User’'s Guide

HP B3640 Motorola 68000
Family C Cross Compiler

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987-1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.

MS-DOS and Windows are U.S. registered trademarks of Microsoft Corporation.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause in DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set forth in
FAR 52.227-19(c)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore, do

not expect a one-to-one correspondence between product updates and manual
revisions.

Edition dates and the corresponding HP manual part numbers are as follows:
Edition 1 B3640-97000, May 1993

Edition 2 B3640-97001, January 1994

B3640-97000 incorporates information which previously appeared in
64902-92003, 64902-97000, 64902-97001, 64903-92004, 64903-97000,
64903-97001, 64907-92002, 64907-97000, 64907-97001, 64908-92002,
64908-97000, 64908-97001, 64909-92002, 64909-97000, and 64909-97001.

Certification and Warranty

Certification and warranty information can be found at the end of this manual on
the pages before the back cover.

Features

The Motorola 68000 Family C Cross Compiler translates C source code into 68000
family assembly language which can be accepted by the HP B3641 assembler. This
compiler has special features to help meet the needs of the embedded system
designer:

* ANSI standard C compiler and preprocessor.

» Standard command line interface for compatibility withke and other
utilities.

e Complete C support and math libraries from ANSI standard for nonhosted
environments.

» In-line code generation and libraries to support the 68881/2 floating point unit.

» Three ways to embed assembly language in C source.

» Named section specification in C source.

» Choice of address modes for function calls and static data access.

* Option to copy initial value data from ROM to RAM at load time.

e Listings with generated assembly language, C source, and cross references.

e Fully reentrant generated code.

« Optimization for either time or space.

» Constant folding, automatic register variable selection, and other global
optimizations.

* Full symbol information and C source line numbers provided for debugging,
emulation, simulation, and analysis tools.

» Compiler reliability ensured through object-oriented design and exhaustive
testing.

Contents

Part 1 Quick Start Guide

1 Getting Started

In this chapter 2
What you need to know 2

Parts of the compiler 3

Summary of compiler options 4

Summary of file extensions 6

To install the software on a UNIX workstation 7
To install the software on a PC (Windows) 8
To remove unnecessary files (UNIX only) 10
To create a simple C program 11

To compile a simple program 12

To generate an assembly listing 13

To specify addressing modes 14

To specify the target microprocessor 19

To compile for a debugger 20

To use a makefile (UNIX systems only) 21
To modify environment libraries 23

About environment libraries 26

To view the on-line man (help) pages 27

vii

Contents

Part 2 Compiler Reference

2 C Compilation Overview

Execution Environment Dependencies

C Compilation Overview 33

Compilation Control Routine 35
C Preprocessor 35

C Compiler 35

Peephole Optimizer 35
Assembler 36

Source File Lister 36

Librarian 36

Linker 36

ANSI Extensions to C 37

Assignment Compatibility 37
Function Prototypes 37
Pragmas 38

The void Type 39

The volatile Type Modifier 40
The const Type Modifier 41
Translation Limits 42

Internal Data Representation

Arithmetic Data Types 44

Floating-Point Data Types 44
Characters 47

Derived Data Types 48

Pointers 48

Arrays 48

Structures 51

Unions 53
Enumeration Types 53

32

viii

Contents

Alignment Considerations 54
Alignment Examples 56

Byte Ordering 57

Compiler Generated Assembly Code

Assembly Language Symbol Names 61

Symbol Prefixes 61

Situations Where C Symbols are Modified 62
#pragma ALIAS 63

Compiler Generated Symbols 63

Debug Directives 64

Stack Frame Management 64

Structure Results 66

Parameter Passing 67

Pushing the OIld Frame Pointer and Allocating Space 67
Buffering Registers Used for Register Variables 68
Accessing Parameters 68

Accessing Locals 69

Using the Stack for Temporary Storage 69

Function Results 70

Function Exit 70

Register Usage 77

Register variables 78
Example 79

Run-Time Error Checking 80

Using Assembly Language in the C Source File 81

#pragma ASM

#pragma END_ASM 82

__asm ("C_string") 84

#pragma FUNCTION_ENTRY, #pragma FUNCTION_EXIT,
#pragma FUNCTION_RETURN 86

Assembly Language in Macros 89

Contents

5 Optimizations

Universal Optimizations 92

Constant Folding 93

Expression Simplification 94

Operation Simplification 94

Optimizing Expressions in a Logical Context 95
Loop Construct Optimization 95

Switch Statement Optimization 96

Automatic Allocation of Register Variables 96
String Coalescing 96

The Optimize Option 98

Time vs. Space Optimization 98

Multiplication Simplification 100

Maintaining Debug Code 100

Peephole Optimization 100

Effect of volatile Data on Peephole Optimizations 104
Function Entry and Exit 104

In-Line Expansion of Standard Functions 104

What to do when optimization causes problems 106

Embedded Systems Considerations

Execution Environments 108
Monitor and mon_stub 108

Common problems when compiling for an emulator

Loading supplied emulation configuration files 109
Using the "-d" option 110

Section Names 111
#pragma SECTION 111

Addressing Modes 114

Specifying addressing modes 115

When to use certain addressing modes 115
Shortvs.long 116

Absolute addressing modes 117

109

Contents

PC relative addressing modes 117
A5 relative addressing modes 118
Other addressing mode considerations 122

RAM and ROM Considerations 122

Initialized data 122
Where to load constants 123

Embedded Systems with Mass Storage 123
The "volatile" Type Modifier 124

Reentrant Code 126
Nonreentrant library routines 126

Implementing Functions as Interrupt Routines 127

#pragma INTERRUPT 127
Loading the vector address 127

Eliminating /10 128

Libraries
Addressing Modes Used in Libraries 130

Run-Time Library Routines 132

Support Library and Math Library Routines 132

Library Routines Not Provided 133
Include (Header) Files 134

List of All Library Routines 136

Support Library and Math Library Descriptions 141

abs, labs 142
assert 143
atexit 144
bsearch 145
div, Idiv 147
exp 148

Xi

Contents

fclose, fflush 149

ferror, feof, clearerr 150

fgetpos, fseek, fsetpos, rewind, ftell 150
floor, ceil, fmod, frem, fabs 153

fopen, freopen 154

_fp_error 156

fread, fwrite 161

frexp, Idexp, modf 162

getc, getchar, fgetc 163

gets, fgets 164

interpolateS, interpolateSN, interpolateU, interpolateUN 165
isalpha, isupper, islower, ... 166
localeconv 168

log, logl0 173

malloc, free, realloc, calloc 174

mblen, mbstowcs, mbtowc, westombs, wctomb, strxfrm 176
memchr, memcmp, memcpy, memmove, memset 178
perror, errno 179

pow 180

printf, fprintf, sprintf 181

putc, putchar, foutc 186

puts, foputs 188

gsort 189

rand, srand 189

remove 191

scanf, fscanf, sscanf 192

setbuf, setvbuf 197

setjmp, longimp 199

setlocale 201

sin, cos, tan, asin, acos, atan, atan2 203
sinh, cosh, tanh 205

sqrt 206

strcat, strncat, ... 207

strtod, atof 210

strtol, strtoul, atol, atoi 211

tableS, tableSN, tableU, tableUN 213
toupper, tolower, toupper, tolower 214
ungetc 215

va_list, va_start, va_arg, va_end 216
vprintf, vfprintf, vsprintf 218

Xii

Contents

8 Environment-Dependent Routines

Supported Environments 222

Program Setup 223

Differences Between "crt0" and "crt1" 223
The "_display_message()" Routine 226
Monitor Considerations 226

Linking the Program Setup Routines 227
Emulator Configuration Files 228

Default Memory Map 228

Dynamic Allocation 229
Rewriting the "_getmem" Function 229

Input and Output 229

Environment-Dependent I/O Functions 230
clear screen 231

close 232

exec_ cmd 233

exit, exit 235

_getmem 236

initsimio 238

kil 239

Iseek 240
open 242
pos_cursor 245
read 246

sbrk 248

unlink 248
write 250

Xiii

Contents

9

10

11

Compile-Time Errors
Errors 254
Warnings 262

Run-Time Errors

Floating-Point Error Messages

68881/2 Libraries: 266
Processor Libraries: 267

Debug Error Messages 268

Pointer Faults: 268
Range Faults: 268

Startup Error Messages 269

Run-Time Library Description

Conversion Routines 272

dtof 272
dtoi 272
dtoui 273
ftod 273
ftoi 273
ftoui 274
itod 274
uitod 274
itof 274
uitof 275

Floating-Point Routines 275

add32 275
add32z 275
addé4 276
addéd4p 277
add6édpp 277
addé4z 278

266

Xiv

cmp32 278
cmp32r 278
cmp64 279
cmp64r 279
divd2 279
div3d2r 280
div32z 280
dive4 280
dive4p 281
divedpp 281
divedr 282
divedrp 282
dive4rpp 283
dive4z 283
mul32 283
mul32z 284
mulé4 284
mulé4p 284
mulé4pp 285
mulé4z 285
sub32 286
sub32r 286
sub32z 286
sub64 287
sub64p 287
sub64pp 288
sub64r 288

sub64rp 288
sub64rpp 289
sub64z 289

Debug Routines

rangefault 290
rangefaultu 290
ptrfault 291

290

Contents

XV

Contents

12 Behavior of Math Library Functions

13 Comparison to C/64000

General C/64000 Options 302

AMNESIA 302
ASM_FILE 302
ASMB_SYM 302
DEBUG 302
EMIT_CODE 303
END_ORG 303
ENTRY 303
EXTENSIONS 303
FIXED_PARAMETERS 303
FULL_LIST 303
INIT_ZEROS 303
LINE_NUMBERS 304
LIST 304
LIST_CODE 304
LIST OBJ 304
LONG_NAMES 304
OPTIMIZE 304
ORG 304

PAGE 304
RECURSIVE 305
SEPARATE 305
SHORT_ARITH 305
STANDARD 305
TITLE 305
UPPER_KEYS 305
USER_DEFINED 305
WARN 305
WIDTH 306

68000 Specific C/64000 Options 306

INTERRUPT 306
TRAP 306

BASE_PAGE , FAR, COMMON, CALL_ABS_LONG, CALL_ABS_SHORT,
CALL_PC_SHORT, CALL_PC_LONG, LIB_ABS_LONG, LIB_ABS_SHORT,
LIB_PC_SHORT, LIB_PC_LONG 307

XVi

Differences from HP 64819 Code
14 ASCII Character Set

15 About this Version

Version4.01 318
PC Platform Support 318

Version 4.00 318

Compilers have been combined 318
New product number 318

New command-line options 319
New default environments 319
PC-relative libraries 319

More floating-point support 319

Using the correct version of "as68k" 319

Re-organized manual 320

Version 3.50 320

Behavior of sprintf 320

Bit fields 320

Formatted printing 320
Streams 320

Void pointers 320

Implicit casts 321

gsort function 321
Environment library modules 321
Improved performance 321
68040 function return values 321
New optimizations 322

Code sharing 322

__asm ("C_string") function 322

Modifying function entry/exit code 322

Contents

308

XVil

Contents

Xviii

Part 1

Quick Start Guide

Part 1

Chapter 1: Getting Started

Getting Started

How to get started using the compiler.

Chapter 1: Getting Started

In this chapter

This chapter contains the following information:

* An overview of the C compiler.

» Instructions for common tasks, such as compiling a simple program.

» Short examples so you can practice the common tasks.

What you need to know

Before you begin to learn how to use this compiler, you should be familiar with the
following:

» The C programming language.
* The Motorola 68000 family microprocessor architecture.

» Basic host operating system commands (sudp,asv, Is, mkdir, rm, andcd
in UNIX or copy, dir, mkdir , del, andcd in DOS) and a text editor (such\as
in UNIX or edit in DOS).

In addition, most sections in this manual assume that you are familiar with 68000
family assembly language.

Chapter 1: Getting Started

Parts of the compiler

The "compiler” is really a set of programs:

e cc68k the C compilation control command.

» cpp68k, the C preprocessor.

+ clst68k the lister.

» ccom6&xx the C compiler.dcm68xxfor DOS.)

* 0pt68xxx the peephole optimizer.

The compiler makes use of several assembler programs:
* as68k the assembler.

» 1d68k, the linking loader.

To compile a C program, you can use justat®8k C compilation control
command. Thec68kcommand will run the other programs as needed.

Chapter 1: Getting Started
Summary of compiler options

Summary of compiler options

-b Invoke Basis Branch Analyzer preprocessor. (UNIX only)

-B Cause generation of big switch tables for > 32K byte
switch bodies.

-C Do not link programs (object files are generated).
-C Do not strip C-style comments in preprocessor.
-d Separate data into initialized and uninitialized sections.
-D name[=def] Definenameto the preprocessor.

-e Fast error checking (no code is generated).

-E Preprocess only (send result to standard output).
-f Generate code to use the 68881/2 coprocessor.
-g Generate run-time error checking code (overri@gs
-h Generate HP 64000 formax{ files.

-1 dir Change include file search algorithm.

-k linkcomfile Link using thdinkcomfilelinker command file.

-K Enforce strict section consistency.

-Ix SearcHibx.a (libx.lib for DOS) when linking.
-L[I1[X] Generate ".O" (".Ist" for DOS) listing(s). Thieoption

causes include files to be expanded and included in the
listing. The-x option causes cross-reference tables to be
included in the listings. (Overridden bg; -E, and-P.)

-m Specify addressing mode.

-0 outfile

-O[G][T]

-p processor

Chapter 1: Getting Started
Summary of compiler options

Cause generation of more warning messages than are
generated by default.

Cause linking witHinkcom.k (no I/O) rather than
iolinkcom.k (iolinkco.k for DOS).

Name absolute fileutfile instead of.out.x. (aout.absfor
DOS).

Optimize.-O for space;OT for time,-OG for debugging.
Compile code for the specified processor.
Preprocess only (send resultitéiles).

Word align data in memory instead of default quad (double
word) alignment.

Use default linker command file in /usr/hp64000/dirv/
(\hpcc68kienwdir for DOS) instead of the default.

Strip symbol table information (overridden {gyand-L).
Only generate assembly source files (wétbxtensions).
Insert subprocesswhose full path imame

Consider non-constant static data uninitialized.
Undefinenameto the preprocessor.

Verbose (produce step-by-step descriptiostderr).
Suppress warning messages.

Passargsas parameters to subprocess

Chapter 1: Getting Started
Summary of file extensions

Summary of file extensions

UNIX DOS Meaning Where generated
Extension | Extension
a lib Archive (library) file aré8k
A a HP 64000 format assembler symbol file as68k
c c C source file editor
EA EB ea. .ep | Emulator configuration file emulator interface or
’ ' editor
h h Include (header) file provided or editor
i i "Preprocess only" output cc68k -P
K k Linker command file (default extension used by| editor
cc68k)
L f HP 64000 format linker symbol file 1d68k -h
1 ixt On-line manual page provided
0 .obj HP-MRI IEEE-695 format relocatable object file as68k
0 Ist Listing file cc68k -L
5 5 Assembly language source file cc68k or editor
X abs HP-MRI IEEE-695 or Motorola S-Record absolutél68k
object file (executable)
X X HP 64000 format absolute file (executable) Id68k -h (via cc68k
Ys _ Symbol file directory emulator interface

h)

Chapter 1: Getting Started
To install the software on a UNIX workstation

To install the software on a UNIX workstation

1 Load the software from the software media.

Instructions for installing the software are provided with the software media, or in
your operating system’s system administration guide.

2 Set the HP64000 environment variable.

Set this variable to the location of the software, usually /usr/hp64000.

3 Set the MANPATH environment variable.

Add $HP64000/man to this variable so that you can read the on-line "man pages."

4 Set the PATH environment variable.

Add $HP64000/bin to your path so that you can run the compiler programs.

You should add these commands to your .login, .vueprofile, or .profile file (if they
are not there already) so that you won't need to re-enter them every time you log in.

Examples If you installed the compiler in the root directory on an HP-UX system, enter:

export HP64000=/usr/hp64000
export PATH=$PATH:$HP64000/bin
export MANPATH=$MANPATH:$HP64000/man

On a Sun system, you would enter:

setenv HP64000 /usr/hp64000
setenv PATH $PATH:$HP64000/bin
setenv MANPATH $MANPATH:$HP64000/man

Chapter 1: Getting Started
To install the software on a PC (Windows)

Notes

To install the software on a PC (Windows)

To install from MS Windows:
Start MS Windows in the 386 enhanced mode.
Insert compiler Disk 1 into floppy disk drive A or B.

Choose the File Run... (ALT, F, R) command in the Windows Program Manager.
Enter "a:\setup” (or "b:\setup” if you inserted the floppy disk into drive B) in the
Command Line text box.

Choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path is
c:\hpcc68k. The default installation path is shown wherever files are discussed in
this manual.

Edit your AUTOEXEC.BAT file.

The Setup program will create a file called AUTOEXEC.AXL which shows how to
set the PATH, HPCC68K, and HPAS68K variables in your AUTOEXEC.BAT file.
If you have multiple configurations or your AUTOEXEC.BAT file starts a shell or
Windows, be careful to place the SET and PATH commands at the appropriate
place in the file.

When you have edited the AUTOEXEC.BAT file, you need to reboot your
computer to set these environment variables.

To follow the examples in this chapter, you need to get to a DOS prompt. You can
do this by leaving Windows or by opening an MS-DOS window.

You must use the Windows Setup program to install the compiler.

Unless otherwise noted, the example listings, file names, and paths in this manual
are for HP-UX systems. Use c:\hpcc68k in place of /usr/hp64000 or $HP64000.
DOS file extensions are listed on page .

Chapter 1: Getting Started
To install the software on a PC (Windows)

System requirements

The compiler requires the following configuration:

* AnIBM Personal Computer, HP Vectra, or 100 percent compatible

* MS-DOS version 3.3 or later

* MS Windows version 3.0 or later

* An 80386 processor or higher

» 4 Mbytes of available memory (RAM)

» Hard disk with at least 4 Mbytes of free space. Atleast 11 Mbytes is
recommended.

* A1.2 Mbyte, 5.25-inch floppy disk drive or a 1.44 Mbyte, 3.5-inch floppy disk
drive

Chapter 1: Getting Started
To remove unnecessary files (UNIX only)

. To remove unnecessary files (UNIX only)

 If the compiler is using too much disk space, you can remove files for any
processors you will not be using.

You may remove the following files from the $HP64000 directory:
» lib/cconmprocessor

» lib/optprocessor

» lib/processof*

e includeprocessat*

whereprocessolis any processor for which you will not need to compile any code.

10

Chapter 1: Getting Started
To create a simple C program

To create a simple C program

» Use a text editor to create the file simple.c:

#include <stdio.h>
main()
char *str ="a string";

printf("\nThe string is: \"%s\"\n", str);

Figure 1-1. The "simple.c" Example Program

11

Chapter 1: Getting Started
To compile a simple program

Example

To compile a simple program

Use the cc68k comand at your host operating system prompt.

To compile the "simple.c" example program, enter the following command:

cc68k simple.c

This command generates the executablafibet.x (or aout.absfor DOS) by
default. The compiler will generate the code for the 68000 by default.

The UNIX version of the compiler will print a warning message because a target
processor was not specified. Because this is just an example, ignore the warning.

12

Chapter 1: Getting Started
To generate an assembly listing

To generate an assembly listing

* Use theL compiler option.

This option generates a listing of the C source, which includes the generated
assembly code, and a linker listing.

Example To generate the listings for "simple.c”, enter:

cc68k -L simple.c

The mixed source and assembly listing is sent taifitgle.O, and a linker listing
is sent to filea.out.O. (These files are namainple.Istandaout.Istif you are
using the compiler on a DOS system.)

Examine thesimple.Ofile and note how:

» Addresses of strings are passed as parameters to the "_printf" support library
routine (String1+0 is pushed, then _printf is called).
» String literals are placed in the "const" section.

Now look ata.out.O and note that:

» The file shows the default linker command (generated by the compilation
control command).

» The linker command is followed by the contents of the default linker command
file. The default linker command file loads some libraries and an emulation
monitor or monitor stub.

* Modules are listed in the order they are loaded. Modules within library files
are listed in alphabetical order.

* The module crt0 is the program setup routine. Program execution will begin
with this routine.

13

Chapter 1: Getting Started
To specify addressing modes

Example

To specify addressing modes

Use them command line option to specify the addressing mode for a section.

The 68000 C Compiler allows you to select the addressing modes used in the
generated assembly code for accessing data and calling functions (branches are
always done PC relative).

By default, the absolute long (the most flexible) addressing mode is used.
Addressing modes are selected using named sections (which are also used in the
linker when specifying load addresses).

To name sections in the source file, useSRETION pragma.

To specify that program code and constants (the ROMable portion) be placed in
sectionMyProgand data be placed in sectiyData insert the line

#pragma SECTION PROG=MyProg DATA=MyData CONST=MyProg

at the beginning of the C source. These section names now apply not only to code
and data generated in the source file, but also to any extern functions or data
referenced in the file.

To specify that absolute short addressing be used from sbhbtrogto section
MyData use "-m MyProg,MyData,as" ("as" is an abbreviation of absolute short).
This would be appropriate MyDatais located in the base page.

A simple example
To add two static integers and place the result in a third integer which is an extern:

#pragma SECTION PROG=MyProg DATA=MyData CONST=MyProg
extern int a;
int b,c;
main(){
a=b+c;

}
You can compile this example using the following command:

cc68k -LOc -m MyProg,MyData,as small.c

14

Chapter 1: Getting Started
To specify addressing modes

The small.O (small.Ist for DOS) listing file looks like this:

HPB3640-19300 68000 C Cross Compiler A.04.00 small.c

HPB3641-19300 A.02.00 19Apr93 Copr. HP 1988 Page 1 Mon Apr 26 15:09:55 1993

Command line: as68k -Lfnot,llen=1100 -o small.o /tmp/ct3CAAa27665
Line Address

CHIP 68000
NAME small
*
* MKT:@(#) B3640-19300 A.04.00 MOTOROLA 68000 FAMILY C
CROSS COMPILER

*

* Assembler options:
*
OPT BRW,FRL,NOI,NOW

* Macro definition for calling run-time libraries:
* bytes per call = 6
*

CALL MACRO routine
XREF routine
JSR (routine).L
ENDM

*

SECT MyProg,2,C,P

1 #pragma SECTION PROG=MyProg DATA=MyData CONST=MyProg
2 externint a;
3 intb,c;
4 main(){
XDEF _main
_main
5 a=b+c;

00000000 2038 0000 R MOVE.L (_b+0).wW,DO
00000004 DOB8 0004 R ADD.L (_c+0).W,DO
00000008 21C0 0000 E MOVE.L DO,(_a+0).W
6 }
functionExitl
returnLabell
0000000C 4E75 RTS
XREF MyData:_a
SECT MyData,2,D,D
XDEF b
ALIGN 2
b
00000000 ==00000004=0f= DCB.B 4,0
00
XDEF _c

ALIGN 2
C
00000004 ==00000004=0f= DCB.B 4,0
00
END

Note that variables "a", "b", and "c" are accessed using the absolute short
addressing mode (indicated by the .W extension).

15

Chapter 1: Getting Started
To specify addressing modes

Next, change the example slightly to put variable "a" in another section (the default
is data)

extern int a;
#pragma SECTION PROG=MyProg DATA=MyData CONST=MyProg
int b,c;
main(){
a=b+c;
}
Compile the same way as before. Variable "a" will be declared external in section
data and referenced absolute long rather than absolute short (as indicated by the .L

extension).

An example using A5 relative addressing

A5 relative addressing allows accessing data values as offsets from an address
loaded into the A5 address register at program startup. The most common use of
this addressing mode is to create a second "basepage" (that is, a 64K byte block of
memory that can be accessed more efficiently than by absolute addressing). For
example, here is a short program that accesses variable "X" using absolute long
addressing, variable "i"* using absolute short addressing, and variable "g" using A5
relative addressing:

int x;

#pragma SECTION DATA=0x400 BP

int i

#pragma SECTION DATA=SecondBasePage
int

You can compile this program using the following command:

cc68k -LOc -m all,SecondBasePage,a5s short.c

The SECTION pragma used to locate variable "i" specifies an absolute address
where "i" is "ORG’d" and the appended "BP" tells the compiler that the address is

on basepage (and, thus, to use absolute short addressingh dpion specifies

thatall references to the section named SecondBasePage be done A5 relative short.
In addition to the addressing mode selection, for A5 relative addressing, the linker
must be told the run-time value of A5. This is accomplished via an INDEX
command in the linker command file such as:

INDEX ?A5,SecondBasePage+$8000

The setup routine (crt0) initializes A5 to the value assigned by the linker to special
symbol ?A5. In this case, A5 will be initialized to the address 8000(hex) above the

16

Chapter 1: Getting Started
To specify addressing modes

start of the section named SecondBasePage. This allows up to 64K bytes of
section SecondBasePage to be accessed A5 relative short.

An example using PC relative addressing

The PC relative addressing mode is most commonly used for branches (which are
always done PC relative on the 68000), function calls, and reads of constant data.
The 68000 does not support PC relative writes, but the compiler does synthesize
this "addressing mode" using multiple instructions. When a group of mutually
referencing functions fits into 64K bytes, it is more efficient to use PC relative
short calls between them.

If you would like to see an example, create this program:
int f(int i);
main() {
inti,x;
i=f(x);
}

int f(int i) {
return i*2;

Then compile the program:

cc68k -LOc -m prog,prog,pcs pcs.c

Here, function "f" is called PC relative short (rather than the default "JSR
(_f+0).L"). By combining PC relative and A5 relative addressing modes, one can
create a variety of position independent code modules.

An example using run-time and support libraries

Run-time library routines are calledplicitly by the generated assembly code (for
example, dtoi is called to cast a double to an int). Since these implicitly called
routines are not visible in the C source, a special section fdrisdeserved and
understood by the compiler to be the section in which run-time libraries are
defined. Furthermore, a restriction is placed on addressing modes used to call
run-time libraries: all calls to run-time libraries from a single C source file must use
the same addressing mode. For this reasbis the only section allowed in-m

option specifyindib as its destination (use -m all,lib,mode).

Support library routines, unlike run-time library routines, are cabigidicitly in the
C source. Thus, they behave just as though they were user-written functions from

17

Chapter 1: Getting Started
To specify addressing modes

an addressing mode specification point of view. Their section names are the same
as the base name of the library (for exanlfiie,a’s section idibc).

On the PC host, there is only one librdity @ndlibc come from the same library
file).

For example, assume that the run-time libidrya (named sectiolib) is located
on base page and that the support libliagya (named sectiolibc) is loaded in
the same 32K byte memory block as the following program:

To call run-time library routines using the absolute short addressing mode and
support library routines using the PC relative short addressing mode, you might
compile the program using the command line

cc68k -LOc -m alllibc,pcs -m alllib,as libcalls.c

Note that it is important to use "#include <stdio.h>" since without it the compiler
does not know that "printf" is in named sectiidc.

18

Chapter 1: Getting Started
To specify the target microprocessor

To specify the target microprocessor .

* Name the target microprocessor on the command line using tipion.

You can specify the following target processors:

* 68000
* 68ECO000
*+ 68HC000
*+ 68HCO001
* 68010
* 68302
* 68020
*+ 68EC020
* 68030
*+ 68ECO030
* 68040
* 68EC040
*+ 68331
*+ 68332
* 68340
* 68360
« CPU32
Example To compile the example program for the 68020, enter

cc68k -p 68020 simple.c

To always compile for the 68020, enter:

export CC68KOPTS="-p 68020"

This is the same as entering "-p 68020" on the command line every time you use
cc68k. Usesetenvinstead ofexport on Sun systems. Usetinstead oexport on
DOS systems.

19

Chapter 1: Getting Started
To compile for a debugger

Example

See Also

To compile for a debugger

To gain the most benefit from HP debuggers and emulators, follow these
guidelines:

Use the-OG option to generate debugging information.
Avoid optimizing modes-Q or-OT).
Turn off the automatic creation of register variabi&gq,-F).

Do not use theh option. HP debuggers now ugg.absfor DOS) rather than
X files.

Use the C compiler’s floating point library routines to generate code that will
run interchangeably in both the debugger/simulator and the debugger/emulator.

Use the same environment files as you would use to compile for an HP
64700-series emulator.

To compile the simple.c program to be run in a debugger, use the following
command:

cc68k -LM -OG simple.c

See thdJser's Guideor your debugger/emulator, debugger/simulator, or emulator
interface for information on how to run a program in the debugger or emulator
environment.

20

Chapter 1: Getting Started
To use a makefile (UNIX systems only)

To use a makefile (UNIX systems only)

The UNIX make command can simplify the process of compiling your programs.
This command allows you to specify which files are dependent on which other files
(for examplemake "knows" that files which end i are produced by compiling
corresponding files that end.imor by assembling programs that encsjn If your

host operating system is HP-UX, see the man pagedke in section 1 of the

HP-UX Reference Manuabee also "Make, a Program for Maintaining Computer
Programs" in the "Programming Environment" volumélBfUX Concepts and
Tutorials

Becausec68kis similar to the hostc command, it is easy to tetlake how to
compile, assemble, and link using cross tools. To any makefile designed for the
host, you need to add some definitions and set up some options. These are:

CC=/usr/hp64000/bin/cc68k
AS=/usr/hp64000/bin/as68k
LD=/usr/hp64000/bin/ld68k

These definitions will causaake's "built-in" rules to access the cross tools, and
because the built-in options mean the same thing to the cross tools as they do to the
host tools, the built-in rules now work when invoking the cross tools.

Note The SunOSnake command adds a "-target” option to the compiler command line.
To remove this option, add the following statement to the beginning of the
makefile:

COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c

Make also has a mechanism for passing additional options to the compiler,
assembler, and linker. The additional options are passed each time the program is
invoked and are thus set only for "global" options. For example, to always have the
compiler and assembler produce listings, one might use:

CFLAGS ="-L"
ASFLAGS = "-Lfnot"

Some versions ohake give default values for these options.

Here is an example makefile:

These definitions are added to use the cc68k cross tools.

CC =cc68k

21

Chapter 1: Getting Started
To use a makefile (UNIX systems only)

All object files (make knows how to generate them from
sources based on implicit rules).

OBJECTS = main.o filel.o grammar.o
This dependency links the program together.

program.x: $(OBJECTS)
$(CC) $(OBJIECTS) -0 program.x

This dependency causes make to recompile filel.c
whenever filel.h has been touched.

filel.o: filel.h
When run in a directory containing sources:

main.c filel.c grammar.y filel.h

The commands generated by HP-bdke will be:

cc68k -O -c main.c

cc68k -O -c filel.c

yacc grammar.y

cc68k -O -c y.tab.c

rmy.tab.c

mv y.tab.o grammar.o

cc68k main.o filel.o grammar.o -0 program.x

This example assumes thasr/hp64000/binhas been added to your PATH
environment variable.

You can see what commands will be generateahdlye by using the following
command:

make -n

22

Chapter 1: Getting Started
To modify environment libraries

To modify environment libraries

To modify the environment-dependent library.a(env.lib for DOS), the startup
routinescrt0.o0 orcrtl.o (crt0.obj orcrtl.obj for DOS), or the monitor stub
mon_stub.o(mon_stub.objfor DOS):

Copy the source files.

The following command copies the environment-dependent source files to the

current directory. The"just before the return means that the names of the files
are not changed.

cp /usr/hp64000/env/hp <emulator_environment> [srcl*

Or, on a DOS system, enter:

copy c:\hpcc68k\envihp <emulator_environment> \src* .
Edit the source files.

The following command changes the permissions of the source files so that you
will be able to save any changes you make while editing the files.

chmod 644 *
Or, on a DOS system, enter:
attrib -r *.*

Now you may edit the source files as needed.

Set up the directory structure for "Makefile". (UNIX only)

Themake utility will be used to create a new environment dependent library

which contains the changes made to the source files. As proMdkefile

assumes there are two directories under the directory in which it resides, "src" and
"obj". Makefile also assumes that all source files are in the "src" directory. The
following commands set this situation up.

23

Chapter 1: Getting Started
To modify environment libraries

mkdir src
mkdir obj
mv *.s *.c src

Run the "make" command. (UNIX only)

The following command will create a new environment-dependent library file
env.a new startup modulest0.0 andcrtl.o, and the monitor stumon_stub.q
and will place them in the current directory.

make all

In addition to theall target, other targets are available forrtreke command
which will create only those files needed. A list of these available targets is
displayed by the following command.

make help

The following command will remove unnecessary intermediate files left by the
make all command.

make clean
Compile all of the source files. (DOS only)

For example, to compile for the 68020, enter:

\hpcc68kicc68k -p 68020 -Ou -We,-i -C *.c
\hpas68k\as68k -fnod -fp=68020 *.s

Create thenv.lib library. (DOS only)

Create a temporary file "ar_cmd", similar to the following:

CREATE env.lib
ADDMOD disp_msg.obj
ADDMOD trap.obj
ADDMOD getmem.obj
ADDMOD heap.obj
ADDMOD stack.obj
ADDMOD startup.obj
ADDMOD open_file.obj
ADDMOD systemio.obj
ADDMOD sbrk.obj
ADDMOD fpu_trap.obj

24

Chapter 1: Getting Started
To modify environment libraries

SAVE
END

Add fpu_trap.obj only for the 68020, 68030, or 68040.
Next, usear68k to make the library file:

\hpas68k\ar68k < ar_cmd
Modify the default linker command file.

The following UNIX commands copy the default I/0 linker command file to the
current directory so that you can edit it to load the environment file just created.
(Copylinkcom.k if your programs do not use 1/0.)

cp /usr/hp64000/env/hp <emulator_environment> fiolinkcom.k
chmod 644 iolinkcom.k
vi iolinkcom.k

Change the line which reads

LOAD /usr/hp64000/env/hp <emulator_environment> /env.a

to
LOAD env.a

The equivalent DOS commands are:

copy c:\hpcc68k\envihp <emulator_environment> \iolinkco.k
attrib -r iolinkco.k
edit iolinkco.k

LOAD env.lib

Similarly, if you have modified the startup module sourcecfi@.s or crtl.s, or
the monitor stulmon_stub.s you should also change the linker command file so
that it loads the local version instead of the shipped version.

Specifying the modified linker command file when compiling your program (with
the-k option) will cause the linker to call in routines from the modified
environment-dependent library.

25

Chapter 1: Getting Started
To modify environment libraries

About environment libraries

Many files are linked into the C program from the environment libraries. These
libraries reside in the subdirectoriedw$r/hp64000/env\hpcc68k\envfor DOS)

and are designed to support the emulator (and simulator, if available). But these do
more than just help you use the emulator.

The C compiler has only limited information about the environment in which
compiled programs will ultimately execute. All the high level functions depend on
the environment libraries to provide the low level hooks into the execution
environment (or target system). The supplied environment libraries provide the
hooks necessary to operate in the emulator environment. They also serve as a
pattern for you to create your own low level hooks to allow the C compiler to work
in your own execution environment. You may either modify our environment files
(the source code is provided) or use the files as a pattern to create your own
equivalent files. HP has made every effort to narrow this "hook-up point" as much
as possible, but you will need to make some modifications in order to run your
programs in your own execution environment.

26

Chapter 1: Getting Started
To view the on-line man (help) pages

To view the on-line man (help) pages .

* On a UNIX system, use tlrean command.

* On aDOS system, use ttmore command or an editor.

You can display on-line "man pages" for any of the programs which make up the
Motorola 68000 Family C Cross Compiler:

 cc68k
e cpp68k
* clst68k

Refer to the on-line man pages for detailed information about command-line
options and compiler directives.

Because the man pages contain important information which is not included in this
manual, HP recommends that you print¢b&@8kman page and keep it near your
computer.

On UNIX systems, the man pages are in the directory $HP64000/man méithe
command cannot find the man pages, check that you have added this directory to
the MANPATH environment variable.

On DOS systems, the help files are in the directory \hpcc68k.

Example (UNIX) To view thecc68kon-line manual page, type the following command from
the operating system prompt:

man cc68k

(DOS) To view thec68khelp file, type the following command at the DOS
prompt:

more < c:\hpcc68k\cc68k.txt

Information on thec68k compiler syntax and options will be scrolled onto your
display.

27

Chapter 1: Getting Started
To view the on-line man (help) pages

28

Part 2

Compiler Reference

Part 2

30

Chapter 2: C Compilation Overview

2 I

C Compilation Overview

An overview of the Motorola 68000 Family C Cross Compiler and a description of
the ANSI C language.

31

Chapter 2: C Compilation Overview
Execution Environment Dependencies

Execution Environment Dependencies

Providing the "standard 1/0" and storage allocation C library functions creates
dependencies on the environment in which programs execute.

Since the C compiler is a tool to help you develop software for your own target
system execution environments, HP has been careful about any execution
environment dependencies associated with this compiler or its libraries.

The compiler provides the "standard I/O" and storage allocation library functions;
therefore, there are some environment dependencies to be aware of. The compiler
isolates these environment dependencies to make it easier to tailor the compiler to
your own target system execution environment.

The execution environment-dependent routines provided with the C compiler are
written to work in the HP development environments, but they need to be rewritten
for target system execution environments.

32

Chapter 2: C Compilation Overview
C Compilation Overview

C Compilation Overview

An overview of the C compiler is shown in figure 2-1. The entire process is
controlled by the command line fed to the compilation control routine. Rectan
in the diagram represent either data provided by the programmer (C source fil®®
example) or data produced by one of the circular processes (output listing, for
example). Each process is described following the figure.

In the following figure, the names of programs appear in parentheses. These names
refer to the cross tools, and not to the native tools. For example, "cc" refers to
cc68kcross compiler and not to the native rezstompiler.

33

Chapter 2: C Compilation Overview
C Compilation Overview

COMMAND
LINE

& SOURCE
LINE

INCLUDE

COMPILATION
CONTROL
{cc)

PREPROCESSOR
(cpp)

C COMPILER

'

{ccom)

|
|
|
|
|
1
I
1
|
I
1 FILES
|
|
1
1
I
I
\

SUPPLIED
LIBRARIES

LIBRARY
BUILDER
(ar)

PEEPHOLE
OPTIMIZER
(opt)

OPTIMIZED
ASSEMBLY
CODE WITH
SYMBOLIC
DIRECTIVES

OTHER
LIBRARIES

ASSEMBLY
CODE WITH
SYMBOLIC
DIRECTIVES

ASSEMBLER
(os)

OBJECT
CODE WITH
SYMBOLIC
INFORMATION

EXECUTABLE
WITH
SYMBOLIT
INFORMATION

LISTER
(clst)

ASSEMBLER
LISTING

OPTIONAL
“asmb_sym"

FILE

OPTIONAL
“link _sym"
FILE

Figure 2-1. C Compilation Overview

ERROR
MESSAGES

QUTPUT
LISTING

LINKER
LISTING

34

Chapter 2: C Compilation Overview
C Compilation Overview

Compilation Control Routine

The entire system is controlled by a compilation control routine, cc68k. The
compilation control routine calls in sequence: the C preprocessor (cpp68k), th
compiler (ccom6g8xxon UNIX systems or ccm&&xon DOS systems), optionally
the peephole optimizer (opte89, the assembler (as68k), optionally the lister
(clst68k), and the linker (Id68k). Many of these programs may be run individually
using the cc68k command’s options. See the on-line man pages for the description
of the command syntax and options.

The librarian (ar68k) is a separate tool for building archive files used by the linker.

C Preprocessor

The 68000 family C preprocessor accepts C preprocessor directives which modify
the source code that the compiler sees. This modification includes expansion of
include files, expansion of macros, and management of conditional compilation.
See the on-line man page for a description of the C preprocessor.

C Compiler

The C compiler accepts C language as defined by the ANSI C Standard. The
compiler performs a translation with optional optimizations (see the

"Optimizations" chapter) and emits an assembly language source file containing
embedded directives which provide information to be used by the lister and later by
the debugger and analyzer (see the "Compiler Generated Assembly Code" chapter).
The compiler also emits error and warning messages to the standard error output.
These messages include the original source line on which the error occurred with a
pointer to the offending token.

Peephole Optimizer

The peephole optimizer is run when the "optimize" command line option is
specified. It performs peephole optimization on the assembly output of the
compiler. The optimizer makes allowancesvolatile data types and embedded
assembly code to avoid changing the functionality of the generated code. The
optimizer works properly only on compiler-generated assembly code aoas
stand alone tool for use on hand-written assembly code. Refer to the
"Optimizations" chapter for more information on the peephole optimizer.

35

Chapter 2: C Compilation Overview
C Compilation Overview

Assembler

The assembler is the HP B3641 assembler which accepts an assembly language
source file (optionally containing symbolic debug information defined by special
directives) and produces an object code file (optionally containing a representation
of the symbolic debug information from the assembly source) and an optional
listing for use by the lister in generating the final listing. The assembler also has a
switch for generating HP 64000 format assembler symbol files.

Source File Lister

The source file lister is run when the "listing" command line option is specified.
The lister uses the assembler source or listing, C source file, and include files to
produce a listing. The listing includes embedded assembly language and,
optionally, expanded include files and a cross reference table. The lister is
controlled by "*LINE*" directives inserted by the compiler into the output

assembly code. Because the lister is usually run by the compilation control routine,
details of the lister directives are not described in this manual. See the on-line man
page for the description of clst68k command syntax and options.

