User’s Guide

HP B3084A
Real-Time OS Measurement
Tool for VxWorks

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1995 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c)
(1) (i) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo
Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(¢)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition 1 B3084-97000, September 1995

Measurements for the VxWorks
Real-Time Operating System

=-i Hewlett Packard Performance Analyzer: hplsdxo (V<Works) I = iD
T File Display Modify Execution Events Profile Setlings Help
='| Hewlett Packard Emul.
e Display Modlly Execution Hroakpobils Trace Setliegs VxWorks keVS: _lNITIAUZE_ Time Tasks Count Srvc Calls Trng on Qverflw
Simulated [/0 display FunctionDuration|| TaskX: Servcalls|| Count Tasks ||Tsk & User Evnts|| Disable Trig2
display i pen
OxedaB@ (Phi3): Philosopher 3 eating 0:]1h Recall
Bxf53e8 (Phi@): Philosopher @ grabbin Histogram: Interval Duration Run Ti21:53 Stabil 99: 98%
0xf53e0 (PhiB): Philosopher @ eating || Nape (sort? time) Call % o 6% 125 18% 24% 0 A
OxedaB@ (Phi3): Philesopher 3 thinkinifs 2 Task_sysS Sgz4| 29,75 | I
Bx£8220 (Phi2): Philesopher 2 eating S Task_Phi2 2175| 12.88| I
Oxf 7 Task_Phid 2165| 12.g | I
8xf53e@ (Phi@): Philosopher @ thinkin 4 Task_Phil 2177| 12.89| I
0xfB250 (Phic): Philesopher thinkin £ Tocl Dl = 1 o
B f2b40|[=] Hewlett Packard Emulator/Analyzer: hplsdxo (V>xWarks/32) [-10 =
gi;gﬁjg File Display Modify Execution Breakpoinis Trace Seitings Help
18” tg[ga VxWorks keys: Track OS Calls Track OS +Stack || Track Everything Help RTOS
xe
Axedafn Only Task X Only Tsk W X,¥,Z || Tasks & Messages || Clocks & Timers || Tasks & Semaphrs
gxg?g Only Call X Only Calls W, X,¥,Z|| Only Messages Only Semaphores Msgs & Sems
X =)
Oxeb160||| Task Switch A->B || Tsk A->MsgQue X Tsk A <- Sem Task A FuncX Task A VarX
STATUS : Stack Usage Before SPA trig2 || Trace before RTN || Task?: Func/VarX
Memory Usage Disable SPA trg2 Trace errnc Disp RTOS Trace |(|Disp NonRTOS Trel|[12% 18% 24% 0% M
()] lh IRecaHIprocess I

suspel

Conma|m

Real Time Operating System time count A
with suymbol relati

a NON-RTOS: addr=GFFF4H data=27@0@@900H = ———-————--——
+0@1 -> malloc(size=48) 6.67 S
+00z2 <= malloctblock=FE7BOH) 43.28 us
+0a3 -> semBCreate(options=1, initialState=1H 5.84 us
+@85 <~ semBCreate(SEM_ID=FE78CH) 85.2 us
+006 -» semBCreate(options=1, initialState=1H) 6.16 ug
+0a8 <~ semBCreate (SEM_ID=FE7E8H) 85.2 uS
+089 -» semBCreate(options=1, initialState=1H) 6.16 uS
+011 <- semBCreate(SEM_ID=FE744H) 85.2 u$
+01z2 - semBCreate(options=1l, initialState=1H) 6.16 wuS
+@14 <~ semBCreate(SEM_ID=FE720H) 85.2 us
+315 -> semBCreate{options=1, initialState=1H) 6.16 ug
+017 <~ semBCreate (SEM_ID=FEGFCH) 85.2 uS
+018 -» semCCreate(options=1H, initialCount=4) 7.84 uS
+02a <- zemCCreate(SEM_ID=FEGDSH) 84.9 LS ¥
+gzl > wdCreate(3.680 wus
STATUS: H68840--Running user program Emulation trace complete

The HP B3084A Real-Time Operating System Measurement Tool for
VxWorks supports the Wind River VxWorks operating system for Motorola
processors including the 68360 and 68040.

The RTOS Measurement Tool is a collection of files that are used with your
real-time OS application and the HP 64700 emulation/analysis system to view
program execution in the context of the real-time OS. For example, you can

view tooled calls and their parameters, task switches, clock ticks, and
dynamic memory usage.

By linking your real-time OS application with an "instrumented" service call
library (an interface library with instructions that write to a data table), you
can capture writes to the data table with the HP 64700 emulation bus
analyzer. A special inverse assembler decodes the captured information and
displays it in an easy-to-read format. You can also use the software
performance analyzer to measure time taken by tasks.

Command files are provided for common RTOS measurements, and you can
run them by clicking on action keys. You can also create custom command
files and action keys for your own RTOS measurements.

With an Emulation Bus Analyzer, You Can ...

e View problems at the task level.

e Use one button point-and-click commands (or run command files in the
command line).

¢ Display the real-time OS trace with the native service call mnemonics of
your OS.

* Track tooled OS service calls and display entry parameters and return
values.

e Capture task switches caused by OS service calls or system clock ticks.

¢ Understand how interrupts are affecting your high level task flow.

e Stop program execution if any OS service call ever fails.

¢ Identify which tasks access a shared function or variable.

e Trigger when a certain message is sent to a specified mailbox.

e Capture activity after task A switches into task B in sequence.

¢ Detect attempts to free invalid memory segments.

e Display location of local stacks.

e Track all dynamic memory allocation and freeing.

e Trigger on stack overflow.

With the Software Performance Analyzer, You Can ...

¢ Perform time profiling of task durations in your application.

¢ Measure time spent in OS kernel versus application tasks.

e Measure the percentage of time spent in each application task.
e Stop program execution if a task exceeds a maximum time.

* Find out how often each OS service call is invoked.

In This Book

This book describes the HP B3084A Real-Time Operating System
Measurement Tool for the VxWorks operating system.

This book assumes you are familiar with the Emulator/Analyzer graphical
interface.

This book is organized into three parts:
Part 1. User’s Guide
Part 2. Concept Guide

Part 3. Installation Guide

Contents

Part 1 User’s Guide

1 Preparing Your Application for RTOS Measurements

Step 1:
Step 2:
Step 3:
Step 4:
Step b:
Step 6:
Step 7:
Step 8:
Step 9:

Make a new source directory 16

Retrieve the RTOS source files 17

Create the task table 18

Create the Software Performance Analyzer initialization file
Add the RTOS measurement files to your application 21
Build the new application file 22

Start the emulator interface 23

Configure the emulator and load the application 24

Test the RTOS measurement tool 25

Step 10: Test the Software Performance Analyzer 26

Suggestions for Easier Software Development 27

To add rtos_edit_vxworks to your makefile 27

2 Making RTOS Measurements with the Emulator/Analyzer
Groups of action keys 32

Tracking the Flow of OS Activity 33

Tooled

calls 33

To track all tooled calls 36

To track all tooled calls plus the stack activity 37

To track all tooled calls before an error occurs 38

To track all tooled calls before a return value occurs 39
To track everything 40

Tracking Particular OS Service Calls 41

To track all messages 42
To track all message calls (include task switches) 43
To track all semaphore calls 44

20

Contents

To track all semaphore calls (include task switches) 45
To track a single service call 46

To track multiple service calls 47

To track clocks and timers 48

Tracking Particular Tasks 49

To track a single task and all tooled OS activity withinit 50

To track four tasks and all tooled OS activity within them 51

To track about a specific task switch 52

To track about a specific task sending a message to a specific message queue
53

To trace semTake activity by a specific task 54

To track activity after a function is reached from a specific task 55

To track activity about the access of a variable by a specific task 56

Tracking Accesses to Functions or Variables 57

To track which tasks access a specific function or variable 58

Tracking Dynamic Memory Usage 59

To track only stack data 60
To track all tooled memory calls (include task switches) 61

Displaying Traces 62

To switch to a normal trace display 63
To switch to the RTOS trace display 64

3 Making RTOS Measurements with the SPA

Making Time Profile Measurements 68

To define SPA events for tasks, tooled calls, and user events 68
To display a time histogram of task events 69

To show a table of SPA events 70

To display a count histogram of task events 71

To measure only data from a specific task 72

To show a table of service call invocations 73

To show a normal function duration histogram 74

To show a histogram of task and user events 75

Coordinating Measurements with the Emulator 76

To break on task time overflow 76

Contents

To disable the SPA trig2 77

Handling Multiple Projects on One Machine 78

To set up unique SPA windows for multiple projects 78

4 Customizing the RTOS Measurement Tool

Creating Your Own RTOS Measurements 81

Data Table Description 81

Data Table Contents 82

To set up trace commands to capture RTOS information 83
To place your measurements in command files 85

To place your measurements on action keys 86

Part 2 Concept Guide

5 How the RTOS Measurement Tool Works

Instrumented Code for Real-Time OS Tracking 93

Service Call Tracking 93

Task Creation, Switching, and Deletion Tracking 94
Clock Ticks 94

Selective Tracking 95

OS Overhead Tracking 95

Stack and Memory Tracking 95

User-Defined Areas 96

RTOS Symbol Names 96

How OS Service Calls are Captured and Displayed 98

Inverse Assembler 98

Instrumented Library Writes to the Data Table 98
Data Table Writes Captured by Analyzer 99
Parameters Displayed with Mnemonics 99

Service Call Entry and Exit and Task Switches 100
Inverse Assemblers are Tailored to the OS 100

Contents

Part 3 Installation Guide

6 Installation

To install HP 9000 software 105
To install Sun SPARCsystem software 107

10

Part 1

User’s Guide

How-to instructions and problem-solving guidelines.

11

Part 1

12

Preparing Your Application for
RTOS Measurements

13

Preparing Your Application for RTOS
Measurements

Requirements

Before preparing your application for RTOS measurements, you should have
already:

e Installed the emulator, emulation bus analyzer, and Graphical User
Interface as described in their User’s Guide manuals. The
emulator/analyzer interface software must be version C.05.20 or greater.
Note that if you have installed another Graphical User Interface after you
installed the HP B3084A Real-Time Operating System Measurement
Tool, you must re-run the HP B3084A "customize" script.

e Installed the HP B3084A Real-Time Operating System Measurement Tool
as outlined in the "Installation" chapter of this manual.

If you wish to make profile measurements on RTOS tasks and service calls,
you should have already:

e Installed the HP 64708A Software Performance Analyzer and its interface
software (HP B1487) as described in the Software Performance
Analyzer User’s Guide.

It’s helpful if you are already familiar with your emulator, the software
performance analyzer, and their interfaces before preparing your
multi-tasking application for real-time operating system measurements. It’s
best if you have already loaded and run the application under the emulator.

With the emulator/analyzer interface already running, you should see two
new entries under the File - Emul700 pulldown menu: VxWorks
Emulator/Analyzer ... and VxWorks Performance Analyzer If you do
not see these new entries, review the installation procedure to make sure it
was done correctly, and make sure the /system/B3084A/customize script was
run. If you still do not see these new entries, contact your Hewlett-Packard
representative.

14

Chapter 1: Preparing Your Application for RTOS Measurements

VxWORKS Versions
This product is compatible with VXWORKS versions 5.1 and 5.2.

Task list control file

Both the emulator/analyzer interface and the Software Performance Analyzer
need to know the names of the tasks in your application. The
emulator/analyzer looks for the task names in the file "tables.c". The Software
Performance Analyzer looks in your "s_init" file.

A script, called rtos_edit_vxworks, has been provided to help you create
the "tables.c" and "s_init" files. The first time you run the script, it will save
the names of the tasks in a task list control file. As you make changes to
your application, keep the task list control file up-to-date and re-run the
rtos_edit_vxworks script so that the Real-Time Operating System
Measurement Tool can track all of the application’s tasks.

Preparing your application for RTOS measurements

To prepare your application for real-time operating system measurements
with the emulation bus analyzer and the software performance analyzer, take
the following steps:

1 Make a new source directory.

2 Retrieve the RTOS measurement source files.

3 Create the task table.

4 Create the Software Performance Analyzer initialization file.
5 Add the RTOS measurement files to your application.
6 Build the new application file.
7 Start the emulator interface.
8 Configure the emulator and load the application.
9 Test the RTOS measurement tool.
10 Test the Software Performance Analyzer.

The remainder of this chapter describes these steps in detail.

15

Chapter 1: Preparing Your Application for RTOS Measurements

Step 1: Make a new source directory

Make a new directory, for example ".../hprtos_src", to hold the
instrumented code which needs to be linked to your existing
application.

Create the directory somewhere convenient for linking its files to your
application.

16

Chapter 1: Preparing Your Application for RTOS Measurements

Step 2: Retrieve the RTOS source files

If you have already installed the RTOS Measurement Tool, source files will be
found under the $HP64000/rtos/B3084A directory. If you haven’t installed
the product, refer to the "Installation" chapter.

During installation, you should have set the environment variable HP64000 to
the directory in which the HP 64000 software has been installed.

Copy the product files into the directory that was created in Step 1.

The files are found under $HP64000/rtos/B3084A.

You must copy the following files:

track_os.c (instrumented service call data)
track_il.c (instrumented C service call routines)
callout.c (task hook routines)

HPIL.h (function override #defines)

17

Chapter 1: Preparing Your Application for RTOS Measurements

Step 3: Create the task table

To create the task table and the Software Performance Analyzer initialization
file, you will need a task list control file. The "rtos_edit_vxworks" script will
create this file for you when you use the "-i" (initialize) option.

If you have not prepared a task list control file, run the
$HP64000/bin/rtos_edit_vxworks script. Type:

rtos_edit_vxworks -i -tables <task _name_file>

where <task_name_file> is the name of the task list control file.

The "rtos_edit_vxworks" script asks you for the names of the tasks in your
application.

The script creates your application specific "tables.c" file. This file contains
information that customizes the RTOS tool for your application. This file will
be compiled and linked in with your application code. Tables.c allows a
"bucket" to be created in memory for each task entry you define. Information
is written to the buckets when task switches occur.

The "rtos_edit_vxworks" script may be run any time you wish to add or delete
task name information.

If a task list control file does not exist, running "rtos_edit_vxworks -i" will
create a task list control file. If the file already exists, it will not be modified.

You can edit the task list control file to add or delete tasks. You can use any
text editor, such as vi or emacs, to edit the file. If you make any changes, be
sure to run the "rtos_edit_vxworks" script to create a new task table and
Software Performance Analyzer initialization file.

Although "rtos_edit_vxworks" may be run interactively, it is recommended
that you prepare a task list control file.

