User’s Guide

HP B3641 68000 Family
Cross Assembler/Linker/
Librarian

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damagesimection

with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1988, 1990, 1991, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

IBM is a registered trademark of International Business Machines
Corporation.

MS and MS-DOS are registered trademarks of MicrosofipGration.
Windows is a trademark of Microsofto@oration.
Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure bythe U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1 64870-90902, March 1987 E0387
Edition 2 64870-90902, August 1987 E0887
Edition 3 64870-90902, April 1988 E00488
Edition 1 64874-97000, June 1989

Edition 4 64870-97001, December 1989
Edition 2 64874-97002, September 1990
Edition 5 64870-97002, October 1990
Edition 6 64870-97004, October 1991
Edition 3 64874-97004, October 1991
Edition 1 B3641-97000, -97001, -92000, May 1993
Edition 2 B3641-97002, September 1993

Certification and Warranty

Certification and warranty information can be found on the pages before the
back cover.

In this Book

If you will be using the assembler with tbeG8kcompiler, you may not need
to use this manual, becaus#8kcalls the assembler with thp@ropriate
options.

This book is divided into two parts:
Quick Start

This part contains:

* installation instructions

* a brief tutorial

* printed copies of the on-line manual pages

Reference

This part contains detailed reference information about the software,
including:

» descriptions of listing formats
» details about assembler, linker, and librarian operation

» descriptions of assembler error messages

This book doesotdiscuss how to use assembly language.

Contents

Part 1

Quick Start Guide

Getting Started

Installing on an HP Workstation 2
Installing on a Sun Workstation 2
Installingon a PC (MS-DOS) 2
Installingon a PC (Windows) 3

Description of the Example Program 4

The "mov_mesg.s" Program Module 4
The "transfer.s" Program Module 7
The "delay.s" Program Module 8

Assembling the Program Module Source Files 9
Creating an Example Library File 15

Linking the Program Module Relocatable Object Files
Linking the Object Modules 18

Command Syntax

File Extensions 25
as68k(1) 26
d68k(1) 32
ar68k(1) 44

17

Vi

Part 2 Reference

3 Assembler Introduction
as68k Features 52

Assembler Statements 53

Label Field 54
Operation Field 54
Operand Field 54
Comment Field 54

Statement Examples 55

Instruction Staament 55
Directive Statement 56
Macro Statement 56
Comment Statement 56

Return Codes 57
Assembler Syntax 57
Assembler Character Set 58

Symbols 59

Reserved Symbols 60
Location Counter Symbol (*) 61
Symbol Types 61

Constants 62

Integer Constants 62
Floating-Point Constants 63
Character Constants 64

Expressions 66

Assembler Listing Description 68

Assembler Listing 68
Cross Reference Table Format 70

Vii

4 Instructions and Address Modes
Instructions 73

Qualifiers 74

Scope Qualifiers 74
Floating Point Qualifiers 75

Mnemonics 75

Floating Point Mnemonics 80
Variants of Instruction Types 83
Instruction Operands 84
Registers 84

Address Modes 88

The 68000 Model 90

The 68020 Model 91

The 68332 Model 92

Explanations of Address Modes 93

68881 Floating-Point @processor and Address Modes 98
68040 Floating-Point Unit and Address Modes 99

Assembler Syntax for Effective Address Fields 100

Rules of Assembler Syntax 100
Operand Syntax and Addressing Modes 102
How Code is Generated for Forward Defined Symbols 111

User Control of Address Modes 112

A2-A5 Relative Addressing 114

Address Register Indirect with Displacement Modes 114
Advantages of A2-A5 Relative Addressing 115

viii

5 Relocation

Program Sections 125

Common vs. Noncommon Attributes 125

Short vs. Long Attributes 126

Section Alignment Attribute 126

Section Contents Attributes 127

Other Things to Know About Sections 129

How the Assembler Assigns Section Attributes 130

Linking 131
Relocatable vs. Absolute Symbols 132
Relocatable Expressions 133

Label Alignment 135

Assembler Directives

Notation 141
ALIGN 142
CHIP 143
COMLINE 145
COMMON 146

DC 148
DCB 151

DS 153

ELSEC 155

END 156

ENDC 157

ENDR 158

EQU 159

FAIL 161

FEQU 162

FILE 164

FOPT 165

FORMAT, NOFORMAT 166
IDNT 167

IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE 168
IFC,IFNC 169

IFDEF, IFNDEF 171
INCLUDE 172
[NOJINTFILE 173

IRP 174
IRPC 175
LIST 176
LLEN 177
MASK2 178
NAME 179
NOLIST 180
NOOBJ 181

NOPAGE 182
OFFSET 183

OPT 185

ORG 191
PAGE 193
PLEN 194
REG 195
REPT 196
RESTORE 197
SAVE 198
SECT, SECTION 199
SET 201

SPC 202

TTL 203
XCOM 204
XDEF 205
XREF 206
Macros

Macro Heading 211

Macro Body 212

Macro Terminator 213

Macro Call 214

LOCAL - Define Local Symbol 217
MEXIT - Alternate Macro Exit 219
Macro Parameter @int 220

Structured Control Statements

Structured Control Expssions 223

FOR..ENDF loop 225

IF ... THEN ... ELSE ... ENDI Conditional Execution
REPEAT ... UNTIL Loop 229

WHILE ... ENDW Loop 230

BREAK - Premature bop Exit 231

NEXT - Proceed to Next Loop Iteration 232
Structured Directive Nesting 233

Structured Directive Listings 234

Linker/Loader Introduction
Linker/Loader Features 237
Linker/Loader Operation 237

Program Sections 238

Absolute Section 238
Relocatable Section 238
Noncommon Section 239
Common Section 239
Short Section 239

Long Section 240
Section Alignment 240
Section Contents 240

227

xXi

10

HP Section Type 241

Memory Space Assignment 241
Incremental Linking 243
Relocation Types 243

Generating HP Format Absolute Files
Return Codes 245

Loader Listing Description 245

Loader Listings 245

Linker/Loader Commands

Summary of Commands 250
Command Format 253
Processing Order 253

; (Comment) 255

(Continuation) 256
ABSOLUTE 257

ALIAS 259
ALIGN{MOD} 260
BASE 261

[UPPER]CASE, [LOWER]CASE 262
CHIP 264
COMMON 266

CPAGE 267
[NOJDEBUG_SYMBOLS 268

END 269

ERROR, WARN, NOERROR 270
EXIT 271

EXTERN 272

FORMAT 273

INCLUDE 274

INDEX 276

Purpose of the INDEX Gumand 277
INITDATA 278

[NOJINTFILE 281

244

Xii

11

LIST 282

LISTABS 285

LISTMAP 286

LOAD 287
LOAD_SYMBOLS 289
MERGE 290

NAME 292

NLIST 293

NOPAGE 295
ORDER/SORDER 296
PAGE 299

PUBLIC 300
RESADD/RESMEM 302
SECT 304

SECTSIZE 305

START 306

Librarian Introduction

Librarian Features 309
Librarian Operation 310
Librarian Function -- Overview

Command Syntax 316

Use of Special Characters 316
Blanks 317

Command File Comments 317
Module Names 317

Return Codes 318

Library Listing Format 318

310

Sample Test Program Description

Example Librarian Listing 319

Description of Example 320

318

Xiii

12

Brief Format Example Library Listing 320
Brief Format Listing Description 320

Librarian Commands

Command Summary 322

ADDLIB 323
ADDMOD 324
CLEAR 325

CREATE 326
DELETE 327
DIRECTORY 328
END, EXIT, QUIT 330
EXTRACT 331
FULLDIR, LIST 332

HELP 333
OPEN 335
REPLACE 336
SAVE 337

Assembler Error Messages
Loader Error Messages
Librarian Error Messages

Error Message Formats

Error Classes 366

Warnings 366
Errors 366
Fatal Errors 367

Xiv

Interactive and Non-Interactive Conditions 368

Converting to HP B3641 Assembly Language
Converting HP 64845 Assembly Language Programs
Converting HP 64845 Pado-Ops 373

Converting HP 64845 Operands 377

Converting Character Constants 378
Converting Logical Operators 378

Converting HP 64845 Macros 379

Macro Headings 379

Unique Label Generation 379
Conditional Assembly Within Macros 380
Indexing Parameters 381

Converting HP 64845— Miscellaneous 382
White Space 382

Compatibility with older HR64870 and HP 64874 Files

Relocatable and Library Files 383
Assembly Source Files 384

About this Version

Version 2.01 386

PC Platform Support 386
Re-organized manual 386
Version 2.00 386
Combined products 386
New features: as68k 386
New features: |[d68k 388

370

383

Part 1

Quick Start Guide

Part 1

Getting Started

A B

Getting Started

Installing and using the assembler, linker, and librarian.

Getting Started

. Installing on an HP Workstation

This software uses standard HP-U X installation procedures. Look for
installation instructions in yolP-UX System Administratiaonanual.

Installing on a Sun Workstation

Look for installation instructions in theoftware Installation Guidevhich is
packaged with the tape.

Installing on a PC (MS-DQOS)

To install from MS-DOS:
1 Insert the assembler disk into the floppy disk drive.
2 Enter (if the floppy drive is drive A:)

a\install

Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\hpas68k. The default installation path is shown wherever files are
discussed in this manual.

Getting Started

Installing on a PC (Windows)

To install from Microsoft Windows:

Start MS Windows in the 386 enhanced mode.

Insert the assembler disk into floppy disk drive A or B.

Choose the FileRun... (ALT, F, R) command in the Windows Program
Manager. Enter "a:\setup” (or "b:\setup"if you installed the floppy disk into
drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\hpas68k. The default installation path is shown wherever files are
discussed in this manual.

Setup.exemay not be included with some versions of the assembler. In that
case, open a DOS window and urs&tall.bat.

Getting Started
Description of the Example Program

Description of the Example Program

The example programs in this chapter have been included witt68000
Family Assembler/Linker/Librarian software and can be found in directory:

/usr/hp64000/demo/languages/B3641 (UNIX)

or
\hpas68k\examples (DOS)

The examples in this manual assume you are using a UNIX system. If you are
using DOS, you may need to adjust some of the path names and file
extensions.

The example program moves data from three diffemegrnory locations to a
fourthmemory location. The program uses three modules to show how
several program modules are linked together.

Themov_mesg.program module is made up of a data table which contains
the messages to be transferred, the main program wilictefine a macro

and call 'transfer" and "delay" subroutines, and a RAM location where the
messages will be transferred.

Thetransfer.s program module contains the "transfer" subroutine which is
called by the main program. Thansfer.s subroutine Wi transfer a message
from the data table to the destination memory location. The address of the
message to be transferred will be passed in register A0, and the length of the
message will be passed in register DO.

Thedelay.sprogram module contains the "delay"' subroutine which is called by
the main program. Theelay.ssubroutine W delay for the number of
seconds which are passed in register DO.

Thedelay.o(delay.obj) and theransfer.o (transfer.obj) relocatable object
files will be placed into an example library file callexlib.a (exlib.lib).

The 'mov_mesg.s" Program Module

The example program of this chapted move three messages which are
contained in a data table to another memory location. The three messages are
labeled MESSAGE_1, MESSAGE_2,and MESSAGE_3. The ends ofthe
messages are also labeled so that the progihknew how many words of

data to transfer. The destination memory location is labeled VIDEO_RAM.

Getting Started
Description of the Example Program

XDEF START,VIDEO_RAM ;External definitions.
XREF TRANSFER,DELAY ;External references.

SECT TABLE ;:Section name.

MESSAGE_1 DC.B 'The example program moves’
‘this and two additional ’
‘messages to a RAM location. ’
MESSAGE_1_END
MESG_1 LENGTH EQU MESSAGE_1_END-MESSAGE_1-2

DC.B
DC.B

MESSAGE_2 DC.B 'The first message is’
DC.B ‘’displayed for a medium’
DC.B ’length of time.’

MESSAGE_2_END

MESG_2 LENGTH EQU MESSAGE_2_END-MESSAGE_2-2
PAGE

MESSAGE_3 DC.B 'The second message is’
DC.B ‘’displayed for a shorter’
DC.B ’length of time.’
MESSAGE_3_END
MESG_3 LENGTH EQU MESSAGE_3 END-MESSAGE_3-2

SECT M_CODE ;Section name.

START MOVE #STACK,A7 ;Initialize user stack.

SET_UP MACRO ADDRESS,LENGTH,COUNT ;Macro definition.
BSR CLEAR ;Clears the message destination.

MOVE #ADDRESS,A0 ;Address parameter passed in AO.
MOVE #LENGTH/2,D0 ;Length parameter passed in DO.
BSR TRANSFER

MOVE COUNT,DO ;Count parameter passed in DO.
BSR DELAY

ENDM ;Macro terminator.

PAGE

SET_UP MESSAGE_1,MESG_1 LENGTH,#10

REPEAT SET_UP MESSAGE_2,MESG_2_LENGTH,#7 ; Macro calls.
SET_UP MESSAGE_3,MESG_3_LENGTH#4
BRA REPEAT

CLEAR MOVE #VIDEO_RAM,A0
MOVE #30H,D0O ;Clear 30H words.
AGAIN MOVE #2020H,(A0)+ ;ASCII spaces are moved.
DBEQ DO,AGAIN
RTS
COMMON DATA ;Common section hame.
VIDEO_RAM DS.W OFFH ;Message destination.
STACK DSW 1

END START ;Execution to begin at START (load address).

Figure 1. The 'mov_mesg.s" Source File

Getting Started

Description of the Example Program

The example programilm(1) move the first message to VIDEO_RAM, where

it will be displayed for about 10 seconds, (2) move the second message to
VIDEO_RAM, where it is displayed for about 7 seconds, and (3) move the
third message to VIDEO_RAM, where it is displayed for about 4 seconds. At
this point the programil oop back and display the second and third
messages, one after the other, repeatedly.nidve mesg.source file is

shown in figure 1.

External Definitions.

The first thing thenov_mesg.program module does is define the symbols
which can be referenced by other program modules. These definitions are
made with the XDEF assembler directive. The label VIDEO_RAM is defined
as an external because thensfer.s program module W reference the
destination memory locations. The label START is defined as an external for
program debugging convenience.

External References.

The external reference (XREF) assembler directive allows you to use labels
which are defined in other program modules. Inrtfoyy_mesg.gprogram

module, the BSR TRANSFER and the BSR DELAY instructions use labels
which are defined in thansfer.s anddelay.s program modules, respectively.
Therefore, TRANSFER and DELAY must be declared as external references.

The TABLE Program Section.

The TABLE program section contains the @$(by default) bytes of the

three messages which are written to the destination memorylocation. The
DC.B assembler directive is used to define the ASCII data. The lengths of the
three messages are assigned to labels with the EQU assembler directive.

The M_CODE Program Section.

The executable code of tiheov_mesg.gprogram module is found in the
M_CODE section. After the user stack pointer is loaded, the SET_UP macro
is defined. The three parameters in the macro definition (ADDRESS,
LENGTH, and COUNT) are assigned actual values in the macro calls. Each
time the macro is called, assembly code is generated which branches to the
CLEAR, TRANSFER, and DELAY subroutines. (Rareters are moved into
registers before the TRANSFER and DELAY branches.) After the macro is
defined, it is called three times. The CLEAR subroutine, which moves ASCII

Getting Started
Description of the Example Program

spaces to the destination memory locations, appears at the end of the
M_CODE program section.

The DATA Program Section.

Storage locations are defined in the DATA program section with the DS.W
assembler directive. The low part of this storage location is the destination of
the three messages and is labeled VIDEO_RAM. The upper addresses of this
storage location is for the user stack and is labeled STACK.

The 'transfer.s" Program Module

The main program branches to the subroutine contained tnattsfer.s

program module. The "transfer" subroutiniéd move the data from the

address passed in A0 to the destination memory location VIDEO_RAM.
Notice that the executable code in this module appears in a program section
named T_CODE. Also, notice the external definition of the label
TRANSFER (which allows the main program to branch to this label) and the
external reference of the label VIDEO_RAM which was defined in the main
program module. Theansfer.s source file is shown in figure 2.

XDEF TRANSFER ;External definition.
XREF VIDEO_RAM ;External reference.

SECT T_CODE ;Section name.

TRANSFER MOVE #VIDEO_RAM,Al

AGAIN MOVE (A0)+,(Al)+ ;Address of message passed in AO.
DBEQ DO0,AGAIN ;Message length passed in DO.
RTS

Figure 2. The 'transfe r.s" Source File

Getting Started
Description of the Example Program

The 'delay.s" Program Module

The main program branches to the "delay" subroutine contained deldnes
program module. The "delay’ subroutine is used to display the various
messages for the number of seconds passed in register DO. This program
module’s executable code is placed in a program sectared D_CODE.
Notice the external definition of the DELAY label so that other program
modules can refer to this subroutine. Teéay.ssource file is shown in figure

3.
XDEF DELAY ;External definition.
SECT D_CODE ;Section name.
DELAY MOVE #553,D1
MULU D1,DO ;Calculate delay count, result in DO.
MULU D1,DO
REPEAT ;Structured control statement.
SUBQ.L #1,D0
UNTIL.L DO <EQ> #0

RTS

Figure 3. The 'delay.s" Source File

Getting Started
Assembling the Program Module Source Files

Assembling the Program Module Source Files

Assembling program module source fileHf ereate object files. The
commands to assemble thrusce files are shown below:

$ as68k -I mov_mesg.s > mov_mesg.lis
$ as68k -I transfer.s > transfer.lis
$ as68k -l delay.s > delay.lis

The-L in the commands above causes an asserfidtielg on the standard
output. The default output format will be HP-MREEE 695 relocatable
format (.0 or .obj extension). The ">"in thenemands above redirects the
standard output to a file.

Assembler listings for each of tipegogram modules are shown in figures 4
through 6.

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:19:19
1993

Command line: as68k -L mov_mesg.s
Line Address

1 ; @(SUBID) MAIN: /Isd/nls/proc/680xx/asminklib

0.09 19Apr93 15:03:41

2 ; MKT:@(#) B3641-19300 A.02.00 68K FAMILY CROSS
ASSEMBLER/LINKER 19Apra3

$
3 XDEF START,VIDEO_RAM
;External definitions.
4 XREF TRANSFER,DELAY
;External references.
5
6 SECT TABLE

;Section name.

7
8 00000000 5468 6520 6578 MESSAGE_1 DC.B 'The example program
moves’

616D 706C 6520

7072 6F67 7261

6D20 6D6F 7665

7320

Figure 4. The 'mov_mesg.lis" Listing

Getting Started
Assembling the Program Module Source Files

9 0000001A 7468 6973 2061 DC.B ‘’this and two
additional ’

6E64 2074 776F

2061 6464 6974

696F 6E61 6C20
10 00000032 6D65 7373 6167 DC.B ’'messages to a RAM
location. ’

6573 2074 6F20

6120 5241 4D20

6C6F 6361 7469

6F6E 2E20
11 MESSAGE_1_END
12 0000004C MESG_1 LENGTH EQU
MESSAGE_1_END-MESSAGE_1-2
13
14 0000004E 5468 6520 6669 MESSAGE_2 DC.B 'The first message is’
7273 7420 6D65
7373 6167 6520
6973 20
15 00000063 6469 7370 6C61 DC.B ‘’displayed for a medium
7965 6420 666F
7220 6120 6D65
6469 756D 20
16 0000007A 6C65 6E67 7468 DC.B ’length of time.’
206F 6620 7469
6D65 2E20
17 MESSAGE_2_END
18 0000003A MESG_2_LENGTH EQU

MESSAGE_2_END-MESSAGE_2-2

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:19:19 1993

Line Address

20
21 0000008A 5468 6520 7365 MESSAGE_3 DC.B 'The second message is’
636F 6E64 206D
6573 7361 6765
2069 7320
22 000000A0 6469 7370 6C61 DC.B 'displayed for a
shorter’
7965 6420 666F
7220 6120 7368
6F72 7465 7220
23 000000B8 6C65 6E67 7468 DC.B ’length of time."’
206F 6620 7469
6D65 2E20
24 MESSAGE_3_END
25 0000003C MESG_3 LENGTH EQU
MESSAGE_3_END-MESSAGE_3-2
26
27 SECT M_CODE
;Section name.
28 00000000 3E7C 01FE R START MOVE #STACK,A7

Figure 4. The 'mov_mesg.lis" Listing (Cont'd)

10

Getting Started

Assembling the Program Module Source Files

;Initialize user stack.
29
30 SET_UP MACRO ADDRESS,LENGTH,COUNT
;Macro definition.

BSR CLEAR ;Clears
the message destination.
32 MOVE #ADDRESS,A0
;Address parameter passed in AO.

33 MOVE #LENGTH/2,D0 ;Length
parameter passed in DO.

34 BSR TRANSFER

35 MOVE COUNT,DO ;Count
parameter passed in DO.

36 BSR DELAY

37 ENDM

:Macro terminator.

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 3 Wed Apr 28 15:19:19 1993

Line Address

39

40 SET_UP
MESSAGE_1,MESG_1_LENGTH,#10 ;

40.1 00000004 6100 0048 BSR CLEAR ;Clears
the message destination.

40.2 00000008 307C 0000 R MOVE #MESSAGE_1,A0
;Address parameter passed in AO.

40.3 0000000C 303C 0026 MOVE #MESG_1_LENGTH/2,D0
;Length parameter passed in DO.

40.4 00000010 6100 FFEE E BSR TRANSFER

40.5 00000014 303C 000A MOVE #10,D0 ;Count
parameter passed in DO.

40.6 00000018 6100 FFE6 E BSR DELAY

41 REPEAT SET_UP
MESSAGE_2,MESG_2_LENGTH,#7 ; Macro calls.

41.1 0000001C 6100 0030 BSR CLEAR ;Clears
the message destination.

41.2 00000020 307C 004E R MOVE #MESSAGE_2,A0
;Address parameter passed in AO.

413 00000024 303C 001D MOVE #MESG_2_LENGTH/2,D0
;Length parameter passed in DO.

41.4 00000028 6100 FFD6 E BSR TRANSFER

415 0000002C 303C 0007 MOVE #7,D0 ;Count
parameter passed in DO.

41.6 00000030 6100 FFCE E BSR DELAY

42 SET_UP
MESSAGE_3,MESG_3_LENGTH,#4 ;

42.1 00000034 6100 0018 BSR CLEAR ;Clears
the message destination.

42.2 00000038 307C 008A R MOVE #MESSAGE_3,A0

Figure 4. The 'mov_mesg.lis" Listing (Cont'd)

11

Getting Started
Assembling the Program Module Source Files

;Address parameter passed in AO.

42.3 0000003C 303C 001E MOVE #MESG_3_LENGTH/2,D0
;Length parameter passed in DO.

42.4 00000040 6100 FFBE E BSR TRANSFER

425 00000044 303C 0004 MOVE #4,D0 ;Count
parameter passed in DO.

42.6 00000048 6100 FFB6 E BSR DELAY

43 0000004C 60CE BRA REPEAT

44

45 0000004E 307C 0000 R CLEAR MOVE #VIDEO_RAM,A0
46 00000052 303C 0030 MOVE #30H,DO

;Clear 30H words.

47 00000056 30FC 2020 AGAIN MOVE #2020H,(A0)+
;ASCII spaces are moved.

48 0000005A 57C8 FFFA DBEQ DO,AGAIN

49 0000005E 4E75 RTS

50

51 COMMON DATA ;Common
section name.

52 00000000 VIDEO_RAM DS.W OFFH ;Message
destination.

53 000001FE STACK DSW 1

54 END START ;Execution to

begin at START (load address).

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 4 Wed Apr 28 15:19:19 1993

Symbol Table
Label Value
AGAIN M_CODE:00000056
CLEAR M_CODE:0000004E
DELAY External

MESG_1_LENGTH 0000004C
MESG_2_LENGTH 0000003A
MESG_3_LENGTH 0000003C
MESSAGE_1 TABLE :00000000
MESSAGE_1_END TABLE :0000004E
MESSAGE_2 TABLE :0000004E
MESSAGE_2_END TABLE :0000008A
MESSAGE_3 TABLE :0000008A
MESSAGE_3_END TABLE :000000C8
REPEAT M_CODE:0000001C

SET_UP Macro
STACK DATA :000001FE
START M_CODE:00000000
TRANSFER External

VIDEO_RAM DATA :00000000

Figure 4. The 'mov_mesg.lis" Listing (Cont'd)

12

Getting Started

Assembling the Program Module Source Files

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:19:30
1993

Command line: as68k -L transfer.s
Line Address

1 ; @(SUBID) MAIN: /Isd/nls/proc/680xx/asminklib 0.09
19Apr93 15:03:41

2 ; MKT:@(#) B3641-19300 A.02.00 68K FAMILY CROSS
ASSEMBLER/LINKER$ 19Apro3

3 XDEF TRANSFER ;External
definition.
4 XREF VIDEO_RAM ;External
reference.
6 SECT T_CODE ;Section name.
7 00000000 327C 0000 E TRANSFER MOVE #VIDEO_RAM,Al
8 00000004 32D8 AGAIN MOVE (AO)+,(Al)+ ;Address of
message passed in AO0.
9 00000006 57C8 FFFC DBEQ DO,AGAIN ;Message length
passed in DO.
10 OO0OO0O00A 4E75 RTS
11 END

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:19:30
1993

Symbol Table

Label Value

AGAIN T_CODE:00000004
TRANSFER T_CODE:00000000
VIDEO_RAM External

Figure 5. The 'transfer.lis" Assembly Listing

13

Getting Started
Assembling the Program Module Source Files

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:18:34
1993

Command line: as68k -L delay.s
Line Address

1 ; @(SUBID) MAIN: /Isd/nls/proc/680xx/asminklib

0.09 19Apr93 15:03:41

2 ; MKT:@(#) B3641-19300 A.02.00 68K FAMILY CROSS
ASSEMBLER/LINKER 19Ag$r93

3 XDEF DELAY

:External definition.

4

5 SECT D_CODE

;Section name.

6 00000000 323C 0229 DELAY MOVE #553,D1
7 00000004 C0C1 MULU D1,DO
;Calculate delay count, result in DO.

8 00000006 COC1 MULU D1,DO

9 REPEAT

;Structured control statement.

9.1 2?2?0001 ;> REPEAT <

10 00000008 5380 SUBQ.L #1,D0

11 UNTIL.L DO Q #0

111 0000000A 0C80 0000 0000 ??0002 CMP.L #0,D0 ;> UNTIL <
11.2 00000010 66F6 BNE ?7?0001 ;> UNTIL <
11.3 2?0003 ;> UNTIL <

12 00000012 4E75 RTS

13 END

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:18:34
1993

Symbol Table
Label Value

DELAY D_CODE:00000000

Figure 6. The 'delay.lis" Assembly Listing

14

Getting Started
Creating an Example Library File

Creating an Example Library File .

One of the objectives of this chapter was to show how object modules can be
linked from libraries. Before we can link from a library file, one must first be
created. To create an example library file consisting of the "transfer.o" and
"delay.o0" relocatable object modules, enter the following command:

$ ar68k -a transfer.o,delay.o -L exlib>
exlib.lis

Use ".0obj"instead of ".0"if you are using MS-DOS.

The-aoption in the command above specifies that the files which follow are
to be added to the library. Thie option in the command above specifies that

a library listing file be sent to the standard output (which is redirected to the
"exlib.lis" file). The library listing file is shown in figure 7.

15

Getting Started
Creating an Example Library File

HPB3641-19300 Wed Apr 28 15:19:56 1993
Version A.02.00

Library being built exlib.a

Module Size Processor

transfer ... 352 68000

wxexeeek PUBLIC DEFINITIONS *rxxxx
TRANSFER

weeoes EXTERNAL REFERENCES *4+++*
VIDEO_RAM

Public Count =1
External Count = 1

Module Size Processor
delay ... 307 68000

weeeex PUBLIC DEFINITIONS *rxxxx
DELAY

Public Count =1
External Count
Module Count

N ©

Figure 7. The "exlib.lis" Library Listing

16

Getting Started
Linking the Program Module Relocatable Object Files

Linking the Program Module Relocatable Object
Files

Linking is the process in which program modules are joined together to form a
single absolute file which can then be executed or debugged. Because you can
link several object modules to form an executable file, the linking loader is
sometimes called the "linker". Also, because you can specify the load
addresses of various program sections, the linking loaillesometimes be

referred to as the "loader". Either namedsrect; thed68k tool does both.

There are two ways that you can specify object files to be linked: (1) you can
enter the names of the files on the command line, or (2) you can specify the
names of the object files in a linker command file. The linker command file
shown in figure 8 will be used to link the three object modules in the example
program.

NAME demo ; Specifies output module name.
LIST C,D,0,P,S,T.X

; List the cross reference (C), place PUBLIC symbols in the output
; object module (D), produce an object module (O - Not necessary,
; this is the default), place input module (local) symbols into the

; Loader symbol table (P - Not necessary, this is the default),

; write local symbol table to the output module (S), list the local

; symbol table (T), and list the PUBLIC symbol table (X).

ORDER M_CODE, T_CODE,D_CODE ; The T_CODE and D_CODE program sections
; should follow the M_CODE program section.

SECT TABLE=1000H ; Put the table of messages at 1000H.
SECT M_CODE=1400H ; Put the M_CODE section at 1400H.
COMMON DATA=1800H ; Put VIDEO_RAM memory at 1800H.
; Load from these object modules and libraries:

LOAD transfer.o,mov_mesg.o,exlib.a

END ; End of linker command file.

Figure 8. The 'demo.k" Linker Command File

17

Getting Started

Linking the Program Module Relocatable Object Files

Linking the Object Modules

The command to link the exampgleogram object modules is shown below.
The-coption specifies that a linker command filél e supplying
information to the linking loader.

$ 1d68k -L -c demo.k > demo.lis

The -L option in the command above specifies that an output loadistiag

file be sent to the standard output (which is redirected to the "demo.lis" file).
The output format will be the default HP-MRREE 695 absolute format (.x

or .abs extension). The load miggiing file is shown in figure 9.

18

Getting Started

Linking the Program Module Relocatable Object Files

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:20:41 1993

Page 1

Command line: 1d68k -L -c demo.k

NAME demo ; Specifies output module name.

LISTC,D,0O,P,S,T,X

; List the cross reference (C), place PUBLIC symbols in the output
; object module (D), produce an object module (O - Not necessary,
; this is the default), place input module (local) symbols into the

; Loader symbol table (P - Not necessary, this is the default),

; write local symbol table to the output module (S), list the local

; symbol table (T), and list the PUBLIC symbol table (X).

ORDER M_CODE,T_CODE,D_CODE

; should follow the M_CODE program section.

SECT TABLE=1000H ; Put the table of messages at 1000H.
SECT M_CODE=1400H ; Put the M_CODE section at 1400H.
COMMON DATA=1800H ; Put VIDEO_RAM memory at 1800H.

; Load from these object modules and libraries:

LOAD transfer.o,mov_mesg.o,exlib.a

END ; End of linker command file.
HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:20:42 1993

Page 2

OUTPUT MODULE NAME: demo

OUTPUT MODULE FORMAT:

SECTION SUMMARY

SECTION ATTRIBUTE

TABLE NORMAL DATA
M_CODE NORMAL CODE
T_CODE NORMAL CODE
D_CODE NORMAL CODE
DATA COMMON

IEEE

START END LENGTH ALIGN

00001000 000010C7 000000C8 2 (WORD)
00001400 0000145F 00000060 2 (WORD)
00001460 0000146B 0000000C 2 (WORD)
0000146C 0000147F 00000014 2 (WORD)

00001800 000019FF 00000200 2 (WORD)

Figure 9. The 'demo.lis" Load Map Listing

; The T_CODE and D_CODE program sections

19

Getting Started
Linking the Program Module Relocatable Object Files

MODULE SUMMARY

MODULE SECTION:START SECTION:END FILE
transfer T_CODE:00001460 T_CODE:0000146B /users/merfflasm68k/transfer.o
mov_mesg TABLE:00001000 TABLE:000010C7 /users/merfflasm68k/mov_mesg.o

M_CODE:00001400
DATA:00001800
delay D_CODE:0000146C

M_CODE:0000145F
DATA:000019FF
D_CODE:0000147F /users/merfflfasm68k/exlib.a L

LOCAL SYMBOL TABLE

SYMBOL ATTRIB SECTION OFFS/ADDR MODULE:FUNCTION

AGAIN
MESG_2_LENGTH
STACK

CLEAR
MESG_3_LENGTH
REPEAT
MESG_1_LENGTH
MESSAGE._1
MESSAGE_1_END
MESSAGE_2
MESSAGE_2_END
MESSAGE_3
MESSAGE_3_END
AGAIN

ASMVAR T_CODE 00001464 transfer:

ASMVAR ABSCONST 0000003A mov_mesg:
ASMVAR DATA 000019FE mov_mesg:
ASMVAR M_CODE 0000144E mov_mesg:

ASMVAR ABSCONST 0000003C mov_mesg:
ASMVAR M_CODE 0000141C mov_mesg:

ASMVAR ABSCONST 0000004C mov_mesg:

ASMVAR TABLE 00001000 mov_mesg:

ASMVAR TABLE 0000104E mov_mesg:

ASMVAR TABLE 0000104E mov_mesg:
ASMVAR TABLE 0000108A mov_mesg:
ASMVAR TABLE 0000108A mov_mesg:

ASMVAR TABLE 000010C8 mov_mesg:

ASMVAR M_CODE 00001456 mov_mesg:

PUBLIC SYMBOL TABLE

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:20:42 1993

Page 3

SYMBOL

DATA
DELAY
START
TRANSFER
VIDEO_RAM

SECTION ADDRESS MODULE
DATA 00001800 $$
D_CODE 0000146C delay
M_CODE 00001400 mov_mesg
T_CODE 00001460 transfer
DATA 00001800 mov_mesg

Figure 9. The 'demo.lis" Load Map Listing (Cont'd)

20

Getting Started
Linking the Program Module Relocatable Object Files

CROSS REFERENCE TABLE

SYMBOL SECTION ADDRESS MODULE

DATA DATA 00001800 -$$

DELAY D_CODE 0000146C -delay
mov_mesg

START M_CODE 00001400 -mov_mesg

TRANSFER T_CODE 00001460 -transfer
mov_mesg

VIDEO_RAM DATA 00001800 -mov_mesg
transfer

START ADDRESS: 00001400

Link Completed

Figure 9. The 'demo.lis" Load Map Listing (Cont'd)

This completes the "Getting Started" example. For a brief description of the
as68k [d68k, andar68k syntax and options, refer to the "Command Syntax"
chapter which follows.

21

Getting Started
Linking the Program Module Relocatable Object Files

22

Command Syntax

Command Syntax

This chapter contains the on-line manual pages, which briefly describe the
syntax for using the assembler, linker, and librarian.

23

Command Syntax

Options may be entered on the command line to control generation of the
output listing and object module, and ton internal assembler flags on and
off.

The command syntaxinformation in this chapter may alsoted in the
on-line manual pages:

» Ifyou are using a PC, look for thit files in the assembler directory.

+ Ifyou are using a UNIX system, use ttman command. For example, to
view theas68kon-line manual page, just type in the followingreoand
from your operating system prompt:

$ man as68KRreTurN|

Information on theas68kassembler syntax and options will be scrolled
onto your display.

24

Command Syntax

File Extensions

File Extensions

UNIX DOS Meaning Where generated
Extension | Extension
a 1ib Archive (library) file ar68k
A a HP 64000 format assembler symbol file as68k
P P Linker command file (default extension used pgditor
cc68k)
L | HP 64000 format linker symbol file 1d68k -h
1 txt On-line manual page Provided
o .obj HP-MRI IEEE-695 format relocatable object | as68k
file
0 Ist Listing file cc68k -L
5 5 Assembly language source file cc68k or editor
X abs HP-MRI IEEE-695 format or Matrola d68k
S-Record absolute object file (executable)
X X HP 64000 format absolute file (executable) Id68k -h

25

Command Syntax
as68k(1)

NAME
SYNOPSIS

DESCRIPTION

as68k(1)

as68k - cross assembler for Mobla family microprocessors

/usr/hp64000/bin/as68k [options] [file]
/usr/hp64000/bin/as68030 [options] [file]
/usr/hp64000/bin/as68040 [options] [file]

Under DOS on a PC:
\hpas68k\as68k [options] [file]

Theas68kcommand assembles the nanfils] or the standard input if no file
name is specified. If no file name is specified, the names of output files must
be specified explicitly using options.

If as68030 or as68040 is used to invoke the assembler, the default chip is set to
68030 or 68040.

Theas68kprogram first attempts to opédite for reading. If that fails, the
assembler appendsand attempts to opditle.s Under DOS on a PC the
string.srcis appended rather thas

If no input file is specified and standard input is aasf8kdisplays a usage
diagnostic and terminates.

The output is a relocatable file containing Motorola microprocessor
instructions and symbolic data. The format of the output file is HP-MRI
IEEE-695 (HP’'s implementation of thE EE 695 MUFOM format). If no
output file is specified (usin@), the pathname and the ending suffix are
stripped from the input fileame andois appended to it. Under DO.8Bbj
will be appended rather tham This becomes the name of the output file.

The following options are recognized &s68k
-b

Big. This option allows very large source files to be assembled. Normally, for
the sake of speed, intermediate data (whose size is proportional to the size of
the source file) is kept in virtuatemory. Theb option causes intermediate

data to be stored in temporary files on the host file system. Use this option if
ERROR (604): Out of virtual memory occurs.

26

Command Syntax
as68k(1)

-D name
-D name=def

Define name as if by ¥ define\C language directive. If ne=defis given,
name is defined as 1.

-f flaglist

The flags inflaglist are used to select and change the internal assembler
control switches. The flags recognized and their meanings are defined below.
A more complete explanation may be found in 68000 Family
Assembler/Linker/Librarian User's GuidEach flag may be set (or unset) in
either of two ways. A flag may be set on the command line ukoytion as
described here. A flag may also be set by usin@P€ pseudo-operator in

the assembler source program. Groups of flags followingfthyetion must be
separated by commas or separated by white space and quoted. For example,
the following sets the flagss, d, p=68000andx.

-f brs,d -f "p=68000 x"

A flag may be unset (turned off) by preceding the flag value wittno. For

example, the following turns off trebspcaddando flags.
-f noabspcadd,-o

-H asmb_sym_file

This option overrides the default file name for the &#P00 format assembler
symbol file. (See theh option below.) lfasmb_sym_filbas a suffix, then the
name is used as is. Otherwiskjs appended to formsmb_sym _file.A

-h

This option indicates that the assembler should produce a%BI#® format
assembler symbol file for debugging purposes. The defauoherfor the
assembler symbol file fde.A. File is the source file ame with any preceding
directories and trailing suffix stripped off. The default assembler symbol file
name may be overridden with thie option. When writing the asmb_sym file,
all identifiers in the source program are converted to leg&4060

identifiers. That is, Motorola assembly language identifiers may contain the
characters(period),? (question mark), andl (dollar sign) and have a
maximum of 31 significant characters. To produce lega840B0 identifiers;

all periods, question marks, and dollar signs are converteduonderbar) and
identifiers are truncated to 15 characters maximum.

27

Command Syntax
as68k(1)

FLAGS

-1 directory

The assembler searchdirectoryfor INCLUDE files. The assembler first
looks in the present working directory and then in up to four additional
directories specified by th¢ options.

specifies that an assembler listing file be written to standard output. This
listing contains offsets, imuction codes, symbol table information, symbol
table cross reference, and other useful information.

-0 objfile

specifies the name of the output file. This overrides the default file name for
the HP-MRI IEEE-695 relocatable firoduced. Ibbj_file has a suffix, then

the name is used as is. Otherwisds appended to formbj_file.a On a PC
running DOS, the default extensionasj.

The following flags may be specified using tiéaglist option. In some cases
there are several spellings for the same flag.

abspcaddCauses the opera®dPC) to be interpreted as a reference to the
absolute address 6. Unsetting the flagapspcadd causes the above operand
to be interpreted as a dispéasent of 6 from the PC. (defaudtbspcadd

b, brb, brs Forces 8-bit displacements in branchtinstions (Bcc, BRA, BSR)
to forward locations. Explicit qualifiers (e.g. BRA.L) override this flag.
(default:brw)

brw Forces 16-bit displaenents in branch itsuctions (Bcc, BRA, BSR) to
forward locations. Explicit qualifiers (e.g. BRA.L) override this flag. (default:
brw)

brl Forces 32-bit displaenents in branch itictions (Bcc, BRA, BSR) to
forward locations when supported by the processor and nb&d is in

effect. Wherold is in effect, therbrl forces 16-bit displaments. For all other
processors, this forcd$-bit displaements. Explicit qualifiers (e.g. BRA.L)
override this flag. (defaultrw)

¢, cexList all lines of object code (after the first) generated by the DC
pseudo-op. (default)

caseUser defined symbols are case sensitNecasemeans thatipper and
lower case letters in identifiers are equivalent. (defaake

28

Command Syntax
as68k(1)

d Place the symbol table in the object module. (defallt:
e List lines with errors and warnings to standard error. (default:

f, frs Causes assembler to allocate 16 bits for operand extensions for operands
of the formexpressiorwhere expression contains a forward reference. During
pass 2, the assembler may decide to access the operand using absolute-short or
PC-plus-displacement modes. (defafrlf}

frl Causes assembler to allocate 32 bits for operand extensions for operands of
the formexpressiorwhere expression contains a forward reference. During

pass 2, the assembler may decide to access the operand using absolute-short,
absolute-long, or PC-plus-displacement modes. (defaljlt:

g List assembler-generated symbols in the symbol or cross reference listing. If
dis also set, these symbols are placed in the object module as well. (default:

nog)

hlasym Affects the symbolic information in the IEEE relocatable file for
compiler-generated modulebllasym causes assembly-level local symbols to
be put into the output fileNohlasymomits assembly-level local symbols from
compiler-generated modules resulting in smaller output files.
Compiler-generated symbols are not affected by this flag. (defelnliasym)

i, cl List instructions not assembled due to conditional assembégnséatts.
(default:i)

m, mex List macro and structured control directive expansions in program
listing. (default:mex)

mc List macro calls iprogramlisting. (defaultmc)
md List macro definitions in prograltisting. (defaultmd)
o Produce an output relocatable module. (defallt:

old Specifies that the interpretation of thi flag and explicitL qualifiers on

Bcc instructions Wl be 16-bit displaements (as@propriate for th&8010 and

earlier processors), even though the processor mode has been set to indicate a
processor with an address bus width greater the 16 bits. This flag is useful

when migrating 6800programs. (defaultoold)

opnop Remove NOP instructions generated by the assembler. When the
assembler encounters a forward reference during passill aifacate space
for an instruction based on worst case assumptions. During pass 2, it will

29

Command Syntax
as68k(1)

sometimes generate a shorter form of the instructionilitldef remaining

space with NOPs. This flag removes those NOPs but at the cost of increased
assembly time because it makes additional passes over the file. (default:
noopnop

p= proc Identifies the target processor (defaBB000). Valid values foproc
are:68000 68EC000 68HC0O00 68HC001 68302 68008 68010 68330 68331
68332 68333 68340 CPU32 68020 680EC20 68030 680EC30 68040 68EC040

p, pco Assembler uses PC-plus-displacement mode to access operands (of the
form expressiohwithin an absolute sectioNlopcocauses such references to
use absolute mode. (defauitipco

pcr Assembler uses PC-plus-displacement mode to access operands (of the
form expressiopwithin a relocatable sectiomopcr causes such references to
use absolute mode. (defayitr)

quick Quick allows the assembler to optimize certain mnemonics when
possible. The mnemonics are: MOVE to MOVEQ, ADD to ADDQ, and SUB
to SUBQ .Noquick prevents these optimizations. (defagiiick)

r

pcs Assembler uses PC-plus-displacement mode to access operands (of the
form expressiopwhen the instruction is in a relocatable section and the
operand is in a different relocatable sectidopcscauses such references to
use absolute mode. (defaultpcs

rel32 This flag applies to the following 68020 address modes.
(bd,An,Xn) ([bd,An,Xn],od) ([bd,An],Xn,od)
(bd,PC,Xn) ([bd,PC,Xn],0od) ([bd,PC],Xn,od)

Rel32causes the assembler to use 32-bit base and outer disglats for
forward, external, or relocatable operardsrel32 causes 16-bit base and
outer displacements. This flag applies to operands that do not have explicit
word or longword size qualifiers. (defaultrorel32)

s List the source text in progralisting. (defaults)
t List the symbol table in progralisting. (default:i)
w Generate messages for warningew means gppress warnings. (default)

X, cre List the cross reference table in the progtatng. The cross reference
table replaces the symbol table in the listing. (defaolx)

30

Command Syntax

as68k(1)

FILES file.s Assembly language source file. (Unix)

file.src Assembly language source file. (DOS)

file.o HP-MRI IEEE-695 relocatable object file. (Unix)

file.obj HP-MRI IEEE-695 relocatable object file. (DOS)

file.A HP 64000 format assembler symbol file
SEE ALSO HP 68000 Family Assembler/L inker/Librarian User's Gyild®8k(1), ar68k(1).
DIAGNOSTICS Theas68kcommand ratrns zero if no errors are detected in the assembly

source. Otherwise, it returns non-zero.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

BUGS The following is not a defect but rather a sometimes misunderstood aspect of
as68k.

