code for Real-Time OS Tracking
* Organizing the Data Table

e Organizing the Task Data Buckets

* Re-Building the OS and the Application

Emulation Bus Analyzer Measurements

Because the Emulation Bus Analyzer captures information on the
microprocessor’s address and data bus, you must add code that causes the

54

Chapter 3: Modifying a Custom OS for Real-Time Measurements

microprocessor to write data to certain locations when certain events occur in
the OS operation.

For example, when OS service calls are made, a user wants to see the
parameter values. Likewise, a user wants to see tbhenredlues when service
calls exit. Therefore, you must modify the OS code so that th@primcessor
writes parameters and teh values when service limenter and exit.

Also, a user wants to see when tasks in the application code start and wh
they switch. Therefore, you must modify the OS code so that the
microprocessor writes task ID information when tasks start or switch.

Because the Emulation Bus Analyzer captures information on the
microprocessor address and data bus, it's not important that the information
actually be saved; therefore, no real physical memoryis needed. However, the
locations that are written to must be in an address range that is writable.

The locations that are written to when service calls are entered or exited or
when tasks start or switch should be located in the same address block to make
trace commands as simple asgible and to make inverse assembly easier.

This block of locations is called thata table

Software Performance Analyzer Measurements

Because the Software Performance Analyzer measures time between accesses
of different locations, you must modify the OS code so that the

microprocessor accesses one location at the beginning of an event and another
location at the end of an event.

For example, you can perform time profieasurements on servicdlsdy
measuring between accesses of the entry and exit locations in the data table.
These locations are also used for service call tracking by the Emulation Bus
Analyzer.

To perform time profilaneasurements on tasks, you must set up additional
locations that are written to when tasks enter and exit. These locations may be
in the data table. It's also common to place them with other locations set up
for each task, called a taskiata bucketin which information like stack

pointer values or task names are saved. A task’s data bucket is different than
the data table because physical memoryis required if any of the information is
to be saved.

55

Chapter 3: Modifying a Custom OS for Real-Time Measurements

Data
Table

Service
Call
Enfries

Stack
Entries

Task
Entry &
Exit

Misc
Entries

Data
Writes

Data
Writes Task
Application & Reads Buckefs
Task 1
INnstrumented Service
Call Library
Task 2
RTOS Kernel
Switch Start
Task n
Callout Callout
A

B3082B01

56

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Guidelines for OS Code Instrumentation

Guidelines for OS Code Instrumentation

It will be easier to identify and change the code added for real-time OS
measurements if you:

« Comment infumented code.

» Use descriptive symbol names.

Comment Instrumented Code

Though the level of intrusion introduced by "instrumented” OS code is very
limited, it's best to comment added statemdptput them within conditional

assembly or compilation directives) so theyre easy to identify if it becomes
necessary to reduce the intrusion.

Also, it’'s good to identify the different types, or levels, of real-time OS
measurements that the insmented code is for so that instrumentation for
certain types of measurements can be identified if necessary. For example, you
could define the following levels:

Level 1 Service call tracking (entry and return), task switching,
clock ticks.
Level 2 Operating System overhead tracking, intrusion

measurement, tracking service call@ returns.
Level 3 SPA support - real time histogram of tasks.

Level 4 Stack tracking - creation and dynamic sizes of stacks.

You could comment itsumented code for these levels of measurements with
" INSTRUMENTATION, HP-RTOS-Level-n */".

Even within these levels, some subsets of measurement data cesilolybe
divided up. At anyrate, the levels keep similar measurements together for
easier editing and understanding.

Generally, when reducing the amount of intrusion, complete levels and any
higher levels are removed (by commenting out therimsented code or by
placing it within conditional assembly or compilation directives).

57

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Guidelines for OS Code Instrumentation

Use Descriptive Symbol Names

It's imperative that the data table begin with the symbol
HP_RTOS_TRACK_START. When you display the real-time OS trace, the
address of this symbol is passed to the RTOS inverse assembler where it is
used to calculate the addresses of the rest of the locations in the data table.

Also, it’s best to use symbol names that start with the same first few characters
so that symbols for instrumented code are not confused with the existing OS
code symbols. For example, for all data table locations you could use names
that begin with "HPOS_".

58

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

Instrumenting Code for Real-Time OS Tracking

In order to make RTOS measurements, a fewiresions must be added to
the OS code. The level of intrusion introduced by these instructions is very
limited. The simplest level of RTOS measurements require only two 68
MOVEM assembly language instructions for each service call and

two-instructions for each task switch. This level provides for basic tracking
the service call input and output pareters and task switching.

Additional RTOS measurements like stack tracking, measurements that
include clock ticks, and real-time (no sampling) software performance analysis
can be provided by adding a few more instructions to the OS code. The level
of intrusion is still quite minimal.

It's important that instrumented code bermoentedor placed within
conditional assembly or compilation directives) so that if the intrusion
introduced becomes a problem, you camowent out some of the added
instructions to find the right balance between intrusion and debugging
capabilities.

This section shows you how to:
* Track service calls.

* Track task switches.

» Track clock ticks.

* Track OS overhead.

e Track stack and memory.

59

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

To track service calls

Modify OS code to copy parameters andiratvalues to the data table when
service calls enter and exit.

Generally, you must do the following things:
1 Declare the data locations as externals.

2 Instrument the service call.
3 Add locations to the data table.

There are a couple methods of instrumenting real-time OS code to track
service calls:

» Ifyour real-time OS is written in assembly language, there is usually an
interface librarythat allows high-level language applications to call the
assembly language based OS service routines. Interface libraries are a
good place to instrument code for real-time OS tracking. (This is the best
method because there is less intrusion with one MOVEM instruction.)

» Ifyour real-time OS is written in C, you can modify the code itself by
adding statements at the beginning and end of service call functions that
copy parameters and et values to an array in the data table. (This
method was used in the demo shown in the "Quick Start Guide" part of
the manual.)

Instructions added for service call tracking represent the most minimal
intrusion while giving you almost complete knowledge of the interaction
between your application and the real-time OS kernel. (These instructions,
however, do not give you any knowledge about the tasks that are running or
when tasks switch.)

Instrumenting an Interface Library

An interface library is a set of functions that correspond directly to each
routine available from the real-time OS. These functions are cleite
callsof the real-time OS.

Each function in the interface library is accessible vi@amal high-level
subroutine call. The function is responsible for takingpeaaters off the
stack and placing values into proper registers. A 'trap"instruction is then

60

Examples

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

executed to pass control to the real-time OS which interprets the registers and
determines which of its own functions needs to be run. (The DO register is
usually set in the interface function to arbitrate which function in the RTOS is
being requested.)

To instrument the interface library, you would add code that writes the
contents of the registers used to specific locations in the data table. A si
68xx MOVEM ingruction can be used to write the contents of multiple
registers to the data table. One 68xx MOVEM is done right before the "t
instruction and one is done upon return.

To instrument real-time OS code written in C:

First, declare the data table locations as externals:

extern long HPOS_alloc_mem_Entry([];
extern long HPOS_alloc_mem_EXxit[];

Then, instrument the service call so that parameters anchredlues are
written on entry and exit:
/~k *

* PROCEDURE NAME: allocate_memory()

**k

* DESCRIPTION:

**k

*

*

*%k *
*/
long allocate_memory(int region_id, int size, char **mem_area)

long ret_value = NO_ERROR_RET;

/* INSTRUMENTATION */
HPOS_alloc_mem_Entry[0] = region_id;
HPOS_alloc_mem_Entry[1] = size;

[* Initalize the return pointer */
*mem_area = NULL,

if ((size + memory_index) > MEM_AREA)
ret_value = REQ_TOO_LARGE;

if (memory_index == MEM_AREA)

ret_value = NO_MORE_MEMORY;
}

if (region_id != 1)
ret_value = BAD_REGION_ID;

61

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

if (ret_value == NO_ERROR_RET)
*mem_area = &memory_block[memory_index];
memory_index += size;

/* INSTRUMENTATION */
HPOS_alloc_mem_EXxit[0] = ret_value;
HPOS_alloc_mem_Exit[1] = (long) *mem_area;

return(ret_value);

Finally, add the locations to the data table:
long HPOS_alloc_mem_Entry[2];
long HPOS_alloc_mem_EXxit[2];

To instrument an interface library for real-time OS code written in assembly
language:

void sc_qcreate (int gid, int gsize, int *errp);

XDEF _sc_qcreate
_sc_qcreate:

LINK A6,#0

MOVE.L D2,-(SP)

MOVE.L PARMO(A6),D1 ;gid
MOVE.L PARMIL(A6).D2 :gsize

MOVEQ #SC_QCREATE,DO

MOVEM.L D1-D2,HPOS_sc_gcreate_Entry ;HP-RTOS-Level-1
TRAP #VRTXTRAP

MOVE.L DO,HPOS_sc_gcreate_Exit ;HP-RTOS-Level-1

MOVEA.L PARM2(A6),A0
MOVE.L DO,(AO)

MOVE.L (SP)+,D2

UNLK A6
RTS

Add locations to the data table:

HPOS_sc_qcreate_Entry DS.L 2
HPOS_sc_qcreate_Exit DS.L 1

62

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

To track task switches

Modify OS code to write the task identifiers to the data table and/or task
buckets when tasks switch.

For the emulation task switch tracking, OS code modification need only
consist of two inguctions: one writing out the task ID of the task being exit
one writing the task ID of the task being entered. This means the data area
must have two positions for task entry and exit.

Because the software performance analyzer needs separate memory locations
for the start and end of each interval it is measuring, each task must have its
own unique start and end memory locations. The OS code must be modified
to write to these unique locations depending on which tasks are switching. In
the instrumented code, the task ID is used as an indexto the data table or a
special task dathucketsarea where there is a unique location for every task’s
exit and entry. This data area is application dependent and must be modified
with the application’s task IDs.

If youre creating an RTOS measurement tool for a vendor’s real-time OS, you
may not be able to instrument the OS code to track task switches. However,
the vendor may allow for a task switch callout routine.

Writing a T ask Switch Cal lout Routine

Thetask switch calloutoutine is a feature provided bythe RTOS vendor. It
allows a user to define a routine to be called every time a task switch occurs.

Typically, the OS code somehow makes task ID information available to the
callout routine. This ID information can be used as an indexto the task data
buckets area to make the algorithm faster. If consistent and gontgask

IDs are not available, a simple linear search can be done on the task buckets.

63

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

Examples The demo task switch routine below shows how an OS task switch routine can
be directly modified to incorporate instrumentation.

**k

** PROCEDURE NAME: knl_start_next_task()

**k

** DESCRIPTION: this procedure is called to switch tasks! It does this
** Py saving the current processor context in the task structure pointed
** to by curr_ptr. Then it loads a new processor context from the task
** structure pointed to by next_ptr. From this point it returns to the

** task just 'reloaded’ as if it had just called this procedure.
*%k *

**k

** void knl_start_next_task(
** struct _task *curr_ptr,
** struct _task *next_ptr)

**k

XDEF _knl_start_next_task
XREF _HPOS_TASK_ENTRY, HPOS_TASK_EXIT
XREF _HPOS_TaskTable

knl_start_next_task

LINK “A6,#-0 : setup our BP
S_curr_ptr SET 8 ; parm2 location on stk
S_next_ptr SET 12 ; parm1l location on stk

**k

** save current-task context
*%

** (NOTE: assumes is always called from current task!!!)
*k

MOVE.L AO,(_saved_register) ; clear AO for use
MOVEA.L (S_curr_ptr,A6),A0 ; get 'curr’ task pointer
MOVE.L (_saved_register),(R_task_a0,A0) ; save proper AO
MOVE.L A7,(R_task_a7,A0) ; save task’'s A7

MOVE.L Al,(R_task_al,A0) ; save task’'s A1

LEA (R_reg_store_hi,A0),Al ; point SP to reg save area
MOVEM.L DO-D7/A2-A6,-(Al) ; save task’s regs
MOVE SR,(R_task_sr,A0) ; save proper SR

** EMUL INSTRUMENTATION **

MOVE.L (R_task_index,A0),_ HPOS_TASK_EXIT ;** Write index to exit **
** SPA INSTRUMENTATION **

** Write to task specific exit point: HPOS_TaskTable[index] + 4

MOVE.L (R_task_index,A0),D1 ;7** move index into D1

LSL #2,D1 ¥+ multiply index(D1) by 4

ADD.L #4,D1 ;** add 4 to index(D1)

ADD.L # HPOS_TaskTable,D1 ;** Add start to index-offset
MOVE.L D1,Al ;** move addr to address reg
MOVE #1,(Al) ;*¥* write to tasks’s exit pt.

*%

** restore 'next’ context

*%

MOVEA.L (S_next_ptr,A6),A0 ; get 'next’ task pointer

** EMUL INSTRUMENTATION **
MOVE.L (R_task_index,A0), HPOS_TASK_ENTRY ;** Write index to entry
** SPA INSTRUMENTATION **

64

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

** \Write to task specific entry point: HPOS_TaskTable[index] + 2

MOVE.L (R_task_index,A0),D1 ;** move index into D1
LSL #2,D1 ¥+ multiply index(D1) by 4

ADD.L #2,D1 ;** add 2 to index(D1)

ADD.L # HPOS_TaskTable,D1 ;** add start to index-offset
MOVE.L D1,Al ;** move addr to address reg
MOVE.W #2,(Al) ** write to tasks’s entry pt.
MOVE (R_task_sr,A0),SR ; restore proper SR

LEA (R_reg_store_lo,A0),Al ; point SP to reg save area
MOVEM.L (Al)+,D0O-D7/A2-A6 ; restore task’s regs
MOVEA.L (R_task_al,A0),Al ; restore task’s Al
MOVEA.L (R_task_a7,A0),A7 ; restore task’s A7
MOVEA.L (R_task_a0,A0),A0 ; restore proper AO
UNLK A6 ; un-setup BP

RTS ; return to caller

When tasks switch, the ID of the task being exited is written to
HPOS_TASK_EXIT in the data table and the ID of the task being entered is
written to HPOS_TASK _ENTRY. The SPA instrumentation must calculate
addresses of the entry and exit locations for the particular tasks before writing
values to those locations.

Here is an example of an assembly language task switch callout routin€his
routine wll be called from within an OS’s task switch area. The wholgine
is instrumented code.

*kkkkkkkkkkkkkkkkkkkkkk S ECTI O N I I I

*kkkkkkkkkkkkkkkkkkkkkk SWITCH CALLOUT ROUTINE
*kkkkkkkkkkkkkkkkkkkkkk LEVELS 1‘ 2’ 4 & 5
SECTION code
XDEF _SWITCH_CALLOUT
XREF HPOS_Task_Count,HPOS_Task_Offset
XREF HPOS_Start Task_List
XREF HPOS_Queue_Count,HPOS_Queue_Names

TCB_IDNUM EQU $0D ;Offset to task id# in TCB
TCB_SSP EQU $38 ;Offset to SSP in TCB

TCB_USP EQU $3C ;Offset to USP in TCB

TCB_STACK EQU $40 ;Offset to original stk ptr in TCB
TASK_START EQU 4 ;Offset to task start address
TASK_END EQU 6 ;Offset to task end address
MSTACK_PTR EQU 8 ;Offset to master stack pointer
USTACK_PTR EQU 12 ;Offset to user stack pointer
BUCKET_SIZE EQU 16 ;Size of task buckets in template file

UNKNOWN_TASK EQU 72?7

SWITCH_CALLOUT

-- Routine is "Level-4" Intrusion unless otherwise indicated ------------------

-- Note: The whole routine except the two noted instructions may be ---------
- commented out if the Performance Analyzer measurements are ---------
- not wanted and stack information is not required. ~ ---------

E

65

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

; Al holds pointer to old TCB
; A2 holds pointer to new TCB

*

* SPA measurement writes
MOVE.W #1,HPOS_Start_Intrusion ;Start intrusion count ;HP-RTOS-Level-2
MOVE.W #2,HPOS_Stop_Ovrhd ;Stop OS overhead ;HP-RTOS-Level-2

MOVEM.L DO/AO/A3,-(SP) ;Save registers on stack

*
* Find which task has been preempted
*

CLR.L DO ;Get tid for old task

MOVE.B TCB_IDNUM(A1),DO

CMPI.L #HPOS_Task_Count,DO ;Check if index to large
BGT HPOS_BAD_TID1

LSL #2,D0 ;x4 for long offset

MOVE.L DO0,A3

MOVE.L HPOS_Task_Offset(A3),A0 ;Get task’s bucket offset
BRA OLD_TASK_FOUND

HPOS_BAD_TID1 ;index out of user defined table’s range
MOVE.L DO,HPOS_TASK_EXIT ;Note task exit HP-RTOS-Level-1
MOVE.L #$FFFFFFFF,HPOS_TASK_BKT_UNDEF ;Warning: table too small
BRA NO_OLD_MATCH

* Write to the task’s 'stop’ location
OLD_TASK_FOUND
MOVE.W #1,TASK_END(AOQ) ;Write to SPA interval end

*-- Commands for trace display
;Output "Exit’ Task’s stack data
MOVE.L MSTACK_PTR(A0),HPOS_T_EXIT_STACK ;Master stk base HP-RTOS-Level-4
MOVE.L TCB_SSP(A1),HPOS_T_STACK_VAR1 ;Mastr stk value HP-RTOS-Level-4
MOVE.L USTACK_PTR(A0),HPOS_T_STACK_VAR?2 ;User stk base HP-RTOS-Level-4
MOVE.L TCB_USP(A1),HPOS_T_STACK_VAR3 ;User stk value HP-RTOS-Level-4

; *** ONLY THESE THREE INSTRUCTIONS ARE NEEDED FOR TASK EXIT TRACKING ***

CLR.L DO ;HP-RTOS-Level-1
MOVE.B TCB_IDNUM(A1),DO ;Get tid for old task ;HP-RTOS-Level-1
MOVE.L DO,HPOS_TASK_EXIT ;Note task exit ;HP-RTOS-Level-1

*-- End commands for trace display

NO_OLD_MATCH

*

* Find which task will start running
*

CLR.L DO ;Get tid for old task

MOVE.B TCB_IDNUM(A2),DO

CMPI.L #HPOS_Task_Count,DO ;Check if index to large
BGT HPOS_BAD_TID2

LSL #2,D0 ;x4 for long offset

MOVE.L DO0,A3

MOVE.L HPOS_Task_Offset(A3),A0 ;Get task’s bucket offset

* Write to the task’s 'start’ location
NEW_TASK_FOUND
MOVE.W #2,TASK_START(AO0) ;Write to SPA interval start

*-- Commands for trace display
; *** ONLY THESE THREE INSTRUCTIONS ARE NEEDED FOR TASK ENTRY TRACKING ***

66

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

CLR.L DO ;HP-RTOS-Level-1
MOVE.B TCB_IDNUM(A2),DO ;Get tid for new task ;HP-RTOS-Level-1
MOVE.L DO,HPOS_TASK_ENTRY ;Note task entry ;HP-RTOS-Level-1

;Output "Exit’ Task’s stack data
MOVE.L MSTACK_PTR(A0),HPOS_T_ENTRY_STACK ;Mstr stk base HP-RTOS-Level-4
MOVE.L TCB_SSP(A2),HPOS_T_STACK_VAR1 ;Mstr stk value HP-RTOS-Level-4
MOVE.L USTACK_PTR(A0),HPOS_T_STACK_VAR2 ;Usr stk base HP-RTOS-Level-4
MOVE.L TCB_USP(A2),HPOS_T_STACK_VAR3 ;Usr stk value HP-RTOS-Level-4

*-- End commands for trace display
BRA END_SWITCH

HPOS_BAD_TID2 ; index out of user defined table’s range
MOVE.L DO,HPOS_TASK_ENTRY ;Note task entry ;HP-RTOS-Level-1
MOVE.L #$FFFFFFFF,HPOS_TASK_BKT_UNDEF ;Warning: table too small

END_SWITCH
MOVEM.L (SP)+,D0/A0/A3 ;Restore registers from stack
MOVE.W #1,HPOS_Start_Ovrhd ;Start OS overhead timer ;HP-RTOS-Level-2
MOVE.W #2,HPOS_Stop_Intrusion ;Stop intrusion count ;HP-RTOS-Level-2
****5;';?************** END SECTION I”
kkkkkkkkkkkkkkkkkkkkkkk SWITCH CALLOUT ROUTINE
Kkkkkkkkkkkkkkkkkkkkkkkk LEVELS 1‘ 2’ 4 & 5

To track clock ticks

* Modify OS code to write to a "clock tick" location in the data table.

A clock tick is a unit of time used by the OS for the purpose of scheduling
tasks or processes. The length of time is determined by a periodic interrupt
which is handled by a special interrupt service routine that lets the OS know a
clock tick should occur. The OS may switch tasks that have specified "time
slices"to "blocked" after a certain number of clock ticks.

There are two methods for tracking clock ticks.

» Ifthe real-time OS has a "time slice" service call that is used by
applications, the service call can be instrumented to make clock tick
information available.

* Some applications may choose not to use the "tline" service call and
may have an associated interrupt service routine (ISR) written directly in
assembly language code for speed reasons. In this case, the interrupt
service routine should be instrumented with a simple

67

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

MOVE.W Dx,HPOS_CLOCK_TICK instruction before the trap to the
0OS. (Make sure the instruction is a word write to the
HPOS_CLOCK_TICK location.)

The memory location corresponding to CLOCK_TICK is placed at the end of
the data table so it may be simply included or excluded from the range of
memory accesses stored in the trace.

Examples Here is an example of instrumentation in an interface library for tracking
clock ticks:
* *
* ANNOUNCE A CLOCK TICK TO pSOS+ *
* *
* rc = tm_tick(); *
* *
* This routine may not be used as is but may be |ncorporated *
*

into a user’s own clock- Interrupt service routine.

XDEF _tm_tick

_tm_tick:
LINK A6,#0
MOVEQ #TM_TICK,DO ;LOAD FUNCTION CODE
MOVE.L DO,HPOS_CLOCK_ TICK ;HP-RTOS-Level-1
MOVE.L DO,HPOS_TM_TICK_Entry ;HP-RTOS-Level-1
MOVE.W #1,Start_OS_Ovrhd ;HP-RTOS-Level-2
TRAP #SVCTRAP
MOVE.W #2,Stop_OS_Ovrhd ;HP-RTOS-Level-2

;This line may be left out since it always returns
MOVE.L #TM_TICK,HPOS_TM_TICK_EXxit ;HP-RTOS-Level-1

MOVE.W DO,HPOS_CHECK_ERRORS ;HP-RTOS-Level-2
UNLK A6
RTS

NOP ; Spacer to prevent prefetches
NOP ; from confusing trace

68

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

Note

Examples

To track OS overhead

Modify OS code to write to a "start overhead" location when service calls enter
and a "stop overhead"location when servidés exit.

In order to get some idea of how efficient an application is, that is, to see
much time is spent switching tasks as opposed to executing them, the soft
performance analyzer can display a dynamic histogram of the time spent in'the
OS kernel.

This is done, as is the service call tracking, by adding simple write instructions
to the service call routines. The first write instruction, executed just after the
service call entry instrumentation, writes to a location that represents the start
ofthe OS interval. The second write instruction, executed just before the
service call exit instrumentation, writes to a location that represents the end of
the OSinterval. The software performance analyzer measures the time
between these writes as time spent in the OS kernel.

Using this method, some kernel time may be missed due to clock ticks. The
time spent procssing clock ticks is minimal and consistent, so this time is of
little consequence. Additional kernel time is missed when task switches occur
because the task has used up its time slice. If excessive timeouts occur, the
measurement of the kernel's accumulated tirtioe slightly low.

The 'allocate_memory"service call in the demo OS can be instrumented for
OS overhead tracking as shown below.

First, declare the data table locations as externals:

extern short int HPOS_Start_Ovrhd;
extern short int HPOS_Stop_Ovrhd;

69

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

Then, instrument the service call so that parameters aanchredlues are
written on entry and exit:

/* *
**k

* PROCEDURE NAME: allocate_memory()

**k

* DESCRIPTION:

**k

*

*

*%k *
*/
long allocate_memory(int region_id, int size, char **mem_area)

long ret_value = NO_ERROR_RET;

/* INSTRUMENTATION */

HPOS_alloc_mem_Entry[0] = region_id;
HPOS_alloc_mem_Entry[1] = size;

HPOS_Start_Ovrhd = 1; /* INSTRUMENTATION for SPA */

[* Initalize the return pointer */
*mem_area = NULL,

if ((size + memory_index) > MEM_AREA)
ret_value = REQ_TOO_LARGE;

if (memory_index == MEM_AREA)

ret_value = NO_MORE_MEMORY;
}

if (region_id !=1)
ret_value = BAD_REGION_ID;

if (ret_value == NO_ERROR_RET)
{
*mem_area = &memory_block[memory_index];
memory_index += size;
HPOS_Stop_Ovrhd =2; /* INSTRUMENTATION for SPA */
/* INSTRUMENTATION */
HPOS_alloc_mem_EXxit[0] = ret_value;
HPOS_alloc_mem_Exit[1] = (long) *mem_area;

return(ret_value);

Finally, add the locations to the data table:

short int HPOS_Start_Ovrhd; /* Start of OS interval for SPA */
short int HPOS_Stop_Ovrhd; /* End of OS interval for SPA */

70

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

Aservice call in an interface library for an assembly language based real-time
OS can be instrumented for OS overhead tracking as shown below.

* *
* POST A MESSAGE TO A QUEUE *
* *
* rc = g_send(qid, msg); *
* *
* (msg is INT32 msg[4];) *
* *
XDEF _g_send
_q_send:
LINK A6,#0
MOVEM.L D2-D5,-(SP) ;SAVE REGISTERS
MOVE.L 8(A6),D1 ;D1 EQU QID
MOVEA.L 12(A6),A0 ;A0 EQU ADDRESS OF MSG
MOVEM.L (A0),D2-D5 ;GET THE MESSAGE

MOVEQ #Q_SEND,DO

MOVEM.L D1-D5,HPOS_Q_SEND_Entry ;HP-RTOS-Level-1
MOVE.W #1,Start_OS_Ovrhd ;HP-RTOS-Level-2
TRAP #SVCTRAP

MOVE.W #2,Stop_OS_Ovrhd ;HP-RTOS-Level-2
MOVE.L DO,HPOS_Q_SEND_Exit ;HP-RTOS-Level-1
MOVEM.L (SP)+,D2-D5 ; RESTORE REGISTERS

UNLK A6

RTS

NOP ; Spacer to prevent prefetches
NOP ; from confusing trace

71

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Instrumenting Code for Real-Time OS Tracking

Examples

To track stack and memory

Add data bucket locations for each task to save the task’s stack values.

Modify OS code to write stack pointer information when tasks switch.

Stack information such as pointers and bytes used can be tracked dynamically
as an application runs.