The task list control file consists of three parts:

¢ The keyword TASK_FILE.

e The keyword BUS:, followed on the next line by the bus size of your
processor.

e The keyword TASKS:, followed by a list of all of the task names.

18

See Also

Chapter 1: Preparing Your Application for RTOS Measurements

This is a good time to look at your task names. The HP Real-Time Operating
System Measurement Tool uses integer (32-bit) task names, corresponding
to the first four characters of the name assigned as the task was spawned.
Make sure the tasks you want to track are unique in the first four characters
of their names.

Example

Here is an example of a task list control file:

TASK_FILE
BUS:

32

TASKS:
SysS

tExc

tP1

tP2

tP3

(EOF)

Page 27 for instructions on how to add the "rtos_edit_vxworks" script to your
makefile.

19

Chapter 1: Preparing Your Application for RTOS Measurements

Step 4: Create the Software Performance Analyzer
initialization file

Create the "s_init" file. Type:

rtos_edit_vxworks -s_init <task _name_file>

where <task_name_file> is the name of the task list control file.

The "s_init" file will be created in your home directory as
"~/ rtos/vxworks/s_init". This is a command file that customizes the Software
Performance Analyzer system to your application.

Note that each user has a separate "s_init" file. This allows individual users to
track different sets of functions and tasks, if they wish.

The contents of any existing s_init file will be lost. If you have several task list
control files, you may want to make a copy of the s_init file before using
rtos_edit_vxworks with a new task list control file. In this case, be careful
that the correct s_init file is installed before you start an emulator interface.

20

Chapter 1: Preparing Your Application for RTOS Measurements

Step 5: Add the RTOS measurement files to your
application

To track task creation, switching, and deletion, the capabilities of the
VxWorks taskHookLib must be initialized to point to the RTOS callout
routines found in "callout.c".

1 Add the following code to your application:

#include "taskHookLib.h"

taskHooklnit();

taskCreateHookAdd((FUNCPTR) HP_createTask);
taskSwitchHookAdd((FUNCPTR) HP_switchTask);
taskDeleteHookAdd((FUNCPTR) HP_deleteTask);

2 Add "track_os.c", "track_il.c", "callout.c" and "tables.c" to your
"makefile" and "linker" files.

Note "Track_il.c" must be compiled without optimization.

non

It is recommended that "track_os.c", "callout.c" and "tables.c" also be
compiled without optimization to avoid unknown side effects.

The large data table that resides in "track_os.c" and spans from the symbol
HP_RTOS_TRACK_START through HP_RTOS_TRACK_END only needs to
be in an address range that is writable. The data table is never read from and
needs no real memory.

3 Add the header file "HPIL.h" to every .c source file that contains
VxWorks service calls. This header file will redirect the VxWorks
service routine to a wrapper routine that will provide the tracking
measurements.

"Track_os.c" contains code that allows a user to call the VxWorks OS service
call routines. This file also contains special code that writes out RTOS
information to the analyzer any time an OS service call is invoked.

21

Chapter 1: Preparing Your Application for RTOS Measurements

Step 6: Build the new application file

* Rebuild your application with the new files.

The service routines in "track_il.c" have been defined according to the
VxWorks standard so your application should require no other changes.

22

Chapter 1: Preparing Your Application for RTOS Measurements

Step 7: Start the emulator interface

Start the RTOS emulation window using the "emulrtos_vxworks"
command:

emulrtos_vxworks [-quiet] [-xrm <resource_string>]
[-c <command_file>] [-p <PROCESSOR>] [8]16]32]
<emulator_name> &

This is a script which sets up a few things before calling emul700 with your
given emulator name. The command and the options you choose should all be
entered on one line.

The "emulrtos_vxworks" script does the following before calling emul700
with your given emulator name:

1 Sets HP64000 if it is not already set.
2 Sets HP64RTOSIAL based on the determined bus width.

3 Defines the environment variable HP64KPATH so the command files
related to the action keys are found.

4 Defines the PATH variable so shell scripts needed by command files will
be found. If you have used the emul700 command to start the
emulator/analyzer interface, you can choose the
File - Emul700 . VXWORKS RTOS Measurement Tool pulldown
menu item to open the RTOS emulation window. This will work only if
the $HP64RTOSIAL environment variable has been set. If you need to
find out how to set the $HP64RTOSIAL variable, examine the
"emulrtos_vxworks" script.

23

Chapter 1: Preparing Your Application for RTOS Measurements

See Also

Step 8: Configure the emulator and load the
application

Now, load an emulator configuration and your application program
into the emulator.

A few notes on the configuration:

1 You may set the emulator to be restricted to real-time runs. The RTOS
measurements are done without breaking into the emulation monitor.

2 Youmay use either a foreground or background monitor.
You are now ready to test your application.

The Emulator/Analyzer User’s Guide for information about loading
configuration files and application programs.

24

Chapter 1: Preparing Your Application for RTOS Measurements

Step 9: Test the RTOS measurement tool
1 Click the Track OS calls action key.

2 Start your application running from its start address (assuming the
start address has initialization code and starts your root task).

You should now see a trace display of your root task setting up application
tasks and performing any other initializations.

If you page down the display, you will see all of the root task’s OS activity and

possibly the start of your application’s tasks.

3 Click the Track OS calls action key again to see a "running
snapshot" of what your application is currently doing.

The action keys for RTOS measurements are described in the "Making RTOS
Measurements with the Emulator/Analyzer" chapter.

25

See Also

Step 10: Test the Software Performance Analyzer

If your HP 64700 emulation system includes a Software Performance
Analyzer, you can test it by performing the following steps.

Bring up SPA window by choosing the File - Emul700 - VxWorks
Performance Analyzer pulldown menu item.

If you wish to make cross-trigger measurements between SPA and
the emulation system, make sure the emulation configuration for
"Should Analyzer drive or receive Trig2?" is set to "Receive".

To do this, choose Modify - Emulator Config.... Choose Interactive
Measurement Specification. For Analyzer on Trig2, select Receive.

In Step 4, when you ran the "rtos_edit_vxworks" script, a command
file "s_init" should also have been created. If not, rerun
"rtos_edit_vxworks".

Click the Initialize action key in SPA to define the events that
correspond to each task. This uses the command file "s_init" that you
just created.

Click the Time Tasks action key to see a dynamic histogram of the
currently running tasks.

If your application isn’t running, start it running from the emulation window
either before or after the action key is pressed.

If you have multiple projects on one machine, you'll need to set up unique
SPA windows for each project. For more information, refer to the "Handling
Multiple Projects on One Machine" section of the "Making RTOS
Measurements with the SPA" chapter.

Refer to your emulator/analyzer User’s Guide for information on modifying
the emulator configuration.

26

Chapter 1: Preparing Your Application for RTOS Measurements

Suggestions for Easier Software Development

¢ Add rtos_edit_vxworks to your makefile.
* Use the sample configuration tables.

To add rtos_edit_vxworks to your makefile
The "rtos_edit_vxworks" script must be run every time you add or delete a

task. To simplify this process, you can add rtos_edit_vxworks to your
makefile.

Add the following dependencies to your makefile:

~/.rtos/vxworks/s_init: <task_file_name>
rtos_edit_vxworks -s_init <task_file_name>
tables.c: <task_file_name>
rtos_edit_vxworks -tables <task_file_name>

27

Chapter 1: Preparing Your Application for RTOS Measurements

28

Making RTOS Measurements with
the Emulator/Analyzer

29

Making RTOS Measurements with the
Emulator/Analyzer

Hewlett Packard Emulator/Analyzer: emulator11 (VxWorks/32)
File Display Modify Execution Breakpoints Trace Seiting
/VxWorks keys:
Only Task X asks & Messages |
. Only CallX 5 Only Calls WY, Oﬁiy Messages Only Semaphores i
Action keys for ask Switch A<>B | Tsk A->Mngue X TskA<-Sem ! Task A FuncX
RTOS
measurements. | Memory Usage ! Disable SPA trg2 ¢ Trace erno ; Disp RTOS Trace | Di
() §main
ist epth=512 4]
Label: Real Time Operating System time count
Base: with symbol relative
+128 -> tickfnnounce() 57.24 usS
+121 -> wdStart (WDOG_ID=FEGBOH, delay=18, pRoutine=|dine.philStary 35.16 us
;1;/« wdStart (STATUS=0K) 17.28 uS
s} ---Exited Task: (name=’sysS’)---><--------------——-—-——-————— 78.44 uS
. +1 STACK YALUES: base=FD73CH"1imit=FCF78H end=FCFBCH 480 nS
Service call entry: +438 ——Mext Task: {mame=’tShgf-————m—mmm——————mmmm— - 17.68 uS
+131 STACK WALUES: base=p7C80H 1imit=F5958H end=F5576H 480 nS
. . +134 ---Exited Task: (name=’tShe’)-------""""-----—ommmm 75.84 uS
Service call exit. +135 STACK WALUES: F7C80H 1imit=F5958H end=F5578H 520 nS
:jGBS/---Next Task: ame="syss’)--m—--mmmmmm oo 17.64 us
39 STACK YALLES: base=FD73CH 1limit=FCF78H end=FCFBCH 520 nS
+142 <= tickfinng 19.44 uS
Task switch. +143 -= tickApriounce() 57.28 uS

+144 <= ti nnounce () 17.52 us i
+145 -> ¥ckAnnounce() 57.24 uS ¥
Clock tick,. ——— B tickfnnounce) 17.56 us !

STA}US/: H68040--Running user program Emulation trace complete

isplay trace real_time_os

p

: lear togr(

Time stamp.

Parameters ! trace ;! step :.display ’ modifgm

Cursor: E%aé%é;}#orwar :

RTOS measurements are easy to set up and use. To set up a measurement
you simply point and click on the appropriate action key (which runs a
command file), and the setup is done automatically. If parameters are
required, you are prompted for them. In the graphical interface, these

30

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer

prompts appear as dialog boxes in which you can either type or cut-and-paste
the required parameters.

You can modify the provided command files and set up action keys for your
own RTOS measurements (refer to the "Creating Your Own RTOS
Measurements" chapter for more information).

Interpreting the measurement output is also very easy. VxWorks service calls
are displayed just as they appear in the VxWorks manual. Macro definitions,
however, are not decoded.

Real-time OS measurements in the emulator/analyzer interface are made
using the HP 64700 series emulation bus analyzers. The analyzer traces
real-time OS activity such as service calls, task switches, and dynamic
memory usage.

Each state stored in the trace has a time stamp that shows relative or
absolute time. This is useful for verifying the system clock tick interval,
measuring non-running time of tasks, and understanding the timing needs of
various communications mechanisms such as sending a message or
responding to a semaphore.

31

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer

Groups of action keys

The RTOS Measurement Tool comes with a default set of measurements that
appear as action keys and are grouped into the following sections:

Tracking the flow of OS activity.

Tracking particular OS service calls.
Tracking particular tasks.

Tracking accesses to functions or variables.
Tracking dynamic memory usage.

Displaying traces.

Additional measurements exist as command files and can be put on action
keys or run directly from the command line. A complete list of these
measurements can be found in the files $HP64000/rtos/B3084A/CMDLIST16
or CMDLIST32 (depending on whether a 16- or 32-bit processor is being
used).

32

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

Tracking the Flow of OS Activity

The HP 64700 series emulation bus analyzer can measure the real-time task
flow that is occurring in your system. As your application calls into the
real-time OS kernel through OS service calls, the emulation bus analyzer
captures the activity including the value of input and output parameters and
the return values. If the OS switches context into another task, the analyzer
can also capture this information. One simple measurement monitors the
service call return values while tracking OS activity and stops if a
user-definable value is detected; this helps designers guard against
unchecked return values.

Tooled calls

Not all VxWorks service calls can be tracked. Due to the large number of
calls available in VxWorks, not all of them could be "tooled."

The calls which are tooled and can be tracked are:

taskSpawn
tasklInit
taskDelete
taskDelay
taskPrioritySet
taskSuspend
taskResume
taskSafe
taskUnsafe
taskLock
taskUnlock
semBCreate
semCCreate
semMCreate
semDelete
semTake
semGive
semk'lush
semCSmCreate
semBSmCreate
tickAnnounce!
wdCreate

33

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

wdDelete
wdStart
wdCancel
msgQCreate
msgQDelete
msgQReceive
msgQSend
msgQSmCreate
signal
sigsusg)end2
pause

kill

memalign
calloc

cfree
memPartCreate
memPartAlignedAlloc
memPartAlloc
memPartFree
malloc

free

! tickAnnounce is not tracked when you use the Track OS Calls action key
because, in general, the number of occurrences would dominate the RTOS
display. However, it tooled, and can be tracked with the action keys Track
Everything and Clocks and Timers.

% These calls do not return from the kernel to the caller until the calling task
has been restarted. Therefore the return may not show up on the RTOS
display.

34

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

This section shows you how to:
e Track tooled calls (including device calls).

e Track tooled calls plus the stack activity.

e Track tooled calls before an error occurs.
e To track all tooled calls before a return value occurs

e Track everything.

35

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

Service call entry

Service call exit.

Parameters.

To track all tooled calls

e Click on the Track OS Calls action key (or run the e_trkcalls

command file by entering it on the command line).

This command takes a trace of all OS service calls and task switches.

Trace List Depth=512 0f 4

Label: Real Time Operating System time count
Base: with symbol relative
+B51 ---Next Task: (name=’5ysS’)-————--—-—-mmm oo 18.16 us
052 —> wdStart (WDOG_ID=FEGEEH, delay=16, pRoutine=|dine.philStary 116, us
— [+B56 - wdStart (STATUS=0K) 17.28 us
+@57 -——Exited Task: (name=’sys5')--——-----"""--—-————-———- 97.4 wuS
P58 —--Mext Task: name="1t5he * J--—-—-—-—-mmm oo 18.16 us
+B59 -—-Exited ; (name="tShe’)-———-----——-—-—-- - 76.32 uS
+B68 {name="Phif’ j--—-—=-—-——-—-—mmm oo 18.16 us
+Bb1 gskDelay (STATUS=0K) 21.32 us
+Bb2 => taskDelay(ticks=1} 7.64 us
---Exi 1 (name=’"Phif@")-————--—-——--mmmmm oo 53.56 uS
+A64 =—Next Task: (name=’5ysS’)-————--—-—mm—m s 18.16 uS
Aéﬁﬁijj:ji --—Exited Task: (name=’sys5’')---—---—--————--—--——m--——- 134. usS
+Pb6 ---Mext Task: {name="Phi@’ j-=—===-—-——— e 18.16 uS
+BB7 <= taskDelay(STATUS=0K) 21.28 uS
+ -> taskDelay(ticks=1) 7.68 us
4Pb9 ---Exited Task: (name="Phif@’)--—--=-—-——-—---o-mmmm - 53.52 uS

Task switch.