Librarian

The librarian is the HP B3641 librarian which combines several object code files
(generated by the assembiler) into an archive file which the linker will search when
it tries to resolve external references. The libraries that are part of the compiler
product are made with this librarian.

Linker

The linker is the HP B3641 linker which accepts several object code or archive

files (generated by the assembler or librarian, respectively) and creates an absolute
file containing all object code and symbols to be loaded. Optional load maps may
be generated as well as HP 64000 format linker symbol and absolute files.

36

Chapter 2: C Compilation Overview
ANSI Extensions to C

ANSI Extensions to C

The B3640 Motorola 68000 Family C Cross Compiler complies with ANSI/ISO
standard 9899-1990. In some cases, programs which compile with no errors
C compilers will result in errors or warnings with this compiler. Although this
seem inconvenient, modifying the source will result in portability to other ANSI
standard C compilers.

Assignment Compatibility

The ANSI standard has more carefully regulated assignment compatibility. In
particular, pointers and integers are no longer considered to be assignment
compatible without casts, and pointers to different typed objects are not assignment
compatible without casts.

Pointers and Integers

Because assignments between pointers and integers occur often in many existing C
programs, such assignments are warned rather than being flagged as errors by the
Motorola 68000 Family C Cross Compiler. It is still recommended practice not to
perform such assignments without casts.

Pointers and Pointers

The assignment of a "pointer to one type" to a "pointer to another type" only
generates a warning message. However, the ANSI standard has provided a new
type (oid) to which a pointer may point; the resulting "pointer to void" may be
assigned to any pointer.

Function Prototypes

Function prototypes allow you to specify the types of function parameters and
whether a function accepts variable parameters. They allow the compiler to check
the consistency of parameter types between declarations and calls of a function in a
file. Because the linker does not check for incompatible calls across file
boundaries, we recommend that you use an include file to declare the function at alll
reference and definition points.

Function prototype information is used by the compiler to generate more efficient
code bynotwidening passed parameters. Thaslgrt andchar passed

37

Chapter 2: C Compilation Overview

ANSI Extensions to C

parameters are not widenedrb; andfloat parameters are not wideneditauble,
as is the case in the absence of function prototypes.

Old style function declarations (those without any parameter information) continue
to have the same meaning as before.sldirt andchar parameters are widened to

int, and allfloat parameters are wideneddouble at the function call. The

appropriate inverse conversions are performed at function entry. Old style and
prototype declarations for the same symbol can coexist as long as all of the
parameter types specified in the prototype are the widened types and as long as the
ellipsis is not used. It is good practice to convert all declarations to prototype
syntax if prototypes are going to be used.

The consistency checking between the type of expression passed as a parameter to
a prototyped function and the declared type of the corresponding parameter
requires that the two types be assignment compatible. The parameter expression
will be converted to the formal parameter type prior to its value being passed.

The following is an example of function prototype usage:

extern int printf(const char *format, ...);

/* Note the optional use of identifier "format" to document the parameter’s
meaning. The ellipsis indicates zero or more additional parameters. */

extern float float_operation(float,float);

/* In this case, only type names are given for the parameters. */

I* The following is the prototype syntax for a function definition. */

void func(int i)

float f;

f = float_operation(i, 2.0);

/* The int "i" and the double "2.0" will be converted to float
before being passed (the "2.0" is converted at compile time).
Both parameters are passed as floats without the expensive
run time conversion to double which old style functions cause. */

Pragmas

Pragmas are special preprocessor directives which allow compilers to implement
special features. By definition, any pragma that a compiler does not understand
will be ignored. However, because pragmas allow compilers to deviate from the
standard, their number has been kept to a minimum.

38

Chapter 2: C Compilation Overview
ANSI Extensions to C

The pragmas which the C compiler understands are listed below. Pragmas which
are not recognized cause a warning message to be written to the standard error
output.

#pragma SECTION

Provides for renaming the default program section names. (Refer to the "Section
Names" section of the "Embedded Systems Considerations" chapter for more
information.)

#pragma ASM/END_ASM

Provides for including assembly language in the C source file. (Refer to the "Using
Assembly Language in the C Source File" section of the "Compiler Generated
Assembly Code" chapter for more information.)

#pragma FUNCTION_ENTRY/EXIT/RETURN "C_string"

Provides for including assembly language instructions in the function entry and exit
code of the compiler-generated assembly code. (Refer to the "Using Assembly
Language in the C Source File" section of the "Compiler Generated Assembly
Code" chapter for more information.)

#pragma INTERRUPT

Provides for implementing functions as interrupt routines. (Refer to the
"Implementing Functions as Interrupt Routines" section of the "Embedded Systems
Considerations" chapter for more information.)

#pragma ALIAS

Provides for the naming of an assembly language symbol associated with a C
source file symbol. (Refer to the "Assembly Language Symbol Names" section of
the "Compiler Generated Assembly Code" chapter for more information.)

The void Type

A new typeyoid, has been added by ANSI. It has two fundamental purposes. The
first is to allow a function to be defined to have no return value (i.e., a procedure).
Sincevoid typed objects cannot be assigned to other objects, such procedures
cannot be used in a context where a return value is required. (Of course, the

39

Chapter 2: C Compilation Overview

ANSI Extensions to C

protection afforded by this mechanism is limited to programs where functions are
declared with aoid return type using old style declarations or function prototypes.)

The second use of typeid is to declare generic pointers. By definition, pointers
tovoid, e.g., "void *genericPtr;", are assignment compatible with pointers to any
other type. This can also be a convenient type for the return type of a function such
asmallocwhose result is then assignment compatible with any pointer.

The volatile Type Modifier

The type modifierolatile specifies that a particular variable’s value may change
from one read to another or following a write. An obvious example of such a
"variable" is an I/O port in an embedded system. viitatile type modifier

informs the compiler of this behavior so that the compiler can avoid performing
optimizations which assume that variables’ contents are not changed unexpectedly.
(Refer to the "Effect ofolatile Data on Peephole Optimizations" section in the
"Optimizations" chapter; also, refer to "Thalatile Type Modifier" section in the
"Embedded Systems Considerations" chapter for examples of its use.)

40

Chapter 2: C Compilation Overview
ANSI Extensions to C

The const Type Modifier

An object declared with theonsttype modifier tells the compiler that the object
cannot be assigned to, incremented, or decremented; statements which atte
do so will cause errors. Pointersctinststorage cannot be assigned to pointers
non-conststorage. Objects declared with ttemsttype modifier can be accessed
but they cannot be written to. An object declared witlctimsttype modifier,
which hasstatic storage class, is placed in the CONST section (see the "#pragma
SECTION" section in the "Embedded Systems Considerations" chapter). Some
examples of how theonsttype modifier is used follow.

static const char message[][7] = {
"First ",
"Second",
"Third "

¥

constchar *cnst_chr_ptr; /* The pointer may be modified, */
/* but that which it pointsto ~ */
/* may not. */

char *const ptr; /* The pointer may not be modified,*/
/* but that which it points to may.*/

const char *const ~ ptr; /* Neither the pointer nor that */
/* which it points to may be */
/* modified. */

41

Chapter 2: C Compilation Overview

ANSI Extensions to C

Translation Limits

The ANSI C Standard has set standard translation limits which must be met or
exceeded by conforming implementations. The following list meets or exceeds all
such limits put forth by the standard.

Approximately 50 nesting levels in compound statements, iteration control
structures, and selection control structures.

Unlimited levels of nesting in preprocessor conditional compilation blocks.

Approximately 100 pointer, array, and function declarators modifying a basic
type in a declaration.

Limited to 128 levels of expression nesting.

There are 255 significant case-sensitive characters in an internal identifier.
There are 255 significant case-sensitive characters in a macro name.
There are 30 significant case-sensitive characters in an external identifier.
Limited to 211 bytes of local variables in one function block.

Unlimited simultaneous macro definitions.

Limited to 21 bytes of parameters in function definition and call.

Limited to 127 parameters in preprocessor macro.

Limited to 1024 characters in a logical source line.

1023 characters in a single string literal (1024 including a trailing null
character). There is no limit on the size of string made from adjacent string
literals.

Limited to 211 byte-sized objects.
Unlimited nesting levels of include files.
Unlimited number of cases in a switch statement.

Size of the switch statement body is limited to 32767 bytes of generated code
unless the "big switch tables" option to cc68k is specified (in which case, the
size of the switch statement body is limited only by the size of the processor
address space).

42

Chapter 3: Internal Data Representation

Internal Data Representation

How arithmetic and derived data types (arrays, pointers, structures, etc.) are
represented in memory.

43

Chapter 3: Internal Data Representation
Arithmetic Data Types

This chapter does not describe how to use data types in your programs. Refer to
The C Programming Languader information such as escape seque nuastf
conversions, and declaration syntax.

Arithmetic Data Types
The arithmetic data types are listed in the following table:

Table 3-1. Arithmetic Data Types

Type # of Bits Range of Values (Signed) (Unsigned)
char 8 -128to 127 0to 255
short 16 —-32768 to 32767 0 to 65535

int 32 —2147483648 to 2147483647 0 to 4294967295
long 32 —2147483648 to 2147483647 0 to 4294967295
float 32 +/-1.18 x 18%to +/— 3.4 x 188

The integral data typesHar, short, int, andlong) are signed by default; however,
they may be used in combination with tivesignedkeyword to yield unsigned
data typesuynsignedby itself meansinsigned inj. All integral data types use
two’s complement representation.

Floating-Point Data Types

Floating-point data types are stored in the IEEE single and double precision
formats. Both formats have a sign bit field, an exponent field, and a fraction field.
The fields represent floating-point numbers in the following manner:

Floating-Point Number = <sign> 1.<fraction field> x 2(<exponent field> - bias).

Sign Bit Field. The sign bit field is the most significant bit of the floating-point
number. The sign bit is O for positive numbers and 1 for negative numbers.

44

Chapter 3: Internal Data Representation
Arithmetic Data Types

Fraction Field. The fraction field contains the fractional part of a "normalized"
number. "Normalized" numbers are greater than or equal to 1 and less than 2. Since
all normalized numbers are of the form "1.XXXXXXXX", the "1" becomes

implicit and is not stored in memory. The bits in the fraction field are the bits to the
right of the binary point, and they represent negative powers of 2. For example:

0.011 (binary) = 2 2 42 2 =025+0.125=0.375.

Exponent Field. The exponent field contains a biased exponent; that is, a
constant bias is subtracted from the number in the exponent field to yield the
exponent. (The bias makes negative exponents possible.)

If both the exponent field and the fraction field are zero, the floating-point number
is zero.

NaN. A NaN (Not a Number) is a special value which is used when the result of
an operation is undefined. For example, adding positive infinity to negative
infinity results in a NaN.

Float

Thefloat data type is stored in the IEEE single precision format which is 32 bits
long. The most significant bit is the sign bit, the next 8 most significant bits are the
exponent field, and the remaining 23 bits are the fraction field. The bias of the
exponent is 127. The range of single precision format values is from 1.1¥ %010
3.4 x 168 The floating-point number is precise to 6 decimal digits.

31 30 23 22 0

S |Exp. + Bias Fraction

0 000 0000 0000 0000 0000 0000 0000 0000 = 0.0

0 011 1111 1000 0000 0000 0000 0000 0000 = 1.0

1 011 1111 1011 0000 0000 0000 0000 0000 = -1.375

1 111 1111 1111 1111 1111 1111 1111 1111 = NaN (Not a Number)

45

Chapter 3: Internal Data Representation
Arithmetic Data Types

Double

Thedouble data type is stored in the IEEE double precision format which is 64 bits
long. The most significant bit is the sign bit, the next 11 most significant bits are
the exponent field, and the remaining 52 bits are the fraction field. The bias of the
exponent is 1023. The range of double precision format values is from 2.23 x
10°%t0 1.8 x 16% The floating-point number is precise to 15 decimal digits.

63 62 52 51 0
S |Exp. + Bias Fraction

0 000 0000 0000 0000 0000 0000 ... 0000 0000 0000 0000 = 0.0

0 011 1111 11110000 0000 0000 ... 0000 0000 0000 0000 = 1.0

1 011 1111 11100110 0000 0000 ... 0000 0000 0000 0000 = -0.6875

1 111 1111 11111111 1111 1111 .. 1111 1111 1111 1111 = NaN

Precision of Real Number Operations

In the absence of the "generate code for the 68881/2" command line option, all real
number operations are accomplished by calls to the real number routines
(described in the "Conversion" and "Floating-Point Routines" sections of the
"Run-Time Library Description" chapter) or to math library routines which
eventually call run-time library routines. With the "generate code for the 68881/2"
command line option, most real number operations are performed in-line with
68881/2 instructions.

All of this has a subtle effect on the precision of floating-point results.

Without the 68881/2. When routines are used to perform floating-point
operations, all intermediate results are truncated to 64-bit precision immediately,
and no 80-bit intermediate results are carried on into subsequent calculations. The
precision of the results reflects this implementation.

With the 68881/2. When the "generate code for the 68881/2"'dommand line

option is used, many intermediate results are kept with 80 bits of precision and are
passed on into subsequent operations without truncation. The 68881/2 itself
supports a mode in which these results are automatically truncated; however, an
execution speed penalty is incurred. Thus, it is important to understand, when using
the "generate code for the 68881/2" command line option, that results will differ
from those produced without the option.

46

Chapter 3: Internal Data Representation
Arithmetic Data Types

Characters

In addition to thehar type, the C compiler supports wide (extended) characters
with thewchar_t type. Thewchar_t type is implemented amsigned long
Constants in the extended character set are written with a preckedidgjfier.
Library routines which support wide characters are described onfudienin the
“Libraries" chapter.

Multi-byte characters are not supported.

If a multi-character constant (for example, 'abc’) is encountered, the compiler
multiplies the value of the first character by 256 and adds the value of the second
character. If there are remaining characters, the new value is multiplied by 256 and
the next character is added until no more characters are left. (Some previous
versions of the compiler technology simply accepted the first character and
discarded the others.)

47

Chapter 3: Internal Data Representation
Derived Data Types

Derived Data Types

The following objects are derived data types. The sizes of each data type (or the
calculation used to determine the size) are listed.

Pointers 32-bits.
Arrays (Number of elements)*(Size of one element).
Structures Sum of the sizes of each member. (Members, as well as the

structure itself, may be padded for alignment.)

Unions Size of the largest member. (This member, as well as the
union itself, may be padded for alignment.)

Enum types 1, 2, or 4 bytes depending on the constant values of the
elements.

Pointers

Pointers are addresses which point to stored values. Pointers occupy four bytes and
are aligned on four-byte boundaries (two-byte boundaries for the 68000 and
68332). The following program is a simple example of how pointers are used.

main()

int value;
int *ptr /*"ptr" is of type pointer to "int". */

value = 256;
ptr = &value; /* "ptr" = the address of the location */
/* at which "value" is stored. */

Arrays

Arrays are made up of a fixed number of elements of the same type.
Multi-dimensional arrays can be thought of as arrays of arrays (of arrays, etc.)
where each array represents a single dimension. Index values for each dimension
are used to access the elements of a multi-dimensional array.

48

Chapter 3: Internal Data Representation
Derived Data Types

The amount of storage allocated for an array is the sum of the space used by all its
elements. An array is aligned on the alignment boundary of its elements. For
example, ahort array with 10 elements would use 20 bytes and be aligned on a
two byte boundary.

The first element of a one-dimensional array (index equals zero) is located at the
lowest address of the storage allocated for the array. Elements of multi-dimeng
arrays are stored in row-major order (in other words, the rightmost index chan
more rapidly with successive memory locations).

The following program shows some simple arrays.

float fpns[10]; /* 10*4 = 40 Bytes of storage allocated */

main()

int

fpns[1] = 1.0;
for (i=0;i<4;i++)

int array[4][7]; [*4*7*4 = 112 Bytes allocated */
i i J; /* on the stack. */

for(j=0;j<7;j++)
arrayl[i][j] = 0;

49

Chapter 3: Internal Data Representation

Derived Data Types

Note

Strings

Strings are a sequence of characters or escape sequences enclosed in double quotes
(. Strings may be used in two distinct contexts. The first is in C program

statements or as intitializers of tyglear * where they are treated as if they are of

type "const char *'. For example:

char *p, *q = "abc";
p ="Xyz";

When used in such a context, the compiler places the string, together with an
additional NULL (0) termination character, in the named CONST linker section
(named "const" by default).

The second context in which strings may be used is as initializers of archgs of

If the initialized array is an automatic, the initialization occurs at run-time, and the
compiler places the string and NULL terminator in the named CONST linker
section just as above. If, however, the array being initialized is a static, the
initialization occurs at load-time (or is in ROM). For example:

constchar string[] = "abcdefghi”;

When a string is used to initialize an array, the compiler places the initialized array
in either the named DATA linker section (if the array’s type is oonst') or in

the named CONST linker section (if the array’s type@mt). A terminating

NULL (0) character is appended to the string only if there is room in the declared
array (or if it is "open" as above).

Trying to change the value of a string constant may cause unwanted side effects.
The reason for this is explained in the "Optimizations" chapter.

The compiler accepts hexadecimal escape sequences of unlimited length. The
example below is interpreted as a single hex value:

*str = "\x064f";

In order to produce the string "df", you could modify the string in the following
way:

*str = "\x064" "f";

50

struct example {

Chapter 3: Internal Data Representation
Derived Data Types

Structures

Structures are named collections of members. Structure members may be of
different types, they may be specified as bit fields, or they may even be pointers to
the structure in which they are defined (self-referential structures).

Structures may be passed as parameters to and returned from functions. (Se
"Stack Frame Management" section of the "Compiler Generated Assembly C
chapter for more information on how structures are passed to and returned fr
functions.)

The amount of storage allocated for a structure is the sum of the space required by
all its members, the alignment padding between members, and padding at the end
of the structure to make its size a multiple of four (two) bytes. For example, a
structure whose members arehar, anint, and adouble would be allocated 16

bytes (three bytes following tlehar are "wasted" to align thiat). (For the 68000

and 68332, 14 bytes are allocated—one byte followinghibeis "wasted" to

align theint). Members are located in the allocated space in the order that they are
declared.

An example of a simple structure follows.

/* 16 bytes of storage allocated at 4-byte boundary. */

char c; /* First byte of structure. */

int i; /*Begins at 5th byte of structure. */

double d; /* Begins at 9th byte of structure. */
} var;
main()

var.c ='a’;

var.i = -1;

var.d = 1.0;

For the 68000 and 68332 processshgict example uses 14 bytes of storage
allocated at a 2-byte boundanpti begins at the 3rd byte of the structure and
double d begins at the 7th byte of the structure.

See the "Alignment Considerations" section for information on howQtoption
affects member alignment.

51

Chapter 3: Internal Data Representation
Derived Data Types

Bit Fields

Bit fields are structure or union members which are defined as a number of bits. A
colon separates the length of a bit field from the declarator. Bit fields can be signed
(declared as plain integral types) or unsigned (declaredsignedintegral types).

All integral types are allowed in bit field declarations, but are converiet to
unsigned int The high order bit of a signed bit field is the sign bit.

Bit fields are packed from the high-order bits to the low-order bits in the words of
memory they occupy. Bit padding can be generated by omitting the name from the
bit field declaration. Consecutive bit fields are packed adjacently regardless of
integer boundaries. However, a bit field with a specified width of zero will cause
the following bit field to start on the nextt (double word) ghort word for the

68000) boundary.

Examples of bit field declarations follow.

struct {
int f1:8; /*flis a signed bit field, */
/* occupying bits 31-24 of the */
[* first double word. */
I* *

unsigned :12; /* 12 bits of padding occupy */
/* bits 23-12 of the first */
/* double word. */
I* */

unsigned f2:16; /* f2 occupies bits 11-0 of the */
/* first double word and bits */
/* 31-28 of the second double */
/* word. */
I* */

int :0,3:7; /* f3 occupies bits 31-25 of */
/* the third double word. */

}a; /* The size of the structure is */

/* 12 bytes. *

52

Chapter 3: Internal Data Representation
Derived Data Types

Unions

Unions are like structures except that each member has a zero offset from the
beginning of the union. Unions provide a way to access the same memory
locations in more than one format. A simple example of a union is shown below.

union {
unsigned int sign:1;
float fp_rep;

} fp_num;

main()

fp_num.fp_rep = 1.0;
if (fp_num.sign == 0)
fp_num.sign = 1;

Accessingnt andchar members oint andshort members will yield different
results due to the byte ordering of data on the 68000. See the "Byte Ordering"
section which follows.

Enumeration Types

Enumeration type declarations define elements of a finite set. Each element of the
enumerated type becomes a constant. The first element is equal to a constant value
of 0, the second is equal to 1, and so on. You can assign a particular constant value
to an element, and the values of the elements which follow will increment from that
value.

An enumeration type is considered to be the smallest integral type which can
represent all the values of the enumeration.

» If the constant values for all elements are between -128 and +127, the
enumeration type is allocated the same spacbasypes.

» If the condition above is not true, but the constant values for all elements are
between -32768 and +32767, the enumeration type is allocated the same space
asshort int types.

» If the constant value of any element is outside the range
-32768 to +32767, the enumeration type is allocated the same spiEtce as

types.

An enumtyped variable can be used in expressions wherever integral typed
variables are allowed. The following program shows a simple enumerated type.

53

Chapter 3: Internal Data Representation
Alignment Considerations

enum color

{yellow, red, green, blue=8, violet} paint;

/* The elements of the enumeration type "color" equal the */
/* following constants: yellow = 0, red = 1, green = 2, */
/* blue = 8, and violet = 9. */

main()

marker;
if (marker == green)

paint = marker;

/* This statement is allowed, but */

/* marker = 3 instead of "blue" */
/* which is 8. */

The values of an enumerated type are considered to be declared the moment they
are encountered in the source file. Thus it is possible to have a declaration like the
following:

enum {apple, orange = apple} e;

Alignment Considerations

Variable and constant data, as opposed to executable instructions, atignd

or paddedby the compiler. In this contextlignedis defined to mean that the

memory allocated to the variable begins at a particular byte boundary (e.g., an
alignment of four (two) bytes means that a variable’s absolute address is a multiple
of four (two)); paddeds defined to mean that the size of a type was rounded up to
guarantee that the number of bytes in that type is a multiple of four (two).

Arrays are aligned according to their element type’s alignment and are not padded.
Note, however, that an array’s elements may be padded (if it is an array of
structures or unions).

Structure members are aligned relative to the start of the structure (and padded if
they are structures or unions) in accordance with their type.

Unless function prototypes are used (see the "ANSI Extensions" section in the "C
Compiler Overview" chapter), athar andshort parameters are wideneditbs
when they are passed and, thus, folloinalignment rules when they are passed.

54

Chapter 3: Internal Data Representation
Alignment Considerations

Note that inside a called functiachar or short parameters are reduced to their
normalchar andshort size.

Alignment can be changed by using the compiler’s "word align d&'bption.
In the presence of this option, data is aligned at word boundaries.

Note The "word align data" option is not available for the 68000 and 68332, becaus
compiler always word-aligns data for these processors.

The following table summarizes the default alignment and padding of the various
data types when the "word align data" option is not used. The numbers in
parentheses are for the 68000/10, 68332, and 68302 processors.

Table 3-2. Arithmetic Data Type Alignment

Data Type Alignment Padded?

char 1 N
short 2 N
int 4(2) N
long 4(2) N
pointer 4(2) N
float 4(2) N
double 4(2) N
struct 4(2) Y

55

Chapter 3: Internal Data Representation
Alignment Considerations

Alignment Examples
These examples assume that the "word align data" option is not used.

Default alignment dictates thathar variable followed by amt variable

"wastes" three bytes (one byte for the 68000 and 68332) of memory between the
two objects. Note that there are no "wasted" bytes wickaravariable is

followed by an array athar, but memory is "wasted" wherchar variable is
followed by a structure.

Thesizeofbytestruct declared with:

struct {char element;} bytestruct;

is four (two) (the minimunsizeofanystruct type) and thsizeofbiggerstruct
declared with:

struct {char element1;
int element2;} biggerstruct;

is eight (one for elementl, three "wasted" for alignment, four for element2, and
none for padding as the size is a multiple of four). For the 68000 and 68332, the
size is six (one for elementl, one "wasted" for alignment, four for element2, and
none for padding as the size is a multiple of two).

56

Chapter 3: Internal Data Representation
Byte Ordering

Byte Ordering

Some programs rely on byte ordering. For example, programs that declare a
variableint in one module andhar in another may work differently on the 68000
than on other microprocessors due to byte ordering. Consider the two files sh

below:
File 1: File 2:
extern int x; char x;
main() funct()
X ="A’; charc;
funct();
c=x;, [* c=0x00 *
} [* c!=0x41 */
7 0 7 0
_x =—B58000000 MSB X 0000 0000 B
0000 0000
0000 0000

0100 0001 LSB

Because of the problems which can be caused by relying on processor-dependent
ordering, you should not write code like this. Each module or file should declare

variables with identical type information.

57

Chapter 3: Internal Data Representation
Byte Ordering

58

Chapter 4: Compiler Generated Assembly Code

Compiler Generated Assembly Code

Description of the assembly code generated by the compiler.

59

Chapter 4: Compiler Generated Assembly Code

The compiler generates assembly code for the HP B3641 assembler (as68k).
Knowing how the compiler generates this code will help you to write assembly
language routines that interface with C functions.

In this chapter you will find information about the following subjects:

» Assembly language symbol names

» Debug directives

» Stack frames (how parameters are passed to and from C functions)
* Register usage

* Run-time error checking

» Ways to include assembly language in a C source file

60

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

Assembly Language Symbol Names

The compiler prefixes characters to the names given in the C source (to prevent
potential conflicts with assembler reserved words) when generating assembly
language symbols to represent addresses and stack offsets of C variables.

Symbol Prefixes

The _ Prefix

Externs, globals, statics, and functions have an underscore () prefix. You can
change the prefix for external variables (externs, globals, and functions) to a
different string by using a cc68k optio\(c,-1). Refer to the on-line man page for
more information on changing this prefix character.

The S_ Prefix

Parameters and automatics have "S_" prefixed. The "S" indicates symbols that are
SET equal to stack offsets.

The L_ Prefix

The only other symbol names from the C source which are passed on to the
assembly code are C label names. These labels have "L_" and a unique ASCII
number prefixed to them in the generated assembly code.

See figure 4-1 for an example of how the compiler creates symbol names.

These symbol names aret used by debuggers and emulators unless the

debuggers and emulators consume HP format absolute files. The C source symbol
names are defined using debug directives (see the following "Debug Directives"
section).

61

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

/* Assembly Symbol Name: */
I* *

float ext_var; ¥ _ext_var */
I* *
main() /¥ _main */
I* */
char auto_var; /* S_auto_var */
static int number; /* _1 number */
I* */
auto_var ='a’; I* */
goto label; I* */
label: /¥ L_2_label */
function(number); I* */
I* */
I* *
int number; /¥ _number */
I* */
function(i) /¥ _function */
inti; I S_i */
{ 1* */
i=1; I* *
} 1* */
Figure 4-1. Examples of Generated Symbol Names

Situations Where C Symbols are Modified

There are four cases where the compiler modifies the names of C variables to
guarantee that they are unique in the assembly code:

1

If a parameter or automatic name exceeds 29 characters in length, then it must
be made unique since the assembler only recognizes 31 (29 + 2 for"S_")
significant characters in a symbol.

If there is a variable with the same name in a containing scope in the C source,
then a parameter or automatic name must be made unique since both symbols
must exist at the same time in the assembler (which doesn’t understand
scoping).

All local statics (those declared inside a function) are made unique, since a
global static of the same name may be declared later.

External statics (those declared outside a function) are made unique if their
name exceeds 30 characters in length since the assembler only recognizes 31
(30 + 1 for "_") significant characters in a symbol.

62

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

In all four cases, symbol names are made unique by inserting a unique ASCII
number and an underscore between the initial underscore (or "S_") and the C name.
For example:

123 name
S 123 name

#pragma ALIAS

Syntax:

#pragma ALIAS Csymbolname Assemsymbolname
#pragma ALIAS Csymbolname "Assemsymbolname”

This pragma allows overriding of the C compiler algorithm for converting C source
file symbol names into an unique assembler symbol names (the algorithm generally
prefixesan"_"or "S_"). This pragma shouldused with great careas it may

generate assembly-time errors due to conflicts betesemsymbolnanaad

other assembly language symbols. Use the quotation marks if the
Assemsymbolnanmeould not be a valid C identifier. This pragma should be placed
before any references to the symbol.

Compiler Generated Symbols

The compiler generates assembly language labels for C loops, switch statements,
and other constructs which require labels. The name of the label is related to the
use of the label; for example, the label "forLoop3" might be used to implement a
for loop.

63

Chapter 4: Compiler Generated Assembly Code

Debug Directives

Debug Directives

If the "strip symbol table information” compiler command line option is not used,

the compiler generates all the HP B3641 debug directives necessary to use
debugger, emulation, and analysis tools. This debug information consists of source
file and line references, type names and structure, symbol type and access
information, and function call information. One LINE directive is output for each

C source statement to associate the generated assembly code with the C source file
line number.

Note

Stack Frame Management

In block-structured languages (C, Pascal, etc.), the stack is used to pass parameters
into and receive results from each of the blocks which make up the program. In C,
these blocks are called functions. In addition to passing values and returning

results, the stack is used for a function’s local variables and to buffer register
variables. The area of the stack used by a function is called a "stack frame". To
illustrate what makes up stack frames and how they are managed, one must observe
what happens to the stack when a function is called; these events are listed below
and described in this section.

This section applies only to C function calls. Run-time libraries invoked in
compiler-generated code may use different (and more efficient) stack frame
management because these calls are not constrained by C language calling
conventions.

64

High Address

Frame pointer (A6)
points to address of
old frame pointer.

Stack pointer (A7)
points to lowest
address used.

Low Address

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

Used stack space

Reserved space for
structure result

Last parameter
O
First parameter

Result address

Return address

Old frame pointer

Last local
O
First local

Buffered register
variables

Temporaries
O

Top of stack

Absent if result is <= 8 bytes or if a
larger result is returned through a
variable.

Absent if no parameters are passed.

(Last passed parameter is pushed first.)

Absent if size returned is <= 8 bytes.

Absent if there are no parameters or

locals, and size returned is <= 8 bytes.

Absent if function does not declare any

local (automatic) variables. (Last
declared local is first on stack.)

Absent if function does not use any
register variables. Only those used in
the function are buffered.

Stack changes as temporaries are saved

and used in expressions.

Figure 4-2. Stack Frame Format

65

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

* Space is reserved for a structure result (if the size returned is greater than 8
bytes).

e Parameters are pushed (last is pushed first).

» A pointer to the result address is pushed (if size returned is greater than 8
bytes).

e The subroutine call is made and the return address is pushed (with the JSR or
BSR instructions).

* The old frame pointer is pushed (with the LINK instruction).
» Space for automatics (locals) is allocated (also by LINK).

» Registers used in the called function for register variables are pushed (to buffer
their values).

» During function execution, intermediate values may be stored on the stack
temporarily.

» Function return values are stored in working registers or returned indirectly
through a pointer on the stack (possibly into space reserved on the stack).

» At function exit, register variables are restored and locals are deallocated; and
the calling routine deallocates parameters and uses the structure result.

The general format of a stack frame is shown in figure 4-2. An example of the
code generated for stack frame management is shown in figure 4-3.

Structure Results

C allows functions to return results of tygteuct. Although most function results

are returned in register DO, D1, or FPO, structures greater in size than 8 bytes are
returned to a location specified by the result location pointer. The result location
pointer is pushed onto the stack after the parameters and before the return address.

In a C statement such astruicture = f(x)", the address of the variable "structure"
may be pushed as the result location pointer, and the called function will return its
resultant structure directly into memory reserved for the "structure" variable.

In other statements, such as'f(x).field", space must be reserved on the stack
(prior to pushing parameters) to hold the function structure result. The address of
this reserved stack space will be pushed as the result location pointer (after the
parameters and before the return address), and the function will return its resultant

66

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

structure into the reserved stack spaleis approach maintains reentrancy for
functions returning structures.

Parameter Passing

Parameters are pushed on the stack in right to left order as they appear in the
function call (in other words, the last passed parameter is pushed first). Unless
function prototypes are used (see the "ANSI Extensions" section in the "C
Compiler Overview" chapter), parameters of tghar andshort are rounded up to
int when passed, and parameters of figet are rounded up touble when
passed.

After the parameters (and, possibly, a result address) are pushed, the function is
called. The subroutine call pushes the return address on the stack following the
parameters.

Pushing the Old Frame Pointer and Allocating Space

A LINK is the first instruction executed inside a called function. The LINK
instruction will:

1 Push the old frame pointer (register A6).

2 Load A6 with the current value of the stack pointer. (A6 becomes the new
frame pointer.)

3 Decrement the stack pointer (register A7) by the amount of space required for
all local (automatic) variables used by the function. (Total local space is
padded to a multiple of two bytes.)

The LINK (and UNLINK at function exit) are optimized out whenever a function
has no parameters, no automatics, and returns a result of size eight bytes or less.

67

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

Buffering Registers Used for Register Variables

Following the allocation of automatics, any registers which have been allocated for
use by the function as register variables are pushed on the stack to buffer their
values.

Also, the compiler may use these registers for automatics regardless of whether or
not they have been declared with thgister storage class specifier (see the
"Register Usage" section which follows). Any registers used by the function for
automatics are also pushed on the stack.

Accessing Parameters

Each parameter’s assembly language symbol name is SET to that parameter’s
offset from the frame pointer. The offset of the first parameter will be 8 if the

result size is less than or equal to 8 bytes; the offset of the first parameter will be 12
if the result size is greater than 8 bytes. For example, if "p" is the first parameter
passed, the compiler generates the following line in the assembly:

Sp SET 8

Parameters are accessed by using the symbol names relative to A6. For example:
MOVE.L (S_p,A6),DO

Shortening Parameters

Unless function prototypes are used (see the "ANSI Extensions" section in the "C
Compiler Overview" chapter), parameters of tghar andshort are widened to

int when passed. Thus, any parameters formally declared to be ohgyper

short must be shortened fromt. Since this shortening is defined to be by
truncation, it is accomplished by simply adjustingititgparameter’s offset from

the frame pointer to point to the least significant wshi(t) or byte ¢€har).

Similarly, float parameters are widened to double when passed. Thus, any formal
float parameters must be shortened from their padaglole form. To avoid

problems when such parameters are optiorfidatlocal variable is allocated, and
thedouble value is converted titoat and stored in the local variable. The formal
parameter’s offset from the frame pointer is then set to be that of the new local
variable.

An example of the widening and shortening of parameters is shown in figure 4-4.
The same example using function prototypes is shown in figure 4-5.

68

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

Accessing Locals

The last local (automatic) variable declared appears first on the stack. Each local
variable’s assembly language symbol name is SET to that variable’s offset from the
frame pointer. For example, if "I" is the first local declared, and there are 20 bytes
of local variables, then the compiler generates the following line in the assembly:

S| SET -20

Local variables are accessed using the symbol name relative to A6. For exa
MOVE.L (S_|,A6),D0

Using the Stack for Temporary Storage

Code generated by the function body may or may not use the stack for temporary
storage of intermediate results. This temporary storage size is dynamic through the
function, but has all been removed by the time the function exit code is executed.

69

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

Function Results

Results which fit in four bytes are returned in register DO. Results of four to eight
bytes are returned in registers DO and D1. Results larger than eight bytes are
returned indirectly through a "result address" pointer pushed by the calling routine.
This pointer may point to a static memory location, an automatic variable, or
temporary space on the stack. For the 68040, functions return float or double values
in the FPO register.

Function Exit

At function exit, any buffered register variables are popped, an UNLINK

instruction is used to restore the buffered frame pointer and increment the stack
pointer to its position at function entry, and the function return itself pops the return
address. The calling routine is responsible for incrementing the stack pointer,
popping the passed parameters, and, if necessary, removing the space reserved for
structure function results.

70

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

HPB3640-19300 68000 C Cross Compiler A.04.00 stackfl.c

HPB3641-19300 A.02.00 19Apr93 Copr. HP 1988 Page 1 Mon Apr 26 15:14:50 1993

Command line: as68k -Lfnot,llen=1100 -H stackfl.A -o stackfl.o /tmp/ct3CAAa27807

Line Address
CHIP

68000

NAME stackfl

*

* MKT:@(#) B3640-19300 A.04.00 MOTOROLA 68000
FAMILY C CROSS COMPILER
*

* Assembler options:
*

OPT

*

BRW,FRL,NOI,NOW

* Macro definition for calling run-time libs:
* bytes per call =
*

CALL MACRO
XREF routine

routine

JSR (routine).L

ENDM

SECT prog,2,C,P

1 typedef struct {

2 int month,day,year;
3 }date;
4
5 main()
6 {
XDEF
_main
00000000 4E56 FFF4
FFFFFFF4 S_d
7 date d,set_date();
8
9 set_date(d,5,18,87);

00000004 4FEF FFF4
00000008 4878 0057
0000000C 4878 0012
00000010 4878 0005
00000014 41EE FFF4
00000018 2F28 0008
0000001C 2F28 0004
00000020 2F10
00000022 486F 0018

00000026 4EB9 0000 0034 R

0000002C 4FEF 0028
10 }

_main
LINK A6,#-12
SET -12
LEA (-12,A7),A7
PEA (87).W
PEA (18).W
PEA (5).W
LEA

VDVEINCHOR) (a7

MOVE(;Q| [AO) (A7)

(S_d+0,A6),A0
)

~

(2447
ISR (_set_datso).L
LEA (12724+4,A7) A7

functionExitl

00000030 4E5E

returnLabell

00000032 4E75
11

UNLK
RTS

A6

Space reserved for
structure result.

Parameters
pushed.

Structure

pushed.

result address

|

Stack pointer incremented
(parameters popped).

Figure 4-3. Example Stack Frame Management Code

71

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

12 date set_date(x,mo,da,yr)

13 date x;
14 int mo,da,yr;
15
XDEF _set_date
set_date .
00000034 4E56 FFFQ LINK A6 #-16 +«— Old frame pointer
888888280 Ss_x SSEETT 134 pushed and space
0000001 ds SET 28 for locals allocated|
00000020 Syr SET 32
FFFFFFFO S_i1 SET -16
FFFFFFF8 S_i2 SET -8
*
*
16 double i1,i2;
17 register int i3;
18
19 x.month = mo;
00000038 2D6E 0018 000C MOVE.L (S_mo+0,A6),(S_x+0,A6)
20 x.day = da;
0000003E 2D6E 001C 0010 MOVE.L (S_da+0,A6),(S_x+4,A6)
21 x.year = yr,
00000044 2D6E 0020 0014 MOVE.L (S_yr+0,A6),(S_x+8,A6)
22 return(x);
0000004A 41EE 000C LEA (S_x+0,A6),A0
0000004E 226E 0008 MOVEA.L (8,A6),A1
REPT 3
MOVEL (A0)+.(AL)* Structure
00000052 22D8 MOVE.L (AO)+,(AL)+ result
00000054 22D8 MOVE.L (AQ)+,(AL)+ returned
00000056 22D8 MOVE.L (AO)+,(AL)+ :
23 }
functionExit2
00000058 4E5E returnLabeIZUNLK A6 Function exit.
0000005A 4E75 RTS
END —

Figure 4-3. Example Stack Frame Mgmt. Code (Cont'd)

72

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

HPB3640-19300 68000 C Cross Compiler A.04.00 shrtwidl.c
HPB3641-19300 A.02.00 19Apr93 Copr. HP 1988 Page 1 Mon Apr 26 15:14:59 1993

Command line: as68k -Lfnot,llen=1100 -H shrtwid1.A -o shrtwidl.o /tmp/ct3CAAa27822
Line Address
CHIP 68000
NAME shrtwidl
*
* MKT:@(#) B3640-19300 A.04.00 MOTOROLA 68000
FAMILY C CROSS COMPILER
*

* Assembler options:
*

OPT BRW,FRL,NOI,NOW
*
* Macro definition for calling run-time
libraries:
* bytes per call = 6
*

CALL MACRO routine
XREF routine
JSR (routine).L
ENDM

SECT prog,2,C,P
1 main()
2 {
XDEF _main
_main
00000000 2F03 MOVE.L D3,-(A7)
00000002 2F02 MOVE.L D2,-(A7)

*
* Register 'D3'’ is register variable 'S_c'.
*
*
* Register 'D2’ is register variable 'S_f'.
*

char c, char_funct(); i i
float 1, float, funct(); char widened to int.

ohw

char_funct(c);
00000004 1003 MOVE.B D3,D0
00000006 4880 EXT.W DO
00000008 48C0 EXT.L DO
0000000A 2F00 MOVE.L DO,-(A7)
0000000C 4EB9 0000 002E R JSR (_char_funct+0).L
00000012 588F ADDQ.L #4,A7
7 float_funct(f);
00000014 2002 MOVE.L D2,D0
CALL ftod
XREF ftod
00000016 4EB9 0000 0000 E JSR (ftod).L
0000001C 2F01 MOVE.L D1,-(A7)
0000001E 2F00 MOVE.L DO,-(A7)

Figure 4-4. Widening and Shortening of Parameters

73

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

00000020 4EB9 0000 003A R JSR (_float_funct+0).L

00000026 508F ADDQ.L #8,A7
8 }
functionExitl
00000028 241F MOVE.L (A7)+,D2
0000002A 261F MOVE.L (A7)+,D3
returnLabell
0000002C 4E75 RTS
10 char char_funct(chr)
11 char chr;
12 {
XDEF _char_funct
_char_funct
0000000B S_chr SET 11 —
13 chr ="A’;
0000002E 1F7C 0041 0007 MOVE.B #65,(S_chr-4,A7)
14 return(chr);
00000034 102F 0007 MOVE.B (S_chr-4,A7),D0
15 }
functionExit2
returnLabel2
00000038 4E75 RTS
16
17 float float_funct(flt)
18 float Afit;
19 {
XDEF _float_funct
_float_funct
0000003A 4E56 FFFC LINK A6,#-4
FFFFFFFC S_flt SET -4
00000008 S_wide_paraml SET 8
0000003E 43EE 0008 LEA (S_wide_param1+0,A6),Al
00000042 2019 MOVE.L (A1)+,DO
00000044 2219 MOVE.L (A1)+,D1
CALL dtof
XREF dtof

Figure 4-4. Widening/Shortening Parameters (Cont’d)

int shortened to
char (offset
points to least
significant byte
of parameter.)