The necessary data is mostly written out when tasks switch (whether it be
instrumented code or a task switch callout routine). For this to work, there
are several things that must be done before the application is running and
switching tasks:

1 The "bucket"table must be filled with all the IDs of the application’s tasks.
This creates a data area that will be used to save the task’s stack values.

2 The task start instrumentation or callout routirlesave several data
items: the task ID number, the memory locations in the Task Control
Block that hold the stack pointer values, and the task bucket’s address.
Also, data is written to a special area in the general data area so the stack
creation information can be captured and seen in the trace display at
startup time.

Once the application is switching tasks, the task switch instrumentation or
callout routine uses the previously saved data to keep track of stacks. In this
code, the task being pre-empted and the task being started running are found
by indexing via the task ID to the saved task bucket’s address. This address is
used to access stack data. The stack data can then be written out and
interpreted bythe RTOS inverse assembler to display the stack bytes used on
exit from a task and entryto a task.

See the example task switch callout routine in "To track task switches".

72

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Organizing the Data Table

Organizing the Data Table

The previous section on "Instrumenting Code for Real-Time OS Tracking"
showed you how to insert locations in the data table for service call and task
switch tracking. This section shows you how to organize those locations i
data table.

Generally, the data table should be organized as shown below.

Task Entry (1 long word)
Task Exit (1 long word)
Service Call 1 Entry (nl longs)
Service Call 1 Exit (n1’ longs)
Service Call 2 Entry (n2 longs)
Service Call 2 Exit (n2' longs)
Service Call 3 Entry (n3 longs)
Service Call 3 Exit (n3’ longs)

Service Call N Entry (nN longs)
Service Call N Exit (nN’ longs)

Clock Tick (1 word)
Task Name (1 long)
Queue Name (1 long)
Semaphore Name (1 long)
Region Name (1 long)

Stack Task Name (1 long)
Stack Supr Size (1 long)
Stack Supr Ptr (1 long)
Stack User Size (1 long)
Stack User Ptr (1 long)

User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)

When setting up the data table, it’s important to:
* Group locations for easy tracking.

 Create user-defined areas.

73

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Organizing the Data Table

Note

Group Locations for Easy Tracking

It's important to group data table locations for similar types of servitetoa
make selective tracking easy. For example, in order to provitkasurement
that tracks only message service calls, it's easier to set up a traoeaca that
captures a range of data table locations than one that captures locations
scattered about the data table.

Create User-Defined Areas

If youre creating a general purpose RT@8asurement tool thatlibe used
by a number of different people for different applications, it’s important to set
up user-defined locations in the data table. These locations are intended to
allow a user to track other parts of an application while simultaneously
following the kernel activity.

A good example use of this facility would be totmnusnent the entry and exit
of an application’s interrupt service routines. By doing this, you could get a
histogram in SPA of the time spent in any interrupt service routine.

The inverse assembler should be set up so that if a write is done to any of these
locations, the captured data is displayed as a hex number and, if possible,
translated to ASCII characters (because, for examptmplLis easier to read

than "Ox4c6f6f70").

If you are capturing a range in the data table that includes any of the
user-defined locations, all of these locations must be written to with longword
writes in order for the demo inverse assembly to work correctly. Your own
inverse assembler may be written to understand any combination of memory
write sizes.

74

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Organizing the Task Data Buckets

Organizing the Task Data Buckets

Task data buckets are locations defined for each task in which information is
saved by task start or task switch instrumentation (for example, callout
routines). It's also common to place unique task entry and exit locations i
the task data buckets; these locations are used by the Software Performa
Analyzer to make profileneasurements on task intervals.

The task buckets need not be organized in any order. What is important is the
how easily a user can add or remove specific task buckets. You want to be able
to quickly and simply add a newtask to the bucket array if a new task is needed
in an application. For assembly code, the best way is to create a macro that
defines the buckets; then, use a simple list of macros calls to create the task
buckets. For C code, the best way is to define a structure, then declare an
occurrence of the structure for each task. For example:

struct t_bucket {
long t_entry;
long t_exit;
long M_stack_ptr;
long U_stack_ptr;

struct t_bucket task1_bucket;
struct t_bucket task2_bucket;
struct t_bucket task3_bucket;

struct t_bucket task4_bucket;

75

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Organizing the Task Data Buckets

An example of assembly code follows:

XDEF HPOS_Task_Offset

XDEF HPOS_Task_Count

XDEF HPOS_Start Task_List, HPOS_End_Task_List
*

* Local macro to use when defining task entries
*

TASK_ENTRY MACRO name

XDEF HPOS_Task_&&name&&

XDEF HPOS_Tenter_&&name&&

XDEF HPOS_Texit_&&name&&

XDEF HPOS_MStk_Ptr_&&name&&

XDEF HPOS_UStk_Ptr_&&name&&
HPOS_Task_&&name&& DC.L name ;task name

HPOS_Tenter_&&name&& DSW 1 ;SPA interval start address

HPOS_Texit_&&name&& DS.W 1 ;SPA interval end address

HPOS_MStk_Ptr_&&name&& DC.L 1 ;Master stack ptr base value

HPOS_UStk_Ptr_&&name&& DC.L 1 ;User stack ptr base value
ENDM

*

* Local macro to define task count
*
HPOS_TSK_UNKNOWN DC.L '----'

USER_TASK_COUNT MACRO count
HPOS_Task_Offset DCB.L count+15,UNKNOWN_ID_BUCKET ; holds addresses of buckets

HPOS_Task_Count EQU count+15 . 'symbol for count
ENDM
— BEGIN TASK MODIFICATIONS
USER_TASK_COUNT 4 ;number of tasks

HPOS_Start_Task_List
TASK_ENTRY 0001
TASK_ENTRY 0002
TASK_ENTRY 0003
TASK_ENTRY 0100
R END TASK MODIFICATIONS

A user only has to edit the "TASK_ENTRY"list and the
"USER_TASK_COUNT"to add or delete a task from the bucket array.

The task data buckets are also referred to as extra memory locations.

76

Chapter 3: Modifying a Custom OS for Real-Time Measurements
Re-Building the OS and the Application

Re-Building the OS and the Application

After you have modified the custom OS for real-time measurements, you will

have to re-build it.

77

78

Writing the RTOS Inverse Assembler
Code

79

Writing the RTOS Inverse Assembler
Code

In the same way that bus cycle information is decoded into assembly language
mnemonics in a normal trace display, writes to the data table are decoded into
OS service call mnemonics in the RTOS trace display. The software
mechanism that decodes information captured by the emulation bus analyzer
is called arinverse AssemblétA).

The RTOS inverse assembler lets you make analyzer data very easy to
interpret. When written to do so, the inverse assembler can display all OS
service calls just as they appear in tharge code or in the OS vendor’s
manual. The inverse assembler can decode inpanpeters and return
values into English language equivalents when there are a finite number of
possililities.

After writing the RTOS inverse assembler code, you must build the inverse
assembler and install it in the proper Emulator/Analyzer interface directory.

When an HP 64700 Emulator/Analyzer interface starts up, it looks for a
relocatable RTOS inverse assembler file in the appropriate directory. If this
relocatable file is found, it is loaded by the Emulator/Analyzer interface.

When thedisplay trace real_time_oscommand is entered in the
Emulator/Analyzer interface, the interface calls the RTOS inverse assembler
for each captured state in the trace. The inverse assembler decodes the
captured state, and any other related trace states, and outputs information that
is displayed by the Emulator/Analyzer interface.

Because the RTOS inverse assembler is dynamically loaded into the
Emulator/Analyzer interface (when new interface windows are started by
choosingrile ~Emul700-Custom RTOS Emulor by running the "rtos_emul"
startup script), it can start out in a simple form and be enhanced over a period
of time.

When creating your own inverse assembler|litprobably be easiest to copy
and modify the demo inverse assembler files from the
$HP64000/rtos/B3082A/intereter directory.

80

Chapter 4: Writing the RTOS Inverse Assembler Code

Before you write RTOS inverse assembler code, you should generally know
how to write IAL code. Then, you need to understand what an inverse
assembler for an RTOS trace display must do. Finally, you need to know how
to build and install the RTOS inverse assembler. This chapter describes these
topics in the following sections:

* Writing IAL Code
« What the RTOS Inverse Assembler Must Do

* Building and Installing the RTOS Inverse Assembler

The Demo RTOS Inverse Assembler

The inverse assembler for the demo RTOS measurement tool was designed to
be used with both 16- and 32-pitocessors.

Because the data table is made up of long integer (32-bit) locations, 32-bit
processors take 1 cycle to write a value to the data table whig-dwis
processors take 2 cycles.

For a single value written to the data table, the inverse assembler must decode
1 analyzer state for 32-hirocessors and 2 analyzer statesl®bit

processors. Consequently, the inverse assembler has special routines for 16-
and 32-bitprocessors. These special routines are found in ti&. & and

"ial32.S" files.

Your own inverse assembler may be written to understand any combination of
memory write sizes.

81

Chapter 4: Writing the RTOS Inverse Assembler Code

Writing 1AL Code

Writing IAL Code

Inverse assembler source code is written in Inverse Assembly Language (IAL).
The inverse assembler source code is written in the same manner as an
assembly program and then assembled by the IAL assembler. This special
assembler understands the instruction set of the IAL and generates a
relocatable file with the information needed by the Emulator/Analyzer
interface.

It is not necessary to link the inverse assembler relocatable file into an
absolute file. The relocatable inverse assembler file is read and loaded by the
Emulator/Analyzer interface at run time.

The entire inverse assembler must be contained in one file because only one
relocatable file will be loaded by the Emulator/Analyzer interface.

A sample of a simple, but complete inverse assembler follows.

1 "AL"
2

3 OUTPUT "Inverse assembler not present"

4 RETURN

This inverse assembler will display the message "Inverse assembler not
present"and then return to the Emulator/Analyzer interface each time it is

called.

IAL Instructions
There are two types of instructions in the Inverse Assembly Language:

« Executable instructions, which cause the inverse assembler to take some
action. The first executable instruction is the entry point to the inverse
assembler.

» Pseudo instructions, which define storage, text, and inverse assembler
attributes. Pseudo instructions can appear anywhere in the inverse
assembler source code.

The executable instructions and pseudo instructionksaee in the "Inverse
Assembler Language (IAL) Instructions” chapter.

82

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing 1AL Code

IAL Operands

The basic structure of the IAL pseudo-processor can be viewed as a single
accumulator machine with special functions provided for the task of inverse
assembly. Functions have been included to enable arithmetical and logical
operations to be performed on memory variables as well as conditional
execution based on the results of these operations. All of these operations are
performed through the "ACCUMULATOR"

The accumulator is a register provided by the IAL interpreter that can be
loaded from variables, operated on by arithmetic and logical operations, t
by IF or CASE instructions, and the results stored back into variables.

These are two types of variables:

» Local variables defined by the inverse assembler source code using the
"VARIABLE" pseudo.

 Communication variables provided by the IAL interpreter.

All variables as well as the ACCUMULATOR are 32-bit unsigned integers.

Communication Variables

Trace states and other related information are passed to the inverse assembler
through communication variables. The RTOS inverse assembler uses the
following communication variables.

INPUT_ADDRESS Contains the address value of the particular trace state.
You can load address values of additional trace states
into this variable using the INPUT instruction.

INPUT_DATA Contains the data value of the particular trace state.
You can load data values of additional trace states into
this variable using the INPUT instruction.

INPUT_TAG Contains software tag information about whether the
particular trace state has already been used. When you
use the INPUT instruction to load additional trace
states into the communication variables, this variable is
updated to contain the tag information that
corresponds to the additional trace state.

83

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing 1AL Code

INITIAL_OPTIONS Contains the address of the symbol
HP_RTOS TRACK_START; thisis the base address
of the data table.

INITIAL_FLAGS When bit 1 is set, the base value of the data table has
been passed in to the inverse assembler through the
INITIAL_OPTIONS variable. Other bits in the
INITIAL_FLAGS communication variable are not
used.

These communication variables are all inputs. There are no variables used by
the RTOS inverse assembler to return information to the Emulator/Analyzer
interface.

Local Variables

Variables defined by the inverse assembler source code are local variables and
can be used for holding temporary values or setting flags for internal use.
These variables are never accessed or changed by the interpreter code.

Unsigned Comparisons

All compares done with the "IF"instruction are unsigned. Twos complement
arithmetic is performed on all variables, which means values can be added and
subtracted to get a correct positive or negative result. The highest order bit
(31) of the variable can be tested to see if the value is positive or negative. The
highest order bit will be 0 for positive and 1 for negative results. Since

variables are unsigned, they cannot be tested for a value less than zero, since
all variables have the unsigned value of greater than or equal to zero.

Bit Ranges

Another type of operand allows bit ranges to be specified on the conditional
instructions (IF and CASE_OF). These onlywork on the ACCUMULATOR
and specify a bit range to be used for the condition. It is identified by the
syntax "MSB,LSB", which signifies the most significant bit to the least
significant bit.

In the following example, bits 5, 4, and 3 of the ACCUMULATOR will be
used in the test. They will be compared to the binary value 101 and if the

84

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing 1AL Code

condition is satisfied, then control will be transferred to LABEL, which must
be defined in the inverse assembler source code.

IF 5,3 =101B THEN GOTO LABEL

Immediate Values

Some of the IAL instructions have "immediate values" as operands. This
means that a numeric constant is expected. Constants have a range from 0 to
OFFFFFFFFH (32 bits) and can besgned a symbolicame by using the
"CONST" pseudo.

IAL Program Control

Execution will start with the first executable statent in the inverse

assembler source code and continue in a linear order untila "RETURN"at the
appropriate nesting level or an "ABORT" instruction is encountered. These
can be used anywhere in the code and as often as necessary. The linear
program flow can be altered by using "GOTO" or "CALL"instructions.

The GOTO Instruction

The GOTO instruction expects a label as an operand. This label must be
defined somewhere in the inverse assembler source code. Execution will
transfer to the label and continue from there.

The CALL Instruction

The CALL instruction performs in the same way except the address of the next
instruction is saved so that when a RETURN instruction is executed in the
called subroutine, program controlle transferred to the ituction

following the CALL.

The RETURN Instruction

The RETURN instruction has two functions. If the inverse assembler source
code is currently in a subroutine, RETURMNItvansfer control to the
statement following the CALL. ifrogram execution is not in a subroutine
(subroutine level zero), then contralle passed back to the
Emulator/Analyzer interface.

85

Chapter 4: Writing the RTOS Inverse Assembler Code

Writing 1AL Code

The ABORT Instruction

The ABORT instruction Wl pass control back to the Emulator/Analyzer
interface regardless of the subroutine level. It is intended to be an error
escape from the inverse assembler.

Conditional Instructions (IF and CASE_OF)

The IF and CASE_OF instructions, when used in conjunction with the CALL
and GOTO instructions, let you alter the program flow conditionally.

86

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

Writing RTOS Inverse Assembler Code
Once you know how to write IAL code, you must have an idea of what,
specifically, an RTOS inverse assembler must do.

First the RTOS inverse assembler must calculate the address values of the
various locations in the data table so that it will be able to recognize (in the
trace data) when a write occurred to a particular location.

Then, once writes to particular locations are recognized, the RTOS invers
assembler must be able to decode the data values that are written to tho
locations and output formatted information to the trace display.

This section shows you how to:

» Define strings, variables, and number formats.
» Assign data table locations to variables.

+ Decode address information from the trace.

» Decode data information and output to the trace display.

87

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

Examples

To define strings, variables, and number formats

1 Use the ASCII insuction to define strings.

Generally, you want to define strings for the information that will appear in
the RTOS trace display, for example, service call names and the strings used to
denote calls and retns.

Use the VARIABLE instruction to define variables.

You want to define variables for the address values of the various data table
locations: starting and ending addresses of the data table, task entry and exit
locations, service call entry and exit locations, and user-defined locations. The
contents of these variables are compared with address values in the trace to
identify service call or task entries or exits.

You may also want to define variables for clock ticks and for other
information needed by the inverse assembler code.

Use the FORMAT instruction to define number formats.

You want to define formats for the numbers that will appear in the RTOS
trace display. You can specify these formats with the OUTPUT instruction.

The ASCII ingruction associates ame with a string. Inverse assembler
language instructions that follow can use tlene instead of a string operand.
To define strings:

TASK_CREATE_STR ASCIl "task_create"
SEND_MESSAGE_STR ASCIlI "send_message"
GET_MESSAGE_STR ASCIl "get_message"

ALLOC_MESSAGE_STR ASCIlI "alloc_message"
FREE_MESSAGE_STR ASCIl "free_message"

ALLOC_MEM_STR ASCIlI "alloc_memory"

CALL_STRING ASCIl "->"
RETURN_STRING ASCIl "<-"

88

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

The VARIABLE instruction defines and initializes an inter82tbit 4orage
location that can be used by the inverse assembler. To define variables that
will hold address values of data table locations:

HPOS_TRACK_START VARIABLE 0
HPOS_TRACK_END VARIABLE 0

TASK_ENTRY VARIABLE 0
TASK_ENTRY_PLUS2 VARIABLE 0
TASK_EXIT VARIABLE 0

TASK_CREATE_ENTRY VARIABLE 0
TASK_CREATE_EXIT VARIABLE 0
SEND_MESSAGE_ENTRY VARIABLE 0
SEND_MESSAGE_EXIT VARIABLE 0
GET_MESSAGE_ENTRY VARIABLE 0
GET_MESSAGE_EXIT VARIABLE 0

ALLOC_MSG_ENTRY VARIABLE 0
ALLOC_MSG_EXIT VARIABLE 0
FREE_MESSAGE_ENTRY VARIABLE 0
FREE_MESSAGE_EXIT VARIABLE 0

ALLOC_MEM_ENTRY VARIABLE 0

ALLOC_MEM_EXIT

USER_NUMERIC1
USER_NUMERIC2
USER_NUMERIC3
USER_NUMERIC4
USER_NUMERICS5
USER_NUMERIC6
USER_ASCII1
USER_ASCII2
USER_ASCII3
USER_ASCII4
USER_ASCII5
USER_ASCII6

END_OF_DATA_TABLE VARIABLE 0

CLOCK_TICKS
STRING_ARRAY

VARIABLE 0

VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

[efolololofe]

VARIABLE 0
VARIABLE 0

To define other variables used by the inverse assembler:

DATE
TIME
TICKS
REL_POSITION
SAVE_REL_POS
UPPER_BITS
STACK_LIMIT

VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0
VARIABLE 0

89

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

The REL_POSITION variable is used to hold the current relative state at
which the data resides. This variable is used as a parameter toonéings.

Its value for 16-biprocessors must be interpreted as twice (2x) the value as for
32-bitprocessors in identical situations because it takes twice as many states to
store trace data when it is stored 16 bits at a time as compared to storing 32
bits at a time.

The FORMAT instruction defines how the value stored in the accumulator
should be displayed when used in conjunction with the OU TP Wihtand
which is used to display information in the Emulator/Analyzer interface. To
define number formats:

*ozozeze=-=-= Formats =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
HEX_FMT FORMAT 32,HEX,8

HEX_FMT_LEFT FORMAT 32,HEX,LEFT_JUSTIFIED
HEX_FMT16 FORMAT 16,HEX,4,DISPLAY_BASE
DEC_FMT FORMAT 32,DEC,LEFT_JUSTIFIED

DEC_FMT_TIME FORMAT 8,DEC,2
DEC_FMT_YEAR FORMAT 16,DEC,4

BIN_FMT_LEFT FORMAT 32,BIN,LEFT_JUSTIFIED
BIN_FMT_4 FORMAT 4,BIN,4

To assign data table locations to variables

Use the data table base address to calculate the addresses of the other data
table locations.

When bit 1 of the INITIAL_FLAGS communications variable is set, the base
address of the data table, as defined bythe HP_RTOS_TRACK_START
symbol, has been passed to the inverse assembler through the
INITIAL_OPTIONS communications variable.

90

Examples

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code
Below is the demo IAL code that assigns data table locations to variables.

First, to check if the base value of the data table,
HP_RTOS_TRACK_START, has been passed in:

LOAD INITIAL_FLAGS
IF 1,1=0THEN GOTO HAVE_ADDRESSES

To check for new base value of the data table, the base address just pass
compared to the current value ofthe HPOS_TRACK_START variable. If
they're equal, current values of other variables are correct. If theyre not
equal, new values must be calculated and assigned to variables.

LOAD INITIAL_OPTIONS
SUBTRACT HPOS_TRACK_START
IF 31,1 =0 THEN GOTO HAVE_ADDRESSES

To calculate address values of locations in the data table, the base address is
loaded into the accumulator. Because the first location is a "long" type, the
next location is 4 bytes ahead; therefore, 4 is added to the accumulator and
the result, which equals the address of the next location in the data table, is
saved in the TASK_ENTRY variable. This process is repeated until values
have been assigned to all the variables.

LOAD INITIAL_OPTIONS
STORE HPOS_TRACK_START

ADD 4

STORE TASK_ENTRY

ADD 2

STORE TASK_ENTRY_PLUS2
ADD 2

STORE TASK_EXIT

ADD 4

STORE TASK_CREATE_ENTRY
ADD 28

STORE TASK_CREATE_EXIT
ADD 4

STORE SEND_MESSAGE_ENTRY
ADD 12

STORE SEND_MESSAGE_EXIT
ADD 4

STORE GET_MESSAGE_ENTRY
ADD 8

STORE GET_MESSAGE_EXIT
ADD 8

91

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

STORE ALLOC_MSG_ENTRY
ADD 4

STORE ALLOC_MSG_EXIT

ADD 8

STORE FREE_MESSAGE_ENTRY
ADD 4

STORE FREE_MESSAGE_EXIT
ADD 4

STORE ALLOC_MEM_ENTRY
ADD 8

STORE ALLOC_MEM_EXIT
ADD 8

STORE STRING_ARRAY
ADD 12

STORE USER_NUMERIC1
ADD 4

STORE USER_NUMERIC2
ADD 4

STORE USER_NUMERIC3
ADD 4

STORE USER_NUMERIC4
ADD 4

STORE USER_NUMERIC5
ADD 4

STORE USER_NUMERIC6
ADD 4

STORE USER_ASCII1
ADD 4

STORE USER_ASCII2
ADD 4

STORE USER_ASCII3
ADD 4

STORE USER_ASCII4
ADD 4

STORE USER_ASCII5
ADD 4

STORE USER_ASCII6

ADD 4
STORE CLOCK_TICKS

ADD 4
STORE END_OF_DATA_TABLE

skkkkkkkkkkkkkkkkkkkkkk
i

92

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

Examples

To decode address information from the trace

1 Check if a state has been used. If so, mark the state as suppressed and return.

2 If a state has not been used, compare the address value to known data table

locations. If the address is in the data table, call a routine to output
information about the associated data value (and perhaps the data values of
related states). If the state is not in the data table, mark it as a non-RTO
state and output address and data values.

The demo IAL code that decodes address information from the trace is shown
below.

When the inverse assembler reaches the HAVE_ADDRESSES label, all of
the data table locations have been assigned to variables. The first thing to do
is check the INPUT_TAG communication variable to see if the state has
already been used.

HAVE_ADDRESSES

LOAD INPUT_TAG
IF 15,0 =1 THEN GOTO ALREADY_USED

If the state has not been used, check if the address is within data table range
and go to the OUTSIDE_RANGE label ifit isnt.

LOAD INPUT_ADDRESS
IF 31,0 >= END_OF_DATA_TABLE THEN GOTO OUTSIDE_RANGE
IF 31,0 < HPOS_TRACK_START THEN GOTO OUTSIDE_RANGE

The address is within the range of the data table, so compare it to the variables
that contain addresses of the data table locations. If there is a match, go to the
appropriate routine that decodes data from this state and the following states
associated with the OS event.

IF 31,0 = TASK_EXIT THEN GOTO TASK_EXIT_CALL
IF 31,0 = TASK_ENTRY THEN GOTO TASK_ENTRY_CALL
IF 31,0 = TASK_ENTRY_PLUS2 THEN GOTO TASK_ENTRY_WORD

IF 31,0 = TASK_CREATE_ENTRY THEN GOTO TASK_CREATE_FNC
IF 31,0 = TASK_CREATE_EXIT THEN GOTO TASK_CREATE_RTN

IF 31,0 = SEND_MESSAGE_ENTRY THEN GOTO SEND_MESSAGE_FNC
IF 31,0 = SEND_MESSAGE_EXIT THEN GOTO SEND_MESSAGE_RTN
IF 31,0 = GET_MESSAGE_ENTRY THEN GOTO GET_MESSAGE_FNC

93

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

IF 31,0 = GET_MESSAGE_EXIT THEN GOTO GET_MESSAGE_RTN

IF 31,0 = ALLOC_MSG_ENTRY THEN GOTO ALLOC_MESSAGE_FNC
IF 31,0 = ALLOC_MSG_EXIT THEN GOTO ALLOC_MESSAGE_RTN

IF 31,0 = FREE_MESSAGE_ENTRY THEN GOTO FREE_MESSAGE_FNC
IF 31,0 = FREE_MESSAGE_EXIT THEN GOTO FREE_MESSAGE_RTN

IF 31,0 = ALLOC_MEM_ENTRY THEN GOTO ALLOC_MEM_FNC
IF 31,0 = ALLOC_MEM_EXIT THEN GOTO ALLOC_MEM_RTN

IF 31,0 = USER_NUMERIC1 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_NUMERIC2 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_NUMERIC3 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_NUMERIC4 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_NUMERIC5 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_NUMERIC6 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_ASCII1 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_ASCII2 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_ASCII3 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_ASCII4 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_ASCII5 THEN GOTO USER_DEFINED_FNC
IF 31,0 = USER_ASCII6 THEN GOTO USER_DEFINED_FNC

If the inverse assembler reaches this point, the input address is within the
RTOS data range but does not match a known starting offset. In this case, the
inverse assembler ignores the address and assumes it wldercavered by

a known offset.

GOTO ALREADY_USED

If the inverse assembler reaches the OUTSIDE_RANGE label, the address is
outside of the data table range. In this case, all data given with the state is
displayed as a non-RTOS state. The IF_NOT_MAPPED instruction outputs
a symbol (and offset) if possible. Ifthere is no symbol defined for that address,
the absolute address is output in a left-justified hexadecimal format.

OUTSIDE_RANGE
OUTPUT " NON-RTOS:"
LOAD INPUT_ADDRESS
OUTPUT " addr="
IF_NOT_MAPPED THEN OUTPUT ACCUMULATOR,HEX_FMT_LEFT
LOAD INPUT_DATA
OUTPUT " data="
OUTPUT ACCUMULATOR,HEX_FMT
GOTO END_RTOS_IAL

94

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

If the inverse assembler reaches the ALREADY_USED label, the state has
already been used in the trace display. In this case, the MARK_STATE
SUPPRESSED instruction is used to tell the analyzer not to display the
current analyzer state.