Return value. Time stamp.

Note that there are entry and exit arrows on the left of the screen to show
when a tooled call is entered and, on a separate line, to show when a tooled
call is exited. This is important since an OS service call may switch to
another task while in the OS and not return to the calling service call for a
long time, if ever.

When appropriate, the trace information is decoded. The OS service calls are
decoded into the same mnemonics that appear in the OS manual. The
parameters and return values that are associated with service calls are
displayed. The parameter variable names also appear as they do in the OS
manual decoded into their English mnemonics. Some of the parameter
values and all return values are also decoded whenever appropriate.

Calls to tickAnnounce() are not tracked using this action key. To track clock
ticks, use the Clocks & Timers or Track Everything action key.

36

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track all tooled calls plus the stack activity

Click on the Track OS +Stack action key (or run the e_trk_stack
command file by entering it on the command line).

Trace List Depth ’ Dffs g e screen
Label: Real Time Uperating System time coun
Basze: with symbol relative
+836 ---Exited Task: (name="tlog)-------—-—-—-—--—-—-—-mmmm oo 514.
+037 STACK VALUES: base=F9C48H 1imit=F83CCH end=F388CHEH 4880

+B48 ---Next Task: (name="Phil’}---————-—————-—-mm 17.68
+041 STACK VALUES: base=FZB46H 1imit=F@438H end=FB438H 528

+044 -> semTake(SEM_ID=FE744H, timeout=-1) 25.72
+A46 ---Exited Task: (name="Phil’)------""""--"--mmm 53.44
+047 STACK VALUES: base=FZB46H 1imit=FB438H end=FB430H 480

+@5a ---Next Task: {name="Phig4’)-——-—==-—————— e~ 17.68
+051 STACK VALUES: base=EB166H 1imit=E8A58H end=E8ASHH 480

+054 <- taskDelay(STATUS=0K) 70.80
+P55 ---Exited Task: (name="Phid4’)-----------oo 99.2
+@56 STACK WALUES: base=EB16GH 1imit=E8AS8H end=E8ASHEH 528

+B59 ---Next Task: (name="tlog)-——-—-—-—-—-—-—--————— 17.64
+068 STACK VALUES: base=F9C48H 1imit=F83CCH end=F38CEH 528

+863 ---Exited Task: (name="tlog)-------—-—-—-—--—-—-—mm—mmm oo 1.86
+064 STACK WALUES: base=F9C48H 1imit=F83CCH end=F388CHEH 528

This measurement is useful not only if you want to see the stack usage as you
enter and exit tasks but also if you want to see what service calls may have
changed the stack usage. It will give you all service call activity for tooled
calls, plus show you when the task switches occur.

For more information on stack activity measurements, see the "Tracking
Dynamic Memory Usage" section that follows.

37

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track all tooled calls before an error occurs

¢ Click on the Trace errno action key (or run the e_errno command
file by entering it on the command line).

This command lets you use the analyzer to continuously monitor the global
error value, errno, and check for any non-zero writes, even if the target code
is not checking that value.

When the trace completes, you can see the activity that occurred before the
error.

Note: The trace may be modified to break emulator execution on any error
occurrence by adding "break_on_trigger" to the end of the trace specification
either on the command line or in the command file.

Trace List Depth=512 Offset=A
Label: Address Opcode or Status w/ Source Lines time count
Base: umbol mhemonic w/symbaol relative
-015 ‘md5h0m+@@@8@45@ $2255B3FC sprog long read 88. nS
-al4 wdShow+0AEEB454 $EEEEE0EE sprog long read 126 nS
-a13 AAB6EDFC4 $000000080 sdata long read 8. nS
-1z wdShow+BABAR4SE $BEF 22879 sprog long read 20. ns
-B11 wdShow+BBEBE4ASC $EEBEDCAE sprog long read 1268 ns
-1e wdShow+EPEBE4EE $EEEEFEDZ sprog long read 88. nS
plalale] wdShow+BBEEB464 $46F C3008 sprog long read 166 ns
-BBs .| _taskldCurrent $BREFT7C30 sdata long read 29. ns
-eav wdShow+BABAE334 $23E80834 sprog long read 20. ns
-6 wdShow+BBERE338 $00BEDELS sprog long read 20. ns
-Es wdShow+EBEBE33C $2E6E80168 sprog long read 1268 nS
-a84 BaeF 70a4 $008Co0a2 sdata long read 84. nS
-B83 |udShow+20000348 $2F280172 sprog long read 29. ns
-062 B0BF JDES $000F 7924 sdata long read 8. nS
|wdShouw+BPBBR344 $2F 28816F sprog long read 20. ns
bss|_errno $REECHEEE sdata long writs 80. nS

38

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track all tooled calls before a return value occurs

1 Click on the Trace before RTN action key (or run the
e_before_return command file by entering it on the command line).

2 In the dialog box, enter the return value you are looking for, then
click OK.

One common problem for software developers is the habit of not checking
return values from system service calls that "should" never fail.
Unfortunately, when one does fail, it can be very difficult to locate.

This command lets you use the analyzer to continuously monitor the system
and check if any tooled service call returns a specific value.

When the trace completes, you can see the activity that occurred before the
return, and the return value itself.

Note: The trace may be modified to break emulator execution on any error
occurrence by adding "break_on_trigger" to the end of the trace specification
either on the command line or in the command file.

-ace List Jep Offset=0

Label: RFeal Time Operating System time count
Base: with symbol relative

-a11 -—-Exited Task: (name="tP2’)-----"--"--"""-"""""""-"----"---— 25.76 uS
-018 STACK WALUES: base=F2B48H 1imit=F@434H end=FB436H 520 nS
-0a7 -—-Next Task: (name="tP3’)-----—----—-mmm oo 17.88 us
-6 STACK VALUES: base=F02ABH 1imit=EDE94H end=EDB9GH 480 ns
-083 <= msglReceive(bytes copied=1DH) 55.72 WS
-ae2 -= malloc(size=29) 26.68 WS
-1 <= malloc(hlock=FF38BH) 43.28 uS
+01 -> freelpointer=FF3868H) 141. us
+0B2 <= free() B7.44 uS
+BE3 -= taskDelay(ticks=1) 4.28 ub
+8a4 -—-Exited Task: (name="tP3’}-----"--"--"-"""-"""""""""-"-""-"“"-"-"--——— 52.96 uS
+85 STACK VALUES: base=F@2ABH 1imit=EDB94H end=EDB9BH 528 nS
+BEs -—-Mext Task: (name="5ys5 " J-—————-—-—-—-— oo 17.68 us
+0B9 STACK VWALUES: base=FD73CH limit=FCF78H end=FCFECH 480 ns
+@lz2 -—-Exited Task: (name="tP3’)----------—---m--mmommmm oo 31.84 wusS
+013 STACK VALUES: base=F02A0H 1imit=EDB94H end=EDB9GH 480 ns

In this example, a return value of FF380H was specified. A call to malloc()
was found which returned this value.

39

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

To track everything

e Click on the Track Everything action key (or run the e_trkall
command file by entering it on the command line).

Depth=512 Dffset=A More data off reen
Real Time Operating System time coun
with symbols relative
e NON-RTOS addr=.text|taskLib+1018H data=4A896730H --—------—-
+@81 ---Exited Task: (name="tlog’)-----------—-—-—-—-ommm 359.
+Bu2 STACK VALUES: base=F9C48H 1imit=F8BCCH end=F88CHH 480
+085 -—-Next Task: (name="Phil’*}-—--------"---- - 17.68
+@86 STACK VALUES: base=FZB40H 1imit=F@438H end=F@436H 4808
+g89 -> taskDelay(ticks=1) 24.80
+g18 ---Exited Task: (name="Phil’)---------—---—--mmmmmmmm oo 54.68
+@11 STACK VALUES: base=FZB40H 1imit=FB438H end=F@43BH 4808
+B14 ---Next Task: (name="5ysS’ J-———-—--—-—-—m oo 17.68
+@15 STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFGCH 480
+018 <= tickfnnounce () 19.48
+B19 -= tickfinnounce() 5724
+020 ---Exited Task: (name=’sys3’)--—-—----—-—-—-—-—-—mmmmm oo 74.16
+B21 STACK VALUES: base=FD73CH 1imit=FCF78H end=FCF6CH 460
+B24 —--Mext Task: (name="Phi4’)-—--=—--——-——-——-— - 17.658
+B25 STACK VALUES: base=EB168H 1imit=EBASSH end=E8ASHGH 520

This action key is used so that tooled calls, task switches, clock ticks, stack
activity, and user-defined events are all tracked and displayed in the trace.

40

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

Tracking Particular OS Service Calls

There are also RTOS measurements provided to track particular types of
service call activity or OS resources such as semaphores, messages, or
semaphores. You can also track individual service calls.

This section shows you how to:

e Track all messages.

e Track all message calls (include task switches).

e Track all semaphore calls.

* Track all semaphore calls (include task switches).
e Track a single service call.

e Track multiple service calls.

41

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all messages

Click on the Only Messages action key (or run the e_onlymsgs
command file by entering it on the command line).

Trace List Depth=512 0ff =@

Label: Real Time Operating System time count

Basze: with symbol relstive

NON-RTOS: addr=.text|wdShow+31CH data=22403628H ---—---—---—-

+ap1 -> msglSend (MSD_0_ID=FE15SCH, buffer=E36ECH, nBytes=29, 187. us
timeout=-1, priority=’

+A06 <= mzglSend (STATUS=0K) 77.48 us

+Ba7 = msqlReceive (MSD_[_ID=FEZZ8H, buffer=E3BECH, maxMNBytes=108, 4.56 uS
timeout=-1)

+@11 <= msglReceive(bytes copied=1DH) 224. uS

+@l2 <= msglReceive(bytes copied=1DH) 438, us

+a13 ->» msglSend (MSD_O_ID=FE228H, buffer=1BD4H, nBytes=29, 964, us
timeout=-1, priority=8)

+@18 <= mzglSend (STATUS=0K) 77.68 S

+B20 = msqlReceive (MSD_[_ID=FDEZCH, buffer=D&EBCCH, maxMNBytes=108, 202 . us
timeout=-1)

+@24 -> msglSend (MSD_0_ID=FEB9I@H, buffer=EPE4CH, nBytes=29, 229. us
timeout=-1, priority=a’

+A29 <= mzglSend (STATUS=0K) 77.68 s

This action key is used if you are interested in all message activity. No other

types of calls are tracked (neither are task switches).

42

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all message calls (include task switches)

Click on the Tasks & Messages action key (or run the e_trackmsgs
command file by entering it on the command line).

Trace List Depth=512 Offset=H
Label: Real Time Operating System time count
Base: with symbol relative
+Bal -> msglSend (MSD_0_ID=FE3E4H, buffer=EDI6CH, nBytes=29, 49.8 wS
timeout=—1, priority=g?
+B06 <= msglSend (STATUS=0K> 77.66 s
+pa7 -» msgQReceive(MSD_Q_ID=FE4BEH, buffer=ED3ECH, maxNBytes=100, 4.56 uS
timeout=-13
+P11 -—-Exited Task: (name="tP4’)--—-------"""""--mmm B2.24 us
+812 ---Next Task: (name="tP5 ")-—=———=———-————m o 17.68 uS
+013 -——Exited Task: (name="tP4"}-—-"—"-"--"-"-"-"-"""""""""""-"-"--——— 26.24 uS
+P14 ---Next Task: (name="tP5 ")-———-————m 17.56 us
+@15 <= msglReceivelbytes copied=1DH) SG.24 us
+B16 -—-Exited Task: (name="tP5")----------o 288, nS
+P17 ---Next Task: (name="5ysS " J-—--————--—-—-—m oo 12.16 us
+818 ---Exited Task: (name="tP5>’)--------------—--———omm 32.32 us
+B19 -—-Next Task: (name="sysS")-—-—-—-—--—-———-—-— 18.16 uS
+B2a -—-Exited Task: (name=’sysS’ J-—---------------—mmmmmmm oo 134. us
+621 -——Next Task: (name="tP5" 3} ------—7"---—--"--""""""-"""-"-"-"----— 17.68 uS

This action key is used if you are only interested in message activity but want
to know the task context also.

43

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all semaphore calls

¢ Click on the Only Semaphores action key (or run the e_onlysems

command file by entering it on the command line).

Depth=512 Dffset=0 as
Real Time Operating System time coun
with symbol relative
NON-RTOS addr=tyCoSendCommand+1EH data=AR12584FH ----------
-> semTake(SEM [D=FEGECH, timecut=-1) 387.
<= semTake (STATUS=0K) 94.8
-> semlake(SEM_ID=FERFCH, timeout=-11 518,
<= semTake (STATUS=0K) 6.28
-» semGive (SEM_ID=FEGFCH) 336.
<= semGive (STATUS=0K) 6.04
-» semGive (SEM_ID=FE720H) 9.12
<= semGive (STATUS=0K) G.a4
-> semGive (SEM_ID=FEGDSH) 5.28
<= semGive (STATUS=0K) 7.56
->» semTake(SEM [D=FEGECH, timeout=-1) 313
-> semF lush (SEM_ID=FEGSCH) 517.
<= semF lush (STATUS=0K) 12.56
<= semTake (STATUS=0K) 83.1
<= semTake (STATUS=0K) 99.8

This action key is used if you are interested in all semaphore activity. No

other types of calls are tracked (neither are task switches).

44

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track all semaphore calls (include task switches)

» Click on the Tasks & Semaphores action key (or run the
e_tracksems command file by entering it on the command line).

Trace List Depth=512 Dffset=6 More data off sc
Label: Real Time Operating System time coun
Basa: with symbol relative
NON-RTOS addr=F98D4H data=6@6ED7CEH —m—m—m—m—-
+@81 ---Exited Task: (name="tlog’)----------"-"-"----------— 259.
+@g2 ---Next Task: (name="Phi4’)-—--------"-"---—-—— - 18.16
+083 -> semTake (SEM_ID=FEGFCH, timeout=-1) 26.24
+@85 <= semTake (STATUS=0K) 6.28
Rlalsist ---Exited Task: (name="Phi4’)------------—--—--—oomo - £5.52
+0E7 ---Next Task: (name="5ysS’ J-———-—-——-—-—-m oo 18.16
+0E8 ---Exited Task: (name=’sys5’)----—------—-—-—m—mmmmmm oo 169.
+BE9 —--Mext Task: (name="Phi?’)-——-=—--—————————— - 18,16
+018 -> semTake(SEM_ID=FEGDBH, timeout=-1) ?5.96
+@gle < semTake (STATUS=0KD 7.72
+813 -—-Exited Task: (name='Phi2’)" 164,
+814 -—-Next Task: (name="tlLog)-—-—=—--—=—=———-—-—-—m oo 18.16
+815 ---Exited Task: (name="tlog’)-----------—-—-—-—--mmomm o 426.
+816 -—-Next Task: (name="Phig’)--————-——=—————-—————m - 18.16
+817 -> semTake (SEM_ID=FE7Z0H, timeout=-1) 26.28

The command above traces only semaphores and task switches so you can
see what tasks use semaphores and how they effect system flow.