Beware of labels on a line by themselves. They may not be aligned as you
expect. For example,

SECT A
STRING DC.B ’odd’
START

LEA STACKTOP,SP

The label START will have an odd value. Ifthe PC is loaded with an odd
value, a run time erroritvoccur.

There are two ways to avoid this problem. You may put the label on the same
line as the instruction or directive. The labél have the same alignment as
the instruction. For example,

SECT A
STRING DC.B ’odd’
START LEA STACKTOP,SP

You may also use an align directive after the byte constants. For example,

SECT A

STRING DC.B ‘odd’
ALIGN 2

START
LEA STACKTOP,SP

31

Command Syntax
Id68k(1)

NAME
SYNOPSIS

DESCRIPTION

Id68k(1)

Id68k - cross linker/loader for Motorola family microprocessors

/usr/hp64000/bin/Id68k [options] [files]
/usr/hp64000/bin/Id68030 [options] [files]
/usr/hp64000/bin/Id68040 [options] [files]

Under DOS on a PC:
\hpas68k\ld68k [options] [files]

Theld68kcommand takes one or more relocatable object filespag iand
combines them to produce a single output file. In doing so it resolves
references to external symbols, assigns final addresgeed¢edures and

variables, revises code and data to reflect new addresses and updates symbolic
debug information (when it is present in a file).

If Id68030 or Id68040 is used to invoke the linker the default chip is set to
68030 or 68040.

By default, the output file format is HP-MRI IEEE-695 (HP’s implementation
of the IEEE standar95 MUFOM format). This file contains Motola

680xx instructions and symbolic data. Options may be used to create output
filesin HP 64000 format or Motola S-Record format. Refer to the

OUTPUT FILE FORMATS section which follows for more information.

Usually, the output file contains instructions and data in absolute form. That
is, address information has been supplied to locate the program in target
memory.

The-i option may be used to specify a relocatable output file in a process
calledincremental linking In an incremental link, th@put relocatable files

are simply combined into an output relocatable file. While address
information may be specified in an incremental link, théringions and data
remain in relocatable form. The addresses specified during an incremental
link may be changed in subsequent links.

The operation olfi68kis controlled by LINKER COMMANDS (described
below). Linker commands specify thgput relocatable and archive files, the
location and order of relocatable sections, and the contents of the output files.

32

Command Syntax
Id68k(1)

Theld68k program reads eomands from the command line or from a
command_fileising either thec option. Thed68k program no longer reads
commands from standardput using pipes or interactiveroonands.

Theld68k program accepts relocatable and archive input files in HP-MRI
IEEE-695 format. These files may peoduced by the cross compiler, the cross
assembler (as68k), the cross linker itself (Id68k), or the archive file librarian
(ar68k).

Input files may be specified in "LOAD" comands or on the command line.
The order of specification of the input files is significant to the operation of
the linker.

If input files are specified on the monand line, these files are loaded in
addition to files specified in "LOAD" commands in ttemmand_filelInput
files specified on the command lindlyrecede anyriput files mentioned in
LOAD commands.

If the input file ames have a suffix, then the name is used as is. Otherwise,
Id68k appendsoto the name on the command line. The sudibf is appended
whenld68kis run on a PC under DOS.

The name of the output file may be specified with-theption; if that is
omitted, the name of the output file is derived from the name of the
command_file It is an error if neither the output filamenor the
command_filsmame is specified.

The default names of the output files are determined in the following way. Any
pathname and any ending suffix (i.e. including the last ') is stripped from the
command_filsmame to form the basic output file name. Then, depending on
the type of the output file, a suffixis appended to the basic name to form the
output file name.

If the output is HP-MRI IEEE-695 absolute format, then the suffix i§he
suffix will be .abson the PC host.

If the output is HP 64000 format, then the suffixes.Xrfor the absolute file
and.L for the linker symbol file.

If the output is Motorola S-Record format, then the suffix.is

If an incremental link is done, then the output is in HP-MREE-695
relocatable format and the suffixs On the PC host running DOS, the suffix
will be .obj.

33

Command Syntax
Id68k(1)

The following options are recognized ldg8k
-b

This option is included for backward compatibility and does not affect 1d68k
operation.

-ccommand_file

This option specifies the name of tt@mmand_filéo be used to supply
information told68k. The file name part of the command file path, with suffix
stripped, is used to form the default names of output files.

-f flaglist

This linker command i NOT be present in future versions. All flag
functionality will be accssible via other ammand line options and/or the

linker command file. The flags ifaglist are used to select and change the
internal linker control switches. The flags recognized and their meanings are
defined below. A more complete explanation may be found itth68000
Family Assembler/Linker/Librarian User's Guideach flag may be set (or

unset) in either of two ways. A flag may be set on the command line using the
-f option described here. A flag may also be set usingI8iE linker

command and unset using tReIST linker command. @ups of flags

following the-f option must be separated by commas or separated by white
space and quoted. For example, the following option sets thefldgsandx.

-fc,d-f"sx"
A flag may be unset (turned off) by preceding the flag withno. For
example, the following option turns off tlkeandp flags.

-f noo,-p
Errors in the flalist are not detected immediately when thenooand line is

processed. Rather, the loader acts as if a "lfl&)list' command preceded
the first command in the loader command file.

-H link_sym_file

This option overrides the default file name for the &4P00 format linker
symbol file. (See theh option below.) Hink_sym _filehas a suffix, then the
name is used as is. Otherwidejs appended to fortnk_sym_file.L

34

Command Syntax
Id68k(1)

-h

The option indicates that the linker should produceG4@00 format output
files. There are two output files, the absolute file and the linker symbol file.
The default name for the absolute file@nmand_fileX while the default
name for the linker symbol file j>mmand_fild.. When writing the link_sym
file, all identifiers (i.e. global symbol definitions) are converted to legal
HP64000 identifiers. That is, Motola assembly language identifiers may
contain the charactergperiod),? (question mark), andl (dollar sign) and
have a maximum of 31 significant characters. To produce legad60®
identifiers in the link_sym file, all periods, question marks, and dollar signs are
converted to_(underbar) and identifiers are truncated to 15 characters
maximum.

Specifies that an incremental link be performed. The relocatapls files
are combined to produce a relocatable output file. meenof the
relocatable output file defaults tommand_fil®. On a PC machine running
DOS, the file name defaults tmmmand_filebj. The following linker

commands arélegal during an incemental link: ABSOLUTE, BASE,
CPAGE, INDEX, INITDATA, NOPAGE, ORDER, PAGE, RESADD,
RESMEM, and SORDER.

-L

Specifies that output load map listing be written to standard output.

-m

Same asL above.

-0 objfile

Specifies the name of the output file. This overrides the default file name for
HP-MRI IEEE-695 absolute file, the HP-MREEE-695 relocatable file, the
HP 64000 format absolute file, or the Mobla S-Record file. Ibbj_file has a
suffix, then the name is used as is. Otherwise pgpeapriate suffix Wl be
appended.

-u symbol

Creates an external referencesymbol This reference may force the linker to
load a library module. The EXTERN command performs the same function
as the-u option.

35

Command Syntax
Id68k(1)

LINKER
COMMANDS

The linker/locator recognizes the following commands. Square brackets []
enclose optional parametersllifsis ... indicate the preceding item may be
repeated.

;comment text ...

Designates a comment.

command continuation character

Allows a command to be continued on the following line.
' escape character

Causes the character following the escape char to be treated as a normal
character.

ABSOLUTE sectname [,sectname]c..

auses only the code from the specified relocatsédtname(sho be written to
the absolute output file. Without tA8SOLUTE command, code from all
absolute and relocatable sections is written. See LOAD_SYMBOLS command.

ALIAS sectnamel,sectname2

specifies that the code in relocatable sectecthnamede treated as if it were
actually in relocatable sectiaectnamel

ALIGN section=number
ALIGNMOD section=number

The ALIGN command sets the alignment of the beginning of the section only.
Numbemust be a power of 2. The ALIGNMOD command increases the
alignment boundary of each individual module sectionumber

BASE address

specifies the address where the linker begins placing relocatable sections. The
SECT or COMMON commands may overrid@ASE for individual sections.
Addresss decimal unless preceded®fpr hexadecimal@ for octal, or% for

binary.

36

Command Syntax
Id68k(1)

CASE [class,...]
LOWERCASE [class,...]
UPPERCASE[class,...]

control the case sensitivity of various classes of symbols during linKitags

may be PUBLICS (to indicate global or external symbols), MODULES (to
indicate module names), or SECTIONS (to indicate section names). If no
class is specified, all symbol classes are affected. CASE meanpieatand
lower case characters remain distinct and unchanged. LOWERCASE shifts
all letters to lower case and UPPERCASE shifts all letters to upper case.

CHIP processor|,buswidth]

specifies the target processBrocessomay be6800Q 68EC00Q 68HC00Q
68HC001, 68008 68010 68302 6833Q 68331 68332 68333 6834Q 6802Q
68EC02Q 6803Q 68EC03Q 6804Q or 68EC040Q The optionabuswidthis a
number specifying the width (in bits) of the address bus of the target system.

COMMON sectname=address

specifies the load address of a common sectionB88& for addresssyntax.

CPAGE sectname .
specifies that the starting address of the common section nseo@eém de

rounded up to 100 (hexadecimal)dundary.

DEBUG_SYMBOLS
NODEBUG_SYMBOLS

These commands control putting local symbols into output files. These
commands may be placed between LOAD commands to selectively copy
symbols from certain modules. DEBUG_SYMBOLS is a synonym for the
LIST P command and NODEBUG_SYMBOLS is aspym for the NLIST P
command.

END
Causes the load to be finished and an output module produced.

ERROR condition[,condition] ...
NOERROR condition[,condition] ...
WARN condition[,condition] ...

Cause the condition(s) specified to be modified. Condition may be most error
or warning numbers. Fatal error conditions may not be modified.

37

Command Syntax
Id68k(1)

EXIT

Causes the linker to exit without finishing the load and without producing an
output module.

EXTERN name [,name] ...

Creates an external referencenome This reference can cause the loading of
a library module.

FORMAT option

Specifies the format of the object fil@ptionmay beHP (for HP 64000)S
(for Motorola S-Record)EEE (for HP-MRI IEEE-695 absolute)EE
INCREMENTAL , or NOABS (for no output file)IEEE INCREMENTAL is
the same as théoption. Default is to produce HP-MREEE-695 absolute.
INCLUDE filenamelncludes the contents éienamein the linker command
file.

INDEX ?areg,sectname,offset

Associates an address register with a relocatable section and an offset for the
purpose of computing displaments in addiss-register-plus-displament
mode. Thearegvalue may be any &2, A3, A4, or A5.

INITDATA merge_arg [,merge_arg] ...

Provides a means of placing one or more initialized data sectionsin ROM. A
section name@?INITDATA is written to the absolute file. At run time, the
sections named by tHRR2INITDATA must be moved from the ROM location

to their actual link time addresses by an initcopy rout?iNITDATA and
sections named BBPINITDATA are ordered and assigned an address using
standard linker commands. S8HTDATA under thelINKER COMMANDS
section of the user’s manual for more information. For a demonstration and
sample code see /usr/hp64000/demo/languages/B3641/features/INITDATA.
On the PC host, the example code is placed in the examples subdirectory.

INTFILE
NOINTFILE

INTFILE allows very large programs to be linked. Intermediate data is kept in
a temporary file rather than virtuaemory. The INTFILE command is
equivalent to theb command line option.

LIST flag[,flag] ...

38

Command Syntax
Id68k(1)

Sets linker flags. The flags may also be set on the command line and are
defined below. LIST and NLIST will not beigported in future releases.

LISTABS option [,option] ...

Controls putting different types of symbol information into the output file.
LISTABS PUBLICS is the same as LIST D and puts global symbols into
S-Record files. LISTABS NOPUBLICS is the same as NLIST D and turns off
global symbols. LISTABS INTERNALS is the same as LIST S and puts local
symbols in S-record files. LISTABS NOINTERNALS is the same as NLIST S
and turns off local symbols to S-Record files. LISTABS NOINTERNALS
also turns off all compiler generated symbols and local assembly symbols to
IEEE-695 files.

LISTMAP option [,option] ...

Controls the output of certain types of information to the linker listing. The
optionvalue may be any of CROSSREF, NOCROSSREF, INTERNALS,
NOINTERNALS, PUBLICS, or NOPUBLICS. LISTMAP CROSSREF is
the same as LIST C and turns on the cross refedesticsy. LISTMAP
INTERNALS is the same as LIST T and turns on the local syiidiaig.
LISTMAP PUBLICS is the same as LIST X and turns on the global symbol
listing.

LOAD filename [filename] ...

Specifies the name oEEE relocatable files or archive files from which
symbols and code are to be included in the load.

LOAD_SYMBOLS filename [,flename] ...

Specifies the name oEEE relocatable files or archive files from which to
load symbols and allocate space, code is not loaded. See ABSOLUTE
command.

MERGE sectname merge_arg [,merge_arq] ...

Renames the sections specifiedrierge_argo sectname The MERGE

command allows you to select pieces of a section defined in particular
modules, change the name of these pieces, and then locate these pieces using
the new nameVerge_argmay be any of the following.

sect2 or {sect2,module} or {*module}

39

Command Syntax
Id68k(1)

The first form renames all aect2to secthname The second form renames just
the portion okect2defined inmoduleto sectname The third form renames all
the sections defined imoduleto sectname

NAME name

Specifies the name to be put into the (extended)ovtd S-Record output
file.

NLIST flag[.flag] ...

Unsets linker flags. Flags are defined below. NLIST and LIST will not be
supported in future releases.

ORDER sectname [,sectname] ...

Specifies the order in which ordinary (non-basepage) relocatable sections are
placed in memory. The default order is the order in which section names are
encountered by the linker, either in linkemomands or infiput modules.

PAGE secthame
NOPAGE secthame

PAGE turns on page relocation (i.e. locating each subsectior$d®0a
(hexadecimal) boundary) feectname NOPAGE restores normal subsection
alignment. Default is no page relocation.

PUBLIC name=address
PUBLIC nhame=name2

Defines a global identifiemamewhose value is eithexddressor the value of
another symbahame2 SeeBASE for addresssyntax.

RESADD low_addr,high_addr
RESMEM low_addr,size

Reserve areas of memory that will not be used by the linker for other sections.
SORDERsectname [,sectname] ...

Specifies the order in which short (basepage) relocatable sections are placed in
memory.

SECT sectname=address

Specifies the load address of ordinary relocatable sestictnameSeeBASE
for addresssyntax.

40

FLAGS

Command Syntax
Id68k(1)

SECTSIZE sect=size

Allows modification of section size at link time.

START address

Specifies the starting address for the program BR&E for addresssyntax.
The following flags may be specified using tidlaglist option.

a Produce the output file in Motorola S-Record format. Same as FORMAT S
command. (default: HP-MREIEE-695 format)

¢ Print the identifier cross reference table in the load map. Same as LISTMAP
CROSSREF command. (defauibc)

d Put global symbols into the S-Record output file. This flag has no effect on
IEEE-695 or HP 64000 files. Same as LISTABS PUBLIC®r@nd.
(default:nod)

h Produce the output file in HP 64000 format. Same as FORMAT HP
command. (default: HP-MRBEE-695 format)

i Produce the output file in HP-MRI IEEE-695 format. Same as FORMA
IEEE canmand. (default: HP-MRIBEEE-695 format)

o Produce an output file. LIST NOO is the same as FORMAT NOABS
command. (defaulb)

p Place symbols in the input modules into the linker symbol table. This flag
affects only Motorola S-Record output files. Its purpose is to exclude symbols
from certain input modules from the output module. One does this by
surroundind OAD commands WittNLIST P andLIST P commands. Same as
DEBUG_SYMBOLS command. (default)

s Put symbols into the output file. The exact behavior depends on the output
file format. Same as LISTABS INTERNALS command. (defag)lt:
S-RecordsSwrites local symbols and their values in a simple, displayable
format at the beginning of the fil&Nos suppresses these symboBEIE-695:
Swrites local assembly symbols and compiler generated symbol and type
information to the output fileNos suppresses this information. Global
assembly symbols (those mentioned in XDEF directives) are always written to
the output file regardless of any flag. HP 64000: $flag has no effect on the

HP 64000 link_sym file.

41

Command Syntax
Id68k(1)

OUTPUT FILE
FORMATS

FILES

SEE ALSO
DIAGNOSTICS

t Print local symbols in the load map. Same as LISTMAP INTERNALS
command. (defaulnot)

x Print global symbols defined in PUBLIC commands in the load map. Same
as LISTMAP PUBLICS command. (defauttox)

HP 64000 HP 64000 files are consumed by a number of HP 64000 emulators,
logic analyzers, and other products. Check the operating manual for your
particular HP product to determine what formatsiitaccept. The HRB4000
absolute, link_sym, and asmb_sym file formats are documentdB-ldX File
Format Operating ManuaWith this information, you can write your own tools
that use the loader’s absolute and symbolic output.

HP-MRI IEEE-695 Hewlett Packard’s implementation BEIE 695 MUFOM
is consumed by HP 64000 emulators, debuggers, and ptbéucts. Check

the operating manual for your particular HP product to determine what
formats it will accept. Documentation for this format can be obtained by
contacting Hewlett Packard.

Motorola S-Records S-Records are used by many non-HP tools. The format
expresses absolute code and (optionally) symbol-value pairs using only
displayable ASCII characters and newlines. S-Records are descrid&d in
64888File Format Converter Operating dhual With this information, you can
write your own tools that use the loader’s absolute and symbolic output.

command_filex HP-MRIEEE-695 absolute object file or Martola
S-Record absolute file (Unix)

command_file.abs HP-MREEE-695 absolute object file or Mariola
S-Record absolute file (DOS)

command_file.X HF64000 format absolute file
command_file.L HR64000 format linker symbol file

command_file.o HP-MRIEEE-695 relocatable object file from irenental
link (Unix)

command_file.obj HP-MRIEEE-695 relocatable object file from irenental
link (DOS)

HP 68000 Family Assembler/Linker/Librarian User's Gyide68k(1), as68k(1).

Theld68kcommand ratrns zero if no errors are detected while linking,
otherwise returns non-zero.

42

BUGS

Command Syntax
Id68k(1)

Diagnostic messages are displayed on standard error.

Programs that linked without error using version 1.00 of Id68k may produce
undefined symbolerrors using later versions ldb8k The information below
explains the cause of the problem antsteow to @rrect it.

As68kallows identifiers to contain period (dollar sign §$), and question

mark (?) and have up to 31 significant characters. Identifiersin HP 64000
asmb_sym and link_sym files may not contain periods, dollar signs, or question
marks and can have only 15 significant characters. To create legal HP 64000
identifiers, period, dollar, and question mark are changed to undepbemnd
identifiers are truncated to 15 characters if necessary.

Version 1.00 ohs68kandld68k differ from later versions with respect to when
the conversion was done.

Version 1.00 tools performed Motorola-to-HP symbol conversion only when
the-h option was used and then immediately when the symbol was seen. Thus,
with the-h option, a name spelled "a.b$" would match a name spelled "a_b_".
This would apply during assembly and/or during linking when global

definitions were matched with external references. We thought this was an
undesirable and confusing side effect of theption.

Later versions of the tools never change a symbol’s spelling fqgruhmose of
symbol matching. Symbols are converted only when they are written to the
asmb_sym and link_sym files. Undefined symbols occur because now symbols
must always be spelled exactly the same in order to match.

We recommend the followingrocedure. First, if pgsible, reassemble all
modules that were produced with version 1.08s@8k Second, after linking,
correct undefined symbol errors by going back to the source and changing
symbols so that definitions and references are spelled exactly the same.

Version 1.60 linker command file syntax differs somewhat from earlier
versions. Most users will need to make changes to pre-1.60 linkenand
files to use the new INITDATA and comment syntax. BEDATA and"’
underLINKER COMMANDS .

43

Command Syntax
ar68k(1)

NAME
SYNOPSIS

DESCRIPTION

ar68k(1)

ar68k - archive and library maintainer for Motorola 68k processors.

/usr/hp64000/bin/ar68k

/usr/hp64000/bin/ar68k [options] [action]... archivefile
/usr/hp64000/bin/ar68030 [options] [action].. archivefile
/usr/hp64000/bin/ar68040 [options] [action].. archivefile

Under DOS on a PC:
\hpas68k\ar68k [options] [action]... archivefile

Thear68kcommand maintainggups of relocatable files combined into a
single archive (or library) file. The archive files may then be uséd@®k (1),
the 68000 family linker/locator, to form executapl®grams for the Motorola
68000 familyprocessors.

Thear68030andar68040commands are spnyms for thear68k command.
They are provide to maintain backward-compiéitipwith previous versions of
these tools.

Individual relocatable files are inserted without change into the archive file.
In addition, there is a library symbol table which is used by the linker/locator,
Id68k (1), to effect multiple passes over the libraryin an efficient manner.

Individual relocatable files definmmodulesvhich havemodulenamesThe
modulenamés determined in the following way. Ifthe assembly source file
contains anDNT directive, then this directive defines the module name.
Otherwise, the module name is the name of the assemhiyesfile (with
preceding pathname and suffix stripped).

Thear68kcommand operates in either of two modes. The mode is determined
by the presence (or absence) of éinchivefilename.

In the first mode,
aré8k
An archivefileis not specified. Thar68k command reads librarian commands

from standard input. If the standard input is a terminal device,at6&k
operates in interactive mode, prompting the user for librariamtands.

44

Command Syntax
ar68k(1)

The librarian commands are defined below. Additional information may be
found in theHP 68000 Family Assembler/L inker/Librarian User's Guitlbe
commands completely control the operatiom®Bk The commands specify
the name of the archive file and the actions to be performed on the modules
which constitute the library.

In the second mode,

ar68k [options] [action] ... archivefile

all the control information is contained on the command line.

Thearchivefileargument names the archive file to be operated on. If the
archivefiledoes not exist, then an empty archive file is created before the
actions are performed.

If the archive file name contains a suffix (i.e. contains a period), then the name
is used as is to access the archive file. If the archive file name has no suffix,
then.ais appended to the name before asieg the archive file. In the DOS
environment on a PC, thib suffixis used instead cd.

Action is one of the following:
-afilelist

The modules contained in the relocatable filefilétist are added to the
library contained in the archive file. If a module which already exists in the
libraryis added, it is an error.

-d modulelist
The modules in thenodulelistare deleted from the library.
-r filelist

The modules contained in the relocatable filefiétist replace modules of the
same name in the library.

-emodulelist

The modules in thenodulelistare extracted (i.e. copied) and put into
relocatable files. The name of the file is the same as the name of the module
but with the suffixo appended. In the DOS environment on the PC host, the
suffix.obj is used instead od.

45

Command Syntax
ar68k(1)

LIBRARIAN
COMMANDS

In filelist (or modulelis}, individual files (or modules) may be separated by
commas or separated by white space with the wietlgquoted.

If the file names in fildist have a suffix (i.e. contain a period), then the name
is used as is to access the relocatable input file. If éimeerhas no suffix, then
.0 (.obj on DOS) is appended to the name to obtain the name afphéfile.

The following option is recognized lay68k
-L specifies that a library listing file be written to standard output.

Thear68kcommand recognizes the following commands. In the syntax
descriptions below, square brackplsenclose optional items. Ellipsis
indicate that the preceding item may be repeated.

ADDLIB archivefile [(module [,module] ...)]

Add one or more modules from the named library to the present library. Ifno
modules are specified, the entire library is included.

ADDMOD filename [,filename]..

Add the module contained in one or more relocatable files to the present
library.

CLEAR

Removes the current library so that another CREATE or OP ENnand
can be issued.

CREATE archivefile

Specify the name of a new archive file to be created.
DELETE module [[module] ...

Delete one or more modules from the current library.
DIRECTORY archivefile [(module [,module] ...Jlistfile]

Obtain a brief listing of the modules in a library. If no modules are specified,
the entire library s listed. If listfile is not specified, the listing goes to standard
output.

46

Command Syntax
ar68k(1)

END,
EXIT
QuUIT

Exit the librarian without saving the current library. Use SAVE to save the
results of the current ssion.

EXTRACT module [,module] ...

Copyone or more modules to individual relocatable object files. The name of
the object file is the module name withappended. The module nami e
appended withobj on DOS machines.

HELP
Display the commands (and their syntax) that are valid inuhe it context.
LIST archivefile [(module [,module] ...]Jlistfile]

Obtain a detailed listing of the modules in a library. If no modules are
specified, the entire library is listed. If listfile is not specified, the listing goes
to standard output.

OPEN archivefile [(module [,module] ...)]

Specify the name of an existing archive file to be opened. If individual

modules are specified, only those modules are visible to the librarian while
executing subsequent commands. If no modules are specified, all the modules
in the existing library are used.

REPLACE filename [filename]..

Replace one or more existing modules in the present library with the modules
from the named files.

SAVE

Exit the librarian saving the current library. Use END to exit without saving
the results of the currentsston.

FILES archivefile.a Relocatable archive file. (Unix)
archivefile.lib Relocatable archive file. (DOS)
file.o HP-MRI IEEE-695 relocatable object file. (Unix)
file.obj HP-MRI IEEE-695 relocatable object file. (DOS)

47

Command Syntax

ar68k(1)
SEE ALSO HP 68000 Family Assembler/Linker/Librarian User's Guids68k(1), Id68k(1).
DIAGNOSTICS Thear68k command ratrns zero if no errors are detected. It returns non-zero

when errors are detected.

Diagnostic messages are displayed on standard error.

48

Part 2

Reference

Part 2

50

Assembler Introduction

This chapter describes the as68k Relocatable Macro Assembler for the 68000
family of microprocessors.

51

Assembler Introduction

as68k Features

The as68k Relocatable Macro Assembler for the 68000 family of
microprocessors translates symbolic machine instructions into binary object
code that can be executed by a 68000 familyopimcessor. Th68000 family
includes the 68000, 68008, 68010, 68302, 68332, and 68020, 68030, and 68040
microprocessors. The instructions specific to@8881 Floating Point
Coprocessor are also translated into the binary code for coprocessor
execution.

Object code is produced in a relocatable format by the assembler. Relocatable
modules produced by the assembler are linked into a single absolute module
by the linking loader.

The as68k mnemonic operation codes, the assembler directives, and the
assembler syntax, are all compatible with that used by Motorola in its software
products and documentation.

The as68k assembler is a two-ppssgram thatssues helpful mor messages,
produces an easy to read progr#sting and symbol table, and outputs a
computer readable relocatable object module.

Symbolic information is available for debugging. Assembler symbol files can
be produced, and the relocatable object file contains symbolic information
which passes through the linker into ti€EIE absolute file.

Either the 68000, 68010, 68332, 68020, 68030, or 6804fictfon set may be
selected. The assembler will check that only tyerapriate instructions are
used for the selected processor.

as68k Features

Features of as68k include:

* Manufacturer-compatible symbolic machine operation codes (opcodes,
directives) are provided.

* Instructions for th&8000 family of micoprocessors and ti&8881
coprocessor are supported.

e 68030/040 MMU intructions are accepted.

» Conditional assembly is provided.

52

Assembler Introduction
Assembler Statements

» User-defined macros are provided.

» Pascal-likerun time structured loop control directives are provided.
* Character codes may be specified in ASCII or EBCDIC.

» Case sensitive symbols are supported (with an option to turn off case
sensitivity).

 Complex expression evaluation is provided.
* Flexible assembly listing control seahents ar@rovided.
» Symbolic or cross reference table listing may be generated.

* Symbols may be included in the output object module for symbolic
debugging.

* Relocatable modules may be produced.

» A2-A5relative addressing isipported.
 Complexrelocation is supported in the Loader.
e Supports long file ames.

These features aid the program developer in producing well documented,
modular, working programs in a minimum of time.

Assembler Statements

An assembly language program is comprised oéstants written in symbolic
machine language. There are four types of assembly language stas:

e |nstructions.
+ Directives.
e Macros.

¢ Comments.

53

Assembler Introduction
Assembler Statements

Label

All but comment statements are written in the following format:

Operation Operand Comment

The various fields that comprise a statement are separated by one or more
blanks or tabs, and in some cases, a colon or semicolon. Statements may be a
maximum of 512 characters long.

Label Field

The label field assignsrmaemory address or constant value to the symbolic
name contained in the field. The label field may begin in any column if
terminated by a colon, or it must begin in column one when the colon is
omitted. A label may be the onlyfield in a statement.

The first 31 characters of a label are significant.

Labels are case sensitive by default. You can turn off case sensitivity with the
"OPT NOCASE"assembler directive.

Operation Field

The operation field specifies a symbolic operation code, a directive, or a
macro call. If present, this field must begin after column one and be separated
from the label field by one or more blanks, tabs, or a colon. Assembly
language instructions and directives may be upper or lower case. Macros can
be case sensitive or not depending on the CASE flag.

Operand Field

The operand field is used to enter arguments for the opcode, directive, or
macro specified in the operation field. The operand field, if present, is
separated from the operation field by one or more blanks or tabs.

Comment Field

The comment field gives you a place to put messages statipgithese of a
statement orr@up of statments. The comment field is always optional, and

if present, must be separated from the preceding field by one or more blanks,
tabs, an exclamation point or a semicolon. For those opcodes and directives

54

Assembler Introduction
Statement Examples

that have optional operands that are not present, the comment field mus
always start with an exclamation point or a semicolon.

Label
ISAM

MOVE

Statement Examples

The next few section give examples of the four types oéstants that can be
used in assembly language programs.

Instruction Statement

The instruction stament is a written specification for a particular machine
operation, expressed by a symbolic operation code, also called a mnemonic,
and operands. Symbolic addresses may be defined by the statement and
symbolic addresses may also be used for opcode operands. For example:

Operation Operand Comment
MEM,D2

Where:

ISAM A symbol representing the memory address of the
instruction.

MOVE A symbolic opcode representing the bit pattern of the
move instruction.

MEM A symbol representing a memory address.

D2 A reserved symbol representing data register number 2.

55

Assembler Introduction
Statement Examples

Directive Statement

A directive statement is intpreted as a control sexhent to the assembler. It
is not translated into a machine instruction. For example:

Label Operation Operand Comment
ABAT DC DELT
Where:
ABAT A symbol. The assembler wilkaign the value of the

location counter to this symbol. The location counter
(assembly program counter) contains the address of the
first byte of the code generated by the directive DC.

DC A directive that instructs the assembler program to
allocate two bytes of memory.

DELT A symbol representing an address. The address will be
placed into the two bytes allocated by the DC directive.

Macro Statement

A macro statement is a call to a sequence afucsons or a definition of a
sequence of instructions as a macro. A call can be made many times from any
part of a program as long as the call appears after the macro definition. The
chapter "Macros" explains macros in greater detail. The following is an
example of a macro definition and call:

MAC1 MACRO P1
L&&P1 MOVE DO,D1 ; Create label using parameter.
ENDM

MAC1 XX ; Call macro.
.1 00000000 3200 LXX MOVE DO,D1 ; Create label using parameter.
END

oOUIabhWNE

Comment Statement

A comment statement is nptocessed by the assembler program. Instead, it
is reproduced on the assemlidying and may be used to documentups of
assembly language statements. A comment statement is indicated by encoding

56

Assembler Introduction
Assembler Syntax

an asterisk in the first column, or an exclamation point or semicolon as th
first nonblank character on a line. For example:

* THIS IS A COMMENT STATEMENT
; THIS IS ALSO A COMMENT STATEMENT

Blank lines are also treated as comment statements.

Return Codes

as68k il return 0 if the program assembles without errors. If errors are
detected, the assembler will ven 1.

Error messages are written to the standard error output and to the assembler
listing. Error messages and warnings &aseed in the "Assembler fEor
Messages" appendix.

Assembler Syntax

The assembler language, like other peogming languages, has a character

set, a vocabulary, rules of grammar, and allows for definition of new words or
elements. The rules that describe the language are referred to as the "syntax'
of the language.

57

Assembler Introduction
Assembler Character Set

Assembler Character Set

The assembler will recognize £8 characters 20 hektough 7E hex. Any
other characters, except in a comment fieitlgenerate an error. Many of
the special characters have no predefined meaning except as character
constants.

Alphabetic Characte rs:

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopqgrstuvwxyz

Numeric Characters:
0123456789
Special Characters:

(blank)
> (greater than)
< (less than)
' (single quote)
, (comma)
+ (plus sign)
- (minus sign)
& (ampersand)
I (exclamation)
' (double quote)
(sharp)
% (percent)
(left curved bracket)
(right curved bracket)
(left square bracket)
(right square bracket)
(up arrow)
(slash)
(dollar)
(asterisk)
(left parenthesis)
(right parenthesis)
@ (commercial at)
(period)
(colon)
(semi-colon)
= (equal sign)
(underbar)
(question mark)
(vertical bar)
(grave accent)
~ (tilde)
\ (back slash)

e 7 S

N |

58

Assembler Introduction
Symbols

Symbols

A symbol is a sequence of characters. The first character in a symbol must be
alphabetic or one of the special characters: ? (question mark), . (period), or _
(underbar). Subsequent characters in the symbol maystari any of the

special characters just mentioned, a $ (dollar sign), alphabetic letters, or
numeric digits. Embedded blanks are not permitted in symbols. Symbols are
case sensitive by default. To turn off case sensitivity, use the "OPT NOCASE"
assembler directive.

The assembler generates "local" symbols in macros that start with the
character sequence \@. However, these symbols are only valid inside a macro.

Symbols may be up to 31 characters in length. They may actually be longer,
but only the first 31 characters are used by the assembler for symbol definition.

Symbols are used to represent arithmetic values, memory addresses, bit arrays
(masks), etc. Examples of valid symbols are:

LAB1

mask

LOOP$NUM

L23456789012345678901234567890123456789 (truncated to 31 characters)

Examples of invalid symbols are:

ABORT * (contains special character)
1LAR (begins with a numeric)
PAN N (embedded blank, symbol is PAN)

Symbols beginning with two or more question marks, for example ??LAB1,

are treated slightly differently by the assembler. as68k uses the two question
mark convention to identify "assembler generated" symbols. For example,
when the assembler creates unique labels in macro expansions, it generates
symbols of the form 72?0001, ??0002, etc. These assembler generated symbols
are not included in the assembler listing or the HP format "asmb_sym"file
unless the OPT G assembler flag is set.

If you code your own symbols beginning with two question marks, these
symbols will not be available for debugging unless you specifythe OPT G
directive.

59

Assembler Introduction
Symbols

Reserved Symbols

The as68k assembler has internally defined the symbolic regetezsithat
Motorola uses in their assembly language to denote the various hardware
registers. They are:

32-bit addressregisters A0, Al, A2, A3, A4, A5, A6, A7, SP

32-bit data registers D0,D1,D2,D3, D4,D5,D6, D7

control registers PC, SR, CCR, USP

68331/332/010/030/040 VBR, SFC or SFCR, DFC or DFCR

vector base/function code

registers

68020/30/40 cache/stackCACR, CAAR, MSP, ISP

registers

68030/40 MMU CRP,SRP, TC,TTO, TT1, MMUSR, ITTO, ITT1,
registers DTTO,DTT1

68020/30 pseudo ZAO,ZA1,ZA2,ZA3,ZA4,ZA5,ZA6,ZA7,ZDO0,
registers ZD1,7ZD2,7ZD3,2D4,2ZD5,2D6,ZD7,ZPC

68881 registers FPO, FP1, FP2, FP3, FP4, FP5, FP6, FP7, FPCR,

FPSR, FPIAR, CONTROL, STATUS, IADDR

Users may also define their own keywords with the EQU directive to represent
the above predefined registers.

For Example:

COUNT EQU D4
ADD.B #1,COUNT

is the same as:

ADD.B #1,D4

The reserved symbol "NARG"is used to represent the number of arguments
passed on a macro call.

60

Assembler Introduction
Symbols

Reserved symbols will not appear in a symbol table or in a cross referenc
listing.

Location Counter Symbol (*)

The asterisk (*) is the symbol for the "location counter” (also often called the
"assembly program counter”). The value of the location counter symbol is the
address associated with the first byte of the current instruction. The location
program counter symbol can be absolute or relocatable depending on whether
it appears in an absolute or relocatable section.

Symbol Types

The assembler assigns data types to symbols. These data types are transmitted
by the assembler and loader to the HP-MRI IEEE-695 absolute file.

Debugging tools which consume HP-MRI IEEE-695 files may use these data
types when interpreting assembly language modules.

The symbol type is determined by associating the label with an instruction or
directive. Instructions are always given the type "Code Address". Directives
DC, DS, and DCB have their data types determined by the size extension, as
shown in the example below.

The type is determined by the instruction or directive on the same line as the
label. If the symbolis defined on a line without an instruction or directive,
then the type is determined by the first code generating instruction or directive
which follows the label (in the same section). Finally, if no code generating
directive follows the unattached label, the label receives type "Code Address".

LAB1 ; type Code Address because instruction follows
INST MOVE DO,D1 ;type Code Address
LAB2 ; type Unsigned Byte because DC.B directive follows

BYTE DC.B 0 ; type Unsigned Byte

WORD DCW 0 ; type Unsigned Short

LONG DC.L O ; type Unsigned Long

FLOAT DC.S 0.0 ;type 32-Bit Float

DOUBLE DC.D 0.0 ;type 64-Bit Float

XTEND DC.X 0.0 ;type Extended Float

LAB3 ; type Code Address because END follows
END

61

Assembler Introduction

Constants

Constants

A constant is an invariant quantity. It may be an arithmetic value or a
character code. Arithmetic values may be represented in either integer or
floating point format.

Integer Constants

In most cases, integer constants must be contained in one, two, or four bytes.
A one byte constant can contain an unsigned number with a value from 0 to
255. A two byte unsigned number can range from 0 to 6553burbiyte
unsigned number can range from 0 to 4,294,967,295. When a constant is
negative, its equivalent two’s complement representation is generated and
placed in the field specified. A one byte two's complement number may range
from —128 to 128. A two byte two’s complement negative number may range
from —32768 to 32767. Aofir byte two’s complement signed number may
range from -2,147,483,648 to 2,147,483,647.

Numbers whose most significant bit is set may be either interpreted as a large
positive number or a negative number. For example, the one byte number $FF
may be either + 255 or -1 depending on the usage. The assembler will
correctly recognize numbers in either form, but the user is generally
responsible for their interpretation.

All constants are evaluated as 32 bit quantities, i.e., moddla\thenever an
attempt is made to place a constant in a field for which it is too large, an error
message is generated by the assembler.

Decimal constants may be defined as a sequence of numeric characters
optionally preceded by a plus or a minus sign. If unsigned, the value is
assumed to be positive.

Constants with bases other than decimal are defined by specifying a coded
descriptor or special character before or after the constant. Motorola uses the
special characters to indicate base.

62

Assembler Introduction
Constants

The following table lists the available descriptors and thsianings. If no
descriptor is given, the number is assumed to be decimal.

Table 3-1. Constant Base Descriptor Prefixes/Suffixes

BASE PREFIX SUFFIX

Binary % B

Octal @ 0,0

Decimal none D

Hexadecimal $ H (Leading O’s are required
for hex numbers whose first
character is not a decimal
number.)

Examples of constants are:

%1001
@56
640537
$3AB

45
100101B

Floating-Point Constants

Floating point numbers may be in either decimal or hexadecimal format. A
decimal floating point number must contain either a decimal point or an "E"
indicating the beginning of the exponent field. For exampl&41%9",
"-22E-100". The latter exampiaeans-22 times (10 to the -100th power)".
Underscores may occur before or after the "E" to increase readability.
Underscores are ignored in determining the value of a constant.

A hexadecimal floating point number is denoted by a colon "" followed by a
series of hex digits: up to 8 digits for single-precision, 16 digits for
double-precision, or 24 digits for extended-precision or packed-decimal. The

63

Assembler Introduction
Constants

digits specified are placed in the field as they stand; the user is responsible for
determining how a given floating-point number is encoded in hexadecimal
digits. If fewer digits than the maximum permitted are specified, the ones that
are present will b&eft-justified within the field. Thus the first digits specified
always represent the sign and exponent bits.

Floating-point constants are only permitted in DC, DCB, and FEQU
directives.

Character Constants

An ASCII or EBCDIC character constant may be specified by enclosing one or
more characters within quote marks and preceding them with an A for ASCII
or an E for EBCDIC. If no descriptor is specified, the string is assumed to be
ASCII. Examples of character constants are:

ADD.B #27',D2

EOR #E'0’,CCR ;in hex: FO00
ANDI #A’aB’,D7

MOVE.L #JUMP’,(A2)

Note When character strings are used as operands of word and longword
operations, the assembler assigns values according to the following rules.
These rules were chosen because they are compatible with the Motorola
M68000 Family ResidenttBictured Assembler.