74

Chapter 4: Compiler Generated Assembly Code

HPB3640-19300 68000 C Cross Compiler A.04.00 funcprto.c

Stack Frame Management

HPB3641-19300 A.02.00 19Apr93 Copr. HP 1988 Page 1 Mon Apr 26 15:15:10 1993

Command line: as68k -Lfnot,llen=1100 -H funcprto.A -o funcprto.o /tmp/ct3CAAa27837

Line Address
CHIP 68000
NAME funcprto

*

* MKT:@(#) B3640-19300 A.04.00 MOTOROLA 68000 FAMILY C

CROSS COMPILER
*
* Assembler options:
*

OPT BRW,FRL,NOI,NOW

*

* Macro definition for calling run-time libraries:

* bytes per call = 6
*

CALL MACRO routine
XREF routine
JSR (routine).L

ENDM
*
SECT prog,2,C,P
1 main()
2 {
XDEF _main
main

00000000 2F02 ~ MOVE.L D2,-(A7)
*

* Register ‘DO’ is register variable 'S_c'.
*

*
* Register ‘D2’ is register variable 'S_f'.
*

char c, char_funct(char);
float f, float_funct(float);

ogbhw

char_funct(c);

char no longer
widened to int.

00000002 1F00

00000004 4EB9 0000 0018 R
7 float_funct(f);

0000000A 2F02

0000000C 4EB9 0000 0024 R

00000012 5C8F
8 }

MOVE.B DO,-(A7)
JSR (_char_funct+0).L

MOVE.L D2,-(A7)
JSR (_float_funct+0).L
ADDQ.L #6,A7

functionExit1l

00000014 241F

MOVE.L (A7)+,D2

returnLabell

00000016 4E75
9

10 char char_funct(

RTS

Figure 4-5. Function Prototype Parameter Passing

75

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

11 char chr)
12 {
XDEF _char_funct
_char_funct
00000008 S_chr SET 8
13 chr ="A’;
00000018 1F7C 0041 0004 MOVE.B #65,(S_chr-4,A7)
14 return(chr);
0000001E 102F 0004 MOVE.B (S_chr-4,A7),D0
15 }
functionExit2
returnLabel2
00000022 4E75 RTS
16
17 float float_funct(float flt)
18 {
XDEF _float_funct
_float_funct
00000008 S_flt SET 8
19 flt = 1.0;
00000024 2F7C 3F80 0000 MOVE.L #$3F800000,(S_flt-4,A7)
0004
20 return(flt);
0000002C 202F 0004 MOVE.L (S_flt-4,A7),D0
21 }
functionExit3
returnLabel3
00000030 4E75 RTS
END

Figure 4-5. Function Prototype Parameters (Cont’d)

76

Chapter 4: Compiler Generated Assembly Code
Register Usage

Register Usage

The following table shows how registers are used for C function calls.

Note This section applies only to C function calls. Run-time libraries invoked in
compiler-generated code may use other conventions understood by the calling
code. (See the "Run-Time Library Description" chapter.)

Table 4-1. Register Usage

Register Register contents

DO, D1 Return values

AOQ, Al Working registers
FPO, FP1
A5 Reserved for A5 relative addressing

A6 Frame pointer

A7 Stack pointer

Registers DO, D1, AO, and Al are reserved as working registers to hold
intermediate values of calculations. Registers DO and D1 are also used to hold
function return values that fit in eight bytes. Return values larger than eight bytes
are returned indirectly via a pointer.

77

Chapter 4: Compiler Generated Assembly Code

Register Usage

For more information on how register A5 is used for A5 relative addressing, see the
"Addressing Modes" section in the "Embedded Systems Considerations" chapter.

When the "generate 68881/2 codd) ¢ption is used, registers FP2-FP7 are

reserved for floating-point register variables. The compiler may afés#jror

double objects to these registers. Also, when the "generate 68881/2 code" option is
used, registers FP0O and FP1 are reserved as working registers.

For the 68040, registers FP2-FP7 are reserved for floating-point register variables.
The compiler may assidtoat or double objects to these registers. Registers FPO
and FP1 are reserved as working registers. FPO is also used for function return
values of typdloat or double.

Register variables

Using the priority listed below, the compiler allocates the following types of
objects to registers D2-D7, A2-A4, and FP2-FP7:

1 Variables declared wittegister storage class in the order declarations are
encountered.

2 Local non-static and function parameter variables, and addresses of static
variables, according to frequency of occurrence of the variable’s name in the
function.

If the type of the object being declared is a pointer, the compiler prefers to assign
the object to an address register; however, the compiler may assign the object to a
data register if no address registers remain. The compiler only assigns non-pointers
(small enough to fit in a register) to data registers.

When the "optimize" option is specified, the peephole optimizer will reallocate
register variables to unused working registers. This optimization saves the "push"
and "pop" instructions used to buffer register variable registers.

Function parameter names and static variable names must be used at least three
times in the function before they will be considered for register allocation. The
rationale for this restriction has to do with the added generated assembly

instruction required to move a static or a function parameter into a register. The
space cost of the added instruction is considered to be offset when three or more
references are made to the parameter because now the references are to a register
instead of the stack. However, it is difficult to know if the register-for-a-parameter
optimization will improve execution speed because it is impossible to know how

the parameter is actually used in the function body. There could be instances where
this optimization could result in slower code due to the extra assignment.

78

Chapter 4: Compiler Generated Assembly Code
Register Usage

Example

To better understand the allocation scheme, consider the following example.
Suppose there was a single register left to allocate. A local non-static variable
appears just once in the function body. A parameter appears twice in the function
body. Which gets the register? The local variable does because the parameter,
which appeartess than three timebkas not "qualified" for consideration for
frequency of occurrence.

Now let us suppose that the parameter appeiEmes wheren is three or greater.
Suppose the local non-static variable appeatgimes. Which gets the register?
The parameter gets the register because it has "qualified" for consideration a
a greater number of occurrences.

79

Chapter 4: Compiler Generated Assembly Code
Run-Time Error Checking

Run-Time Error Checking

Specifying the "generate run-time error checking) ¢ption causes the compiler
to generate code for the following types of additional run-time error checking:

» Dereferences of all NULL pointers and uninitialized automatic pointers are
detected and reported. (Dereferencing is also caitiction in other
words, it is access to the object to which a pointer points.) This requires the
initialization of automatic pointers at run-time with a value (1) indicating
they are uninitialized. Note that static variables are not initialized to the
uninitialized pointer value, because the default value for static variables is zero.

» Array references outside declaration index bounds are detected and reported.

The "generate run-time error checking" option will override the "optimize" and
"strip symbol table information" options. See the on-line man pages for more
information on the compiler command line options.

80

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Using Assembly Language in the C Source File

The C compiler provides three mechanisms to embed assembly language
instructions. Which one you choose depends on where you want the assembly
language to appear and your purpose for including the assembly language
instructions. The mechanisms are:

» #pragma ASM and#pragma END_ASM

e« __ asm ("C_string) .
» #pragma FUNCTION_ENTRY "C_string",

#pragma FUNCTION_EXIT "C_string", and
#pragma FUNCTION_RETURN "C_string"

The compiler changes the names of C variables and functions into assembly
language symbols. If you know how the changed symbol nhames will appear in the
generated assembly code, you may easily use C variables and functions in your
embedded assembly code. (For more information on symbol names, see the
"Symbol Names" section in this chapter.)

When you embed assembly language, all assumptions about working registers (DO,
D1, A0, Al, and FPO-FP1) for optimization purposes are forgotten.

Register variables (D2-D7, A2-A4, and FP2-FP7), A5, the frame pointer (A6), and
the stack pointer (A7) are not buffered prior to embedded assembly language
instructions. You should buffer these registers if they will be used in your
assembly code.

Optimizations do not affect your embedded assembly code.

None of these mechanisms are part of the ANSI standard, so programs which use
embedded assembly language may not be portable to other compilers.

81

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Syntax:

Example

#pragma ASM
#pragma END_ASM

#pragma ASM
(éssembly language statement(s))

#pragma END_ASM

These two pragmas bracket a portion of inline assembly code. You may use these
pragmas anywhere a C statement or external declaration can occur. Place the
#pragma ASM before the beginning of your embedded assembly code and place
the#pragma END_ASMafter the code.

The assembly instructions must conform to the format and syntax required by the
HP B3641 assembler. The C compiler does not check the embedded assembly
instructions for correctness. The compiler simply passes the assembly language
statements, unchanged, to the assembler. You may, however, use the C
preprocessor to alter embedded assembly language instructions.

Figure 4-6 gives an example of using #pegagma ASM/END_ASMto embed
assembly code in a C source file.

82

Chapter 4: Compiler Generated Assembly Code

Using Assembly Language in the C Source File

main ()

/* Invoke supervisor mode routine. */

#pragma ASM
TRAP #17
#pragma END_ASM

}

swap (intil, inti2) {

#pragma ASM
move.l (S_il,a6),d0
move.l (S_i2,a6),(S_il,a6)
move.l d0,(S_i2,a6)

#pragma END_ASM

}

Figure 4-6. #pragma ASM/END_ASM Embedded Assembly

83

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Syntax:

Example

__asm ("C_string")

__asm("C_string")

The quotes are part of tke stringargument and the two preceding underscores
are required to meet ANSI name space requirements.

The__asmfunction is another way to embed assembly code. It differs from the
#pragma ASM/END_ASM pair in two ways:

» #pragma ASM/END_ASM brackets a section of inline assembly code. In
contrast, the assembly language instructions are contained in a "C_string"
argument to the asmfunction.

» #pragma ASM/END_ASM may appear either inside or outside of a function
body. Because asmis syntactically a function call, it may only appear inside
a function body just as any other function call must.

The__asmfunction has some advantages overiiagma ASM/END_ASM
mechanism. First, this function can be part of a macro definition which means you
may define a macro that contains embedded assembly languagipragma
ASM/END_ASM pair cannot be used to do this. Second, for single assembly
instructions, the _asmfunction is more expedient because it requires just the
function call on a single line.

The "C_string" argument is a character string containing one or more lines of
assembly code. (The quotes are part of the argument.) It must contain white space
so that when the string is output to the generated assembly code, it will conform to
the format and syntax required by the HP B3641 Assembler. The C compiler does
not check the C_string for correctness. The compiler simply outputs the string to
the assembly code.

Figure 4-7 gives an example of using thesmfunction.

84

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

main ()

/* Invoke supervisor mode routine. */

__asm("MTRAP\t#17")

}

swap (intil, inti2) {
/* Notice the "\t" whitespace that must appear
in order to conform to the Assembler requirement
that instructions cannot begin in column 1. Spaces
or a tab character would also have worked. Notice also
that there is no need to terminate the string with a newline. */

__asm ("tmove.l (S_il1,a6),d0");
__asm ("tmove.l (S_i2,a6),(S_i1,a6)");
__asm ("tmove.l d0,(S_i2,a6)");

/* Another, less readable way of doing the above
involves using newlines to achieve line breaks
in the output assembly when the C_string contains
more than one assembly instruction.

__asm ("tmove.l (S_il,a6),d0\n\tmove.l (S_i2,a6),(S_i1,a6)");
__asm ("tmove.l d0,(S_i2,a6)");

This form would appear the same as the flrst
in the output assembly code.

Figure 4-7. __asm Function Embedded Assembly

85

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Syntax:

#pragma FUNCTION_ENTRY,
#pragma FUNCTION_EXIT,
#pragma FUNCTION_RETURN

#pragma FUNCTION_ENTRY "C_string”
#pragma FUNCTION_EXIT "C_string”
#pragma FUNCTION_RETURN “C_string”

The third mechanism #pragma FUNCTION_ENTRY /EXIT /RETURN .
These pragmas are not a pair ifgragma ASM/END_ASM. They may be used
independently of each other or they may be used together.

#pragma FUNCTION_ENTRY may be used to insert assembly language
instructions into function entry code. Similafjgragma FUNCTION_EXIT and
#pragma FUNCTION_RETURN may be used to insert assembly language
instructions into function exit code. Neithggragma ASM/END_ASM nor the
__asmfunction is able to place embedded assembly in the function entry or exit
code. The embedded code is placed is as follows:

» #pragma FUNCTION_ENTRY places the embedded assembly code
immediately after the label generated from the function name. Because the
embedded assembly occurs before any function entry code, you can modify the
way a function is entered.

» #pragma FUNCTION_EXIT places the embedded assembly immediately
beforethe function return label. That is, it follows the function exit code, but
precedes the function return. (Some NOPs may appear between the embedded
assembly code and the return label.) This pragma gives you the flexibility to
control function return and also allows you to perform extra instructions before
function return.

e #pragma FUNCTION_RETURN places the embedded assembly
immediatelyafter the function return label. Use this pragma if you want to use
your own function return code. For example, you might want to trap to a
debugging routine.

Remember, you may ugpragma FUNCTION_ENTRY, FUNCTION_EXIT,
andFUNCTION_RETURN by themselves, or you may use all of them together.

Two limitations apply to these pragmas:

86

Example

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

» #pragma FUNCTION_ENTRY, #pragma FUNCTION_EXIT, and
#pragma FUNCTION_RETURN may only appear outside of a function
body.

» #pragma FUNCTION_ENTRY, #pragma FUNCTION_EXIT, and
#pragma FUNCTION_RETURN must precede the function they are to
affect. They are in effect only for the immediately following function and no
other.

These pragmas take a "C_string" argument. (The quotes are part of the argu
and no parentheses surround the argument.) As with semfunction, the
"C_string" argument is a character string containing assembly language
instructions. It must contain white space and newlines ("\n") so that when the
is output to the generated assembly code, it will conform to the format and syntax
required by the HP B3641 assembler. The C compiler does not check the C_string
for correctness. The compiler simply outputs the string to the assembly code.

Figure 4-8 gives an example of us#igragma FUNCTION_EXIT along with
#pragma INTERRUPT (discussed in the "Embedded Systems Considerations"
chapter) to cause an interrupt service routine to trap back to the operating system
instead of allowing it to terminate with an RTE instruction as it woulghiaigma
INTERRUPT were used alone. When this routine enters its function exit code, it
will do the cleanup of the stack and other chores in preparation of the RTE. But
because th#pragma FUNCTION_EXIT code causes the routine to trap back to
the operating system, it will never execute the RTE.

87

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

#pragma INTERRUPT
#pragma FUNCTION_EXIT "tMOVE #10,DO\n\tTRAP #12"
void intr_funct (void)

/* Function body for interrupt routine. */

[* The following exit code results from these
pragmas. */

functionExitl
00000004 4CDF 6303 MOVEM.L (A7)+,D0/D1/A0/A1/A5/A6
00000008 31C0O 000A MOVE #10,D0
0000000C 4E4C TRAP #12
returnLabell
0000000E 4E73 RTE
END

Figure 4-8. #pragma FUNCTION_EXIT

88

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

Assembly Language in Macros

To use assembly language in a macro, use taemfunction. The#pragma
mechanism does not work in a macro.

When you write the macro, remember the following suggestions:

Use__asm not one of the pragmas.

Do not use macro parameters in the assemly code. The C preprocessor does
not expand names inside the quotation marks.

Use spaces and tabs (entered as "\t") to place "white space" in the assem
code.

If you need to place more than one line of assembly language in the macro,
either use an_asmstatement for each line or place a "\n" between lines. The
C preprocessor will place the entire macro on one line, then the compiler will
change the "\n" to a newline when generating the assembly code.

Be careful about changing the values of C variables (side effects) in the macro.
You may wish to include the names of such variables in the name of the macro.

You can examine the generated assembly code by compilinga@ist
-SL and looking at theO file. If you need to understand how the C
preprocessor affected the code, es#8k -E

89

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

90

Chapter 5: Optimizations

Optimizations

Description of optimizations performed by the compiler.

91

Chapter 5: Optimizations
Universal Optimizations

The C compiler performs many optimizations automatically; there is also an
"optimize" command line optior@) to cause peephole optimization, time or

space optimization, and other compile-time costly optimizations. This chapter first
describes the optimizations which are always performed; next, it describes the
optimizations which occur as a result of the "optimize" command line option.

Universal Optimizations

The C compiler automatically performs many optimizations on C programs.
Several of the most notable types of optimizations are listed below and described in
this section.

» Constant Folding.
» Expression Simplification.

» Operation Simplification (involves multiplies, divides, and mods by powers of
two).

» Optimizing Expressions in a Logical Context (involves expressions which
contain logical operators).

* Loop Construct Optimization.
» Switch Statement Optimization.
» Automatic Allocation of Register Variables.

The compiler may do many specific things for each type of optimization. The
descriptions which follow contain examples to illustrate the kinds of things which
are done for each type of optimization; they do not show every specific
optimization performed by the compiler.

Note In the general examples which follol represents any expressi@represents
any constant0 represents a constant with a non-zero value, and other operator
symbols are their C equivalents.

92

Chapter 5: Optimizations
Universal Optimizations

Constant Folding

Whenever an expression contains operations made on constants, the compiler
combines the constants to form a single constant. By folding constants, the
compiler can eliminate the code which would otherwise be generated to perform
the operations. A general and specific example of constant folding is shown below.

C1*C2-C3/C4
i=4*3-10/2;

Constant Folding Across Expressions

The compiler will rearrange integer expressions to fold constants.

(E1+C1)+ (E2 +C2) g (E1+E2)+ (C1+C2)
(E1*C1)* (E2* C2)

(E1+C1)*C2

(E1 << C1) * (E2 * C2)

i=(x*3+1)*3+2 O i=x*9+5

O (E1*E2) * (C1* C2)
O (E1* C2) + (C1* C2)
O (E1*E2) * (FYH * C2)

Maintaining Order of Evaluation

Parentheses force grouping (prevent constant folding) of floating-point expressions.
The unary plus (+) operator may be used to force grouping of arithmetic
expressions. The unary plus operator may not be used to force grouping of pointer
expressions. For example:

i = x+4.141 + y+2.067 + 3.287; O i =x+y+9.495;
i= x+4.141 + (y+2.067)+3.287; O i = X ++(y + 2.067) + 7.428;
i= x+4.141 + +(y+2.067)+3.287; O i = X ++(y + 2.067) + 7.428;

93

Chapter 5: Optimizations
Universal Optimizations

Expression Simplification

The compiler will simplify expressions, if possible, by using the basic laws,
identities, and definitions of conditional, logical, bitwise, and arithmetic operations.
Some examples of expressions which get simplified follow.

Conditional:
0?El:E2 O E2
I0?E1l: E2 O El
Logical:
E && 0 O 0 (unless E has side effects; then E,0)
E||O O E
El && IE2 O I('E1 || E2)
Bitwise:
E&O O 0 (unless E has side effects; then E,0)
E|O O E
E~O O E
E<<0 O E
Arithmetic:
E+0 O E
-E1 - (-E2) O E2-E1
E*O O 0 (unless E has side effects; then E,0)
E*1 O E
E/-1 O -E
E%1 O 0 (unless E has side effects; then E,0)
Operation Simplification
Multiplications (whether explicit or as a result of scaling an array index), divisions,
and mods of integral types by constants which equal powers of two can be
simplified to bitwise operations which are shorter and faster. Generally:
E* (29 0 E<<C

94

Chapter 5: Optimizations
Universal Optimizations

E/ ()
E% (%)

0 E>C
O E&(2°-1)

Optimizing Expressions in a Logical Context

When expressions containing logical operators are used in a logical context (for
example, to yield a "true" or "false" in a control flow statement test expression), the
compiler will generate code which evaluates the expression piece by piece. For
example, suppose the test expression fdir statement is two expressions ANDed
together. The compiler generates code which evaluates the first expression and
branches out if it is "false" (if, at run-time, the first expression is "false", the second
expression will not be evaluated). The compiler also generates code to evalu
second expression in case the first is "true". The code generated as a result
optimization is smaller and faster. Several "pseudo code" examples of
optimizations on expressions in a logical context are shown below.

if (0) goto label

if (10) goto label

if (E1 || E2) goto label O if (E1) goto label

if (E1 && E2) goto label O if ({E1) goto skip

O (Nothing.)

O goto label

if (E2) goto label

if (E2) goto label
skip:

Loop Construct Optimization

The compiler places the evaluation of a loop construct’s test expression at the end
of the loop to avoid the execution of a "goto" at each loop iteration. A "goto" is
generated to branch to the test for the first iteration. However, if the compiler can
determine that the loop will execute at least once, the "goto" can be optimized out.
Whenever the test expression becomes "false", execution simply "falls through".

95

Chapter 5: Optimizations
Universal Optimizations

The loop construct optimization can be generally expressed as follows.

for (i=0;1<10;)
{ statements }

while (E) { statements } O goto end

beginning:
{ statements }
end: if (E) goto beginning

O i=0
beginning:
{ statements }

if (i < 10) goto beginning

Switch Statement Optimization

If there is code associated with at least 25% of the cases in a switch statement, the
compiler will generate a jump table to access the code associated with each case. If
less than 25% of the cases have associated code, the compiler will generate a
hybrid binary/linear search to access the cases. The linear search can be up to four
items long, otherwise a binary test is performed.

Automatic Allocation of Register Variables

Operating on variables which reside in registers is faster and more efficient than
operating on variables in memory. The C compiler will automatically allocate
variables to registers even in the absence afthister storage class specifier.

Note that the presence of theto storage class specifier prevents this optimization.
For more information on the algorithm used by the compiler to allocate these
variables, see the "Register Usage" section in the "Compiler Generated Assembly
Code" chapter.

String Coalescing

When the compiler finds identical string constants, it stores them at a single
memory location. In the following example, both stringl and string2 will point to
the same memory location containing the string "abcde":

char *stringl, *string2;
stringl = "abcde";
string2 = "abcde";

96

Note

Chapter 5: Optimizations
Universal Optimizations

Only string constants allocated by the compiler are coalesced. For example, the
following strings will not be coalesced because the user, rather than the compiler, is
allocating the storage:

char string3[8] = "abcde";
char string4[8] = "abcde";

Trying to change the value of a string constant may cause unwanted side effects.

The compiler treats string literals as constants. Do not attempt to change the
contents of a string which has been defined as a string literal. Be especially careful
if you are using character pointers. For example, the following statements will
change the value dioth stringl and string2 to "abXde":

char *stringl, *string2;
stringl = "abcde";
string2 = "abcde";
*(stringl + 2) ='X’;

The compiler will not warn you about this.

97

Chapter 5: Optimizations

The Optimize Option

The Optimize Option

The "optimize" command line optiord) causes the compiler to use a more
exhaustive algorithm in an attempt to generate locally optimal code; it also causes
the compiler to run the peephole assembly code optimizer (unless the "generate
run-time error checking code" option is also specified, in which case the "optimize"
command line option is ignored).

You may find it easier to debug your code if you do not use the "optimize" option.
Optimizations may make it difficult to follow the program flow. After the code is
executing properly, use optimization to improve execution speed or to shrink the
size of the executable code.

Time vs. Space Optimization

By default, theO option causes the generated code to be optimized for space.
That is, the compiler tries to generate as few bytes of code as possible (even,
occasionally, at the expense of execution speed). However, if optimizing for time
is more important (in other words, the generated code should execute as fast as
possible), you can append the "time" option to the "optimize" opi@n)(

Optimizing for time will cause the compiler to use more space if machine cycles
can be saved. The listings in figure 5-1 give an example of a time vs. space
trade-off.

98

1 struct test {
2 int a,\b,c,de,f;
3 Ixy
4
5 main()
6
XDEF _main
_main
7 y=X;

00000000 207C 0000 0018 R
00000006 227C 0000 0000 R
0000000C 7205

MOVE.L #_y+0,A0

MOVE.L # x+0,Al
MOVEQ #6-1,D1
LO_StatAssign

0000000E 20D9 MOVE.L (Al)+,(AO)+

00000010 51C9 FFFC DBF D1,L0_StatAssign
8 }
1 struct test {
2 int ab,c.def;
3 Ixy
4
5 main()
{
XDEF _main
_main
7 y=X;
00000000 207C 0000 0018 R MOVE.L # y+0,A0
00000006 227C 0000 0000 R MOVE.L # x+0,Al
REPT 6
MOVE.L (A1)+,(A0)+
ENDR
0000000C 20D9 MOVE.L (A1)+,(A0)+
0000000E 20D9 MOVE.L (Al)+,(A0)+
00000010 20D9 MOVE.L (A1)+,(A0)+
00000012 20D9 MOVE.L (Al)+,(A0)+
00000014 20D9 MOVE.L (Al)+,(A0)+
00000016 20D9 MOVE.L (Al)+,(A0)+
8 1}

Chapter 5: Optimizations
The Optimize Option

OPTIMIZED FOR SPACE (Default).

OPTIMIZED FOR TIME. (More bytes use
to accomplish structure assignment, but ¢
executes faster.)

Figure 5-1. Example of Time vs. Space Optimization

99

Chapter 5: Optimizations
The Optimize Option

Multiplication Simplification

In addition to the powers-of-two optimizations as described in the preceding
"Operation Simplification" section, multiplications by constants up to 1024

(whether explicit or as a result of scaling an array index) are optimized to
sequences of shifts and adds or subtracts. Shifts and adds or subtracts are typically
less time expensive but more space expensive than the corresponding
multiplications (i.e., these optimizations occur more often in the presence of the
"time" option to the "optimize" command line option). For example:

E*10 O (E<<2)+E)<<1
E*29 O (E<<3)-E)<<2)+E

Maintaining Debug Code

The compiler normally generates code which makes the resulting programs easier
to debug with an HP emulator or simulator. This debug code includes:

1 Generation of no-operation (NOP) instructions preceding all labels. This
provides unique addresses for all labels. It also avoids certain problems
associated with instruction prefetch.

2 Buffering of the frame pointer on the stack at function entry and restoration of
the frame pointer at function exit, even when this is known to be unnecessary.
(Every function begins with a LINK instruction and ends with an UNLINK
instruction followed by a RTS or RTE.)

When the "optimize" option is specified, this debug code is optimized out.
However, if you wish the compiler to generate debug emdeperform the other
optimizations, use the "generate debug code" option with the "optimize" option.
See the on-line man pages for more information on the compiler command line
options.

Peephole Optimization

The peephole optimizer, which is run when the "optimize" command line option is
specified, adds another pass to the compilation process. The peephole optimizer
examines the assembly language instructions generated by the compiler and
performs the optimizations described in the following subsections.

100

Chapter 5: Optimizations
The Optimize Option

Branch (Jump) Shortening

Perhaps the most common peephole optimization is branch shortening. Neither the
compiler (by itself) nor the assembler is capable of determining the distance of a
forward branch. Consequently, 32-bit PC relative branches are generated by
default.

The peephole optimizer, on the other hand, is capable of determining the distance
of forward branches, and it will replace long branch instructions with byte or word
sized instructions wherever possible.

Tail Merging

When two blocks of code end in identical branches, the peephole optimizer ¢

if the blocks have the same tail (ending) statements. If the blocks do have ide

tail statements, the peephole optimizer will replace the first tail with a "goto" th
second. If this would cause an additional branch to be executed, it is not performed
when "optimize for time" is specified. For example:

{tail 1}
goto label

{tail 2} (Same as tail 1.)

goto label

label:

0

O goto sametail
0

O sametail:

0 { tail 2}

O goto label

0

O label:

Redundant Register Load Elimination

When the peephole optimizer detects that a register is being loaded with a value it
already contains, the second load is eliminated. (Compare to "Strength Reduction”
below.)

MOVE.L (S_i+0,A6),D0

MOVE.L (S_i+0,A6),D0 ; This instruction is removed.

101

Chapter 5: Optimizations
The Optimize Option

Redundant Jump Elimination

When one jump occurs immediately after another jump, the two jumps are
combined to form a single jump. Note that this optimization is performed on the
generated assembly code, but a C code equivalent example would be the following:

if (x ==y) goto aaa; O if (x ==y) goto bbb;
aaa:goto bbb aaa: goto bbb;
bbb: bbb:

Unreachable Code Elimination

As compilers normally generate code, they can produce assembly instructions
which will never get executed. The peephole optimizer can recognize unreachable
assembly instructions and remove them.

Strength Reduction

Strength reduction refers to optimizations which can be made due to the

optimizer’s ability to remember the contents of registers. For example, the

compiler may generate code to move a variable into one register, and later generate
code to move the same variable into another register. The peephole optimizer can
replace the second move with a move from the first register to the second (which is
shorter and faster). Two bytes will be saved by the example strength reduction
optimization shown below.

MOVE.L (S_i+0,A6),D0 O MOVE.L (S_i+0,A6),D0
MOVE.L (S_i+0,A6),D1 O MOVE.L DO,D1

102

Chapter 5: Optimizations
The Optimize Option

Destination/Source Swapping

When generated code operates on a working register to yield a result, and the result
is moved to a register variable, the peephole optimizer can eliminate the last move
by causing the operations to be made on the register variable in the first place. This
optimization is called destination swapping; an example is shown below.

MOVE.L (S_i,A6),D0 O MOVE.L (S_i,A6),D2
ADD (S_x,A6),D0 O ADD (S_x,A6),D2
MOVE.L DO,D2

Source swapping refers to a similar situation where the value of a register variable
is moved to a working register before being used in a calculation. In this case
peephole optimizer will recognize that the calculation may just as well be mad
using the register variable, and a MOVE instruction will be saved.

Redundant Test Removal

Sometimes the compiler will generate a TST instruction without knowing that the
condition codes were set by a previous instruction. The peephole optimizer can
recognize this situation and remove the redundant test. For example:

ADD.L DO,(S_i,A6)
TST.L (S_i,A6) ; This instruction is removed.
BNE L_001

Register Variable Reallocation

If the peephole optimizer can determine that a working register (A0, Al, DO, D1,
FPO or FP1) is not used in a function, it will reallocate a register variable to the
working register. This optimization will save a "push" instruction on function
entry and a "pop" instruction on function exit.

103

Chapter 5: Optimizations

The Optimize Option

Effect of volatile Data on Peephole Optimizations

Any function that includes wolatile declaration or which follows anyolatile
declaration in a file will not have "data motion" optimizations performed on it.
Data motion optimizations include redundant load elimination, strength reduction
optimizations, source and destination swaps, and redundant test removal.

These optimizations account for considerably less than half of the space savings
and roughly half of the speed savings that the peephole optimizer is capable of.

Branch shortening and branch structure simplification optimizations (tail merging,
redundant jump elimination, and unreachable code elimination) are unaffected by
volatile data.

Function Entry and Exit

The-O option also affects function entry and exit code. Whenever a called function
has no parameters, no automatics, and returns a result whose size is eight bytes or
less, the LINK and UNLINK instructions which are used to push the old stack

frame pointer at function entry and restore the frame pointer on exit are not
generated.

In-Line Expansion of Standard Functions

Certain standard functions have traditionally been implemented as macros (e.g.,
putc()), and errors are generated if such functions are assigned to function pointers.
All other standard functions iibc andlibm have traditionally been implemented

with calls to support library routines. This is consistent with C’s notion of having

no built-in functions, and the user could rewrite these routines at will.

With the advent of standard definitions for these functions defined by ANSI, it is
possible to expand these functions in-line, generally saving both time and space.
This is particularly true in the presence of the "generate code for the 68881/2"
command line option when a routine suclzex) reduces to a single instruction.

Of course, the assignment of these routines to function pointers requires that they
be called rather than expanded in-line.

Routines that are expanded in-line even without the "generate code for the
68881/2" command line option are:

strcmp strcpy strlen
fabs (68040 only) sqrt(68040 only)

104

Chapter 5: Optimizations
The Optimize Option

For the 68020 and 68030, routines that are expanded in-line only in the presence of
the "generate code for the 68881/2" command line option are:

acos fint fsincos
asin fetoxm1 log
atan flog2 log10
cos flognpl sqrt
cosh ftentox sin
exp ftwotox sinh
fabs fatanh tan
tanh

The appropriate header filsting.h, math.h, orm6888x.H) must be included for
in-line expansion to occur.

105

Chapter 5: Optimizations

The Optimize Option

68332 TBL functions

For the 68332, the following functions are expanded in-line to give you direct
access to the TBL instruction:

tableS interpolateS
tableSN interpolateSN
tableU interpolateU
tableUN interpolateUN

Preventing expansion

Because it is conceivable that someone might want to substitute their own function
for a standard one, the "do not expand standard functions in-lffe}-()
command line option turns off this default optimization.

It is also possible to prevent in-line expansion by using your own header file.
Comments in the supplied header file explain how the definitions affect
optimization.

What to do when optimization causes problems

Occasionally, the peephole optimizer can make incorrect assumptions, resulting in
code that does not execute properly. Use\te,-m command-line option to
eliminate some of the risky optimizations (especially common sub-expression
optimizations). If the code still doesn't execute properly, you may need to avoid
the-O optimizations.

106

Chapter 6: Embedded Systems Considerations

Embedded Systems Considerations

Issues to consider when using the C compiler to generate code for your target
system.

107

Chapter 6: Embedded Systems Considerations
Execution Environments

Execution Environments

The compiler cannot know the design of your target system. Therefore, all
high-level functions and library routines depend on environment-dependent
libraries to supply low-level hooks into the target execution environment.

The environment-dependent routines which are supplied with the compiler allow
programs produced by the compiler to execute in an emulator. The supplied
routines also support the debugger/simulator. Use these files as examples to create
your own environment-dependent routines. &pecthat you will need to modify

the supplied files. You must use your own knowledge of your target system to
decide what changes must be made.

Monitor and mon_stub

Current HP emulators use background monitors instead of foreground monitors.
The environment files do not have a monitor program. Instead, there is a program
(and accompanying source) calledn_stub. Themon_stubprogram completes

the environment in the absence of the emulator monitor program.stubdoes

the following:

» Contains the trap vector table.

» Declares identifiers to satisfy external references iertivea
environment-dependent library.

» Acts as a template when you create your own version of the
environment-dependent routines.

108

Chapter 6: Embedded Systems Considerations
Common problems when compiling for an emulator

Common problems when compiling for an
emulator

If you plan to execute your program in an emulator environment, follow these
guidelines:

e Copy emulation configuration files.EA) from the environment directory to a
local directory prior to using.

» Use#pragma SECTION DATA=idata to specify the section for "initialized"
data external declarations when using-theption (separate initialized and
uninitialized data).

Loading supplied emulation configuration files

Symptoms: In the emulator, one of the two supplied emulation configuration
files is loaded from the directofysr/hp64000/env/hp<emulator_environment>
and the following error message appears:

ERROR: Cannot build
/usr/hp64000/env/hp <emulator_environment> fioconfig

Description: There are two forms of emulator configuration files. The first form
(.EA), which is supplied, is an ASCII file. The second forgB], which is

created from the ASCII file by the emulator, is a binary file. This binary file is not
portable between versions of HP 64000 emulators and therefore not supplied.

When loading a configuration file, the emulator attempts to create the binary
version of the file if one does not already exist. This binary file is created in the
same directory as the ASCII file. The directory which contains the supplied
configuration files is not meant to be modified and is write-protected. In order to
use the supplied configuration file, it must first be copied to a local (writable)
directory.

109

Chapter 6: Embedded Systems Considerations
Common problems when compiling for an emulator

Using the "-d" option

Symptoms: During compilationcc68kdisplays the following warning:

warning- Extern 'variable_name’ assumed to be in UDATA.

Description: The "Separate Initialized and Uninitialized Data" optiat) (

causes the compiler to place static variable definitions with initializers in section
idata by default, and static variable definitions without initializers in sectoata

by default. When an external declaration of a static variable is encountered the
compiler assumes the external variable is uninitialized, places the external
declaration in sectiondata, and issues a warning regarding this assumption. It is
very important that if the external is instead an initialized variable that this warning
be heeded and the external declaration placed in the proper sigletiah o do

this, place @pragma SECTION DATA=idata directive before the initialized
variable’s external declaration and@ragma SECTION UNDOfollowing it. The
second pragma merely "undoes" the first pragma. See the "Embedded Systems"
chapter for more details on using these pragmas.

110

Chapter 6: Embedded Systems Considerations
Section Names

Section Names

Section names are used by the linker/loader to locate program code and data at the
addresses appropriate for the target system environment. Code generated by the
compiler is placed in relocatable program sections as follows:

» Executable code is placed in the PROG section (nanogdby default).
» Static variables are placed in the DATA section (nadatd by default).

» Constants and string literals are placed in the CONST section (camstthy
default).

The section name information is also used when specifying (through a compiler
command option) the addressing modes to be used for symbol accesses from one
section to another. (For more information on specifying addressing modes, re

the "Addressing Modes" section which follows.)

The default names given to the PROG, DATA, and CONST sectiou, (ata,
andconst respectively) may be changed with the SECTION pragma in the C
source file.

The linker checks that external functions or data declared to be in a particular
section are indeed found in that section. This checking is defeated for the default
sections nameplrog, data, andconst This is done to accommodate existing C
programs which often declaggtern C library functions without any SECTION
pragma. Note that all header (.h) files for libraries do include the appropriate
extern declarations with the correct section pragmas.

If there are multiple declarations for the same symbol within a single file, the
compiler checks that the section in which the symbol is declared is the same in all
cases; if it is not, an error is reported. An exception is made for this checking when
both declarations are external references and the "specify addressing rmyes" (
command line option has not been given.

#pragma SECTION

Syntax:

#pragma SECTION [PROG= pname] [DATA= dname] [CONST= cname]
#pragma SECTION [PROG= address [BP]] [DATA= address [BP]][CONST= address [BP]]
#pragma SECTION [PROG= pname] [UDATA= udname] [IDATA= idname] [CONST= cname]

111

Chapter 6: Embedded Systems Considerations
Section Names

#pragma SECTION [PROG= address [BP]] [UDATA= address [BP]][IDATA= address [BP]]
[CONST=address [BP]]

#pragma SECTION UNDO

Description

The first form of this pragma causes the program, static data, and static constant
information to be placed in sections narpedme dname andcnamerespectively
until the nextSECTION pragma is encountered. The linker also expects to find
external functions and data in these named sections.

In the second form, absolute addresses are given in place of the segment names
causing the subsequent information to be ORG'd starting at the given address. An
optionalBP may be given after such an address to indicate that it is in the base

page and that absolute short addressing should be used to access that location rather
than absolute long.

Note When absolute addresses are used, all information (program, data, or constant) to
be ORG’d must immediately follow thgpragma SECTION line and come prior
to any information (program, data, or constant) which is output in another named or
ORG'd segment. For example:

#pragma SECTION DATA=0x1000
inti, j, k;

const int [;

intm, n, o;

will cause an error since constant integer "I" is output in another section (const) and
since integers "m, n, 0" also need to be ORG'd as they are data. Corrected this
becomes:

#pragma SECTION DATA=0x1000
inti, j, k;

intm, n, o;

const int [;

Other cases that cause information to be put out in new sections irdteta:
definitions and string literals.

The third and fourth forms listed are the same as the first two form&/WAT A
andIDATA substituted foDATA . These forms make sense only in the presence

112

Chapter 6: Embedded Systems Considerations
Section Names

of the "separate initialized and uninitialized data" optidi\{hich forces

separation of explicitly initialized data from implicitly initialized (or uninitialized
with -u) data. Non-constant static data items explicitly initialized by means of a C
initializer go into thdDATA named section. Non-constant static data items not
explicitly initialized by means of a C initializer go into tHBATA named section.

