
Graphical User Interface User’s Guide

MC68360/68EN360
Emulator/Analyzer
(HP 64780A)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, 1996 Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

MS-DOS(R) is a U.S. registered trademark of Microsoft Corporation.

UNIX(R) is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

ii

Printing History

New editions are complete revisions of the manual. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B3091-97000, December 1993

Edition 2 B3091-97001, April 1996

Safety and Certification and Warranty

Safety information, and certification and warranty information can be found at the
end of this manual on the pages before the back cover.

iii

The HP 64780A Emulator

Description

The HP 64780A emulator supports the Motorola 68360 and 68EN360
microprocessor operating at clock speeds up to 25 MHz.

The emulator supports both 5V and 3.3V operation. The emulator plugs directly
into a PGA socket, and it can be plugged into a PQFP target system using optional
accessories.

The emulator plugs into the modular HP 64700 instrumentation card cage and
offers 80 channels of processor bus analysis with the HP 64794A or HP 64704A
emulation-bus analyzer. Up to eight megabytes of emulation memory may be
installed on the probe. High performance download is achieved through the use of
an optional LAN or RS-422 interface. A pair of RS-232 ports and a
firmware-resident interface allow debugging of a target system at remote locations.

For software development, the HP AxCASE environment is available on SUN
SPARCsystems and on HP workstations. This environment includes an ANSI
standard C compiler, assembler/linker, a debugger, the HP Software Performance
Analyzer that allows you to optimize your product software, and the HP Branch
Validator for test suite verification. The C compiler, assembler/linker, and
debugger are also available for MS-DOS systems.

Language support is also available from several third-party vendors. This capability
is provided through the HP 64700’s ability to consume several industry standard
output file formats.

Ada language support is provided on HP 9000 workstations by third-party vendors
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive, real-time
debugging in-circuit or out-of-circuit.

iv

Features

HP 64780A Emulator

• 25 MHz active probe emulator
• 5V and 3.3V operation
• No wait states to target memory up to 25 MHz
• Fast termination cycles to target memory up to 25 MHz
• Unlimited software breakpoints
• Symbolic support
• 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA

package
• Background and foreground monitors
• Simulated I/O with workstation interfaces
• Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex

File formats directly. (Symbols are available with IEEE-695 and HP-OMF
formats.)

• Multiprocessor emulation
– synchronous start of 32 emulation sessions
– cross triggerable from another emulator, logic analyzer, or oscilloscope

• Demo board and self test module included

Emulation-bus analyzer

• 80-channel emulation-bus analyzer
• Post-processed dequeued trace with symbols
• Eight events, each consisting of address, status, and data comparators
• Events may be sequenced eight levels deep and can be used for complex

trigger qualification and selective store

Emulation memory

• Up to 8 Mbytes of emulation memory
• All emulation memory is dual-ported
• Mapping resolution is 256 bytes
• No wait states required for emulation memory for processor speeds up to

25 MHz
• Fast termination cycles to emulation memory supported up to 10 MHz

v

In This Book

This manual shows you how to use the HP 64780A emulator through its Graphical
User Interface for the MC68360 microprocessor. It is divided into the following
parts:

Part 1 contains the Quick Start Guide. It shows you how to quickly become
productive with the emulation system.

Part 2 explains how to accomplish common tasks, often requiring use of several
emulator/analyzer commands together. This part assumes you know how to use the
commands to control the emulator. Instructions are given to help you connect the
emulation probe into a target system, get the desired interface on screen, and use
the emulator/analyzer commands to control the emulation processor while making
emulation measurements. This part also shows you how to use the emulation-bus
analyzer for debugging, use the Software Performance Measurement Tool supplied
with the emulator, and couple two or more emulators to coordinate measurements
involving more than one processor.

Part 3 shows you how to change the appearance or behavior of the Graphical User
Interface, and describes in detail each of the commands available in the
emulator/analyzer, and lists each of the messages you may see while using the
MC68360 emulator/analyzer, along with suggested corrective actions.

Part 4 of this book shows you how to install the Graphical User Interface and
Softkey Interface software, and how to update your emulator/analyzer firmware
with the progflash command, and display current firmware version information.

The Hewlett-Packard M68360 Emulator/Analyzer Installation/Service/Terminal
Interface User’s Guide shows you how to install the emulator hardware into the
card cage, install SRAM modules and covers on the emulation probe, and how to
connect the probe to the demo board and verify performance of the emulation
hardware. It also provides a thorough analysis of possible problems and their
solutions. It also lists the complete specifications and characteristics of the
M68360 emulator. It shows you how to connect the emulator into an MC68360
target system and overcome differences between the specifications and
characteristics of the target microprocessor and those of the emulator.

vi

Contents

Part 1 Quick Start Guide

1 Getting Started

The Emulator/Analyzer Interface — At a Glance 4
The Softkey Interface 4
Softkey Interface Conventions 5
The Graphical User Interface 6
Graphical User Interface Conventions 8

The Getting Started Tutorial 11
Step 1. Start the demo 12
Step 2: Display the program in memory 13
Step 3: Run from the transfer address 14
Step 4: Step high-level source lines 15
Step 5: Display the previous mnemonic display 16
Step 6: Run until an address 17
Step 7: Display data values 18
Step 8: Display registers 19
Step 9: Step assembly level instructions 20
Step 10: Trace the program 21
Step 11: Display memory at an address in a register 23
Step 12: Exit the emulator/analyzer interface 24

Solving Problems 24

vii

Part 2 Using The Emulator

2 Plugging into a Target System

Connecting the Emulator to the Target System 29
Step 1. Turn OFF power 30
Step 2. Connect the probe to the target system 31
Step 3. Turn ON power 32

Plugging into the Motorola QUADS Target System 33
To connect the emulator to the Motorola QUADS 34

3 Starting and Exiting HP 64700 Interfaces

Starting the Emulator/Analyzer Interface 41
To start the emulator/analyzer interface 41
To start the interface using the default configuration 42
To run a command file on interface startup 43
To display the status of emulators 43
To unlock an interface that was left locked by another user 44

Opening Other HP 64700 Interface Windows 45
To open additional emulator/analyzer windows 45
To open the high level debugger interface window 46
To open the software performance analyzer (SPA) interface window 46

Exiting HP 64700 Interfaces 47
To close an interface window 47
To exit a debug/emulation session 48

4 Entering Commands

Using Menus, the Entry Buffer, and Action Keys 51
To choose a pulldown menu item using the mouse (method 1) 52
To choose a pulldown menu item using the mouse (method 2) 53
To choose a pulldown menu item using the keyboard 53
To choose pop-up menu items 55
To place values into the entry buffer using the keyboard 56

Contents

viii

To copy-and-paste to the entry buffer 56
To recall entry buffer values 59
To use the entry buffer 59
To copy-and-paste from the entry buffer to the command line entry area 60
To use the action keys 61
To use dialog boxes 61
To access help information 65

Using the Command Line with the Mouse 66
To turn the command line on or off 66
To enter a command 67
To edit the command line using the command line pushbuttons 68
To edit the command line using the command line pop-up menu 69
To recall commands 70
To get help about the command line 70

Using the Command Line with the Keyboard 71
To enter multiple commands on one command line 71
To recall commands 72
To edit commands 72
To access on-line help information 73

Using Command Files 74
To start logging commands to a command file 77
To stop logging commands to a command file 77
To playback (execute) a command file 78

Using Pod Commands 79
To display the pod commands screen 80
To use pod commands 80

Forwarding Commands to Other HP 64700 Interfaces 81
To forward commands to the high level debugger 81
To forward commands to the software performance analyzer 82

Contents

ix

5 Configuring the Emulator

Using the Configuration Interface 85
To start the configuration interface 86
To modify a configuration section 88
To apply configuration changes to the emulator 90
If apply to emulator fails 91
To store configuration changes to a file 92
To change the configuration directory context 93
To display the configuration context 93
To access help topics 94
To access help for a configuration item in a dialog box 94
To exit the configuration interface 95
To load an existing configuration file 95

Verifying the Emulator Configuration 96
To display information about chip selects 96
To display information about bus interface ports 97
To display information about the memory map 97
To display information about the reset mode configuration 98
To review the upper address mode of the present configuration 98
To display information about the present clock input mode 99
To display assembly language instructions for setting up the SIM 99
To check for configuration inconsistencies 100
To verify the emulator configuration 101

6 Using the Emulator

Using the EMSIM Registers 105
To view the SIM register differences 107
To synchronize to the 68360 SIM registers 107
To synchronize to the EMSIM registers 108
To restore default values in the EMSIM registers 108
To assign an MBAR value for the M68360 register set 109

Loading and Storing Absolute Files 110
To load absolute files 110
To load absolute files without symbols 111
To store memory contents into absolute files 111

Contents

x

Using Symbols 112
To load symbols 112
To display global symbols 113
To display local symbols 114
To display a symbol’s parent symbol 118
To copy-and-paste a full symbol name to the entry buffer 119

Using Context Commands 120
To display the current directory and symbol context 121
To change the directory context 122
To change the current working symbol context 122

Executing User Programs 123
To run programs from the current PC 123
To run programs from an address 124
To run programs from the transfer address 124
To run programs from reset 124
To run programs from soft reset 125
To run programs until an address 125
To stop (break from) user program execution 126
To step high-level source lines 126
To step assembly-level instructions 127
To reset the emulation processor 128

Using Software Breakpoints 129
To display the breakpoints list 130
To enable/disable breakpoints 131
To set a permanent breakpoint 133
To set a temporary breakpoint 135
To set all breakpoints 135
To deactivate a breakpoint 136
To re-activate a breakpoint 136
To clear a breakpoint 138
To clear all breakpoints 140

Displaying and Modifying Registers 141
To display register contents 141
Obtaining mnemonic displays of the 68360 registers using the Action Keys 142
To modify register contents 144
To modify registers using the Action Keys 145

Contents

xi

Displaying and Modifying Memory 146
To display memory 146
To display memory in mnemonic format 147
To return to the previous mnemonic display 147
To display memory in hexadecimal format 148
To display memory at an address 149
To display memory repetitively 150
To modify memory 150

Displaying Data Values 151
To display data values 151
To clear the data values display and add a new item 152
To add items to the data values display 152

Changing the Interface Settings 153
To set the source/symbol modes 153
To set the display modes 154

Using System Commands 156
To set UNIX environment variables 156
To display the name of the emulation module 157
To display the event log 157
To display the error log 158
To edit files 158
To copy information to a file or printer 162
To save peripheral register settings to a file 164
To load peripheral register settings from a file 164
To remove all temporary files 165
To generate boot code for configuring the SIM60 unit 165
To open a terminal emulation window 165

Using emulator support for the M68360 Companion Mode 166
Tasks you may wish to perform when using the M68360 companion Mode 167
For more information 169

Using Simulated I/O 170
To display the simulated I/O screen 170
To use simulated I/O keyboard input 171

Contents

xii

Using Basis Branch Analysis 172
To store BBA data to a file 172

7 Using the Emulation-Bus Analyzer

Power of the Emulation-Bus Analyzer 174

Making Simple Trace Measurements 175
To start a trace measurement 176
To stop a trace measurement 177
To display the trace list 177
To display the trace status 179
To change the trace depth 180
To modify the last trace command entered 181
To define a simple trigger qualifier 182
To specify a trigger and set the trigger position 183
To define a simple storage qualifier 184
If you are having problems tracing 185

Displaying the Trace List 186
To disassemble the trace list 189
To specify trace disassembly options 190
To specify trace dequeueing options 192
To display the trace without disassembly 194
To display symbols in the trace list 195
To display source lines in the trace list 197
To change the column width 198
To select the type of count information in the trace list 199
To offset addresses in the trace list 201
To reset the trace display defaults 202
To move through the trace list 202
To display the trace list around a specific line number 203
To change the number of states available for display 204
To display program memory associated with a trace list line 205
To open an edit window into the source file associated with a trace list line 205

Contents

xiii

Making Complex Trace Measurements 206
To use address, data, and status values in trace expressions 210
To enter a range in a trace expression 211
To use the sequencer 212
To specify a restart term 213
To specify trace windowing 214
To specify both sequencing and windowing 215
To count states or time 216
To define a storage qualifier 217
To define a prestore qualifier 218
To trace activity leading up to a program halt 219
To modify the trace specification 220
To repeat the previous trace command 221
To capture a continuous stream of program execution no matter how large your
program 222

Saving and Restoring Trace Data and Specifications 225
To store a trace specification 225
To store trace data 226
To load a trace specification 227
To load trace data 228

8 Making Software Performance Measurements

Activity Performance Measurements 231
To set up the trace command for activity measurements 233
To initialize activity performance measurements 234
To interpret activity measurement reports 238

Duration Performance Measurements 246
To set up the trace command for duration measurements 247
To initialize duration performance measurements 249
To interpret duration measurement reports 251

Running Measurements and Creating Reports 255
To run performance measurements 255
To end performance measurements 256
To create a performance measurement report 257

Contents

xiv

9 Making Coordinated Measurements

Setting Up for Coordinated Measurements 263
To connect the Coordinated Measurement Bus (CMB) 263
To connect to the rear panel BNC 265

Starting/Stopping Multiple Emulators 267
To enable synchronous measurements 267
To start synchronous measurements 268
To disable synchronous measurements 268

Using Trigger Signals 269
To drive the emulation analyzer trigger signal to the CMB 272
To drive the emulation analyzer trigger signal to the BNC connector 272
To break emulator execution on signal from CMB 273
To break emulator execution on signal from BNC 273
To arm the emulation analyzer on signal from CMB 274
To arm the emulation analyzer on signal from BNC 274

Contents

xv

Part 3 Reference

10 Setting X Resources
To modify Graphical User Interface resources 280
To use customized scheme files 284
To set up custom action keys 286
To set initial recall buffer values 287
To set up demos or tutorials 289

11 Emulator/Analyzer Interface Commands
How Pulldown Menus Map to the Command Line 294
How Pop-up Menus Map to the Command Line 299
Syntax Conventions 301

Commands 302
break 303
bbaunld 304
cmb_execute 305
copy 306
copy local_symbols_in 309
copy memory 310
copy registers 312
copy trace 313
display 314
display configuration_info 316
display data 319
display global_symbols 322
display local_symbols_in 323
display memory 324
display registers 328
display simulated_io 329
display software_breakpoints 330
display trace 331
end 335
--EXPR-- 336
FCODE 339
forward 341
help 342
load 344

Contents

xvi

log_commands 346
modify 347
modify configuration 348
modify keyboard_to_simio 349
modify memory 350
modify register 353
modify software_breakpoints 354
performance_measurement_end 356
performance_measurement_initialize 357
performance_measurement_run 359
pod_command 360
QUALIFIER 362
RANGE 364
reset 366
run 367
SEQUENCING 369
set 371
specify 376
STATE 378
step 380
stop_trace 382
store 383
--SYMB-- 385
sync_sim_registers 392
trace 393
TRIGGER 396
wait 398
WINDOW 400

12 Emulator Error Messages

Emulator error messages 404

Contents

xvii

Part 4 Concept Guide

13 Concepts of the EMSIM and EMRAM

Concepts of the EMSIM and EMRAM 445
Concepts of the EMRAM 447
Concepts of Show Cycles 447
EMSIM/EMRAM Utility Command 448

Contents

xviii

Part 5 Installation and Service Guide

14 Installation

Connecting the HP 64700 to a Computer or LAN 456

Installing HP 9000 Software 457
Step 1. Install the software from the media 457
Step 2. Verify the software installation 459
Step 3a. Start the X server and the Motif Window Manager (mwm) 460
Step 3b. Start HP VUE 460
Step 4. Set the necessary environment variables 461

Installing Sun SPARCsystem Software 463
Step 1. Install the software from the media 463
Step 2. Start the X server and OpenWindows 464
Step 3. Set the necessary environment variables 464
Step 4. Verify the software installation 466
Step 5. Map your function keys 467

Verifying the Installation 468
Step 1. Determine the logical name of your emulator 468
Step 2. Start the interface with the emul700 command 469
Step 3. Exit the Graphical User Interface 472

15 Installing/Updating Emulator Firmware
To update emulator firmware with "progflash" 475
To display current firmware version information 478
If there is a power failure during a firmware update 479

Glossary

Index

Contents

xix

xx

Part 1

Quick Start Guide

1

Quick Start Guide

In This Part

This part describes how to quickly become productive with the emulation system.

Part 1

2

1

Getting Started

3

The Emulator/Analyzer Interface — At
a Glance

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface can also be the Softkey Interface which is provided
for several types of terminals, terminal emulators, and bitmapped displays. When
using the Softkey Interface, commands are entered from the keyboard.

The Softkey Interface

Display area.

Status line.

Command line.

Display area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated I/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log. You can
use the UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

Chapter 1: Getting Started

4

Status line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log.

Command line. Commands are entered on the command line by pressing
softkeys (or by typing them in) and executed by pressing the Return key. The Tab
and Shift-Tab keys allow you to move the cursor on the command line forward or
backward. The Clear line key (or CTRL-e) clears from the cursor position to the
end of the line. The CTRL-u key clears the whole command line.

Softkey Interface Conventions

Example Softkey Interface commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax which
may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands which follow
the "$" are entered at the UNIX prompt.

<RETURN> The carriage return key.

Chapter 1: Getting Started

5

The Graphical User Interface

Menu bar

Action keys

Entry buffer

Entry buffer recall
button.

Display area.

Scroll bar.

Status line.

Command line.

Command line entry
area.

Softkey pushbuttons

Command buttons. Includes command
recall button.

Cursor buttons for command line area
control.

Menu Bar. Provides pulldown menus from which you select commands. When
menu items are not applicable, they appear half-bright and do not respond to mouse
clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons and
define the action to be performed.

Chapter 1: Getting Started

6

Entry Buffer. Wherever you see "()" in a pulldown menu, the contents of the
entry buffer are used in that command. You can type values into the entry buffer,
or you can cut and paste values into the entry buffer from the display area or from
the command line entry area. You can also set up action keys to use the contents of
the entry buffer.

Entry Buffer Recall Button. Allows you to recall entry buffer values that have
been predefined or used in previous commands. When you click on the entry
buffer Recall button, a dialog box appears that allows you to select values.

Display Area. Can show memory, data values, analyzer traces, registers,
breakpoints, status, simulated I/O, global symbols, local symbols, pod commands
(the emulator’s underlying Terminal Interface), error log, or display log.

Whenever the mouse pointer changes from an arrow to a hand, you can press and
hold the select mouse button to access pop-up menus.

Scroll Bar. A "sticky slider" that allows navigation in the display area. Click on
the upper and lower arrows to scroll to the top (home) and bottom (end) of the
window. Click on the inner arrows to scroll one line. Drag the slider handle up or
down to cause continuous scrolling. Click between the inner arrows and the slider
handle to page up or page down.

Status Line. Displays the emulator and analyzer status. Also, when error and
status messages occur, they are displayed on the status line in addition to being
saved in the error log. You can press and hold the select mouse button to access
the Status Line pop-up menu.

Command Line. The command line area is similar to the command line in the
Softkey Interface; however, the graphical interface lets you use the mouse to enter
and edit commands.

• Command line entry area. Allows you to enter commands from the
command line.

• Softkey pushbuttons. Clicking on these pushbuttons, or pressing softkeys,
places the command in the command line entry area. You can press and hold
the select mouse button to access the Command Line pop-up menu.

• Command buttons (includes command recall button). The command Return
button is the same as pressing the carriage return key — it sends the command
in the command line entry area to the emulator/analyzer.

Chapter 1: Getting Started

7

The command Recall button allows you to recall previous or predefined
commands. When you click on the command Recall button, a dialog box
appears that allows you to select a command.

• Cursor buttons for command line area control. Allow you to move the
cursor in the command line entry area forward or backward, clear to the end of
the command line, or clear the whole command line entry area.

You can choose not to display the command line area by turning it off. For the
most common emulator/analyzer operations, the pulldown menus, pop-up menus,
and action keys provide all the control you need. Choosing menu items that require
use of the command line will automatically turn the command line back on.

Graphical User Interface Conventions

Choosing Menu Commands

This chapter uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

Choose File→Load→Configuration

means to first display the File pulldown menu, then display the Load cascade
menu, then select the Configuration item from the Load cascade menu.

Based on this explanation, the general rule for interpreting this notation can be
stated as follows:

• The leftmost item in bold is the pulldown menu label.

• If there are more than two items, then cascade menus are involved and all
items between the first and last item have cascade menus attached.

• The last item on the right is the actual menu choice to be made.

Chapter 1: Getting Started

8

Mouse Button and Keyboard Bindings

Because the Graphical User Interface runs on different kinds of computers, which
may have different conventions for mouse buttons and key names, the Graphical
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Generic
Button
Name

Bindings:

DescriptionHP 9000
Sun
SPARCsystem

paste left left Paste from the display
area to the entry buffer.

command pastemiddle1 middle1 Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
pop-up menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton
select

left left Actuates pushbuttons
outside of the display
area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

Chapter 1: Getting Started

9

The following tables show the default keyboard bindings.

Keyboard Key Bindings

Generic Key Name HP 9000 Sun SPARCsystem

menu select extend char extend char

insert insert char insert char

delete delete char delete char

left-arrow left arrow left arrow

right-arrow right arrow right arrow

up-arrow up arrow up arrow

down-arrow down arrow down arrow

escape escape escape

TAB TAB TAB

Chapter 1: Getting Started

10

The Getting Started Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the emulator/analyzer interface. The tutorial examples presented in this
chapter make the following assumptions:

• The HP 64780 emulator and 80-channel analyzer are installed into the
HP 64700 Card Cage, the HP 64700 is connected to the host computer, and the
Graphical User Interface software has been installed as outlined in Chapter 14,
"Installation."

• The emulator is operating out-of-circuit (that is, plugged into the demo board,
not your target system).

• You have selected the appropriate clock module and installed it in the
emulator probe according to the instructions in the MC68360
Emulator/Analyzer (HP 64780A) Installation/Service/Terminal Interface
manual that was supplied with your emulator hardware.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental control
system. The program controls the temperature and humidity of a room requiring
accurate environmental control.

Depending of the version of the demo program you are using and of your compiler,
line numbers and memory locations may not match those shown in this manual.

Chapter 1: Getting Started

11

Step 1. Start the demo

A demo program and its associated files are provided with the Graphical User
Interface.

1 Change to the demo directory.

$ cd /usr/hp64000/demo/debug_env/hp64780 <RETURN>

Refer to the README file for more information on the demo program.

2 Check that "/usr/hp64000/bin" and "." are in your PATH environment variable. To
see the value of PATH:

$ echo $PATH <RETURN>

3 If the Graphical User Interface software is installed on a different type of computer
than the computer you are using, edit the "platformScheme" resource setting in the
"Xdefaults.emul" file.

For example, if the Graphical User Interface will be run on a HP 9000 computer
and displayed on a Sun SPARCsystem computer, change the platform scheme to
"SunOS".

4 Start the emulator/analyzer demo.

$ Startemul <logical_emul_name> <RETURN>

This script starts the emulator/analyzer interface (with a customized set of action
keys), loads a configuration file for the demo program, and then loads the demo
program.

The <logical_emul_name> in the command above is the logical emulator name
given in the HP 64700 emulator device table file (/usr/hp64000/etc/64700tab.net).

Chapter 1: Getting Started
Step 1. Start the demo

12

Step 2: Display the program in memory

1 If the symbol "main" is not already in the entry buffer, move the mouse pointer to
the entry buffer (notice the flashing I-beam cursor) and type in "main".

2 Choose Display→Memory→Mnemonic ().

Or, using the command line, enter:

display memory main mnemonic <RETURN>

The default display mode settings cause source lines and symbols to appear in
displays where appropriate. Notice you can use symbols when specifying
expressions. The global symbol "main" is used in the command above to specify
the starting address of the memory to be displayed.

Chapter 1: Getting Started
Step 2: Display the program in memory

13

Step 3: Run from the transfer address

The transfer address is the entry address defined by the software development tools
and included with the program’s symbol information.

• Click on the Run Xfer til () action key.

Or, using the command line, enter:

run from transfer_address until main <RETURN>

Notice the message "Software break: <address>" is displayed on the status line and
that the emulator is "Running in monitor" (you may have to click the select mouse
button to remove temporary messages from the status line). When you run until an
address, a breakpoint is set at the address before the program is run.

Notice the highlighted bar on the screen; it shows the current program counter.

Chapter 1: Getting Started
Step 3: Run from the transfer address

14

Step 4: Step high-level source lines

You can step through the program by high-level source lines. The emulator
executes as many instructions as are associated with the high-level program source
lines.

1 To step a source line from the current program counter, click on the Step Source
action key.

Or, using the command line, enter:

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to the next
high-level source line.

2 Step into the "init_system" function by continuing to step source lines, either by
clicking on the Step Source action key, by clicking on the Again action key which
repeats the previous command, or by entering the step source command on the
command line.

Chapter 1: Getting Started
Step 4: Step high-level source lines

15

Step 5: Display the previous mnemonic display

• Click on the Disp Src Prev action key.

Or, using the command line, enter:

display memory mnemonic previous_display <RETURN>

This command is useful, for example, when you have stepped into a function that
you do not wish to look at—you can display the previous mnemonic display and
run until the source line that follows the function call.

Chapter 1: Getting Started
Step 5: Display the previous mnemonic display

16

Step 6: Run until an address

When displaying memory in mnemonic format, a selection in the pop-up menu lets
you run from the current program counter address until a specific source line.

• Position the mouse pointer over the line "proc_spec_init();", press and hold the
select mouse button, and choose Run Until from the pop-up menu.

Or, using the command line, enter:

run until main."main.c": line 98 <RETURN>

After the command has executed, notice the highlighted bar indicates the program
counter has moved to the specified source line.

Chapter 1: Getting Started
Step 6: Run until an address

17

Step 7: Display data values

1 Position the mouse pointer over "num_checks" in the source line that reads
"num_checks++;" and click the paste mouse button (notice "num_checks" is cut
and pasted into the entry buffer).

2 Click on the Disp Var () action key.

Or, using the command line, enter:

display data , num_checks int32 <RETURN>

The "num_checks" variable is added to the data values display and its value is
displayed as a 32-bit integer.

Chapter 1: Getting Started
Step 7: Display data values

18

Step 8: Display registers

You can display the contents of the processor registers.

• Choose Display→Registers→BASIC.

Or, using the command line, enter:

display registers <RETURN>

Chapter 1: Getting Started
Step 8: Display registers

19

Step 9: Step assembly-level instructions

You can step through the program one instruction at a time.

• To step one instruction from the current program counter, click on the Step Asm
action key.

Or, using the command line, enter:

step <RETURN>

Notice, when registers are displayed, stepping causes the assembly language
instruction just executed to be displayed.

Chapter 1: Getting Started
Step 9: Step assembly-level instructions

20

Step 10: Trace the program

When the analyzer traces program execution, it looks at the data on the emulation
processor’s bus and control signals at each clock cycle. The information seen at a
particular clock cycle is called a state.

When one of these states matches the "trigger state" you specify, the analyzer
stores states in trace memory. When trace memory is filled, the trace is said to be
"complete."

1 Click on the Recall button to the right of the entry buffer.

A selection dialog box appears. You can select from entry buffer values that have
been entered previously or that have been predefined.

2 Click on "main" in the selection dialog box, and click the "OK" pushbutton.

Notice that the value "main" has been returned to the entry buffer.

3 To trigger on the address "main" and store states that occur after the trigger, choose
Trace→After () .

Or, using the command line, enter:

trace after main <RETURN>

Notice the message "Emulation trace started" appears on the status line. This
shows that the analyzer has begun to look for the trigger state which is the address
"main" on the processor’s address bus.

4 Run the emulator demo program from its transfer address by choosing
Execution→Run→from Transfer Address.

Or, using the command line, enter:

run from transfer_address <RETURN>

Notice that now the message on the status line is "Emulation trace complete". This
shows the trigger state has been found and the analyzer trace memory has been
filled.

Chapter 1: Getting Started
Step 10: Trace the program

21

5 To view the captured states, choose Display→Trace.

Or, using the command line, enter:

display trace <RETURN>

The default display mode settings cause source lines and symbols to appear in the
trace list.

Captured states are numbered in the left-hand column of the trace list. Line 0
always contains the state that caused the analyzer to trigger.

Other columns contain address information, data values, opcode or status
information, and time count information.

Chapter 1: Getting Started
Step 10: Trace the program

22

Step 11: Display memory at an address in a
register

1 Click on the Disp @REG action key.

Or, using the command line, enter the name of the command file:

mematreg <RETURN>

A command file dialog box appears (or a prompt appears in the command line).

2 Move the mouse pointer to the dialog box text entry area, type "A7", and click on
the "OK" button.

Or, if the prompt is in the command line:

A7 <RETURN>

Chapter 1: Getting Started
Step 11: Display memory at an address in a register

23

Step 12: Exit the emulator/analyzer interface

• To exit the emulator/analyzer interface and release the emulator, choose
File→Exit→Released.

Or, using the command line, enter:

end release_system <RETURN>

Solving Problems

If you encounter problems when using the emulator/analyzer, refer to the chapter
titled "Solving Problems" in the MC68360 Emulator/Analyzer
Installation/Service/Terminal Interface Manual.

Chapter 1: Getting Started
Step 12: Exit the emulator/analyzer interface

24

Part 2

Using The Emulator

25

Making Measurements

When you’ve become familiar with the basic emulation process, you’ll want to
make specific measurements to analyze your software and target system. The
emulator has many features that allow you to control program execution, view
processor resources, and program activity.

In This Part 2

Chapter 2, "Plugging into a Target System," tells you how to correctly connect the
emulation probe into a target system.

Chapter 3, "Starting and exiting HP 64700 Interfaces," tells you how to get the
desired interface on screen.

Chapter 4, “Entering Commands,” tells you how to use the commands and features
of the Graphical User Interface and Softkey Interface.

Chapter 5, “Configuring the Emulator,” explains how to use the emulator/analyzer
commands to allocate emulation resources such as memory and how to enable and
disable certain emulator features.

Chapter 6, “Using the Emulator,” shows you how to use the emulator/analyzer
commands to control the emulation processor and make simple emulation
measurements.

Chapter 7, “Using the Emulation-Bus Analyzer,” explains how to use the
emulation-bus analyzer to record program execution for debugging.

Chapter 8, "Making Software Performance Measurements," shows you how to use
the Software Performance Measurement Tool supplied with the emulator.

Chapter 9, “Making Coordinated Measurements,” tells how to couple two or more
emulators to coordinate measurements involving more than one processor.

This part of the manual explains how to accomplish various common tasks, often
requiring use of several emulator/analyzer commands together. It assumes you
know how to use the commands to control the emulator. If you need a general
introduction to using the emulator, refer to Part 1.

Part 2

26

2

Plugging into a Target System

27

Plugging the Emulator into a Target
System

This chapter describes the tasks you must perform when plugging the emulator into
a target system. These tasks are grouped into the following sections:

• Connecting the emulator to the target system.

• Plugging into the Motorola QUADS target system.

Before attempting to run the emulator, ensure that you have selected the proper
clock module and installed it in the emulator probe. The details of clock module
selection are discussed in the MC68360 Emulator/Analyzer (HP 64789A)
Installation/Service/Terminal Interface manual.

28

Connecting the Emulator to the Target
System

The 68360 emulator probe plugs into a PGA through-hole socket that is soldered
into the target system. There are three ways of connecting the 68360 emulator
probe to a target system:

• Plug it into the PGA socket directly.

• Plug it into the PGA socket via flexible cable.

• Plug in a PQFP adapter socket into the PGA socket in place of the emulator,
and then connect the emulator probe to the PQFP adapter.

Chapter 2: Plugging into a Target System
Connecting the Emulator to the Target System

29

If using a PQFP adapter, the emulator will tristate your target 68360 and use the
emulator’s 68360 to run your target system.

This section describes the steps you must perform when connecting the emulator to
a target system:

1 Turn OFF power.

2 Plug the emulator probe into the target system.

3 Turn ON power.

CAUTION Possible Damage to the Emulator Probe. The emulator contains devices that are
susceptible to damage by static discharge. Therefore, precautionary measures
should be taken before handling the emulator probe to avoid damaging the internal
components of the emulator by static electricity.

Step 1. Turn OFF power

CAUTION Possible Damage to the Emulator. Make sure target system power is OFF and
make sure HP 64700 power is OFF before removing or installing the emulator
probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target
system whose power is ON.

1 If the emulator is currently plugged into a different target system, turn that target system’s power OFF.

2 Turn emulator power OFF.

Chapter 2: Plugging into a Target System
Connecting the Emulator to the Target System

30

Step 2. Connect the probe to the target system

CAUTION Possible Damage to the Emulator Probe. A pin extender is included with the
emulator probe. Do not use the probe without a pin extender installed.
Replacing a broken pin extender is much less expensive than replacing other pieces.

The use of more than one pin extender is discouraged, unless it is necessary for
mechanical clearance reasons, because pin extenders cause signal quality
degradation.

1 Install the emulator probe into the target system socket. Make sure that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator will result if the probe adapter is incorrectly
installed.

Chapter 2: Plugging into a Target System
Connecting the Emulator to the Target System

31

Step 3. Turn ON power

1 Turn emulator power ON.

2 Turn target system power ON.

Chapter 2: Plugging into a Target System
Connecting the Emulator to the Target System

32

Plugging into the Motorola QUADS
Target System

This section shows you how to:

• Connect the emulator to the Motorola QUADS board.

The Motorola QUADS board gives you an opportunity to plug the emulator into a
target system that contains one 68360 master chip, and one 68360 slave chip.

Chapter 2: Plugging into a Target System
Plugging into the Motorola QUADS Target System

33

To connect the emulator to the Motorola QUADS

1 Turn OFF power.

If the emulator is currently plugged into a different target system, turn that target
system’s power OFF. Then, turn emulator power OFF.

2 Plug the emulator probe into the Motorola Quads Board.

The emulator contains devices that are susceptible to damage by static discharge.
Take precautionary measures before handling the emulator probe to avoid damage.

The Motorola Quads board contains two 68360 processors: one running in Master
mode, and the other running in Slave mode. The emulator must be plugged into the
master processor.

Make sure pin 1 of the Quads board microprocessor socket and pin 1 of the
emulator probe are properly aligned before inserting the probe into the socket.
Otherwise, you may damage the emulator circuitry. Three or four pin protectors
will be required to lift the probe above other hardware on the Quads board.

Ensure that the default clock module is plugged in. The default clock module must
be installed in the emulator probe in order for the 68360 emulator to work with the
Quads board. Refer to the Hewlett-Packard MC68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide for details.

Chapter 2: Plugging into a Target System
Plugging into the Motorola QUADS Target System

34

Chapter 2: Plugging into a Target System
Plugging into the Motorola QUADS Target System

35

3 Turn ON power. First turn on the emulator power. Then turn target system power
ON.

4 You will need to select three configuration items for the emulator. With the
Graphical User Interface on screen, choose Modify →Emulator Config... In the
Emulator Configuration dialog box, select Emulator Pod Settings. In the Pod
Settings dialog box, select the following:

• "Yes" for Buffer AS, DS and R/W.

• "Off" for Clock O1 Drive to Target.

• "8 bits" for Memory Size for Chip Select.

5 Choose Execution→Run→from Reset. Verify that the Quads board boots up
and runs normally.

Chapter 2: Plugging into a Target System
Plugging into the Motorola QUADS Target System

36

6 Verify that the master registers display normally:

1 Press the "Sync $MBAR" Action Key. The Browser Window should show
that HP64MBAR360 is synchronized to 20000H.

2 Press the "Pick Reg 360" Action Key.
3 Select pepar from the Register List in the Browser Window and click Done.
4 Press the "Reg 360 ()" Action Key.

A Browser Window opens. It shows the contents of the master processor’s
pepar registers. Press Done when finished reviewing the register contents.

To view another register in the master register set, simply repeat steps 3 and 4
above.

7 Verify that the slave registers display normally:

1 Press the "Pick Util" Action Key.
2 Select "assign68360chip" from the Utilities Selection Browser Window and

then press Done.
3 Press the "Run Util ()" Action Key to run the selected utility.
4 In the Define command file parameter dialog box, enter 1 in the entry field and

click OK. This identifies the slave chip as chip 1.
5 In the next Define command file parameter dialog box, enter 22000H and click

OK. This identifies the address of the slave processor.
6 Click Done in the New Slave Addresses Browser Window when you have

seen the content that identifies the addresses of the master and slave
processors.

Note that steps 1 through 6 of this procedure only have to be done to set up the
emulator for slave registers displays. Once these steps have been done, you
can view any of the registers in the slave chip. To switch between displaying
of master and slave registers, you can simply start with the next step (Step 7)
to see the slave registers or press "Sync $MBAR" (in the previous procedure)
to pick the master registers.

7 Press the "Pick Chip 360" Action Key.
8 From the Available MC68360 Slaves Browser Window, select

HP64MBAR360_1 and click Done.
9 Press the "Set Chip ()" Action Key. This identifies the chip that will be

controlled and viewed in the interface.
10 The Current M68360 Browser Window should show that HP64MBAR360 is

set to 22000H.
11 Press the "Pick Reg 360" Action Key.

Chapter 2: Plugging into a Target System
Plugging into the Motorola QUADS Target System

37

12 Select pepar from the Register List in the Browser Window and click Done.
13 Press the "Reg 360 ()" Action Key.

A Browser Window opens. It shows the contents of the slave processor’s
pepar registers. Press Done when finished reviewing the register contents.

To view another register in the slave register set, simply repeat steps 12 and 13
above.

Chapter 2: Plugging into a Target System
Plugging into the Motorola QUADS Target System

38

3

Starting and Exiting HP 64700
Interfaces

39

Starting and Exiting HP 64700
Interfaces

You can use several types of interfaces to the same emulator at the same time to
give yourself different views into the target system.

The strength of the emulator/analyzer interface is that it lets you perform the
real-time analysis measurements that are helpful when integrating hardware and
software.

The C debugger interface (which is a separate product) lets you view the stack
backtrace and high-level data structures, and it lets you use C language expressions
and macros. These features are most useful when debugging software.

The Software Performance Analyzer interface (which is also a separate product)
lets you make measurements that can help you improve the performance of your
software.

These interfaces can operate at the same time with the same emulator. When you
perform an action in one of the interfaces, it is reflected in the other interfaces.

Up to 10 interface windows may be started for the same emulator. Only one C
debugger interface window and one SPA window are allowed, but you can start
multiple emulator/analyzer interface windows.

The tasks associated with starting and exiting HP 64700 interfaces are grouped into
the following sections:

• Starting the emulator/analyzer interface.

• Opening other HP 64700 interface windows.

• Exiting HP 64700 interfaces.

40

Starting the Emulator/Analyzer
Interface

Before starting the emulator/analyzer interface, the emulator and interface software
must have already been installed as described in Chapter 14, "Installation".

This section describes how to:

• Start the interface.

• Start the interface using the default configuration.

• Run a command file on interface startup.

• Display the status of emulators defined in the 64700tab.net file.

• Unlock an interface that was left locked by another user.

To start the emulator/analyzer interface

• Use the emul700 <emul_name> command.

If /usr/hp64000/bin is specified in your PATH environment variable (as shown in
Chapter 14, "Installation"), you can start the interface with the emul700
<emul_name> command. The "emul_name" is the logical emulator name given in
the HP 64700 emulator device table (/usr/hp64000/etc/64700tab.net).

If you are running a window system on your host computer (for example, the X
Window System), you can run the interface in up to 10 windows. This capability
provides you with several views into the emulation system. For example, you can
display memory in one window, registers in another, an analyzer trace in a third,
and data in the fourth.

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

41

Examples To start the emulator/analyzer interface for the 68360 emulator:

$ emul700 em68360 <RETURN>

The "em68360" in the command above is the logical emulator name given in the
HP 64700 emulator device table file (/usr/hp64000/etc/64700tab.net).

Blank lines and the rest of each line after a ’#’ character are ignored.
The information in each line must be in the specified order, with one line
for each HP series 64700 emulator. Use blanks or tabs to separate fields.
#
#--------+------------+-----------+---
Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#--------+------------+-----------+---
lan: em68360 m68360 21.17.9.143
serial: em68360 m68360 myhost /dev/emcom23 OFF 9600 NONE XON 2 8

If you’re currently running the X Window System, the Graphical User Interface
starts; otherwise, the Softkey Interface starts.

The status message shows that the default configuration file has been loaded. If the
command is not successful, you will be given an error message and returned to the
UNIX prompt. Error messages are described in Chapter 12, "Emulator Error
Messages".

To start the interface using the default
configuration

• Use the emul700 -d <emul_name> command.

In the emul700 -d <emul_name> command, the -d option says to use the default
configuration. The -d option is ignored if the interface is already running in
another window or on another terminal.

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

42

To run a command file on interface startup

• Use the emul700 -c <cmd_file> <emul_name> command.

You can cause command files to be run upon starting the interface by using the -c
<cmd_file> option to the emul700 command.

Refer to the "Using Command Files" section in Chapter 4, "Entering Commands"
for information on creating command files.

Examples To start the emulator/analyzer interface and run the "startup" command file:

$ emul700 -c startup em68360 <RETURN>

To display the status of emulators

• Use the emul700 -l or emul700 -lv command.

The -l option of the emul700 command lists the status of all emulators defined in
the 64700tab and 64700tab.net files. If a logical emulator name is included in the
command, just the status of that emulator is listed.

You can also use the -v option with the -l option for a verbose listing of the status
information.

Examples To list, verbosely, the status of the emulator whose logical name is "em68360":

$ emul700 -lv em68360 <RETURN>

The information may be similar to:

em68360 - m68360 running; user = guest
 description: M68360 emulation, 512K bytes emul mem
 user interfaces: xdebug, xemul, xperf, skemul, sktiming
 device channel: /dev/emcom23

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

43

Or, the information may be similar to:

em68360 - m68360 running; user = guest@myhost
 description: M68360 emulation, 512K bytes emul mem
 user interfaces: xdebug, xemul, xperf, skemul, sktiming
 internet address: 21.17.9.143

To unlock an interface that was left locked by
another user

• Use the emul700 -U <emul_name> command.

The -U option to the emul700 command may be used to unlock the emulators
whose logical names are specified. This command will fail if there currently is a
session in progress.

Examples To unlock the emulator whose logical name is "em68360":

$ emul700 -U em68360 <RETURN>

Chapter 3: Starting and Exiting HP 64700 Interfaces
Starting the Emulator/Analyzer Interface

44

Opening Other HP 64700 Interface
Windows

The File→Emul700 menu lets you open additional emulator/analyzer interface
windows or other HP 64700 interface windows if those products have been
installed (for example, the software performance analyzer (SPA) interface and the
high-level debugger interface).

This section shows you how to:

• Open additional emulator/analyzer interface windows.

• Open the high-level debugger interface window.

• Open the software performance analyzer (SPA) interface window.

To open additional emulator/analyzer windows

• To open additional Graphical User Interface windows, choose
File→Emul700→Emulator/Analyzer under Graphic Windows, or enter the
emul700 <emul_name> command in another terminal emulation window.

• To open additional Softkey Interface windows, choose
File→Emul700→Emulator/Analyzer under Terminal Windows, or enter the
emul700 -u skemul <emul_name> command in another terminal emulation
window.

You can open additional Graphical User Interface windows, or terminal emulation
windows containing the Softkey Interface.

When you open an additional window, the status line will show that this session is
joining a session already in progress, and the event log is displayed.

You can enter commands in any window in which the interface is running. When
you enter commands in different windows, the command entered in the first

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

45

window must complete before the command entered in the second window can
start. The status lines and the event log displays are updated in all windows.

To open the high-level debugger interface window

• Choose File→Emul700→High-Level Debugger ... under "Graphic Windows", or
enter the emul700 -u xdebug <emul_name> command in another terminal
emulation window.

For information on how to use the high-level debugger interface, refer to the
debugger/emulator User’s Guide.

To open the software performance analyzer
(SPA) interface window

• Choose File→Emul700→Performance Analyzer ... under "Graphic Windows",
or enter the emul700 -u xperf <emul_name> command in another terminal
emulation window.

For information on how to use the software performance analyzer, refer to the
Software Performance Analyzer User’s Guide.

Chapter 3: Starting and Exiting HP 64700 Interfaces
Opening Other HP 64700 Interface Windows

46

Exiting HP 64700 Interfaces

There are several options available when exiting the HP 64700 interfaces. You can
simply close one of the open interface windows, or you can exit the debug session
by closing all the open windows. When exiting the debug session, you can lock the
emulator so that you can continue later, or you can release the emulation system so
that others may use it. This section describes how to:

• Close an interface window.

• Exit a debug/emulation session.

To close an interface window

• In the interface window you wish to close, choose File→Exit→Window. Or, in
the emulator/analyzer interface command line, enter the end command with no
options.

All other interface windows remain open, and the emulation session continues,
unless the window closed is the only one open for the emulation session. In that
case, closing the window ends the emulation session, but locks the emulator so that
other users cannot access it.

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

47

To exit a debug/emulation session

• To exit the interface, save your configuration to a temporary file, and lock the
emulator so that it cannot be accessed by other users, choose File→Exit→Locked.
Or, in the emulator/analyzer interface command line, enter the end locked
command.

• To exit the interface and release the emulator for access by other users, choose
File→Exit→Released. Or, in the emulator/analyzer interface command line, enter
the end release_system command.

If you exit the interface locked, the interface saves the current configuration to a
temporary file and locks the emulator to prevent other users from accessing it.
When you again start the interface with the emul700 command, the temporary file
is reloaded, and therefore, you return to the configuration you were using when you
quit the interface locked.

Also saved when you exit the interface locked are the contents of the entry buffer
and command recall buffer. These recall buffer values will be present when you
restart the interface.

In contrast, if you end released, you must save the current configuration to a
configuration file (if the configuration has changed), or the changes will be lost.

Chapter 3: Starting and Exiting HP 64700 Interfaces
Exiting HP 64700 Interfaces

48

4

Entering Commands

49

Entering Commands

When an X Window System that supports OSF/Motif interfaces is running on the
host computer, the emulator/analyzer interface is the Graphical User Interface
which provides pull-down and pop-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The emulator/analyzer interface also provides the Softkey Interface for several
types of terminals, terminal emulators, and bitmapped displays. When using the
Softkey Interface, commands are entered from the keyboard.

When using the Graphical User Interface, the command line portion of the interface
gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. If you are using the Softkey Interface, you can only enter
commands from the keyboard using the command line.

The menu commands in the Graphical User Interface are a subset of the commands
available when using the command line. While you have a great deal of capability
in the menu commands, you have even more in the command line.

This chapter shows you how to enter commands in each type of emulator/analyzer
interface. The tasks associated with entering commands are grouped into the
following sections:

• Using menus, the entry buffer, and action keys.

• Using the command line with the mouse.

• Using the command line with the keyboard.

• Using command files.

• Using pod commands.

• Forwarding commands to other HP 64700 interfaces.

50

Using Menus, the Entry Buffer, and
Action Keys

This section describes the tasks you perform when using the Graphical User
Interface to enter commands. This section describes how to:

• Choose a pulldown menu item using the mouse.

• Choose a pulldown menu item using the keyboard.

• Use the pop-up menus.

• Use the entry buffer.

• Copy and paste to the entry buffer.

• Use action keys.

• Use dialog boxes.

• Access help information.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

51

To choose a pulldown menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.

2 Press and hold the command select mouse button to display the menu.

3 While continuing to hold down the mouse button, move the mouse pointer to the
desired menu item. If the menu item has a cascade menu (identified by an arrow
on the right edge of the menu button), then continue to hold the mouse button down
and move the mouse pointer toward the arrow on the right edge of the menu. The
cascade menu will display. Repeat this step for the cascade menu until you find the
desired menu item.

4 Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the menu
item is chosen.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

52

To choose a pulldown menu item using the
mouse (method 2)

1 Position the mouse pointer over the menu name on the menu bar.

2 Click the command select mouse button to display the menu.

3 Move the mouse pointer to the desired menu item. If the menu item has a cascade
menu (identified by an arrow on the right edge of the menu button), then repeat the
previous step and then this step until you find the desired item.

4 Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of the
menu and click the mouse button.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

To choose a pulldown menu item using the
keyboard

• To initially display a pulldown menu, press and hold the menu select key (for
example, the "Extend char" key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, "f" for
"File". Type the character in lower case only.)

• To move right to another pulldown menu after having initially displayed a menu,
press the right-arrow key.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

53

• To move left to another pulldown menu after having initially displayed a menu,
press the left-arrow key.

• To move down one menu item within a menu, press the down-arrow key.

• To move up one menu item within a menu, press the up-arrow key.

• To choose a menu item, type the character in the menu item label that is
underlined. Or, move to the menu item using the arrow keys and then press the
<RETURN> key on the keyboard.

• To cancel a displayed menu, press the Escape key.

The interface supports keyboard mnemonics and the use of the arrow keys to move
within or between menus. For each menu or menu item, the underlined character
in the menu or menu item label is the keyboard mnemonic character. Notice the
keyboard mnemonic is not always the first character of the label. If a menu item
has a cascade menu attached to it, then typing the keyboard mnemonic displays the
cascade menu.

Some menu items have an ellipsis ("...") as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu item
is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard input to
a dialog box, you must position the mouse pointer somewhere inside the
boundaries of the dialog box. That is because the interface keyboard focus policy is
set to pointer. That just means that the window containing the mouse pointer
receives the keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard accelerators
which are keyboard shortcuts for selected menu items. Refer to Chapter 10,
"Setting X Resources", and the "Softkey.Input" scheme file for more information
about setting the X resources that control defining keyboard accelerators.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

54

To choose pop-up menu items

1 Move the mouse pointer to the area whose pop-up menu you wish to access. (If a
pop-up menu is available, the mouse pointer changes from an arrow to a hand.)

2 Press and hold the select mouse button.

3 After the pop-up menu appears (while continuing to hold down the mouse button),
move the mouse pointer to the desired menu item.

4 Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse button
down, move the mouse pointer off of the menu, and release the mouse button.

The following pop-up menus are available in the Graphical User Interface:

• Mnemonic Memory Display.

• Breakpoints Display.

• Global Symbols Display.

• Local Symbols Display.

• Status Line.

• Command Line.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

55

To place values into the entry buffer using the
keyboard

1 Position the mouse pointer within the text entry area. (An "I-beam" cursor will
appear.)

2 Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the <Ctrl>u key
combination.

To copy-and-paste to the entry buffer

• To copy and paste a discrete text string as determined by the interface, position the
mouse pointer over the text to copy and click the paste mouse button.

• To specify the exact text to copy to the entry buffer: press and hold the paste mouse
button; drag the mouse pointer to highlight the text to copy-and-paste; release the
paste mouse button.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

When you position the pointer and click the mouse button, the interface expands
the highlight to include the most complete text string it considers to be discrete.
Discrete here means that the interface will stop expanding the highlight in a given
direction when it discovers a delimiting character not determined to be part of the
string. A common delimiter would, of course, be a space.

When you press and hold the mouse button and drag the pointer to highlight text,
the interface copies all highlighted text to the entry buffer when you release the
mouse button.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

56

Because the interface displays absolute addresses as hex values, any copied and
pasted string that can be interpreted as a hexadecimal value (that is, the string
contains only numbers 0 through 9 and characters "a" through "f") automatically
has an "h" appended.

Note If you have multiple Graphical User Interface windows open, a copy-and-paste
action in any window causes the text to appear in all entry buffers in all windows.
That is because although there are a number of entry buffers being displayed, there
is actually only one entry buffer and it is common to all windows. That means you
can copy a symbol or an address from one window and then use it in another
window.

On a memory display or trace display, a symbol may not be completely displayed
because there are too many characters to fit into the width limit for a particular
column of the display. To make a symbol usable for copy-and-paste, you can scroll
the screen left or right to display all, or at least more, of the characters from the
symbol. The interface displays absolute addresses as hex values.

Text pasted into the entry buffer replaces that which is currently there. You cannot
use paste to append text to existing text already in the entry buffer.

See "To copy-and-paste from the entry buffer to the command line entry area" for
information about pasting the contents of the entry buffer into the command line
entry area.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

57

Example To paste the symbol "num_checks" into the entry buffer from the interface display
area, position the mouse pointer over the symbol and then click the paste mouse
button.

A mouse click
causes the interface
to expand the
highlight to include
the symbol
"num_checks" and
paste the symbol
into the entry buffer.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

58

To recall entry buffer values

• Position the mouse pointer over the Recall button just to the right of the entry
buffer text area, click the mouse button to bring up the Entry Buffer Recall dialog
box, and then choose a string from that dialog box.

The Entry Buffer Recall dialog box contains a list of entries gained during the
emulation session as well as any predefined entries present at interface startup.

If you exit the emulation/analysis session with the interface "locked", recall buffer
values are saved and will be present when you restart the interface.

You can predefine entries for the Entry Buffer Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 10, "Setting X
Resources").

See the following "To use dialog boxes" section for information about using dialog
boxes.

To use the entry buffer

1 Place information into the entry buffer (see the previous "To place values into the
entry buffer using the keyboard", "To copy-and-paste to the entry buffer", or "To
recall entry buffer values" task descriptions).

2 Choose the menu item, or click the action key, that uses the contents of the entry
buffer (that is, the menu item or action key that contains "()").

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

59

To copy-and-paste from the entry buffer to the
command line entry area

1 Place text to be pasted into the command line in the entry buffer text area.

You may do that by:

• Copying the text from the display area using the copy-and-paste feature.

• Enter the text directly by typing it into the entry buffer text area.

• Choose the text from the entry buffer recall dialog box.

2 Position the mouse pointer within the command line text entry area.

3 If necessary, reposition the cursor to the location where you want to paste the text.

4 If necessary, choose the insert or replace mode for the command entry area.

5 Click the command paste mouse button to paste the text in the command line entry
area at the current cursor position.

The entire contents of the entry buffer are pasted into the command line at the
current cursor position.

Although a paste from the display area to the entry buffer affects all displayed
entry buffers in all open windows, a paste from the entry buffer to the command
line only affects the command line of the window in which you are currently
working.

See "To copy-and-paste to the entry buffer" for information about pasting
information from the display into the entry buffer.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

60

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired information
in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this makes it
possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the Graphical User
Interface. You can use the predefined action keys, but you’ll really appreciate
action keys when you define and use your own.

Action keys are defined by setting an X resource. Refer to Chapter 10, "Setting X
Resources" for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.

2 Edit the item in the text entry area (if desired).

3 Click on the "OK" pushbutton to make the selection and close the dialog box, click
on the "Apply" pushbutton to make the selection and leave the dialog box open, or
click on the "Cancel" pushbutton to cancel the selection and close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing file
name or specify a new file name.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

61

Entry Buffer Recall You can recall a previously used entry buffer text string, a
predefined entry buffer text string, or a newly entered entry
buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to the
command line.

The dialog boxes share some common properties:

• Most dialog boxes can be left on the screen between uses.
• Dialog boxes can be moved around the screen and do not have to be positioned

over the graphical interface window.
• If you iconify the interface window, all dialog boxes are iconified along with

the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to Chapter 10,
"Setting X Resources").

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

62

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of
filter-matching files
from the current
directory.

A list of files
previously accessed
during the emulation
session.

A single click on a
file name from either
list highlights the file
name and copies it to
the text area. A
double click chooses
the file and closes the
dialog box.

Label informs you
what kind of file
selection you are
performing.

Text entry area.
Text is either
copied here from
the recall list, or
entered directly.

Clicking this button
chooses the file name
displayed in the text entry
area and closes the dialog
box.

Entering a new file filter
and clicking this button
causes a list of files
matching the new filter to
be read from the directory.

Clicking this button
cancels the file selection
operation and closes the
dialog box.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

63

To use the Directory Selection dialog box:

Label informs you
of the type of list
displayed.

A list of predefined
or previously
accessed directories.

A single click on a
directory name from
the list highlights
the name and copies
it to the text area. A
double click
chooses the
directory and closes
the dialog box.

Text entry area.
Directory name is
either copied here
from the recall list,
or entered directly.