45

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track a single service call

e Click on the Only Call X action key (or run the e_onecall command
file by entering it on the command line).

You are prompted for the name of the service call you wish to track. Enter
the service call name.

Depth=512 Dffset=0 More data off screen
Real Time Operating System time coun
with sumbols relative
afte NON-RTOS: addr=.tex|fpphrchlib+P50H data=24301824H ---------—-
+@g2 -> taskDelay(ticks=2) 83.6
+083 <= taskDelay (STATUS=0K) 89.6
+@86 -> taskDelay(ticks=2) 498,
+0e7 <= taskDelay (STATUS=0K) 98.6
+g18 -> taskDelay(ticks=2) 513.
+@11 <= taskDelay (STATUS=0K) 356.
+@013 -> taskDelay(ticks=2) 479.
+014 <= taskDelay (STATUS=0K) 91.8
+@16 -> taskDelay(ticks=2) 446.
+B17 <= taskDelay (STATUS=0K) 93.0
+B19 <= taskDelay (STATUS=0K) 436.
+B22 <= taskDelay (STATUS=0K) 458.
+024 <= taskDelay (STATUS=0K) 27z,
+B25 -= taskDelaylticks=1) £59.
+026 <= taskDelay (STATUS=0K) 89.6

This action key is used if you have a specific service call you want to track
and have no need of the context in which the calls are made.

46

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track multiple service calls

 Click on the Only Calls W,X,Y,Z action key (or run the e_trk4call
command file by entering it on the command line).

You are prompted for the names of the service calls you wish to track. Enter
the service call names.

[race List Jepth=512 Offset=0
RFeal Time Operating System time count
with symbol relative
WOW-RTOS: addr=0BCA4GH dates=@@RERAR3H ——m—m—m—
+091 <= msglReceive(bytes copied=1DH) 59.12 us
+0B2 -> malloc(size=29) 26.64 uS
+0a3 <= malloc(block=FF338H) 43.24 WS
+@ia4 -» free(pointer=FF328H) 141. us
+EE5 <= freell 67.48 uS
+BA6 -> msglSend (MSD_0_ID=FDEF8H, hbuffer=DBDACH, nBytes=29, 496, us
timeout=-1, priority=@al
+B11 <- msglSend (STATUS=0K) 77.e4 WS
+P12 -= msglReceive(MSD_0_[D=FOFC4H, buffer=DBDECH, maxMNBytes=1868, 4.52 us
timeout=-1J
+016 -> msglSend (MSD_Q_ID=FE228H, buffer=1ED4H, nBytes=29, 421, us
timeout=-1, priority=@a
+B21 <= msglSend (STATUS=0K) Tr.e4 WS
+023 -» msglReceive (MSD_0_ID=FDE2CH, buffer=DGBCCH, maxNBytes=180, 202 us
timeout=-11

You may track just the relationship between several tooled calls with this
action key.

For example, the trace above shows calls to free(), malloc(), msg@QSend(),
and msgQReceive().

If you are using a 16-bit processor, this action key will trace only two service
calls.

47

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

To track clocks and timers

¢ Click on the Clocks & Timers action key (or run the e_onlyclktmr
command file by entering it on the command line).

You may track just the clock ticks and tooled timers with this action key.

Depth=512 Dffset=6 More data off screen
Real Time Operating System time coun
with symbol relative
<= tickbfnnounce () 311.
> tickAnnounce () 57.24
<= tickAnnounce () 311.
-> tickfnnounce () S7.24
<= tickbnnounce () 3l6.
-= tickfnnounce () 5724
-= wdStart (WDOG_ID=FEGBAH, delay=1@, pRoutine=|dine.philStary 35.16
<= wdStart (STATUS=0K) 17.208
<= tickfinnounce () 443 .
== tickbfnnounce () 5724
<= tickAnnounce () 311.
-> tickAnnounce () 57.24
<= tickfnnounce () Z2.64
-> tickfnnounce () S7.24
<= tickfnnounce () 17.52
-= tickfnnounce () S7.28

If the Track OS Calls action key were to track the tickAnnounce() call, the
display would be dominated by the frequent clock ticks. Therefore, a
separate action key is provided to track clocks and timers.

48

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

Tracking Particular Tasks

Using the powerful sequence triggering capability of the HP 64700 series
emulation bus analyzers, several RTOS measurements allow you to capture a
very specific sequence of events or very rare events. For example, one
point-and-click measurement watches for a user-defined message being sent
to a specific message queue; this could help detect a very rare message
occurrence. Another point-and-click sequence measurement triggers only
when 4 (or less) specific tasks are switched into and out of in any order.

This section shows you how to:

» Track a single task and all tooled OS activity within it.
e Track four tasks and all tooled OS activity within them.
e Track about a specific task switch.

¢ Track about a specific task sending a message to a specific message
queue.

e Trace semTake activity by a specific task.
e Track activity after a function is reached from a specific task.

e Track activity about the access of a variable by a specific task.

49

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track a single task and all tooled OS activity within

1t

* Click on the Only Task X action key (or run the e_trk1ltask
command file by entering it on the command line).

You are prompted for the name of the task that you want to trace. You can
type in the name of the task you are interested in, or in the graphical
interface, by using the cut buffer, you can cut and paste a taskname from the
screen into the dialog box.

Trace List Depth=512 Offset=0

Label: Real Time Operating System time coun
Base: with symbols relative
sq adv ---Next Task: (name="Phig’)--—-—=—=—=—=—-—-—m oo 1.17
+819 STACK VALUES: base=F@24BH 1imit=EDB98H end=EDB9EH 520

+aze <= taskDelay(STATUS=0K) 20.76
sq adv —--Exited Task: (name="Phi2’)---—--------"---"--"-------— 99.3

sq adv —--Next Task: (name="Phig’)------—=—=—=—-—-—-—m oo 429.
+@25 STACK VALUES: base=F@240H 1imit=EDB98H end=EDBSEH 488

+@28 -» semlake(SEM_ID=FE744H, timeout=-1) 25.76
sq adv —--Exited Task: (name="Phi2’)-----------—----mmmmmmmm oo 53.48
sq adv —--Next Task: (name="Phig J------—=—=—=—-—-—m - 4.39
+B32 STACK VALUES: base=F@2ABH 1imit=EDB98H end=EDB9EH 480

+B35 <- semTake(STATUS=0K) 20.00
+@36 -> taskDelay(ticks=2) 7.44
sq adv —--Exited Task: (name="Phi2’)---------------------— 53.52
sq adv ——-Next Task: (name="Phi2’)--—-—-—-—-—-—-———— - 245.
+@39 STACK VALUES: base=F@2A0H 1imit=EDB98H end=EDB9EH 528

+@42 <= taskDelay(STATUS=0K) 20.76

In the example above, only the OS activity in task "Phi2" is being traced.

Notice that the time stamp on the right hand side of the screen gives a useful
indication of the time between task exit and the next entry into this same
task.

50

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track four tasks and all tooled OS activity within
them

Click on the Only Tsk W,X,Y,Z action key (or run the e_trk4task
command file by entering it on the command line).

t 8 : Offset=0

Lahbel: Real Time Operating System time count
Base: with suymbol relative
+367 STACK VALUES: hbase=F@2ABH 1imit=EDB94H end=EDB9BH 528 nS
+370 -—-Exited Task: (name=’sys5’}--—------"""""""""""""“""—-"—-——— 32.48 us
+371 STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFECH 528 nS
+374 -—-MNext Task: (name="tP3*}-——------------ 17.88 us
+375 STACK VALUES: base=F82ABH 1imit=EDB94H end=EDB9BH 520 nS
+378 <= taskDelay(STATUS=0K) 20.76 uS
+379 -» msglSend(MSD_Q_ID=FE4B8H, buffer=FB@20CH, nBytes=29, 27.68 usS

timecut=-1, priority=@ajk
+384 <= msgQSend (STATUS=0K) 77.64 uS
+385 -» msglReceive (MSD_O_ID=FESTCH, buffer=FB28CH, maxMBytes=18@, 4.52 us

timeout=-1J
sq advy -—-Exited Task: (name="tP3"}----------------------------————- B62.24 us
sq advy ———Mext Task: (name="tP4° }-———--------—-— 17.68 us
+391 STACK VWALUES: base=EDABEH 1imit=EB2F4H end=EB2FBH 480 nS
sq adv ——-Exited Task: (name="tP3'}---—-—-"----"--"-"""""""""""""""-""-"--— 25.76 us
sg advy ———MNext Task: (name="tP4’ }-———----------- 17.68 us

You can use this command to track tooled OS activity within up to four tasks.
One, two, or three tasks can also be tracked by entering duplicate names.
For example, if you wanted to track only tasks t2 and t3, enter t2 in the first
dialog box and t3 in the remaining dialog boxes.

You can also edit the command file to create two new command files which
would be used specifically for tracking two or three tasks.

51

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track about a specific task switch

Click on the Task switch A->B action key (or run the e_AthenB
command file by entering it on the command line).

This measurement will trace when the kernel switches from one desired task
immediately into another desired task. The dialog box first prompts for the
task that is being switched out of then prompts again for the task that is
being switched into.

When the trace completes, you can see the activity before and after the task
switch occurred. This type of measurement may lead you to a problem
surrounding a task switch.

Trace List Depth=512 Dffset=A More data off sc

Label: Real Time Operating System time coun

Base: with symbol relative

-014 STACK VALUES: base=F9C48H 1imit=F88CCH end=F88CAH 528

-911 -—-Next Task: (name="Phi4’ }-——-—---—--—--———— - 17.64

-019 STACK VALUES: base=EBIBEH 1imit=EBASGH end=E8ASEH 520

-087 -» semTake (SEM_ID=FEGBCH, timeout=-1) 24.16

sq adv ---Exited Task: (name="Phi4’)--------------mmmmmmmmmm oo 55.08

-064 STACK VALUES: base=EBIBEH 1imit=E8ASBH end=E8ASEH 520

sq adv ---Next Task: (name="Phi3’)-—-—-—--—-—-—-mmm oo 17.64
NON-RTOS : addr=. |HP_switchTask+198H data=B@EC23ESH 28,

+001 STACK VALUES: base=EDABOH 1imit=EB2F8H end=EBZFAH 440

+004 <= semTake (STATUS=0K) 20.00

+@85 -> taskDelay(ticks=2) 7.49

+086 -—-Exited Task: (name='Phi3’)-—-—-----"-""""""""""----————-—— 54.60

+087 STACK VALUES: base=EDABEH 1imit=EBZFS8H end=EB2F@H 480

+g18 ---Next Task: (name="s5ysS’)-—-—-—-————-—-—-m oo 17.68

+@11 STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFBCH 480

+014 ---Exited Task: (name="sys5S’)--—----—-—-—-—-—m—mmmmmm oo 225.

In the example above, "Phi4" was entered in the first dialog box and "Phi3"
was entered in the second dialog box, thus triggering a trace around this
switch from task "Phi4" to task "Phi3".

52

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track about a specific task sending a message to a
specific message queue

Click on the Tsk A->MsgQue X action key (or run the
e_tsk2msgque command file by entering it on the command line).

You are prompted first for the task name and then for the queue name to
which the task sends a message.

Offset=0
Real Time Operating System time count
with suymbol relative
-—-Mext Task: (name="t0p " }-=-=—-=—=-=—-—-—-——— - 17.83 us
STACK VALUES: hase=D43CEH 1imit=DICB4H end=D1CEGH 488 nS
-—-Exited Task: (name="tP&°}------------"""""""""""""-----—— 31.84 us
STACK VALUES: base=DBCEEH 1imit=D4554H end=D4556H 528 nS
-—-Mext Task: (name="t0p }-——————————-——————— 17.88 ub
STACK VALUES: base=D43C8H 1imit=DICB4H end=D1CEBH 480 nS
<= semTake (STATUS=0KD 20.98 usS
-> msglSend (MSD_Q_ID=FE228H, buffer=1ED4H, nBytes=29, 5.32 us
timecut=-1, priority=Qal
<= msglSend (STATUS=0K) 77.68 uS
-> gemTake (SEM_ID=FDE@A3H, timeout=-1) 3.52 us
-—-Exited Task: (name="t0p’l-----—-—-——-=———=———-—-—-——-—-——- 56.52 us
STACK VALUES: hase=D43CEH 1imit=DICB4H end=D1CEGH 528 nS
-—-MNext Task: (name="tP6* }-—-----—---—-——— 17.88 us
STACK VALUES: base=DBCEEH 1imit=D4554H end=D4556H 480 nS
-—-Exited Task: (name="tOp’i--—--------"""""""-"————————-————— 31.84 us

This measurement is useful if you have a task that sends a message to a
specific message queue intermittently and you either want to verify that the
message gets sent or you want to see the service call context under which
the message is sent.

53

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To trace semTake activity by a specific task

e Click on the Tsk A <- sem action key (or run the e_tasksemtake
command file by entering it on the command line).

You are prompted first for the task name.

Trace List Depth=512 Of fset=H More data off

Label: Real Time Operating System time coun
Base: with symbols relative
sq adv ---Next Task: (name="Phig’)--—-—=—=—=—=—-—-—m oo 386.
+@91 > semTake(SEM_ID=FE720H, timeout=-1) 26.24
+093 <= semTake(STATUS=0K) 6.32
+E94 -> gsemlake(SEM_ID=FEEDSH, timsout=-1) 185,
+@96 -» gemlake(SEM_ID=FEVSCH, timecut=-1) 797,
+@98 <= semTake(STATUS=0K) 6.32
+B99 -» gemlake(SEM_ID=FEVSCH, timecut=-1) 729,
+1@1 -» gemTake(SEM_ID=FE7BEH, timecut=-1) 758.

sq adv 71.68
sq adv —---Next Task: (name="Phig’)----—=—=—=—=—-—-—mmm oo 811.
+185 -> semTake(SEM_ID=FE744H, timeout=-1) 26.28
+118 -> gemlake(SEM_1D=FEGSCH, timecut=-1) 1.19
+112 < semTake(STATUS=0K) 92.1
+113 <= semTake(STATUS=0K) 96.2
+114 <= semTake(STATUS=0K) 97.2
+115 -» gemlake(SEM_ID=FEEFCH, timecut=-1) B8eb.