Watch for the "extern variable assumed to be in UDATA" warning message. If the
variable is initialized, place it in tHBATA section by naming tHeATA section
to be the same as tHeATA section. For example:

#pragma SECTION UDATA=UDataSec IDATA=IDataSec
%

extern int x; / *

#pragma SECTION UNDO /* Both x and y will go */
/* in the UDATA section. */

#pragma SECTION IDATA=IDataSec /* */

extern inty; I* */

#pragma SECTION UNDO

#pragma SECTION DATA=IDataSec /* zwillgointhe */
extern int z; /* IDATA section. */
#pragma SECTION UNDO

The absolute addresses and segment names may be intermixed for the three
countingUDATA andIDATA) different information types (program, static data,
static constant) in the sarB&CTION pragma. If the target section is not specified
for one of the information types, then it remains unchanged.

The last form#pragma SECTION UNDO, "undoes" the effect of the

immediately precedin§ECTION directive. That is, it restores the name (or
address) of any section renamed (or ORG'd) in the last directive. This form is
useful at the end dfinclude files to restore the section environment which existed
prior to the#includefile. (Include files must contalBECTION directives to

define the sections that externs are in.)

The SECTION pragma must be placed outside a function body.

Note #pragma SECTION UNDOis implemented by a one-level-deep stack. That is,
only the most recer8ECTION pragma may be "undone" or, said another way,
two #pragma SECTION UNDOs in a row willnot undo twdSECTION pragmas.
This is of particular importance when an include file further includes other files.
Since include files will generally surround thextern declarations with a
SECTION-SECTION UNDO pair, care must be takeot to put an include inside
of this pair as it will result logically in two "UNDO"s in a row.

113

Chapter 6: Embedded Systems Considerations
Addressing Modes

Addressing Modes

The C compiler allows you to specify the addressing mode to be used when
references are made from one section to static variables and functions defined in
the same or other sections. Only references to variables and function calls are
affected; branches are always PC relative. Sections are the named sections which
are understood by the linker.

In some situations, selecting the appropriate addressing mode is critical. In other
situations, selecting the appropriate addressing mode (short vs. long) can be a way
of generating more efficient code.

The appropriate addressing mode to use depends on such questions as:

» Isthe data on base page®¥The absolute short addressing mode can be used
to access this data; instructions will use 16-bit addresses instead of 32-bit
addresses.)

» Isthe data near to the accessing code(The PC relative short addressing
mode can be used to read locations within +/- 32K bytes; instructions will use
16-bit signed displacements instead of 32-bit absolute addresses. Program
Counter relative writes are not directly supported by the 68000; they can be
simulated by the compiler, but they will cost more time and space than
absolute long writes.)

« If the data is not on the base page, is it less than 64K bytes in lengtfithe
A5 relative short addressing mode can be used to access data in a 64K byte
block; instructions will access data with 16-bit signed displacements instead of
32-bit absolute addresses. The effect is a second base page.)

» Does the code need to be position independen{Ro absolute addresses
may be used.)

» Does the code operate on run-time dynamically relocated data(A5
relative addressing modes must be used.)

There are six 68000 addressing modes available to the C programmer: absolute
short, absolute long, PC relative short, PC relative long, A5 relative short, and A5
relative long. The default addressing mode used is absolute long.

114

Chapter 6: Embedded Systems Considerations
Addressing Modes

Specifying addressing modes

Addressing modes are specified with a command line option. You can specify that
a certain addressing mode be used on accesses from one section to another, from
one section to all sections, from all sections to one section, or from all sections to
all other sections. Sections are named by defardg(data, andcons) or with

the SECTION pragma in the C source file. (See the on-line man page for a
description of the "mode" command line option. See also the section on
"Addressing Modes Used in Libraries" in the "Libraries" chapter.)

Note The 68000 does not support the PC relative long and A5 relative long addressing
modes directly. The compiler generates code to calculate the proper addresses.
These instructions are more expensive in terms of time and space than absolute
long mode instructions.

When to use certain addressing modes

Certain situations are associated with the use of a particular addressing mode.
Listed below are the situations generally associated with the six addressing modes.

Mode Situation

Absolute Short The absolute short addressing mode can be used when
accesses are made to code or data in the address range
OxFFFF8000 to Ox7FFF (base page).

Absolute Long This is the default addressing mode. The absolute long
addressing mode is typically used when accesses are made
to locations outside the base page.

PC Relative Short The program counter relative short addressing mode is
used when you wish to create position independent code
and when that code accesses locations within +/- 32K bytes
of the current program counter location.

PC Relative Long The program counter relative long addressing mode is used
when you wish to create position independent code and
when that code accesses locations which are greater than
+/- 32K bytes away from the current program counter
location.

115

Chapter 6: Embedded Systems Considerations

Addressing Modes

Note

A5 Relative Short The A5 relative short addressing mode is used when
accessing locations relative to an address (in register A5)
which are less than +/- 32K bytes away from that address.
The run-time value of the A5 register can be specified
when linking, and register A5 can be initialized with that
run-time value (as it is in the setup object ¢itD).

A5 Relative Long The A5 relative long addressing mode is used when
accessing locations relative to an address (in register A5)
which are greater than +/- 32K bytes away from that
address. The run-time value of the A5 register can be
specified when linking, and register A5 can be initialized
with that run-time value (as it is in the setup object file
crt0).

Short vs. long

The "short" addressing modes are associated with 16-bit offsets. In the case of the
absolute mode, short means that addresses can be accessed with 16-bits; in other
words, they are located in the address range -32K to +32K (OxFFFF8000 to
Ox7FFF). In the case of the PC and A5 relative addressing modes, short means
16-bit signed displacements are used. Signed 16-bit displacements allow accesses
to locations within +/- 32K bytes of the program counter or address in A5.

When using the short addressing modes, the compiler will assume that program or
data references are within the short (signed 16-bit) range. If the accessed code or
data does not fit within that range, assembler or linker errors will result.

The "long" addressing modes are associated with 32-bit quantities. The absolute
long mode, which is the default, allows locations anywhere in the microprocessor
address space to be accessed.

In the PC and A5 relative addressing modes, long also means that locations
anywhere in the microprocessor address space can be accessed, except that these
modes use 32-bit signed offsets.

Using the short addressing modes generates more efficient code in the sense that
instructions will have one less word of extension, causing shorter code which
executes faster.

116

Chapter 6: Embedded Systems Considerations
Addressing Modes

For the 68000, note that the PC and A5 relative long modes are not supported by
the 68000, and the compiler generates code to calculate the proper addresses.
Consequently, these modes are less efficient.

Absolute addressing modes

Since a section is the smallest piece of code for which an addressing mode can be
selected (with the exception of using assembly language), the absolute addressing
mode you choose (long or short) will depend upon where sections are to be located
with the linker. For example, suppose one of your programs calls a library function;
if the library function’s program section is to be located in the base page, you
would then specify the absolute short mode for references from your program
section to the library program sectidib (libc, libm, etc.).

PC relative addressing modes

The PC relative addressing modes allow you to create position independent ¢
Also, in certain situations, the PC relative short addressing mode allows you to
access data or call functions more efficiently than the absolute long addressing
mode.

Position independent code

In general, a position independent code section uses PC relative function calls and
branches and accesses only local data (on the stack). This is readily accomplished
by specifying PC relative short (if the segment fits into 64K bytes) or long as the

addressing mode used for accesses from the position independent section to itself.

If the position independent code section must declare or access static data, different
addressing modes will be appropriate depending on the desired functionality. First
of all, it may be acceptable to have the code depend on the location of static data
(i.e., absolute addresses may be used). Secondly, it may be desirable to force the
static data to be located in a fixed locatielative tothe position independent code

and, thus, PC relative access would be appropriate. Finally, it may be necessary to
allow the code to be located anywhere and its static data to be located anywhere. In
this case, A5 relative addressing should be used, and A5 should be loaded with the
appropriate value relative to the location of the static data. In these last two cases
(static data being accessed PC relative or A5 relative), care should be taken to
avoid absolute addresses of static data inadvertently appearing as load-time
initializers. For example:

117

Chapter 6: Embedded Systems Considerations

Addressing Modes

Note

int j;
int *i = &j;
char *p = "abc";

The declarations above would result in "i" being initialized with the absolute

address of "j" and in "p" being initialized with the absolute address of the constant
string "abc".

Accessing near locations

The PC relative short addressing mode can be used to advantage when a program
accesses code or data which is nearby. If locations are within +/- 32K bytes of the
current program counter, they can be accessed with PC relative short instructions
which use 16-bit signed displacements. Alternatively, absolute long mode
instructions would use 32-bit absolute addresses.

The 68000 does not support PC relative data writes. The compiler creates this
addressing mode from multiple instructions. These instructions are more expensive
in terms of time and space than absolute long mode instructions.

Branches within functions (68000 only)

By default, the compiler generates PC relative short branches for "goto"s in control
flow constructs within functions. Rarely, the code around which a "goto" must
jump will exceed 32K bytes. In this case, an assembly time error will result.

The "big switch tables" option the the C compiler causes the compiler to use PC
relative long branches. Such branches are not directly available in the 68000
instruction set and are "manufactured" from a series of instructions. The optimizer
will shorten these except when required.

A5 relative addressing modes

The A5 relative addressing modes can be used to advantage in many types of
situations. A few of the most general situations are described here.

Creating a second "base page"

Suppose that a program accesses a 64K byte block of data located at an address off
of the base page. Without A5 relative addressing, this data would have to be
accessed with an absolute long or PC relative addressing mode. However, with A5

118

Chapter 6: Embedded Systems Considerations
Addressing Modes

relative addressing, you can load register A5 with the address of the mid-point of

the data section and access 64K bytes of data using the A5 relative short mode. The
A5 relative short addressing mode is more efficient than the absolute long mode
because it uses 16-bit signed displacements instead of 32-bit absolute addresses.

119

Chapter 6: Embedded Systems Considerations
Addressing Modes

OH

07FFFH

PROGRAM

h

64K BYTE
DATA AREA

OFFFF 8000k

=i

OFFFF FFFFH

If the "run-time" value of A5 is set equal to the basdq
address of the data section plus 8000H, then 64K |
of data may be accessed with 16-bit displacements
using the A5 relative short addressing mode.

When using the A5 relative short addressing modg
this way, instructions such as "move memory (relaf
to A5) into register" generate 2 words of code inste
of the 3 words of code generated by instructions su
as "move memory into register."

Using the A5 relative short addressing mode in this
manner can be thought of as creating a second "bg

page."

A5

ytes

n
ve
ad
ch

se

Figure 6-1. Creating a Second Base Page

120

Chapter 6: Embedded Systems Considerations
Addressing Modes

TH A POINTER
OAD AS Wi TO THE,
USERS R par.
A

AREA WHEN CALLING THE SHARgp PROCRAM

A5 REGISTER

POINTER TO
USER DATA AREA
1
N\
AN
USER 1'S
DATA
AREA
USER SHARED
2 PROGRAM
\ (OPERATES ON
DATA RELATIVE
AN , TO ADDRESS
USER 2'S N AS)
DATA
AREA
USER
3
\
\ USER 3'S
DATA
AREA

Figure 6-2. Shared Programs

Shared programs

When a program is shared, it may have to operate on separate data areas associated
with each user. Only local variables and ROM variables (global or static) may be
used by shared programs. When programs are shared, the A5 register is used as a
pointer to the user's data area.

121

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

Other addressing mode considerations

When embedding assembly language in C source files, make sure that your
assembly language instructions agree with the addressing mode you have selected
for that section. For example, you would not code absolute mode jump instructions
in a PC relative mode program section.

RAM and ROM Considerations

This section addresses special considerations of loading your programs into RAM
and ROM environments.

Initialized data

The C language specifies that, without explicit initialization, external and static
variables will be initialized to zero. Declarator initializers allow you to specify
initial values other than zero.

These initial values, or default values of zero, are written to static variables at
load-time. Programs executed in operating systems, in emulation environments, or
in simulation environments, have a "load-time" and initialization is possible.

Embedded environments, however, have no "load-time", and statics and externals
cannot be initialized (either to zero or any other value). As an example, when a
target system is powered up, the contents of RAM data locations are not known.

Symbols declared with thmnsttype modifier are considered to be ROM locations
and are initialized by definition.

The "uninitialized" option

There is an "uninitialized data" optiow) to the compiler which will cause

warning messages to be printed whenever static initializers are used in
non-constant declarations. Also, the generated assembly language declarations no
longer initialize static data to zero (as is done when the "uninitialized data" option
is not specified).

122

Chapter 6: Embedded Systems Considerations
Embedded Systems with Mass Storage

This option cannot check for the use of a static or external variable which has not
been assigned a value (although the compiler generates warnings occasionally), so
make sure your programs do not assume an initialized value.

Where to load constants

For ROM/RAM embedded systems, the program and constants will ultimately
reside in ROM. In anticipation of this environment, the default seqtimgsand
constcontain ROMable information, and the default seatiata contains
RAMable information.

Embedded Systems with Mass Storage

Systems which load programs from mass storage differ from pure ROM/RAM
systems in that a load time exists when alterable data can be initialized. The
language anticipates such a load time by allowing variable data to be declared with
initializers. When static data is declared with an initializer, such initialization

occurs at load time. Indeed C specifies that static data which is not explicitly
initialized will be initialized to zero at load time.

To facilitate load time initialization of static data, a command line option has been
provided to separate explicitly initialized data from uninitialized (or initialized to
zero at load time) data into different named sections. By default, these sections are
nameddata andudatg but these names can be changed ugimggma

SECTION (see above).

The value of the "separate initialized and unitialized data" option is that it allows
the loader to load initialized static da@ntiguoushinto RAM from theidata

section. It can then, if desired, initialize tndatasection’s locations to zero in an
efficient contiguous manner.

The use of the "separate initialized from uninitialized" option together with the
"uninitialized data" option (described above) supports emulation of an environment
with a load time (for initializing explicitly initialized static data) which does not
initialize uninitialized data to zero. When used together, the compiler does not
warn explicit initializations of non-constant static data, but places such data in
sectionidata (by default). Static data which is not explicitly initialized, is reserved
space in sectiondata(by default), but is not initialized to zero at
emulation/simulation load time.

123

Chapter 6: Embedded Systems Considerations
The "volatile” Type Modifier

The "volatile" Type Modifier

Thevolatile type modifier is used in declarations to specify that an object’s value
may change in ways unknown to the compilervokatile type modifier makes the
compiler access an object literally, as specified in C statements. Literal
interpretations of C statements can be important in programs which are closely tied
to hardware such as memory mapped I/O devices or device drivergolatie

type modifier is necessary because optimizations can take short-cuts, using
methods which differ from the literal interpretation but which yield the same result.

The listings shown in figure 6-3 give an example of the effect given hyotatle

type modifier. The top listing shows code in which the assignment of "io_port" to
"secondValue" has been optimized into a "MOVE.L D0,D4" instruction which
does not actually read "io_port" (whose value may have changed since its
assignment to "firstValue"). The bottom listing shows the "io_port" variable
declared with theolatile type modifier. Notice that the assignment of "io_port" to
"secondValue" does not get optimized.

For the user who wants a controlled way of toggling an address line, it is
guaranteed that a simple assignmentyvolatile variable which has a size equal to

the data bus width of the target processor will cause exactly one write. An access of
such a variable will cause exactly one read. For example:

volatile int *p = (int *)1234; [* int size = bus width.
1234 is address of I/O port. */

main()
n=0; / Exactly one write to address 1234. */
p; / Exactly one read of address 1234. */
}
A pointer-tovolatile cannot be assigned to a pointer-to-notatile without a cast.
Note If the "word align data" option is oahort andint variables may be accessed with

two reads or writes instead of just one.

124

Chapter 6: Embedded Systems Considerations

1 intio_port;

2

3 main()

4 {

_main

MOVE.L D4,-(A7)

XDEF
_main
00000000 2F04
*

* Register ‘DO’ is register variable 'S_firstValue’'.
*

* Register ‘D4’ is register variable 'S_secondValue'.
*

* Register ‘D1’ is register variable 'S_tmp’.
*

5 int firstValue, secondValue, tmp;
6
7 firstValue = io_port;
00000002 2039 0000 0000 R MOVE.L (_io_port+0).L,DO
8 secondValue = io_port;
00000008 2800 MOVE.L DO0,D4
9 tmp = firstValue;
0000000A 2200 MOVE.L D0,D1
10 }

1 volatile intio_port;
2

3 main()

4

{

_main

MOVE.L D4,-(A7)

XDEF
_main
00000000 2F04
*

* Register 'DO0’ is register variable 'S_firstValue’'.
*

* Register ‘D4’ is register variable 'S_secondValue'.
*

* Register ‘D1’ is register variable 'S_tmp’.
*

5 int firstValue, secondValue, tmp;

6

7 firstValue = io_port;

00000002 2039 0000 0000 R MOVE.L (_io_port+0).L,DO
8 secondValue = io_port;

00000008 2839 0000 0000 R MOVE.L (_io_port+0).L,D4
9 tmp = firstValue;

0000000E 2200 MOVE.L D0,D1
10 }

Figure 6-3. "volatile” Type Modifier Example

~_|PERFORMED

The "volatile” Type Modifier

OPTIMIZATION

\

NO OPTIMIZATION
PERFORMED

125

Chapter 6: Embedded Systems Considerations

Reentrant Code

Reentrant Code

Reentrant code is code that can be interrupted during its execution and re-invoked
by subsequent calls any number of times. A nonreentrant routine might, for
example, operate on static data or external variables; if this routine is interrupted
and called from somewhere else, the data it was originally operating on might be
destroyed. Interrupt handlers and other routines which may be interrupted and
called again must be reentrant.

The C compiler generates reentrant code.
Nonreentrant library routines

Most of the library routines which have been shipped with the compiler are
reentrant. However, some of the libraries are not reentrant; they are listed below.

Table 6-1. Nonreentrant Library Routines

assert free malloc rewind
atexit freopen open scanf
calloc fscanf printf setbuf
close fseek putc setvbuf
fclose fsetpos putchar srand
fflush ftell puts strtok
fgetc fwrite rand strtol
fgetpos getc read ungetc
fgets getchar realloc unlink
fopen gets remove viprintf
fprintf Iseek vprintf
fputc write
fputs

fread

Nonreentrant routines should not be called from interrupt handlers or other
reentrant routines.

Some libraries use the global symbaino. Note that the value efrno can be
overwritten in a multitasking or reentrant environment.

126

Chapter 6: Embedded Systems Considerations
Implementing Functions as Interrupt Routines

#pragma INTERRUPT

void int_routine()

Implementing Functions as Interrupt Routines

Interrupt routines are not intended to return values. Therefore, the type specifier
void must be used to declare functions which you wish to implement as interrupt
routines. ThReNTERRUPT pragma is used to specify that a function should be
implemented as an interrupt routine.

#pragma INTERRUPT

This pragma specifies that the next encountered function be implemented as an
interrupt routine. This means that all working registers are saved at function entry
(in addition to the register variables which ordinarily are saved), no parameter
passing or returned result is allowed, and a return from interrupt is generated at the
return point. Note that only the next encountered function is affected--not
subsequent functions.

TheINTERRUPT pragma may be used any place a C external declaration ma®
An example of a function implemented as an interrupt routine is shown below.

Loading the vector address

Using thedNTERRUPT pragma will cause all registers to be pushed onto the stack
upon function entry, and a return from interrupt instruction is generated for

function exit. However, you must make sure that the address of the function is
loaded into the vector table. For example, the emulator monitor stub program uses
some interrupt vectors. The sourcerfaon_stub.scontains vector tables which

may be modified to contain the address of your interrupt handler written in C.

127

Chapter 6: Embedded Systems Considerations
Eliminating 1/0

In your own target system, it will be easiest to implement your vector table in C.
For example, if you had implemented one routine totally in assembly language and
named it"_asm_int_routine", you could declare your vector table and initialize it

with:
extern void asm_int_routine();
#pragma SECTION DATA=0x00

void (*vectorTable[])() ={. . ., asm_int_routine, . . .,
int_routine, . . .}

#pragma SECTION UNDO
#pragma INTERRUPT

void int_routine() {

Eliminating 1/0

Your embedded system may well have no file /O capability. If this is the case,
you can specify a linker command file which avoids the overhead of initializing
emulation simulated I/O buffers fetdin stdout andstderr. See the description of
cc68k in the on-line man page.

128

Chapter 7: Libraries

Libraries

Descriptions of the run-time and support libraries.

129

Chapter 7: Libraries

Two varieties of libraries are provided with the Motorola 68000 Family C Cross
Compiler. First are the run-time libraries which contain routines required to do real
number arithmetic, initializations, run-time debug checks, etc. Second are the
support libraries for which both ah" include file and the library object code are
provided.

Addressing Modes Used in Libraries

Three versions of the library routines are provided: position dependent versions,
and two position independent versions.

The position dependent versions of the library routines access static data with the
absolute long mode, call other library routines in the same named library section
with the PC relative short mode, and call library routines across named library
sections with the absolute long mode.

The position independent versions of the library routines access static data with the
A5 relative long mode, call other library routines in the same named library section
with the PC relative short mode, and call library routines across named library
sections with the PC relative long mode.

The program-counter relative versions of the library routines access static data with
the PC relative long mode, call other library routines in the same named library
section with the PC relative short mode, and call library routines across named
library sections with the PC relative long mode.

130

Chapter 7: Libraries

Library Names

The absolute and position-independent versions of the default libraries (which are
included by cc68k when linking) are:

Table 7-1. Absolute/Position-Independent Library Names

Library: Absolute Version Position-Independent PC-Relative Version
(PROG Section Version (PROG Section Name)
Name) (PROG Section Name)

Run-time library lib.a (lib) libpi.a (lib) libpc.a (lib)

Support library libc.a (libc) libcpi.a (libc) libcpc.a (libc)

Math library libm.a (libm) libmpi.a (libm) libmpc.a (libm)

The run-time, support, and math libraries are included by the default linker
command file. When the "generate code for the 68881/2" command line optio
used, the 68881/2 run-time and math libraries are also included by the defaul
linker command file. Because there are no real numbers in the support libraries,
there is no 68881/2 version of the support library.

Controlling the Addressing Mode of the Calling Code

You can control the addressing modes used for calls to libraries in the same manner
as you would control the addressing modes throughout your program. The "mode"
option to the cc68k command allows you to specify the addressing modes which

are generated when one section makes references to static variables or functions
which are defined in the same or a different section.

Run-time library modules are all located in linker section némerhe same
addressing mode must be used to call run-time library modules throughout a source
file.

131

Chapter 7: Libraries

Support and math libraries are located in section nébweandlibm, respectively.
The 68881/2 math library modules are located in section fiame These section
names may be used just as any other section names would be (for example, in
SECTION pragmas or in the "mode" command line option provided include files
are used). See the on-line man pages for a complete description of the cc68k
command syntax and options.

Run-Time Library Routines

The run-time librarylib.a orlib881.a, contains routines used at run-time by the
compiler-generated code to implement operations which, for one reason or another,
are better accomplished in a subroutine than in-line. The reasons for encoding an
operation in a run-time library routine instead of in-line vary from conserving

space to minimizing repetition of in-line code to maintenance considerations (the
same reasons functions are used in C).

Although run-time library routines are usually used only by the compiler, they may
be called from assembly code (including embedded assembly code within the C
source). Also, it is possible to replace any or all of the routines with your own
routines. See the "Run-Time Library Description" chapter for descriptions of the
interface and functionality of all run-time library routines.

Run-time libraries, unlike user routines, generally receive their parameters in the
compiler’s "working" registers (A0, A1, DO, D1). Their results are generally
returned in a similar manner as results which are returned from user routines. See
the "Run-Time Library Description" chapter for detailed information on specific
routines.

In the presence of the "generate code for the 68881/2" option, most run-time
library routines are not called, but rather in-line 68881/2 instructions are used to
perform the operation.

Support Library and Math Library Routines

In general, the implementation of the support library routines is likely to deviate
subtly from the standard due to environment dependencies. Where possible, the

132

Chapter 7: Libraries

sources for these environment-dependent routines (which are customized to HP
development environments) are provided as part of the compiler product (see the
chapters describing "Environment Dependent Routines").

Especially in the presence of the "generate code for the 68881/2" option, certain
support and math library functions may be expanded in-line (see the "In-Line
Expansion of Standard Functions" section in the "Optimizations" chapter).

Certain support and math library functions may be expanded in-line (see the
"In-Line Expansion of Standard Functions" section in the "Optimizations" chapter).

Library Routines Not Provided
Several "standard" C library routines ag provided with the C compiler.

» General Utilities. The <stdlib.h> functionabort, geteny andsystemare not
supported.

e Input/Output. The <stdio.h> definitions_tmpnam, FILENAME_MAX ,
andTMP_MAX , as well as theename, tmpfile, andtmpnam routines, are
not supported.

» Signal Handling. The <signal.h> routines are not provided because of their
extreme environment dependencies.

» Date and Time The <time.h> routines are not provided because of their
extreme environment dependencies.

133

Chapter 7: Libraries

Include (Header) Files

The following is a list of include files which are shipped with the compiler:
assert.h Defines the macrassert

ctype.h Defines the "character classification” macros (e.g.,
isalnum, isalpha, etc.).

errno.h Declareserrno and macros used to test errno.

float.h Describes the IEEE single- and double-precision
floating-point representations and contains definitions of
the limiting values of floating-point types.

fp_control.h Declares the floating-point error functions. This header
file also defines the macros which can be used as
arguments to theset_fp_controlfunction, or to check the
return value of theget fp_statusfunction.

limits.h Contains definitions of the limiting values for integral
types.
locale.h Declares theetlocaleandlocaleconvfunctions and

defines thdconv structure. Also defines the categories
which the functions can change.

math.h Declares the standard math library routines and
HUGE_VAL .

memory.h Declaressbrk and_getmem

m68332.h Declares théable andinterpolate routines.

m6888x.h Declares floating-point functions so that the 68881/2 FPU
will be used.

setjmp.h Defines thgmp_buf type and declares tisetjmp and
longjmp functions.

simio.h Declares the simulated I/O functions and companion
macros.

134

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

Chapter 7: Libraries

Provides thea_list type and the macros which are used to
access variable-length argument lists, start, va_arg,
andva_end For a description of the variable argument list
macros, see the entry for "va_list" in this chapter.

Defines theptrdiff_t , size_t andwchar_t types and the
NULL null pointer constant. This header file also defines
the offsetof macro.

Declares all the functions that handle input and output.
This header file also defines tRELE type, buffering
macros, file positioning macros, the maximum number of
open files, and buffer size macros.

Defines the typediv_t andldiv_t, and also the macros
EXIT_SUCCESS EXIT_FAILURE ,RAND_MAX, and
MB_CUR_MAX . This header file also declares standard
library functions.

Declares the character string and memory operations.

135

Chapter 7: Libraries

List of All Library Routines

The following table lists all of the library routines shipped with this compiler.

An asterisk (*) in théndex column means that you can find a description of the

routine in this manual by looking in the index.

The routines not marked with an asterisk are not described in this manual. These
routines are run-time routines or subroutines used by the libraries. You should not
use these undocumented routines in your programs because they are likely to be
changed or even deleted in future versions of the compiler.

Index Definition name Library
___tableS libc.a
___tableSN libc.a
____tableU libc.a
____tableUN libc.a
__assert libc.a
__bufsync libc.a

* __clear_fp_status lib.a
libm.a
__dbl_to_str libc.a
__display_message lib.a
__doprnt libc.a
__doscan libc.a
__exec_funcs libc.a
* __exit libc.a

Index Definition name Library
__filbuf libc.a
__findbuf libc.a
__findiop libc.a
__fisbuf libc.a

%= |__fp_control lib.a

libm.a

= |__fp_error lib.a
= |__fp_error libm.a
__fp_errorf lib.a
__fp_errori lib.a

x |__fp_status lib.a

libm.a

% |__get fp_control lib.a

libm.a

+ |__get_fp_status lib.a

libm.a

136

Chapter 7: Libraries

Index Definition name Library
* __getmem libc.a
__memccpy libc.a
__readFile libc.a
__readStr libc.a
* __set_fp_control lib.a
libm.a
__swrite libc.a
__wrtchk libc.a
__xflsbuf libc.a
* _abs libc.a
* _acos libm.a
* _asin libm.a
* _atan libm.a
* _atexit libc.a
* _atof libc.a
* _atoi libc.a
* _atol libc.a
* _bsearch libc.a
* _calloc libc.a
* _ceil libm.a
* _Clearerr libc.a

Index Definition name Library
% |_cClose libc.a
% |_cos libm.a
x* |_cosh libm.a
% |_div libc.a
% |_ermno lib.a

libc.a

libm.a
* |_exp libm.a
x |_fabs libm.a
x» |_fclose libc.a
% |_feof libc.a
x |_ferror libc.a
x |_fflush libc.a
« |_fgetc libc.a
x| _fgetpos libc.a
« |_fgets libc.a
« |_floor libm.a
+ |_fmod libm.a
« |_fopen libc.a
x| _fprintf libc.a
+» |_fputc libc.a

137

Chapter 7: Libraries

Index Definition name Library
* _fputs libc.a
* _fread libc.a
* _free libc.a
* _frem libm.a
* _freopen libc.a
* _frexp libm.a
* _fscanf libc.a
* _fseek libc.a
* _fsetpos libc.a
* _ftell libc.a
* _fwrite libc.a
* _Qetc libc.a
* _getchar libc.a
* _gets libc.a
* _interpolateS libc.a
* _interpolateSN libc.a
* _interpolateU libc.a
* _interpolateUN libc.a
* _isalnum libc.a
* _isalpha libc.a

Index Definition name Library
% |_iscntrl libc.a
« |_isdigit libc.a
x |_isgraph libc.a
% |_islower libc.a
% |_isprint libc.a
x |_ispunct libc.a
% |_isspace libc.a
x |_isupper libc.a
+ |_isxdigit libc.a
% |_labs libc.a
x |_ldexp libm.a
x |_ldiv libc.a
% |_localeconv libc.a
+ |_log libm.a
% |_longjmp libc.a
x |_lseek libc.a
% |_malloc libc.a
% |_mblen libc.a
*+ |_mbstowcs libc.a
% |_mbtowc libc.a

138

Chapter 7: Libraries

Index Definition name Library
* _memchr libc.a
* _memcmp libc.a
* _memcpy libc.a
* _memmove libc.a
* _memset libc.a
* _modf libm.a
* _open libc.a
* _perror libc.a
* __pow libm.a
* _printf libc.a
* _putc libc.a
* _putchar libc.a
* _puts libc.a
* _gsort libc.a
* _rand libc.a
* _read libc.a
* _realloc libc.a
* _remove libc.a
* _rewind libc.a
* _scanf libc.a

Index Definition name Library
% |_setbuf libc.a
% |_setjimp libc.a
= |_setlocale libc.a
% |_setvbuf libc.a
% |_sin libm.a
x |_sinh libm.a
% |_sprintf libc.a
* |_sqrt libm.a
% |_srand libc.a
% |_sscanf libc.a
x |_strcat libc.a
% |_strchr libc.a
x |_strcmp libc.a
x |_strcoll libc.a
% |_Strcpy libc.a
x |_strcspn libc.a
% |_Strerror libc.a
% |_strlen libc.a
x |_strncat libc.a
x |_Strncmp libc.a

139

Chapter 7: Libraries

Index Definition name Library
% |_wctomb libc.a
* |_write libc.a

Index Definition name Library
* _strncpy libc.a
* _strpbrk libc.a
* _strrchr libc.a
* _strspn libc.a
* _strstr libc.a
* _strtod libc.a
* _strtok libc.a
* _strtol libc.a
* _strtoul libc.a
* _strxfrm libc.a
* _tan libm.a
* _tanh libm.a
* _tolower libc.a
* _toupper libc.a
* _ungetc libc.a
* _unlink libc.a
* _vfprintf libc.a
* _vprintf libc.a
* _vsprintf libc.a
* _wecstombs libc.a

140

Chapter 7: Libraries

Support Library and Math Library Descriptions

The remainder of this chapter describes the support and math library functions.
Functions declared in theath.h include file are found in the math library archive
files libm.a, libmpi.a, libmpc.a, libm881.3 libm881pi.a, andlibm881lpc.a All
other functions are found in the support library archive fitesa, libcpi.a, and
libcpc.a

Note Theopen close read, write, Iseek unlink, exit, _exit, _getmem
andsbrk functions have execution environment dependencies; therefore, these
libraries are described in the "Environment-Dependent Routines" chapter.

141

Chapter 7: Libraries

abs, labs
abs, labs
Return Integer Absolute Value
Synopsis #include <stdlib.h>
int abs (int i);
long int labs (long int i);
Description Absreturns the absolute value of its integer operand.
Labsis similar toabsexcept that the argument and the returned value each have
typelong int.
Warnings In two’s-complement representation, the absolute value of the negative integer with
the largest magnitude is undefined. This error is ignored.
See Also floor.

142

Chapter 7: Libraries

assert
assert
Put Diagnostics into Programs
Synopsis #include <assert.h>
void assert (const char *expression);
Description Theassertmacro puts diagnostics into programs. When it is executed, if

expressions false (equal to zero), thssertmacro writes information about the
particular call that failed (including the text of the argument, the name of the source
file, and the source line numbethe latter are respectively the values of the
preprocessing macros FILE___and__ LINE__) on the standard error file in the
format shown below. It then calls thexitfunction.

Assertion failed: <expression>, file <_ FILE__ >, line <__LINE__ >

Diagnostics When the assert.h header file is included and the NREBUG is defined, the
assertmacro will be defined to do nothing. This allows you to compile your code
with or without theassertchecking by simply defining or undefining the macro
NDEBUG. Assertreturns no value.

See Also _exit.

143

Chapter 7: Libraries

atexit
atexit
Call Function at Program Termination
Synopsis #include <stdlib.h>
int atexit (void (*func)(void));
Description Atexitwill register thefuncfunction to be called without arguments at normal
program termination. Up to 32 separate function registrations can be performed.
Diagnostics Atexitreturns zero if the registration succeeds, or non-zero if it fails.
See Also exit.

144

Chapter 7: Libraries
bsearch

bsearch

Binary Search a Sorted Table

Synopsis #include <stdlib.h>

void *bsearch (

const void *key,

const void *base,

size_t nel, size tsize,

int (compar)(const void *, const void *));

Description Bsearchis a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table indicating where a datum may be found. The table
must be previously sorted in increasing order according to a provided comparison
function. Keypoints to a datum instance to be sought in the t&dsepoints to
the element at the base of the talMelis the number of elements in the table.
Comparis the name of the comparison function, which is called with two
arguments that point to the elements being compared. The function must return an
integer less than, equal to, or greater than zero as accordingly the first argument is
to be considered less than, equal to, or greater than the second.

Notes The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type void pointer. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in addition
to the values being compared. Although declared as void pointer type, the value
returned should be cast into type pointer-to-element.

Example The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints out the string and its length, or prints an error message.

145

Chapter 7: Libraries
bsearch

#include <stdio.h>
#include <stdlib.h>

#define TABSIZE 1000

struct node { [* these are stored in the table */
char *string;
int length;

h
struct node table[TABSIZE]; /* table to be searched */

struct node *node_ptr, node;
int node_compare('); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%s", node.string) != EOF) {
node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr '= NULL) {
(void)printf("string = %20s, length = %d\n",
node_ptr->string, node_ptr->length);
}else {
(void)printf("not found: %s\n", node.string);

| }

/* This routine compares two nodes based on an
alphabetical ordering of the string field. */

int

node_compare(nodel, node2)

struct node *nodel, *node2;

return strcmp(nodel->string, node2->string);

See Also gsort.
Diagnostics A NULL pointer is returned if the key cannot be found in the table.

Bugs A random entry is returned if more than one entry matches the selection criteria.

146

Chapter 7: Libraries
div, Idiv

div, Idiv

Divide Functions

Synopsis #include <stdlib.h>
div_t div (int numer, int denom);

Idiv_t Idiv (long int numer, long int denom);

Description Div computes the quotient and remainder of the division of the numetet@rby
the denominatodenom If the division is inexact, the sign of the quotient is that of
the mathematical quotient, and the magnitude of the quotient is the largest integer
less than the magnitude of the mathematical quotient. If the result cannot be
represented, the behavior is undefined.

Ldiv is similar todiv except that the arguments and members of the returned
structure (which has typdiv_t) all have typdong int.

Diagnostics Thediv function returns a structure of typv_t, comprising both the quotient and
the remainder. The structure is definedstafib.h as shown below.

typedef struct {
int quot; /* Quotient */
int rem; /* Remainder */
}div_t;

typedef struct {
long int quot; /* Quotient */
long int rem; /* Remainder */
}Idiv_t;

147

Chapter 7: Libraries

exp
exp
Exponential Functions

Synopsis #include <math.h>
double exp (double x);

Description Expreturnse’

Diagnostics Expsetserrnoto ERANGE and return$lUGE_VAL when the correct value
would overflow, or 0 when the correct value would underflow. In addition to
errno, bits in a global status flag or in the floating point unit floating-point status
register are set when error conditions arise.

The error-handling is done by the run-tinfe_error routine.
See Also _fp_error, _get fp_status"Behavior of Math Library Functions" chapter.

148

Chapter 7: Libraries
fclose, fflush

fclose, fflush
Close or Flush a Stream
Synopsis #include <stdio.h>

int fclose (FILE *stream);

int fflush (FILE *stream);

Description Fclosecauses any buffered data for the nasteshmto be written out, and the
streamto be closed. Buffers allocated by the standard input/output system are
freed.

Fcloseis performed automatically for all open files upon caléxg.

Fflushcauses any buffered data for the nastesmto be written to that file. If
the argument is NULL, then all open files are flushed. streamor streams
remain open.

Diagnostics These functions return 0 for success, BAF if any error (such as trying to write
to a file that has not been opened for writing) was detected.

See Also close exit, fopen, setbuf.

149

Chapter 7: Libraries
ferror, feof, clearerr

Synopsis

Description

Note

See Also

Synopsis

ferror, feof, clearerr

Stream Status Inquiries

#include <stdio.h>
int ferror (FILE *stream);
int feof (FILE *stream);

void clearerr (FILE *stream);

Ferror returns non-zero when an I/O error has previously occurred reading from or
writing to the namedtream otherwise zero. Unless cleareddigarerr, or unless

the specificstdioroutine so indicates, the error indication lasts until the stream is
closed.

Feofreturns non-zero wheBOF has previously been detected reading the named
input stream otherwise zero.

Clearerrresets the error indicator aB@F indicator to zero on the namstleam

These functions are implemented as macros and functions. To use a function
instead of a macrétundefthe macro before function invocation.

open fopen.

fgetpos, fseek, fsetpos, rewind, ftell

Position File Pointer

#include <stdio.h>

int fgetpos (FILE *stream, fpos_t *pos);

150

Chapter 7: Libraries
fgetpos, fseek, fsetpos, rewind, ftell

int fseek (FILE *stream, long offset, int ptrname);
int fsetpos (FILE *stream, const fpos_t *pos);
long ftell (FILE *stream);

void rewind (FILE *stream);

Description Fgetposstores the current value of the file pointer onstineamin the object
pointed to bypos The value stored contains unspecified information usable by the
fsetpodunction for repositioning the stream to its position at the time of the call to
thefgetposfunction.

Fsetpossets the file pointer for thetreamto the value of the object pointed to by
poswhich is a value returned by an earlier cafigetposon the same stream.

Fseeksets the position of the next input or output operation ostteam The
new position is at the signed distandtsetbytes from the beginning, from the
current position, or from the end of the file, accordingtazamehas the value
SEEK_SET, SEEK_CUR, or SEEK_END.

Rewind (streami} equivalent tgvoid) fseeK stream , OL, SEEK_SET).

Fsetposfseek andrewind clear the end-of-file indicator and undo any effects of
theungetcfunction on the same stream. Afterfaetposfseek orrewindcall, the
next operation on an update stream may be either input or oRpwindalso
does an implicitlearerr call.

Ftell returns the offset of the current byte relative to the beginning of the file
associated with the namstteam

See Also Iseek fopen, ungetc

Diagnostics Thefgetposandfsetposunctions return zero if successful; otherwise, they return
non-zero an@rrnois set to a non-zero value.

Fseekreturns non-zero for improper seeks, otherwise zero. An improper seek can
be, for example, afseekdone on a file that has not been openedogan in
particular fseekmay not be used on a terminal.

151

Chapter 7: Libraries

fgetpos, fseek, fsetpos, rewind, ftell

Warning

Ftell returns —1 for error conditions and s&xtis10 to a non-zero value. If either the
argument tdtell is NULL or if the file is not open, theftell setserrno to EBADF.

In UNIX-base operating sytems, the offset returnettddyis measured in bytes,

and a program may seek to positions relative to that offset. Portability to non-UNIX
systems requires that an offset be usefbégldirectly. Do not use the offset in
calculations—the offset might not be measured in bytes.

152

Synopsis

Description

See Also

Chapter 7: Libraries
floor, ceil, fmod, frem, fabs

floor, cell, fmod, frem, fabs

Floor, Ceiling, Remainder, and Absolute Value

#include <math.h>

double floor (double x);

double ceil (double x);

double fmod (double x, double y);
double frem (double x, double y);
double fabs (double x);

Floor returns the largest integer (as a double-precision number) not greater than

Ceil returns the smallest integer (as a double-precision number) not legs than

or +/-HUGE_VAL if x/y would overflow; otherwise the numbfewith the same

Fmodreturns the floating-point remainder of the divisiox bfyy: NaN ify is zero .

sign as, such thak = iy + f for some integei, andf| < yy|.