Clicking this button
chooses the directory
displayed in the text entry
area and closes the dialog
box.

Clicking this button
chooses the directory
displayed in the text entry
area, but keeps the dialog
box on the screen instead
of closing it.

Clicking this button
cancels the directory
selection operation and
closes the dialog box.

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

64

To access help information

• Help available in the help index:

1 Display the Help Index by choosing Help→General Topic... or
Help→Command Line....

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help Index, the
interface displays a window containing the help information. You may leave the
window on the screen while you continue using the interface.

• Help available for use of the Action Keys:

• General information about using Action Keys in the 68360 emulator is
available by pressing the "Help 360" Action Key.

• Detailed information for configuring a particular SIM60 or CPM register can
be obtained by placing the name of the register in the entry field and pressing
the "Help Reg ()" Action Key.

• Help for understanding how action keys work in the Graphical User Interface
is available in Chapter 10, "Setting X Resources."

Chapter 4: Entering Commands
Using Menus, the Entry Buffer, and Action Keys

65

Using the Command Line with the
Mouse

When using the Graphical User Interface, the command line portion of the interface
gives you the option of entering commands in the same manner as they are entered
in the Softkey Interface. Additionally, the graphical interface makes the softkey
labels pushbuttons so commands may be entered using the mouse.

If you are using the Softkey Interface, using the command line with the keyboard is
the only way to enter commands.

This section describes how to:

• Turn the command line off/on.

• Enter commands.

• Edit commands.

• Recall commands.

• Display the help window.

To turn the command line on or off

• To turn the command line on or off using the pulldown menu, choose
Settings→Command Line.

• To turn the command line on or off using the status line pop-up menu: position the
mouse pointer within the status line area, press and hold the select mouse button,
and choose Command Line Off from the menu.

• To turn the command line off using the command line entry area pop-up menu:
position the mouse pointer within the entry area, press and hold the select mouse
button, and choose Command Line Off from the menu.

Chapter 4: Entering Commands
Using the Command Line with the Mouse

66

Turns display of the command line area "on" or "off." On means that the command
line is displayed and you can use the softkey label pushbuttons, the command
return and recall pushbuttons, and the cursor pushbuttons for command line editing.
Off means the command line is not displayed and you use only the pulldown
menus and the action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the emulator/analyzer window. The status line is not part of the
command line and continues to be displayed whether the command line is on or off.

Choosing certain pulldown menu items while the command line is off causes the
command line to be turned on. That is because the menu item chosen requires
some input at the command line that cannot be supplied another way.

To enter a command

1 Build a command using the softkey label pushbuttons by successively positioning
the mouse pointer on a pushbutton and clicking the pushbutton select mouse button
until a complete command is formed.

2 Execute the completed command by clicking the Return pushbutton (found near
the bottom of the command line in the "Command" group).

Or:

Execute the completed command using the Command Line entry area pop-up
menu: Position the mouse pointer in the command line entry area; press and hold
the select mouse button until the Command Line pop-up menu appears; then,
choose the Execute Command menu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of softkey labels and text entered with the
keyboard. You know a command is complete when Return pushbutton is not
halfbright. The interface does not check or act on a command, however, until the
command is executed. (In contrast, commands resulting from pulldown menu

Chapter 4: Entering Commands
Using the Command Line with the Mouse

67

choices and action keys are supplied with the needed carriage return as part of the
command.)

To edit the command line using the command
line pushbuttons

• To clear the command line, click the Clear pushbutton.

• To clear the command line from the cursor position to the end of the line, click the
Clear to end pushbutton.

• To move to the right one command word or token, click the Forward pushbutton.

• To move to the left one command word or token, click the Backup pushbutton.

• To insert characters at the cursor position, press the insert key to change to
insertion mode, and then type the characters to be inserted.

• To delete characters to the left of the cursor position, press the <BACKSPACE>
key.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

When moving by words left or right, the Forward pushbutton becomes halfbright
and unresponsive when the cursor reaches the end of the command string.
Similarly, the Backup pushbutton becomes halfbright and unresponsive when the
cursor reaches the beginning of the command.

See "To edit the command line using the mouse and the command line pop-up
menu" and "To edit the command line using the keyboard" for information about
additional editing operations you can perform.

Chapter 4: Entering Commands
Using the Command Line with the Mouse

68

To edit the command line using the command
line pop-up menu

• To clear the command line: position the mouse pointer within the Command Line
entry area; press and hold the select mouse button until the Command Line pop-up
menu appears; choose Clear Entire Line from the menu.

• To clear the command line from the cursor position to the end of the line: position
the mouse pointer at the place where you want the clear-to-end to start; press and
hold the select mouse button until the Command Line pop-up menu appears;
choose Clear to End of Line from the menu.

• To position the cursor and insert characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
select mouse button to display the Command Line pop-up menu; choose Position
Cursor, Insert Mode from the menu; type the characters to be inserted.

• To replace characters at the current cursor location: position the mouse pointer in a
non-text area of the command line entry area; press and hold the select mouse
button to display the Command Line pop-up menu; choose Position Cursor,
Replace Mode from the menu; type the characters to be inserted.

• To position the cursor and replace characters at the cursor location: position the
mouse pointer in a non-text area of the command line entry area; press and hold the
select mouse button to display the Command Line pop-up menu; choose Position
Cursor, Replace Mode from the menu; type the characters to be inserted.

When the cursor arrives at the beginning of a command word or token, the softkey
labels change to display the possible choices at that level of the command.

See "To edit the command line using the mouse and the command line
pushbuttons" and "To edit the command line using the keyboard" for information
about additional editing operations you can perform.

Chapter 4: Entering Commands
Using the Command Line with the Mouse

69

To recall commands

1 Click the pushbutton labeled Recall in the Command Line to display the dialog box.

2 Choose a command from the buffer list. (You can also enter a command directly
into the text entry area of the dialog box.)

Because all command entry methods in the interface — pulldown menus, action
keys, and command line entries — are echoed to the command line entry area, the
contents of the Command Recall dialog box is not restricted to just commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands executed
during the session as well as any predefined commands present at interface startup.

If you exit the emulation/analysis session with the interface "locked", commands in
the recall buffer are saved and will be present when you restart the interface.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 10, "Setting X
Resources").

See "To use dialog boxes" for information about using dialog boxes.

To get help about the command line

• To display the help topic explaining the operation of the command line, press the
Help pushbutton located near the bottom-right corner of the Command Line area.

Chapter 4: Entering Commands
Using the Command Line with the Mouse

70

Using the Command Line with the
Keyboard

When using the command line with the keyboard, you enter commands by pressing
softkeys whose labels appear at the bottom of the screen. Softkeys provide for
quick command entry, and minimize the possibility of errors.

The command line also provides command completion. You can type the first few
characters of a command (enough to uniquely identify the command) and then
press <Tab>. The interface completes the command word for you.

Entering commands with the keyboard is easy. However, the interface provides
other features that make entering commands even easier. For example, you can:

• Enter multiple commands on one line.

• Recall commands.

• Edit commands.

• Access on-line help information.

To enter multiple commands on one command
line

• Separate the commands with semicolons (;).

More than one command may be entered in a single command line if the
commands are separated by semicolons (;).

Examples To reset the emulator and break into the monitor:

reset ; break <RETURN>

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

71

To recall commands

• Press <CTRL>r or <CTRL>b.

The most recent 20 commands you enter are stored in a buffer and may be recalled
by pressing <CTRL>r. Pressing <CTRL>b cycles forward through the recall
buffer.

Examples For example, to recall and execute the command prior to the last command:

<CTRL>r <CTRL>r <RETURN>

To edit commands

• Use the <Left arrow>, <Right arrow>, <Tab>, <Shift><Tab>, <Insert char>,
<Back space>, <Delete char>, <Clear line>, and <CTRL>u keys.

The <Left arrow> and <Right arrow> keys move the cursor single spaces to the left
or right.

The <Tab> and <Shift><Tab> keys move the cursor to the next or previous word
on the command line.

The <Insert char> key enters the insert editing mode and allows characters or
command options to be inserted at the cursor location.

The <Back space> key deletes the character to the left of the cursor.

The <Delete char> key deletes the character to the right of the cursor.

The <Clear line> key deletes the characters from the cursor to the end of the line.

The <CTRL>u key erases the command line.

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

72

To access on-line help information

• Use the help or ? commands.

To access the command line’s on-line help information, type either help or ? on the
command line. You will notice a new set of softkeys. By pressing one of these
softkeys and <RETURN>, you can display information on that topic.

Examples To display information on the system commands:

help system_commands <RETURN>

Or:

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screen full
of information, you will have to press the space bar to see the next screen full, or
the <RETURN> key to see the next line, just as you do with the UNIX more
command. After all the information on the particular topic has been displayed (or
after you press "q" to quit scrolling through information), you are prompted to
press <RETURN> to return to the command line.

Chapter 4: Entering Commands
Using the Command Line with the Keyboard

73

Using Command Files

You can execute a series of commands that have been stored in a command file.
You can create command files by logging commands while using the interface or
by using an editor on your host computer.

Once you create a command file, you can execute the file in the emulation
environment by typing the name of the file on the command line and pressing
<RETURN>.

Command files execute until an end-of-file is found or until a syntax error occurs.
You can stop a command file by pressing <CTRL>c or the <Break> key.

This section shows you how to:

• Start logging commands to a command file.

• Stop logging commands to a command file.

• Playback (execute) a command file.

Nesting Command Files

You can nest a maximum of eight levels of command files. Nesting command files
means one command file calls another.

Comments in Command Files

Text that follows a pound sign (#), up to the end of the line, is interpreted as a
comment.

Using the wait Command

When editing command files, you can insert wait commands to pause execution of
the command file at certain points.

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

Chapter 4: Entering Commands
Using Command Files

74

Use the wait measurement_complete command after changing the trace depth.
By doing this, when you copy or display the trace after changing the trace depth,
the new trace states will be available. Otherwise the new states won’t be available.

Passing Parameters

Command files provide a convenient method for passing parameters by using a
parameter declaration line preceding the commands in the command file. When
the command file is called, the system will prompt you for current values of the
formal parameters listed.

Parameters are defined as:

Passed Parameters - These are ASCII strings passed to a command file. Any
continuous set of ASCII characters can be passed. Spaces separate the
parameters.

Formal Parameters - These are symbols preceded by an ampersand (&),
which are the variables of the command file.

The ASCII string passed (passed parameter) will be substituted for the formal
parameter when the command file is executed.

The only way to pass a parameter containing a space is to enclose the parameter in
double quotes (") or single quotes (’). Thus, to pass the parameter HP 9000 to a
command file, you can use either "HP 9000" or ’HP 9000’.

The special parameter &ArG_lEfT gets set to all the remaining parameters
specified when the command file was invoked. This lets you use variable size
parameter lists. If no parameters are left, &ArG_lEfT gets set to NULL.

Consider the command file example (named CMDFILE) shown below:

PARMS &ADDR &VALUE1
#
modify a location or list of locations in memory
and display the result
#
modify memory &ADDR words to &VALUE1 &ArG_lEfT
display memory &ADDR blocked words

Chapter 4: Entering Commands
Using Command Files

75

When you execute CMDFILE, you will be prompted with:

Define command file parameter [&ADDR]

To pass the parameter, enter the address of the first memory location to be
modified. You will then be prompted for &VALUE1 . If you enter, for example,
"0,-1,20, 0ffffh, 4+5*4", the first parameter "0,-1,20," is passed to &VALUE1 and
the remaining parameters "0ffffh," and "4+5*4" are passed to &ArG_lEfT .

You can also pass the parameters when you invoke the command file (for example,
CMDFILE 1000h 0,-1,20, 0ffffh, 4+5*4).

Other Things to Know About Command Files

You should know the following about using command files:

1 Command files may contain shell variables. Only those shell variables
beginning with "$" followed by an identifier will be supported. An identifier
is a sequence of letters, digits or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{ }" or entered directly
following the "$" symbol. Braces are required when the identifier is followed
by a letter, a digit or an underscore that is not interpreted as part of its name.

For example, assume a directory named /users/softkeys and the shell variable
"S". The value of "S" is "soft". By specifying the directory as /users/${S}keys
the correct result is obtained. However, if you attempt to specify the directory
as /users/$Skeys, the Softkey Interface looks for the value of the variable
"Skeys". This is not the operators intended result. You may not get the
intended result unless Skeys is already defined to be "softkeys".

You can examine the current values of all shell variables defined in your
environment with the command "env".

2 Positional shell variables, such as $1, $2, and so on, are not supported. Neither
are special shell variables, such as $@, $*, and so on, supported.

3 You can continue command file lines. This is done by avoiding the line feed
with a backslash (\). A line terminated by "\" is concatenated with any
following lines until a line that does not contain a backslash is found. A line
constructed in this manner is recognized and executed as one single command
line. If the last line in a command file is terminated by "\", it appears on the
command line but is not executed. Normally, the line feed is recognized as the
command terminator. The UNIX environment recognizes three quoting

Chapter 4: Entering Commands
Using Command Files

76

characters for shell commands which are double quotes ("), single quotes (’),
and the backslash symbol (\).

For example, the following three lines are treated as a single shell command.
The two hidden line feeds are ignored because they are inside the two single
quotes (’):

!awk ’/$/ { blanks++ }

END { print blanks }

’ an_unix_file

To start logging commands to a command file

• Choose File→Log→Record and use the dialog box to select a command file name.

• Using the command line, enter the log_commands to <file> command.

To stop logging commands to a command file

• Choose File→Log→Stop.

• Using the command line, enter the log_commands off command.

Chapter 4: Entering Commands
Using Command Files

77

To playback (execute) a command file

• Choose File→Log→Playback and use the dialog box to select the name of the
command file you wish to execute.

• Using the command line, enter the name of the command file and press
<RETURN>.

If you enter the name of the command file in the command line and the interface
cannot find the command file in the current directory, it searches the directories
specified in the HP64KPATH environment variable.

To interrupt playback of a command file, press the <CTRL>c key combination.
(The mouse pointer must be within the interface window.)

If you press <CTRL>c to stop execution of a command file while the "wait"
command is being executed from the command file, the <CTRL>c will terminate
the "wait" command, but will not terminate command file execution. To do this,
press <CTRL>c again.

Chapter 4: Entering Commands
Using Command Files

78

Using Pod Commands

Pod commands are Terminal Interface commands. The Terminal Interface is the
low-level interface that resides in the firmware of the emulator.

A pod command used in the Graphical User Interface bypasses the interface and
goes directly to the emulator. Because some pod commands can cause the
interface to become out-of-sync with the emulator, or even cause the interface to
terminate abnormally, they must be used with care.

For example, if you change configuration items, the actual state of the emulator
will no longer match the internal record the interface keeps about the state of the
emulator.

Issuing certain communications-related commands can prevent the interface from
communicating with the emulator and cause abnormal termination of the interface.

However, it is sometimes necessary to use pod commands. For example, you must
use a pod command to execute the emulator’s performance verification (pv)
routine. Performance verification is an internal self-test procedure for the emulator.

Remember that pod commands can cause trouble for the high-level interface if they
are used indiscriminately.

This section shows you how to:

• Display the pod commands screen.

• Use pod commands.

Chapter 4: Entering Commands
Using Pod Commands

79

To display the pod commands screen

• Choose Display→Pod Commands.

The pod commands screen displays the results of pod (Terminal Interface)
commands. To set the interface to use pod commands, choose Settings→Pod
Command Keyboard.

To use pod commands

• To begin using pod commands, choose Settings→Pod Command Keyboard.

• To end using pod commands, click the suspend pushbutton softkey.

The Settings→Pod Command Keyboard command displays the pod commands
screen and activates the keyboard for entering pod command on the command line.

Examples To see a list of pod command categories available, choose Settings→Pod
Command Keyboard, and on the command line, type: help.

To see a list of pod commands that control the emulator, type: help emul.

To see details of the emulator "r" (run user code) command, type: help r.

Chapter 4: Entering Commands
Using Pod Commands

80

Forwarding Commands to Other
HP 64700 Interfaces

To allow the emulator/analyzer interface to run concurrently with other HP 64700
interfaces like the high-level debugger and software performance analyzer, a
background "daemon" process is necessary to coordinate actions in the interfaces.

This background process also allows commands to be forwarded from one interface
to another. Commands are forwarded using the forward command available in the
command line. The general syntax is:

forward <interface_name> "<command_string>" <RETURN>

This section shows you how to:

• Forward commands to the high-level debugger.

• Forward commands to the software performance analyzer.

To forward commands to the high-level debugger

• Enter the forward debug "<command string>" command using the command
line.

Examples To send the "Program Run" command to the debugger:

forward debug "Program Run" <RETURN>

Or, since only the capitalized key is required:

forward debug "P R" <RETURN>

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

81

To forward commands to the software
performance analyzer

• Enter the forward perf "<command string>" command using the command line.

Examples To send the "profile" command to the software performance analyzer:

forward perf "profile" <RETURN>

Chapter 4: Entering Commands
Forwarding Commands to Other HP 64700 Interfaces

82

5

Configuring the Emulator

83

Configuring the Emulator

This chapter describes how to configure the emulator. You must map memory
whenever you use the emulator. When you plug the emulator into a target system,
you must configure the emulator so that it operates correctly in the target system.
The configuration tasks are grouped into the following sections:

• Using the configuration interface.

• Verifying the emulator configuration.

The simulated I/O feature and configuration questions are further described in the
Simulated I/O User’s Guide.

The interactive measurement configuration options are further described in Chapter
9, "Making Coordinated Measurements".

84

Using the Configuration Interface

This section shows you how to modify, store, and load configurations using the
emulator configuration interface.

This section shows you how to:

• Start the configuration interface.

• Modify a configuration section.

• Apply configuration changes to the emulator.

• Store configuration changes to a file.

• Change the configuration directory context.

• Display the configuration context.

• Access help topics.

• Access help for a configuration item in a dialog box.

• Exit the configuration interface.

• Load an existing configuration file.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

85

To start the configuration interface

• Choose Modify →Emulator Config... from the emulator/analyzer interface
pulldown menu.

• Using the command line, enter the modify configuration command.

The configuration interface top-level dialog box (see the following example) is
displayed.

The configuration interface may be left running while you are using the
emulator/analyzer interface.

If you are using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration sections;
however, you have access to the same configuration options through a series of
configuration questions.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

86

Examples The 68360 emulator configuration interface top-level dialog box is shown below.

The menu bar.

Clicking on one of
these lines selects
a particular
configuration section.

Clicking this button
loads any
configuration changes
into the emulator.

This portion of the dialog box displays
configuration status information.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

87

To modify a configuration section

1 Start the emulator configuration interface.

2 Click on a section name in the configuration interface top-level dialog box.

3 Use the section dialog box to make changes to the configuration.

If you are using the Softkey Interface:

The configuration questions in the "General Items" section are the first to be
asked.

To access the questions in the "Reconfigure Internal Registers" section, answer
"yes" to the "Reconfigure internal registers?" question.

To access the questions in the "Memory Map" section, answer "yes" to the
"Modify memory configuration?" question.

To access the questions in the "Emulator Pod Settings" section, answer "yes"
to the "Modify emulator pod configuration?" question.

To access the questions in the "Debug/Trace Options" section, answer "yes" to
the "Modify debug/trace options?" question.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

88

Most configuration sections provide dialog boxes similar to the following.

The dialog for
this section has
been opened

Applies
configuration
changes to the
emulator

Configuration
options in this
section

Closes the
dialog box

Cancels all changes since
last "OK", "Apply to
Emulator", or store to file.

Presents emulator
configuration help
topic browser.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

89

As soon as you change a configuration option, the change is recorded (as seen by
the "Changes Not Loaded" message in the top level dialog).

To apply configuration changes to the emulator

• Click the "Apply to Emulator" button in the top-level dialog box.

This loads the configuration changes into the emulator. Status text to the right
shows whether the load was successful.

You can apply configuration changes to the emulator at any time (even while
section dialog boxes are open). This lets you verify changes without closing
section dialog boxes.

The "Apply to Emulator" button does not store configuration changes to a file.

When you exit the configuration interface and there are configuration changes that
have not been stored to a file, you are asked whether you want to store the changes,
exit without storing, or cancel the exit.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

90

If apply to emulator fails

Choose Display→Failed Apply Info from the pulldown menu in the top-level
configuration interface window.

A window containing the following information about the failed configuration is
opened:

• Chip select information from the emsim (emulator) resister set.
• Bus interface port information from the emsim (emulator) resister set.
• The expanded memory map.
• Reset mode configuration information.
• A complete list of the configuration inconsistencies. This list is not limited to

16 messages as is the Display→Configuration Info →Diagnostics command.

This information is shown in the same format as output from the various
Display→Configuration Info → commands.

Because the old configuration is reloaded when an apply to emulator fails, the
information displayed in this window is different from the information displayed
by the Display→Configuration Info → commands (which display information
about the configuration currently loaded).

Refer to the "Verifying the Emulator Configuration" section later in this chapter for
details on these types of configuration information displays.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

91

To store configuration changes to a file

• Choose File→Store... from the pulldown menu in the top-level configuration
interface window, and use the file selection dialog box to name the configuration
file.

• If you are using the Softkey Interface, the last configuration question,
"Configuration file name?", lets you name the file to which configuration
information is stored. If you don’t enter a name, configuration information is saved
to a temporary file (which is deleted when you exit the interface and release the
emulation system).

When modifying a configuration using the Graphical User Interface, you can store
your answers at any time.

Configuration information is saved in a file with the extension ".EA". This file is
the "source", ASCII format copy of the file. (The interface will create a temporary
file with the extension ".EB" which is the "binary" or loadable copy of the file.)

CAUTION Do not modify configurations by editing the ".EA" files. Use the configuration
interface to modify and save configurations.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of Chapter 4, "Entering Commands".

Chapter 5: Configuring the Emulator
Using the Configuration Interface

92

To change the configuration directory context

• Choose File→Directory... from the pulldown menu in the top-level configuration
interface window, and use the directory selection dialog box to specify the new
directory.

The directory context specifies the directory to which configuration files are stored
and from which they are loaded.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Using Menus, the Entry Buffer, and Action Keys"
section of Chapter 4, "Entering Commands".

To display the configuration context

• Choose Display→Context... from the pulldown menu in the top-level
configuration interface window.

The current directory context and the current configuration files are displayed in a
window. Click the "Done" pushbutton when you wish to close the window.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

93

To access help topics

• Choose Help→General Topic... from the pulldown menu in the top-level
configuration interface window, click on a topic in the selection dialog box, and
click the "OK" button.

To access help for a configuration item in a
dialog box

• Place the mouse pointer on the line of interest and press the f1 key.

• Choose Help→On Item... from the pulldown menu in the top-level configuration
interface window. The mouse pointer changes from an arrow to a question mark.
Place the question mark over a selection button or in the entry field on the line of
interest, and click any mouse button.

The configuration interface provides individual help for each item in the top level
dialog box and throughout the configuration section dialog boxes.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

94

To exit the configuration interface

• Choose File→Exit... from the pulldown menu in the top-level configuration
interface window (or type <CTRL>x).

If configuration changes have not been stored to a file, a confirmation dialog box
appears, giving you the options of: storing, exiting without storing, or canceling the
exit.

To load an existing configuration file

• In the emulator/analyzer interface, choose File→Load→Emulator Config... from
the pulldown menu, and use the file selection dialog box to specify the
configuration file to be loaded.

• Using the command line, enter the load configuration <FILE> command.

This command loads previously created and stored configuration files. You cannot
load a configuration while the configuration interface is running.

Chapter 5: Configuring the Emulator
Using the Configuration Interface

95

Verifying the Emulator Configuration

The 68360 emulator lets you display information about emulator configuration and
processor SIM programming. You can also display information about
inconsistencies found in the emulator configuration.

This section shows you how to:

• Display information about chip selects.

• Display information about bus interface ports.

• Display information about the memory map.

• Display information about the reset mode configuration.

• Display assembly language instructions for setting up the SIM.

• Check for configuration inconsistencies.

To display information about chip selects

• Choose Display→Configuration Info →Chip Selects (SIM) or
Display→Configuration Info →Chip Selects (Emulator SIM) from either the
configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info sim_chip_selects or display configuration_info
emsim_chip_selects command.

These commands let you display chip select information from the sim (processor)
register set or the emsim (emulator) register set.

The resulting display shows:

How the chip select is assigned.
The base address.
The block size.

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

96

Other information from the option register.

To display information about bus interface ports

• Choose Display→Configuration Info →Bus Interface Ports (SIM) or
Display→Configuration Info →Bus Interface Ports (Emulator SIM) from either
the configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info bus_interface_ports or display configuration_info
embus_interface_ports command.

These commands let you display information about bus interface Port E pin
assignments from the sim (processor) register set or the emsim (emulator) register
set.

The resulting display shows the pin assignments for the port.

To display information about the memory map

• Choose Display→Configuration Info →Memory Map from either the
configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info memory_map command.

When in the memory map section of the emulator configuration, the ranges of
memory that have been mapped are displayed.

The memory map configuration information shows detailed information about the
memory map, current programming of the chip selects in the EMSIM and EMRAM
register sets, and processor resources.

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

97

To display information about the reset mode
configuration

• Choose Display→Configuration Info →Reset Mode Value from either the
configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info reset_mode command.

The display will show data bus size and global chip select memory access size.

To review the upper address mode of the present
configuration

• Choose Display→Configuration Info →Upper Address Mode from either the
configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info upper_address command.

This selection will show whether the upper address bits are used as A31-A28 or
WE3-WE0.

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

98

To display information about the present clock
input mode

• Choose Display→Configuration Info →Clock Input Mode from either the
configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info clock_mode command.

The clock mode depends on the clock module installed in the emulation probe.
Refer to the Hewlett-Packard MC68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide for details.

To display assembly language instructions for
setting up the SIM

• Choose Display→Configuration Info →Initialization Source Code from either
the configuration interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info init_source_code command.

This command displays the assembly language program that will initialize the
processor as defined by the current EMSIM register contents.

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

99

To check for configuration inconsistencies

• Choose Display→Configuration Info →Diagnostics from either the configuration
interface or the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the display
configuration_info diagnostics command.

This command:

• Checks for inconsistencies between the emulator and the EMSIM registers.

• Checks for inconsistencies between the reset mode configuration value and the
EMSIM registers.

• Compares corresponding values in the SIM and EMSIM register sets.

This command identifies errors that result from inconsistencies between related
configuration values. These errors should be resolved in order for the emulator to
operate correctly.

This command also provides status and warning messages about expectations and
limitations of the emulator of which you should be aware.

If no messages are returned, no inconsistencies are found in the emulator
configuration.

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

100

To verify the emulator configuration

1 Choose Display→Configuration Info →Memory Map from either the
configuration interface or the emulator/analyzer interface pulldown menu to
display information about the memory map and its correlation with chip selects,
internal module register block, and RAM.

This shows more detailed information about the memory map for the 68360. If
foreground monitor is selected, the map will include the map term for the
foreground monitor.

2 Choose Display→Configuration Info →Chip Selects (Emulator SIM) from
either the configuration interface or the emulator/analyzer interface pulldown menu
to display information about chip selects.

A table appears. It shows the current values in the emsim (Emulator Copy) register
set.

Chapter 5: Configuring the Emulator
Verifying the Emulator Configuration

101

102

6

Using the Emulator

103

Using the Emulator

This chapter describes general tasks you may wish to perform while using the
emulator. These tasks are grouped into the following sections:

• Using the emulation copy of the SIM (emsim) registers.

• Loading absolute files.

• Using symbols.

• Executing user programs (starting, stopping, stepping, and resetting the
emulator).

• Using software breakpoints.

• Displaying and modifying registers.

• Displaying and modifying memory.

• Changing the interface settings.

• Using system commands.

If you encounter problems when using the emulator/analyzer, refer to the chapter
titled "Solving Problems" in the MC68360 emulator/Analyzer
Installation/Service/Terminal Interface Manual. Ensure that you are using the
appropriate clock module for the system you are probing. Details of clock module
selection are also discussed in the MC68360 emulator/Analyzer
Installation/Service/Terminal Interface Manual.

104

Using the EMSIM Registers

The 68360 processor contains a System Integration Module (SIM) which has the
external bus interface, eight chip selects, and other circuitry to reduce external
logic in a typical microprocessor system. The SIM can be programmed or
configured in a variety of ways to suit the need of various systems.

The HP 64780 emulator contains circuitry that accommodates the flexibility of the
SIM and maintains consistent emulation features.

The 68360 SIM is configured through the registers in the SIM register class; these
registers control how the 68360 uses external signal lines to access memory.

The emulator is configured through the registers in the EMSIM register class. This
programming controls how the emulator interprets the signals from the 68360 when
accessing emulation memory and passing information to the analysis trace.

Normally, the SIM and EMSIM registers should be programmed with the same
values so they will be working together.

One of the primary functions is to provide A31-A28 to the memory mapper and
analyzer so they will have the complete 32-bit address bus. This is easy if Port E of
the 68360 is programmed as address lines; however, if these lines are programmed
as write enables, the corresponding address lines are not available external to the
68360. The chip selects, however, have access to the full 32-bit address inside the
68360. You can therefore locate memory using a chip select at an address that is
not possible to decode externally. The emulator can use information in the
programming of the chip selects to re-create the upper address lines. This provides
a correct address in the analysis trace so that symbolic debugging is possible.
Unfortunately, these addresses cannot be recreated in time for memory mapping so
the mapper is limited to 28 bits of addressing when the upper address lines are not
available.

Normally, the emulator is programmed through the EMSIM registers to match the
programming of the 68360 SIM as it will exist after all of the boot-up configuration
is complete. This can be done before the boot-up code is run. In fact, the
programming of the EMSIM registers is part of the configuration and will be
loaded along with the memory map and other configuration items when a
configuration file is loaded.

The default programming of the EMSIM register set matches the reset values of the
68360 SIM (refer to the Motorola MC68360 User’s Manual for specific values).

Chapter 6: Using the Emulator
Using the EMSIM Registers

105

There are three places where 68360 SIM registers are kept: the target 68360, the
emulator 68360, and the emulator configuration file. At any given time during a
run of program, the content of the SIM and EMSIM registers will likely be
different, and they may both be different from the content of the configuration file.
Differences between the SIM and EMSIM registers can affect the accuracy of
emulator behavior and displays. The following commands can be used to minimize
these differences.

If desired, the programming of the EMSIM register set can be transferred into the
68360 SIM with the sync_sim_registers to_68360_from_config command. This
happens automatically each time a break to the monitor from emulation reset
occurs. This ensures that the 68360 is prepared to properly access memory when a
program is downloaded to the emulator.

Alternatively, the emulator’s EMSIM register set can be programmed from the
68360 SIM with the sync_sim_registers from_68360_to_config command. This
is useful if initialization code that configures the 68360 SIM exists, but you don’t
know its values. In this case, you can use the default configuration, run from reset
to execute the initialization code, and use the sync_sim_registers
from_68360_to_config command to configure the emulator to match the 68360
SIM.

At any time, you can verify if the SIM and EMSIM register sets are programmed
the same with the sync_sim_registers difference command. Any differences
between the two register sets will be listed.

If desired, you can reset the SIM and EMSIM register sets to their default (power
up) values with the sync_sim_registers default_config command.

Note that that the emulator is configured solely from the EMSIM register set and is
therefore static with respect to the application program. No attempt is made to
update the programming of the emulator by tracking instructions that will program
the 68360 SIM.

This section shows you how to:

• View the SIM register differences.

• Synchronize to the 68360 SIM registers.

• Synchronize to the EMSIM registers.

Chapter 6: Using the Emulator
Using the EMSIM Registers

106

To view the SIM register differences

• Choose Display→SIM Register Differences from the emulator/analyzer interface
pulldown menu.

• Using the emulator/analyzer interface command line, enter the sync_sim_registers
difference command.

A list will appear. It will show only registers having different values between the
SIM and EMSIM.

To synchronize to the 68360 SIM registers

• Choose Modify →SIM Registers→Copy Processor SIM to Emulator SIM from
the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the sync_sim_registers
from_68360_to_config command.

The contents of the 68360 SIM registers are copied to the emulation copy of the
SIM registers.

Chapter 6: Using the Emulator
Using the EMSIM Registers

107

To synchronize to the EMSIM registers

• Choose Modify →SIM Registers→Copy Emulator SIM to Processor SIM from
the emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the sync_sim_registers
to_68360_from_config command.

The contents of the emulation copy of the SIM registers are copied to the 68360
SIM registers.

To restore default values in the EMSIM registers

• Choose Modify →SIM Registers→Default Emulator SIM from the
emulator/analyzer interface pulldown menu.

• Using the emulator/analyzer interface command line, enter the sync_sim_registers
default_config command.

The contents of the EMSIM register set are restored to their power-up values.

Chapter 6: Using the Emulator
Using the EMSIM Registers

108

To assign an MBAR value for the M68360 register
set

• Press the "Sync $MBAR" Action Key.

The emulator will read the value of the MBAR register in the target 68360
processor and record the value for use in defining the 68360 register set in the
emulator. A browser window will appear. It will show you the value of the target
MBAR register that was recorded by this process.

• Press the "Set $MBAR" Action Key.

A Define command file parameter dialog box will open. Enter any desired value
for the emulator’s MBAR register in the dialog box. Then click OK.

The value entered should be the address portion of the MBAR register.

Chapter 6: Using the Emulator
Using the EMSIM Registers

109

Loading and Storing Absolute Files

This section describes the tasks related to loading absolute files into the emulator
and storing memory contents into absolute files. This section shows you how to:

• Load absolute files into memory.

• Load absolute files without symbols.

• Store memory contents into absolute files.

To load absolute files

• Choose File→Load→Executable and use the dialog box to select the absolute file.

• Using the command line, enter the load <absolute_file> command.

You can load absolute files into emulation or target system memory. You can load
IEEE-695 format absolute files. You can also load HP format absolute files. The
store memory command creates HP format absolute files.

If you wish to load only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM, use the command line’s load emul_mem
syntax.

If you wish to load only the portion of the absolute file that resides in memory
mapped as target RAM, use the command line’s load user_mem syntax.

If you want both emulation and target memory to be loaded, do not specify
emul_mem or user_mem.

Examples To load the demo program absolute file, enter the following command:

load ecs.x <RETURN>

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

110

To load only portions of the absolute file that reside in target system RAM:

load user_mem absfile <RETURN>

To load only portions of the absolute file that reside in emulation memory:

load emul_mem absfile <RETURN>

To load absolute files without symbols

• Choose File→Load→Program Only and use the dialog box to select the absolute
file.

• Using the command line, enter the load <absolute_file> nosymbols command.

To store memory contents into absolute files

• Using the command line, enter the store memory command.

You can store emulation or target system memory contents into HP format absolute
files on the host computer. Absolute files are stored in the current directory. If no
extension is given for the absolute file name, it is given a ".X" extension.

Examples To store the contents of memory locations 900H through 9FFH to an absolute file
on the host computer named "absfile":

store memory 900h thru 9ffh to absfile <RETURN>

After the command above, a file named "absfile.X" exists in the current directory
on the host computer.

Chapter 6: Using the Emulator
Loading and Storing Absolute Files

111

Using Symbols

If symbol information is present in the absolute file, it is loaded along with the
absolute file (unless you use the nosymbols option). Both global symbols and
symbols that are local to a program module can be displayed.

Long symbol names can be truncated in the symbols display; however, you can
increase the width of the symbols display by starting the interface with more
columns (refer to Chapter 10, "Setting X Resources").

This section describes how to:

• Load symbols.

• Display global symbols.

• Display local symbols.

• Display a symbol’s parent symbol.

• Copy-and-paste a full symbol name to the entry buffer.

To load symbols

• Choose File→Load→Symbols Only and use the dialog box to select the absolute
file.

• Using the command line, enter the load symbols <absolute_file> command.

Unless you use the nosymbols option when loading absolute files, symbols are
loaded automatically. However, if you did use the nosymbols option when loading
the absolute file, you can load the symbols without loading the absolute file again.

This option is particularly useful for loading symbols for files located in target
ROM so that you can use symbols with that code.

Chapter 6: Using the Emulator
Using Symbols

112

Examples To load symbols from the demo program:

load symbols ecs.x <RETURN>

To display global symbols

• Choose Display→Global Symbols.

• Using the command line, enter the display global_symbols command.

Listed are: address ranges associated with a symbol, the segment the symbol is
associated with, and the offset of that symbol within the segment.

If there is more than a screen full of information, you can use the up arrow, down
arrow, <NEXT>, or <PREV> keys to scroll the information up or down on the
display.

Examples To display global symbols in the demo program:

display global_symbols <RETURN>

Chapter 6: Using the Emulator
Using Symbols

113

To display local symbols

• When displaying symbols, position the mouse pointer over a symbol on the symbol
display screen and click the select mouse button.

• When displaying symbols, position the mouse pointer over the symbol, press and
hold the select mouse button, and choose Display Local Symbols from the pop-up
menu.

• Position the mouse cursor in the entry buffer and enter the module whose local
symbols are to be displayed; then, choose Display→Local Symbols ().

• Using the command line, enter the display local_symbols_in <module> command.

To display the address ranges associated with the high-level program’s source file
line numbers, you must display the local symbols in the file.

Chapter 6: Using the Emulator
Using Symbols

114

Examples To use the Symbols Display pop-up menu:

View the local
symbols associated
with the highlighted
symbol by choosing
this menu item.

Chapter 6: Using the Emulator
Using Symbols

115

Using the command line:

To display local symbols in a module:

display local_symbols_in update_sys <RETURN>

To display local symbols in a procedure:

display local_symbols_in update_sys.save_points <RETURN>

Chapter 6: Using the Emulator
Using Symbols

116

To display address ranges associated with the high-level source line numbers:

display local_symbols_in update_sys."update_sys.c":
<RETURN>

Chapter 6: Using the Emulator
Using Symbols

117

To display a symbol’s parent symbol

• When displaying symbols, position the mouse pointer over the symbol, press and
hold the select mouse button, and choose Display Parent Symbols from the
pop-up menu.

Examples

View the parent
symbol associated
with the highlighted
symbol by choosing
this menu item.

Chapter 6: Using the Emulator
Using Symbols

118

To copy-and-paste a full symbol name to the
entry buffer

• When displaying symbols, position the mouse pointer over the symbol, press and
hold the select mouse button, and choose Cut Full Symbol Name from the pop-up
menu.

Once the full symbol name is in the entry buffer, you can use it with pulldown
menu items or paste it to the command line area.

By cutting the full symbol name, you get the complete names of symbols that have
been truncated. Also, you are guaranteed of specifying the proper scope of the
symbol.

Examples

Copy the full name
of the highlighted
symbol to the entry
buffer by choosing
this menu item.

Chapter 6: Using the Emulator
Using Symbols

119

Using Context Commands

The commands in this section display and control the directory and symbol
contexts for the interface.

Directory context. The current directory context is the directory accessed by all
system references for files—primarily load, store, and copy commands—if no
explicit directory is mentioned. Unless you have changed directories since
beginning the emulation session, the current directory context is that of the
directory from which you started the interface.

Symbol context. The emulator/analyzer interface and the Symbol Retrieval
Utilities (SRU) together support a current working symbol context. The current
working symbol represents an enclosing scope for local symbols. If symbols have
not been loaded into the interface, you cannot display or change the symbol context.

This section shows you how to:

• Display the current directory and symbol context.

• Change the directory context.

• Change the symbol context.

Chapter 6: Using the Emulator
Using Context Commands

120

To display the current directory and symbol
context

• Choose Display→Context.

• Using the command line, enter the pwd and pws commands.

The current directory and working symbol contexts are displayed, and also the
name of the last executable file from which symbols were loaded.

Example

Directory context.

Executable from
which symbols were
last loaded.

Symbol context.

Chapter 6: Using the Emulator
Using Context Commands

121

To change the directory context

• Choose File→Context→Directory and use the dialog box to select a new
directory.

• Using the command line, enter the cd <directory> command.

The Directory Selection dialog box contains a list of directories accessed during the
emulation session as well as any predefined directories present at interface startup.

You can predefine directories and set the maximum number of entries for the
Directory Selection dialog box by setting X resources (see Chapter 10, "Setting X
Resources").

To change the current working symbol context

• Choose File→Context→Symbols and use the dialog box to select the new
working symbol context.

• Using the command line, enter the cws <symbol_context> command. (Because
cws is a hidden command and doesn’t appear on a softkey label, you have to type it
in.)

You can predefine symbol contexts and set the maximum number of entries for the
Symbol Scope Selection dialog box by setting X resources (see Chapter 10,
"Setting X Resources").

Displaying local symbols or displaying memory in mnemonic format causes the
working symbol context to change as well. The new context will be that of the
local symbols or memory locations displayed.

Chapter 6: Using the Emulator
Using Context Commands

122

Executing User Programs

You can use the emulator to run programs, break program execution into the
monitor, step through the program by high-level source lines or by assembly
language instructions, and reset the emulation processor.

When displaying memory in mnemonic format, a highlighted bar shows the current
program counter address. When you step, the mnemonic memory display is
updated to highlight the new program counter address.

When displaying resisters, the register display is updated to show you the contents
of the registers after each step.

You can open multiple interface windows to display memory in mnemonic format
and registers at the same time. Both windows are updated after stepping.

This section describes how to:

• Start the emulator running the user program.

• Stop (break from) user program execution.

• Step through user programs.

• Reset the emulation processor.

To run programs from the current PC

• Choose Execution→Run→from PC.

• Using the command line, enter the run command.

When the emulator is executing the user program, the message "Running user
program" is displayed on the status line.

Chapter 6: Using the Emulator
Executing User Programs

123

To run programs from an address

• Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choose Execution→Run→from ().

• Using the command line, enter the run from <address> command.

Examples To run from address 920H:

run from 920h <RETURN>

To run programs from the transfer address

• Choose Execution→Run→from Transfer Address.

• Using the command line, enter the run from transfer_address command.

Most software development tools allow you to specify a starting or entry address
for program execution. That address is included with the absolute file’s symbolic
information and is known by the interface as the transfer address.

To run programs from reset

• Choose Execution→Run→from Reset.

• Using the command line, enter the run from reset command.

The run from reset command specifies a run from target system reset. It is
equivalent to entering a reset command followed by a run command. The
processor will be hard reset, and then allowed to run.

Chapter 6: Using the Emulator
Executing User Programs

124

To run programs from soft reset

• Choose Execution→Run→from Soft Reset.

• Using the command line, enter the run from soft_reset command.

The run from soft reset command pulses the RESETS line to the processor to force
a soft reset. In this mode, execution begins from the reset vector without changing
any of the internal register values of the 68360.

To run programs until an address

• When displaying memory in mnemonic format, position the mouse pointer over the
line that you want to run until; then press and hold the select mouse button and
choose Run Until from the pop-up menu.

• Position the mouse pointer in the entry buffer and enter the address you want to run
from; then, choose Execution→Run→until () .

• Using the command line, enter the run until <address> command.

When you run until an address, a software breakpoint is set at the address and the
program is run from the current program counter.

When using the command line, you can combine the various types of run
commands; for example, you can run from the transfer address until another
address.

Examples To run from the transfer address until the address of the global symbol main:

run from transfer_address until address main <RETURN>

Chapter 6: Using the Emulator
Executing User Programs

125

To stop (break from) user program execution

• Choose Execution→Break.

• Using the command line, enter the break command.

This command generates a break to the background monitor.

Software breakpoints and the run until command allow you to stop execution at
particular points in the user program.

Examples To break emulator execution from the user program to the monitor:

break <RETURN>

To step high-level source lines

• Choose Execution→Step Source and select one of the items from the cascade
menu.

• Using the command line, enter the step source command.

When stepping through instructions associated with source lines, execution can
remain in a loop and the message "Stepping source line 1; Next PC: <address>" is
displayed on the status line. In this situation you can abort the step command by
pressing <CTRL>c.

Chapter 6: Using the Emulator
Executing User Programs

126

Examples To step through instructions associated with the high-level source lines at the
current program counter:

step source <RETURN>

To step through instructions associated with high-level source lines at address
"main":

step source from main <RETURN>

To step assembly-level instructions

• Choose Execution→Step Instruction and select one of the items from the cascade
menu.

• Using the command line, enter the step command.

The step command allows you to step through program execution an instruction or
a number of instructions at a time. Also, you can step from the current program
counter or from a specific address.

Examples To step one instruction from the current program counter:

step <RETURN>

To step a number of instructions from the current program counter:

step 8 <RETURN>

To step a number of instructions from a specified address:

step 16 from 920h <RETURN>

Chapter 6: Using the Emulator
Executing User Programs

127

To reset the emulation processor

• Choose Execution→Reset.

• Using the command line, enter the reset command.

The reset command causes the processor to be held in a reset state until a break,
run , or step command is entered. A CMB execute signal will also cause the
emulator to run if reset.

Chapter 6: Using the Emulator
Executing User Programs

128

Using Software Breakpoints

Software breakpoints provide a way to accurately stop the execution of your
program at selected locations.

Note Version A.04.00 or greater of the HP 64700 system firmware provides support for
permanent as well as temporary breakpoints. If your version of HP 64700 system
firmware is less than A.04.00, only temporary breakpoints are supported.

When you set a software breakpoint at an address, the instruction at that address is
replaced with a BGND instruction. When the BGND instruction is executed, the
emulator enters its monitor state, and the original instruction is restored in the user
program.

If the BGND instruction was not inserted as the result of a modify
software_breakpoints set command, the "Undefined software breakpoint"
message is displayed on the status line.

In order to successfully set a software breakpoint, the emulator must be able to
write to the memory location specified. Therefore, software breakpoints cannot be
set in target memory while the emulator is reset, and they can never be set in target
ROM. (You can, however, copy target ROM to emulation memory by storing the
contents of target ROM to an absolute file, re-mapping the range as emulation
RAM, and loading the absolute file.)

Another way to break user program execution at a certain point is to break on the
analyzer trigger.

This section shows you how to:

• Display the breakpoints list.

• Enable/disable breakpoints.

• Set a permanent breakpoint.

• Set a temporary breakpoint.

• Set all breakpoints.

• Deactivate a breakpoint.

Chapter 6: Using the Emulator
Using Software Breakpoints

129

• Re-activate a breakpoint.

• Clear a breakpoint.

• Clear all breakpoints.

To display the breakpoints list

• Choose Display→Breakpoints or Breakpoints→Display.

• Using the command line, enter the display software_breakpoints command.

The breakpoints display shows the address and status of each breakpoint currently
defined. If symbolic addresses are turned on (when setting the display modes), the
symbolic label associated with a breakpoint is also displayed. Also, the
breakpoints display shows whether the breakpoint feature is enabled or disabled.

The status of a breakpoint can be:

temporary Which means the temporary breakpoint has been set but not
encountered during program execution. These breakpoints are
removed when the breakpoint is encountered.

permanent Which means the permanent breakpoint is active. Permanent
breakpoints remain active after they are encountered during
execution.

inactivated Which means the breakpoint has been inactivated. Pending
breakpoints are inactivated when they are encountered during

Chapter 6: Using the Emulator
Using Software Breakpoints

130

program execution. Both temporary and permanent breakpoints
can be inactivated (and restored) using the breakpoints display
pop-up menu.

pending Which means the temporary breakpoint has been set but not
encountered during program execution. When encountered,
these breakpoints are inactivated but retained in the breakpoints
list. Pending breakpoints can only be set using the softkey
command line with commands like modify
software_breakpoints set 1000 and not selecting the additional
options <temporary> or <permanent>. The pending
breakpoints status is retained for compatibility with older
product software versions.

In the breakpoints display, a pop-up menu is available, obtained by pressing the
select mouse button. You can inactivate or restore the status of any breakpoint in
the breakpoints list, as well as enable or disable the breakpoints feature using the
pop-up menu.

To enable/disable breakpoints

• Choose the Breakpoints→Enable toggle.

• When displaying the breakpoint list, press and hold the select mouse button and
then choose Enable/Disable Software Breakpoints from the pop-up menu.

• Using the command line, enter the modify software_breakpoints enable or
modify software_breakpoints disable command.

The breakpoints feature must be enabled before you can set, inactivate, or clear
breakpoints.

If breakpoints were set when the feature was disabled, they are "inactivated" when
the feature is re-enabled, and you must set them again.

The emulator/analyzer interface will enable software breakpoints whenever the
XEnv_68k_except symbol is present in the symbol data base.

Chapter 6: Using the Emulator
Using Software Breakpoints

131

The run-time library provided with the 68360 C Cross Compiler uses software
breakpoints to interrupt program execution when exceptions (for example, divide
by zero) are encountered. If software breakpoints are disabled, exception
processing may result in "access to guarded memory" errors and/or other
unpredictable behavior. To prevent this, a special global symbol,
XEnv_68k_except, is included in the library.

When the XEnv_68k_except symbol is present, the 68360 emulator writes a value
to this location. The value tells the run-time library to use the BGND instruction to
perform a software break.

Examples To enable software breakpoints using the breakpoints display pop-up menu:

Bring up menu and
choose this item to
change states.

Chapter 6: Using the Emulator
Using Software Breakpoints

132

To set a permanent breakpoint

• When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to set the breakpoint and click the select mouse
button. Or, press and hold the select mouse button and choose Set/Clear Software
Breakpoint from the pop-up menu.

• Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints→Permanent ()

• Using the command line, enter the modify software_breakpoints set <address>
permanent command.

Permanent breakpoints are available if your version of HP 64700 system firmware
is A.04.00 or greater.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

Chapter 6: Using the Emulator
Using Software Breakpoints

133

Examples To set permanent breakpoints using the mnemonic memory display pop-up menu:

Click this line to set
a breakpoint.

Click this line to
clear a breakpoint.
(Asterisks mark set
breakpoints.)

Bring up menu and
choose this item to
set (or clear) a
breakpoint on the
highlighted line.

Chapter 6: Using the Emulator
Using Software Breakpoints

134

To set a temporary breakpoint

• Place an absolute or symbolic address in the entry buffer; then, choose
Breakpoints→Temporary () (or Breakpoints→Set () if your version of
HP 64700 system firmware is less than A.04.00).

• Using the command line, enter the modify software_breakpoints set <address>
temporary or modify software_breakpoints set <address> command.

The breakpoints feature must be enabled before individual breakpoints can be set.

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

When displaying memory in mnemonic format, asterisks (*) appear next to
breakpoint addresses. An asterisk shows the breakpoint is active. Also, if
assembly level code is being displayed, the disassembled instruction mnemonic at
the breakpoint address will show the breakpoint instruction.

To set all breakpoints

• When displaying the breakpoint list, position the mouse pointer within the
breakpoints display screen, press and hold the select mouse button, and choose Set
All Breakpoints from the pop-up menu.

• Choose Breakpoints→Set All.

• Using the command line, enter the modify software_breakpoints set command.

Breakpoints must be enabled before being set.

Chapter 6: Using the Emulator
Using Software Breakpoints

135

To deactivate a breakpoint

• When displaying breakpoints, position the mouse pointer over the line displaying
the active breakpoint and click the select mouse button. Or, press and hold the
select mouse button and choose Set/Inactivate Breakpoint from the pop-up menu.

A deactivated breakpoint remains in the breakpoint list and can be re-activated
later. Deactivating a breakpoint is different than clearing a breakpoint because a
cleared breakpoint is removed from the breakpoints list.

To re-activate a breakpoint

• When displaying breakpoints, position the mouse pointer over the line displaying
the inactivated breakpoint and click the select mouse button. Or, press and hold the
select mouse button and choose Set/Inactivate Breakpoint from the pop-up menu.

The "inactivated" breakpoint either becomes "temporary" (or "pending") if it was
set as a temporary breakpoint or "permanent" if it was set as a permanent
breakpoint.

Chapter 6: Using the Emulator
Using Software Breakpoints

136

Examples To re-activate breakpoints using the breakpoints display pop-up menu:

Change status with a
mouse click on this
line (menu and
highlight do not
appear).

Choose this menu
item to change the
state of the
highlighted
breakpoint.

Chapter 6: Using the Emulator
Using Software Breakpoints

137

To clear a breakpoint

• When displaying memory in mnemonic format, position the mouse pointer over the
program line at which you wish to clear a currently set breakpoint (notice the
asterisk at the left of the line) and click the select mouse button. Or, press and hold
the select mouse button and choose Set/Clear Software Breakpoint from the
pop-up menu.

• When displaying breakpoints, position the mouse pointer over the line displaying
the breakpoint you wish to clear, press and hold the select mouse button, and
choose Clear (delete) Breakpoint from the pop-up menu.

• Place an absolute or symbolic address in the entry buffer; then choose
Breakpoints→Clear ().

• Using the command line, enter the modify software_breakpoints clear
<address> command.

When you clear a breakpoint, it is removed from the breakpoints list.

Chapter 6: Using the Emulator
Using Software Breakpoints

138

Examples To clear a software breakpoint using the breakpoints display pop-up menu:

Bring up the menu
and choose this item
to clear the
highlighted
breakpoint.

Chapter 6: Using the Emulator
Using Software Breakpoints

139

To clear all breakpoints

• When displaying breakpoints, position the mouse pointer within the Breakpoints
Display screen, press and hold the select mouse button, and choose Clear (delete)
All Breakpoints from the pop-up menu.

• Choose Breakpoints→Clear All .

• Using the command line, enter the modify software_breakpoints clear command.

Chapter 6: Using the Emulator
Using Software Breakpoints

140

Displaying and Modifying Registers

This section describes tasks related to displaying and modifying emulation
processor registers.

You can display the contents of an individual register or of all the registers.

To display register contents

• Choose Display→Registers→<register class>.

• Using the command line, enter the display registers <register class> command.

The <register class> token requires the name of a class of registers, such as
BASIC or SIM . The display will show all registers in the <register class> you
select, along with the present values of the registers.

Chapter 6: Using the Emulator
Displaying and Modifying Registers

141

Obtaining mnemonic displays of the 68360
registers using the Action Keys

• To set up to display registers for the emulated 68360, use the "Sync $MBAR"
Action Key.

• To obtain a record of the present contents of all SIM60 and CPM registers in one
listing, press the "Reg 360 All" Action Key.

• To view the contents of a single SIM60 or CPM register, press the "Pick Reg 360"
Action Key. Within the appropriate browser window, click on the name of the
register to be displayed. Then press the "Reg 360 ()" Action Key.

• To obtain a record of the present content of all parameter RAMs and Buffer
Descriptors in one browser, press the "PRBD 360 All" Action Key.

• To view the contents of a single Parameter RAM and its associated Buffer
Descriptors, place the name of the desired channel in the entry buffer and press the
"PRBD 360 ()" Action Key.

All complex register displays are supported with an "expanded" display to interpret
the meaning of the bits that make up the register value. The descriptions of values
will change as the register content changes to correspond to the present register
values.

Expanded register displays show dependencies. For example, if a bit is masked by
another register, the expanded display will show that the bit is masked.

When a bit governs output format (such as AppleTalk or Asynch HDLC), the
expanded display will show the present format.

The descriptions in expanded displays correspond to interpretations and
descriptions in Motorola manuals.

Expanded register displays are only available for registers whose individual bits
have unique configuring values.

Chapter 6: Using the Emulator
Displaying and Modifying Registers

142

The following expanded display of the pepar register was obtained from the
SIM60/CMP Register Browser Window by placing pepar in the entry buffer and
clicking the action key labeled Reg 360 ():

CREATED: Fri Mar 31 11:39:27 1995
>addr=0x00001016 pepar=0x0000
Bit Name Setting
------ -------------------

15 Reserved
14-12 SINTOUT Reserved
11 Reserved
10-9 CF1MODE CONFIG1 input function
8 ~|PIPE1/~RAS1DD ~|PIPE1 output function
7 A28-31/~WE3-~WE0 Address 31-28 input/output functions
6 ~OE/AMUX ~OE output function
5 PWW PEPAR has not been written
4 ~CAS2,3/~IACK3,6 ~CAS2,3 output functions
3 Reserved
2 ~CAS0,1/~IACK1,2 ~CAS0,1 output functions
1 ~CS7/~IACK7 ~CS7 output function
0 ~AVEC(AVEC0)/~IACK5 ~AVEC input function

Chapter 6: Using the Emulator
Displaying and Modifying Registers

143

To modify register contents

• Choose Modify →Register... and use the dialog box to name the register and
specify its value.