ALREADY_USED
MARK_STATE SUPPRESSED

When the inverse assembler reaches the END_RTOS _IAL label, the inverse
assembler exits.

END_RTOS_IAL
:CALL DEBUG_PRINT
RETURN

To decode data information and output to the
trace display

Write an IAL routine to decode data values and output the information to be
displayed.

These IAL routines are called when the address of a trace state matches a
location in the data table.

You can use the OUTPUT "string" instruction to output defined strings, for
example, the call (->) or return (< -) strings or service cathas.

You can also use the OUTPUT "string" instruction to labeapwaaters and
return values in the trace display. You can use the same mnemonics that are
used in the source code or described in the OS vendor’s manual.

You can CALL the provided IAL routines to output data in different formats.
The provided IAL routines do not contain all of the permutations of state and
output format and therefore should not be considered a library; however, it
should be relatively easy to create additional routines you might need. The
provided IAL routines arésted in the following table.

95

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

Provided Inverse Assembler Routines

Routine

Description

PRINT_BINARY

Output a number in the accumulator as binary (for example,
00011010001010110011110001001101).

DISPLAY_RET_CODE

Displays the return code from a service routine and a descr
string.

ptive

WRITE_OUT_STRING

Outputs a null terminated string starting at HPOS_String_A
(for example, "abcdefghijkl”).

rray

PRINT_NAME_IN_ACCUM

Prints a 32-bitame sored in the accumulator (for example,
‘abcd’, # 0, or # 1a2b3c4d).

PRINT_NAME

Prints a 4 ASCII character nantered in the accumulator (for
example, ‘abcd).

PRINT_ASCII_CHAR

Prints data in accumulator bit® as AEII character (for
example, a).

DEBUG_PRINT

Outputs address and data for the current trace state.

OUT_RELO_HEX

Output current long word (32 bits) of trace data in hexadecimal

format (for example, 1a2b3c4a).

OUT_RELO_HEXLEFT

Output current long word (32 bits) of trace data in left-justifi
hexadecimal format (leading zeros are not prinf‘ed).

D
o

OUT_RELO_BINLEFT

Output arrent long word (32 bits) of trace data in left-justified

binary format (leading zeros are not printéd).

OUT_REL1_HEX

Output current+ 1 long word (32 bits) of trace data in
hexadecimal format.

OUT_REL1_HEX16

Output current+ 1 long word (32 bits) of trace dat&ihit
hexadecimal format (for example, 1234H).

OUT_REL1_HEXLEFT

Output current+ 1 long word gz bits) of trace data in
left-justified hexadecimal format.

OUT_REL1_DECLEFT

Output current+ 1 long word (32 bits) of trace data in
left-justified decimal format (leading zeros are not printjed).

OUT_REL1_BINLEFT

Outputerrent+ 1 long word (32 bits) of trace data in
left-justified binary format:

96

Chapter 4: Writing the RTOS Inverse Assembler Code

Writing RTOS Inverse Assembler Code

Provided Inverse Assembler Routines

Routine

Description

OUT_REL2_HEX

Output current+ 2 long word (32 bits) of trace data in
hexadecimal format.

OUT_RELZ2_HEXLEFT

Output current+ 2 long word gz bits) of trace data in
left-justified hexadecimal format.

OUT_RELZ_BINLEFT

Output errent+ 2 long word (32 bits) of trace data in
left-justified binary format:

OUT_REL3_HEX

Output current+ 3 long word (32 bits) of trace data in
hexadecimal format.

OUT_REL3_HEXLEFT

Output current+ 3 long word gz bits) of trace data in
left-justified hexadecimal format.

OUT_REL3_BINLEFT

Output errent+ 3 long word (32 bits) of trace data in
left-justified binary format:

OUT_REL4 HEX

Output current+ 4 long word (32 bits) of trace data in
hexadecimal format.

OUT_REL4_HEXLEFT

Output current+ 4 long word gz bits) of trace data in
left-justified hexadecimal format.

OUT_REL5_HEX

Output current+ 5 long word (32 bits) of trace data in
hexadecimal format.

OUT_REL6_HEX

Output current+ 6 long word (32 bits) of trace data in
hexadecimal format.

LD_ADDR_REL

Load the INPUT_ADDRESS relative to REL_POSITION’
when 'REL_POSITION’is set relative to long wortls.

LD_REL_32_BITS

data at REL_POSITION’into the accumulator.
'REL_POSITION'is set relative to 16-bit words.

For 16-biprocessors only, loads the long word (32 bits) of trgce

CK_REL_POS_TAG

Check if relative position can be tagbed.

PRINT_NAME_AS_ASCII

Name as ascii hexisin INPUT_DATA at relative position
’REL_POSITION’.l

97

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

Provided Inverse Assembler Routines

Routine

Description

LD_REL_TO_LONG

Loads the long word (32 bits) of trace data at REL_POSITIQN’
into the accumulator. ' REL_POSITION'is set relative to long
words?

! These data output routines are written differently depending on whether the inverse asse
for 16-bit or 32-bit micoprocessors. This is becausebit processors take two bus cycles to write
a 32-bit value to a data table location while 32pwiicessors only take one bus cycle. Therefore,
inverse assembler routines fb8-bit processors get data from two analyzer states while invers
assembler routines f@&2-bitprocessors get data from one analyzer state.

bler is

Examples

The demo IAL code to decode data for task switches is shown below.

TASK_EXIT_CALL

OUTPUT "---EXITED TASK : index="
CALL OUT_RELO_HEXLEFT

OUTPUT "
GOTO END_RTOS_IAL

TASK_ENTRY_CALL

OUTPUT "---NEXT TASK :index="
CALL OUT_RELO_HEXLEFT
OUTPUT "

GOTO END_RTOS_IAL

The demo IAL code to decode data for the demo OS alloc_memory() service
call entry location is shown below.

ALLOC_MEM_FNC

OUTPUT CALL_STRING
OUTPUT ALLOC_MEM_STR
OUTPUT “(region_id="

CALL OUT_RELO_HEX
OUTPUT ", size="

CALL OUT_REL1_HEX
GOTO END_CALL

98

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

The END_CALL routine is different depending on whethd&6ebit processor
(which takes two bus cycles to write a 32-bit value) or 3cessor (which

takes one bus cycle to write a 32-bit value) is being used. If a p8duessor

is being used, the inverse assembler uses two states at a time, and the second
state should be marked so that it isn't reused:

END_CALL
OUTPUT
INPUT REL,1; always write at least one long word
TAG_WITH 1 ; Set mark so know not to reuse 2nd state

GOTO END_RTOS_IAL

If a 32-bitprocessor is being used, states are used one at a time, and addi
states don't have to be marked:

END_CALL
OUTPUT
GOTO END_RTOS_IAL

The demo IAL code to decode data for the demo OS alloc_memory() service
call exit location is shown below.

ALLOC_MEM_RTN
OUTPUT RETURN_STRING
OUTPUT ALLOC_MEM_STR
OUTPUT "(memarea_ptr="
CALL OUT_REL1_HEX
GOTO ERROR_CODE_END

The ERROR_CODE_END routine is different depending on whether a
16-bitprocessor (which takes two bus cycles to wriB2+4#it value) or 32-bit
processor (which takes one bus cycle to wriB2-#it value) is being used. Ifa
16-bit processor is being used, a special routine is called to place the current
16-bits of trace data in the high-order word of the accumulator and the 16-bits
of trace data from the next state into the low-order word of the accumulator:

ERROR_CODE_END ; display any error on return
OUTPUT)"
SET REL_POSITION,0
CALL LD_REL_32_BITS
;no error, no display
IF 31,0=20001h THEN GOTO NO_ERROR_DISPLAY
CALL DISPLAY_RET_CODE
NO_ERROR_DISPLAY
GOTO END_RTOS_IAL

99

Chapter 4: Writing the RTOS Inverse Assembler Code
Writing RTOS Inverse Assembler Code

If a 32-bitprocessor is being used, a special routine is called to place the
current32-bits of trace data into the accumulator:

ERROR_CODE_END ; display any error on return
OUTPUT)"
SET REL_POSITION,0
CALL LD_REL_TO_LONG
;no error, no display
IF 31,0=20001h THEN GOTO NO_ERROR_DISPLAY
CALL DISPLAY_RET_CODE
NO_ERROR_DISPLAY
GOTO END_RTOS_IAL

100

Chapter 4: Writing the RTOS Inverse Assembler Code
Building and Installing the RTOS Inverse Assembler

Building and Insta lling the RTOS Inverse
Assembler

Create your inverse assembler by copying and modifying the demo inverse
assembler files from the $HP64000/rtos/B3082Afipteter directory; that
way, you can use the same make file to build and install your own inverse
assembler.

This section shows you how to:
* Build the RTOS inverse assembler.

* Install the RTOS inverse assembler.

To build the RTOS inverse assembler

The "Makefile" included with the demo inverse assembler code concatenates
the "ial.S" source file with either 'iB6.S" or "ial32.S" (commonoutines for

16- or 32-bitprocessors) before assembling the combined file to the inverse
assembler.

To make the inverse assembler for 16gvicessors:

$ makeiall6 <RETURN>

To make the inverse assembler for 32gvcessors:

$ makeial32 <RETURN>

101

Chapter 4: Writing the RTOS Inverse Assembler Code
Building and Installing the RTOS Inverse Assembler

Examples

To install the RTOS inverse assembler

1 Become the root user.

2 Enter the appropriate makemmand.

The "Makefile" included with the demo inverse assembler code also installs the
inverse assembler by copying the inverse assembler to the appropriate
directory for the emulator you're using. The demo "Makefile" includes the
targets "install302", "install340", and "install020" for the 68302, 68340, and
68020 emulators, respectively.

If, when you start up the Emulator/Analyzer interface,diselay trace
real_time_oscommand is available, the inverse assembler was installed
correctly.

To install the RTOS inverse assembler for the 68302 emulator:

$ make install302 <RETURN>

(This step is also accomplished as pantusining the
$HP64000/bin/install_rtos script.)

102

Making RTOS Measurements with
the Emulator/Analyzer

103

Making RTOS Measurements with the
Emulator/Analyzer

Real-time OS measurements in the emulator/analyzer interface are made
using the HP 64700 series emulation bus analyzers. You can set up the
analyzer to trace real-time OS activity such as service calls, task switches, and
dynamic memory usage by capturing and storing writes made to data table
locations.

If you store writes made to all data table locations, you see all OS activity. If
you wish to see only certain types of OS activity, use the analyzer to store only
writes made to particular data table locations; this is caldattive tracking

This chapter shows you how to set up trace commands for tracking particular
types of real-time OS activity. Keep in mind that these trace commands can be
automated by placing them in command files which carubéy clicking on

action keys (refer to the "Automating RTOS Measurements" chapter).

These tasks are described in the following sections:
» Tracing Writes to the Data Table

» Displaying Traces

Analyzer Resource Limitations

The Emulation Bus Analyzer lets you trigger on a sequence of up to 8

captured states. (Ifyou're tracing a window of code execution, you can trigger
on a sequence of up to 4 captured states because sequence terms are paired in
order to enable and disable the window.) You can qualify which states are
stored in tracenemory, and you can prestore states that occur prior to

qualified store states.

The Emulation Bus Analyzers has 8 state qualifier resources and 1 range
qualifier resource.

If there were more than 8 service calls in a real-time OS, it would be
impossible to track them all using the analyzer to capture activity at discrete
locations. That's why service call functions in the OS code are instrumented to

104

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer

write to a common data area (the data table); this way, you can capture activity
in 1 address range and track all OS activity.

Analyzer resource limitations are also the reason similar types of service calls
are grouped together in the data table. If you want to capture only certain
types of activity, you can use the single range resource to capture writes to a
smaller section of the data table.

You can use the 8 state qualifier resources to capture activity inssivece
locations, thereby giving you the ability to capture activity in another, limited
size address range.

Trace Command Overview

Before you start setting up trace commands to capture data table writes,
should have a general understanding about what the different traceacal
options allow you to do.

Refer to your Emulator/Analyzer interfatlsers Guidefor complete details
about the trace command.

Storage Qualifiers

The most basic thing to realize about capturing RTOS information with the
emulation bus analyzer is that you only want to store writes to the data table.
Any other stored stateilhbe displayed in the RTOS trace display as a
non-RTOS state.

To specify the storage qualifier, use the "only"' tracmm@nd option.

Virtually all the trace commands you enter to capture RTOS information will
specify that "only" a range of locations in the data table or "only"a range and
other specific locations in the data table are to be stored in the trace. (If you
wish to look at all code execution, you wilbse all states.)

One exception to this guideline is the ability to capture both writes to the data
table and your application code execution excluding execution of the actual
OS code itself. This can usually be accomplisheddryrgy all activity not in

the range of the OS code (thattiace only address not range< OS_start>

thru <OS_end>). Once the analyzer has captured this data, you may find it
helpful to use two emulation windows simultaneously: one to display the
normal source code trace, and the other to displaythe RTOS trace.

105

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer

Trigger Qualifiers

The trigger qualifier tells the analyzer when tore captured states. To

trigger the analyzer on a certain event or occurrence in your program, use
either the "after", "about", or "before" trace command option. The option you
choose specifies the position of the trigger point in traeenory.

Sequence Triggering

To trigger the analyzer on a certain sequence of events or occurrences in your
program, use the "find_sequence" traceaotand option.

Capturing Windows of Execution

To capture only certain sections (in other words, windows) of program
execution, use the "enable" and "disable"trace command options.

Data Bus Width Differences

When using data qualifiers to identify the entry or exit of a particular task (or
any other data value written to the data table), remember the emulation bus
analyzer captures 16 bits of data per state when used with pfsbéssors

and 32 bits of data per state when used with 3p+oitessors. Because long
word (32-bit) task IDs are written to HPOS_TASK_ENTRY and
HPOS_TASK_EXIT, you must capture the write of the high-order word or
low-order word to identify a particular task when using a 1@tntcessor.

106

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

Tracing Writes to the Data Table

Once the real-time OS code has been instrumented to write values to the data
table when tasks switch or when service calls are entered or exited, you can
view OS activity in real-time by setting up the analyzer to capture writes to the
data table.

When you display the real-time OS trace, the RTOS inverse assembler
decodes the captured data table writes into OS task and service call
mnemonics.

Remember that the ayant of data captured for each stalé-(or 32-bits
depending on the processor) affects the tracentands used to capture
RTOS information if, as in the demo RTOS, the data table is made up of
32-bit long integer locations.

This section shows you how to set up trace commands to:

» Track everything.

« Track task switches and service calls.

e Track groups of service lta.

» Track a single service call.

* Include task switches when selectively tracking.

* Track two service calls.

» Track a single task and all OS activity within it.

e Track four tasks and all OS activity within them.

» Track about a specific task switch.

» Track about a specific task sending a message to a specific queue.
» Track activity after a function is reached.

» Track activity about the access of a variable by a specific task.
» Track which tasks access a specific function or variable.

e Track all memory calls (including task switches).

107

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

Example Data Table

The examples in this section assume the following data table (which is used
with the demo RTOS measurement tool):

/ /

I* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=-
/* -=- The interpretation of 'traced’ data is dependent -=-

I* -=- on the relative offsets of symbols -=-

/
/* The name of this symbol MUST NOT CHANGE!!! */
long HP_RTOS_TRACK_START; /* Itis required that the interface find this */
/* symbol and pass it's value to the Interpreter */
/* so the beginning of this table is known. */

long HPOS_TASK_ENTRY;
long HPOS_TASK_EXIT;

long HPOS_task_create_Entry[7];
long HPOS_task_create_Exit;

long HPOS_send_message_Entry[2];
long HPOS_send_message_Exit;
long HPOS_get_message_Entry[2];
long HPOS_get_message_EXxit[2];
long HPOS_alloc_message_Entry;
long HPOS_alloc_message_Exit[2];
long HPOS_free_message_Entry;
long HPOS_free_message_Exit;

long HPOS_alloc_mem_Entry;
long HPOS_alloc_mem_Exit;

char HPOS_String_array[12]; [* area to write string */

long HPOS_USER_DEFENTRY[12]; /* data entries to be used for */
[* either SPA intervals or */
/* for general program tracking */

char HP_RTOS_TRACK_END;

short int HPOS_CLOCK_TICK;

108

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track everything

» Capture all writes to the data table.

Examples
trace only address range HP_RTOS TRACK_ STARTthru
HP_RTOS_TRACK_END <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"e_trkall"command file which isun by clicking on the "Track Everything"
action key.

To track task switches and service calls

» Capture all writes to the task and service call entry and exit locations in the
data table.

Examples
trace only address range HP_RTOS TRACK_ STARTthru
HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commands.ard in the
"e_trkcalls" command file which iain by clicking on the "Track OS calls"
action key.

109

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

Examples

To track groups of service calls

Capture writes to the range of data table locations that contain the entry and
exit locations of the group of servicellsa

When organizing the data table, its important to group the entry and exit
locations for certain types of related service calls so they are easyto trace
(using the 1 range resource of the analyzer).

To track the service calls associated with message queues:
trace only address range HPOS_send_message Entry thru
HPOS_alloc_message Entry-1 <RETURN>
display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commands.ard in the
"e_onlygs" command file which rsin by clicking on the "Only Queues" action
key.

Examples

To track a single service call

Capture writes to the range of data table locations that contain the entry and
exit locations of the particular service call.

To track the send_message() service call:

trace only address range HPOS_send_message Entry thru
HPOS_get_message Entry-1 <RETURN>

display trace real_time_os <RETURN>

110

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

In the demo RTOS measurement tool, these commands are created by the
"e_onecall* command file which isin by clicking on the "Only Call X" action
key.

Examples

To include task switches when selectively tracking

Capture writes to the HPOS_TASK_ENTRY and HPOS_TASK_EXIT
locations in addition to the range of data table locations that contain the entry
and exit locations of the particular service calls.

To track the service calls associated with message queues including task
switches:

trace only address range HPOS_send_message Entry thru
HPOS_alloc_message_Entry-1 or HPOS _TASK_EXIT or
HPOS_TASK_EXIT+2 or HPOS_TASK_ENTRYor
HPOS_TASK_ENTRY+2 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsward in the
"e_trackgs_16" ammand file which isun by clicking on the "Tasks & Queues
action key. Note that this example is for a processor wit-bit data bus.
There is a "e_trackgs_32"monand file forprocessors with @2-bit data bus
which is also run by clicking on the "Tasks & Queues" action key.

To track the send_message() service call including task switches:

trace only address range HPOS_send_message Entry thru
HPOS_get_message Entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_EXIT+2 or HPOS_TASK_ENTRYor
HPOS_TASK_ENTRY+2 <RETURN>

display trace real_time_os <RETURN>

111

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track two service calls

» Capture writes to each of the service call’s entry and exit locations in data
table.

Because two service calls represent two, perhapscontiguous, ranges in the
data table (and the analyzer resources only let you specify one range), a
different method must be used than when tracking a single service call.

Because you know values are written to an entry (or exit) location one after
the other, you can consider the writes to the entry and exit locations of two
service calls as 4 separate sections, or windows, of code execution. With this in
mind, you can set up a trace commandttoeswrites during one of 4 windows

of code execution.

Examples To track the get_message() and alloc_message() service calls:

trace enable HPOS_get_message_Entry or
HPOS_get_message Exit or HPOS_free_message_Entry or
HPOS_free_message Exit disable

HPOS_get_message_Exit-2 or HPOS_alloc_message_Entry-2
or HPOS_free_message_Exit-2 or HPOS_String_array-2

only address range HP_RTOS TRACK_ STARTthru
HP_RTOS_TRACK_END <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commands are created by the
"e_twocalls_16" coomand file which isun by clicking on the "Only s X &
Y"action key. Note that this example is for a processor wité-hit data bus.
There is a "e_twocalls_32"oumand file forprocessors with 82-bit data bus
which is also run by clicking on the "Only [BaX & Y" action key.

112

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track a single task and all OS activity within it

» Capture the window of code execution between when the task is switched into
and when it is switched out of and store all data table writes during that
window of code execution.

Because task IDs are written to the HPOS_TASK_ENTRY and
HPOS_TASK_EXIT locations when tasks start or switch, you can identify
when a particular task is switched into by using address and data qualifiers in
the trace command.

Remember:
With 16-bitprocessors, two bus cycles are used to write8ghbit task ID
to the HPOS TASK_ENTRY and HPOS_TASK_EXIT locations.

With 32-bitprocessors, one bus cycle is used to write3thbit task ID to
the HPOS TASK_ENTRY and HPOS_TASK_EXIT locations.

Note that the time stamp on the right hand side of the trace display gives a
useful indication of the time between task exit and the next entry into this

same task.
Examples To track task 3 and all the OS activity within it (164bibcessor):
trace enable address HPOS _TASK ENTRY+2data 3 disable

address HPOS_TASK_EXIT+2 data 3 only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1
prestore address HPOS_TASK ENTRY <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsiand in the
"e_trkltask 16" coimand file which isun by clicking on the "Only Task X"
action key.

113

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track task 3 and all the OS activity within it (324bibcessor):

trace enable address HPOS TASK ENTRYdata 3 disable
address HPOS_TASK_EXIT data 3 only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsand in the
"e_trkltask 32" cmmand file which isun by clicking on the "Only Task X"
action key.

To track four tasks and all OS activity within them

Capture one of four windows of code execution between when tasks are
switched into and when they are switched out of and store all data table writes
during those windows of code execution.

Because the four windows of code execution never overlap, you can use the
"or"trace command option along with the "enable" and "disable" options to
trace up to four tasks.

114

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

Examples To track tasks 1, 2, 3, or 4 and all the OS activity within them (16-bit
processor):

trace enable HPOS _TASK ENTRY+2data 1 or
HPOS_TASK_ENTRY+Zata 2 or HPOS_TASK_ENTRY+2data 3
or HPOS TASK ENTRY+2 data 4 disable address
HPOS_TASK_EXIT+2 data 1 or HPOS_TASK_EXIT+2 data 2 or
HPOS_TASK_EXIT+2 data 3 or HPOS_TASK_EXIT+2 data 4
only address range HP_RTOS TRACK_ STARTthru
HPOS_USER_DEFENTRprestore address HPOS_TASK_ENTRY
<RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsuard in the
"e_trk4task 16" command file which isun by clicking on the "Only Tsk
W, X,Y,Z" action key.

To track tasks 1, 2, 3, or 4 and all the OS activity within them (32-bit
processor):

trace enable HPOS _TASK ENTRYdata 1 or
HPOS_TASK_ENTRWata 2 or HPOS_TASK_ENTRYdata 3 or
HPOS _TASK ENTRMata 4 disable address HPOS_TASK EXIT
data 1 or HPOS_TASK EXIT data 2 or HPOS_TASK_EXIT

data 3 or HPOS_TASK_EXIT data 4 only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>
In the demo RTOS measurement tool, these commandsuward in the

"e_trk4task 32" command file which isun by clicking on the "Only Tsk
W, X,Y,Z" action key.

115

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

Examples

To track about a specific task switch

Capture the sequence of the first task exiting followed immediately by the
second task entering. (If any other task is entered after the first task exits,
restart the sequence search.)

To track about the switch from task 1 to task 2 (1§baicessor):

trace find_sequence HPOS _TASK EXIT+2 data 1 then
HPOS_TASK_ENTRY+Zata 2 restart HPOS_TASK_ENTRY+2
data not 2 trigger about Oxxxxxxxxh only range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsiand in the
"e_AthenB_16"ceaxmand file which isun by clicking on the "Task switch
A->B"action key.

To track about the switch from task 1 to task 2 (3%bitcessor):

trace find_sequence HPOS_TASK EXIT data 1 then
HPOS_TASK_ENTRMWata 2 restart HPOS_TASK_ENTRYdata

not 2 trigger about Oxxxxxxxxh only range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsand in the
"e_AthenB_32" ceaxmand file which isun by clicking on the "Task switch
A->B"action key.

116

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

Examples

To track about a specific task sending a message
to a specific queue

Capture the sequence of the task entering followed by a message being sent to
the queue. Ifthe task exits before the message is sent, restart the sequence
search.

This measurement is useful if you have a task that sends a message to a specific
gueue intermittently and you either want to verify that the message gets sent
or you want to see the service call context under which the message is se

To track about task 5 sending a message to queue 6 (itebéssor):

trace find_sequence HPOS _TASK ENTRY+2data 5 restart
HPOS_TASK_EXIT+2 data 4 trigger about

HPOS_send_message Entry+10 data 6 only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"e_tsk2queue_16" comand file which isun by clicking on the "Task A
msg-> Que X" action key.

To track about task 5 sending a message to queue 6 (B&béssor):

trace find_sequence HPOS _TASK ENTRYdata 5 restart
HPOS_TASK_EXIT data 4 trigger about
HPOS_send_message Entry+8 data 6 only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"e_tsk2queue_32" comand file which isun by clicking on the "Task A
msg-> Que X" action key.

117

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track activity after a functionisr eached

» Capture the window of code execution between when the task is switched into
and when it is switched out of, trigger after the function is reached, and store
all states.

The normal "C" source code tracing igl stvailable whenever you need to see
your actual application code. In fact you can use an RTOS trigger point to
then capture source code activity.

Examples To track activity after the function "send_message" is reached in task 5 (16-bit
processor):

trace enable address HPOS _TASK ENTRY+2data 5 disable
address HPOS_TASK_EXIT+2 data 5 after send_message
<RETURN>

set source only <RETURN>
display trace mnemonic <RETURN>

In the demo RTOS measurement tool, these commands.ard in the
"e_afterfunc_16" covmand file which isun by clicking on the "Task A:
FuncX"action key.

To track activity after the function "send_message" is reached in task 5 (32-bit

processor):
trace enable address HPOS TASK ENTRYdata 5 disable
address HPOS_TASK _EXIT data 5 after send_message
<RETURN>

set source only <RETURN>

display trace mnemonic <RETURN>

118

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

In the demo RTOS measurement tool, these commandsiard in the
"e_afterfunc_32" coomand file which isun by clicking on the "Task A:
FuncX"action key.

Examples

To track activity about the access of a variable by
a specific task

Capture the window of code execution between when the task is switched j
and when it is switched out of, trigger about the access of the variable, an
store all states.

This measurement allows you to see when a specific variable is accessed by a
specific task and the source code context under which the variable is accessed.

Note that in order to see source lines in the trace, the source files must either
be in the current directory or in a directory defined by the
HP64 DEBUG_PATH envonment variable.

To track activity about the access of variable "task6_queue" bytask 5 (16-bit
processor):

trace enable address HPOS _TASK ENTRY+2data 5 disable
address HPOS_TASK_EXIT+2 data 5 about task6_queue
<RETURN>

set source only <RETURN>
display trace mnemonic <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"e_aftervar_16"command file which isun by clicking on the "Task A: VarX"
action key.