64

Assembler Introduction
Constants

In DC directives, character strings are always left justified in words or
longwords. Anyremaining bytes on the right of the word or longword are
filled with zeros. For example:

DC.B 'A’ ;Hexvalueis 41

DC.B 'AB’ ; Hexvalue is 41 42

DC.W 'A’ ; Hex value is 4100

DC.W 'AB’ ; Hex value is 4142

DC.W 'ABC’ ; Hex value is 4142 4300

DC.L 'A’ ; Hex value is 41000000

DC.L 'AB’ ; Hex value is 41420000

DC.L 'ABC’ ; Hex value is 41424300

DC.L 'ABCD’ ; Hex value is 41424344

DC.L 'ABCDE’ ; Hex value is 41424344 45000000

In any other context, the justification depends on the number of characters in
the string. Strings that are 1 or 2 characters long are left justified to the
nearest word boundary. Strings that are 3 or 4 characters long are left justified
in the longword. Remaining bytes on the right are zdleaf For example:

MOVE.B #A’,D0 ; Value moved is hex 41
MOVE.W #A’,D0 ; Value moved is hex 4100
MOVE.W #AB’,D0 ; Value moved is hex 4142

MOVE.L #A’,D0 ; Value moved is hex 00004100 NOTE!
MOVE.L #AB’,D0 ; Value moved is hex 00004142 NOTE!
MOVE.L #ABC’,DO ; Value moved is hex 41424300 NOTE!
MOVE.L #ABCD’,D0 ; Value moved is hex 41424344 NOTE!

To generate code for a single quotation mark (or a caret) in a character
constant or string delimited by single quotes (or carets), it must be specified as
two single quote marks (or two carets). For example:

'DON"T’
~THE ' AND " DELIMITERS"

The code for a single quote mark will be generated once for every two quote
marks that appear contiguously within the character string.

65

Assembler Introduction

Expressions
Expressions
An expression is a sequence of one or more symbols, constants or other
syntactic structures separated by arithmetic operators. &ipns are
evaluated left to right, subject to the precedence of operators shown below.
Parentheses may be used to establishahect order of the arithmetic
operators and it is recommended that they be used in complessigpre
involving operators such as > >, &, =, etc. The following table summarizes
the operators and their precedences:
Table 3-2. Operator Precedence

Precedence Operator

1 == test for existing operand

2 + unary plus
- unary minus
" logical NOT
.SIZEOF. size of combined section
.STARTOF. starting address of combined section

3 > > shift right
<< shift left

4 & logical AND
! logical OR
I exclusive OR

5 * multiplication
/ division

6 + addition
- subtraction

66

Assembler Introduction
Expressions

Precedence

Operator (Contd)

7

=<> equality, not equality

> ,>= greater than, greater or equal

<<= less than, less or equal

Note

The = = operator is used to determine whether an operand exists. This is
further described in the "Macro Call" section of the "Macros" chapter.

The .STARTOF. and .SIZEOF. operators help you to write code that
initializes or copies logical sections of memory. The section being referenced
in these operators must have been previously defined in a SECT or
COMMON directives.

The .STARTOF. operator gives the starting address of the combined section
in which the named subsectioiillwe contained. The .SIZEOF. operator
gives the size of the combined section.

The comparison operators =, > =, etc., return a logical True (all one bits) if
the comparison is true and a logical False (zero) if the comparison is not true.
All operands are considered to be unsigned 32 bit values and the comparison
is unsigned. (Thus, comparisons against 0 in particular are not very useful.)
An example follows:

IF DATA=5

The shift operators (> >, < <) shift the argument that goes before the
operator right or left the number of bits specified by the argument that follows
the operator. Zeros are shifted into the high or low order bits. An example
follows:

DC.B 2<<BIT

Embedded blanks are not allowed in expressions. The assembler interprets
spaces as termination characters. Expressions are limited to about 45 separate
"entities" per expression. An entity could be a symbol, an operator, a literal,
parentheses, and so on. If you find that you must have an expression with an
over-limit number of entities, you may be able to use EQUs to break up the
expression into subexpressions and not exceed the limit.

67

Assembler Introduction
Assembler Listing Description

All expressions are evaluated moduff @nd must resolve to a single unique
value that can be contained in 32 bits. Consequently, character strings longer
than four characters are not permitted in egpians. When an attempt is

made to place an expression in a one or two byte field and the calculated result
is too large to fit, an error message is generated. Examples of valid
expressions:

PAM+3
LOOP+(ADDR>>8)
(PAM+$45)/CAL
VAL1=VAL2
IDAM&255

Assembler Listing Description

As previously stated, the as68k assembler uses two passes. During the first
pass, macros are expanded, labels are examined and placed into the symbol
table, opcodes and directives are decoded, and statement byte lengths are
determined so the location counter may be updated.

During the second pass, the object code is generated, symbolic addresses are
resolved, and a listing and output object modulepaogluced. Errors

detected during the assembly procetiishe displayed on the output listing

with a cumulative error count also given.

At the end of the assembly process a symbol table or a cross reference table
may be displayed.

Assembler Listing

During pass two of the assembly process, a prodjstimg isproduced. The

main purpose of thisting is to convey all pertinent information about the
assembled program, timeemory addresses, and their values. The load

module, also produced during pass two, contains the object code address and
value information, but in a format that is easily read by computers.

The following points may help you better understand the listing format.

68

Assembler Introduction
Assembler Listing Description

When the assembler detects error conditions during the assembly pro
an "'ERROR"message will appear on the line following these code
which caused the error. An explanation of the individual assembler
warnings and errors is given in the "Assembler Error Messages" appendix.

The column titled "Line" contains decimal numbers that are associated
with the listing surce lines. These numbers are referred to in the cross
reference table. The numbers can include periods (.) separating the digits.
These periods provide a distinction between nesting levels of included or
macro expanded code.

The column titled "Address" contains a value that represents the first
memory address of any object code generated by this statement or the
value of an EQU or SET or FAIL directive.

To the right of the address are up to three words of object code generated
by the assembly language sourceestant. Additional words of object

code are shown on subsequent lines. The first hexadecimal number
represents one word of data to be stored imtemory address and the
memory address plus one. Ifthere are additional words, they will be be
stored in subsequentemory locations.

To the right of the data words are the assembler relocation flags.
The flags are:
R - relocatable operand.
E - external operand.
C - complexrelocatable operand.
If one operand is relocatable and another external, an E will be displayed.

The user’s original source stahents are produced to the right of the
above information.

At the end of the listing the assembler prints the messagert nnnnn,
Warnings: nnnnn". Warnings are marked by a WARNING message;
errors are marked by an ERROR message. See the "Assembler Error
Messages" appendix for a complete list wbe messages. The assembler
substitutes two words of NOP’s when it cannot translate a particular
opcode and so provides room for patching the program.

A symbol table or cross reference table is generated at the end of the
assembly listing. The table lists all symbols defined in alphabetical order,
along with the section in which they were defined, as well as their final
absolute values. Line numbers in which the labels occur are listed under
"REFERENCES".

69

Assembler Introduction
Assembler Listing Description

Cross Reference Table Format

The cross reference option is turned off by default. To turn it on, use "OPT
X" and to turn it off again, use "OPT -X" (see the OPT description in the
"Assembler Directives" chapter). The assemblerpritiduce a symbol table,
and the symbol table will contain cross reference information if "OPT X" has
been specified.

You can limit the listing of cross references to selept@dions of the

program by turning the cross reference option on and off. However, to obtain
the cross reference listing, the option mustua¢d on before the END
directive. Typically, the "OPT X" directive will be one of the first staents in

the source program andlnever be tirned off.

All symbols defined by the user in the programl@ted under the heading
"LABEL". The symbol values are listed under "VALUE". Anyflag to the left
of the values indicates the relocation type of the symbols.

Under REFERENCES, a line number preceded by a minus sign indicates that
the symbol was defined on that line. Line numbers not preceded by a minus
sign indicate a reference to a symbol. If no line numbers appear, the symbol is
the internal system symbol NARG. Note that for SET symbols or for multiply
defined symbols, more than one definition may appear for the symbol. Section
names, macro names, and the module name do not appear in the symbol table
listing.

70

Instructions and Address Modes

This chapter describes the instructions and address modes use®89@e
family and 6888brocessors.

71

Instructions and Address Modes

This chapter describes:

The 68000 family and 68881 assembly languageucsion mnemonics
and qualifiers.

How the assembler will generate code for variants of certairuictions
depending on the instruction’s operands.

The address modes for the 68000 familynmpzocessors.

Assembler syntax and the address modes which are generated for a
particular syntax.

How you can control the generation of address modes by setting or
clearing various assembler options (with the OPT directive).

72

Instructions and Address Modes
Instructions

Instructions
The assembler instructions and their legal operands are defined in the
following Motorola publications:

» MC68000 16/32-bit Microprocessor UsersaMual (Fourth Edition
MC68000UM(ADA4))

* MC68020 32-hit Microprocessor Usersaviual (Second Edition
MC68020UM/AD)

 MC68030 |mhanced32-bit Microprocessor User's Bhual
(MC68030UM/AD)

* MC68040 32-bit Microprocessor User'saviual(MC68040U M/AD)

» CPU32 32-Bit Instruction Processor Referencarial (Preliminary Rev.
0.8)

» MC68881 Floating-Point Coprocessor Usersaual(MC68881UM/AD)

* M68000 Family Resident Structured Assembler Refereacsi
(M6BKMASM/D10)

Sometimes, the Motorola assembler manual and the Motorola processor
manuals define different mnemonics for the same operation. as68k generally
recognizes both methods.

73

Instructions and Address Modes

Qualifiers

Caution

The following instructions do not act as you might expect.

DIVS.L a,Dq ;Dq is both upper & lower half of 64 bit dividend.
DIVU.L a,Dq ;Dq is both upper & lower half of 64 bit dividend.

These instructions divide a 64 bit dividend by a 32 bit divisor and put a 32 bit
quotient into Dqg. The 64 bit dividend is formed by using Dq as both the high
half and low half of the number. This is not a very useful operation.

The assembler’s behavior contradicts the description in Motodd@88020
32-bit Microprocessor User's Bbhual However, the behavior is compatible with
the MotorolaM68000 Family Resident Structured Asseméaled was chosen

for that reason.

In order to divide a 32 bit dividend and obtain a 32 bit quotient, write the
following.

DIVSL.L a,Dq ; 32/32 == 32q
TDIVS.L a,Dq ; 32/32 == 32q
DIVUL.L a,Dq ; 32/32 == 32q
TDIVU.L a,Dq ; 32/32 == 32¢

In order to divide a 64 bit dividend in a sensible way, write the following.

DIVS.L a,Dr:Dq ; 64/32 == 32q,32r

Qualifiers

Instruction mnemonics may in some cases have a qualifier (also called an
extension), which is separated from the mnemonic by a period.

Scope Qualifiers

The qualifier field usually is used to specify the scope of operation for an
instruction. For this purpose, the recognized codes are ".B" (byte), "W"
(word), and ".L" (longword). If an instruction which may have more than one
qualifier is coded without one, "W" is the default.

74

Instructions and Address Modes
Mnemonics

A few instructions use the qualifier field to force the assembler to override its

defaults in choosing the short or long form of an instruction; the recognized
codes in this case are ".S" (short) and ".L" (long).

Floating Point Qualifiers

Floating point operations use the "W", ".B", and ".L" integer qualifiers as w
as additional qualifiers for real numbers. The floating point qualifiers are ",
for single precision real, ".D" for double precision real, " X" for extended
precision real, and ".P" for packed decimal string real.

Mnemonics

A list of the allowable 68000 family itkgiction mnemonics is shown in table
2-1. The legal qualifiers for each are listed. If no qualifiers are listed after a
mnemonic, none are legal. Footnotes are used to provide additional
information.

The notation "cc" (lower case) indicates one of the condition codes: T, F, HI,
LS, CC (or HS), CS (or LO), NE, EQ, VC, VS, PL, MI, GE, LT, GT or LE.

The processor and FPU instructions shown in the tables use this notation for
the qualifiers:

Qualifier Meaning

B,W, L 68000 sizes; specifies signed integer data types of byte (8
bits), word (16 bits), or long word (32 bits).

S Single precision real (32 bits).

D Double precision real (64 bits).

X Extended precision real (96 bits).

P Packed Decimal (BCD) string real (96 bits, 12 bytes).

FPn One of the 8 floating point data registers.

FPcr One of the 3 floating point system control registers
(control - FPCR, status - FPSR, or iaddr - FPIAR).

cc Index into the 68881 constant ROM.

75

Instructions and Address Modes
Mnemonics

Table 4-3. Instruction Mnemonics

(note) Mnemonic Qualifiers

ABCD B
ADD B
ADDA
ADDI B
ADDQ B
ADDX B
AND B
ANDI to CCR
ANDI to SR
ANDI to other B
ASL BW
ASR BW
BW
B
B

2z

sw3

WL

(6) Bcc
(7) BCHG
(7) BCLR
(1) BFCHG
(1) BFCLR
(1) BFEXTS
(1) BFEXTU
(1) BFFFO
(1) BFINS
(1) BFSET
(1) BFTST
(8) BGND
(2) BKPT
(6) BRA B
(7) BSET B
(6) BSR B
(7) BTST B L
B
B

L

L

LS (BT and BF are invalid - use BRA)
L

L

(1) CALLM
(1) CAS
(1) CAs2
(3) CHK WL
(10) CHK2 BWL
(11) CINVA
(11) CINVL
(11) CIVNP
CLR BWL
CMP BWL
CMPA WL
CMPI BWL
CMPM BWL
(10) CMP2 BWL
(11) CPUSHA
(11) CPUSHL
(11) CPUSHP
DBcc W (DBRA is also legal; same as DBF)

76

Instructions and Address Modes
Mnemonics

Table 4-1. Instruction Mnemonics (Cont'd)

(note) Mnemonic

(3) DIVS

(10) DIVSL

(3) DIVU

(10) DIVUL
EOR
EORI to SR
EORI to CCR
EORI to other
EXG

(4) EXT

(4) EXTB

(4) EXTW
ILLEGAL
JMP
JSR
LEA

(3) LINK

(8) LPSTOP
LSL
LSR

MOVE to SR

MOVE to/from USP

MOVE other
MOVEA
(2) MOVEC
MOVEM
MOVEP
MOVEQ
(2) MOVES
(11) MOVE16
(3) MULS
(3) MULU
NBCD
NEG
NEGX
NOP
NOT
OR
ORI to CCR
ORI to SR
ORI to other
(1) PACK
PEA

B

B

(2) MOVE from CCR
MOVE to CCR
MOVE from SR

Qualifiers

(with .L, 64-bit dividend/32-bit divisor)
(32-bit dividend/32-bit divisor)
(with .L, 64-bit dividend/32-bit divisor)
(32-bit dividend/32-bit divisor)

WL
L
WL
L
BWL
w
B
BWL
L
WL

WL
L

L
WL
WL
WL
w

Tss

L
BWL

w

=

Errrr

w
W
B
w
w

|l I

B
BWL
BW

-

w

B
B W

-

B

W
BWL
L

77

Instructions and Address Modes
Mnemonics

Table 4-1. Instruction Mnemonics (Cont'd)

(note) Mnemonic Qualifiers

(11) PFLUSHAN
(11) PFLUSHN
(10)(11) PLOAD
(10)(11) PMOVE
(11) PTEST
RESET
ROL
ROR
ROXL B
ROXR B
(2) RTD
RTE
(1) RT™M
RTR
RTS
SBCD B
Scc
STOP
SuB
SUBA
SUBI
SUBQ
SUBX
SWAP
TAS B
(8) TBLS
(8) TBLSN
(8) TBLU
(8) TBLUN
(10) TDIVS
(10) TDIVU
TRAP
(5) TRAPcC WL
(5) Tec
(5) TPcc WL
TRAPV
TST BWL
UNLK
(1) UNPK

vs)
UJUJCU mmm vy)
esiz IR

(same as DIVSL, 32-bit dividend/32-bit divisor)
(same as DIVUL, 32-bit dividend/32-bit divisor)

78

Instructions and Address Modes

Table 4-1. Instruction Mnemonics (Cont'd)

Mnemonics

NOTES:

(1): 68020/68030 or CPU32 only.

(2): 68010 or greater only.

(3): The .L qualifier is valid only for 68331/332, 68020 and greater processors.
Cannot be used in code that will target chips less capable than the 68331/332.

(4): There are 3 distinct Extend operations. Extend Byte to Word may be coded
as EXT.W or EXTB.W. Extend Word to Long may be coded as EXT.L or EXTW.L. Extend Byte
to Long, which is valid only for 68331/332, 68020 and greater processors, must be coded
as EXTB.L.

(5): TRAPcc, Tcc and TPcc (68331/332, 68020 and greater processors) are
different mnemonics for the same instructions. TRAPcc may or may not take an operand;
Tcc may not have an operand, and TPcc must have an operand.

(6): The ".B" extension forces a Byte instruction. The ".W" extension forces a
Word instruction. The ".L" extension forces a Word instruction when a chip other than
the 68331/332 or 68020 is targeted. When the 68331/332, 68020 or greater processor is
targeted, a Longword instruction is forced unless the OPT OLD directive is used to
force Word instruction to be used.

(7): For the single-bit instructions, the generated code is fully determinable
from the operands and therefore the qualifier serves no function. For compatibility,
however, the qualifiers .B and .L are accepted, and if a qualifier is present the
operands are checked to be sure they match the qualifier.

(8): 68331 and 68332 only. Cannot be used in any other target.

(9): 68030 MMU instructions. These instructions have several variations.

(10): Cannot be used for target less capable than 68331/332.

(11): Added or modified for 68040.

(12): 68030 only.

79

Instructions and Address Modes
Floating Point Mnemonics

Floating Point Mnemonics

A list of the allowable insuction mnemonics for th@8881 floating point
coprocessor and thH&8040 floating point unit is shown in table 2-2. The legal
qualifiers for each are listed. If no qualifiers are listed after a mnemuomie
are legal. Footnotes are used to provide additional information.

The notation "cc" (lower case) indicates one of the condition codes: GT, GE,
LT, GL, LE, GLE, SEQ, ST, NGT, NGE, NLT, NGL, NLE, NGLE, SNEQ,
SF,OGT, OGE, OLT, OGL, OLE,OR,EQ, T,ULE, ULT,UGE, UEQ,
UGT, UN, NEQ, or F.

An "F"in the 68881 colummeans that the itiction is supported by the
68881/882. An "F"in the 68040 colunmmeans that the ituction is fully
supported in thé8040 hardware. A "P"in the 68040 columeans that the
instruction is supported in hardware except for the packed decimal formats.

Unimplemented 68881/882 ivsictions are trapped by tl68040. The
instructions may then be handled using software routines.

80

Instructions and Address Modes
Floating Point Mnemonics

Table 4-2. 68881 Instruct ion Mnemonics

(note) Mnemonic

68881 68040 Qualifiers

(3) FABS F P BWLSDXP
(3) FACOS F BWLSDXP
(2) FADD F P BWLSDXP
(3) FASIN F BWLSDXP
(3) FATAN F BWLSDXP
(3) FATANH F BWLSDXP
(4) FBcc FF wL
(2) FCMP F P BWLSDXP
(3) FCOS F BWLSDXP
(3) FCOSH F BWLSDXP
(4) FDBcc FF W
FDABS F BWLSDX
FDADD F BWLSDX
FDDIV F BWLSDX
(2) FDIV F P BWLSDXP
FDMOVE F BWLSDX
FDMUL F BWLSDX
FDNEG F BWLSDX
FDSQRT F BWLSDX
FDSUB F BWLSDX
(3) FETOX F BWLSDXP
(3) FETOXM1 F BWLSDXP
(3) FGETEXP F BWLSDXP
(3) FGETMAN F BWLSDXP
(3) FINT F BWLSDXP
(3) FINTRZ F BWLSDXP
(3) FLOG10 F BWLSDXP
(3) FLOG2 F BWLSDXP
(3) FLOGN F BWLSDXP
(3) FLOGNP1 F BWLSDXP
(2) FMOD F BWLSDXP
(1) FMOVEtoFPn F P BWLSDXP
(1) FMOVE from FPn F BWLSDXP
(1) FMOVE FPcr F L
(1) FMOVECR F BWLSDXP
(1) FMOVEM FPn FF L X
(1) FMOVEMFPer F F L X
(2) FMUL F P BWLSDXP
(3) FNEG F P BWLSDXP
(4) FNOP F P
(2) FREM F BWLSDXP
(5) FRESTORE F F
FSABS F BWLSDX
FSADD F BWLSDX
(5) FSAVE F F
(2) FSCALE F BWLSDXP
(4) FScc F F B

81

Instructions and Address Modes
Floating Point Mnemonics

Table 4-2. 68881 Instruct ion Mnemonics (Cont'd)

(note) Mnemonic 68881 68040 Qualifiers

FSDIV F BWLSDX

(2) FSGLDIV F BWLSDXP

(2) FSGLMUL F BWLSDXP

(3) FSIN F BWLSDXP

(3) FSINCOS F BWLSDXP (dual monadic)

(3) FSINH F BWLSDXP
FSMOVE F BWLSDX
FSMUL F BWLSDX
FSNEG F BWLSDX

(3) FSQRT F P BWLSDXP
FSSQRT F BWLSDX
FSSUB F BWLSDX

(2) FSuB F P BWLSDXP

(3) FTAN F BWLSDXP

(3) FTANH F BWLSDXP

(3) FTENTOX F BWLSDXP

(5) FTRAPcc F F WL

(4) FTcc F F

(4) FTPcc F F WL

(4) FTST F P BWLSDXP

(3) FTWOTOX F BWLSDXP

NOTES:

(1): 68881 Data Movement instruction. Moves operands into,
between, or out of the floating point data registers.

(2): 68881 Dyadic Operation instruction. Performs arithmetic
operations requiring two operands, e.g. subtract. One of the
operands is always from a floating point data register; the other may
be from a memory address register, from an integer data register, or
from a floating point data register. The result is stored in a
floating point data register.

(3): 68881 Monadic Operation instruction. Performs arithmetic
operations that require only one operand, e.g. cosine. The operation
is performed on the source operand; the result is stored in a
destination which is always a floating point data register that you
must specify.

(4): 68881 Program Control instruction. Tests an operand
instruction for condition codes set in a floating point status
register. The branch instructions within this group allow the user to
set a variable based on the floating point condition codes; then use
this variable in other program and system control instructions.

(5): 68881 System Control instruction. Communicates with the
operating system using a conditional trap instruction. This type of
instruction utilizes the same conditional tests as the program
control instruction and additionally allows a 16- or 32-bit operand
into the instruction for the purpose of passing information to the
operating system.

82

Instructions and Address Modes
Variants of Instruction Types

D250 ADD (A0),D1

D2D0 ADD (A0),Al

5E50 ADD #7,(A0)

Variants of Instruction Types

The assembler allows you to use "generic" instruction types when writing your
programs, and it Wgenerate code for variants of the instruction where
appropriate. The assembler generates code for variants of an instruction
because the variant form is implied by the operands or because fewer byt
code are generated for the variant instruction.

The variants recognized by the assembler are:

Generic Variants

ADD ADD, ADDA, ADDQ, ADDI, ADDX

AND AND, ANDI

CMP CMP, CMPA, CMPM, CMPI, CMP2

EOR EOR, EORI

MOVE MOVE, MOVEA, MOVEQ, MOVEM, MOVEP,
MOVES

OR OR, ORI

SUB SUB, SUBA, SUBQ, SUBI, SUBX

Example:

; ADDA

; ADDQ

0650 FFFF ADD #$ffff,(a0) ; ADDI

When the ADD and SUB instructions have operands which are legal for either
the ADDQ or the ADDI variant (for example, # 1,D4), the assembler chooses
ADDQ or SUBQ because these instructions are two bytes shorter than ADDI.
You can, however, force the ADDI form by specifying the ADDI mnemonic.

We recommend that you use the mnemonics of the variant forms because the
resulting code is easier to understand.

83

Instructions and Address Modes

Registers

Instruction Operands

In general, instructions have zero, one, two or three operands, and in some
cases the same mnemonic may take different numbers of operands to indicate
different functions. Not all address modes are necessarily legal for a particular
operand of a particular instruction. The legal address modes for an operand
vary in an irregular way, which is fully described in tetorola 32-Bit
Microprocessor User's Manugb8020/30/40), th&lotorola Floating-Point
Coprocessor User's Manuéh8881), and.6/32-bit Microprocessor

Programmer’s Reference Manu@ther 68000 familprocessors). There are
differences in legal address modes between chips, which are described in detail
in these Motorola manuals.

Registers

The assembler recognizes the register mnemonics listed and described below.
Register mnemonics may be upper or lower case, and are reserved symbols.

Data Registers
DO-D7 32-bit Data Registers.

ZD0-zD7 Suppressed Data Registe88@20/30 only). The
register specified is used in the instruction, but its value
is taken to be zero for effective address calculations.

Address Registers
AO0-A7 32-Bit Address Registers.
ZA0-ZA7 Suppressed Address Registe88320/30 only). The

register specified is used in the instruction, but its value
is taken to be zero for effective address calculations.

Stack Registers

A7, SP System Stack Pointer.

84

Instructions and Address Modes

Registers
USP User Stack Pointer (for user state).
MSP Master Stack Pointer (68020 supervisor state).
ISP Interrupt Stack Pointe68020 interupt state).
Status Registers
CCR Condition Code Register. The CCR is the lower eight
bits of the status register (SR).
SR Status Register. All 16 bits can be modified in the

supervisor state; only the lower 8 (CCR) can be
modified in the user state. (Note that STATUS is the
name for thdloating-pointstatus register.)

MMUSR MMU Status Register (68040 only). Contamemory
management status information.

Program Counter Registers

PC Program Counter (used in PC relative address modes).
The program counter contains the address of the
location two bytes beyond the beginning of the
currently executing instruction. The user mnemonic PC
does not directly access the program counter register,
but is used to force the use of program counter relative
address modes.

ZPC Suppressed Program Count@3q20/30 only). The PC
is used in the instruction, but its value is taken to be
zero for effective address calculations.

Function Code Registers

SFC, SFCR Alternate Function Code Source Register
(68010/20/30/40 only).

DFC,DFCR Alternate Function Code Destination Register
(68010/20/30/40 only).

85

Instructions and Address Modes

Registers

Cache Registers (68020/30/40 only)

CACR Cache Control Register. Controls on-chip instruction
and data caches.

CAAR Cache Control Register (68020/30). Holds the address
for cache control functions.

Root Pointer Registers (68030/40 only)

CRP CPU Root Pointer. Points to root of translation tree for
currently executing task.

SRP Supervisor Root Pointer. Points to root of translation
tree that describes supervisor address space.

URP User Root Pointer. Points to root of translation tree
that describes user address space.

Translation Registers (68030/40 only)

TC Translation Control register. Controls address
translation.
TTO, TT1 Transparent Translation registers. Each specifies

separate blocks of memorythat are directly addressable
without address translatiorb&030 only)

ITTO,ITT1 Instruction Transparent Translation registers. Each
specifies separate blocks of instructimemory that are
directly addressable without address translati68040

only)

DTTO,DTT1 Instruction Transparent Translation registers. Each
specifies separate blocks of data memory that are
directly addressable without address translati68040

only)

86

Instructions and Address Modes
Registers

Floating Point Registers
FPO-FP7 Floating-Point Data Registers (68881 and 68040).
FPCR, CONTROL Floating-Point Control Register (68881 and 68040).

FPSR, STATUS Floating-Point Status Register (68881 and 68040).

IADDR/FPIAR Floating-Point Instruction Address Registé8881 and
68040).

Other Registers

VBR Vector Base Register (68010/20/30/40). Used for
multiple vector table areas.

The 68881 floating pointaprocessor uses ti&8020 insruction set and
addressing modes frovide a logical extension to the integer calitéds of

the 6802(rocessor. In addition to the eigs2-bit Address Registers (A0 to

A7), and eight 32-bit Integer Data Registers (D0 to D7) of the 68020, the
68020/6888processor combination provides eight Floating Point Data
Registers (FPO to FP7). The 68881 interfaces to the 68020 transparently. You
access the floating point registers of the 6888haagh they were resident in

the 68020. The 6888Dbprocessor interface places no restrictions on the use of
the 68020 registers. Floating point operations are coded exactly the same as
integer operations.

87

Instructions and Address Modes
Address Modes

Address Modes

The Motorola68000/HC001/08/10/30upports a basic set of addsing

modes. For the purposes of representation and explanation, we can refer to
the 68000 addressing modes as the “68000 model.” Thed@68020

supports, in addition to the ba&§8000 model modes, additional addressing
modes and expanded functionality for some of the basic 68000 modes. The
“68020 model” is a superset of the 68000 model. Thedvida 68331/332
supports all the bas&3000 modes and a some of the additional modes of the
68020. The “68332 model” is a superset of the 68000 model and a subset of the
68020 model. The Matrola68030/40 spports thes8000, the 68332, and the
68020 addressing models. The following tablmmarizes the addsssing

models supported by each microprocessor:

Table 4-3. Address Models

Processor Address Model Supported
68332 Model
68332 Model
68020 68000 Model
68332 Model
68020 Model
68030 68000 Model
68020 Model
68040 68000 Model
68020 Model

88

Instructions and Address Modes
Address Modes

Understanding the differences among the addressing modelsastant for
two reasons:

* Incompatibilities and ors can occur if you choose adssag modes
from a model not supported by your target processor or that conflict with
CHIP or OPT P= directives.

For instance, if you specify a processor that support688@0 model
(68000 or 68010) with a CHIP or OPT P= directive and then use
instructions that us€8020 model addressing modes, the assembler will
error. Or, if you choos88020 model addressing modes and a compatible
CHIP or OPT P= directive, problems mayistccur if you attempt to
execute the code on a processor that suppoiythe 68000 model modes

* Incompatibilities and eors can also occur if thes@8k tiooses addssing
modes (based on the manner in which operands were specified) from a
model not supported by your target processor or that conflict with CHIP
or OPT P= directives.

89

Instructions and Address Modes
Address Modes

The 68000 Model

The 68000 model defines twelve addressing modes. These modes are valid for
all 68000 familyprocessors. User’s manuals for older chB&000, for

instance) group these addsing modes in broad terms. Weose, however,

to define them more explicitly. Table 2-4nsmarizes the addssing modes
common to all 68000 family chips. (Each addressing mode is preceded by a
roman numeral. These roman numerals will be ukeaiugh the rest of the
manual as a short form for these addieg modes.)

Table 4-4. 68000 Model A ddressing Modes

Register Direct Modes

1) Data Register Direct
1) Address Register Direct

Register Indirect Modes

Ill) Address Register Indirect

1V) Address Register Indirect with Postincrement

V) Address Register Indirect with Predecrement

VI) Address Register Indirect with (16-bit) Displacement
Register Indirect with Index Modes

VII) Address Register Indirect with (8-bit) Displacement and Index
Absolute Address Modes

VIIl) Absolute Short Address
IX) Absolute Long Address

Program Counter Indirect with Displacement Mode

X) Program Counter Indirect with (16-bit) Displacement
Program Counter Indirect with Index Modes

XI) Program Counter Indirect with (8-bit) Displacement and Index
Immediate Data

XIl) Immediate

90

Instructions and Address Modes
Address Modes

The 68020 Model

The expanded addressing modes for the 68020 model are variations of two of
the 68000 model modes. They are Aueress Register Indirect with (8 bit)
Displacement and IndexandProgram Counter Indirect with (8 bit)

Displacement and IndexIn the 68000 model, these two modes have a speciall
formatted word of extension not found in the other ten modes. 168020
model, these two modes also have a specially formatted word of extension
interpretation of that extension word candtightly different, however, in the
68020 model. The six variations defined for these two modes also have a
specially formatted extension word and may be followed by additional words of
extension. These differences between the two modes give the 68020 model
much expanded capabilities over the 68000 model. Table Bitauizes the
variations and additions of the 68020 model. (The subscripted roman
numerals will be used to refer to these 68020 model modes later in the
manual.)

Table 4-5. 68020 Model Varied and A dditional Modes

Register Indirect with Index Modes
Vlla) Address Register Indirect with (8-bit) Displacement and Index *
VIlb) Address Register Indirect with (16- or 32-bit) Base Displacement
and Index
Memory Indirect Address Modes

Vllc) Memory Indirect Post-Indexed
VIld) Memory Indirect Pre-Indexed

Program Counter Indirect with Index Modes
Xla) Program Counter Indirect with (8-bit) Displacement and Index *
Xlb) Program Counter Indirect with (16- or 32-bit) Base Displacement
and Index
Program Counter Memory Indirect Modes

Xlc) Program Counter Memory Indirect Post-Indexed
Xld) Program Counter Memory Indirect Pre-Indexed

* In these modes, you may specify a scale factor of 2, 4, or 8.
The 68000 model only allows a scale factor of 1.

91

Instructions and Address Modes
Address Modes

The 68332 Model

The 68332 model is a superset of the 68000 model and a subset of the 68020
model. Table 2-5 sumarizes the addssing modes. Each addressing mode is
preceded by a roman numeral. These roman numerals will behrsedyh the
rest of the manual as a short form for these aghilng modes. Roman

numerals Vlla, VlIb, Xla, and Xlbarrespond to the addssing modesofund

in the 68020 model (table 2-6). All addressing modes excptavid XIb are
also found in th&8000 model.

Table 4-6. 68332 Model A ddressing Modes

*

Register Direct Modes

I) Data Register Direct
1) Address Register Direct

Register Indirect Modes

Ill) Address Register Indirect

1V) Address Register Indirect with Postincrement

V) Address Register Indirect with Predecrement

VI) Address Register Indirect with (16-bit) Displacement
Register Indirect with Index Modes

Vlla) Address Register Indirect with (8-bit) Displacement and Index *
VIlb) Address Register Indirect with (16- or 32-bit) Base Displacement and Index

Absolute Address Modes

VIIl) Absolute Short Address
IX) Absolute Long Address

Program Counter Indirect with Displacement Mode
X) Program Counter Indirect with (16-bit) Displacement
Program Counter Indirect with Index Modes

Xla) Program Counter Indirect with (8-bit) Displacement and Index *
Xlb) Program Counter Indirect with (16- or 32-bit) Base Displacement and Index

Immediate Data

XIl) Immediate

In these modes, you may specify a scale factor of 2, 4, or 8.
The 68000 model only allows a scale factor of 1.

92

Instructions and Address Modes
Address Modes

Explanations of Address Modes

The Program Counter relative modes refer toeanory address in terms of its
distance from the instruction. At execution time, the Program Counter will
contain a value 2 greater than the beginning of the instruction, that is, the
address of the first byte of extension.

The 68000, 68HC001, 68008, 68302, 68010, 68331, and 683B2pTiCESSOrs
may addressdd memory locations only when the instruction is operating o
single byte. Neither the assembler nor the loader checks for this and in many
cases (such as indexed address modes), neither the assembler nor the loader is
capable of checking for this situation. The 68020/30/40 have no such

restriction. However, all chips do require that every instruction begin at an

even address, and the assembler enforces this. Data may begin at an even or
odd address.

The remaining subsections briefly explain the particulars of botbgbe0
model modes that apply to all 68000 fanuihpcessors and th&3020 model
modes that apply to the 68020 and lgisycessors.

Register Direct Modes (I & II)

Depending upon the mode, the Register Direct Modes act directly on the
contents of either a data register or an address register.

All other modes specify an address in memory; the contents of this address are
used as the instruction operand.

Address Register Indirect (1lI)

The Address Register Indirect Modeprovides theanemory address in an
address register.

Address Register Indirect with Postincrement (1V)

The Address Register Indirect with Postincrement Modeprovides thanemory
address in an Address Register and, after using the address, increments the
register by one, two, or four, depending upon whether the scope of the
operation is byte (.B), word (.W), or longword (.L).

93

Instructions and Address Modes

Address Modes

Address Register Indirect with Predecrement (V)

TheAddress Register Indirect with Predecrement Modalecrements an

Address Register by one, two or four, depending upon whether the size of the
operand is byte (.B), word (.W), or longword (.L), and then uses the resulting
contents of the register as the memory address. None of the preceding modes
require any extension bytes.

Address Register Indirect with (16-bit) Displacement (VI)

In Address Register Indirect with Displacement Modethe address is the sum
of the contents of an address register and a sign-extended 16-bit alisple¢
it requires 2 bytes of extension.

Address Reg. Indirect with 8-Bit Displacement and Index (V 1l, 68000
model)

In Address Register Indirect with Displacement and Index Mod¢he address

is the sum of the contents of an Address Register, the contents of an Index
Register (which may be an Address or a Data Register) and a sign-extended
8-bit displacement. It requires 2 bytes of extension. The Index Register
involved may use either all 32 bits or 16 bits sign-extended.

Address Reg. Indirect with 8-Bit Displacement and Index
(Vlla, 68332/020 model)

In addition to the capabilities of the 68000 model, the 68332 model and the
68020 model allow the Index Register contents to be multiplied by a scale
factor of 1, 2, 4, or 8 before being added to the Address Register contents. The
scale factor is coded into bits 9 and 10 of the specially formatted extension
word. In the 68000 model mod¥I(), the scale factor is always 1.

Address Reg. Ind. with Base Displ. and Index
(VIlb, 68332/020 model)

The Address Register Indirect with Base Displacement and Index Mode

calculates the memory address as the sum of the contents of an Address
Register, the contents of an Index Register (which may be an Address or a
Data Register) and a sign-extended base displacement which may be either 16
or 32 bits. This mode requires at least 2 bytes of extension, plus 2 more for a
16-bit displaement or 4 more for 32-bit displaement. The Index Register
involved may use either all 32 bits or 16 bits sign-extended. The Index Register

94

Instructions and Address Modes
Address Modes

contents may be multiplied by a scale factor of 1, 2, 4, or 8 before being added
to the Address Register contents. Any or all of the Address Register, Index
Register and displacement may be specified to be null, in which case they are
taken to have a value of 0. A null displacement does not require any extension
bytes.

Memory Indirect Post-Indexed (V llc, 68020 model)

TheMemory Indirect Post-Indexed Modefirst calculates an intermediate
address as the sum of the contents of an Address Register and a sign-extended
base displacement which may be either 16 or 32 bits. The final memory address
is then calculated as the sum of the contents of the intermediate address, the
contents of an Index Register (which may be an Address or a Data Register),
and an outer displacement which may be either 16 or 32 bits. This mode
requires at least 2 bytes of extension, plus 2 more for each displacement which
is 16 bits and 4 more for each displacement which is 32 bits. The Index

Register involved may use either all 32 bits or 16 bits sign-extended. The Index
Register contents may be multiplied by a scale factor of 1, 2, 4, or 8 before
being added to the intermediate address contents and the outer displacement.
Any or all of the Address Register, Index Register, base displacement and
outer displacement may be specified to be null, in which case they are taken to
have a value of 0. Null displacements do not require any extension bytes.

Memory Indirect Pre-Indexed (VIid, 6 8020 model)

TheMemory Indirect Pre-Indexed Mode first calculates an intermediate

address as the sum of the contents of an Address Register, an Index Register
(which may be an Address or a Data Register), and a sign-extended base
displacement which may be either 16 or 32 bits. The final memory address is
then calculated as the sum of the contents of the intermediate address and an
outer displacement which may be either 16 or 32 bits. This mode requires at
least 2 bytes of extension, plus 2 more for each displacement which is 16 bits
and 4 more for each displacement which is 32 bits. The Index Register
involved may use either all 32 bits or 16 bits sign-extended. The Index Register
contents may be multiplied by a scale factor of 1, 2, 4, or 8 before being added
to the Address Register contents and the base displacement. Any or all of the
Address Register, Index Register, base displacement and outer displacement
may be specified to be null, in which case they are taken to have a value of 0.
Null displacements do not require any extension bytes.

95

Instructions and Address Modes

Address Modes

Absolute Short (VIII)

The Absolute Modes provide an actaamory address right in the

instruction. ForAbsolute Short Modethis address is 16 bits sign-extended (2
bytes of extension). Becau$6-bit addresses are sign-extended, the areas of
memory addressable by Absolute Short Mode are from 0 to $7FFF plus an
area in high memory, the address range of which is dependent on the target
chip (from $FF8000 to $FFFFF for the568000 and 68010, from $F8000 to
$FFFFF for thes8008, and from $FFF8000 to $FFFFFFF for the
68020/30/40).

Regardless of the target chip, the assembler recognizes only the absolute
addresses from $FFFF8000 toFfFFFFFF as being in the high
shortaddressable area of memory. (If it is necessaryto use Absdiate S

Mode on the actual area of high memory that is shddressable on the

target chip, any absolute code should be placed in a separate module and
referenced as XREF.S from other modules, which technique causes the use of
Absolute Short address mode in most cases. Alternatively such code could be
made relocatable and placed in a SECTION.S, then located correctly at link
time; in this case the high-shaatidressable code need not be in a separate
module.)

Absolute Long (1X)

The Absolute Modes provide an actaa@mory address right in the
instruction.Absolute Long Modecontains a full 32-bit address in the
instruction and can thus address ammory location on any chip (4 bytes of
extension).

Program Counter with Displacement (X)

TheProgram Counter Indirect with Displacement Modecalculates the
memory address by adding the value of the Program Counter to a
sign-extended 16-bit displament; it requires 2 bytes of extension.

Program Counter with 8-Bit Displacement and Index
(X1, 68000 model)

TheProgram Counter Indirect with 8-bit Displacement and Index Mode
calculates the memory address by adding the value of the Program Counter,
the contents of an Index Register (which may be Address or Data, and may use

96

Instructions and Address Modes
Address Modes

the entire 32 bits or the low order 16 bits, sign-extended), and a sign-extended
8-bit displacement; it requires 2 bytes of extension.

Program Counter with 8-Bit Displacement and Index
(Xla, 68332/020 model)

The 68332 model and 68020 model allow the Index Register contents to b
multiplied by a scale factor of 1, 2, 4, or 8 before being added to the other
components. The scale factor is coded into bits 9 and 10 of the specially
formatted extension word. In the 68000 model moxig,(the scale factor is
always 1.

PC with Base Displacement and Index (Xlb, 68332/020 model)

TheProgram Counter Indirect with Base Displacement and Index Mode
calculates the memory address by adding the value of the Program Counter,
the contents of an Index Register (which may be Address or Data, and may use
the entire 32 bits or the low order 16 bits, sign-extended), and a sign-extended
displacement, which may be either 16 or 32 bits. This mode requires at least 2
bytes of extension, plus 2 more for a 16-bit disptaent or 4 more for 32-bit
displacement. The Index Register may be multiplied by a scale factor of 1, 2, 4,
or 8 before being added to the other components. Any or all of the Address
Register, Index Register, and displacement may be specified to be null, in
which case they are taken to have a value of 0. A null displacement does not
require any extension bytes.

PC Memory Indirect Post-Indexed (X Ic, 68020 model)

TheProgram Counter Memory Indirect Post-Indexed Modefirst calculates an
Intermediate address as the sum of the contents of the Program Counter and a
sign-extended base displacement which may be either 16 or 32 bits. The final
memory address is then calculated as the sum of the contents of the
Intermediate address, the contents of an Index Register (which may be an
Address or a Data Register), and a sign-extended outer displacement which
may be either 16 or 32 bits. This mode requires at least 2 bytes of extension,
plus 2 more for each displacement which is 16 bits and 4 more for each
displacement which is 32 bits. The Index Register involved may use either all
32 bits or 16 bits sign-extended. The Index Register contents may be
multiplied by a scale factor of 1, 2, 4, or 8 before being added to the
Intermediate address contents and the outer displacement. Any or all of the
Program Counter, Index Register, base diggataent and outer displacement

97

Instructions and Address Modes

Address Modes

may be specified to be null, in which case they are taken to have a value of 0.
Null displacements do not require any extension bytes.