Clicking the "Recall" pushbutton lets
you select register names and values
from predefined or previously
specified entries.

Placing the mouse pointer in the text
entry area lets you type in the
register name and value.

To define the type of value, press and
hold the command select mouse
button and drag the mouse to select
the value type.

Clicking this checkbox causes the
current value of the named register to
be placed in the "Value" text entry
area.

Clicking this button modifies the
register to the value specified and
closes the dialog box.

Clicking this button modifies
the register to the value
specified and leaves the dialog
box open.

Clicking this button cancels
modification and closes the
dialog box.

• Using the command line, enter the modify register <register> to <value>
command.

Chapter 6: Using the Emulator
Displaying and Modifying Registers

144

To modify registers using the Action Keys

• To modify the content of a SIM60 or CPM register, press the "Pick Reg 360"
Action Key. Within the appropriate browser window, click on the name of the
register to be modified. Then press the "Mod 360 ()" Action Key. Type the
desired value in the Define command file parameter dialog box and click OK.

• To modify the contents of a Parameter RAM or Buffer Descriptor, press the "Mod
Memory" Action Key. The Define command file parameter dialog box will appear
three times. In the first appearance, enter the desired address; next, enter size; and
finally, enter value. Click OK after each entry.

Chapter 6: Using the Emulator
Displaying and Modifying Registers

145

Displaying and Modifying Memory

You can display and modify the contents of memory in hexadecimal formats and in
real number formats. You can also display the contents of memory in assembly
language mnemonic format.

This section shows you how to:

• Display memory.

• Display memory in mnemonic format.

• Display memory in mnemonic format at the current PC.

• Return to the previous mnemonic display.

• Display memory in hexadecimal format.

• Display memory in real number format.

• Display memory at an address.

• Display memory repetitively.

• Modify memory.

• Modify memory at an address.

To display memory

• Choose Display→Memory.

This command either re-displays memory in the format specified by the last
memory display command, or, if no previous command has been executed,
displays memory as hexadecimal bytes beginning at address zero.

Chapter 6: Using the Emulator
Displaying and Modifying Memory

146

To display memory in mnemonic format

• To display memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choose Display→Memory→Mnemonic (), or, using the
command line, enter the display memory <address> mnemonic command.

• To display memory at the current program counter address, choose
Display→Memory→Mnemonic at PC, or, using the command line, enter the
display memory mnemonic at_pc command.

A highlighted bar shows the location of the current program counter address. This
allows you to view the program counter while stepping through user program
execution.

Whether source lines, assembly language instructions, or symbols are included in
the display depends on the modes you choose with the
Settings→Source/Symbols Modes or Settings→Display Modes pulldown menu
items. See the "Changing the Interface Settings" section.

If symbols are loaded into the interface, the default is to display source only.

To return to the previous mnemonic display

• Choose Display→Memory→Mnemonic Previous.

• Using the command line, enter the display memory mnemonic previous_display
command.

This command is useful for quickly returning to the previous mnemonic memory
display.

For example, suppose you are stepping source lines and you step into a function
that you would like to step over. You can return to the previous mnemonic
memory display, set a breakpoint at the line following the function call, and run the
program from the current program counter.

Chapter 6: Using the Emulator
Displaying and Modifying Memory

147

To display memory in hexadecimal format

• Place an absolute or symbolic address in the entry buffer; then, choose
Display→Memory→Hex () and select the size from the cascade menu.

• Using the command line, enter the display memory <address> blocked <size>
command.

This command displays memory as hexadecimal values beginning at the address in
the entry buffer.

Examples To display memory in absolute word format:

display memory ascii_old_data absolute words <RETURN>

Chapter 6: Using the Emulator
Displaying and Modifying Memory

148

To display memory in blocked byte format:

display memory ascii_old_data blocked bytes <RETURN>

To display memory at an address

• Place an absolute or symbolic address in the entry buffer; then, choose
Display→Memory→At ().

This command displays memory in the same format as that of the last memory
display command. If no previous command has been issued, memory is displayed
as hexadecimal bytes.

Chapter 6: Using the Emulator
Displaying and Modifying Memory

149

To display memory repetitively

• Choose Display→Memory→Repetitively.

• Using the command line, enter the display memory repetitively command.

The memory display is constantly updated. The format is specified by the last
memory display command.

This command is ignored if the last memory display command was a mnemonic
display.

To modify memory

• Choose Modify →Memory and complete the command using the command line.

• To modify memory at a particular address, place an absolute or symbolic address in
the entry buffer; then, choose Modify →Memory at () and complete the command
using the command line.

• Using the command line, enter the modify memory command.

You can modify the contents of one memory location or a range of memory
locations. Options allow you to modify memory in byte, short, word, and real
number formats.

Chapter 6: Using the Emulator
Displaying and Modifying Memory

150

Displaying Data Values

The data values display lets you view the contents of memory as data types. You
can display data values in the following formats:

bytes
8-bit integers
unsigned 8-bit integers
chars
words
16-bit integers
unsigned 16-bit integers
long words
32-bit integers
unsigned 32-bit integers

This section shows you how to:

• Display data values.

• Clear the data values display and add a new item.

• Add item to the data values display.

To display data values

• Choose Display→Data Values.

• Using the command line, enter the display data command.

Items must be added to the data values display before you can use this command.

The data display shows the values of simple data types in the user program. When
the display mode setting turns ON symbols, a label column that shows symbol
values is added to the data display.

Step commands and commands that cause the emulator to enter the monitor (for
example, encountering a breakpoint) cause the data values screen to be updated.

Chapter 6: Using the Emulator
Displaying Data Values

151

To clear the data values display and add a new
item

• Place an absolute or symbolic address in the entry buffer; then, choose
Display→Data Values→New () and select the data type from the cascade menu.

• Using the command line, enter the display data <address> command.

To add items to the data values display

• Place an absolute or symbolic address in the entry buffer; then, choose
Display→Data Values→Add () and select the data type from the cascade menu.

• Using the command line, enter the display data , <address> command.

Chapter 6: Using the Emulator
Displaying Data Values

152

Changing the Interface Settings

This section shows you how to:

• Set the source/symbol modes.

• Set the display modes.

To set the source/symbol modes

• To display assembly language mnemonics with absolute addresses, choose
Settings→Source/Symbol Modes→Absolute, or, using the command line, enter
the set source off symbols off command.

• To display assembly language mnemonics with absolute addresses replaced by
global and local symbols where possible, choose Settings→Source/Symbol
Modes→Symbols, or, using the command line, enter the set source off symbols
on command.

• To display assembly language mnemonics intermixed with high-level source lines,
choose Settings→Source/Symbol Modes→Source Mixed, or, using the command
line, enter the set source on symbols on command.

• To display only high-level source lines, choose Settings→Source/Symbol
Modes→Source Only, or, using the command line, enter the set source only
symbols on command.

The source/symbol modes affect mnemonic memory displays and trace displays.

Each display mode cascade menu choice is a toggle. Choosing one of these items
causes it to be the only one active and toggles all others off. Provided that symbols
were loaded, the interface defaults to:

• Source only for mnemonic memory displays.

• Source mixed for trace listing displays.

Chapter 6: Using the Emulator
Changing the Interface Settings

153

To set the display modes

• Choose Settings→Display Modes... to open the display modes dialog box.

Press and hold the select mouse
button and drag the mouse to
select "Source Only", "Source
Mixed", or "Off".

Clicking toggles whether
symbolic information is
displayed.

Move the mouse pointer to the
text entry area and type in the
value. Descriptions of the
modes follow.

Clicking toggles auto update
settings.

Clicking this checkbox changes
all display mode settings to
their defaults.

Clicking this button saves your
changes and closes the dialog
box.

Clicking this button saves
your changes and leaves the
dialog box open.

Clicking this button cancels your
changes and closes the dialog box.

Chapter 6: Using the Emulator
Changing the Interface Settings

154

Source/Symbols View

Source in Memory specifies whether source lines are included, mixed with
assembly code, or excluded from mnemonic memory displays.

Source in Trace specifies whether source lines are included, mixed with stored
states, or excluded from trace displays.

Symbolic Addresses specifies whether symbols are included in displays.

Tab Expansion sets the number of spaces displayed for tabs in source lines.

Source/Symbols View

Label Field sets the width (in characters) of the address field in the trace list or
label (symbols) field in any of the other displays.

Mnemonic Field sets the width (in characters) of the mnemonic field in memory
mnemonic, trace list, and register step mnemonic displays. It also changes the
width of the status field in the trace list.

Symbols in Mnemonic Field sets maximum width of symbols in the mnemonic
field of the trace list, memory mnemonic, and register step mnemonic displays.

Source Lines sets the width (in characters) of the source lines in the memory
mnemonic display.

Auto Update

Memory Displays (Except Mnemonic) toggles whether absolute memory displays
are automatically updated after commands that change memory contents or
whether you must enter memory display commands to update the display. You
may turn off memory display updates when displaying memory mapped I/O.

Memory Mnemonic Auto PC toggles whether memory mnemonic displays
automatically jump to the new PC location when the PC changes (such as during
stepping or break). You may wish to turn off the automatic update of memory
mnemonic displays when you want to examine a specific area of memory
regardless of the location of the current PC (such as during stepping).

Trace Display toggles whether trace displays are automatically updated when trace
measurements complete or whether you must enter trace display commands to
update the display. You may wish to turn off trace display updates in one
emulator/analyzer window in order to compare the display with a new trace display
in another emulator/analyzer window.

Chapter 6: Using the Emulator
Changing the Interface Settings

155

Using System Commands

With the Softkey Interface system commands, you can:

• Set UNIX environment variables while in the Softkey Interface.

• Display the name of the emulation module.

• Display the event log.

• Display the error log.

To set UNIX environment variables

• Using the command line, enter the set <VAR> command.

You can set UNIX shell environment variables from within the Softkey Interface
with the set <environment_variable> = <value> command.

Examples To set the PRINTER environment variable to "lp -s":

set PRINTER = "lp -s" <RETURN>

After you set an environment variable from within the Softkey Interface, you can
verify the value of it by entering !set <RETURN>.

Chapter 6: Using the Emulator
Using System Commands

156

To display the name of the emulation module

• Using the command line, enter the name_of_module command.

While operating your emulator, you can verify the name of the emulation module.
This is also the logical name of the emulator in the emulator device file.

Examples To display the name of your emulation module:

name_of_module <RETURN>

The name of the emulation module is displayed on the status line.

To display the event log

• Choose Display→Event Log.

• Position the mouse pointer on the status line, press and hold the select mouse
button, and then choose Display Event Log from the pop-up menu.

• Using the command line, enter the display event_log command.

The last 100 events that have occurred during the emulation session are displayed.

The status of the emulator and analyzer are recorded in the event log, as well as the
conditions that cause the status to change (for example, software breakpoints and
trace commands).

Chapter 6: Using the Emulator
Using System Commands

157

To display the error log

• Choose Display→Error Log .

• Position the mouse pointer on the status line, press and hold the select mouse
button, and then choose Display Error Log from the pop-up menu.

• Using the command line, enter the display error_log command.

The last 100 error messages that have occurred during the emulation session are
displayed.

To edit files

• Choose File→Edit→File and use the dialog box to specify the file name.

• To edit a file based on an address in the entry buffer, place an address reference
(either absolute or symbolic) in the entry buffer; then, choose File→Edit→At ()
Location.

• To edit a file based on the current program counter, choose File→Edit→At PC
Location.

• To edit a file associated with a symbol when you are displaying symbols, position
the mouse pointer over the symbol, press and hold the select mouse button, and
choose Edit File At Symbol from the pop-up menu.

• To edit a file when displaying memory in mnemonic format, position the mouse
pointer over the line of source where you want to begin the edit, press and hold the
select mouse button, and choose Edit Source from the pop-up menu.

When editing files at addresses, the interface determines which source file contains
the code generated for the address and opens an edit session on the file. The
interface will issue an error if it cannot find a source file for the address.

Chapter 6: Using the Emulator
Using System Commands

158

The interface will choose the "vi" editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the Chapter 10, "Setting X
Resources" for more information about setting this resource.

You must load symbols before most commands will work because symbol
information is needed to be able to locate the files.

Chapter 6: Using the Emulator
Using System Commands

159

Examples To edit a file that defines a symbol:

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted symbol is
defined.

Chapter 6: Using the Emulator
Using System Commands

160

To edit a file at a source line:

Choosing this menu
item brings up a
terminal window
with an edit session
open on the file
where the
highlighted source
line exists.

Chapter 6: Using the Emulator
Using System Commands

161

To copy information to a file or printer

• Choose File→Copy, select the type of information from the cascade menu, and use
the dialog box to select the file or printer.

• Using the command line, enter the copy command.

ASCII characters are copied to the file or printer.

If you copy information to an existing file, it will be appended to the file.

Refer to the following paragraphs for details about the different copy options.

Display ... Copies information currently in the display area. This option is useful
for restricting the number of lines that are copied. Also, this option is useful for
copying the contents of register classes other than BASIC.

Memory ... Copies the contents of a range of memory. The format is the same
as specified in the last display memory command. For example, if you copy
memory after displaying a range of memory in mnemonic format, the file would
contain the mnemonic memory information. If there is no previous display
memory command, the format used is a blocked hex byte format beginning at
address zero.

Data Values ... Copies the contents of the defined data values last displayed. An
error occurs if you try to copy data values to a file if you have not yet displayed
data values.

Configuration Info ... Copies the contents of the configuration information last
displayed. An error occurs if you try to copy configuration information to a file if
you have not yet displayed any.

Trace ... The most recently captured trace is copied to the file. The copied trace
listing is formatted according to the current display mode.

You can set the display mode with the Settings→Source/Symbols Modes or
Settings→Display Modes pulldown menu items. See the "Changing the Interface
Settings" section.

Chapter 6: Using the Emulator
Using System Commands

162

Registers ... Copies the current values of the BASIC register class to a file. To
copy the contents of the other register classes, first display the registers in that
class, and then use the File→Copy→Display ... command.

Breakpoints ... Copies the breakpoints list. If no breakpoints are present in the
list, only the enable/disable status is copied.

Status ... Copies the emulator/analyzer status display.

Global Symbols ... Copies the global symbols. If symbols have not been
loaded, this menu item is grayed-out and unresponsive.

Local Symbols () ... Copies the local symbols from the symbol scope named
(by an enclosing symbol) in the entry buffer. If symbols have not been loaded, this
menu item is grayed-out and unresponsive.

Pod Commands ... Copies the last 100 lines from the pod commands display.

Error Log ... Copies the last 100 lines from the error log display.

Event Log ... Copies the last 100 lines from event log display.

Chapter 6: Using the Emulator
Using System Commands

163

To save peripheral register settings to a file

1 Press the "Pick Util" Action Key.

2 In the browser window, highlight save68360registers and click Done.

3 Press the "Run Util()" Action Key.

4 Type the desired directory/filename to contain register values in the Define
command file parameter dialog box, and click OK.

To load peripheral register settings from a file

1 Press the "Pick Util" Action Key.

2 In the browser window, highlight load68360registers and click Done.

3 Press the "Run Util()" Action Key.

4 Type the name of the directory/filename that contains the desired register
values into the Define command file parameter dialog box, and click OK.

Chapter 6: Using the Emulator
Using System Commands

164

T To remove all temporary files

1 Press the "Pick Util" Action Key.

2 In the browser window, highlight clean68360util and click Done.

3 Press the "Run Util()" Action Key.

To generate boot code for configuring the SIM60
unit

1 Press the "Boot Code" Action Key.

2 When the SIM60 Boot Code browser window opens, press the Save to File...
pushbutton and enter the name of the file to contain the generated boot code.

3 Click OK.

4 Assemble and link the file of generated boot code with your code.

To open a terminal emulation window

• Choose File→Term...

This command opens a terminal window into the current working directory context.

Chapter 6: Using the Emulator
Using System Commands

165

Using emulator support for the
M68360 Companion Mode

This section shows you how to use the M68360 action keys to develop products
that use the M68360 Companion Mode. Through the action keys, you can perform
such actions as viewing registers, configuring registers, developing boot code, and
running programs.

Press the Action Key labeled "**Help 360**". A window will open, providing
general information to help you get started using the M68360 Companion Mode
through the Action Keys.

Refer to the section on plugging the emulator into the Motorola QUADS Target
System in Chapter 2 for an example of plugging into a target system that contains a
68360 master chip and a 68360 slave chip.

Refer to the section on setting up custom action keys in Chapter 10 for an example
of how the action keys are developed and what they do in the emulator.

Chapter 6: Using the Emulator
Using emulator support for the M68360 Companion Mode

166

Tasks you may wish to perform when using the
M68360 companion Mode

The following paragraphs show you how to perform typical development
operations supported in the action keys of the M68360 Graphical User Interface.
For further details, refer to the help screen available by pressing the
"**Help 360**" Action Key.

• To obtain a record of the present contents of all SIM60 and CPM registers in
one listing, press the "Reg 360 All" Action Key.

• To view the contents of a single SIM60 or CPM register, press the "Pick Reg
360" Action Key. Within the Register List browser window, click on the name
of the register to be displayed. Then press the "Reg 360 ()" Action Key.

• To modify the content of a SIM60 or CPM register, press the "Pick Reg 360"
Action Key. Within the Register List browser window, click on the name of
the register to be modified. Then press the "Mod 360 ()" Action Key. Type
the desired value in the Define command file parameter dialog box and click
OK.

• To obtain a record of the present content of all parameter RAMs and Buffer
Descriptors in one browser, press the "PRBD 360 All" Action Key.

• To view the contents of a single Parameter RAM and its associated Buffer
Descriptors, place the name of the desired channel in the entry buffer and press
the "PRBD 360 ()" Action Key.

• To modify the contents of a Parameter RAM or Buffer Descriptor, press the
"Mod Memory" Action Key. The Define command file parameter dialog box
will appear three times. In the first appearance, enter the desired address; next,
enter size; and finally, enter value. Click OK after each entry.

• To select the M68360 slave module whose registers will be viewed through the
Graphical User Interface, press the "Pick Chip 360" Action Key. In the
Available M68360 Slaves browser window, click on the name of the desired
M68360 slave module, and click Done. Then press the "Set Chip ()" Action
Key.

Chapter 6: Using the Emulator
Using emulator support for the M68360 Companion Mode

167

• To assign a new base address to contain the register set of an M68360 chip,
press the "Pick Util" Action Key. In the Utilities Selection browser window,
highlight assign68360chip, and click Done. Press the "Run Util()" Action
Key. Type the new base address in the Define command file parameter dialog
box, and click OK.

• To save peripheral register settings to a file. Press the "Pick Util" Action Key.
In the Utilities Selection browser window, highlight save68360registers and
click Done. Press the "Run Util()" Action Key. Type the desired
directory/filename to contain register values in the Define command file
parameter dialog box, and click OK.

• To restore peripheral register settings to files, Press the "Pick Util" Action
Key. In the Utilities Selection browser window, highlight load68360registers
and click Done. Press the "Run Util()" Action Key. Type the name of the
directory/filename that contains the desired register values into the Define
command file parameter dialog box, and click OK.

• To remove all temporary files that have been created during the development
session, press the "Pick Util" Action Key. In the Utilities Selection browser
window, highlight clean68360util and click Done. Press the "Run Util()"
Action Key.

• To generate boot code for configuring the SIM60 unit, press the "Boot Code"
Action Key. When the SIM60 Boot Code browser window opens, press the
Save to File... pushbutton and enter the name of the file to contain the
generated boot code; then click OK. Assemble and link the file of generated
boot code with your code.

Chapter 6: Using the Emulator
Using emulator support for the M68360 Companion Mode

168

For more information

• General information about using the Action Key solution to the M68360
Companion Mode is available by pressing the "**Help 360**" Action Key.

• Detailed information for configuring a particular SIM60 or CPM register can be
obtained by placing the name of the register in the entry field and pressing the
"Help Reg ()" Action Key.

• Help for understanding how action keys work in the Graphical User Interface is
available in Chapter 10, "Setting X Resources", and in the online file named
$HP64000/lib/X11/app-defaults/HP64_Softkey, under the discussion called
XcHotkey:Action Keys.

• Refer to the file named README040360 in the directory
$HP64000/inst/emul/64780A/compmode to see files developed to support
companion mode use of an HP 64780 M68360 or HP 64783 M68040 emulator
system. This file can easily be modified to support M68360 companion mode with
the HP 64747/B1489 M68030 emulator system, as well.

Chapter 6: Using the Emulator
Using emulator support for the M68360 Companion Mode

169

Using Simulated I/O

Simulated I/O is a feature of the emulator/analyzer interface that lets you use the
same keyboard and display that you use with the interface to provide input to
programs and display program output.

To use simulated I/O, your programs must communicate with the simulated I/O
control address and the buffer locations that follow it. (The Hewlett-Packard AxLS
compilers, if your program uses I/O, automatically link with environment
dependent routines that communicate with the simulated I/O control address and
buffer.)

Also, before simulated I/O can work, the emulator must be configured to enable
polling of the simulated I/O control address and to define the control address
location.

This section shows you how to:

• Display the simulated I/O screen.

• Use simulated I/O keyboard input.

Refer to the Simulated I/O User’s Guide for complete details on how simulated I/O
works.

To display the simulated I/O screen

• Choose Display→Simulated IO.

Before you can display simulated I/O, polling for simulated I/O must be enabled in
the emulator configuration.

Chapter 6: Using the Emulator
Using Simulated I/O

170

Examples

A message tells you whether the display is open or closed. You can modify the
configuration to enable status messages.

To use simulated I/O keyboard input

• To begin using simulated I/O input, choose Settings→Simulated IO Keyboard.

• To end simulated I/O and return to using the interface, use the suspend softkey.

The command line entry area is used for simulated input with the keyboard.
Therefore, if the command line is turned off, choosing this menu item with turn
command line display back on.

If you are planning to use even a modest amount of simulated I/O input during an
emulation session, it might be a good idea to open another Emulator/Analyzer
window to be used exclusively for simulated I/O input and output.

Chapter 6: Using the Emulator
Using Simulated I/O

171

Using Basis Branch Analysis

Basis branch analysis (BBA) is provided by the HP Branch Validator product.
This product is used to analyze the testing of your programs, create more complete
test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can store the BBA information to a file. Then, you can generate reports based
on the stored information.

This section shows you how to:

• Store BBA data to a file.

Refer to the HP Branch Validator (BBA) User’s Guide for complete details on the
BBA product and how it works.

To store BBA data to a file

• Choose File→Store→BBA Data and use the selection dialog box to specify the
file name.

The default file name "bbadump.data" can be selected from the dialog box.

Chapter 6: Using the Emulator
Using Basis Branch Analysis

172

7

Using the Emulation-Bus Analyzer

How to record program execution in real-time

173

Power of the Emulation-Bus Analyzer

The emulation-bus analyzer is a powerful tool that allows you to view the
execution of your program in real-time. Extensive triggering and sequencing
capability ensures that the analyzer captures only the information you need so you
don’t spend time searching through long trace lists to find the information that is of
interest.

The Graphical User Interface has menus that let you specify some simple analyzer
measurements like tracing after, about, or before an address. You can also specify
qualifications for which states get stored and which states can be prestored; the
analyzer can prestore up to two states before each qualified store state.

The analyzer has much more capability than is available in the menus. You can
access this capability by using the command line to make your trace specifications.
Use of the command line is also covered in this chapter.

Once a trace specification command is entered, either with the menus or the
command line, it can be recalled, edited if desired, and executed again. Also, trace
specifications and trace data can be stored to files and loaded from files.

If you encounter problems when using the emulator/analyzer, refer to the chapter
titled "Solving Problems" in the MC68360 Emulator/Analyzer
Installation/Service/Terminal Interface Manual.

Chapter 7: Using the Emulation-Bus Analyzer
Power of the Emulation-Bus Analyzer

174

Making Simple Trace Measurements

You can make simple records of the processor’s bus activity using just a few
analyzer commands. When you set up the analyzer to record processor bus activity,
you are preparing to make a trace measurement. During the trace measurement, the
analyzer saves a record of the bus activity in trace memory. The display of the
trace memory content is called the trace list.

The information captured at the occurrence of each clock is called a state. When a
captured state matches your specification for the trigger state, the analyzer
identifies it as the trigger state and stores it in trace memory.

The default specification for the trigger state is "any state." When you start a trace
measurement using the default trace specification, the analyzer will identify the
first state it captures as the trigger state and fill the remaining space in the trace
memory with the states that follow it. A trace is said to be complete when the trace
memory is filled with captured states, and the trigger state resides at its specified
point in the trace memory (the first state captured in memory, by default).

When a trace measurement is started, you can view the progress of the
measurement by displaying the trace status.

In some situations, for example, when the trigger state is never found or when the
analyzer hasn’t filled its trace memory, the trace measurement does not complete.
In these situations, you can halt the trace measurement.

Once a trace is displayed, you can use the cursor keys and other keyboard keys to
position the trace list on screen. To speed up the display of traces, you can reduce
the depth of the trace list. Also, when entering trace commands, you can recall and
modify preceding trace commands to speed command entry.

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

175

To start a trace measurement

• Choose Trace→Everything.

• Using the command line, enter:

trace

When you use the trace command without any options, the analyzer begins
recording processor bus cycles immediately, and continues until the trace buffer is
filled. In the default trace configuration, the analyzer stores all bus cycles.

If you are using the deep analyzer, the depth of the trace list buffer depends on
whether or not you installed memory modules on the analyzer card, and the
capacity of the memory modules installed. Refer to the Hewlett-Packard MC68360
Emulator/Analyzer Installation/Service/Terminal Interface Guide for details. If
you are using the 1K analyzer, the trace list buffer is 512 or 1024 states deep
(depending on whether or not you turn on the state/time count). See "To count
states or time" in this chapter.)

Example Start the demo program and trace from the program start:

Startemul
reset
trace
run from transfer_address

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

176

To stop a trace measurement

• Choose Trace→Stop.

• Using the command line, enter:

stop_trace

You must use this command to stop a trace started with a Trace→Until Stop
command (refer to "To trace activity leading up to a program halt" later in this
chapter). Several other conditions may occur that will make you want to stop a
trace. The analyzer may not record any trace states because your trigger
specification isn’t correct, or because you have a target system problem. At other
times, a valid trace may be capturing data slowly. You can use the stop_trace
command to prevent the analyzer from storing additional data.

You do not have to stop a trace in order to begin viewing a partial trace because the
interface supports incremental trace uploading. After the trigger condition occurs,
the interface begins uploading and displaying trace states as they are captured.

To display the trace list

• Choose Trace→Display.

• Choose Display→Trace.

• Using the command line, enter:

display trace

When you complete a trace measurement, you will want to see the results. The
display trace command shows you the current trace list. The trace display is
updated each time you enter a new trace command, until you display some other
data using the display command. (See the set update command in “Emulator
Commands” for details.)

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

177

Whether source lines, disassembled trace states, or symbols are included in the
display depends on the modes you choose with the
Settings→Source/Symbols Modes or Settings→Display Modes pulldown menu
items.

Example A simple trace list resembles:

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

178

To display the trace status

• Choose Display→Status.

• Using the command line, display the trace status with the display status command.

When you complete a trace measurement, you’ll want to see the results.

The commands above show the current emulator and analyzer status. The analyzer
status shows:

• whether the trace has completed (trace memory is full)
• analyzer arm condition
• whether the trigger has been found
• number of states captured
• current sequencer state and occurrence count

Example In the following example trace status display, the screen shows that the emulation
trace has completed, an analyzer arm (a condition to activate the analyzer) was not
defined for this measurement, the analyzer trigger was captured in memory before
the analyzer trace completed, 512 trace states were captured (511 states plus the
trigger state), and one analyzer sequence term was needed to satisfy the analyzer
trigger.

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

179

To change the trace depth

• Choose Trace→Display Options... and in the dialog box, enter the desired trace
unload depth in the field beside Unload Depth. Then click the OK or Apply
pushbutton.

• Using the command line, enter:

display trace depth <depth>

Using one of the above command forms, you specify the number of states that will
be unloaded for display, copy, or file storage. By reducing the trace unload depth,
you shorten the time it takes for the interface to unload the trace information. You
can increase the trace unload depth to view more states of the current trace.
Regardless of how much or how little unload depth you specify, the entire trace
memory will be filled with captured states during a trace.

In the deep analyzer, the maximum number of trace states depends on whether or
not you installed memory modules in the analyzer card, and the capacity of the
memory modules. Refer to the Hewlett-Packard MC68360 Emulator/Analyzer
Installation/Service/Terminal Interface Guide for details. In the 1K analyzer, the
maximum number of trace states is 1024 when counting is turned off, and 512
otherwise. In either analyzer, the minimum trace depth is 9.

Trace data must be unloaded before it can be displayed, copied, or stored in a file.
If you wish to reduce the number of states that are unloaded for display, you must
enter the unload depth specification (in one of the two ways shown above) before
you enter the trace command. The above commands cannot be used to reduce the
number of states displayed in the current trace. You can enter a new unload depth
specification after a trace is complete to increase the amount of trace memory that
is unloaded, if desired.

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

180

To modify the last trace command entered

• Choose Trace→Trace Spec and use the dialog box to select and edit a trace
command.

• Using the command line, enter:

trace modify_command

The Trace Specification Selection dialog box contains a list of trace specifications
executed during the emulation session as well as any predefined trace
specifications present at interface startup.

You can predefine trace specifications and set the maximum number of entries for
the dialog box by setting X resources (see Chapter 10, "Setting X Resources").

The trace modify_command command recalls the last trace command. The
advantage of this command over command recall is that you do not have to move
forward and backward over other commands to find the last trace command; also,
the last trace command is always available, no matter how many commands have
since been entered.

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

181

To define a simple trigger qualifier

• Enter your trigger qualifier (such as, address 1000h) in the entry buffer. Then in
the menu bar, click on: Trace→After() , Trace→Before(), or Trace→About().

• When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as a trigger, press and hold the select mouse
button, and choose Trace After, Trace Before, or Trace About from the pop-up
menu.

• Using the command line, use the trace command to specify a trigger.

The default option for the analyzer is to begin to fill trace memory immediately
after the start of the trace. The trace completes when trace memory is full and the
trigger has been captured.

The trigger is a reference event in a trace list. You select trigger position to see
activity leading up to the trigger event, or following the trigger event, or both.

Example To trigger a trace measurement after the demo program executes the Init_system
procedure, place init_system in the entry buffer and choose Trace→After() , or on
the command line, enter:

trace after long_aligned init_system

The “long_aligned” option ensures that if the address of the trigger event is fetched
as part of a long-aligned access, the analyzer will still be able to recognize it.

To capture a trace leading up to the address of gen_ascii_data, and then break to
the monitor when that trigger event occurs, place gen_ascii_data in the entry buffer
and choose Trace→Until() , or on the command line, enter:

trace before long_aligned gen_ascii_data
break_on_trigger

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

182

To capture a trace of activity both preceding and following the write_hdwr symbol
in the update_sys module, place update_sys.write_hdwr in the entry buffer and
choose Trace→About(), or on the commad line, enter:

trace about long_aligned update_sys.write_hdwr

To specify a trigger and set the trigger position

• Place the trigger specification desired (such as address 1000h) in the entry buffer,
and then choose Trace→After() , Trace→Before(), or Trace→About().

• When displaying memory in mnemonic format, position the mouse pointer over the
program line that you wish to use as the trigger, press and hold the select mouse
button, and choose Trace After, Trace Before, or Trace About from the pop-up
menu.

• Using the command line, select trace after, trace before, or trace about to set the
trigger position.

Normally the analyzer begins to save processor activity whenever the trace is
started. By selecting trigger position, you can specify which portion of processor
activity you will view in the trace list.

The trace after command causes the analyzer to fill its trace memory with
processor activity that occurred after the trigger event.

The trace before command causes the analyzer to fill its trace memory with
processor activity that occurred before the trigger event.

The trace about command causes the analyzer to fill its trace memory with
processor activity that occurred before and after the trigger event. With this
command, the trigger event is positioned at the center of the trace.

The actual trigger position in the trace list is within +/-3 states of the position
specified.

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

183

When you enter a trace about command, the trigger state (line 0) is normally
labeled “about”. However, if there are three or fewer states before the trigger, the
trigger state is labeled “after”, and if there are three or fewer states after the trigger,
the trigger state is labeled “before”.

Example To trace on states before the demo program accesses the current humidity, enter:

trace before address current_humid status write
set symbols on
display trace

To define a simple storage qualifier

• Place your storage qualifier in the entry buffer (such as status read), and then
choose Trace→Only().

• Using the command line, use the only option in the trace command.

All captured states are stored by default. However, you can qualify which states get
stored with the only option to the trace command.

Example When you are running the demo program, to store only accesses to the address
"target_temp", place target_temp in the entry buffer, and then choose
Trace→Only(), or on the command line, enter:

trace only target_temp

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

184

If you are having problems tracing

• Check the emulator configuration. Choose Modify→Emulator Config.... Then in
the Emulator Pod Settings dialog box:

• You may need to select Clock 01 Drive to Target = Buffered.

• You may need to select Buffer AS, DS and R/W = Yes.

Interaction problems between the emulator and the target system may affect
tracing. These problems may be overcome by selecting proper buffering of the
emulator signals.

• To obtain a trace, the analyzer must receive CLK01, and the clock must meet
normal clock specifications.

• Perhaps your target system is degrading the clock so that it does not meet
specifications.

• Perhaps the target system is interfering with proper operation of CLK01.

Without CLK01, no trace can be taken by the analyzer.

Chapter 7: Using the Emulation-Bus Analyzer
Making Simple Trace Measurements

185

Displaying the Trace List

The trace list is your view of the analyzer’s record of processor bus activity. You
can specify what is shown in the trace list to make it easier to find the information
of interest. For example, you can display symbol information where available, or
source lines from the high-level languages used to write the target system program.
You can also change the column widths and set options for disassembly of the trace
list.

This section covers many of the options available for controlling the trace display.
Display control is available through the Trace→Display Options... dialog box, the
trace list pop-up menu, and the command line. You can combine most options
within a single command on the command line to obtain a desired trace display.
See the display trace and set command descriptions in Chapter 11,
"Emulator/Analyzer Interface Commands", for more information.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

186

Examples To use the Trace Options dialog box:

Click to select the desired
format of trace disassembly.

Click to select the way that
absolute status information is
shown in the trace list.

Click to select count
reference: Relative (to
preceding state), or Absolute
(to trigger).

Click to select trace list
dequeuing, if available for
your emulator.

Enter the desired depth of the
trace memory to be unloaded
for display or storage in a file.

Enter a value to be subtracted
from addresses and
symbol/source-line
references shown in the trace
list.

Enter the desired trace list
line number to be placed on
screen. Click OK

to specify
the trace
options and
close the
dialog box.

Click Apply
to specify
the trace
options and
leave the
dialog box
open.

Click these
pushbuttons
to select
predefined
or
previously
specified
entries.

Click this
pushbutton
to cancel
the entries
and close
the dialog
box.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

187

Examples To use the trace list pop-up menu:

Click to begin trace
disassembly from the
selected line, moving
that line to the top of
the display.

Click to open an edit
window into the
source file that
contains the address of
the selected line.

Click to open a display
window into memory
containing the address
of the selected line.
Note that the format of
the memory display
will be mnemonic for
addresses in the code
segment and absolute
otherwise.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

188

To disassemble the trace list

• Choose Trace→Display Options... and in the dialog box, select Data Format
Mnemonic. Then click the OK or Apply pushbutton.

• Use the mouse to place the cursor on a line in the trace list where you want
disassembly to begin. Then press the select mouse button, and click on
Disassemble From in the trace list pop-up menu.

• Using the command line, enter commands as follows:

• To disassemble instruction data in the trace list, enter:

display trace mnemonic

• To control where trace list disassembly starts, enter:

display trace disassemble_from_line_number <LINE #>

<LINE #> is a line number corresponding to a state in the trace list.

Disassembly of instruction data means that you will see instructions as they would
appear in an assembly language program listing. That is, instruction mnemonics
and operands are shown instead of hexadecimal instruction data.

The analyzer interface normally disassembles instruction data in the trace list.
However, if you specify absolute data display, that mode remains in effect until
you select the mnemonic option.

When you identify a particular trace list line where disassembly is to begin, be sure
to specify a line number that corresponds to an analyzer state with an opcode fetch.
The analyzer interface disassembles and displays the trace starting with the state
you specify.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

189

Examples To disassemble instruction data in the trace list starting at line 40:

Place the cursor on line 40, press the select mouse button, and click on
Disassemble From in the pop-up menu.

Or, using the command line, enter:

display trace disassemble_from_line_number 40

To specify trace disassembly options

• Selection of disassembly options is not supported in pulldowns of the Graphical
User Interface. By default, the Graphical User Interface selects high_word and
all_cycles. Use the command-line if you need to specify trace disassembly using
other options.

• Using the command line, enter commands as follows:

• To show only instruction cycles in the trace list, enter:

display trace disassemble_from_line_number <LINE#>
instructions_only

• To show all bus cycles in the trace list, enter:

display trace disassemble_from_line_number <LINE#>
all_cycles

• To start instruction disassembly from the upper word of the bus, enter:

display trace disassemble_from_line_number <LINE#>
high_word

• To start instruction disassembly from the lower word of the bus, enter:

display trace disassemble_from_line_number <LINE#>
low_word

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

190

Normally, the MC68360 presents the trace list data as it was stored by the analyzer.
That is, all bus cycles are shown, and disassembly starts with the most significant
word of the data.

If you don’t want to see operand cycles in the trace list, specify the
instructions_only option.

Each analyzer bus state may have two data words. An opcode can appear in either
word. You can force disassembly to begin with the lower word of the first trace
state by using the low_word option. If the disassembled trace list isn’t what you
expected, try using this option.

The disassembly options remain in effect until you specify a new disassembly
option.

Examples Show only instruction cycles in the trace list starting at line 40:

display trace disassemble_from_line_number 40
instructions_only

Show all bus cycles in the trace list:

display trace disassemble_from_line_number 40 all_cycles

Start instruction disassembly from the upper word of the bus:

display trace disassemble_from_line_number 100 high_word

Start instruction disassembly from the lower word of the bus

display trace disassemble_from_line_number 100 low_word

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

191

To specify trace dequeueing options

• Choose Trace→Display Options... and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

• Using the command line, enter commands as follows:

• To dequeue the trace list, enter:

display trace dequeue on

• To display the trace list without dequeueing, enter:

display trace dequeue off

• To tell the analyzer which data operand is aligned with the first opcode, enter:

display trace disassemble_from_line_number <LINE#>
align_data_from_line <STATE#>

<LINE #> is a line number corresponding to a state in the trace list. <STATE#> is
the line number of the data operand that is associated with the instruction at
<LINE#>.

A dequeued trace list is available through the disassembly options. In a dequeued
trace list, unused instruction prefetch cycles are discarded, and operand cycles are
placed immediately following the corresponding instruction fetch. If you choose a
non-dequeued trace list, instruction and operand fetches are shown exactly as
captured by the analyzer.

Once the dequeuer has been started on the correct opcode, it will continue to
disassemble correctly unless an unusual condition causes it to misinterpret the data.
By specifying the first instruction state for disassembly and the number of the first
operand cycle for that instruction, you can resynchronize the disassembly. (You
may also need to use the low_word option.)

You may see TAKEN, NOT TAKEN, or ?TAKEN? beside a branch in your
dequeued trace list. TAKEN is shown beside a branch if the dequeuer determines
that the branch was taken. NOT TAKEN is shown if the dequeuer determines that
the branch was definitely not taken. ?TAKEN? means the dequeuer was not able to
determine whether or not the branch was taken. If you read down the trace list and
see that the branch was taken, use the disassemble_from_line_number command
to restart disassembly at the trace list line number of the branch destination. You

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

192

will need to include the low word option if the destination opcode is in the low
word at the destination address. You may need to resynchronize alignment of
operand cycles with the instruction at the branch address, using the
align_data_from_line option.

Examples Dequeue the trace list:

Choose Trace→Display Options... and in the dialog box, select Dequeue Enable.
Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace dequeue on

Display the trace list without dequeueing:

display trace dequeue off

Tell the analyzer which data operand should be aligned with the first opcode:

display trace disassemble_from_line_number 40
align_data_from_line 42

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

193

To display the trace without disassembly

• Choose Trace→Display Options... and in the dialog box, select Data Format
Absolute. You can select Hex, Binary, or Mnemonic format for display of status
information. Then click the OK or Apply pushbutton.

• Using the command line, enter commands as follows:

• To display the trace list without instruction disassembly and with status
information in binary format, enter:

display trace absolute status binary

• To display the trace list without instruction disassembly and with status
information in hexadecimal format, enter:

display trace absolute status hex

• To display the trace list without instruction disassembly and with status
information in mnemonic format, enter:

display trace absolute status mnemonic

For some measurements, it may be more convenient for you to view the trace data
without instruction disassembly. The Data Format Absolute selection in the
Trace→Display Options... dialog box, or the display trace absolute command
allows you to do this. Notice that once you enter this format selection, subsequent
trace lists will displayed in this format until you select the mnemonic format with
the dialog box or display trace mnemonic command again.

You can select the display format for the status information when you choose Data
Format Absolute in the dialog box, or when you use the display trace absolute
command. The status information can be displayed in binary, hex, or as mnemonics
that indicate the nature of the current bus cycle (such as a read or write).

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

194

Examples Display the trace list without instruction disassembly and with status information in
binary format:

Choose Trace→Display Options... and in the dialog box, select Data Format
Absolute. Select Status Format Binary. Then click the OK or Apply pushbutton.

Or, using the command line, enter:

display trace absolute status binary

Display the trace list without instruction disassembly and with status information in
hexadecimal format, make appropriate entries in the Trace→Display Options...
dialog box, or enter the following command:

display trace absolute status hex

Display the trace list without instruction disassembly and with status information in
mnemonic format, make appropriate entries in the Trace→Display Options...
dialog box, or enter the following command:

display trace absolute status mnemonic

To display symbols in the trace list

• Choose Settings→Source/Symbol Modes→Symbols, or choose
Settings→Display Modes ..., and in the dialog box, click on Symbolic Addresses.
In the Field Widths area of the dialog box, you can select the widths of the Label
Field and Symbols in Mnemonic Field to control the display space allocated to the
symbols. To select symbol types, use the command line, described below.

• Using the command line, enter commands as follows:

• To display symbols in the trace list, enter:

set symbols on

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

195

• To display only high level symbols, enter:

set symbols high

• To display only low level symbols, enter:

set symbols low

• To display all symbols (both high and low level), enter:

set symbols all

When you enable symbol display, addresses and operands are replaced by the
symbols that correspond to those values. The symbol information is derived from
the SRU symbol database for that command file. See Chapter 6, "Using the
Emulator", for more information on SRU and symbol handling.

High-level symbols are those that are available only from high-level languages
such as a compiler. Low-level symbols are those that are available from assembly
language modules (which may include symbols generated internally by a compiler).

The Settings→Source/Symbol Modes..., Settings→Display Modes..., or
set symbols command remains in effect until you enter a new
Settings→Source/Symbol Modes..., Settings→Display Modes..., or set symbols
command with different options.

Refer to Chapter 6, "Using the Emulator", for details of how to set up and use the
Display Modes dialog box.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

196

To display source lines in the trace list

• Choose Settings→Source/Symbol Modes→Source Mixed or
Settings→Source/Symbol Modes→Source Only .

• Choose Settings→Display Modes..., and in the dialog box, click on Source in
Trace and select either Source Mixed or Source Only from the submenu.

• Using the command line, enter commands as follows:

• To display mixed source and assembly language in the trace list, enter:

set source on

• To display only source language statements in the trace list, enter:

set source only

• To display only assembly language in the trace list, enter:

set source off

If you developed your target programs in a high-level language such as “C,” you
can display the source code in the trace list with the corresponding assembly
language statements. Or, you can choose to display only the source listing without
the assembly language information.

The analyzer uses the line-number information in the SRU symbol database for the
absolute file to reference between source lines and assembly language information.
Refer to Chapter 6, "Using the Emulator" for more information on SRU and
symbol handling.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

197

To change the column width

• Choose Settings→Display Modes..., and select desired widths for information in
the trace list by using the dialog box. Refer to the "Examples" page under "To
display symbols in the trace list", earlier in this chapter for details of how to use the
dialog box.

• To set the column width for the address column in the trace list, enter:

set width label <WIDTH>

• To set the column width for the mnemonic column in the trace list, enter:

set width mnemonic <WIDTH>

• To set the column width for source lines in the trace list, enter:

set width source <WIDTH>

• To set the column width for the symbols column in the trace list, enter:

set width symbols <WIDTH>

<WIDTH> is an integer specifying the width of the column in characters.
(<WIDTH> is restricted to certain values which are shown if you press the
<WIDTH> softkey.)

You can display more information by widening a column or ignore the information
by narrowing the column. For example, you might want to widen the label column
so that you can see the complete names of the symbols in that column.

You can combine multiple options on the command line to set the width for several
columns at once.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

198

Example Set the width of the address label column to 30 characters and the width of the
mnemonic column to 50 characters:

set width label 30 mnemonic 50

To select the type of count information in the
trace list

• Choose Trace→Display Options... and in the dialog box, select Count Format
Relative or Absolute, as desired. Then click the OK or Apply pushbutton.

• To display count information in the trace list relative to the trigger state, enter:

display trace count absolute

• To display count information in the trace list relative to the previous trace list state,
enter:

display trace count relative

The count information in the trace list is always displayed if it is turned on. To turn
on the trace counting function, enter a command beginning with trace counting on
the command line. Refer to "To count states or time" later in this manual for
details.

When using the 1K analyzer, the trace memory is 512 states deep if counting states
or time is turned on and 1024 states deep if counting is turned off. To disable
counting in the 1K analyzer, use the command trace counting off. When using the
deep analyzer, full memory depth is always available; the depth of the deep
analyzer is not affected by the counting selected. See “To count states or time.”

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

199

Examples Count time and store only each iteration of the update_sys symbol in the demo
program (if using the 1K analyzer, make sure the clock speed is set to "Slow" in the
configuration):

Specify the trace for the emulator:

trace only update_sys counting time

Now, start the program run; then display the trace:

run from transfer_address

display trace count relative

Count absolute entries into the get_targets routine of the demo program:

trace only address range update_sys thru update_sys end
counting state get_targets

run from transfer_address

display trace count absolute

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

200

To offset addresses in the trace list

• Choose Trace→Display Options... and in the dialog box, enter the desired offset
value in the field beside Address Offset. Then click the OK or Apply pushbutton.

• Use the offset_by command-line option to the display trace command.

The Address Offset or offset_by trace display options allow you to cause the
address information in the trace display to be offset by the amount specified. The
offset value is subtracted from the instruction’s physical address to yield the
address that is displayed.

If code gets relocated and therefore makes symbolic information obsolete, you can
use the Address Offset or offset_by option to change the address information so
that it again agrees with the symbolic information.

You can also specify an offset to cause the listed addresses to match the addresses
in compiler or assembler listings.

Example Trace execution from entry of the demo program (the main label) then offset by the
value of main so that the addresses appear the same as the location counter in the
assembler listing:

reset
trace
run from transfer_address
display trace offset_by main

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

201

To reset the trace display defaults

• Choose Settings→Display Modes... Then in the dialog box, click on Default All
Settings, and click the OK pushbutton. This leaves the trace display in the "source
intermixed and symbols on" mode.

• Using the command line, enter:

set default

This turns off all symbolics and source references in the interface.

To move through the trace list

• Use the scroll bar at the right of the display to scroll up and down. Use the arrows
at the bottom of the display (if any) to scroll left and right.

• Using the command line, enter commands as follows:

• To roll the trace display to the left, press <Ctrl>f simultaneously.

• To roll the trace display to the right, press <Ctrl>g simultaneously.

• To roll the display down one line, press the down arrow key.

• To roll the display up one line, press the up arrow key.

• To move to the previous page in the trace list, press the Pg Up or Prev key.

• To move to the next page in the trace list, press the Pg Dn or Next key.

Though the trace display is set to 256 or more states, only 15 lines may be
displayed in the interface window, depending on your terminal type. You can move
through the trace list display using various key combinations.

You can roll the display left and right only if the trace list is wider than 80
columns. This may occur if you increased the width of the columns.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

202

To display the trace list around a specific line
number

• Choose Trace→Display Options... and in the dialog box, enter the desired trace
list line number in the field beside Move to Line. Then click the OK or Apply
pushbutton.

• Center the trace display about a particular state given by <LINE #> by entering

display trace <LINE #>

If you need to move to a particular state quickly, you can use this command. The
command places the specified state in the center of the current trace display.

Examples Display the trace about line number 20:

Choose Trace→Display Options... and in the dialog box, enter 20 in the field
beside Move to Line. Then click the OK or Apply pushbutton.

Enter the following command on the command line to display the trace about line
number 256:

display trace 256

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

203

To change the number of states available for
display

• Choose Trace→Display Options... and in the dialog box, enter the desired number
of states to be made available for display in the field beside Unload Depth. Then
click the OK or Apply pushbutton.

• Using the command line, set the depth of the trace list with:

display trace depth <DEPTH#>

<DEPTH#> is the number of states to be available in the trace list for displaying,
copying, or storing to a file. If you are using the deep analyzer, the depth of the
trace list buffer depends on whether or not you installed memory modules on the
analyzer card, and the capacity of the memory modules installed. Refer to the
Hewlett-Packard MC68360 Emulator/Analyzer Installation/Service/Terminal
Interface Guide for details. If you are using the 1K analyzer, the trace list buffer is
512 or 1024 states deep (depending on whether or not you turn on the state/time
count). See "To count states or time" in this chapter.)

When you display the trace list, the interface requests the number of states
specified by the trace depth from the emulator. If you want faster trace display, you
can decrease the trace depth. To display more states, you can increase the trace
depth. Notice that the trace depth setting only regulates the number of states sent
from the emulation-bus analyzer to the interface. You still need to use the Pg Up
and Pg Dn keys to page through the trace list.

Examples Set the depth of the trace memory to 256 states:

Choose Trace→Display Options... and in the dialog box, enter 256 in the field
beside Unload Depth. Then click the OK or Apply pushbutton.

Set the depth of the trace to 1024 states:

display trace depth 1024

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

204

To display program memory associated with a
trace list line

• Using the mouse, place the cursor on the line in the trace list where you want to see
the associated content of program memory. Then press the select mouse button,
and click on Display Memory At in the trace list pop-up menu.

You will see a display of memory at the location of the program that emitted the
selected trace list line. This is the same as placing the program address of the
selected trace list line in the entry buffer and choosing Display→Memory→At()
in the pulldown menus.

To open an edit window into the source file
associated with a trace list line

• Using the mouse, place the cursor on the line in the trace list whose source file you
wish to edit. Then press the select mouse button, and click on Edit Source in the
trace list pop-up menu.

A new window will open. It will show the source file that emitted the line you
selected in the trace list. An edit session will be in progress on the source file in
the new window. When you complete the desired edit, save the file and close the
window.

Chapter 7: Using the Emulation-Bus Analyzer
Displaying the Trace List

205

Making Complex Trace Measurements

You can have the analyzer record bus activity by simply using the trace command
without any options. But this doesn’t use the analyzer effectively for two reasons:

• the trace memory may fill before the program reaches the states of interest.

• you may have to search through a long trace list to find a few states pertinent
to your measurement problem.

The HP 64700 analyzer has trigger and sequence capabilities that help solve these
problems. These tools act as a filter for processor bus activity that allows the
analyzer to capture only the states you want to see in the measurement.

A trigger tells the analyzer to identify a certain bus state as a point of reference in
the trace of states. A sequence is a more complex specification that specifies a
series of bus states that must be found to satisfy the trigger.

This section tells you how to get the most out of the HP 64700 analyzer by using
trigger and sequence specifications. It also describes additional measurement tools
to help you get more information from the trace.

Many of the options in this section can be combined one or more times. See the
trace syntax in Chapter 11, "Emulator/Analyzer Interface Commands", for more
information.

Expressions are an important part of trace specifications because they specify the
numeric or logical values that the analyzer matches for trigger and storage.
Expressions are represented by the <expression> symbol in this chapter. Refer to
Chapter 11, "Emulator/Analyzer Interface Commands", for specifics on expression
syntax.

Expressions in Trace Commands

When modifying the analysis specification, you can enter expressions that consist
of values, symbols, and operators.

Values Values are numbers in hexadecimal, decimal, octal, or binary. These
number bases are specified by the following characters:

B b Binary (example: 10010110b).

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

206

Q q O o Octal (example: 377o or 377q).

D d (default) Decimal (example: 2048d or 2048).

H h Hexadecimal (example: 0a7fh).
You must precede any hexadecimal number that begins
with an A, B, C, D, E, or F with a zero.

Don’t care digits may be included in binary, octal, or hexadecimal numbers. Don’t
care digits are represented by the letters X or x. A zero must precede any numerical
value that begins with an "X". Example: xxx1b must be 0xxx1b.

Symbols A symbol database is built when the absolute file is loaded into the
emulator. Both global and local symbols can be used when entering expressions.
Global symbols are entered as they appear in the global symbols display. When
specifying a local symbol, you must include the name of the module ("anly.c") as
shown below.

anly.c:cmp_function

Operators Analysis specification expressions may contain operators. All
operations are carried out on 32-bit, two’s complement integers. (Values which are
not 32 bits will be sign extended when expression evaluation occurs.)

The available operators are listed below in the order of evaluation precedence.
Parentheses are also allowed in expressions to change the order of evaluation.

-, ~ Unary two’s complement, unary one’s complement. The
unary two’s complement operator is not allowed on
constants containing don’t care bits.

* , /, % Integer multiply, divide, and modulo. These operators are
not allowed on constants containing don’t care bits.

+, - Addition, subtraction. These operators are not allowed on
constants containing don’t care bits.

& Bitwise AND.

| Bitwise inclusive OR.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

207

Values, symbols, and operators may be used together in analysis specification
expressions. For example, if the local symbol exists, the following is a valid
expression:

module.c:symb+0b67dh&0fff00h

However, you cannot add two symbols unless one of them is an EQU type symbol.

Emulation-Bus Analyzer Trace Signals

The emulation-bus analyzer has 80 channels available for capturing information:
64 of those channels are used for the instruction bus and data bus, and the
remaining 16 channels monitor other processor signals or

Emulation-Bus Analyzer Trace Signals

Emulation-
Bus Signal Name (Bits) Signal Description

Bits 0..31 Address A0-A27
Address A28-A31

68360 Address Lines A0-A27
68360 Address Lines A28-A31 or reconstructed address

Bits 32..63 Data D0-D31 68360 Data Lines D0-D31

Bits 64..79 Status 0
Status 1..3

Status 4
Status 5..6
Status 7..8
Status 9
Status 10
Status 11

Status 12
Status 13
Status 14
Status 15

Reserved
CPU function code FC0..FC2, respectively, directly from
 68360 processor
R/W directly from 68360 processor
SIZ0..SIZ1, respectively
DSACK0..DSACK1, respectively (active low)
Bus error (active low)
Halt (active low) on CPU halt line
Show cycle (active low) generated cycle (will occur if show
 cycles are enabled)
Flush (active low) indicates first fetch following pipeline flush
External DMA cycle indicated when this bit is low
CPU function code FC3
Fetch (active low) indicates an instruction word fetch

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

208

synthesized signals, and are collectively called the status lines. You can use status
values as trigger or storage qualifiers. For example, you may want to capture
processor reads to a certain address, but not processor writes. You can use a status
value to qualify only processor read cycles to the memory location.

A number of status values have already been defined for you. They are collectively
known as the status equates and cover most common processor operations. Status
equates appear on softkeys at the appropriate time so you can include the status you
want in your command line.

The following table lists the predefined status values associated with each of the
status softkeys.