119

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track activity about the access of variable "task6_queue" by task 5 (32-bit

processor):
trace enable address HPOS TASK ENTRYdata 5 disable
address HPOS_TASK_EXIT data 5 about task6_queue
<RETURN>

set source only <RETURN>
display trace mnemonic <RETURN>

In the demo RTOS measurement tool, these commands.ard in the
"e_aftervar_32" command file which isun by clicking on the "Task A: VarX"
action key.

To track which tasks access a specific function or
variable

» Capture the address of the function or variable and prestore writes to the
HPOS _TASK _EXIT and HPOS_TASK_ENTRY data table locations.

(An easy way to specify these data table locations is to use the range
HP_RTOS_TRACK_START through HP_RTOS_TRACK_START+ 7))

Examples To track which tasks access the variable "task6_queue™

trace prestore address range HP_RTOS TRACK_ STARTthru
+7 only address task6_queue <RETURN>

display trace real_time_os <RETURN>

120

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Tracing Writes to the Data Table

To track all memory calls (including task switches)

» Capture writes to the range of data table locations that contain the entry and
exit locations of the memory allocation service call in addition to the
HPOS_TASK_ENTRY and HPOS_TASK_EXIT locations.

Examples (16-bitprocessors):

trace only address range HPOS_alloc_mem_Entry thru +7
or HPOS_TASK_ENTRYor HPOS_TASK_ENTRY+2o0r
HPOS_TASK_EXIT or HPOS_TASK_EXIT+2 <RETURN>

display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"e_memory_16" command file which isun by clicking on the "Memory Usage"
action key.

(32-bit processors):
trace only address range HPOS_alloc_mem_Entry thru +7
or HPOS_TASK_ENTRYor HPOS_TASK_EXIT <RETURN>
display trace real_time_os <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"e_memory_32"command file which isun by clicking on the "Memory Usage"
action key.

121

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer

Displaying Traces

Displaying Traces

The normal "C" source code tracing igl stvailable whenever you need to see
your actual application code. You can switch between the normal "C" source
code display and the RTOS measurements display with a simple click of an
action key or by enteringdisplay trace command.

Each state stored in the trace has a time stamp that shows relative or absolute
time. This is useful for verifying the system clock tick interval, measuring
non-running time of tasks, and understanding the timing needs of various
communications mechanisms such as sending a message or responding to a
flag.

This section shows you how to:
» Switch to a normal trace display.

» Switch to the RTOS trace display.

122

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer

Displaying Traces

To switch to a normal tr ace display

Enter thedisplay trace mnemoniccommand.

Writes to the dat
table.

race List =)
Label: Address Opcode or Status w/ Source Lines time count
Base: umnbol mnemonic w/symbal relative
t=st_task_+HAAAS4 BLT.B progl tst_task_GB+AAAAAIR 00—
+HA 1 _HPO5_send_messa AAA4 sdata wr word 1.38 m5
+HAZ _HPO5_sent+AdARRZ 5C41 =sdata wr word 2468 n3
+i _HPO5_sen+ARRRAS AHAA sdata wr word 1.5 u3
B4 _HPOS_zer+BBBEEE E2B8 sdata wr word 248 nS
+885 _HPOS_ser+BBBBE58 BAAA sdata wr word 2.6 us
+B886 _HPOS_ser+BBEE6AR A7 sdata wr word 2806 nS
+687 | _HPOS_TASK_ERIT ABAA sdata wr waord 186. u5
_HPOS_TAS+ARAREZ AAAGE =sdata wr word 248 nS
_HPOS5_TASK_ENTRY ABAA =data wr waord 2.9 us
_HPOS_TAS+AARRAZ AER? sdata wr word 248 n3
_HFO5_get_messag BERZ =sdata wr word 40,76 05
_HFO5_get+BEEEEZ BRA1 sdata wr word 248 nS
_HPO5_get+HEEEHS BBA4 sdata wr word 3.1 us
_HPO5_get+HHEHLHE 5041 sdata wr word 2806 nS
_HPOS_free_messa AAA4 =sdata wr word 13.48 us

The inverse assembler included with the Emulator/Analyzer interface is used
to disassemble states captured by the analyzer.

123

Chapter 5: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

To switch to the RTOS tr ace display

» Enter thedisplay trace real_time_oscommand on the command line.

race List 0ffset=H More data off
Label: Real Time Operating System time count
Base: with sumbol relative
: HOW-RTOS: addr=prog|tst_task_£+34 dars=@EEBEDFA -———------——-
Service call entry' +dd1 -+ send_messageimsg_value=HEE845C4 1 1.38 m3
gqueues=dat |_‘task?_queue, q_index=AARBEEEY
---EXITED TASK : index=6 -—- -—- 191. us
-—-NEKXT TASK : index=7 -—- -—- 13.1 uS§
. . - get_messageimsqg_wvalue=HAE45C41: 41.88 U5
Service call exit. -+ free_messageimsg_valus=HBH45C41) 6.6 u5
<~ fres_messagel!} 11.1 u5
-* get_messageimsg_ptr=AAEES17H ,queue=dat|_tas|~<?_queue) 13.8 u3
---EXWITED TASK : index=7 --= --= 37.2 u5
X | +£6825— ---NEXT TASK : index=6 -—= -—= 13.1 uS
Task switch. — [+gz7 <- send_messagel) 37,3 us
+623 -* get_messagefmsg_ptr=08884378 ,queus=dat|_taskB_gueus) 13.8 uS
+833 ---ERITED TASK : i = --= --= 7.2 uS§
+835 -—= i index=5 --= --= 13.1 us
<- send_message!!} 37,3 U5
Parameters— |
(decoded if
possible). Time stamp.,

When you enter thdisplay trace real_time_oscommand, the real-time OS
inverse assembler is used to decode states captured by the analyzer.

The base address of the data table (that is, the address of the
HP_RTOS_TRACK_START symbol) is passed to the RTOS inverse
assembler where it is used to calculate the addresses of other data table
locations.

Because the RTOS inverse assembler knows what writes to the different data
table locations mean, it is able to output formatted information about
real-time OS operation.

Notice that the line numbers in the first column of the display are not
sequential. Thisis because several trace states may be disassembled for each
line in the RTOS trace display.

124

Making RTOS Measurements with
the SPA

125

Making RTOS Measurements with the
SPA

The HP 64708A Software Performance Analyzer (SPA), a plug-in card for the
HP 64700 emulation systeiprovides valuable S-levelprofiling

measurements. This makes finding bottlenecks simple. In addition, the
number of times each task is called can be displayed, providing valuable
information on system "thrashing". Also, the number of times each OS service
call is invoked from your application can be tracked, helping to isolate
bottlenecks from over-utilized system features.

The Software Performance Analyzer can also detect when a task has exceeded
a maximum preset time duration. When combined with the cross triggering
capabilities of the emulation system, you are able to capturécaibéd trace
showing the sequence of events leading up to the overflow and/or the system
can be halted to allow browsing through the current state of the system.

These tasks are grouped into the following sections:
* Making time profilemeasurements.
» Coordinatingneasurements with the emulator.

Keep in mind that the SPA commands shown in this chapter can be automated
by placing them in command files which canrbe by clicking on action keys
(refer to the "Automating RTOS Measurements" chapter).

126

Chapter 6: Making RTOS Measurements with the SPA

SPA Data Table Requirements

In order to be able to provide time profiteeasurements, the Software
Performance Analyzer measures the time between accesses of different
locations.

The data table entry and exit locations set up for service call tracking by the
Emulation Bus Analyzer can be used by the Software Performance Analyzer
for measuring service call time intervals.

Additional entry and exit locations must be set up for task intervals, OS
overhead, and measurement intrusion. There are no Software Performance
Analyzer limitations that require these locations to be grouped together in the
data table or to even be placed in the data table in the first place. However,
grouping these locations together in the data table makes for simpler OS code
instrumentation.

SPA Command Overview

Before you start setting up SPA commands to perform piroéle
measurements, yolnguld have a general understanding about what the
different SPA commands.

Refer to theSoftware Performance Analyzer User's G uidlecomplete details
about the SPA commands.

Sorting Events and Re -scaling Histograms

You can sort the events displayed in a SPA prafisurement with the
display histogram sort_eventscommand. You can re-scale the histograms
displayed in a SPA profilmeasurement with thdisplay histogram rescale
command.

127

Chapter 6: Making RTOS Measurements with the SPA

Demo Data Table Entries for SPA

The sections of the demo RTOS measurement tool's data table that are for
RTOS measurements with the software performance analyzer are:

short int HPOS_Start_Ovrhd; /* Start of OS interval for SPA */
short int HPOS_Stop_Ovrhd; /* End of OS interval for SPA */

short int HPOS_Start_Intrusion; /* Start interval for measuring intrusion*/
short int HPOS_Stop_Intrusion; /* End interval for measuring intrusion*/

short int HPOS_TaskTable;

short int HPOS_Tenter_0000,HPOS_Texit_0000;
short int HPOS_Tenter_0001,HPOS_Texit_0001;
short int HPOS_Tenter_0002,HPOS_Texit_0002;
short int HPOS_Tenter_0003,HPOS_Texit_0003;
short int HPOS_Tenter_0004,HPOS_Texit_0004;
short int HPOS_Tenter_0005,HPOS_Texit_0005;
short int HPOS_Tenter_0006,HPOS_Texit_0006;
short int HPOS_Tenter_0007,HPOS_Texit_0007;
short int HPOS_Tenter_0008,HPOS_Texit_0008;
short int HPOS_Tenter_0009,HPOS_Texit_0009;

— END TASK MODIFICATIONS ~ --ecememmecmememennecs *

128

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

Making Time Profile Measurements

By measuring the time between writes made to task entry and exit locations,
the Software Performance Analyzer (SPA) can provide time interval
measurements for the tasks ouy application as well as for the OS.

The time duration of each task can be displayed in an easy to read histogram.
Cumulative, maximum, and minimum time spent in each task can be displayed
in a table.

This section shows you how to:

» Define SPA events for tasks, service calls, and user events.
» Display a time histogram of task events.

* Show a table of SPA events.

» Display a count histogram of task events.

* Measure only data from a specific task.

» Show a table of service call invocations.

* Show a normal function duration histogram.

» Show a histogram of task and user events.

129

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To define SPA events for tasks, service calls, and

user events

1 Define event intervals for tasks.

2 Define event intervals for measurement intrusion and overhead.

3 Define event intervals for service calls.

4 Define event intervals for user-defined events.

Examples

To define event intervals for tasks:

define single _event named
HPOS_Tenter 0001 thru

define single _event named
HPOS_Tenter 0002 thru

define single _event named
HPOS_Tenter 0003 thru

define single _event named
HPOS_Tenter 0004 thru

define single _event named
HPOS_Tenter 0005 thru

define single _event named
HPOS_Tenter 0006 thru

define single _event named
HPOS_Tenter 0007 thru

Task 0001 interval
HPOS_Texit_0001 <RETURN>

Task 0002 interval
HPOS_Texit_0002 <RETURN>

Task 0003 interval
HPOS_Texit_0003 <RETURN>

Task 0004 interval
HPOS_Texit_0004 <RETURN>

Task 0005 interval
HPOS_Texit_0005 <RETURN>

Task 0006 interval
HPOS_Texit_0006 <RETURN>

Task 0007 interval
HPOS_Texit_0007 <RETURN>

130

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To define event intervals for measurement intrusion and overhead:

define single _event named OS_Time interval
HPOS_Start Ovrhd thru HPOS_Stop_Ovrhd <RETURN>

define single _event named Measure _Ovrhd interval
HPOS_Start_Intrusion thru HPOS_Stop_Intrusion <RETURN>

To define event intervals for service calls.

define single _event named Srvccall_task create
interval HPOS _task create Entry thru
HPOS _task_create Exit <RETURN>

define single _event named Srvccall_send_message
interval HPOS_send_message Entry thru
HPOS_send_message Exit <RETURN>

define single _event named Srvccall_get_message
interval HPOS_get_message_Entry thru
HPOS_get_message Exit <RETURN>

define single _event named Srvccall_alloc_message
interval HPOS_alloc_message_Entry thru
HPOS_alloc_message Exit <RETURN>

define single_event named Srvccall_free_message
interval HPOS_free_message_Entry thru
HPOS_free_message_Exit <RETURN>

define single _event named Srvccall_alloc_memory
interval HPOS_alloc_memory_Entry thru
HPOS_alloc_memory_Exit <RETURN>

131

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To define event intervals for user-defined events:

define single _event named Userintr_1 interval
HPOS_USER_DEFENTRMru HPOS_USER_DEFENTRY+3h <RETURN>

define single _event named Userintr_2 interval
HPOS_USER_DEFENTRY+thru HPOS_USER_DEFENTRY+7h
<RETURN>

define single _event named Userintr_3 interval
HPOS_USER_DEFENTRY+#iru HPOS_USER_DEFENTRY+0bh
<RETURN>

define single _event named Userintr_4 interval
HPOS_USER_DEFENTRY+0cthru HPOS_USER_DEFENTRY+0fh
<RETURN>

define single _event named Userintr_5 interval
HPOS_USER_DEFENTRY+10thru HPOS_USER_DEFENTRY+13h
<RETURN>

define single _event named UserIntr_6 interval
HPOS_USER_DEFENTRY+14thru HPOS_USER_DEFENTRY+17h
<RETURN>

In the demo RTOS measurement tool, these commandsward in the
"s_init" command file which is created bynning the $HB4000/bin/rtos_edit
script and run by clicking on the "Initialize" action key.

132

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To display a time histogram of task events

1 Stop the current profilmeasurement.
2 Select the task events.
3 Start the measurement.

4 Display a time histogram.

Examples To stop the current profilmeasurement:

stop_profile <RETURN>

To select the events:

select_events matching "Task *' <RETURN>
select_events matching "OS_Time" <RETURN>
select_events matching "Measure_Ovrhd" <RETURN>

To start the measurement:

setup_measurement enable off <RETURN>
setup_measurement disable off <RETURN>
profile interval _duration <RETURN>

To display a time histogram:
display histogram data time <RETURN>
In the demo RTOS measurement tool, these commandsuard in the

"s_timetasks" command file whichrign by clicking on the "Time Tasks" action
key.

133

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a table of SPA events

Choose th®isplay-Table pulldown menu item (or enter tlisplay table
command on the command line).

A raw numbers view of the accumulated data is displayed.

Examples

To display a count histogram of task events

Stop the current profilmeasurement.
Select the task events.
Start the measurement.

Display a call histogram.

The histogram shows the the number of times each task is entered (and
exited). This can be very useful for detecting system "thrashing" between tasks.

To stop the current profilmeasurement:

stop_profile <RETURN>

To select the events:

select_events matching "Task *' <RETURN>

To start the measurement:

setup_measurement enable off <RETURN>

setup_measurement disable off <RETURN>

134

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

profile interval _duration <RETURN>

To display a call histogram:
display histogram data calls <RETURN>
In the demo RTOS measurement tool, these commandsuard in the

"s_counttasks" command file whichrisn by clicking on the "Count Tasks
action key.

To measure only data from a specific task

1 Stop the current profilmeasurement.
2 Select the service call events.
3 Start the measurement.

4 Display a call histogram.

This displays a histogram of the number of times each service call is invoked
from a single task.

Examples To measure the number of times each service call is invoked from 0RGk
perform the steps below.

To stop the current profilmeasurement:

stop_profile <RETURN>

To select the events:

select_events matching "Srvccall_*" <RETURN>

135

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To start the measurement:

setup_measurement enable start_address Task 0003
<RETURN>

setup_measurement disable end_address Task 0003
<RETURN>

profile interval _duration <RETURN>

To display a call histogram:
display histogram data call <RETURN>
In the demo RTOS measurement tool, these commands are created by, and

found in, the "s_taskwindow" comand file which isun by clicking on the
"TaskX: Servcalls" action key.

To show a table of service call invocations

1 Stop the current profilmeasurement.
2 Select the service call events.
3 Start the measurement.

4 Display a call histogram.

This displays a histogram of the number of times each service call is invoked
from all tasks.

136

Examples

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To stop the current profilmeasurement:

stop_profile <RETURN>

To select the events:

select_events matching "Srvccall_*" <RETURN>

To start the measurement:

setup_measurement enable off <RETURN>
setup_measurement disable off <RETURN>
profile interval _duration <RETURN>

To display a call histogram:
display histogram data calls <RETURN>
In the demo RTOS measurement tool, these commandsuward in the

"s_countsrvcls" command file which isun by clicking on the "Count Srvc
Calls" action key.

To show a normal function duration histogram

Stop the current profilmeasurement.
Select function events.

Start the measurement.

Display a time histogram.

This performs a normal function duration profireasurement.

137

Examples To stop the current profilmeasurement:

stop_profile <RETURN>

To select the events:

define multiple _events functions <RETURN>

select_events <RETURN>

unselect_events matching "Task *' <RETURN>
unselect_events matching "Srvccall_*" <RETURN>
unselect_events matching "UserIntr*' <RETURN>

unselect_events OS_Time <RETURN>
unselect_events Measure_Ovrhd <RETURN>

To start the measurement:

setup_measurement enable off <RETURN>
setup_measurement disable off <RETURN>
profile function_duration exclude_calls <RETURN>

To display a time histogram:
display histogram data time <RETURN>
In the demo RTOS measurement tool, these commandsuard in the

"s_funcdur" command file which rein by clicking on the "FunctionDuration"
action key.

138

Chapter 6: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a histogram of task and user events

* Create a command file that selects function events, starts the measurement,
and displays a time histogram.

This measurement includes any user-defined events you may have set up.

Examples To stop the current profilmeasurement:

stop_profile <RETURN>

To select the events:

select_events matching "UserIntr*' <RETURN>
select_events append matching "Task *" <RETURN>

To start the measurement:

setup_measurement enable off <RETURN>
setup_measurement disable off <RETURN>
profile interval _duration <RETURN>

To display a time histogram:
display histogram data time <RETURN>
In the demo RTOS measurement tool, these commandsuard in the

"s_tasknuser" command file whichrisn by clicking on the "Tsk & User Evnts"
action key.

139

Chapter 6: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

Coordinating Measurements with the Emulator

During a Software Performance Analyzer duration measurement, the SPA can
generate a trig2 signal if the event being measured executes for too long a
period of time. This signal can be used by the emulator to stop the application
program, or it can be used by the emulation analyzer to trace activity up to
that point.

This combination of events allows you to stop the application program when a
task exceeds a certain amount of continuous execution time and/or track
activity that leads up to the break.

This section shows you how to:
» Configure the emulation analyzer to receive trig2.
* Break on task time overflow.

» Disable the SPA trig2.

To configure the emulation analyzer to receive
trig2
If you wish to make cross-trigger measurements between SPA and the
emulation system, make sure the emulation configuration has the following
guestion and answer:

Should Analyzer drive or receive Trig2? receive

Refer to your emulator/analyzéiser's Guidefor information on modifying
the emulator configuration.

140

Chapter 6: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

To break on task time overflow

1 In the emulation window, set up the analyzer to be armed on trig2 while
specifying the trace command.

2 In the SPA window, setup the measurement to drive trig2 after a task exceeds
a certain amount of time.

You can set up a coordinatettasurement between the software performance
analyzer and the emulation bus analyzer. For example, you might like to
capture a trace and then break into the emulation monitor if a certain task
ever takes longer than a specified maximum time. Tracing before the time
overflow will show a hisory of what led up to the time overrun.

Examples To set up emulation analyzer to measure all OS activity before U688
exceeds 5 milliseconds, follow the insctions below.

First, set up the emulation bus analyzer to trace all OS activity before the
signal on trig2 by entering the following commands in the Emulator/Analyzer
window:

trace arm_trig2 before Oxxxxxxxxh only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1 <RETURN>

display trace real_time_os <RETURN>

If you wish to stop program execution at that point, you could enter the
command:

trace arm_trig2 before Oxxxxxxxxh only address range
HP_RTOS_TRACK_STARThru HPOS_USER_DEFENTRY-1
break_on_trigger <RETURN>

Note that the trace has started but has not completed because it is waiting for
the trig2 signal as its trigger point.

In the demo RTOS measurement tool, these commandsard in the
"e_spatrig" command file which isin by clicking on the "Before SPA trig2"
action key.

141

Chapter 6: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

Next, set up the software performance analyzer measurement to drive trig2
after a task exceeds a certain amount of time by entering the following
commands in the SPA interface:

stop_profile <RETURN>

select_events matching "Task *' <RETURN>
setup_measurement drive trig2_after 5 msec Task 0003
<RETURN>

setup_measurement enable off <RETURN>
setup_measurement disable off <RETURN>

profile interval _duration <RETURN>

display histogram data time <RETURN>

expand Task_0003 <RETURN>

When the trace has completed, it is displayed in the Emulator/Analyzer
interface window. The resulting trace shows you a historical trace of what led
up to the time overflow. Notice that the application has just entered the task
which you specified.

In the demo RTOS measurement tool, these commands.ard in the
"s_break_ovrflw' command file which isin by clicking on the "Trig2 on
Overflw" action key.

Note If the "TaskX: Servcalls" action key (or the "s_taskwindowheooand file) is
used before the "Trig2 on Overflw" action key (or the "s_break_ovrflw"
command file), the "enable" and "disable" measurement setups must be
removed by the commarsgtup_measurement defaulbefore the first action.

142

Chapter 6: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

To disable the SPA trig2

* In the SPA window, set up a measuremenutm the "driving” of trig2 OFF.

You must disable the driving of trig2 whenever cross-trigger measurements to
the emulator are no longer desired.

Note Until the trig2 signal from SPA is disabled, the signal will be continually sent
to the emulation system. This may result in unexpected behavior such as
continually breaking into the monitor or traces being started but not
completing.

Examples To turn OFF the "driving" of trig2:
stop_profile <RETURN>

setup_measurement drive off <RETURN>

In the demo RTOS measurement tool, these commandsard in the
"s_disabletrg2" command file whichrign by clicking on the "Disable Trig2"
action key.

143

144

Automating RTOS Measurements

145

Automating RTOS Measurements

Automating RTOS measurements, in either the Emulator/Analyzer or SPA
interfaces, is simply a matter of placing commands in command files and
setting up action keys that, when clicked, run thmmand files.

The action keys for the demo are set up by the two startup scripts: rtos_emul
and rtos_spa. The action keys canmand files in the
$HP64000/rtos/B3082A/action_keys directory. It's best to copy these filesto a
directory of your own before editing.

Setting up command files and placing them on action keys are described in the
following sections:

e Using Command Files
» Using Action Keys

Refer to your Emulator/Analyzer interfatiser's Guidefor complete details
about using command files.

Demo Action Keys and Related Command Files

The following tables list the action key labels that appear in the
Emulator/Analyzer and Software Performance Analyzer interfaces, the
command files that amun by clicking on the action key, and a short
description of what the command files do.

Command files are installed in the $64®00/rtos/B3082A/action_keys
directory.

The contents of the Emulator/Analyzer command files appear as examples in
the "Making RTOS Measurements with the Emulator/Analyzer" chapter.

The contents of the Software Performance Analyzer command files appear as
examples in the "Making RTOS Measurements with the SPA" chapter.

146

Chapter 7: Automating RTOS Measurements

Emulator/Analyzer Action Keys and Related Command Files

Action Key Command Hle/Script Description
Track OS calls e_trkcalls Tracks OS service calls and task switches.
Track Everything e_trkall Tracks service calls, task switches, string
writes, and user-defined activity.
Task switch A-> B e_AthenB_16 Tracks OS activity about a specific task
e AthenB_32 switch.

Help RTOS

ItellrtosHP lin_browser

The "tellrtosHP" script places help
information in the browser window.

Memory Usage

e_memory_16
e_memory_32

Tracks memory allocation service calls as
well as task switches.

Only Call X

e_onecall

Tracks a single service call.

OnlyCalls X &Y

e _twocalls_16
e _twocalls_32

Tracks two service calls.

Tsk A msg->Que X

e_tsk2queue_16
e_tsk2queue_32

Tracks OS activity about a specific task
sending a message to a specific queue.

Custom OS Trace

display trace real_time_os

This command displays the real-time
trace.

< UserDefinable1>

You must edit the "rtos_emul" script to
define this key.

Only Task X

e _trkltask 16
e_trkltask 32

Tracks a single task and all OS activity
within it.

Only Tsk W,X,Y,Z

e_trk4dtask 16
e_trkdtask 32

Tracks four tasks and all OS activity within
them.

Task A: VarX

e_aftervar_16
e_aftervar_32

Tracks OS activity about the access of a
variable by a specific task.

NonCustom Trace

display trace mnemonic

This command displaysotineal
emulator/analyzer trace.

< UserDefinable2>

You must edit the "rtos_emul" script to
define this key.

147

Chapter 7: Automating RTOS Measurements

Emulator/Analyzer Action Keys and Related Command Files

Action Key Command Hle/Script

Description

Tasks & Queues e_trackqgs_16

e_trackgs_32

Tracks the service calls associated with
message queues as well as task switches.

Only Queues e_onlygs

Tracks the service calls associated with
message queues.

Task A: FuncX e afterfunc_16

e_afterfunc_32

Tracks C source code execution after a
function is called from a certain task.

Before SPA trig2 e_spatrig

Sets up the emulation analyzer to trace
activity before the signal on trig2.

Software Performance Analyzer Action Keys and Related Command Files

Action Key Command Fle/Script Description

Initialize s_init3RTOS_UNIQUE Defines SPA events for tasks, service callg
and user events.

Time Tasks s_timetasks Displays a time histogram of task events.

Count Srvc Calls s_countsrvcls

Displays a call histogram of service call
invocations.

Trig2 on Overflw s_break_ovrflw

Sets up the SPA to drive trig2 after a task
exceeds a certain amount of time.

FunctionDuration s_funcdur

Displays a function duration time histogram.

TaskX: Servcalls s_taskwindow

Measures only data from a specific task.

Count Tasks s_counttasks

Displays a count histogram of task event

2

Tsk & User Evnts s_tasknuser

Displays a time histogram of task and us
events.

Disable Trig2 s_disabletrg2

Turns OFF the driving of trig2.

148

Chapter 7: Automating RTOS Measurements
Using Command Files

Using Command Files

Command files are ASCII text files that contain interface commands.

Command files caprompt the user for input. This lets you set up general
purpose command files. For example, you can set up a command file that
tracks one service call and prompts the user for #menof the service call.

You can also run shell scripts from the interfaces. This gives you even greater
flexibility when automatingneasurements.

Command files for the demo RTOS measurement tool are included with this
product in the $HB4000/rtos/B3082A/action_keys directory.

This section shows you how to:

* Place measurements in command files.

* Use command file parameters to pass in variables.
» Use shell scripts from within command files.