PC Memory Indirect Pre-Indexed (XId, 6 8020 model)

TheProgram Counter Memory Indirect Pre-Indexed Modefirst calculates an
Intermediate address as the sum of the contents of the Program Counter, an
Index Register (which may be an Address or a Data Register), and a
sign-extended base displacement which may be either 16 or 32 bits. The final
memory address is then calculated as the sum of the contents of the
Intermediate address and a sign-extended outer displacement which may be
either 16 or 32 bits. This mode requires at least 2 bytes of extension, plus 2
more for each displacement which is 16 bits and 4 more for each displacement
which is 32 bits. The Index Register involved may use either all 32 bits or 16
bits sign-extended. The Index Register contents may be multiplied by a scale
factor of 1, 2, 4, or 8 before being added to the Program Counter contents and
the base displacement. Any or all of the Prograoni@er, Index Register,

base displacement and outer displacement may be specified to be null, in
which case they are taken to have a value of 0. Null displacements do not
require any extension bytes.

Immediate (XII)

The final address mode provides data directly in the instruchiomédiate

Mode). The number of bits used and the number of bytes of extension varies
with the instruction and with the qualifiemmediate data is always evaluated
first as a 32-bit unsigned two’s complement value. If theiresion requires

fewer than 32 bits, the most significant bits are checked and discarded. If the
bits discarded are all 0 or all 1, the instruction assembles normally, while if the
bits discarded are mixed zeros and ones, a warning is printed. The immediate
operands of ADDQ, SUBQ, TRAP, BKPT and all Shifts (which are smaller
than a byte) may not be relocatable or external. All other immediate operands
may be relocatable or external.

68881 Floating-Point Coprocessor and Address Modes

The 68881 floating-pointaprocessor llizes the 68020 addssing modes by
requesting the 68020/30 to perform addressing mode calculations based on the
68881 insructions.The 68881 knows nothing about addressing mode#/hen
instructed to do so by thg8881, the 68020/30 evaluates thetrinstion,

98

Instructions and Address Modes
Address Modes

transfers the operands through the coprocessor interface, and performs the
addressing mode calculations.

Any of the 68020 addressing modes may be used with floating point
instructions, includingddress/ data register direct, indexed indirect, auto
increment, auto decrement, and immediate mod&Vhen a floating point
instruction is encountered, ti68020 evaluates the itraction to its
addressing modes. These include all 68020 addressing modes listed here,
the exception of a few restrictions for certain instructions. The exceptions
fully described inMotorola Floating-Point Coprocessor User's Manual

68040 Floating-Point Unit and Address Modes

The 68040 floating point unit uses the 68040 to perform address calculations.
Thus any of the 68040 addressing modes may be used with floating point
instructions.

99

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

Assembler Syntax for Effective Address Fields

The assembler creates just one address mode for certain ways of specifying
operands, while others may result in one of several modes. The following
paragraphs describe how the Assembler makes such decisions. See table 2-6
for a definition of the terms which are used to describe operand syntax.

Rules of Assembler Syntax

Motorola's68020-oriented syntaxis fullypported. This syntax uses square
brackets 'T","]" to designate the components of the intermediate address in the
68020 address modes, and parentheseoigpghe other components of an
effective address. The following facts apply to address mode syntax:

* The syntaxes "< exp> (anything)" (old 68000) and "(< exp> ,anything)"
(68020) are completely equivalent.

* The order of items separated by commas within square brackets or
parentheses ("grouping characters") is not significant, unless there are two
A-registers, neither having an appended size code nor scale factor, present
within the same grouping characters. In this case (which is syntactically
ambiguous) the leftmost register is taken as the Address Register and the
rightmost as the Index Register.

A 68000 model mode will be chosen if this is sgible intepretation of
the operand, as these modes are more efficient. However, any of the
following is sufficient to force a 68020 model address mode (perhaps with
some null fields):

— Using a Z-register (ZPC, ZAn or ZDn).
— Using square brackets.

— Specifying an explicit .L size code on a displacement. (Note that a
W qualifier does not force a 68020 model mode.) For example:

((LABEL).L,A1)

— Specifying a scale factor other than 1 on an indexregister.

— Specifying a displacement too large to fit in 68900 model
mode. Forward references are assumed to require 32 bits, while

100

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

externals and relocatables are assumed to require 16 bits (but if
the absolute part of an expression such as "reloc+ abs"is too large
to fit in 16 bits, a 32-bit field it be used perforce). These defaults
may be overridden by explicit W and .L codes, and if a forward
reference is later found to fit in 16 bits after al&00 model
mode may be selected on pass 2. (There will then be some extr,
NOPs trailing the insuction, however.) The OPT flags BRW an
FRS do not apply to forward references which appear in
conjunction with a register.

Note that coding, for example, "(< exp> ,An)"rather than "< exp> (An)"is
not sufficient to force the use of a 68020 model mode. Nor is specifying a
scale factor of 1 explicitly. Errorsilvoccur when assembler syntax forces
68020 model address modes and the targetopiocessor (specified with
the CHIP or OPT P= directives)n®tone that supports 68020 model
addressing modes.

Assembler syntaxes which generate "Address Register Indirect with
Displacement” or "Memory Indirect" modes (for example, "(< exp> ,An)"

or "([< exp> ,An],Rn)") allow < exp> to be an absolute or relocatable
expression. If < exp> is an absolute expression, the assembler will use it as
the displacement. If < exp> is a relocatable espian, the syntax says,
"access the location of the relocatable expression using register 'An’
indirect," and the linker/loader will calculate the final disglaent. (See

the "A2-A5 Relative Addressing" section for more information.)

Absolute expressions in operands which generate Program Counter
relative address modes (for example, "(< abs exp> ,PC)") can have two
different meanings depending on the ABSPCADD assembler flag.

By default, ABSPCADD is on, and the absolute expression is considered
to be the address from which the current PC is subtracted to form the
displacement.

When the ABSPCADD flag is off (OPT NOABSPCADD or OPT
-ABSPCADD), the absolute expression is considered to be the
displacement.

While you can use the OPT NOABSPCADD assembler option to code
actual displacements in Programubter relative instructions, there is
also a way to specify actual displacements when the ABSPCADD flag is
on. For example, if you would like to specify a displacement of + 8 from
the current location counter, you could use the syntax "(*+ 8,PC)" (which

101

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

is equivalent to OPT NOABSPCADD and the syntax"(6,PC)". The PC is
2 greater than the ™" location counter symbol.)

In the tables that follow, the 68020 notation is used, but the facts listed above
should be kept in mind. For example, the déston of the operand "(< abs

exp> ,An,Rn{.W| .L})"includes the forms "< abs exp> (An,Rn{.W| .L})"and

"(< abs exp> ,Rn{.W| .L},An)".

Operand Syntax and Addressing Modes

The following tables list what addressing modes the assembllehwose for
the various operand syntaxes.

Table 4-7. Definition of Syntax Terms

SYNTAX TERM DEFINITION
An Represents an address register.
Dn Represents a data register.
RN Represents either an address or data register, or a suppressed register
(ZAn or ZDn). as68k does not recognize the mnemonic Rn.
< abs exp> Repres_ents an g_bsolute expression, including an external reference|with
no section specified.
< rel exp> R_epresent_s a relogqtable expression, including an external reference
with a section specified.
< exp> Represents either an absolute or relocatable expression.
0} Represent a field that may or may not be present. (Note that the braces

are required syntaxin the 68020Bkinstructions, however.)

102

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

Table 4-8. Operand Syntax & Addressing Modes

Dn
An

The operands Dn and An always result in Ereta
Register Direct (1) and theAddress Register Direct (Il)
modes, respectively.

(An)
(An)+
-(An)

The operands "(An)","(An)+ "and "-(An)" always result in
the Address Register Indirect (Ill), Address Register
Indirect with Postincrement (1V), andAddress Register
Indirect with Predecrement (V) modes, respectively.

< exp>

This operand results in themediate (XII) mode. An
absolute expression must be within a certain size range
that is dependent on the instruction and qualifier code.
16- and 32-bit immediate data can be a relocatable
expression.

(< exp>,An)

This operand is resolved Address Register Indirect with
Displacement (VI), provided the expiesion fits in 16 bits
(sign-extended). The assembler assumes an external
expression will fit into 16 bits.

If the expression does not fit in 16 bits, the 68020 model
modeAddress Register Indirect with Base Displacement
and Index (VIIb) is used. The specified A-register is used

as the Address Register and the Index Register is taken to

be null.

As a special case, "(0,An)" generates the more efficient
Address Register Indirect (11l) despite the explicit zero
displacement. progammer who wishes to generate an
explicit zero displacementilvhave to use an external
symbol.

(Dn)

(Rn.W)
(Rn.L)

(< exp>,Dn)

(Rn{W.L})

These operands generate the 68020 nioidieess
Register Indirect with Base Displacement and Index

(VIIb) . The specified register is used as the Indexregister.

103

Instructions and Address Modes

Assembler Syntax for Effective Address Fields

Table 4-8. Operand Syntax & Addressing Modes (Cont'd)

(< abs exp> ,An,Rn {.W] .L}{*scl})
(An,Rn{.W| .L}{*scl})

If the target microprocessorn®tthe 68020/30/40 or
68331/332, the address mode generatéddsess
Register Indirect with 8-Bit Displacement and Index

(VIl) . The < abs exp> must resolve to an 8-bit, sign
extended value. Otherwise, an errdlf @ccur. If the
target microprocessor is ti68020/30/40 or 68331/332, th

following cases determine the address mode generated:

1. If < abs exp> is backward defined, its value fits in 8 bi
and the scale factor is 1, tiAddress Register Indirect

with 8-Bit Displacement and Index (VII) 68000 model
mode is generated. If the scale factor is greater than 1
4, or 8), then the 68020 model modéa is generated.

2. If <abs exp> is backward defined and its value is
greater than 8 bits, thddress Register Indirect with
Base Displacement and Index (Vllbmode is generated.

3. If <abs exp> is forward defined and its value fits in 8
bits and the scale factor is 1, thédress Register Indirect
with 8-Bit Displacement and Index (VII) 68000 model
mode is generated. If the scale factor is greater than 1
4, or 8), then the 68020 model modéa is generated.

4. If < abs exp> is forward defined and its value is great
than 8 bits, an error occurs because the assembler ass
that any forward defined absolutes will fit into 8 bits.

If < abs exp> is absent, a displacement of 0 is used.
Reading left-to-right, the first A-register found that doe

not have size code or scale factor is the Address register.

The other register is the Index register.

104

1%

ts,

2;

2;

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

Table 4-8. Operand Syntax & Addressing Modes (Cont'd)

(< rel exp> ,An,Rn{.W| .L}{*scl})

If the target microprocessorn®tthe 68020/30/40 or
68331/332, this syntax always results in armebecause
the assembler did not allocate enougbmory on the first
pass.

If the target microprocessor is t68020/30/40 or
68331/332, this syntax results in thédress Register
Indirect with Base Displacement and Index (VIIb) If

<rel exp> is forward defined, an error occurs because the

assembler did not allocate enougkemory on the first
pass.

Reading left-to-right, the first A-register found that does
not have size code or scale factor is the Address register.

The other register is the Indexregister.

(..]Rn...)
([< exp>,An],Rn{.W] .L})

Any operand containing square brackets with a registe
specified outside the brackets (necessarily an Index

Register), but not containing "PC" or "ZPC", generates the

68020 modeMemory Indirect Post-Indexed (Vlic) mode.

Any registers and displacements not specified are taken to

be null. Anyrelocatable displacements are assumed tq
16 bits unless specified to be 32 bits by enclosing the
expression in parentheses and attaching .L, i.e.,

(<exp>).L.

(.. .Rnl,..)
([< exp>,An,Rn{.W| .L}])

Any operand which contains square brackets, with no
register specified outside the brackets, and no "PC" or
"ZPC"inside the brackets, generates the 68020 model
Memory Indirect Pre-Indexed (Mlld) mode. Anyregisters
and displacements not specified are taken to be null. A
relocatable displacements are assumed to be 16 bits u
specified to be 32 bits by enclosing the expression in
parentheses and attaching .L, i.e., (< exp>).L.

(< exp>,Dn,Rn{.W| .L})
(Dn,Rn{.W| .L})

These operands are invalid. One of the two registers
be an A-register or PC.

be

\ny
nless

nust

105

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

Table 4-8. Operand Syntax & Addressing Modes (Cont'd)

(< exp> ,PC) T_his o_perand always resultsirogram Counter Indirect
with Displacement (X) mode.

=)

If <exp> is an absolute expression, it is by default take
to be an address. The flag NOABSPCADD may be used
to cause the absolute expression to be used as the
displacement.

If <exp> is an address, the displacement is calculated to
be the value of < exp> minus the current value of the
program counter. Sometimes, the assembler can calculate
the displacement; in most cases, the calculation is
postponed until link time when the actual location of bath
the instruction and the operand are known.

106

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

Table 4-8. Operand Syntax & Addressing Modes (Cont'd)

(< exp> ,PC,Rn{.W]| .L}{*scl})
(PC,RN{.W]| .L}{*scl})

This operand results in modXk, Xla, or XIb according to
the following rules.

1.If < exp> isrelocatable. If < exp> is defined in the same
section and the same source file as the instruction, the
assembler can calculate the relative distance between < e
and the instruction. Otherwise, the assembler cannot
calculate the relative displacement and this calculation mu
be performed at link time.

a. If the assembler can calculate the displacement and
displacement Wt fit into 8 bits sign-extended, then
modeXI is chosen.

b. If the assembler can calculate the displacement, this
displacement Wt fit into 8 bits sign-extended, and a
scale factor greater than 1 is specified, then nXides
chosen.

C. If the assembler cannot calculate the disgiaent or
the displacementilnot fit into 8 bits sign-extended,
modeXIb is chosen.

2. If <exp> is absolute.

a. If the ABSPCADD flag is in effect and the instruction

this

is

also in an absolute section. In this case, the assembler

can calculate the distance between < exp> and the
instruction.

- If the displacement W/fit into 8 bits sign-extended,
modeXI will be chosen. A scale factor greater than 1
will cause mod«la.

- If < exp> is backward defined and the displacement
larger than 8 bits, modélb is chosen.

- If < exp> is forward defined and the displacement ig
larger than 8 bits, an erroiillccur because the
assembler did not allocate enough space on pass 1.

107

S

Instructions and Address Modes

Assembler Syntax for Effective Address Fields

Table 4-8. Operand Syntax & Addressing Modes (Cont'd)

b.

If the ABSPCADD flag is in effect and the instruction
in a relocatable section.

- If < exp> is backward defined, moddb is chosen.

- If < exp> is forward defined, an erroilMoccur

is

because the assembler did not allocate enough space in

pass 1.

Ifthe NOABSPCADD flag is in effect. If <exp> will
fit into 8 bits sign-extended, modé@ is chosen. A scale
factor greater than one will cause motla. If < exp>
will not fit into 8 bits, then mod&lb is chosen.

((< exp>).W,PC,Rn{.W]| .L}{*scl})
((< exp>).L,PC,Rn{.W| .L}{*scl})

A size qualifier on < exp>, e.g. (< exp>).W or
(< exp>).L causes modé€b to be chosen.

([. . .PCI,Rn,. .)
([< exp> ,PC],Rn{.W]| .L})

Any operand containing square brackets, with PC or

ZPC inside, and a register specified outside the
brackets (necessarily an Index Register), generates
68020 modeProgram Counter Memory Indirect
Post-Indexed (Xlcymode. When ZPC is used, the

specified < exp> for the base displacement is always

the

taken to be the displacement itself (in other words, the

PC contents are not subtracted from it). At run-time

the PC is not used to create the effective address.

(. . "PCRn],. .)
([< exp> ,PC,Rn{.W| .L}])

Any operand which contains square brackets, with PC

or ZPC inside, and no register specified outside,
generates the 68020 modirbgram Counter Memory
Indirect Pre-Indexed (Xld) mode. When ZPC is used
the specified < exp> for the base displacement is
always taken to be the displacement itself (in other
words, the PC contents are not subtracted from it).
run-time, the PC is not used to create the effective
address.

108

At

Note

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

< eXp>

The operand < exp> results in one of three modlesolute Short (VIII) ,

Absolute Long (IX), or Program Counter Indirect with Displacement (X). In

most cases, good results will be obtained by allowing the assembler to use its
default action.

The PCR assembler flag (see the OPT assembler directive) controls the
selection of addressing modes from a relocatable section to the same
relocatable section in the same module.

You should note the following facts carefully before using the "< exp>"
addressing modes table:

* The table does not apply to the Bcc or DBcc instructions, which use
Program Counter plus Displment mode.

* The final choice between address modes VIII and IX may be specified by
the .S or .L qualifier on the JMP and JSR instructions. These qualifiers
will not cause an absolute mode to be used instead of mauer Xll
they cause a reference to a location that is known to be in
shortaddressable memory to use absolute long mode.

The operand forms "(< exp>).W"and "(< exp>).L" are subject to the same
rules as < exp> with the following clarifications:

» Ifan absolute (as opposed to a PC-relative) mode is chosen, "(< exp>).W"
forces theAbsolute Short (VIII) mode and "(< exp>).L" forces the
Absolute Long (IX) mode.

» On forward references, "(< exp>).W"forces 16 bits of extension to be
allocated while "(< exp>).L" forces 32 bits of extension to be allocated.

109

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

Table 4-9. Choosing Address Modes for < exp>

Instruction Expression Type
Section Type
ABS < abs exp> <rel exp> unknown
(forward ref)
If OPT P is set and the| If section of operand is If OPT F is set, then
displacement is within | short, therVill , elselX. 2 bytes allocated,
16-bit range, then else 4 bytes
modexX. allocated.
Else, if operand isin
short addressable
memory, then mode
Vil .
Else moddX.

REL If operand isin If OPT NOPCR is set, then | IfOPT F is set, then
shortaddressable if section of operand is 2 bytes allocated,
memory, theVIll , short, therVlll , elselX. else 4 bytes
elselX. allocated.

Else, if operand and
instruction are in same
section and displacement
within 16-bits, therX.
Else, if section of operand ig
short, therVlll , elselX.
ABS External Reference in Specified External Reference in Unspecified
Section Section
If section of operand is short, then | If operand was defined in XREF.S
VI, elselX. or if OPT F set, theWll , elselX.
REL If OPT R set, theiX. If operand was defined in XREF.S
or if OPT F set, theMlll , elselX.
Else, if section of operand is short,
thenVill , elselX.

110

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

How Code is Generated for Forward Defined Symbols

The assembler operates in two passes.

In Pass 1, when evaluating an operand, one or more labels may be forward
defined. The assembler will not know whether these labels are absolute or
relocatable symbols until later in the assembly. The assembler makes

assumptions about forward defined labels; it selects a tentative address m
and allocates space for the instruction based on these assumptions.

In Pass 2, the assembler knows everything about the forward defined labels
and will do one of three things:

1 It will generate the same addsing mode as it selected in Pass 1, and the
space allocated for the instruction is exact.

2 It will see that alsorter, more efficient address mode could be used. It will
generate the shorter address mode dhthé remaining allocated space
with NOP instructions. The combination of the shorter address mode and
the NOP instructions generally executes faster than the longer, less
efficient address mode. For example, consider the instructions which
follow.

Line Address

1 00000000 3038 1000 4E71 MOVE F1,D0 ;Label Flis
forward defined.

2

3 00001000 F1 EQU 1000H ;F1may be
accessed using
4 ;absolute short

In Pass 1, the assembler assumes that the MOVE instrudtioequire

the Absolute Long (IX) address mode. In Pass 2, the assembler sees that

F1 may be accessed using tiesolute Short (VIII) address mode which
requires only one word of operand extension. The assembler generates the
MOVE instruction using the absolute short mode altglthe remaining

word of the allocated instruction space with a NOP (4E71H) instruction.

The assembler flag opnop can be used to remove the NOP instructions
that were used as filleopnop causes the assembler to make additional
passes through the code. This slows the assembly process but results in
somewhat more compact code.

3 It will see that it did not allocateneugh space in Pass 1 to generate the
required instruction. An errorilvoccur. For example, consider the
instructions which follow.

111

Instructions and Address Modes
User Control of Address Modes

Line Address
1 00000000 3028 0000
** ERROR:(601) Value was truncated to fit in its field.
2

3 00020000
5

MOVE F1(A0),DO;Label F1 is forward defined.

F1 EQU 20000H ;F1 is too large to be a
;16-bit displacement.
END

In Pass 1, the assembler assumes that it will us@dtiress Register

Indirect with Displacement (VI) mode which requires one word of

operand extension. In Pass 2, the assembler determines that one word of
extension is inadequate and an error occurs.

User Control of Address Modes

The default choice for address mode is Absolute Long (in all cases except
those where it is known that a more compact mode will work). Since this mode
generates the longest machine codes (requiring 4 bytes of extension), you may
want to choose a more compact and faster mode in some cases.

The choice of mode may be controlled in several ways:

1

Relocatable sections or external references may be specified as short (see
the "Relocation” chapter for further informationjeaning that any
references to those sections and external references will use Absolute
Short mode in preference to Absolute Long (but not in preference to
other modes). Short sections and external references are always placed in
the shortaddressable areas of memory by the loader.

The option flag PCR may be set using the OPT directive. PCR (the
default) causes references from a relocatable section to the same
relocatable section in the same file to generate Program Counter with
Displacement (X) mode if the displacemeiilt fit into a signed16-bit

field. NOPCR causes such references to use absolute short or absolute
long mode.

The option flag P may be set via the OPT directive, causing all references
to a known absolute location from an absolute location to use Program
Counter Indirect with Displaanent modeprovided the displament is

within 16-bit range.

112

Instructions and Address Modes
User Control of Address Modes

The option flag R may be set via the OPT directive, which causes all
references from a relocatable location to a relocatable location (including
external locations known to be in a relocatable section because the section
name was specified with the XREF directive) to use Prograom@r

Indirect with Displacement mode. Most such references must be resolved
by the loader. This option may cause assembler or linker errors if the
referenced locations are not within a 16-bit disptaent from thewrrent
PC.

The option flag F may be set via the OPT directive, causing all forward
references except those in relative branch instructions (Bcc) to allocate
only 2 bytes for the extension, rather than the default of 4 bytes. This
option mayresult in errors at link-time, since it ispible that a location

can only be addressed by Absolute Long mode, in which case there will
not be room for the address and an erriimasult. With the default

setting, however, even if 4 bytes are allocated, a 2-byte address mode may
be selected finally (in accordance with the preceding table), in which case
the final 2 bytes will be filled with a NOP.

The option flag B may be set via the OPT directive, which applies only to
the relative branch instructions (Bcc) and causes forward references in
one of these instructions to use the shorter form of the instruction, with
8-bit displacement. Here again it isgsible that there may not beom

for the actual displacement and@&'s may occur.

Individual Bec, JIMP and JSR instructions may use the .S or .L qualifiers

on the opcode in order to force use of the short or long form of the
instruction. In the Bcc instructions, use of these qualifiers forces the
appropriate form. In the JMP and JSR instructions, use of these qualifiers
does not force an absolute address mode to be chosen in those cases where
a PC with displacement is known to work. However, if an absolute mode is
used, the qualifier will force the choice &ifst or long, unless the

reference is known to exist in shattdressable memory.

A Bcc.S instruction may not reference the nextestegnt since this would
result in an 8-bit displacement of 0, causing the hardware to take the
following word as the 16-bit displament, rather than as antinstion.
Also, a Bcc.S may not reference an external reference or any location
outside the instruction section (since the loader cannot resolve 8-bit
displacements.)

113

Instructions and Address Modes
A2-A5 Relative Addressing

A2-A5 Relative Addressing

A2-A5 relative addressing refers to the method of accessargory locations
relative to an address in an address register. A2-Ab5 relative addressing is
associated with the "address register indirect with displacement"ssittye
modes and the INDEX linker/loader command.

Address Register Indirect with Displacement Modes

The "address register indirect with displacement" asking modes are
generated by operand syntaxes such as "< exp> (An)" or "(< exp> ,An,Rn)",
etc. The displacements are calculated, ggilole, by the assembler when

"< exp>"is an absolute expression or by the linker/loader when "< exp>"is a
relocatable expression.

Absolute Expressions vs. Relocatable Expressions

When assembly language operands combine absolute expressions with address
register indirection, the absolute expression is actually the displacement to be
included with the instruction code.

When assembly language operands combine relocatable expressions with
address register indirection (for example, < rel exp> (An) or (< rel exp> ,An)),
the syntax says, "Access the location of the relocatable expression indirectly,
using the address register." In other words, the relocatable expression is the
effective address. When relocatable expressions are combined with address
register indirection, the linker/loader will calculate the disphaents with the
following equation:

<ea> = An + disp
disp = <ea> - An

disp = <relocatable expression> - An

The linker/loader knows the value of the relocatable expression; however, it
does not know what will be in "An"when the insction executes.

To solve the linker’s problem of not knowing the run-time contents of an
address register (and allow you to use relocatable expressions in conjunction

114

Instructions and Address Modes
A2-A5 Relative Addressing

with the powerful "address register indirect with displacement” modes), the

linker/loader INDEX command was created to allow you to specify the
run-time value of "An".

The INDEX Linker/Loader Command

The INDEX loader command allows you to equatertme-time value of an
address register (A2, A3, A4, or A5) with the load address of a relocatable
section and an offset. The INDEX commanitl also create a public symbol
in the form "?An" (where n = 2, 3, 4, or 5). The public symbol created can be
declared as an external symbol in the assembly language source file (with the
XREF directive) and used to initialize the appropriate address register.

When the INDEX command is not used, the linkdtstill calculate
displacements for operands which combine relocatable ssipres and
address register indirection; however, the linker/loader will assume the
run-time value of "An"to be zero.

Advantages of A2-A5 Relative Addressing
A2-A5 relative addressing is useful when:

» Accessing statically allocated data areas. Accessing statically allocated
data areas with A2-A5 relative addressing is as efficient as using the
absolute short addseing mode with the additional benefit of being able
to locate the data area (up to 64K bytes long) anywheremory.

» Accessing dynamically allocated data areas which are independent of the
code that accesses them.

Accessing Statically Allocated Areas

The 68000/20 model address register indirect with digptent addresing

modes (for example, those modes generated for syntaxes such as "< exp> (An)"
or "(< exp>,An,Rn)", etc.) are often the fastest and most efficient ways to
access code or data locations; this is especially true when accessing code or
data in high memory where the alternative would be to use absolute long
addressing (see figure 2-1). Notice that the address register indirect mode is
coded in two fewer bytes than the absolute long mode.

115

Instructions and Address Modes
A2-A5 Relative Addressing

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:21:21
1993

Command line: as68k -L modes.s

Line Address
1 SECT DATA
2 00000000 WORD1DS.W 1
3 00000002 DS.B OFFFEH
4 ; Address Mode Generated:
5 SECT CODE j----------==-mmomme-
6 00000000 3039 0000 0000 R MOVE WORD1,D0 ; Absolute Long.
7 00000006 302A 0000 R MOVE WORD1(A2),D0 ; Address Reg. Indirect
8 ; with Displacement.
9 END

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:21:21
1993

Symbol Table

Label Value

WORD1 DATA:00000000

Figure 4-1. Absolute and Indirect Address Modes

The address register indirect mode is useful because you can access locations
anywhere in memory with the same number of bytes of code generated. Also,
with a signed 16-bit displament, you can access up to 64K bytes (+ /- 32K)
relative to the contents of the address register.

116

Instructions and Address Modes
A2-A5 Relative Addressing

Accessing Dynamically Allocated Areas

Dynamic memory allocation routines are typically passed the size of some
element (for which memory is to be allocated) and return the address of the
data area which has been allocated (in other words, a pointer to the allocated
block of memory). At link-time, the linker/loader does not know what the
address of the dynamically allocated area will be, but it does know the kin
element that memory is to be allocated for. With this knowledge, and with
help of the INDEX command, displacements can be calculated for A2-A5
relative addressing itigictions. At run-time, the address of the dynamically
allocated area is placed in the appropriate address register, and the
dynamically allocated area can be accessed via A2-A5 relative addressing.

Example

The following is a simple example of A2-A5 relative addressing and how to use
the INDEX command. Aisting of the assembly languageusce file is shown

in figure 2-2. The linker/loader listing in figure 2-3 shows the INDEX

command used with an offset. The linker/loalikting in figure 2-4 shows the
INDEX command used whout an offset. Cmments are included in the
assembly source file and in the linkenmomand files to explain the

instructions and ammands in detail.

117

Instructions and Address Modes
A2-A5 Relative Addressing

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:20:07
1993

Command line: as68k -L example.s

Line Address
1 XREF ?A2 ; This symbol defined by the
2 ; linker/loader INDEX command.
3
4 XDEF VAR ; (To get the effective address
5 ; on the linker/loader listing.)
6
7 SECT DATA
8 00000000 DS.B 6000H
9 00006000 VAR DS.B 9FFFH ; Effective address of VAR =
10 ; load address of DATA =
11 ; section 6000H.
12
13 SECT PROG
14 00000000 247C 0000 0000 E MOVE.L #?A2,A2 ; Initialize A2 with the

5 ; run-time value specified
16 ; in the INDEX command.
17
18 00000006 426A 6000 R CLR VAR(A2) ;Address Register Indirect
19 ; with Displacement Mode
20 ; is generated. When this
21 ; module is linked, the
22 ; linker will calculate the
23 ; 16-bit displacement by
24 ; subtracting the run-time
25 ; value of A2 (as specified
26 ; by the INDEX command)
27 ; from the effective address
28 ; of VAR.
29 END

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:20:07
199
Symbol Table

Label Value
?A2 External

VAR DATA:00006000

Figure 4-2. A2-A5 Relative Addressing Example

118

Instructions and Address Modes
A2-A5 Relative Addressing

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:01 1993

Page 1
Command line: 1d68k -c Ink_cmd.k -L

NAME Ink_cmd
LISTC ; Include a cross-reference listing on the output.

INDEX ?A2,DATA,8000H ; The run-time value of A2 equals the
; load address of the DATA section plus
; an offset of 8000H (this allows 16-bit
; signed displacements to access +/- 32K
; bytes relative to A2).

SECT DATA=0FF0000H ; Run-time of A2 is
; OFFOO0OOH + 8000H = OFF8000H

; The displacement calculated for the "CLR VAR(A2)" instruction is
; the effective address of VAR (OFF0000 + 6000H) minus the run-time
; value of (OFF8000H):

; Displacement = OFF6000H - OFF8000H = -2000H = OEOOOH.

At run-time, the "MOVE.L #?A2,A2" instruction initializes A2
; with OFF8000H. The "CLR VAR(A2)" instruction clears the location
; indexed by A2 plus the displacement, which equals:

SECT PROG=1000H
LOAD example.o
END

OFF8000H + OEOOOH = OFF8000H + (-2000H) = OFF6000H.

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:01 1993

Page 2

OUTPUT MODULE NAME: Ink_cmd
OUTPUT MODULE FORMAT: IEEE

Figure 4-3. Using the INDEX Command with Offset

119

Instructions and Address Modes
A2-A5 Relative Addressing

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
PROG NORMAL CODE 00001000 00001009 0000000A 2 (WORD)
DATA NORMAL DATA OOFFO000 OOFFFFFE O0OOOFFFF 2 (WORD)

MODULE SUMMARY

MODULE SECTION:START SECTION:END FILE

example DATA:00FF0000 DATA:00FFFFFE /users/merfffasm68k/example.o
PROG:00001000 PROG:00001009

CROSS REFERENCE TABLE

SYMBOL SECTION ADDRESS MODULE
?A2 00FF8000 -$$

example
VAR DATA O00FF6000 -example

START ADDRESS: 00000000

Link Completed

Figure 4-3. Using INDEX with Offset (Cont'd)

120

Instructions and Address Modes
A2-A5 Relative Addressing

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:13 1993

Page 1
Command line: 1d68k -c Ink_cmd2.k -L

NAME Ink_cmd
LISTC ; Include a cross-reference listing on the output.
INDEX ?A2,DATA,0 ; The run-time value of A2 equals the

; load address of the DATA section.
SECT DATA=0FF0000H ; Run-time of A2 is OFFO000H.

; The displacement calculated for the "CLR VAR(A2)" instruction is
; the effective address of VAR (OFFO000 + 6000H) minus the run-time
; value of (OFFOO00H):

; Displacement = OFF6000H - OFFO000H = 6000H.

At run-time, the "MOVE.L #?A2,A2" instruction initializes A2

; with OFFOO00H. The "CLR VAR(A2)" instruction clears the location
; indexed by A2 plus the displacement, which equals:

; OFFO000H + 6000H = OFF6000H.
SECT PROG=1000H

LOAD example.o

END

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:13 1993

Page 2

OUTPUT MODULE NAME: Ink_cmd
OUTPUT MODULE FORMAT: IEEE

Figure 4-4. Using INDEX without Offset

121

Instructions and Address Modes
A2-A5 Relative Addressing

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
PROG NORMAL CODE 00001000 00001009 0000000A 2 (WORD)
DATA NORMAL DATA OOFFO000 OOFFFFFE O0OOOFFFF 2 (WORD)

MODULE SUMMARY

MODULE SECTION:START SECTION:END FILE

example DATA:00FF0000 DATA:00FFFFFE /users/merfffasm68k/example.o
PROG:00001000 PROG:00001009

CROSS REFERENCE TABLE

SYMBOL SECTION ADDRESS MODULE
?A2 00FFO0000 -$$

example
VAR DATA O00FF6000 -example

START ADDRESS: 00000000

Link Completed

Figure 4-4. Using INDEX without Offset (Cont'd)

122

Relocation

This chapter explains relocatable pragming and section attributes.

123

Relocation

The object module produced by the assembler is in a relocatable format, which
allows you to write programs whose final addressé$dgw adjusted by the

linking loader. The relocatable format also allows individual program

modules to be changed without reassembling the complete program. Separate
object modules can be linked together into a final program.

Relocatable progmmingprovides the following advantages:

Actual memory addresses are of no concern until the final load time.

Large programs may be sly separated into smaller pieces, developed
separately, and linked together.

If one piece contains an error, only that one need be modified and
reassembled.

Once developed, a library of routines may be used by many users.

The linker will adjust addressestmeetprogram requigments.

124

Relocation
Program Sections

Program Sections

To take advantage of relocatability, ydwosild understand the concept of
program sections and how separate object modules are linked together. A
program section is that part of a program which contains its own location
counter and is a logically distinct section. At load time, the addresses for each
section may be specified separately.

Section names may be any symbol or a two-digit decimal number. Section
names may duplicate labels or register nam#sowit conflict. Section ames
may appear in COMMON, SECT (or SECTION) and XREF directives as
asinthe .STARTOF. and .SIZEOF. operators.

as68kprovides for up t@56program sections. One section is predefined,
noncommon section 0. Each section has five attributes: the
common/noncommon attribute, the short/long attribute, the section contents
attribute, the alignment attribute, and the HP Section type attribute.

Common vs. Noncommon Attributes

A section becomes Common when its name appears in a COMMON directive,
and becomes Noncommon when its name appearsin a SECT or SECTION
directive. It is a fatal error for the same sectiame to appear in both

directives. The loader loads all common sections with the same name (from
different modules) into the same place in memory, while noncommon sections
with the same name (from different modules) are concatenated. Otherwise,
Common and Noncommon sections are treated alike.

We suggest that you avoid putting instructions or code-generating directives
(DC, DCB) in Common sections. If a user initializes the same Common
section in two different modules, both sets of code will be loaded into the same
memory locations by the Linker, and a warning is generated. This can
obviously cause problems. On the other hand, initializing a Common section
in only one module can be useful.

In a given assembly a section name may appear in an XREF directive before
appearing in either a SECT (or SECTION) or COMMON directive. When

this occurs, the assembler accepts the name as a valid new section name and
assigns the Long oh®rt attribute to it as declared in the XREF directive, but
does not yet assign the commomancommon attribute to it.

125

Relocation
Program Sections

The common or noncommon attribute may be set by the subsequent
occurrence of a SECT or COMMON directive that uses the same section
name. However, if theucrent assembly does nagsign the
common/noncommon attribute, the linking loader may do so. In the latter
instance, the section name must appear in a SECT or COMMON directive in
another assembly; one whose object module is included in the load.

Short vs. Long Attributes

A section becomes short when isme appears in a COMMON.S, SECT.S,
SECTION.S, or XREF.S directive. It becomes long when its name appearsin
any of these directives without the .S extension. If a section is short in one
place and long in another place, a warning is produced and the section is
designated as short thereafter. The loadktoad all short sections into the

areas of memory addressable with 16-bit absolute addresses. These areas are
from O to $7FFF and from $FF8000 toFFFFF for the68000 and 68010,

$F8000 to $FFFF for the68008, and $FFF8000 to $FFFFFFF for the
68020/30/40 and CPU32. (The linker CHIRmmand can specify a bus width
parameter that could alter the location of the highrspage.) In certain
situations, the assembler wihgose a more compact address mode when a
reference is made to a short section (see the "Instructions and Address Modes"
chapter for details). Otherwishat and long sections are treated alike.

Section Alignment Attribute

The section alignment attribute may be either 1, 2 or 4. The section alignment
attribute affects the beginning address of each file's contribution to a section.

A section alignment attribute of 4 combined with the ALIGN 4 directive can
ensure that data items are located at longword boundaries. This may speed
execution on some target systems where the memory bus is 32 bits wide.

The default section alignment attribute is 2 unless the CHIP directive specifies
68020/30/40, in which case the default attribute is 4. The alignment attribute is
specified in the SECTION assembler directive as shown in the following
example.

SECTION A4

If the alignment attribute is specified differently in several files, the alignment
attribute is affected in the following way:

126

Relocation
Program Sections

» Ifthereisno ALIGN linker command, the first module loaded in the
section is always aligned modulo 4 if any of the modules for that section
specify quad alignment. All other modules are aligned as specified by
those modules.

+ |Ifthereis an ALIGN linker command, all relocatable subsections of that
section are aligned modulo the largest of the alignments.
Section Contents Attributes

There are four types of relocatable sections:

* Program code (C).

« Data (D).
* Mixed Code and data (M).
« ROMable data (R).

The SECTION assembler directive allows you to explicitly specify a section’s
contents by adding a ",C", ",D", ",M", or ",R" qualifier to the SECTION
directive. (See the SECTION description in the "Assembler Directives"
chapter for details.)

The section contents attribute is used by certain HP debuggers to gain
efficiency and to prevent certain debugging commands from operating in
particular areas of target memory.

The section contents attribute may be specified explicitly in the SECTION
directive. For example:

SECTION A, C ; Specifies a CODE section

If the section contents attribute is not specified explicitly, the assembler
assigns the section type according to the following rules.

1 If, after the SECTION directive, the assembler encounters only
instructions, the assembleillvget the section contents attribute to
program code (C).

2 If, after the SECTION directive, the assembler encounters only data
definition directives (DC, for example), the assembler will set the section
contents attribute to data (D).

127

Relocation
Program Sections

3 If, after the SECTION directive, the assembler encounters both
instructions and data, the assemblérsgt the section contents attribute
to mixed (M).

HP Section Type Attribute

The HP 64000 symbolic files, asmb_sym and link_sympp$y program symbol
information to HP 64000 emulators and analysis tools.

The HP Section type may be specified explicitly in the SECTION directive.
For example,

SECTION A,,C,P ;SECTION A MAPS TO HP PROG

The fourth operand of the SECTION directive may be P for PROG, D for
DATA, C for COMN, or A for ABS.

If the HP type is not specified explicitly, the assembler uses the following rules.
* Program code (C) sections map to the HP 64000 section PROG.

» Data (D) sections map to the HP 64000 section DATA.

« ROMable data (R) sections map to the HP 64000 section COMN.

» "Extra"code, data, and ROMable data sections map to the HP 64000
section ABS (see below).

» Absolute (ORGed, in other words) sections map to the HP 64000 section
ABS.

The HP 64000 assembler symbol and linker symbol file formats have the
following characteristics.

» The file formats allow a maximum of three relocatable sections per
assembly source file. For each assembly, at most one section may be
mapped to PROG, one section may be mapped to DATA, and one
section may be mapped to COMN.

e The file formats allow an unlimited number of absolute sections per
assembly source file.

If the assembler, through any combination of SECTION directives, attempts
to map more than one section onto PROG, DATA, or COMN using the rules

128

Relocation
Program Sections

above, then this mapping conflicts with the HP 64000 file formats. The
assembler and linker resort to the following stratagems.

* The second and subsequent sections that map to either PROG, DATA, or
COMN are called "extra" CODE, DATA, & ROM sections.

* The symbols from "extra" sections are omitted from the HP 64000
assembler symbol file. This means that localo@sosed to global)
symbols from extra sections will NOT be available at agislyme. When
this happens, the assembler issues the following warning:

WARNING: (604) Manximum number of typed sections exceeded in HP mode.

* The code from "extra" section is correct and is treated normally.

* The linker, when producing a link_sym file, maps the symbols from "extra
sections onto HP 64000 ABS sections. The symbol valuearect.
They simply show up as ABS on HP emulators and analysis tools.

Because the HP 64870 assembler allows many relocatable sections, sometimes
it is impossible tgproduce perfect HB4000 assembler symbol and linker

symbol files. In these situations, your code is always correct. At worst, you

will not have access to some local symbols in some assembly files. You can
overcome these limitations by moving "extra" sections to a different source file.

Other Things to Know About Sections

Typically, a section will contain either itractions or data; this allows you to
place the sectionsin a RAM/ROM environment. Common sections are
generally used for program variables that reside in RAM. Common sections
are analogous to named COMMON in FORTRAN. As witn-relocatable
assemblers, users may also specify absolute addresses when assembling a
program. In this case, the object modules, even if in relocatable format, will
contain instructions or data thatilweside in the specifiechemory locations.

129

Relocation

Program Sections

How the Assembler Assigns Section Attributes

Table 3-1illustrates how a section is assigned the commandémmon and
short/long attributes. An example of howto use this table follows:

Table 5-10. How Section Attributes are Assigned

Previous New statement in which section name appears:

Section

Attribute XREF XREF.S SECT SECT.S COMMON | COMMON.S

Undefined | Xref-only Xref-only Non- Non- Common Common

LONG SHORT common common LONG SHORT

LONG SHORT

Xref-only Xref-only Xref-only* |Non- Non- Common Common

LONG LONG SHORT common common* LONG SHORT
LONG SHORT

Xref-only Xref-only* | Xref-only Non- Non- Common* |Common

SHORT SHORT SHORT common* common SHORT SHORT
SHORT SHORT

Common Common Common* |ERROR ERROR Common Common*

LONG LONG SHORT LONG SHORT

Common Common* |Common ERROR ERROR Common* |Common

SHORT SHORT SHORT SHORT SHORT

Non- Non- Non- Non- Non- ERROR ERROR

common common common* common common*

LONG LONG SHORT LONG SHORT

Non- Non- Non- Non- Non- ERROR ERROR

common common* common common* common

SHORT SHORT SHORT SHORT SHORT

* = Warning produced.