68360 Status Softkeys and Associated Values

Softkey Label Status Bits (79..64) Description
--------- -------------------- ------------------------
berr xxxx xx0x xxxx xxxx port bus error
cpu x0xx xxxx xxxx 111x cpu space access
data x0xx xxxx xxxx x01x data cycle
ds_byte xxxx xxx1 0xxx xxxx 8-bit port
ds_long xxxx xxx0 0xxx xxxx 32-bit port
ds_word xxxx xxx0 1xxx xxxx 16-bit port
fc3 x1xx xxxx xxxx xxxx function code 3
fetch 0xxx xxxx xxxx xxxx instruction fetch
flush xxx0 xxxx xxxx xxxx pipeline flush
halt xxxx x0xx xxxx xxxx processor halted
program x0xx xxxx xxxx x10x program cycle
read xxxx xxxx xxx1 xxxx read cycle
retry xxxx x00x xxxx xxxx port not ready
siz_3byt xxxx xxxx x11x xxxx 3 byte request
siz_byte xxxx xxxx x01x xxxx byte request
siz_long xxxx xxxx x00x xxxx long request
siz_word xxxx xxxx x10x xxxx word request
sup x0xx xxxx xxxx 1xxx supervisor cycle
supdata x0xx xxxx xxxx 101x supervisor data cycle
supprog x0xx xxxx xxxx 110x supervisor program cycle
user x0xx xxxx xxxx 0xxx user cycle
userdata x0xx xxxx xxxx 001x user data cycle
userprog x0xx xxxx xxxx 010x users program cycle
write xxxx xxxx xxx0 xxxx write cycle
xdma xx0x xxxx xxxx xxxx external DMA cycle

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

209

To use address, data, and status values in trace
expressions

• Enter the value(s) desired in the entry buffer (such as address 1000h). Then
Choose Trace→After(), Trace→Before(), or Trace→About(), as desired.

• Using the command line, enter commands as follows:

• To specify an address expression, enter:

<expression> -or- address <expression>

• To specify a data expression, enter:

data <expression>

• To specify a status expression, enter:

status <expression>

Many trace commands require that you enter address, data and status expressions to
specify the bus state. You can combine multiple expressions on the same command
line to build a complete bus state qualifier. You can also use logical operators to
build more complex states. Refer to Chapter 11, "Emulator/Analyzer Interface
Commands", for details.

The default expression type is address, therefore you don’t need to specify the
address keyword when you enter an address expression.

Example Start a trace and store only writes of 0 hex to the graph address in the demo
program:

trace only graph data 0 status write

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

210

To enter a range in a trace expression

• Use the command-line rules (described below) to create your expression in the
entry buffer. Then Choose Trace→After(), Trace→Before(), or
Trace→About(), as desired.

• Using the command line, enter commands as follows:

• To specify an address range enter:

address range <expression> thru <expression>

• To specify a data range, enter:

data range <expression> thru <expression>

• To specify a status range enter:

status range <expression> thru <expression>

• To take the logical not of a range, use the not keyword before the range
keyword.

Ranges allow you to qualify analyzer actions on a contiguous set of values. Mostly,
you’ll use address ranges to trigger or store on access to a data block such as a
lookup table. But, you can also use data ranges to qualify a trigger or storage on a
range of data values.

There is only one range term available in the trace specification. Once it has been
used, it cannot be reused. That is, if you specify a range in a trigger specification,
you can’t duplicate it in the storage specification. (The Terminal Interface does
allow this type of measurement, though there is still only one range term. Refer to
the Hewlett-Packard MC68360 Emulator/Analyzer Installation/Service/Terminal
Interface Guide for details.)

Since address is the default range type, you can omit the address keyword. You
can’t omit the data or status keywords if those are the bus parts you want to
qualify.

You can use the logical or operator to combine the range term with several state
qualifiers. See the examples.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

211

Examples Store only the accesses to the demo program’s current_humid location:

trace only range current_humid thru +1h

Store only bus cycles where data is in the range 6h..26h or is 29h:

trace only data range 6h thru 26h or data 29h

To use the sequencer

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, specify a trace sequence by entering:

trace find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times>] trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times that bus state must occur to satisfy the qualifier.

The trace sequencer allows you to specify up to seven sequence terms (including
the trigger) that must be satisfied to trigger the analyzer. If you use the windowing
specification, the sequence specification is limited to four sequence terms.

Example Use the analyzer sequencer to trigger after finding a series of events:

trace find_sequence main then update_sys.get_targets
trigger after proc_spec

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

212

To specify a restart term

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, restart the search for the trace sequence terms by
including the restart parameter in

trace find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times>] restart <bus_state>
trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times the selected bus state must occur to satisfy the qualifier.

The restart qualifier allows you to restart the trace sequence whenever a certain
instruction or data access occurs. For example, you might have a complicated trace
sequence that searches for an intermittent failure condition. You could set the
restart term to restart the sequence whenever a bus cycle occurred that ensures that
the code segment would perform correctly. Thus, the trace will be satisfied only
when that restart term never occurs and the code segment fails.

Example Use the analyzer sequencer to trace a series of events and then restart the sequencer
if the restart term is found while searching for the events:

trace find_sequence update_sys.get_targets then
update_sys.write_hdwr restart update_sys.set_outputs
trigger after current_humid

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

213

To specify trace windowing

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain the dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, enter commands as follows:

• To trace only the states occurring after a particular bus cycle, enter:

trace enable <bus_state>

• To trace only the states occurring between two particular bus cycles, enter:

trace enable <bus_state> disable <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the windowing qualifier.

The trace window specification makes it easy to trace only the occurrences of a
particular routine. This is especially useful in high-level languages, where storing
only the accesses to a particular address range may miss several function calls
within the routine.

Examples Trace states occurring after the start of the example program:

trace enable main

Trace states occurring between the start of the example program and the call to the
message interpreter:

trace enable main disable proc_spec

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

214

To specify both sequencing and windowing

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, enter commands as follows:

• Specify a trace sequence that starts with a window and ends with a trigger by
entering:

trace enable <bus_state> disable <bus_state>
find_sequence <bus_state> occurs <#times> [then
<bus_state> occurs <#times>] trigger <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the trigger or sequence qualifier. <#times> is the
number of times that bus state must occur to satisfy the qualifier.

You can use the sequencing and windowing specifications together to make
specification of complex qualifiers easier. If you use the windowing specification,
the sequence specification is limited to four sequence terms. Also, note that when
you use a windowing specification, you cannot use a restart term with your
sequence specification.

Example Use the analyzer sequencer to trace states occurring between the start of the
example program and the call to the message interpreter, then trigger after access to
the variable that stores the value of current humidity, but only if it is accessed after
a specific series of events:

trace enable main disable proc_spec find_sequence
update_sys.get_targets then long_aligned
update_sys.write_hdwr trigger after current_humid

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

215

To count states or time

• Create your first specification form on the command line. That will enter the
proper format in the Trace Specification Selection dialog box. Obtain that dialog
box by choosing Trace→Trace Spec... You can click on your specification in the
dialog box, edit it if desired, and click OK.

• Using the command line, enter commands as follows:

• To count occurrences of a particular bus state in the trace, enter:

trace counting <bus_state>

<bus_state> represents a combination of address, data and status expressions
that must be matched to satisfy the trigger qualifier.

• To count all states in the trace, enter:

trace counting anystate

• To count time in the trace, enter:

trace counting time

• To disable counting in the trace, enter:

trace counting off

You can use the analyzer’s state/time counter to count time or bus states. If using
the deep analyzer, counting imposes no restrictions on memory depth. If using the
1K analyzer, use of the counter restricts the trace memory to a maximum depth of
512 states. If you disable the counter in the 1K analyzer, using the trace counting
off command, maximum trace depth is 1024 states.

When using the 1K analyzer, the MC68360 emulator defaults to counting off. To
count states or time, you must configure the analyzer clocks correctly. See "To
configure the analyzer clock" in Chapter 5, "Configuring the Emulator", for more
information.

Use the display trace count command to determine how the count is displayed in
the trace list. See “To display count information in the trace” for more information.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

216

Examples To count occurrences of a particular bus state in the trace (this requires the 1K
analyzer speed to be set to "Slow" in configuration):

trace counting address 10h

Count all states in the trace:

trace counting anystate

Count time in the trace:

trace counting time

Disable counting in the trace:

trace counting off

To define a storage qualifier

• Enter the storage qualifier (such as status read) in the entry buffer. Then
chooseTrace→Only().

• Using the command line, store only certain states in the trace list by entering:

trace only <bus_state>

<bus_state> represents a combination of address, data and status expressions that
must be matched to satisfy the storage qualifier.

Storage qualifiers can help filter unwanted information from program execution
and improve your trace measurement. The analyzer stores only the information
specified in the storage qualifier. Note that if you have a sequencer or trigger
specification, any states given there are shown in the trace list even if they don’t
meet the storage qualifier.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

217

Examples Trace only address 10h:

trace only address 10h

Trace only data value 0ffh:

trace only data 0ffh

Trace only write operations

trace only status write

To define a prestore qualifier

• Place your prestore qualification into the entry buffer. Then choose
Trace→Only() Prestore.

• Using the command line, enter commands as follows:

• Specify a prestore qualifier by entering:

trace prestore <bus_state>

<bus_state> represents a combination of address, data and status expressions
that must be matched to satisfy the prestore qualifier.

• Disable prestore qualification by entering:

trace prestore anything

You use the prestore qualifier to save states that are related to other routines that
you’re tracing. For example, you might be tracing a subprogram, and want to see
which program called it. You can specify calls be prestored and that entries to the
subprogram be stored. The easiest way to do this is to prestore program reads that
are outside the address range of the subprogram being called.

You may have several program modules that write to a variable, and sometime
during execution of your program, that variable gets bad data writen to it. Using a
prestore measurement, you can find out which module is writing the bad data.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

218

Store-qualify writes to the variable, and use prestore to capture the instructions that
caused those writes to occur (perhaps by prestoring program reads).

Examples Specify a prestore qualifier:

trace prestore address not range gen_ascii_data thru
gen_ascii_data end status prog and read only
long_aligned gen_ascii_data

Disable prestore qualification:

trace prestore anything

To trace activity leading up to a program halt

• Choose Trace→Until Stop.

• Using the command line, trace on a program halt by entering:

trace on_halt

The above commands cause the analyzer to continuously fill the trace buffer until
you issue a Trace→Stop or stop_trace command.

Sometimes you may have a program failure that can’t be attributed to a specific
trigger condition. For example, the emulator may access guarded memory and
break to the monitor. You want to trace the events leading up to the guarded
memory access but you don’t know what to specify for a trigger. Use the above
command. The analyzer will capture and record states until the break occurs. The
trace list will display the last processor states leading up to the break condition.

Note that the "trace until stop" command may not capture the desired information
when you are using a foreground monitor (unless the code that causes the break
also causes the processor to halt) because the analyzer will continue to capture
foreground monitor states after the break. When using a foreground monitor, you
can use the command line to enter a trace command that stores only states outside
the range of the foreground monitor program (for example, trace on_halt only not
range <mon_start_addr> thru <mon_end_addr> on_halt).

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

219

To modify the trace specification

• Choose Trace→Trace Spec... You can recall, modify, and enter your trace
specification in the dialog box.

• Using the command line, enter:

trace modify_command

Then use the command line editing features to change the trace command
specifications.

If you made an error in a trace command or want to change the measurement
results slightly, it’s often easier to recall the previous trace command and edit it
than it is to enter a new trace command. The Trace Specification Selection dialog
box lets you recall, edit, and enter trace commands that have been executed during
the emulation session or trace commands that have been predefined.

Predefine entries for the Trace Specification Selection dialog box and define the
maximum number of entries by setting X resources (refer to Chapter 10, "Setting X
Resources").

See the "To use dialog boxes" description in Chapter 4, "Entering Commands", for
information about using selection dialog boxes.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

220

Example Recall the last trace command with Trace→Trace Spec..., or by entering:

trace modify_command

Then edit the trace command as you desire.

To repeat the previous trace command

• Choose Trace→Again.

• To continually repeat the last trace, choose Trace→Repetitively.

• Using the command line, repeat the previous trace command (including its
complete trace specification) by entering:

trace again

The trace again command is most useful when you want to repeat a measurement
with the same trace specification. It saves you the trouble of reentering the
complete trace command specification.

The "repetitively" choice continually repeats the last trace command. Successive
traces begin as soon as the results from the just-completed trace are displayed.

Also, this command is useful when you load a trace specification from a file. (See
"To load a trace specification" in this chapter.)

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

221

To capture a continuous stream of program
execution no matter how large your program

The following example can be performed in emulation systems using the deep
analyzer (it cannot be done with the 1K analyzer). It shows you how to capture all
of the execution of your target program. You may wish to capture target program
execution for storage, for future reference, and/or for comparison with execution
after making program modifications. The execution of a typical target program
will require more memory space than is available in the trace memory of an
analyzer. This example shows you how to capture all of your target program
execution while excluding unwanted execution of the emulation monitor.

1 Choose Trace→Display Options ..., and in the dialog box, enter 0 or the total
depth of your deep analyzer trace memory in the entry field beside Unload Depth.
Then click OK or Apply. This sets unload depth to maximum.

2 For this measurement, the analyzer will drive trig1 and the emulator will receive
trig1 from the trigger bus inside the card cage. The trig1 signal is used to cause the
emulator to break to its monitor program shortly before the trace memory is filled.
This use of trig1 is not supported in workstation interface commands. Therefore,
terminal interface commands (accessible through the pod command feature) must
be used. Enter the following commands:

Settings→Pod Command Keyboard
tgout trig1 -c <states before end of memory> (trigger output trig1 before trace
complete)
bc -e trig1 (break conditions enabled on trig1)
Click the suspend softkey

Note that "tgout trig1 -c <states...>" means generate trig1 as an output when the
state that is <states...> before the end of the trace memory is captured in the trace
memory; "bc -e trig1" means enable the emulator to break to its monitor program
when it receives trig1.

Select a value for <states before end of memory> that allows enough time and/or
memory space for the emulator to break to its monitor program before the trace
memory is filled. Otherwise, some of your program execution will not be captured
in the trace. Many states may be executed before the emulation break occurs,
depending on the state of the processor when the trig1 signal arrives. Also, if your
program executes critical routines in which interrupts are masked, the occurrence

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

222

of trig1 may be ignored until the critical routine is completed (when using a
foreground monitor).

3 If you are using a foreground monitor, enter the following additional pod
commands to prevent the trace memory from capturing monitor execution. The
following example commands will obtain this result in some emulators:

Settings→Pod Command Keyboard
trng addr=<address range occupied by your monitor> (trigger on range address
= <address range>)
 where <address range> is expressed as <first addr>..<last addr>
tsto !r (trace store not range)
Click the suspend softkey

Note that "trng addr=<addr>..<addr>" means define an address range for the
analyzer; "tsto !r" means store all trace activity except activity occurring in the
defined address range.

4 Start the analyzer trace with the command, Trace→Again

5 Start your program running using Execution→Run→from(), from Transfer
Address, or from Reset, as appropriate.

The Trace→Again (or trace again) command starts the analyzer trace with the
most recent trace specifications (including the pod_command specifications you
entered). The trace command cannot be used by itself because it defaults the "bc
-e trig1", "trng addr=...", and "tsto !r" specifications, returning them to their default
values before the trace begins.

You can see the progress of your trace with the command, Display→Status. A
line in the Trace Status listing will show how many states have been captured.

6 The notation "trig1 break" usually followed by "Emulation trace complete" will
appear on the status line. If "trig1 break" remains on the status line without
"Emulation trace complete", manually stop the trace with the command:

Trace→Stop

You must wait for the notation "trig1 break" and/or "Emulation trace complete" to
appear on the status line; this ensures the trace memory is filled during the trace
(except for the unfilled space you specified in Step 2 above).

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

223

Note that when you set a delay specification using tgout -c or tgout -t (trigger
output delay before trace complete/after trigger), the trace will indicate complete as
soon as the analyzer has captured the state specified, even though the entire trace
memory has not been filled.

If the notation "trig1 break" remains on the status line without being replaced by
"Emulation trace complete", it indicates the trace memory is not completely filled,
and no more states are being captured.

7 Store the entire trace memory content in a file with a command like:

wait measurement_complete ; copy trace to <directory/filename>

The "wait" command is inserted ahead of the "copy" command to ensure that the
unload of trace data is complete before you try to store it. Without "wait", you will
get an ERROR message warning that the unload is still in process. The
<filename> is an ASCII filename for a binary file that can be viewed using the
load trace command.

8 Start a new trace with the command: trace again

9 Resume the program run from the point where it was interrupted when the emulator
broke to the monitor with the command: run

10 Wait until the notation "trig1 break" and/or "Emulation trace complete" appears on
the status line. Then store the new trace memory content in a new file with
commands like:

stop_trace
wait measurement_complete ; copy trace to <directory/filename+1>

Note that "filename+1" in the above command suggests use of consecutive
filenames to store your execution files, such as FILENAME1, FILENAME2, etc.

Repeat steps 8 through 10 above until all program execution has been captured.
Your destination directory will have a set of files that, taken together, contain all of
your program execution. Note that if you did not prevent capture of foreground
monitor cycles in step 3 above, the last few trace lines in each file may contain
monitor cycles.

Chapter 7: Using the Emulation-Bus Analyzer
Making Complex Trace Measurements

224

Saving and Restoring Trace Data and
Specifications

The emulator/analyzer can save your trace data and trace specifications in a file for
later use. This can help you record measurement results that you can use for
comparison with other tests, and it is useful to automate measurements.

Suppose you’re using the emulator in a manufacturing test application. The target
system is your product board. You might build a command file that recalls a trace
specification, makes the trace on the target board, and then recalls a previous
measurement result (from a working product) and compares it to the new
measurement (using the UNIX diff command).

To store a trace specification

• Choose File→Store→Trace Spec... In the dialog box, select an existing filename
or specify a new filename to contain the present trace specification. Then click OK.

• Using the command line, store the current trace specification by entering:

store trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is
automatically added to the file name.

The trace specification file is a binary file.

The store trace_spec command allows you to save a trace specification
(effectively the current trace command with all trigger, storage and sequence
options) in a file for later use. For example, you might have several trace
commands that you want to make every time your target system program is
modified. You can store each trace command in a separate file and recall it later
using the load trace_spec command.

Chapter 7: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

225

Example Store a trace specification to a file:

store trace_spec tspec.TS

To store trace data

• Choose File→Store→Trace Data... In the dialog box, select an existing filename
or specify a new filename to contain the present trace memory content. Then click
OK.

• Using the command line, store the current trace data by entering:

store trace <filename>

<filename> is any UNIX file name including paths. The trace data file is a binary
file. The extension .TR is automatically added to the file name. A trace data file
can be reloaded into the interface and displayed like any other trace listing.

You can store the trace data resulting from a measurement. This can be useful if
you want to compare the results of later measurements with a reference result
obtained in an earlier measurement.

Example Store a trace to a file:

store trace trace1.TR

Chapter 7: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

226

To load a trace specification

• Choose File→Load→Trace Spec... In the dialog box, click on the name of the
trace specification you want to load (placing it in the Load Trace Specification
box). Then click OK.

• Using the command line, load an existing trace specification from a file by entering:

load trace_spec <filename>

<filename> is any UNIX file name including paths. The extension .TS is assumed.

Once you save a trace specification in a file using the File→Store→Trace Spec...
or store trace_spec command, you can load it using the appropriate command
above. To start a trace with the trace specification that you loaded, use the
Trace→Again or trace again command.

Example Load a trace specification from a file and start the trace:

load trace_spec tspec

trace again

Chapter 7: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

227

To load trace data

• Choose File→Load→Trace Data... In the dialog box, click on the name of the
trace data file (file of trace memory content) you want to load (placing it in the
Load Trace Data box). Then click OK.

• Using the command line, load trace data from a file by entering:

load trace <filename>

<filename> is any UNIX file name including paths. The extension .TR is assumed.

Loads a previously saved trace from a binary trace data file (with a ".TR" suffix).

Once you save trace data in a file using the File→Store→Trace Data... or store
trace command, you can reload it. To view the data you loaded, use the
Display→Trace, Trace→Display, or display trace command. Remember that a
new trace measurement will overwrite this trace data (but not the file from which it
was loaded).

The interface will try to display the trace listing in the display format active when
the trace data was stored. If the interface needs symbols to replace absolute
addresses or to find high-level source lines, and symbols are not loaded, an error
occurs.

For example, suppose "source-mixed" was the display mode when the trace was
captured and the executable file "test1" was the file being executed in the
emulator/target system. To reload and display a trace listing saved from that
emulation session requires reloading the symbols for "test1".

Example Load a trace from a file:

load trace trace1

Chapter 7: Using the Emulation-Bus Analyzer
Saving and Restoring Trace Data and Specifications

228

8

Making Software Performance
Measurements

229

Making Software Performance
Measurements

The Software Performance Measurement Tool (SPMT) is a feature of the Softkey
Interface that allows you to make software performance measurements on your
programs.

The SPMT allows you to make some of the measurements that are possible with
the HP 64708 Software Performance Analyzer and its Graphical User Interface
(HP B1487).

The SPMT post-processes information from the analyzer trace list. When you end
a performance measurement, the SPMT dumps the post-processed information to a
binary file, which is then read using the perf32 report generator utility.

Two types of software performance measurements can be made with the SPMT:
activity measurements, and duration measurements.

This chapter describes tasks you perform while using the Software Performance
Measurement Tool (SPMT). These tasks are grouped into the following sections:

• Activity performance measurements.

• Duration performance measurements.

• Running performance measurements and creating reports.

230

Activity Performance Measurements

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The SPMT shows you the percentage of analyzer
trace states that are in the specified address range, as well as the percentage of time
taken by those states. Two types of activity are measured: memory activity, and
program activity.

Memory activity is all activity that occurs within the address range.

Program activity is the activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (reads and writes to memory, stack pushes, etc.).

For example, suppose an address range being measured for activity contains an
opcode that causes a stack push, which results in multiple write operations to the
stack area (outside the range). The memory activity measurement will count only
the stack push opcode cycle. However, the program activity measurement will
count the stack push opcode cycle and the write operations to the stack.

By comparing the program activity and the memory activity in an address range,
you can get an idea of how much activity in other areas is caused by the code being
measured. An activity measurement report of the code (prog), data, and stack
sections of a program is shown below.

 Label

prog
 Address Range ADEH thru 1261H

 Memory Activity
 State Percent Rel = 57.77 Abs = 57.77
 Mean = 295.80 Sdv = 26.77
 Time Percent Rel = 60.97 Abs = 60.97

 Program Activity
 State Percent Rel = 99.82 Abs = 99.82
 Mean = 511.10 Sdv = 0.88
 Time Percent Rel = 99.84 Abs = 99.84

data
 Address Range 6007AH thru 603A5H

 Memory Activity
 State Percent Rel = 30.51 Abs = 30.51
 Mean = 156.20 Sdv = 31.87
 Time Percent Rel = 28.09 Abs = 28.09

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

231

 Program Activity
 State Percent Rel = 0.18 Abs = 0.18
 Mean = 0.90 Sdv = 0.88
 Time Percent Rel = 0.16 Abs = 0.16

stack
 Address Range 40000H thru 43FFFH

 Memory Activity
 State Percent Rel = 11.72 Abs = 11.72
 Mean = 60.00 Sdv = 29.24
 Time Percent Rel = 10.94 Abs = 10.94

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Graph of Memory Activity relative state percents >= 1
prog 57.77% *****************************
data 30.51% ****************
stack 11.72% ******

 Graph of Memory Activity relative time percents >= 1
prog 60.97% *******************************
data 28.09% **************
stack 10.94% ******

 Graph of Program Activity relative state percents >= 1
prog 99.82% **

 Graph of Program Activity relative time percents >= 1
prog 99.84% **

 Summary Information for 10 traces

 Memory Activity
 State count
 Relative count 5120
 Mean sample 170.67
 Mean Standard Dv 29.30
 95% Confidence 12.28% Error tolerance
 Time count
 Relative Time - Us 2221.20

 Program Activity
 State count
 Relative count 5120
 Mean sample 170.67
 Mean Standard Dv 0.58
 95% Confidence 0.24% Error tolerance

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

232

 Time count
 Relative Time - Us 2221.20
 Absolute Totals
 Absolute count - state 5120
 Absolute count - time - Us 2221.20

This section describes how to:

• Set up the trace command for activity measurements.

• Initialize activity performance measurements.

• Interpret activity measurement reports.

To set up the trace command for activity
measurements

1 Specify a trace display depth of 512 if using the 1K analyzer. If using the deep
analyzer, ignore this step.

2 Trace after any state, store all states, and count time.

Before you initialize and run performance measurements, the current trace
command (in other words, the last trace command entered) must be properly set up.

In general, you want to give the SPMT as many trace states as possible to
post-process, so you should increase the trace depth to the maximum number, as
shown in the following command.

If you wish to measure activity as a percentage of all activity, the current trace
command should be the default (in other words, trace <RETURN>). The default
trace command triggers on any state, and all captured states are stored. It is
important that time be counted by the analyzer; otherwise, the SPMT
measurements will not be correct. Also, since states are stored "after" the trigger
state, the maximum number of captured states appears in each trace list.

You can qualify trace commands any way you like to obtain specific information.
However, when you qualify the states that get stored in the trace memory, your
SPMT results will be biased by your qualifications; the percentages shown will be
of only those states stored in the trace list.

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

233

Examples To specify a trace depth of 512:

display trace depth 512 <RETURN>

To trace after any state, store all states, and count time:

trace counting time <RETURN>

To initialize activity performance measurements

• Use the performance_measurement_initialize command.

After you set up the trace command, you must tell the SPMT the address ranges on
which you wish to make activity measurements. This is done by initializing the
performance measurement. You can initialize the performance measurement in the
following ways:

• Default initialization (using global symbols if the symbols database is loaded).

• Initialize with user-defined files.

• Initialize with global symbols.

• Initialize with local symbols.

• Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Default Initialization

Entering the performance_measurement_initialize command with no options
specifies an activity measurement. If a valid symbolic database has been loaded,
the addresses of all global procedures and static symbols will be used; otherwise, a
default set of ranges that cover the entire processor address range will be used.

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

234

Initialization with User Defined Ranges

You can specifically give the SPMT address ranges to use by placing the
information in a file and entering the file name in the
performance_measurement_initialize command.

Address range files may contain program symbols (procedure name or static), user
defined address ranges, and comments. An example address range file is shown
below.

Any line which starts with a # is a comment.
All user’s labels must be preceded by a "|".

|users_label 10H 1000H
program_symbol

A program symbol can be a procedure name or a static. In the case of a pro-
cedure name the range of that procedure will be used.

|users_label2 program_symbol1 -> program_symbol2

"->" means thru. The above will define a range which starts with symbol1
and goes thru symbol2. If both symbols are procedures then the range will
be defined as the start of symbol1 thru the end of symbol2.

dir1/dir2/source_file.s:local_symbol

The above defines a range based on the address of local_symbol.

Initialization with Global Symbols

When the performance_measurement_initialize command is entered with no
options or with the global_symbols option, the global symbols in the symbols
database become the address ranges for which activity is measured. If the symbols
database is not loaded, a default set of ranges that cover the entire processor
address range will be used.

The global symbols database contains procedure symbols, which are associated
with the address range from the beginning of the procedure to the end, and static
symbols, which are associated with the address of the static variable.

Initialization with Local Symbols

When the performance_measurement_initialize command is entered with the
local_symbols_in option and a source file name, the symbols associated with that
source file become the address ranges for which activity is measured. If the
symbols database is not loaded, an error message will occur telling you that the
source filename symbol was not found.

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

235

You can also use the local_symbols_in option with procedure symbols; this allows
you to measure activity related to the symbols defined in a single function or
procedure.

Restoring the Current Measurement

The performance_measurement_initialize restore command allows you to
restore old performance measurement data from the perf.out file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a
performance measurement simply by entering another
performance_measurement_run command. However, if you exit and reenter the
emulation system, you must enter the performance_measurement _initialize
restore command before you can add traces to a performance measurement. When
you restore a performance measurement, make sure your current trace command is
identical to the command used with the restored measurement.

The restore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and saved perf.out files, then updated your software to a new version number, you
will not be able to restore old perf.out measurement files.

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

236

Examples Suppose the "addr_ranges" file contains the names of all the functions in the "ecs"
demo program loop:

combsort
do_sort
gen_ascii_data
get_targets
graph_data
interrupt_sim
proc_specific
read_conditions
save_points
set_outputs
strcpy8
update_system
write_hdwr

Since these labels are program symbols, you do not have to specify the address
range associated with each label; the SPMT will search the symbol database for the
addresses of each label.

An easy way to create the "addr_ranges" file is to use the copy global_symbols
command to copy the global symbols to a file named "addr_ranges"; then, fork a
shell to UNIX (by entering "! <RETURN>" on the Softkey Interface command
line) and edit the file so that it contains the procedure names shown above. Enter a
<CTRL>d at the UNIX prompt to return to the Softkey Interface.

To initialize the activity measurement with a user-defined address range file:

performance_measurement_initialize addr_ranges <RETURN>

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

237

To interpret activity measurement reports

• View the performance measurement report.

Activity measurements are measurements of the number of accesses (reads or
writes) within an address range. The reports generated for activity measurements
show you the percentage of analyzer trace states that are in the specified address
range, as well as the percentage of time taken by those states. The performance
measurement must include four traces before statistics (mean and standard
deviation) appear in the activity report. The information you will see in activity
measurement reports is described below.

Memory Activity All activity found within the address range.

Program Activity All activity caused by instruction execution in the address
range. Program activity includes opcode fetches and the cycles that result from the
execution of those instructions (reads and writes to memory, stack pushes, etc.).

Relative With respect to activity in all ranges defined in the performance
measurement.

Absolute With respect to all activity, not just activity in those ranges defined in
the performance measurement.

Mean Average number of states in the range per trace. The following equation is
used to calculate the mean:

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

238

Standard Deviation Deviation from the mean of state count. The following
equation is used to calculate standard deviation:

Where:

N Number of traces in the measurement.

mean Average number of states in the range per trace.

Ssumq Sum of squares of states in the range per trace.

Symbols Within Range Names of other symbols that identify addresses or
ranges of addresses within the range of this symbol.

Additional Symbols for Address Names of other symbols that also identify
this address.

Note that some compilers emit more than one symbol for certain addresses. For
example, a compiler may emit "interrupt_sim" and "_interrupt_sim" for the first
address in a routine named interrupt_sim. The analyzer will show the first symbol
it finds to represent a range of addresses, or a single address point, and it will show
the other symbols under either "Symbols within range" or "Additional symbols for
address", as applicable. In the "interrupt_sim" example, it may show either
"interrupt_sim" or "_interrupt_sim" to represent the range, depending on which
symbol it finds first. The other symbol will be shown below "Symbols within
range" in the report. These conditions appear particularly in default measurements
that include all global and local symbols.

Relative and Absolute Counts Relative count is the total number of states
associated with the address ranges in the performance measurement. Relative time
is the total amount of time associated with the address ranges in the performance
measurement. The absolute counts are the number of states or amount of time
associated with all the states in all the traces.

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

239

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om Mean of the standard deviations.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of traces in the measurement.

Pm Mean of the means (i.e., mean sample).

Examples Consider the following activity measurement report (generated with the commands
shown):

display trace depth 512 <RETURN>
trace counting time <RETURN>
performance_measurement_initialize addr_ranges <RETURN>
performance_measurement_run 20 <RETURN>
performance_measurement_end <RETURN>
!perf32 | more

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

240

 Label

set_outputs
 Address Range 1784H thru 1814H

 Memory Activity
 State Percent Rel = 30.28 Abs = 25.00
 Mean = 128.00 Sdv = 227.46
 Time Percent Rel = 30.45 Abs = 25.45

 Program Activity
 State Percent Rel = 28.97 Abs = 25.00
 Mean = 128.00 Sdv = 227.46
 Time Percent Rel = 29.28 Abs = 25.45

update_system
 Address Range 159CH thru 1656H

 Memory Activity
 State Percent Rel = 30.28 Abs = 25.00
 Mean = 128.00 Sdv = 227.46
 Time Percent Rel = 30.44 Abs = 25.45

 Program Activity
 State Percent Rel = 28.99 Abs = 25.02
 Mean = 128.10 Sdv = 227.40
 Time Percent Rel = 29.29 Abs = 25.46

read_conditions
 Address Range 16EEH thru 177CH

 Memory Activity
 State Percent Rel = 12.11 Abs = 10.00
 Mean = 51.20 Sdv = 157.59
 Time Percent Rel = 12.18 Abs = 10.18

 Program Activity
 State Percent Rel = 11.59 Abs = 10.00
 Mean = 51.20 Sdv = 157.59
 Time Percent Rel = 11.71 Abs = 10.18

strcpy8
 Address Range 10B0H thru 110AH

 Memory Activity
 State Percent Rel = 9.75 Abs = 8.05
 Mean = 41.20 Sdv = 116.63
 Time Percent Rel = 9.45 Abs = 7.90

 Program Activity
 State Percent Rel = 12.39 Abs = 10.69
 Mean = 54.75 Sdv = 149.76
 Time Percent Rel = 11.83 Abs = 10.28

interrupt_sim

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

241

 Address Range 101EH thru 10A8H

 Memory Activity
 State Percent Rel = 6.15 Abs = 5.08
 Mean = 26.00 Sdv = 114.41
 Time Percent Rel = 5.96 Abs = 4.98

 Program Activity
 State Percent Rel = 5.97 Abs = 5.16
 Mean = 26.40 Sdv = 114.35
 Time Percent Rel = 5.81 Abs = 5.05

write_hdwr
 Address Range 181CH thru 1894H

 Memory Activity
 State Percent Rel = 6.06 Abs = 5.00
 Mean = 25.60 Sdv = 114.49
 Time Percent Rel = 6.10 Abs = 5.10

 Program Activity
 State Percent Rel = 5.79 Abs = 5.00
 Mean = 25.60 Sdv = 114.49
 Time Percent Rel = 5.86 Abs = 5.10

proc_specific
 Address Range 1A6CH thru 1A8CH

 Memory Activity
 State Percent Rel = 3.84 Abs = 3.17
 Mean = 16.25 Sdv = 72.67
 Time Percent Rel = 3.86 Abs = 3.23

 Program Activity
 State Percent Rel = 3.70 Abs = 3.19
 Mean = 16.35 Sdv = 73.12
 Time Percent Rel = 3.73 Abs = 3.24

combsort
 Address Range 124EH thru 1444H

 Memory Activity
 State Percent Rel = 1.06 Abs = 0.88
 Mean = 4.50 Sdv = 20.12
 Time Percent Rel = 1.06 Abs = 0.89

 Program Activity
 State Percent Rel = 1.90 Abs = 1.64
 Mean = 8.40 Sdv = 37.57
 Time Percent Rel = 1.80 Abs = 1.56

do_sort
 Address Range 144CH thru 14EAH

 Memory Activity

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

242

 State Percent Rel = 0.47 Abs = 0.39
 Mean = 2.00 Sdv = 5.30
 Time Percent Rel = 0.49 Abs = 0.41

 Program Activity
 State Percent Rel = 0.70 Abs = 0.61
 Mean = 3.10 Sdv = 7.68
 Time Percent Rel = 0.69 Abs = 0.60

gen_ascii_data
 Address Range 1112H thru 1246H

 Memory Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

get_targets
 Address Range 165EH thru 16E6H

 Memory Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

graph_data
 Address Range 1988H thru 1A40H

 Memory Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

proc_spec_init
 Address Range 1A48H thru 1A64H

 Memory Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

243

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

save_points
 Address Range 189CH thru 1980H

 Memory Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Program Activity
 State Percent Rel = 0.00 Abs = 0.00
 Mean = 0.00 Sdv = 0.00
 Time Percent Rel = 0.00 Abs = 0.00

 Graph of Memory Activity relative state percents >= 1
set_outputs 30.28% ***************
update_system 30.28% ***************
read_conditions 12.11% ******
strcpy8 9.75% *****
interrupt_sim 6.15% ***
write_hdwr 6.06% ***
proc_specific 3.84% **
combsort 1.06% *

 Graph of Memory Activity relative time percents >= 1
set_outputs 30.45% ***************
update_system 30.44% ***************
read_conditions 12.18% ******
strcpy8 9.45% *****
interrupt_sim 5.96% ***
write_hdwr 6.10% ***
proc_specific 3.86% **
combsort 1.06% *

 Graph of Program Activity relative state percents >= 1
set_outputs 28.97% ***************
update_system 28.99% ***************
read_conditions 11.59% ******
strcpy8 12.39% ******
interrupt_sim 5.97% ***
write_hdwr 5.79% ***
proc_specific 3.70% **
combsort 1.90% *

 Graph of Program Activity relative time percents >= 1
set_outputs 29.28% ***************
update_system 29.29% ***************
read_conditions 11.71% ******
strcpy8 11.83% ******
interrupt_sim 5.81% ***

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

244

write_hdwr 5.86% ***
proc_specific 3.73% **
combsort 1.80% *

 Summary Information for 20 traces

 Memory Activity
 State count
 Relative count 8455
 Mean sample 30.20
 Mean Standard Dv 75.44
 95% Confidence 116.98% Error tolerance
 Time count
 Relative Time - Us 3500.92

 Program Activity
 State count
 Relative count 8838
 Mean sample 31.56
 Mean Standard Dv 79.24
 95% Confidence 117.55% Error tolerance
 Time count
 Relative Time - Us 3641.08
 Absolute Totals
 Absolute count - state 10240
 Absolute count - time - Us 4188.56

The measurements for each label are printed in descending order according to the
amount of activity. You can see that the set_outputs function has the most activity.
Also, you can see that no activity is recorded for several of the functions. The
histogram portion of the report compares the activity in the functions that account
for at least 1% of the activity for all labels defined in the measurement.

Chapter 8: Making Software Performance Measurements
Activity Performance Measurements

245

Duration Performance Measurements

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set
of specified time ranges. The analyzer trace command is set up to store only the
entry and exit states of the module to be measured (for example, a C function or
Pascal procedure). The SPMT provides two types of duration measurements:
module duration, and module usage.

Module duration measurements record how much time it takes to execute a
particular code segment (for example, a function in the source file).

Module usage shows how much of the execution time is spent outside of the
module (from exit to entry). This measurement gives an indication of how often
the module is being used.

When using the SPMT to perform duration measurements, there should be only
two addresses stored in the trace memory: the entry address, and the exit address.
Recursion can place several entry addresses before the first exit address, and/or
several exit addresses before the first entry address. Duration measurements are
made between the last entry address in a series of entry addresses, and the last exit
address in a series of exit addresses (see the figure below). All of the entry and exit
addresses which precede these last addresses are assumed to be unused prefetches,
and are ignored during time measurements.

When measuring a recursive function, module duration will be measured between
the last recursive call and the true end of the recursive execution. This will affect
the accuracy of the measurement.

 START - assumed prefetch
 START - assumed prefetch
 START - assumed prefetch
 START - last ENTRY address -
 END - assumed prefetch
 END - assumed prefetch Measure duration
 END - assumed prefetch
 END - last EXIT address -
 START - assumed prefetch
 START - assumed prefetch Measure duration
 START - assumed prefetch
 START - last ENTRY address -
 END - assumed prefetch
 END - assumed prefetch

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

246

If a module is entered at the normal point, and then exited by a point other than the
defined exit point, the entry point will be ignored. It will be judged the same as
any other unused prefetch, and no time-duration measurement will be made. Its
time will be included in the measure of time spent outside the procedure or
function.

If a module is exited from the normal point, and then reentered from some other
point, the exit will also be assumed to be an unused prefetch of the exit state.

Note that if you are making duration measurements on a function that is recursive,
or one that has multiple entry and/or exit points, you may wind up with invalid
information.

This section describes how to:

• Set up the trace command for duration measurements.

• Initialize duration performance measurements.

• Interpret duration measurement reports.

To set up the trace command for duration
measurements

1 Specify a trace display depth of 512.

2 Trace after and store only function start and end addresses.

For duration measurements, the trace command must be set up to store only the
entry and exit points of the module of interest. Since the trigger state is always
stored, you should trigger on the entry or exit points. For example:

trace after symbol_entry or symbol_exit only
symbol_entry or symbol_exit counting time <RETURN>

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

247

CAUTION The previous command depends on the generation of correct exit address symbols
by the software development tools.

Or:

trace after module_name start or module_name end only
module_name start or module_name end counting time
<RETURN>

Where "symbol_entry" and "symbol_exit" are symbols from the user program. Or,
where "module_name" is the name of a C function or Pascal procedure (and is
listed as a procedure symbol in the global symbol display).

Examples To specify a trace display depth of 512:

display trace depth 512 <RETURN>

To set up the trace command for duration measurements on the interrupt_sim
function:

trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>

The trace specification sets up the analyzer to capture only the states that contain
the start address of the interrupt_sim function or the end address of the
interrupt_sim function. Since the trigger state is also stored, the analyzer is set up
to trigger on the entry or exit address of the interrupt_sim function. With these
states in memory, the analyzer will derive two measurements: time from start to
end of interrupt_sim, and time from end to start of interrupt_sim.

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

248

To initialize duration performance measurements

• Use the performance_measurement_initialize command with the duration
option.

After you set up the trace command, you must tell the SPMT the time ranges to be
used in the duration measurement. This is done by initializing the performance
measurement. You can initialize the performance measurement in the following
ways:

• Initialize with user-defined files.

• Restore a previous performance measurement (if the emulation system has
been exited and reentered).

Initialization with User Defined Ranges

You can specifically give the SPMT time ranges to use by placing the information
in a file and entering the file name in the performance_measurement_initialize
command.

Time range files may contain comments and time ranges in units of microseconds
(us), milliseconds (ms), or seconds (s). An example time range file is shown below.

Any line which starts with a # is a comment.

1 us 20 us
10.1 ms 100.6 ms
3.55 s 6.77 s

us microseconds
ms milliseconds
s seconds

The above are the only abbreviations allowed. The space between the number
and the units abbreviation is required.

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

249

When no user defined time range file is specified, the following set of default time
ranges are used.

1 us 10 us
10.1 us 100 us
100.1 us 500 us
500.1 us 1 ms
1.001 ms 5 ms
5.001 ms 10 ms
10.1 ms 20 ms
20.1 ms 40 ms
40.1 ms 80 ms
80.1 ms 160 ms
160.1 ms 320 ms
320.1 ms 640 ms
640.1 ms 1.2 s

Restoring the Current Measurement

The performance_measurement_initialize restore command allows you to
restore old performance measurement data from the perf.out file in the current
directory.

If you have not exited and reentered emulation, you can add traces to a
performance measurement simply by entering another
performance_measurement_run command. However, if you exit and reenter the
emulation system, you must enter the performance_measurement _initialize
restore command before you can add traces to a performance measurement. When
you restore a performance measurement, make sure your current trace command is
identical to the command used with the restored measurement.

The restore option checks the emulator software version and will only work if the
perf.out files you are restoring were made with the same software version as is
presently running in the emulator. If you ran tests using a former software version
and saved perf.out files, then updated your software to a new version number, you
will not be able to restore old perf.out measurement files.

Examples To initialize the duration measurement:

performance_measurement_initialize duration <RETURN>

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

250

To interpret duration measurement reports

• View the performance measurement report.

Duration measurements provide a best-case/worst-case characterization of code
execution time. These measurements record execution times that fall within a set
of specified time ranges. The information you will see in duration measurement
reports is described below.

Number of Intervals Number of "from address" and "to address" pairs (after
prefetch correction).

Maximum Time The greatest amount of time between the "from address" to the
"to address".

Minimum Time The shortest amount of time between the "from address" to the
"to address".

Average Time Average time between the "from address" and the "to address".
The following equation is used to calculate the average time:

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

251

 Standard Deviation Deviation from the mean of time. The following equation
is used to calculate standard deviation:

Where:

N Number of intervals.

mean Average time.

Ssumq Sum of squares of time in the intervals.

Error Tolerance and Confidence Level An approximate error may exist in
displayed information. Error tolerance for a level of confidence is calculated using
the mean of the standard deviations and the mean of the means. Error tolerance
gives an indication of the stability of the information. For example, if the error is
5% for a confidence level of 95%, then you can be 95% confident that the
information has an error of 5% or less.

The Student’s "T" distribution is used in these calculations because it improves the
accuracy for small samples. As the size of the sample increases, the Student’s "T"
distribution approaches the normal distribution.

The following equation is used to calculate error tolerance:

Where:

Om Mean of the standard deviations in each time range.

t Table entry in Student’s "T" table for a given confidence
level.

N Number of intervals.

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

252

Pm Mean of the means (i.e., mean of the average times in each
time range).

Examples Consider the following duration measurement report (generated with the
commands shown):

display trace depth 512 <RETURN>
trace after interrupt_sim start or interrupt_sim end
only interrupt_sim start or interrupt_sim end counting
time <RETURN>
performance_measurement_initialize duration <RETURN>
performance_measurement_run 10 <RETURN>
performance_measurement_end <RETURN>
!perf32 | more

 Time Interval Profile

From Address 10A8
 File main(module)."/users/guest/demo/debug_env/hp64749/main.c"
 Symbolic Reference at interrupt_sim+8A
To Address 101E
 File main(module)."/users/guest/demo/debug_env/hp64749/main.c"
 Symbolic Reference at main.interrupt_sim
Number of intervals 2550
Maximum Time 73297.920 us
Minimum Time 48230.400 us
Avg Time 55672.752 us

 Statistical summary - for 10 traces
 Stdv 11442.64
 95% Confidence 0.80% Error tolerance

 Graph of relative percents
1 us 10 us 0.00%
10.1 us 100 us 0.00%
100.1 us 500 us 0.00%
500.1 us 1 ms 0.00%
1.001 ms 5 ms 0.00%
5.001 ms 10 ms 0.00%
10.1 ms 20 ms 0.00%
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 100.00% **
80.1 ms 160 ms 0.00%
160.1 ms 320 ms 0.00%
320.1 ms 640 ms 0.00%
640.1 ms 1.2 s 0.00%

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

253

From Address 101E
 File main(module)."/users/guest/demo/debug_env/hp64749/main.c"
 Symbolic Reference at main.interrupt_sim
To Address 10A8
 File main(module)."/users/guest/demo/debug_env/hp64749/main.c"
 Symbolic Reference at interrupt_sim+8A
Number of intervals 2550
Maximum Time 342343.680 us
Minimum Time 52.320 us
Avg Time 36987.751 us

 Statistical summary - for 10 traces
 Stdv 76924.84
 95% Confidence 8.07% Error tolerance

 Graph of relative percents
1 us 10 us 0.00%
10.1 us 100 us 14.82% ********
100.1 us 500 us 5.06% ***
500.1 us 1 ms 0.00%
1.001 ms 5 ms 24.82% *************
5.001 ms 10 ms 20.27% **********
10.1 ms 20 ms 10.08% *****
20.1 ms 40 ms 0.00%
40.1 ms 80 ms 9.88% *****
80.1 ms 160 ms 5.02% ***
160.1 ms 320 ms 7.57% ****
320.1 ms 640 ms 2.47% *
640.1 ms 1.2 s 0.00%

Two sets of information are given in the duration measurement report: module
duration and module usage.

The first set is the "module usage" measurement. Module usage measurements
show how much time is spent outside the module of interest; they indicate how
often the module is used. The information shown in the first part of the duration
report above shows that the average amount of time spent outside the interrupt_sim
function is about 55.7 milliseconds.

The second set of information in the duration measurement report is the "module
duration" measurement. The module duration report shows that the amount of time
it takes for the interrupt_sim function to execute varies from 52.3 microseconds to
342.3 milliseconds. The average amount of time it takes for the interrupt_sim
module to execute is roughly 37 milliseconds.

Chapter 8: Making Software Performance Measurements
Duration Performance Measurements

254

Running Measurements and Creating
Reports

Several performance measurement tasks are the same whether you are making
activity or duration measurements.

This section describes how to:

• Run performance measurements.

• End performance measurements.

• Create a performance measurement report.

To run performance measurements

• Use the performance_measurement_run command.

The performance_measurement_run command processes analyzer trace data.
When you end the performance measurement, this processed data is dumped to the
binary "perf.out" file in the current directory. The perf32 report generator utility is
used to read the binary information in the "perf.out" file.

If the performance_measurement_run command is entered without a count, the
current trace data is processed. If a count is specified, the current trace command is
executed consecutively the number of times specified. The data that results from
each trace command is processed and combined with the existing processed data.
The STATUS line will say "Processing trace <NO.>" during the run so you will
know how your measurement is progressing. The only way to stop this series of
traces is by using <CTRL>c (sig INT).

The more traces you include in your sample, the more accurate will be your results.
At least four consecutive traces are required to obtain statistical interpretation of
activity measurement results.

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

255

Examples To run the performance measurement, enter the following command:

performance_measurement_run 20 <RETURN>

The command above causes 20 traces to occur. The SPMT processes the trace
information after each trace, and the number of the trace being processed is shown
on the status line.

To end performance measurements

• Use the performance_measurement_end command.

The performance_measurement_end command takes the data generated by the
performance_measurement_run command and places it in a file named perf.out
in the current directory. If a file named "perf.out" already exists in the current
directory, it will be overwritten. Therefore, if you wish to save a performance
measurement, you must rename the perf.out file before performing another
measurement.

The performance_measurement_end command does not affect the current
performance measurement data which exists within the emulation system. In other
words, you can add more traces later to the existing performance measurement by
entering another performance_measurement_run command.

Once you have entered the performance_measurement_end command, you can
use the perf32 report generator to look at the data saved in the perf.out file.

Note that the "perf.out" file is a binary file. Do not try to read it with the UNIX
more or cat commands. The perf32 report generator utility (described in the
following section) must be used to read the contents of the "perf.out" file.

Examples To cause the processed trace information to be dumped to the "perf.out" file:

performance_measurement_end <RETURN>

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

256

To create a performance measurement report

• Use the perf32 command at the UNIX prompt.

The perf32 report generator utility must be used to read the information in the
"perf.out" file and other files dumped by the SPMT (in other words, renamed
"perf.out" files). The perf32 utility is run from the UNIX shell. You can fork a
shell while in the Softkey Interface and run perf32, or you can exit the Softkey
Interface and run perf32.

Options to "perf32"

A default report, containing all performance measurement information, is generated
when the perf32 command is used without any options. The options available with
perf32 allow you to limit the information in the generated report. These options
are described below.

-h Produce outputs limited to histograms.

-s Produce a summary limited to the statistical data.

-p Produce a summary limited to the program activity.

-m Produce a summary limited to the memory activity.

-f<file> Produce a report based on the information contained in
<file> instead of the information contained in perf.out.

For example, the following commands save the current performance measurement
information in a file called "perf1.out", and produce a histogram showing only the
program activity occupied by the functions and variables.

mv perf.out perf1.out <RETURN>
perf32 -hpf perf1.out <RETURN>

Options -h, -s, -p, and -m affect the contents of reports generated for activity
measurements. These options have no effect on the contents of reports generated
for duration (time interval) measurements.

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

257

Examples Now, to generate a report from the "perf.out" file, type the following on the
command line to fork a shell and run the perf32 utility:

!perf32 | more

Chapter 8: Making Software Performance Measurements
Running Measurements and Creating Reports

258

9

Making Coordinated Measurements

259

Making Coordinated Measurements

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time.

You can use the analyzer in one HP 64700 to arm (that is, activate) the analyzers in
other HP 64700 Card Cages or to cause emulator execution in other HP 64700
Card Cages to break into the monitor.

You can use the HP 64700’s BNC connector (labeled TRIGGER IN/OUT on the
lower left corner of the HP 64700 rear panel) to trigger an external instrument (for
example, a logic analyzer or oscilloscope) when the analyzer finds its trigger
condition. Also, you can allow an external instrument to arm the analyzer or break
emulator execution into the monitor.

The coordinated measurement tasks you can perform are grouped into the
following sections:

• Setting up for coordinated measurements.

• Starting and stopping multiple emulators.

• Driving trigger signals to the CMB or BNC.

• Stopping program execution on trigger signals.

• Arming analyzers on trigger signals.

260

The location of the CMB and BNC connectors on the HP 64700 rear panel is
shown in the following figure.

CMB Connector

BNC Connector

Signal Lines on the CMB

There are three bi-directional signal lines on the CMB connector on the rear panel
of the emulator. These CMB signals are:

TRIGGER The CMB TRIGGER line is low true. This signal can be driven or
received by any HP 64700 connected to the CMB. This signal can be used to
trigger an analyzer. It can be used as a break source for the emulator.

READY The CMB READY line is high true. It is an open collector and performs
an ANDing of the ready state of enabled emulators on the CMB. Each emulator on
the CMB releases this line when it is ready to run. This line goes true when all
enabled emulators are ready to run, providing for a synchronized start.

261

When CMB is enabled, each emulator is required to break to background when
CMB READY goes false, and will wait for CMB READY to go true before
returning to the run state. When an enabled emulator breaks, it will drive the CMB
READY false and will hold it false until it is ready to resume running. When an
emulator is reset, it also drives CMB READY false.

EXECUTE The CMB EXECUTE line is low true. Any HP 64700 on the CMB
can drive this line. It serves as a global interrupt and is processed by both the
emulator and the analyzer. This signal causes an emulator to run from a specified
address when CMB READY returns true.

BNC Trigger Signal

The BNC trigger signal is a positive rising edge TTL level signal. The BNC trigger
line can be used to either drive or receive an analyzer trigger, or receive a break
request for the emulator.

Comparison Between CMB and BNC Triggers The CMB trigger and BNC
trigger lines have the same logical purpose: to provide a means for connecting the
internal trigger signals (trig1 and trig2) to external instruments. The CMB and
BNC trigger lines are bi-directional. Either signal may be used directly as a break
condition.

The CMB trigger is level-sensitive, while the BNC trigger is edge-sensitive. The
CMB trigger line puts out a true pulse following receipt of EXECUTE, despite the
commands used to configure it. This pulse is internally ignored.

Note that if you use the EXECUTE function, the CMB TRIGGER should not be
used to trigger external instruments, because a false trigger will be generated when
EXECUTE is activated.

262

Setting Up for Coordinated
Measurements

This section describes how to:

• Connect the Coordinated Measurement Bus.

• Connect the rear panel BNC.

To connect the Coordinated Measurement Bus
(CMB)

Caution Be careful not to confuse the 9-pin connector used for CMB with those used by
some computer systems for RS-232C communications. Applying RS-232C signals
to the CMB connector is likely to result in damage to the HP 64700 Card Cage.

To use the CMB, you will need one CMB cable for the first two emulators and one additional cable for
every emulator after the first two. The CMB cable is orderable from HP under product number
HP 64023A. The cable is four meters long.

You can build your own compatible CMB cables using standard 9-pin D type subminiature connectors
and 26 AWG wire.

Note that Hewlett-Packard does not ensure proper CMB operation if you are using a self-built cable!

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

263

1 Connect the cables to the HP 64700

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

264

Number of HP 64700 Series
Emulators

Maximum Total Length of
Cable

Restrictions on the CMB
Connection

2 to 8 100 meters None.

9 to 16 50 meters None.

9 to 16 100 meters Only 8 emulators may have rear
panel pullups connected. *

17 to 32 50 meters Only 16 emulators may have rear
panel pullups connected. *

* A modification must be performed by your HP Customer Engineer.

Emulators using the CMB must use background emulation monitors.

At least 3/4 of the HP 64700-Series emulators connected to the CMB must be powered up before proper
operation of the entire CMB configuration can be assured.

To connect to the rear panel BNC

Caution The BNC line on the HP 64700 accepts input and output of TTL levels only. (TTL
levels should not be less than 0 volts or greater than 5 volts.) Failure to observe
these specifications may result in damage to the HP 64700 Card Cage.

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

265

1 Connect one end of a 50 ohm coaxial cable with male BNC connectors to the HP 64700 BNC
receptacle and the other end to the appropriate BNC receptacle on the other measuring instrument.