 Define command file search directories.

To place your m easurements in command files

* Enter the commands into an ASCII text file.

Examples The Emulator/Analyzer command file to track only message queues looks like:

#
HP RTOS Command File: e_onlygs
#

DESCRIPTION: Track only queue calls
#

trace only address range HPOS_send_message_Entry thru
HPOS_alloc_message_Entry-1

#

display trace real_time_os

149

The SPA command file to display a time histogram of the task events looks
like:

#

HP RTOS Command File: s_timetasks

#

DESCRIPTION: Time histogram only of the tasks
#

stop_profile

select_events matching "Task_*"
setup_measurement enable off
setup_measurement disable off

profile interval_duration

display histogram data time

wait 2

display histogram sort_events time
display histogram rescale current_max

Examples

To use command file parameters to pass in
variables

Declare the formal parameters in the command file, and use them in the
commands that follow.

When the command file r&in from an emulation ssion, the user will be
prompted for all pameterdisted on the first line after the keyword PARMS.
All parameters must be prefixed by the ampersand character "&", both on the
first line and any place used within the command file.

The Emulator/Analyzer command file to track a single task and all OS activity
within it looks like:

PARMS &TASK
#

HP RTOS Command File: e_trkltask_32

#

DESCRIPTION: Track a single task and all the OS activity within it

#

trace enable address HPOS_TASK_ENTRY data &TASK disable address
HPOS_TASK_EXIT data &TASK only address range HP_RTOS_TRACK_START thru
HPOS_USER_DEFENTRY-1

#

display trace real_time_os

150

Chapter 7: Automating RTOS Measurements
Using Command Files

To use shell scripts from within command files

1 Create the shell script.

2 Create command files that use the shell script.

Shell scripts can be used from within command files to increase the power and
flexibility of command file. For example, you can use shell scripts to:

» Generate a task interval name given the task number.

+ Generate a command to track 1 or 2 servitls gaven the names of the
service calls.

Often, shell scripts perform common operations that can be used by several
different command files.

Examples The SPA command file to display a call histogram of servilte mede within
a particular task looks like:

PARMS &TASK

#

HP RTOS Command File: s_taskwindow
#

DESCRIPTION: Histogram of functions windowed on a specific task
#

stop_profile

select_events matching "Srvccall_*"

#

Make task into form "xxxx’

lget_task_number &TASK >/dev/null 2>&1!in_browser
wait 2

.S_settaskvar

setup_measurement enable start_address $TASK_EVENT
setup_measurement disable end_address $TASK_EVENT
#

profile interval_duration

display histogram data calls

walit 2

display histogram sort_events calls

display histogram rescale current_max

The "get_task_number" script creates the ".s_settaskvarrhemd file that
setsthe TASK_EVENT environment variable to "Task_< 4digitID>". For a
detailed description of the "get_task_number" script, refer to the "Demo
RTOS Measurement Tool Déls&t chapter.

151

Chapter 7: Automating RTOS Measurements
Using Command Files

The Emulator/Analyzer command file to track two servidésdaoks like:
PARMS &SERV_CALL1 &SERV_CALL?2
#

HP RTOS Command File: e_twocalls_16

#

DESCRIPTION: Track only two specific service calls
#

Icreate_12_call &SERV_CALL1 &SERV_CALL2 >/dev/null 2>&1!in_browser
wait 2

.e_onesrvcall

#

display trace real_time_os

The "create_12_call" script creates anenand file to track 1 or 2 servicellsa

The names of the servicellsao be tracked are specified as ameters. This
script creates the ".e_onesrvcall' command file which contains a trace
command to track the specified service call. For a detailed description of the
“create_12_call"and "create_12_call32" scripts, refer to the "Demo RTOS
Measurement Tool Deila" chapter.

To define command file search directories

Add the directories that contain command files to the HP64KPATH
environment variable.

When you run a acoamand file, the Emulator/Analyzer and SPA interfaces first
search for the command file in thercent directory. Ifthe comand file is

not found, the interfaces then search in the directories defined by the
HP64KPATH environment variable.

152

Chapter 7: Automating RTOS Measurements
Using Command Files

Examples If your conmand file is placed in the $HOME/rtoscmdf directory, ybaidd
set the HP64KPATH environment variable as follows:

If youre using "sh" or "ksh":
$ HP64KPATH=$HP64KPATH:$HOME/rtoscmdf; export
HP64KPATH <RETURN>

If youre using "csh":

$ setenv HP64KPATH ${HP64KPATH}:$HOME/rtoscmdf
<RETURN>

153

Chapter 7: Automating RTOS Measurements

Using Action Keys

Using Action Keys

You can make common RTOS measurements easy to set up and use by
placing them on action keys. This allows a user to set up a measurement by
simply pointing and clicking on an action key.

Action keys can run camand files which caprompt for required pameters.
(In the graphical interface, these prompts appear as dialog boxes in which a
user can either type or cut-and-paste the required parameters.)

This section shows you how to:
* Place youmeasurements on action keys.

* Modify interface startup scripts.

To place your m easurements on a ction keys

Modify the "emul.< processor_type> *actionKeysSub.keyDefs" X resource to
set up action keys for the Emulator/Analyzer interface.

Or:

Modify the "spa.< processor_type> *actionKeysSub.keyDefs" X resource to set
up action keys for the SPA interface.

Actions keys are only available when using the Graphical User Interface.
When you are using the Softkey Interface from a terminal or terminal
emulation window, you can only runmmenand files by typing them in on the
command line.

The easiest way to set X resources is to usexineoption in theemul700
command that starts the interface. Because there may be many action keys to
be defined, it’s best to place tbeul700command and its options in a startup
script.

The startup scripts for the Emulator/Analyzer interface (when used with the
demo RTOS measurement tool) is named "rtos_emul", and the startup script

154

Chapter 7: Automating RTOS Measurements
Using Action Keys

for the Software Performance Analyzer is nameds'rspa”. These startup
scripts are located in the $HP64000/bin directory.

Examples To place youmeasurements on action keys in the Emulator/Analyzer
interface, modify the "emul.< processor_type> *actionKeysSub.keyDefs" X
resource in the Emulator/Analyzer startup script:

#
Bring up an emulator window
#

emul700 \

$COMMAND INPUT \

"-xrm emul.$PROC_RESOURCE*actionKeys.packing: PACK_COLUMN"\

"-xrm emul.$PROC_RESOURCE*actionKeys.numColumns: 4"\’

"-xrm emul.$PROC_RESOURCE*actionKeysSub.keyDefs: \
\"Track OS calls\" \"action_keys/e_trkcalls\" \
\"Track Everything\" \"action_keys/e_trkall\" \
\"Task switch A->B\" \"action_keys/e_AthenB$ACTION_KEY_SFX\" \
\"Help RTOS\" \"ItellrtosHP lin_browser\" \
\"Memory Usage\" \"action_keys/e_| memory$ACTION KEY_SFX\"\
\"Only Call X\" \"action_keys/e_onecall\" \
\"Only Calls X & Y\" \"action_keys/e_twocallsSACTION_KEY_SFX\"\
\"Tsk A msg->Que X\" \"action_keys/e_tsk2queue$ACTION_KEY_SFX\"\
\"Custom OS Trace\" \"display trace real_time_os\" \
\"<UserDefinable1>\" \"#Edit 'rtos_emul’ to define this key\" \
\"Only Task X\" \"action_keys/e_trk1taskSACTION_KEY_SFX\"\
\"Only Tsk W,X,Y,Z\" \"action_keys/e_trk4task$ACTION_KEY_SFX\"\
\"Task A: VarX\" \"action_keys/e_ aftervar$ACTION_KEY SEX\"\
\"NonCustom Trace\" \' dlsplay trace mnemonic\" \
\"<UserDefinable2>\" \"#Edit 'rtos_emul’ to define this key\" \
\"Tasks & Queues\" \"action_keys/e_| trackqs$ACTION KEY_SFX\"\
\"Only Queues\" \"action_keys/e_onlygs\" \
\"Task A: FuncX\" \"action_keys/e_afterfunc$ACTION_KEY_SFX\"\
\"Before SPA trig2\" \"action_keys/e_spatrig\" \
"\

$EMULATOR &

The PROC_RESOURCE environment variable is defined asa processor name
such as "m68302", "i80960", etc.

155

Chapter 7: Automating RTOS Measurements
Using Action Keys

To place youmeasurements on action keys in the Software Performance
Analyzer interface, modify the

"spa.< processor_type> *actionKeysSub.keyDefs" X resource in the Software
Performance Analyzer startup script:

#
Bring up window for SPA if requested
#

emul700 \

-u xperf\

$COMMAND_INPUT \

-xrm 'HP64_Softkey.geometry: +415+230’ \

-xrm 'HP64_Softkey*enableCmdline: False’ \

-xrm 'HP64_Softkey*actionKeys.packing: PACK_COLUMN'’\

-xrm 'HP64_Softkey*actionKeys.numColumns: 2’ \

-xrm "perf*actionKeysSub.keyDefs: \
\"Initialize\" \"action_keys/s_initS RTOS_UNIQUE\" \
\"Time Tasks\" \"action_keys/s_timetasks\" \
\"Count Srvc Calls\" \"action_keys/s_countsrvcls\" \
\"Trig2 on Overflw\" \"action_keys/s_break_ovrflw\" \
\"FunctionDuration\" \"action_keys/s_funcdur\" \
\"TaskX: Servcalls\" \"action_keys/s_taskwindow\" \
\"Count Tasks\" \"action_keys/s_counttasks\" \
\"Tsk & User Evnts\" \"action_keys/s_tasknuser\" \
\"Disable Trig2\" \"action_keys/s_disabletrg2\" \

"\
$EMULATOR &

156

Chapter 7: Automating RTOS Measurements
Using Action Keys

To modify interface startup scripts

1 Copythe demo RTOS measurement tool startup scripts from the
$HP64000/bin directory.

2 Make your modifications to the startup scripts.

3 Run the "install_rtos" script.

The startup scripts for the Emulator/Analyzer interface (when used with the
demo RTOS measurement tool) is named "rtos_emul”, and the startup script
for the Software Performance Analyzer is nameds'repa". These startup
scripts are located in the $HP64000/bin directory. The startup scripts are
described in more detail in the "How the Demo RTOS Measurement Tool
Works" chapter.

After you copy and modify these startup scripts, run the ‘linstas” script,
and answer its questions as described in the "Installing New Custom OS
Product Files" chapter.

157

158

Installing New Custom OS Product
Files

159

Installing New Custom OS Product Files

After you have modified or created the files needed for your own custom
RTOS product, some of the files need to be installed in certain directories.

A script "install_rtos" has beeprovided to help you with this procedure. The
actions accomplished by the script will be to customize the pulldowns in an
emulation session so it willin your version of "rtos_emul" or "rsospa” and
install your versions of the inverse assembly files into the emulation
directories.

The script will ask you for an eemnym, to be used to describe your OS, which
will then be seen in the pull-down menu when you want to bringup an RTOS
emulation session. You may also choose the emulators with which your
custom product W be available. This scripthould be run as "root".

This chapter shows you how to:
» Answer install_rtos questions.

* Reinstall the original HP Custom RTOS product.

160

Chapter 8: Installing New Custom OS Product Files
To answer install_rtos questions

To answer install_rtos questions

1 Enter a 1-8 letter aonym to be used to identify your RTOS:

Answer this question with a word or acronym whidl lbe seen in the
emulation session’s pulldown menu to describe the choice of bringing up an
RTOS emulation session. The context will be either "RTOS tool for
<acronym>"or "RTOS SPA for <acronym>".

The script will then create and install the Xaesce file which Wl change the
original pull-down choice.

2 You must have built your own inverse assembler relocatables and customized
your own "rtos_emul" and "ro spa"files (which alsmeans creatingoyr own
command files) to continue with this script. Continue? (y/n) [v]:

If you have not edited all of the files listed and "assembled" the inverse
assembler files, stop here and read the chapters that explain how to customize
the files for your own OS kernel.

The script will then copy two interface scripts that need to be modified to
your "rtos_emul"and "rt® spa" scripts.

3 Enter the complete path name ofiy modified "rtos_emul" script. Name
(default = "lusr/hp64000/bin/rtos_emul"):

Enter the full path name of wherewr modified "rtos_emul" script resides.

4 Enter the complete path name ofiy modified "rtes_spa" script. Name
(default = "lusr/hp64000/bin/rtos_spa"):

Enter the full path name of whereur modified "rtcs_spa" script resides.

The script will then edit the interface scripts and keep them inufrerct
directory.

161

Chapter 8: Installing New Custom OS Product Files
To reinstall the original HP Custom RTOS product

5 Enter the directory where your inverse assembler (I1A) files (*.R) reside.

(default = "fusr/hp64000/rtos/B3082A/inpereter”) Directory:

6 Enter name of inverse assembler relocatable file you creatdé-foit

processors. Bme (default = "rte_16.R")

Enter name of inverse assembler relocatable file you creat8a-ioit
processors. Bme (default = "rte_16.R")

The previous three questions request the full path name of the two inverse
assembler files that you have created for use by 16 and 32 bit processors. If
you have developed only one version, enter the same name for both of the
latter two questions.

Question 8 is a lengthy statement that basically asks under which emulator you
want your custom RTOS version to be installed. You may install it under all
installed emulators, or under any subset. The list of emulators given with the
guestion are the ones which have interfaces which support the RTOS tool.

The script will then attempt to instalbyr RTOS version for each chosen
emulator. It is required to install both an interface script and an inverse
assembler under each emulator’s install directory to get full functionality. If
any failures occur during installation, it is most likely due to bad permissions
or the script not being run with full system privileges.

If the script fails to complete any of it tasks, it will halt at the point of failure.
The script must be rerun to complete the installation.

To reinstall the original HP Custom RTOS product

To reinstall the original product so the "demo"RTOS product is available,
either reinstall the product tape or run the script "relhstas".

162

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

163

Part 3

164

Inverse Assembler Language (IAL)
Instructions

165

Inverse Assembler Language (1AL)

Instructions

Instruction Set Summary

Executable Instructions

Arithmetic Operand Description

ADD variable/immediate accumulator=accumulator+ operand.
AND variable/immediate accumulator= accumulator AND opera
DECREMENT variable variable= variable - 1.

EXCLUSIVE_OR
INCLUSIVE_OR

variable/immediate

variable/immediate

accumulator= accumulator XOR operand.

accumulator= accumulator OR operan

d.

INCREMENT variable variable= variable + 1.

LOAD variable/immediate accumulator= operand.

SET variable/immediate variable= immediate (-8,+ 7).

STORE variable variable= accumulator.

SUBTRACT variable/immediate accumulator= accumulator - operand.
Accumulator Operand Description

COMPLEMENT One’s complement accumulator.
EXTRACT_BIT immediate Bit number to extract (0= LSB, 31= MSB).
ROTATE RIGHT/LEFT,immediate Rotate accumulator right/left,bitcount.

TWOS_COMPLE-
MENT

Two’s complement accumulator.

166

Chapter 9: Inverse Assembler Language (lAL) Instructions

Conditional Operand Description

CASE_END End of case statement.

CASE_OF variable / MSB,LSB Variable or bit range in accumulator.
IF variable rel variable/immediate THEN result

MSB,LSB rel variable/immediate THEN result

Where "rel"is

= equal

<> not equal

<= less or equal

> = greater or equal
< lessthan

> greater than

Program Control Operand Description

ABORT Leave inverse assembler.

CALL label Branch to label stack return address.

GOTO label Branch to label.

RETURN Return from CALL, or leave inverse
assembler.

Output Buffer Operand Description

OUTPUT

POSITION
NEW_LINE

FETCH_POSITION

variable/'string"/ACCU-
MULATOR,FORMAT

ABS/REL,immediate

Write string or numeric data.

Absolute or relative column number.

Begin new output line.

Get column number.

167

Chapter 9: Inverse Assembler Language (lAL) Instructions

Miscellaneous Operand Description

IF_ NOT_MAPPED | THEN result Symbolic reference.

INPUT REL/ABS,variable Read analysis data.
[L[QUALIFIED]

NOP No operation.

TAG_WITH variable/immediate Tags state for future reference.

MARK_STATE SUPPRESSED/DISPLAYED Suppress/display asialstate.

Pseudo Instructions

Symbolic Operand

Definitions Operand Description

ASCII/ASC "string” Defines string for OUTPUT itraiction.

CONSTANT/CONST immediate Defines a commonly used constant.

FORMAT a,b,c[,DISPLAY_BASE] Defines format for OUTPUT instructiop.

VARIABLE/NVAR immediate Defines and initializes a variable.

Display Width

Initialization Operand Description

DEFAULT_WIDTH immediate Defines max display width for RTOS
column in Emul./Analyzer trace display.

MAPPED_WIDTH immediate Display width for symbolsin RTOS
column of Emul./Analyzer trace display.

Inverse Assembler Titles| Operand Description

LABEL_TITLE "string" Label title line.

BASE_TITLE "string" Base title line.

168

Chapter 9: Inverse Assembler Language (lAL) Instructions

Defining Initial
Variables for INPUT

Instruction Operand Description

QUALIFY_MASK immediate Mask and value used for qualified INPUT
instructions.

QUALIFY_VALUE immediate Mask and value used for qualified INPUT

instructions.

SEARCH_LIMIT immediate Defines maximum search limit.

Debug and Performance
Ad Operand Description

MAX_INSTRUCTION | immediate Limits number of instructions executed.

Predefined Communication Variables

Trace states and other related information are passed to the inverse assembler
through communication variables. The RTOS inverse assembler predefines
the following communication variables.

INPUT_ADDRESS Contains the address value of the particular trace st

INPUT_DATA Contains the data value of the particular trace state.

INPUT_TAG Contains software tag information about whether the
particular trace state has already been used.

INITIAL_OPTIONS Contains the address of the symbol
HP_RTOS TRACK_START; thisis the base address
of the data table.

INITIAL_FLAGS When bit 1 is set, the base value of the data table has
been passed in to the inverse assembler through the
INITIAL_OPTIONS variable. Other bits in the
INITIAL_FLAGS communication variable are not
used.

169

Note

Note

Instruction Descriptions

This chapter defines the syntax and explains the function of each executable
and pseudo instruction. It alglustrates how the irtsuctions are used with

one or more examples. For quick reference, the instructions are arranged
alphabetically.

The following symbols are predefined (reserved) and will generate a "duplicate
error":

VMS, HP64000, HPUX

Labels appearing on lines without instructions are assumed to be code labels.
Labels for ASCIl, CONSTANT, FORMAT, and VARIABLE must be on the
same line as the pseudo to be accepted as a label for the pseudo instruction.

170

Chapter 9: Inverse Assembler Language (lAL) Instructions
ABORT - Leave inverse assembler

ABORT - Leave inverse assembler

Syntax
Label Operation Operand Comment
ABORT
Abort will pass control back to the system software even iptiogram is
currently in a subroutine. This instruction is intended to be an error escape
from the inverse assembler.
Examples

ABORT ;Return to Interpreter.

171

Chapter 9: Inverse Assembler Language (lAL) Instructions
ADD - Add to accumulator

ADD - Add to accumulator

Syntax
Label Operation Operand Comment

ADD variable\immediate

accumulator = accumulator + operand

The contents of the operand field are added to the value in the accumulator.
The operand can be either the name of a variable or an immediate value. The
value of immediate data can range from 0 to OFFFFFFFFH (32 bit value).

Examples
ADD 1 ;Increment accumulator.

ADD NAME ;Add contents of variable
;to accumulator.

172

Chapter 9: Inverse Assembler Language (lAL) Instructions
AND - Logical AND with accumulator

AND - Logical AND with accumulator

Syntax
Label Operation Operand Comment
AND variable/immediate
accumulator = accumulator AND operand
Performs a logical "and" of the value of the operand and the value in the
accumulator. The operand can be either the name of a variable or an
immediate value. The value ofimmediate data can range from 0 to
OFFFFFFFFH (32 bit value).
Examples
AND 1 ;AND lower bit.
AND MASK ;AND with MASK variable.

173

Chapter 9: Inverse Assembler Language (lAL) Instructions
ASCII/ASC (Pseudo) - Define ASCII string

Syntax

Examples

ASCII/ASC (Pseudo) - Define ASCII string

Label Operation Operand Comment

Label ASCII/ASC "string"

The ASCII pseudo irtsuction is used to define an £8 string to be used
with an OUTPUT instruction. This is remonended for strings that are used
more than once to minimize the size of the inverse assembler source code.

CALL_STRING ASCII > :Define text for
;OUTPUT instruction.
RETURN_STRING ASC RE

174

Chapter 9: Inverse Assembler Language (lAL) Instructions
CALL - Transfer program control to label W/ RETURN

Syntax

Examples

CALL - Transfer program control to label

w/RETURN
Label Operation Operand Comment
CALL LABEL

Program control will be transferred to the label specified. The value of the
next pcis pushed on a stack. A RETURN instructidhtransfer control to
the statement following the CALL. The maximum saidstine nest level is 16.

CALL SUBROUTIN ;Control is
;transferred to
;SUBROUTIN.

175

Chapter 9: Inverse Assembler Language (lAL) Instructions
CASE_OF - Conditional testing of variable or ~ accumulator

CASE_OF - Conditional testing of variable or
accumulator

Syntax
Label Operation Operand Comment
CASE_OF variable\MSB,LSB
The case statement allows conditional testing of either a user variable or the
accumulator. Program control will branch to one of thérirctions following
the case depending on the value of the variable or accumulator.
If the operand is the name of a variable, the value of the variable becomes an
index added to the current program counter to fetch the next instruction.
Otherwise, the bit range specified is the index.
The case statement must be followed by a "CASE_END" statement that will
determine the length of the CASE. If the value of the operand falls into the
range of the CASE, the corresponding instructidhbe executed. Otherwise,
the statement following the casédlwe executed.
Any instruction may appear in the CASE except an IF, IF_NOT_MAPPED,
or another CASE. If a CALL is executed, then the return from subroutine will
execute the instruction following the CASE_ENDerRaining infructions
will be executed in sequence witlormal exceptions (for example, GOTO or
RETURN).
Examples
CASE_OF 15,0 ;"Maximum message length
that
;fit display”
NOP
Never reached
OUTPUT "No queue members left to allocate." ;1
OUTPUT "Region request too large."
OUTPUT "No more memory available" ;3
OUTPUT "Invalid region ID" 4
CASE_END ;Execute next instruction
;for all other values
;of bits 15 thru 0.
;Execution
<next instruction> ;will also take place

;after either statement
;in the body of CASE
;is executed.

176

Chapter 9: Inverse Assembler Language (lAL) Instructions
CASE_OF - Conditional testing of variable or ~ accumulator

CASE_OF NAME ;Test contents of
;variable NAME.

OUTPUT AREG ;Execute this if NAME=0.

CALL SUB ;Execute this if NAME=1.

CASE_END ;Execute next instruction

<next instruction> ;if NAME<>0,1. Execution

<next instruction> ;will also take place

;after either statement
;in the body of CASE
;is executed.

177

Chapter 9: Inverse Assembler Language (lAL) Instructions
COMPLEMENT - One’s complement on accumulator

COMPLEMENT - One’s complement on
accumulator

Syntax
Label Operation Operand Comment
COMPLEMENT
A one’s complement is performed on the contents of the accumulator. Bits
that are 1 change to 0 and those that are 0 change to 1.
Examples

COMPLEMENT ;One’s complement
;on accumulator.

178

Chapter 9: Inverse Assembler Language (lAL) Instructions
CONSTANT/CONST (Pseudo) - Define constant

CONSTANT/CONST (Pseudo) - Define constant

Syntax
Label Operation Operand Comment

NAME CONST constant

Allows commonly used constants to be defined and referenced by the label
specified. Normally, immediate constants are handled automatically by the
assembler, but the assembler will not optimize the use of constants that are
identical. To avoid wasting data space, commonly used constants can be
defined and referenced by symbolic names. All constant32abé quantities.

Examples
ML16 CONST OFFFFH ;Mask lower 16-bit
;constant.

179

Chapter 9: Inverse Assembler Language (lAL) Instructions
DECREMENT - Decrement variable

Syntax

Examples

DECREMENT - Decrement variable

Label Operation Operand Comment
DECREMENT variable
variable = variable - 1

Decrements the variable specified by the operand. The operand must be
defined using the VARIABLE pseudo instruction.

To decrement the accumulator, use the "SUBTRACT 1fucsion.

DECREMENT SAM ;Decrement the
;variable SAM.

180

Chapter 9: Inverse Assembler Language (lAL) Instructions
DEFAULT_WIDTH (Pseudo) - Default width of display field

DEFAULT_WIDTH (Pseudo) - Default width of
display field

Syntax
Label Operation Operand Comment

DEFAULT_WIDTH immediate

Defines the maximum default width of the display field. Operands can range
from 1to 64. If none is specified, the default width is 32.

Examples
DEFAULT_WIDTH 40 ;The default
;width is 40.

181

Chapter 9: Inverse Assembler Language (lAL) Instructions
EXCLUSIVE_OR - Exclusive OR with accumulator

Syntax

Examples

EXCLUSIVE_OR - Exclusive OR with accumulator

Label Operation Operand Comment

EXCLUSIVE_OR variable/immediate

accumulator = accumulator XOR operand

Performs a logical "exclusive or" of the operand value and the accumulator
value. The operand can be either the name of a variable or an immediate
value. The value ofimmediate data can range from 0 to OF FFFFFBZEbit(

value).

EXCLUSIVE_OR 1 ;Toggle lower bit
EXCLUSIVE_OR MASK ;Or variable MASK.

182

Chapter 9: Inverse Assembler Language (lAL) Instructions
EXTRACT BIT - Extract from accumulator

EXTRACT _BIT - Extract from accumulator

Syntax
Label Operation Operand Comment
EXTRACT_BIT immediate
The operand is a bit number in the accumulator, with a range from 0 to 31.
This bit will be extracted and the value of the accumulator set to its value
(either O or 1).
Examples
EXTRACT_BIT 10 ;Set accumulator
;to value of bit
;10 in accumulator.
See Also The CASE_OF and IF conditional instructions allow you to test bit ranges in

the accumulator.

183

Chapter 9: Inverse Assembler Language (lAL) Instructions
FETCH_POSITION - Get column number

Syntax

Examples

FETCH_POSITION - Get column number

Label Operation Operand Comment

FETCH_POSITION

The FETCH_POSITION instruction sets the accumulator to the column
number the display output buffer where the next OUTPUT instruction will
write characters. The instruction is particularly useful in determining if an
output string will fit on the errent output line.

OUTPUT STRING1 ; output a string
FETCH_POSITION ; determine next
; column # to write

; The accumulator now contains the next column number to
; to. If the second string to be output is 25 characters
; adding 25-1 to the accumulator will result in the
; containing the column number of the last character in the
; string if STRING2 is output immediately after STRING1.
ADD 24 ; calculate column
; number of last

Now see if the last column number to be used is greater
; maximum line length. If it is, issue a NEW_LINE command
; to outputting the second string.