This measurement allows you to view the context under which a semTake
occurs for a specific task. Because there is no indicator of which semaphore
is being granted on a semTake return, all activity is shown.

54

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track activity after a function is reached from a
specific task

Click on the Task A: FuncX action key (or run the e_afterfunc
command file by entering it on the command line).

The normal "C" source code tracing is still available whenever you need to see
your actual application code. In fact you can use an RTOS trigger point to
then capture source code activity.

This command will trace into a source code function but only when it has
been called from a certain task. You are first prompted for the calling task
name and then the desired function.

Trace List Depth=512 Of fset=H More data off scree
Label: Source Lines Only time coun
Base: relative
+Be4 ttdine.c - line 863 thru STZ bbbt 44444 a4 aaa bbby aa.

int 1%;

int forkMo;

int lockKey;

for Cix = B, forkMo = forkMol; ix < 2; ix++, forkMo = forkMoZ)
+813 #tdine.c - line 862 thru ST HHEHEHEdHaad bR 1.68

int 1x;

int forkMo;

int lockKey;

for (ix = 8, forkMNo = forkMol; ix < 2; ix++, forkMo = forkMog)
+B28 ttdine.c - line 873 thru BT HHEFEEEddh bR [S14]4]
{
DBG_PRINT ("Philosopher %d grabbing fork %dMn", philNo, forkNe’;

This example shows calls to the forkGrab() function from task Phi2.

You can easily return to the RTOS trace display by clicking on the Disp
RTOS Trace action key (or by entering the display trace real_time_os
command on the command line) and making another RTOS measurement.

The function must be in the global symbol table. That is, no function can be
traced if its address is local.

55

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

To track activity about the access of a variable by a
specific task

Click on the Task A: VarX action key (or run the e_aftervar
command file by entering it on the command line).

You are prompted first for the task name and then for the variable name
which the task accesses.

5 1. Depth=512

Se L=y More data off
Label: Source Lines Only time count
; _relative
-084 ¥ttelephone.c - line 471 thru 4TS EREE R R 126 ns

WATT_FOREVERY == ERROR
break ;

#ifdef STATUS_INFO
if (print_flag?

bt Etetel ephone.c - line 476 thru A77 HRBEEE R
{

printf("tPlayer®d’s input message is: %s'n", outlinelx, msgBufl
+BB3 ¥ttelephone.c - line 473 thru 482 ##dddbdrdrdrdrdssttdsss 480 nS
}

¥endif /% STATUS_INFO =/

msglistort (msgBuf); /* distort the input message */
+@R4 ¥ttelephone.c - line A3 FHE R R R R R R R 128 ns

This measurement allows you to see when a specific variable is accessed by a

specific task and the source code context under which the variable is
accessed.

The function must be in the global symbol table. That is, no function can be
traced if its address is local.

56

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

Tracking Accesses to Functions or Variables

Another useful RTOS measurement identifies which tasks are accessing a
shared global variable or calling a shared function.

This section shows you how to:

e Track which tasks access a specific function or variable.

57

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

To track which tasks access a specific function or
variable

e Click on the Task?: Func/VarX action key (or run the e_qtskfunc
command file by entering it on the command line).

You are prompted for a function or variable name.

ime Operating System
Base with symbols relative
pstore ———Next Task: {name="Phi3’)-——--—------""""""""""""""" -
+@34 MON-RTOS: addr=.bs|din.dine.c:+4H data=00BEEE33H 716.
+@35 MON-RTOS: addr=.bs|din.dine.c:+4H data=00200834H 168
pstore
pstore ---Next Task: (name="Phig’)-—-=----=--——-—-—-mmmmm -
+@38 MON-RTOS: addr=.bs|din.dine.c:+4H data=00B0@E34H 758.
+B39 NON-RTOS: addr=.bs|din.dine.c:+4H data=0BBEEE35H 168
pstore
pstore ---Next Task: (name="Phif@’)-—-----—-—-—--—-mmmmm o
+@42 MON-RTOS: addr=.bs|din.dine.c:+4H data=0000@835H 697.
+B43 MON-RTOS: addr=.bs|din.dine.c:+4H data=00BEEE36H 168
pstore
pstore ---Next Task: (name="Phil’)------—-----mmmmm oo
+046 MON-RTOS: addr=.bs|din.dine.c:+4H data=00000036H 701,
+@347 MON-RTOS: addr=.bs|din.dine.c:+4H data=00BE@E3TH 168
pstore

All tasks that call a specific function or access a specific variable can be
tracked with this measurement.

The function must be in the global symbol table. That is, no function can be
traced if its address is local.

58

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

Tracking Dynamic Memory Usage

Tracking dynamic memory usage has always been difficult in an embedded
design. With these new real-time operating system measurement tools,
however, even these debugging headaches become easy to solve.

The basic measurement set displays the size and location of a memory
segment whenever the system allocates a new block of memory. The system
also reports whenever a previously allocated block of memory is freed.

Stack allocation information is also provided. With this information, you can
use the analyzer to monitor for stack overflow conditions.

This section shows you how to:
e Track only stack data.

e Track all memory calls (include task switches).

59

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

To track only stack data

Click on the Stack Usage action key (or run the e_stack command
file by entering it on the command line).

You can enter this command before you run your application from its startup
address to capture the initialization of the application which shows you
where each local stack is allocated.

e List Depth=512 0 4 More data o reen
time coun

Base: with symbol relative
+881 -—-Exited Task: (name="sys5’)--—-—--—-—-————————————————-——— 342.
+@ge STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFGCH 4808
+8E5 -—-MNext Task: (name="tShe’)-——----"-"""""""""""""""""""---~—— 17.68
+@086 STACK VALUES: base=F7C80H 1imit=F5958H end=FS557BH 528
+B89 ---Exited Task: (name="sysS’)---------—-—-—-—m—mmmmmmmm oo 32.48
+018 STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFGCH 4808
+813 -—-Next Task: (name="tShe’)----——-——-—————-————— 17.68
+014 STACK VALUES: base=F7C80H 1imit=F5958H end=F557@H 528
+017 -—-Exited Task: (name=’tShe’)-----------—----———-o——— 74.36
+018 STACK VALUES: base=F7C80H 1imit=F5958H end=F557@H 480
+@21 —-==Next Task: (name="5ysS’)-———-—--—-—-—m oo 17.68
+@re STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFBCH 5268
+@25 -—-Exited Task: (name="'tShe’)--------""--""-mm 32.48
+076 STACK VALUES: base=F7C80H 1imit=F5958H end=F5576H 5268
+B29 ——-Next Task: (name="sysS’)-—-—-—--—-———-—-—-— - 17.64
+B30 STACK VALUES: base=FD73CH 1imit=FCF78H end=FCFGCH 520

60

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

To track all tooled memory calls (include task
switches)

¢ Click on the Memory Usage action key (or run the e_memory
command file by entering it on the command line).

Trace List Depth=51¢2 Dffset=0 More data off sc
Label: Real Time Operating System time coun
Base: with symbol relative
NON-RTOS: addr=. |HP_switchTask+164H data=PDEEFFFCH ~ ----——----
+ga1 ---Next Task: (name="tPB")—-—-—-—-—-—-—--—— 14.64
+0e2 ---Exited Task: (name="tP5’')----------------—-—--o— 26.24
+EB3 —--Mext Task: tname="tPE " J--——-——-——-— - 17.68
+@R4 ---Exited Task: (name="tP3’'J---------—--—---—--mmm 26,24
+Ea5 —--Mext Task: Cname="tPE " J--——-——-——-——--m 17.56
+HEE -= malloclisize=29) 82.9
+0a7 <= malloct{block=FF336H 43.28
+0B8 -> free(pointer=FF330H) 139.
+0R9 <= free() 67.44
+018 -—-Exited Task: (name="tPE")--—-—-—-"------"-"--"-"-"-""-""""-"""""----—- 57.24
+811 -—-Next Task: (name="s5ysS ')-————-—-—-—-—--—-—-—— 18.16
+812 -—-Exited Task: (name="tP&’)-----------------——m 32.36
+813 -—-Next Task: (hame="5ysS ")-———-—-—-—-—-- oo 18.16
+814 -—-Exited Task: (name="tP6’)----------——-----——mmm 32.3¢2
+B15 -—-Next Task: (name="5ysS J-———-—-—-—-—mm oo 18.16

This command simply tracks all tooled calls for memory allocation, giving you
an idea of memory usage.

61

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer

Displaying Traces

Displaying Traces

The normal "C" source code tracing is still available whenever you need to see
your actual application code. You can switch between the normal "C" source
code display and the RTOS measurements display with a simple click of an
action key or by entering a display trace command.

This section shows you how to:
e Switch to a normal trace display.

e Switch to the RTOS trace display.

62

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

To switch to a normal trace display

e Click on the Disp NonRTOS Trec action key (or run the
e_normtrace command file by entering it on the command line, or
enter the display trace mnemonic command on the command line).

Label: Opcode or Status w/ Source Lines time count

Base: mnemonic w/symbol relative
+0@1 HPOS_taskEntryNa $74583600 sdata long write 14.64 uS
+082 HPOS_taskExitNam $74583500 sdata long write 26.24 us
+8R3 HPOS_taskEntryNa $74583680 sdata long write 17.680 us
+0P4 HPOS_taskExitNam $745035080 sdata long write 26.24 uS
A5 HPOS_taskEntryNa $745036600 sdata long write 17.56 uS
+806 HPOS_malloc_Entr $8E0B8a1D sdata long write 82.9 uS
Writes to the data +BB7 HPDS_malloc_Exit $0OEFF380 sdata long write 43.20 us
tabl +088 [HPOS free Entry $@BOFF380 sdata long write 139. uS
able. JHPOS free Exit $0P080A2Q sdata long write B7.44 uS
HPOS_taskExitMam $74503600 sdata long write 57.24 us
HPOS_taskEntryMNa $73797353 sdata long write 18,16 us
HPOS_taskExitNam $74563600 sdata long write 32.36 uS
HPOS_taskEntryNa — $73797353 sdata long write 18.16 uS
HPOS_taskExitNam $74503600 sdata long write 32.32 us
HPOS_taskEntryMNa $73797353 sdata long write 18,16 us
HPOS_taskExitMam $745036668 sdata long write 32.36 uS

63

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

To switch to the RTOS trace display

¢ Click on the Disp RTOS Trace action key (or enter the display
trace real_time_os command on the command line).

ace List Depth=512 Of fset=0
Real Time Operating System time count
with symbol relative

-> wdStart (WDOG_ID=FEGBOH, delay=10, pRoutine=|dine.philStary 35.16 us
<= wdStart (STATUS=0KD 17.28 us
Service call entry_/ -—-Exited Task: (names’SysS’)--—------—-----—mmommmmmm oo 78.42 uS
+ STACK WALUES: se=FD73CH limit=FCF78H end=FCFGCH 528 nS
-—-Next Task: ="tShe’)-————-—-mm e 17.64 uS
base=F7C8EH 1imit=F5958H end=F5576H 528 nS
: (name="tShe’)-—-------———-—-——mmm 75.84 uS
. . base=F7C8EH 1imit=F5958H end=F357EH 488 ns
Service call exit. (name="5ys5)-———————-—-—-—-— - 17.68 us
base=FD73CH 1limit=FCF¥8H end=FCFGCH 488 ns
<= Aickfinnouncel) 19.48 uSs
> tickfnnounce() 5724 WS
<= tickfAnnounce(? 17.56 uS
Task switch. -> tickfAnnounce ()} 57.24 uS
<= tickfAnnounce(} 17.52 uS
+053 == tickAnnounce () 57.28 uS

Parameters

Time stamp.

Note that there are entry and exit arrows on the left of the screen to show
when a tooled call is entered and, on a separate line, to show when a tooled
call is exited. This is important since an OS service call may switch to
another task while in the OS and NOT return to the calling service call for a
long time, if ever.

The OS service calls are decoded into the same mnemonics that appear in the
OS manual. The parameters and return values that are associated with
tooled calls are displayed. The parameter variable names also appear as they
do in the OS manual decoded into their English mnemonics. Some of the
parameter values and all return values are also decoded.

You may have noticed that the line numbers in the first column of the display
are not sequential. This is because several trace states may be disassembled
for each line in the RTOS trace display.

64

Making RTOS Measurements with
the SPA

65

Action keys for
RTOS
measurements.

Making RTOS Measurements with the SPA

ewlett Packard Performance Analyzer: em68302 (m68302

File Display Events Profile Settings Help

Action keys: | Initialize | Time Tasks |Count Srve Calls | Trig2 on Overflw

|FunctionDuration | TaskX: Servcalls | Count Tasks |Tsk & User Evnts | Disable Trig2

()% To customize the initial list of entries look for the X resource IRecaH

Histogram: Interwval Duration Run Time: 1:11:B85 Stability: 32%
HName (sort? time? Time i y &y 123 183 29 any &
» 1 Task_BEA1 1. 18E3=
2 Task_BHAZ 336.9 =
7 Task_BHAE7 1. 18E3s
3 Task_BEES 236, 6
6 Task_BHAG 338.
1 05_Time 269,
3
4
2
g

M M M
1= =]

2 EE &M MO

Task_BHAZ 364,
Task_BHA4 a3.
Measure_Owrhd 18.9
Task_BBEAG 279, lms

3 Task_AART B.Aus
18 Task_B1868 B. Bus
Undefined Addr ?
Totals Absalute 4.27E3=

5
7
3
3

=)
=
=
=
=
=

STATUS M68302--Running user program Heasurement in process

The HP 64708A Software Performance Analyzer (SPA), a plug-in card for the
HP 64700 emulation system, provides valuable OS-level profiling
measurements. This makes finding bottlenecks simple. In addition, the
number of times each task is called can be displayed, providing valuable
information on system "thrashing". Also, the number of times each OS
service call is invoked from your application can be tracked, helping to isolate
bottlenecks from over-utilized system features.

The Software Performance Analyzer can also detect when a task has
exceeded a maximum preset time duration. When combined with the cross
triggering capabilities of the emulation system, you are able to capture a
historical trace showing the sequence of events leading up to the overflow

66

Chapter 3: Making RTOS Measurements with the SPA

and/or the system can be halted to allow browsing through the current state
of the system.

If you have multiple projects on one machine, you'll need to set up unique
SPA windows for each project.