The BNC connector is capable of driving TTL level signals into a 50 ohm load. (A positive rising edge
is the trigger signal.) It requires a driver that can supply at least 4 mA at 2 volts when used as a receiver.
The BNC connector is configured as an open-emitter structure which allows for multiple drivers to be
connected. It can be used for cross-triggering between multiple HP 64700Bs when no other
cross-measurements are needed. The output of the BNC connector is short-circuit protected and is
protected from TTL level signals when the emulator is powered down.

Chapter 9: Making Coordinated Measurements
Setting Up for Coordinated Measurements

266

Starting/Stopping Multiple Emulators

When HP 64700 Card Cages are connected together via the Coordinated
Measurement Bus (CMB), you can start and stop up to 32 emulators at the same
time. These are called synchronous measurements.

This section describes how to:

• Enable synchronous measurements.

• Start synchronous measurements.

• Disable synchronous measurements.

To enable synchronous measurements

• Enter the specify run command.

You can enable the emulator’s interaction with the CMB by using the specify run
command. When the EXECUTE signal is received, the emulator will run at the
current program counter address or the address specified in the specify run
command.

Note that when the CMB is being actively controlled by another emulator, the step
command does not work correctly. The emulator may end up running in user code
(NOT stepping). Disable CMB interaction (see "To disable synchronous
measurements" below) while stepping the processor.

Note that enabling CMB interaction does not affect the operation of analyzer
cross-triggering.

You can use the specify trace command to specify that an analyzer measurement
begin upon reception of the CMB EXECUTE signal.

The trace measurement defined by the specify trace command will be started when
the EXECUTE signal becomes active. When the trace measurement begins, you
will see the message "CMB execute; emulation trace started".

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

267

When you enter a normal trace command, trace at execute is disabled, and the
analyzer ignores the CMB EXECUTE signal.

Examples To enable synchronous measurements:

specify run from 1e8h <RETURN>

To trace when synchronous execution begins:

specify trace after address main <RETURN>

To start synchronous measurements

• Enter the cmb_execute command.

The cmb_execute command will cause the EXECUTE line to be pulsed, thereby
initiating a synchronous measurement. CMB interaction does not have to be
enabled in order to use either of these commands. (When you enable CMB
interaction, you only specify how the emulator will react to the CMB EXECUTE
signal.)

All emulators whose CMB interaction is enabled will break into the monitor when
any one of those emulators breaks into its monitor.

To disable synchronous measurements

• Enter the specify run disable command.

You can disable the emulator’s interaction with the CMB by using the specify run
disable command. When interaction is disabled, the emulator ignores the CMB
EXECUTE and READY lines.

Chapter 9: Making Coordinated Measurements
Starting/Stopping Multiple Emulators

268

Using Trigger Signals

The HP 64700 contains two internal lines, trig1 and trig2, over which trigger
signals can pass from the emulator or analyzer to other HP 64700s on the
Coordinated Measurement Bus (CMB) or other instruments connected to the BNC
connector.

You can configure the internal lines to make connections between the emulator,
analyzer, CMB connector, or BNC connector. Measurements that depend on these
connections are called interactive measurements or coordinated measurements.

This figure below illustrates the possible connections between the internal lines
(trig1 and trig2) and the emulator, analyzer, and external devices.

Notice that the analyzer always drives trig1, and the emulator always receives
trig1. This provides for the break_on_trigger syntax of the trace command.

You can use the trig1 or trig2 line to make a connection between the analyzer and
the CMB connector or BNC connector so that, when the analyzer finds its trigger
condition, a trigger signal is driven on the HP 64700’s Coordinated Measurement
Bus (CMB) or BNC connector.

 Interactive Measurement Specification

 BNC <<-??->> ---\ BNC <<-??->> ---\
 | |
 CMBT <<-??->> ---| CMBT <<-??->> ---|
 | Trig1 | Trig2
 Emulator <<------ ---| Emulator <<-??--- ---|
 | |
 Analyzer ------>> ---/ Analyzer <<-??->> ---/

NOTES:
 1. The connections marked "??" are set up here in configuration.
 2. drive = ---->> receive = <<---- (The display won’t change, however.)

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

269

You can use the trig1 or trig2 line to make a connection between the emulator
break input and the CMB connector, BNC connector, or analyzer so that program
execution can break when a trigger signal is received from the CMB, BNC, or
analyzer.

You can use the trig2 line to make a connection between the analyzer and the CMB
connector or BNC connector so that the analyzer can be armed (that is, enabled)
when a trigger signal is received from the CMB or BNC connector.

You can use the trig1 and trig2 lines to make several types of connections at the
same time. For example, when the analyzer finds its trigger condition, a signal is
driven on the trig1 line. This signal may be used to stop user program execution,
but the trigger signal may also be driven on the CMB and BNC connectors.

Also, it’s possible for signals to be driven and received on the CMB or BNC
connectors. So, for example, while the analyzer’s trigger signal can be driven on
the CMB and BNC connectors, signals can also be received from the CMB and
BNC connectors and used to stop user program execution. In this case, the
emulator will break into the monitor on either the analyzer trigger or on the
reception of a trigger signal from the CMB or BNC.

You can disable connections made by the internal trig1 and trig2 lines by choosing
"neither" or "no" to the appropriate interactive measurement configuration options.

In order to modify the interactive measurement specification, you must first start
the configuration interface and access the "Interactive Measurement Specification"
configuration section (refer to the "Using the Configuration Interface" section in
Chapter 5, "Configuring the Emulator").

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

270

If you’re using the Softkey Interface from a terminal or terminal emulation
window, you don’t get a dialog box from which to choose configuration sections;
however, you have access to the same configuration options through a series of
configuration questions. To access the questions in the "Interactive Measurement
Specification" section, answer "yes" to the "Modify interactive measurement
specification?" question.

This section shows you how to:

• Drive the emulation analyzer trigger signal to the CMB.

• Drive the emulation analyzer trigger signal to the BNC connector.

• Break emulator execution on signal from CMB.

• Break emulator execution on signal from BNC.

• Arm the emulation analyzer on signal from CMB.

• Arm the emulation analyzer on signal from BNC.

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

271

To drive the emulation analyzer trigger signal to
the CMB

• Choose "receive" for the "Should CMBT drive or receive Trig1" configuration
option.

You could also drive the emulation analyzer trigger to the CMB over the trig2
internal line by specifying that the CMBT should receive trig2 and that the
emulation analyzer should drive trig2.

To drive the emulation analyzer trigger signal to
the BNC connector

• Choose "receive" for the "Should BNC drive or receive Trig1" configuration option.

You could also drive the emulation analyzer trigger to the BNC over the trig2
internal line by specifying that the BNC should receive trig2 and that the emulation
analyzer should drive trig2.

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

272

To break emulator execution on signal from CMB

• Choose "drive" for the "Should CMBT drive or receive Trig1" configuration option.

You could also break emulator execution on a trigger signal from the CMB over
the trig2 internal line by specifying that the CMB should drive trig2 and that the
emulator break should receive trig2.

To break emulator execution on signal from BNC

• Choose "drive" for the "Should BNC drive or receive Trig1" configuration option.

You could also break emulator execution on a trigger signal from the BNC over the
trig2 internal line by specifying that the BNC should drive trig2 and that the
emulator break should receive trig2.

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

273

To arm the emulation analyzer on signal from
CMB

1 Choose "drive" for the "Should CMBT drive or receive Trig2" configuration option.

2 Choose "receive" for the "Should Analyzer drive or receive Trig2" configuration
option.

3 Use the arm_trig2 option to the trace command.

To arm the emulation analyzer on signal from
BNC

1 Choose "drive" for the "Should BNC drive or receive Trig2" configuration option.

2 Choose "receive" for the "Should Analyzer drive or receive Trig2" configuration
option.

3 Use the arm_trig2 option to the trace command.

Chapter 9: Making Coordinated Measurements
Using Trigger Signals

274

Part 3

Reference

275

Reference

In This Part

This part provides detailed information on aspects of using the Graphical User
Interface and the Softkey Interface for the HP 64780A product.

Chapter 10, "Setting X Resources," shows how you can change the appearance or
behavior of certain elements in the Graphical User Interface.

Chapter 11, "Emulator/Analyzer Interface Commands," lists and describes each of
the commands available in the emulator/analyzer.

Chapter 12, "Emulator Error Messages," lists each of the messages that you may
see while using the MC68360 emulator/analyzer, and describes conditions that may
cause the message to appear, and suggests actions you can take to correct problems
indicated by the messages.

For a thorough analysis of possible problems and solutions, refer to the
Hewlett-Packard M68360 Emulator/Analyzer Installation/Service/Terminal
Interface User’s Guide.

Note that Specifications and Characteristics for the Hewlett-Packard MC68360
Emulator/Analyzer are listed in the M68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide.

Part 3

276

10

Setting X Resources

277

Setting X Resources

The Graphical User Interface is an X Window System application which means it
is a client in the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is an
interface between application programs you run on your system and the system
input and output devices.

An X resource controls an element of appearance or behavior in an X application.
For example, in the graphical interface, one resource controls the text in action key
pushbuttons as well as the action performed when the pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a set of
configuration files. Resources specifications in later files override those in earlier
files. Files are read in the following order:

1 The application defaults file. For example,
/usr/lib/X11/app-defaults/HP64_Softkey in HP-UX or
/usr/openwin/lib/X11/app-defaults/HP64_Softkey in SunOS.

2 The $XAPPLRESDIR/HP64_Softkey file. (The XAPPLRESDIR environment
variable defines a directory containing system-wide custom application
defaults.)

3 The server’s RESOURCE_MANAGER property. (The xrdb command loads
user-defined resource specifications into the RESOURCE_MANAGER
property.)

If no RESOURCE_MANAGER property exists, user defined resource settings
are read from the $HOME/.Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $HOME/.Xdefaults-host file
(typically containing resource specifications for a specific remote host) is read.

5 Resource specifications included in the command line with the -xrm option.

278

6 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

8 User-defined scheme files located in directory $HOME/.HP64_schemes (note
the dot in the directory name).

Scheme files group resource specifications for different displays, computing
environments, and languages.

This chapter shows you how to:

• Modify the Graphical User Interface resources.

• Use customized scheme files.

• Set up custom action keys.

• Set initial recall buffer values.

• Set up demos or tutorials.

Chapter 10: Setting X Resources

279

To modify Graphical User Interface resources

You can customize the appearance of an X Windows application by modifying its
X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Softkey.platformScheme HP-UX
SunOS
(custom)

Names the subdirectory for platform
specific schemes. This resource should be
set to the platform on which the X server is
running (and displaying the Graphical User
Interface) if it is different than the platform
where the application is running.

HP64_Softkey.colorScheme BW
Color
(custom)

Names the color scheme file.

HP64_Softkey.sizeScheme Small
Large
(custom)

Names the size scheme file which defines
the fonts and the spacing used.

HP64_Softkey.labelScheme Label
$LANG
(custom)

Names to use for labels and button text.
The default uses the $LANG environment
variable if it is set and if a scheme file
named Softkey.$LANG exists in one of the
directories searched for scheme files;
otherwise, the default is Label.

HP64_Softkey.inputScheme Input
(custom)

Specifies mouse and keyboard operation.

Chapter 10: Setting X Resources
To modify Graphical User Interface resources

280

Commonly Modified Application Resources

Resource Values Description

HP64_Softkey.lines 24
(min. 18)

Specifies the number of lines in the main
display area.

HP64_Softkey.columns 100
(min. 80)

Specifies the number of columns, in
characters, in the main display area.

HP64_Softkey.enableCmdline True
False

Specifies whether the command line area is
displayed when you initially enter the
Graphical User Interface.

*editFile (example) vi
%s

Specifies the command used to edit files.

*editFileLine (example) vi
+%d %s

Specifies the command used to edit a file at
a certain line number.

*<proc>*actionKeysSub.keyDefs (paired list
of strings)

Specifies the text that should appear on the
action key push buttons and the commands
that should be executed in the command
line area when the action key is pushed.
Refer to the "To set up custom action keys"
section for more information.

*<proc>*dirSelectSub.entries (list of
strings)

Specifies the initial values that are placed in
the File→Context→Directory pop-up
recall buffer. Refer to the "To set initial
recall buffer values" section for more
information.

*<proc>*recallSub.entries (list of
strings)

Specifies the initial values that are placed in
the entry buffer (labeled "():"). Refer to the
"To set initial recall buffer values" section
for more information.

Chapter 10: Setting X Resources
To modify Graphical User Interface resources

281

The following steps show you how to modify the Graphical User Interface’s X
resources.

1 Copy part or all of the HP64_Softkey application defaults file to a temporary file.

The HP64_Softkey file contains the default definitions for the graphical interface
application’s X resources.

For example, on an HP 9000 computer you can use the following command to copy
the complete HP64_Softkey file to HP64_Softkey.tmp (note that the HP64_Softkey
file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Softkey HP64_Softkey.tmp

NOTE: The HP64_Softkey application defaults file is re-created each time
Graphical User Interface software is installed or updated. You can use the UNIX
diff command to check for differences between the new HP64_Softkey application
defaults file and the old application defaults file that is saved as
/usr/hp64000/lib/X11/HP64_schemes/old/HP64_Softkey.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:

vi HP64_Softkey.tmp

Search for the string "HP64_Softkey.lines". You should see lines similar to the
following.

!--
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
! and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

!HP64_Softkey.lines: 24
!HP64_Softkey.columns: 85

Chapter 10: Setting X Resources
To modify Graphical User Interface resources

282

Edit the line containing "HP64_Softkey.lines" so that it is uncommented and is set
to the new value:

!--
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
! and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

HP64_Softkey.lines: 36
!HP64_Softkey.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE — if
you’re not sure, you can check by entering the xrdb -query command), use the
xrdb command to add the resources to the RESOURCE_MANAGER property. For
example:

xrdb -merge -nocpp HP64_Softkey.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append the
temporary file to your $HOME/.Xdefaults file. For example:

cat HP64_Softkey.tmp >> $HOME/.Xdefaults

4 Remove the temporary file.

5 Start or restart the Graphical User Interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the Graphical User Interface. Starting and exiting the
Graphical User Interface is described in Chapter 3, "Starting and Exiting HP 64700
Interfaces".

Chapter 10: Setting X Resources
To modify Graphical User Interface resources

283

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color, fonts
and sizes, mouse and keyboard operation, and labels and titles. You can create and
use customized scheme files by following these steps.

1 Create the $HOME/.HP64_schemes/<platform> directory.

For example:

mkdir $HOME/.HP64_schemes
mkdir $HOME/.HP64_schemes/HP-UX

2 Copy the scheme file to be modified to the $HOME/.HP64_schemes/<platform>
directory.

Label scheme files are not platform specific; therefore, they should be placed in the
$HOME/.HP64_schemes directory. All other scheme files should be placed in the
$HOME/.HP64_schemes/<platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Softkey.Color
$HOME/.HP64_schemes/HP-UX/Softkey.MyColor

Note that if your custom scheme file has the same name as the default scheme file,
the load order requires resources in the custom file to explicitly override resources
in the default file.

3 Modify the $HOME/.HP64_schemes/<platform>/Softkey.<scheme> file.

For example, you could modify the
"$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" file to change the defined
foreground and background colors. Also, since the scheme file name is different
than the default, you could comment out various resource settings to cause general
foreground and background color definitions to apply to the Graphical User
Interface. At least one resource must be defined in your color scheme file for it to
be recognized.

Chapter 10: Setting X Resources
To use customized scheme files

284

4 If your custom scheme file has a different name than the default, you must modify
the scheme resource definitions.

The Graphical User Interface application defaults file contains resources that
specify which scheme files are used. If your custom scheme files are named
differently than the default scheme files, you must modify these resource settings
so that your customized scheme files are used instead of the default scheme files.

For example, to use the "$HOME/.HP64_schemes/HP-UX/Softkey.MyColor" color
scheme file you would set the "HP64_Softkey.colorScheme" resource to
"MyColor":

HP64_Softkey.colorScheme: MyColor

Refer to the previous "To customize Graphical User Interface resources" section
for more detailed information on modifying resources.

Chapter 10: Setting X Resources
To use customized scheme files

285

To set up custom action keys

• Modify the "actionKeysSub.keyDefs" resource in the
$HP64000/lib/X11/app-defaults/HP64_Softkey file.

The "actionKeysSub.keyDefs" resource defines a list of paired strings. The first
string defines the text to appear on the action key pushbutton. The second string
defines the command that will be sent to the command line area and executed when
the action key is pressed.

Command files can be executed by placing the name of the command file in the
command definition.

A pair of parentheses with no spaces (that is "()") in the command definition
indicates that text from the entry buffer will replace the parentheses when the
command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, "()", in the action key label to remind you to place information in the entry
buffer before clicking the action key.

Shell commands can be executed by using an exclamation point prefix. A second
exclamation point ends the command string and allows additional options on the
command line.

An empty action ("") causes the emulator to repeat the previous operation, whether
it came from a pulldown, a dialog, a pop-up, or another action key.

Examples To set up custom action keys when the graphical interface is used with a 68360
emulator, modify the "actionKeysSub.keyDefs" resource:

*m68360*actionKeysSub.keyDefs: \
 "Make" "cd /users/project2/68360; !make! in_browser" \
 "Load Pgm" "load configuration config.EA; load program2" \
 "Run Pgm" "run from reset" \
 "Trace after ()" "trace after (); display trace" \
 "Step Source" "set source on; display memory mnemonic; step source" \
 " Display Special" "mycommandfilename"
 "Again" ""

Refer to the previous "To modify Graphical User Interface resources" section for
more detailed information on modifying resources.

Chapter 10: Setting X Resources
To set up custom action keys

286

To set initial recall buffer values

• Modify the "entries" resource for the particular recall buffer.

There are six pop-up recall buffers present in the Graphical User Interface. The
resources for these pop-up recall buffers are listed in the following table.

The window manager resource "*transientDecoration" controls the borders around
dialog box windows. The most natural setting for this resource is "title."

Pop-up Recall Buffer Resources

Recall Pop-up Resources Description

File→Context→Directory ... *dirSelect.textColumns
*dirSelect.listVisibleItemCount
*dirSelectSub.entries

The default number of text
columns in the pop-up is 50.

The default number of visible
lines in the pop-up is 12.

The "entries" resource is
defined as a list of strings (see
the following example).

Up to 40 unique values are
saved in each of the recall
buffers (as specified by the
resource settings
"*XcRecall.maxDepth: 40" and
"*XcRecall.onlyUnique: True").

File→Context→Symbols ... *symSelect.textColumns
*symSelect.listVisibleItemCount
*symSelectSub.entries

Trace→Trace Spec ... *modtrace.textColumns
*modtrace.listVisibleItemCount
*modtraceSub.entries

Entry Buffer (): *recall.textColumns
*recall.listVisibleItemCount
*recallSub.entries

Command Line command
recall

*recallCmd.textColumns
*recallCmd.listVisibleItemCount
*recallCmdSub.entries

Command Line pod/simio
recall

*recallKbd.textColumns
*recallKbd.listVisibleItemCount
*recallKbdSub.entries

Chapter 10: Setting X Resources
To set initial recall buffer values

287

Examples To set the initial values for the directory selection dialog box when the Graphical
User Interface is used with a 68360 emulator, modify the
"*m68360*dirSelectSub.entries" resource:

*m68360*dirSelectSub.entries: \
 "$HOME" \
 ".." \
 "/users/project1" \
 "/users/project2/68360"

Refer to the previous "To modify the Graphical User Interface resources" section
for more detailed information on modifying resources.

Chapter 10: Setting X Resources
To set initial recall buffer values

288

To set up demos or tutorials

You can add demos or tutorials to the Graphical User Interface by modifying the
resources described in the following tables.

Demo Related Component Resources

Resource Value Description

*enableDemo False
True

Specifies whether Help→Demo
appears in the pulldown menu.

*demoPopupSub.indexFile ./Xdemo/Index-topics Specifies the file containing the list
of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the of the demo topic list pop-up.

*demoPopup.listVisibleItemCount 10 Specifies the length, in lines, of the
demo topic list pop-up.

*demoTopic About demos Specifies the default topic in the
demo pop-up selection buffer.

Chapter 10: Setting X Resources
To set up demos or tutorials

289

Tutorial Related Component Resources

Resource Value Description

*enableTutorial False
True

Specifies whether
Help→Tutorial appears in the
pulldown menu.

*tutorialPopupSub.indexFile ./Xtutorial/Index-topics Specifies the file containing the
list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the tutorial
topic list pop-up.

*tutorialPopup.listVisibleItemCount 10 Specifies the length, in lines, of
the tutorial topic list pop-up.

*tutorialTopic About tutorials Specifies the default topic in the
tutorial pop-up selection buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in the
Graphical User Interface.

1 Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use "\I" to produce inverse video
in the text, "\U" to produce underlining in the text, and "\N" to restore normal text.

Command files are executed when the "Press to perform demo (or tutorial)" button
(in the topic pop-up dialog) is pushed. A command file must have the same name
as the topic file with ".cmd" appended. Also, a command file must be in the same
directory as the associated topic file.

Chapter 10: Setting X Resources
To set up demos or tutorials

290

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the topic
which appears in the index pop-up and second the name of the file that is raised
when the topic is selected. For example:

"About demos" /users/guest/gui_demos/general
"Loading programs" /users/guest/gui_demos/loadprog
"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topic1), paths relative to the
directory in which the interface was started (for example, mydir/topic2), or paths
relative to the product directory (for example, ./Xdemo/general where the product
directory is something like /usr/hp64000/inst/emul/64780A).

3 Set the "*enableDemo" or "*enableTutorial" resource to "True".

4 Define the demo index file by setting the "*demoPopupSub.indexFile" or
"*tutorialPopupSub.indexFile" resource.

For example:

*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to the
directory in which the interface was started (for example, mydir/indexfile), or paths
relative to the product directory (for example, ./Xdemo/Index-topics where the
product directory is something like /usr/hp64000/inst/emul/64780A).

5 If you wish to define a default topic to be selected, set the "*demoTopic" or
"*tutorialTopic" resource to the topic string.

For example:

*demoTopic: "About demos"

Refer to the previous "To customize Graphical User Interface resources" section
for more detailed information on modifying resources.

Chapter 10: Setting X Resources
To set up demos or tutorials

291

292

11

Emulator/Analyzer Interface
Commands

293

Emulator/Analyzer Interface
Commands

This chapter describes the emulator/analyzer interface commands in alphabetical
order. First, the syntax conventions are described and the commands are
summarized.

How Pulldown Menus Map to the Command Line

The following table shows the items available in the pulldown menus and the
command line commands to which they map.

Pulldown Command Line

File→Context→Directory
File→Context→Symbols

cd
cws

File→Load→Emulator Config
File→Load→Executable
File→Load→Program Only
File→Load→Symbols Only

load configuration
load <abs_file>
load <abs_file> nosymbols
load symbols

File→Store→Trace Data
File→Store→Trace Spec
File→Store→BBA Data

store trace
store trace_spec
bbaunload

File→Copy→Display
File→Copy→Memory
File→Copy→Data Values
File→Copy→Configuration Info
File→Copy→Trace
File→Copy→Registers
File→Copy→Breakpoints
File→Copy→Status
File→Copy→Global Symbols
File→Copy→Local Symbols ()
File→Copy→Pod Commands
File→Copy→Error Log
File→Copy→Event Log

copy display to
copy memory to
copy data to
copy configuration_info to
copy trace to
copy registers to
copy software_breakpoints to
copy status to
copy global_symbols to
copy local_symbols_in --SYMB-- to
copy pod_command to
copy error_log to
copy event_log to

294

Pulldown Command Line

File→Log→Playback
File→Log→Record
File→Log→Stop

<command file>
log_commands to
log_commands off

File→Emul700→High-Level Debugger
File→Emul700→Performance Analyzer
File→Emul700→Emulator/Analyzer
File→Emul700→Timing Analyzer

N/A
N/A
N/A
N/A

File→Edit→File
File→Edit→At () Location
File→Edit→At PC Location

! vi <file> ! no_prompt_before_exit
! vi +<line> <file> ! no_prompt_before_exit
! vi +<line> <file> ! no_prompt_before_exit

File→Term !

File→Exit→Window (save session)
File→Exit→Locked (all windows, save session)
File→Exit→Released (all windows, release
emulator)

end
end locked
end release_system

Display→Context pwd, pws

Display→Memory
Display→Memory→Mnemonic ()
Display→Memory→Mnemonic at PC
Display→Memory→Mnemonic Previous
Display→Memory→Hex ()→bytes
Display→Memory→Hex ()→words
Display→Memory→Hex ()→long
Display→Memory→Real ()→short
Display→Memory→Real ()→long
Display→Memory→At ()
Display→Memory→Repetitively

display memory
display memory --EXPR-- mnemonic
display memory mnemonic at_pc
display memory mnemonic previous_display
display memory --EXPR-- blocked bytes
display memory --EXPR-- blocked words
display memory --EXPR-- blocked long
display memory --EXPR-- real short
display memory --EXPR-- real long
display memory --EXPR--
display memory repetitively

Display→Data Values
Display→Data Values→New ()→<type>
Display→Data Values→Add ()→<type>

display data
display data --EXPR-- <type>
display data, --EXPR-- <type>

Chapter 11: Emulator/Analyzer Interface Commands

295

Pulldown Command Line

Display→Configuration Info
Display→Configuration Info →Diagnostics
Display→Configuration Info →Chip Selects
(SIM)
Display→Configuration Info →Chip Selects
(Emulator SIM)
Display→Configuration Info →Bus Interface
Ports (SIM)
Display→Configuration Info →Bus Interface
Ports (Emulator SIM)
Display→Configuration Info →Memory Map
Display→Configuration Info →Reset Mode
Value
Display→Configuration Info →Upper Address
Mode
Display→Configuration Info →Clock Input
Mode
Display→Configuration Info →Initialization
Source Code

display configuration_info

display configuration_info sim_chip_selects

display configuration_info emsim_chip_selects

display configuration_info bus_interface_ports

display configuration_info embus_interface_ports

display configuration_info memory_map
display configuration_info reset_mode

display configuration_info upper_address

display configuration_info clock_mode

display configuration_info init_source_code

Display→SIM Register Differences
Display→Trace
Display→Registers
Display→Breakpoints
Display→Status
Display→Simulated IO
Display→Global Symbols
Display→Local Symbols ()
Display→Pod Commands
Display→Error Log
Display→Event Log

sync_sim_registers difference
display trace
display registers
display software_breakpoints
display status
display simulated_io
display global_symbols
display local_symbols_in --SYMB--
display pod_command
display error_log
display event_log

Chapter 11: Emulator/Analyzer Interface Commands

296

Pulldown Command Line

Modify →Emulator Config
Modify →Memory
Modify →Memory at ()
Modify →Register
Modify →SIM Registers→Copy Processor
SIM to Emulator SIM
Modify →SIM Registers→Copy Emulator
SIM to Processor SIM
Modify →SIM Registers→Default Emulator
SIM

modify configuration
modify memory
modify memory --EXPR--
modify register
sync_sim_registers from_68360_to_config

sync_sim_registers to_68360_from_config

sync_sim_registers default_config

Execution→Run→from PC
Execution→Run→from ()
Execution→Run→from Transfer Address
Execution→Run→from Reset
Execution→Run→from Soft Reset
Execution→Run→until ()
Execution→Step Source→from PC
Execution→Step Source→from ()
Execution→Step Source→from Transfer
Address
Execution→Step Instruction→from PC
Execution→Step Instruction→from ()
Execution→Step Instruction→from Transfer
Address
Execution→Break
Execution→Reset

run
run from --EXPR--
run from transfer_address
run from reset
run from soft_reset
run until --EXPR--
step source
step source from --EXPR--
step source from transfer_address

step
step from --EXPR--
step from transfer_address

break
reset

Breakpoints→Display
Breakpoints→Enable
Breakpoints→Permanent ()

Breakpoints→Temporary ()

Breakpoints→Set All
Breakpoints→Clear ()
Breakpoints→Clear All

display software_breakpoints
modify software_breakpoints enable/disable
modify software_breakpoints set --EXPR-- permanent
modify software_breakpoints set --EXPR-- temporary
modify software_breakpoints set
modify software_breakpoints clear --EXPR--
modify software_breakpoints clear

Chapter 11: Emulator/Analyzer Interface Commands

297

Pulldown Command Line

Trace→Display
Trace→Display Options
Trace→Trace Spec
Trace→After ()
Trace→Before ()
Trace→About ()
Trace→Only ()
Trace→Only () Prestore
Trace→Again
Trace→Repetitively
Trace→Everything
Trace→Until ()
Trace→Until Stop
Trace→Stop

display trace
display trace...
N/A (browses recall buffer for trace commands)
trace after STATE
trace before STATE
trace about STATE
trace only STATE
trace only STATE prestore anything
trace again
<previous trace spec> repetitively
trace
trace before STATE break_on_trigger
trace on_halt
stop_trace

Settings→Source/Symbol Modes→Absolute
Settings→Source/Symbol Modes→Symbols
Settings→Source/Symbol Modes→Source
Mixed
Settings→Source/Symbol Modes→Source
Only
Settings→Display Modes
Settings→Pod Command Keyboard
Settings→Simulated IO Keyboard
Settings→Command Line

set source off symbols off
set source off symbols on
set source on inverse_video on symbols on

set source only inverse_video off symbols on

set...
display pod_command; pod_command keyboard
display simulated_io; modify keyboard_to_simio
N/A (toggles the command line)

Chapter 11: Emulator/Analyzer Interface Commands

298

How Pop-up Menus Map to the Command Line

The following tables show the items available in the pop-up menus and the
command line commands to which they map.

Mnemonic Memory Display Pop-up Command Line

Set/Clear Software Breakpoint
Edit Source
Run Until
Trace After
Trace Before
Trace About
Trace Until

modify software_breakpoints set/clear --EXPR--
! vi +<line> <file> ! no_prompt_before_exit
run until --EXPR--
trace after STATE
trace before STATE
trace about STATE
trace before STATE break_on_trigger

Breakpoints Display Pop-up Command Line

Set/Inactivate Breakpoint
Clear (delete) Breakpoint
Enable/Disable Software Breakpoints
Set All Breakpoints
Clear (delete) All Breakpoints

modify software_breakpoints set/deactivate --EXPR--
modify software_breakpoints clear --EXPR--
modify software_breakpoints enable/disable
modify software_breakpoints set
modify software_breakpoints clear

Symbols Display Pop-up Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol

display local_symbols_in --SYMB--
display local_symbols_in --SYMB--, display
global_symbols
N/A
! vi +<line> <file> ! no_prompt_before_exit

Chapter 11: Emulator/Analyzer Interface Commands

299

Status Line Pop-up Command Line

Remove Temporary Message
Command Line On/Off
Display Error Log
Display Event Log

N/A
(toggles command line)
display error_log
display event_log

Command Line Pop-up Command Line

Position Cursor, Replace Mode
Position Cursor, Insert Mode
Execute Command
Clear to End of Line
Clear Entire Line
Command Line Off

<INSERT CHAR> key (when in insert mode)
<INSERT CHAR> key
<RETURN> key
<CTRL>e
<CTRL>u
(toggles command line)

Chapter 11: Emulator/Analyzer Interface Commands

300

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols show options available on the softkeys and other commands
that are available, but do not appear on softkeys (such as log_commands and
wait). These appear in the syntax diagrams as:

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompts or references to other syntax
diagrams. Prompts are enclosed with angle brackets (< and >). References to other
diagrams are shown in all capital letters. Also, references to expressions are shown
in all capital letters, for example --EXPR-- and --SYMB-- (see those syntax
diagrams). These appear in the following syntax diagrams as:

Circles

Circles indicate operators and delimiters used in expressions and on the command
line as you enter commands. These appear in the syntax diagrams as:

The -NORMAL- Key

The softkey labeled -NORMAL- allows you exit the --SYMB-- definition, and
access softkeys that are not displayed when defining expressions. You can press
this key after you have defined an expression to view other available options.

Chapter 11: Emulator/Analyzer Interface Commands

301

Commands

Emulator/analyzer interface commands are summarized in the table below and
described in the following pages.

!UNIX_COMMAND
bbaunload
break
cd (change directory)3

cmb_execute
<command file>3

copy configuration_info
copy data4

copy display
copy error_log
copy event_log
copy global_symbols
copy help
copy local_symbols_in
copy memory4

copy pod_command
copy registers1

copy software_breakpoints
copy status
copy trace
cws(change working symbol)3

display configuration_info
display data4

display error_log
display event_log
display global_symbols
display local_symbols_in
display memory4

display pod_command
display registers1

display simulated_io2

display software_breakpoints
display status
display trace
end
forward
help3

load <absolute_file>
load configuration
load emul_mem
load trace
load trace_spec
load user_memory
log_commands3

modify configuration
modify keyboard_to_simio2

modify memory4

modify register1

modify software_breakpoints1

name_of_module3

performance_measurement_end
performance_measurement_init
performance_measurement_run
pod_command
pwd (print working directory)3

pws (print working symbol)3

reset
run
set
specify
step
stop_trace
store memory
store trace
store trace_spec
sync_sim_registers1

trace
wait3

1 This option is not available in real-time mode.
2 This is only available when simulated I/O is defined.
3 These commands are not displayed on softkeys.
4 This option is not available in real-time mode if addresses are in user memory.

Chapter 11: Emulator/Analyzer Interface Commands

302

break

This command causes the emulator to leave user program execution and begin
executing in the monitor.

The behavior of break depends on the state of the emulator:

running Break diverts the processor from execution of your
program to the emulation monitor.

reset Break releases the processor from reset, and diverts
execution to the monitor.

running in monitor The break command does not perform any operation while
the emulator is executing in the monitor.

See Also The reset, run , and step commands.

Chapter 11: Emulator/Analyzer Interface Commands
break

303

bbaunld

This command is available when the HP Branch Validator product is installed.
This basis branch analyzer (BBA) product is used to analyze the testing of your
programs, create more complete test suites, and quantify your level of testing.

The HP Branch Validator records branches executed in a program and generates
reports that provide information about program execution during testing. It uses a
special C preprocessor to add statements that write to a data array when program
branches are taken. After running the program in the emulator (using test input),
you can use the bbaunload command to store the BBA information to a file. Then,
you can generate reports based on the stored information.

See Also Refer to the HP Branch Validator (BBA) User’s Guide for complete details on the
bbaunload command syntax.

Chapter 11: Emulator/Analyzer Interface Commands
bbaunld

304

cmb_execute

The cmb_execute command causes the emulator to emit an EXECUTE pulse on its
rear panel Coordinated Measurement Bus (CMB) connector. All emulators
connected to the CMB (including the one sending the CMB EXECUTE pulse) and
configured to respond to this signal will take part in the measurement.

See Also The specify run and specify trace commands.

Chapter 11: Emulator/Analyzer Interface Commands
cmb_execute

305

copy

Use this command with various parameters to save or print emulation and analysis
information.

The copy command copies selected information to your system printer or listing
file, or directs it to an UNIX process.

Chapter 11: Emulator/Analyzer Interface Commands
copy

306

Depending on the information you choose to copy, default values may be options
selected for the previous execution of the display command. For example, if you
display memory locations 10h through 20h, then issue a copy memory to myfile
command, myfile will list only memory locations 10h through 20h.

The parameters are as follows:

configuration_info Copies the last configuration information display.

data Copies a list of memory contents formatted in various data types (see display data).

display Copies the display to a selected destination.

error_log Copies the most recent errors that have occurred.

event_log Copies the most recent events that have occurred.

<FILE> This prompts you for the name of a file where you want the specified information
to be copied. If you want to specify a file name that begins with a number, you
must precede the file name with a backslash. For example: copy display to \12.10
<RETURN>

global_symbols Copies a list of global symbols to the selected destination.

help Copies the contents of the emulation help files to the selected destination.

<HELP_FILE> This represents the name of the help file to be copied. Available help file names are
displayed on the softkey labels.

UNIX CMD This represents an UNIX filter or pipe where you want to route the output of the
copy command. UNIX commands must be preceded by an exclamation point (!).
An exclamation point following the UNIX command continues command line
execution after the UNIX command executes. Emulation is not affected when
using an UNIX command that is a shell intrinsic.

local_symbols_in Copies all the children of a given symbol to the selected destination. See the
--SYMB-- syntax page and the Symbolic Retrieval Utilities User’s Guide for
information on symbol hierarchy.

memory Copies a list of the contents of memory to the selected destination.

noappend This causes any copied information to overwrite an existing file with the same
name specified by <FILE>. If this option is not selected, the default operation is to
append the copied information to the end of an existing file with the same name
that you specify.

noheader Copies the information into a file without headings.

Chapter 11: Emulator/Analyzer Interface Commands
copy

307

pod_command This allows you to copy the most recent commands sent to the HP 64700 Series
emulator/analyzer.

printer This option specifies your system printer as the destination device for the copy
command. Before you can specify the printer as the destination device, you must
define PRINTER as a shell variable. For example, you could enter the text shown
below after the "$" symbol:

$ PRINTER=lp
$ export PRINTER

If you don’t want the print message to overwrite the command line, execute:

$ set PRINTER = "lp -s"

registers Copies a list of the contents of the emulation processor registers to the selected
destination.

software
_breakpoints

Copies a list of the current software breakpoints to a selected destination.

status Copies emulation and analysis status information.

to This allows you to specify a destination for the copied information.

trace Copies the current trace listing to the selected destination.

! An exclamation point specifies the delimiter for UNIX commands. An
exclamation point must precede all UNIX commands. A trailing exclamation point
should be used if you want to return to the command line and specify noheader.
Otherwise, the trailing exclamation point is optional. If an exclamation point is
part of the UNIX command, a backslash (\) must precede the exclamation point.

Examples See the following pages on various copy syntax diagrams.

See Also See the following pages on various copy syntax diagrams.

Chapter 11: Emulator/Analyzer Interface Commands
copy

308

copy local_symbols_in

This command lets you copy local symbols contained in a source file and relative
segments (program, data, or common) to the selected destination.

Local symbols are symbols that are children of the particular file or symbol defined
by --SYMB--, that is, they are defined in that file or scope.

For additional information on symbols, refer to the --SYMB-- syntax pages and the
Symbolic Retrieval Utilities User’s Guide.

--SYMB-- is the current working symbol.

The parameters are as follows:

--SYMB-- This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and the Symbolic Retrieval Utilities User’s Guide for
information on symbol hierarchy.

Examples
copy local_symbols_in mod_name to printer <RETURN>

copy local_symbols_in mod_name: to linenumfile <RETURN>

See Also The display local_symbols_in command.

Chapter 11: Emulator/Analyzer Interface Commands
copy local_symbols_in

309

copy memory

This command copies the contents of a memory location or series of locations to
the specified output.

The memory contents are copied in the same format as specified in the last display
memory command.

Contents of memory can be displayed if program runs are not restricted to
real-time. Memory contents are listed as an asterisk (*) under the following
conditions:

1 The address refers to guarded memory.

2 Runs are restricted to real-time, the emulator is running a user program, and
the address is located in user memory.

Values in emulation memory can always be displayed.

Initial values are the same as those specified by the command display memory 0
blocked bytes offset_by 0.

Defaults are to values specified in the previous display memory command.

Chapter 11: Emulator/Analyzer Interface Commands
copy memory

310

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or offset value. See the EXPR syntax
diagram.

FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

, A comma used immediately after memory in the command line appends the
current copy memory command to the preceding display memory command. The
data specified in both commands is copied to the destination specified in the
current command. Data is formatted as specified in the current command. The
comma is also used as a delimiter between values when specifying multiple
memory addresses.

Examples
copy memory start to printer <RETURN>

copy memory 0 thru 100h , start thru +5 , 500H ,
target2 to memlist <RETURN>

copy memory 2000h thru 204fh to memlist <RETURN>

See Also The display memory, modify memory, and store memory commands.

Chapter 11: Emulator/Analyzer Interface Commands
copy memory

311

copy registers

This command copies the contents of the processor registers to a file or printer.

The copy register process does not occur in real-time. The emulation system must
be configured for nonreal-time operation to list the registers while the processor is
running.

With no options specified, the basic register class is copied.

The parameters are as follows:

<CLASS> Specifies a particular class of the emulator registers.

<REGISTER>

Examples
copy registers EMSIM to printer <RETURN>

copy registers to reglist <RETURN>

See Also The display registers and modify registers commands.

Chapter 11: Emulator/Analyzer Interface Commands
copy registers

312

copy trace

This command copies the contents of the trace buffer to a file or to the printer.

Trace information is copied in the same format as specified in the last display trace
command.

Initial values are the same as specified by the last display trace command.

The parameters are as follows:

from_line_number This specifies the trace list line number from which copying will begin.

<LINE#> Use this with from_line_number and thru_line_number to specify the starting
and ending trace list lines to be copied.

thru_line_number Specifies the last line number of the trace list to include in the copied range.

Examples
copy trace to tlist <RETURN>

copy trace from_line_number 0 thru_line_number 5
to longtrac <RETURN>

See Also The display trace and store trace commands.

Chapter 11: Emulator/Analyzer Interface Commands
copy trace

313

display

This command displays selected information on your screen.

You can use the <Up arrow>, <Down arrow>, <PREV>, and <NEXT> keys to
view the displayed information. For software_breakpoints, data, memory, and
trace displays you can use the <CTRL>g and <CTRL>f keys to scroll left and right
if the information goes past the edge of the screen.

Depending on the information you select, defaults may be the options selected for
the previous execution of the display command.

The parameters are as follows:

data This allows you to display a list of memory contents formatted in various data
types (see the display data pages for details).

error_log This option displays the recorded list of error messages that occurred during the
emulation session.

Chapter 11: Emulator/Analyzer Interface Commands
display

314

event_log This option displays the recorded list of events.

global_symbols This option lets you display a list of all global symbols in memory.

local_symbols_in This option lets you display all the children of a given symbol. See the --SYMB--
syntax page and the Symbolic Retrieval Utilities User’s Guide for details on
symbol hierarchy.

memory This option allows you to display the contents of memory.

pod_command This option lets you display the output of previously executed emulator pod
commands.

registers This allows you to display the contents of emulation processor registers.

simulated_io This lets you display data written to the simulated I/O display buffer after you have
enabled polling for simulated I/O in the emulation configuration.

software
_breakpoints

This option lets you display the current list of software breakpoints.

status This displays the emulator and trace status.

trace This displays the current trace list.

Examples
display event_log <RETURN>

display local_symbols_in mod_name <RETURN>

See Also The copy command description and the following pages which describe the various
display commands.

Chapter 11: Emulator/Analyzer Interface Commands
display

315

display configuration_info

The display configuration_info command displays information about emulator
configuration and processor SIM programming. You can also display diagnostic
information about inconsistencies found in the emulator configuration.

The parameters are as follows:

diagnostics Checks all parts of the emulator configuration and reports any inconsistencies. It
identifies errors that result from inconsistencies between related configuration
values. These errors should be resolved in order for the emulator to operate
correctly.

This option primarily checks for inconsistencies between the mapper and the
EMSIM registers, but it also provides status messages about expectations and
limitations of the emulator of which you should be aware. (These checks are
primarily between the reset mode configuration values and the EMSIM registers.)

If no messages are returned, no inconsistencies are found in the emulator
configuration.

Chapter 11: Emulator/Analyzer Interface Commands
display configuration_info

316

sim_chip_selects

emsim_chip
_selects

Display chip select information from the sim (processor) register set or the emsim
(emulator) register set. The resulting display shows:

How the chip select is assigned.
The base address.
The block size.
Other information from the option register.

bus_interface_ports

embus_interface
_ports

Display bus interface information from the sim (processor) register set or the
emsim (emulator) register set. The resulting display shows the pin assignments for
port E.

memory_map When in the memory map section of the emulator configuration, the ranges of
memory that have been mapped are displayed.

The memory map configuration information shows detailed information about the
memory map and information about the location of 68360 resources.

reset_mode Displays information about the reset mode configuration value, whether it is
generated internally by the emulator or externally by the target system.

upper_address Display the present address mode, including size of the address bus and whether
the upper address bits are used as A31-A28 or WE3-WE0. This display also
describes the distribution of address information for the address mode in use.

clock_mode Display the present mode of clock for the 68360 target system. This mode is set by
installation of a clock module in the clock module socket on the emulation probe.
Refer to the Hewlett-Packard MC68360 Installation/Service/Terminal Interface
User’s Guide manual for details.

init_source_code Displays the assembly language program that will initialize the processor as
defined by the current EMSIM register contents.

Chapter 11: Emulator/Analyzer Interface Commands
display configuration_info

317

Examples
display configuration_info diagnostics <RETURN>

display configuration_info memory_map <RETURN>

See Also The sync_sim_registers and modify configuration commands. Also, see the
"Verifying the Emulator Configuration" section in Chapter 5, "Configuring the
Emulator".

Chapter 11: Emulator/Analyzer Interface Commands
display configuration_info

318

display data

The display data command can display the values of simple data types in your
program. Using this command can save you time; otherwise, you would need to
search through memory displays for the location and value of a particular variable.

The address, identifier, and data value of each symbol may be displayed. You must
issue the command set symbols on to see the symbol names displayed.

In the first display data command after you begin an emulation session, you must
supply at least one expression specifying the data item(s) to display.

Thereafter, the display data command defaults to the expressions specified in the
last display data command, unless new expressions are supplied or appended (with
a leading comma).

Chapter 11: Emulator/Analyzer Interface Commands
display data

319

Symbols are normally set off until you give the command set symbols on.
Otherwise, only the address, data type, and value of the data item will be displayed.

The parameters are as follows:

, A leading comma allows you to append additional expressions to the previous
display data command.

Commas between expression/data type specifications allow you to specify multiple
variables and types for display with the current command.

--EXPR-- Prompts you for an expression specifying the data item to display. The expression
can include various math operators and program symbols. See the --EXPR-- and
--SYMB-- syntax pages for more information.

thru --EXPR-- Allows you to specify a range of addresses for which you want data display.
Typically, you use this to display the contents of an array. You can display both
single-dimensioned and multi-dimensioned arrays. Arrays are displayed in the
order specified by the language definition, typically row major order for most
Algol-like languages.

<TYPE> Specifies the format in which to display the information. (Data type information is
not available from the symbol database, so you must specify.)

byte Hex display of one 8 bit location.

word Hex display of one 16 bit location.

long Hex display of one 32 bit location.

Note that byte ordering in word and long displays is determined by the conventions
of the processor in use.

int8 Display of one 8 bit location as a signed integer using two’s complement notation.

int16 Display of two bytes as a signed integer using two’s complement notation.

int32 Display of four bytes as a signed integer using two’s complement notation.

u_int8 Display of one byte as an unsigned positive integer.

u_int16 Display of two bytes as an unsigned positive integer.

u_int32 Display of four bytes as an unsigned positive integer.

char Displays one byte as an ASCII character in the range 0 through 127. Control
characters and values in the range 128 through 255 are displayed as a period (.).

Chapter 11: Emulator/Analyzer Interface Commands
display data

320

Examples
display data Msg_A thru +17 char , Stack long <RETURN>

set symbols on <RETURN>

set width label 30 <RETURN>

display data , Msg_B thru +17 char , Msg_Dest thru +17
char <RETURN>

See Also The copy data and set commands.

Chapter 11: Emulator/Analyzer Interface Commands
display data

321

display global_symbols

This command displays the global symbols defined for the current absolute file.

Global symbols are symbols declared as global in the source file. They include
procedure names, variables, constants, and file names. When the display
global_symbols command is used, the listing will include the symbol name and its
logical address.

See Also The copy global_symbols command.

Chapter 11: Emulator/Analyzer Interface Commands
display global_symbols

322

display local_symbols_in

Displays the local symbols in a specified source file and their relative segment
(program, data, or common).

Local symbols of --SYMB-- are the ones which are children of the file and/or
scope specified by --SYMB--. That is, they are defined in that file or scope.

See the --SYMB-- syntax pages and the Symbolic Retrieval Utilities User’s Guide
for further explanation of symbols.

Displaying the local symbols sets the current working symbol to the one specified.

The parameters are as follows:

--SYMB-- This option represents the symbol whose children are to be listed. See the
--SYMB-- syntax diagram and the Symbolic Retrieval Utilities User’s Guide for
more information on symbol hierarchy and representation.

Examples
display local_symbols_in mod_name <RETURN>

display local_symbols_in mod_name:main <RETURN>

See Also The copy local_symbols_in command.

Chapter 11: Emulator/Analyzer Interface Commands
display local_symbols_in

323

display memory

This command displays the contents of the specified memory location or series of
locations.

Chapter 11: Emulator/Analyzer Interface Commands
display memory

324

The memory contents can be displayed in mnemonic, hexadecimal, or real number
format. In addition, the memory addresses can be listed offset by a value, which
allows the information to be easily compared to the program listing.

When displaying memory mnemonic and stepping, the next instruction that will
step is highlighted. The memory mnemonic display autopages to the new address
if the next PC goes outside the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than the one
displaying memory mnemonic.

Pending software breakpoints are shown in the memory mnemonic display by an
asterisk (*) in the leftmost column of the assembly instruction or source line that
has a pending breakpoint.

A label column (symbols) may be displayed for all memory displays except
blocked mode. Memory mnemonic may be displayed with source and assembly
code intermixed, or with source code only. Symbols also can be displayed in the
memory mnemonic string. (See the set command.)

Initial values are the same as specified by the command:

display memory 0 blocked bytes offset_by 0

Defaults are values specified in a previous display memory command.

The symbols and source defaults are:

set source off symbols off

The parameters are as follows:

absolute Formats the memory listing in a single column.

at_pc Displays the memory at the address pointed to by the current program counter
value.

blocked Formats the memory listing in multiple columns.

bytes Displays the absolute or blocked memory listing as byte values.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address or memory offset value. See the EXPR
syntax diagram.

Chapter 11: Emulator/Analyzer Interface Commands
display memory

325

FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

long Displays memory in a 64-bit real number format or 32-bit long words when
preceded by blocked or absolute.

mnemonic This causes the memory listing to be formatted in assembly language instruction
mnemonics with associated operands. When specifying mnemonic format, you
should include a starting address that corresponds to the first byte of an operand to
ensure that the listed mnemonics are correct. If set source only is on, you will see
only the high level language statements and corresponding line numbers.

offset_by This option lets you specify an offset that is subtracted from each of the absolute
addresses before the addresses and corresponding memory contents are listed. You
might select the offset value so that each module appears to start at address 0000H.
The memory contents listing will then appear similar to the assembler or compiler
listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

previous_display Returns to display associated with the previous mnemonic memory display
command.

real Formats memory values in the listing as real numbers. (NaN in the display list
means "Not a Number.")

repetitively Updates the memory listing display continuously. You should only use this to
monitor memory while running user code, since it is very CPU intensive. To allow
updates to the current memory display whenever memory is modified, a file is
loaded, software breakpoint is set, etc., use the set update command.

short Formats the memory list as 32-bit real numbers.

thru This option lets you specify a range of memory locations to be displayed. Use the
<Up arrow>, <Down arrow>, <NEXT>, and <PREV> keys to view additional
memory locations.

words Displays the absolute or blocked memory listing as 16-bit word values.

, A comma after memory in the command line appends the current display memory
command to the preceding display memory command. The data specified in both
commands is displayed. The data will be formatted as specified in the current

Chapter 11: Emulator/Analyzer Interface Commands
display memory

326

command. The comma is also a delimiter between values when specifying
multiple addresses.

Examples You can display memory in real number and mnemonic formats:

display memory 2000h thru 202fh , 2100h real long
<RETURN>

display memory 400h mnemonic <RETURN>

set symbols on <RETURN>
set source on <RETURN>
display memory main mnemonic <RETURN>

See Also The copy memory, modify memory, set, and store memory commands.

Chapter 11: Emulator/Analyzer Interface Commands
display memory

327

display registers

This command displays the current contents of the emulation processor registers.

If a step command just executed, the mnemonic representation of the last
instruction is also displayed, if the current display is the register display. This
process does not occur in real-time. The emulation system must be configured for
nonreal-time operation to display registers while the processor is running. Symbols
also may be displayed in the register step mnemonic string (see set symbols).

With no options specified, the basic register class is displayed as the default. This
includes the local and global registers.

The parameters are as follows:

<CLASS> This allows you to display a particular class of emulation processor registers.

<REGISTER> This displays an individual register or control register field.

Examples
display registers <RETURN>

display registers BASIC D2 <RETURN>

See Also The copy registers, modify registers, set, and step commands.

Chapter 11: Emulator/Analyzer Interface Commands
display registers

328

display simulated_io

This command displays information written to the simulated I/O display buffer.

After you have enabled polling for simulated I/O during the emulation
configuration process, six simulated I/O addresses can be defined. You then define
files used for standard input, standard output, and standard error.

For details about setting up simulated I/O, refer to the Simulated I/O User’s Guide.

Examples
display simulated_io <RETURN>

See Also The modify configuration and modify keyboard_to_simio commands.

Chapter 11: Emulator/Analyzer Interface Commands
display simulated_io

329

display software_breakpoints

This command displays the currently defined software breakpoints and their status.

If the emulation session is continued from a previous session, the listing will
include any previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending, inactivated, or unknown.

A pending breakpoint causes the processor to enter the emulation monitor upon
execution of that breakpoint. Executed breakpoints are listed as inactivated.
Entries that show an inactive status can be reactivated by executing the modify
software_breakpoints set command.

A label column also may be displayed for addresses that correspond to a symbol.
See the set command for details.

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value for the breakpoint address. See the
--EXPR-- syntax diagram.

offset_by This option allows you to offset the listed software breakpoint address value from
the actual address of the breakpoint. By subtracting the offset value from the
breakpoint address, the system can cause the listed address to match that given in
the assembler or compiler listing.

Examples
display software_breakpoints <RETURN>

display software_breakpoints offset_by 1000H <RETURN>

See Also The copy software_breakpoints, modify software_breakpoints, and set
commands.

Chapter 11: Emulator/Analyzer Interface Commands
display software_breakpoints

330

display trace

This command displays the contents of the trace buffer.

Captured information can be presented as absolute hexadecimal values or in
mnemonic form. The processor status values captured by the analyzer can be listed
mnemonically or in hexadecimal or binary form.

Addresses captured by the analyzer are physical addresses.

Chapter 11: Emulator/Analyzer Interface Commands
display trace

331

The offset_by option subtracts the specified offset from the addresses of the
executed instructions before listing the trace. With an appropriate entry for offset,
each instruction in the listed trace will appear as it does in the assembled or
compiled program listing.

The count parameter lists the time associated with a trace event either relative to
the previous event in the trace list or as an absolute count measured from the
trigger event.

The source parameter allows display of source program lines in the trace listing,
enabling you to quickly correlate the trace list with your source program.

Initial values are the same as specified by the command:

display trace mnemonic count relative offset_by 0
<RETURN>

The parameters are as follows:

absolute Lists trace information in hexadecimal format, rather than mnemonic opcodes.

count

 absolute This lists the time count for each event of the trace as the total time measured from
the trigger event.

 relative This lists the time count for each event of the trace as the time measured relative to
the previous event.

depth

 <DEPTH#> This defines the number of states to be uploaded by the interface.

Note that after you have changed the trace depth, execute the command wait
measurement_complete before displaying the trace. Otherwise the new trace
states will not be available.

disassemble
_from_line
_number

Displays the trace at a certain line number and disassembles instruction opcodes.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an offset value to be subtracted from the addresses traced
by the emulation analyzer. See the EXPR syntax diagram.

Chapter 11: Emulator/Analyzer Interface Commands
display trace

332

external

 binary Displays the external analyzer trace list in binary format.

 <external
 _label>

This option displays a defined external analyzer label.

 hex Displays the external analyzer trace list in hexadecimal format.

 off Use this option to turn off the external trace list display.

 then This allows you to display multiple external analysis labels. This option appears
when more than one external analyzer label is in use.

<LINE#> This prompts you for the trace list line number to be centered in the display. Also,
you can use <LINE#> with disassemble_from_line_number. <LINE#> prompts
you for the line number from which the inverse assembler attempts to disassemble
data in the trace list.

mnemonic Lists trace information with opcodes in mnemonic format.

offset_by This option allows you to offset the listed address value from the address of the
instruction. By subtracting the offset value from the physical address of the
instruction, the system makes the listed address match that given in the assembler
or compiler listing.