IF 31,0 > 64 THEN NEW_LINE ; start a new
; line if
; necessary

OUTPUT STRING2 ; output the

; second string

184

Chapter 9: Inverse Assembler Language (lAL) Instructions
FORMAT (Pseudo) - Format accumulator

Syntax

Examples

FORMAT (Pseudo) - Format accumulator

Label Operation Operand Comment

NAME FORMAT a,b,c[,DISPLAY_BASE]

Format is used to define how the accumulator should be converted when used
in conjunction with the OUTPUT instruction.

Operand "a" defines how many bits of the accumulator will be converted. It
can range from 1 to 32; if a subrange is specified, then the most significant bits
will be "ANDed" with 0.

Operand "b" specifies the base of the conversion. It can be BIN, OCT, DEC or
HEX.

Operand "c" specifies the number of characters to be displayed by the
OUTPUT instruction.Leading zeros iN be supplied if the number is smaller
than the converted field. A left justified, zero-suppressed number can be
generated by specifying c = LEFT_JUSTIFIED, which will display as many
digits as necessary.

The optional operand DISPLAY_BASE can be used to append a B, O, D, or
H on the end of the constant converted, depending on the numeric base
number.

The accumulator can be displayed as one ASCII character by using the
keyword ASCII instead of the number-of-bits operand.

HEX_FMT FORMAT 32,HEX,8 ;Eight digit
;hex format.

HEX_FMT_LEFT FORMAT 32,HEX,LEFT_JUSTIFIED ;Left-justified
;hex.

HEX_FMT16 FORMAT 16,HEX,4,DISPLAY_BASE

DEC_FMT FORMAT 32,DEC,LEFT_JUSTIFIED

DEC_FMT_TIME FORMAT 8,DEC,2
DEC_FMT_YEAR FORMAT 16,DEC,4

BIN_FMT_LEFT FORMAT 32,BIN,LEFT_JUSTIFIED
BIN_FMT_4 FORMAT 4,BIN,4

ASC_FMT FORMAT ASCII ;ASCII format.

185

Chapter 9: Inverse Assembler Language (lAL) Instructions
GOTO - Transfer program control, no RETURN

GOTO - Transfer program control, no RETURN

Syntax
Label Operation Operand Comment
GOTO LABEL
Program control will be transferred to the label specified.
Examples

GOTO END_RTOS_IAL ;Branchto
;end of routine.

186

Chapter 9: Inverse Assembler Language (lAL) Instructions
IF - Compare operands

Syntax

Examples

IF - Compare operands

Label Operation Operand Comment

IF variable rel_op variable/
immediate THEN result

or

IF MSB,LSB rel_op variable/
immediate THEN result

Where "rel_op" is

= equal

<> not equal
<=less or equal
>= greater or equal
< less than

> greater than

Allows operands to be compared and decisions made based on the results of
the comparison. The first form of the IF instruction allows the contents of a
variable to be compared to the contents of other variables or to immediate
data. Immediate data can range from 0 t6BFFFFFH (32 bits). The

operand to the THEN part can be anyinstruction except another IF, a CASE,
or IF_NOT_MAPPED.

The second form of the IF instruction allows a bit range of the accumulato
be tested. Here the first operand specifies the most significant bit (MSB)
the second operand specifies the least significant bit (LSB). This allows al
part of the accumulator to be tested against an immediate value or the
contents of a variable.

IF NAME < 101 THEN ;Test value of
GOTO LABEL :NAME.
IF 6,3 =1001B THEN ;Test accumulator
CALL SUBROUTIN ;bit range 6-3
;inclusive.

187

Chapter 9: Inverse Assembler Language (lAL) Instructions
IF_NOT_MAPPED - Check for symbol in default map

Syntax

IF_NOT_MAPPED - Check for symbol in default
map

Label Operation Operand Comment

IF_NOT_MAPPED THEN result

Symbols are loaded into the Emulator/Analyzer interface as part ofthe OS
program absolute file (provided the appropriate compiler/linker options to
place symbolic "debug"information in the absolute file are used).

Symbols can be displayed in the real-time OS trace instead of absolute
addresses. The IF_NOT_MAPPED instruction is used to display symbolic
information if it is available.

IF_NOT_MAPPED THEN OUTPUT ACCUMULATOR,FORMAT

When this function is executed, the following three conditions are possible.

1 Ifthe addressin the ACCUMULATOR matches a symbol defined as a
single valued address, that is, not included in a range, the symbol
associated with the address is displayed. The "result" part of the
instruction, in this case the "OUTPUT" instruction, is not executed. This
means the value passeafiesponds exactly with a particular symbol. For
example:

SUBROUTIN

2 Ifthe addressis not found as a single valued address, but is part of a range,
the symbol associated with the range will be displayed. The
ACCUMULATOR will be set to the offset from the beginning or end of
the range, depending on how the range was specified. The "result" part of
the instruction W be executed to display this offset. For example:

SUBROUTIN+023H

188

Chapter 9: Inverse Assembler Language (lAL) Instructions
IF_NOT_MAPPED - Check for symbol in default map

3 Ifthe address in the ACCUMULATOR is not found as a single valued
address or as part of a range, that is, not in the symbol map, no symbolic
information will be displayed. Here, the value in the accumulator will
contain the absolute address and will be displayed since the "result" part of
the function will be executed. For example:

FFFFH

The RETURN_FLAGS communication variable has two flags in the upper 16
bits. These flags indicate the result of the IF_NOT_MAPPED instruction.
They are interpreted as follows:

Bit 16: 0 = no mapping was done
1 = mapping was successful

*Bit 17: 0 = mapped to a range
1 = mapped to a single value symbol

*Bit 17 is valid only if bit 16 = 1.

189

Chapter 9: Inverse Assembler Language (lAL) Instructions
INCLUSIVE_OR - Logical OR with accumulator

Syntax

Examples

INCLUSIVE_OR - Logical OR with accumulator

Label Operation Operand Comment

INCLUSIVE_OR variable/immediate

accumulator = accumulator OR operand

Performs a "logical or" of the operand value and the accumulator value. The
operand can be either be the name of a variable or an immediate value. The
value of immediate data can range from 0 to OFFFFFFF2bit value).

INCLUSIVE_OR 1 ;Set bit 1.
INCLUSIVE_OR MASK ;Or with MASK.

190

Chapter 9: Inverse Assembler Language (lAL) Instructions
INCREMENT - Increment variable

INCREMENT - Increment variable

Syntax
Label Operation Operand Comment

INCREMENT variable
variable = variable + 1

This instruction inoements the variable specified by the operand. The
operand must be defined by the VARIABLE pseudo.

To increment the accumulator, use the "ADD 1tiastion.

Examples
INCREMENT NAME ;Increment
;variable NAME.

191

Chapter 9: Inverse Assembler Language (lAL) Instructions

INPUT - Input data

Syntax

REL,operand

ABS,operand

INPUT - Input data

Label Operation Operand Comment

INPUT ABS/REL,operand[,QUALIFIED]

INPUT allows data to be read in order to complete a multibyte instruction or
display the results of an executed instruction. Data can be read relative to the
initial state in the analysis trace, or read from an absolute location.

If the QUALIFIED option is specified, data reads will be qualified depending
on the values in QUALIFY_VALUE and QUALIFY_MASK, which must be
initialized before the INPUT instruction is executed. (These pseudo
instructions are explained separately in this chapter). Only one byte or one
state is read each time the INPUT instruction is executed.

This option reads data relative to the initial state in the analysis trace. The
operand can be either an immediate value or a user defined variable. The
value is the number of states in analysis to skip over before reading the data.
For example, INPUT REL,2 would mean to skip over the state following the
initial position and read the data at the second state past this initial position.
The value can be either positive (forward) or negative (backward).

The SEARCH_LIMIT variable limits the number of states to be searched by
the INPUT routine.

If QUALIFIED is specified, the search count applies to the number of states
that are satisfied by the status qualification check.

This option will search the trace buffer for an absolute address specified by the
operand and return the data at that address. The operand must be a user
defined variable or communications variable. The status can be qualified if
desired. The search is limited by the value in SEARCH_LIMIT.

192

Chapter 9: Inverse Assembler Language (lAL) Instructions
INPUT - Input data

Examples
INPUT ABS,DATA_ADDRESS,QUALIFIED ;Qualified on
;status.
INPUT ABS,DATA_ADDRESS ;Not qualified.
INPUT REL,2 ;Get two states
;ahead.
INPUT REL,COUNT ;Relative with
;count.

193

Chapter 9: Inverse Assembler Language (lAL) Instructions
LOAD - Load accumulator

Syntax

Examples

LOAD - Load accumulator

Label Operation Operand Comment

LOAD variable/immediate

accumulator = operand

Loads the accumulator with the value specified by the operand field. The
operand can be either the name of a variable or an immediate value. The
value of immediate data can range from 0 to OFFFFFFF2bit value).

LOAD 1 ;Set accumulator
ito 1.
LOAD NAME ;Load value of SAM.

194

Chapter 9: Inverse Assembler Language (lAL) Instructions
MAPPED_WIDTH (Pseudo) - Define maximum width of display

MAPPED_WIDTH (Pseudo) - Define maximum
width of display

Syntax
Label Operation Operand Comment

MAPPED_WIDTH immediate

Defines the maximum width of the display in the mapped mode display.
Operands can range from 1 to 64. If none is specified, the default width is 32.

Examples
MAPPED_WIDTH 40 ;Max display
;width = 40.

195

Chapter 9: Inverse Assembler Language (lAL) Instructions
MARK_STATE - Analysis state display control

Syntax

MARK_STATE - Analysis state display control

Label Operation Operand Comment

MARK_STATE SUPPRESSED
or
DISPLAYED

The MARK_STATE instruction is used to indicate to the state analyzer
whether or not to display the current aséystate. Ifa MARK_STATE
SUPPRESSED instruction is executed, the aisbtate arresponding to the
current inverse assembler callllwe omitted from the trace list.
MARK_STATE DISPLAYED causes the analysis state to be included in the
trace list.

The last MARK_STATE to occur prior to exiting the inverse assembler is the
only one in force for a particular inverse assembler call. If no MARK_STATE
instruction is executed, MARK_STATE DISPLAYED is assumed.

196

Chapter 9: Inverse Assembler Language (lAL) Instructions
MAX_INSTRUCTION (Pseudo) - Limit instruction execution

MAX_INSTRUCTION (Pseudo) - Limit instruction
execution

Syntax
Label Operation Operand Comment

MAX_INSTRUCTION immediate

Since the progrmmer has the dlty to controlprogram flow, it is pesible to
program an infinite loop thatilvnever reurn to the cing program. To

avoid this problem, a maximum number of instructions variable is used to
limit the number of instructions that can be executed each time the inverse
assembler is called. This number is initialized to a large number and should
never interfere with the inverse assembler; however, this number can be used
to set a low limit on the instruction limit to see whiclisto the inverse
assembler take the most time. This can be used to optimize sections or stop
near-infinite loops. The value of MAX_INSTRUCTION, initialized by this
pseudo, cannot be changed during the inverse assembly. If the instruction
count exceeds this value, the inverse assembler is aborted. In addition, an
instruction overflow message is placed in the output buffer and displayed.

Default = 10000

Examples
MAX_INSTRUCTION 50 ;Check for execution
;of more than 50
;instructions.

MAX_INSTRUCTION 10000 ;This sets a large
;limit so only infinite
;loops will abort
;the inverse assembler.

197

Chapter 9: Inverse Assembler Language (lAL) Instructions
NEW_LINE - Begin generating a new output line

Syntax

Examples

NEW_LINE - Begin generating a new output line

Label Operation Operand Comment

NEW_LINE

The NEW_LINE instruction is used when more than one line of information

to be output by the inverse assembler for a single captured analysis Following
execution of the NEW_LINE instruction, subsequent OUTPUT and
instructions refer to the new line of inverse assembler output. The instruction
can be used to generate up to four inverse assembler output lines. Exceeding
this limit will cause the inverse assembler to abort.

OUTPUT "This is line 1"
NEW_LINE
OUTPUT "*xrk This is line 2"

This series of instructionsiblvproduce output as shown below:

This is line 1
**** This is line 2

198

Chapter 9: Inverse Assembler Language (lAL) Instructions
NOP - No operation

NOP - No operation

Syntax
Label Operation Operand Comment
NOP
Has no effect on the execution of the inverse assembler. The instruction
following NOP will be executed next.
Examples

NOP

199

Chapter 9: Inverse Assembler Language (lAL) Instructions
OUTPUT - Output to output buffer

Syntax

Examples

OUTPUT - Output to output buffer

Label Operation Operand Comment

OUTPUT variable/"string"/ACCUMULATOR,FORMAT

The OUTPUT instruction expects an operand defined by the STRING
pseudo, an immediate string, or the key work ACCUMULATOR followed by

a conversion format defined by the FORMAT pseudo. The first two operands
will copy ASCII text to the output buffer. The third operanil eonvert the
accumulator using the specified format to a numeric display in the output
buffer.

LOAD_STG ASCII "LOAD"
OUTPUT LOAD_STG ;Output LOAD text.
OUTPUT "LOAD" ;Output immediate
;text.
OUTPUT ACCUMULATOR,HEX_FMT ;Convert accumulator
;to hex.

200

Chapter 9: Inverse Assembler Language (lAL) Instructions
POSITION - Position column pointer

POSITION - Position column pointer

Syntax
Label Operation Operand Comment
POSITION ABS/REL,column number
Position allows the current column pointer to be moved to an absolute or
relative position in the output buffer. The column number can range from 1
to 64 for absolute positioning or -32 to 31 for relative positioning. In the
relative mode, negative numbers move the column position to the left of the
current location and positive numbers move it to the right.
Examples
POSITION ABS,10 ;Move to column
;10.
POSITION REL,-2 ;Move to the left
;2 columns.

201

Chapter 9: Inverse Assembler Language (lAL) Instructions
QUALIFY_MASK/_VALUE (Pseudos) - Set qualify specifications

Syntax

Examples

QUALIFY_MASK/_VALUE (Pseudos) - Set qualify
specifications

Label Operation Operand Comment
QUALIFY_MASK immediate
or

QUALIFY_VALUE immediate

QUALIFY_MASK and QUALIFY_VALUE are used to set qualify

specifications for the INPUT instruction. When INPUT
ABS,operand,QUALIFIED or INPUT REL,operand,QUALIFIED is

executed, both the address and status must be satisfied before data is returned.
The mask operand is considered to be a 32-bit mask where a O represents a
"don't care" state and a 1 represents a "care" state. The status in the analysis
buffer is first masked (ANDed) with the value of QUALIFIED_MASK to

obtain the value of "care" bits. Then this value is compared to
QUALIFY_VALUE to see ifthe status is satisfied.

QUALIFY_MASK 00101B ;Only care about
;bits 0 and 2

QUALIFY_VALUE 00001B ;And the value must
;:be 001B.

202

Chapter 9: Inverse Assembler Language (lAL) Instructions
RETURN - Return

RETURN - Return

Syntax
Label Operation Operand Comment
RETURN
Return can be used to return to the instruction following a CALL or to leave
the inverse assembler ifa RETURN is executed without any subroutine
nesting.
Examples
RETURN ;Return to calling

;routine or leave
;inverse assembler if
;not in a subroutine.

203

Chapter 9: Inverse Assembler Language (lAL) Instructions
ROTATE - Rotate accumulator contents

Syntax

Examples

ROTATE - Rotate accumulator contents

Label Operation Operand Comment

ROTATE RIGHT,immediate
or
LEFT,immediate

This instruction rotates the accumulator contents either right or left the
number of bits specified. The operand can range from 1 to 32. Bits that are
shifted off the left side (on left shifts) are rotated back on on the right side,
and vice versa (circular shift).

ROTATE LEFT,10 ;Shift left 10
;bits and rotate
;inon right.

ROTATE RIGHT,20 ;Shift right 20
;bits and rotate
;inon left.

204

Chapter 9: Inverse Assembler Language (lAL) Instructions
SEARCH_LIMIT (Pseudo) - Limit analysis search

SEARCH_LIMIT (Pseudo) - Limit analysis search

Syntax
Label Operation Operand Comment

SEARCH_LIMIT immediate

The search limit applies to the INPUT instruction and reading data from the
analysis buffer after a trace. The operand specifies how many analysis states
should be searched in order to find the required data. The limit optimizes
processing by not allowing the entire buffer to be searched each time. The
search limit should be set to the maximum numben@fhory or I/O

references made between opcode fetches. For example, if the inverse
assembler was searching for a memory read state and that state was not
captured by the analysis hardware, SEARCH_LIMIT would be used to limit
the number of states scanned. The variables QUALIFY_MASK and
QUALIFY_VALUE may be used to qualify the search. Everytime the
condition is satisfied, the search count isé@mented. QUALIFY_MASK

and QUALIFY_VALUE can be changed to search for other conditions and
SEARCH_LIMIT can be defined to reflect the number of states that are
expected to be found.

Default = 1

Examples

SEARCH_LIMIT 7 ;Search limited to 7
;analysis states.

205

Chapter 9: Inverse Assembler Language (lAL) Instructions
SET - Set variable

SET - Set variable

Syntax
Label Operation Operand Comment

SET variable,immediate

variable = immediate (-8, + 7)

The variable specified is set to the value in the immediate operand. The
operand can range from -8to + 7.

Examples
SET NAME,2 ;Set value of
;NAME to 2.

206

Chapter 9: Inverse Assembler Language (lAL) Instructions
STORE - Store value in accumulator

STORE - Store value in accumulator

Syntax
Label Operation Operand Comment
STORE variable
variable = accumulator
Stores the value in the accumulator in the location defined by the operand.
The operand label must be defined by the VAR pseudo, or be one of the
communication variables.
Examples

STORE NAME ;Store accumulator value
;in variable NAME.

207

Chapter 9: Inverse Assembler Language (lAL) Instructions
SUBTRACT - Subtract from accumulator

Syntax

Examples

SUBTRACT - Subtract from accumulator

Label Operation Operand Comment

SUBTRACT variable/immediate

accumulator = accumulator - operand

The value specified by the operand is subtracted from the value in the
accumulator. The operand can be either the name of a variable or an
immediate value. The value ofimmediate data can range from 0 to
OFFFFFFFFH 82-bit value). Negative numbers are expressed in two’s
complement form.

SUBTRACT 1 ;Decrement
;accumulator.

SUBTRACT NAME :Subtract value of
:NAME from

;accumulator.

208

Chapter 9: Inverse Assembler Language (lAL) Instructions
TAG_WITH - Flag analysis states

TAG_WITH - Flag analysis states

Syntax
Label Operation Operand Comment

TAG_WITH operand

The tag instruction provides a convenient method to "mark" states. This mark
is then used during subsequent inverse assembly calieiitly, the inverse
assembler is called for each analysis state and ifutremt state is part of the
previous instruction, a tag can be set to indicate that only status should be
displayed. The tag operand is the value of the tag to be associated with the
current state. For all systems, the tag has a 2-bit value and the nontagged
value is 0. When the INPUT instruction is executed, the variable
INPUT_TAG will be initialized with the tag value of the arsi$ystate read.

Examples
TAG_WITH TAG_VALUE ;Tag current
;analysis state.

209

Chapter 9: Inverse Assembler Language (lAL) Instructions
TWOS_COMPLEMENT - Twa’s complement on accumulator

TWOS_COMPLEMENT - Two’s complement on
accumulator

Syntax
Label Operation Operand Comment
TWOS_COMPLEMENT
A two’s complement is performed on the accumulator, changing all 1 bitsto 0
and 0 bits to 1, then adding 1 to the result.
Examples

TWOS_COMPLEMENT ;Negate accumulator.

210

Chapter 9: Inverse Assembler Language (lAL) Instructions
VARIABLE/VAR (Pseudo) - Define and initialize a variable

VARIABLE/VAR (Pseudo) - Define and initialize a
variable

Syntax
Label Operation Operand Comment

NAME VARIABLE immediate

VARIABLE defines a storage location that can be used on arithmetic and
conditional statements. It can be initialized to a specific value with the
optional operand field.

Examples
NAME VARIABLE OFFH ;Define variable
;storage and assign
;an initial value
;of OFFH.

211

212

10

|AL Builder Error Messages

213

AS

DE

DS

ET

|AL Builder Error Messages

If errors occur when building an inverse assembler, a two-letter code is output
along with a caret (*) character that indicates the location of the error. Also,
if there was a previous error, the line number of that error is displayed. This
chapter describes the possibleog messages.

ASCIl STRING
Cause: The ASCII string was terminategmoperly.

Action: Check that matching string delimiters (quotation marks, single quote
marks, or carets) are used, and that the string is not too long.

DEFINITION ERROR

Cause: Indicated symbol must be defined prior to it being referenced. Symbol
may be defined later in the program sequence.

Action: Make sure the symbol is defined either before or after it is referenced.

DUPLICATE SYMBOL

Cause: Indicates that the defined symbol noted has been previously defined in
the program assembly sequence.

Action: Make sure symbols are defined once.

EXPRESSION TYPE

Cause: The resulting type of expression is invalid. Absolute expression was
expected and not found.

Action: Make sure the expression yields an absolute value; that is, the value
must be known at assembly time.

ILLEGAL CONSTANT

Cause: Indicates that the assembler encountered a constant that is not valid.
For example: 109B (9 is invalid)

214

MO

MP

Chapter 10: IAL Builder Error Messages

Action: Make sure that constants contain characters appropriate to the
number base used.

ILLEGAL EXPRESSION

Cause: Specified expression is either incomplete or an invalid term was found
within the expression.

Action: Make the expression complete or remove the invalid term.

INVALID OPERAND

Cause: Specified operand is either incomplete and inaccurately used for this
operation. This occurs when an unexpected operand is encountered or the
operand is missing. If the required operand is an expressiomnrtre e

indicates that the first item in the operand field is illegal.

Action: Refer to the "Inverse Assembler Language Instructions" chapter for
instruction syntax.

ILLEGAL SYMBOL

Cause: Syntax expected an identifier and encounterdieggal character or
token.

Action: The first character of a label must be an upper case alphabetic
character. The remaining characters may be either alphabetic or numeric.
The alphanumeric character set includes the letters of the alphabet (upper or
lower case), the underline symbol (_), and numeric digits 0 through 9.

MISSING OPERATOR
Cause: An arithmetic operator was expected, but was not found.

Action: Refer to the "Inverse Assembler Language Instructions" chapter for
instruction syntax.

MISMATCHED PARENTHESIS
Cause: Missing right or left parenthesis.

Action: Make sure that parentheses are matched.

215

Chapter 10: IAL Builder Error Messages

SE

TR

uc

uo

us

STACK ERROR

Cause: Indicates that a statement or esgiom does not conform to the
required syntax.

Action: Refer to the "Inverse Assembler Language Instructions" chapter for
instruction syntax.

TEXT REPLACEMENT
Cause: Indicates that the specified text replacement string is invalid.

Action: The ampersand (&) character is not a valid character for labels. The
first character of a label must be an upper case alphabetic character. The
remaining characters may be either alphabetic or numeric. The alphanumeric
character set includes the letters of the alphabet (upper or lower case), the
underline symbol (_), and numeric digits 0 through 9.

UNDEFINED CONDITIONAL
Cause: Conditional operation code is invalid.

Action: Refer to the "Inverse Assembler Language Instructions" chapter for
instruction syntax.

UNDEFINED OPERATION CODE

Cause: Operation code encountered is not defined or the assembler does not
allow the operation to be processed in its current context.

Action: Make sure the operation code is spelled correctly, and that a valid
delimiter (:) follows the label field.

UNDEFINED SYMBOL
Cause: The indicated symbol is not defined as a label.

Action: Make sure the symbol is defined as a label.

216

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

217

Part 4

218

11

Demo RTOS Measurement Tool
Details

219

Demo RTOS Measurement Tool Detalls

The "Quick Start Guide" part of this manual describes how to use the demo
RTOS measurement tool and how to perform one simple modification. The
chapters in the "User’s Guide" part of the manual describe parts of the demo
RTOS measurement tool as examples of how to perform different types of
tasks.

This chapter describes the following aspects of the demo RTOS measurement

tool in more detail:

* The "rtos_edit" Script
This script is used when adding tasks to the demo application. It enters
task names into the data table and the command file that sets up SPA
intervals.

* The "rtos_emul" Startup Script
This script starts the Emulator/Analyzer interface, setting up action keys
and command files for RTOS measurements.

* The "rtos_spa" Startup Script
This script starts the Software Performance Analyzer interface, setting up
action keys and command files for RTOS measurements.

» Scripts Run by the Action Key Command Files

These scripts provide greater capiggpto several of the action key
command files.

220

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

The 'rtos_edit" Script

The "rtos_edit" script:

+ Sets environment variables.

+ Defines variables.

* Checks location of files.

» Displays install information.

* Prompts user for information and task IDs.

» Enters the task names into the "table.c" file (if requested).
» Enters the task names into tkseihit" file (if requested).

Setting Environment Variables

The paths needed by the "rtos_edit" script are added to the PATH
environment variable. If the HP64000 emmviment variable is not already set,
it is set to /usr/hp64000.

#1/bin/sh
BB R R R R B R R R
#

FILE: rtos_edit
#

DESCRIPTION: This is a shell script to edit the 'table.c’ & 's_init’
files. New files will be created and will be placed in the
current directory.

#

AUTHOR: Hewlett Packard - Colorado Springs Division

#

HEEH R R T R R R R

Confirm setting of HP64000
if [-z "$HP64000"]
then
HP64000=/usr/hp64000
fi

PATH=/usr/5bin:/bin:/usr/bin:/usr/uch:/etc:$PATH
export PATH

221

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

Defining Variables
The "rtos_edit" script defines variables that it uses later.

Define variables
tables_orig=tables1
tables_stripped=tables2
tables_final=tables3
inittasks=s_init
edit_file=table.c

TASK_IDS=""
task_inputs="start_loop"

Displaying Install Information

echo "\n"
echo" &dB-- RTOS Measurement Tool Edit Script --"

echo " &dB---=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
ver_str="@#)REV: "

echo_str="echo $ver_str | sed 's/........ I

echo" $echo_str"

Checking Location of Files

This section of the "rtos_edit" script is used for testing the Custom RTOS
Measurement Togdroduct. The files from the install directory should always

be used.

#
Check if files should be used from the test directory or install directory.

#

if ["$TEST_INST_PATH" I=""]

then
set_path=/hp/rtos/custom/prdct_files

else

set_path="$HP64000/rtos/B3082A"
fi
inst_dir=$set_path
user_n_func_intervals=$inst_dir/action_keys/spabasecmd

222

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

Prompting the User for Information and T ask IDs

As real-time OS applications are developed, the number of tasks may increase
or decrease, so the "rtos_edit" script lets users define tasks by their ID numbers.