Fremis the same dsmodexcept that the remainder is computed in
round-to-nearest mode, and the result may have a different sigx than
example:

fmod (x, y) =x — (y*i) Where i = (int) (x/y)

frem (x, y) =x—(y*) Where i = (int) (x/y + 0.5)

fmod (5.2, 10) = 5.2 — (10*0) = 5.2
frem (5.2, 10) = 5.2 — (10*1) = -4.8

Fabsreturns the absolute valuexofix|; errnois set whenever an exception
condition occurs.

abs "Behavior of Math Library Functions" chapter.

153

Chapter 7: Libraries
fopen, freopen

fopen, freopen

Open or Re-Open a Stream File

Synopsis #include <stdio.h>

FILE *fopen (
const char *file_name,
const char *type);

FILE *freopen (

const char *file_name,
const char *type,

FILE *stream);

Description Fopenopens the file named liye_nameand associatesstreamwith it. Fopen
returns a pointer to the FILE structure associated withtteam

File_namepoints to a character string that contains the name of the file to be
opened.

Typeis a character string having one of the following values:

“r', "rb" Open for reading.

"w", "wb" Truncate or create for writing.

"a", "ab" Append; open for writing at end of file, or create for
writing.

“r+", "rb+", "r+b" Open for update (reading and writing).

"w+", "wb+", "w+b" Truncate or create for update.

"at", "ab+", "a+b" Append; open or create for update at end-of-file.

A character "b" in the type string signifies that the file is a binary file. In this
implementation, the presence or absence of the "b" has no effect.

154

Chapter 7: Libraries
fopen, freopen

Freopensubstitutes the named file in place of the ogtegam The originalstream
is closed, regardless of whether the open ultimately succEestgpenreturns a
pointer to the FILE structure associated vsitteam

Freopenis typically used to attach the preopestrdamsassociated witktdin,
stdout, andstderr to other files.

When afile is opened for update (i.e., the character "+" is presenttyp¢he
string), both input and output may be done on the resdtiegm However, input
may not be directly followed by output unless there is an intervening ¢lisio
or to one of the file positioning functiongwind fseekfsetpoy. The same is true
for following output directly with input.

When afile is opened for append (i.e., the character "a" is presentypehe

string), information already present in the file cannot be overwritseekmay be

used to reposition the file pointer to any position in the file, but when output is
written to the file, the current file pointer is disregarded. Undefined behavior will
occur if the file is also opened for update and the preceding rules for update mode
are not followed.

See Also open fclose fseek

Diagnostics Fopenandfreopenreturn a NULL pointer ifile-namecannot be accessed, if there
are too many open files, or if the arguments are incorrect.

155

Chapter 7: Libraries
_fp_error

Synopsis

Description

_fp_error

Floating-Point Error Functions

#include <fp_control.h>

void _clear_fp_status (void);

int _get fp_status (void);

void _set_fp_control (int mode);

int _get fp_control (void);

Technically,_fp_erroris a run-time routine in that it is only called from other
run-time library and math library functions. Its purpose is to simulate the exception
processing that is present on the FPU. Thereffpegerroris referenced only

when the librariefib.a andlibm.a are loaded.

When called, fp_errorinspects a global control flag to see if the trap bit
associated with the current exception is set. If the bit isfpeterrorcalls the

trap() routine which composes an error message and traps into the monitor
program to display the message. If the bit is not §eterrorupdates a global
status flag to reflect the exception type and returns a value defined by the IEEE
Floating Point Standard 754 (see the "Behavior of Math Library Functions"
chapter).

FP functions (68020, 68030, 68040)

_clear_fp_statugither clears the global status flag or the floating-point status
register of the FPU.

_get_fp_statuseturns either the global status flag or the floating-point status
register of the FPU.

_set_fp_controsets either the global control flag or the floating-point control
register of the FPU tmode

_get_fp_controteturns either the global control flag or the floating-point control
register of the FPU.

156

Chapter 7: Libraries
_fp_error

Default mode

The 68000 and 68332 libraries always perform operations in double precision and
round to nearest. By default, trapping is enabled on all floating-point exceptions
except inexact results.

For the 68020 and 68030, the default mode of operation within the FPU libraries is
to perform operations in extended precision, round to nearest, and to trap on all
floating-point exceptions except inexact results. The libraries always perform
operations in double precision and round to nearest. By default, trapping is enabled
on all floating-point exceptions except inexact results.

For the 68040, the default mode of operation is to perform operations in extended
precision, round to nearest, and to trap on all floating-point exceptions except
inexact results.

Note Because of the various rounding and precision modes available with the 68881/2
FPU, the 68881/2 libraries may yield different results than the other libraries.

Mode macros

For the 68020 and 68030, the following macros may be OR’ed together to form
modewhen invoking set_fp_control All except NOTRAP are only meaningful in
68881/2 libraries.

RNDNEAR Round to nearest.

RNDZERO Round to zero, or truncate.

RNDNEGINF Round towards minus infinity.
RNDPOSINF Round towards plus infinity.

SGLPREC Perform operations in single precision.
DBLPREC Perform operations in double precision.
EXTPREC Perform operations in extended precision.
NOTRAP Disable all traps.

157

Chapter 7: Libraries
_fp_error

BSUN Trap on IEEE non-aware branches.

INEXACTD Trap on inexact decimal input.

For the 68040, the following macros may be OR’ed together torfardewhen
invoking_set_fp_control

RNDNEAR Round to nearest.

RNDZERO Round to zero, or truncate.

RNDNEGINF Round towards minus infinity.
RNDPOSINF Round towards plus infinity.

SGLPREC Perform operations in single precision.
DBLPREC Perform operations in double precision.
EXTPREC Perform operations in extended precision.
NOTRAP Disable all traps.

BSUN Trap on IEEE non-aware branches.
INEXACTD Trap on inexact decimal input.

FP functions (68000 and 68332)

For the 68000 and 68332,
_clear_fp_statuslears the global status flag.
_get_fp_statuseturns the global status flag.
_set_fp_controsets the global control flag toode

_get_fp_controteturns the global control flag.

158

Chapter 7: Libraries
_fp_error

Mode macros (68000 and 68332)

For the 68000 and 68332, the following macros may be OR’ed together to form
modewhen invoking set_fp_control

NOTRAP Disable all traps.

INEXACT Trap on inexact result.

DIVZERO Trap on division by zero.

UNDERFLOW Trap on underflow.

OVERFLOW Trap on overflow.

OPERROR Trap on operand error.

SIGNAN Trap on detection of signaling NaN.

PLOSS Trap on loss of precision (applies when the FPU is not
used).

Macros for interpreting status

The following macros may be used when inspecting the return value from
_get_fp_status

NOERRORS No errors have been detected since the last invocation of
_clear_fp_status

INEXACTD (68020/30/40)
BSUN (68020/30/40)
INEXACT

DIVZERO

UNDERFLOW
OVERFLOW

OPERROR

SIGNAN

PLOSS

159

Chapter 7: Libraries
_fp_error

Example You may change the control word without respecifying all of the different
categories. This can be done by using the current value of the control variable and
using masking. For example, the following function call turns on divide-by-zero
trapping without altering any of the other control flags:

_set_fp_control(_get_fp_control() | DIVZERO);

The next example turns off the overflow and underflow traps:

_set_fp_control(_get_fp_control() &
~(UNDERFLOW | OVERFLOW));

160

Chapter 7: Libraries
fread, fwrite

fread, fwrite

Buffered Binary I/O to Stream

Synopsis #include <stdio.h>

size_t fread (void *ptr, size_t size,
size_t nitems, FILE *stream);

size_t fwrite (const void *ptr, size_t size,
size_t nitems, FILE *stream);

Description Fread copies, into an array pointed to ply, nitemsitems of data from the named
input stream, where an item of data is a sequence of bytes (not necessarily
terminated by a null byte) of lengtize Freadstops appending bytes if an
end-of-file or error condition is encountered while readimgam or if nitems
items have been reaéfreadleaves the file pointer istream if defined, pointing
to the byte following the last byte read if there is dRead does not change the
contents obtream

Fwrite appends at mositemsitems of data from the array pointed togdiyto the
named outpustream Fwrite stops appending when it has appenu&insitems
of data or if an error condition is encounteredstveam Fwrite does not change
the contents of the array pointed togis

The argumensizeis typicallysizeof(*ptr)where the pseudo-functicizeof
specifies the length of an item pointed toply If ptr points to a data type other
thanvoid it should be cast into a pointentoid.

See Also read, write, fopen, getg gets printf , putc, puts, scant

Diagnostics Fread andfwrite return the number of items read or writtensitieor nitemsis
zero, no characters are read or written and 0 is returned bfyédmdlandfwrite.

161

Chapter 7: Libraries
frexp, I[dexp, modf

Synopsis

Description

Diagnostics

See Also

frexp, ldexp, modf

Return Mantissa and Exponent

#include <math.h>
double frexp (double value, int *eptr);
double Idexp (double value, int *exp);

double modf (double value, double *iptr);

Every non-zero number can be written uniquely ‘a8n where the "mantissa"
(fraction)x is in the range 0.5 <x||< 1.0, and the "exponent'is an integer.

Frexpreturns the mantissa of a doubddue and stores the exponent indirectly in
the location pointed to bgptr. If valueis zero, both results returned fogxp are
zero.

Ldexpreturns the quantityalue* 2exp.

Modfreturns the signed fractional partvaflueand stores the integral part
indirectly in the location pointed to liytr.

If Idexpwould cause overflowt/-HUGE_VAL is returned (according to the sign
of valug), anderrnois set tcERANGE. If Idexpwould cause underflow, zero is
returned aneérrnois set tcdERANGE.

_fp_error, "Behavior of Math Library Functions" chapter.

162

Synopsis

Description

See Also

Diagnostics

Warning

Bugs

Chapter 7: Libraries
getc, getchar, fgetc

getc, getchar, fgetc

Get Character from Stream

#include <stdio.h>

int getc (FILE *stream));
int getchar (void);
int fgetc (FILE *stream);

Getcreturns the next character (i.e., byte) from the named stymam as an
integer. It also moves the file pointer, if defined, ahead one charastexram
Getcharis defined agetc(stdin) Getcis a macro and so cannot be used if a
function is necessary; for example one cannot have a function pointer point to it.
Getcharis implemented as a macro and as a function. To use a function instead of
a macro#undefthe macro before function invocation.

Fgetcbehaves likgetg but is a function rather than a mackgetcruns more
slowly thangetg but it takes less space per invocation and its name can be pa
as an argument to a function.

fclose ferror, fopen, fread, gets putc, scant

These functions return the constB@F at end-of-file or upon an error.

If the integer value returned Igetc getchar orfgetcis stored into a character
variable and then compared against the integer co&@itthe comparison may
never succeed, because sign-extension of a character on widening to integer is
machine-dependent.

Because it is implemented as a mageictreats incorrectly atreamargument
with side effects. In particulagetc(*f++) does not work sensibly=getcshould
be used instead.

163

Chapter 7: Libraries
gets, fgets

Synopsis

Description

See Also

Diagnostics

gets, fgets

Get a String from a Stream

#include <stdio.h>
char *gets (char *s);

char *fgets (char *s, int n, FILE *stream);

Getsreads characters from the standard input strefin, into the array pointed

to bys, until a new-line character is read or an end-of-file condition is encountered.
The new-line character is discarded and the string is terminated with a null
character.

Fgetsreads characters from thigeaminto the array pointed to sy untiln-1
characters are read, or a new-line character is read and transfeyredao
end-of-file condition is encountered. The string is then terminated with a null
character.

ferror , fopen, fread, getg puts, scant

If end-of-file is encountered and no characters have been read, no characters are
transferred t@ and a NULL pointer is returned. If a read error occurs, such as

trying to use these functions on a file that has not been opened for reading, a NULL
pointer is returned, and the contents afe indeterminate. Otherwisés returned.

164

Synopsis

Description

See Also

Chapter 7: Libraries
interpolateS, interpolateSN, interpolateU, interpolateUN

interpolateS, interpolateSN, interpolateU,
interpolateUN

68332 Data Register Interpolate

#include <m68332.h>

int interpolateS (int y1, int y2, char x);

int interpolateSN (int y1, int y2, char x);

unsigned int interpolateU (unsigned int y1, unsigned int y2, char x);
unsigned int interpolateUN (unsigned int y1, unsigned int y2, char x);

These functions interpolate between two values as if they were two table entries.
These functions may be used with thlele routines to model multidimensional
functions. The functions are expanded to the 68000 table lookup and interpolate
instruction, using the data register interpolate mode, as follows:

interpolateSis expanded to TBLS.L (signed, rounded).
interpolateSNis expanded to TBLSN.L (signed, unrounded).
interpolateU is expanded to TBLU.L (unsigned, rounded).
interpolateUN is expanded to TBLUN.L (unsigned, unrounded).

Byte x is used as an interpolation fraction. Rounded results are determined as
follows:

yl+((2-yl) * x) /256

and unrounded results are determined by:
y1*256 + (y2—yl) * x)

The filem68332.hmust be included for the table functions to be expanded in-line.

table, also the assembly language manual.

165

Chapter 7: Libraries
isalpha, isupper, islower, ...

isalpha, isupper, islower, ...

Classify Characters

Synopsis #include <ctype.h>

int isalpha (int c);

Description These routines classify character-coded integer values by table lookup. Each is a
predicate returning nonzero for true, zero for false. These routines are
implemented both as macros and functions. To use a function instead of a macro,
#undefthe macro before function invocation.

isalpha cis a letter.

isupper Cis an upper-case letter.

islower cis a lower-case letter.

isdigit cis a digit [0-9].

isxdigit cis a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum cis an alphanumeric (letter or digit).

isspace ds a space, tab, carriage return, new-line, vertical tab, or
form-feed.

ispunct cis a printing character that is neither a control character

nor an alphanumeric character nor a space.

isprint cis a printing character, code 040 (space) through 0176
(tilde).
isgraph cis a printing character, liksprint except false for space.

166

Chapter 7: Libraries
isalpha, isupper, islower, ...

iscntrl cis a delete character (0177) or an ordinary control
character (less than 040).

Diagnostics If the argument to any of these macros is not in the domain of the function, the
result is undefined. The domain for these functions is the integer values [0, 255]
andEOF.

167

Chapter 7: Libraries
localeconv

Synopsis

Description

localeconv

Locale Conversion

#include <locale.h>

struct Iconv *localeconv (void);

localeconwsets the components of an object of tyjpact lconvto the appropriate
numeric quantity formatting values for the current locale.

Within the structuréconv, members of typehar * point to strings. Any char

pointer, excepthar *decimal_point may point to a null string ("") to indicate that

the value is either not available in the current locale or of zero length in the current
locale.

The following are members of theonv structure:

char *decimal_point

is the decimal point character used to format non-monetary
guantities.

char *thousands_sep

is used to separate groups of digits before the decimal
point in non-monetary quantities.

char *grouping

is a string, the elements of which indicate the size of each
group of digits in formatted non-monetary quantities.

char *int_curr_symbol

is the international currency symbol used in the current
locale. The first three characters in this string contain the
alphabetic international currency symbol in accordance
with ISO 4217 Codes for the Representation of Currency
and FundsThe fourth character is (last before the null

168

Chapter 7: Libraries
localeconv

terminator) is the character used to separate the currency
symbol from the monetary quantity.

char *currency_symbol

is the local currency symbol for the current locale.

char *mon_decimal_point

is the decimal point used to format the monetary values.

char *mon_thousands_sep

is the separator for groups of digits before the decimal
point in the monetary values.

char *mon_grouping

is a string, the elements of which indicate the size of each
group of digits in formatted monetary quantities.

char *positive_sign

is the string used to signify non-negative formatted
monetary values.

char *positive_sign

is the string used to signify negative formatted monetary
values.

char int_frac_digits

is the number of fractional digits (after the decimal point)
to display in an internationally formatted monetary value.

char frac_digits

is the number of fractional digits (after the decimal point)
to display in a formatted monetary value.

char p_cs_precedes

169

Chapter 7: Libraries
localeconv

for a formatted non-negative monetary value, is set to one
if the currency_symbolprecedes the value or set to zero if
the currency_symbol follows the value.

char p_sep_by_space

for a formatted non-negative monetary value, is set to one

if the currency_symbolis separated from the value by a
space and set to zero if it is not separated from the value by
a space.

char n_cs_precedes

for a formatted negative monetary value, is set to one if the
currency_symbolprecedes the value or set to zero if the
currency_symbol follows the value.

char p_sep_by_space

for a formatted negative monetary value, is set to one if the
currency_symbolis separated from the value by a space
and set to zero if it is not separated from the value by a
space.

char p_sign_posn

is a value indicating the positioning of the negative sign for
a formatted non-negative monetary value.

char n_sign_posn

is a value indicating the positioning of the negative sign for
a formatted negative monetary value.

The elementgroupingandmon_groupingpecify the grouping of digits in
non-monetary and monetary quantities. Both strings are strings of grouping counts.
The first element of the string, say s[0], unless it is CHAR_MAX, is the number of
digits to group before the first separator character. s[1], unless it is zero or
CHAR_MAX, is the number of digits to group after grouping s[0] digits. s[2],

unless it is zero or CHAR_MAX, is the number of digits to group after s[0] digits
and s[1] digits have been grouped. And so on. If s[i] is zero, then the value in s[i-1]

170

Diagnostics

Note

Chapter 7: Libraries
localeconv

is the grouping value for all subsequent digits. If s[i] is CHAR_MAX, then no
further grouping is performed.

The value of eithep_sign_posrandn_sign_posris interpreted in the following
way:

0 Parentheses surround the quantity @rdency _symbol

1 The sign string precedes the quantity emdency_symbol
2 The sign string follows the quantity acgrrency_symbol
3 The sign string immediately precedes¢beency _symbol
4 The sign string immediately follows tlearrency_symbol

Thelocaleconwoutine returns a pointer to the filled object. The returned structure
is not to be modified directly by the program, but may be overwritten by further
calls to localeconv. In addition, callsgetlocalewith the categories LC_ALL,
LC_MONETARY, and LC_NUMERIC may overwrite the contents of the struct

The locale supported by the libraries is the "C" lodatealeconwill return the
"C" locale only. The following table lists the return values for the various structure
elements.

171

Chapter 7: Libraries

localeconv
Additionally, there is a mactdB_CUR_MAX defined instdlib.h that returns
the maximum number of bytes a multi-byte character could have in the current
locale. Because multi-byte characters are not supported, this macro always returns
one.

See Also setlocale

Table 7-2. Element Values Returned by

localeconv

Element

Returned Value

char *decimal_point

char *thousands_sep

char *grouping

char *int_curr_symbol

char *currency_symbol

char *mon_decimal_point

char *mon_thousands_sep

char *mon_grouping

char *positive_sign

char *negative_sign

char int_frac_digits

char frac_digits CHAR_MAX
char p_cs_precedes CHAR_MAX
char p_sep_by space CHAR_MAX
char n_cs_precedes CHAR_MAX
char n_sep_by space CHAR_MAX
char p_sign_posn CHAR_MAX
char n_sign_posn CHAR_MAX

172

Synopsis

Description

Diagnostics

See Also

Chapter 7: Libraries
log, log10

log, log10

Logarithm Functions

#include <math.h>
double log (double x);

double log10 (double x);

Logreturns the natural logarithm xf The value ok must be positive.

Log10returns the logarithm base terxofThe value ok must be positive.

Log andlogl0return-HUGE_VAL and seerrnoto EDOM whenx is negative.
Log andlog10return an NaN and setrnoto ERANGE wherx is zero. The error
action is determined by the bits of the global control flag or the FPU floating-p
control register.

These error-handling procedures may be changed with the funfgicerror.

_fp_error, "Behavior of Math Library Functions" chapter.

173

Chapter 7: Libraries

malloc, free, realloc, calloc

Synopsis

Description

malloc, free, realloc, calloc

Main Memory Allocator

#include <stdlib.h>

void *malloc (size_t size);

void free (void *ptr);

void *realloc (void *ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

Malloc andfree provide a simple general-purpose memory allocation package.
Malloc returns a pointer to a block of at lesigebytes suitably aligned for any use.

The argument téreeis a pointer to a block previously allocatednbgllog after
freeis performed this space is made available for further allocation.

Undefined results will occur if the space assignechbjfocis overrun or if some
random number is handedftee

Malloc calls_getmento get more memory when there is no suitable space already
free.

Reallocchanges the size of the block pointed tgtiyto sizebytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If the size argument to realloc is zero, then a free
operation is done.

If no free block okizebytes is available in the storage arena, teatioc will ask
mallocto enlarge the arena bizebytes and will then move the data to the new
space.

Calloc allocates space for an arraynglemelements of sizelsize The space is
initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

174

Chapter 7: Libraries
malloc, free, realloc, calloc

See Also _getmem (Described in the "Environment-Dependent Routines” chapter.)

Diagnostics Malloc, realloc andcalloc return a NULL pointer if there is no available memory
or if the arena has been detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed tptoynay be destroyed.

175

Chapter 7: Libraries

mblen, mbstowcs, mbtowc, wcstombs, wectomb, strxfrm

Synopsis

Description

mblen, mbstowcs, mbtowc, wcstombs, wctomb,
strxfrm

Multi-byte Character Operations

#include <stdlib.h>

int mblen (const char *s, size_t n);

size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);
int mbtowc (wchar_t *pwc, const char *s, size_t n);

size_t wcstombs (char *s, const wchar_t *pwcs, size_t n);

int wctomb (char *s, wchar_t wchar);

#include <string.h>

size_t strxfrm (char *s1, const char *s2, size_t n);

mblen because multi-byte characters are not supported, returns zero if the first
argument is NULL—without regard to the value of n. If the first argument is not
NULL, thenmblenreturns negative onerifis zero or returns onerifis nonzero.

mbstowcsopies n multi-byte characters from the second argument into the first,
transforming each multi-byte character into its wide character representation.
Because multi-byte characters are not suppombthwcscopiesn bytes from the
second argument to the first while transforming each byte to its wide character
representation. Transformation is accomplished by moving the character value into
the least significant byte and zero-filling the remaining bytes of the wide character.
If there is room left in the first argument after copying all bytdsstowcsappends

a null terminating character to the first argumentistowcseturns the number of
multi-bytes copied (which, in this implementation, is the number of bytes copied).
That number may be less thaif a null character is found in the second argument
beforen bytes are read.

176

Note

Chapter 7: Libraries
mblen, mbstowcs, mbtowc, westombs, wectomb, strxfrm

mbtowctransforms the multi-byte character from the second argument into its wide
character representation and places it into the first argumbtadwcuses at most

bytes from the second argument. Because multi-byte characters are not supported,
mbtowccopiesn characters from the second argument into the first and transforms
each character as it is copied by moving the character value into the least
significant byte and zero-filling the remaining bytes of the wide charackgowc
returns zero if the second argument is NULL or returns one if the second argument
is not NULL.

wcstombsopiesn wide characters from the second argument into the first while
transforming each wide character into its multi-byte character representation.
Because multi-byte characters are not suppontetbmbscopies at most

characters from the second argument into the first while transforming each
character by copying just the least significant byte of the wide character. If there is
room in the first argument after copyingsstombsppends a null terminator.
wcestombgseturns the number of bytes copied, which may be lessittiannull
terminating character is found in the second string befbsdes are read.

wctombtransforms the wide character pointed to by the second argument into
multi-byte character and places it in the first argument. The wide character wil
represented by at most MB_ CUR_MAX characters in the multi-byte character
Because multi-byte characters are not supported, MB_CUR_MAX is always o
and therefore the wide character transformed into a single character. The
transformation is accomplished by copying the least significant byte of the wide
character into the charctombreturns zero if the second argument is NULL or
returns one if the second argument is not NULL.

strxfrm, because multi-byte characters are not supported, simply does a
byte-by-byte copy from s2 to s1 of uprte@haracters.

In addition to the multi-byte character operations, the md&oCUR_MAX

returns the maximum number of bytes a multi-byte character could have in the
current locale. Because multi-byte characters are not supported, this macro always
returns one.

177

Chapter 7: Libraries

memchr, memcmp, memcpy, memmove, memset

Synopsis

Description

Bugs

See Also

memchr, memcmp, memcpy, memmove, memset

Memory Operations

#include <string.h>

void *memchr (const void *s, int c, size_t n);

int memcmp (const void *s1, const void *s2, size_t n);
void *memcpy (void *s1, const void *s2, size_t n);
void *memmove (void *s1, const void *s2, size_t n);
void *memset (void *s, int ¢, size_t n);

These functions operate efficiently on memory areas (arrays of characters bounded
by a count, not terminated by a null character). They do not check for the overflow
of any receiving memory area.

Memchrreturns a pointer to the first occurrence of charadiethe firstn
characters of memory argeor a NULL pointer ifc does not occur.

Memcmpcompares its arguments, looking at the firsharacters only, and returns
an integer less than, equal to, or greater than 0, accordsdgsdexicographically
less than, equal to, or greater tis@n (n equal to zero yields equality.) In some
operating systemsyemcmpsesunsigned charfor character comparisons. This
may not be true for other implementations.

Memcpycopiesn characters from memory argatosl It returnssl

Memmovevorks likememcpyexcept thamemmovéandles overlapping moves
properly.

Memsesets the firsh characters in memory are#o the value of character It
returnss.

Strcpyandmemcpymay fail for overlapping moves; useemmovénstead.

strchr, strrchr , strcmp, strncmp, strepy, strncpy.

178

Synopsis

Description

See Also

Chapter 7: Libraries
perror, errno

perror, errno

System Error Messages

#include <stdio.h>
void perror (const char *s);
#include <errno.h>

extern int ermo;

Perror produces a message on the standard error output, describing the last error
encountered during a call to a system or library function. The argumentsdging
printed first, then a colon and a blank, then the message and a new-line. To be of
most use, the argument string should include the name of the program that in

the error. The error number is taken from the external vaeatsie, which is set

when errors occur but not cleared when non-erroneous calls are made.

The value ofrrno might not be what you expect if your program uses
multitasking;errno can be overwritten by some library routines.

strerror .

179

Chapter 7: Libraries
pow

pow

Power Function

Synopsis #include <math.h>

double pow (double x, double y);

Description Powreturns?. If x is zeroy must be positive. b is negativey must be an
integer.

Diagnostics Powreturns NaN (Not a Number) and setsno to EDOM whenx is 0 andy is
non-positive, or wher is negative ang is not an integer. The error action is
determined by the bits of the global control flag or the FPU floating-point control
register. When the correct value fmwwould overflow or underflonpow
returns+/-HUGE_VAL or 0 respectively, and seignoto ERANGE.

These error-handling procedures may be changed with the funfgioerror.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

180

Synopsis

Description

Chapter 7: Libraries
printf, fprintf, sprintf

printf, fprintf, sprintf

Print Formatted Output

#include <stdio.h>
int printf (const char *format, ...);
int fprintf (FILE *stream, const char *format, ...);

int sprintf (char *s, const char *format, ...);

Printf places output on the standard output stretaiout Fprintf places output on
the named outputtream Sprintfplaces "output”, followed by the null character
(\0), in consecutive bytes startingsatt is the user’s responsibility to ensure that
enough storage is available. Each function returns the number of characters
transmitted (not including the in the case déprintf), or a negative value if an
output error was encountered.

Each of these functions converts, formats, and pringsgssunder control of the
format Theformatis a character string that contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or mu@® The results
are undefined if there are insufficieargs for the format. If the format is
exhausted whilargs remain, the excessgs are evaluated but ignored.

The behavior of the sprintf function is undefined if the destination array is also one
of the other arguments. This undefined behavior of sprintf is particularly important
because the behavior has changed between versions of the HP cross compilers.

Each conversion specification is introduced by the chardcteAfter the%, the
following appear in sequence:

Zero or mordlags which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimufield width". If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag ‘-’, described below, has been
given) to the field width. If the field width for a conversion is preceded by a 0,
the padding is done with zeros instead of spaces.

181

Chapter 7: Libraries
printf, fprintf, sprintf

A precisionthat gives the minimum number of digits to appear fodthgo,

u, X, or X conversions, the number of digits to appear after the decimal point
for thee, E, andf conversions, the maximum number of significant digits for
theg andG conversions, or the maximum number of characters to be printed
from a string irs conversion. The precision takes the form of a perjod (
followed by a decimal digit string; a null digit string is treated as zero.

An optionall (ell) specifying that a following, i, 0, u, X, or X conversion
character applies to a long integeg, or an optionah specifying that a
following d, i, 0, u, X, or X conversion character applies to a short intaggr

A "%In" format means that the argument is a pointer to a long integer and a
"%hn" format means that the argument is a pointer to a short integer.

An optionalL specifies that a following, E, f, g, or G conversion character
applies to a long doubkeg.

An | orL before any other conversion character is ignored.
A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asteriglinstead of a digit

string. In this case, an integing supplies the field width or precision. Taey

that is actually converted is not fetched until the conversion letter is seen, so the
args specifying field width or precision must appkaforethearg (if any) to be
converted.

182

Chapter 7: Libraries
printf, fprintf, sprintf

The flag characters and their meanings are:

blank

The result of the conversion will be left-justified within the
field.

The result of a signed conversion will always begin with a
sign @ or-).

If the first character of a signed conversion is not a sign, a
blank will be prefixed to the result. This implies that if the
blank and+ flags both appear, the blank flag will be
ignored.

This flag specifies that the value is to be converted to an
"alternate form." Foc, d, i, s, andu conversions, the flag
has no effect. Fay conversion, it increases the precision
to force the first digit of the result to be a zero. ¥or X
conversion, a non-zero result will haeor 0X prefixed
toit. Fore, E,f, g, andG conversions, the result will
always contain a decimal point, even if no digits follow t
point (normally, a decimal point appears in the result of
these conversions only if a digit follows it). FpandG
conversions, trailing zeroes wilbt be removed from the
result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,X

The integeiarg is converted to signed decimdldri),
unsigned octal, unsigned decimal, or hexadecimal notation
(x andX), respectively; the letteebcdefare used fox
conversion and the letteeBCDEF for X conversion.

The precision specifies the minimum number of digits to
appeatr; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeroes. (For
compatibility with older versions, padding with leading
zeroes may alternatively be specified by prefixing a zero to
the field width. This does not imply an octal value for the
field width.) The default precision is 1. The result of
converting a zero value with a precision of zero is a null
string.

183

Chapter 7: Libraries
printf, fprintf, sprintf

f The doublearg is converted to decimal notation in the style
"[-]ddd.ddd", where the number of digits after the decimal
point is equal to the precision specification. If the
precision is missing, six digits are output; if the precision is
explicitly 0, no decimal point appears.

e E The doublearg is converted in the style-1fl.ddde+/-ddd",
where there is one digit before the decimal point and the
number of digits after it is equal to the precision; when the
precision is missing, six digits are produced; if the
precision is zero, no decimal point appears. Hif@rmat
code will produce a number wikhinstead ok introducing
the exponent. The exponent always contains at least two
digits.

0,G The doublearg is printed in stylé ore (or in styleE in the
case of & format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: stylewill be used only if the exponent
resulting from the conversion is less than —4 or greater than
the precision. Trailing zeroes are removed from the result;
a decimal point appears only if it is followed by a digit.

c The charactearg is printed.

S Thearg is taken to be a string (character pointer) and
characters from the string are printed until a null character
(\0) is encountered or the number of characters indicated
by the precision specification is reached. If the precision is
missing, it is taken to be infinite, so all characters up to the
first null character are printed. A NULL value fmg will
yield undefined results.

p Thearg is taken to be a pointer toid. The value of the
pointer is converted to a sequence of printable characters,
in the same manner &6x.

n Thearg is taken to be a pointer to an integer into which is
written the number of characters written to the output

184

Chapter 7: Libraries
printf, fprintf, sprintf

stream so far by this call fwintf. No argument is
converted.

% Print a%; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generatedrifandfprintf are printed

as ifputc had been called.

Examples To print a date and time in the form "Sunday, July 3, 10:02", whee&dayand
monthare pointers to null-terminated strings:

printf("%s, %s %d, %d : % 2d", weekday, month, day, hour,
min);

To printpi to 5 decimal places:
printf("pi = % . 5", 4 * atan(1 . 0));
The value oftringl is undefined after the following line of code:

sprintf (stringl, "%s %d", stringl, integerl);

See Also putc, scanf vprintf .

185

Chapter 7: Libraries
putc, putchar, fputc

putc, putchar, fputc

Put a Character on a Stream

Synopsis #include <stdio.h>
int putc (int c, FILE *stream);
int putchar (int c);

int fputc (int ¢, FILE *stream);

Description Putcwrites the characteronto the outpustream(at the position where the file
pointer, if defined, is pointingPutchaf c) is defined aputc(c, stdout).Putcis
implemented as a macqmtcharis implemented as a macro and as a function. To
use a function instead of a mactandefthe macro before function invocation.

Fputcbehaves likgutg but is a genuine function rather than a macro; it may
therefore be used as an argumdtgutcruns more slowly thaputc, but it takes
less space per invocation and its name can be passed as an argument to a function.

Output streams, with the exception of the standard error sttelzm are by

default buffered if the output refers to a file. The standard error output stream
stderris by default unbuffered, but usefafopen(seefopen) will cause it to

become buffered. When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. When it is line-buffered, each
line of output is queued for writing as soon as the line is completed (that is, as soon
as a new-line character is written or input is requesteitl)sh can also be used to
explicitly write the buffer.Setbuf or setvbuf may be used to change the stream’s
buffering strategy.

These routines do not have the means to determine if a file is associated with a
terminal. Therefore, files are fully buffered, exceptsholin andstdoutwhich are
set to line-buffered by thestartup routine andtderrwhich is not buffered.

See Also fclose ferror , fopen, fwrite , getg fread, printf , puts, setbuf

186

Chapter 7: Libraries
putc, putchar, fputc

Diagnostics On success, these functions each return the value they have written. On failure,
they return the constaBOF. This will occur if the filestreamis not open for
writing or if the output file cannot be increased.

Line buffering may cause confusion or malfunctioning of programs which use
standard 1/O routines but ussad themselves to read from standard input. In cases
where a large amount of computation is done after printing part of a line on an
output terminal, it is necessaryfflush the standard output before going off and
computing so that the output will appear.

Bugs Because it is implemented as a maprd¢ctreats incorrectly atreamargument
with side effects. In particulgoutc(c, *f++); doesn’t work sensiblyFputcshould
be used instead.

187

Chapter 7: Libraries
puts, fputs

puts, fputs

Put a String on a Stream

Synopsis #include <stdio.h>
int puts (const char *s);

int fputs (const char *s, FILE *stream);

Description Putswrites the null-terminated string pointed toyollowed by a new-line
character, to the standard output stretsfout

Fputswrites the null-terminated string pointed todtp the named outpstream

Neither function writes the terminating null character. Notephestappends a
new-line character, bfpputsdoes not.

Diagnostics If the routine is successfydutsandfputsboth return the number of characters
written. In the case qfuts the return value includes the implied newline character
which means that the return value will equal the length of the argument string + 1.

See Also ferror , fopen, fread, printf , putc.

188

Synopsis

Description

Notes

See Also

Synopsis

Chapter 7: Libraries
gsort

gsort

Table Sorting Routine

#include <stdlib.h>

void gsort (

void *base,

size_t nel, size tsize,

int (compar)(const void *, const void *));

Basepoints to the element at the base of the talid.is the number of elements in

the table.Comparis the name of the comparison function, which is called with

two arguments that point to the elements being compared. The function passed as
comparmust return an integer less than, equal to, or greater than zero as a
consequence of whether its first argument is to be considered less than, equa
greater than the second. This is the same return conventiatréhgpuses.

The pointer to the base of the table should be of type pointer-to-element, and cast
to type pointer-to-character. The comparison function need not compare every
byte, so arbitrary data may be contained in the elements in addition to the values
being compared. The order in the output of two items which compare as equal is
unpredictable.

bsearch

rand, srand

Simple Random Number Generator

#include <stdlib.h>

int rand (void);

189

Chapter 7: Libraries
rand, srand

Description

Note

void srand (unsigned int seed);

Randuses a multiplicative congruential random-number generator with péﬁod 2
that returns successive pseudo-random numbers in the range from-Q.to 2

Srandcan be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

The spectral properties tdnd leave a great deal to be desired. These functions use
a global variable to seed the random number generator. Calling one of these
routines from an interrupt routine will cause the random number sequence to be
non-repeatable.

190

Chapter 7: Libraries

remove
remove
Remove a File

Synopsis #include <stdio.h>
int remove (const char *filename);

Description Removecauses the file whose name is the string pointed fitelmameto be

removed. Subsequent attempts to open the file will fail, unless it is created anew.
If the file is open, the behavior of themovefunction is the same amlink

Removes implemented as a macro and as a function. To use the function instead
of the macro#undefthe macro before function invocation.

Return Value Removeeturns zero if the operation succeeds, non-zero if it fails.

See Also fopen, open unlink.

191

Chapter 7: Libraries
scanf, fscanf, sscanf

Synopsis

Description

scanf, fscanf, sscanf
(standard 1/O library function)

Formatted Input from Stream

#include <stdio.h>
int scanf (const char *format, ...);
int fscanf (FILE *stream, const char *format, ...);

int sscanf (const char *s, const char *format, ...);

Scanfreads from the standard input strestdin Fscanfreads from the named
inputstream Sscanfeads from the character strimgEach function reads
characters, interprets them according to a format, and stores the results in its
arguments. Each expects, as arguments, a controlfstningtdescribed below,
and a set gbointerarguments indicating where the converted input should be
stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1 White-space characters (blanks, tabs, new-lines, or form-feeds) which cause
input to be read up to the next non-white-space character. White-space in the
format string does not mean that white spacstappear in the input.

2 An ordinary character (nét), which must match the next character of the
input stream.

3 Conversion specifications, consisting of the char&étean optional
assignment suppressing charattean optional numerical maximum field
width, an optional (ell), L, orh indicating the size of the receiving variable,
and a conversion code.

A conversion specification directs the conversion of the next input field; the result
is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated.byhe suppression of assignment

provides a way of describing an input field which is to be skipped. An input field
is defined as a string of hon-space characters; it extends to the next inappropriate

192

Chapter 7: Libraries
scanf, fscanf, sscanf

character or until the field width, if specified, is exhausted. For all descriptors
except "[" and "c", white space leading an input field is skipped.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion codes are
legal:

% A single% is expected in the input at this point; no
assignment is done.

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

[A signed integer is expected (whose format is the same as
expected bytrtol when itsbaseargument is zero); the
corresponding argument should be an integer pointer.

u An unsigned decimal integer is expected; the
corresponding argument should be an unsigned integer
pointer.

o] An octal integer is expected; the corresponding argument

should be an integer pointer.

X A hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

e,f,g A floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field
consisting of art or ane, followed by an optional + or —
followed by an integer.

S A character string is expected; the corresponding argument
should be a character pointer pointing to an array of
characters large enough to accept the string and a
terminating\0, which will be added automatically. The

193

Chapter 7: Libraries
scanf, fscanf, sscanf

input field is terminated by a white-space character. Note
thatscanfcannot read a null string.

A character is expected; the corresponding argument
should be a character pointer. The normal skip over white
space is suppressed in this case; to read the next non-space
character, us#ls. If a field width is given, the
corresponding argument should refer to a character array;
the indicated number of characters is read.

Indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed by
a set of characters, which we will call dfeansetand a

right bracket; the input field is the maximal sequence of
input characters consisting entirely of characters in the
scanset. The circumfleR), when it appears as the first
character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters
contained in the remainder of the scanset string. There are
some conventions used in the construction of the scanset.
A range of characters may be represented by the construct
first-last, thus [0123456789] may be expressed [0-9].

Using this conventiorfjrst must be lexically less than or
equal tdast, or else the dash will stand for itself. The dash
will also stand for itself whenever it is the first or the last
character in the scanset. To include the right square
bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the
scanset, and in this case it will not be syntactically
interpreted as the closing bracket. The corresponding
argument must point to a character array large enough to
hold the data field and the terminatddgwhich will be

added automatically. At least one character must match for
this conversion to be considered successful.

A hexadecimal nhumber, which should be the same as the
set of sequences that may be produced bysfhe
conversion of therintf function. The corresponding
argument should be a pointer to a pointevda. For any
input item other than a value converted earlier during the
same program execution, the behavidvopf is undefined.

194

Examples

Chapter 7: Libraries
scanf, fscanf, sscanf

n No input is consumed. The corresponding argument
should be a pointer to integer into which is to be written the
number of characters read from the input stream so far by
this call to thescanffunction. Execution of a%bn
directive does not increment the assignment count returned
at the completion of execution of teeanffunction.

The conversion charactatsu, o, andx may be preceded byr h to indicate that

a pointer tdong or toshort rather than tint is in the argument list. Similarly, the
conversion characteesf, andg may be preceded thyr L to indicate that a
pointer todouble orlong double rather than téloat is in the argument listdng
doubleis equivalent talouble with this compiler). Thé h, orL modifier is
ignored for other conversion characters.

Scanfconversion terminates BOF, at the end of the control string, or when an
input character conflicts with the control string. In the latter case, the offending
character is left unread in the input stream.