This option is also useful for displaying symbols and source lines in dynamically
relocated programs.

Note that when using the set source only command, the analyzer may operate
more slowly than when using the set source on command. This is an operating
characteristic of the analyzer:

When you use the command set source on, and are executing only assembly
language code (not high-level language code), no source lines are displayed.
The trace list will then fill immediately with the captured assembly language
instructions.

When using set source only, no inverse assembled code is displayed.
Therefore, the emulation software will try to fill the display with high-level
source code. This requires the emulation software to search for any captured
analysis data generated by a high-level language statement.

In conclusion, you should not set the trace list to set source only when tracing
assembly code. This will result in optimum analyzer performance.

Chapter 11: Emulator/Analyzer Interface Commands
display trace

333

status

 binary Lists absolute status information in binary form.

 hex Lists absolute status information in hexadecimal form.

 mnemonic Lists absolute status information in mnemonic form.

Examples
display trace count absolute <RETURN>

display trace absolute status binary <RETURN>

display trace mnemonic <RETURN>

See Also The copy trace, store trace, and set commands.

Chapter 11: Emulator/Analyzer Interface Commands
display trace

334

end

This command terminates the current emulation session.

You can end the emulation session and keep the emulator in a locked state. The
current emulation configuration is stored, so that you can continue the emulation
session on reentry to the emulator. You also can release the emulation system when
ending the session so that others may use the emulator.

Note that pressing <CTRL>d performs the same operation as pressing end
<RETURN>. Pressing <CTRL>\ or <CTRL>| performs the same as end
release_system <RETURN>.

When the emulation session ends, control returns to the UNIX shell without
releasing the emulator.

The parameters are as follows:

locked This option allows you to stop all active instances of an emulator/analyzer interface
session in one or more windows and/or terminals. This option is not available
when operating the emulator in the measurement system.

release_system This option stops all instances of the emulator/analyzer interface in one or more
windows or terminals. The emulation system is released for other users. If you do
not release the emulation system when ending, others cannot access it.

Examples
end <RETURN>

end release_system <RETURN>

See Also The "Exiting the Emulator/Analyzer Interface" section in Chapter 3, "Starting and
Exiting HP 64700 Interfaces".

Chapter 11: Emulator/Analyzer Interface Commands
end

335

--EXPR--

An expression is a combination of numeric values, symbols, operators, and
parentheses used to specify address, data, status, executed address, or any other
value used in the emulation commands.

The function of an expression (--EXPR--) is to let you define the address, data,
status, or executed address expression that fits your needs. You can combine
multiple values to define the expression.

Certain emulation commands will allow the option of <+EXPR> after pressing a
thru softkey. This allows you to enter a range without retyping the original base
address or symbol. For example, you could specify the address range

disp_buf thru disp_buf + 25

as

disp_buf thru +25

The parameters are as follows:

DON’T CARE
NUMBER

You can include "don’t care numbers" in expressions. These are indicated by a
number containing an "x." These numbers may be defined as binary, octal, decimal,
or hexadecimal. For example: 1fxxh, 17x7o, and 011xxx10b are valid.

Note that "Don’t care numbers" are not valid for all commands.

--NORMAL-- This appears as a softkey label to enable you to return to the --EXPR-- key. The
--NORMAL-- label can be accessed whenever defining an expression, but is only
valid when "C" appears on the status line, which indicates a valid expression has
been defined.

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

336

<NUMBER> This can be an integer in any base (binary, octal, decimal, or hexadecimal), or can
be a string of characters enclosed with quotation marks.

<OP> This represents an algebraic or logical operand and may be any of the following (in
order of precedence):

mod modulo

* multiplication

/ division

& logical AND

+ addition

- subtraction

| logical OR

--SYMB-- This allows you to define symbolic information for an address, range of addresses,
or a file. See the --SYMB-- syntax pages and the Symbolic Retrieval Utilities
User’s Guide for more information on symbols.

 end This displays the last location where the symbol information may be located. For
example, if a particular symbol is associated with a range of addresses, end will
represent the last address in that range.

 start This displays first memory location where the symbol you specify may be located.
For example, if a particular symbol is associated with a range of addresses, start
will represent the first address in that range.

<UNARY> This defines either the algebraic negation (minus) sign (-) or the logical negation
(NOT) sign (~).

() Parentheses may be used in expressions to enclose numbers. For every opening
parenthesis, a closing parenthesis must exist.

Note that when "C" appears on the right side of the status line, a valid expression
exists. The --NORMAL-- key can be accessed at any time, but is only valid when
"C" is on the command line.

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

337

Note that when a thru softkey has been entered, a <+ EXPR> prompt appears.
This saves you from tedious repeated entry of long symbols and expressions. For
example:

disp_buf thru +25

is the same as

disp_buf thru disp_buf + 25

Examples
05fxh

0ffffh

disp_buf + 5

symb_tbl + (offset / 2)

start

mod_name: line 15 end

See Also The SYMB syntax description.

Chapter 11: Emulator/Analyzer Interface Commands
--EXPR--

338

FCODE

The function code is used to define the address space being referenced. Select the
appropriate function code from those listed below.

d Data space.

none Causes the emulator to ignore the function code bits.

p Program space.

s Supervisor space.

sd Supervisor data space.

sp Supervisor program space.

u User space.

ud User data space.

up User program space.

cpu Supervisor CPU space.

Chapter 11: Emulator/Analyzer Interface Commands
FCODE

339

Examples To copy a portion of user data memory to a file:

copy memory fcode ud 1000H thru 1fffH to mymem <RETURN>

To modify a location in program memory:

modify memory fcode p 5000h long to 12345678h <RETURN>

Chapter 11: Emulator/Analyzer Interface Commands
FCODE

340

forward

This command lets you forward commands to other HP 64700 interfaces that use
the "emul700dmn" daemon process to coordinate actions between the interfaces.

bms Sends messages to the Broadcast Message Server or BMS.

<COMMAND> An ASCII string, enclosed in quotes, that is the command to be forwarded to the
named interface.

debug Forwards command to the high-level debugger interface.

emul Forwards command to the emulator/analyzer interface.

perf Forwards commands to the software performance analyzer interface.

<UINAME> Forwards commands to a user interface name other than those available on the
softkeys.

Examples To send the "Program Run" command to the debugger:

forward debug "Program Run" <RETURN>

To send the "profile" command to the software performance analyzer:

forward debug "profile" <RETURN>

See Also The User’s Guide for the interface to which you are forwarding commands.

Chapter 11: Emulator/Analyzer Interface Commands
forward

341

help

Displays information about system and emulation features during an emulation
session.

Typing help or ? displays softkey labels that list the options on which you may
receive help. When you select an option, the system will list the information to the
screen.

The help command is not displayed on the softkeys. You must enter it into the
keyboard. You may use a question mark in place of help to access the help
information.

The parameters are as follows:

<HELP_FILE> This represents one of the available options on the softkey labels. You can either
press a softkey representing the help file, or type in the help file name. If you are
typing in the help file name, make sure you use the complete syntax. Not all of the
softkey labels reflect the complete file name.

Examples
help system_commands <RETURN>

? run <RETURN>

This is a summary of the commands that appear on the softkey labels when you
type help or press ?:

system_commands
run
trace
step
break
display
modify
load
store

Chapter 11: Emulator/Analyzer Interface Commands
help

342

copy
reset
stop_trace
end
software_breakpoints
registers
expressions (--EXPR--)
symbols (--SYMB--)
specify
cmb
cmb_execute
map
set
wait
pod_command
bbaunload
coverage
performance_measurement_initialize
performance_measurement_run
performance_measurement_end

Chapter 11: Emulator/Analyzer Interface Commands
help

343

load

This command transfers absolute files from the host computer into emulation or
target system RAM. With other parameters, the load command can load emulator
configuration files, trace records, trace specifications, or symbol files.

The absolute file contains information about where the file is stored. The memory
map specifies that the locations of the file are in user (target system) memory or
emulation memory. This command also allows you to access and display
previously stored trace data, load a previously created configuration file, and load
absolute files with symbols.

Note that any file specified by <FILE> cannot be named "configuration",
"emul_mem", "user_mem", "symbols", "trace", or "trace_spec" because these are
reserved words, and are not recognized by the emulator/analyzer interface as
ordinary file names.

Chapter 11: Emulator/Analyzer Interface Commands
load

344

The parameters are as follows:

configuration This option specifies that a previously created emulation configuration file will be
loaded into the emulator. You can follow this option with a file name. Otherwise
the previously loaded configuration will be reloaded.

emul_mem Loads only those portions of the absolute file that reside in memory ranges mapped
as emulation memory.

<FILE> This represents the absolute file to be loaded into either target system memory,
emulation memory (.X files are assumed), or the trace memory (.TR files are
assumed).

noabort This option allows you to load a file even if part of the file is located at memory
mapped as "guarded" or "target ROM" (trom).

nosymbols This option causes the file specified to be loaded without symbols.

noupdate This option suppresses rebuilding of the symbol data base when you load an
absolute file. If you load an absolute file, end emulation, then modify the file (and
relink it), the symbol database will not be updated upon reentering emulation and
reloading the file. The default is to rebuild the database.

symbols This option causes the file specified to be loaded with symbols.

trace This option allows you to load a previously generated trace file.

trace_spec This option allows you to load a previously generated trace specification.

Note that the current trace specification will be modified, but a new trace will not
be started. To start a trace with the newly loaded trace specification, enter trace
again or specify trace again (not trace). If you specify trace, a new trace will
begin with the default trace specification, not the one you loaded.

user_mem Loads only those portions of the absolute file that reside in memory ranges mapped
as target memory.

Examples
load sort1 <RETURN>

load configuration config3 <RETURN>

See Also The display trace command.

Chapter 11: Emulator/Analyzer Interface Commands
load

345

log_commands

This command allows you to record commands that are executed during an
emulation session.

Commands executed during an emulation session are stored in a file until this
feature is turned off. This is a handy method for creating command files.

To execute the saved commands after the file is closed, type the filename on the
command line.

The parameters are as follows:

<FILE> This represents the file where you want to store commands that are executed during
an emulation session.

noappend If the named file is an existing file, this option causes the new commands to
overwrite any information present in the file. If this option is not specified, new
commands are appended to the existing contents of the file.

off This option turns off the capability to log commands.

to This allows you to specify a file for the logging of commands.

Examples
log_commands to logfile <RETURN>

log_commands off <RETURN>

See Also The wait command.

Chapter 11: Emulator/Analyzer Interface Commands
log_commands

346

modify

This command allows you to observe or change information specific to the
emulator.

The modify command is used to:

• Modify contents of memory (as integers, strings, or real numbers).

• Modify the contents of the processor registers.

• View or edit the current emulation configuration.

• Modify the software breakpoints table.

The following pages contain detailed information about the various modify syntax
diagrams.

Chapter 11: Emulator/Analyzer Interface Commands
modify

347

modify configuration

This command allows you to view and edit the current emulation configuration
items.

The configuration questions are presented in sequence with either the default
response, or the previously entered response. You can select the currently
displayed response by pressing <RETURN>. Otherwise, you can modify the
response as you desire, then press <RETURN>.

The default responses defined on powerup are displayed.

Examples
modify configuration <RETURN>

See Also The load configuration command.

Chapter 11: Emulator/Analyzer Interface Commands
modify configuration

348

modify keyboard_to_simio

This command allows the keyboard to interact with your program through the
simulated I/O software.

When the keyboard is activated for simulated I/O, its normal interaction with
emulation is disabled. The emulation softkeys are blank and the softkey labeled
"suspend" is displayed on your screen. Pressing suspend <RETURN> will
deactivate keyboard simulated I/O and return the keyboard to normal emulation
mode. For details about setting up simulated I/O, refer to the Simulated I/O User’s
Guide.

See Also The display simulated_io command.

Chapter 11: Emulator/Analyzer Interface Commands
modify keyboard_to_simio

349

modify memory

This command lets you modify the contents of selected memory locations.

You can modify the contents of individual memory locations to individual values.
Or, you can modify a range of memory to a single value or a sequence of values.

Modify a series of memory locations by specifying the address of the first location
in the series to be modified, and the values to which the contents of that location
and successive locations are to be changed. The first value listed will replace the
contents of the first memory location. The second value replaces the contents of
the next memory location in the series, and so on, until the list is exhausted. When
more than one value is listed, the value representations must be separated by
commas. (See the examples for more information.)

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

350

A range of memory can be modified such that the content of each location in the
range is changed to the single specified value, or to a single or repeated sequence.
This type of memory modification is done by entering the limits of the memory
range to be modified (--EXPR-- thru --EXPR--) and the value or list of values
(--EXPR--, ... , --EXPR--) to which the contents of all locations in the range are to
be changed.

Note that if the specified address range is not large enough to contain the new data,
only the specified addresses are modified.

If the address range contains an odd number of bytes and a word operation is being
executed, the last word of the address range will be modified. Thus the memory
modification will stop one byte after the end of the specified address range.

If an error occurs in writing to memory (to guarded memory or target memory with
no monitor) the modification is aborted at the address where the error occurred.

For integer memory modifications, the default is to the current display memory
mode, if one is in effect. Otherwise the default is to "byte."

For real memory modifications, the default is to the current display memory mode,
if one is in effect. Otherwise the default is "word."

The parameters are as follows:

bytes Modify memory in byte values.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

long Modify memory values as 32-bit long word values or 64-bit real values when
preceded by real.

real Modify memory as real number values.

<REAL#> This prompts you to enter a real number as the value.

short Modify memory values as 32-bit real numbers.

words Modify memory values as 16-bit values.

string Modify memory values to the ASCII character string given by <STRING>.

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

351

<STRING> Quoted ASCII string including special characters as follows:

null \0

newline \n

horizontal tab \t

backspace \b

carriage return \r

form feed \f

backslash \\

single quote \’

bit pattern \ooo (where ooo is an octal number)

thru This option lets you specify a range of memory locations to be modified.

to This lets you specify values to which the selected memory locations will be
changed.

words Modify memory locations as 32-bit values.

, A comma is used as a delimiter between values when modifying multiple memory
addresses.

Examples
modify memory data1 bytes to 0E3H , 01H , 08H <RETURN>

modify memory data1 thru DATA100 to 0FFFFH <RETURN>

modify memory 0675H real to -1.303 <RETURN>

modify memory temp real long to 0.5532E-8 <RETURN>

modify memory buffer string to "Test \n\0" <RETURN>

See Also The copy memory, display memory, and store memory commands.

Chapter 11: Emulator/Analyzer Interface Commands
modify memory

352

modify register

This command allows you to modify the contents of the emulation processor
internal registers.

The entry you specify for <REGISTER> determines which register is modified.
Individual fields of control registers may be modified.

Register modification cannot be performed during real-time operation of the
emulation processor. A break command or condition must occur before you can
modify the registers.

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a register value. For the floating-point registers, the value
is interpreted as a decimal real number. See the --EXPR-- description.

<REGISTER> This represents the name of a register.

to Allows you to specify the values to which the selected registers will be changed.

Examples
modify register D2 to 41H <RETURN>

See Also The copy registers, display registers, and modify registers commands.

Chapter 11: Emulator/Analyzer Interface Commands
modify register

353

modify software_breakpoints

This command changes the specification of software breakpoints.

Software breakpoints provide a way to accurately stop the execution of your
program at one or more instruction locations. When a software breakpoint is set,
the instruction that is normally at that location is replaced with a TRAP instruction.
When the software breakpoint is executed, control is passed to the emulator’s
monitor program, and the original instruction is restored in the user program. Thus,
execution is interrupted before the instruction at the specified address is executed.

Operation of the program can be resumed after the breakpoint is encountered, by
specifying either a run or step command.

If you modify software breakpoints while the memory mnemonic display is active,
the new breakpoints are indicated by a "* " in the leftmost column of the instruction
containing the breakpoint.

The software breakpoint facility may be completely disabled or enabled via the
"modify software_breakpoints" command. The default is "enabled".

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

354

The parameters are as follows:

clear This option erases the specified breakpoint address. If no breakpoints are specified
in the command, all currently specified breakpoints are cleared.

disable This option turns off the software breakpoint capability.

enable This option allows you to modify the software breakpoint specification.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a software breakpoint address. See the EXPR syntax
diagram.

permanent Sets a permanent breakpoint. The software breakpoint instruction remains in the
program until the breakpoint is inactivated or removed.

set This option allows you to activate software breakpoints in your program. If no
breakpoint addresses are specified in the command, all breakpoints that have been
inactivated (executed) are reactivated.

temporary Sets a temporary breakpoint. When the break occurs, the original opcode is
replaced in the program.

, A comma is used as a delimiter between specified breakpoint values.

Examples
modify software_breakpoints enable <RETURN>

modify software_breakpoints set loop1 end , loop2 end ,
0E40H <RETURN>

modify software_breakpoints clear <RETURN>

modify software_breakpoints set <RETURN>

See Also The copy software_breakpoints, display memory mnemonic, and display
software_breakpoints commands.

Chapter 11: Emulator/Analyzer Interface Commands
modify software_breakpoints

355

performance_measurement_end

This command stores data previously generated by the
performance_measurement_run command, in a file named "perf.out" in the
current working directory.

The file named "perf.out" is overwritten each time this command is executed.
Current measurement data existing in the emulation system is not altered by this
command.

Examples
performance_measurement_end <RETURN>

See Also The performance_measurement_initialize and
performance_measurement_run commands.

Refer to Chapter 8, "Making Software Performance Measurements" for examples
of performance measurement specification and use.

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_end

356

performance_measurement_initialize

This command sets up performance measurements.

The emulation system will verify whether a symbolic database has been loaded. If
a symbolic database has been loaded, the performance measurement is set up with
the addresses of all global procedures and static symbols. If a valid database has
not been loaded, the system will default to a predetermined set of addresses, which
covers the entire emulation processor address range.

The measurement will default to "activity" mode.

Default values will vary, depending on the type of operation selected, and whether
symbols have been loaded.

The parameters are as follows:

activity This option causes the performance measurement process to operate as though an
option is not specified.

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

357

duration This option sets the measurement mode to "duration." Time ranges will default to a
predetermined set (unless a user-defined file of time ranges is specified).

<FILE> This represents a file you specify to supply user-defined address or time ranges to
the emulator.

global_symbols This option specifies that the performance measurement will be set up with the
addresses of all global symbols and procedures in the source program.

local_symbols_in This causes addresses of the local symbols to be used as the default ranges for the
measurement.

restore This option restores old measurement data so that a measurement can be continued
when using the same trace command as previously used.

--SYMB-- This represents the source file that contains the local symbols to be listed. This
also can be a program symbol name, in which case all symbols that are local to a
function or procedure are used. See the SYMB syntax diagram.

Examples
performance_measurement_initialize <RETURN>

performance_measurement_initialize duration <RETURN>

performance_measurement_initialize local_symbols_in
mod_name <RETURN>

See Also The performance_measurement_run and performance_measurement_end
commands.

Refer to Chapter 8, "Making Software Performance Measurements" for examples
of performance measurement specification and use.

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_initialize

358

performance_measurement_run

This command begins a performance measurement.

This command causes the emulation system to reduce trace data contained in the
emulation analyzer, which will then be used for analysis by the performance
measurement software.

The default is to process data presently contained in the analyzer.

The parameters are as follows:

<COUNT> This represents the number of consecutive traces you specify. The emulation
system will execute the trace command, process the resulting data, and combine it
with existing data. This sequence will be repeated the number of times specified
by the COUNT option.

Note that the trace command must be set up correctly for the requested
measurement. For an activity measurement, you can use the default trace
command (trace <RETURN>).

For a duration measurement, you must set up the trace specification to store only
the points of interest. To do this, for example, you could enter:

trace only <symbol_entry> or <symbol_exit>

Examples
performance_measurement_run 10 <RETURN>

performance_measurement_run <RETURN>

See Also The performance_measurement_end and
performance_measurement_initialize commands.

Refer to Chapter 8, "Making Software Performance Measurements" for examples
of performance measurement specification and use.

Chapter 11: Emulator/Analyzer Interface Commands
performance_measurement_run

359

pod_command

Allows you to control the emulator through the direct HP 64700 Terminal Interface.

The HP 64700 Card Cage contains a low-level Terminal Interface, which allows
you to control the emulator’s functions directly. You can access this interface
using pod_command. The options to pod_command allow you to supply only
one command at a time. Or, you can select a keyboard mode which gives you
interactive access to the Terminal Interface.

There are certain commands that you should avoid while using the Terminal
Interface through pod_command.

stty, po, xp Do not use. These commands will change the operation of the
communications channel, and are likely to hang the Softkey
Interface and the channel.

echo, mac Using these may confuse the communications protocols in use
on the channel.

wait Do not use. The pod will enter a wait state, blocking access by
the emulator/analyzer interface.

init, pv These will reset the emulator pod and force an end
release_system command.

t Do not use. The trace status polling and unload will become
confused.

To see the results of a particular pod_command (the information returned by the
emulator pod), you use display pod_command.

Refer to the Hewlett-Packard M68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide for Terminal Interface use.

Chapter 11: Emulator/Analyzer Interface Commands
pod_command

360

The parameters are as follows:

keyboard Enters an interactive mode where you can simply type Terminal Interface
commands (unquoted) on the command line. Use display pod_command to see
the results returned from the emulator.

<POD_CMD> Prompts you for a Terminal Interface command as a quoted string. Enter the
command in quotes and press <RETURN>.

suspend This command is displayed once you have entered keyboard mode. Select it to
stop interactive access to the Terminal Interface and return to the Graphical User
Interface or Softkey Interface.

Examples This example shows a simple interactive session with the Terminal Interface.

display pod_command <RETURN>

pod_command keyboard <RETURN>

cf <RETURN>

tsq <RETURN>

tcq <RETURN>

Enter suspend to return to the Graphical User Interface or Softkey Interface.

See Also The display pod_command command.

Also see the Hewlett-Packard M68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide and the Terminal Interface
on-line help information.

Chapter 11: Emulator/Analyzer Interface Commands
pod_command

361

QUALIFIER

The QUALIFIER parameter is used with trace only, trace prestore, and
TRIGGER to specify states captured during the trace measurement.

You may specify a range of states (RANGE) or specific states (STATE) to be
captured. You can continue to "or" states until the analyzer resources are depleted.
You can use only one RANGE statement in the entire trace command.

You can include "don’t care numbers." These contain an "x" preceded and/or
followed by a number. Some examples include 1fxxh, 17x7o, and 011xxx10b.
"Don’t care numbers" may be entered in binary, octal, or hexadecimal base.

The default is to qualify on all states.

The parameters are as follows:

or This option allows you to specify multiple states (STATE) to be captured during a
trace measurement. See the STATE syntax diagram.

RANGE This allows you to specify a range of states to be captured during a trace
measurement. See the RANGE syntax diagram.

STATE This represents a unique state that can be a combination of address, data, status,
and executed address values. See the STATE syntax diagram.

Chapter 11: Emulator/Analyzer Interface Commands
QUALIFIER

362

Examples
trace only address mod_name:read_input <RETURN>

trace only address range mod_name:read_input thru
output <RETURN>

trace only address range mod_name:clear thru read_input
<RETURN>

See Also The trace command.

Chapter 11: Emulator/Analyzer Interface Commands
QUALIFIER

363

RANGE

The RANGE parameter allows you to specify a condition for the trace
measurement, made up of one or more values.

The range option can be used for state qualifier labels. Range can only be used
once in a trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in Chapter 7,
"Using the Emulation-Bus Analyzer" for a list of the predefined values that can be
assigned to the status state qualifiers.

Expression types are "address" when none is chosen.

The parameters are as follows:

address The value following this softkey is searched for on the lines that monitor the
emulation processor’s address bus.

data The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram for details.

<external_label> This represents a defined external analyzer label.

Chapter 11: Emulator/Analyzer Interface Commands
RANGE

364

not This specifies that the analyzer search for the logical "not" of the specified range
(this includes any addresses not in the specified range).

range This indicates a range of addresses to be specified (--EXPR-- thru --EXPR--).

status The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

thru This indicates that the following address expression is the upper address in a range.

Examples See the trace command examples.

See Also The trace command and the QUALIFIER syntax description.

Chapter 11: Emulator/Analyzer Interface Commands
RANGE

365

reset

This command suspends target system operation and reestablishes initial emulator
operating parameters, such as reloading control registers.

The reset signal is latched when the reset command is executed and released by
either the run or break command.

See Also The break and run commands.

Chapter 11: Emulator/Analyzer Interface Commands
reset

366

run

This command causes the emulator to execute a program.

If the processor is in a reset state, run will cause the reset to be released.

If the emulator is configured to run directly into user code out of reset, the monitor
will not be entered and part of your debug environment may be temporarily
disabled. A subsequent break into the monitor will restore it. See the "Enter
monitor from reset?" question in the configuration menu for more information.

If the from parameter and an address is specified, the processor will start running
your program at that address. Otherwise, the run will occur from the address
currently stored in the processor’s program counter.

A run from reset command will reset the processor and then allow it to run. It is
equivalent to entering a reset command followed by a run command.

A run from soft_reset command will pulse the 68360 soft reset line to cause a soft
reset.

If the emulator is configured to participate in the READY signal on the CMB, then
this emulator will release the READY signal so that it will go TRUE if all other
HP 64700 emulators participating on that signal are also ready. See the
cmb_execute command description.

Qualifying a run command with an until parameter causes a software breakpoint to
be set before the program is run.

If you omit the address option (--EXPR--), the emulator begins program execution
at the current address specified by the emulation processor program counter. If an

Chapter 11: Emulator/Analyzer Interface Commands
run

367

absolute file containing a transfer address has just been loaded, execution starts at
that address.

The parameters are as follows:

address Specifies an address for a temporary register breakpoint that will be programmed
into one of the processor’s two breakpoint registers. Up to two addresses may be
specified.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

from This specifies the address from which program execution is to begin.

reset This option resets the processor prior to running.

transfer_address This represents the starting address of the program loaded into emulation or target
memory. The transfer address is defined in the linker map and is part of the
symbol database associated with the absolute file.

until Causes a software breakpoint to be set at the specified address before the program
is run.

soft_reset Causes a soft reset.

Examples
run <RETURN>

run from 810H <RETURN>

run from COLD_START <RETURN>

run from transfer_address until 910H <RETURN>

See Also The step command.

Chapter 11: Emulator/Analyzer Interface Commands
run

368

SEQUENCING

Lets you specify complex branching activity that must be satisfied to trigger the
analyzer.

Sequencing provides you with parameters for the trace command that let you
define branching conditions for the analyzer trigger.

You are limited to a total of seven sequence terms, including the trigger, if no
windowing specification is given. If windowing is selected, you are limited to a
total of four sequence terms.

The analyzer default is no sequencing terms. If you select the sequencer using the
find_sequence parameter, you must specify at least one qualifying sequence term.

The parameters are as follows:

find_sequence Specifies that you want to use the analysis sequencer. You must enter at least one
qualifier.

QUALIFIER Specifies the address, data, status, or executed address value or value range that
will satisfy this sequence term if looking for a sequence (find_sequence), or will
restart at the beginning of the sequence (restart). See the QUALIFIER syntax
pages for further information.

Chapter 11: Emulator/Analyzer Interface Commands
SEQUENCING

369

occurs Selects the number of times a particular qualifier must be found before the analyzer
proceeds to the next sequence term or the trigger term. This option is not available
when trace windowing is in use. See the WINDOW syntax pages.

<#TIMES> Prompts you for the number of times a qualifier must be found.

then Allows you to add multiple sequence terms, each with its own qualifier and
occurrence count.

restart Selects global restart. If the analyzer finds the restart qualifier while searching for
a sequence term, the sequencer is reset and searching begins for the first sequence
term.

Examples
trace find_sequence Caller_3 then Write_Num restart
anly."anly.c": line 57 trigger after Results+0c4h
<RETURN>

See Also The trace command and the QUALIFIER and WINDOW syntax descriptions.

Chapter 11: Emulator/Analyzer Interface Commands
SEQUENCING

370

set

Chapter 11: Emulator/Analyzer Interface Commands
set

371

Controls the display format for the data, memory, register, software breakpoint, and
trace displays.With the set command, you can adjust the display format results for
various measurements, making them easier to read and interpret. Formatting of
source lines, symbol display selection and width, and update after measurement can
be defined to your needs.

The display command uses the set command specifications to format measurement
results for the display window. Another option to the set command, <ENV_VAR>
= <VALUE> , allows you to set and export system variables to the UNIX
environment.

The default display format parameters are the same as those set by the commands:

set update

set source off symbols off

You can return the display format to this state by entering:

set default

The parameters are as follows:

default This option restores all the set options to their default settings.

<ENV_VAR> Specifies the name of a UNIX environment variable to be set.

= The equals sign is used to equate the <ENV_VAR> parameter to a particular value
represented by <VALUE>.

inverse video

 off This displays source lines in normal video.

 on This highlights the source lines on the screen (dark characters on light background)
to differentiate the source lines from other data on the screen.

Chapter 11: Emulator/Analyzer Interface Commands
set

372

langinfo In certain languages, you may have symbols with the same names but different
types. For example, in IEEE695, you may have a file named main.c and a
procedure named main. SRU would identify these as main(module) and
main(procedure). The command display local_symbols_in main would cause an
error message to appear (Ambiguous symbol: main(procedure, module)). Users of
C tend to think the procedure is important and users of ADA tend to think the
module is important. By entering "langinfo" and "C", SRU will interpret the above
command to be main(procedure). With langinfo ADA, SRU will interpret the
above command to be main(module).

 C Identifies ANSI C as the language so SRU can use the C hierarchy to disambiguate
symbols.

 ADA Identifies ADA as the language so SRU can use the ADA hierarchy to
disambiguate symbols.

 C_IEE695 Identifies C_IEEE-695 as the language so SRU can use the C_IEEE-695 hierarchy
to disambiguate symbols.

Note An alternate method for making the langinfo specification is to use the
environment variable, HP64SYMORDER. By making the following entry in your
.profile , the langinfo setting will always be C, for example.

$ HP64SYMORDER=C # I want to use the C disambiguating
 # hierarchy
$ export HP64SYMORDER # let children processes know
 # about it

memory Sets update option for memory displays only.

noupdate When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will not update when a new measurement
completes. Displays showing memory contents are not updated when a command
executes that could have caused the values in memory to change (modify memory,
load, etc.).

number_of_
source_lines

This allows you to specify the number of source lines displayed for the actual
processor instructions with which they correlate. Only source lines up to the
previous actual source line will be displayed. Using this option, you can specify
how many comment lines are displayed preceding the actual source line. The
default value is 5.

Chapter 11: Emulator/Analyzer Interface Commands
set

373

 <NUMSRC> This prompts you for the number of source lines to be displayed. Values in the
range 1 through 50 may be entered.

source

 off This option prevents inclusion of source lines in the trace and memory mnemonic
display lists.

 on This option displays source program lines preceding actual processor instructions
with which they correlate. This enables you to correlate processor instructions with
your source program code. The option works for both the trace list and memory
mnemonic displays.

 only This option displays only source lines. Processor instructions are only displayed in
memory mnemonic if no source lines correspond to the instructions. Processor
instructions are never displayed in the trace list.

symbols

 off This prevents symbol display.

 on This displays symbols. This option works for the trace list, memory, software
breakpoints, and register step mnemonics.

 high Displays only high level symbols, such as those available from a compiler. See the
Symbolic Retrieval Utilities User’s Guide for a detailed discussion of symbols.

 low Displays only low level symbols, such as those generated internally by a compiler,
or an assembly symbol.

 all Displays all symbols.

tabs_are This option allows you to define the number of spaces inserted for tab characters in
the source listing.

 <TABS> Prompts you for the number of spaces to use in replacing the tab character. Values
in the range of 2 through 15 may be entered.

trace Sets update option for trace displays only.

update When using multiple windows or terminals, and specifying this option, the display
buffer in that window or terminal will be updated when a new measurement
completes. This is the default. Note that for displays that show memory contents,
the values will be updated when a command executes that changes memory
contents (such as modify memory, load, and so on).

Chapter 11: Emulator/Analyzer Interface Commands
set

374

<VALUE> Specifies the logical value to which a particular UNIX environment variable is to
be set.

width

 source This allows you to specify the width (in columns) of the source lines in the memory
mnemonic display. To adjust the width of the source lines in the trace display,
increase the widths of the label and/or mnemonic fields.

 label This lets you specify the address width (in columns) of the address field in the trace
list or label (symbols) field in any of the other displays.

 mnemonic This lets you specify the width (in columns) of the mnemonic field in memory
mnemonics, trace list and register step mnemonics displays. It also changes the
width of the status field in the trace list.

 symbols This lets you specify the maximum width of symbols in the mnemonic field of the
trace list, memory mnemonic, and register step mnemonic displays.

 <WIDTH> This prompts you for the column width of the source, label, mnemonic, or symbols
field.

Note that <CTRL>f and <CTRL>g may be used to shift the display left or right to
display information which is off the screen.

Examples
set source on inverse_video on tabs_are 2 <RETURN>

set symbols on width label 30 mnemonic 20 <RETURN>

set PRINTER = "lp -s" <RETURN>

set HP64KSYMBPATH=".file1:proc1
.file2:proc2:code_block_1" <RETURN>

See Also The display data, display memory, display software_breakpoints, and display
trace commands.

Chapter 11: Emulator/Analyzer Interface Commands
set

375

specify

This command prepares a run or trace command for execution, and is used with
the cmb_execute command.

When you precede a run or trace command with specify, the system does not
execute your command immediately. Instead, it waits until until an EXECUTE
signal is received from the Coordinated Measurement Bus or until you enter a
cmb_execute command.

If the processor is reset and no address is specified, a cmb_execute command will
run the processor from the "reset" condition.

Note that the run specification is active until you enter specify run disable. The
trace specification is active until you enter another trace command without the
specify prefix.

The emulator will run from the current program counter address if no address is
specified in the command.

Chapter 11: Emulator/Analyzer Interface Commands
specify

376

The parameters are as follows:

disable This option turns off the specify condition of the run process.

from

 --EXPR-- This is used with the specify run from command. An expression is a combination
of numeric values, symbols, operators, and parentheses, specifying a memory
address. See the EXPR syntax diagram.

 FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

transfer_address

This is used with the specify run from command, and represents the address from
which the program will begin running.

run This option specifies that the emulator will run from either an expression or from
the transfer address when a CMB EXECUTE signal is received.

TRACE This option specifies that a trace measurement will be taken when a CMB
EXECUTE signal is received.

until Specifies an address where program execution is to stop. The emulator will set a
software breakpoint at this address and stop execution of your program when it
reaches this address and enter the monitor.

Examples
specify run from START <RETURN>

specify trace after address 1234H <RETURN>

See Also The cmb_execute command.

Chapter 11: Emulator/Analyzer Interface Commands
specify

377

STATE

This parameter lets you specify a trigger condition as a unique combination of
address, data, status, and executed address values.

The STATE option is part of the QUALIFIER parameter to the trace command,
and allows you to specify a condition for the trace measurement.

Refer to the "Qualifying Trigger and Store Conditions" section in Chapter 7,
"Using the Emulation-Bus Analyzer" for a list of the predefined values that can be
assigned to the status state qualifiers.

Chapter 11: Emulator/Analyzer Interface Commands
STATE

378

The default STATE expression type is address.

The parameters are as follows:

address This specifies that the expression following is an address value. This is the default,
and is therefore not required on the command line when specifying an address
expression.

and This lets you specify a combination of status and expression values when status is
specified in the state specification.

data The value following this softkey is searched for on the lines that monitor the
emulation processor’s data bus.

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses, specifying an address, data, status, or executed address value. See the
EXPR syntax diagram.

<external_label> This represents a defined external analyzer label.

not This specifies that the analyzer will search for the logical "not" of a specified state
(this includes any address that is not in the specified state).

status The value following this softkey is searched for on the lines that monitor other
emulation processor signals.

<STATUS> This prompts you to enter a status value in the command line. Status values can be
entered from softkeys or typed into the keyboard. Numeric values may be entered
using symbols, operators, and parentheses to specify a status value. See the EXPR
syntax diagram.

Examples
trace before status write <RETURN>

trace about address 1000H status write <RETURN>

See the trace command examples.

See Also The trace command and the QUALIFIER syntax description.

Chapter 11: Emulator/Analyzer Interface Commands
STATE

379

step

The step command allows sequential analysis of program instructions by causing
the emulation processor to execute a specified number of assembly instructions or
source lines.

You can display the contents of the processor registers, trace memory, and
emulation or target memory after each step command.

Source line stepping is implemented by single stepping assembly instructions until
the next PC is beyond the address range of the current source line. When
attempting source line stepping on assembly code (with no associated source line),
stepping will complete when a source line is found. Therefore, stepping only
assembly code may step forever. To abort stepping, press <CTRL>c.

When displaying memory mnemonic and stepping, the next instruction that will
step is highlighted. The memory mnemonic display autopages to the new address
if the next PC goes outside of the currently displayed address range. This feature
works even if stepping is performed in a different emulation window than one
displaying memory mnemonic.

If no value is entered for <NUMBER> times, only one step instruction is executed
each time you press <RETURN>. Multiple instructions can be executed by
holding down the <RETURN> key. Also, the default step is for assembly code
lines, not source code lines.

Chapter 11: Emulator/Analyzer Interface Commands
step

380

If the from address option (defined by --EXPR-- or transfer_address) is omitted,
stepping begins at the next program counter address.

The parameters are as follows:

--EXPR-- An expression is a combination of numeric values, symbols, operators, and
parentheses specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

from Use this option to specify the address from which program stepping begins.

<NUMBER> This defines the number of instructions that will be executed by the step command.
The number of instructions to be executed can be entered in binary (B), octal (O or
Q), decimal (D), or hexadecimal (H) notation.

silently When you specify a number of steps, this option updates the register step
mnemonic only after stepping is complete. This will speed up stepping of many
instructions. The default is to update the register step mnemonic after each
assembly instruction (or source line) executes (if stepping is performed in the same
window as the register display).

transfer_address This represents the starting address of the program you loaded into emulation or
target memory. The transfer_address is defined in the linker map.

source This option performs stepping on source lines.

Examples
step <RETURN>

step from 810H <RETURN>

step 5 source <RETURN>

step 20 silently <RETURN>

step 4 from main <RETURN>

See Also The display registers, display memory mnemonic, and set symbols commands.

Chapter 11: Emulator/Analyzer Interface Commands
step

381

stop_trace

This command terminates the current trace and stops execution of the current
measurement.

The analyzer stops searching for trigger and trace states. If trace memory is empty
(no states acquired), nothing will be displayed.

See Also The trace command.

Chapter 11: Emulator/Analyzer Interface Commands
stop_trace

382

store

This command lets you save the contents of specific memory locations in an
absolute file. You also can save trace memory contents in a trace file.

The store command creates a new file with the name you specify, if there is not
already an absolute file with the same name. If a file represented by <FILE>
already exists, you must decide whether to keep or delete the old file. If you
respond with yes to the prompt, the new file replaces the old one. If you respond
with no, the store command is canceled and no data is stored.

The transfer address of the absolute file is set to zero.

The parameters are as follows:

--EXPR-- This is a combination of numeric values, symbols, operators, and parentheses,
specifying a memory address. See the EXPR syntax diagram.

FCODE The function code used to define the address space being referenced. See the
syntax diagram for FCODE to see a list of the function codes available and for an
explanation of those codes.

<FILE> This represents a file name you specify for the absolute file identifier or trace file
where data is to be stored. If you want to name a file beginning with a number, you
must precede the file name with a backslash (\) so the system will recognize it as a
file name.

Chapter 11: Emulator/Analyzer Interface Commands
store

383

memory This causes selected memory locations to be stored in the specified HP64000
format file with a .X extension.

thru This allows you to specify that ranges of memory be stored.

to Use this in the store memory command to separate memory locations from the file
identifier.

trace This option causes the current trace data to be stored in the specified file with a
.TR extension.

trace_spec This option stores the current trace specification in the specified file with a .TS
extension.

, A comma separates memory expressions in the command line.

Examples
store memory 800H thru 20FFH to TEMP2 <RETURN>

store memory EXEC thru DONE to \12.10 <RETURN>

store trace TRACE <RETURN>

store trace_spec TRACE <RETURN>

See Also The display memory, display trace, and load commands.

Chapter 11: Emulator/Analyzer Interface Commands
store

384

--SYMB--

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

385

This parameter is a symbolic reference to an address, address range, file, or other
value.

Note that if no default file was defined by executing the command display
local_symbols_in --SYMB--, or with the cws command, a source file name
(<FILE>) must be specified with each local symbol in a command line.

Symbols may be:

• Combinations of paths, filenames, and identifiers defining a scope, or
referencing a particular identifier or location (including procedure entry and
exit points).

• Combinations of paths, filenames, and line numbers referencing a particular
source line.

• Combinations of paths, filenames, and segment identifiers identifying a
particular PROG, DATA or COMN segment or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and referencing.
These utilities build trees to identify unique symbol scopes.

If you use the SRU utilities to build a symbol database before entering the
emulation environment, the measurements involving a particular symbol request
will occur immediately. If you then change a module and reenter the emulation
environment without rebuilding the symbol database, the emulation software
rebuilds the changed portions of the database in increments as necessary.

Further information regarding the SRU and symbol handling is available in the
Symbolic Retrieval Utilities User’s Guide. Also refer to that manual for
information on the HP64KSYMBPATH environment variable.

The last symbol specified in a display local_symbols_in --SYMB-- command, or
with the cws command, is the default symbol scope. The default is "none" if no
current working symbol was set in the current emulation session.

You also can specify the current working symbol by typing the cws command on
the command line and following it with a symbol name. The pws command
displays the current working symbol on the status line.

Display memory mnemonic also can modify the current working symbol.

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

386

The parameters are as follows:

<FILENAME> This is an UNIX path specifying a source file. If no file is specified, and the
identifier referenced is not a global symbol in the executable file that was loaded,
then the default file is assumed (the last absolute file specified by a display
local_symbols_in command). A default file is only assumed when other parameters
(such as line) in the --SYMB-- specification expect a file.

line This specifies that the following numeric value references a line number in the
specified source file.

 <LINE#> Prompts you for the line number of the source file.

<IDENTIFIER> Identifier is the name of an identifier as declared in the source file.

SCOPE Scope is the name of the portion of the program where the specified identifier is
defined or active (such as a procedure block).

segment This indicates that the following string specifies a standard segment (such as
PROG, DATA, or COMN) or a user-defined segment in the source file.

<SEG_NAME> Prompts you for entry of the segment name.

(<TYPE>) When two identifier names are identical and have the same scope, you can
distinguish between them by entering the type (in parentheses). Do not type a space
between the identifier name and the type specification. The type will be one of the
following:

 filename Specifies that the identifier is a source file.

 module These refer to module symbols. For Ada, they are packages. Other language
systems may allow user-defined module names.

 procedure Any procedure or function symbol. For languages that allow a change of scope
without explicit naming, SRU assigns an identifier and tags it with type procedure.

 static Static symbols, which includes global variables. The logical address of these
symbols will not change.

 task Task symbols, which are specifically defined by the processor and language system
in use.

: A colon is used to specify the UNIX file path from the line, segment, or symbol
specifier. When following the file name with a line or segment selection, there
must be a space after the colon. For a symbol, there must not be a space after the
colon.

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

387

Examples The following short C code example should help illustrate how symbols are
maintained by SRU and referenced in your emulation commands.

File /users/dave/control.c:

int *port_one;
main ()
{
int port_value;

 port_ptr = port_one;
 port_value = 10;

 process_port (port_ptr, port_value);
} /* end main */

File /system/project1/porthand.c:

#include "utils.c"

void process_port (int *port_num, int port_data)
{
static int i;
static int i2;

 for (i = 0; i <= 64; i++) {
 i2 = i * 2;
 *port_num = port_data + i2;
 delay();
 {
 static int i;
 i = 3;
 port_data = port_data + i;
 }
 }
} /* end of process_port */

File /system/project1/utils.c:

delay()
{
int i,j;
int waste_time;

 for (i = 0; i <= 256000; i++)
 for (j = 0; j <= 256000; j++)
 waste_time = 0;
} /* end delay */

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

388

The symbol tree as built by SRU might appear as follows, depending on the object
module format and compiler used:

Note that SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the delay () procedure.

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

389

SRU has no way of knowing where these variables will be at run time and therefore
cannot build a corresponding symbol tree entry with run time address.

Here are some examples of referencing different symbols in the above programs:

control.c:main

control.c:port_one

porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module format; the HP
object module format does not support referencing of include files that generate
program code.

porthand.c:process_port.i

porthand.c:process_port.BLOCK_1.i

Notice how you can reference different variables with matching identifiers by
specifying the complete scope. You also can save typing by specifying a scope
with cws. For example, if you are making many measurements involving symbols
in the file porthand.c, you could specify:

cws porthand.c:process_port

Then:

i

BLOCK_1.i

are prefixed with porthand.c: process_port before the database lookup.

If a symbol search with the current working symbol prefix is unsuccessful, the last
scope on the current working symbol is stripped. The symbol you specified is then
retested with the modified current working symbol. Note that this does not change
the actual current working symbol.

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

390

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_1

and made a reference to symbol i2, the retrieval utilities attempt to find a symbol
called

porthand.c:process_port.BLOCK_1.i2

which would not be found. The symbol utilities would then strip BLOCK_1 from
the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although not shown in the
tree, assume that a procedure called port_one is also defined in control.c. This
would conflict with the identifier port_one which declares an integer pointer. SRU
can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

See Also The copy local_symbols_in and display local_symbols_in commands.

Also refer to the Symbolic Retrieval Utilities User’s Guide for further information
on symbols.

Chapter 11: Emulator/Analyzer Interface Commands
--SYMB--

391

sync_sim_registers

The sync_sim_registers command synchronizes the 68360’s system integration
module (SIM) registers to the emulator’s EMSIM registers.

The parameters are as follows:

from_68360
_to_config

Copies the microprocessor’s SIM registers into the emulator’s EMSIM registers.

to_68360
_from_config

Copies the emulator’s EMSIM registers into the microprocessor’s SIM registers.

difference Displays the differences between the microprocessor’s SIM registers and the
emulator’s EMSIM registers.

default_config Restores the EMSIM registers to their default (power-up) values. This has no
effect on the SIM registers.

See Also The modify register commands.

Chapter 11: Emulator/Analyzer Interface Commands
sync_sim_registers

392

trace

This command allows you to trace program execution using the emulation analyzer.

Note that the options shown can be executed once for each trace command. Refer
to the TRIGGER and QUALIFIER diagrams for details on setting up a trace.

You can perform analysis tasks either by starting a program run and then
specifying the trace parameters, or by specifying the trace parameters first and then
initiating the program run. Once a trace begins, the analyzer monitors the system
busses of the emulation processor to detect the states specified in the trace
command.

When the trace specification is satisfied and trace memory is filled, a message will
appear on the status line indicating the trace is complete. You can then use display
trace to display the contents of the trace memory. If a previous trace list is on

Chapter 11: Emulator/Analyzer Interface Commands
trace

393

screen, the current trace automatically updates the display. If the trace memory
contents exceed the page size of the display, the <NEXT>, <PREV>, <Up arrow>,
or <Down arrow> keys may be used to display all the trace memory contents. You
also can press <CTRL>f and <CTRL>g to move the display left and right.

You can set up trigger and storage qualifications using the specify trace command.
The analyzers will begin tracing when a cmb_execute command executes, which
causes an EXECUTE signal on the Coordinated Measurement Bus.

The analyzer will trace any state by default.

The parameters are as follows:

again This option repeats the previous trace measurement. It also begins a trace
measurement with a newly loaded trace specification. (Using trace without the
again parameter will start a trace with the default specification rather than the
loaded specification.)

anything This causes the analyzer to capture any type of information.

arm_trig2 This option allows you to specify the external trigger as a trace qualifier, for
coordinating measurements between multiple HP 64700s, or an HP 64700 and
another instrument.

Before arm_trig2 can appear as an option, you must modify the emulation
configuration interactive measurement specification. When doing this, you must
specify that either BNC or CMBT drive trig2, and that the analyzer receive trig2.
See Chapter 9, "Making Coordinated Measurements", for more information.

break_on_trigger This stops target system program execution when the trigger is found. The
emulator begins execution in the emulation monitor. When using this option, the
on_halt option cannot be included in the command.

modify_command This recalls the last trace command that was executed.

on_halt When using this option, the analyzer will continue to capture states until the
emulation processor halts or until a stop_trace command is executed. When this
option is used, the break_on_trigger, repetitively, and TRIGGER options cannot
be included in the command.

only This option allows you to qualify the states that are stored, as defined by
QUALIFIER .

prestore This option instructs the analyzer to save specific states that occur prior to states
that are stored (as specified with the "only" option).

Chapter 11: Emulator/Analyzer Interface Commands
trace

394

QUALIFIER This determines which of the traced states will be stored or prestored in the trace
memory for display upon completion of the trace. Events can be selectively saved
by using trace only to enter the specific events to be saved. When this is used,
only the indicated states are stored in the trace memory. See the QUALIFIER
syntax.

repetitively This initiates a new trace after the results of the previous trace are displayed. The
trace will continue until a stop_trace or a new trace command is issued. When
using this option, you cannot use the on_halt option.

SEQUENCING Allows you to specify up to seven sequence terms including the trigger. The
analyzer must find each of these terms in the given order before searching for the
trigger. You are limited to four sequence terms if windowing is enabled. See the
SEQUENCING syntax pages for more details.

TRIGGER This represents the event on the emulation bus to be used as the starting, ending, or
centering event for the trace. See the TRIGGER syntax diagram. When using this
option, you cannot include the on_halt option.

WINDOW Selectively enables and disables analyzer operation based upon independent enable
and disable terms. This can be used as a simple storage qualifier. Or, you may use
it to further qualify complex trigger specifications. See the WINDOW syntax
pages for details.

Examples
trace after 1000H <RETURN>

trace only address range 1000H thru 1004H <RETURN>

trace after address 1000H occurs 2 only address range
1000H thru 1004H break_on_trigger <RETURN>

See Also The copy trace, display trace, load trace, load trace_spec, specify trace, store
trace, and store trace_spec commands.

Chapter 11: Emulator/Analyzer Interface Commands
trace

395

TRIGGER

This parameter lets you define where the analyzer will begin tracing program
information during a trace measurement.

A trigger is a QUALIFIER. When you include the occurs option, you can specify
the trigger to be a specific number of occurrences of a QUALIFIER (see the
QUALIFIER syntax diagram).

The default is to trace after any state occurs once.

The parameters are as follows:

about This option captures trace data leading to and following the trigger qualifier. The
trigger is centered in the trace listing.

after Trace data is acquired after the trigger qualifier is found.

before Trace data is acquired prior to the trigger qualifier.

occurs This specifies a number of qualifier occurrences of a range or state on which the
analyzer is to trigger.

QUALIFIER This determines which of the traced states will be stored in trace memory.

<#TIMES> This prompts you to enter a number of qualifier occurrences.

Chapter 11: Emulator/Analyzer Interface Commands
TRIGGER

396

Examples
trace after MAIN <RETURN>

trace after 1000H then data 5 <RETURN>

Also see the trace command examples.

See Also The trace command.

Also, refer to Chapter 9, "Making Coordinated Measurements".

Chapter 11: Emulator/Analyzer Interface Commands
TRIGGER

397

wait

This command allows you to present delays to the system.

The wait command can be an enhancement to a command file, or to normal
operation at the main emulation level. Delays allow the emulation system and
target processor time to reach a certain condition or state before executing the next
emulation command.

The wait command does not appear on the softkey labels. You must type the wait
command into the keyboard. After you type wait, the command parameters will be
accessible through the softkeys.

The system will pause until it receives a <CTRL>c signal.

Note that if set intr <CTRL>c was not executed on your system, <CTRL>c
normally defaults to the backspace key. See your UNIX system administrator for
more details regarding keyboard definitions.

The parameters are as follows:

measurement
_complete

This causes the system to pause until a pending measurement completes (a trace
data upload process completes), or until a <CTRL>c signal is received. If a
measurement is not in progress, the wait command will complete immediately.

or This causes the system to wait for a <CTRL>c signal or for a pending measurement
to complete. Whichever occurs first will satisfy the condition.

Chapter 11: Emulator/Analyzer Interface Commands
wait

398

seconds This causes the system to pause for a specific number of seconds.

<TIME> This prompts you for the number of seconds to insert for the delay.

Note that a wait command in a command file will cause execution of the command
file to pause until a <CTRL>c signal is received, if <CTRL>c is defined as the
interrupt signal. Subsequent commands in the command file will not execute while
the command file is paused. You can verify whether the interrupt signal is defined
as <CTRL>c by typing set at the system prompt.

Examples
wait <RETURN>

wait 5; wait measurement_complete <RETURN>

Chapter 11: Emulator/Analyzer Interface Commands
wait

399

WINDOW

Lets you select which states are stored by the analyzer.

WINDOW allows you to selectively toggle analyzer operation. When enabled, the
analyzer will recognize sequence terms, trigger terms, and will store states. When
disabled, the analyzer is effectively off, and only looks for a particular enable term.

You specify windowing by selecting an enable qualifier term; the analyzer will
trigger or store all states after this term is satisfied. If the disable term occurs after
the analyzer is enabled, the analyzer will then stop storing states, and will not
recognize trigger or sequence terms. You may specify only one enable term and
one disable term.

The analyzer defaults to recognizing all states. If you specify enable, you must
supply a qualifier term. If you then specify disable, you must specify a qualifier
term.

The parameters are as follows:

disable Allows you to specify the term which will stop the analyzer from recognizing states
once the enable term has been found.

enable Allows you to specify the term which will enable the analyzer to begin monitoring
states.

QUALIFIER Specifies the actual address, data, status value or range of values that cause the
analyzer to enable or disable recognition of states. Note that the enable qualifier
can be different from the disable qualifier. Refer to the QUALIFIER syntax pages
for further details on analyzer qualifier specification.

Chapter 11: Emulator/Analyzer Interface Commands
WINDOW

400

Examples
trace enable _rand disable 0ecch <RETURN>

See Also The trace command and the SEQUENCING and QUALIFIER syntax descriptions.

Chapter 11: Emulator/Analyzer Interface Commands
WINDOW

401

402

12

Emulator Error Messages

This chapter lists error and status messages that you may see when using the
emulator. The causes of the messages are given along with actions you can take to
overcome error conditions.

403

The emulator/analyzer interface provides feedback to the user through messages
that are displayed on the STATUS line.

The messages in this chapter are listed in alphabetical order.

Some messages have error numbers assigned to them. These error numbers are
shown in parenthesis at the end of the message text in this chapter.

The error log records error messages received during the emulation session. You
may want to display the error log to view the error messages. When several
messages are generated for a single error condition, you will have to view the error
log to see the complete list of messages. Only the last error message in the
sequence will remain in the status line display area.

The error log can hold up to 100 messages. To prevent overrun, the error log
purges the oldest messages to make room for the new ones.

Emulator error messages

Analyzer Break (Async_Stat 613)

Cause: Status message. No action necessary.

Analyzer SIMMs are not all the same size; using smallest size (Status 1002)

Cause: Plug-in SIMMs are used to expand the trace depth to 64k or 256k states in
the deep analyzer. Four SIMMs, all of the same size must be used. If they are not
all the same size, the smallest SIMM size in the set of four will be used for trace
depth.

Action: No action necessary.

Arm term used more than once (Error 1250)

Cause: This error occurs when you attempt to use the “arm” qualifier more than
once in a sequencer branch expression.

Action: Reenter the trace command and specify the “arm” qualifier only once.

Chapter 12: Emulator Error Messages
Analyzer Break (Async_Stat 613)

404

Ascii symbol download failed (Error 881)

Cause: This error occurs because the system is out of memory.

Action: You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

Attempt to load code outside of allocated bounds (Error 850)

Cause: This error occurs when you attempt to load an absolute file that contains
code or data outside the range allocated for system code.

BDM communication failed (Error 177)

Cause: The emulator aborted your command when a BDM cycle failed.