#
Ask which files need to be created
#

echo "\n\n Do you want to create a hew 'table.c’ file? [y/n] (y): \c"
read create_table
create_table=${create_table:=y}

echo "\n\n Do you want to create a new ’s_init’ file? [y/n] (y): \c"
read create_inittasks
create_inittasks=${create_inittasks:=y}

#
Check if either file wanted
if ["$create_table" = "n" -a "$create_inittasks" = "n"]
then
exit
else
#
Get the user’s task id list
#

four_digit_tasks=""
echo "\n Enter all the tasks IDs in your application.”
echo" (No more than 15 IDs per line!)\n"
while [! "$task_inputs" =""]
do
#
Get a current list of inputs
#

index=0

echo" Task ID(s) (return when done): \c"

read task_inputs

bad_task_id=FALSE

for taskid in $task_inputs

do
#
Check that single input is a number and but not 9999
#

case $taskid in

9999)
echo "\n Task id 9999 overlaps with error check id."
echo " (9999 removed from user list!)"
bad_task_id=TRUE;;
[0-9]) tid=000$taskid;;
[0-9][0-9 tid=00$taskid;;
[0-9][0-9][0-9]) tid=0$taskid;;
[0-9][0-9][0-9][0-9]) tid=$taskid;;
*
)
echo " Task id '$taskid’ was not a 1 to 4 digit number"
echo" ("$taskid’ removed from user list!)"
tid=9999
bad_task_id=TRUE;;
esac
#

Check if single input is a duplicate
#

223

for dup_id in $TASK_IDS $four_digit_tasks
do
if ["$tid" = "$dup_id"]

then
echo " Duplicate task id '$tid’ removed from list."
bad_task_id=TRUE
fi
done
#

If input is valid, add it to current list of inputs

#

if ["$bad_task_id" = "FALSE"]

then

_four_digit_tasks="$four_digit_tasks $tid"

fi
bad_task_id=FALSE
done
#
Add current list of inputs onto cumulative list

#
TASK_IDS="$TASK_IDS $four_digit_tasks"
four_digit_tasks=""

done

#
List complete cumulative list of inputs
#
echo "\n The following task IDs have been entered:"
echo $TASK_IDS |
awk’
{for (i=1;i<=NF;i++)

printf("\t%-12s", $i);

if (1% 4) ==0)
printf("\n");

fi

224

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

Entering the Task Names into the 'table.c"File

The "rtos_edit" script edits the data table file for the tasks that are being used.

if ["$create_table" = "y"]
thz;###
z Edit the task names into table.c
zcho “\n\n"
echo" Creating the new 'table.c’ file..."

cp $inst_dir/../mikos/$edit_file $tables_orig
chmod 666 $tables_orig

#
Remove all defined macro entries
#
awk’
BEGIN { delete_lines =01}

/BEGIN TASK MODIFICATIONS/ { delete_lines = 1; print $0; next }
/END TASK MODIFICATIONS/ { delete_lines = 0; print $0; next }
1.*] { if (delete_lines == 0)

print $0
next

}
' < $tables_orig > $tables_stripped
rm $tables_orig

#
Create the task list of entry & exit variables
#
task_count_string=""
for task in $TASK_IDS
do
task_entry_list="$task_entry_list\nshort int HPOS_Tenter_$task,HPOS_Texit_$task;"
done
task_entry_list="$task_entry_list\n\n"
task_entry_header="\nshort int HPOS_TaskTable;"

#
Add the task variable list into the file

#
Get the 'header’ part of the file

awk’
/BEGIN TASK MODIFICATIONS/ {
print $0;
printf("%s", taskheader);
exit
b
141 {print $0; next }

1

taskheader="$task_entry header"\
< $tables_stripped > $tables_final

Add the task variables into the file
echo "$task_entry_list" >> $tables_final

225

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

Add the rest of the file on the end

awk’
BEGIN { start_lines=01}
/END TASK MODIFICATIONS/ { start_lines = 1; print $0; next }
1.*] {if (start_lines == 1)
print $0
next

' < $tables_stripped >> $tables_final
rm $tables_stripped

#
Move the file to it's final destination

#
chmod 666 $edit_file 2>/dev/null
if[$?!=0]
then
echo" (Could not change permissions on '$edit_file’.)"
fi
mv $tables_final $edit_file
if[$?!1=0]
then
echo" Could not overwrite "$edit_file’."
echo" Exiting script."
exit
else

chmod 444 $edit_file 2>/dev/null
fi

echo" $edit_file - contains newly edited file."
fi

226

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

Entering the Task Names into the 's_init" File

The "rtos_edit" script edits the "s_init"mwnand file for the tasks that are
being used.

The "s_init" canmand file isun from the Software Performance Analyzer
interface to define SPA event intervals for tasks, service calls, and user events.

#

Check if 's_init’ file is to be created

#

if ["$create_inittasks" = "y"]

then
R R T R
#

Edit the task names into s_init

echo "\n\n *** Creating SPA command file for initializing intervals ***"

#

Put header on file

#

echo "#" > Sinittasks

echo "# HP RTOS Command File: spa_inttasks" >> $inittasks
echo "#" >> $inittasks

echo "# DESCRIPTION: Define all SPA intervals: tasks, service calls, user"\
>> $inittasks

echo "#" >> $inittasks

echo "stop_profile" >> S$inittasks

echo "set byte_alignment word" >> $inittasks
echo "#" >> $inittasks

#

Put task interval defines into file

pre_str="define single_event named"
for task in $TASK_IDS
do
int_name=Task_$task
int_start=HPOS_Tenter_S$task
int_end=HPOS_Texit_$task
echo $pre_str $int_name interval $int_start thru $int_end >> $inittasks
done

#

Put OS time & measurement overhead interval defines into file

#

echo $pre_str OS_Time interval HPOS_Start_Ovrhd thru HPOS_Stop_Ovrhd >>$inittasks
ovrhd_str="Measure_Ovrhd interval HPOS_Start_Intrusion thru HPOS_Stop_Intrusion"
echo $pre_str $ovrhd_str >> $inittasks

#
Put standard OS function and user-defined intervals into file
#

cat $user_n_func_intervals >> $inittasks

227

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

Checking if a Unique Environment is Required

If more than one project is using the same RT@Easurement tool on the
same file system, the "s_init" file created must be unique toutrertly
loaded application.

In order to let users set up unique SPA windows for multiple projects, the
“rtos_edit" script will set the RTOS_UNIQUE

R R R I R
#

Check if a unique environment is required for SPA use

#

echo "\n The SPA environment can be customized by creating command files"
echo" for making measurements specific to an application. You can set"
echo" up environments so that each user can have his own environment"
echo" or alternatively can use the global customizations."

echo" (See the RTOS B3081 manual for more explanation of this question.)"

echo "\n Do you want to set up a unique user environment? [y/n] (n): \c"
read mult_tool
mult_tool=${mult_tool:=n}

unique_suffix=

if ["$mult_tool" = "y"]

then
Get a user unique suffix
RTOS_UNIQUE=${RTOS_UNIQUE:=NoT_SeT}
if ["$RTOS_UNIQUE" = "NoT_SeT"]

then
echo "\n Enter a unique suffix to differentiate your files."
echo" (currently used suffixes: \c"

unig_files='Is $inst_dir/action_keys/s_init_* 2>/dev/null‘
for file in $uniq_files
do

suffix="echo $file | sed 's/.*\/s_init//"

echo " $suffix\c"
done
echo ")"
echo" Your initials are suggested (and start with underscore ’_"): \c
read unique_suffix
unique_suffix=${unique_suffix:=_rtos}
RTOS_UNIQUE=$unique_suffix
export unique_suffix

echo "\n"

echo" Remember to PERMANENTLY set 'RTOS_UNIQUE’ to '$unique_suffix’
(preferably”

echo " by setting it in your startup shell script) and make it global. All"

echo " other users who want to use the same command files must also set"

echo" 'RTOS_UNIQUE' in their execution environment."

echo" (ksh: export RTOS_UNIQUE=$unique_suffix)"
echo" (csh: setenv RTOS_UNIQUE $unique_suffix)"
echo" ('sh: RTOS_UNIQUE=$unique_suffix"

echo" export RTOS_UNIQUE)"

fi
fi
final_init=$inittasks$unique_suffix

228

fi

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_edit" Script

echo "\n\n Command file for initializing SPA intervals:"
echo" '$inst_dir/action_keys/$final_init™

mv $inittasks $inst_dir/action_keys/$final_init

chmod 666 $inst_dir/action_keys/$final_init

229

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

The 'rtos_emul" Startup Script

The "rtos_emul" script sets up environment variables and defines action keys
before starting the emulator/analyzer interface. The "rtos_emul" script:

» Definesthe supported processors.

+ Sets environment variables.

* Checks parameters.

» Displays startup information.

* Prompts for the processor type (if it hasn't been included aszareder).
» Sets variables based on the processor type.

* Checksifthe RTOS inverse assembler has been installed.

+ Setsthe HP64KPATH environment variable.

 Addsthe RTOS directoryto the PATH environment variable.

» Starts the Emulator/Analyzer interface with "emul700".

Defining the Supported Processors

The demo RTOS measurement togpports severa@88000 familyprocessors.
These processors disted in the "rtos_emul" script to give users a list from
which to choose their processor.

#1/bin/sh

BB R R R R B R R R
#

CUSTOM REAL TIME OPERATING SYSTEM MEASUREMENT TOOL

EMULATION START COMMAND FILE

HEWLETT PACKARD - COLORADO SPRINGS DIVISION

#

T R R T R B T B T T T T T T

proc_list="68000 68010 68302 68030 68020 68331 68332 68040 68340"
#
Assign this variable to one of the values of 'proc_list'.

#
PROCESSOR=""

230

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

Setting Environment Variables

The paths needed by the "rtos_emul" script are added to the PATH
environment variable. If the HP64000 emmviment variable is not already set,
it is set to /usr/hp64000.

PATH=/usr/5bin:/bin:/usr/bin:/usr/ucb:/etc:$PATH
export PATH

HEHHH R T R T
Confirm setting of HP64000
if [-z "$HP64000"]
then
HP64000=/usr/hp64000
fi

Checking Parameters

The "rtos_emul" script lets you specify a startup command file and the
processor type in addition to the emulatanre.

The "emulator_name"is the logical emulator name given in thé47B0
emulator device table file ($HP64000/etc/64700tab.net).

show_usage()

echo "usage: $0 [-c <cmd_file>] [PROCESSOR] <emulator_name> &"
show_proc_choices
exit

}

#
Check for input

Possible inputs:

1) emulrtos box-name

2) emulrtos processor box-name

3) emulrtos -c command_file box-name

4) emulrtos -c command_file processor box-name

COMMAND_INPUT=""

if [$# -gt4] # Check if have too many parameters
then

show_usage
fi

if[$#-eql] # Check if parameter option 1
then

EMULATOR=$1
elif [$# -eq 2] # Check if parameter option 2
then

PROCESSOR=$1

EMULATOR=$2

else # Check for valid options 3 or 4
if ["$1" 1="-c"] # Check that ’-c cmd_file’ is in parms
then

231

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

show_usage
else
COMMAND_INPUT="-c $2" # Set command file string
fi
if [$# -eq 3] # Check if parm option 3 used
then
EMULATOR=%$3 # Must be parm option 3, ’'PROCESSOR’ not given
else
PROCESSOR=$3 # Must be parm option 4

EMULATOR=$4
fi
fi

Displaying Startup Information

echo "\n\n &dB-- Real Time Operating System Custom Measurement Tool --&d@"
echo "\n &dB-- Emulation Start Script --&d@"

echo " Hewlett Packard\n"
ver_str="@#)REV: "
echo_str="echo $ver_str | sed 's/........ s
echo " $echo_str"

Prompting for the Processor Type

The processor typeltethe "rtos_emul" script which emulator is being used
and whether the processor hakbaor 32-bit data bus.

show_proc_choices()

echo "\n Processor choices:"
echo" \c"
for possible_proc in $proc_list
do

echo " $possible_proc\c"
done
echo

}

#
Let the user choose the processor that RTOS will be run with if not entered
on command line or not set within script.
#
proc_choice=$PROCESSOR
while ["$proc_choice" ="]
do
echo "\n Which emulator will you use with HP’s Real Time OS Custom
Measurement Tool?"
show_proc_choices
echo "\n ENTER THE EMULATOR’'S PROCESSOR TYPE: \c"
read PROCESSOR
for possible_proc in $proc_list
d

o
if ["$PROCESSOR" = "$possible_proc"]
then

proc_choice=3PROCESSOR

break

232

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

fi
done
if ["$proc_choice" ="]
then
echo" **Error: Invalid processor choice! Try again."
fi
done

Setting Variables Based on the Processor Type

The processor typeltethe "rtos_emul" script where to look for the inverse
assembler, what the specific X resource applicatemenis, and whether the
processor has6- or 32-bit data bus.

The "rtos_emul" script makes sure the inverse assembler has been installed
before starting the emulator/analyzer interface. If the inverse assembler has
not been installed, the script exits.

The X resource applicatiorame is used when defining the X oesces that
set up action keys in the emulator/analyzer interface.

The processor data bus width identifies themptand files that aresaigned to
action keys when there are different versions for 16- and 32-biessors.

#

Set all variables related to the processor choice

#

case $PROCESSOR in

*68000)

rtos_install=$HP64000/inst/emul/64742A/rtos;
PROC_RESOURCE=m68000;
ACTION_KEY_SFX=_16;

*68010)
rtos_install=$HP64000/inst/emul/64745A/rtos;
PROC_RESOURCE=m68010;
ACTION_KEY_SFX=_16;

*68302)
rtos_install=$HP64000/inst/emul/64746A/rtos;
PROC_RESOURCE=m68302;
ACTION_KEY_SFX=_16;

*68030)
rtos_install=$HP64000/inst/emul/64747Alrtos;
PROC_RESOURCE=m68030;
ACTION_KEY_SFX=_32;

*68020)
rtos_install=$HP64000/inst/emul/64748A/rtos;
PROC_RESOURCE=m68020;
ACTION_KEY_SFX=_32;

*68331)
rtos_install=$HP64000/inst/emul/64749A/rtos;
PROC_RESOURCE=m68331;

233

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

ACTION_KEY_SFX=_16;

*68332)
rtos_install=$HP64000/inst/emul/64749A/rtos;
PROC_RESOURCE=m68332;
ACTION_KEY_SFX=_16;

*68040)
rtos_install=$HP64000/inst/emul/64750A/rtos;
PROC_RESOURCE=m68040;
ACTION_KEY_SFX=_32;

*68340)
rtos_install=$HP64000/inst/emul/64751A/rtos;
PROC_RESOURCE=m68340;
ACTION_KEY_SFX=_16;

)

show_usage;
esac)
Checking if the RTOS Inverse Assembler Has Been Installed
Ifthe RTOS inverse assembler has not been installed, the capability to display
real-time OS traces will not be present in the emulator/analyzer interface.
#

Check that the RTOS IAL has been installed.
#

if [! -f $rtos_install/rtos.R]

then
echo "\n\n"
echo" *** NO RTOS SPECIFIC IAL HAS BEEN INSTALLED. ***"
echo " (Couldn’t find "$rtos_install/rtos.R’)"
exit

fi

234

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

Setting the HP64KPATH Environment Variable

The HP64KPATH environment variable tells the Emulator/Analyzer interface
where to search for command files if they are woinfd in the current

directory. The "rtos_emul" script adds the $HP64000/rtos/B3082A directory to
the HP64KPATH environment variable.

#
Check setting of environment variable for command files
#

cur_pwd="pwd’
if ["$cur_pwd" = "/hp/rtos/custom/demo"]

then
set_path="$HP64000/rtos/B3082A"
else
set_path=/hp/rtos/custom/demo
fi
echo" Adding '$set_path’ to HP64KPATH"
if ["SHPB4KPATH" ="]
then

HP64KPATH=$set_path
export HP64KPATH
else
var_set="echo $HP64KPATH | egrep '$set_path™
if ["$var_set" =""]
then
HP64KPATH=$HP64KPATH:$set_path
export HP64KPATH
fi
fi

Adding the RTOS Directory to the PATH Environment Variable

The PATH environment variable tells the UNIXmemand shell where to find
commands and scripts. Because some of the commancdufissripts in the
$HP64000/rtos/B3082A directory, this directory is added to the PATH
environment variable.

#
Check setting of environment variable for RTOS scripts
#
var_set='echo $PATH | egrep '$set_path™
if ["$var_set" =""]
then
echo" Adding '$set_path’ to PATH"
PATH=$PATH:$set_path
export PATH
fi

235

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_emul" Startup Script

Starting the Emulator/Analyzer Interface with "emul 700"

Theemul700command is used to start the Emulator/Analyzer interface, and
the-xrm command line option is used to define the Xotgses that set up

action key.
#
Write message
#
echo" Emulation Window is now being created."
echo " Please wait..."
#

Bring up an emulator window
#

emul700 \

$COMMAND INPUT \

"-xrm emul.$PROC_RESOURCE*actionKeys.packing: PACK_COLUMN"\

"-xrm emul.$PROC_RESOURCE*actionKeys.numColumns: 4"\’

"-xrm emul.$PROC_RESOURCE*actionKeysSub.keyDefs: \
\"Track OS calls\" \"action_keys/e_trkcalls\" \
\"Track Everything\" \"action_keys/e_trkall\" \
\"Task switch A->B\" \"action_keys/e_AthenB$ACTION_KEY_SFX\" \
\"Help RTOS\" \"ItellrtosHP lin_browser\" \
\"Memory Usage\" \"action_keys/e_| memory$ACTION KEY_SFX\"\
\"Only Call X\" \"action_keys/e_onecall\" \
\"Only Calls X & Y\" \"action_keys/e_twocallsSACTION_KEY_SFX\"\
\"Tsk A msg->Que X\" \"action_keys/e_ tsk2queue$ACTION KEY_SFX\"\
\"Custom OS Trace\" \' dlsplay trace real_time_os\" \
\"<UserDefinable1>\" \"#Edit 'rtos_emul’ to define this key\" \
\"Only Task X\" \"action_keys/e_trk1taskSACTION_KEY_SFX\"\
\"Only Tsk W,X,Y,Z\" \"action_keys/e_trk4task$ACTION_KEY_SFX\"\
\"Task A: VarX\" \"action_keys/e_ aftervar$ACTION_KEY SEX\"\
\"NonCustom Trace\" \' dlsplay trace mnemonic\" \
\"<UserDefinable2>\" \"#Edit 'rtos_emul’ to define this key\" \
\"Tasks & Queues\" \"action_keys/e_| trackqs$ACTION KEY_SFX\"\
\"Only Queues\" \"action_keys/e_onlygs\" \
\"Task A: FuncX\" \"action_keys/e_afterfunc$ACTION_KEY_SFX\"\
\"Before SPA trig2\" \"action_keys/e_spatrig\" \
"\

$EMULATOR &

236

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_spa" Startup Script

The 'rtos_spa" Startup Script

The "rtos_spa" startup script:

Sets environment variables.

Checks parameters.

Displays startup information.

Sets the HP64KPATH environment variable.

Adds the RTOS directory to the PATH environment variable.
Starts the SPA interface with "emul700".

Setting Environment Variables

The paths needed by the "rtos_spa" script are added to the PATHdrengint
variable. If the HP64000 emanment variable is not already set, it is set to

/usr/hp64000.
#1/bin/sh
A
#
CUSTOM REAL TIME OPERATING SYSTEM MEASUREMENT TOOL
SOFTWARE PERFORMANCE ANALYZER START SHELL SCRIPT
HEWLETT PACKARD - COLORADO SPRINGS DIVISION

#
T R T B T B T T T T T T

ver_str="@#)REV:

T R T R T T R T

BB R R R R
PATH=/usr/5bin:/bin:/usr/bin:/usr/uch:/etc:$PATH

export PATH

Confirm setting of HP64000

if [-z "$HP64000"]
then

HP64000=$HP64000
fi

237

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_spa" Startup Script

Checking Parameters

The "rtos_spa" script lets you specify a startumemnd file and therocessor
type in addition to the emulator name.

The "emulator_name"is the logical emulator name given in thé47B0
emulator device table file ($HP64000/etc/64700tab.net).

show_usage()
{

echo "usage: $0 [-c command_file] <emulator_name> &"
exit

#

Check for input

Possible inputs:

emulrtos box-name

emulrtos -c command_file box-name
#

COMMAND_INPUT=""

if [$#-eq 1]
then
EMULATOR=$1
elif [$# -eq 3]
then
if ["$1" 1="-c"]
then
show_usage
else
COMMAND_INPUT="-c $2"
fi
EMULATOR=$3

else

show_usage
fi

Displaying Startup Information

echo "HJ"
echo "\n\n &dB-- Real Time Operating System Custom Measurement Tool --&d@"
echo " &dB-- SPA Start Script --&d@"
echo " Hewlett Packard\n"
echo_str="echo $ver_str | sed 's/........ I
echo" $echo_str"

238

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_spa" Startup Script

Setting the HP64KPATH Environment Variable

The HP64KPATH environment variable tells the Software Performance
Analyzer interface where to search for command files if they areonotfin
the current directory. The "rsospa” script adds the $HP64000/rtos/B3082A
directory to the HP64KPATH environment variable.

#
Check setting of environment variable for command files & scripts
#

Get test path if set

if ["$TEST_INST_PATH" =""]

then
set_hp64_path="$HP64000/rtos/B3082A"

else
set_hp64_path=/hp/rtos/custom/prdct_files

fi

Set HP64KPATH
echo" Adding '$set_hp64_path’ to HP64KPATH"
if ["SHPB4KPATH" = "]
then
HPB4KPATH=$set_hp64_path
export HP64KPATH
else
var_set='echo $HP64KPATH | egrep '$set_hp64_path™
if ["$var_set" =""]
then
HP64KPATH=$HP64KPATH:$set_hp64_path
fi
export HP64KPATH
fi

Adding the RTOS Directory to the PATH Environment Variable

The PATH environment variable tells the UNIXmemand shell where to find
commands and scripts. Because some of the commancdufissripts in the
$HP64000/rtos/B3082A directory, this directory is added to the PATH
environment variable.

Set environment variable for RTOS scripts
echo" Adding '$set_hp64_path’ to PATH"
var_set="echo $PATH | egrep '$set_hp64_path*
if ["$var_set" =""]
then

PATH=$PATH:$HP64000/rtos/B3082A

export PATH
fi

239

Chapter 11: Demo RTOS Measurement Tool Details
The 'rtos_spa" Startup Script

Starting the SPA Interface with 'emul 700"

Theemul700 -u xperfcommand is used to start the Software Performance
Analyzer interface, and th&rm command line option is used to define the X
resources that set up action keys.

#

Write message

#

echo" SPA Window is now being created.”
echo " Please wait..."

#
Bring up window for SPA if requested
#

emul700 \

-u xperf\

$COMMAND_INPUT \

-xrm 'HP64_Softkey.geometry: +415+230’ \

-xrm 'HP64_Softkey*enableCmdline: False’ \

-xrm 'HP64_Softkey*actionKeys.packing: PACK_COLUMN’\

-xrm 'HP64_Softkey*actionKeys.numColumns: 2’ \

-xrm "perf*actionKeysSub.keyDefs: \
\"Initialize\" \"action_keys/s_initS RTOS_UNIQUE\" \
\"Time Tasks\" \"action_keys/s_timetasks\" \
\"Count Srvc Calls\" \"action_keys/s_countsrvcls\" \
\"Trig2 on Overflw\" \"action_keys/s_break_ovrflw\" \
\"FunctionDuration\" \"action_keys/s_funcdur\" \
\"TaskX: Servcalls\" \"action_keys/s_taskwindow\" \
\"Count Tasks\" \"action_keys/s_counttasks\" \
\"Tsk & User Evnts\" \"action_keys/s_tasknuser\" \
\"Disable Trig2\" \"action_keys/s_disabletrg2\" \

"\
$EMULATOR &

240

Chapter 11: Demo RTOS Measurement Tool Details
Scripts Run by the Act ion Key Command Files

Scripts Run by the Action Key Command Files

Several of the demo RTOS measurement tool action key command files call
scripts to set up trace commands or task names. Tility &b run scripts from
command files gives the interfaces greater power and ifiexivhen making
real-time OS measurements.

create_12 call

The "create_12_call" script is used by some of the Emulator/Analyzer interface
action key command files fdi6-bit processors.

The "create_12_call" script creates anenand file to track 1 or 2 service calls
when using a 16-bjprocessor. Theames of the service lkato be tracked are
specified as parameters. This script creates the ".e_onesrvcall" command file
which contains a trace command to track the specified serise ca

This script identifies the next service call locations that appear in the data
table.

If the script is creating a command file that tracks one service call, it creates a
trace command thatares writes in the range from the current service call
location to the start of the next service call location.

If the script is creating a command file that tracks two servikg, dacreates a
trace command that captures two windows of code exec(dioa for each
service call) and stores writes to the data table during these windows of
execution.

#l/bin/sh

HH I T R R
#
CUSTOM REAL TIME OPERATING SYSTEM MEASUREMENT TOOL
HEWLETT PACKARD - COLORADO SPRINGS DIVISION

Product #B3082A

#

This is a shell script to create the command to trace a single service

call OR trace two service calls.

#

PATH=/usr/5bin:/bin:/usr/bin:/usr/ucb:/etc:$PATH

export PATH

find_adjacent_labels()
case $parmin

task_create) funcname=HPOS_task_create
nextfunc=HPOS_send_message_Entry

241

Chapter 11: Demo RTOS Measurement Tool Details
Scripts Run by the Act ion Key Command Files

send_message) funcname=HPOS_send_message
nextfunc=HPOS_get_message_Entry

get_mess’é\ge) funcname=HPOS_get_message
nextfunc=HPOS_alloc_message_Entry

aIIoc_mes’,’sage) funcname=HPOS_alloc_message
nextfunc=HPOS_free_message_Entry

free_mes’s’age) funcname=HPOS_free_message
nextfunc=HPOS_alloc_mem_Entry

aIIoc_mer’ﬁory) funcname=HPOS_alloc_mem
nextfunc=HPOS_String_array

*) funcname=error
nextfunc=error

esac

}

#

Initialize names
#

funcnamel=""
nextfuncl=""
funcnamell=
nextfuncll=""

#
Find corresponding symbols for each input
#
suffix="1"
for parm in $*
do
find_adjacent_labels $parm

eval funcname$suffix=$funcname
eval nextfunc$suffix=$nextfunc

suffix="11"
done

#
Check if either function name was unknown
#

if ["$funcnamel” = "error" -o "$funcnamell" = "error"]
then

string="# One of entered service call function names was unknown"
else

#

Determine whether 1 or 2 input parms were entered

#

if ["$funcnamell" =""]
then

string="trace only address range "$funcnamel"_Entry thru "$nextfuncl"-2"
else

#

Enable and disable on the first and last (respectively) writes for

each service call

string="trace enable "$funcnamel"_Entry or "$funcnamell"_Entry or

242

Chapter 11: Demo RTOS Measurement Tool Details
Scripts Run by the Act ion Key Command Files

"$funcnamel”_Exit or "$funcnamell”_Exit disable "$funcnamel”_Exit-2 or
"$funcnamell"_Exit-2 or "$nextfuncl”-2 or "$nextfuncll"-2 only address range
HP_RTOS_TRACK_START thru HPOS_String_array-1"
fi
fi
#
Create the command file
#
echo "# Command file to trace specific service calls" > .e_onesrvcall
echo $string >> .e_onesrvcall

create_12 call32

The "create_12_call32" script is used by some of the Emulator/Analyzer
interface action key command files f82-bit processors.