These tasks are grouped into the following sections:

* Making time profile measurements.

* Coordinating measurements with the emulator.

* Handling multiple projects on one machine.

67

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

Making Time Profile Measurements

By measuring the time between writes made to task entry and exit locations,
the Software Performance Analyzer (SPA) can provide time interval
measurements for the tasks in your application as well as for the OS.

The time duration of each task can be displayed in an easy to read histogram.
Cumulative, maximum, and minimum time spent in each task can be
displayed in a table.

This section shows you how to:

» Define SPA events for tasks, service calls, and user events.
¢ Display a time histogram of task events.

* Show a table of SPA events.

¢ Display a count histogram of task events.

¢ Measure only data from a specific task.

* Show a table of tooled call invocations.

e Show a normal function duration histogram.

e Show a histogram of task and user events.

To define SPA events for tasks, tooled calls, and user
events

Click on the Initialize action key (or run the s_init command file by
entering it on the command line).

These instructions assume you have edited the s_init command file by
running the tool "rtos_edit_vxworks".

68

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To display a time histogram of task events

e Click on the Time Tasks action key (or run the s_timetasks
command file by entering it on the command line).

Histogram: Interval Ouration Run Time: 1:11:42 Stability: 32%
Name {sort? time?l Time F: [2F; G 127 183 243 Jelzk;
> 1 Task_@@@1 1.1963=| 27. 73| I

2 Task_BRAZ g45.8 5| 21. 96| NI

7 Task_B@@7z 1. 11E3=| 25. 79| I

5 Task_MAAAS 293.8 5| 6.81| NN

E Task_PRAEG 342.5 5| 7.96| NN

11 05_Time 272.1 5| 6.32| I

3 Task_BBA3 3e7.8 | 7. 13|

4 Task_BBE4 98.6 =| 2.11|HH

12 Measure_Qwvrhd 11.8 s A. 26

8 Task_B@@g 288, Ims| 8.81

3 Task_B@@3 @.8us| @.08

18 Task_@ 186 B.8us| @.00
Undefined Addresse ? ra
Tatals Absolute 4.38E3s| l@ay o B 12% 18% 24% 3@z

The histogram shows how much time each task is taking. This is very useful
for detecting system bottlenecks.

Note that one line of the histogram is labeled "OS_Time". This indicates how
much time the application is spending in the OS kernel itself. This OS
overhead measurement has some limitations however. Refer to the "OS
Overhead Tracking" section in the "How the RTOS Measurement Tool Works"
chapter for more information.

Another line is labeled "Measure_Ovrhd". This indicates approximately how
much intrusion is caused by the RTOS measurement tool routines.

69

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a table of SPA events

¢ Choose the Display - Table pulldown menu item (or enter the
display table command on the command line).

A raw numbers view of the accumulated data is displayed.

Table: Interval Ouration Run Time: 1:12:43 Stability: 32%
_Mame f{sort? time! Call Time Time ¥ Mz Min Mean Std (e
» 1 Task_BABEL 3314 1.21E3s| 27.73|274.Bms|452. lus| 136, Ims| 34, Bms
2 Task_ABBRZ 36744| 353.7 =| 21.96|137.3ms| 143, 4us| 26. lms| 29.5ms
7 Task_RABB7 27527 1.13E3s| 25.73|240.9wms| 143, 4u=| 48.9ms| 33.6ms=s
5 Task_ABRS G334 297.3 = G.81|114. 7ms | 242.Fus| 42.9m=s| 30.Ems
G Task_ABBGE 13643 347.7 = 7.96| 51.7ms|235.2us| 25.5ms| 25.6ms
11 05_Time 3.ZBEEE| Z27E6.3 = B.32| 2.7ms| 28.Bus| B8E.3us|289.8us
3 Task_RAEB3 23225 311.9 = 7141217, Bms | 179.Bus| 13.9ms| 27.Ems
4 Task_AHD4 18641 32.1 = 2,11 28, 3m=|235. lus| 4. 9ms| 7.Zms
12 Measure_vrhd 136593A 11.2 = A.26|2H1.90s| 48.%us| 81.Bus| 24.53us
8 Task_BBAES 888 283.5ms A.81| 97.E6ms|2B6. 2us|319. 2us 3. 3ms
3 Task_HAART 5] A. Aus A. Aa A. Aus A. Hus A. Aus A. Hus
18 Task_H18A 5] A. Aus A, Al A. Aus A. Bus A. Aus A. Bus
Undefined Addr ? 7 ?
Totals Absolute 3.48EB6| 4.3VE3s 188%

70

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To display a count histogram of task events

¢ Click on the Count Tasks action key (or run the s_counttasks
command file by entering it on the command line).

Histogram: Interval Ouration Run Time: 2:13 Stability: 92%
Name {sort? calls) Call Ay =Y, 12: 18: 24z 5,
> 2 Task_pBB@z 1171 26. 23 | I

7 Task_BRA7 g72| za. 8z | I

4 Task_BE@4 sag| 13, 73| I

3 Task_B@@3 745 17. 10| I

§ Task_PBOE 422 9. 69| I

1 Task_BBB1 3e4| 6. 9:| NN

5 Task_BBAS 216 4.5c| NN

B Task_BBBE 28| o.64(0

3 Task_BEEY g| ©.0@

18 Task_@106 gl B,6a
Totals 4356| 188% B B 12% 18% 24% 38y

The histogram shows the the number of times each task is entered (and
exited). This can be very useful for detecting system "thrashing" between
tasks.

71

Chapter 3: Making RTOS Measurements with the SPA

Making Time Profile Measurements

To measure only data from a specific task

e Click on the TaskX: Servcalls action key (or run the s_taskwindow
command file by entering it on the command line).

Histogram: Interval Duration Run Ti1:55
Mame (sort? calls? Call % % % %
48 Srvccall_msgQReceive 9242| 20.60
49 Srvecall_msglSend 9242 28.88
50 Srvecall msglSmCreate gl ©.8@
51 Srvecall_signal g B.88
52 Srvecall_sigsuspend gl B.8a
53 Srveccall_pause a| 9.0e
54 Srvceall kill gl a.ea
55 Srveccall_memalign g 8.88
56 Srvcecall_calloc gl &.ea
57 Srvccall_cfree Al ©9.60
58 Srvceall _memPartCreate gl a.ea
59 Srveccall_memPartéligne g B8.88
68 Srvccall_memPartfilloc gl @.ea
61 Srvccall_memPartFree gl a.ea
62 Srvccall_malloc 9z42| 20
=B rvccall free 9242 28,60
Profiled 46216| 108% 8% 5% 18%

Stabilléd:
% %

a%

|
.00 | I
[

This displays a histogram of the number of times each tooled call is invoked
from a single task.

72

Chapter 3: Making RTOS Measurements with the SPA

Making Time Profile Measurements

To show a table of service call invocations

¢ Click on the Count Srve Calls action key (or run the s_countsrvels
command file by entering it on the command line).

Histogram: Interval Duration Run Til:41 Stabil 91: 2%
Name (sort? calls) Call % A% 5% 10% 15% 20% 25%
> 24 Srvccall_taskDelay 1320| 20,57 I

48 Srvcecall_msglReceive gez| 13.62| I

49 Srvccall msglSend ge2| 12,63 I

£2 Srvccall_malloc gez| 13.63 | NI

63 Srwcecall_free g62| 13.63 | NI

41 Srwccall_tickfinnounce g51| 13.61 NN

37 Srvccall_semGive 3z0| 5.0 | NN

36 Srwccall_semTake 262 4.14| I

44 Srvcecall_wdStart 100 1.5/

21 Srvccall_taskSpawn al B8.ga

22 Srvcecall_taskInit Al 9.0a

23 Srvccall_taskDelete al a.ga

25 Srvcecall_taskPrioritys gl Be.8a

26 Srvcecall_taskSuspend @al \e.pa

27 Srwcecall_taskResume gl @.8a

28 Srvccall taskSafe al a.ga

Profiled B375| 188% 8% 5% 18% 15% 5157 25%

This displays a histogram of the number of times each tooled call is invoked
from all tasks.

73

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

To show a normal function duration histogram

¢ Click on the FunctionDuration action key (or run the s_funcdur
command file by entering it on the command line).

Histagram: Function Ouration exclude calls Run Time: 7:57 Stability: 87%
_Mame {(sort? timed Time i 5] 13 2 i 43 Y
> 74 wait_for_io 8.1 = 1. 71| I

38 strcat 38. Zms B.81

75 write_driver 27. 7ms A. a8

32 strlen 7. 1lms A. 84

93 _swrite 5. Bms A. 86

63 _doprnt 5.6ms| H.8H

31 stropy 2.5ms| H.8H

GE fill_response_stri 1. Ims H.86

B8 read_write 545, Cus B.86

87 sprintf 127.2us| H.8H

B4 _doscan 73, 3us H. B8

88 _readStr 52.6us A. B8

83 sscanf 3.5us B. 84

53 atof A. dus 8. 84

6B strtod A. dus A. 84

61 dbl to str A, B H. BE
Totals Absolute 477.8 =s| 188% | Ewvent rate underflow

This performs a normal function duration profile measurement.

74

Chapter 3: Making RTOS Measurements with the SPA

Making Time Profile Measurements

To show a histogram of task and user events

e Click on the Tsk & User Evnts action key (or run the s_tasknuser
command file by entering it on the command line).

Histogram: Interwal Ouratiaon Run Time: 3:12 Stability: 94%
_Mame {sort? time! Time ¥ HY B 125 18 243 38y
> 1 Task_@861 53.4 5| 27.67 | I

7 Task_Baa7 5.8 =| 25.59 | I

2 Task_gB@az 42.4 =| 21. 94| I

E Task_AAA6 15.9 s| &.24| N

3 Task_@AAAS 13.7 = 7.03 | I

S Task_MAAAS 13.5 =| 6.95 | N

53 Userlntr_l1 E.8 = 350 | I

4 Task_BBE4 4.8 =| 2.07|IH

B Task_BAEGE B.2ms| B.086

3 Task_BA83 8.0us| ©.88

18 Task_@l@a @.6us| @.88

54 Userlntr_2 A. Bus A. B8

55 Uzerlntr_3 A, Bus H. B8

56 Userlntr_4 B.8us B. 686

57 Userlntr_G B.8us B.86

52 Userlntr B 8, 8y 6,686
Tatals Absolute 93.1 =| 18@% Oy B 124 187 247 3my

This measurement includes any user-defined events you may have set up.

75

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

Coordinating Measurements with the Emulator

During a Software Performance Analyzer duration measurement, the SPA can
generate a trig2 signal if the event being measured executes for too long a
period of time. This signal can be used by the emulator to stop the
application program, or it can be used by the emulation analyzer to trace
activity up to that point.

This combination of events allows you to stop the application program when
a task exceeds a certain amount of continuous execution time and/or track
activity that leads up to the break.

This section shows you how to:
e Break on task time overflow.

« Disable the SPA trig2.

To break on task time overflow

You can also set up a coordinated measurement between the software
performance analyzer and the emulation bus analyzer. For example, you
might like to capture a trace and then break into the emulation monitor if a
certain task ever takes longer than a specified maximum time. Tracing
before the time overflow will show a history of what led up to the time
overrun.

In the emulation window, click on the Before SPA trig2 action key.

Or (in the emulation window), run the e_spatrig command file by entering it
on the command line.

You have now set up the analyzer to capture a trace when a signal is received
from SPA. Note that the trace has started but has not completed because it
is waiting for the trig2 signal as its trigger point.

76

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

2 In the SPA window, click on the Trig2 on Overflw action key.

You can now set up SPA to detect the time overflow and then send the
appropriate signal to the emulation window. The dialog box again prompts
you for specific information. The first box prompts you for a task name.

3 In the dialog box, type the name of the task; then, click the "OK"
pushbutton.

Another dialog box now appears asking you for the maximum time limit to be
watching for. Type in the number of milliseconds that is the maximum time
you want the given task to ever continuously execute.

4 In the dialog box, type in the limit; then, click the "OK" pushbutton.

After a while you see that the emulator is running in monitor due to a time
overflow break from SPA. The status line of the emulation window shows a
"trig2 break" which came from SPA. The trace has completed and shows you
a historical trace of what led up to the time overflow. Notice that the
application has just entered the task which you specified.

To disable the SPA trig2

e In the SPA window, click on the Disable Trig2 action key.

This action key must be pressed whenever cross-trigger measurements to the
emulator are no longer desired.

Note Until the trig2 signal from SPA is disabled, the signal will be continually sent
to the emulation system. This may result in unexpected behavior such as
continually breaking into the monitor or traces being started but not
completing.

77

Chapter 3: Making RTOS Measurements with the SPA
Handling Multiple Projects on One Machine

Handling Multiple Projects on One Machine

In order to run multiple sessions—one for each unique application—of the
RTOS product on one machine, a couple of changes need to be made. These
changes are required because a command file for the Software Performance
Analyzer contains application specific commands that set up intervals for
each task.

To set up unique SPA windows for multiple projects

If more than one project is using the RTOS Measurement Tool, you
need to make sure the Initialize action key calls a command file
specific to your currently loaded application.

1 Run the $HP64000/bin/rtos_edit_vxworks script.

2 Rename the s_init file which was generated by the script.

Repeat steps 1 and 2 above for all of your projects.

3 Before you start the emulator window for a given project, set the
perf.Vrtx*actionKeysSub.keyDefs X resource so that the Initialize
action key calls the appropriate s_init file.

Here are two ways to set an X resource:

e Edit the $SHOME/HP64_schemes/Softkey.Label file, as described on page
86.

¢ Place the X resource definition in a file, and run "xrdb -merge
<filename>".

Note that all of the action keys are set in a single X resource, so you need to
set all of the Software Performance Analyzer action keys along with the
changed Initialize action key.

If you are using several different real-time operating systems, and a project is
the only one which uses a particular operating system, you do not need to
make any changes for that project.

78

Customizing the RTOS Measurement
Tool

79

Customizing the RTOS Measurement Tool

You can customize the RTOS Measurement Tool to create your own RTOS
measurements. You can set up your own trace commands that capture
particular writes to the data table, put these commands in command files,
and set up action keys that run these command files.

Though the level of intrusion introduced by the "instrumented" service call
library is very limited, you can customize the RTOS Measurement Tool to
further limit the intrusion if it becomes a problem.

These tasks are grouped into the following sections:
e (Creating your own RTOS measurements.

¢ Limiting the intrusion caused by instrumented service calls.