130

Relocation
Linking

The first time a section name appears, it has no previous attributes; the first
horizontal row of the table, marked undefined, is appropriate. If the name
first appears in an XREF.S statement,ilt afterwards be Isort, but neither
common nor noncommon (XREF-only). If thame later appears for a

second time in a SECT statement, it is thesigned the Noncommon

attribute as well and a Warning is produced.

Linking

The object modules produced by the assembler are combined or linked
together by a linking loader. The loader converts all relocatable addresse
absolute addresses and resolves references from one module to another.
Linkage between modules is provided by external definitions (XDEF),
external references (XREF), as well as the Common Sections. External
definitions are defined in other object modules via the linking loader.
External references are symbols referenced in one module but defined in
another module. The linking loader combines the external definitions from
one program with the external references from other programs to obtain the
final addresses. A program may contain both external references and
definitions.

131

Relocation

Relocatable vs. Absolute Symbols

Relocatable vs. Absolute Symbols

Each symbol in the assembler has associated with it a symbol type, which
marks the symbol as absolute or relocatable. If relocatable, the type also
indicates the section to which the symbol belongs. Symbols whose values are
not dependent upon program origin are absolute, and those whose values
change when the program origin is changed are called relocatable. Absolute
and relocatable symbols may both appear in an absolute or relocatable
program section.

Absolutesymbols are defined as follows:

A symbol in the label field of an instruction that is in an absolute section
of code.

A symbol is made equal to an absolute expression bythe EQU or SET
directive. This occurs even if the program is assembling a relocatable
section.

An external reference with no section attached is considered to be
absolute for the purpose of determining address modes.

The difference between two relocatable symbdieih symbols are
defined in the same section in the same source file.

Relocatablesymbols are defined as follows:

A symbol in the label field of an instruction when the program is
assembling a relocatable section.

A symbol is made equal to a relocatable expression by the EQU or SET
directives.

An external reference is relocatable.

A reference to the location counter (*) while assembling a relocatable
section is relocatable.

132

Relocation
Relocatable Expressions

Relocatable Expressions

The relocatability of an expssion is determined by the relocation of the

symbols that compose the expression. All numeric constants are considered
absolute. Relocatable expressions may be combined to produce an absolute
expression, a relocatable expression, or in certain instances, a complex
relocatable expression. The following list shows those expressions whose
result is relocatable: (ABS denotes an absolute symbol, constant, or expression
and REL denotes a relocatable symbol or expression)

ABS+REL
REL+ABS
REL+REL
REL-ABS1
REL-REL
ABS*REL
REL*ABS
REL*REL
REL/ABS

REL/REL

1

1. Absolute if both relocatable expressions are defined
in the same section in the same source file. Otherwise,
it is relocatable.

Note
Complexrelocatable expressions are not allowed in the ORG, OFFSET,

COMLINE, END, FAIL, SPC, and LLEN directives.

Complexrelocatable expressions result when two relocatable expressions are
subtracted or added together. Onlythe plus "+ "and minus "-" operators are
allowed within these subexpressions. In certain instances, subexpressions may
evaluate to an absolute value. This can occur in cases where a subexpression
comprises the difference between two relocatable symbols.

After assembly has been completed, one of three types of expressions result:

» Absolute expression - The expression evaluates to an absolute value
independent of any relocatable section addresses.

133

Relocation
Relocatable Expressions

» Simple relocatable expression - The expression evaluates to an absolute
offset from a single relocatable section address.

 Complexrelocatable expression - The expression evaluates to a constant
absolute offset from either of the following:

— A single, negated start address of a relocatable section.

— References to the start address of two or more relocatable
sections.

In addition, the following expressions are valid and produce an absolute
expression. Both relocatable subexpressions must be relocatable in the same
program section and must be defined in the current module (no externals).

REL=REL
REL<>REL
REL<=REL
REL<REL
REL>=REL
REL>REL
REL+REL
REL-REL
REL*REL
REL/REL

134

Relocation
Label Alignment

Label Alignment

Beware of labels on a line by themselves. They may not be aligned as you
expect. For example,

SECT A
STRING DC.B ’odd’
START

LEA STACKTOP,SP

The label START will have an odd value. Ifthe PC is loaded with an odd
value, a run time errorilvoccur.

There are two ways to avoid this problem:

* You may put the label on the same line as the instruction or directive.
The label will have the same alignment as thérutdion. For example,

SECT A
STRING DC.B ’odd’
START LEA STACKTOP,SP

* You may also use an align directive after the byte constants. For example,

SECT A

STRING DC.B ’odd’
ALIGN 2

START
LEA STACKTOP,SP!

135

Relocation
Label Alignment

136

Assembler Directives

This chapter describes all directives (also called Psuedo-Ops) except those
primarily associated with macro assembly and structured syntax.

137

Assembler Directives

Assembler directives are written as ordinary statements in the assembler
language, but rather than being translated into equivalent machine language,
they are interpreted asmonands to the assembler itselfirbugh use of these
directives, the Assembler will resermeemory space, define bytes of data,
assign values to symbols, control the output listing, etc. The following is a
complete list of the directives that are described in this chapter.

ALIGN Specify instruction alignment.

CHIP Specify Target Microprocessor.

COMLINE Define Storage.

COMMON Specify Common Section.

DC Define Constant Value.

DCB Define Constant Block.

DS Define Storage.

ELSEC Conditional Assembly Converse.

END End of Assembly.

ENDC End Conditional Assembly.

ENDR End Repeat.

EQU Equate a Symbol to an Expression (permanent).
FAIL Generate a Programmedior.

FEQU Equate a Symbol to a Floating Point Expression.
FILE Include Source File (same as INCLUDE).

FOPT Specify Floating-Point Options.

FORMAT Format Listing (ignored).

138

Assembler Directives

IDNT Specify Module Name.

IFC Conditional Assembly String Equality Test.
IFDEF Conditional Assembly Symbol Definition Test.
IFEQ Conditional Assembly Equal to Zero Test.
IFGE Conditional Assembly Nonnegative Test.
IFGT Conditional Assembly Greater than Zero Test.
IFLE Conditional Assembly Nonpositive Test.

IFLT Conditional Assembly Less than Zero Test.
IFNC Conditional Assembly String Inequality Test.
IFNDEF Conditional Assembly Symbol Not Defined Test.
IFNE Conditional Assembly Unequal to Zero Test.
INCLUDE Include Source File.

INTFILE Specify File for Intermediate Storage.

IRP Specify Indefinite Repeat.

IRPC Specify Indefinite Repeat Character.

LIST List the Assembly.

LLEN Set Length of Line in Assembler Listing.
MASK?2 Assemble for R9M chip (ignored).

NAME Specify Module Name.

NOFORMAT Don't Format Listing (ignored).

139

Assembler Directives

NOLIST

NOOBJ

NOPAGE

OFFSET

OPT

ORG

PAGE

PLEN

REG

REPT

RESTORE

SAVE

SECT

SECTION

SET

SPC

TTL

XCOM

XDEF

XREF

Dont List the Assembly.

Dont Create Object File.

Suppress Paging on Listing.

Define Table of Offsets.

Set Options for Assembly.

Begin an Absolute Section.

Advance Listing Form to Next Page.

Specify Length of Listing Page.

Define a Register List.

Specify Repeat.

Restore previously SAVEed assembly options.
Save assembler options.

Specify Section.

Specify Section.

Equate a Symbol to an Expression (temporary).
Space lines on listing.
Set Program Heading.
Specify Weak External Reference.

Specify External Definition.

Specify External Reference.

140

Assembler Directives

Notation

In the following descriptions, brackets ({ }) are used to indicate optional
parameters. If more than one item appears within a single pair of brackets, a

choice is indicated.

141

Assembler Directives

ALIGN
ALIGN
Specify Byte Alignment
Syntax:
Label Operation Operand Comment
ALIGN n
Where:
n Equals either 1, 2 or 4.
Description: This directive may be used to specify the byte boundary on which the address
of the next instruction is to be aligned. The number may be either 1, 2 or 4.
The ALIGN directive is useful for adjusting the location counter to the
nearest word or longword boundary.
Modulo 4 alignment can be used to optimize execution speeds, depending on
the target system memory design.
However, in order for modulo 4 alignment to work in a relocatable section,
you must first ensure the alignment of a section when it is located by the
linker. This is done by specifying a section alignment attribute of 4 in the
SECTION directive. See the following example.
Example:
Label Operation Operand Comment
SECTION A4 ;The beginning of every file's
;contribution to a section will be
;quad aligned.
DC.B ‘A number of characters’
LABEL1 ALIGN 4 ;Ensure next data item is
;quad aligned.
Q1 DC.L 0 ;Q1 is on a mod 4 boundary.
See also Other aspects of section and label alignment are discussed in chapter 5.

142

Assembler Directives

CHIP
CHIP
Specify Target Microprocessor
Syntax:
Label Operation Operand Comment
CHIP target
Where:
target Is one of the following processor designatié8600,
68EC000, 68HC000, 68HC001, 68008, 68010, 68302, 68330,
68331, 68332, 68333, 68340, CPU 32, 68020, 68EC020,
68030, 6BEC030, 68040, or 68EC040.
Description: This directive specifies the microprocessor on which the resulting object ¢

will be run. The microprocessor may be #8000, 68EC000, 68HC000,
68HC001, 68008, 68010, 68302, 68330, 68331, 68332, 68333, 68340, CPU32,
68020, 68EC020, 68030, 6BEC030, 68040, or 68EC040. The differences, from
the assembler’s point of view, are as follows:

1 The 68010 has the additionalinsctions MOVECaN INDIC, MOVES,
RTD and MOVE from CCR. Ifone of these instructions is encountered
when the CHIP is set to 68000 or 68008, code for thteuinson is
generated, but an error occurs.

2 The 68020 has the additionaltnsctions BFCHG, BFCLR, BFEXTS,
BFEXTU, BFFFO, BFINS, BFSET, BFTST, BKPT, CALLM, CAS,
CAS2, CHK2, CMP2, DIVSL, DIVUL, PACK, RTM, TDIVS, TDIVU,
TRAPcc, Tee, TPce, and UNPK. It has six new address modes as
described in the INSTRUCTIONS AND ADDRESS MODES chapter.
The Bcc, BSR, DIVS, DIVU, EXTB, LINK, MOVEC, MULS, MULU
and TST instructions accept additional qualifiers and/or operands. Using
any of these constructs when the CHIP is not sé8620 causes anrer.
Note that using new 68020 syntax is not sufficient to causeran, e
provided the generated codesB000-compatible. Examples of this
include an explicit *1 scale factor on an indexregister, using the EXTB
and EXTW synonyms for EXT, placing a dispgatent inside rather than

143

Assembler Directives
CHIP

outside the delimiting parentheses, and rearranging the order of registers
inside parentheses.

3 The 68331 and 68332 have, in addition to 68010 capabilities, the
additional instructions BGND, CHK2, CMP2, EXTB, LPSTOP, TBLS,
TBLU, TBLSN, TBLUN, TRAPcc, Tcc, and, TPcc. It has new addressing
modes as described in the Instructions and Asking Modes chapter.

The Bcc, BSR, DIVS, DIVU, LINK, MULS, MULU, and TST accept
additional qualifiers and/or operands.

The 68331 and 68332 do not have gpcoeessor interface. Therefore,
CHIP 68332 (68331) disables the 68881 FPUringions.

4 The 68030 has the additionaltnsctions PFLUSH, PFLUSHA,
PLOADR, PLOADW, PMOVE, PMOVEFD, PTESTR, and PTESTW. It
also has the additional registers CRP, SRP, TC, TTO, TT1, and MMUSER.

5 The 68040 has the sametinstions as thé8020/30 with the addition of
CINVL, CINVP, CINVA, CPUSHA, CPUSHL, CPUSHP, MOVE1S6,
PFLUSHAN, and PFLUSHN.

If no CHIP or OPT P= (which has the same function) directive appears, the
target is assumed to be the 68000.

Using new Motorol&8020, 68030, or 68040 syntax is not sufficienptoduce

a warning, provided the generated cod@8800-compatible. Examples of new
syntax are explicit scale factor on an index register, using the EXTB and
EXTW synonyms for EXT, placing a displment inside rather than outside
delimiting parentheses, and rearranging the order of registers inside
parentheses.

Chip designations are now processed as strings, whéens using absolute
expressions with the CHIP directive is no longer valid.

144

Assembler Directives

COMLINE
COMLINE
Define Storage
Syntax:
Label Operation Operand Comment
{label} COMLINE n
Where:
n The number of bytes of memoryto be reserved.
Description: This directive may be used in the source code to reserve a block of sequential

locations (in bytes). The number of bytes is specified in the argument (e.qg.
COMLINE 8 reserves 8 bytes in memory). COMLINE is supplied for
Motorola compatibity. as68k treats this directive identicallyto DS.B.

145

Assembler Directives
COMMON

COMMON

Specify Common Section

Syntax: There are 3 distinct syntaxes:
Label Operation Operand Comment
{label} COMMON({.S} sname[,[n][,[contens][,HPtype]l]
COMMON({.S} snumber[,[n][,[contents][,HPtype]]]
label COMMON({.S} snumberl[,[n][,[contents][,HPtype]]]
Where:
sname The name of the COMMON section.
snumber A one or two digit decimal number used to construct the
COMMON section name.
n Alignment for this module section. Maybe 1, 2 or 4.
contents An indication of the contents of this module section. May
be M (mixed code & data), C (code), D (data), or R
(ROMable data).
HPtype How to map this section onto HP 64000 symbol files. May
be P (PROG), D (DATA), C (COMN), or A (ABS).
Description: The COMMON directive specifies to the assembler that the following

statementstould be assembled in the relocatable mode usingahed
common section specified. This section remains in effect untilan ORG,
SECT, SECTION, OFFSET, or another COMMON directive is assembled
that specifies a different section. Initially all section location counters are set
to zero.

The user may alternate between various sections with multiple SECT and
COMMON directives within one program. The assembldmmaintain the
current value of the location counter for each section.

The common section name may be any symbol or a two-digit decimal number.
The label field has different meanings in these two cases.

146

Assembler Directives
COMMON

In all cases, the optional .S determines whether or not the section has the
short attribute. In the first case, &ne"is the name of the specified common
section, and "label", if present, will besaigned the address of therent

location counter; in other words, it is a normal label. In the second case,
"snumber"is a two-digit decimal number which is the name of the common
section. In the third case, "snumber"is a one or two digit decimal number, and
"label"is combined with "snumber"to produce theme of the common

section.

Note that the same section name or numheukd not appear in both a
COMMON and a SECT directive, except where a label is placed on a
numbered section to create a named common area. Note also that relocatable
section 0 is predefined to have the noncommon attribute and thus may not
appear in an unlabeled COMMON directive.

Example:
Label Operation Operand Comment
LABEL1 COMMON SECT1 ;name is SECT1, LABEL1 is
;normal symbol
COMMON CODE ;name is CODE
COMMON 1 ;name is 1, common section
LABEL1 COMMON 1 :name is 1LABEL1, common section.
:No conflict with other LABEL1
COMMON C1,4,D,D ;name is C1

;alignment mod 4
;contents r/w data
;maps to HP DATA section

147

Assembler Directives
DC

Syntax:

Where:

Description:

DC

Define Constant

Label Operation Operand Comment
{label} DC{.qualifier} operandl{,operand2,...}
label An optional label that will besaigned the address of the
first byte defined.
qualifier May be .B for byte data, .W for word data, .L for longword
data, .S for single-precision floating, .D for double-precision
floating, .P for packed decimal floating, or .X for
extended-precision floating. Default is .W.
operand For qualifiers .B, .W and .L, a character string or an

expression. All expressions are calculated as 32-bit values.
For .B, this value must fit in 8 bits (either O-filled or
one-filled); for .W, it must fit in 16 bits. If this condition is
violated, a warning is produced. For qualifiers .S, .D, .P,
and .X, a floating-point number is required. A
floating-point number which cannot be stored in the
indicated number of bits (because its exponent is too large)
is reported as an error. However, esgige bits of precision

in a specified mantissa aneihcated without a warning.

The DC directive is used to define up to 509 bytes of data. For operands other
than character strings, the assembler will allocate one byte per operand for a
DC.B, two bytes per operand for a DC.W or DC with no qualifier, four bytes
per operand for a DC.L or DC.S, eight bytes per operand for a DC.D, and
twelve bytes per operand for a DC.P or DC.X. All operands (except character
strings) must evaluate to a value that fits in this number of bytes or an error is
generated. Negative values are stored using their two’s complement

representation.

Operands ofa DC.W or DC.L may be relocatable; operands

148

Assembler Directives
DC

of a DC.B may not be. Operands ofa DC.S, DC.D, DC.X, or DC.P may only
be floating-point numbers.

Character strings are stored one character per byte, starting at the
lowest-addressed byte. Character stringsin a DC.W or DC.L are padded out
with zeroes in the least significant bytes of the last words, if necessary, to bring
the total number of bytes allocated to a multiple of 2 or 4, respectively.

If an odd number of bytes is entered in a DC.B directive, the odd byte on the
right will be skipped and the LocatioroGnter aligned to an even value,
unless the next statement is another DC.B, a DS.B or a DCB.B. The byte
skipped over is not initialized in any way.

The .S and .D qualifiers permit definition of Single and Double precision
floating-point numbers respectively. The generated bit patterns are IEEE
standard and compatible with the Motorola 68881 oprocessor, and also
with the 68040 on-chipaprocessor. Single prison is 1 sign bit, 8 exponent
bits (biased by 127), and 23 mantissa bits. Double precision is 1 sign bit, 11
exponent bits (biased HY23), and 52 mantissa bits.

The .X qualifier permits the definition of an Extended precision floating-po
number. The .P qualifier permits the definition of a Packed Decimal
floating-point number.

Floating point numbers may be in either decimal or hexadecimal format. A
decimal floating-point number must contain either a decimal point or an "E"
indicating the beginning of the exponent field. For exampl&41%9",
"-22E-100". The latter exampiaeans-22 times (10 to the -100th power)".
Underscores may occur before or after the "E" to increase readability.
Underscores are ignored in determining the value of a constant.

A hexadecimal floating point number is denoted by a colon ":" followed by a
series of hex digits: up to 8 digits for single-precision, or 16 digits for
double-precision. The digits specified are placed in the field as they stand; the
user is responsible for determining how a given floating-point number is
encoded in hexadecimal digits. If fewer digits than the maximum permitted
are specified, the ones that are present wilefigustified within the field.

Thus the first digits specified always represent the sign and exponent bits.

The DC.S, DC.D, DC.X, and DC.P directives will accept only floating-point
numbers as operands. DC with any other qualifier will not accept
floating-point numbers as operands.

149

Assembler Directives
DC

Example (generated
bytes shown):

4142 4344 4566 DC.B 'ABCDEfghi’

6768 69
45 DC.B'E’ ; starts at odd address
6500 DC e

4500 0000 DC.L'E
3132 3334 3500 DC.L '12345

0000
000A 0005 0007 DC.W 10,5,7
OOFF DC $FF

3F80 0000 DC.S1.0
3FF0 0000 0000 DC.D 1.0
0000

3F80 0000 DC.S :3F8
3FFO0 0000 0000 DC.D :3FF
0000

3FFO0 0000 0000 DC.P 1.0
0000 0000 0000

3FFO0 0000 0000 DC.P :3FF
0000 0000 0000

3FFF 8000 0000 DC.X 1.0
0000 0000 0000

3FFF 8000 0000 DC.X :3FFF8
0000 0000 0000

150

Assembler Directives

DCB
DCB
Define Constant Block
Syntax:
Label Operation Operand Comment
{label} DCB{.qualifier} length,value
Where:
label An optional label that will besaigned the address of the
first byte allocated.
qualifier Defines the units in which storagemigasured. May be .B
for bytes, .W for words, .L for longwords, .S for
single-precision floating, .D for double-precision floating,
for packed-decimal floating, or .X for extended-precision
floating. Default is .W.
length An absolute expression defining the number of units of
storage to allocate. The exgson may not contain
forward, undefined or external references.
value The value to which each unit is initialized. For qualifiers .B,
W and .L, this is an expression that may contain forward
references, relocatables, externals or complex expressions.
For qualifiers .S, .D, .P, and .X, this is a floating-point
number as described under the DC directive.
Description: The DCB directive causes the assembler to allocate a block of bytes, words,

longwords, single-precision floating numbers (32 bits) or double-precision
floating numbers (64 bits) depending on the qualifier. Each unit allocated is
set to the same given value. This directive causes the location counter to be
aligned to a word boundary, unless the .B qualifier is specified.

Use of the DCB directive causes the assembler to generate a byte of code for
each byte (not unit) allocated. This can lead to large object files.

151

Assembler Directives

DCB
Example:
Label Operation Operand. Comment
DCB.L 100,$FFFFFFFF

152

Assembler Directives
DS

Syntax:

Where:

Description:

DS

Define Storage

Label Operation Operand Comment
{label} DS{.qualifier} size
label An optional label that will besaigned the address of the
first byte allocated.
qualifier Defines the units in which storage is allocated. May be .B
for bytes, .W for words, .L for longwords, .S for
single-precision floating, .D for double-precision floating,
for packed-decimal floating, or .X for extended-precision
floating. Default is .W.
size A value that specifies the number of units to be allocated by

this directive. Any symbols used in this expression must be
previously defined. The final expression may not contain
anyrelocatable terms.

This directive is used to reserve a block of sequential locations of memory. It
causes the program counter to be advanced. The contents of the reserved
bytes are unpredictable. Locations may be reserved in units of bytes, words,
longwords, single-precision floating numbers (32 bits), double-precision
floating numbers (64 bits), extended precision floating-point numbers (96
bits), or packed binary coded decimal floating-point numbers (96 bits).

The Define Storage (DS) directive causes the location counter to be aligned to
a word boundary unless the .B qualifier is used. The form DS 0 may be used to
force alignment between two DC.B, DS.B or DCB.B statements, if necessary.

153

Assembler Directives

DS
Example:
Label Operation Operand Comment
JAKE DS $62
MOE DS.B 100

154

Assembler Directives
ELSEC

ELSEC

Conditional Assembly Converse

The ELSEC directive is used in conjunction with one of the conditional
assembly directives (IFNE, IFEQ, IFLT, IFLE, IFGE, IFGT, IFC, or IFNC)

and is the converse of the conditional assembly directive. When the argument
of the conditional assembly directive evaluates to false, all statements between
the ELSEC directive and the next ENDC are assembled. When the argument
of the conditional assembly directive evaluates to true, no statements between
the ELSEC directive and the next ENDC are assembled.

The ELSEC directive is optional and can only appear once within a
conditional block.

Example:
Label Operation Operand Comment
IFNE MAIN
ELSEC
ENDC

155

Assembler Directives

END
END
End of Assembly

Syntax:

Label Operation Operand Comment
END {expression}

Where:

expression An address that is placed in the end record of the load
module and informs the loader where program execution is
to begin. If this expression is not specified, the module is
considered not to contain a starting address. If no module
read by the loader contains a starting address, execution
begins at absolute 0. If {expression} is not present but a
comment field is present, the latter must be preceded by
semicolon (;) or exclamation mark (!).

Description: The END directive is used to inform the assembler that the last source
statement has been read and to indicate a load module starting address. Any
statements following the END directivélMnot be processed.

Specifying a load address in this directive also informs the loader that this is a
main program. If multiple load modules are combined by the Linking Loader,
only one module may specify a load address and hence be a main program.
Example:
Label Operation Operand Comment
END MAIN

156

Assembler Directives

ENDC
ENDC
End Conditional Assembly Code
Syntax:
Label Operation Operand Comment
ENDC
Description: The ENDC directive is used to inform the Assembler where the source code
subject to the conditional assembly statement ends. In the case of nested IFxx
statements, an ENDC is paired with the most recent IFxx statement.
In the following code, if the expression SUM-4 is equal to zero, the
instructions between the IFEQ and ELSEC directivdiswat be assembled
and those between the ELSEC and ENDC will be assembled. If SUM-4 i
non-zero, the opposite occurs. To inhllEting thenon-assembled
instructions the OPT -I directive may be used.
Example:
Label Operation Operand Comment

MOVE #22,D2

IFEQ SUM-4

ORI #200,D3 ;,assembled if

ADD DO,VALUE+3 ;SUM-4 is zero

ELSEC

ORI #$1F,D3 ;assembled if

ROL #1,D0 ;SUM-4 is non-zero

ENDC

157

Assembler Directives

ENDR
ENDR
End Repeat
Syntax:
Label Operation Operand Comment
ENDR
Description: The ENDR directive is used to end a repeat statement as defined by the
REPT, IRP, or IRPC directives. Note that an ENDR does not terminate a
macro definition.
Example:
Label Operation Operand Comment
IRP D1
ADD DO,VALUE+3
ENDR

158

Assembler Directives

EQU
EQU
Equate a Symbol to an Expression
Syntax:
Label Operation Operand Comment
label EQU expression
label EQU keyword
label EQU externsymbol[+ offset]
label EQU externsymbol[-offset]
Where:
label A symbol defined by this statement.
expression An expression whose valuk e assigned to the given
label for the duration of the current assembly. An attem
to re-equate the same label will result in aroe Any
symbols used in the expression must be defined previously.
keyword A keyword defined by the assembler or a symbol previously
defined by this directive as a keyword. Keyword may also be
a simple forward reference.
externsymbol An externally defined symbol (XREF).
offset A constant integer value.
Description: The EQU directive causes the assembler to assign a particular value to a new

label, which may be an absolute or a relocatable section value (see the
"Relocatable Symbols" section in the "Relocation" chapter). It may also be a
single external symbol. In the case of an external symbol, you may add or
subtract a constant value from the label.

Simple forward references (a single symbol with no operators) are now
accepted by EQU.

159

Assembler Directives

EQU
EQU may also be used to define new keywords to be used instead of the
predefined assembler keywords, which allows the user to assigningful
names tgrocessor registers.
Example:
Label Operation Operand Comment
SEVEN EQU D7
INDEX EQU A5
Note The following example illustrates the misuse of an EQU.
Label Operation Operand Comment
Reg EQU DO
MOVE #0,0(A0,Reg.L) ; "Reg.L" causes error.
RegL EQU DO.L
MOVE #0,0(A0,Reg) ; No error occurs.

160

Assembler Directives

FAIL
FAIL
Generate Programmed Error
Syntax:
Label Operation Operand Comment
FAIL {expression}
Where:
expression If presentheuld be absolute and contain no forward
references. If absent, 0 is used. Ifthe value of {expression}
is less than 500, FAlproduces error numb&91. If
{expression} is greater or equal to 500, FAdtoduces a
warning number 591.
Description: The FAIL directive may be used to indicate an error or warning. The typic

place for this directive is within convoluted nestings of macros and conditional
assemblies, to mark a path of assembly that would never be taken if the code
did what the user intended. Ifthe value of {expression} is less than 500, FAIL
produces error numb®&d1. If {expression} is greater or equal to 500, FAIL
produces a warning numb891. When a FAIL directive is assembled, the
assembler marks it with a "Fail encountered" error or warning message and
displays the 32-bit value of the directive’s argument in the address field of the
listing.

161

Assembler Directives
FEQU

Syntax:

Where:

Description:

FEQU

Equate a Symbol to a Floating Expression

Label Operation Operand Comment
label FEQU{.qual} fp-expression
label A symbol defined by this statement.
qual May be .S for single-precision, .D for double-precision, .X

for extended-precision, or .P for packed-decimal.

fp-expression An floating-point expression whose valilkbe assigned to
the given label for the duration of the current assembly. An
attempt to re-equate the same label will result inraore
Any symbols used in the expression must be defined
previously.

The FEQU directive allows the assembler to assign a floating-point expression
to a symbol. as68lupports theEEE standard floating-point number format
with the exponent section being optional.

Floating point numbers may be in either decimal or hexadecimal format. A
decimal floating-point number must contain either a decimal point or an "E"
indicating the beginning of the exponent field. For exampl&41%9",
"-22E-100". The latter exampitaeans-22 times (10 to the -100th power)".
Underscores may occur before or after the "E" to increase readability.
Underscores are ignored in determining the value of a constant.

A hexadecimal floating point number is denoted by a colon "" followed by a
series of hex digits: up to 8 digits for single-precision, or 16 digits for
double-precision. The digits specified are placed in the field as they stand; the
user is responsible for determining how a given floating-point number is
encoded in hexadecimal digits. If fewer digits than the maximum permitted
are specified, the ones that are present wileligustified within the field.

Thus the first digits specified always represent the sign and exponent bits.

162

Assembler Directives

FEQU
Example:

Label Operation Operand Comment

COUNT1 FEQU 123.45

COUNT2 FEQU.X :9AB

163

Assembler Directives
FILE

FILE

Specify Include File

See the description for the INCLUDE directive later in this chapter.

164

Assembler Directives

FOPT
FOPT
Specify Floating-Point Options

Syntax:

Label Operation Operand Comment
FOPT ID=n

Where:

n A number in the range 0 through 7 specifying the
coprocessor ID field.

Description: The FOPT directive specifies the coprocessor ID field (0 through 7) used in
subsequent 68881 floating-point insctions. Ifno FOPT directive is
specified, the default ID is 1 (the 6888ipcocessor).

Example:
Label Operation Operand Comment
FOPT ID=2 ; Specify 68881 ID #2.
FMOVE.D #2.0,FPO ; Move to 68881 ID #2.
FOPT ID=1 ; Specify 68881 ID #1.
FMOVE.D #2.0,FPO ; Move to 68881 ID #1.

165

Assembler Directives

FORMAT, NOFORMAT

Syntax:

Description:

FORMAT, NOFORMAT

Format the Listing

Label Operation Operand Comment

[NOJFORMAT

These directives are recognized for Motorola comjildtibbut are ignored by
the assembler. as68k does not require them but recognizes them for
compatibility with the Moorola directives FORMAT and NOFORMAT.
Motorola uses these directives to format or not to format the stistiog.

166

Assembler Directives

IDNT
IDNT
Specify Module Name
Syntax:
Label Operation Operand Comment
name IDNT
Where:
name The name to be placed in the object module denoting the
module name to the loader. This name must follow all the
rules of a symbol. This name appears in the label field of
the statement. The operand field of the statement is
ignored.
Description: The IDNT directive is used to assign anme to the object modufgoduced by

the assembiler. It is identical in function to the NAME directive; however,

IDNT allows only legal identifiers for the module name, while NAME allows

an arbitrary sequence of characters. Only one IDNT directive should appear in
a program.

Ifan IDNT or NAME directive is not specified by the user, the default name is
the input file mme (without path and extension).

167

Assembler Directives
IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE

IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE

Conditional Statements Comparing to Zero

Syntax:

Label Operation Operand Comment
IFxx expression

Where:

expression Evaluates to a value that determines whether or not the
assembly between the IFxx and the following ELSEC or
ENDC will take place. Any symbols used in this exgsien
must be previously defined. The expression may not be
relocatable.

Description: The IFxx directive may be used to conditionally assemble source text between
the IFxx directive and the ELSE or ENDC directive. When the expression in
the operand field is in the indicated relationship to zero, the code will be
assembled. IFxx statements may be nested up to 16 levels and appear at any
place within the source text.

Note that these directives perform a signed comparison, treating their
operands as two’s complement 32-bit signed integers ranging from -$80000000
to + $7FFFFFFF. In contrast, the logical operators >, <= and so forth
perform unsigned comparisons, treating their operands as 32-bit unsigned
integers ranging from 0 to + $FFFFFFFF. Therefore "IFGT X"is not
equivalent to "IFNE X> 0". Logical operators return a value &¥FBFFFFF

for TRUE and zero for FALSE.

Example:

Label Operation Operand Comment
IFGE RAMBASE

168

Assembler Directives

IFC, IFNC
IFC, IFNC
Conditional Assembly String Equality Test
Syntax:
Label Operation Operand Comment
IFC {string1}{string2}
IFNC {string1}{string2}
Where:
stringl Are defined below.
string2
Description: The IFC and IFNC directives provide a way to test whether two strings ar

are not equal. Depending on the result of the comparison, following
statements up to the next ELSEC or ENDi€C av will not be assembled (like
the IF statement). These directives take two string arguments, both optio¥s
separated by a required comma. The strings are defined as follows (where the
term "nonblank" excludes tab characters also):

» Ifthe first nonblank character following the directive is enawa, the first
string is null.

« Ifthe first nonblank character following the directive is a single quote, the
first string consists of all characters from this quote to the matching
closing quote, including the delimiting quotes. As usual, two adjacent
guotes represent a quote character within the string. In this case, the next
nonblank after the closing quote must be me@ and blanks between
the closing quote and the comma are not significant. Commas may appear
between the quotes as part of the string.

« Ifthe first nonblank character following the directive is neither a comma
nor a single quote, the first string cists of all characters from this one
to the last nonblank before the firstnoma on the line. The comma is
not part of the string. An unbalanced guote may be part of a string in this
format. Note that a string in this format cannot contamroas.

e The first string is always terminated by a comma, which is referred to
below as the "delimiting comma".

169

Assembler Directives

IFC, IFNC

» Ifthere are no nonblanks after the delimitingncoa, the second string is
null.

» Ifthe first nonblank after the delimitingcoma is a semicolon, the
second string is null.

« Ifthe first nonblank after the delimitingcoma is a single quote, the
second string goes from this quote to the terminating quote, as for the first
string. Any characters after the terminating quote are ignored.

» Ifthe first nonblank after the delimitingcoma is not a single quote or a
semicolon, the second string goes from the first nonblank following the
delimiting comma to the lastonblank before the first semicolon
following the delimiting comma; or, if there is no semicolon following the
delimiting comma, to the lagtonblank on the line. In this format, the
first semicolon after the delimiting comma is considered a comment
delimiter; it and all characters after it are ignored. Note that in this
format, the second string may not contain semicolons.

Examples:
Label Operation Operand Comment
IFC 'STRING','STRING’ ;equal--assembly continues
IFNC 'string’,’ string’ ;unequal (blank in 2nd string)
;assembly continues
IFC AL AN2 ;always unequal
IFC 1,12 ;parameters are expanded
IFC \1)\2 ;parameters are expanded
IFC string , string ;equal (blanks not significant)

170

Assembler Directives

IFDEF, IFNDEF
IFDEF, IFNDEF
Conditional Assembly Symbol Definition Test
Syntax:
Label Operation Operand Comment
IFDEF, symbol
IFNDEF, symbol
Where:
symbol Is a program symbol that may or may not have been defined
or declared external. No forward references are allowed.
Description: The IFDEF and IFNDEF directives provide a way to test if a symbol has b

defined or declared external. Depending on the result of the test, followin
statements up to the nex ELSEC or ENDiCav will not be assembled.

These directives take a single symbol as an argument that cannot be a forward
reference.

171

Assembler Directives
INCLUDE

INCLUDE

Include Source File

Syntax:

Label Operation Operand Comment
INCLUDE filename
FILE filename

Where:
flename The name of the host computer file to be inserted in the
Assembly Source File.

No lower to upper case conversion is performed on file
names. If the file name has a suffix ("x.h", for example), the
file name is passed thiout change to the operating system.

If the file name has no suffix @sirce", for example), then

the suffix".s"is appended to the filename before it is passed
to the operating system.

Description: The INCLUDE (FILE) Directive may be used to insert an external source file
into the input source code saim at Assembly time. Include statements may
not be nested and have some limitations when combined with macro calls. A
macro call may contain an INCLUDE directive, but, ifan INCLUDE file is
invoked by a macro call, the INCLUDE file may not contain any additional
macro calls.

The default search directory (when none is explicitly specified), is the current
directory. Additional search paths may be specified on the command line. See
theas68ksyntaxin the on-line manual pages.

Example:

Label Operation Operand Comment

INCLUDE EXTERNAL.S
FILE EXTERNAL.S

172

Assembler Directives
[NOJINTFILE

[NOJINTFILE

Sorts Information Using Intermediate Hle or Virtual Memory

Syntax:

Label Operation Operand Comment
[NOJINTFILE

Description: The linker, like the assembler, is a two pass program. Intermediate
information is stored, by default (for non-PC hosts), using virexhory
between pass 1 and 2. The INTFILE command lets tane shis
intermediate information in a temporary file. The NOINTFILEwwoand lets
you store this information using virtualemory. Use this command if
ERROR 340 occurs.

With different systems, using a temporary file may be faster than using virt
memory. Also, depending on the configuration for running large jobs, the
virtual allocation size can be limited if a virtual error is returned and error
message (ERROR 340) is displayed.

Using the INTFILE command is the same as specifying the -b option on the
command line.
Example:

INTFILE
LOAD modl.0bj
END

173

Assembler Directives

IRP
IRP
Specify Indefinite Repeat
Syntax:
Label Operation Operand Comment
{label} IRP model parameter{,actual parameter, .. .}
Where:
label An optional label assigned the address of thieenit
program counter.
model parameter The parameter whidl e replaced by actual
parameters.
actual parameter The actual parameter whose number determines the
number of repeats.
Description: The IRP directive specification includes a "model" parameter followed by a
list of actual pasmeters. The sequence of statements enclosed by the IRP and
ENDR directives is repeated once for each actual parameter, substituting the
actual parameter everywhere the modebignfd. Paameter substitution is
identical to that which is performed in a macro.
The parametelist begins after the model paneter. A null parametelist
causes the macro to be expanded one time with a null replacing the model
parameter.
Like macro definitions, repeat directives cannot be nested. Only one macro
definition may be used inside a repeat directive.
Example:
Label Operation Operand Comment
IRP DUMMY,SUB1,SUB2,SUB3
JSR DUMMY ;Three JSR instructions generated

ENDR

174

Assembler Directives
IRPC

Syntax:
Label

IRPC

Specify Indefinite Repeat Character

Operation Operand Comment

{label}

Where:

Description:

Label

IRPC
MOVE
JSR
ENDR

IRPC model parameter{,actual parameter}

label An optional label assigned the address of tiieenit
program counter.

model parameter The parameter which e replaced by actual pameters.

actual parameter The actual parameter whose length determines the nu
of repeats.

Each character in the parametélt be substituted for the
model parameter during each repetition.

The IRPC directive specifies a model parameter and a single actual parameter.
The sequence of statements is repeated once for each character of the actual
parameter. The IRPC directive may be terminated with the ENDR directive.

The actual parametdist begins after the first pameter. A null actual
parametelist causes the macro to be expanded one time with a null replacing
the model parameter.

Like macro definitions, repeat directives cannot be nested. Only one macro
definition may be used inside a repeat directive.

Example:

Operation Operand Comment
DUMMY,1234

#DUMMY,DO ;Four MOVE and JSR instructions

SUB ;are generated.

175

Assembler Directives

LIST
LIST
Turn On Source Listing
Label Operation Operand Comment
LIST
Description: This directive causes a listing of the assembly to be printed. This is the

default. (The OPT S directive is another way to indicate a listing of the
assembly is to be printed.)

176

Assembler Directives

LLEN

LLEN

Change Length of Output Listing Line
Syntax:

Label Operation Operand Comment
LLEN n

Where:

n An absolute expression whose value is between 37 and 1100

inclusive. Forward references are not allowed.

Description: This directive changes the length of the line on the sdistoeg. The user

specifies the new length, which must be between 37 and 1100 inclusive. T
value of 116 allows printing of the full 80 columns of thput source. The
default value for the line length is 132.

This directive does not affect the header lines at the top of each page, which
are printed in a format of fixed length.

177

Assembler Directives
MASK?2

MASK?2

Generate Code for R9M

This directive is recognized for Motorola compditilp but is ignored.

178

Assembler Directives
NAME

NAME

Specify Module Name

Syntax:

Label Operation Operand Comment
NAME modulename

Where:

modulename The name to be placed in the object module denoting the
module name to the loader.

Modulename is specified as an arbitrary sequence of
characters from the first non-white-space character
following NAME through the end of the line.

Note Because the modulename is everything up to the end of the line, a comment
field used with the NAME directiveilvcause the comment to become part of
the modulename.

Description: The NAME directive is used tosaign a mme to the object modufgoduced
by the assembler. It is identical in function to the IDNT directive. However,
the syntax of NAME allows the module name to be an arbitrary sequence of
characters while IDNT allows only legal identifiers. Onlyone NAME or
IDNT directive should appear in a program.

Ifa NAME or IDNT directive is not specified, the default module name is the
input file name (wthout path and extension).

179

Assembler Directives

NOLIST
NOLIST
Turn Off Source Listing
Label Operation Operand Comment
NOLIST
Description: This directive suppresses printing of the assenllsgng. The OPT -S

directive may also be used to suppresditiimg.

180

Assembler Directives

NOOBJ
NOOBJ
Suppress Creation of Output Object Module
Label Operation Operand Comment
NOOBJ
Description: This directive suppresses creation of the output object module. The OPT -O

directive may also be used for this purpose.

181

Assembler Directives
NOPAGE

Description:

NOPAGE
Suppress Paging on Listing
Label Operation Operand Comment
NOPAGE

This directive suppresses all page ejects and page headers on the output
listing, including those explicitly specified by the PAGE directive. NOPAGE
affects the entire listing, no matter where the directive appears prolgeam.
Once paging has been disabled it cannot be re-enabled.

182

Assembler Directives
OFFSET

OFFSET

Define Table of Offsets

Label Operation Operand Comment
{label} OFFSET n

Where:
label An optional label to identify the offset location.

n An absolute expression containing no forward references.

Description: This directive is used to define a table of absolute offsets. It is present for
convenience and compatibility, but performs no function thamctbe
handled with EQU’s. The OFFSET directive is much like ORG in that it
terminates the previous section and alters the Location Counter to an
absolute value. However, an OFFSET "section" may not contain code an
instructions, DC and DCB directives allegal within an OFFSET section.
OFFSET has one operand, which is an expression that must be absolute and
must contain no forward or external references. This required operand is the
new value for the Location Counter. The OFFSET "section"is terminated by
an ORG, OFFSET, SECT, SECTION, COMMON or END directive.

The usual use for OFFSET is to define a storage template in mnemonic terms.
For example, suppose we want to define symbols to represent the beginnings
of the 80 column rows of an 80 column by 24 row character terminal screen.
Suppose further that we define an aremefnory called SCREEN and that

we will address the rows as SCREEN+ ROW1, SCREEN+ ROW?2, and so on.

The following example uses EQU to achieve the purpose.

Label Operation Operand Comment

SCREEN DS.B 80*24
ROW1 EQU SCREEN+0
ROW2 EQU SCREEN+80
ROWS3 EQU SCREEN+160

ROW24 EQU SCREEN+1840

A clearer alternative for complex structures is the use of OFFSET.

183

Assembler Directives

OFFSET
Label Operation Operand Comment
SCREEN DS.B 80*24
OFFSET 0
ROW1: OFFSET 80
ROW2: OFFSET 80
ROW24: OFFSET 80
END

184

Assembler Directives

OPT

OPT

Set the Options Specified
Syntax:

Label Operation Operand Comment
OPT [no| -]flag {,[no] -]flag}...

Precede the flag with "-" or NO to turn the flag off.