The "create_12_call32" script creates anocsand file to track 1 or 2 service

calls when using a 32-bjirocessor. Theames of the service ikato be

tracked are specified as parameters. This script creates the ".e_onesrvcall"
command file which contains a trace command to track the specified service
calls.

This script identifies the next service call locations that appear in the data
table.

If the script is creating a command file that tracks one service call, it creates a
trace command thatares writes in the range from the current service call
location to the start of the next service call location.

If the script is creating a command file that tracks two servikg, dacreates a
trace command thatares writes in the range associated with the first service
call and uses the remaining 8 state qualifiers to trace ssicedocations
associated with the second service call.

#l/bin/sh

HH I T R T
#
CUSTOM REAL TIME OPERATING SYSTEM MEASUREMENT TOOL
HEWLETT PACKARD - COLORADO SPRINGS DIVISION

Product #B3082

#

This is a shell script to create the command to trace a single service

call OR trace two service calls for 32 bit processors.

#

PATH=/usr/5bin:/bin:/usr/bin:/usr/ucb:/etc:$PATH

export PATH

find_adjacent_labels()

case $parmin
task_create) funcname=HPOS_task_create

243

Chapter 11: Demo RTOS Measurement Tool Details
Scripts Run by the Act ion Key Command Files

dataspace=8
nextfunc=HPOS_send_message_Entry

ser{a_message) funcname=HPOS_send_message
dataspace=4
nextfunc=HPOS_get_message_Entry

get:message) funcname=HPOS_get_message
dataspace=4
nextfunc=HPOS_alloc_message_Entry

aIIo’(’:_message) funcname=HPOS_alloc_message
dataspace=3
nextfunc=HPOS_free_message_Entry

freé;message) funcname=HPOS_free_message
dataspace=2
nextfunc=HPOS_String_array

*) funcname=error
nextfunc=error
dataspace=0

”

esac

#

Initialize names
#

funcnamel=""
nextfuncl=""
dataspacel=0
funcnamell=""
nextfuncll=""
dataspacell=0

#
Find corresponding symbols for each input
#

suffix=""
for parm in $*
do
find_adjacent_labels $parm

eval funcname$suffix=$funcname
eval nextfunc$suffix=$nextfunc
eval dataspace$suffix=$dataspace

suffix="11"
done

echo $funcnamel
echo $nextfuncl
echo $dataspacel
echo $funcnamell
echo $nextfuncll
echo $dataspacell

#

Check if either function name was unknown

#

if ["$funcnamel” = "error" -0 "$funcnamell" = "error"]

244

Chapter 11: Demo RTOS Measurement Tool Details
Scripts Run by the Act ion Key Command Files

then

string="# One of entered service call function names was unknown"
else

#

Determine whether 1 or 2 input parms were entered

#

if ["$funcnamell” =""]
then

string="trace only address range "$funcnamel"_Entry thru "$nextfuncl"-2"
else

#

Do trace only x or +4 or +8 or ... thru full range

#

increment_string=" or $funcnamell"_Entry
increment=4

while [$dataspacell -gt 1]

do

Add another 'or’ address on to string
increment_string=$increment_string" or "$funcnamell"_Entry+"$increment
dataspacell="expr $dataspacell - 1
increment="expr $increment + 4
done
string="trace only address range "$funcnamel"_Entry thru
"$nextfuncl"-2"$increment_string
fi
fi

#
Create the command file
#

echo "# Command file to trace specific service calls" > .e_onesrvcall
echo $string >> .e_onesrvcall

245

Chapter 11: Demo RTOS Measurement Tool Details
Scripts Run by the Act ion Key Command Files

get_task_number

The "get_task_number" script is used by some of the Emulator/Analyzer
interface action key command files fb8-bit processors.

The "get_task_number" script creates a command file that sets the
TASK_EVENT environment variable to "Task_< 4digitID> ".

#1/bin/sh
#

A script to convert the input number into a form with leading zeroes and
only four digits and then create a command file to ‘'window’ on the task
with the id of the given number.

#

PATH=/usr/5bin:/bin:/usr/bin:/usr/ucb:/etc:$PATH

export PATH

#

chmod +w .s_settaskvar
#

case $1in
[0-9]) tid=000$1;;
[0-9][0-9]) tid=00$1;;

[0-9][0-9][0-9]) tid=0$1:;
[0-9][0-9][0-9]{0-9]) tid=$1;

echo "ERROR: Task id '$1’ was not a 1 to 4 digit number" > .s_settaskvar;
exit

esac

#

Create command file

#

echo set TASK_EVENT = Task_$tid > .s_settaskvar
chmod -w .s_settaskvar

246

Part 5

Installation Guide

Instructions for instéing and configuring th@roduct.

247

Part 5

248

12

Installation

249

Installation

This chapter describes the installation of RTOS emulation software that runs
on UNIX workstations.

The RTOS emulation product is an extension to thesHIO0 Series
emulator and Graphical User Interface (or Softkey Interface) products.

If you have ordered the emulator, interface, and RTOS emulation products
together (or just the interface product and the RTOS emulation product), the
software products are on the same media. In this case, refer to the installation
instructions in your Graphical User Interfddser's Guide

If you have ordered the emulator interface and RTOS emulation products
separately, install the emulator interface first. Then, installthe RTOS
emulation product using the instructions in this chapter.

This chapter shows you how to:
* Install HP 9000 software.
* Install Sun SPARCsystem software.

When the Real-Time OS Measurement Tool is installed, ythhawve an
enhanced emulation window with two additional entries available in the

File ~Emul700 pulldown menuCustom RTOS Emul ...andCustom RTOS

SPA ... These two entries will, respectively, bring up a new emulation window
and bring up a Performance Analyzer window, each with RTOS action keys
defined. You can do anything in these windows that you would normally do.

250

Chapter 12: Installation
To install HP 9000 software

To install HP 9000 software

Perform the following steps to install HP 64700 Series software on the
HP 9000 Workstation:

Check the HP-UX operating system version

HP 64700 Series software requires an HP-U X operating system version of 7.03
or greater. To determine the version of your HP-UX operating system, enter
the command:

uname -a <RETURN>
If the version number of the HP-UX operating system is less than 7.03, you

must update the operating system to 7.03 or higher before you can use the
RTOS emulation product.

Refer to the "Updating HP-U X" chapter of tR®-UX System Administration
Tasksmanual for detailed information on updating your system.

Become the root user on the system you want to update.
Make sure the tape’s write-protect screw points to SAFE.

Put the "HP 64700 Series Products" update tape in the tape drive that will be
the "source device".

Be sure that the tape drive BUSY and PROTECT lights are on. If either the
PROTECT or BUSY light is off, check the tape’s write-protect screw or the
tape drive for proper operation. The tape drilecondition the tape for

about three minutes or less for shorter tapes.

When the BUSY light stays off for at least 10 seconds, start the update
program by typing:

letc/update

251

Chapter 12: Installation
To install HP 9000 software

7

10

11

When the HP-U X Update Utility Main Menu screen appears, make sure that
the source and destination devices are correct. The defaults are:

/dev/update.src (for Series 300 and 400 Workstations)

/ (for the destination directory)

If you do not use the defaults, change the "source device" and/or "destination
directory'as appropriate.

SelectLoad Everything from Source Media when your source and
destination directories are correct.

To begin the update, press the softk&glect tem> . At the next menu,
press the softkeySelect ltem> again. Answer the last prompt with

y

and press < RETURN> . It takes about 10 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the results of
the update.

252

Chapter 12: Installation
To install Sun SPARCsystem software

To install Sun SPARCsystem software

Refer to theSoftware Installation Guideperating notice (included with this
binder) for instructions on indteg software on Sun SPARCsystem
computers.

If you are installing a Graphical User Interfgo®duct, refer to the Graphical
User InterfacdJsers Guiddor additional software installation instructions.

If you are installing a Softkey Interfapeoduct, refer to thelow to Use the
Softkey Interface on Your SPARCsystgrerating notice for additional
software installation instructions.

253

254

Glossary

bucket a portion of anemory area to which information about a particular
task or queue is saved.

clock tick a unit of time used by the OS for the purpose of scheduling tasks
or processes. The length of time is determined by a periodic interrupt which is
handled by a special interrupt service routine that lets the OS know a clock
tick should occur. The OS may switch tasks that have specified stices" to
"blocked" after a certain number of clock ticks.

callout routine a mechanism provided by the real-time OS that allows you to
execute a routine at certain points in the application, for example, when a task
starts or when a task switch occurs.

communication variables the locations through which the
Emulator/Analyzer interface passes information to the inverse assembler.

data table the table to which real-time OS information is written while the
application executes in real time. The emulation bus analyzer captures writes
to the data table and decodes the stored trace information in an easy-to-read
display.

device call a service call that communicates with an I/O device.

emulation bus analyzer the analyzer that captures information on the
processor bus as programs execute. This analyzer is used to capture writes to
the data table which are then decoded to provide Rm@&urement

information.

instrumented service call library an interface library with callout routines
and instructions that write to the data table and save information in task
gueue buckets.

interface library a library of assembly language routines which allow a
high-level language application to call an assembly language based real-time
operating system.

255

Glossary

inverse assembler software that decodes hexadecimal machine code values
into mnemonics that are easyto read. In the case ofthe RTOS measurement
tool, writes to the data table are decoded into real-time OS mnemonics.

task an independent program or process that executes under the real-time
operating system.

selective tracking the ability to track a single service call or a subset of
service calls.

service call a call, made by a task, to a function in the real-time OS kernel.

software performance analyzer an instrument that records information
about events that occur during program execution. The software performance
analyzer is used to compare time spent in different program modules.

256

Index

ABORT instruction (1AL),86, 171
about, trace command optiat6
action keysb, 19, 28, 32, 154-157
action keys, Emulator/Analyzer

Before SPA trig2141

Memory Usagel21

Only Call X,111

OnlyCalls X & Y,112

Only Queues]10

Only Task X,113-114

Only Tsk W,X,Y,Z,115

Task A msg-Que X117

Task A: FuncX118-119

Task A: VarX,119-120

Task switch A-B]116

Tasks & Queued 11

Track OS calls109
action keys, SPA

Count Srvc Chs, 137

Count Tasksl35

Disable Trig2,143

FunctionDuration138

Initialize, 132

TaskX: Servcalls] 36, 142

Time Tasks133

Trig2 on Overflw,142

Tsk & User Evnts139
ADD instruction (IAL),172
address info. in trace, decodir®g
after, trace command optioh06
AND instruction (IAL),173
ASCIl ingruction (IAL), 88,174
ASCII STRING aror,214

257

B background emulation monita26
Before SPA trig2, Emulator/Analyzer action ka1
before, trace command optiat)6
bit ranges (IAL) 84
bucketsg3, 72, 75-76, 255
bytes used on stack?

C CALL instruction (1AL), 85, 95, 175
callout routinesl8, 75, 255
task switchp3, 72
CASE_OF instruction (IAL)86, 176-177
CK_REL_POS TAG inverse assembler routige,
clock ticks,57, 59, 67, 69, 255
command files, 47-49, 149, 151-153
e_afterfunc_16118
e_afterfunc_32119
e_aftervar_16119
e_aftervar_32120
e AthenB_16116
e AthenB_32116
e_memory_ 16121
e_memory 32121
e_onecalll1l
e_onlygs,110
e_spatrigl4l
e _trackgs_16111
e _trackgs_32111
e trkltask 16113
e trkltask 32114
e_trk4dtask 16115
e_trkdtask 32115
e_trkall,109
e_trkcalls,109
e_tsk2queue_ 1817
e_tsk2queue_ 3217
e_twocalls_16112
e_twocalls_32112
parametersi50
s_break_ovrflwl42
s_countsrvcls] 37
s_counttasks] 35
s_disabletrg2143

258

Index

command files (continued)

s_funcdur138

s_init,132

s_tasknuser39

s_taskwindowl36, 142

s_timetasksl33

scripts, usingl51

search directoried52
communication variables (IALB3, 189, 255
COMPLEMENT instruction (IAL),178
configuration, emulatoi26
CONSTANT instruction (IAL)179
coordinatedneasurementd40-143
count histogram display of task everit34
Count Srvc Chs, SPA action keyl37
Count Tasks, SPA action key35
create_12 call, trace somand creation scrip4,7, 241
create_12 call32, tracemmnand creation scrip4,7, 243
custom product files, inslang, 160
customize scrip25

data bucket55

data bucket$3, 75-76

data bus width106

data info. in trace, decodings

data table5, 18, 38, 55, 61, 73-74, 90, 104, 108, 255
DEBUG_PRINT inverse assembler routi®é,
DECREMENT instruction (IAL),180
DEFAULT_WIDTH instruction (IAL),181
DEFINITION ERROR error214

demo inverse assembldi,

demo 0S20, 24, 26, 37

demo RTOS measurement tod0, 36

device call255

device table file25, 231, 238

Disable Trig2, SPA action ke$43

disable, trace command optidrQ6
DISPLAY_RET_CODE inverse assembler routifé,
DUPLICATE SYMBOL error,214

duration (function), show histogram37

259

Index

E e _afterfunc_16 ammand file, 118
e_afterfunc_32 ammand file,119
e aftervar_16 ammand file, 119
e_aftervar_32 ammand file, 120
e _AthenB_16 command file, 116
e _AthenB_32 command file, 116
e_memory_16 ammand file, 121
e_memory_32 ammand file, 121
e_onecall command fild,11
e_onlygs command filg,10
e_spatrig command fild41
e_trackgs_16 comand file,111
e_trackgs_32 comand file,111
e trkltask 16 ammand file,113
e_trkltask 32 ammand file,114
e_trkdtask 16 ammand file,115
e_trkdtask 32 ammand file,115
e_trkall command file]109
e_trkcalls conmand file,109
e_tsk2queue_16 comand file, 117
e_tsk2queue_32 comand file, 117
e _twocalls_16 command file, 112
e_twocalls_32 command file, 112
emul700 conmand 25, 29, 154
emulation bus analyzet8-19, 24, 104, 141, 255

measurement$4
resource limitation$4, 104
emulation monitor26
emulator
configuration 26
device table file25, 231, 238
name?25, 231, 238
enable, trace command optidi6
end command33
environment variable®5
HP6400024, 221, 231, 237
HP64 DEBUG_PATH119
HP64KPATH,152, 235, 239
PATH, 25, 221, 231, 235, 237, 239
PROC_RESOURCEL55

260

Index

environment variables (continued)
PROCESSOR25
RTOS_UNIQUE 228
error messages (IAL builderd14
error returns (from service its), 57
events (SPA)
defining for tasks130
table displayl34
events (task)
count histogram displag34
time histogram display,33
EXCLUSIVE_OR instruction (IAL)182
EXPRESSION TYPE errog14
EXTRACT_BIT instruction (IAL),183

FETCH_POSITION instruction (IAL)184
find_sequence, trace command optib®6
foreground emulation monito26
FORMAT instruction (IAL),88, 185
function

any task using d,20

specific task using 4,18
function duration histogram, show norms37
FunctionDuration, SPA action kel38

get_task _number scrip246
glossary255-256
GOTO instruction (IAL) 85, 186

histogram

normal function duratior, 37

task events]39

user eventsl39
histogram display of task events

count,134

time, 133
HP 64700 interfaces, exiting and releasB@),
HP64000 envonment variable24, 221, 231, 237
HP64000, reserved IAL symbdl70
HP64_DEBUG_PATH envonment variablel19
HP64KPATH environment variablé52, 235, 239
HP_RTOS TRACK_START symbo90 .

HPUX, reserved IAL symbol, 70

261

Index

IAL (Inverse Assembly Languaged0
IAL code, writing,82-86
IAL definitions,42
IAL instructions,82

executabled2, 166

pseudof2, 168
IAL operands83
IAL program control85
IAL routines,44, 95

common routine}4
IAL symbols, predefined,70
IAL variables42
ial.S, inverse assembler source fig, 45, 101
iall6.S, common 16-bit inverse assemblautines45, 101
ial32.S, common 32-bit inverse assemblautines45, 101
IF instruction (IAL),86, 187
IF_NOT_MAPPED instruction (IAL)188-189
ILLEGAL CONSTANT error,214
ILLEGAL EXPRESSION error215
ILLEGAL SYMBOL error, 215
immediate values (IAL)35
INCLUSIVE_OR instruction (IAL),190
INCREMENT instruction (IAL),191
INITIAL_FLAGS communication variable (IAL)84, 90, 169
INITIAL_OPTIONS communication variable (IALB4, 90, 169
Initialize, SPA action keyl32
INPUT instruction (IAL),192-193
INPUT_ADDRESS communication variab&3, 169
INPUT_DATA communication variabl&3, 169
INPUT_TAG communication variabl&3, 169
install_rtos script102, 157, 160

guestions, answeringp1
installation,250

HP 9000 software251-252

Sun SPARCsysten253
instrumented codé&, 39, 54, 59-72

commenting57

guidelines57-58
instrumented service call librar355
interface libraryp0, 255
intrusion,57, 59

262

Index

INVALID OPERAND error,215

inverse assembles, 18, 41-46, 72, 80, 87-102, 162, 256
building, 45, 101
installing,45

inverse assembler cod&/-100

Inverse Assembly Language (IAL§0

invocations (service call), show tabls6

keyDefs, X resource,54

labels in IAL codel70

LD _ADDR_REL inverse assembler routirsy,

LD _REL_32 BITS inverse assembiarutine,97
LD REL_TO_LONG inverse assembler routi®é,
levels of RTOS measuremenss,

LOAD instruction (IAL),194

local variables (IAL) 84

MAPPED_WIDTH instruction (IAL),195
MARK_STATE instruction (IAL),196
MAX_INSTRUCTION instruction (I1AL),197
memory calls121

memory usager,2

Memory Usage, Emulator/Analyzer action k&gl
memory, extra locationgp

message, from specific task to specific qudle,
MISMATCHED PARENTHESIS error215
MISSING OPERATOR error215

monitor, emulation26

NEW_LINE instruction (IAL),198
non-RTOS stated4,05

NOP instruction (IAL),199
number formats (IAL)88

Only Call X, Emulator/Analyzer action key11

Only Calls X & Y, Emulator/Analyzer action key/12
Only Queues, Emulator/Analyzer action k&P
Only Task X, Emulator/Analyzer action keiy13-114
Only Tsk W,X,Y,Z, Emulator/Analyzer action kehy15
only, trace command optiofh05

operating system versions support2sil

OS overhead tracking,, 69

263

Index

OUT_RELO_BINLEFT inverse assemblayutine,96
OUT_RELO_HEX inverse assembler routigé,
OUT_RELO_HEXLEFT inverse assembler routifé,
OUT_REL1 BINLEFT inverse assembleyutine,96
OUT_REL1 DECLEFT inverse assembler routi@@,
OUT_REL1 HEX inverse assembler routi®é,
OUT_REL1 HEX16 inverse assembler routifé,
OUT_REL1 HEXLEFT inverse assembler routifé,
OUT_REL2_BINLEFT inverse assembleyutine,97
OUT_REL2 _HEX inverse assembler routi®é,
OUT_REL2 HEXLEFT inverse assembler routife,
OUT_REL3_BINLEFT inverse assemblayutine,97
OUT_REL3_HEX inverse assembler routi®é,
OUT_REL3 HEXLEFT inverse assembler routife,
OUT_REL4_HEX inverse assembler routi®é,
OUT_REL4 HEXLEFT inverse assembler routife,
OUT_REL5 _HEX inverse assembler routi®é,
OUT_REL6_HEX inverse assembler routi®é,
OUTPUT instruction (IAL) 88, 95, 200

overflow, task time141

overhead (OS) tracking9

PATH environment variabl@5b, 221, 231, 235, 237, 239
POSITION instruction (IAL)201

predefined communication variables (IA1159
predefined IAL symbolsl 70

PRINT_ASCIlI_CHAR inverse assemblerutine,96
PRINT_BINARY inverse assembler routir@g
PRINT_NAME inverse assembler routirss
PRINT_NAME_AS ASCII inverse assembleyutine,97
PRINT_NAME_IN_ACCUM inverse assembler routirds,
PROC_RESOURCE environment variall85
PROCESSOR environment variab®s,

processor type&5

product files (customized), indliag, 160

QUALIFY_MASK instruction (IAL),202
QUALIFY_VALUE instruction (IAL), 202

re-scale histograms (SPA)27

real-time runs, emulator restrictio?6
reinstall_rtos scriptl62

REL_POSITION, inverse assembler varial9@,

264

Index

release_system, end command optR&,
requirements?4
reserved IAL symbolg, 70
RETURN instruction (IAL) 85, 203
RETURN_FLAGS communication variabl&g9
ROTATE instruction (IAL),204
RTOS information, trace commands to captdf¥-121
RTOS inverse assembl&7-100
building,101-102
installing,101-102
RTOS measurement tool
custom product, reingtang, 162
installing customizegroduct files160
overview,4
RTOS measurements)4, 126
automating146
RTOS symbol name88
rtos_edit script49, 221-223, 225-229
rtos_emul, emulator startup scrigf, 80, 160-161, 230-236
rtos_spa, SPA startup scrigf, 160-161, 237-240
RTOS_UNIQUE environment variable. Users should permanently set the
RTOS_UNIQUE environment variable in their startup228

s_break_ovrflw command fild42
s_countsrvcls ammand file, 137
s_counttasks command fil&35
s_disabletrg2 command fil&43
s_funcdur command fil€,38
s_init canmand file, 132
s_init, SPA conmand file 49
s_tasknuser command fil&€39
s_taskwindow command fil&36, 142
s_timetasks command fil&33
scripts47-49

command files that us&51

create_12_caly7, 241

create_12 call327, 243

customize25

get_task _numbeR46

install_rtos 102, 157, 160

reinstall_rtos162

rtos_edit49, 221-223, 225-229

265

Index

scripts (continued)
rtos_emul, startug57, 160-161, 230-236
rtos_spa, startuds7, 160-161, 237-240
SEARCH_LIMIT instruction (IAL),205
selective trackingl04, 110, 256
service callsb, 55, 57, 60, 256
error returns7
show table of invocation436
single call trackingl10
two call tracking112
SET instruction (IAL) 206
software performance analyzér,18-20, 29, 57, 59, 63, 69, 126, 256
measurement§s
software version®251
sort events (SPAY,27
SPA command overview27
SPA events
Seeevents (SPA)
spabasecmd, SPA command 48,
STACK ERROR error216
stack pointers{2
stack usageq7, 59, 72
storage qualifiers in trace conands105
STORE instruction (IAL)207
strings (IAL),88
SUBTRACT instruction (IAL) 208
supported system versiorggl
symbol map188-189
symbol name£8

T table display of SPA events34
table of service call invocationk36
table.c, demo OS data tab88
TAG_WITH instruction (IAL),209
Task A msg-Que X, Emulator/Analyzer action k&yy
Task A: FuncX, Emulator/Analyzer action kéy,8-119
Task A: VarX, Emulator/Analyzer action key19-120
task bucketsl 8, 75-76
Task Control Block72
task events histograrh39
Task switch A-B, Emulator/Analyzer action kéy.,6
task switch callout routin&3, 72

266

Index

task switchesh5, 57, 63, 69

in memory call trackingl21

specific task switch tracking,16
task time overflowl41
tasks256

four task trackingl14

single task tracking,13

SPA data for specific task35

SPA event definition130

time interval measurements29-137, 139
Tasks & Queues, Emulator/Analyzer action Kyl
TaskX: Servcalls, SPA action key36, 142
TEXT REPLACEMENT error216
time histogram display of task event83
time interval measurement29-137, 139
time overflow, task141
time profilemeasurement$§5
time slice 69
time stamp122
Time Tasks, SPA action ke}33
trace command4,07-121

about option106

after option, 106

before option106

disable option106

display,122-124

enable option106

find_sequence optiol06

normal display123

only option,105

overview,105

RTOS displayl24

storage qualifier105
Track OS calls, Emulator/Analyzer action k&9
tracking

memory,72

OS overheads9

selective 104, 110

stack,72
Trig2 on Overflw, SPA action keg42

267

Index

trig2 signal, 140-141

disabling,143
Tsk & User Evnts, SPA action keh39
TWOS_COMPLEMENT instruction (IAL)210
type of processog5

UNDEFINED CONDITIONAL error,216
UNDEFINED OPERATION CODE erro216
UNDEFINED SYMBOL error216

unsigned comparisons (IAL34

user events histograrh39

user-defined areas in data taliée,

variable

anytask accessing 820

specific task accessingHL9
VARIABLE instruction (IAL), 88, 211
variables (IAL),88, 90

See alscommunication variables (IAL)
VMS, reserved IAL symboll 70

WRITE_OUT_STRING inverse assembler routifé,

268

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met it§ighed
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau'’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or repfaeaiucts which

prove to be defective.

Warranty service of this producilibe performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility onpypon HP’s prior
agreement and Buyer shall pay HRIsind trip travel expenses. In all other
cases, products must be returned to a servidéyatesignated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming insructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,

unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fithess for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other custossistance agements
are available for Hewlett-Packard products.

For any assistance, contaouy nearest Hewlett-Packard Sales and Service
Office.

	Creating a Measurement Tool for a Custom Real-Time OS
	In This Book
	Contents
	Quick Start Guide
	Using the Demo RTOS Measurement Tool
	Modifying the Demo RTOS Measurement Tool

	User’s Guide
	Modifying a Custom OS for Real-Time Measurements
	Writing the RTOS Inverse Assembler Code
	Making RTOS Measurements with the Emulator/Analyzer
	Making RTOS Measurements with the SPA
	Automating RTOS Measurements
	Installing New Custom OS Product Files

	Reference
	Inverse Assembler Language (IAL) Instructions
	IAL Builder Error Messages

	Concept Guide
	Demo RTOS Measurement Tool Details

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