Action: Try your command again.

BDM cycle aborted due to target reset (Error 173)

Cause: During execution of your command, the emulator BDM cycle was aborted
due to detection of a target reset.

Action: Try your command again.

BNC trigger break (Async_Stat 616)

Cause: This status message will be displayed if you have configured the emulator
to break on a BNC trigger signal and the BNC trigger line is activated during a
program run. The emulator is broken to the monitor.

Break caused by CMB not ready (Error 611)

Cause: This status message is printed during coordinated measurements if the CMB
READY line goes false. The emulator breaks to the monitor. When CMB READY
is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor. No action is necessary (status only).

Chapter 12: Emulator Error Messages
Ascii symbol download failed (Error 881)

405

Break condition configuration aborted (Error 653)

Cause: Occurs when <CTRL> c is entered during bc display.

Break condition must be specified (Error 652)

Cause: You tried to define a breakpoint without specifying the break condition to
enable or disable.

Action: Reenter the breakpoint command along with the enable/disable flag and the
break condition you wish to modify.

Break due to cause other than step (Error 689)

Cause: An activity other than a step command caused the emulator to break. This
could include any of the break conditions or a <CTRL> c break.

Breakpoint code already exists: <address> (Error 667)

Cause: You attempted to insert a breakpoint; however, there was already a software
breakpoint instruction at that location which was not already in the breakpoint table.

Action: Remove the breakpoints from your program code and try to insert
breakpoints again.

Breakpoint disable aborted (Error 671)

Cause: Occurs when <CTRL> c is entered when disabling software breakpoints.

Breakpoint enable aborted (Error 670)

Cause: Occurs when <CTRL> c is entered when setting software breakpoints.

Breakpoint not added: <address> (Error 668)

Cause: The emulator tried to insert a breakpoint in a memory location which could
not be accessed.

Action: Insert breakpoints only within memory ranges mapped to emulation or
target RAM or ROM.

Chapter 12: Emulator Error Messages
Break condition configuration aborted (Error 653)

406

Breakpoint remove aborted (Error 669)

Cause: Occurs when <CTRL> c is entered when clearing a software breakpoint.

Bus activity required to access emulation memory (Error 148)

Cause: You entered a command that requires the emulator to access emulation
memory, but there is no bus activity so the emulator cannot access emulation
memory. When the processor is not in the reset state and the bus is not active,
which happens during periods like the wait state, the emulator cannot access
emulation memory.

Action: Enter a break command. This causes the emulator to begin execution in
the monitor program. In this state, the emulator can access emulation memory.

Cannot modify program counter to an odd value

Cause: The emulator will not allow you to modify the content of the program
counter to an odd value.

Cannot modify stack pointer to an odd value

Cause: The emulator will not allow you to modify the stack pointer to an odd value.

Can’t access module regs, addr space mask (@sd bit 6) is set (Error 168)

Cause: The value of register emmbar or register mbar has bit 6, AS5 (mask
supervisor data address space) set to 1. Neither the EMSIM nor the SIM register
sets can allow the supervisor data address space to be masked.

Action: Write a new value into register embar or register mbar (as applicable) to set
bit 6=0. The EMSIM and SIM register sets cannot function properly when the
supervisor data address space is masked by bit 6 being set.

Chapter 12: Emulator Error Messages
Breakpoint remove aborted (Error 669)

407

Chip select 0 must have tcyc >=1 for map term 1 (Error 147)

Cause: You tried to enter a TCYC3-0 specification that is incompatible with the
present maximum bus speed and memory type. For the type of memory specified in
the emulation configuration (cf memtype) and the present bus speed specification
(cf maxbusspeed) all chip selects mapped into emulation memory must be
programmed for TCYC3-0 >= 1.

For max. bus speed 10MHz: Any chip select into emulation memory may be
programmed for any TCYC3-0.

For max. bus speed 25MHz: Any chip select into emulation memory must be
programmed for TCYC3-0 >=1.

For max. bus speed 33MHz: Memory type HP64172 Any chip select into
emulation memory must be programmed for TCYC3-0 >=1.

Memory type HP64173 or for both type HP64172 and HP64173: Any chip select
into emulation memory must be programmed for TCYC3-0 >=2.

For max. bus speed 40MHz: Any chip select into emulation memory must be
programmed for TCYC3-0 >=2.

Action: Respecify the value of emor0 to obtain the correct TCYC3-0 programming.

Chapter 12: Emulator Error Messages
Chip select 0 must have tcyc >=1 for map term 1 (Error 147)

408

Chip select 0 must have tcyc >=2 for map term 1 (Error 147)

Cause: You tried to enter a TCYC3-0 specification that is incompatible with the
present maximum bus speed and memory type. For the memory specified in the
emulation configuration (cf memtype) and the present bus speed specification
(cf maxbusspeed) all chip selects mapped into emulation memory must be
programmed for TCYC3-0 >= 2.

For max. bus speed 10MHz: Any chip select into emulation memory may be
programmed for any TCYC3-0.

For max. bus speed 25MHz: Any chip select into emulation memory must be
programmed for TCYC3-0 >=1.

For max. bus speed 33MHz, and Memory type HP64172: Any chip select into
emulation memory must be programmed for TCYC3-0 >=1.

Memory type HP64173 or for both type HP64172 and HP64173: Any chip select
into emulation memory must be programmed for TCYC3-0 >=2.

For max. bus speed 40MHz: Any chip select into emulation memory must be
programmed for TCYC3-0 >=2.

Action: Respecify the value of emor0 to obtain the correct TCYC3-0 programming.

Chip 0 has DRAM access into Map Term 1 (not allowed) (Status 169)

Cause: The setup of register emor0 allows DRAM access into emulation mapped
memory. The emulator does not allow this access.

Action: Write the correct value into register emor0 to prevent DRAM access into
emulation mapped memory.

Chip 0 has Parity enable into Map Term 1 (not allowed) (Status 170)

Cause: The setup of register embr0 enables parity checking into emulation mapped
memory. The emulator does not allow parity checking into emulation mapped
memory.

Action: Write the correct value into register embr0 to prevent parity checking into
emulation mapped memory.

Chapter 12: Emulator Error Messages
Chip select 0 must have tcyc >=2 for map term 1 (Error 147)

409

Clock speed not available with current count qualifier (Error 1239)

Cause: This error occurs when you attempt to specify a fast (F) or very fast (VF)
maximum qualified clock speed when the analyzer is counting time. This error also
occurs when you attempt to specify a very fast (VF) maximum qualified clock
speed when the analyzer is counting states.

Action: Change the count qualifier; then reenter the command. See Chapter 7,
"Using the Emulation-Bus Analyzer", for more information.

CMB execute break (Error 623)

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run. The emulator must break before
running. This is a status message; no action is required.

CMB execute; emulation trace started (Error 1305)

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified by the “specify trace”
command).

CMB execute; run started (Async_Stat 693)

Cause: This status message is displayed when you are making coordinated
measurements. The CMB/EXECUTE pulse has been received; the emulation
processor started running at the address specified by the "specify run" command.

CMB trigger break (Async_Stat 617)

Cause: This status message will be displayed if you have configured the emulator
to break on a CMB trigger and the CMB trigger line is activated during a program
run. The emulator is broken to the monitor.

Command line too complex (Error 814)

Cause: There was not enough memory for the expressions in the command line.

Action: Split up the command line, or use fewer expressions.

Chapter 12: Emulator Error Messages
Clock speed not available with current count qualifier (Error 1239)

410

Command line too complex (Error 816)

Cause: Too many expression operators are used.

Action: Split up the command line, or use fewer expressions.

Command line too complex (Error 818)

Cause: A maximum nesting level has been exceeded for nested command
execution.

Action: Reduce the number of nesting levels.

Command line too long; maximum line length: <number of characters>
(Error 813)

Cause: This error occurs when the command line exceeds the maximum number of
characters.

Action: Split the command line into two command lines.

Configuration aborted (Error 642)

Cause: Occurs when a <CTRL> c is entered while emulator configuration items are
being set.

Configuration failed; setting unknown: <item>=<value> (Error 626)

Cause: Target condition or system failure while trying to change configuration
item.

Action: Try to reset. Then reenter your cf command. Check target system, and run
performance verification (pv command).

Conflict between expected and received symbol information (Error 880)

Cause: The information you supplied in a symbol definition is not what the
HP 64700 expected to receive.

Action: Make sure that all symbols in the symbol file are defined correctly. Verify
that there are no spaces in the address definitions for the symbols in the symbol file
being downloaded.

Chapter 12: Emulator Error Messages
Command line too complex (Error 816)

411

Conflicting disassembler option: <option> (Error 1000)

Cause: This error occurs when you attempt to specify inverse assembly options that
are not allowed with each other.

Action: Do not use conflicting inverse assembly options in the same trace list
command.

Copy memory aborted; next destination: <address> (Error 752)

Cause: One of these messages is displayed if a break occurs during processing of
the copy memory, or modify memory commands. The break could result from
any of the break conditions or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Copy target image not supportee (Error 161)

Cause: The cim (copy target image memory) command cannot be used in this
emulator. Normally, the cim command would be used to copy a target system
memory range to emulation memory so you could set breakpoints or patch code.

Action: To do this without the cim command, save the target system memory range
to an absolute file using the copy command. Then remap the target memory range
to emulation memory, and load the absolute file into emulation memory using the
load command. Refer to Chapter 6, "Using the Emulator", for information on
saving and loading absolute files.

Count out of bounds: <number> (Error 318)

Cause: You specified an occurrence count less than 1 or greater than 65535 for a
trace trigger or trace find sequence command.

Action: Reenter the command, specifying a count value from 1 to 65535.

Chapter 12: Emulator Error Messages
Conflicting disassembler option: <option> (Error 1000)

412

Count qualifier not available with current clock speed (Error 1240)

Cause: This error occurs when you attempt to specify the “time” count qualifier
when the current maximum qualified clock speed is fast (F) or very fast (VF). This
error also occurs when you attempt to specify a “state” count qualifier when the
maximum qualified clock speed is fast (F).

Action: Change the clock speed; then change the count qualifier. See Chapter 7,
"Using the Emulation-Bus Analyzer", for more information.

Coverage not supported (Error 160)

Cause: The memory coverage command cannot be used in this emulator because
there is no supporting hardware.

Disable breakpoint failed: <address> (Error 604)

Cause: System failure or target condition.

Action: Emulator was unable to write previously saved opcode to target memory.
Check target memory system.

Disable breakpoint failed: <address> (Error 666)

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

Display register failed: <register> (Error 634)

Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
display.

Chapter 12: Emulator Error Messages
Count qualifier not available with current clock speed (Error 1240)

413

Display truncated to <NUM> lines

Cause: This is a status message. It indicates that the display could not contain all
of the information available from the emulator.

Double bus fault occurred (Error 162)

Cause: A double bus fault occurred because of multiple address or bus errors.
When this occurs, the emulator breaks into the monitor.

DRAM access into emulation memory is not allowed (Async_Err 164)

Cause: The program has tried to access emulation memory configured as DRAM,
which is not supported in emulation memory.

Action: Refer to "If emulation memory addressing appears incorrect" in the
"Solving Problems" chapter of the MC68360 Emulator/Analyzer (HP 64780A)
Installation/Service/Terminal Interface User’s Guide.

Emulation memory access failed (Error 702)

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation. Usually there are other error messages. Refer to them to fully
understand the cause of the error.

Action: See message "Unable to Break".

Emulator can not respond to chip 0 without ADDR[31:28] (Status 172)

Cause: The emulator is programmed for chip select mode (where the upper address
lines are used as WEx[3-0]), but at least one chip select is programed to use
ADDR[31-28].

Action: This is a status message. No action required.

Emulator does not support upper address mode selected (Error 144)

Cause: You tried to configure register empepar for WE[3-0] and set the emulator to
reconstruct the WEx lines. This mode of emulator operation is not allowed.

Action: Change register empeper to support ADDR[31-28].

Chapter 12: Emulator Error Messages
Display truncated to <NUM> lines

414

Emulator terminated hung bus cycle: 010000000@sp byte read (Error 167)

Cause: A hung bus cycle occurred during a memory access operation. This
message indicates that the emulator detected the hung bus cycle and terminated it.

Action: Retry the command that caused the hung bus cycle. You may need to
determine the source of termination (such as, the processor, emulation memory,
target memory) and make corrections required.

Enable breakpoint failed: <address> (Error 665)

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions. This message is
usually accompanied by other messages. Look at those messages to better
understand the error and know which actions to take.

Event "expr" cannot be combined with expression definition (Error 1256)

Cause: The terminal interface tgout (trigger output) command of the deep analyzer
may use an arbitrary expression as an event to drive the trig1 and/or trig2 signals to
the emulator. This expression can be set up in two ways. One way uses two tgout
commands; the first command defines the signals and type of events, and the
second command defines the expression. This is most useful when defining
complicated expressions. The other way uses one tgout command which defines
the expression as the event. This error message indicates that you have tried to
combine the two methods.

Action: Reenter your tgout command using the correct format for the command.
Refer to the tgout command description in the online help screen available through
Pod_Commands for correct formats for the tgout command.

Failed to disable step mode (Error 684)

Cause: System failure.

Action: Run performance verification (pv command).

Chapter 12: Emulator Error Messages
Emulator terminated hung bus cycle: 010000000@sp byte read (Error 167)

415

FATAL SYSTEM SOFTWARE ERROR (Error 204)
FATAL SYSTEM SOFTWARE ERROR (Error 205)
FATAL SYSTEM SOFTWARE ERROR (Error 208)

Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands that caused the error. Cycle power
on the emulator and reenter the commands. If the error repeats, call your local HP
Sales Office for assistance.

File could not be opened

Cause: The file cannot be opened or created for writing.

Action: Check to make sure that the parent directory for the file has correct
permissions set.

File transfer aborted (Error 410)

Cause: A transfer operation was aborted due to a break received, most likely a
<CTRL> c from the keyboard. If you typed <CTRL> c, you probably did so
because you thought the transfer was about to fail.

Action: Retry the transfer, making sure to use the correct command options. If you
are unsuccessful, make sure the data communications parameters are set correctly
on the host and on the HP 64700; then retry the operation.

Foreground monitor handled an exception: vector offset 8 (Async_Err 152)

Cause: The foreground monitor handled an exception while performing a monitor
command (such as read/write user memory).

Action: Verify memory operation and retry your command.

Foreground monitor not mapped into emulation memory (Error 141)

Cause: You tried to map the foreground monitor into memory space that is not
mapped as emulation memory. The foreground monitor must be mapped into
emulation memory space.

Action: Respecify map term 1 to be located in emulation memory space.

Chapter 12: Emulator Error Messages
FATAL SYSTEM SOFTWARE ERROR (Error 204)
FATAL SYSTEM SOFTWARE ERROR (Error 205)

416

Foreground monitor range(4Kbytes) not within map term 1 (Error 141)

Cause: You tried to allocate too small a space for map term 1 or you tried to place
map term 1 in target memory when you were using a foreground monitor. All of
the foreground monitor must be contained in emulation memory.

Action: Respecify map term 1 to contain at least 4 Kbytes and be sure it is located
in emulation memory.

Guarded mem break: <guarded memory address> (Async_Stat 628)

Cause: This status message indicates that the target program accessed memory
mapped as guarded and the emulator interrupted target execution and began
running in the monitor.

Handled target exception: <exception> (Error 628)

Cause: The vector base register points to the exception vector table in the
foreground monitor and the target program generated an exception that was caught
by the monitor.

Illegal base for count display (Error 1130)

Cause: When specifying the trace format, counts may only be displayed relative or
absolute. When counting states, the count is always displayed as a decimal number.

Action: Respecify the trace format without using a base for the count column. Also,
you can use “,A” to specify that counts be displayed absolute, or you can use “,R”
to specify that counts be displayed relative.

Illegal base for mnemonic disassembly display (Error 1131)

Cause: When specifying the trace format, you cannot specify a number base for the
column containing mnemonic information.

Action: Respecify the trace format without using a base for the mnemonic column.

Illegal base for sequencer display (Error 1132)

Cause: When specifying the trace format, you cannot specify a number base for the
column containing sequencer information.

Action: Respecify the trace format without using a base for the sequencer column.

Chapter 12: Emulator Error Messages
Foreground monitor range(4Kbytes) not within map term 1 (Error 141)

417

Illegal width for symbol display: <width> (Error 1138)

Cause: This error occurs when the value specified for the trace format address field
width is not valid.

Action: Enter your command again, and specify the width of the address field for
symbol display within the range of 4 to 55.

Incompatibile signal out events: <Incompatible Event Name> (Error 1254)

Cause: The terminal interface tgout (trigger output) command may be used to
drive the trig1 and/or trig2 signals to the emulator in response to several different
events. The events are trigger recognition, measurement complete, finding a
specified expression, delay after trigger recognition, and delay before measurement
complete. Some of these events may be ORed together, but a delay specification
may not be ORed with trigger recognition or mesaurement complete events.

Action: Examine your tgout specification and modify it to remove ORing of delay
specifications with trigger recognition or measurement complete events.

Insufficient emulation memory (Error 21)

Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system. For a detailed explanation that may explain why you got this message,
refer to the message titled, "Request cannot be satisfied with remaining map
resources" in this chapter.

Insufficient emulation memory (Error 21)

Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system.

Chapter 12: Emulator Error Messages
Illegal width for symbol display: <width> (Error 1138)

418

Invalid address: <address> (Error 310)

You specified an invalid address value as an argument to a command (other than an
analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number (even zero (0)).

Action: Reenter the command and the address specification. Use online help by
typing help --EXPR-- and help --SYMB--. See the <ADDRESS> and the
<EXPRESSION> syntax pages in this manual for information on address
specifications.

Invalid address range: <address_range> (Error 311)

Cause: You specified an invalid address range as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number, or the upper boundary of the range you specified is less than the
lower boundary.

Action: Reenter the command and the address specification. Use online help by
typing help --EXPR-- and help --SYMB--. See the <ADDRESS> and
<EXPRESSION> syntax pages in this manual for information on address
specifications. Also, make sure that the upper boundary specification is greater than
the lower boundary specification (the lower boundary must always precede the
upper boundary on the command line).

Invalid answer in ascii config file; configuration aborted

Cause: A configuration file (filename.EA) being loaded into the emulator has at
least one invalid answer to a configuration question.

Action: Display the emulator error log to see which answer(s) were invalid. Edit
the configuration file and correct the invalid answer(s) or create a new
configuration file by modifying the emulator configuration and storing it.

Invalid attribute for memory type : <attribute> (Error 140)

Cause: You tried to specify a memory attribute for target memory. Attibutes are
valid for emulation memory only (memory types eram and erom), not for target
memory or guarded memory.

Action: Reenter your specification and use attributes only when specifying
emulation memory space.

Chapter 12: Emulator Error Messages
Invalid address: <address> (Error 310)

419

Invalid base: <base> (Error 319)

Cause: This error occurs if you have specified an invalid base when entering a
command to change the format of the trace list.

Action: Use the help screens to view the valid base options.

Invalid clock channel: <name> (Error 1207)

Cause: Valid clock channels are L, M, and N.

Action: Respecify the command using valid clock channels.

Invalid command group: <group name> (Error 801)

Cause: This error occurs when you specify an invalid group name in the help
<group> command.

Action: Enter the help command for a listing of the valid group names.

Invalid configuration item: <item> (Error 627)

Cause: You specified a non-existent configuration item.

Action: Use the help screen to see valid items. Reenter the command, specifying
only configuration items that are supported by your emulator. Refer to Chapter 5,
"Configuring the Emulator", in this manual.

Invalid count: <count> (Error 315)

Cause: This error occurs when the emulation system expects a certain number (of
arguments, for example), but you specify a different number.

Action: Enter the number the system expects to receive.

Invalid disassembler option: <option> (Error 1001)

Cause: You specified an invalid option for the disassembler. The disassembler can
display all bus cycles, display only instruction cycles, dequeue the trace list, not
dequeue the trace list, and disassemble starting with the lower word of the
instruction.

Action: Use valid inverse assembly options in your command.

Chapter 12: Emulator Error Messages
Invalid base: <base> (Error 319)

420

Invalid expression: <expression> (Error 307)

Cause: You have entered an expression with incorrect syntax; therefore, it cannot
be evaluated. <expression> is the bad expression.

Action: Use online help. Reenter the expression, following the syntax rules for that
type of expression. Refer to Chapter 11, "Emulator/Analyzer Interface
Commands", to determine the expression type and the correct syntax for that type.

Invalid map address range: <address range> (Error 723)

Cause: You specified an invalid address range. For example, you may have
specified digits that don’t correspond to the base specified, or you forgot to precede
a hexadecimal letter digit with a number, or the upper boundary of the range you
specified is less than the lower boundary.

Action: Reenter your command and the address specification. See the
<ADDRESS> and the <EXPRESSION> syntax pages in this manual for
information on address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower boundary
must always precede the upper boundary on the command line).

Invalid memory map attribute: <attribute> (Error 731)

Cause: The only valid memory map attributes for the MC68360 emulator are
Processor DSACKs, Target DSACKs, 32 Bit Emulation DSACKs, 16 Bit
Emulation DSACKs, and 8 Bit Emulation DSACKs.

Action: Reenter your command, using only valid memory map attributes.

Invalid memory map type: <type> (Error 730)

Cause: You specified a memory type while mapping that is not one of the
supported types: Emul RAM, Emul ROM, Target RAM, Target ROM,
Guarded.

Action: Reenter your command, specifying only one of the five supported types,
listed above.

Chapter 12: Emulator Error Messages
Invalid expression: <expression> (Error 307)

421

Invalid number of arguments (Error 308)

Cause: You either entered too many options to a command or an insufficient
number of options.

Action: Reenter the command with correct syntax. Use online help by typing help
<command>. Refer to Chapter 11, "Emulator/Analyzer Interface Commands", in
this manual for more information.

Invalid occurrence count: <number> (Error 1234)

Cause: Occurrence counts may be from 1 to 65535.

Action: Reenter the command with a valid occurrence count.

Invalid option or operand (Error 300)
Invalid option or operand: <option> (Error 305)

Cause: You have specified an incorrect option to a command. <option>, if printed,
indicates the incorrect option.

Action: Use online help by typing help <command> or ? <command>. Reenter
the command with the correct syntax. Refer to Chapter 11, "Emulator/Analyzer
Interface Commands", for more information.

Invalid pod number: <pod#> (Error 1253)

Cause: This error message occurs when you attempt to specify a slave clock for a
non-existent analyzer pod.

Action: Use the trace activity command to display the valid pod numbers, and use
only these numbers when entering commands.

Invalid qualifier resource or operator: <expression> (Error 1241)

Cause: When specifying complex expressions, you have either specified an illegal
pattern or used an illegal operator.

Action: See Chapter 7, "Using the Emulation-Bus Analyzer", for more information.

Chapter 12: Emulator Error Messages
Invalid number of arguments (Error 308)

422

Invalid question in ascii file; configuration aborted

Cause: A configuration file (filename.EA) being loaded into the emulator has at
least one question that is not valid for this emulator.

Action: Display the emulator error log to see which question(s) were invalid. Edit
the configuration file and remove the invalid question(s) or create a new
configuration file by modifying the emulator configuration and storing it.

Invalid syntax for global or user symbol name: <symbol> (Error 875)

Cause: This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action: Make sure that you enter the global or user symbol name using the correct
syntax. When specifying a global symbol, make sure that you precede the global
symbol with a colon (for example, :global_symbol). When specifying a symbol
you created, make sure that you enter the name correctly without a colon.

Invalid syntax for local symbol or module: <symbol/module> (Error 876)

Cause: This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action: When entering a local symbol name, make sure you specify the module
name, followed by a colon, and then the symbol name (for example
module:local_symbol). Make sure you specify the module name correctly.

Invalid time: <time> (Error 842)

Cause: You have incorrectly specified the time format in the command.

Action: Reenter the command with the correct time format. See the command
syntax pages in this manual for the correct format.

Chapter 12: Emulator Error Messages
Invalid question in ascii file; configuration aborted

423

Label not defined: <label> (Error 321)

Cause: You entered an analyzer expression in which the label was not present in
the analyzer label list. For example, if the label list includes address, data, and
status, you might have entered something such as lowerdata=24t. This error also
occurs if you try to delete a label that does not exist.

Action: You can reenter the command, using one of the previously defined labels,
and adjust the expression as necessary to accommodate the fit of that label to the
analyzer input lines. You can also define a new label using the tlb command, and
then reenter the analyzer command using the newly defined label.

Map range overlaps with term: <term number> (Error 734)

Cause: You entered a map term whose address range overlaps with one already
mapped.

Action: Reenter the map term so that ranges do not overlap, or combine terms and
change the memory type.

Macro buffer full; macro not added (Error 809)

Cause: This error occurs when the memory reserved for macros is all used up.

Action: You must delete macros to reclaim memory in the macro buffer.

Map term 1 type conflict with foreground monitor, must be eram (Error 141)

Cause: You tried to specify map term 1 as emulation ROM when you were using a
foreground monitor. The foreground monitor must be mapped into emulation
RAM type memory (not emulation ROM).

Action: Respecify map term 1 to ensure it is RAM memory space in emulation
memory.

Maximum argument buffer space exceeded (Error 826)

Cause: You exceeded the space limits for argument lists.

Action: Reenter the command with less arguments, or simplify the expressions in
the arguments.

Chapter 12: Emulator Error Messages
Label not defined: <label> (Error 321)

424

Maximum number of arguments exceeded (Error 824)

Cause: You exceeded the limit of 100 arguments per command.

Action: Reduce the number of arguments in the command.

Memory modify aborted; next address: <address> (Error 754)

Cause: One of these messages is displayed if a break occurs during processing of
the copy memory, or modify memory commands. The break could result from
any of the break conditions or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Memory search aborted; next address: <address> (Error 756)

Cause: One of these messages is displayed if a break occurs during processing of
the copy memory, or modify memory commands. The break could result from
any of the break conditions or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions.

Message overflow (Status 153)

Cause: The display configuration_info diagnostics command may emit more
messages than the HP 64700 will allow (16). This status message occurs when
there are more than 16 messages.

Missing option or operand (Error 313)

Cause: You have omitted a required option to the command.

Action: Reenter the command with the correct syntax. Use online help by typing
help <command>. Refer to Chapter 11, "Emulator/Analyzer Interface
Commands", in this manual for further information on required syntax.

Chapter 12: Emulator Error Messages
Maximum number of arguments exceeded (Error 824)

425

Modified register(s) caused change in emulator mode (Status 155)

Cause: You changed the value of the empepar register that affects whether the
upper address bits will be ADDR[31-28] or WEx[3-0] while the emulator was not
in the reset state. The emulator mode of operation is dependent on the value of
empepar.

Action: This is a status message. You can reset the emulator and continue
operation.

Monitor must be mapped on a 4K byte boundary (Error 146)

Cause: You tried to map the emulation foreground monitor to a base address that is
not a 4-Kbyte boundary. The emulation foreground monitor must be mapped on a
4-Kbyte boundary (address XXXXX000H).

Action: Respecify mapping of the emulation foreground monitor to ensure that it is
on a 4-Kbyte boundary.

No map terms available; maximum number already defined (Error 7212)

Cause: You tried to add more mapper terms than are available for this emulator.
For example, with the MC68360 emulator, there are only eight terms. If you had
already defined memory types for these terms, then tried to map another term, you
would see the above error message.

Action: Either combine map ranges to conserve on the number of terms or delete
mapper terms that aren’t needed.

No module specified for local symbol (Error 882)

Cause: This error occurs because you tried to specify a local symbol name without
specifying the module name where the symbol is located.

Action: Enter the module name where the local symbol is located, followed by a
colon, and then the local symbol name.

Chapter 12: Emulator Error Messages
Modified register(s) caused change in emulator mode (Status 155)

426

Number must be a multiple of 1000H

Cause: A number other than a multiple of 1000H was entered for the base address
of the foreground monitor during configuration.

Action: Use a number that is a multiple of 1000H for the base address of the
foreground monitor.

One sequence term required (Error 1228)

Cause: This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action: At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

Out of system memory (Error 201)

Cause: Macros and equates that you have defined have used all of the available
system memory.

Action: Delete some of the existing macros and equates. This will free additional
memory.

Program counter is located in guarded memory (Error 150)

Cause: The address contained in the program counter is an address in guarded
memory.

Action: Write a valid address into the program counter.

Program counter is odd (Error 84)

Cause: You attempted to modify the program counter to an odd value using the
modify registers command on a processor that expects even alignment of opcodes.

Action: Modify the program counter only to even numbered values.

Chapter 12: Emulator Error Messages
Number must be a multiple of 1000H

427

Range resource in use (Error 1221)

Cause: This error occurs when you attempt to redefine the “complex” configuration
range resource while it is currently being used as a qualifier in the trace
specification.

Action: In the “complex” configuration, display the sequencer specification to see
where the range resource is being used and remove it; then, you can redefine the
range resource.

Range term used more than once (Error 1248)

Cause: This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action: Do not try to use the range resource more than once in a sequencer branch
expression.

Read PC failed during break (Error 603)

Cause: The monitor is not responding.

Action: Check your target system configuration, the emulator configuration and
memory map, or reinitialize the emulator. Then try the command sequence again.

Record checksum failure (Error 400)

Cause: During a transfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry the transfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

Records expected: <number>; records received: <number> (Error 401)

Cause: The HP 64700 received a different number of records than it expected to
receive during a transfer operation.

Action: Retry the transfer. If the failure is repeated, make sure the data
communications parameters are set correctly on the host and on the HP 64700. See
the HP 64700-Series Card Cage Installation/Service Guide for details.

Chapter 12: Emulator Error Messages
Range resource in use (Error 1221)

428

Register access aborted (Error 630)

Cause: Occurs when a <CTRL> c is entered during register display.

Register class cannot be modified: <register class> (Error 637)

Cause: You tried to modify a register class instead of an individual register. You
can only modify individual registers.

Action: See the display and modify syntax pages in Chapter 11,
"Emulator/Analyzer Interface Commands", in this manual for a list of register
names.

Register emmbar=000000000H; valid bit not set (Error 149)

Cause: You entered a command to copy the values of the EMSIM register set into
the target SIM registers. The EMSIM register set can be copied into the processor
SIM set only when register emmbar is valid (that is, the valid bit of emmbar, bit 0,
must equal 1).

Action: Write a valid content into emmbar and set emmbar bit 0=1. Then try your
command again.

Register mbar=000000000H; valid bit not set (Error 149)

Cause: You entered a command that must access the SIM register set. The SIM
register set can only be accessed when register mbar is valid (that is, the valid bit of
mbar, bit 0, must equal 1).

Action: Write a valid content into mbar and set mbar bit 0=1. Then try your
command again.

Request access to guarded memory: <address> (Error 707)

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Reenter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. You can also remap memory so that the desired
addresses are no longer mapped as guarded.

Chapter 12: Emulator Error Messages
Register access aborted (Error 630)

429

Restricted to real time runs (Error 40)

Cause: While the emulator is restricted to real-time execution, you have attempted
to enter a command that requires a temporary break to the monitor for processing
(such as a request to display target system memory locations). The emulator will
not allow temporary breaks while the emulator is in the reset state or while the
target program is running.

Action: Break to the monitor using the break command, and then execute the
desired command or disable the real time mode.

Retry limit exceeded, transfer failed (Error 412)

Cause: The limit for repeated attempts to send a record during a transfer operation
was exceeded; therefore, the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the
host, line noise may cause the failure.

Run failed during CMB execute (Async_Error 694)

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

Sequence term not contiguous: <term> (Error 1225)

Cause: This error occurs when you attempt to insert a sequence term that is not
between existing terms or after the last term.

Action: Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

Sequence term not defined: <term> (Error 1227)

Cause: This error occurs when you attempt to delete or specify a primary branch
expression for a sequence term number that is possible, but is not currently defined.

Action: Insert the sequence term, and respecify the primary branch expression for
that term.

Chapter 12: Emulator Error Messages
Restricted to real time runs (Error 40)

430

Sequence term number out of range: <term> (Error 1224)

Cause: This error occurs when a sequencer qualification command specifies a
non-existent sequence term. The easy configuration sequencer may have a
maximum of four sequence terms. Eight sequence terms exist in the complex
configuration sequencer.

Action: Reenter the command using an existing sequence term.

Severe error detected, file transfer failed (Error 411)

Cause: An unrecoverable error occurred during a transfer operation.

Action: Retry the transfer. If it fails again, make sure the data communications
parameters are set correctly on the host and on the HP 64700. Also make sure you
are using the correct command options, both on the HP 64700 and on the host.

Software breakpoint: <breakpoint address> (Async_Stat 615)

Cause: This status message indicates that the target program executed a software
breakpoint instruction (an execution breakpoint, either in software or provided by
one of the eight hardware breakpoint resources). The emulator stopped the target
program and began running in the monitor.

Software breakpoint break condition is disabled (Error 661)

Cause: You disabled the software breakpoint feature. Breakpoints are enabled by
default. Then you attempted to set a breakpoint, or you attempted to single step
with the foreground monitor (either the built-in or custom foreground monitor).

Action: Re-enable the software breakpoint feature and try again.

Specified breakpoint not in list: <address> (Error 663)

You tried to enable a software breakpoint that was not previously defined.
<address> prints the address of the breakpoint you attempted to enable. Insert the
breakpoint into the table and memory.

Chapter 12: Emulator Error Messages
Sequence term number out of range: <term> (Error 1224)

431

Stack pointer is odd (Error 80)

Cause: You tried to modify the stack pointer to an odd value and the emulator
expects the stack to be aligned on a word boundary.

Action: Modify the stack pointer to an even value.

Step display failed (Error 688)

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

Stepping aborted (Error 685)

Cause: This message is displayed if a break was received during a step command
with a stepcount of zero (0). The break could have been due to any of the break
conditions or a <CTRL> c break.

Stepping aborted; number steps completed: <steps completed> (Error 686)

Cause: This message is displayed if a break was received during a step command
with a stepcount greater than zero. The break could have been due to any of the
break conditions or a <CTRL> c break. The number of steps completed is
displayed.

Stepping failed (Error 680)

Cause: Stepping has failed for some reason. For example, this message will appear
if the emulator can’t modify the trace vector, which is used to implement the step
function. Usually, this error message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more about why stepping failed.

Symbol cannot contain text after the wildcard (Error 879)

Cause: You tried to include text after the wildcard specified in the symbol name
(for example, symbol*text).

Action: Enter the symbol again, but do not include text after the wildcard (*).

Chapter 12: Emulator Error Messages
Stack pointer is odd (Error 80)

432

Symbol cannot contain wildcard in this context (Error 878)

Cause: You tried to enter a global, local, or user symbol name using the wildcard
(*) incorrectly.

Action: When you enter the symbol name again, include the wildcard (*) at the end
of the symbol.

Symbol not found: <symbol> (Error 877)

Cause: This occurs when you try to enter a symbol name that doesn’t exist.

Action: Enter a valid symbol name.

Target memory access failed (Error 700)

Cause: The emulator was unable to perform the requested operation on memory
mapped to the target system. This message is displayed in conjunction with other
error messages that further clarify the problem that occurred. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation.

Action: See other error messages in the error log to further understand the cause of
the error.

Target reset and run while in monitor(BDM) (Error 143)

Cause: The emulator had placed the target processor in Background Debug Mode
(BDM), and during execution in BDM, the target system was reset.

Action: Reissue your command after target reset.

Trig1, trig2 delay spec out of bounds: <Entered Numeric Value> (Error 1255)

Cause: The terminal interface tgout (trigger output) command of the deep analyzer
provides a delay feature that allows for driving of the trig1 and/or trig2 signals a
specified number of states after trigger or before trace complete. The delay value
must be in the range 0 through "current analyzer depth - 1". The current analyzer
depth is controlled by the terminal interface command tcf. Note: Use of this delay
feature may cause modification of the current trigger position value.

Action: Correct the delay value in your specification so that it is within the range
of 0 through "current analyzer depth -1".

Chapter 12: Emulator Error Messages
Symbol cannot contain wildcard in this context (Error 878)

433

Trigger position changed to accomodate trig1, trig2 delay spec (Status 1203)

Cause: The terminal interface tgout (trigger output) command provides a delay
feature that allows for driving of the trig1 and/or trig2 signals a specified number of
states after trigger or before trace complete. The setup of this delay feature
interacts with the trigger position specification. The trigger position specification
may be automatically modified by the deep analyzer in order to make the delay
feature work in the expected manner.

Action: You can use the terminal interface command tp (trigger position) to
examine the new trigger position value.

Trigger term cannot be term 1 (Error 1251)

Cause: This error occurs when you attempt to specify the first sequence term as the
trigger term. The trigger term may be any term except the first.

Action: Respecify the trigger term as any other sequence term.

Too many sequence terms (Error 1226)

Cause: This error occurs when you attempt to insert more than four sequence terms.

Action: Do not attempt to insert more than four sequence terms.

Trace error during CMB execute (Error 692)

Cause: System failure.

Action: Run performance verification (pv command).

Trace format command failed; using old format (Error 1133)

Cause: This error occurs when the trace format command fails for some reason.

Action: This error message always occurs with another error message. Refer to the
description for the other error message displayed.

Chapter 12: Emulator Error Messages
Trigger position changed to accomodate trig1, trig2 delay spec (Status 1203)

434

Trigger position out of bounds: <bounds> (Error 1202)

Cause: This error occurs when you attempt to specify a number of lines to appear
either before or after the trigger which is greater than the number of lines allowed.
The <bounds> string indicates the incorrect range you typed (not the correct limits
on the range).

Action: Be sure that the trigger position specified is within the range -1024 to 1023
(or -512 to 511 if counting is enabled).

trig1 break (Async_Stat 618)

Cause: This status message will be displayed if you used the break_on_trigger
syntax of the trace command and the analyzer has found the trigger condition
while tracing a program run. The emulator is broken to the monitor.

Trig1 signal cannot be driven and received (Error 1302)

Cause: This error occurs when you attempt to specify the internal trig1 signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trig1 signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trig1 signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

trig2 break (Async_Stat 619)

This status message will be displayed if you have used the internal trig2 line to
connect the analyzer trigger output to the emulator break input and the analyzer has
found the trigger condition. The emulator is broken to the monitor.

Trig2 signal cannot be driven and received (Error 1303)

Cause: This error occurs when you attempt to specify the internal trig2 signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trig2 signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trig2 signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

Chapter 12: Emulator Error Messages
Trigger position out of bounds: <bounds> (Error 1202)

435

Unable to modify trace vector to <value> for single stepping (Error 156)

Cause: You tried to single step, and the emulator detected the trace vector was not
set properly and the emulator was unable to modify the vector table because it was
not located in emulation memory or target RAM. This usually occurs when the
vector table is located in target ROM.

Action: Copy or relocate the vector table in emulation memory or target RAM, or
change your ROM image so that it contains the proper value for the trace vector for
single stepping. Refer to stepping information in Chapter 6, "Using the Emulator".

Unable to break (Error 608)

Cause: This message is normally used with other messages that further describe the
error. It is displayed if the emulator is unable to break to the monitor because the
emulation processor is reset, halted, or the monitor is not responding for some
reason.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use the
break command to break to the monitor. If reset by the target system, release that
reset. If halted, try reset and break to get to the monitor. If there is a bus grant,
wait for the requesting device to release the bus before retrying the command. If
there is no clock input, perhaps your target system is faulty. It’s also possible that
you have configured the emulator to restrict to real time runs, which will prohibit
temporary breaks to the monitor.

Unable to delete label; used by emulation analyzer: <label> (Error 1105)

Cause: This error occurs when you attempt to delete an emulation trace label that is
currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: Display the emulation trace sequencer specification in the configuration,
display the emulation trace patterns in the complex configuration, or display the
trace format to see where the label is used. Also, you should check tcq and tpq for
uses of that label. You must change the pattern or format specification to remove
the label before you can delete it.

Chapter 12: Emulator Error Messages
Unable to modify trace vector to <value> for single stepping (Error 156)

436

Unable to load new memory map; old map reloaded (Error 725)

Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

Unable to modify register: <register>=<value> (Error 632)

Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It is
likely that the emulator was unable to break to the monitor to perform the register
modification.

Unable to read registers in class: <name> (Error 631)

Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed. Most
likely, the emulator was unable to break to the monitor to perform the register read.

Unable to redefine label; used by emulation analyzer: <label> (Error 1108)

Cause: This error occurs when you attempt to redefine an emulation trace label that
is currently used as a qualifier in the emulation trace specification.

Action: Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex configuration, or
display the emulation trace format to see where the label is used. You must change
the pattern or format specification to remove the label before you can redefine it.

Unable to reload old memory map; hardware state unknown (Error 726)

Cause: Error occurred while trying to modify the emulation memory map.

Action: Usually there are other error messages present. Refer to their descriptions
to more fully understand the cause and action to take for this error.

Chapter 12: Emulator Error Messages
Unable to load new memory map; old map reloaded (Error 725)

437

Unable to reset (Error 640)

Cause: Target condition or system failure.

Action: Check target system, and run performance verification (pv command).

Unable to run (Error 610)

Cause: Run has failed for some reason. For example, this message will appear if
the emulator cannot write to stack, which is required to run. Usually, this error
message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more information about why the run failed. Look at the emulator prompt to know
the emulator status. Take a trace with the analyzer to see where the emulator is
executing.

Unable to run after CMB break (Error 606)

Cause: System failure or target condition.

Action: Run performance verification (pv command), and check target system.

Unexpected software breakpoint (Error 620)
Unexpected step break (Error 621)

Cause: System failure.

Action: Run performance verification (pv command).

Undefined software breakpoint: <address> (Error 605)

Cause: The emulator has encountered a BKPT instruction in your program that was
not inserted with the breakpoint command.

Action: Remove the breakpoints inserted in your code before assembly and link,
and then reinsert them using the breakpoint command.

Undefined software breakpoint: <breakpoint address> (Async_Stat 605)

Cause: This status message indicates a breakpoint instruction was executed and the
emulator stopped target execution and started running in the monitor. The
emulator had no record of a breakpoint being set at this address.

Chapter 12: Emulator Error Messages
Unable to reset (Error 640)

438

Unmatched quote encountered (Error 820)

Cause: In entering a string, such as with the echo command, you didn’t properly
match the string delimiters (either ‘‘ or “”). For example, you might have entered

echo “set S1 to off

Action: Reenter the command and string, making sure to properly match opening
and closing delimiters. Note that both delimiters must be the same character. For
example: echo “set S1 to off”.

Update HP64740 firmware to version A.02.02 or newer (Error 163)

Cause: This error occurred when you attempted to disassemble a trace and the
analyzer firmware was found to be out of date.

Action: Refer to Chapter 15, "Installing/Updating Emulator Firmware". You must
update the firmware to the version number specified in the message, or newer
firmware version number. Your system is not usable with its present firmware.

Write to ROM break:<ROM address> (Async_Stat 628)

Cause: This status message indicates the target program accessed memory mapped
as either emulation ROM or target ROM; the emulator interrupted target execution
and began running in the monitor. This only occurs if you enabled breaks on writes
to ROM.

Chapter 12: Emulator Error Messages
Unmatched quote encountered (Error 820)

439

440

Part 4

Concept Guide

441

Concept Guide

In This Part

Part 4 of this book explains concepts and shows you how to apply them to
advanced tasks.

Part 4

442

13

Concepts of the EMSIM and EMRAM

443

Concepts of the EMSIM and EMRAM

This chapter provides conceptual information on the EMSIM and EMRAM

Chapter 13: Concepts of the EMSIM and EMRAM

444

Concepts of the EMSIM and EMRAM

The 68360 processor provides an array of on-chip peripherals which are configured
and used via memory mapped registers. These registers directly control many
aspects of the external operation of the processor. The most notable of these
on-chip peripherals is the SIM (System Integration Module). For example, address
bits A28 through A31 can be configured as either address bits or byte write-enable
signals. Selection of these alternative uses drastically changes the external
behavior of the processor. Internal to the processor, the full 32-bit address and bus
control signals are always maintained. What is seen external to the processor is
determined by the current contents of the SIM register set.

The 68360 processor also has internal, on-board, static RAM which can be
configured to be addressable anywhere within the address range. The processor
RAM register set is used to enable this on-board RAM and to define where it is
currently positioned in the 32-bit address space.

The emulator needs access to the full 32-bit address, function codes, and other
control signals for proper operation of the emulation-bus analyzer and the
emulation memory system. To provide this access when these signals are not
available external to the processor, an external bus decoder is designed into the
emulator; it recreates these signals.

The following is a view of the emulator implementation:

Chapter 13: Concepts of the EMSIM and EMRAM

445

The emulator has been designed to ensure that the emulation-bus analyzer and the
emulation memory system will have access to the equivalent of the internal
processor 32-bit address bus, function codes, and size information. The external
bus decoder circuitry can recreate these signals for all possible combinations of
processor pin usage that make sense to the target system. The external bus decoder
must be given knowledge of how the processor pins will be used; this knowledge is
defined by the EMSIM and EMRAM register sets.

Because the emulation-bus analyzer always receives the full 32-bit address, the
user can trace activity based upon the way the code was written, not on the chip
selects that are used to access the code. The analyzer can display address symbols
in the trace list and accept symbolic address information entered in trace
commands.

Because the emulation memory system also receives the full 32-bit address,
memory can be allocated (mapped) between the target system and emulation
(overlay) memory based upon the full address, not upon chip selects and a subset of
the full address bus. When a program download is performed, the program
information can be properly directed to emulation or target memory based upon the
full 32-bit address contained in the executable file.

The concept of register copies has been implemented in order to accomplish
external bus decoding. As part of the emulator configuration, the user can indicate
the desired SIM and RAM values by loading the EMSIM and EMRAM copy
registers. Once these register copies have been loaded, memory resources (either
emulation or target memory) can be accessed in the same manner that the processor
will access them when running target code. Note that the default programming of
the EMSIM and EMRAM registers is exactly the same as the reset values of the
SIM and RAM registers, as defined by the Motorola 68360 User Manuals.

In addition to providing the programming knowledge for the external bus decoder,
the EMSIM and EMRAM registers provide another helpful feature. Suppose you
want to load target memory RAM that has been implemented to be accessible via
processor chip selects. In order to access this memory, the processor SIM registers
must typically be changed from the reset default values. This can be done by
individually modifying each SIM register or by running some processor
initialization code. If the EMSIM registers hold the desired values, you can access
this memory by simply transferring the EMSIM registers into the SIM registers.
As a convenience, this transfer is performed automatically each time the monitor is
entered from emulation reset. This is the only time that this transfer is performed
automatically; you can manually transfer the EMSIM to the SIM or the SIM to the
EMSIM or display their differences at any time.

Chapter 13: Concepts of the EMSIM and EMRAM

446

Concepts of the EMRAM

The 68360 processor has internal RAM modules. These internal RAM modules
can be used like any other system RAM; that is, their memory hardware can be
assigned to support any desired address range within the 68360 address space.

The address range that a particular internal RAM module will support, and the
qualifiers that might additionally be assigned to that address range are defined by
the values contained within registers in the Memory Controller of the processor.
The values of these registers are supplied to the emulator as part of the EMRAM
copy. The emulator uses this information to determine where memory accesses
should be routed, based on the current emulator memory map.

The emulator cannot emulate internal RAM modules when the internal RAM is
enabled. Internal RAM accesses will typically not be seen outside the processor,
and therefore emulation memory will be ignored. The only way to get the
processor to access emulation memory which has been mapped to the same address
range as internal RAM is to disable the internal RAM, by resetting the processor.
Note that internal RAM accesses may be seen externally by the analyzer using the
show cycles feature, discussed below.

By default, the internal RAM modules in 68360 processor are turned off. The
internal RAMs are enabled and positioned by loading the EMRAM registers. The
contents of the EMRAM registers are automatically copied to the RAM registers
each time the emulator enters the monitor from emulation reset.

Concepts of Show Cycles

Typically when the processor accesses internal resources (either the Module
Control Block, or internal RAM) the bus cycles are not available external to the
processor. These bus cycles can be made available by enabling a feature of the
68360 processor called show cycles. In order to capture a trace of activity
involving these internal resources, the 68360 processor’s show cycles feature is
used to make activity available to the analyzer. Two control bits in the SIM_MCR
register must be set to enable the show cycles feature. Specifically, these control
bits are bits 8 and 9 of the Module Configuration Register. These two bits control
external bus arbitration in addition to show cycles. Refer to the Motorola 68360
User Manual for detailed information of how to program these bits.

Chapter 13: Concepts of the EMSIM and EMRAM

447

The external-bus decoder within the emulator will automatically decode these
"show" bus cycles if the following two conditions are met.

Condition 1: Show cycles are enabled as described above.

Condition 2: The /DS signal is available external to the processor.

If the pin that carries the /DS signal is programmed as a portC I/O pin, the
processor is not able to indicate a show cycle and the analyzer will not be able to
display show cycles in a trace.

EMSIM/EMRAM Utility Command

Modify →SIM Registers

This capability lets the user compare and transfer register values between the SIM
and EMSIM register sets. Note even though the word "sim" is used in the
command, all operations also include the RAM and EMRAM register sets.

Modify →SIM Registers→Copy Emulator SIM to Processor SIM

This transfers the current values of the EMSIM registers into the SIM registers.
This happens automatically each time a break to the monitor from emulation reset
occurs. This ensures that the processor is prepared to properly access memory
when a program is downloaded to the emulator.

Modify →SIM Registers→Copy Processor SIM to Emulator SIM

This transfers the current values of the SIM registers into the EMSIM registers.
This is useful if initialization code that configures the processor SIM exists, but you
don’t know its values. In this case, you can use the default configuration, run from
reset to execute the initialization code, and then configure the emulator to match
the processor SIM.

Modify →SIM Registers→Default Emulator SIM

This sets all registers in the SIM and EMSIM to their default values. The default
programming of the registers is exactly the same as the reset values defined by the
Motorola 68360 User Manuals.

Chapter 13: Concepts of the EMSIM and EMRAM

448

Display→SIM Register Differences

This shows current differences between the SIM registers and the EMSIM
registers. This presents a list of all registers whose values are different between the
SIM and the EMSIM. Use this to compare the programming between the SIM and
EMSIM.

Display→Configuration Info

This displays information about the emulator configuration and processor SIM
programming

Display→Configuration Info →Diagnostics

This checks the emulator configuration. Any inconsistencies and potential
problems found during the check are listed. Resolve any items in the list to ensure
correct operation of the emulator.

Display→Configuration Info →Chip Selects (SIM)

This displays chip selects in the SIM (processor) register set in a table. Use this to
see how the SIM registers have configured the chip select pins of the processor.

Display→Configuration Info →Chip Selects (Emulator SIM)

This displays chip selects in the EMSIM (emulator) register set in a table. Use this
to see how the EMSIM registers have configured the chip select pins of the
emulation copy.

Display→Configuration Info →Bus Interface Ports (SIM)

This displays bus interface ports in the SIM (processor) register set in a table. Use
this to see how the SIM registers have configured the external bus interface pins of
Port E.

Display→Configuration Info →Bus Interface Ports (Emulator SIM)

This displays bus interface ports in the EMSIM (emulator) register set in a table.
Use this to see the SIM register values that will be loaded into the processor SIM
when the monitor is entered from emulation reset.

Display→Configuration Info →Memory Map

This displays detailed information about the memory map in a table. Use this to
check the way the memory map has been configured.

Chapter 13: Concepts of the EMSIM and EMRAM

449

Display→Configuration Info →Reset Mode Value

This displays the reset mode configuration value and operation in a table. This is
the value that will be driven onto the data bus to configure the processor when it
comes out of reset. The meaning of each data bit in the value is shown.

Display→Configuration Info →Upper Address Mode

This displays the present address mode, including the size of the address bus and
whether the upper address bits are used as A31-A28 or WE3-WE0. This display
also describes the distribution of address information for the address mode in use.

Display→Configuration Info →Clock Input Mode

This displays the present mode of clock for the 68360 target system. This mode is
set by installation of a clock module in the clock module socket on the emulation
probe. Refer to the Hewlett-Packard MC68360 Installation/Service/Terminal
Interface User’s Guide for details.

Display→Configuration Info →Initialization Source Code

This displays the assembly language program to initialize the processor SIM and
RAM based on the current contents of the EMSIM and EMRAM register sets.

Chapter 13: Concepts of the EMSIM and EMRAM

450

Part 5

Installation and Service Guide

451

Installation and Service Guide

In This Part

Part 5 of this book shows you how to:

• Chapter 14, "Installation," shows ou how to install emulation and analysis
interface software that supports the Graphical User Interface and the Softkey
Interface. Included are instructions for installing this software on HP 9000
systems and Sun SPARCsystems.

• Chapter 15, "Installing/Updating Emulator Firmware," shows you how to
update your emulator/analyzer firmware with the progflash command, and
display current firmware version information.

The Hewlett-Packard M68360 Emulator/Analyzer Installation/Service/Terminal
Interface User’s Guide shows you how to:

• Connect the emulator into an MC68360 target system and overcome the
differences between the specifications and characteristics of the target
microprocessor and those of the emulator.

• Install the emulator hardware into the card cage. It also shows how to install
the demo board power cable, SRAM modules, rivets and covers, and the
emulator probe cable. Then it shows you how to connect the probe to the demo
board, and verify performance of the hardware

Refer to the Hewlett-Packard For a thorough analysis of possible problems and
solutions, refer to the Hewlett-Packard M68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide.

Part 5

452

14

Installation

453

Installation

This chapter shows you how to install emulation and analysis interface software.
Installation of emulation and analysis hardware, and performance verification
procedures, are shown in Hewlett-Packard’s MC68360 Emulator/Analyzer
Installation/Service/Terminal Interface User’s Guide. These installation tasks are
described in the following sections:

• Installing HP 9000 software.

• Installing Sun SPARCsystem software.

• Verifying the installation.

Minimum HP 9000 Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on HP 9000 Series 300/400 and Series
700 workstations.

HP-UX For Series 9000/300 and Series 9000/400 workstations, the minimum
supported version of the operating system is 7.03 or later. For Series 9000/700
workstations, the minimum supported version of the operating system is version
8.01.

Motif/OSF For Series 9000/700 workstations, you must also have the Motif 1.1
dynamic link libraries installed. They are installed by default, so you do not have to
install them specifically for this product, but you should consult your HP-UX
documentation for confirmation and more information.

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. Series 300
workstations should have a minimum performance equivalent to that of a
HP 9000/350. A color display is also highly recommended.

From here, you should proceed to the section titled "Installation for HP 9000
Hosted Systems" for instructions on how to install, verify, and start the Graphical
User Interface on HP 9000 systems.

454

Minimum Sun SPARCsystem Hardware and System Requirements

The following is a set of minimum hardware and system recommendations for
operation of the Graphical User Interface on Sun SPARCsystem workstations.

SunOS The Graphical User Interface software is designed to run on a Sun
SPARCsystem with SunOS version 4.1 or 4.1.1 or greater. The tape uses the
QIC-24 data format.

64700 Operating Environment The Graphical User Interface requires version
A.04.10 or greater of the 64700 Operating Environment. (The Graphical User
Interface version is A.04.00.)

Hardware and Memory Any workstation used with the Graphical User
Interface should have a minimum of 16 megabytes of memory. A color display is
also highly recommended.

From here, you should proceed to the section titled "Installation for Sun
SPARCsystems" for instructions on how to install, verify, and start the Graphical
User Interface on SPARCsystem workstations.

Chapter 14: Installation

455

Connecting the HP 64700 to a
Computer or LAN

Refer to the HP 64700 Series Installation/Service Guide for instructions on
connecting the HP 64700 to a host computer (via RS-422 or RS-232) or LAN and
setting the HP 64700’s configuration switches. (RS-422 and RS-232 are only
supported on HP 9000 Series 300/400 machines.)

Chapter 14: Installation
Connecting the HP 64700 to a Computer or LAN

456

Installing HP 9000 Software

This section shows you how to install the Graphical User Interface on HP 9000
workstations. These instruction also tell you how not to install the Graphical User
Interface if you want to use just the conventional Softkey Interface.