80

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Creating Your Own RTOS Measurements

Real-time OS measurements in the emulator/analyzer interface are made by
using the emulation bus analyzer to capture writes made to a data table.
Instructions in the "track_il.c" and "callout.c" files write values to the data
table when:

Tasks start.

Tasks switch.

Tasks are deleted.

Service calls are entered and exited.

Any states captured by the emulation bus analyzer outside the range of the
data table are interpreted as non-RTOS states.

When you display the RTOS trace, the inverse assembler looks at the
information written to the data table, and, since it knows how these locations
are defined, it interprets the information and presents it in an easy to read
form on the trace display.

In order to understand how to make your own RTOS measurements, you
must understand what writes to each of the locations in the data table mean.
Once you understand this, you will be able to enter your own trace
commands to capture the RTOS information you’re looking for.

If your measurements will be made often, you can create your own command
files and add your own action keys to the emulator/analyzer interface.

Data Table Description

The data table reserves space for information saved when tasks start, when
tasks switch, and when service call functions are entered or exited.

There are also locations for device service call, stack, user-defined, clock tick,
and return value checking information.

The "track_os.c" source file reserves space for the data table.

81

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Data Table Contents
The types of values that are written to the data table are:

HPOS_taskExitName
HPOS_taskEntryName

The name of the task being exited or entered is written to these
locations. By triggering on specific data values written to these locations,
you can trigger on a particular task’s entry or exit.

HPOS_<sve_call_sym>_Entry
HPOS_<sve_call_sym>_Exit

The first parameter passed to, or returned from, a service call is written
to these locations. HPOS_AdditionalParameters is used for parameters
other than the first.

When creating your own RTOS trace commands, be sure to store writes
through the full range of the symbol; once the inverse assembler sees the
first word written to these locations, it expects an exact number of
subsequent writes to follow.

HPOS_tickAnnouce_Entry
HPOS_tickAnnounce_Exit

These locations are written to as system clock ticks are sent into the OS
kernel. You have to instrument your clock interrupt service routine
(ISR) to see this functionality.

HPOS_CHECK_RETURNS

Return codes are written to this location when service calls exit.

HPOS_Usern_[EntrylExit]

These locations are reserved for tracking user-defined activity. For more
information, refer to the "How the RTOS Measurement Tool Works"
chapter.

82

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To set up trace commands to capture RTOS
information

Use the "only" syntax of the trace command to specify the storage
qualifier.

The most basic thing to realize about capturing RTOS information with the
emulation bus analyzer is that you only want to store writes to the data table.
Any other stored state will be displayed in the RTOS trace display as a
non-RTOS state.

Virtually all the trace commands you enter to capture RTOS information will
specify that "only" a range of locations in the data table or "only" a range and
other specific locations in the data table are to be stored in the trace. (If you
wish to look at all code execution you will store all states.)

One exception to this guideline is the ability to capture both writes to the
data table and your application code execution excluding execution of the
actual VxWorks code itself. This can usually be accomplished by storing all
activity not in the range of the VxWorks code (that is, trace only address
not range <VxWorks_start> thru <VxWorks_end>). Once the analyzer has
captured this data, you may find it helpful to use two emulation windows
simultaneously: one to display the normal source code trace, and the other to
display the RTOS trace.

Use the "after", "about", or "before" syntax of the trace command if
you wish to trigger the analyzer on a certain event or occurrence in
your program. The option you choose specifies the position of the
trigger point in trace memory.

Use the "find_sequence" syntax of the trace command if you wish to
trigger the analyzer on a certain sequence of events or occurrences in
your program.

83

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Example

« Use the "enable" and "disable" syntax of the trace command to

capture only certain parts (in other words, windows) of program
execution.

You can identify the entry or exit of a particular task, by using data qualifiers.
The HP Real-Time Operating System Measurement Tool uses integer (32-bit)
task names, corresponding to the first 4 characters of the name assigned as
the task was spawned. The integer task names are written to
HPOS_taskExitName and HPOS_taskEntryName.

Note that the emulation bus analyzer captures 16 bits of data per state when
used with 16-bit processors and 32 bits of data per state when used with
32-bit processors. If you are using a 16-bit processor, you must capture the
write of the high-order word or low-order word to identify a particular task.

Use the provided action key measurements as models.

Some of the action key measurements use shell scripts or utility programs
which you may find useful. For example, the taskToInt32 program is used by
some of the action keys to convert full task names to integer task names.

To track only message queue and semaphore service calls:

trace only address range HPOS_semBCreate Entry thru
HPOS_msgQSmCreate_Exit or HPOS_AdditionalParameters
<RETURN>

This captures all writes to the data table that correspond to any semaphore
or queue service calls.

84

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To place your measurements in command files

1 If your measurement is similar to a measurement that already exists
on the action keys (and therefore in a command file), the best way to
create the new command file is to copy and modify the similar
command file.

2 Add the directory that contains your custom command files to the
HP64KPATH environment variable.

Examples Suppose you want to create a command file for an RTOS measurement that
tracks a 2 tasks. Notice that this is similar to the provided RTOS
measurement that tracks 4 tasks.

First copy the existing command file. Assuming you are using 32-bit
VxWorks, type"

$ cp $HP64000/rtos/B3084A/action_keys 32/e_trkdtask
e_trk2task <RETURN>

Edit the "e_trk2task" command file so that only 2 tasks are tracked.

If your command file is placed in the $HOME/rtoscmdf directory, you should
set the HP64KPATH environment variable as follows:

If you're using "sh" or "ksh":

$ HP64KPATH=$HP64KPATH:$HOME/rtoscmdf; export HP64KPATH
<RETURN>

If you're using "csh":

$ setenv HP64KPATH ${HP64KPATH}:$HOME/rtoscmdf <RETURN>

85

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

To place your measurements on action keys

You may redefine, add, or delete action keys.

Save the measurement in a command file.

Follow the instructions in the previous "To place your measurements in
command files" section

Create a "$HOME/.HP64_schemes" directory:

$ cd <RETURN>
$ mkdir .HP64 schemes <RETURN>
$ cd .HP64_schemes <RETURN>

This directory must be in your home directory. Note the dot (.) in the
" HP64_schemes" directory name.

Copy the system-wide X resources "scheme" file to "Softkey.Label" in
the directory you just created:

$ cp
$HP64000/inst/rtos/vxworks/HP64_schemes/Softkey.App
Softkey.Label <RETURN>

Edit the action key definitions.

The "actionKeysSub.keyDefs" X resource defines a list of paired strings. The
first string defines the text that appears on the action key pushbutton. The
second string defines the command or, in the case of the RTOS measurement
tool, the command file that should be sent to the command line area and
executed when the action key is pushed.

The command files associated with action keys typically set up trace
commands that capture real-time OS activity. If parameters are required, the
command files prompt you for them. Also, some command files have
commands that extract information from memory.

86

Example

See Also

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

Suppose you wish to create an action key for the command file created in the
previous "To place your measurements in command files" section.

Edit your "Softkey.Label" file.

vi $HOME/.HP64_schemes/Softkey.Label

Add a line that defines the action key label "Only Task X,Y" and the location
of the command file. In this case, add the line:

\"Only Task X,Y\" \"e_trk2task\" \

as part of the "keyDefs" resource definition.

You may also set the "actionKeys.numColumns" resource to manage the
number of rows of action keys.

The next time you start the emulator/analyzer interface, the new action key
will appear. Clicking on the new action key will cause the associated
command file to be run.

Your HP Emulator/Analyzer Graphical Interface User’s Guide or
Debugger/Emulator User’s Guide for more information on setting X
resources.

87

Chapter 4: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

88

Part 2

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

89

Part 2

90

How the RTOS Measurement Tool
Works

91

How the RTOS Measurement Tool Works

The RTOS measurement tool lets you perform a real-time trace of selected
calls and returns between your application and a Real-Time Operating
System (RTOS). The RTOS measurement tool works with the HP 64700
series emulation bus analyzer and includes a specially developed inverse
assembler. The trace display is easily readable and includes a fully
interpreted display of all parameters passed into and returned from the RTOS
along with possibly other pertinent data.

The following topics are discussed in this chapter:
e Instrumented code for real-time OS tracking.

e How OS service calls are captured and displayed.

92

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Instrumented Code for Real-Time OS Tracking

In order to make RTOS measurements, a few instructions must be added to
the application program. The level of intrusion introduced by these
instructions is minimal, typically under 50 ps per call.

Service Call Tracking

A ".h" header file is used to redefine a regular service call to point to an HP
supplied function in place of the RTOS function in your code. This HP
function writes information to a data table using high-level language

assignments and then calls the real OS function in a "daisy-chain" fashion. An

example of an HP supplied function is:

/
* semTake

STATUS HPIL_semTake

(
SEM_ID semid,
int timeout

STATUS retval;

#ifdef MEASURE_OS_TIME

HPOS_Start_Ovrhd=(short int) 1; /* Start OS overhead;HP-RTOS-Level-2*/
#endif /* MEASURE_OS_TIME */

HPOS_semTake_Entry = (int) semld;

HPOS_AdditionalParameters = timeout;

retval =semTake(semld,timeout);

HPOS_semTake_Exit = (int) retval;

HPOS_CHECK_RETURNS = (int) retval;
#ifdef MEASURE_OS_TIME

HPOS_Stop_Ovrhd= (short int) 2; /*Stop OS overhead;HP-RTOS-Level-2*/
#endif /* MEASURE_OS_TIME */

return(retval);

Notice that information about the parameters for the service calls is written
to defined memory locations in a data table. When the application is run,

tracing the address range of the data table captures all data being passed into

and returned from all the tooled service calls.

When trace information is captured by the emulator, an RTOS-specific

inverse assembler decodes the information and displays the results. For each
tooled service call, a 32-bit word is associated with the entry (first parameter,

if any), and the exit (first return parameter, if any). Any additional

93

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

parameters are written to a third fixed memory location. Note that these
written values do not have to be stored permanently—the emulator captures
the values as they are written. Also note that since multiple data values may
be written to the same location, it is imperative that track_il.c be compiled
withoul oplimization.

Task Creation, Switching, and Deletion Tracking

The routines in the taskHookLib library are provided by the RTOS vendor.
They allow a user to define a callout routine to be called every time tasks are
created, switched, or deleted. Upon calling the task switch routine, for
example, two parameters are set with pointers to the task control blocks of
the task being exited and the task being entered.

For the simplest task switch tracking, the callout routine need only consist of
two operations: one writing out the name of the task being exited, one writing
the name of the task being entered. This means the data area must have two
positions for task entry and exit.

For software performance analysis support, a little more needs to be done.
The software performance analyzer needs separate memory locations for the
start and end of each interval it is measuring. Each task to be measured must
have its own unique start and end memory locations. The callout routine
must write to these unique locations depending on which tasks are switching.
In the callout routine, the pointer value in a spare location in the task control
block is used as an index to a special task data buckets area where there is a
unique location for every task’s exit and entry. This data area is application
dependent and must be modified with the application’s task names. The
"rtos_edit_vxworks" script creates the file "tables.c" which defines these task
buckets.

Clock Ticks

In order to track clock ticks, it is assumed that the application uses the
tickAnnounce() OS service call. Clock tick information is automatically
available since this service call is instrumented.

The memory locations for tickAnnounce are placed at the end of the data
table so it may be simply included or excluded from the range of memory
accesses stored in the trace. This is done because of the large amount of
emulator trace depth that might be consumed tracking every clock tick.

94

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Selective Tracking

With the data area for service calls defined, it is possible to selectively track
certain functions. The only limiting factors are the resources of the
emulation bus analyzer which allow you to track any range (of any size) along
with any 8 distinct memory locations. The 8 locations may be consecutive
which, in essence, provides another range for needed cases. The calls must
be ones which are tooled.

OS Overhead Tracking

In order to get an estimate of an application’s efficiency, that is, to see how
much time is spent switching tasks as opposed to executing them, the HP
Software Performance Analyzer can display a dynamic histogram of the
approximate time spent in the OS kernel.

This is done by addding an instruction in the entry to each tooled service call
that writes to a location that represents the start of the OS interval. A second
instruction, executed after the return from the service call, writes to a
location that represents the end of the OS interval. The HP Software
Performance Analyzer measures the time between these writes as time spent
in the OS kernel.

Since service calls may be preemtpted by other service calls or tasks, the OS
interval is also ended whenever a task creation, switch, or deletion occurs. It
is assumed that any current service call has been preempted at this point,
and that a task will subsequently execute, which should not be counted as OS
time.

Note The OS_Time measurement thus shown in the Software Performance
Analyzer is an approximation of the actual value, and its accuracy cannot be
guaranteed. To decide on the appropriateness of the measurement for your
application, carefully read the measurement procedure described above.

Stack and Memory Tracking

Stack information on a per-task basis can be tracked dynamically as an
application runs. The necessary data is written out during the task switch
callout routine. For this to work, there are several things that must be done
before the application is running and switching tasks:

95

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

Note

1 The "task buckets" in the task table must be filled with the names of any
of application’s tasks that are to be tracked. This informs the task switch
callout routine to save the task’s stack values.

2 The task start callout routine will save several data items: the task name,
the memory locations in the Task Control Block that hold the stack
pointer values, and the task bucket’s address. The data is written to a
special area in the general data area so the dynamic stack information
can be captured and seen in the trace display at startup time.

Once the application is switching tasks, the task switch callout routine uses
data in the task control block to determine various stack values. The stack
data can then be written out and interpreted by the RTOS inverse assembler
to display the stack information on exit from a task and entry to a task.

User-Defined Areas

Near the end of the general data table is a set of user-definable locations.
There are twelve locations which an application can use in any way. These
locations are intended to allow you to track other parts of an application
while simultaneously following the kernel activity.

A good example use of this facility would be to instrument the entry and exit
of your application’s interrupt service routines. By doing this, you could get a
histogram in the HP Software Performance Analyzer of the time spent in any
interrupt service routine.

If a write is done to any of these locations, the location is identified (user
number and entry or exit), and the captured data is displayed as a hex
number and, if possible, translated to ASCII characters. This allows easier
debugging.

If you are capturing on a range that includes any of the 12 user-defined
locations, all of these locations must be written to with integer writes in order
for the trace display to work correctly.

RTOS Symbol Names

When your application includes the instrumented service calls, the data area
included has many global symbol names. In order to keep these names from

96

Chapter 5: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

conflicting with your application’s symbol names, the symbols all have one of
three standard prefixes: "HPOS_", "HP_RTOS_" or "_HPOS_".

The data table contents may be examined in detail by viewing the file
"track_os.c". The task table contents may be examined in detail by viewing
the file "tables.c". This file will be created in the working directory from
which "rtos_edit_vxworks" is executed.