Where: flag is one of the following:

ABSPCADD (Absolute w/PC = Address) specifies that an absolute
expression appearing in conjunction with the mnemonic
"PC"refers to an address rather than an absolute
displacement. Thus 5(PC) would refer to absolute addr
5, reached via PC relative mode, rather than 5+ current PC.
This flag applies to the base displacement, not the outer
displacement, in th&8020/30/40 expressions containing
square brackets. This flag may be turned on and off at the
user’s discretion; the last setting applies.
(Default= ABSPCADD)

B (Branch) specifies that forward references in relative branch
BRB instructions (Bxx) Wl use the hort form of the instruction
BRS (8-bit displacement). This option affects only Bxx

instructions (Default= BRW, or 16 bit disp&ments).

BRL (Branch) forces the long address mode to be used in relative
branch instructions (Bcc, BRA, BSR) that have forward
references. In 68020/30/40 mode, 32-bit disptaents will
be used unless OPT OLD has been specified. f OPT OLD
has been specified with 68020/30/40 mode, 16 bit
displacementsilWbe used. In all otheprocessor modes, 16
bit displacements are used. (Default= BRW, or 16 bit
displacements).

185

Assembler Directives
OPT

Note NOB, NOBRB, NOBRS, and NOBRL all cause BRW to be chosen.

BRW (Branch) forces 16 bit displacements to always be used in
relative branch instructions (Bcc, BRA, BRS) that have
forward references (Default= BRW, or 16-bit
displacements.)

C Specifies that all lines of data (after the first) generated by

CEX the DC directive will be listed. NOTE: this option does not
affect the operation of the DC directive. CEX is a synonym
for C (Default=C).

CASE Specifies that symbols are case sensitive (Default= CASE).

CL Lists instructions not assembled due to conditional
I assembly statements (Default).

CRE Specifies that the cross reference information appears as an
X addition to the symbol table information
(Default=NOCRE).

D (Debug) specifies that the symbol table will be placed into
the object module and may be used for debugging. This
option must also be specified before any instruction that
generates object code. If OPT CASE is set, symbols are
placed in symbol table as defined. (Default= D).

E (Error) specifies that Error messages and Warnitigdwe
listed on the standardm®r output (Default= E).

F Causes the assembler to allocate 16 bits for extensions on

FRS instructions whose operands contain forward defined
symbols. F isa synonym for FRS and -F or NOF is a
synonym for FRL (Default= FRL).

FRL Causes the assembler to allocate 32 bits for extensions on
instructions whose operands contain forward defined
symbols. During Pass 2, the assembler may decide to access
the operand using absolute-short, absolute-long, or
PC-plus-displacement modes (Default= FRL).

186

HLASYM

MEX

MC

MD

NEST=n

OoLD

OP=n

Assembler Directives
OPT

List the assembler generated symbols in the symbol or cross
reference table. If D is also on, these symbols are placed in
the object module as well (Default= NOG).

Affects the symbolic information in the IEEE relocatable
file for compiler-generated modulekllasym causes
assembly- level local symbols to be put into the output file.
Nohlasymcauses assembly-level local symbols from
compiler-generated modules resulting in smaller output
files. Compiler-generated symbols are not affected by this
flag (default:nohlasym).

(Macro expansion) specifies that macro expansions and
structured syntax expssions will be listed in thprogram
listing. MEX is a sponym for M (Default= M).

(Macro calls) specifies that macro calls will be listed in th
programlisting (Default= MC).

(Macro Definitions) specifies that macro definitions will be
listed in theprogramlisting (Default= MD).

Sets the maximum nesting level of macros fbthe default
is the maximum level for nesting (Default= 100).

(Object) specifies that the object module willddeduced
(Default= 0).

Specifies that the interpretation of the OPT BRL directive,
and explicit .L qualifiers on Bcc instructions)iwee 16-bit
displacements (agparopriate for th&8010 and earlier
processors), even though the processor mo@®&0i20 or
greater. Thisis convenient for migrating 68@d06grams
onto the 68020/30/40 and CPU32 chips.

(Default= NOOLD).

Sets the maximum number of optimization loops that the
assembler will do if OPT OPNOP is set. The assembler will
discontinue looping either when there is a pass in which no

187

Assembler Directives
OPT

OPNOP

PCO

P=chip

PCR

PCS

optimization occurs or when this limit is reached
(Default= OP=3).

Remove NOP instructions generated by the assembler.
When the assembler encounters a forward reference during
pass 1, it will allocate space for antingtion based on
worst case assumptions. During pass 2, it will sometimes
generate a shorter form of the instruction ahthfe
remaining space with NOPs. This flag removes those NOPs
but at the cost of increased assembly time because it makes
additional passes over the file (Defauldopnop).

(Program counter relative) specifies that a program counter
with displacement address mod#l e used on references
within the absolute section, provided that this address mode
is legal for the instruction and that the disglaent from

the program counter fits within tHe-bit field provided.

This option does not affect references either from or to a
relocatable section. PCO is a synonym for P

(Default= NOP).

(Processor type) identifies the target processor. This option
is distinguished from OPT P by the equals sign, which must
immediately follow the P. See the CHIP directive (which is
equivalent to OPT P=) for a list of valmtocessor types

and for a discussion of the differences between the various
target processors. The preceding NO or minus sign is not
permitted on this option, because it makes no sense
(Default= 68000).

(PC Relative) specifies that a program counter plus
displacement address mod#! e used on references from

a relocatable section to the same relocatable section. This
applies to all instructions for which the program counter
relative address mode is legal, provided that the
displacement fits into th&6-bit field.

(Relocatable) specifies that a program counter with
displacement address mod#! e used on references from

a relocatable section to a relocatable section. This applies
to all instructions for which program counter relative is a

188

Description:

QUICK

REL32

Assembler Directives
OPT

legal address mode. The PCS flag applies to referencesto a
different section within a file and to all external references
that have anyrelocatable section name specified. IfR ison
and a reference to a relocatable section resultsin a
displacement larger than 16 bits, it is consideredreor e

PCS is a synonym for R (Default= NOR).

Quick allows the assembler to optimize certain mnemonics
when possible. The mnemonic optimizations are MOVE to
MOVEQ, ADD to ADDQ, and SUB to SUBQ. NOQUICK
prevents these optimizations (Default= QUICK).

This flag applies to 68020/30/40 address modes.

Rel32causes the assembler to use 32-bit base and outer
displacements for forward, external, or relocatable operands.

Norel32 causes 16-bit base and outer dispiaents. This
flag applies to operands that do not have explicit word or
longword size qualifiers (Defaultorel32).

(Source) specifies the source teilt e listed. The

directives LIST and NOLIST are other ways to specify OPT
S and OPT -Srespectively (Default=S).

(Table) specifies the symbol table will be listed (Default=T).

Specifies that warnings are to be suppressed during the
assembly (Default= NOW).

The OPT directive may be used to generate listings of the elements specified,
to influence the assembler’s choice of address modes in ambiguous situations,
and to control the form of the object output.

The defaults in the assembler are:

e The source text, symbol table, macro definitions, macls, caacro
expansions, and conditional assembly statements not assembled are all

listed.

* An object module in relocatable format is produced.

189

Assembler Directives

OPT

Label

The symbol table is placed into the object module.

References to locations whose relative displacementatabe
determined at assembly time will use an absolute address mode, unless the
user specifically requests otherwise.

Forward and external references will leagem for an absolute long
address.

A relative branch to a forward reference will use the Idrgliit
displacement) form of the itrsiction.

The target chip is the 68000.
The 68881 inguctions are legal.
Symbols are case sensitive.

Error messages and warnings Bsted to the standardmr output.

To turn on an option, use the single or multiple letter code shown below.
(Many options have more than one possible spelling.) ura daff an option,
precede it by a minus sign or the characters "NO". Default settings for options
are shown below.

Error messages are alwdigied, regardless of the elements specified. In
particular, the E option may be used to generate a listing that consists only of
error messages and is in a separate file.

Example:
Operation Operand Comment
OPT -X,D do not list cross reference

table but put symbol
table in object module

190

Assembler Directives

ORG
ORG
Begin Absolute Section
Syntax:
Label Operation Operand Comment
ORG{.qualifier} {expression} {,name}
Where:
qualifier Maybe SorL. ORG.Sis interpreted as both ORG and
OPT FRS. ORG.L is interpreted as both ORG and OPT
FRL. ORG with no qualifier does not alter the F option.
expression A value thatilwrreplace the contents of the Assembly
Location Counter; bytes subsequently assemblétev
assignednemory addresses beginning with this value. Th
expression may contain no forward, undefined, or
relocatable symbols (including external references). The
form "* + or- displacementis legal. The value of *in this
case is the ending value of the previous absolute section, or
0 for the first absolute section.
name Specifies the name of the section.
If a comment field is present, it must be preceded by semicolon (;) or
exclamation mark (!).
Description: The ORG directive is used to begin an absolute section. The Location

Counter is set to the value of the operand, if present. Ifthere is no operand,
the Location Counter is set to immediately follow the last preceding absolute
section, if there was one. Ifthe first ORG in a program has no operand, the
Location Counter is set to 0. All subsequent bytidde assighed sequential
addresses beginning with the address in the Location Counter.

If the program does not have an ORG, SECT, SECTION or COMMON
statement before the first code-generating statement, a SECTION O is
assumed and assembly begins at location zero in the relocatable noncommon
long section named 0.

191

Assembler Directives

ORG
Example:
Label Operation Operand Comment
ORG $100

192

Assembler Directives

PAGE
PAGE
Advance Listing Form to Next Page
Syntax:
Label Operation Operand Comment
PAGE
Description: This directive instructs the assembler to skip to the top of the next page on

the listing form, in order to makgrogramlistings easier to read. Some
progammers prefer to start each sobtine on a new page. Ifthe NOPAGE
directive was specified, this directive is ignored.

193

Assembler Directives
PLEN

Syntax:

Where:

Description:

PLEN

Specify Length of Listing Page

Label Operation Operand Comment
PLEN n
n An absolute expression whose value is greater than 12.

PLEN specifies the number of lines in an assembler listing page. The default
value is 60. The value specified must be greater than 12.

194

Assembler Directives

REG
REG
Define Register List
Syntax:
Label Operation Operand Comment
label REG register-list
Where:
label A symbol whose value is to be defined.
register-list List of registers in the format recognized by the MOVEM
instruction, to wit:
- A single register.
- A range of consecutive registers of the same type (A
D), denoted by the lowest and highest registers to be
transferred separated by a hyphen (lower one must come
first).
- Any combination of the above separated by a slash.
Description: This directive assigns a symboliame to a registdist for future use bythe
MOVEM instruction. The symbol may be redefined as a different redister
Note that this redefinition is not compatible with Motorola.
Example:
Label Operation Operand Comment
SAVE REG A1-A5/D0/D2-D4/D7
MOVEM (AB),SAVE

195

Assembler Directives

REPT
REPT
Specify Repeat

Syntax:

Label Operation Operand Comment
{label} REPT count

Where:

label An optional label assigned the address of tiieenit
program counter.

count An exprssion indicating the number of times to repeat the
code. This expression may not be relocatable or contain
symbols not previously defined.

Description: This directive allows a sequence of directives to be repeated a specified
number of times. The statements to be repeated are those between the REPT
and the following ENDR directive. The statements are expanded from the
point at which the REPT directive is encountered.

Example:
Label Operation Operand Comment
REPT 3 ;Repeat next 2 lines 3 times.
DC.B ‘A
DC.B B
ENDR

196

Assembler Directives

RESTORE
RESTORE
Restore Assembler Options
Syntax:
Label Operation Operand Comment
RESTORE
Description: The RESTORE directive restores those options that were previously saved by
the SAVE command. Once RESTORE is specified, all options specified after
the last SAVE will no longer have any effect.
Example:
OPT P=68010
SAVE

OPT P=68020 ; 68020 instructions are now legal

CAS DO,D1,(A3) : 68020 instruction

RESTORE
- ; 68020 instructions are no longer legal

END

197

Assembler Directives

SAVE
SAVE
Save Assembler Options
Syntax:
Label Operation Operand Comment
SAVE
Description: The SAVE directive saves the current set of OPT options (see the OPT
command for dist of these options). Thgrocessor and coprocessor types are
also saved.
The options can be restored at a later time with the RESTO Rifheod.
Once RESTORE is specified, all options specified after the last SAVE will no
longer have any effect.
Example:
OPT P=68010
SAVE

OPT P=68020 ; 68020 instructions are now legal

CAS DO,D1,(A3) : 68020 instruction

RESTORE
- ; 68020 instructions are no longer legal

END

198

Assembler Directives
SECT, SECTION

SECT, SECTION

Specify Section
Syntax: There are three distinct syntaxes:
Label Operation Operand Comment
{label} SECT{.S} sname{,align}{,contents}{,HPtype}
SECT{.S} snumber{,align}{,contents}{,HPtype}
label SECT{.S} snumber{,align}{,contents}{,HPtype}
Where:

label Specifies a label equal to the address of the current program
counter. If snumber is specified, label cannot be used if
SECT is a non-common section. If snumber is a common
section, then snumber and label will be combined to form
the section name.

.S Assigns the absolutaart attribute to the section. All
symbols specified will beofund in an area ahemory
accessible by a 16-bit address, or théhbe constants with
a 16 bit or smaller value.

sname Symbol name. Any valid symbol may be used.

align The number of bytes of alignment, 1, 2 or 4. The section
alignment attribute allows you to specify that a section be
located on a 1, 2, or 4 byte boundary. Refer to the
"Relocation” chapter for more information.

contents Contents of section:

C - Program code.

D - Data.

M - Mixed code & data.
R - ROMable Data.

The section contents attribute is used by HP debuggers to
gain efficiency. SeRelocationchapter.

199

Assembler Directives
SECT, SECTION

HPtype Specifies how to map this section on to the HP 64000
asmb_sym and link_sym files
A - ABS
C-COMN
D - DATA
P-PROG
snumber Section number. Up to two decimal digits may be used.
Description: The SECT directive specifies to the assembler that the following statements

Label
LABEL1

LABEL1

should be assembled in the relocatable section specified, vehains in
effect untilan ORG, OFFSET, COMMON or another SECT or SECTION
directive is assembled that specifies a different section. Initially all section
location counters are set to zero.

SECT and SECTION are completely equivalent.

The user may alternate between the various sections with multiple section
directives within one program. The assembldrmaintain the arrent value
of the location counter for each section.

Creating a common section name by combining the label and section number
is not a behavior that is consistent with the brata assembler.

Example:
Operation Operand Comment
SECT SECT1 ;name is SECT1, LABEL1 is
;normal symbol.
SECT.S CODE ;name is CODE.
SECTION 0 ;name is 0, noncommon section.
SECTION 0 ;name is OLABEL1, common section.
SECT A4 ;in each file, 1st byte of
;section A is quad aligned.
SECT B,4,C ;quad aligned, section
;type = program code.
SECT C,D,C ;C section type = data.

;HP 64000 section COMN

200

Assembler Directives

SET
SET
Equate a Symbol to an Expression

Syntax:

Label Operation Operand Comment
label SET expression

Where:
label A symbol defined by this statement.
expression A value thatilhbe assigned to the given label until

changed by another SET directive. Any symbols used in the
expression must be previously defined.

Description: The SET directive sets a symbol equal to a particular value. Unlike the E
directive, multiple SET directives for the same symbol may be placed in a
source program. The most recent SET directive determines the value of the
symbol until another SET directive is processed.

Like EQU, this directive may also be used to define new keywords.
Example:
Label Operation Operand Comment
GO SET 5
GO SET GO+10

201

Assembler Directives

SPC
SPC
Space Lines on Listing
Syntax:
Label Operation Operand Comment
SPC expression
Where:
expression Must evaluate to an absolute value that determines how
many lines are to be skipped. It may not be relocatable, but
may contain forward references.
Description: This directive causes one or more blank lines to appear on the output listing.
It enables the progmmer to format thisting for easier reading. The
directive itself does not appear in the listing.
The user may also use a blank sourcesstaint to insert blank lines on the
listing.
Example:
Label Operation Operand Comment

SPC

7

202

Assembler Directives

TTL
TTL
Set Program Heading
Syntax:
Label Operation Operand Comment
TTL heading
Where:
heading Title that will be placed at the beginning of each page. Up
to 60 characters may be used in the heading, with additional
characters beingignored. The heading may optionally be
delimited by single quotes, as shown in the example. If so,
the quotes are not considered part of the title. If the
terminating quote is not present, the first 60 characters
be used.
Description: This directive is used to print a heading at the beginning of each page of the
listing, in addition to the line identifying the listing as output of the as68k
assembler. The default heading defined by the assembler is all blank. For a
user specified title to appear on the first page of the output listing, this
directive must be the first statement in ffregram.
Example:
Label Operation Operand Comment

TTL

'TEST PROGRAM’

203

Assembler Directives

XCOM
XCOM
Specify Weak External References
Syntax:
Label Operation Operand Comment
XCOM symbol,size
Where:
symbol The name of a symbol referenced in this module but defined
in a different module or by the linker.
size The size in bytes that the linker will reserve if there is no
specific public definition for this symbol.
Description: The XCOM directive specifies a symbol that is referenced in this module but is

assumed to be defined in a separate module. If no module defines symbols,
then the linker will reserve space for the symbol in a sectéoned "zerovars".

This directive was created to support the assembly of compiler- generated
assembly code. Some languages like ANSI C permit several modules to define
the same variable. In order to prevent duplicate symbol errors, a compiler
might generate XCOM directives for its variables instead of defining variables
in each module. The linker will then allocate space for the symbols.

XCOM directives can appear anywhere within the program. You can declare
common symbols to be externally defined multiple times. Common symbol
references can appear in any section including absolute sections.

A size (in bytes) must be supplied so that if the linker must define the symbol,
the appropriate sizeilhbe allotted.

Example:

XCOM PROC1,1

In this example, the weak external reference for the symbol PROC1 assumes
that the final value is long. If the linker must define its value, one byte of
space will be reserved for it.

204

Assembler Directives
XDEF

Syntax:

Where:

Description:

Note

Label

XDEF

XDEF

Specify External Definition

Label Operation Operand Comment
XDEF symbol list

symbol list A list of symbols separated bywwmas that specify the
names defined in this module and to be referenced by other
modules. Symbols in the listwaot be separated by spaces.

This directive specifies a list of symbols that will be given the external
definition attribute. These symbols will then be made available to other
modules by the linker. Symbols appearing in this directive are placed in th
object module.

XDEF may appear anywhere within the program and each symbol may be
declared multiple times. Declarations after the first, for any given symbol, will
be ignored.

Symbols that are declared with this directive (but not defined in the program)
will be flagged as undefined in the output listing.

An XDEF will override a previous XREF for any symbol that has not been
previously defined.

Example:

Operation Operand Comment

SCAN,LABEL,COSINE

205

Assembler Directives

XREF
XREF
Specify External Reference
Syntax:
Label Operation Operand Comment
XREF{.S} {sname:}symbol{,{sname:}symbol.}
Where:

.S Means that all symbols in the statemeitithe found in the
area of memory accessible by the absolhtatsmode, or
will be constants witl6-bit or smaller values. Also, any
section whose name or number appears in the statement is
designated as short.

sname A section name or number.

symbol The name of a symbol referenced in this module that is
defined in a different module. Spaces are not allowed
between the symbols in the list.

Description: This directive specifies a list of symbols that will be given the external

reference attribute, and optionally assigns to each symboktme ffor

number) of a relocatable section. External references are symbols that are
referenced in this program module but defined within another program. The
XREF directive provides the linkage to those symbols through the Linking
Loader.

XREF may appear anywhere within the program and each symbol may be
declared multiple times. Declarations after the first, for any given symbol, will
be ignored.

Specifying the section nanfer number) of an external reference sometimes
affects the assembler’s choice of address mode (refer to the "Instructions and
Address Modes" chapter). Also, during the Linking process, the Loader will
verify that the externally referenced symbol is indeed in the specified section.
An external reference with no section name or number specified is presumed
to be absolute for the purpose of selecting asking modes.

206

Assembler Directives
XREF

A section naméor number) applies to all symbols following it, until the
appearance of another section ngimenumber) or the end of the statent.

It is legal for a section name to appear onlyin XREF statements. In this case,
however, it counts toward the total2d0 allowable sectionames.

Example:
Label Operation Operand Comment
XREF PROC1,PROC2,SECT1:INPUT,2:0UTPUT

207

Assembler Directives
XREF

208

Macros

This chapter defines the parts of a macro and describes some directives you
can use to define macros.

209

Macros

A macro is a sequence of instructions that can be automatically inserted in the
assembly source text by encoding a single instruction, known as the macro call.
The macro definition is written only once, but can be called any number of
times. The macro definition may contain parameters which can be changed
for each call. The macro facility simplifies the codingodgrams, reduces

the chance of progmmer eror, and makes programs easier to understand,
since the source code need only be changed in one location, which is in the
macro definition.

A macro definition consists of three parts: a heading, a body, and a terminator
and must precede any call to this macro. A macro may be redefined at any
place in the program, but the most recent definition of a meamemil be

used when the macro is called. A standard assembler mnemonic (e.g., OR)
may also be redefined by defining a macro with the name OR. In this case all
subsequent uses of the OR instruction in the progrilroanse the macro to

be expanded.

210

Macros
Macro Heading

Macro Heading

The heading, which consists of the directive MACRO, gives the macro a name
and defines any formal parameters.

Label Operation Operand Comment
label MACRO {parameter list}

Label specifies the macro name and must not end and must not contain a
period (such as for as size qualifier like .W) because these strings will be
interpreted as a qualifier or a shortemme when the macro is invoked later,

and the correct macraillinot be referenced. Other than this, the macro

name may be anylegal symbol and it may be the same aspotiggam

defined symbols since it has meaning only in the operation field. For example,
TAB could be the name of a symbol as well as a macro.

If a macro name is identical to a machindinstion or an assembler directive,
the mnemonic is redefined by the macro. Once a mnemonic has been
redefined as a macro, there is no way of returning thatento be a standard
instruction mnemonic. A macraame may also be redefined as a new macro
with a new body.

The operand field of the MACRO line may contain the names of dummy

formal parameters in the order in which thelyeccur on the macro call.

Each parameter is a symbol and multiple parameters must be separated
commas. The symbols used as formal parameters are known onlyto the macro
definition and may be used as regular symbols outside the macro.

Named formal parameters need not be specified. Unnamed parameters (and
named parameters as well) can be referenced with therlllat backslash
notation (described below) in terms of the parameter’s position on the call
line. However, unnamed (i.e., null) formal parameters are not allowed if they
are followed by any named parameters; for example, "XYZ MACRO
»PARAM3"is not allowed. This means thatnamed parameters must either
come after all named parameters on the macro definition line or must be
assigned a dummyame.

211

Macros
Macro Body

U WNE

Macro Body

The first line of code following the MACRO directive that isnota LOCAL
directive is the start of the macro body. MACRO body statements are placed
in a macro file for use when the macro is called. During a macro call, an error
will be generated if another macro is defined within a macro. Nerstits

in a macro definition are assembled at definition time; they are simply stored
in the macro file until called, at which time they are inserted in the source
code at the position of the macro call.

The name of a formal parameter specified on the MACRO directive may
appear within the macro body in anyfield. If a parameter exists, it is marked,
and the real corresponding pareter from the macro calililbe substituted
when the macro is called. Parameters are not recognized in a comment
statement or in the comment field of a statemerdyided the comment field

is prefixed by a semicolon (;).

Alternatively, parameters may be referenced in the form \n where n is a
non-negative integer. Pameter \0 is the qualifier (extensi) of the macro

call and may appear only as a qualifier on opcodes in the macro body. (Thisis
the only format in which this qualifier can be referenced). Parameters
\1,\2...\9\A,..\Z are the first,second... realgmaeters on the macro call line.

Macro parametersilvbe expanded in a quoted string. But, if the quoted
string is preceded by "A" or "E" (for ASCIl or EBCDIC), macro parameters
are not recognized within the string. This extension permits backslashes and
formal parameter names to appear as a string when the user so desires.

When referring to macro parameters in the macro body, you may precede the
macro parameter with "&&". This allows you to embed the parameter in a
string. For example:

MAC1 MACRO P1
L&&P1 MOVE DO,D1 ; Create label using parameter.

ENDM

MAC1 XX ; Call macro.

END

.1 00000000 3200 LXX MOVE DO,D1 ; Create label using parameter.

212

Macros
Macro Terminator

Macro Terminator

The ENDM directive terminates the macro definition. During a Macro
definition an ENDM must be found before another MACRO directive may be
used. An END directive also terminates a macro definition as well as the
assembly of the file in which it is contained.

The format of the ENDM directive is as follows:

Label Operation Operand Comment
{label} ENDM

Where:

label An optional label that becomes the symbolic address of
the first byte of memory following the inserted macro.
Labels with embedded parameters are not allowed on
the same line as the ENDM directive. The label can be
placed on the line preceding the ENDM directive for
the desired effect.

213

Macros

Macro Call
Macro Call
A macro may be called by encoding the macro name in the operation field of
the statement.
The format of the call is shown below.
Label Operation Operand Comment
{label} name{.qualifier} {parameter list}

Where:

label An optional label that will besaigned a value equal to
the current program counter.

name The name of the macro called. This namoeikl have
been defined by the MACRO directive or an error
message will be generated.

qualifier An optional qualifier that may be B, W, L or Sand is
passed to the macro as parameter \0.

parameter Aist of paameters separated by commas. Parameters

may be constants, symbols, expressions, character
strings or any other text separated by commas. The
number of parametersmaot exceed 35.

The parameters in the macro call are actual parameters and their names may
be different than the formal parameters used in the macro definition. The
actual parametersilhvbe substituted for the formal pameters in the order in
which they are written. Commas may be used to reserve a parameter position.
In this case, the parameteitllwe null (i.e., contain no actual characters).

The formal parameteocresponding to a null actual @ameter is simply

removed during macro expansion. Any parameters not specifidewull.

The parametelist is terminated by a blank, tab, newline, or semicolon. The
macro processor does not recognize a semicolon as a delimitenmmertt
beginning with a semicolon following the paramdisirmust be separated

from the parametdist by a blank or tab (white space).

214

Macros
Macro Call

All actual parameters are passed as character strings into the macro definition
statements. Thus, symbols are passed by name and not by value. In other
words, if a symbol’s value is changed in the macro, in its expansion it will also
have the new value outside of the macro. Thus SET directives within a macro
body may alter the value of parameters passed to the macro.

The angle brackets (< >), are used to delimit actual parameters that may
contain other delimiters. When the left bracket is the first character of any
parameter, all characters between it and the matching right bracket are
considered part of that parameter. The outer brackets are removed when the
parameter is substituted in a line. Angle brackets may be nested for use
within nested macro callsthe brackets are the ONLY way to pass a

parameter that contains a blank, comma, or other delimiter For example, to

use the instruction "ROL # 1,D1" as an actualpaeter would require

placing< ROL # 1,D1> in the actual paramdist. A null pamameter may

consist of the angle brackets with no intervening characters, but the characters
< and > may not be passed as parameters and the parameter \O may not
contain angle brackets.

An example of a macro call and its expansion is shown below. Note that
expanded code is marked with plus signs.

Label Operation Operand Comment
GET MACRO W,Y,Z ;macro definition
MOVE #w,D5
ROL #1,D5
y
z IMP \4
ADD.\0 #5,D00
ENDM
LOOP GET.B 200,<BRA DATA>,ENTRY,MAIN ;macro call
IMP FIRST
LOOP GET.B 200,<BRA DATA>,ENTRY,MAIN ;macro expansion
+ MOVE #200,D5
+ ROL #1,D5
+ BRA DATA
+ENTRY IMP MAIN
+ ADD.B #5,D0
IMP FIRST
The operator double equal sign (==), pronounced "exists", may be used to
determine whether a parameter is present or not in the macro call. This
operator returns a true value (all ones) if any operand follows the == and a

215

Macros

Macro Call
false value (all zeros) otherwise. For example, the following code checks
whether the second parameter is present.
Label Operation Operand Comment
MSET MACRO DATA,MEM
IFNE ==MEM
MOVE #DATA,MEM
ELSEC
MOVE #DATA,(AL)
ENDM
The == operator may be used in combination with other operators. It takes

as its argument the entire remainder of the line, up to a comment delimiter (if
present) or the end of the line. Therefore, using other operators to the right
of = = is useless. Also, ifa comment field is to follow an == operator, it
must be prefixed with a semicolon (;). A parametersigimg entirely of

blank characters will test as null.

216

Macros
LOCAL - Define Local Symbol

LOCAL - Define Local Symbol

All labels, including those within macros, are known to the entire program. A
macro containing a label that is called more than once will cause a duplicate
label error to be generated. To avoid this problem, the user may declare labels
within macros to be local to the macro. Each time the macro is called the
assembler assigns each local symbol a system generated unique symbol of the
form ??nnnn. Thus, the first local symball we ??0001, the second 7?0002,

etc. The assembler does not start at ??0001 for each macro, but increases the
count for each local symbol encountered. The maximum number of local
symbols allowed inside a macro definition is 90.

The symbols defined in this directive are treated like formal macro parameters
and hence may be used in the operand field of instructions. The operand field
of the LOCAL directive may not contain any formal parameters defined on

the MACRO directive line. As many LOCAL directives as necessary may be
included within a macro definition but they must occur immediately after the
MACRO directive and before the first line of the macro body, including
comment lines. LOCAL directives that appear outside a macro definition will
generate an error.

For compatibility with existing code, the assembler will also recognize the
Motorola method of declaring local symbols. The string \@" denotes the
presence of a local symbol. The full name of the symbol is formed by
concatenating "\@" with any adjacent symbol(s) (e.g., " DON\@T" counts a
one local symbol). The total length of a symbol formed in this way should not
exceed 31 characters, or the assembler may not resolve it correctly. At macro
expansion time, the entire local symbol is replaced by a symbol of the form
??nnnn, just like amed local symbols. This form may be mixed with named
local symbols without conflict (although this is not recoended).

Local symbols declared by the "\@" construction may not be present in a
LOCAL statement, but are recognized as they appear.

The \@ format is not recommended for new code, as it obscures the meaning
of the macro definition without adding clarity to the expansion.

217

Macros
LOCAL - Define Local Symbol

Syntax:

Label Operation Operand Comment
LOCAL symbol list

Where:

symbol list A list of symbols that are separated hypotas and that
are to be defined local to this macro.

Example of local symbol usage:

Label Operation Operand Comment
WAIT MACRO TIME ;:macro definition
LOCAL LAB1
LAB2\@ MOVE.B #TIME,DO
LAB1 DBLE DO,LAB2\@
ENDM
2?0002 MOVE.B #5,D0 ;First call
2?0001 DBLE D0,??0002 ;with TIME=5.
2?0004 MOVE.B #$FF,DO ;Second call
2?0003 DBLE D0,??0004 ;with TIME=$FF

218

Macros
MEXIT - Alternate Macro Exit

MEXIT - Alternate Macro Exit

The MEXIT directive provides an alternate method for terminating a macro
expansion. During a macro expansion, an MEXIT directive causes expansion
of the current macro to stop and all code between the MEXIT and the ENDM
for this macro to be ignored. If macros are nested, MEXIT causes code
generation to return to the previous level of macro expansion. Note that
either MEXIT or ENDM may be used to terminate a macro expansion, but
only ENDM may be used to terminate a macro definition.

Syntax:
Label Operation Operand Comment
{label} MEXIT
Where:
label An optional label that will be given the address of the
current location counter. In the following example, the
code following the MEXIT will not be assembled if
DATA is non-zero.
Label Operation Operand Comment
STORE MACRO DATA
IFEQ DATA
MEXIT
ENDC
ENDM

219

Macros

Macro Parameter C ount

Macro Parameter Count

The special symbol NARG may be used when it is necessary to know the
number of parameters passed on the macro call statement to the macro. This
symbol is used like any other symbol and represents the number of actual
parameters passed to the macrm@sosed to the number of formal

parameters in the macro definition. NARG is considered to be zero outside
of a macro. lItistypically used when generating tables within macros, along
with conditional assembly statements. Th@umt only represents pameters

that are not null.

Example:

Label Operation Operand Comment
GEN MACRO P1,P2,P3

IFNE NARG

DC.B P1,NARG

GEN P2,P3

ENDC

ENDM
ADD1 EQU $7F ;macro call.
ADD2 EQU 3

GEN ADD1,ADD2
* Macro Expansion:

NARG ;(value of NARG)

7F02 DC.B ADD1,NARG

GEN ADD?2,

IFNE NARG
0301 DC.B ADD2,NARG

GEN ,

IF NARG

DC.B ,NARG ; not executed

GEN , ; not executed

ENDC

ENDC

ENDC

Note that the value of NARG is not displayed in the expansion, any more than
the value of any other symbol. In the example above the DC.B directive is
used so that the value of NARG can be seen.

220

Structured Control Statements

This chapter describes the high-level control directives which you may use in
your assembly language programs.

221

Structured Control Statements

as68k includes several high level language taicss, like those of C and

Pascal, that control runtime loops and conditional execution. These
constructs make it easier to write fast, compact assembly language code. The
following control directives are provided:

 |IF... ELSE ... ENDI
* WHILE ... ENDW

* REPEAT... UNTIL
« FOR ... ENDF

Within the constructs, the following keywords may also be used:
THEN, DO, TO, DOWNTO, AND, OR, and BY.

The following extensions to the Motorola control directives alter the flow of
the loop constructs:

+ BREAK
« NEXT

BREAK may be used to prematurely exibap. NEXT may be used to
proceed to the next iteration of the loop.

Each of the structured control directives generates one or more assembly
language instructions. The instructions generated typically include compare
and branch instructions.

Operands give you control over which registers and memory locations are used
to hold the loop counts or values to be compared for the loop end conditions.
There is no restriction on storing into the loop counter, loopeiment

variable, or either of the loop bounds for the loop. When writing code for the
loop body, be careful not to alter these variables.

The IF structure directive should not be confused with the IFxx conditional
assembly directive. At assemblytime, each structure directive is translated
into the appropriate assembly language code thbevexecuted atun time.
Conditional assembly directives do not generate any code; they only control
what will and will not be assembled.

222

Structured Control Statements
Structured Control Expressions

Structured Control Expressions

The IF, UNTIL and WHILE statements require a field referred to as a
"structured-control expssion"in their syntax. This expression has a logical
value of "true" or "false" and is one of the following:

1 A condition code (CC, EQ, etc.) enclosed in angle brackets. For example:
"< MI>". Any ofthe 14 condition codes accepted in the conditional
branch instruction (Bcc) is legal.

2 Two expressions as defined in the "Expressions" section of the "Assembler
Syntax'chapter, separated by a condition code enclosed in angle brackets
(e.g., "COUNT < LE> #4"). These expressions will be used as operands
for the CMP instruction; if they do not form a legal pair of operands for
this instruction, an errorilwoccur when the CMP is assembled. The #
sign is required on all immediate operands, asin the example.

3 Two structured-control expssions, each of either type 1 or type 2 above,
separated by the keywords AND or OR. These keywords may optionally
have one of the qualifiers .B, .W or .L (e.g., COUNT <LE> #4 AND.B
<CC>").

More complex combinations, such as "COUNT < LE> #4 AND <CC> OR
X <GT> Y" are not allowed. Asin the examples, at least one space or tab
must appear between different parts of a structured-controlsskpne

The first type of structured-control exggon generates a conditional branch
instruction (Bcc), which merely tests the indicated bits of the condition codes.
(The test may be complemented to reflect the pagner’s intent in some
constructs.) Obviously, these codes should somehow be previouslyset. T
expression is 'true"if the condition code setting described is true.

The second type of structured-control exgsien generates a CMP (compare)
instruction followed by a conditional branch. The size of the CMP is
controlled by the qualifier on the directive containing the structured-control
expression. It is not always possibleptmduce a single conditional branch
that is equivalent in meaning to the exggien coded; this is further discussed
below.

The third type of structured-control exgsion generates the code for its left
side followed by the code for its right side: there are no extra instructions
generated bythe AND or OR. The branches are constructed so that the right
side of AND is not evaluated when the left side is false (the compound

223

Structured Control Statements
Structured Control Expressions

<CC>
<CS>
<EQ>
<NE>
<GE>
<GT>
<PL>
<VC>
<VS>

<==>
<==>
<==>
<==>
<==>
<==>

<LS>
<HI>
<EQ>
<NE>
<LE>
<LT>

<==> <MI|> *

<==>
<==>

<VC> *
<VS> *

expression is known to be false), nor is the right side of OR evaluated when
the left side is true (the compound exggien is known to be true). The size

of the CMP (if any) to the left of the AND or OR is taken from the qualifier

on the directive; the size of the CMP (if any) to the right of the AND or OR is
taken from the qualifier on the AND or OR. A compound espian

containing AND is true if and only if the expressions on both sides of AND are
true, otherwise it is false. A compound exggien containing OR is false if

and onlyifthe expressions on both sides of OR are false, otherwise it is true.

The assembler normally uses the expression preceding a condition code as the
left operand of CMP, and the expression following the condition code as the
right operand of CMP. But if this is not a legal combination of operands for
CMP, the assembler will switch the operands and leave the specified condition
code alone. To preserve the meaning of the specified comparison, the
assembler will change the condition code as follows.

In the first six cases, the new condition is exactly equivalent. In the last three
(asterisked), it is not always and is marked with a warning message flag on the
assembly listing when it occurs. The conversions of VC to VC, and VS to VS,
fail when the result of the comparison is the largest negative number
representable in the operation size ($80, $8000, or $80000000). The
conversion of PL to Ml or of Ml to PL fails in the same case, and also when
the result of the comparison is 0. It isrecommended that such flagged
expressions be recoded to express the progrer’s intent.

224

Structured Control Statements
FOR...ENDF Loop

FOR...ENDF Loop

Syntax:

FOR{.qualifier} op1 = op2 TO op3 {BY op4} DO{.extent}

<loop body>
ENDF

or:

FOR{.qualifier} op1 = op2 DOWNTO op3 {BY op4} DO{.extent}

<loop body>
ENDF

These statements are iteratedps, like the FOR of Pascal or C and the DO
of FORTRAN. The loop counter is "opl", which must be an esgioa that is
legal as the right side of a MOVE instruction (typically a label or a register).
The initial value is "op2"and "op3"is the final value of this counter. On each
pass through the loop, "opl1" is ieenented for TO (decremented for
DOWNTO) by "op4"if present, or by 1 if "op4"is not present. The loop is
executed until "op1" is greater than "op3"for TO ("op1"less than "op3" for
DOWNTO), which means that it may be executed zero times if "op1"is
greater than "op3" (for TO) when the loop is entered.

The loop body may be any staents, but if anyteuctured control staments
are included, they must be nested properly.

The FOR...ENDFdop generates a MOVE, a CMP, and either an ADD or
SUB, plus various conditional and unconditional branches. The MOVE,
CMP and ADD or SUB may all have a qualifier that is taken from the
qualifier field of the FOR statement for all threetnugtions. The CMP is
performed at the top of the loop, whigteans that the following conditional
branch out of the loop is a forward reference. This branch may be given an
explicit size code (.S or .L) by appending the code to the DO keyword as the
"extent" field. If not present, the size of the forward branch is determined by
the current setting of the B option (OPT BRL or OPT BRS).

The generated CMP instruction is executed once, even if the values of"opl"
and "op3"are such that the body of the loop is executed zero times. Upon exit
from the loop, "op1" Vil contain the last value to which it was
incremented/decremented (whichllwe outside the range of the loop

bounds) and the condition codeid veflect the failing CMP. Unlike most

225

Structured Control Statements
FOR...ENDF Loop

high-level languages, there is no restriction on storing into the loop counter,
loop increment, or either of theodp bounds within the loop (of course doing
this is error prone).

Spaces or tabs are required as separators as shown Almegarticularly
the required spaces around the equals sign

Fields "opl"through "op4" are used as instruction operands just as they
appear; if a legal instruction is not produced, errailoecur when the

generated instruction is assembled. Anyimmediate data must have # signs
attached. If anyoperand is an A register, the qualifier on FOR must not be .B
(byte). The default increment size of 1is usuallppr@priate when

branching through Word or Long sized data.

Examples:
Label Operation Operand Comment

FOR.B D1 = #1 TO #10 DO.S
MOVE.W D1,(A2)+
ENDF

FOR.L Al = #HIGHADD DOWNTO #LOWADD BY #4 DO
MOVE.L (Al),-(A2)
ENDF

226

Structured Control Statements
IF ... THEN ... ELSE ... ENDI Conditional Execution

IF ... THEN ... ELSE ... ENDI Conditional Execution

Syntax:

IF{.qualifier} <structured-control-expression> THEN{.extent}
<then-part>

{ELSE{.extent}
<else-part>}

ENDI

This means that only the statements in the then-part are to be executed ifthe
< structured-control-expssion> is true, and only the statements in the
(optional) else-part are to be executed if the < structured-controlsswpne

is false. The qualifier on IF is used when generating code for the

< structured-control-expssion> as explained above. The extent code on
THEN, which may be .S or .L, is used when generating the conditional branch
from the test (at IF) to the else-part. Similarly, the extent code on ELSE is
used when generating the unconditional branch from the end of the then-part
to the end of the else-part.

227

Structured Control Statements
IF ... THEN ... ELSE ... ENDI Conditional Execution

Examples:
Label Operation Operand Comment

IF.B (Al) <LT> #0 THEN.S
MOVE.B #0,(A1)
ELSE.S
ADD.B #1,(Al)
DI

;This example shows mixed conditional assembly and structured
;syntax IFs.

;As you see, the combination is difficult to understand
;sometimes.

IFNE VARIABLE ;conditional
IF VARIABLE <NE> #0 THEN.S ;structured
MOVE #0,VARIABLE
ELSE.S ;unambiguously structured
;because of .S, no W flag is
;given
JSR ERROR
ELSEC ;conditional, because
;structured is illegal
IF VARIABLE <EQ> #0 THEN.S ;structured
MOVE #1,VARIABLE
ENDC ;conditional
ENDI ;structured- terminates
;whichever of the preceding
;structured IF's was assembled

228

Structured Control Statements
REPEAT ... UNTIL Loop

REPEAT ... UNTIL Loop

Syntax:

REPEAT
<loop body>
UNTIL{.qualifier} <structured-control-expression>

The loop is executed until the < structured-control-espicen> becomes true.
The test is placed at the end of the loop, so that the loop bodyis executed
once, even if the < structured-control-exgsien> istrue upon entryto the
loop.

The REPEAT generates only a label and UNTIL generates code for the

< structured-control-expssion> as described above. Since all branches
involved are backwards, there is no need for an extent field. The qualifier of
UNTIL is used in generating code for the < structured-control-egiwa> ,

as explained earlier in the previous "STRUCTURED-CONTROL
EXPRESSIONS" section of this chapter. A comment field on UNTIL must
be delimited by a semicolon or exclamation point, so that the assembler will
know to stop parsing the < structured-control-esgien> .