This section shows you how to:

1 Install the software from the media.

2 Verify the software installation.

3 Start the X server and the Motif Window Manager (mwm), or start HP VUE.

4 Set the necessary environment variables.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.
However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you will use the Softkey Interface instead of the Graphical User Interface, do not
install the XUI suffixed filesets in the "64700 Operating Environment" and
"<processor-type> Emulation Tools" partitions. (If you choose not to install the
Graphical User Interface, you will not have to use a special command line option to
start the Softkey Interface.)

Refer to the information on updating HP-UX in your HP-UX documentation for
instructions on viewing partitions and filesets and marking filesets that should not
be loaded.

The following sub-steps assume that you want to install all products on the tape.

1 Become the root user on the system you want to update.

Chapter 14: Installation
Installing HP 9000 Software

457

2 Make sure the tape’s write-protect screw points to SAFE.

3 Put the product media into the tape drive that will be the source device for the
update process.

4 Confirm that the tape drive BUSY and PROTECT lights are on. If the PROTECT
light is not on, remove the tape and confirm the position of the write-protect screw.
If the BUSY light is not on, check that the tape is installed correctly in the drive
and that the drive is operating correctly.

5 When the BUSY light goes off and stays off, start the update program by entering

/etc/update

at the HP-UX prompt.

6 When the HP-UX update utility main screen appears, confirm that the source and
destination devices are correct for your system. Refer to the information on
updating HP-UX in your HP-UX documentation if you need to modify these values.

7 Select "Load Everything from Source Media" when your source and destination
directories are correct.

8 To begin the update, press the softkey <Select Item>. At the next menu, press the
softkey <Select Item> again. Answer the last prompt with

y

It takes about 20 minutes to read the tape.

9 When the installation is complete, read /tmp/update.log to see the results of the
update.

Chapter 14: Installation
Installing HP 9000 Software

458

Step 2. Verify the software installation

A number of new filesets were installed on your system during the software
installation process. This and following steps assume that you chose to load the
Graphical User Interface filesets.

You can use this step to further verify that the filesets necessary to successfully
start the Graphical User Interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for verifying
installation, but these checks can help to double-check the install process.

1 Verify the existence of the HP64_Softkey file in the
/usr/hp64000/lib/X11/app-defaults subdirectory by entering
ls /usr/hp64000/lib/X11/app-defaults/HP64_Softkey at the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies that the
customize scripts executed because this file is created from other files during the
customize process.

2 Examine /usr/hp64000/lib/X11/app-defaults/HP64_Softkey near the end of the
file to confirm that there are resources specific to your emulator.

Near the end of the file, there will be resource strings that contain references to
specific emulators. For example, if you installed the Graphical User Interface for
the 68360 emulator, resource name strings will have m68360 embedded in them.

After you have verified the software installation, you must start the X server and an
X window manager (if you are not currently running an X server). If you plan to
run the Motif Window Manager (mwm), or similar window manager, continue with
Step 3a of these instructions. If you plan to run HP VUE, skip to Step 3b of these
instructions.

Chapter 14: Installation
Installing HP 9000 Software

459

Step 3a. Start the X server and the Motif Window
Manager (mwm)

If you are not already running the X server and a window manager, do so now. The
X server is required to use the Graphical User Interface because it is an X Windows
application. A window manager is not required to execute the interface, but, as a
practical matter, you must use some sort of window manager with the X server.

• Start the X server by entering x11start at the HP-UX prompt.

Consult the X Window documentation supplied with the HP-UX operating system
documentation if you do not know about using X Windows and the X server.

After starting the X server and Motif Window Manager, continue with step 4 of
these instructions.

Step 3b. Start HP VUE

If you are running the X server under HP VUE and have not started HP VUE, do so
now.

HP VUE is a window manager for the X Window system. The X server is
executing underneath HP VUE. Unlike the Motif Window Manager, HP VUE
provides a login shell and is your default interface to the HP 9000 workstation.

Chapter 14: Installation
Installing HP 9000 Software

460

Step 4. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "/usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/", you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you’re using "sh" or "ksh"; if you’re using "csh", environment variables are set
using the "setenv <VARIABLE> <value>" command.

1 Set the DISPLAY environment variable by entering

DISPLAY=<hostname>:<server_number>.<screen_number>;
export DISPLAY

For example:

DISPLAY=myhost:0.0; export DISPLAY

Consult the X Window documentation supplied with the UNIX system
documentation for an explanation of the DISPLAY environment variable.

2 Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
"/", you would enter

HP64000=/usr/hp64000; export HP64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr/hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

ln -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software. Again, if you installed relative to
/users/team, you would enter

Chapter 14: Installation
Installing HP 9000 Software

461

HP64000=/users/team/usr/hp64000; export HP64000

3 Set the PATH environment variable to include the usr/hp64000/bin directory by
entering

PATH=$PATH:$HP64000/bin; export PATH

Including usr/hp64000/bin in your PATH relieves you from prefixing HP 64700
executables with the directory path.

4 Set the MANPATH environment variable to include the usr/hp64000/man and
usr/hp64000/contrib/man directories by entering

MANPATH=$MANPATH:$HP64000/man:$HP64000/contrib/man
export MANPATH

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

Chapter 14: Installation
Installing HP 9000 Software

462

Installing Sun SPARCsystem Software

This section shows you how to install the Graphical User Interface on Sun
SPARCsystem workstations. These instructions also tell you how not to install the
Graphical User Interface if you want to use just the conventional Softkey Interface.

This section shows you how to:

1 Install the software from the media.

2 Start the X server and OpenWindows.

3 Set the necessary environment variables.

4 Verify the software installation.

5 Map your function keys.

Step 1. Install the software from the media

The tape that contains the Graphical User Interface software may contain several
products. Usually, you will want to install all of the products on the tape.
However, to save disk space, or for other reasons, you can choose to install selected
filesets.

If you will use the Softkey Interface instead of the Graphical User Interface, do not
install the XUI suffixed filesets. (If you choose not to install the Graphical User
Interface, you will not have to use a special command line option to start the
Softkey Interface.)

Refer to the Software Installation Notice for software installation instructions.
After you are done installing the software, return here.

Chapter 14: Installation
Installing Sun SPARCsystem Software

463

Step 2. Start the X server and OpenWindows

If you are not already running the X server, do so now. The X server is required to
run the Graphical User Interface because it is an X application.

Note that if you see windows on screen, skip this step. The X server must be
running in order for windows to be displayed on screen.

• Start the X server by entering /usr/openwin/bin/openwin at the UNIX prompt.

Consult the OpenWindows documentation if you do not know about using
OpenWindows and the X server.

Step 3. Set the necessary environment variables

The DISPLAY environment variable must be set before the Graphical User
Interface will start. Also, you should modify the PATH environment variable to
include the "usr/hp64000/bin" directory, and, if you have installed software in a
directory other than "/", you need to set the HP64000 environment variable.

The following instructions show you how to set these variables at the UNIX
prompt. Modify your ".profile" or ".login" file if you wish these environment
variables to be set when you log in. The following instructions also assume that
you’re using "csh"; if you’re using "sh", environment variables are set in the
"<VARIABLE>=<value>; export <VARIABLE>" form.

1 The DISPLAY environment variable is usually set by the openwin startup script.
Check to see that DISPLAY is set by entering

echo $DISPLAY

If DISPLAY is not set, you can set it by entering

setenv DISPLAY=<hostname>:<server_number>.<screen_number>

Chapter 14: Installation
Installing Sun SPARCsystem Software

464

For example:

setenv DISPLAY=myhost:0.0

Consult the OpenWindows documentation for an explanation of the DISPLAY
environment variable.

2 Set the HP64000 environment variable.

For example, if you installed the HP 64000 software relative to the root directory,
"/", you would enter

setenv HP64000 /usr/hp64000

If you installed the software relative to a directory other than the root directory, it is
strongly recommended that you use a symbolic link to make the software appear to
be under /usr/hp64000. For example, if you installed the software relative to
directory /users/team, you would enter

ln -s /users/team/usr/hp64000 /usr/hp64000

If you do not wish to establish a symbolic link, you can set the HP64000 variable to
the full path that contains the HP 64000 software; also set the
LD_LIBRARY_PATH variable to the directory containing run-time libraries used
by the HP 64000 products. Again, if you installed relative to /users/team, you
would enter

setenv HP64000 /users/team/usr/hp64000
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HP64000}/lib

3 Set the PATH environment variable to include the usr/hp64000/bin directory by
entering

setenv PATH ${PATH}:${HP64000}/bin

Including usr/hp64000/bin in your PATH relieves you from prefixing HP 64700
executables with the directory path.

Chapter 14: Installation
Installing Sun SPARCsystem Software

465

4 Set the MANPATH environment variable to include the usr/hp64000/man and
usr/hp64000/contrib/man directories by entering

setenv MANPATH ${MANPATH}:${HP64000}/man
setenv MANPATH ${MANPATH}:${HP64000}/contrib/man

Including these directories in your MANPATH variable lets you access the on-line
"man" page information included with the software.

5 If the Graphical User Interface is to run on a SPARCsystem computer that is not
running OpenWindows, include the /usr/openwin/lib directory in
LD_LIBRARY_PATH.

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/openwin/lib

Step 4. Verify the software installation

A number of product filesets were installed on your system during the software
installation process. Due to the complexity of installing on NFS mounted file
systems, a script that verifies and customizes these products was also installed.
This stand alone script may be run at any time to verify that all files required by the
products are in place in the file system. If required files are not found, this script
will attempt to symbolically link them from the $HP64000 install directory to their
proper locations.

• Run the script $HP64000/bin/envinstall.

Chapter 14: Installation
Installing Sun SPARCsystem Software

466

Step 5. Map your function keys

If you are using the conventional Softkey Interface, map your function keys by
following the steps below.

1 Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your $HOME directory.

2 Remove or comment out the following line from your .xinitrc file:

xmodmap -e ’keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out those
lines also.

3 Add the following to your .profile or .login file:

stty erase ^H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be used
for "delete character."

If you want to continue using the F1 key for HELP, you can use use F2-F9 for the
Softkey Interface. All you have to do is set the KEYMAP variable. If you use
OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the directory
/usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of the
$PATH definition, and add the following line to your .profile:

setenv OPENWINHOME /usr/openwin

After you have mapped your function keys, you must start the X server and an X
window manager (if you are not currently running an X server).

Chapter 14: Installation
Installing Sun SPARCsystem Software

467

Verifying the Installation

This section shows you how to:

• Determine the logical name of your emulator.

• Start the emulator/analyzer interface for the first time.

• Exit the emulator/analyzer interface.

Step 1. Determine the logical name of your
emulator

The logical name of an emulator is a label associated with a set of communications
parameters in the $HP64000/etc/64700tab.net file. The 64700tab.net file is placed
in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.net at the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it should
not be difficult to determine which emulator you want to address.

Examples A typical entry for a 68360 emulator connected to the LAN would appear as
follows:

#---
Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#---
 lan: em68360 m68360 21.17.9.143

Chapter 14: Installation
Verifying the Installation

468

A typical entry for a 68360 emulator connected to an RS-422 port would appear as
follows:

#---
| | | | |Xpar|Parity|Flow|Stop|Char
Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type | Name | Device | | |XON | |
| | | | |OFF | NONE |RTS | 2 | 8
#---
 serial: em68360 m68360 myhost /dev/emcom23 OFF NONE RTS 2 8

Step 2. Start the interface with the emul700
command

1 Apply power to the emulator you wish to access after making sure the emulator is
connected to the LAN or to your host system.

On the HP 64700 Series Emulator, the power switch is located on the front panel
near the bottom edge. Push the switch in to turn power on to the emulator.

2 Wait a few seconds to allow the emulator to complete its startup initialization.

3 Choose a terminal window from which to start the Graphical User Interface.

4 Start the Graphical User Interface by entering emul700 command and giving the
logical name of the emulator as an argument to the command, as in

$HP64000/bin/emul700 <logical_name> &

or
emul700 <logical name> &

if $HP64000/bin is in your path.

If you are running the X server, if the Graphical User Interface is installed, and if
your DISPLAY environment variable is set, the emul700 command will start the
Graphical User Interface. Otherwise, emul700 starts the conventional Softkey
Interface.

Chapter 14: Installation
Verifying the Installation

469

You should include an ampersand ("&") with the command to start the Graphical
User Interface as a background process. Doing so frees the terminal window where
you started the interface so that the window may still be used.

5 Optionally start additional Graphical User Interface windows into the same
emulation session by repeating the previous step.

You can also choose to use the conventional Softkey Interface under X Windows,
but you must include a command line argument to emul700 to override the default
Graphical User Interface. Start the conventional interface by entering

emul700 -u skemul <logical name>

Example Suppose you have discovered that the logical name for a 68360 emulator connected
to the LAN is "em68360". To start the Graphical User Interface and begin
communicating with that emulator, enter (assuming your $PATH includes
$HP64000/bin)

emul700 em68360

After a few seconds, the Graphical User Interface Emulator/Analyzer window
should appear on your screen. The window will be similar to the following:

Chapter 14: Installation
Verifying the Installation

470

Chapter 14: Installation
Verifying the Installation

471

Step 3. Exit the Graphical User Interface

1 Position the mouse pointer over the pulldown menu named "File" on the menu bar
at the top of the interface screen.

2 Press and hold the command select mouse button until the File menu appears.

3 While continuing to hold the mouse button down, move the mouse pointer down
the menu to the "Exit" menu item.

4 Display the Exit cascade menu by moving the mouse pointer to the right edge of
the Exit menu choice. There is an arrow on the right edge of the menu item.

5 Choose "Released" from the cascade menu.

The interface will terminate and release the emulator for use by others.

Chapter 14: Installation
Verifying the Installation

472

15

Installing/Updating Emulator
Firmware

473

Installing/Updating Emulator Firmware

The 68360 emulator firmware is included with the emulator/analyzer interface
software, and the program that downloads emulator firmware is included with the
HP B1471 64700 Operating Environment product.

(The firmware, and the program that downloads it into the control card, are also
included with the 68360 emulator probe on an MS-DOS format floppies. The
floppies are for users that do not have hosted interface software.)

Before you can update emulator firmware, you must have already installed the
emulator into the HP 64700, connected the HP 64700 to a host computer or LAN,
and installed the emulator/analyzer interface and HP B1471 software as described
in Chapter 14, "Installation".

This chapter describes how to:

• Update firmware with the "progflash" command.

• Display current firmware version information.

474

To update emulator firmware with "progflash"

• Enter the progflash -v <emul_name> <product> command.

The progflash command downloads code from files on the host computer into
Flash EPROM memory in the HP 64700.

The -v option means "verbose". It causes progress status messages to be displayed
during operation.

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file.

The <product> option names the product whose firmware is to be updated.

If you enter the progflash command without options, it becomes interactive. If
you don’t include the <emul_name> option, it displays the logical names in the
/usr/hp64000/etc/64700tab.net file and asks you to choose one. If you don’t
include the <product> option, it displays the products which have firmware update
files on the system and asks you to choose one. You can abort the interactive
progflash command by pressing <CTRL>c.

progflash will return 0 if it is successful; otherwise, it will return an nonzero
(error) and a message will be written on the standard error output.

You can verify the update by displaying the firmware version information.

Chapter 15: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

475

Examples To install or update the HP 64780 emulator firmware:

$ progflash <RETURN>

 HPB1471-19309 A.04.40 27Sep91
 64700 SERIES EMULATION COMMON FILES

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1991

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

 Logical Name Processor
 1 em68k m68000
 2 em80960 i80960
 3 em68360 m68360

Number of Emulator to Update? (intr (usually cntl C or DEL) to abort)

To update firmware in the HP 64700 that contains the 68360, emulator, enter "3".

 Product
 1 64700
 2 64703/64704/64706/64740
 3 64744
 4 64780
 5 64760

Number of Product to Update? (intr (usually cntl C or DEL) to abort)

To update the HP 64780 68360 emulator firmware, enter "4".

Enable progress messages? [y/n] (y)

To enable status messages, enter "y".

Chapter 15: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

476

Config file path is /usr/hp64000/inst/update/64780.cfg
System firmware revision required = A.03.00
ROM identifier address = 2FFFF0H
Required hardware identifier = 1FF4H
Control ROM start address = 280000H
Control ROM size = 40000H
Control ROM width = 16
Programming voltage control address = 2FFFFEH
Programming voltage control value = FFFFH
Programming voltage control mask = 0H
Checking System firmware revision...
Rebooting HP64700...
Downloading flash programming code: /usr/hp64000/lib/npf.X
Checking Hardware id code...
Downloading ROM code: /usr/hp64000/inst/update/64780.X
 Code start 280000H (should equal control ROM start)
 Code size 2348CH (must be less than control ROM size)
Finishing up...
Rebooting HP64700...
$

You could perform the same update as in the previous example with the following
command:

$ progflash -v em68360 64780 <RETURN>

Chapter 15: Installing/Updating Emulator Firmware
To update emulator firmware with "progflash"

477

To display current firmware version information

• Use the Terminal Interface ver command to view the version information for
firmware currently in the HP 64700.

When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with the pod_command command. For example:

display pod_command <RETURN>
pod_command "ver" <RETURN>

Examples The Terminal Interface ver command displays information similar to:

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700B Series Emulation System
 Version: B.01.00 12Dec93
 Location: Flash
 System RAM:1 Mbyte

 HP64780 (PPN: 64780) Motorola 68360 Emulator
 Version: A.03.00
 Speed: 16.7 MHz
 Memory: 512 Kbytes
 CPU: 68360, Mask Set ID = 39

 HP64740 Emulation Analyzer
 Version: A.02.02 13Mar91

Chapter 15: Installing/Updating Emulator Firmware
To display current firmware version information

478

If there is a power failure during a firmware
update

If there is a power glitch during a firmware update, some bits may be lost during
the download process, possibly resulting in an HP 64700 that will not boot up.

Repeat the firmware update process.

If the HP 64700 is connected to the LAN in this situation and you are unable to
connect to the HP 64700 after the power glitch, try repeating the firmware update
with the HP 64700 connected to an RS-232 or RS-422 interface.

Chapter 15: Installing/Updating Emulator Firmware
If there is a power failure during a firmware update

479

480

Glossary

Absolute Count

A count in the trace list count column that indicates the total count
accumulated between the displayed state and the trigger state.

Absolute File

A file consisting of machine-readable instructions in which absolute
addresses are used to store instructions, data, or both. These files are
generated by the compiler/assembler/linker and are loaded into the
emulator.

Access Breakpoint

A break from execution of your target program to execution of the
emulation monitor when the emulator detects a read or write of an
address or range of addresses.

Access Mode

Specifies the types of cycles used to access target system memory
locations. For example a "byte" access mode tells the monitor program
to use load/store byte instructions to access target memory.

Analyzer

An instrument that captures activity of signals synchronously with a
clock signal. An emulation-bus analyzer captures emulator bus cycle
information. An external analyzer captures activity on signals external
to the emulator.

Analyzer Clock Speed

The bus cycle rate of the emulation processor. If the emulation
processor is running at 21 MHz and the fastest bus cycle requires three
clocks, then the analyzer clock speed (bus cycle rate) is 21/3 = 7 MHz.

481

Arm Condition

A condition that reflects the state of a signal external to the analyzer.
The arm condition can be used in branch or storage qualifiers. External
signals can be from another analyzer or an instrument connected to the
CMB or BNC.

Assembler

A program that translates symbolic instructions into object code.

Background

The emulator mode in which foreground operation is suspended so the
emulation processor can be used for communication with the emulation
controller. The background monitor does not occupy any processor
address space.

Background Emulation Monitor

An emulation monitor program that does not execute as part of the user
program, and therefore, operates in the emulator’s background mode.
The background monitor can execute when target program execution is
temporarily suspended. The background monitor does not occupy any
of the address space that is available to your target program.

Background Memory

Memory space reserved for the emulation processor when it is
operating in the background mode. Background memory does not take
up any of the microprocessor’s address space.

BNC Connector

A connector that provides a means for the emulator to drive/receive a
trigger signal to/from an external device (such as a logic analyzer,
oscilloscope, or HP 64000-UX system).

Breakpoint

A point at which emulator execution breaks from the target program
and begins executing in the monitor. (See also Execution Breakpoint
and Access Breakpoint.)

Glossary

482

Command File

A file containing a sequence of commands to be executed.

Compatible Mode

The compatible mode of the deep analyzer configures the analyzer to
provide the same memory depth as the 1K analyzer: 1024 states deep
when the analyzer is not configured to make a count of states or time
during a measurement, and 512 states deep when the analyzer is
configured to make a count of states or time during a measurement. If
the emulator interface you are using along with the deep analyzer
requires that you use the compatible mode, the deep analyzer will still
be able to provide one of its benefits for your measurement; you will be
able to make your counts of states or time at full emulator clock speed.

Compiler

A program that translates high-level language source code into object
code, or produces an assembly language program with subsequent
translation into object code by an assembler. Compilers typically
generate a program listing which may list errors displayed during the
translation process.

Counter Overflow

When the counter reaches maximum count and begins a new count
from zero. The counter of the deep analyzer simply counts
continuously once a trace begins; it increments its count every 20 ns,
and reaches maximum count in about 22.9 minutes (22 minutes and 54
seconds). The deep analyzer sets a flag in memory and stores it along
with the first state that is captured after the counter overflow occurs
(first state captured after the counter begins again at zero).

Configuration File

A file in which configuration information is stored. Typically,
configuration files can be modified and re-loaded to configure
instruments (such as an emulator) or programs (such as the PC
Interface).

Glossary

483

Coordinated Measurement

A synchronized measurement made between the emulator and
analyzer, between emulation-bus analyzer and external analyzer, or
between multiple emulators or analyzers. For example, a coordinated
measurement is made when two or more HP 64700
emulators/analyzers start executing together, or break into background
monitors at the same time.

Coordinated Measurement Bus (CMB)

The bus that is used for communication between multiple HP 64700
Series emulators/analyzers or between HP 64700 emulators/analyzers
and an HP IMB/CMB Interface to allow coordinated measurements.

Cross Trigger

The situation in which the trigger condition of one analyzer is used to
trigger another analyzer. Two signals internal to the HP 64700 can be
connected through the BNC on the instrumentation card cage to allow
cross-triggering between the emulation-bus analyzer and other
analyzers.

DCE (Data Communications Equipment)

A specific RS-232C hardware interface configuration. Typically, DCE
is a modem.

Deep Analyzer

In this manual, the term "deep analyzer" refers to the HP 64794
Emulation-Bus Analyzer with deep trace memory.

Display Mode

When displaying memory, this mode tells the emulator the size of the
memory locations to display. When modifying memory, the display
mode tells the emulator the size of the values to be written to memory.

Glossary

484

Downloading

The process of transferring absolute files from a host computer into the
emulator.

Embedded Microprocessor System

The microprocessor system which the emulator plugs into.

Emulation-Bus Analyzer

The internal analyzer that captures emulator bus cycle information
synchronously with the processor’s clock signal.

Emulation Monitor Program

A program that is executed by the emulation processor which allows
the emulation controller to access target system resources. For
example, when you display target system memory locations, the
monitor program executes microprocessor instructions that read the
target memory locations and send their contents to the emulation
controller.

Emulation Memory

High-speed memory (RAM) in the emulator that can be used in place
of target system memory.

Emulator

An instrument that performs just like the microprocessor it replaces,
but at the same time, it gives you information about the operation of the
processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers,
target system memory, and I/O resources.

Emulator Probe

The assembly that connects the emulator to the target system
microprocessor socket.

Glossary

485

Escape Sequence (transparent mode)

A keyboard input consisting of a special sequence of characters,
beginning with the escape character (1C hexadecimal). This sequence
is used to access an emulator while in transparent mode. When using
multiple emulators and transparent mode to access the different
emulators, each one must be given a unique escape character.

Execution Breakpoint

A BKPT instruction placed in your software in RAM, replacing the
normal instruction at the RAM address. Breakpoints for code in ROM
are stored in emulation hardware and jammed on the emulation bus
during the fetch cycle. When the BKPT is executed, emulation
immediately transfers from execution of your target program to
execution of the emulation monitor.

Foreground

The mode in which the emulator is executing the user program. In
other words, the mode in which the emulator operates as the target
microprocessor would.

Foreground Monitor

A monitor program that executes in the foreground address space.
When the monitor exists in foreground, it is directly accessible by, and
can interact with, your target program.

Global Restart

When the same secondary branch condition is used for all terms in the
analyzer’s sequencer, and secondary branches are always back to the
first term.

Guarded Memory

An address range that is to be inaccessible to the emulation processor.
The emulator will generate a break and display an error message if an
access to guarded memory occurs.

Glossary

486

Handshaking

A process that involves receiving and/or sending control characters
which indicate a device is ready to receive data, that data has been sent,
and that data has been accepted.

Host Computer

A computer to which an HP 64700 Series emulator can be connected.
A host computer may run interface programs which control the
emulator. Host computers may also be used to develop programs to be
downloaded into the emulator.

Inverse Assembler

A program that translates absolute code into assembly language
mnemonics.

Label

A set of one or more analyzer channels. Example, the label "addr" is
used to identify the analyzer channels connected to the address bus of
the emulation processor.

Linker

A program that combines relocatable object modules into an absolute
file which can be loaded into the emulator and executed.

Logical Address Space

The addresses assigned to code during the process of compiling,
assembling and linking to generate absolute files.

Macros

Custom made commands that represent a sequence of other commands.
Entire sequences of commands defined in macros will be automatically
executed when you enter the macro name. Macro nesting is permitted;
this allows a macro definition to contain other macros.

Glossary

487

Memory Mapper Term

A number assigned to a specific address range in the memory map.
Term numbers are consecutive.

Memory Mapping

Defining ranges of the processor address space as emulation RAM or
ROM, target RAM or ROM, or guarded memory.

Monitor Program

A program executed by the emulation processor that allows the
emulation system controller to access target system resources. For
example, when you display target system memory locations, the
monitor program executes microprocessor instructions that read the
target memory locations and send their contents to the emulation
controller.

Operating System

Software which controls the execution of computer programs and the
flow of data to and from peripheral devices.

Overflow

See counter overflow.

Parity Setting

The configuration of the parity switches. Depending on the
configuration of the parity output switch and the parity switch, a parity
check bit is added to the end of data to make the sum of the total bits
either even or odd. A parity check is performed after data has been
transferred, and is accomplished by testing a unit of the data for either
odd or even parity to determine whether an error has occurred in
reading, writing, or transmitting the data.

Path

Also referred to as a directory (for example \users\projects).

Glossary

488

Pass Through Mode

See Transparent Mode.

PC Interface

A program that runs on the HP Vectra and IMB PC/AT compatible
computers. This is a friendly interface used to operate an HP 64700
Series emulator.

Performance Verification

A program that tests the emulator to determine whether the emulation
and analysis hardware is functioning properly.

Physical Address Space

The address space in hardware memory and hardware I/O that is
accessed by the microprocessor during normal program execution.

P/O

An abbreviation for "part of." Used in illustrations to show that a part is
shipped with other parts under a certain HP part number.

Prefetch

The ability of a microprocessor to fetch additional opcodes and
operands before the current instruction is finished executing.

Prestore

The storage of states captured by the analyzer that precede states which
are normally stored. If the normal storage qualifier specifies the entry
address of a function or routine, prestore can be used to identify the
callers of that function or routine.

Prestore Qualifier

A specification that must be met by a state before it can be saved in the
analyzer prestore memory.

Glossary

489

Primary Sequencer Branch

Occurs when the analyzer finds the primary branch state specified at a
certain level and begins searching for the states specified at the primary
branch’s destination level.

Qualifier

A specification that must be met before an action can be taken by the
analyzer. For example, a store qualifier is a specification that must be
met by an incoming state before it can be stored in the trace memory.
The "arm" condition can be used as an additional qualifier. For
example, an external analyzer may be set up to supply a true signal to
the rear panel BNC connector on the card cage when it detects a true
condition in the target system. Then the analyzer can be set up to store
qualify a certain kind of state, but only when the arm signal from the
BNC is true.

Real-Time Execution

Continuous execution of the user program without interference from
the emulator. (Such interference occurs when the emulator temporarily
breaks into the monitor so that it can access register contents or target
system memory or I/O.)

Relative Count

A count in the trace list count column that shows the count between the
present displayed state and the state displayed immediately before it.
Relative time count, for example, shows the elapsed time between the
previous displayed state and the present state. Note that the count is
between displayed states. If your trace list is inverse assembled and/or
dequeued, several states may have been captured in memory between
the present displayed state and the displayed state immediately before
it.

Glossary

490

Remote Configuration

The configuration in which an HP 64700 Series emulator is directly
connected to a host computer via a single port. Commands are entered
(typically from an interface program running on the host computer) and
absolute code is downloaded into the emulator through that single port.

RS-232C

A standard serial interface used to connect computers and peripherals.

Secondary Sequencer Branch

Occurs when the analyzer finds the secondary branch state specified at
a certain level before it found the primary branch state and begins
searching for the states specified at the secondary branch’s destination
level.

Sequence Terms

Individual levels of the sequencer.

Sequencer

The part of the analyzer that allows it to search for a certain sequence
of states before triggering.

Sequencer Branch

Occurs when the analyzer finds the primary or secondary branch state
specified at a certain level and begins searching for the states specified
at another level.

Single-step

The execution of one microprocessor instruction. Single-stepping the
emulator allows you to view program execution one instruction at a
time.

Software Breakpoint

Refer to execution breakpoint and access breakpoint in this glossary.

Glossary

491

Software Performance Analyzer

An analyzer that measures execution of software modules, interaction
between software modules, and usage of data points and I/O ports.

Standalone Configuration

The configuration in which a data terminal is used to control the HP
64700 Series emulator, and the emulator is not connected to a host
computer.

stderr

An abbreviation for “standard error output.” Standard error can be
directed to various output devices connected to the HP 64700 ports.

stdin

An abbreviation for “standard input.” Standard input is typically
defined as your computer keyboard.

stdout

An abbreviation for “standard output.” Standard output can be directed
to various output devices connected to the HP 64700 ports.

Step

See Single-step.

Store Qualifier

A specification that must be met by a state before it can be saved in the
analyzer trace memory.

Synchronous Execution

The execution of multiple HP 64700 Series emulators/analyzers at the
same time (i.e., multiple emulator start/stop).

Glossary

492

Syntax

The order in which expressions are structured in command languages.
Syntax rules determine which forms of command language syntax are
grammatically acceptable.

Target Program

The program you are developing for your product. It is also called user
program.

Target System

The circuitry where the emulator probe is connected (typically a
microprocessor-based system under development).

Target System Memory

Storage that is present in the target system.

Terminal Interface

The command interface present inside the HP 64700 Series emulators
that is used when the emulator is connected to a simple data terminal.
This interface provides on-line help, command recall, macros, and
other features which provide for easy command entry from a terminal.

Trace

A collection of states captured synchronously by the emulation-bus
analyzer and stored in trace memory.

Glossary

493

Trigger

The condition that identifies a reference state within an analyzer trace
measurement. Trigger also refers to the analyzer signal that becomes
active when the trigger condition is found.

Trigger signals called trig1 and trig2 are bidirectional signal lines that
can be used to coordinate measurement activity between emulators and
analyzers installed in the instrumentation card cage, and between
instruments connected to the BNC on the rear panel of the card cage.

Note that there is a delay when you use a trigger for measurement
coordination. For example, you may specify that the emulator break to
its monitor program when it receives trig1 from the analyzer. Several
states may be executed in the emulator between the time the analyzer
recognizes its trigger condition, generates trig1, delivers trig1 to the
emulator, and the emulator responds to trig1 by breaking to its monitor
program.

Uploading

The transfer of emulation or target system memory contents to a host
computer.

Unlocked Exit

One of two methods used to leave the high level (Graphical or Softkey)
Interface and return to the host computer operating system. An
unlocked exit command allows you to exit the high level interface and
re-enter later with the default configuration. (See also Locked Exit.)
This is not available in the Terminal Interface.

User Program

Another name for your target program (the program you are
developing for your product.

Viewport

See Window.

Glossary

494

Wait States

Extra microprocessor clock cycles that increase the total time of a bus
cycle. Wait states are typically used when slower memory is
implemented.

Window

A specified rectangular area of virtual space shown on the display in
which data can be observed.

1K Analyzer

The term "1K analyzer" refers to the HP 64704 Emulation-Bus
Analyzer with 1K trace memory.

Glossary

495

496

Index

A absolute files, 344
loading, 110
loading without symbols, 111
storing memory contents into, 111

access size (target memory), 481
action keys, 6

custom, 286
getting 68360 register displays, 142
operation, 61
with command files, 286
with entry buffer, 59, 61

activity measurements (SPMT), 231-245
additional symbols for address, 239
confidence level, 240
error tolerance, 240
interpreting reports, 238
mean, 238
relative and absolute counts, 239
standard deviation, 239
symbols within range, 239
trace command setup, 233

address
assigning a base address for 68360 registers, 109
not range command, 211
values, 210

address (analyzer state qualifier softkey), 364, 379
address range command, 211
address range file format (SPMT measurements), 235
analyzer, 481

introduction, 174
problems while tracing, 185
trace at EXECUTE, 267

analyzer clock speed, definition, 481

497

application resource
See X resource

arm_trig2, in trace command, 394
1K analyzer, definition, 495

B background, 482
emulation monitor, 482
memory, 482

base address, assigning a base address for 68360 registers, 109
bases (number), 206
bbaunload command, syntax, 304
binary number entries, 207
binary numbers, 206
bit field values of registers, displaying, 142
BNC

connector, 260
trigger signal, 262

break command, 126
syntax, 303

breakpoints, 14
copying to a file, 163

C capture continuous stream of execution, 222
cascade menu, 52
cautions

BNC accepts only TTL voltage levels, 265
CMB 9-pin port is NOT for RS-232C, 263
do not use probe without pin extender, 31
powering OFF the HP 64700, 30
protect emulator against static discharge, 30

changing
column width, 198
directory context in configuration window, 93
directory context in emulator/analyzer window, 122
symbol context, 122

client, X, 278
CMB (coordinated measurement bus), 260

EXECUTE line, 262, 305
HP 64700 connection, 263
READY line, 261
signals, 261
TRIGGER line, 261

Index

498

cmb_execute command, 268, 305
color scheme, 280, 284
columns in main display area, 281
command buttons, 7
command files, 346

other things to know about, 76
passing parameters, 75

command line, 7
Command Recall dialog box, 8
Command Recall dialog box, operation, 70
copy-and-paste to from entry buffer, 60
editing entry area with pop-up menu, 69
editing entry area with pushbuttons, 68
entering commands, 67
entry area, 7
executing commands, 67
help, 70
keyboard use of, 71-73
online help, 73
recalling commands with dialog box, 70
turning on or off, 66, 281

command paste mouse button, 9
Command Recall dialog box operation, 62
command select mouse button, 9
commands, 71

combining on a single command line, 71
completion, 71
editing in command line entry area, 68-69
entering in command line, 67
executing in command line, 67
keyboard entry, 71
line erase, 72
recall, 72
recalling with dialog box, 70
summary, 302
word selection, 72

companion mode, 166-169
complex trace measurements, 206-224
configuration, help for configuration items in dialog boxes, 94

Index

499

configuration context, displaying from configuration window, 93
configuration info

copy command, 307
copying to a file, 162
display command, 316-318

configuration, emulator
exiting the interface, 95
loading from file, 95
modifying a section, 88
starting the interface, 86
storing, 92

context
changing directory in configuration window, 93
changing directory in emulator/analyzer window, 122
changing symbol, 122
displaying directory from configuration window, 93
displaying directory from emulator/analyzer window, 121
displaying symbol, 121

coordinated measurements, 269
break_on_trigger syntax of the trace command, 269
definition, 260

copy command, 306-308
configuration info, 307
data, 307
display, 307
error_log, 307
event_log, 307
global symbols, 307
help, 307
local_symbols_in, 309
memory, 310-311
pod_command, 308
registers, 312
software breakpoints, 308
status, 308
trace, 313

copy-and-paste
addresses, 57
from entry buffer, 60
multi-window, 57, 60

Index

500

copy-and-paste (continued)
symbol width, 57
to entry buffer, 56

copying
breakpoints to a file, 163
configuration info to a file, 162
data values to a file, 162
display area to file, 162
emulator status to a file, 163
error log to file, 163
event log to file, 163
global symbols to file, 163
local symbols to file, 163
memory to file, 162
pod commands to a file, 163
registers to file, 163
trace listing to file, 162

count states, 216
count time, 216
cursor buttons, 8

D data
copy command, 307
display command, 319-321

data (analyzer state qualifier softkey), 364, 379
data range command, 211
data values, 151-152, 210

adding items to the existing display, 152
clearing the display and adding a new item, 152
copying to a file, 162
displaying, 18, 151

decimal numbers, 207
deep analyzer, definition, 484
demos, setting up, 289-291
dequeuer, how it works, 192
device table file, 12, 41-42
dialog box, 61

Command Recall, operation, 62, 70
Directory Selection, 122
Directory Selection, operation, 61, 64
Entry Buffer Recall, operation, 59, 62
File Selection, operation, 61, 63

Index

501

dialog box, trace options, 187
directory context

changing in configuration window, 93
changing in emulator/analyzer window, 122
displaying from configuration window, 93
displaying from emulator/analyzer window, 121

Directory Selection dialog box operation, 61, 64
display area, 7

columns, 281
copying to a file, 162
lines, 281-282

display command, 314-315
configuration info, 316-318
data, 319-321
error_log, 314
event_log, 315
global_symbols, 322
local_symbols_in, 323
memory, 324-327
memory mnemonic, 13, 147
pod_command, 315
registers, 141-145, 328
simulated_io, 170, 172, 329
software_breakpoints, 330
status, 315
symbols, 112
trace, 331-334

display mode, 484
display status command, 179
display trace absolute command, 194
display trace absolute status binary command, 194
display trace absolute status hex command, 194
display trace absolute status mnemonic command, 194
display trace command, 177, 186-205, 228
display trace count absolute command, 199
display trace count command, 199
display trace count relative command, 199
display trace depth command, 204
display trace dequeue off command, 192
display trace dequeue on command, 192

Index

502

display trace disassemble_from_line_number command, 189
align_data_from_line option, 192
options, 190

display trace mnemonic command, 189
display trace offset_by command, 201
displaying bit-field values of registers, 142
displays, copying, 307
don’t care digits, 207
don’t care number entries, 207
downloading absolute files, 110
duration measurements (SPMT), 246-254

average time, 251
confidence level, 252
error tolerance, 252
interpreting reports, 251
maximum time, 251
minimum time, 251
number of intervals, 251
recursion considerations, 246
selecting, 249
standard deviation, 252
trace command setup, 247

E editing
command line entry area with pop-up menu, 69
command line entry area with pushbuttons, 68
file, 158, 281
file at address, 158, 281
file at program counter, 158
file at symbol from symbols screen, 158
file from memory display screen, 158

emul700, command to start the emulator/analyzer interface, 41
emulation-bus analyzer, 485

trace signals, 208
emulation configuration, help for items in dialog boxes, 94
emulation memory, loading absolute files, 110
emulation monitor, 485
emulation session, exiting, 48

Index

503

emulator, 485
configuring the, 84
device table file, 12, 41-42
multiple start/stop, 267-268
plugging into a target system, 27
running from target reset, 124-125
using the, 104

emulator configuration
exiting the configuration interface, 95
load command, 345
loading from file, 95
modify command, 348
modifying a configuration section, 88
starting the configuration interface, 86
storing, 92

emulator probe
adapter pin alignment, 31
target system connection, 29-32

emulator status, displaying, 163
emulator/analyzer interface

exiting, 24, 47-48
running in multiple windows, 41
starting, 41-44

end command, 24, 48, 335
entry

pod commands, 80
simulated io, 171

entry buffer, 7
address copy-and-paste to, 57
clearing, 56
copy-and-paste from, 60
copy-and-paste to, 56
Entry Buffer Recall dialog box, 7
Entry Buffer Recall dialog box, operation, 59
multi-window copy-and-paste from, 60
multi-window copy-and-paste to, 57
operation, 59
recall button, 7
recalling entries, 59
symbol width and copy-and-paste to, 57
text entry, 56

Index

504

entry buffer (continued)
with action keys, 59, 61
with pulldown menus, 59

Entry Buffer Recall dialog box operation, 62
environment variables (UNIX)

HP64KPATH, 78
HP64KSYMBPATH, 386
PATH, 41
Softkey Interface, setting while in, 156

equates, 209
for MC68360, 209

error log
copy command, 307
display command, 314
to file, 163

error messages, emulator, 403-439
event log, 45

copy command, 307
display command, 315
to file, 163

event_log, 46
EXECUTE

CMB signal, 262
tracing at, 267

exit, emulator/analyzer interface, 24, 47-48
exiting

emulation session, 48
emulator/analyzer windows, 47

expanded displays of registers, 142
expanded register displays, 142
expressions, 206

--EXPR-- syntax, 336-338

F file
breakpoints, copying to, 163
configuration info, copying to, 162
data values, copying to, 162
display area to, 162
editing, 158
editing at address, 158
editing at program counter, 158
editing at symbol from symbols screen, 158

Index

505

file (continued)
editing from memory display screen, 158
emulator configuration, 92
emulator configuration load, 95
emulator status, copying to, 163
error log to, 163
event log to, 163
global symbols to, 163
local symbols to, 163
memory to, 162
pod commands, copying to, 163
registers to, 163
trace listing to, 162

file extensions, .EA configuration files, 92
file formats

address ranges for SPMT measurements, 235
time ranges for SPMT measurements, 249

File Selection dialog box operation, 61, 63
files

restoring peripheral register settings, 164
saving peripheral register settings, 164

firmware version, 478
formal parameters (command files), 75
forward command, syntax, 341
functions, step over, 147

G global restart qualifier, 486
global symbols, 13, 207, 322

copy command, 307
display command, 113, 322
initializing the SPMT measurement with, 235
to file, 163

H halfbright, 67-68
hand pointer, 7, 55
hardware

HP 9000 memory needs, 454
HP 9000 minimum performance, 454
HP 9000 minimums overview, 454
SPARCsystem memory needs, 455
SPARCsystem minimum performance, 455
SPARCsystem minimums overview, 455

Index

506

help
command line, 70
copy command, 307
help index, 65
online, 73
softkey driven information, 73

help command, 342-343
help for configuration items, 94
help index, displaying, 65
hexadecimal number entries, 207
hexadecimal numbers, 207
high level interface, using pod commands within, 222
HP 64700 Operating Environment, minimum version, 455
HP 9000

700 series Motif libraries, 454
HP-UX minimum version, 454
installing software, 457-462
minimum system requirements overview, 454

HP-UX, minimum version, 454
HP64KPATH, UNIX environment variable, 78
HP64KSYMBPATH environment variable, 386

I IEEE-695 absolute file format, 110
input

pod commands, 80
simulated io, 171

input scheme, 280
installation, 454

HP 9000 software, 457-462
SPARCsystem software, 463-467

interactive measurements, 269
interface, emulator configuration

exiting, 95
modifying a section, 88
starting, 86

interface, exiting, 48
inverse video, graphical interface demo/tutorial files, 290

Index

507

K keyboard
accelerators, 54
choosing menu items, 53
focus policy, 54
pod commands, 80
simulated io, 171

keyboard_to_simio, modify command, 349

L label scheme, 280, 284
LD_LIBRARY_PATH environment variable, 466
libraries, Motif for HP 9000/700, 454
line numbers (source file), symbol display, 114
lines in main display area, 281-282
load command, 344-345

absolute files, 110
configuration, 345
trace, 345
trace_spec, 345

load trace command, 228
load trace_spec command, 225, 227
local symbols, 207, 323

copy command, 309
display command, 114, 323
initializing the performance measurement with, 235
to file, 163

locked, end command option, 48
log_commands command, 346

M master-slave mode of operation, 166-169
maximum trace depth, 216
memory, 310-311

activity measurements (SPMT), 231, 238
contents listed as asterisk (*), 310
copy command, 310-311
display command, 324-327
displaying, 146
displaying at an address, 149
displaying repetitively, 150
loading programs into, 110
mnemonic format display, 147
modify command, 350-352
modifying, 150

Index

508

memory (continued)
store command, 384
to file, 162

memory recommendations
HP 9000, 454
SPARCsystem, 455

menu, pop-up menu in trace list, 188
menus

editing command line with pop-up, 69
hand pointer means pop-up, 7, 55
pulldown operation with keyboard, 53
pulldown operation with mouse, 52-53

mixing pod commands with high level commands, 222
mnemonic memory display, 13, 147

setting the source/symbol modes, 153
modes

companion, 166-169
source/symbol, 153

modify command, 347
configuration, 348
keyboard_to_simio, 349
memory, 350-352
register, 144, 353
software_breakpoints, 354-355

module duration measurements (SPMT), 246
module usage measurements (SPMT), 246
Motif, HP 9000/700 requirements, 454
mouse

buttons, 9
choosing menu items, 52-53

multi-window
copy-and-paste from entry buffer, 60
copy-and-paste to entry buffer, 57

multiple commands, 71

Index

509

N name_of_module command, 157
nesting command files, 74
NORMAL key, 301, 336
nosymbols, 112
NOT TAKEN in trace list, 193
notes

"perf.out" file is in binary format, 256
breakpoint locations must contain opcodes, 133, 135
CMB EXECUTE and TRIGGER signals, 262
measurement errors on recursive/multiple entry routines, 247
only one range resource available, 364
some compilers emit more than one symbol for an address, 239
step command doesn’t work when CMB enabled, 267

number bases, 206
number entries, entering binary, hexadecimal, and don’t cares, 207
numerical values, 206

O octal numbers, 207
offset addresses in trace list, 201
online help, 73
operating system

HP 64700 Series minimum version, 455
HP-UX minimum version, 454
SunOS minimum version, 455

operators, 207
bitwise AND, 207
bitwise OR, 207
integer, 207
unary one’s complement, 207
unary two’s complement, 207

overflow, definition, 488

P P/O (part of), 489
parameter passing in command files, 75
parent symbol, displaying from symbols screen, 118
paste mouse button, 9
PATH, UNIX environment variable, 41
perf.out, SPMT output file, 236, 250, 255-257, 356
perf32, SPMT report generator utility, 230, 255-256

interpreting reports, 238, 251
options, 257
using the, 257

Index

510

performance measurements
See software performance measurements

performance_measurement_end command, 356
performance_measurement_initialize command, 357-358
performance_measurement_run command, 359
pin extender, 31
platform

HP 9000 memory needs, 454
HP 9000 minimum performance, 454
SPARCsystem memory needs, 455
SPARCsystem minimum performance, 455

platform scheme, 280
plug-in, 27
pod commands, 360-361

copy command, 308
copying to a file, 163
display command, 315
display screen, 80
keyboard input, 80

pod commands used in high level interface, 222
pop-up menu in trace list, 188
pop-up menus

command line editing with, 69
hand pointer indicates presence, 7, 55

power failure during firmware update, 479
prestore qualifier, 218
primary branches (analyzer sequencer), 490
problems, tracing with the analyzer, 185
problems and solutions, 24
processor type, 42
progflash example, 476
program activity measurements (SPMT), 231, 238
program counter

mnemonic memory display, 14
running from, 123

pulldown menus
choosing with keyboard, 53
choosing with mouse, 52-53

pushbutton select mouse button, 9

Q QUALIFIER, in trace command, 362-363

Index

511

R RAM/EMRAM concepts, 443-450
range resource, note on, 364
RANGE, in trace command, 364-365
READY, CMB signal, 261
recall buffer, 7

columns, 287
initial content, 287-288
lines, 287
recalling entries, 59

recall, command, 72
dialog box, 70

recursion in SPMT measurements, 246
registers

68360 register displays with action keys, 142
assigning a base address for 68360 registers, 109
copy command, 312
display command, 328
display/modify, 141-145
displaying, 19, 141
displaying details of register bit fields, 142
modify, 144
modify command, 353
restoring peripheral register settings, 164
saving peripheral register settings in a file, 164
to file, 163
viewing master/slave with Action Keys, 37

release_system, end command option, 24, 48, 92
repeat the previous trace command, 221
repetitive display of memory, 150
reset (emulator), commands that cause exit from, 128
reset command, 366
reset trace display defaults, 202
reset, run from target, 125
reset, running from, 124
resource

See X resource
restart terms, 213
run command, 123, 367-368
run from reset, 124-125

Index

512

S scheme files (for X resources), 279
color scheme, 280, 284
custom, 284-285
input scheme, 280
label scheme, 280, 284
platform scheme, 280
size scheme, 280

scroll bar, 7
secondary branch expression, 491
select mouse button, 9
sequence definition, 206
sequencer (analyzer), 491

branch, 491
terms, 491

sequencing and windowing specification, 215
SEQUENCING, in trace command, 369-370
server, X, 278
set command, 186-205, 371-375
set default command, 202
set source off command, 197
set source on command, 197
set source only command, 197
set symbols all command, 195
set symbols high command, 195
set symbols low command, 195
set symbols off command, 195
set symbols on command, 195
set width label command, 198
set width mnemonic command, 198
set width source command, 198
shell variables, 76
sig INT, 255
signals, CMB, 261
SIM/EMSIM concepts, 443-450
simulated I/O, 84, 349

display command, 329
displaying screen, 170, 172
keyboard input, 171

size scheme, 280
slave-master mode of operation, 166-169
softkey driven help information, 73

Index

513

softkey pushbuttons, 7
softkeys, 71
software

installation for HP 9000, 457-462
installation for SPARCsystems, 463-467

software breakpoints, 129-140
clearing, 138
clearing all, 140
copy command, 308
deactivating, 136
display command, 330
enable/disable, 131
modify command, 354-355
opcode locations, 133, 135
permanent, setting, 133
re-activating, 136
ROM code, 129
setting, 135
setting all, 135

software breakpoints list, displaying, 130
software performance measurements, 229, 231-258

absolute information, 238
activity measurements, 231-245
adding traces, 236, 250
duration, 246-254
end, 356
ending, 256
how they are made, 230
initialize, 357-358
initializing, 234, 249
initializing, default, 234
initializing, duration measurements, 249
initializing, user defined ranges, 235, 249
initializing, with global symbols, 235
initializing, with local symbols, 235
memory activity, 231, 238
module duration, 246
module usage, 246
program activity, 231, 238
recursion, 246
relative information, 238

Index

514

software performance measurements (continued)
restoring the current measurement, 236, 250
run, 359
running, 255
trace command setup, 233
trace display depth, 233

solving problems, 24
source lines

display in trace list, 197
set command, 374
symbol display, 114

source/symbol modes, setting, 153
SPARCsystems

installing software, 463-467
minimum system requirements overview, 455
SunOS minimum version, 455

specify command, 376-377
specify trace dequeueing options, 192
specify trace disassembly options, 190
SPMT (Software Performance Measurement Tool)

See software performance measurements
SRU (Symbolic Retrieval Utilities), 386-387
STATE, in trace command, 378-379
states, change the number available for display, 204
static discharge, protecting the emulator probe against, 30
status

copy command, 308
display command, 315

status (analyzer state qualifier softkey), 365, 379
status line, 7, 46
status range command, 211
status values, 210
status, emulator, copying to a file, 163
step command, 15, 126-127, 380-381
step over, 147
stop_trace command, 177, 382
storage qualifier, 217

defining, 184
store command, 383-384

absolute files, 110-111
store trace command, 226

Index

515

store trace_spec command, 225, 227
summary of commands, 302
SunOS, minimum version, 455
switching

directory context in configuration window, 93
directory context in emulator/analyzer window, 122
symbol context, 122

--SYMB-- syntax, 385-391
symbol context

changing, 122
displaying, 121

symbol file, loading, 112
symbols, 112, 207

displaying, 112
displaying in trace list, 195
displaying parent from symbols screen, 118
global to file, 163
local to file, 163
set command, 374
--SYMB-- syntax, 385-391

sync_sim_registers command, 392
synchronous measurements, 267
syntax conventions, 301
system requirements

HP 64700 minimum version, 455
HP 9000 overview, 454
HP-UX minimum version, 454
OSF/Motif HP 9000/700 requirements, 454
SPARCsystem overview, 455
SunOS minimum version, 455

T TAKEN, NOT TAKEN, and ?TAKEN? in trace list, 193
target memory

loading absolute files, 110
ROM, symbols for, 112

target reset, running from, 124-125
target system

plugging the emulator into, 27
probe installation procedure, 29-32

terminal emulation window, opening, 165

Index

516

terminal interface, commands used in high level interface, 222
time range file format (SPMT measurements), 249
trace

at EXECUTE, 267
continuous stream of execution, 222
copy command, 313
count states, 216
count time, 216
display command, 331-334
display status, 179
displaying count information, 199
displaying without disassembly, 194
introduction, 175-185
listing to file, 162
load command, 345
loading data, 228
loading specifications, 227
modify specifications, 220
on program halt, 219
repeat the previous command, 221
reset display defaults, 202
restoring data, 225-228
restoring specifications, 225-228
saving data, 225-228
saving specifications, 225-228
specify sequence, 212
starting, 176
stopping, 177
store command, 384
storing data, 226

trace about command, 183
trace after command, 183
trace again command, 221, 227
trace before command, 183
trace command, 176, 182, 184, 393-395

setting up for SPMT measurements, 233
to edit and execute the last trace command, 181

trace counting anystate command, 216
trace counting command, 216
trace counting off command, 199, 216
trace counting time command, 216

Index

517

trace depth, how to change, 180
trace dequeueing,m specifying options, 192
trace disassembly, specifying options, 190
trace display

depth, SPMT measurements, 233
source/symbol modes, 153

trace enable command, options, 214
trace expressions

address values, 210
data values, 210
range, 211
status values, 210

trace find_sequence command, 212-213
trace list

disassembly, 189
display around specific line number, 203
display source lines, 197
displaying, 177, 186-205
move through, 202
offset addresses, 201
pop-up menu, 188

trace modify_command command, 220
trace on_halt command, 219
trace only command, 217
trace options dialog box, 187
trace prestore anything command, 218
trace prestore command, 218
trace signals, emulation analyzer, 208
trace windowing, 214
trace_spec

load command, 345
store command, 384

tracing problems using the analyzer, 185
transfer address, 124
trigger

definition, 206
how to specify for a trace, 183

trigger position, setting, 183
trigger qualifier, defining, 182
TRIGGER, CMB signal, 261

Index

518

TRIGGER, in trace command, 396-397
tutorials, setting up, 289-291

U undefined software breakpoint, 129
user (target) memory, loading absolute files, 110
user program, 486

V values, 206
version, firmware, 478

W wait command, 398-399
command files, using in, 74

widget resource
See X resource

WINDOW, in trace command, 400-401
windowing and sequencing specification, 215
windows

exiting emulator/analyzer, 47
opening additional emulator/analyzer, 45
running the emulator/analyzer interface in multiple, 41
terminal emulation, opening, 165

workstation
HP 9000 memory needs, 454
HP 9000 minimum performance, 454
SPARCsystem memory needs, 455
SPARCsystem minimum performance, 455

X X client, 278
X resource, 278

commonly modified graphical interface resources, 280
modifying resources, generally, 280-283

X server, 278
X Window System, 41
XEnv_68k_except symbol and effect on breakpoints, 131

Index

519

520

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC Publication
348, safety requirements for electronic measuring apparatus, and has been supplied
in a safe condition. The present instruction manual contains some information and
warnings which have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Warning Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A
terminal marked with this symbol must be connected to ground in the manner
described in the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or all of
the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	The HP 64780A Emulator
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	Using The Emulator
	Plugging into a Target System
	Starting and Exiting HP 64700 Interfaces
	Entering Commands
	Configuring the Emulator
	Using the Emulator
	Using the Emulation-Bus Analyzer
	Making Software Performance Measurements
	Making Coordinated Measurements

	Reference
	Setting X Resources
	Emulator/Analyzer Interface Commands
	Emulator Error Messages

	Concept Guide
	Concepts of the EMSIM and EMRAM

	Installation and Service Guide
	Installation
	Installing/Updating Emulator Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