Scanfreturns the number of successfully matched and assigned input items; tl
number can be zero in the event of an early conflict between an input charact
the control string. If the input ends before the first conflict or conversioR,is
returned.

The call:

inti, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign ton the values, toi the value25, tox the values.432 andnameuwiill
containthompson\Q Or:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0-9]", &i, &x, hame);

with input:
56789 0123 56a72

195

Chapter 7: Libraries
scanf, fscanf, sscanf

See Also

Note

Diagnostics

will assign56toi, 789.0to x, skip0123 and place the strirg6\0in name The
next call togetchar(seegetg will returna.

getg printf , strtod, strtol.

Trailing white space (including a new-line) is left unread unless matched in the
control string.

These functions retulBOF if an input failure occurs before any conversion.
Otherwise, the number of input items assigned (which may be fewer than provided
for, or even zero, in case of an early conflict) is returned.

196

Chapter 7: Libraries
setbuf, setvbuf

setbuf, setvbuf

Assign Buffering to a Stream File

Synopsis #include <stdio.h>
void setbuf (FILE *stream, char *buf);

int setvbuf (
FILE *stream,
char *buf,

int type,
size_t size);

Description Setbufmay be used after a stream has been opened but before it is read or written.

It causes the array pointed tollyfto be used instead of an automatically alloca
buffer. Ifbufis the NULL pointer input/output will be completely unbuffered. A

constanBUFSIZ, defined in thecstdio.h>header file, tells how big an array is
needed:

char buf[BUFSIZ];

Setvbuinay be used after a stream has been opened but before it is read or written.
Typedetermines howtreamwill be buffered. Legal values ftype(defined in

stdio.h) are:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line buffered. The buffer will be
flushed when a newline is written, the buffer is full, or
when input is requested from other streams.

_IONBF Causes input/output to be completely unbuffered.

If bufis not theNULL pointer, the array it points to will be used for buffering
instead of an automatically allocated buffer (frovalloc). Sizespecifies the size

of the buffer to be used. The consBi~SIZ in <stdio.h>is suggested as a good
buffer size. If input/output is unbufferdal)f andsizeare ignored.

By default, all input/output is fully buffered.

197

Chapter 7: Libraries
setbuf, setvbuf

See Also fopen, getg malloc, putc.

Diagnostics If an illegal value fotypeor sizeis providedsetvbufreturns a non-zero value.
Otherwise, the value returned will be zero.

Note A common source of error is allocating buffer space as an "automatic" variable in a
code block, and then failing to close the stream in the same block.

198

Chapter 7: Libraries
setjmp, longjmp

setjmp, longjmp

Non-Local Goto

Synopsis #include <setjmp.h>
int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

Description These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

Setjmpsaves its stack environmentanv(whose typejmp_buf is defined in the
<setjmp.h>header file) for later use tbgngjmp It returns the value 0.

Longjmprestores the environment saved by the last cakijihpwith the
correspondingnvargument. Aftefongjmpis completed, program execution
continues as if the corresponding caltefimphad just returned the valual.
Longjmpcannot caussetjmpto return the value 0. Ibngjmpis invoked with a
second argument of 8etjmpwill return 1.

All globally accessible objects have values as of the lbmgimpwas called. All
automatics local to the destination stack frame have values as of ttsetjime
was called, provided none were modified after caliegmp if modified, the
value of an automatic is undefined.

If alongjmpis executed and the environment in whichgbgmpwas executed no
longer exists, errors can occur. The conditions under which the environment of the
setjmpno longer exists include: exiting the procedure which contairsetirap

call, and exiting an inner block with temporary storage (e.g., a block with
declarations in C, with statement in Pascal). This condition may or may not be
detectable. An attempt is made by determining if the stack frame poieter in
points to a location not in the currently active stack. If this is the lcaggmpwill
return a —1. Otherwise, th@ngjmpwill occur, and if the environment no longer
exists, the contents of the temporary storage of an inner block are unpredictable.
This condition may also cause unexpected process termination. If the procedure
has been exited the results are unpredictable.

199

Chapter 7: Libraries
setjmp, longjmp

Passindongjmpa pointer to a buffer not created $stjmp or a buffer that has
been modified by the user, can cause all the problems listed above, and more.

Warning If longjmpis called even thougénvwas never primed by a call setjmp or when
the last such call was in a function which has since returned, absolute chaos is
guaranteed.

200

Synopsis

Description

Diagnostics

Chapter 7: Libraries
setlocale

setlocale

Locale Control

#include <locale.h>

char *setlocale (int category, const char *locale);

Setlocaleselects the appropriate piece of the program'’s locale as specified by the
categoryandlocale argumentsSetlocalemay be used to read or modify all or part
of the program'’s current locale. Usib§_ALL for categoryspecifies the

program’s entire locale. Other values éategoryname only a part of the

program’s locale LC_COLLATE affects the behavior of thetrcoll function.
LC_TYPE affects the behavior of the character handling functions.
LC_NUMERIC affects the decimal-point character for the formatted input/output
functions printf, scanf etc.) and the string conversion functiosist¢d strtol, etc.).

A value of "C" forlocale specifies the minimal environment for C translation; a
value of " " forlocaleis equivalent to "C". At present, the only locale that is
implemented is "C".

At program startup, the equivalent of

setlocale (LC_ALL, "C");

is executed.

If a pointer to a string is given ftocale and the selection can be honored, the
setlocalefunction returns the string associated with the speaifigeoryfor the
newlocale If the selection cannot be honored,gk#docalefunction returns a null
pointer, and the program’s locale is not changed.

A null pointer forlocale causes theetlocalefunction to return the string associated
with thecategoryfor the program’s current locale; the program'’s locale is not
changed. This inquiry can fail by returning a null pointer only itttegoryis
LC_ALL and the most recent successful locale-setting call usaiggoryother
thanLC_ALL .

The string returned by theetlocalefunction is such that a subsequent call with that
string and its associated category will restore that part of the program’s locale. The

201

Chapter 7: Libraries

setlocale
string returned shall not be modified by the program, but may be overwritten by a
subsequent call to tleetlocalefunction.

See Also localecony strtod, strtol, printf , scanf, strcoll, strxfrm .

202

Chapter 7: Libraries
sin, cos, tan, asin, acos, atan, atan2

sin, cos, tan, asin, acos, atan, atan2

Trigonometric Functions

Synopsis #include <math.h>
double sin (double x);
double cos (double x);
double tan (double x);
double asin (double x);
double acos (double x);
double atan (double x);

double atan2 (double y, double x);

Description Sin cosandtan return respectively the sine, cosine, and tangent of their argument,
X, measured in radians.

The approximate limit for the values passed to these functions is 2.98#8dad
cos and 1.49ES8 foran

Asinreturns the arcsine &f in the range #2 to1v2.
Acosreturns the arccosine gfin the range 0 to.
Atanreturns the arctangent xfin the range #2 to1v2.

Atan2returns the arctangentyf x in the range rto 11, using the signs of both
arguments to determine the quadrant of the return value.

Diagnostics Sin cos andtan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significanegnois set ttERANGE.

203

Chapter 7: Libraries

sin, cos, tan, asin, acos, atan, atan2

See Also

If xis greater than one fasinoracos a Not-a-Number (NaN) is returned. If both
arguments foatan2are zero, 0.0 is the resulrrnois set taEDOM for both of

these conditions.

Error actions are determined by the bits of a global control flag or the FPU
floating-point control register (see thip_error description).

_fp_error, "Behavior of Math Library Functions" chapter.

204

Chapter 7: Libraries
sinh, cosh, tanh

sinh, cosh, tanh

Hyperbolic Functions

Synopsis #include <math.h>
double sinh (double x);
double cosh (double x);

double tanh (double x);

Description Sinh cosh andtanhreturn, respectively, the hyperbolic sine, cosine, and tangent of
their argument. These are double-precision routines.

Diagnostics Sinhandcoshseterrno to ERANGE and returrHUGE_VAL (sinhmay return
-HUGE_VAL for negativex) when the correct value would overflow.

These error-handling procedures may be changed with the funfgiocerror.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

205

Chapter 7: Libraries

sqrt
sqrt
Square Root Function
Synopsis #include <math.h>
double sqrt (double x);
Description Sqrtreturns the non-negative square root.ofhe value ok may not be negative.
Diagnostics Sqrtreturns a NaN and sedsrnoto EDOM whenx is negative. The error action
is determined by the bits of a global control flag or the FPU floating-point control
register.
These error-handling procedures may be changed with the funfgiocerror.
See Also _fp_error, "Behavior of Math Library Functions" chapter.

206

Chapter 7: Libraries
strcat, strncat, ...

strcat, strncat, ...

String Operations

Synopsis #include <string.h>
char *strcat (char *s1, const char *s2);
char *strncat (char *s1, const char *s2, size_t n);
int strcmp (const char *s1, const char *s2);
int strncmp (const char *s1, const char *s2, size_t n);
int strcoll (const char *s1, const char *s2);
char *strcpy (char *s1, const char *s2);
char *strncpy (char *s1, const char *s2, size t n);
char *strerror (int errnum);
size_t strlen (const char *s);
char *strchr (const char *s, int c);
char *strrchr (const char *s, int c);
char *strpbrk (const char *s1, const char *s2);
size_t strspn (const char *s1, const char *s2);
size_t strcspn (const char *s1, const char *s2);
char *strstr (const char *s1, const char *s2);

char *strtok (char *s1, const char *s2);

207

Chapter 7: Libraries
strcat, strncat, ...

Description

These functions operate on null-terminated strings. The argusiesfsands

point to strings (arrays of characters terminated by a null character). The functions
strcat strncat strcpy, andstrnepyall alters1 These functions do not check for
overflow of the array pointed to sl

Strcatappends a copy of strisg to the end of stringl Strncatappends at most
n characters. It copies lessf#is shorter than characters. Each returns a pointer
to the null-terminated result (the original values)t

Strcmpcompares its arguments and returns an integer less than, equal to, or greater
than 0, according asl is lexicographically less than, equal to, or greater $2an
Strncmpmakes the same comparison but looks at mekaractersn(less than or

equal to zero yields equality). Both of these routinesinsigned charfor

character comparison.

Thestrcoll function returns an integer greater than, equal to, or less than zero,
according to whether the string pointed tosthys greater than, equal to, or less
than the string pointed to Isg The comparison is based on strings interpreted as
appropriate to the program’s locale.

Strcpycopies string2to s1, stopping after the null character has been copied.
Strncpycopies exactly characters, truncatirg® or adding null characters $4 if
necessary. The result will not be null-terminated if the lengs2 isfn or more. |If
the length o62is less tham, characters from the first null 82to thenth
character are copied as nulls. Each function reikns

Note thatstrncpyshould not be used to copyytes of an arbitrary structure. If
that structure contains a null byte anywhstecpywill terminate the copy when
it encounters the null byte, thus copying fewer thawytes. Use thmemcpy
function for these cases.

Strerror maps the error number @énrnum(returned fronerrno) to an error
message stringStrerror returns a pointer to the string, the contents of which
describe the meaning of the error number. The array pointed to must not be
modified by the program.

Strlenreturns the number of characters,imot including the terminating null
character.

Strchr(strrchr) returns a pointer to the first (last) occurrence of charagter
8-bit ASCII value) in string, or a NULL pointer ifc does not occur in the string.
The null character terminating a string is considered to be part of the string.

208

Note

Bugs

Chapter 7: Libraries
strcat, strncat, ...

Strpbrkreturns a pointer to the first occurrence in stehgf any character from
strings2 or a NULL pointer if no character fros2 exists ins1

Strspn(strcspn returns the length of the initial segment of st8agvhich consists
entirely of characters from (not from) strigg

Strstrlocates the first occurrence in the string pointed telmf the sequence of
characters (excluding the terminating null character) in the string pointeg#o by
Strstrreturns a pointer to the located string, or a null pointer if the string is not
found. If the second argumesg, has a length of zero, thetrstr returns the first
argument as the return value.

Strtokconsiders the stringll to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separat@2stiiihg first

call (with pointers1specified) returns a pointer to the first character of the first

token, and will have written a null character isldmmediately following the

returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argument
a NULL pointer) will work through the stringll immediately following that token.

In this way subsequent calls will work through the stsihgntil no tokens remain.

The separator string? may be different from call to call. When no token remain

in s1, a NULL pointer is returned.

Since thestrtok function must keep track of its position in the input string, this
function cannot be made reentrant.

For user convenience, all these functions are declared in the ogttrirad.h>
header file.

The copy operations cannot check for overflow of any receiving sildgL
arguments cause undefined behavior.

Character movement is performed differently in different implementations.
Memmoveshould be used for overlapping moves.

209

Chapter 7: Libraries
strtod, atof

strtod, atof

String to Double-Precision Number

Synopsis #include <stdlib.h>
double strtod (const char *str, char **ptr);

double atof (const char *str);

Description Strtodreturns as a double-precision floating-point number the value represented by
the character string pointed to &ly. The string is scanned up to the first
unrecognized character.

Strtodrecognizes an optional string of "white-space" characters (as defined by
isspacg, then an optional sign, then a string of digits optionally containing a
decimal point, then an optionabr E followed by an optional sign, followed by an
integer.

If the value ofptr is not (char **)NULL, the variable to which it points is set to
point at the character after the last number, if any, that was recognized. If no
number can be formedptr is set tostr, and zero is returned.

Atof(str)is equivalent tatrtod str, (char **)NULL).
See Also scanf strtol .

Diagnostics If the correct value would cause overflonsHUGE_VAL is returned (according
to the sign of the value), ardrnois set tdERANGE. If the correct value would
cause underflow, zero is returned andho is set ttERANGE.

210

Synopsis

Description

Chapter 7: Libraries
strtol, strtoul, atol, atoi

strtol, strtoul, atol, atoi

Convert String to Integer

#include <stdlib.h>
long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (
const char *str,

char **ptr,

int base);

long atol (const char *str);

int atoi (const char *str);

Strtolreturns as a long integer the value represented by the character string p
to bystr. The string is scanned up to the first character inconsistent with the base.
Leading "white-space" characters (as definetssgacan ctype.h) are ignored.

If the value ofptr is not (char *)NULL, a pointer to the character terminating the
scan is returned in the location pointed tgpby If no integer can be formed, that
location is set tatr, and zero is returned.

If baseis positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and "0x" or "0X" is
ignored ifbaseis 16.

If baseis zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading "0x" or "0X"
hexadecimal conversion. Otherwise, decimal conversion is used.

Strtoulis the same adrtol except that no leading plus or minus is allowed in the
string pointed to bgtr.

Atol(str) is equivalent tetrtol(str, (char *)NULL, 10).
Atoi(str) is equivalent to (intytrtol(str, (char *)NULL, 10).

211

Chapter 7: Libraries
strtol, strtoul, atol, atoi

See Also atof, ctype, scanf strtod.

Bugs Overflow conditions are ignored.

212

Chapter 7: Libraries
tableS, tableSN, tableU, tableUN

tableS, tableSN, tableU, tableUN

68332 Table Lookup

Synopsis #include <m68332.h>

int tableS (void *array, short x);

int tableSN (void *array, short x);

unsigned int tableU (void *array, short x);
unsigned int tableUN (void *array, short x);

Description These functions allow the efficient use of piecewise linear, compressed data tables
to model complex functions. The functions are expanded to the 68000 table lookup
and interpolate instruction as follows:

tableS is expanded to TBLS (signed, rounded lookup).

tableSNis expanded to TBLSN (signed, unrounded lookup). .
tableU is expanded to TBLU (unsigned, rounded lookup).

tableUN is expanded to TBLUN (unsigned, unrounded lookup).

The table may have up to 256 elements. The table element size may be 1, 2, or 4
bytes.

Byte x[15:8] is used as an index to the talb§7:0] is used as an interpolation
fraction. Rounded results are determined as follows:

array[n] + ((array[n+1] —array[n]) * x[7:0]) / 256

and unrounded results are determined by:
array[n]*256 + ((array[n+1] —array[n]) * X[7:0])

where n is]15:8].

The filem68332.hmust be included for the table functions to be expanded in-line.

See Also interpolate, also your assembly language manual.

213

Chapter 7: Libraries

toupper, tolower, _toupper, _tolower

Synopsis

Description

See Also

toupper, tolower, _toupper, _tolower

Translate Characters

#include <ctype.h>
int toupper (int c);
int tolower (int c);
int _toupper (int c);

int _tolower (int c);

Toupperandtolower have as domain the rangegetc the integers from —1

through 255. If the argument wiupperrepresents a lower-case letter, the result is
the corresponding upper-case letter. If the argumdotmferrepresents an
upper-case letter, the result is the corresponding lower-case letter. All other
arguments in the domain are returned unchangedpperandtolower are
implemented both as macros and functions. To use a function instead of a macro,
#undefthe macro before function invocation.

The macros toupperand_toloweraccomplish the same thingtasipperand
tolowerbut have restricted domains and are fast&wupperrequires a lower-case
letter as its argument; its result is the corresponding upper-case letter. The macro
_tolowerrequires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause undefined
results. Use of this form will never work with foreign character sets.

getc

214

Chapter 7: Libraries

ungetc
ungetc
Push Character Back into Input Stream
Synopsis #include <stdio.h>
int ungetc (int ¢, FILE *stream);
Description Ungetcinserts the characterinto the buffer associated with an ingtream That

characterg, will be returned by the negetccall on thastream Ungetcreturnsc,
and leaves the filstreamunchanged.

One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered. In the cestectrais

stdin one character may be pushed back onto the buffer without a previous read
statement.

If c equalsEOF, ungetcdoes nothing to the buffer and retuBGF.

Fseekerases all memory of inserted characters.

See Also fseek getc, setbuf

Diagnostics UngetcreturnsEOF if it cannot insert the character.

215

Chapter 7: Libraries

va_list, va_start, va_arg, va_end

Synopsis

Description

va_list, va_start, va_arg, va_end

#include <stdarg.h>

va_list

void va_start(va_list list, arg_n)
type va_arg(va_list list, type)
void va_end(va_list list)

The preceding macros are used for functions that have variable numbers of
arguments. The type va_list is used to track which of the optional arguments are
being processed.

Theva_startmacro is used to initialize the variable of type va_list. Its second
argument, arg_n, is the last of the non-optional arguments of the current function.
The type of arg_n must be of the default argument promotion types (int, long,
double; not char, short, enum, or float).

Theva_argmacro evaluates to the value of the next optional argument from when
the function was invoked. Each successive calat@rggives the next argument
that was given. The second argumentatoargis the type of the argument that

was passed next in the list. Again this type should only be from the set of default
argument promotion types (int, long, double, pointers, and structures). Using a
type of short, char, enum, or float will cause undefined behavior because these
types can not be passed as optional arguments.

Theva_endmacro should be called when the last of the optional arguments has
been processed. This ensures proper termination of the optional argument
processing.

216

Chapter 7: Libraries
va_list, va_start, va_arg, va_end

Example The following function takes a variable number of arguments that are all of type
integer. The function returns the sum of all of the optional arguments.

#include <stdarg.h>
int
sum(int count, ...)

va_list args;
int result=0;

va_start(args, count);
while (count-- > 0)
result += va_arg(args, int);
va_end(args);
return result;

See also vprintf

217

Chapter 7: Libraries
vprintf, vfprintf, vsprintf

vprintf, vfprintf, vsprintf

Formatted Output of Varargs List

Synopsis #include <stdio.h>
#include <stdarg.h>

int vprintf (const char *format, va_list ap);

int vfprintf (

FILE *stream,
const char *format,
va_list ap);

int vsprintf (
char *s,

const char *format,
va_list ap);

Description Vprintf, vfprintf, andvsprintfare the same gsintf, fprintf, andsprintfrespectively,
except that instead of being called with a variable number of arguments, they are
called with an argument list as defineddtgtargs.h

218

Chapter 7: Libraries
vprintf, vprintf, vsprintf

Example The following demonstrates hovfprintf could be used to write an error routine.

#include <stdio.h>
#include <stdarg.h>

I error” should be called like:
* error(function_name, format, arg1, arg2...); */
void

error(char *function_name, char *format, ...)
va_list args;

va_start(args, format);

[* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", function_name);
[* print out remainder of message */
(void)vfprintf(stderr, format, args);

va_end(args);

exit(1);

See Also printf , stdarg.h.

219

Chapter 7: Libraries
vprintf, vfprintf, vsprintf

220

Chapter 8: Environment-Dependent Routines

Environment-Dependent Routines

Description of the emulator environment-dependent routines.

221

Chapter 8: Environment-Dependent Routines

This chapter describes the HP emulator execution environment-dependent routines.
These routines are also used in the debugger/simulator execution environment.
The source files for these interface routines (as well as the object code files) are
provided so they can be customized for target system execution environments.

The environment-dependent routines (excemitor andmon_stub) and library
functions are all located in linker section naene. This section name may be used
just as any other section name would be (for examp&E@TION pragmas or in
the "mode" command line option). See the on-line man pages for a complete
description of the cc68k command syntax and options.

The environment-dependent routines relate to the following areas of C
programming.

* Program Setup.
» Dynamic Memory Allocation.

* Program Input and Output.

Supported Environments

There are three basic execution environments that these routines support:

» Emulators which use background monitors.

* The debugger/simulator. The simulator does not require a monitor program.

» Emulators which use foreground monitors. Foreground monitors are not
supplied for current HP emulators.

222

Chapter 8: Environment-Dependent Routines

Program Setup

Two program setup routines are provided with the C compiler.
crt0.0 For programs which use I/O.

crtl.o For programs which do not use 1/O.

These routines define the entry point for program setupy(), and are

responsible for general preexecution setup such as initialization of the stack pointer
and register A5 (for A5 relative addressing). At the end of preexecution
initialization, these setup routines calhin().

The source files of the program setup routines have been provided (and are well
commented) in case they need to be rewritten, for example, to change any of the
default initializations or to add any new program setup such as establishing values
other than zero faargv andargc. Flowcharts of thertO andcrtl routines are

shown in figures 8-1 and 8-2, respectively.

Differences Between "crt0" and "crt1"

The difference between the two program setup routines isrtBawill call the
_startup() library routine to open the standard input, output, and error Siidis:,
stdout, andstderr. Thecrtl routine does not open the standard input, output, and
error streams and has been provided to avoid the overhead of loaditdjdhe
library for a program which doesn’t use it.

When usingrtl instead otrt0, the behavior of thexit() and_exit() library
routines is different. Sinaertl is used in non-1/O applications, neitlesat() nor
_exit() will flush buffers or close open files. Tkgit() routine simply executes
functions which have been logged by #texit() routine, and theexit() routine
just calls_display_message()

223

Chapter 8: Environment-Dependent Routines

INITIALIZE
SP, A5, AND

HEAP & FRAME
POINTERS

CALL

_startup

CALL _exit
("Prog end,
refurned <arg>"
Is displayed)

INITIALIZE
GLOBAL LIBRARY

VARIABLES &
DATA STRUZTURES

OPEN stdin,
stdout, & sfderr

(VIA SIMULATLD 1/0)

PUS | OLD FRAME
POINTER &

AL_OCATE SPACE
FOR LOCALS

|

(oD

CALL

_main

(e)

Figure 8-1. The "crt0" Program Setup Flowchart

FL902B3

224

Chapter 8: Environment-Dependent Routines

INITIALIZE
SP, A5, AND
HEAP & FRAME
POINTERS PUSH OLD FRAME
POINTER &
ALLOCATE SPACE
FOR LOCALS
INITIALIZE
LIBRARY
GLOBALS
O
& CALL
_main O
INITIALIZE o
argc, argv, &
"ENV" TO ZERO
CALL _exit
("Prog end,
RTS
returned <arg>'
Is displayed)

END
FL202B2

Figure 8-2. The "crt1" Program Setup Flowchart

225

Chapter 8: Environment-Dependent Routines

The "_display_message()" Routine

The_display_message(outine displays run-time error messages. A call to
_display_message(@uarantees program termination. Thigsplay_message()
routine is called from exit() and other library routines; it is also called by the code
generated when the "generate run-time error checking" command line option is
specified.

The_display_message(putine causes the emulation monitor program to display
a message on the emulation display’s STATUS line.

An example of how thedisplay_messageoutine is called can be found in the
startup.c source file.

Monitor Considerations

The "mon_stub.s" Routine

The purpose afon_stub.sis to replace the foreground monitor which was used in
older HP emulators. The foreground monitor had two purposes: to initialize trap
vectors and to provide extra information for the emulator.nitwe_stub.sroutine
initializes trap vectors and defines a few global variables which are needed to
resolve references in théisplay_messageoutine (in source filelisp_msg.$.

The first 12 exception vectors are definedhiiyn_stub.s These include zero

divide, bus error, illegal instruction, and others. You may customize this routine to
use only the exceptions that you are interested in or to change the processing that is
done when these exceptions occur. Note that nothing is done with exception 14
(Format error). This exception is specific to the 68010 processor. You may want to
add code to handle this exception type if your target processor is the 68010.

The_display_messageoutine is written to work with all version of the HP
monitors. Because of this it refers to several identifiers which were formerly
defined in the monitor (MONITOR_MESSAGE, JSR_ENTRY). You may wish to
rewrite_display_messagéor your environment and remove these definitions.

The emulation monitor stubs shipped with the compiler differ from the source files
shipped with the emulators in that the floating-point exception vectors have been
initialized with pointers tdp_traphandler (contained in librangnv.aand shipped
source filefpu_trap.s). This allows the floating-point error messages to be more
detailed. Another difference is that the integer divide by zero exception vector
table entry has been un-commented.

226

Chapter 8: Environment-Dependent Routines

Default Environment Library Setup

Themon_stub.sroutine is included in thenv.alibrary by default. The

recommended way for you to add customized exception processing to your system
is by changingnon_stub.s If you create a separate source file for your exceptions
processing, you must ensure that your code is not linkedwaith stub.s

otherwise, there will be section overlap (the vector table is defined in two places).

Linking the Program Setup Routines

The program setup routines are loaded, respectively, by the following linker
command files.

iolinkcom.k Links program withcrt0.o.
linkcom.k Links program withcrtl.o.
fiolinkcom.k Links program containing 68881/2 code watt0.0.
flinkcom.k Links program containing 68881/2 code watfil.o.

Since C assumes thettlin, stdout, andstderr are opened prior tmain() being
called, cc68k automatically uses tbenkcom.k (orfiolinkcom.k) linker
command file. To link witkert1.o instead, use the cc68k "no 1/0" option to speci
that thelinkcom.k (or flinkcom.k) command file be used.

If you use the "generate code for the 688818 "gption,fiolinkcom.k or
flinkcom.k will be used instead ablinkcom.k or linkcom.k. These linker
command files substitutdo881.afor lib.a andlibm881.afor liom.a.

Whenever the environment-dependent librany.a is modified, you must also
modify the default linker command file to load the new library.

227

Chapter 8: Environment-Dependent Routines

Emulator Configuration Files

Two configuration files for the emulator are provided:
ioconfig.EA For programs linked with crt0.0.

config.EA For programs linked with crtl.o.

Polling for simulated 1/O is enabled by tloeonfig.EA andfioconfig.EA files
because thstdin, stdout, andstderr streams (which are set up by td routine)
are implemented via simulated 1/O in the emulation environmentcdrifeg. EA
andfconfig.EA files do not enable polling for simulated I/0 becacrsk does not
set up the standard input, output, and error streams.

Note that the debugger/simulator does not need these two configuration files.

Default Memory Map

Section ordering is specified in the linker commdimk¢om) files, and the
memory map is specified in the emulator configuratamfig) files.

Because emulator configuration files map memory for absolute code located by the
linker, modifications to the default linker command files will usually require
modifications to the emulator configuration files as well.

228

Chapter 8: Environment-Dependent Routines

Dynamic Allocation

There are several dynamic allocation routines ifiltioea support library (e.g.,

malloc, realloc, etc.). The only environment dependency is isolated in the function
_getmem() For these dynamic allocation routines to work, the function
_getmem()must return memory allocated from the system. The source for the
_getmem()function is provided in the "shipped sources" directory.

As provided, getmem()returns an address to a block of dynamic memory and the
size of that block. If the block size requestedrafloc() cannot be satisfied, the
largest block left in the heap will be returned. The calling sequence is:

void *_getmem(int *size);
ptr = _getmem(&size);

The size of the block allocated, whether it is larger or smaller than the size
requested, is returned indirectly through the pointer parameter. Cajiigiem()
with asizeequal to zero will cause the current address of the heap to be returned.

If desired, getmem()may be written to return more than the requested amount of
memory; the dynamic allocation routines will take advantage of this.

Rewriting the "_getmem" Function

This routine should be rewritten to return memory in the best way for the target
system. In a simple embedded system this routine should probably be written to
return the address of an array big enough to use up all available RAM not used by
the rest of the program. If an operating system is present, the routine should be
written to return a large chunk of memory from the operating system at each call.

After the_getmem()function is rewritten and assembled, use the ar68k librarian to
replace thggetmem.oobject module in thenv.alibrary.

Input and Output

Many of the functions defined tsgdio.h use the basic I/O functions found in the
systemiosupport library module. These basic I/O functions@pen(), close()

229

Chapter 8: Environment-Dependent Routines

read(), write(), Iseek() andunlink(). Thesystemiofunctions provided use the
simulated I/O feature of the emulation environments. The C source code for the
basic I/0O functions is provided in the "shipped sources" directory.

As provided, the I/O system defines the maximum number of I/O control blocks
available as 12 (which equals the maximum number of simulated I/O files that can
be open at the same time), and the size of the 1/O buffers is defined to be 1020
bytes (based on the 255 byte size of the simulated I/O buffer). These values can be
changed by redefining the macfE®PEN_MAX andBUFSIZ in the header file

stdio.h; after the values of these macros are changed, you must recompile the file
startup.c. Changes t6OPEN_MAX andBUFSIZ will not take effect until a
newstartup.o object file is made and placed in the environment dependent library,
env.a

Thesystemio.cfile should be rewritten for the target system environment.

After thesystemio.cfile is rewritten and compiled, the neystemio.oobject file
should either be loaded before #rev.alibrary, or be used (with ar68k) to replace
the existingsystemioobject module in thenv.alibrary.

Environment-Dependent I/O Functions

The remainder of this chapter describes the 1/O library functions which are
dependent on the 68000 emulator execution environment. Functions declared in
thesimio.hinclude file are found in the environment-dependent library archive file
env.a

230

Chapter 8: Environment-Dependent Routines
clear_screen

clear_screen

Clear the Simulated 1/O Display

Synopsis #include <simio.h>

int clear_screen (int fildes);

Description Clear_screertlears the simulated 1/O displaysifdoutis directed to the display.
Fildesis the file descriptor obtained from apensystem call to opestdout

Errors Clear_screemwill fail and the display will not be cleared if one of the following
conditions is trueerrno will be set accordingly.

[INVALID_CMD]

Attempt to clear the display on a file that is not a display.

[INVALID_DESC]

Fildesis not an open file descriptor.

[CONTINUE_ERROR]

Attempt to clear the display after a continued emulation
session (emulation is exited and then reentered).

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned an@rrnois set to indicate the error.

231

Chapter 8: Environment-Dependent Routines

close

Synopsis

Description

Errors

Return Value

See Also

close

Close a File Descriptor

#include <simio.h>

int close (int fildes);

Fildesis a file descriptor obtained from apensystem call.Closecloses the file
indicated byfildes

Closewill fail and the file will not be closed if one of the following conditions is
true;errnowill be set accordingly.

[INVALID_DESC]

Fildesis not an open file descriptor.

[CONTINUE_ERROR]

Attempt to close any file descriptor after a continued
emulation session (emulation is exited and then reentered).

[UNIX_ERROR]

Any error from the host operating systelase(2)function.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned an@rrnois set to indicate the error.

open

232

Synopsis

Description

Errors

Chapter 8: Environment-Dependent Routines
exec_cmd

exec_cmd

Execute Operating System Command on the Host

#include <simio.h>

int exec_cmd (

const char *command,
int *filel,

int *file2,

int *file3);

Exec_cmdexecutes an operating system command on the host computer.
Commands a pointer to a string composed of the command to be executed and any
parameters required by that commakdel, file2, andfile3 are pointers to

variables which will be set to the file descriptors of the pipes conneciédirio

stdout andstderrof the process spawned. If any pointer is NULL, that pipe is
connected tédev/null and no file descriptor is returned.

Exec_cmawill fail and the command will not be executed if one of the following
conditions is truegrrno will be set accordingly.

[CANNOT_READ_MEMORY]

Read of command name failed.

[NO_FREE_DESC]

The simulated I/O descriptor table is full.

[TOO_MANY_FILES]

Hostpipe(2) command failed.

[NO_FREE_PROC_ID]

The maximum number of processes are already active.

[TOO_MANY_PROCESSES]

233

Chapter 8: Environment-Dependent Routines

exec_cmd

Return Value

Hostfork(2) failed anderrno = EAGAIN.
[INVALID_CMD_NAME]

The command name length is zero.

[UNIX_ERROR]

Hostfork(2) failed anderrno does not equal EAGAIN.

Upon successful completion, a process ID number >= 0, and the pipes’ file
descriptors are returned. Otherwise, a value of -1 is returnestranods set to
indicate the error.

234

Chapter 8: Environment-Dependent Routines
exit, _exit

exit, _exit

Terminate Process

Synopsis #include <stdlib.h>
void exit (int status);

void _exit (int status);

Description Exit is equivalent to exit except thaexitflushes stdio buffers, whileexitdoes
not. Also,exitexecutes any routines that have been logged tatexé routine;
_exitdoes not do this. Bo#xitand_exitterminate the calling process by closing
all open file descriptors.display_messagel§ called with the message: "Prog end,
returned <arg>", where "arg" is either the value returneddin() or the argument
passed to an explicit call &xit

When programs are not linked with the 1/O routines (the "no I/O" command line
option is used), the behavior is the same as above excegtitlihtes not flush
stdio buffers, and neither function closes open file descriptors.

See Also atexit.

235

Chapter 8: Environment-Dependent Routines

_getmem

Synopsis

Description

Return Value

Warnings

_getmem

Get Block of Memory from System Heap

#include <memory.h>

void *_getmem(int *size);

_getmenis called by the support library dynamic allocation routines (@ajlpc,
realloc, etc.) and thebrk function. For these functions to worlgetmenmust
return memory allocated from the system.

_getmenreturns an address to a block of dynamic memory and the size of that
block. If the block size requested tmalloccannot be satisfied, the largest block
left in the heap will be returne8izecan be negative, in which case the amount of
allocated space is decreased.

The size of the block allocated, whether it is larger or smaller than the size
requested, is returned indirectly through the pointer parameter. Cajlitignem
with asizeequal to zero will cause the current address of the heap to be returned.

If desired, getmenmay be rewritten to return more than the requested amount of
memory; the dynamic allocation routines (engglloc, realloc, etc.) will take
advantage of this.

Deallocating memory (callinggetmenwith a negativesizg without first having
allocated the memory will cause unknown results.

236

Chapter 8: Environment-Dependent Routines
_getmem

Example An example of how thegetmenfunction is used can be found in the shipped
source filesbrk.c shown below.
#include <memory.h>

#pragma SECTION PROG=env DATA=envdata CONST=env
extern void *_getmem();

void

*sbrk(incr)

int incr;
void *ptr; /* pointer to memory block allocated */
char *tptr; /* used to zero memory block allocated */

int size =incr;

ptr = _getmem(&size);

If(size !=incr) /* was request satisfied? */
size = -size; /* free block returned by _getmem since */
_getmem(&size); /* did not satisfy request. */

return (char *)-1;

[* initialize memory block to be returned to zero */
for (tptr = ptr; tptr < (char *)ptr+incr; tptr++)

*tptr = 0;
return ptr;

See Also malloc, free, realloc, calloc, sbrk.

237

Chapter 8: Environment-Dependent Routines

initsimio
initsimio
Initialize Simulated 1/0

Synopsis #include <simio.h>
int initsimio (void);

Description It is not necessary to call titsimio function prior to calling any other functions
implemented via simulated 1/O; however, doing so will allow you to restart a
program, which was stopped with simulated 1/O files still open, without any side
effects from the previously opened files.

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is

returned an@rrnois set to indicate the error.

238

Synopsis

Description

Errors

Return Value

Chapter 8: Environment-Dependent Routines
kill

kill
Kill Simulated I/O Process

#include <simio.h>

int kill (int pid, int sig);

Kill sends signaligto a process running on the host which is identified by the
process ID numbegid.

Kill will fail and the process will not be killed if one of the following conditions is
true;errnowill be set accordingly.

[NO_PERMISSION]

Hostkill(2) failed because of a permissions error.

[INVALID_PROC_ID]

The simulated I/O process ID is unused or out of range
simulated I/O process entry does not exist).

[INVALID_SIGNAL]

Hostkill(2) failed becaussigis not a valid signal.

[NO_SUCH_PROCESS]

The host operating system process does not exist.

[UNIX_ERROR]

Hostkill(2) failed for some other reason.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned anérrnois set to indicate the error.

239

Chapter 8: Environment-Dependent Routines

Iseek

Synopsis

Description

Iseek

Move Read/Write File Pointer

#include <simio.h>
#include <stdio.h>

long Iseek (int fildes, long int offset, int whence);

Fildesis a file descriptor returned fronopensystem call.Lseeksets the file
pointer associated witildes as follows. (The SEEK_* macros are defined in
<stdio.h>which must be included.)

If whences SEEK_SET, the pointer is set toffsetbytes. Ifwhencds
SEEK_CUR, the pointer is set to its current location pdéfset If whenceas
SEEK_END, the pointer is set to the size of the file ptfset

Upon successful completion, the resulting pointer location, as measured in bytes
from the beginning of the file, is returned.

Lseekwill fail and the file pointer will remain unchanged if one or more of the
following are true:

[INVALID_DESC]

Fildesis not an open file descriptor.

[NO_SEEK_ON_PIPE]

Fildesis associated with a pipe or fifo.

[INVALID_OPTIONS]

Whencses any illegal value.

[INVALID_OPTIONS]

The resulting file pointer would be negative.

240

Chapter 8: Environment-Dependent Routines
Iseek

[INVALID_CMD]

Fildesis display or keyboard.
[CONTINUE_ERROR]

Attempt to move a file pointer after a continued emulation
session (emulation is exited and then reentered).

[UNIX_ERROR]

Some host operating system call has failed. Some devices
are incapable of seeking. The value of the file pointer
associated with such a device is undefined.

Return Value Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returneeéand is set to indicate
the error.

See Also open

241

Chapter 8: Environment-Dependent Routines

open
open
Open File for Reading or Writing
Synopsis #include <simio.h>
int open (const char *path, int option);
Description Openrequests the host to open a file specifiegdiy with the giveroptions If

the operation is successfahenwill return a valid file descriptor. If unsuccessful,
openwill seterrno and return -1.Optionvalues are constructed by OR-ing flags
from the list below.

O_READ Open for reading only.

O_WRITE Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes.
O_APPEND If set, the file pointer will be set to the end of the file prior

to each write.

O_CREATE If the file exists, this flag has no effect. Otherwise, the file
is created, the owner ID of the file is set to the effective
user ID of the process, and the group ID of the file is set to
the effective group ID of the process.

O_TRUNC If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

O_EXCL If O_EXCL and O_CREATE are setpenwill fail if the
file exists.

242

Chapter 8: Environment-Dependent Routines
open

Errors Openwill fail and the file will not be opened if one of the following conditions is
true. Errno will be set accordingly:

[UNIX_ERROR]
A component of the path prefix is not a directory, or,

The named file is a directory angtionis write or
read/write, or,

The named file resides on a read-only file system and
optionis write or read/write, or,

The named file is a character special or block special file,
and the device associated with this special file does not
exist, or,

The file is open for execution aogtionis write or

read/write. Normal executable files are only open for a
short time when they start execution. Other executable file
types may be kept open for a long time, or indefinitely
under some circumstances, ofr,

A signal was caught during tlepensystem call, or,
The system file table is full.

[FILE_NOT_FOUND]
O_CREATE is not set and the named file does not exist.

[NO_PERMISSION]
A component of the path prefix denies search permission,
or,

Optionpermission is denied for the named file.

[TOO_MANY_FILES]
More than the maximum number of file descriptors are
currently open.

[FILE_EXISTS]
O_CREATE and O_EXCL are set, and the nhamed file
exists.

243

Chapter 8: Environment-Dependent Routines

open
[INVALID_FILE_NAME]
Path is null.
[INVALID_OPTIONS]
Optionspecifies both O_WRITE and O_RDWR. Also,
undefined bits set in thegption parameter.
[NO_FREE_DESC]
The maximum number of simulated I/O files are already
open.
Return Value Upon successful completion, the file descriptor is returned. Otherwise, a value of
-1 is returned andrrno is set to indicate the error.
See Also close Iseek read, write.

244

Synopsis

Description

Errors

Return Value

Chapter 8: Environment-Dependent Routines
pos_cursor

pOS_cursor

Position Cursor on Simulated I/O Display

#include <simio.h>

int pos_cursor (int fildes, int col, int row);

Pos_cursopositions the cursor to (column, line) on the displaydbutis directed
to the display.