Examples:
Label Operation Operand Comment

REPEAT
MOVE.L #-1,(Al)+
MOVE.L #0,(A1)+
UNTIL.L Al <GE> #$FF8000

ANDI #$FE,CCR ; clear Carry flag
REPEAT ; this infinite loop might be used
UNTIL <CS> ; while awaiting an external interrupt

229

Structured Control Statements
WHILE ... ENDW Loop

WHILE ... ENDW Loop

Syntax:

WHILE{.qualifier} <structured-control-expression> DO{.extent}

<loop body>

ENDW
This means to repeat thesolp body> provided that the
< structured-control-expssion> remainstrue. Ifit is falsgpon loop entry,
then the loop bodyis executed zero times (but the CMP test is executed once
and the condition codes will reflect this).
The qualifier on WHILE is used when generating code for the
< structured-control-expssion> as explained above. The extent field of the
DO is applied to the conditional branch from the test out of the loop, which is
a forward reference.
Examples:

Label Operation Operand Comment

WHILE A1 <NE> #0 DO.S
MOVE #0,(A1)+
ENDW

WHILE.L #3 <LT> DO AND.L #5 <LT> D1 DO.S
JSR RETRY
IF.L #5 <LT> D1 THEN.S
ADD.L #1,D1
ELSE.S
MOVE.L #0,D1
ADD.L #1,D0
ENDI
ENDW

230

Structured Control Statements
BREAK - Premature Loop Exit

BREAK - Premature Loop Exit

The BREAK directive provides a convenient way to exit a loop (FOR,

WHILE or REPEAT) before the condition terminating the loop becomes
true. BREAK generates a jump to the assembler-generated label (which you
do not know when coding the program) that comes immediately after the
innermost active loop in which the BREAK appears. Since this branch is a
forward reference, an extent code .S or .L may be attached to the BREAK
directive to force either a short or long forward branch.

If a BREAK directive appears outside ofa FOR-ENDF, WHILE-ENDW, or
REPEAT-UNTIL loop, an opcode error is reported and no code is generated.
BREAK is not allowed in an IF construct

231

Structured Control Statements
NEXT - Proceed to Next Loop Iteration

NEXT - Proceed to Next Loop Iteration

The NEXT directive provides a convenient way to proceed to the next

iteration of a loop (FOR, WHILE or REPEAT). NEXT generates a jump to
the assembler-generated label at the bottom of the innermost active loop in
which the NEXT directive appears. Since this branch is a forward reference,
an extent code .S or .L may be attached to the NEXT directive to force either a
short or long forward branch.

If a NEXT directive appears outside ofa FOR-ENDF, WHILE-ENDW, or
REPEAT-UNTIL loop, an opcode error is reported and no code is generated.
NEXT is not allowed in an IF construct

232

Structured Control Statements
Structured Directive Nesting

Structured Directive Nesting

Structured directives may be nested to createirfasl control sructures

subject to the following rule. A directive that begins a new control structure in
an inner loop must have a corresponding directive that terminates the control
structure in the same inner loop.

The assembler keeps track of structured control directives to ensure that they
are nested properly. The maximum nesting level is 64. This process is totally
independent of the assembly time macro stack and conditional assembly stack.
It is possible for the beginning of trisctured control loop to be inside a
conditional assembly or a macro expansion. The directive ending the
structured control loop must be specified, but it need not be within the
conditional assembly or macro expansion.

An incorrectly nested control directive is flagged with an invalid opcode error
and ignored by the assembler. If a terminating directive is omitted, an
undefined label error Wfollow the control directive beginning the high level
construct.

An example of legal nesting is shown in the following example:

REPEAT
MOVE.B (A1)+,NEXT_CHAR ; Fetch character.
CMP.B #CR,NEXT_CHAR ; We cannot use IF here because
BNE.S labell ; BREAK cannot be nested in an

IF structure.
; Without the BREAK, we could use
; IF.B#CR <EQ> NEXT_CHAR THEN.S
BREAK.S ; Leave the REPEAT...UNTIL loop
; when carriage return is found.

labell
IF.B #BLANK <EQ> NEXT_CHAR THEN.S ; Skip blanks.
BRA.S label2 ; Cannot use NEXT in an IF.
ELSE.S
MOVE.B NEXT_CHAR,(A2)+ ; Copy character into buffer.
IF.L A2 <GT> #120 THEN.S ; Error if buffer overflows.
JSR ERROR
ENDI
ENDI
label2
UNTIL A1 <GT> #120
RTS
END

233

Structured Control Statements
Structured Directive Listings

Structured Directive Listings

The code generated by structured control directives is shown in the same way
on the listing as macro expansions. The code is marked with plus signs (+),
and is not shown if the M or MEX option is turned off.

234

Linker/Loader Introduction .

This chapter and subsequent chapters describe the 68000 Family Linking
Loader that accompanies the 68000 Family Relocatable Macro Assembler.

235

Linker/Loader Introduction

The linking loader may be used to combine several independently assembled
relocatable object modules into a single absolute object module. Relocatable
addresses are transformed into absolute addresses, external references
between modules are resolved, and the final absolute symbol value is
substituted for each relocatable symbol reference.

In addition, Id68k supports inemental linking. In an incremental link,

several relocatable modules are combined into a single relocatable file that
may be used in a subsequent linking operation. The output file format is HP’s
implementation of IEEE standa6®5.

During incremental links, location information may be specified but, because
the code remains in relocatable form, these locations may be changed during
subsequent links. A number of linker commandsiléggal in an incemental

link.

236

Linker/Loader Introduction
Linker/Loader Operation

Linker/Loader Features

The 68000 family linking loadeupports the following features:
» Allrelocatable section load addresses may be specified independently.
* The relocatable section loading order may be specified.

 External symbols may be defined or the values of previously defined
externals may be changed at load time.

* Object modules may be loaded from a library created by the librarian.

e Symbols and linenumber information may be included in the absolute
object module for symbolic debugging.

» Acrossreference table of external symbols and all modules in which they
are referenced may be generated.

» First fit memory may be allocated for more compact load modules.
 Complexrelocation is supported.
» A2- A5 Relative addressingjsovided.

* Relocatables may be combined into a single relocatable in a process
called incremental linking.

» Datainitialization from ROM is supported.

Multiple address spaces are supported.

Linker/Loader Operation

To avoid long assembly times, or to reduce the required size of the assem.
symbol table, long programs can be subdivided into smaller modules,

assembled separately, and linked together by the loader program. After the
separate program modules are linked and loaded, the output module functions
as if it had been generated by a single absolute assembly.

237

Linker/Loader Introduction

Program Sections

The same program does the linking and loading fol68080 Family Cross
Assembler/Linker/Librarian. The names "loader," "linker," "linking loader,"
and "linker/loader" all refer to the same program. This chapteuse the
name "loader."

The primary functions of the loader are to:

» Resolve external references between modules and check for undefined
references. (The linking process.)

» Adjust all relocatable addresses to the proper absolute addresses. (The
loading process.)

* Output the final absolute object module(s).

Program Sections

To use the assembler and loader effectively, you should understand the various
program sections and section load addresses.

Absolute Section

This section is that part of the assembly program that is not relocatable but is
to be loaded at fixed locations in memory. Absolute code is placed into the
output module exactly where specified by the input object modules. If no code
is generated by an instruction (the DS directive, for example), no code is
placed into the output module.

Relocatable Section

A relocatable section is a general purpose section which may contain both
instructions and data. A program may contain an unlimited number of
relocatable sections.

Each section is identified by a symbolic name. The same section nhame may
appear in different relocatable object modules. The section, as a whole, refers
to the totality of code from all object modules which is associated with the
section name. Inauctions in one section can make reference to any other
section.

238

Linker/Loader Introduction
Program Sections

In the assembler, sections may be given numbers rather than names. If a label
appears before a SECTION directive which defines a numbered section, the
assembler creates a section name made up of the number and the label.
However, from the loader’s point of view, all sections are named.

On occasion it will be necessary to refer to the individual pieces of code from
various modules which make up a section; these will be called subsections.

Each relocatable section has five attributes: the common/noncommon
attribute, the short/long attribute, the alignment attribute, the section
contents attribute, and the HP type attribute.

Noncommon Section

A noncommon section is the only type available for code. The subsections of a
noncommon section are loaded into a contiguous blookemfiory and do not
overlap. The size of a noncommon section is the sum of the sizes of all its
subsections.

Common Section

These sections contain variables that may be referenced by each module. All
common subsections are loaded beginning at the same address providing an
effective communication area. This is similar to FORTRAN Common.

The length of a common section is the size of its largest subsection. If more
than one input subsection contains code or data in the same Common section,
the linker willissue a warning.

Short Section

A section which may be referenced by the absolute short address mode and
which therefore must be loaded into the areas of memory which can be
reached by a 16-bit sign-extended address. These areas are from 0 to $7
inclusive, plus another area in high memory whose boundaries depend on
target chip. For the 68000 and 68010 this area is from $FF8000-foFFH-
inclusive; for the 68008 it is from $F8000 toF#FF inclusive; for the
68020/30/40 and CPU32, it is from BFF8000 to $FFFFFFF inclusive. The
target chip may be specified by the CHIP command.

The loader never puts a short section in an inappropriate aneanodry. A
section is designated as short if any of its subsections are short, or if it appears

239

Linker/Loader Introduction
Program Sections

in a SORDER directive in the loader commands. A target systemhnage

not to implement all the available address lines for the target microprocessor.
For example, the 68020 has 32 address lines, but perhaps the target system
uses only 24 to control memory. In this case, the loader CHIP command may
be used to specify a bus width of 24 lines and therefore a target memory less
than 22 bytes. This also may move the upper short section to anoid@ory
area. Refer to the loader CHIP command for more information.

Long Section

A section which is not short and which can be placed anywheneinory.

Section Alignment

The section alignment attribute may be either 1, 2 or 4. The section alignment
attribute affects the beginning address of each file’s contribution to a section
(i.e., a subsection). That is, if several files each define a relocatable section A,
then the beginning address of each section A in each file widloeded up to

a modulo 2 or a modulo 4 boundary if necessary.

Section Contents

There are four section contents indicators:
* Program code (C).

« Data (D).

* Mixed code & data (M).

« ROMable data (R).

The section contents attribute is used by certain HP debuggers in its operation.

240

Linker/Loader Introduction
Memory Space Assignment

HP Section Type

The HP section type is used to produce&4B00 symbolic information in the
"asmb_sym" (assembler symbol) and "link_sym" (linker symbol) files. The HP
64000 file formats define three relocatable sections, PROG, DATA, and
COMN as well as the absolute section(s) ABS. The section type attribute is
used to map the various relocatable and absolute sections onto the HP 64000
sections PROG, DATA, COMN, and ABS.

Memory Space Assignment

Sections are assigned spaceni@mory in an order which you can control.

Also, the initial address (load address) of any or all sections may be specified;
this does not alter the order in which sections are assigned space, but it affects
the location in memory of following sections which do not have load addresses
specified.

Several different kinds of addresses will be referred to in this manu@édA
addresds the memory address at which the lowest byte of a section is placed. A
base addrests the lowest address considered for loading relocatable sections
of the absolute object module. Loading need not begin at the base address if
SECT and/or COMMON commands are usedtéting addresss the

location at which execution begins. The algorithm used to allocate memory is
a three-step procedure as follows:

1) Allocate absolute sections and sections specified by the SECT and
COMMON linker commands.

1) Allocate short sections (= Group 1)

2) Allocate long sections (=Group Il)

The order in which sections are assignegmory within their group is as
follows:

1 Anysections named in the last ORDER command (faru® Il) or
SORDER command (for ®up 1), in the sequence in which they were
named in that command.

241

Linker/Loader Introduction
Memory Space Assignment

2

Any other sections belonging to the group, in the sequence in which their
names were emcintered by the loader.

The loader encounters ame when it appears in a user command or when a
module is loaded (with the LOAD command) which refers to that name.
Names appear in relocatable object modplkesiuced by the assembler in the
sequence in which they appeared in directives in the assembler source input.

Library relocatable object modules which are not selected for inclusion in the
absolute object module do not have their section names examined by the
loader.

To assigimemory to a section, it is necessary to assign it a load address. For
those sections whose load addresses you have specified (in a SECT or
COMMON directive) nothing more need be done. Otherwise:

3

The first short section is loaded at the base address, as specified by the
BASE command. If no BASE command is given, the default base address
is 0.

Subsequent short sections are loaded immediately above the preceding
section, unless this would cause the high end of the section to extend
above $7FFF, in which case the section is loaded at the lowest address in
the shortaddressable area of high memory (which depends on the target
chip). The loader will not split ahert section between low and high
memory.

The first long section is loaded immediately above the short section most
recently loaded into low memory. Caution is required because an earlier
short section might have been loaded im®mory above the most

recently loaded short section (ifa SECT or COMMO khasand was

used) which will now overlap the long section.

If there are no short sections, the first long section is loaded at the base
address specified by the BASE command. If no BASE command is given,
the default base address is 0.

Subsequent long sections start immediately above the preceding long
section.

At present, the loader does not support function codes.

242

Linker/Loader Introduction
Relocation Types

Incremental Linking

The incremental linking feature lets the link@oduce a single relocatable
object module from several relocatable object modules, resolving all external
references between the modules loaded. Undefined external references to
other modules can still exist in the output object module. These poeteel

on the link map.

Relocation Types

By default, sections are word relocatable. That is, they must begin on an even
location. (This is true even if an odd load address is specified; in this case the
address you supplied will reunded up.) You may override the default by
specifying longword alignment in the SECTION directive.

Also, you may specify via the PAGE and CPAGE commands that certain
sections are page relocatable, meaning that their starting addrassded

up to be a multiple of $100. Furthermore, this page relocatability can be
turned on and off between modules, which in effect allows you to control the
relocation type of each subsection.

Page relocation is useful for debugging since it means the absolute addresses
assigned by the loadeillwmatch the last two digits of the relocatable
addresses shown on the assembler listing.

In the typical load sequence, the loader places contiguously in memory all
subsections of the first section it assigns. This is followed immediately by all
subsections of the second section, etc. There are no extra bytes between the
subsections (unless a subsection contains an odd number of bytes, in which
case one hyte is left in between the subsections in order that the next higher
subsection will start on an even address.)

If any of the subsections specify page relocation, however, the loader will
that subsection at a page boundary to preserve relocation. Due to the interna
design of the loader, whenever any subsection is page relocatable, the first
subsection also starts on a page boundary, unless a load address is specified for
the section. (If paging is in effect at the time the first subsection of a section is
LOADed, even a specified load address wilrbanded up.)

243

Linker/Loader Introduction
Generating HP Format Absolute Files

Since all subsections of a common section start at the same location,
specifying page relocation for any common subsection results in page
relocation for the section.

Generating HP Format Absolute Files

The assembler provides ansmand line option to specify that an HP format
assembler symbol file be produced for debugging purposes. The linker/loader
provides a coomand line option to specify that HP format absolute and linker
symbol files be created.

Problems can arise when generating HP format files. For example, as68k
allows periods (.), question marks (?), and dollar signs ($) in symbol names
which are not legal characters in HP format symbols; these characters are
converted to underscores (_) when generating HP format files. Also, the as68k
assembler allows symbols up to 31 characters in length while the maximum
length of symbols in HP format files is 15 characters; symbols longer than 31
characters are truncated to 15 characters when generating HP format files.

Another problem that can occur when generating HP format files involves the
mapping of the large number of sections allowed with this assembler and
linker to the three sections (PROG, DATA, and COMN) allowed in HP
format files. 1d68k uses the HP section type attribute to map relocatable
sections as shown below:

P ---> PROG
D ---> DATA
C ---> COMN
A ---> ABS

Whenever more than one section is mapped to an HP format section, the local
symbols in the sections after the first are lost, and a warning is issued. Also,
global symbols in sections after the first will become HP format absolute
symbols.

244

Linker/Loader Introduction
Loader Listings

Return Codes

|d68k returns O if no errors are detected; otherwise, it returns nonzero. The

loader will completenormally, issue an informative message, issue a warning,
or end abnormally with an error message. Error messages and warnings are
listed in the "Loader Eor Messages" appendix.

Loader Listing Description

The loader uses a two pass process in which timrands and object modules
are checked for errors, and a symbol table is formed after encountering the
END command. Manyreors are not fatal and the loadenomandprocessing
will continue. The loader will igort the errors it encounters with a message
immediately following the line in error, and the loaidl end with the

message "LOAD COMPLETED."

During pass two of prossing, the final absolute object modulpisduced,

along with a load map and a listingwifresolved external references. A local
symbol table, public symbol table, and cross reference table may be listed in
the load map. The load map also indicates the starting address of the load, as
well as the output module name and format, and the section and module
summary. Detailed descriptions of the map file atenfl in the following

"Loader Listings" section.

Loader Listings

Note the following points when examining loader listings.

1 The first page of the listing shows allhemands which you have entered
along with any commandors that occur.

2 The next page begins the load map which first displays the output module
name and the output module format. The load map next displays the
names of all sections followed by the attribute, starting address, ending
address, length and type of alignment for each section. Then, the load map

245

Linker/Loader Introduction

Loader Listings

4

displays a module summary containing the names of all the modules
followed by the starting address and ending address for each section in
each module. Anyexecutable address errors encountered during pass 2 of
the load are indicated at the end of the module summary.

When the appropriate LIST gonand options are specifidists of all

local symbols and public symbols are displayed in symbol tables. All
symbols in the map are truncated to 10 characters. Public symbols are
external definition symbols as declared in the assembler, and are used for
intermodule communication. Local symbols are those known to only a
single module. Local symbols are not used by the loader, but are listed so
their final absolute values may be seen. The attributes and sections are
listed for each local symbol, as well as the section offsets and modules
which define them. If the cross reference list option is specified, a cross
reference table is listed. Local symbols may be placed in the output object
module of the assembler by specifying the "LIST S" directive, and may
subsequently be used for symbolic debugging.

The local symbol table contains two types of symbols:

High level elements are compiler symbols whose attribute is LOCAL. The
OFFSET column indicates the stack address offset in bytes for each section.
High level symbols contain both MODULE and FUNCTION information.

Low level elements are assembler symbols whose attribute is ASMVAR.
OFFSET is the actual section address. Onlythe MODULE information is
listed in the local symbol table.

5

8

The public symbol table contains the list of PUBLIC symbols, the section,
the actual section address, and the modules.

The unresolved externals section contailistaf the undefined external
references.

The cross reference option is turned off by default. To produce the cross
reference table, use the "LIST C"command. All external symbols passed
to the loader are listed under the heading "SYMBOL". The symbol
section and address are listed. Any flag to the left of those values is the
segment attribute of the symbol.

Under "MODULE", a module name preceded by a minus sign indicates
that the symbol was defined in that module. Line numbers not preceded
by a minus sign indicate a reference to the symbol in that module.

Next, the starting address of the load is indicated.

246

Linker/Loader Introduction
Loader Listings

9 Finally, the end of the load is indicated by the "LOAD COMPLETED" or
"LOAD NOT COMPLETED" message.

Sometimes the module listed for a public symbol will be $$. $$ indicates that
the symbol does not belong to any module. $$ symbols occur in the following
situations:

10 Linker defined symbols. The PUBLIC, INDEX, and INITDATA
command cause the linker to define symbols.

11 Undefined symbols.
12 Common section names.

13 Global symbols whose value is outside of any section. Usuallythisis a
result of EQUing a symbol to a constant value.

247

Linker/Loader Introduction
Loader Listings

248

10

Linker/Loader Commands

This chapter describes each of the linker/loader commands.

249

Linker/Loader Commands

The loader reads a sequence of commands from a linker command file or from
standard input. The last eonand must be either an EXIT or END command.

The object modules are read from files specified in the LOAD command.

The output of the loader consists of an absolute load module suitable for
loading into an actual microprocessor. The output module is written in one of
several absolute object module formats as described in this chapter’s
FORMAT description.

Summary of Commands

The following pages describe the loader commands. In the command
descriptions, brackets, { }, are used to indicate optional arguments. A
summary of the commands is given below:

; (Comment) Specify Comment.

(Continuation) Line continuation character.

ABSOLUTE Specify the Sections Included in the Absolute File.
ALIAS Specify Section Assumed Name.
ALIGN{MOD} Sets Alignment for Named Section.

BASE Specify Location at which to begin Loading.
{LOWER}CASE Shifts Names to Lower Case.
{UPPER}CASE Shifts Names to Upper Case.

CHIP Specify Target Microprocessor.

COMMON Set Common Section Load Address.
CPAGE Set Paging for Common Section.

{NO} Retains or Discards Internal Symbols.

DEBUG_SYMBOLS

END End Command Stream and Finish Loading.

250

Linker/Loader Commands

ERROR Change Message Severityto ERROR.

EXIT Exit Loader.

EXTERN Creates External References.

FORMAT Specify Absolute File Format.

INCLUDE Includes a Command File.

INDEX Give Loader the Run-Time Value of Register "An".
INITDATA Specify ROM Address for Section.

{NO}INTFILE Stores Information Using Intermediate File or

Virtual Memory.

LIST Set Loader Options.

LISTABS Lists Symbols to Output Object Module.
LISTMAP Specifies Layout and Content of the Map.
LOAD Load Specified Object Modules.
LOAD_SYMBOLS Load Object Module Symbol Information.
MERGE Combines Named Module Sections.
NAME Specify Output Module Name.

NLIST Clear Loader Options.

NOERROR Change Message Severityto NOERROR.
NOPAGE Turn off Paging for Section.

ORDER Specify Long Section Order.

PAGE Set Paging for Noncommon Section.

251

Linker/Loader Commands

PUBLIC

RESADD

RESMEM

SECT

SECTSIZE

SORDER

START

WARN

Specify PUBLIC symbols (External Definitions).
Reserves Region of Memory.

Reserves Region of Memory

Set Noncommon Section Load Address.

Set Minimum Section Size.

Specify Short Section Order.

Specify Output Module Starting Address.

Change Message Severityto WARNING.

252

Linker/Loader Commands

Command Format

Commands may begin in any column. Command arguments may follow in any
column and must be separated from the command by at least one blank.
Comments may follow commands as long as a semicolon separates the
command from the comment. Entire lines in the command stream may be
commented with a semicolon as the fmsinblank character in the line.

Numeric command arguments may be either decimal or hexadecimal and may
be represented in either of the following two ways:

1 Hexadecimal constants may be preceded by a "$" (e.g., $1F) in which case
they need not have a leading zero even if they start with hexadecimal
characters A - F. Any legal hexadecimal constant may be used, and a
terminator is not required.

2 Hexadecimal constants may be terminated by the letter "H", or the letter
"X" (e.g., 1FX), in which case any legal hexadecimal constant may be used
in the command argument, and a leadingilagal.

Symbols and section names must follow the syntax rules for symbols given in
the assembler manual: i.e., they must begin with a letter, a period ".", a
guestion mark "?", or an underbar "_", and subsequent characters may be any

of these, a dollar sign "$", or a decimal digit.

Section names, symbols, and module names are case sensitive by default. The
LOWERCASE or UPPERCASE commands may be used to alter this. The
assembler directive OPT CASE may be used to specify that symbols are case
sensitive in the assembly.

Processing Order
The linker willprocess coomands in the following order and also handle
positional dependencies by the following rules:
3 Preprocessed oomands such as:
INCLUDE
are expanded before any linker commandgaoeessed.

4 {NOJ}NTFILE must be before any LOAD command.

5 Non-position dependent commands precessed next.

BASE
CHIP

253

Linker/Loader Commands

FORMAT
NAME
START
LISTABS
LISTMAP
RESADD
RESMEM

6 Position-dependent commands precessed next.

CASE

should be before any somand using names
LOWERCASE

should be before any somand using names
UPPERCASE

should be before any sumand using names
{NO}PAGE

CPAGE
{NO}DEBUG_SYMBOLS
LOAD

EXTERN

7 Commands that are position-independent in the command file are
processed next, but they are operated on in the following order:

COMMON, SECT, PUBLIC
MERGE
ALIAS
ORDER, SORDER
e. ABSOLUTE, INDEX, INITDATA
8 Commands that end commapbcessing argrocessed last.

END
EXIT

Qoo

254

Linker/Loader Commands
; (Comment)

; (Comment)

Specify Loader Comment
A semicolon may be used to specifya comment in the command stream.

Comments may be used to document loader command sequences. Comments
following loader commands must be separated from the command with a
semicolon. Entire lines may be commented by using the semicolon as the first
nonblank character in a line.

Note that the comment character has changed from the * (asterisk) used by
some previous HP loaders.

Example:

: LOADER COMMENT EXAMPLE
BASE $1000 ; Another comment.

255

Linker/Loader Commands
(Continuation)

(Continuation)

Continue Command

The # (pound sign) character may be used to continumeeoad from one

line to the next. This is particularly useful in ORDER commands containing a
large number of module names. The linker treats all characters and the
end-of-line following the # character as a single blank followed by the first
character of the next line.

256

Linker/Loader Commands

ABSOLUTE
ABSOLUTE
Specify the Sections Included in the Absolute File
Syntax:
Command Argument
ABSOLUTE sname{,sname} . ..
Where:
shame Is the name of a relocatable section to be put into the
output file.
Description: The ABSOLUTE command allows you to specify that only the code and data

from certain, specified program sections be included in the output file.
Without the ABSOLUTE command, all code and data from all sections in all
the input modules is put into the absolute output file.

The ABSOLUTE command allows you to use of code overlays. Typically, in an
application employing overlays, there is a main code section and several
"overlay" sections. Usually, the main section stays in memory. The overlays
are not resident but are loaded into memory as needed during the execution of
the program. However, the overlay sections need to be linked with the main
section.

When using the ABSOLUTE command, only code and data from relocatable
sections is ever put into the output. Code and data from absolute (i.e.,
ORGed) sections is never put into the output when the ABSOLUTE
command is used.

Example:

The following example shows how to link an application containing overlays.
It requires three link operations and three linker command files.

257

Linker/Loader Commands
ABSOLUTE

The program cosists of a maiprogram and two overlays. All the code and
data for the main section is in section "MAINSECT". All the code for first
overlay is in section "OV1SECT" and all the code for the second overlay s in
section "OV2SECT".

Linker command file for main section:

SECT MAINSECT=$1000 ; Locate the main section.
SECT OVI1SECT=$2000 ; Locate first overlay.
SECT OV2SECT=$2000 ; Second overlay will cause ERROR: Section Overlap.

ABSOLUTE MAINSECT ; Only this section goes into output file.
LOAD MOD1,MOD2,...,MODn ; Load all modules for main, overlay 1, overlay 2.
END

Linker command file for first overlay section:

SECT MAINSECT=$1000 ; Locate the main section.
SECT OV1SECT=$2000 ; Locate first overlay.
SECT OV2SECT=$2000 ; Second overlay will cause ERROR: Section Overlap.

ABSOLUTE OVI1SECT ; Only this section goes into output file.
LOAD MOD1,MOD?2,...,MODn ; Load all modules for main, overlay 1, overlay 2.
END

Linker command file for second overlay section:

SECT MAINSECT=$1000 ; Locate the main section.
SECT OV1SECT=$2000 ; Locate first overlay.
SECT OV2SECT=$2000 ; Second overlay will cause ERROR: Section Overlap.

ABSOLUTE OV2SECT ; Only this section goes into output file.
LOAD MOD1,MOD?2,...,MODn ; Load all modules for main, overlay 1, overlay 2.
END

258

Linker/Loader Commands

ALIAS
ALIAS
Specify Section Assumed Name
Syntax:
Command Argument
ALIAS sname,alia_sname
Where:
shame Specifies the section name.
alias_sname Specifies thame of the section which is to be considered
the same as "sname".
Description: The ALIAS command allows you to specify that a certain section be

considered the same as another section. The alias command is useful in that
you can cause the loader to load the parts of those sections contiguously, as if
they were parts of the same section. The resulting output object file will show
the two combined sections under the alias naméh&it the ALIAS

command, the loader would load the parts of those two sections in separate
areas.

The ALIAS command is similar to the MERGE command in that it can
combine differently named sections. However, the ALIAS command can only
combine two sections, and does so in the order they appear in LOAD
commands. The MERGE command can combine more than two sections and
combines them in the order specified in the MERGE command. MERGE and
ALIAS are mutually exclusive and cannot appear in the same Iggiose

If this command is used, it must be specified before any LOAD commands.

Example:

ALIAS SECT1, SECT2

259

Linker/Loader Commands

ALIGN{MOD}
ALIGN{MOD}
Sets Alignment for Named Section
Syntax:
Command Argument
ALIGN{MOD} sname=align_value
Where:
sname A section name.
align_value A constant which is a power of 2 between 1 dhd 2
Description: Everyrelocatable module section has an alignment attribute. When the

module section is located, its base address is made a multiple of the alignment
by the linker.

The ALIGNMOD command may be used to increase the alignment attribute
of the module sections of the named module. Note that the alignment of a
given combined section is the largest of its inclusive module sections.

The ALIGN command sets the alignment of the beginning of the combined
section only. If any of the module subsections that make up the combined
section has an alignment that exceeds the setting, a warning will be generated
and the combined section will have the greater alignment.

260

Linker/Loader Commands

BASE
BASE
Specify Location at Which to Begin Loading
Syntax:
Command Argument
BASE number
Where:
number An absolute number.
Description: The BASE command specifies the lowest address where the lodiddage a

relocatable section, provided the section does not have its load address

specified in a SECTION or COMMON command. You may find the BASE
command useful to avoid sion with an operating system, for example, in
low memory.

The BASE address must be an absolute number.

Example:

BASE $400

261

Linker/Loader Commands
[UPPER]CASE, [LOWER]CASE

[UPPER]CASE, [LOWER]CASE

Controls Case-Sensitivity

Syntax:
Command Argument
CASE {class{,class}...}
LOWERCASE {class{,class}...}
UPPERCASE {class{,class}...}
Where:
class One of the following:
PUBLICS
MODULES
SECTIONS
Description: The CASE command controls the case-sensitivity of various classes of

symbolic names.
Each of the functions of the CASE command are described below:

» CASE without the prefix UPPER or LOWER specifies that upper and
lower-case characters are distinct in name comparisons. Symbolic names
in the indicated class(es) are not modified on input.

» LOWERCASE causes the linker to shift names to lower caseput.i
All symbolic names of the specified class(ed) appear in lower case in
the linker’s output files.

» UPPERCASE causes the linker to shift namesgper case on input. All
symbolic names of the specified class(e)appear inupper case in the
linker’s output files.

The CASE, UPPERCASE, or LOWERCASE commands affect only the
classes of names specified by the class option. If class is not specified, all
classes of names are affected. Each class can have only one case specification
(i.e. CASE, UPPERCASE, or LOWERCASE).

262

Linker/Loader Commands
[UPPER]CASE, [LOWER]CASE

The PUBLICS class refers to all the public and external names. The
SECTIONS class refers to all the section names, and the MODULES class
refers to all the module names.

CASE, LOWERCASE, and UPPERCASE take immediate effect and should
be earlyin the command file.

Example:

Given the following command file:

UPPERCASE PUBLICS

LISTMAP PUBLICS

LOAD modulea, moduleb, modulec
END

All public and external nameslibe upper-cased in the linker’s output file.
The generated link map will contain a PUBLIC SYMBOL TABLE section
that will show all theupper-case public and externames. For example:

PUBLIC SYMBOL TABLE

SYMBOL SECTION ADDRESS MODULE
G1 sect3 00001200 MODULEA
G2 sect3 00001204 MODULEB

G3 sect3 00001208 MODULEC

263

Linker/Loader Commands

CHIP
CHIP
Specify Target Microprocessor
Syntax:
Command Argument
CHIP target {,n}
Where:
target An expression evaluating to 68000, 68EC000, 68HC000,
68HCO001, 68008, 68010, 68302, 68330, 68331, 68332, 68333,
68340, CPU32, 68020, 68EC020, 68030, 68EC030, 68040, or
68EC040.
n The bus width parameter.
Description: The CHIP command declares the mjgrocessor on which the linked code is

to run. The CHIP command may specify th@8000, 68EC000, 68H C000,
68HC001, 68008, 68010, 68302, 68330, 68331, 68332, 68333, 68340, CPU32,
68020, 6BEC020, 68030, 6BEC030, 68040, or 68EC040. The differences are the
instructions allowed, the size of the address space, and the addresses of the
high memory area which can be accessed with Absolute Short address mode.
The linker places sections with the Short attribute only in this areeofory

(or in the low shoraddressable area of memory, which is from 0 to $7FFF for
all targets). If no CHIP command appears, the targetopiocessor is taken

to be the one from the input modules with the greatest dagalbor

example, if three modules specify 68000, 68010, and 68020 respectively, the
default will be taken to be 68020.

The 68010 implements more tngctions that th&8000 or 68008 (which have

the same instruction set). TB8020 implements more itrsictions than the

68010. The 68030 and 68040 implement additiondtircsions over the

68020. In order to prevent an illegal opcode, the lo&deres anreor if a

module is loaded whose CHIP has greater capabilities than the CHIP specified
to the loader.

The differences between the various chips are summarized below:

264

Linker/Loader Commands
CHIP

CHIP Maximum Address High short-addressable area of memory

68000 $FFFFFF $FFB000 to $FFFFFF
68CH001 $FFFFFF $FF8000 to $FFFFFF
68010 $FFFFFF $FF8000 to $FFFFFF
68302 $FFFFFF $FF8000 to $FFFFFF
68331 $FFFFFF $FF8000 to $FFFFFF
68332 $FFFFFF $FF8000 to $FFFFFF
68008 $FFFFF $F8000 to $FFFFF

68020 $FFFFFFFF $FFFF8000 to $FFFFFFFF
68030 $FFFFFFFF $FFFF8000 to $FFFFFFFF
68040 $FFFFFFFF $FFFF8000 to $FFFFFFFF
CPU32 $FFFFFFFF $FFFF8000 to $FFFFFFFF

If present, the CHIP command must precede all other loader commands.

The CHIP command may also specify an optional bus width parameter to
override the maximum bus width implied for the target microprocessor. This
allows the maximum address in memory to be limited regardless of the bus
width possible for the chip. Limiting the bus width may also change the
location of the high short sectionmemory.

All absolute addresses which appear in later commands or object modules are
checked against the bounds e$ishted by the CHIP acomand.

The bus width parameter allows you to specify a maximum address U'p} to 2
and a high shoraddressable area address range fr&%8p00 to 2-1.

Example:

CHIP 68020,24

265

Linker/Loader Commands

COMMON

Syntax:

Where:

Description:

Note

COMMON

Set Common Section Load Address

Command Argument
COMMON sname,value
COMMON sname= value
COMMON sname value

shame Specifies the section name.

value Specifies the load address of the common section.

This command is used to specify the load address of a common section. If this
command is used it must be specified before any LOAD commands.

If this is the first occurrence of this sectioame it is given the attributes
common and long.

Specify the section name followed by the address at which to begin loading the
section. The address specified is always rounded up to the next higher word
boundary, and to the next higher page boundary if paging is specified for this
common section.

Example:

COMMON COMSEC,2048

The value is separated from the section name by a blank, comma, or equal
sign. Multiple COMMON commands with the same section name are
accepted without a warning, but only the last oflebe used.

266

Linker/Loader Commands

CPAGE
CPAGE
Set Common Section to be Page Relocatable
Syntax:
Command Argument
CPAGE sname
Where:
sname A section name.
Description: This command may be used to modify the relocation type of common

section(s) in the input object modules to Page. It allows you to override the
default relocation type of Word for a common section.

Since all subsections of a common section are loaded at the same address, the
CPAGE command need only be used once per section at the beginning of the
loading process. Once Page Relocation is turned on for a common section, it
cannot be turned off for later subsections of the section.

Specify the section name. Ifthis is the firsturzence of the sectiorame, it
is assigned the attributes common and long.

Example:

CPAGE P

267

Linker/Loader Commands
[NO]DEBUG_SYMBOLS

Syntax:

Description:

[NOJDEBUG_SYMBOLS

Retains or Discards Internal Symbols

Command Argument

{NO}DEBUG_SYMBOLS

These commands control putting local symbols into doka S-Record

output files. These commands may be placed between LOAD commands to
selectively copy symbols from certain modules. DEBUG_SYMBOLS is a
synonym for the LIST P ¢comand and NODEBUG_SYMBOLS is anynym

for the NLIST P command.

268

Linker/Loader Commands

END
END
End Command Stream and Finish Loader
Syntax:
Command Argument
END
Description: This commandisould be the last eomand in every command stream. It

initiates the final steps in the load process. END completes the load, produces
an output object module, and returns to the operating system.

269

Linker/Loader Commands
ERROR, WARN, NOERROR

Syntax:

Where:

Description:

ERROR, WARN, NOERROR

Modify Message Severity

Command Argument
ERROR condition{condition} ...
WARN condition{condition} ...
NOERROR condition{condition} ...
condition One of UNREF, UNRES, OVERLAP, DUPLIBPUB, or a
number corresponding to the message number of the error
or warning.

These commands change the way a messagmop @f messages is treated.
ERROR causes the message to be treated as an error; WARN causes the
message to be treated as a warning; NOERROR causes the message to be
treated as a non-error (that is, the message is ignored).

The ERROR, WARN, and NOERROR commands affect all messages which
are generated after the linker encounters timencand. The change in

message severity remains in effect until the linker has finiphedssing. The
effect of these commandsro#ot be changed by subsequent ERROR, WARN,
or NOERROR commands.

Fatal errors and messages generated bythe ERROR, WARN, or NOERROR
command canot be overridden or modified.

270

Linker/Loader Commands

EXIT
EXIT
Exit Loader
Syntax:
Command Argument
EXIT
Description: The EXIT command is like the END command in that it is the final command

in the linker command file. The EXIT command differs from the END
command in that it prevents the final output fromwecmg. All object
modules are read and all linker commandspaoeessed and checked for
errors, but no output module is generated.

271

Linker/Loader Commands

EXTERN
EXTERN
Creates External References
Syntax:
Command Argument
EXTERN name{,name}...
Where:
name The symbolic name of an external reference that is to be
created.
Description: The EXTERN command creates external references for the linker to resolve.

The EXTERN command can appear anywhere in a command file.
Multiple EXTERN commands can appear in a command file.

The EXTERN command is in effect for a given name when that name is
specified in the command. It remains in effect until the end of the command
file, but it has no effect before the point of specification. An EXTERN
command with a specific name must appear before the LOAD command for
the library in which the specific external symbol is defined in order to force the
loading of the module associated with the external symbol.

The -u name command line option has the same effect as ifan EXTERN
command is inserted into the command file before the first LOAD command,
if any.

Example:

EXTERN g1
LOAD modulel.o,module2.0,extern.lib
END

In this example, the symbol gl is not referenced in either modulel and
module2. So if a definition of g1 exists in extern.lib, the library module that
contains the definition will be loaded to resolve the external reference.

272

Linker/Loader Commands

FORMAT
FORMAT
Specify Absolute File Format
Syntax:
Command Argument
FORMAT option
Where: option is one of the following:
S Motorola S absolute hexadecimal.
IEEE HP-MRI IEEE-695 absolute output format.
INCREMENTAL IEEE relocatable format
HP HP 64000 absolute and linker symbol file format.
NOABS No output file. Thisisthe same asthe NLIST O
command.
Description: The FORMAT command may be used to specify which output absolute object

module format the loader is to produce. Option switches may be set to
produce absoluteEIEE (default), Mobrola S-record, HB4000 format, IEEE
relocatable, or no output file at all.

Example:

FORMAT S

In this example, the loader produces an absolute load in Motorola S-Record
output format.

273

Linker/Loader Commands

INCLUDE
INCLUDE
Includes a Command File
Syntax:
Command Argument
INCLUDE filename
Where:
flename The file to be included in the linker command file.
Description: The INCLUDE command lets additional command files be included in a

IN‘C'L'UDE setup.opt
CHIP 68010
BASE $500

linker command file. At the point the INCLUDE command is specified, the
text contained in the file specified by filename is included in the linker
command file.

The INCLUDE command can appear multiple times anywhere in a linker
command file and can be nested up to a maximum depth of 16.

Example:

If setup.opt contains:

CHIP 68010
BASE $500

and a command file contains the following INCLUDE command:

INCLUDE setup.opt
LOAD modulel,module2

the resulting link map will be:

*** End of include file: /some/where/setup.opt
LOAD modulel,module2

274

Linker/Loader Commands
INCLUDE

An extra comment line:

*** End of include file: /some/where/setup.opt

with the absolute path name of the included file was added by the linker for
readability.

275

Linker/Loader Commands

INDEX
INDEX
Specify the Run-Time Value of Register ‘An"

Syntax:

Command Argument
INDEX ?REGnN, SECTNAME, OFFSET

Where:

REGnN Is one of the address registers: A2, A3, A4, or A5.

SECTNAME The name of a relocatable section whose load address (plus
an optional offset) is specified to equal the run-time value
of address register REGn.

OFFSET A number to be added to the load address of the relocatable
section specified. The result is specified to be the run-time
value of REGn.

Description: The INDEX command is used to inform the loader ofrilme-time value of an
address register "An" (where n = 2, 3, 4, or 5). The value you associate with a
particular "An" register will equal a relocatable section’s load address plus an
offset value.

Note The only A registers which may use the INDEX command are A2, A3, A4, or

AS5.

A public symbol, equal to the run-time value specifieitl, e created in the

form "?An". This symbol can be declared as an external symbol in the
assembly language source file (with the XREF directive) and used to initialize
the appropriate address register.

276

Linker/Loader Commands
INDEX

Purpose of the INDEX Command

The loader needs to know the run-time value of an address register whenever
you use assembly language operands which combine relocatable expressions
and address register indirection. For example, consider the following
assembler syntax:

<rel exp> (An) or (<rel exp>,An)

Operands of the form shown above will generatefdidress Register

Indirect with Displacement address mode which requires a 16-bit
displacement. The relocatable exggien in the syntax above is an effective
address or, in other words, the location to be accessed. The loader must
calculate the 16-bit displament using the equation:

<ea> = An + disp
disp = <ea> - An
disp = <relexp> - An

The INDEX command makes "An" a known value which enables the loader to
calculate the displacement. Ifthe INDEX command is not used, the loader
will calculate the displaament under the assumption that the-time value

of the address register is zero.

Other address modes which can contain relocatable expressions in conjunction
with address register indirection are the 68020 model méddeess Register
Indirect with Base Displacement and IndexMemory Indirect Post-Indexed,
andMemory Indirect Pre-Indexed.

Example:

INDEX ?A2,DATAL1,8000H * This offset allows "(A2)" indirect
* addressing to access a full 64K bytes
* in section DATAL (using a 16-bit
* signed displacement).

See the "A2-A5 Relative Addressing" chapter for additional information on
howthe INDEX command may be used with array asising for registers A2
through AS5.

277

Linker/Loader Commands

INITDATA
INITDATA
Specify Initialized Data in ROM
Syntax:
Command Argument
INITDATA merge_arg [,merge_arq] ...
Where:
merge_arg May be any of the following:
sectname
or {sectname,module}
or {*,module}
The first form copies data from sectisectname The
second form copies data from the portiosedtname
defined inmodule The third form copies data from all
sections defined imodule
Description: The INITDATA commandprovides a method to copy data from ROM into

RAM before a program is executed.

INITDATA causes the linker to create a new data section called
??INITDATA. The data from the sections named in the command string is
copied into the ??INITDATA section.