97

Chapter 5: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

How OS Service Calls are Captured and
Displayed

The RTOS Measurement Tool uses the emulation bus analyzer and software
performance analyzer to capture operating system software activity in
real-time. The captured data is actually a series of memory writes to a data
table. These writes can contain encoded information about an OS service call
that was just executed or a task switch that just occurred.

When an RTOS action key is pressed in the emulator/analyzer interface, a
command file sets up the analyzer to capture the writes to the data table. By
setting up the analyzer to capture only writes to selected areas of the data
table, you can track specific OS activity or look for a specific sequence of
activity.

Inverse Assembler

In the same way that bus cycle information is decoded into assembly
language mnemonics in a normal trace display, writes to the data table are
decoded into OS service call mnemonics in the RTOS trace display. The
software mechanism that decodes information captured by the emulation bus
analyzer is called an Inverse Assembler (1A).

A short example should help. First, let’s assume the segment of a user’s

application that makes an OS service call looks as follows:

SEM_ID my_semaphore;
my_timeout = FOREVER;

éemTake(my_semaphore, my_timeout);

The function "semTake()" is an OS service call that requests a specific
semaphore.

Instrumented Library Writes to the Data Table

Because the user has substituted the HP instrumented interface library in
place of the original C calls, additional code will execute. This code simply

98

Chapter 5: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

writes information to the data table that identifies the OS service call being
executed, the parameters being passed into it, and upon return, writes out
the return values from the OS kernel.

Data Table Writes Captured by Analyzer

By clicking on an action key (or running a command file), the emulation bus
analyzer is automatically set up to capture memory writes to the data table.
The captured data represents the flow of activity into and out of the OS
kernel through OS service calls. For the example above, the inverse
assembler would decode the captured data and display it as:

> semTake(SEM_ID=FE68CH, timeout=-1)
<- semTake(STATUS=0K)

Parameters Displayed with Mnemonics

Using the example above, a few more details of inverse assembly can be
described. First, you can see that the actual parameter values were captured
by the analyzer and are displayed in the trace. Note further that each
parameter is preceded by a mnemonic that indicates what the parameter is.
The semaphore ID parameter value is preceded with a " SEM_ID =". These
are the same parameter mnemonics that the OS vendor uses in their OS
manual. This allows very easy interpretation of the trace parameters without
needing to reference the OS manual.

MACRO definitions are generally not decoded. (In this example, this status is
of such frequent usage that it is decoded mnemonically). Negative decimal
numbers are decoded into a number with a minus (-) sign. (That is, a wait
forever would be displayed as a -1 rather than a FFFFFFFFH).

99

Chapter 5: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

Service Call Entry and Exit and Task Switches

Another point of interest is the entry (->) and exit (<-) arrows. This is where
an RTOS trace most greatly differs from a normal source code trace.

Since a real-time OS is used in part to manage application execution at a
higher level, it has the capability to switch execution from one task to
another whenever any OS service call is executed. This may happen for any
number of reasons based on changing task priorities, the sending and waiting
for messages at queues, or a task using up a given time slice.

Given this behavior, application code that calls an OS service call may not
immediately return from that service call but may instead begin executing
code in another task. For example, when the "semTake()" OS service call in
the previous trace example requested a semaphore, if another task of higher
priority was waiting for the same semaphore, then that task would now
resume executing and the trace would look something like the following;:

----Next Task: (name='Phi4’)
-> semTake(SEM_ID=FE68CH, timeout=-1)
---Exited Task: (hame="Phi4’)
---Next Task: (name='Phi0’)
<- semTake(STATUS=0K)
-> taskDelay(ticks=2)

You can see that task Phi4, which sent the semaphore request has now exited
and task Phi0, which had been waiting for a semaphore with the "semTake()"
OS service call, has now started up again.

This example illustrates a difficulty with tracking semaphores in VxWorks.
Since the semTake() return does not identify which semaphore was taken,
you need to look at the call to semTake() which was made by task Phi0. The
semTake() return to a task must be paired up with the corresponding
semTake() call for that same task. It should not be assumed that it is the
same semaphore that task Phi4 was waiting for. The RTOS displays the
activity in the correct time sequence, but it cannot identify the semaphore
from the data in the return parameter.

Inverse Assemblers are Tailored to the OS

Note that the examples above use the inverse assembler for the VxWorks
real-time OS. Each RTOS Measurement Tool has a unique inverse assembler
that is tailored to the particular real-time OS.

100

Part 3

Installation Guide

Instructions for installing and configuring the product.

101

Part3

102

Installation

103

Installation

This chapter describes the installation of RTOS emulation software that runs
on UNIX%o workstations.

The RTOS emulation product is an extension to the HP 64700 Series
emulator and Graphical User Interface (or Softkey Interface) products.

If you have ordered the emulator, interface, and RTOS emulation products
together (or just the interface product and the RTOS emulation product), the
software products are on the same media. In this case, refer to the
installation instructions in your Graphical User Interface User’s Guide.

If you have ordered the emulator interface and RTOS emulation products
separately, install the emulator interface first. Then, install the RTOS
emulation product using the instructions in this chapter.

This chapter shows you how to:
e Install HP 9000 software.
e Install Sun SPARCsystem software.

When the Real-Time OS Measurement Tool is installed, you will have an
enhanced emulation window with two additional entries available in the
File - Emul700 pulldown menu: VxWorks Emulator/Analyzer ... and
VxWorks Performance Analyzer These entries will bring up a new
emulation window and bring up a Performance Analyzer window, each with
RTOS action keys defined. You can do anything in these windows that you
would normally do.

104

Chapter 6: Installation
To install HP 9000 software

To install HP 9000 software

Perform the following steps to install HP 64700 Series software on the
HP 9000 Workstation:

Check the HP-UX operating system version

HP 64700 Series software requires an HP-UX operating system version of
7.03 or greater. To determine the version of your HP-UX operating system,
enter the command:

uname -a <RETURN>

If the version number of the HP-UX operating system is less than 7.03, you

must update the operating system to 7.03 or higher before you can use the
RTOS emulation product.

Refer to the "Updating HP-UX" chapter of the HP-UX System
Administration Tasks manual for detailed information on updating your
System.

Become the root user on the system you want to update.
Make sure the tape’s write-protect screw points to SAFE.

Put the "HP 64700 Series Products" update tape in the tape drive that
will be the "source device".

Be sure that the tape drive BUSY and PROTECT lights are on. If
either the PROTECT or BUSY light is off, check the tape’s
write-protect screw or the tape drive for proper operation. The tape
drive will condition the tape for about three minutes or less for
shorter tapes.

When the BUSY light stays off for at least 10 seconds, start the update
program by typing:

/etc/update

105

Chapter 6: Installation
To install HP 9000 software

7

10

11

When the HP-UX Update Utility Main Menu screen appears, make
sure that the source and destination devices are correct. The
defaults are:

/dev/update.src (for Series 300 and 400 Workstations)

/ (for the destination directory)

If you do not use the defaults, change the "source device" and/or
"destination directory" as appropriate.

Select Load Everything from Source Media when your
source and destination directories are correct.

To begin the update, press the softkey <Select ltem> . At the next
menu, press the softkey <Select Item> again. Answer the last
prompt with

y

and press <RETURN>. It takes about 10 minutes to read the tape.

When the installation is complete, read /tmp/update.log to see the
results of the update.

106

Chapter 6: Installation
To install Sun SPARCsystem software

To install Sun SPARCsystem software

Refer to the Software Installation Guide operating notice (included with
this binder) for instructions on installing software on Sun SPARCsystem
computers.

If you are installing a Graphical User Interface product, refer to the Graphical
User Interface User’s Guide for additional software installation instructions.

107

108

Glossary

bucket a portion of a memory area to which information about a particular
task is saved.

callout routine a mechanism ("hook") provided by the real-time OS that
allows you to execute a routine at certain points in the application, for
example, when a task is created or deleted, or when a task switch occurs.

data table the table to which real-time OS information is written while the
application executes in real time. The emulation bus analyzer captures
writes to the data table and decodes the stored trace information in an
easy-to-read display.

device call a service call that communicates with an I/O device.

emulation bus analyzer the analyzer that captures information on the
processor bus as programs execute. This analyzer is used to capture writes
to the data table which are then decoded to provide RTOS measurement
information.

instrumented service call library an interface library with callout
routines and wrapper routines that write to the data table and save
information in task buckets.

inverse assembler software that decodes hexadecimal machine code
values into mnemonics that are easy to read. In the case of the RTOS
measurement tool, writes to the data table are decoded into real-time OS

mnemonics.

RTOS real-time operating system.
service call a call, made by a task, to a function in the real-time OS kernel.

software performance analyzer an instrument that records information
about events that occur during program execution. The software

109

Glossary
performance analyzer is used to compare time spent in different program
modules.

task an independent program or process that executes under the real-time
operating system.

110

Index

about, trace command option, 83

action keys, 86
actionKeys.numColumns, X resource, 87
actionKeysSub.keyDefs, X resource, 86
after, trace command option, 83

background emulation monitor, 24

before, trace command option, 83
break_on_trigger (in trace command), 38-39
bucket, 18, 96, 109

buckets, 94

callout routine, 94, 109
callout routines
task switch, 95-96
callout.c file, 21
calls,, tooled, 33
clock ticks, 40, 81, 94
clocks
tracking, 48
command files, 85
coordinated measurements, 76-77
count histogram display of task events, 71
custom RTOS measurements, 81-88
customize script, 14

data bus width, 84
data table, 81, 109
description, 81
device call, 109
device calls, 36
disable, trace command option, 84
duration (function), show histogram, 74
dynamic memory usage, tracking, 59-61

emul700 command, 23
emulation bus analyzer, 5, 14, 30, 76, 81, 99, 109

111

resources of, 95
emulation monitor, 24
emulrtos, emulator startup script, 23
enable, trace command option, 84
environment variables, 23
HP64000, 17
HP64KPATH, 85
PATH, 23
error checking information, 81-82
error return, 38-39
events (SPA)
defining for tasks, 68
table display, 70
events (task)
count histogram display, 71
time histogram display, 69

F files
callout.c, 21
RTOS source, 17
S_init, 20
tables.c, 18, 21
track_il.c, 21, 81
track_os.c, 21
track_os.s, 81
find_sequence, trace command option, 83
foreground emulation monitor, 24
function
any task using a, 58
specific task using a, 55
static, 55-56, 58
function duration histogram, show normal, 74

G glossary, 109-110

H histogram
normal function duration, 74
task events, 75
user events, 75
histogram display of task events
count, 71
time, 69

112

Index

HP64000 environment variable, 17
HP64KPATH environment variable, 85
HP64RTOSIAL environment variable, 23
HPIL.h file, 21

installation, 104

HP 9000 software, 105-106

Sun SPARCsystem, 107
instrumented service call library, 98, 109
interface library, 98
intrusion, 93
inverse assembler, 81, 92, 96, 98, 100, 109
invocations (service call), show table, 73

makefile, 27

Measure_Ovrhd in SPA, 69

memory calls, 61

memory usage, 95

memory usage, tracking, 59-61

message, from specific task to specific queue, 53
mnemonics in RTOS trace display, 99

monitor, emulation, 24

non-RTOS states, 81, 83

only, trace command option, 83
operating system versions supported, 105
optimization, 94

OS overhead tracking, 95

OS_Time in SPA, 69

overflow, task time, 76

overhead (OS) tracking, 95

parameters

service call tracking, 94
PATH environment variable, 23
prepare for RTOS measurements, 14

queue calls, 42-43

real-time runs, emulator restriction, 24
requirements, 14

RTOS, 109

RTOS information, trace commands to capture, 83

113

Index

RTOS measurement tool
how it works, 92
overview, 4
testing, 26

RTOS measurements
creating your own, 81-88
emulator/analyzer, 30
preparing for, 14
software performance analyzer, 66

RTOS source files, 17

RTOS symbol names, 96

rtos_edit script, 18, 78

S s_init file, 20
scripts
customize, 14
rtos_edit, 18, 78
selective tracking, 95
semaphore calls, 44-45
semaphore, received by specific task, 54
semaphores, 100
service calls, 36, 40, 81, 93, 98-100, 109
entry and exit, 100
parameters, 82
show table of invocations, 73
single call tracking, 46
two call tracking, 47
software performance analyzer, 5, 14, 66, 94-95, 109
testing, 26
software versions, 105
source files, RTOS, 17
SPA events
See events (SPA)
stack activity, 37, 40
stack information, 81
stack usage, 60, 95
storage qualifiers in trace commands, 83
supported system versions, 105
symbol names, 96

T table display of SPA events, 70
table of service call invocations, 73

114

Index

tables.c file, 18, 21
Task Control Block, 96
task events histogram, 75
task names
emulation bus analyzer, 84
task list control file, 19
task start callout routine, 81
task switch callout routine, 81, 95-96
task switches, 40, 82, 94, 100
in memory call tracking, 61
in queue call tracking, 43
in semaphore call tracking, 45
specific task switch tracking, 52
task time overflow, 76
tasks, 110
defining, 18
four task tracking, 51
naming, 18
single task tracking, 50
SPA data for specific task, 72
SPA event definition, 68
time interval measurements, 68-75
time histogram display of task events, 69
time interval measurements, 68-75
time overflow, task, 76
time stamp, 31
timers
tracking, 48
tooled calls, 33
trace commands
about option, 83
after option, 83
before option, 83
disable option, 84
enable option, 84
find_sequence option, 83
only option, 83
storage qualifier, 83
trace commands to capture RTOS information, 83
trace display
mnemonics in, 99

115

Index

normal, 63
RTOS, 64
traces, displaying, 62-64
track_il.c file, 21, 81
track_os.c file, 21
track_os.s file, 81
tracking
memory, 95
OS overhead, 95
selective, 95
stack, 95
trig2 break, 77
trig2 signal, 76
disabling, 77

U user events histogram, 75
user-defined areas in data table, 96
user-defined data table locations, 81-82

V variable
any task accessing a, 58
specific task accessing a, 56

X Xresources, 87
actionKeys.numColumns, 87
actionKeysSub.keyDefs, 86

116

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of installation.
During the warranty period, HP will, at its option, either repair or replace
products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and
taxes for products returned to HP from another country. HP warrants that its
software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the instrument, or
software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the

implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

	Measurements for the VxWorks Real-Time Operating System
	In This Book
	Contents
	User’s Guide
	Preparing Your Application for RTOS Measurements
	Making RTOS Measurements with the Emulator/Analyzer
	Making RTOS Measurements with the SPA
	Customizing the RTOS Measurement Tool

	Concept Guide
	How the RTOS Measurement Tool Works

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