Pos_cursomill fail if one of the following conditions is truerrno will be set
accordingly.

[INVALID_CMD]
Attempt to position the cursor on a file that is not a display.

[INVALID_ROW_OR_COLUMN]

Rowis greater than or equal to 50 rowscokis greater
than or equal to 80 columns (or the number of columns
the display, whichever is greater).

[INVALID_DESC]
Fildesis not an open file descriptor.

[CONTINUE_ERROR]
Attempt to position the cursor after a continued emulation
session (emulation is exited and then reentered).

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned anérrnois set to indicate the error.

245

Chapter 8: Environment-Dependent Routines

read

Synopsis

Description

Errors

read

Read Input

#include <simio.h>

int read (int fildes, void *buf, int nbyte);

Readrequests the host to reablytesfrom the file specified bfildesand place
them intobuf. If the operation is successftéadreturns the number of bytes read.
If unsuccessfukead setserrno and returns -1.

On devices capable of seeking, thad starts at a position in the file given by the
file pointer associated wiffiides Upon return frommead, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a device is undefined.

Upon successful completiorgad returns the number of bytes actually read and
placed in the buffer; this number may be less titaeif the number of bytes left

in the file is less thanbytebytes. A value of 0 is returned when an end-of-file has
been reached.

Readwill fail if one of the following conditions is true and errno will be set
accordingly:
[INVALID_DESC]

Fildesis not a valid file descriptor open for reading.

[INVALID_CMD]

Attempt to read from the display.

246

Chapter 8: Environment-Dependent Routines
read

[CONTINUE_ERROR]

Attempt to read anything after a continued emulation
session (emulation is exited and then reentered).

[UNIX_ERROR]

Any error from hostead(2).

Return Value Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returnedramalis set to
indicate the error.

Note

Although no more than 255 bytes are transferred from the host at one time, there is
no practical limit to the number of bytes that can be read per invocatieacf

See Also open

247

Chapter 8: Environment-Dependent Routines

shrk

Synopsis

Description

Return Value

Warnings

See Also

Synopsis

sbrk

Get Block of Zero-Filled Memory from System Heap

#include <memory.h>

void *sbrk (int increment);

Shbrkis used to get a block of dynamically allocated meningyementbytes in
length, from the system heap. The newly allocated space is set tdrmeemnent
can be negative, in which case the amount of allocated space is decreased.

Upon successful completioshrkreturns a pointer to the first byte of the memory
block requested. Otherwise, a value of -1 is returned.

The pointer returned ksbrkis not aligned in any manner. Loading or storing
words through this pointer could cause alignment problems.

Care should be taken when ussigkin conjunction with calls to the main

memory allocator routinesn@lloc, callog, realloc, andfree). All these routines

allocate and deallocate data memory from the system heap. Although you should
not attempt this, it is possible to deallocate data memory allocated through the main
memory allocator functions with a subsequent casbid

malloc, free, realloc, calloc, _getmem

unlink

Remove Directory Entry

#include <simio.h>

int unlink (const char *path);

248

Description

Errors

Return Value

See Also

Chapter 8: Environment-Dependent Routines
unlink

Unlink causes the file whose name is pointed tpdihto be removed; the file
remains open, however, and can be accessed until it is closed. Subsequent attempts
to open the file will fail, unless it is created anew.

Unlink will fail if one of the following conditions is true, ardrno will be set.

[INVALID_FILE_NAME]

A component of theath prefix is not a directory.

[FILE_NOT_FOUND]

The named file does not exipgthis NULL, or a
component opathdoes not exist.

[NO_PERMISSION]

Search permission is denied for a component of the path
prefix. Write permission is denied for the directory
containing the file to be removed.

[UNIX_ERROR]

The hosunlink(2) function failed for some reason other
than denied permissions.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned anérrnois set to indicate the error.

close open

249

Chapter 8: Environment-Dependent Routines

write

Synopsis

Description

write

Write on a File

#include <simio.h>

int write (int fildes, const void *buf, int nbyte);

Write requests the host to writbytebytes frombufto the file specified bfildes
If the operation is successfulrite returns the number of bytes written. If
unsuccessfulyrite setserrno and returns -1.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return frarite, the file
pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the device’s
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set when the file is opened, the file
pointer will be set to the end of the file prior to the first write.

If a write requests that more bytes be written than there is room for, only as many
bytes as there is room for will be written. For example, suppose there is space for
20 bytes more in a file before reaching a limit. A write of 512 bytes will return 20.
The next write of a non-zero number of bytes will give a failure return (except as
noted below).

250

Chapter 8: Environment-Dependent Routines
write

Errors Write will fail and the file pointer will remain unchanged if one of the following
conditions is true and errno will be set accordingly:

[INVALID_DESC]

Fildesis not a valid file descriptor open for writing.

[UNIX_ERROR]

The current file position (as set lpgel is less than zero.

[INVALID_COMMAND]

Fildesindicates the keyboard.

[CONTINUE_ERROR]

Attempt to write anything after a continued emulation
session (emulation is exited and then reentered).

Write will fail and the file pointer will be updated to reflect the amount of data
transferred if one of the following conditions is true and errno will be set
accordingly:

[UNIX_ERROR]

An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size.

Return Value Upon successful completion, the number of bytes actually written is returned.
Otherwise;1 is returned, andrrnois set to indicate the error.

See Also Iseek open

251

Chapter 8: Environment-Dependent Routines
write

252

Chapter 9: Compile-Time Errors

Compile-Time Errors

Explanations of compile-time error messages.

253

Chapter 9: Compile-Time Errors

Errors are problems which prevent a program from compiling successfully. When
you see an error message, you must correct the error then compile the program
again.

Warnings are possible problems which may cause your program to execute
incorrectly. When you see a warning message, you need to decide whether your
code is correct. Warnings are listed at the end of this chapter.

The errors and warnings are listed here in alphabetical order.

In addition to the error or warning message, the compiler shows the line of code,
the file name, and the line number.

Errors

Address initializer is too large to fit in declared type. This error can occur
when an attempt is made to store a pointer in a variable which was declared with
too small a size, such as "short" or "char."

Address of automatic variable is not constant.

Assign of ptr to const to ptr to non-const. This error occurs when a pointer
to constant is assigned to a pointer to non-constant. For example:

ptr_to_non_const = ptr_to_const;

This error prevents the inadvertent modification of constant data via pointers. A
cast can be used to override this checking.

Assign of ptr to volatile to ptr to non-volatile. This error occurs when a
pointer to volatile is assigned to a pointer to non-volatile.

ptr_to_non_volatile = ptr_to_volatile;

This error prevents optimizations from being inadvertently made whevelttie
type modifier has said that they shouldn’t. A cast can be used to override this
checking.

Bad command line syntax.

254

Chapter 9: Compile-Time Errors

Bad constant expression. This means that a non-constant expression has been
used in a context where a constant expression is required.

Bad digit in octal constant.
Bad function declarator. This is a syntax error which occurs when the parser
is expecting the start of a function definition. It is often followed by many errors

due to the parser being out of sync.

Bad integer constant. This error occurs when a non-integral constant is used in
a context where an integer constant is required.

Bit field <name> must be integral type.

Bit width of <bit field name> cannot be 0.

Bit width of <bit field name> too large.

Break must be inside looping construct or switch.
Can only initialize first member of a union.

Can't access array member of non-lvalue structure.

Can't declare void object <identifier/member name>. The only objects
which may be declared with typeid are functions returning void and pointers t
void.

Cannot assign to a constant. This error occurs when a symbol declared with
the "const" type modifier is assigned a value.

Cannot have array of functions. Arrays may not have functions as elements,
but they may havpointersto functions as elementsHifit: usetypedef to
declare a type "pointer to function," then declare an array of this type.)

Cannot have array of void. Although you cannot declare an array of void
objects, you may declare an array of pointers to void. For example, you may
declarevoid *ptr_array[10]

Cannot take address of a bit field. ~ This error occurs when the unary address
operator (&) is used on a bit field.

255

Chapter 9: Compile-Time Errors

Cannot take address of a register. This error occurs when the unary address
operator (&) is used on a variable declared withrélggster storage class specifier.

Cannot take sizeof this type. Sizeof cannot be applied to a function, bit field,
a void, or an undimensioned array.

Case statement must be inside switch.
Case values must be integral.

Character string constant exceeds maximum length. The maximum
length for character strings is 1023 characters (1024 if the NULL is counted).

Comment terminator */" without comment start.

Condition of '?:" must be scalar. The scalar types include the arithmetic
types (char, short, int, long, float, double) and pointers.

Constant literal too large. A constant literal has an implied type. If the value is
too large for that type, then an error occurs.

Continue must be inside looping construct.

Control expression must be scalar. The scalar types include the arithmetic
types (char, short, int, long, float, double) and pointers.

Declaration for nonexistent parameter. This error occurs when a declaration
list of formal parameters contains a declaration for a parameter not listed in the
function declarator.

Default statement must be inside switch.

Division or modulo by zero. This error occurs when the compiler determines
that a constant folding optimization will cause a divide by zero. Use the unary plus
(+) operator to prevent the rearrangement of expressions.

Duplicate label <identifier>.

Duplicate structure or union member <name>.

Empty character literal.

256

Chapter 9: Compile-Time Errors

Enum constant value not representable as int. All enumeration values
must be representable in an int type.

Exceeded automatic variable ssace. This error occurs when there is too
much local storage. The limiti b1 bytes.

Exceeded parameter passing space. This error occurs when there is too
much parameter storage. The limit 7-2 bytes.

Expression too complex.

Function call has fewer params than prototype.

Function call has more params than prototype.

Function cannot return array.

Function cannot return function.

Function parameter cannot be void.

Goto non-existent label <identifier>.

lllegal cast operands. This error occurs when an expression cannot be

converted to the type specified by the cast construct (for example, casting be
a data pointer and a float). The cast operator can only be applied to scalar or

types

lllegal character in input. This is usually caused when a control character has
been placed in the C source code.

lllegal function name.

lllegal operand types of <operator>. The operand types are incompatible
with the operator.

lllegal preprocessor directive in input.

Incompatible array initializer. The initializer given for an array is not
compatible with the type of the array elements.

257

Chapter 9: Compile-Time Errors

Incompatible initializer. The initializer given is not compatible with the type of
the variable being initialized.

Initializer too large for array.
Interrupt routine must return type void.

Left operand of <operator> must be an Ivalue. An "lvalue" is an
expression to which values can be assigned.

Missing right delimiter on string literal.

Mixed new and old style parameter declarations.
More initializers than structure members.
Multiple defaults in switch.

Must init arithmetic type with arithmetic value. Arithmetic types (char,
short, int, long, float, and double) must be initialized with arithmetic values.

Must initialize bit field with integral constant.

Must init pointer with compatible pointer or O. A compatible pointer is a
pointer with the same type or a data pointer with fypé *). (The NULL pointer
constant is 0.)

Negative or zero array size.

No digits in hexadecimal constant.

Only high order dimension of array can be empty.

Operand of <operator> cannot be constant.

Operand of <operator> must be an lvalue. An "lvalue" is an expression to
which values can be assigned.

Operand of <operator> must be arithmetic. The arithmetic types are: char,
short, int, long, float, and double.

258

Chapter 9: Compile-Time Errors

Operand of <operator> must be integral. The integral types are: char, short,
int, and long.

Operand of <operator> must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Operand of pointer dereference must be a pointer. Something other than

a pointer was found immediately following a dereferencing (indirection) operator
*, Check the declaration of the operand to make sure it is a pointer. You may also
see this error message if an arithmetic expression is incorrect (remembserishat

not an arithmetic operator in C).

Operands of '[]' must be a pointer and an integral. This error occurs when
the array name and the index are not alternately a pointer and an integral type
(char, short, int, long).

Operands of <operator> must be integral. The integral types are: char,
short, int, and long.

Operands of <operator> must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Overflow during floating point constant folding. This error occurs when
the compiler determines that a constant folding optimization on floating-point
values will cause an overflow. Use the unary plus (+) operator to prevent the
rearrangement of expressions.

Param expr type not compatible with prototype.

Param list can only appear in definition. An old style declaration of a
function so that another function may use it, like

extern char foo ();

cannot include parameters, as in

extern char foo (a, b);

Only the function definition may include a parameter list.
Param type of <name> differs from prototype.

Parameter type must have id in function definition.

259

Chapter 9: Compile-Time Errors

Parameters not allowed for interrupt routine.

Parser stack overflow. This error occurs when the compiler has reached a
syntactic translation limit. This will only occur in extreme cases. The translation
limits are listed in the "C Compiler Overview" chapter.

Redeclaration of section/segment for symbol <id>.
This error occurs when the same symbol is declared in two differently named
program sections.

Redeclaration of symbol <identifier>. Rename one of the symbols. In some
previous versions of the compiler technology, parameter names were ignored in
prototype declarations.

Redeclaration of tag <identifier>.

Redeclaration of whether symbol <identifier> is ORGed.
This error occurs when the same symbol is declared in a relocatable program
section and in an absolute program section (defined with the SECTION pragma).

Redefinition of function <identifier>.
Repeated case value.
Return expression does not match function type.

Reuse of absolute address for symbol <name>. This error occurs when
absolute address section declarations have been given such that address overlaps
occur in the assembly code. All symbols located at a particular address must be in
the same section (prog, data, or const) and they must all be either defined in the
same module or defined externally.

Section 'lib’ can only be referenced by ’all’. The same addressing mode

must be used to call run-time library modules throughout a source file. To do this,
useall for therefSectname with the "mode" option. See the "Libraries" chapter in
this manual and the on-line man pages for more information.

Static initializer not a representable constant.

260

Chapter 9: Compile-Time Errors

Structure can’t contain function <member name>. If you want to store a
function in a structure, storepainterto the function. For examplief
(*funcptr)() would be a valid structure element.

Structure can't contain undimensioned array <identifier>. You must
give a dimension for any array inside a structure; for examplé10$e instead
of if]

Structure can't contain void <member name>. Structure elements may not
be objects of typeoid. However, pointers teoid are allowed. For example
void v is not allowed in a structure, begid *pv is allowed.

Structure element reference of non-structure. The identifier in front of the

." was not declared as a structure.

Switch condition must be integral. In switch (expressioptheexpression
must return a value of typet.

Syntax error. This error is often caused by a missing semicolon on the preceding
line.

Type cannot have zero size. This error will occur if the only member of a
structure is a bit field whose size is zero.

Type too large. This error occurs when a type’s size is greater thdd bytes.

Undeclared structure member <name>. This error occurs when you attem
to access a structure member which has not been declared.

Undeclared symbol <identifier>.

Underflow during floating point constant folding. This error occurs when
the compiler determines that a constant folding optimization on floating-point
values will cause an underflow. Use the unary plus (+) operator to prevent the
rearrangement of expressions.

Uninitialized definition of undimensioned array. This error occurs when
no dimension is specified in an array declaration. The highest order dimension in
an array declaration may be empty if the declaration is initialized.

Unknown or incorrect pragma (ignored).

261

Chapter 9: Compile-Time Errors

Unknown type size. This error can occur when a variable declared with the
type of an undeclared structure tag is used before the structure is declared.

Unresolved static function <name>. This error indicates that a static
function of the form "static f();" was declared, but the function body was never
defined.

Warnings

Alias symbol <name> already referenced. Place thetpragma ALIAS

before the symbol is used. For example, place it immediately before or after the
declaration. The alias will not cause substitution of the symbol name in any
references which precede the alias.

Array index out of range.

Assignment between different pointer types.

Assignment between pointer and integer.

Cast from less to more restrictive pointer. This warning message is
enabled when the cc68k "generate additional warnings" option is specified.

Comparison between different pointer types.

Comparison between pointer and integer.

Confusing line directives may affect debug info. This warning indicates

that the line synchronization information passed to the compiler did not correspond
to a proper nesting of include files. This is probably due to inconsistent #line
directives in the source.

Duplicate const qualifier on type. The type was already declared as const.

Duplicate volatile qualifier on type. The type was already declared as
volatile.

262

Chapter 9: Compile-Time Errors

Empty body of control statement. This warning message is enabled when
the cc68k "generate additional warnings" option is specified.

Empty external declaration.

Extern <identifier> assumed to be in UDATA. The compiler cannot

determine if the external identifier was initialized and has placed the identifier in
the UDATA section. If the variable is initialized, it is very important to place the
variable in the correct sectioilgta). To do this, use #ipragma SECTION
DATA=idata before the external declaration to name the initialized data section.
See the "Embedded Systems" chapter for more information. (This condition occurs
only when the "separate initialized and uninitialized data" option is used).

External symbol <identifier> exceeds significant length.

lllegal escaped character. Backslash ignored. As an example, the string
"\q" would cause the warning to be generated, and the string would become "g".

Local variable <identifier> referenced only once.

Missing parameter declaration (defaulted to int). This warning message is
enabled when the cc68k "generate additional warnings" option is specified.

More than one character in character literal.

No emulation local syms if .c and .A file not in same directory. This
warning is generated whenever a path to a source file is specified and the "ge
HP 64000 format files" option is used. If you will be using an emulator, compile
all sources in the directory where they exist.

Non-constant initializer for constant type variable.

Octal or hex character constant too big (truncated).

Shift by out of range constant value.

Static initializer will not be loaded. This warning is enabled when the

"uninitialized data" compiler command line option is specified. It warns that there
is no load-time initialization for statics and externals

263

Chapter 9: Compile-Time Errors

Struct, union, or enum tag used but not declared. It is possible to declare
pointers to structures or unions before they are defined. The C language allows this
form of forward referencing. This message means that a forward reference for a tag
was seen, but never resolved. This warning message is enabled when the cc68k
"generate additional warnings" option is specified.

Test expression is an assignment. This warning message is enabled when
the cc68k "generate additional warnings" option is specified.

Unreferenced symbol <identifier>. The symbol was declared but is not used.

264

Chapter 10: Run-Time Errors

10

Run-Time Errors

Explanations of run-time error messages.

265

Chapter 10: Run-Time Errors

There are three basic types of run-time error messages. The largest group is
generated by floating-point exceptions. The two smaller groups are debug error
messages and startup error messages.

Floating-Point Error Messages

In accordance with the IEEE floating-point standard, trapping on floating-point
exceptions may be enabled or disabled. (Seefthesrror description in the

"Libraries" chapter.) If the trap associated with a specific exception is disabled, an
IEEE defined value is returned, a global exception flag is set, and no error message
is displayed. Conversely, if the trap is enabled and an exception is detected, an
error message is displayed on the emulation status line and the program terminates.
This type of error message is composed as follows:

68881/2 Libraries:

The 68881/2 floating-point coprocessor’s floating-point control register is
initialized by the_set_fp_controllibrary routine to cause 68000 exceptions on the
floating-point errors detailed below. Also, the startup code shipped with the
compiler has the interrupt vector table initialized tofpséraphandler (contained

in library env.aand in shipped source fifpu_trap.s) to display the following
message when an exception occurs:

fp <error>: <address of instruction>

266

Chapter 10: Run-Time Errors

Processor Libraries:

The following message is composed by tf error library routine.

fp <error>: <function>

Where<error> is the type of exception and may be one of the following:

operand error

overflow

underflow

inexact result

divide by zero

all precision lost

signaling NaN

This type of error occurs when an operand is invalid for the
operation performed. Examples include:

0 * Infinity.

(+Infinity) + (—Infinity).

0/0 or Infinity/Infinity.

A trapping NaN involved in any operation.
Comparison between NaN and any other value.

This type of error occurs when the result of an operation is
too large to be represented in the destination format.

This type of error occurs when the result of an operation is
too small to be represented in the destination format. If
trapping is disabled, the result will be denormalized.

This type of error occurs when the result requires rounding.
Due to the high probability of rounding, this trap is
typically disabled.

This type of error occurs when attempting to divide a
non-zero value by zero. (Zero divided by zero is a spec
case as an operand error.)

This type of error occurs when arguments are reduced and
precision is lost.

This type of error occurs if an operand is a signalling (or
trapping) NaN.

Where<function> may be either a run-time or math function.

267

Chapter 10: Run-Time Errors

Debug Error Messages

If programs are compiled using the "generate run-time error checking” option, code
is generated to perform checks for the dereferencing of NULL and uninitialized
pointers, and for range errors in array accesses. If one of these conditions occurs,
the following type of message is displayed:

Pointer Faults:

<file>:<line number>:nil ptr
<file>:<line number>:uninit ptr

Range Faults:

<file>:<line number> <index> > <max index>
<file>:<line number> <index> < 0

Where<file> refers to the C source file containing the offending instruction. This
field is at most 12 characters long and the ".c" extension is removed from the file
name.

Where<line number>is the line number within the C source file which contains
the offending instruction.

Where<index> is the index into the array.

And where<max index>is the upper bound of the array.

268

Chapter 10: Run-Time Errors

Startup Error Messages

If the crtO program setup file is linked with the program, skertup routine is
called to open thestdin, stdout, andstderr streams. [f for any reason one of these
files cannot be opened, the following type of message is displayed:

Can't open <file>, prog aborted

Where<file> is either "stdin", "stdout", or "stderr".

At program termination, a message is always displayed. This message is composed
within the_exit library routine and is:

Prog end, returned <arg>

Where<arg> is either the value returned main() or the argument passed to an
explicit call toexit().

269

Chapter 10: Run-Time Errors

270

Chapter 11: Run-Time Library Description

11

Run-Time Library Description

Description of the run-time libraries.

271

Chapter 11: Run-Time Library Description

Note

Run-time library routines are usually called by compiler generated code; however,
they may be called from assembly language programs as well (including embedded
assembly code within the C source file).

The routines listed here may in turn call other subroutines; those subroutines are
not listed here.

These run-time routines may change in future versions of the compiler.

Conversion Routines

dtof

Casts a 64 bit floating point value to a 32 bit floating point value.

Input: High 32 bits in register DO.
Low 32 bits in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

dtoi

Casts a 64 bit floating point value to a 32djinedinteger by truncation.

Input: High 32 bits in register DO.
Low 32 bits in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

272

Chapter 11: Run-Time Library Description

dtoui

Casts a 64 bit floating point value to a 32usisignedinteger by truncation.

Input: High 32 bits in register DO.
Low 32 bits in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

ftod

Casts a 32 bit float to a 64 bit double.
Input: Register DO.
Output: Registers DO - D1.

Registers Destroyed: A0, Al, DO, D1.

ftoi

Casts a 32 bit float to a 32 kignedinteger by truncation.
Input: Register DO.
Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

273

Chapter 11: Run-Time Library Description

ftoui

Casts a 32 bit float to a 32 bibsignedinteger by truncation.
Input: Register DO.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

itod

Casts a 32 biignedinteger to a 64 bit double.

Input: Register DO.

Output: Registers DO - D1.

Registers Destroyed: A0, Al, DO, D1.

uitod

Casts a 32 bitnsignedinteger to a 64 bit double.
Input: Register DO.

Output: Registers DO - D1.
Registers Destroyed: AOQ, Al, DO, D1.

itof

Casts a 32 baignedinteger to a 32 bit float.
Input: Register DO.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

274

Chapter 11: Run-Time Library Description

uitof

Casts a 32 bitnsignedinteger to a 32 bit float.
Input: Register DO.
Output: Register DO.

Registers Destroyed: AOQ, Al, DO, D1.

Floating-Point Routines

add32

Adds two 32 bit floating point values, returning a 32 bit floating point value.

Input: Addend (x) in register DO.
Addor (y) in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

add32z

Adds two 32 bit floating point values, returning a 32 bit floating point value.

Input: Address of addend (x) in register AO.
Addor (y) in register D1.

Output: Indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

275

Chapter 11: Run-Time Library Description

adde4

Adds two 64 bit floating point values, returning a 64 bit floating point value.
Input: High 32 bits of addend (x) in register AO.

Low 32 bits of addend (x) in register Al.

High 32 bits of addor (y) in register DO.

Low 32 bits of addor (y) in register D1.
Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

276

Chapter 11: Run-Time Library Description

adde4p

Adds two 64 bit floating point values, returning a 64 bit floating point value.
Input: Address of addend (x) in register Al.

High 32 bits of addor (y) in register DO.

Low 32 bits of addor (y) in register D1.
Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

add64pp

Adds two 64 bit floating point values, returning a 64 bit floating point value.
Input: Address of addend (x) in register Al.

Address of addor (y) in register AO.
Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

277

Chapter 11: Run-Time Library Description

add64z

Adds two 64 bit floating point values, returning a 64 bit floating point value.
Input: Address of addend (x) in register AO.

High 32 bits of addor (y) in register DO.

Low 32 bits of addor (y) in register D1.
Output: Register DO - D1 and indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

cmp32

Compares two 32 bit floating point values, returning a value of 0 if op1 = op2 or
opl and op2 are unordered, a value of 1 if opl > op2, and a value of -1 if opl < op2.

Input: Operand 1 (x) in register DO.
Operand 2 (y) in register D1.

Output: Register DO.

Registers Destroyed: A0, DO, D1.

cmp32r

Compares two 32 bit floating point values, returning a value of 0 if op1 = op2 or
opl and op2 are unordered, a value of 1 if opl > op2, and a value of -1 if opl < op2.

Input: Operand 1 (x) in register D1.
Operand 2 (y) in register DO.

Output: Register DO.

Registers Destroyed: A0, DO, D1.

278

Chapter 11: Run-Time Library Description

cmp64

Compares two 64 bit floating point values, returning a value of 0 if op1 = op2 or
opl and op2 are unordered, a value of 1 if opl > op2, and a value of -1 if opl < op2.

Input: High 32 bits of operand 1 (x) in reg. AO.
Low 32 bits of operand 1 (x) in reg. Al.
High 32 bits of operand 2 (y) in reg. DO.
Low 32 bits of operand 2 (y) in reg. D1.
Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

cmp64r

Compares two 64 bit floating point values, returning a value of 0 if op1 = op2 or
opl and op2 are unordered, a value of 1 if opl > op2, and a value of -1 if opl < op2.

Input: High 32 bits of operand 1 (x) in reg. DO.
Low 32 bits of operand 1 (x) in reg. D1.
High 32 bits of operand 2 (y) in reg. AO.
Low 32 bits of operand 2 (y) in reg. Al.
Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

div32

Divides a 32 bit floating point value by another 32 bit floating point value,
returning a 32 bit floating point value.

Input: Dividend (x) in register DO.
Divisor (y) in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

279

Chapter 11: Run-Time Library Description

div32r

Divides a 32 bit floating point value by another 32 bit floating point value,
returning a 32 bit floating point value.

Input: Dividend (x) in register D1.
Divisor (y) in register DO.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

div32z

Divides a 32 bit floating point value by another 32 bit floating point value,
returning a 32 bit floating point value.

Input: Address of dividend (x) in register AO.
Divisor (y) in register D1.

Output: Indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

dive4

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: High 32 bits of dividend (x) in reg. AO.
Low 32 bits of dividend (x) in reg. Al.
High 32 bits of divisor (y) in register DO.
Low 32 bits of divisor (y) in register D1.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

280

Chapter 11: Run-Time Library Description

div64p

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: Address of dividend (x) in register Al.
High 32 bits of divisor (y) in register DO.
Low 32 bits of divisor (y) in register D1.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

div64pp

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: Address of dividend (x) in register Al.
Address of divisor (y) in register AO.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

281

Chapter 11: Run-Time Library Description

dive4r

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: High 32 bits of dividend (x) in reg. DO.
Low 32 bits of dividend (x) in reg. D1.
High 32 bits of divisor (y) in register AO.
Low 32 bits of divisor (y) in register Al.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

div64rp

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: High 32 bits of dividend (x) in reg. DO.
Low 32 bits of dividend (x) in reg. D1.
Address of divisor (y) in register Al.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

282

Chapter 11: Run-Time Library Description

div64rpp

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: Address of dividend (x) in register AO.
Address of divisor (y) in register Al.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

dive4z

Divides a 64 bit floating point value by another 64 bit floating point value,
returning a 64 bit floating point value.

Input: Address of dividend (x) in register AO.
High 32 bits of divisor (y) in register DO.
Low 32 bits of divisor (y) in register D1.
Output: Register DO - D1 and indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

mul32

Multiplies two 32 bit floating point values, returning a 32 bit floating point value.

Input: Multiplicand (x) in register DO.
Multiplier (y) in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

283

Chapter 11: Run-Time Library Description

mul32z

Multiplies two 32 bit floating point values, returning a 32 bit floating point value.

Input: Address of multiplicand (x) in reg. AO.
Multiplier (y) in register D1.

Output: Indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

mul64

Multiplies two 64 bit floating point values, returning a 64 bit floating point value.
Input: High 32 bits of multiplier (x) in register AQ.

Low 32 bits of multiplier (x) in register Al.

High 32 bits of multiplicand (y) in reg. DO.

Low 32 bits of multiplicand (y) in reg. D1.
Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

mul64p

Multiplies two 64 bit floating point values, returning a 64 bit floating point value.
Input: Address of multiplier (x) in register Al. High 32 bits of
multiplicand (y) in reg. DO.
Low 32 bits of multiplicand (y) in reg. D1.
Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

284

Chapter 11: Run-Time Library Description

mul64pp

Multiplies two 64 bit floating point values, returning a 64 bit floating point value.

Input: Address of multiplier (x) in register Al.
Address of multiplicand (y) in register AO.

Output: Registers DO - D1 and AO - Al.

Registers Destroyed: A0, Al, DO, D1.

mul64z

Multiplies two 64 bit floating point values, returning a 64 bit floating point value.
Input: Address of multiplicand (x) in reg. AO.

High 32 bits of multiplier (y) in reg. DO.

Low 32 bits of multiplier (y) in reg. D1.
Output: Indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

285

Chapter 11: Run-Time Library Description

sub32

Subtracts a 32 bit floating point value from another 32 bit floating point value,
returning a 32 bit floating point value.

Input: Minuend (x) in register DO.
Subtrahend (y) in register D1.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

sub32r

Subtracts a 32 bit floating point value from another 32 bit floating point value,
returning a 32 bit floating point value.

Input: Minuend (x) in register D1.
Subtrahend (y) in register DO.

Output: Register DO.

Registers Destroyed: A0, Al, DO, D1.

sub32z

Subtracts a 32 bit floating point value from another 32 bit floating point value,
returning a 32 bit floating point value.

Input: Address of minuend (x) in register AO.
Subtrahend (y) in register D1.

Output: Indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

286

Chapter 11: Run-Time Library Description

sub64

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: High 32 bits of minuend (x) in reg. AO.
Low 32 bits of minuend (x) in reg. Al.
High 32 bits of subtrahend (y) in reg. DO.
Low 32 bits of subtrahend (y) in reg. D1.
Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

sub64p

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: Address of minuend (x) in register Al.
High 32 bits of subtrahend (y) in reg. DO.
Low 32 bits of subtrahend (y) in reg. D1.
Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

287

Chapter 11: Run-Time Library Description

sub64pp

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: Address of minuend (x) in register Al.
Address of subtrahend (y) in reg. AO.

Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

sub64r

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: High 32 bits of minuend (x) in reg. DO.
Low 32 bits of minuend (x) in reg. D1.
High 32 bits of subtrahend (y) in reg. AO.
Low 32 bits of subtrahend (y) in reg. Al.
Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

sub64rp

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: High 32 bits of of minuend (x) in register DO.
Low 32 bits of minuend (x) in register D1.
Address of subtrahend (y) in register Al.
Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

288

Chapter 11: Run-Time Library Description

sub64rpp

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: Address of minuend (x) in register AO.
Address of subtrahend (y) in reg. Al.

Output: Register DO - D1 and A0 - Al.

Registers Destroyed: A0, Al, DO, D1.

sub64z

Subtracts a 64 bit floating point value from another 64 bit floating bit value,
returning a 64 bit value.

Input: Address of minuend (x) in register AO.
High 32 bits of subtrahend (y) in reg. DO.
Low 32 bits of subtrahend (y) in reg. D1.
Output: Register DO - D1 and indirect through register AO.

Registers Destroyed: A0, Al, DO, D1.

289

Chapter 11: Run-Time Library Description

Debug Routines

rangefault

Writes signed array index error messsage to status line of emulator.

Input: Address of record in register AO containing the following:
- Upper bound of array.
- Line number in source where reference occurred.
- Path of source file.
Bad index in register DO.

Output: None.

Registers Destroyed: A0, Al, DO, D1.

rangefaultu

Writes unsigned array index error messsage to status line of emulator.

Input: Address of record in register AO containing the following:
- Upper bound of array.
- Line number in source where reference occurred.
- Path of source file.
Bad index in register DO.

Output: None.

Registers Destroyed: A0, Al, DO, D1.

290

Chapter 11: Run-Time Library Description

ptrfault

Writes a nil/uninitialized pointer error message to status line of emulator.
Input: Address of record in register AO containing the following:
- Line number in source where dereference occurred.
- Path of source file.
lllegal pointer value in register D1.
Output: None.

Registers Destroyed: A0, Al, DO, D1.

291

Chapter 11: Run-Time Library Description

292

Chapter 12: Math Library Functions

12

Behavior of Math Library Functions .

Results of math library functions for various types of floating-point input values.

293

Chapter 12: Math Library Functions

The first table which follows describes the behavior of the math library functions
which are passed a single parameter. The remaining tables describe the math
library functions which are passed two parameters.

Wherever the result is an exception, the IEEE defined return value is also listed.
The IEEE defined value is returned if trapping on that exception is disabled. (See
the_fp_error description in the "Libraries" chapter for information on
enabling/disabling trapping on floating-point exceptions.)

The 68040 always traps on denormalized numbers. If you expect to encounter
denormalized numbers, you should provide code to handle these traps (FP
Unimplemented Data Type, vector 55). Trap handling of denormalized numbers
may be provided in future versions of the math library.

NUMBER TYPES EXCEPTION TYPES

D Denormalized number DBZ Divide by zero

N Normalized number DMN Domain error

NaN Not a number IOP Invalid operation

R Real number OVR Overflow

X,y Function input RNG Range error

[1] Possible result TLS Total loss of significance
UND Underflow

Figure 12-1. Legend for Math Library Behavior Tables

294

Chapter 12: Math Library Functions

Table 12-1. Behavior of Functions with One Parameter

FUNCTION INPUT

Funct. | ~® -N -D -0 +0 +D +N +00 NaN
IOP NaN [IOP NaN] w2 w2 w2 172 | [IOP NaN] |lOP X
acos NaN
. IOP NaN [lOP NaN] Kk 0 0 [IOP NaN] IOP X
asin NaN
atan - TU2 R X 0 0 X R TU2 X
ceil _ o0 R 0 0 0 1 R +00 X
IOP NaN [TLS NaN] |1 1 1 il TLS NaN] 1QP X
COS NaN
cosh | *® [OVR+0c0] | 1 1 1 1 [OVR + 0] | + 00 X
exp 0 [UNDO0.0] [il i 1 [OVR + o] | + o0 X
floor _ o0 R -1 0 0 0 R +00 X
IOP NaN R R 0 0 R R 0P X
frexp NaN
dexp | - % R R 0 0 R R +00 X
| IOP NaN I0P NaN IOP NaN 0P fe]= R R +00 X
[0]¢] - 00 - 00
IOP NaN I0P NaN IOP NaN 0P fe]= R R +00 X
log10 -0 -0
df IOP NaN R R 0 0 R R 0P X
mo NaN
. IOP NaN [TLS NaN] [x 0 0 TLS NaN] 1OP X
Sin NaN
sinh | ~® [OVR- o] | 1 1 1 1 | [OVR+0] | + 00 x
sqrt IOP NaN I0P NaN IOP NaN 0 0 R R +00 X
IOP NaN [TLS NaN] |x 0 0 TLS NaN] 1OP X
tan NaN

295

Chapter 12: Math Library Functions

Table 12-2. "atan2" Behavior

atan2(x,y) | Y
-00 -N -D -0 +0 +D +N H00 NaN
-00 IOP -T72 V2 -T2 -T2 V2 V2 IOP y
NaN NaN
-N -0 R R 72 -T02 R R 0 y
-D -t R R 72 -T02 R R 0 y
-0 -t -0 -t IOPO | IOPO | O 0 0 y
X +0 T T T IOPO | IOPO | O 0 0 y
+D LS R R 2 2 R R 0 y
+N LS R R 2 2 R R 0 y
+00 IOP w2 w2 2 w2 w2 w2 IOP y
NaN NaN
NaN X X X X X X X X X

296

Table 12-3. "pow" Behavior

Chapter 12: Math Library Functions

pow(xy) Y
-00 -N -D -0 +0 +D +N Ho0 NaN
-00 0 0 0 1 1 IOP+0 | [IOP+/-0] | IOP+0 |y
<-1 0 R R 1 1 R R IOPes | y
=-1 IOP10 R R 1 1 R R IOP10 vy
>-1,<0 | IOP + | R R 1 1 R R 0 y
-0 IOP IOP IOP IOP IOP 0 0 0 y
NaN NaN NaN NaN NaN
+0 IOP IOP IOP IOP IOP 0 0 0 y
NaN NaN NaN NaN NaN
>0,<1 | +o0 R R 1 1 R R 0 y
=+1 1.0 R R 1 1 R R 1.0 y
> +1 0 R R 1 1 R R do y
+00 0 0 0 1 1 +0 +00 +00 y
NaN X X X X X X X X
Table 12-4. "add" Behavior
add(xy) | Y
-00 -N -0 +0 +N +00 NaN
-0 -00 -0 -00 -00 -00 IOPNaN | vy
-N -00 R X X R +oo y
-0 -0 y -0 +0 y oo y
+0 -00 y +0 +0 y +o0 y
+N -00 R X X R +00 y
+00 IOP NaN Jo0 +00 +00 +00 +00 y

297

Chapter 12: Math Library Functions

Table 12-5. "sub" Behavior

sub(x,y) | Y
-00 -N -0 +0 +N +00 NaN
-00 IOP NaN | o -00 -00 -00 -00 y
-N +00 R X X R -0 y
-0 +oo -y +0 -0 -y Bad y
X +0 400 -y +0 +0 -y -0 y
+N +00 R X X R © y
+00 +00 +00 +00 +00 +00 IOP NaN | y
NaN X X X X X X X
Table 12-6. "mul" Behavior
mul(x,y) Y
-00 -N -0 +0 +N +00 NaN
-00 +00 +00 IOP NaN | IOP NaN | o -00 Yy
-N +00 +R +0 -0 -R ©0 y
-0 IOP NaN | +0 +0 -0 -0 IOP NaN| vy
X +0 IOP NaN | -0 -0 +0 +0 IOP NaN| vy
+N -00 -R -0 +0 +R o0 y
+00 -00 -00 IOP NaN | IOP NaN | +00
NaN X X X X X X X

298

Chapter 12: Math Library Functions

Table 12-7. "div" Behavior

div(x,y) y
-00 -N -0 +0 +N o0 NaN
-00 IOP NaN | o +00 -00 -00 IOPNaN | vy
-N +0 +R DBZ 4 DBZ - -R -0 %
-0 +0 +0 IOPNaN | IOPNaN| -0 -0 y
X +0 -0 -0 IOPNaN | IOPNaN | +0 +0 y
+N -0 -R DBZ <o DBZ +oo +R +0 y
+00 IOP NaN ©0 -00 +00 +00 IOP NaN
NaN X X X X X X
Table 12-8. "fmod" and "frem" Behaviors
fmod(x,y) | Y
frem(x,y) -00 -N -0 +0 +N +00 NaN
-00 IOPNaN | IOPNaN | IOPNaN| IOPNaN| IOPNaN IOPNaN vy
-N X +R IOPNaN | IOPNaN | -R X y
-0 -0 -0 IOPNaN | IOPNaN | -0 -0 y
X +0 +0 +0 IOP NaN | IOPNaN| +0 +0 y
+N X +R IOPNaN | IOPNaN | +R X y
+00 IOPNaN | IOPNaN | IOPNaN| IOPNaN| IOPNaN IOPNaN vy
NaN X X X X X X X

299

Chapter 12: Math Library Functions

300

Chapter 13: Comparison to C/64000

13

Comparison to C/64000

Information needed to convert files from C/64000. .

301

Chapter 13: Comparison to C/64000
General C/64000 Options

The Motorola 68000 Family C Cross Compiler is more similar to native C
implementations than C/64000. Specifically, it supports register variables as
intended by C and it includes a robust set of support libraries.

Another area in which this implementation of C differs significantly from C/64000

is in the area of compiler options. A list of the C/64000 options follows (both
general and processor-specific), and comparable options of this implementation are
described. Note that many C/64000 options could be specified in the source file
and, thus, could be varied within the file; some of the C compiler's comparable
options are specified on the command line and affect the entire file.

General C/64000 Options

AMNESIA

This directive in C/64000 encompassed two distinct compiler concerns which are
addressed separately in this compiler. First, it was intended to allow for memory
mapped I/O locations or locations which could change in value as a result of an
asynchronous event such as an interrupt. Second, it was intended to defeat a limited
form of common subexpression elimination implemented in C/64000. Both of

these intents are addressed by the ANSI standard quatiiatile in this

implementation.

ASM_FILE

This is not implemented. A listing with embedded assembly can be provided with
the "listing" and "add assembly code to listing" command line options; the
"generate assembly source files" option causes assembly source files to be created.

ASMB_SYM

HP format "asmb_sym" files can be generated via a command line option.

DEBUG

This occurs by default. The "strip symbol table information" command line option
will remove debug symboals.

302

Chapter 13: Comparison to C/64000
General C/64000 Options

EMIT_CODE

This is implemented by a command line option.

END_ORG

This was used to terminate an ORG’d section. In the new compiler, ORG
functionality is accomplished via tHBECTION pragma which is terminated by
anotherSECTION pragma.

ENTRY

This is handled by thertO orcrtl routines to which programs are linked.

EXTENSIONS

This is not supported.

FIXED_PARAMETERS

The intention of this option was to allow the calling of PASCAL/64000 routines
from C/64000 routines. This capability can be accomplished throud{Sitie
pragma.

FULL_LIST

This is implemented by specifying all the command line options which affect the
listing sent to the standard output.

INIT_ZEROS

The main purpose of this option was to avoid large compiler output containing
primarily zero initializers for large arrays. This is not a problem with the new
assemblers and object file formats which can express large initializers more

compactly. There is a related option which gives warnings that no load-time
initialization can occur.

303

Chapter 13: Comparison to C/64000
General C/64000 Options

LINE_NUMBERS

This occurs by default. The "strip symbol table information" command line option
will remove line number symbols.

LIST

This is handled from the command line with the "listing™ option.

LIST_CODE

This is handled from the command line with the "listing" option in addition to the
"add assembly code to listing" option.

LIST_OBJ

Obiject listing is always given with "add assembly code to listing" option (specified
in addition to the "listing" option).

LONG_NAMES

All internal names in this compiler have 255 character significance; external names
have 30 character significance.

OPTIMIZE

This is implemented via the "optimize" command line option.

ORG
This is implemented via tfleECTION pragma.

PAGE

A page break can be generated by inserting a form feed in the source.

304

Chapter 13: Comparison to C/64000
General C/64000 Options

RECURSIVE

This is not implemented since, in C, the user may declare local variables to be
static (the only potential gain of this option).

SEPARATE

This option had no effect in the C/64000 C compiler and is not implemented in this
compiler. However, th8ECTION pragma permits control over the sections in
which program, data, and constants are placed.

SHORT_ARITH

This is not implemented. However, the new C is able to perform arithmetic
calculations on floats without expanding to double which provides much of the
savings that this option provided.

STANDARD

This is not implemented.

TITLE

This is not supported.

UPPER_KEYS

This is not supported.

USER_DEFINED

This is not implemented.

WARN
This is implemented via the "suppress warning messages"” command line opti.

305

Chapter 13: Comparison to C/64000
68000 Specific C/64000 Options

WIDTH

This option caused the 64000/C compiler to read only a portion of a source file line
(e.g., the first 80 characters). This option has no equivalent in the C compiler.

68000 Specific C/64000 Options

INTERRUPT
This is implemented in the new C via the INTERRUPT pragma.

TRAP

This option was used in two ways. The first was to declare procedures which were
to be entered via TRAP instructions. These could have parameters but no return
value and their generated code began with a call to run time library Zenter_trap
which copied parameters from the user stack to the system stack prior to executing
the procedure. Itis anticipated that:

1 Traps are used to execute system functions which are more likely to be written
in assembly language.

2 Either parameters are not needed by such system functions or they are
implemented as either globals or are passed in a more efficient way than
copying them from one stack to another (e.g., in registers).

Therefore, the parameter passing functionaliffRAP is not implemented in this
compiler. TheNTERRUPT pragma can be used to produce a C procedure which
buffers registers and ends with an RTE.

The second use of this directive was to cause the compiler to generate a TRAP
instruction rather than a JSR in calling a function. This may be accomplished
(without the parameter passing) by usingAls# pragma to embed a TRAP
instruction.

306

Chapter 13: Comparison to C/64000
68000 Specific C/64000 Options

BASE_PAGE

FAR

COMMON
CALL_ABS_LONG
CALL_ABS_SHORT
CALL_PC_SHORT
CALL_PC_LONG
LIB_ABS_LONG
LIB_ABS_SHORT
LIB_PC_SHORT
LIB_PC_LONG

These are implemented via tBECTION pragma and the "specify addressing
mode" command line option.

307

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

Differences from HP 64819 Code
This section describes:
1 The differences between the HP 64819 and HP B3640 C compilers.

2 Ways to convert code written for the HP 64819 so that it will work with the
B3640 C compiler.

Alignment
HP 64819 Word alignment is set by the $ALIGN ONS$ option.
HP B3640 Word alignment is performed. Refer to the "Alignment

Considerations" section in the "Internal Data
Representations” chapter.

Integral promotions
HP 64819 Achar, ashort int, or anint bit-field, when used in an
expression will be converted to e unless

$SHORT_ARITH ONS$ is specified.

HP B3640 The effect is the same as if integral promotions were
always performed.

Float promotions

HP 64819 Promotion fromftoat to adouble will be performed
in an arithmetic operation unless $SHORT_ARITH
ONS$ is specified.

HP B3640 Promotion fromfoat to adouble will not be
performed unless one of the operandsdewble.

308

Shift operations

HP 64819

HP B3640

To convert:

Operations on structures

HP 64819

HP B3640

To convert:

Symbol names
HP 64819

HP B3640

To convert:

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

Logical shift on all shift operations. Shift by a
negative value will reverse the shift direction.

Logical shift on all left shifts and on right shifts of
unsigned expressions. Arithmetic shift is used on alll
right shifts of a signed expression. Shift by a negative
value will cause unexpected behavior.

Reverse the direction for every negative shift. Cast the
expression to unsigned before the shift operation if
logical shift is required.

Structures may be assigned, compared for equality,
passed as parameters, or returned from functions.

Structures may be assigned, passed as parameters, and
returned from functions. No comparison for equality is
allowed.

Comparison for equality between structures must be
done with in-line code or with user supplied function
calls.

The first 15 characters in a symbol name are significant.

Internal names have 255 significant characters.
External names have 30 significant characters.

A23456789012345__ bcd and
A23456789012345 xyz are taken as two different
symbols in HP B3640.

309

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

Numeric constant formats

HP 64819 $EXTENSIONS ONS$ permits use of HP 64000 format
for defining binary, octal, decimal, and hexadecimal
constants (e.g., OFFH).

HP B3640 Supports the standard constant formats (e.g., 0xff).

To convert: Conversion from HP 64000 format to C constant
format (e.g., OFFH to Oxff) is needed.

String constant allocation

HP 64819 Identical string constants or string constants that are a
subset of another will be mapped into the same
location to minimize space.

HP B3640 Each string constant will have its own memory space
allocated in segmerbnst

To convert: Affects only the assembly code that accesses the
absolute location of the constant.

Memory management

HP 64819 INITHEAP, INCREASEHEAP, NEW, DISPOSE,
MARK and RELEASE are provided for dynamic
memory management.

HP B3640 calloc(), free(), malloc(), realloc(), __getmerghd
others are provided.

To convert: Calls to INITHEAP, NEW, DISPOSE must be
converted to calls tmalloc(), andfree() Be aware
that the calling sequences and the return values are
different in these sets of functions. The heap is
initialized during the provided program setup
procedures for later use bygetmem()

310

Math functions

HP 64819

HP B3640

To convert:

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

ABS, SQRT, SIN, COS, ARCTAN, LN, and EXP are
provided.

abs(), sqrt(), sin(), cos(), atan(), log(), exEhd others
are provided in the standard C arithmetic library.

Calls to ABS, SQRT, SIN, COS, ARCTAN, LN, and
EXP must be converted to calls to the corresponding
function in the C math library.

Passing a byte-sized parameter

HP 64819

HP B3640

Passing a pointer
HP 64819

HP B3640

All signed and unsigned scalar values are extended to a
16-bit value and then pushed on the stack.

All signed and unsigned scalar values are extended to a

32-bit value and then pushed on the stack. (This is a
consequence of 32-bit,rather than 16-bit, integers.)

Pointers are pushed on the stack as 32-bit quantities.

Same as HP 64819.

Passing a floating-point value

HP 64819

HP B3640

The floating point value is extended to a 64-bit double
precision quantity. The address of this 64-bit value is
pushed on the stack. The called routine will copy the
value into its local stack area when the function is
entered.

All floating point values are pushed on the stack as
bit double precision qualities, with the least significa
bytes in lower memory addresses.

311

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

Passing a structure

HP 64819 Structures less than or equal to 4 bytes are pushed on
the stack. Structures greater than 4 bytes will have the
addresses pushed and the content of a structure is
copied by the called function.

HP B3640 Structures are pushed on the stack on word boundaries.
The last word of the structure is passed first.

Passing an array

HP 64819 The address of the array is pushed on the stack.

HP B3640 Same as HP 64819.
Function return values

HP 64819 Values less that or equal to 4 bytes are returned in
register D7. Values greater than 4 bytes are stored at
the result address pushed by the calling routine.

HP B3640 Values less than or equal to 8 bytes are returned in
register DO (and D1 if necessary). Values greater than
8 bytes are stored at the result address pushed by the
calling routine. The result address may point to a static
memory location, an automatic variable, or temporary
space on the stack.

Removing parameters

HP 64819 The calling routine is responsible for removing
parameters from the stack.

HP B3640 Same as HP 64819.

Assembly Code Considerations

Stack frame management is different in the HP 64819 and HP B3640 compilers, as
you can see by the parameter passing differences listed above.

312

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

The assemblers used with each of the compilers are also different. The HP B3641
assembler is used with the HP B3640 compiler.

Refer to the68000 Family Assembler, Linker, Librariamanual for a description of
the differences between the assemblers.

When converting assembly language routines, it is best to surround the routines
with C function headers and tails and embed your assembly language instructions
inside#pragma ASM and#pragma END_ASMdirectives. You may have to

change the instructions which access the parameters and return values, but if you
use the compiler generated symbols (SET equal to A6 offsets), you will be
protected should anything about the compiler ever change. Refer to the "Compiler
Generated Assembly Code" chapter for information about the HP B3640
compiler’s calling conventions.

313

Chapter 13: Comparison to C/64000
Differences from HP 64819 Code

314

Chapter 14: ASCII Character Set

14

ASCII Character Set

315

Chapter 14: ASCII Character Set

Asc Dec Hex Oct Chr |Asc Dec Hex Oct Chr | Asc Dec Hex Oct Chr
nul 0 00 000 \O + 43 2B 053 A 86 56 126
soh 1 01 001 \1 , 44 2C 054 W 87 57 127
stx 2 02 002 \2 - 45 2D 055 X 88 58 130
etx 3 03 003 \3 . 46 2E 056 Y 89 59 131
eot 4 04 004 4 / 47 2F 057 Z a0 5A 132
enqg 5 05 005 \& 0 48 30 060 [91 5B 133
ack 6 06 006 @& 1 49 31 061 \ 92 5C 134 WV
bel 7 07 007 \7 2 50 32 062] 93 5D 135
bs 8 08 010 \b’ 3 51 33 063 A 94 5E 136
tab 9 09 011 '\t 4 52 34 064 _ 95 5F 137
If 10 0A 012 '\’ 5 53 35 065 ‘ 96 60 140
vt 11 0B 013 \f 6 54 36 066 a 97 61 141
ff 12 oC 014 '\r 7 55 37 067 b 98 62 142
cr 13 oD 015 '\1% 8 56 38 070 c 99 63 143
SO 14 OE 016 \1¢’ 9 57 39 071 d 100 64 144
si 15 OF 017 \17 : 58 3A 072 e 101 65 145
dle 16 10 020 \20 : 59 3B 073 f 102 66 146
de1 17 11 021 \271 < 60 3C 074 g 103 67 147
dc2 18 12 022 \22 = 61 3D 075 h 104 68 150
dec3 19 13 023 \2% > 62 3E 076 i 105 69 151
dc4 20 14 024 \24 ? 63 3F 077 j 106 6A 152
syn 22 16 026 \2¢ A 65 41 101 | 108 6C 154
etb 23 17 027 \2r B 66 42 102 m 109 6D 155
can 24 18 030 \30 C 67 43 103 n 110 6E 156
em 25 19 031 \371 D 68 44 104 0 111 6F 157
sub 26 1A 032 \32 E 69 45 105 p 112 70 160
esc 27 1B 033 \3% F 70 46 106 q 13 71 161
fs 28 1C 034 \34 G 71 47 107 r 114 72 162
gs 29 1D 035 \3% H 72 48 110 s 15 73 163
rs 30 1E 036 \3¢’ | 73 49 111 t 116 74 164
us 31 1F 037 \37 J 74 4A 112 u 17 75 165

32 20 040 K 75 4B 113 \% 118 76 166
! 33 21 041 L 76 4C 114 W 19 77 167
" 34 22 042 M 77 4D 115 X 120 78 170
35 23 043 N 78 4E 116 y 121 79 171
$ 36 24 044 @] 79 4F 117 z 122 7A 172
% 37 25 045 P 80 50 120 { 123 7B 173
& 38 26 046 Q 81 51 121 | 124 7C 174
’ 39 27 047 'V R 82 52 122 } 125 7D 175
(40 28 050 S 83 53 123 ~ 126 7E 176
) 41 29 051 T 84 54 124 del 127 7F 177 77
* 42 2A 052 U 85 55 125

316

Chapter 15: About this Version

15

About this Version

How this version of the compiler differs from previous versions.

317

Chapter 15: About this Version
Version 4.01

. Version 4.01

PC Platform Support

The compiler is now available for personal computers running MS-DOS.

Version 4.00

Compilers have been combined

This compiler now generates code for the following Motorola microprocessors:

* 68000

* 68ECO000
* 68HCO00
* 68HCO01
* 68010

* 68302

* 68020

* 68EC020
* 68030

* 68ECO030
* 68040

* 68EC040
* 68331

* 68332

* 68340

« CPU32

e 68881/2 floating-point coprocessors

New product number
The product number has been changed to HP B3640.

For the 68000, the old product number was HP 64902 (for HP 300 hosts) and HP
B1460 (for Sun and HP 700 hosts).

318

Chapter 15: About this Version
Version 4.00

For the 68020, the old product number was HP 64903 (for HP 300 hosts) and
B1461 (for Sun and HP 700 hosts).

For the 68030, the old product number was HP 64907 (for HP 300 hosts) and
B1478 (for Sun HP 700 hosts).

For the 68332, the old product number was HP 64908 (for HP 300 hosts) and HP
B1462 (for Sun and HP 700 hosts).

For the 68040, the old product number was HP 64909 (for HP 300 hosts) and HP
B1463 (for Sun and HP 700 hosts).

New command-line options
The-Wo,m option tells the optimizer to avoid certain optimizations.

The-K option enforces strict section information consistency.

New default environments

All of the default environments supplied with the compiler are now HP
64700-series emulators.

PC-relative libraries

Libraries have been added which access both code and data with PC-relative
addressing modes.

More floating-point support

Support has been added for some specialized 68881 instructions: fint, fetoxm1,
flog2, flognpl, ftentox, ftwotox, fatanh, and fsincos.

Using the correct version of "as68k"

This compiler imnot compatible with version 1.20 of the assembk#8k The
assembler must be version 2.00 or newer. To find out which versam68kis on
your system, type the following:

what /usr/hp64000/bin/as68k

319

Chapter 15: About this Version

Version 3.50

Re-organized manual

TheUser’s GuideandReferencenanuals have been combined and the chapters
have been re-organized a bit.

Version 3.50

Behavior of sprintf

The behavior of the sprintf function is undefined if the destination array is also one
of the other arguments. For example, the valgrofigl is undefined after the
following line of code:

sprintf (stringl, "%s %d", stringl, integerl);

This undefined behavior of sprintf is particularly important because the behavior
has changed between versions of the compiler.

Bit fields

The code generated for bit fields has been greatly improved.

Formatted printing

The formatted printing functions, such as printf and sprintf, use less stack space.
They use 350 fewer bytes than in version 3.40 compilers.

Streams

The ungetc library function can now be used as the first operation on a stream.

Void pointers

Void pointers now may be compared using the relational operators "<", "<=", ">"
and ">=",

320

Chapter 15: About this Version
Version 3.50

Implicit casts

There has been a subtle change in implicit casts in expressions to meet the A
standard. If one operand is long int and the other operand is unsigned int, both are
converted to unsigned long int. For example, consider the operation ((double)(ui +
1)) where ui is of type unsigned int and | is of type long. In version 3.50, the result

is of type unsigned long. In previous versions of the compiler, the result would be
of type signed long.

gsort function
The gsort function is now reentrant.

The variable gsort_buffer has been removed from tlifec.a library. In previous
versions of the compiler, this variable needed to be initialized in the program
startup code. All references tqsort_buffer should be removed.

Environment library modules

Previous versions of the compiler loaded some modulesdmymaeven though
those modules were not used. The library has been restructured so that fewer
modules will be loaded.

You may need to load the environment librawm\(.g twice to resolve all external
references. The linker command files (for example,
/usr/hp64000/env/hp64744/iolinkcom.k) show how this can be done.

Improved performance

The compile speed has been significantly improved.

68040 function return values

Floating point and double function return values are returned in the FPO register.
The FPO register is part of the 68040’s built-in floating point unit.

Floating point code generated for the 68040 will not work on other processors,
such as the 68000, 68020, and 68030, which lack a built-in floating point unit.

321

Chapter 15: About this Version

Version 3.50

New optimizations

Many new optimizations have been added to the compiler. The assembly code
optimizer has been improved as well. LINK and UNLK instructions will be
removed from small functions where a frame pointer is not needed. The assembly
code optimizer is much better at eliminating common subexpressions.

Because of these changes, you may find that you need to use the "optimize for
debugging" option-G) more often than with previous versions of the compiler.

Code sharing

You will see greatly reduced code size if you use sprintf or vsprintf and one of the
file-oriented printf routines (printf, fprintf, vprintf, or vfprintf). These functions
now share much of their code.

The string versions of the printf routines are still reentrant.

__asm ("C_string") function

In addition to théfpragma ASM/END_ASM method of embedding assembly

code in the C source, the C compiler supports tlesm ("C_string") function.

(Itis not a true function, but is treated syntactically as a functiorasm which

may only appear inside a function body just as any other function call might,
outputs one or more lines of assembly to the output compiler-generated assembly
code. The two leading underscores are required and are present to conform to
ANSI name space requirements.

The assembly language instructions are contained @ _thingargument. The
compiler does not check the assembly instructions for correctness. It simply passes
the instructions to the assembler. Thestringargument must contain whitespace

and newlines so assembly instructions will conform to the format and syntax
required by the HP B3641 Assembler.

The__asmfunction has two advantages over the ASM/ENDASM pragmas: first,
it may be used in macro definitions, and second, it is sometimes more expedient for
single instructions.

Modifying function entry/exit code

Three new pragmas are available in this release of the compiler. They are
#pragma FUNCTION_ENTRY "C_string" , #pragma FUNCTION_EXIT

322

Chapter 15: About this Version
Version 3.50

"C_string" , and#pragma FUNCTION_RETURN "C_string" . These pragmas
allow you to insert embedded assembly code in the entry and exit code of a
function. They are useful for monitoring and debugging function calls.

323

Chapter 15: About this Version
Version 3.50

324

Index

* (indirection operator)
Seepointers, dereferencing
68881/2 code
Sedfloating point unit

A5 relative addressing modds,8
abort (standard C functior)33
abs (math library function},42
absolute addresses, specifying in SECTION pradi,
absolute addressing modé&4,/
accessing near locations, PC relative addressity,
accessing on-line command descriptions, not@ 6A28
acos (math library function203-204
add32 (run-time libraryR75
add32z (run-time libraryR75
add64 (run-time libraryR76
add64p (run-time libraryR77
add64pp (run-time libraryR77
add64z (run-time libraryR78
addresses, absolufl,2
addressing mode$14-119
A5 relative,118
ab relative exampld,6
absolute117
calling libraries 131
libraries,130, 260
other considerationg22
PC relative 117
PC relative exampld,7
short vs. longl16
specifying,14-18, 115
when to use whict,15
ALIAS pragma63
Seethe on-line man page
alignment considerations, internal d&4;-56
ANSI standard37—-42

325

Index

embedded assembly language,
ar68k librarian36
arguments
optional,216-217
arithmetic data types, internal data representadién} 7
array
of pointers to function®55
arrays
alignment54, 56
initializing with strings 50
internal data representatictg
as68k assemble3p
asin (math library function03-204
__asm () functiong4, 89
ASM pragmag2
assembler (as68k) and C compilatid8,
assembly languag69-90
in the C source file81-90
symbol name%1-63
assert (support library functior)43
assert.h, include filg,34
assignment compatibilityy7
between pointer and integegs,
between pointer and pointess,
atan, atan2 (math library functio)3-204
atexit (support library function},44
atof (support library function®10
atoi, atol (support library function,11-212
auto, storage class specifie,
AXLS (Advanced Cross Language Syste®i);42

B base pagd,15
creating a second 18

base page and addressing moti&4,
behavior of exit and _exit when using ci223
behavior of math library function293
big switch tables, (command line optio4,
binary search, bsearch routiid5-146
bit fields, internal data representatiég,
branch shortening (peephole optimizatid§)1, 104
branches, PC relative addressiht4
bsearch (standard library functiod¥5-146

326

Index

buffering of output stream&86
bufsiz, macro defining I/O buffer siz230
byte ordering, internal data representatix58

C compilation overview31-42
C compiler (ccom68xxx)35
Seethe on-line man pages
C language
ANSI extensions37-42
translation limits42
C preprocessor (cpp68i35
C/64000 comparison
68000 specific option806—307
general options302-305
calling conventions (stack frame managemeiat),76
calloc (support library function},74-175
casts37, 145, 161, 189
cc68k
option summary4-5
cc68k (compilation control routine}s
See alsdhe on-line man pages
ccom68xxx C compilei3s
ceil (math library function)153
character data type47
characters
multi-byte, 172
_clear_fp_status (math library functioh6—160
clear_screen (env. dependent library functiag},
clearerr (standard /O library functiod)s0
close (environment-dependent library functi@82
clst68k lister 36
cmp32 (run-time library)278
cmp32r (run-time library)278
cmp64 (run-time library)279
cmp64r (run-time library)279
coalescing (optimizationp6
compilation control routine (cc68K35
compiler featuregy
compiler generated assembly cdbi@90
compiler generated symbo&3
config.EA, emulator configuration fil@28
configuration files for HP emulator228

327

Index

const type modified41, 122
const, default constant section nafkl
constant folding (optimization®3
constants

string,50
constants, multi-charactet7
constants, strin@6
constants, where to loat23
conversion (run-time library) routine&72
cos (math library functionp03-204
cosh (math library function05
cpp68k C preprocess@s
crtO program setup routin223
crtl program setup routin223

behavior of exit and _exit when usir&f.3
ctype.h, include file134

D datainitialization]122
data motion optimizationd04
data types
arithmetic 44-47
character47
derived 48-53
floating-point,44
integral,44
volatile modifier,124-125
data, default data section narh&l
debug (run-time library) routine290
debug code, maintaining despite optimizatitdn
debug directive4
debug error messages (run-tinz§3
default modes of operatioh57
default modes of operation in librarié&7
default linker command file, iolinkcom.R27
default section name$11
denormalized number294
dependencies, execution environmaat,
dereferencing
Seepointers, dereferencing
dereferencing, definition 080
derived data types, internal data representadi®nr3
destination swapping (peephole optimizatidi®3

328

Index

diagnostics, assert macda3
display_message (display run-time error messag2s),
div (math library function)147
div32 (run-time library)279
div32r (run-time library)280
div32z (run-time library)280
div64 (run-time library)280
div64p (run-time library)281
div64pp (run-time library)281
dive4r (run-time library)282
div64rp (run-time library)282
div64rpp (run-time library)283
div64z (run-time library)283
div_t type (defined in stdlib.h},35
DOS command<

double data type, examples 46
double-precision (IEEE) floating-point formd6
dtof (run-time library) 272

dtoi (run-time library)272

dtoui (run-time library)273
dynamic allocation229

embedded assembly language
in C source81-90
embedded systems consideratidi@,
embedded systems with mass storags,
emulation monitor108
emulator configuration file€28
emulator monitor program
Seemonitor program
END_ASM pragmag2
enumeration types, internal data representafidn,
env, section name of environment-dependent routkass,
env.a, environment-dependent libra2g26, 229-230
environment26
environment-dependent libraries, modifyi2§;-26
environment-dependent routiné2, 108, 133, 221-252
errno (support library function},34, 179
error trapping226

329

Index

errors
compile-time 253-264
multiple declarations] 11
run-time,265-270
escape sequencés)
examples, alignmens6
exceptions226
exec_cmd (env. dependent library functi@83-234
execution environmeng6
See alsdibraries
execution environment dependencis,
execution environment$p8
exit and _exit, how crtl affects behavid23, 235
exit, _exit (env. dependent library functio@B5
exp (math library function)148
exponent field45
expressions
constant folding acros93
in a logical context (optimization5
simplification (optimization)94
extended character séf,
extensions (ANSI) to (3742
extensions, file namé,
external declaration88, 62
initializing, 122
warning about113, 263
external declarations, section name chéai,
external definitions112
external identifiers
length of 42
external reference86
external variables
initializing, 123

fabs (math library function},53

fclose (standard 1/O library functior)49
features of the compileiy

ferror, feof (standard 1/O library functiorf)50
fflush (standard I/O library function}49

fgetc (standard I/O library function)63
fgetpos (standard 1/O library functiorf)50-152
fgets (standard I/O library functior)64

330

Index

fields in floating-point data typed4
file extensions6
file names

extensionsg
file output,186
files

emulator configuratiorg28

include (header134

linker command227

program setup routines (crt0, crt223
float data type, examples @b
float.h, include file134
floating point unit156—160
floating point unit (68881/246

precision of real number operatiods$,

register usag&,7—79

routines expanded in-linép4
floating-point (run-time library) routineg75
floating-point data typegi4
floating-point error functionsl, 34
floating-point error messages (run-tim296
floating-point formats (single- and double-precisiaty),
floor (math library function)153
fmod (math library function)153
fopen (standard I/O library functior)54—155
fopen_max macro (max. number of I/O control blockR3}))
format error exceptior26
FP Unimplemented Data Type tr@94
fp_control.h, include file134, 156
_fp_error (math library function},56-160
fp_traphandler, environment-dependent routés
fprintf (standard I/O library function},81-185
FPU,226
fputc (standard 1/O library function)86—187
fputs (standard I/O library functior88
fraction field,45
frame pointer, stack frame managemeért,
fread (standard I/O library functiori)61
free (support library function},74-175
frem (math library function)153
freopen (standard I/O library functiod4-155

331

Index

frexp (support library function,62
fscanf,192—-196
fseek (standard 1/O library functiorf)50-152
fsetpos (standard I/O library functiod0-152
ftell (standard I/O library function},50-152
ftod (run-time library)273
ftoi (run-time library),273
ftoui (run-time library) 274
function entry and exit,04
function exit,70
function prototypes
example38
how to use37
parameter passing examps,
function results70
FUNCTION_ENTRY pragmag6
FUNCTION_EXIT pragma86
FUNCTION_RETURN pragm&86
functions
array of pointers td@55
calls,64
implementing as interrupt routine7
in-line expansion ofl.04
fwrite (standard I/O library function},61

G generate code for 68881/2 (command line option)
libraries included by default linker command fil81
generate code for 68881/2 (command line option)
run-time routines vs. 68881/2 instructioh82
generate code for 68881/2 (command line option)
Sedfloating point unit
precision of operationgd6
precision of real number operatioas,
generate debug code (command line optidd),
generate run-time error checkir@g)
generic pointersj0
_get_fp_control (math library functior§56—160
_get_fp_status (math library functiodh6—160
getc, getchar (standard 1/O library functiot§3
getenv (standard C functiori)33
_getmem (env. dependent library functid@zf9
rewriting, 229

332

getmem (env. dependent library functia2f6—237
gets (standard I/O library functior)64
getting started]—-28

header files134
memory.h236, 248
simio.h,230
hex escape sequencss,
hooks for execution environme26
HP-UX commands?

I/O, eliminating,128
IDATA section,113
in-line code for 68881/2

Sedfloating point unit
in-line expansion of standard functiod®4
include files,113, 134

conflict with SECTION pragmal, 13

memory.h236, 248

simio.h,230
initialized data, special consideratiohi&2
initializing arrays 50
initsimio (env. dependent library functio238
input and output229
installation,7—9
integers, assignment compatibili87
integral data typegi4, 134
internal data representatiat8—58
interpolate (library routine},65
INTERRUPT pragmal 27

See als@ragmas
interrupt routines

implementing functions ag27
ioconfig.EA, emulator configuration fil@28
iolinkcom.k

default linker command fil&€27
isalnum (support library function}66—-167
isalpha (support library function)66—-167
iscntrl (support library function),66—167
isdigit (support library function},66—167
isgraph (support library function)66—-167
islower (support library function},66—167

Index

333

Index

isprint (support library function},66—167
ispunct (support library function)66—167
isspace (support library functior)6—167
isupper (support library functior)56—-167
isxdigit (support library function166—167
itod (run-time library)274

itof (run-time library) 274

J jmp_buf type (defined in setjmp.H)34
jump shortening
Seebranch shortening

K Kill (environment-dependent library functio239

L |_tmpnam, standard C definitioh33
labs (math library function},42
|d68k linker/loader36
Idexp (support library function},62
Idiv (math library function)147
Idiv_t type (defined in stdlib.h},35
lib as a destination with -ri,7
lib, run-time library section namé31
libc, support library section nam&32
libm, math library section nam#32
librarian, C compilation overviev6
libraries,129-220
addressing modesy/
default modes of operatioh57
environment-dependent section na@i&?
list of all routines,136
math,46, 131
names of131
nonreentrant routine$26
note on differing results between 68881/2 and 68080,
PC-relative, 130
position independent,30
purpose of environment librarie26
run-time,46, 131-132
support131-132
support routines not provideti33
trap handler routine for the 68881256
limits, translation42
limits.h, include file 134

334

Index

linkcom.k, linker command file (no I/0227
linker (Id68k) and C compilatior36

linker command file (default), iolinkcom.R27
lister (clst68k)36

literals, string96

local variables, stack space alloca@d,
locale.h, include file134

localeconv (support library functior)68—172
locals, how the compiler accessgs,

log, log10 (math library function},73

long vs. short addressing mod&$6

longjmp (support library function},99-200
loop construct optimizatior®5

Iseek (environment-dependent library functi@)0—241

macros
embedding assembly language,
makefiles, using with cc681-22
malloc (support library function},74-175
man, on-line command descriptio23-28
mass storage, embedded systems W28,
math library,132
behavior of function293
descriptions141
section namel.32
math.h, include file105-106, 134
MB_CUR_MAX macro,172
mblen (support library function),76—177
mbstowcs (support library functior)76—177
mbtowc (support library function),76-177
memchr (support library function).,/8
memcmp (support library functior)78
memcpy (support library function),/8
memmove (support library functiorf)78
memory access (forced by volatil&p4-125
memory.h, include file236, 248
memset (support library functiori)78
modes of operation in libraries, defadlf7
modes of operation, defaulth7
modf (support library function},62
mon_stub.o file23
mon_stub.s226

335

Index

monitor program127

monitor stub108, 127

mul32 (run-time library)283

mul32z (run-time library)284

mul64 (run-time library)284

mul64p (run-time library)284

mul64pp (run-time library}285

mul64z (run-time library)285

multi-byte characterd,72

multi-character constant?

multiple symbol declarations, section name chétk,
multiplication simplification optimizatiorl.00

names
Seesymbol names
NaN, 45
nil pointers
Seenull pointers
nonreentrant library routine$26
normalized numberg5
Not a Number (NaN¥5
note on
accessing on-line command descriptid@¥;28
notes
absolute addresses in SECTION pragii2,
changing string constants), 97
differing results between 68881/2 and 68000 librafibg,
environment-dependent library functioag,1
nested SECTION-SECTION UNDO paifis],3
PC relative writes118
universal optimizations examplé&s
using short addressing mod&6
NULL character
in initialized arrays50
in strings,50
null pointers 80, 268

on-line command descriptions (HP-UX man commakd),28
open (environment-dependent library functi@#$2—-244
operating modes in the, defaul§7

operating modes, defaultb7

operating system commands,

336

Index

operation simplification (optimizationy4
opt68xxx peephole optimize3h
optimizations91-106
automatic allocation of register variabl@s,
constant folding93
expression simplificatiorf4
expressions in a logical conte®f
function entry and exit,04
in-line expansion of functiong04
loop construct95
maintaining debug code durintQ0
multiplication simplification 100
operation simplification94
switch statemenf6
those activated with the command line opti@B-106
time vs. space€98
universal (always performed)2-97
See alspeephole optimizations
option summary4-5
order of evaluation, maintaining3
overview of C compilatior31-42

padding
internal data representatic
structurespl

parameters
how the compiler accessé&8
passing of (stack frame managemesii),
shortening of8
widening of,38, 55, 67

parenthese$3

PC relative addressing modé47

PC relative writes, note oh18

peephole optimization§00-104
branch shortenindg,01
branch shortening/simplification optimizatiod€4
data motion optimizationd 04
destination swapping,03
effect of volatile data ori,04
redundant jump eliminatior102
redundant register load eliminatidi1
redundant test removdlQ3

337

Index

peephole optimizations (continued)
register variable reallocatiohQ3
source swappindg,03
strength reductior,02
tail merging,101
unreachable code eliminatiat)2
peephole optimizer (opt68xxx35
perror (standard 1/O library functiorf)79
pointers
assignment compatibility37
dereferencingg0, 259
void, 37
pos_cursor (env. dependent library functi@#5
position independent cod&l7
pow (math library function}180
pragmas38
ALIAS, 63
ASM and END_ASM82
FUNCTION_ENTRY,86
FUNCTION_EXIT, 86
FUNCTION_RETURN86
INTERRUPT,127
SECTION,111
Seethe on-line man pages
precision of real number operatiods$,
prefixes for assembly language symb6ls;63
preprocessor
C,35
C,89
printf (standard 1/O library function},81-185
prog, default prog section nanid,1
program setup routine®23
differences between crt0 and cr223
linking the, 227
prototypes
Seefunction prototypes
ptrdiff_t type (defined in stddef.h) 35
ptrfault (run-time library)291
putc, putchar (standard 1/O library functioh®6—187
puts (standard I/O library functior)88

Q gsort (support library function),89

338

Index

RAM and ROM consideration$22
rand (support library function),89-190
rangefault (run-time library290
rangefaultu (run-time libraryp90
read (environment-dependent library functi@®g—247
real number operations, precision 4%,
realloc (support library function),74-175
redundant jump elimination (peephole optimizatid:OR
redundant register load elim. (peephole optimizatibdy,
redundant test removal (peephole optimizatibO}
reentrant codel, 26

functions returning structure8y
register usag€,7-79
register variables

automatic allocation (optimizatiorg6

buffering registers used f@&8

how the compiler assigns objects8,

reallocation (peephole optimizatiod)3
register, storage class specifiés,
relocatable section§11-113
remove (support library function}91
rename (standard C functiod33
requirements, P®,
return valuesg6, 70
rewind (standard 1/O library functior50—-152
run-time error checking, generating code &fr,
run-time libraries, callingl7
run-time library,132

description271-292

See alsdibraries

precision of real number operatiods,

section namel31

sbrk (environment-dependent library functio2d8
sbrk, operating system library functid@29
scanf (standard I/O library functiorf)92—196
scope
assembler naming2
second "base page", using A5 relative modes to crEkge,

339

Index

section nameg,11-113
environment-dependent routines (erky2
external functions or datall
math and support libraries (libm & libd32
multiple declarations of the same symHdi1
run-time library functions (lib)131

SECTION pragmalll

SECTION-SECTION UNDO pairs, note on nesteti3

_set_fp_control (math library functiorf)56—-160

setbuf, setvbuf (standard I/O library functiohd,7—198

setjmp (support library function}99-200

setjmp.h, include file134

setlocale (support library functiord01-202

shared programs, advantage of A5 relative addreskig,

short vs. long addressing mod&s6

shortening of parametei®3

side effectsg9, 97

sign bit field,44

signal.h, standard include fil&33

signed integral data type®}

simio.h, include file230

simple example program, compiling and executirdy,

sin (math library function203—-204

single-precision (IEEE) floating-point forma

sinh (math library function05

size_t type (defined in stddef.135

source swapping (peephole optimizatid)3

specify addressing modes (command line option)
checking for multiple declarations of same symhball

sprintf (standard 1/O library function}31-185

sqrt (math library functiong06

srand (support library function)}39-190

sscanf (standard 1/O library functioilf2

stack frame managemeft—76

standard functions, in-line expansiag4

standards
SeeANSI standard

startup error messages (run-tinZg9

startup, library routine called by cri223

static datal12, 123

340

Index

static variable%2

const41l

initialized arrays50
stdarg.h, include filel 35
stddef.h, include filel135
stdin, stdout, stderr strean223
stdio.h

definitions and functions not provideti33

include file,135
stdlib.h

functions not supported 33

include file,135
strcat (support library function207—209
strchr (support library function207-209
strcmp (support library function07—209
strcoll (support library function07-209
strcpy (support library function207—209
strcspn (support library functiordp7—209
streams

buffered binary 1/0 to161

closing and flushingl49

EOF,187

failure to close198

file buffering,197

formatted print to181

formatted read from 92

opening,154

print string t0,188

printing character td,86

push character bacR15

reading characterdf3

standard erro11.86

status inquiries] 50
strength reduction (peephole optimizatick2
strerror (support library function207—-209
string.h, include file105-106, 135
strings

literals,112

and character pointer&7

coalescing (optimization96

constantb0

341

Index

strings (continued)
constants, optimizatio®6
definition,50
escape sequencés)
example declaration,18
initializing an array50
literals in CONST sectiori11
printing to a string181, 218-220
side effects97
strip symbol table information optio64
strlen (support library function207-209

strncat (support library functiorp7-209
strncmp (support library functiordp7—209
strncpy (support library function207—209
strpbrk (support library function207-209
strrchr (support library function2,07-209
strspn (support library functior07-209
strstr (support library function207-209
strtod (support library function210
strtok (support library function07-209
strtol, strtoul (support library functior11-212
structure resultf6
structures

internal data representaticsi,

size of 51
strxfrm (support library function),76-177
sub32 (run-time library286
sub32r (run-time library286
sub32z (run-time library86
sub64 (run-time library287
sub64p (run-time libraryR87
sub64pp (run-time library288
sub64r (run-time library288
sub64rp (run-time library88
sub64rpp (run-time library289
sub64z (run-time library289
summary of cc68k optiond;-5
support libraries, callind,7

342

support library132
descriptions141
routines not provided,33
section namel 32
switch statement optimizatio86
symbol names
assembly languagé1-63
situations where C symbols are modifiéd,
system (standard C functioi33
system requirements (P@),
systemio, environment dependent 1/O functi@2g

table
binary search routind45-146
character classificatiod66
lookup and interpolatiori,65, 213
sort routine 189
tail merging (peephole optimizatiorf))1
tan (math library functiong03-204
tanh (math library function05
TBL instruction,106, 165, 213
temporary storage, use of the sta&,
time vs. space optimizatiof8
time.h, standard include fil&33
tmp_max, standard C definitiob33
tmpfile (standard C function),33
tmpnam (standard C functiori)33
tolower, _tolower (support library functiorp14
toupper, _toupper (support library functiokl4
translation limits42
trap handler routine for the 68881/2 librari286
trap vectors226
types
Seedata types

UDATA section,113, 263

uitod (run-time library)274

uitof (run-time library) 275

unary plus (+) operato®3

underflow threshold?94

undo, form of the section pragnid,3
ungetc (standard /O library functior215

Index

343

Index

uninitialized data optiori, 22
unions

internal data representatioss,

size of 48
unlink (environment-dependent library functio®8—249
unreachable code elimination (peephole optimizatibdd,
user-defined option (C/64000 only5

V va_arg, va_end, and va_start maci@§
va_list,216-217
va_list type (defined in stdarg.H)35
variable argument list®16-217
variable name$2
symbol name$1-63
vector address, functions as interrupt routicg,
void type,39
assignment compatibility of pointef&]
volatile type modifier40, 124-125
effect on peephole optimizatiorif)4
vprintf, vfprintf, vsprintf (std. I/O library functiong18-220

W warnings, compile-time262
uninitialized datal22
wchar_t type (defined in stddef.l)7, 135
wcstombs (support library functior])76-177
wctomb (support library function),76-177
white spaceg9
wide characterg}7
widening of parameter8g, 67
write (environment-dependent library functiop$0-252
writes, note on PC relativé18

344

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau'’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP's prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

	Features
	Contents
	Quick Start Guide
	Getting Started

	Compiler Reference
	C Compilation Overview
	Internal Data Representation
	Compiler Generated Assembly Code
	Optimizations
	Embedded Systems Considerations
	Libraries
	Environment-Dependent Routines
	Compile-Time Errors
	Run-Time Errors
	Run-Time Library Description
	Behavior of Math Library Functions
	Comparison to C/64000
	ASCII Character Set
	About this Version

	Index
	Certification and Warranty