The user program must call the initcopy() routine at run time to reinitialize
the data in RAM each time the program runs. The initcopy() routine checks
the special bytes generated by the linker in the section ??INITDATA to
provide the necessary information: copy destination address, copy size, and
data.

The ??INITDATA section may be ordered and assigned an address using
standard commands.

278

Linker/Loader Commands
INITDATA

Example:

The following example will cause the linker to crate the section ??INITDATA
at link time which contains all of the section contents for secl, sec3 and sec4
so that they will be copied to a specified addressatime:

INITDATA secl,sec3,secd

The section name may be qualified by a module name and type, as in
INITDATA sec2,{module2,DATA}

More examples of the INITDATA command angpplied in directory

/usr/hp64000/demo/languages/B3641/
features/INITDATA

on UNIX systems, or in the examples directory on DOS systems.

Initcopy

The initcopy routine is supplied with the assembler in the library file
/usr/hp64000/lib/68000/initcopy.s (\npas68klinitcopy.s on DOS systems). If you
have special needs, it is possible to writeryown initcopy routine.

Supplied initcopy routine

The initcopy routine has been supplied in two forms: C souceaésembly
code from C 5), and object coded). The object code form is supplied as a
library in the file /Jusr/hp64000/lib/68000/as&8.a (UNIX) or
\hpas68klas6&x.lib (DOS). On UNIX systems, th@srce code code forms
are in the src subdirectory.

Initcopy calls the C functiomemcpy(). The assemblgsrce formemcpy is
supplied in the file memcpy.s.

Writing your own initcopy routine

The virtual address of the ROM section can be set using the .STARTOF.
operator.

279

Linker/Loader Commands
INITDATA

The data in the ??INITDATA ROM section uses the following special bytes.
These bytes are generated by the linker, and may be used by your initcopy

routine.

S Start of operation. It should be immediately followed by
one of the other special bytes.

C Copy. After this byte, you need to include the total number
of bytes which need to be copied, the destination address for
the data, then the data itself:

4 bytes 4 bytes lengthbytes
C length destination data

E End of operation.

R Repeat pattern. Not currently implemented. After this byte,
you need to include the repeat count, the destination
address, the size of the pattern, and then the pattern:

4 bytes 4 bytes | 2or4bytes sizebytes
R count destinatior size pattern
B Byte repeat. Not currentlyimplemented. After this byte,

you need to include the repeat count, the destination
address, and then the byte to be repeated:

4 bytes 4 bytes

B count destination byte

The R and B bytes are not implemented in the linker at this time. They may be
implemented in a later version of the linker to provide data cossjre.

280

Linker/Loader Commands

[NOJINTFILE
[NOJINTFILE
Stores Information Using Intermediate Rle or Virtual Memory
Syntax:
Command Argument
{NO}INFILE
Description: The linker, like the assembler, is a two pass program. Intermediate

information is stored, by default, using virtmaémory between pass 1 and 2.
The INTFILE command lets youare this intermediate information in a
temporary file. The NOINTFILE ammand lets youtsre this information
using virtual memory.

With different systems, using a temporary file may be faster than using virtual
memory. Also, depending on the configuration for running large jobs, the
virtual allocation size can be limited. You can try to run the program using the
INTFILE command which theproduces an intermediate file as opposed to
using virtual memory.

Example:

INTFILE

LOAD mod1.0bj
LOAD mod2.0bj
END

281

Linker/Loader Commands

LIST
LIST
Set Loader Options
Syntax:
Command Argument
LIST FLAG{,FLAG}...
Where: flag is one of the following:

A

Specifies the output file format to be Motorola S-Record.
Same as FORMAT S. (Default= IEEE.)

Specifies that a cross reference listing is tptoeluced.
Same as LISTMAP CROSSREF. (Default= NLIST C, i.e.,
no cross reference)

Specifies HP 64000 format absolute and linker symbol
output files. Same as FORMAT HP. (Default = IEEE.)

Specifies the output file format to be IEEE. Same as
FORMAT IEEE. (Default= IEEE.)

Specifies that an object module is to be produced. NLIST is
the same as FORMAT NOABS. (Default= LIST O)

The P flag only affects Motorola S-Record output files and
is therefore only effective when S-records are selected and
the S flagisin effect. The P flag specifies that the local
symbols from input modules loaded (while this flag is set)
be included in the output file. This flag can be turned off
and on between LOAD commands. pisrpose is to exclude
local symbols from particular modules because of duplicate
symbol conflicts. Same as DEBUG_SYMBOLS. (Default=
LIST P)

Specifies that the local symbol table information be written
to the output file for debugging. The effect of the S flag

282

Linker/Loader Commands
LIST

depends upon what output format is selected. Same as
LISTABS INTERNALS. (Default= LIST S)

If the output is Motorola S-records, then the S flag causes
symbols and their values to be written at the beginning of
the S-record file. NOLIST S suppresses the writing of these
symbols.

If the output is IEEE-695, the S flag causes local assembly
symbols and compiler-generated symbol and type
information to be written to the IEEE file. NOLIST S
suppresses this information. Global assembly symbols (for
instance, those mentioned in XDEF directives) are always
written to the IEEE file regardless of any flag.

If the output is HP 64000 format, the S flag has no effect on
the link_sym file.

T Specifies that the local symbol table be listed on the loader
listing. Same as LISTMAP INTERNALS. (Default=
NLIST T, i.e., off)

X Specifies that the PUBLIC (global) symbol table be listed
on the loader listing. Same as LISTABS PUBLICS.
(Default= NLIST X, i.e., off)

Description: The LIST command may be used to change the loader internal flags. These
flags control the format and contents of the output file, as well as the contents
of the loader listing. The LIST options specified widhnain in effecthirough
all modules until another LIST or NLIST command is@mctered.

All of the flags have equivalent commands which perform the same function.

283

Linker/Loader Commands

LIST
Example:
LIST T,X ; list both local and
; definition symbol tables
Note Though the LIST conmand is available, it is a better choice to use LISTABS

and LISTMAP.

284

Linker/Loader Commands

LISTABS

LISTABS

Lists Symbols to Output Object Module

Syntax:
Command Argument
LISTABS option{,option}...
Where:

option One of the following:

{NO}PUBLICS Places globally-defined symbols into the output object
module. LISTABS NOPUBLICS prevents
globally-defined symbols from being placed in the
output object module. (Default: NOPUBLIC)

{NO}NTERNALS Places the internal (local) symbols in the output object
module and omits any symbols that are defined in
modules for which the NODEBUG_SYMBOLS
command is in effect. LISTABS NOINTERNALS
suppresses the plment of internal symbols into the
output object module. (Default: INTERNALS)

Description: The LISTABS command controls the output of certain items to the output

object module. Multiple LISTABS commands can be specified and have a
cumulative effect. Options that are inconsistent with previous LISTABS
commands aanot be specified in a succeeding LISTABSwoand. For
example, LISTABS PUBLICS cannot be followed by LISTABS NOPUBLICS,
but can be followed by LISTABS INTERNALS.

285

Linker/Loader Commands

LISTMAP
LISTMAP
Specifies Layout and Content of the Map

Syntax:

Command Argument
LISTMAP option{,option}...

Where: option is one of the following:

{NO}CROSSREF Causes a cross-reference listing to be output to the map
fle. NOCROSSREF suppresses the generation of this
cross-reference listing. (Default: NOCROSSREF)

{NO}NTERNALS Causes a listing of theon-public (local) symbol table
to be output to the map file. NONINTERNALS
suppresses the output of the non-public symbol table.
(Default: NOINTERNALS)

{NO}PUBLICS Causes a listing of the public symbol table to be output
to the map file. NOPUBLICS suppresses the output of
the public symbol table. (Default: NOPUBLICS)

LENGTH Ival Sets the map file page length. The rangevialris 5 to
255. (Default: LENGTH 55)

Description: The LISTMAP command controls the output of certain items to the linker’s
map file. Multiple LISTMAP commands can be specified and have a
cumulative effect. Options that are inconsistent with previous LISTMAP
commands aanot be specified in a succeeding LISTMARtnand.

Note LISTMAP CROSSREF was formerly known as LIST C. LISTMAP

INTERNALS was formerly known as LIST T, and LISTMAP PUBLICS was
formerly known as LIST X.

286

Linker/Loader Commands

LOAD
LOAD
Load Specified Object Modules
Syntax:
Command Argument
LOAD {-Hilename1{{-}Hilename?2,....{-}filen ameN}
Where:
flename Specifies the name of a file in which the object module or
library resides. If the filename contains a suffix, it is used as
is; otherwise, a suffix of ".0" or ".obj" (DOS) is appended to
form the actual filename. The minus signiarft of the
filename forces the linker to load all modulediiename
Description: The LOAD command is used to specify one or magaii object modules to

be loaded.

The file specified may contain either relocatable object modules (output of the
assembler), relocatable object modules from incremental linking, or libraries
(output of the librarian). Libraries and object modules differ in their internal
format, but you can treat them identically with the following exception:

Libraries should be loaded after all rbloraries. Libraries will load only
those modules which are necessary to resolve undefined XREFs, even if
the library file or device is preceded by a minus sign. Backward XREFs
within a library are resolved correctly. However, XREFs to a library from
a subsequently LOADed file are generally not resolved correctly.
Therefore, libraries should be LOADed last. In the case where each of
two libraries makes XREFs to the other, it is generally necessary to
LOAD one of them twice (for example, LOAD LIBA, LIBB, LIBA) to

pick up all the necessary modules.

The object modules are loaded in the order specified with each subsection
within each module being loaded into memory at a higher address than all
preceding subsections within its section. You may use as many LOAD
commands as needed.

287

Linker/Loader Commands
LOAD

Example:

LOAD FILE1l

288

Linker/Loader Commands
LOAD SYMBOLS

LOAD_SYMBOLS

Load Object Modules Symbol Information

Syntax:
Command Argument
LOAD_SYMBOLS {-}ilenamel{{-}ilename?2...{-}ilen ameN}
Where:
flename Specifies the name of a file in which the object module or
library resides. If the filename contains a suffix, it is used as
is; otherwise, a suffix of 0" or ".obj" (DOS) is appended to
form the actual filename. The minus signiarft of the
filename forces the linker to load all modulediiename
Description: The LOAD_SYMBOLS command allocates space internally to the linker for

modules contained in the specified file(s) for so that it may correctly fix up
symbols. The linker also retains all PUBLIC symbol definitions. Code and data
for the specified modules are not loaded, but symbol table and debug
information is loaded into the output file.

Input modules can caist of relocatable object modul@sutput of the
assembler), relocatable object modules from incremental linking, or libraries
(output of the librarian). If the specified modules are from a library, all
external symbols are also retained so that all forward references cause an
allocation of space. If the modules are not from a library, all external symbols
are ignored.

Example:

LOAD_SYMBOLS FILE1

289

Linker/Loader Commands

MERGE

Syntax:

Where:

Description:

MERGE

Specify Output Module Name

Command Argument

Note

MERGE merge_name merge_arg{,merge_arg}...

merge_name The name of the new, combined section.

merge_arg is one of the following:
sname a section name

{sname,mname} a section name followed by a module name. The braces are
required.

* an asterisk can replace either or both the section name and
the module name. A wild card character, an asterisk means
all modules or sections.

The MERGE command renames all the named subsections to a new section
named in the first argument. This command lets you overcome the default
combining of sections with the same name section by letting you create new
sections. The command lets you concatenate arbitsésyf subsections.

The new section can then be placed anywhere in memory.

MERGE can be used during both incremental and absolute links.

MERGE commands Wbe executed in the order that they avarfid in the
command file.

MERGE and ALIAS are mutually exclusive. Any attempt to use both
commands in the samess@on will result in anmor.

290

Linker/Loader Commands
MERGE

Example:

; There are three modules each containing three
; sections: SECT1, SECT2, SECT3.

MERGE NEW_SECT SECT1{SECT2,MOD2},{SECT3,MOD3}
MERGE NEW_SECT {SECT3,MOD2}

SECT NEW_SECT=$1000
SECT SECT2=$2000
SECT SECT3=$3000

LOAD MOD1,MOD2,MOD3

; This causes a new section with the name NEW_SECT to

; be created. It is located at $1000

; containing the following module sections in the order listed:

; SECT1/MOD1, SECT1/MOD2, SECT1/MOD3, SECT2/MOD2, SECT3/MOD3,
; SECT3/MOD2.

; There is also SECT2 located at $2000 containing:
; SECT2/MOD2, SECT2/MOD3 and

; SECT3 located at $3000 containing:

; SECT3,MOD1

291

Linker/Loader Commands

NAME
NAME
Specify Output Module Name
Syntax:
Command Argument
NAME name
Where:
name A symbol that specifies the object module name.
Description: The NAME command is used to specify the name of the final output object

module. This appears on the first line of the output object file as an extension
to the standard Motorola S-record hexadecimal format, which does not
contain a name. Any symbolssigned values by the PUBLICromnand are
considered to lie in this load-time-defined module.

The name may be any standard symbol, up to 31 characters long. If you do not
specify a name, the name of the output modullde taken from the first
input module.

Example:

NAME READER

292

Linker/Loader Commands

NLIST
NLIST
Clear Loader Options
Syntax:
Command Argument
NLIST FLAG{,FLAG}...
Where: FLAG is one of the following:
A Specifies the output file format to be Motorola S-Record.
(Default= IEEE.)
C Specifies that no cross reference listing is tpimeluced.

(Default= NLIST C)

I Specifies the output file format to be IEEE. (Default=
IEEE.)

0] Specifies that no object module is to be produced.
(Default= LIST O)

P The P flag only affects Motorola S-Record output files. It
specifies that the local symbols from input modules loaded
(while this flag is set) be included in the output file. This
flag can be turned off and on between LOADneoands. Its
purpose is to exclude local symbols from particular modules
because of duplicate symbol conflicts. (Default= LIST P)

S Specifies that no local symbol table information is to be
written to the output file. (Default= LIST S)

T Specifies that the local symbol table is not listed on the
loader listing. (Default= NLIST T)

X Specifies that the PUBLIC (global) symbol table is not to be

listed on the loader listing. (Default= NLIST X) .

293

Linker/Loader Commands
NLIST

Description: The NLIST command is thepposite of the LIST ammand and is used to
suppress thbsting of the elements specified. The elements mayheed
back on with the LIST command.

Example:

NLIST O ; don’t produce an
; object module

294

Linker/Loader Commands

NOPAGE
NOPAGE
Turn Off Page Relocatability
Syntax:
Command Argument
NOPAGE sname
Where:
shame A section name, whichauld have previously appeared in a
PAGE directive.
Description: This directive restores the Relocation Type of a section to Word. It is legal

but unnecessary unless the specified section has previously appeared in a
PAGE command.

A section name appearing here for the first timessigmed the long attribute
but is assigned neither the commmuor the noncommon attribute.

The typical use for this command is tath off paging for modules which are
already known to work correctly (libraries, for instance), in order to save
memory space.

295

Linker/Loader Commands

ORDER/SORDER
ORDER/SORDER
Specify Long/Short Section Order

Syntax:

Command Argument
ORDER Iname{(sect_type)H,Iname{(sect_type)}}...
SORDER sname{(sect_type)H{,sname{(sect_type)}}...
Where:

Iname The name of a section with the long attribute.

sname The name of a section with ther attribute.

sect_type Specifies a section type. Section type can be C for code, D

for data, M for mixed, or R for ROM data.

Note The same section nhame may not appear twice on an ORDER or SORDER
command. Multiple ORDER or SORDER commands are acceptaduiia
warning and concatenated.

Description: These commands alter the default orderssfgning Load Addresses to

sections.

As described in the "Linker/Loader Operation" chapter, the normal order of
the sections in each group (the groups are [l] short sections and [lI] long
sections) is just the order in which the loader encountered theies. Use

the ORDER and SORDER commands when you do not need to specify load
addresses for each section but would like the sections to be placed in memory
in a different order.

If you specify load addresses for the sections, the order of the sections might
not be important. Keep in mind, however, that even if a load address is
specified for a certain section, any sections assignadory space after that
section will be loaded at the next available address. If, for example, you want
long section SECT2 to begin at $FFFFO00, and all the other long sections to be

296

Linker/Loader Commands
ORDER/SORDER

placed together in lower memory, the ORDER commérodikl be specified
with section SECT2 being the last argument. If this is not done, then any
sections which are listed after SECT2 will resideijrpermemory above
section SECT2.

If you ask the loader to place one section where it would overlap another, the
loader will place the section at the first address which avoids the overlap, even
if that means changing the order from what you specified.

While the information necessary to determine the default order of the sections
is available to you, in complex cases it will be simpler to use the ORDER
command than to figure out the default order. The ORDER command applies
to long sections; the SORDER commandhors sections.

If a section name appears in these commands for the first times#ignad

the appropriate shortness attribute, but issgned neither the common nor
the noncommon attribute so that subsequently it may turn out to be either. If
the name of ahort section appears in the long version of the ORDER
command this is a fatater; however the final determination of which

sections are short cannot be made until all modules have been read, since any
short subsection declaration makes a section short. Ifaime of a long

section appears in the short version of the ORDERneand a warning is

printed and the section is given the short attribute. (This may occur if a
SECT, COMMON, PAGE, CPAGE, or NOPAGE directive precedes the
SORDER command, since these directivesgn newlydund sections the

long attribute.)

Specify the order of the sections within each group by specifying secimaa
separated by commas. Any sections remaining within ttwepmwill be
assignednemory space after the sections specified in the command in the
order their names were emmtered by the loader.

297

Linker/Loader Commands
ORDER/SORDER

Example:

ORDER SEC1,COMSEG
SORDER SEC2,SHORTSEC

An ORDER or SORDER command may be continued to the next line by
terminating it with a space followed by a pound sign (#). This character must
go between section names, like a comma.

ORDER SECT1#
SECT2,SECT3 #
SECT4

298

Linker/Loader Commands

PAGE
PAGE
Set Noncommon Section to be Page Relocatable
Syntax:
Command Argument
PAGE sname
Where:
sname A section name.
Description: This command may be used to modify the relocation typenoh@ommon

section(s) in the input object modules to Page. As explained in the section
titled Relocation Types, all sections are assumed to be Word Relocatable at
first. This command allows you to override the default relocation type. After
the PAGE command is read, each subsection of the specified section loaded
thereafter will be loaded at the next nearest 256 hytebary until a

NOPAGE command for the section is enatered.

The typical use of this command is to allow you to begin each section on a
page boundary, for ease of debugging. After debugging is completed the Page
commands are removed to avoid wasted memory space.

Specify the section name. Ifthis is the firstweence of this sectioname it
is given the attributes noncommon and long.

Example:

PAGE SECT1
PAGE SECT2

299

Linker/Loader Commands

PUBLIC
PUBLIC
Specify Public Symbols (External Definitions)
Syntax:
Command Argument
PUBLIC sym=value
PUBLIC sym= sym2{+ offset}
PUBLIC sym= sym2{-offset}
Where:
sym A user defined external definition symbol.
value A constant number.
sym2 Another global sym defined in a module or in a previous
PUBLIC command.
offset A constant value that may be added or subtracted from
symbol 2.
Description: This command is used to define and/or change the value of an external

definition (XDEF). Symbol names specified by the loader’s PUBLIC
command take precedence over symbol names defined during assembly.
Therefore, if a symbol specified by this command is already an external
definition (from an input object module defined by the assembler), the value
of the symbol is changed to that specified in the PUBLIC command. Ifthe
symbol is not already defined, it will be entered into the loader’s symbol table
along with the specified value and will then be available to satisfy external
references from object modules. Symbols defined in the PUBLIC command
are absolute if their definition is a number or another absolute symbol; they
are relocatable if defined as equal to a relocatable symbol.

This command is position dependent in the linker command file. Public
symbols defined before a library containing the symbol is loaded with not be
resolved properly.

300

Linker/Loader Commands
PUBLIC

This command allows you to specify the value of some external symbols at
Load time and possibly to avoid a reassembly.

Example:

PUBLIC INPUT=$2F
PUBLIC OUTPUT=%$200
PUBLIC newsymbol=oldsymbol

301

Linker/Loader Commands

RESADD/RESMEM
RESADD/RESMEM
Reserves Regions of Memory
Syntax:
Command Argument
RESADD low_addr,high_addr
RESMEM low_addr,size
Where:
low_addr Starting address of the memoryto be reserved.
high_addr Ending address of the memory to be reserved.
size Number of bytes to be reserved.
Description: The RESADD/RESMEM commands reserve specified memory locations.

The reserved memory region is made into an absolute section that will show
up in the SECTION SUMMARY of the link map.

When sections are placed using ORDER or SORDER commands, nothing
will be loaded in the reservademory region. This can be useful for
"skipping" a region of memory for a real-time operating system, for example.

If a section is placed at a specific address using the SECT command, and the
section overlaps a reserved region, a non-fatal error mesdagedd. The

load will still continue to completion, but the resulting absolute file will
contain sections at overlapping addresses. The linker issues a warning if
high_addr is less than low_addr for RESADD.

RESADD reserves the addresses low_addr to high_addr. RESMEM reserves
the addresses low_addr to low_addr + (size-1). The low_addr, high_addr, and
size are all numeric constants.

302

Linker/Loader Commands
RESADD/RESMEM

Example:

This command file:

RESMEM $200,$100
RESADD $2,$101
LOAD modulel

END

will generate the following two entries in the SECTIONMMARY of the
resulting link map if there are no overlapping sections.

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
ABSOLUTE 00000200 000002FF 00000100 O (BYTE)
ABSOLUTE 00000002 00000101 00000100 O (BYTE)

303

Linker/Loader Commands

SECT
SECT
Set Noncommon Section Load Address
Syntax:
Command Argument
SECT sname,value
SECT sname= value
SECT sname value
Where:
shame Specifies the section name.
value Specifies the load address of the section.
Description: The SECT command is used to specify the load addressamf@mmmon
Relocatable section. If this is the first occurrence of the sect&oomenit is
given the attributes noncommon and long. Any use of thmswand must
precede any LOAD commands.
Specifies the section name followed by the address of the location at which to
start loading the section. The specified address wilbb@ded up to the next
alignment boundary in all cases, and to the next page boundary if paging is in
effect for the first subsection of the section.
Example:
SECT SECT1,$400
SECT SECT2=$1320
Note The value is separated from the section name by a blank, comma, or equal

sign. Multiple SECT commands with the same section name are accepted
without a warning, but only the last onélwe used.

304

Linker/Loader Commands

SECTSIZE
SECTSIZE
Set Minimum Section Size
Syntax:
Command Argument
SECTSIZE sname= size {,sname= size}...

Where:
shame Specifies the section name.
size Specifies a constant representing the minimum seciton size,

in bytes.

Description: The SECTSIZE command specifies the minimum size in byes of a combined
continuousnemory space defined bpamelt is an error to define a size less
than the size of the combined section unless the section is of type common.
If the section does not exist, it will be created and considered to be
noncommon.

Example:
SECTSIZE STACK=$100
Note The value is separated from the section name by a blank, comma, or equal

sign. Multiple SECT commands with the same section name are accepted
without a warning, but only the last onélwe used.

305

Linker/Loader Commands

START
START
Specify Output Module Starting Address
Syntax:
Command Argument
START value
Where:
value Specifies the starting address to be used in the output object
module.
Description: This command is used to specify the absolute starting address to be placed in

the terminator record of the object module. If not specified, the starting
address is obtained from the END record of the main program of the input
modules. If no main program has been read, the starting additdss zero.

Evidently this directive should not be used unless the starting additess fa

an absolute section or in a relocatable section with a specified load address. In
the latter case, be warned that when the load address is rounded upwards to lie
on a word or page boundary, the starting address is not likewise rounded.

Example:

START $7FC

306

Librarian Introduction

11 .

Librarian Introduction

This chapter describes the operation of the ar68k librarian.

307

Librarian Introduction

The ar68k object module librarian may be used to build program libraries,
which are collections of relocatable object modules residing in a single file.
These libraries enable you to load frequently used object modules by referring
to publicly defined names, thiout concern for the specifiames and
characteristics of the modules. The librarian accepts the relocatable object
module output of the as68k assembler.

The librarian performs the function of formatting and organizing library files
that will subsequently be used by the |d68k linking loader. Libraries are both a
convenient means for managing collections of relocatable object modules and
a more efficient means for linkers to access the modules when required. This
efficiency is realized by reducing the number of files that must be opened for
linking modules.

The word "module", as used in discussing the librarian, refers to a Relocatable
Object Module that results from assembling a source program, using@8le a
Relocatable Macro Assembler. Modules in a library must be in the format
produced by the Assembler.

This, and subsequent chapters, describe the ar68k librarian that accompanies
the as68k assembler, how to build and manipulate the libraries, and how the
Id68k loader utilizes the libraries.

308

Librarian Introduction
Librarian Features

Librarian Features

The ar68k Object Module Librarian features the following:

» User friendly commands.

» Efficient operation.

* Batch Command linenput and return codes for "make" type procedures.

e Optimized structure for fast linker access.

309

Librarian Introduction

Librarian Function -- Overview

Librarian Operation

The librarian may be utilized in both an interactive or a batch mode. In
interactive mode, you interact with the librarian directly by entering

commands and receiving statuspesses. All coomands are available in this

mode. There are two types of batch input modes available. The first uses an
input canmand file which can contain any of the available commands and
outputs resulting status messages to a listing file. The second batch mode uses
input canmands from the command line only. This mode is limited to

addmod, delete, extract and replace functions within an existing library.

Librarian Function -- Overview

When writing modular programs (using Relocatable Macro Assemblers),
communication among the various modules is establidhmadigh use of

XDEF and EXTERNAL Symbols. For example, the following illustration
shows three relocatable object modules that resulted from the assembly of
generic assembly language modules.

310

Librarian Introduction
Librarian Function -- Overview

A Relocatable Object

SQUARE IDNT Module that resides in
XDEF NEXT host system file
XREF FALLOW "knewel.o".

; Program Module 1

JMP FALLOW
NEXT: NOP
NOP
END
A Relocatable Object
Module that resides in
SINCOS IDNT host system file
XDEF FALLOW "swigget.o".
XREF NEXT

; Program Module 2

FALLOW: MOVE #8,D0
NOP
JMP NEXT
END

A Relocatable Object
ARCTAN IDNT Module that resides in

host system file
XDEF ARCTAN "bayer.o".

; Program Module n

ARCTAN: MOVE 260,D1
MULS D1,D2
NOP
END

Of the three modules shown, the first two can be seen to communicate with
one another through external references and public symbols, while the third is
a stand-alone module.

311

Librarian Introduction

Librarian Function -- Overview

The relocatable modules illustrated consist of load data information,
relocation information, and records that indicate:

1) Public symbols
2) External symbols.

The above relocatable object modules may be made Members of a library by
various combinations of librarian commands.

For example, a new library may be created by the following command.
Substitute "lib" for ".a" if you are using a DOS system.

CREATE newrem.a
SAVE

or:

CREATE newrem.a
ADDMOD knewel.o
ADDMOD swigget,bayer
SAVE

There are several ways that the relocatable object modules can be
incorporated into a library by ilizing various librarian coommands, which are
described in detail in the "Librarian Commands" chapter. Now that a library
containing these members has been built, it may be used by the |d68k loader.

Assume that you have written a program called "main". After "main"has been
assembled, the Relocatable Object Module that results is in a host system file
named "main.olor "main.obj" for DOS systems). This module has a reference
to the public symbol ARCTAN.

XREF ARCTAN

Main Module
NOP

JSR ARCTAN
NOP

END

A Relocatable Object
Module in host system
file "main.o".

312

Librarian Introduction
Librarian Function -- Overview

Before the existence of the library, you could have directed the loader as
follows.

LOAD main.o
LOAD bayer.o

Now that there is a library, you can direct the loader as follows.

LOAD main.o
LOAD newrem.a

The linking loader will access the library to attempt to resolve external
references, such as ARCTAN. Now, if we modify the "main" module so that it
calls the SINCOS module as well:

A Relocatable Object Module in host
XREF ARCTAN o T
XREE FALLOW system file "main.o".
Main Module
NOP

JSR ARCTAN
JSR FALLOW
END

Without the abity to load from a library, it would be necessary torooand
the linking loader as follows.

LOAD main.o
LOAD swigget.o
LOAD bayer.o
LOAD knewel.o

313

Librarian Introduction

Librarian Function -- Overview

However, when using a linking loader with the ability to load from a library,
you need specify only:

LOAD main
LOAD newrem.a

The loader will load the relocatable object module "main"in the usual way. It
will load the other modules from the library.

The following is a more practical example of the use of the library.

A programmer writes a series pfogram modules caisting of a number of
mathematicatoutines including a few modules that calculate transcendental
functions. Then, these modules are gathered into a library file, through use of
the ar68k librarian.

Sometime later, a progmmer, either the one who wrote the mathematical
routines or someone else, has a regmient to calculate an Arc-Tangent
function within a program he is writing. He is aware of the fact that there is
an Arc-Tangent Function in a library file. He knows the name of the Entry
Point of the routine and he also knows howto pasarpaters to the
Arc-Tangent Function and how to accept the result of the calculation.

So, during the coding of his program he need do only two things:

1 JSR the Arc-Tangent function from the program he is developing, placing
the Public Name of the Entry Point into the argument field of the JSR or
JMP instruction.

2 Place the Public Entry Point name of the Arc-Tangent Function in the
argument field of an External Reference Pseudo-Op in the program he is
writing.

Even though he does not know thaamme of the relocatable object module that
contains the Arc-Tangent Function, he will be able to direct the linking
loader to include the relocatable module that contains the correct module
simply by informing the loader to use the required library file(s).

The Id68k linking loader need not be explicitly informed which module
contains the Arc-Tangent Function. The loader will automatically search the
named library, looking for the Entry Point name thatphe@grammer wrote as
the argument of his JSR statement. When the Entry Point name has been
found, the loader identifies the module in which it resides, and then includes
the module containing the name in therent load.

314

Librarian Introduction
Librarian Function -- Overview

The loader determines which of the library modules to load by examining t
internal list ofunresolved external references that it accumulated during th
load process and then assing the library file to determine if there is a mat
between such an unresolved external reference and a latsherthat has

been declared Public in one of the modules in the library file. The loader then
identifies which module contains the matching Public symbol and loads it just
as if he had explicitly directed the loader to load the proper module.

Even if there are several unresolved external references, the loader will
attempt to load every module that contains corresponding public symbols, in
order to satisfy every possible reference. Even when the inclusion of a module
in the library adds an undefined reference to the list of undefined references,
the load will access the library again until all external references have been
satisfied. All public symbols within a library must have unique names.

The advantages of using a library are as follows.

* Auser need only know the input ameters, output parameters, and
entry point name of the function in order to have it included in the final
load module.

« Alibrarythat is a collection of often-used functions can reside on your
system and be available at all times to everyone.

« Module names and entry point names of allph@gram modules you
create are easyto track.

315

Librarian Introduction
Command Syntax

Command Syntax

The librarian recognizes six special characters:

* - asterisk
;- semicolon
comma
left parenthesis
- right parenthesis
+ - plus

Use of Special Characters
The use of these special characters in the command syntaxis described below.

Filename implies the ordinary file name syntax that would be used on the host
system.

Module names are written according to the rules for the assembler used to
create the Relocatable Object Modules. Each module must have a unique
module name.

Public symbols are written according to the definition given in the assembler
used to create the modules.

The asterisk (*) and the semicolon (;), when appearingin a Command line,
cause the librarian to ignore the rest of the line.

These characters may be used to place comments in a command sequence.
The librarian does not process the rest of the line, whilcbewvritten to the
output file as a comment.

The comma (,) separates members ligtaof similar elements. The list may
contain module names, or module filenames.

The left and right parentheses (), used in pairs, denote a list of similar
elements in a command. Parentheses may be usedup module ames
that are members of a library only.

The plus sign (+) followed by a carriage return allows you to continligt a

on subsequent line(s). Care should be exercised when using it. Do not break
up or interrupt a complete syntactical unit (i.e., do not tryto continue a
flename, a module name, or a command). The command verb must be
terminated by a blank if it was an argument. If the continuation character (+)

316

Librarian Introduction
Command Syntax

is used immediately after the command verb, it must be separated from t
command by at least one blank.

Except as noted above, the line continuation character may appear anyw
in a command.

Blanks

Except as noted above, blanks may be used freely within commands (between
syntactically identifiable units).

Example:

DELETE MOD1, MOD2

is the same as:

DELETE MOD1,MOD2

Command File Comments

Comments may be included in a command file to documengrh@ssing.
These are included by use of the semicolon (;) or asterisk (*).

Example:
; this is a complete line of comment
addmod modulea.o ; this is a command line comment
addmod moduleb * this is another comment

Module Names

A module is the output generated when assembling source files. The module
name is controlled by the IDNT directive. If no IDNT directive is specified in
the assembly source file, then the modwdene is theaurce file ame with

any leading path or trailing suffix stripped. If an IDNT directive is specified,
the module name is taken from the IDNT directive.

317

Librarian Introduction
Sample Test Program Description

Return Codes

The librarian returns O if no errors are detected; otherwise, it returns nonzero.
The librarian will complet@mormally, issue an informative message, issue a
warning, or end abnormally with an error. Error messages and warnings are
listed in the "Librarian Eror Messages" appendix.

Library Listing Format

The output listing contains the following information:

* Header information including the time of the library creation and the
version number of the librarian.

» Alist of the librarian cooamands and the name of the librarpirogress.

» Alist of the modules contained in the library. The public symbols defined
and the external symbols used in each module are listed, as wetlasta c
of the public and external symbols.

* A count of the number of modules in the library.

Sample Test Program Description

The sample test programs in the next sectidizetcommand files and object
module files. If the object module files on your disk have differames, you

must edit the command file and replace these assumed names with the actual
names.

When you start the librarian, it will display a header apdampt character.
Commands can be entered at this point. The librarian can atsm lre batch
mode.

The following pages show the results of a librarian sample test execution. The
information is displayed at the terminal during interactive program execution.
If in batch mode, the information is printed in an output stream formatted
similar to those appearing in the next section.

318

Librarian Introduction
Example Librarian Listing

Example Librarian Listing

HPB3641-19300 Wed Apr 28 15:19:56 1993

Version A.02.00
* Create a library called "exlib.a", add two relocatable
* modules, get a brief listing and a complete listing,
* save the current library, and exit.

CREATE exlib.a

ADDMOD transfer.o

ADDMOD delay.o

DIRECTORY exlib.a exlib.dir

LIST exlib.a

HPB3641-19300 A.02.00 Wed Apr 28 15:19:57 1993

Library being built exlib.a

Module Size Processor
transfer ... 352 68000

wreeeex PUBLIC DEFINITIONS *rxxxx
TRANSFER

weeeer EXTERNAL REFERENCES **+++*
VIDEO_RAM

Public Count =1
External Count = 1

Module Size Processor
delay ... 307 68000

weeex PUBLIC DEFINITIONS *rxxxx
DELAY

Public Count =1
External Count
Module Count
SAVE

END

=0
=2

Figure 11-5. Example Librarian Listing

319

Librarian Introduction
Brief Format Example Library Listing

Description of Example

In this sample program, a new library, exlib.a, is created and two modules
(transfer.o and delay.o) are added to it without error. (If you are usinga DOS
system, the extensions will be "lib"and ".obj") The contents of the library are
then listed in an output tam. The output stream shows each Module
Name, and its public definitions and external references during execution.
Symbols are case sensitive. The total public symbol count and total external
symbol count aréisted for each module. The total modubaiat as well as

total warnings and errors are displayed at the end of the outpatrstr

Brief Format Example Library Listing

Brief Format Listing Description

HPB3641-19300 A.02.00 Tue Apr 27 15:44:36 1993

Library being built exlib.a

Module Size Processor
transfer ... 352 68000
delay 307 68000

Module Count = 2

Figure 11-6. Brief Format Example Library Listing

The brief format library listing shown above was generated with the
DIRECTORY loader command shown in the fiisting. The mme of the
library, the names of the modules in the library (and their sizes), and the
module count are included in the brief fornhiating.

320

12

Librarian Commands

This chapter describes the commands that are used by the ar68k Object
Module Librarian.

321

Librarian Commands

The Librarian reads a sequence of commands from the commpanddevice.
Commands may be read in interactive or batch mode. The command sequence
must be terminated by an END or SAVE command. Relocatable object
modules are read as input and collected in organized libraries as specified in
the commandniput file.

Command Summary

The following list sinmarizes the commands described in this chapter.

ADDLIB
ADDMOD
CLEAR
CREATE
DELETE
DIRECTORY
END, EXIT, QUIT
EXTRACT
FULLDIR, LIST
HELP

OPEN
REPLACE

SAVE

Include Library Object Module in Current Library.
Add Object Module to Current Library.
Remove the Current Library.

Define New Library.

Delete Module From Current Library.

Brief Listing of Contents of Library.
Terminate Execution of Librarian.

Copy Library Module to File.

List Contents of Library or Library Module.
Display Current Valid CGmmands and Syntax.
Open an Existing Library.

Replace Library Module.

Create Library File Saving Contents of Current Library.

322

Librarian Commands
ADDLIB

ADDLIB

Include Library Object Module in Current Library

Syntax:
Command Argument
ADDLIB {path}libname{(mod{,mod}...)}
Where:
path Host specific path specification.
libname Library filename from which to add module(s). If the
library filename specied has a suffix, the name is used as is.
If the library file name specified has no suffix, the suffix".a"
("lib"for DOS) suffix is appended to "libname" before it is
used.
mod Name of relocatable object module(s) to includegife
are specified, the entire library is included.
Description: The ADDLIB command is used to specify that object modules from another

library are to be included in the library currently being created or modified. An
OPEN or CREATE command must precede the ADDLIB to open or create
the library to which the modules will be added.

Example:

ADDLIB MATH.a (SQUARE,SQROOT)

The above Command directs the librarian to include the "SQUARE" and the
"SQROOT"Modules from library named MATH.a. into thement library.

323

Librarian Commands
ADDMOD

ADDMOD

Add Object Module to Current Library

Syntax:
Command Argument

ADDMOD filename {,flename}. ..

Where:
filename Filename (including path) of file containing the Relocatable
Object Module to be added to the library. If the filenames
contain suffixes, the filename is used as is. If the filenames
have no suffixes, then ".0" (or ".obj"for DOS) is appended
to the filename before it is used.

Description: The ADDMOD command specifies that an object module that isnotin a
libraryfile is to be included in the library currently being created or modified.
The module(s) to be added to the library should have baewed with the
NAME directive at assembly time. The ADDMOD command must be
preceded by an OPEN or CREATE library command.

Example:
ADDMOD MATH.MBR

The above Command directs the librarian to add a Relocatable Object Module
from file "MATH.MBR"to the current library.

324

Librarian Commands
CLEAR

CLEAR

Erase the Current Library

Syntax:
Command Argument
CLEAR
Description: Clears all library commands that have been entered inuttierdt sssion
since the last SAVE command. Another CREATE or OPEN maythen be
issued. This ammand is useful if you access several libraries in a single
librarian session.
Example:
OPEN libl
DIR libl
CLEAR ; allow a new current library
OPEN lib2

325

Librarian Commands

CREATE
CREATE
Define New Library
Syntax:
Command Argument
CREATE {path}libname
Where:
path Host specific path specification.
libname Library filename. If the name of the library file has a suffix,
then it is used asis. Ifthe library file name has no suffix,
then ".a" (or "lib" for DOS) is appended to create the library
file name.
Description: The CREATE command specifies the name of a new library which becomes

the current library for theemainder of the commands.

Example:

CREATE TEMPOR.a

The above Command directs the librarian to create a file, TEMPOR.a", on
the host system and format it as a library. If the fle TEMPOR .a already exists,
the user will be given a warning in interactive mode. In batch mode, no
library will be created.

326

Librarian Commands
DELETE

DELETE

Delete Module From Current Library

Syntax:
Command Argument
DELETE mod{,mod} ...
Where:
mod Name of module(s) to be removed from library named in
preceding OPEN or CREATE command.
Description: The DELETE command is used to specify module(s) to be removed from the

library currently being created or updated. The modalaes specified are
the Relocatable Object Modules that are to be deleted. The module name
may be defined with the IDNT or the NAME assembly directives. If IDNT or
NAME are not used, the module name is the name of the assembdgdile,
with any preceding path or trailing suffix stripped.

Example:

DELETE ARCTAN,SQUARE,RAD

The above Command directs the librarian to delete the "ARCTAN",
"SQUARE"and "RAD"relocatable object modules from the current library.

327

Librarian Commands
DIRECTORY

. o

Where:

Description:

DIRECTORY

Brief Listing of Library Contents

Command Argument

DIRECTORY {path}libname{(mod{,mod}. . .)} {istfile}

path Host specific path specification.

libname Library file referenced; the current libraryis referenced by
its name. If the name of the library file has a suffix, then it is
used asis. Ifthe library file name has no suffix, then ".a" (or
"lib"for DOS) is appended to create the library file name.

mod Module to be listed.

listfile Filename to receivéisting; if not specified, default to
standard output (usually the terminal).

The DIRECTORY command is used to request a lisgfhg of the contents
of a library. The directory listed is of the library specified by the user. The
user may specify the current library or another library. All modules in the
library are listed with their Module &nes and Module sizes (in bytes).

328

Librarian Commands
DIRECTORY

Example:

DIRECTORY SIEVE.a (commandput)

Library SIEVE.a

\
Name Size \
SIEVE 1812 \
MODULE ... 228 (output)
MODULE1.. 1032 /

/
Number of Modules = 3

The above DIRECTORY Commandlmproduce thdisting of the modules in
SIEVE.a and the size (in bytes) of each module as shown. The listing is
produced on the standard output.

329

Librarian Commands
END, EXIT, QUIT

END, EXIT, QUIT

Terminate Execution of Librarian

Syntax:
Command Argument
END
EXIT
QUIT
Description: The END command (and variations) is used to terminate compraugssing

in the librarian. The END command daest cause the current library to be
saved. The results of previous commandshatsaved. In order to save the
current library, you must terminate using the SAVEooand.

Example:

ar68k
LIST NEW.a
END

In this example, the librarian program is opened so that the uselistrthg
contents of library NEW.a. The librarian is exited using the END command
as soon as the information needed has been received.

330

Librarian Commands
EXTRACT

EXTRACT

Copy Library Module to File

Syntax:
Command Argument
EXTRACT mod{,mod}. ..
Where:
mod Name of module to be copied. The name of the output file
is the module name with ".@¢6r ".obj") appended.
Description: The EXTRACT command is used to specify a library module that isto be

copied to a non-library file. EXTRACT is the converse of the ADDMOD
command. This command directs the librarian to copy the specified library
module, which is a catalogued member of the libraryfile, out to an external
file in the host system. The extracted module is in the same format as when it
was generated by the Assembler; consequently, it can be loaded explicitly by
the Linking Loader.

The EXTRACT command must be preceded byan OPEN or CREATE
command for the library from which the extract is to occur.

Example:

EXTRACT MODA,MODB,MODC

In the above example, a list of modules is specified. The modules MODA,
MODB, and MODC are copied from the current libraryinto object files of

the same names, but with ".0" appended. The filenames created in this case are
MODA.o, MODB.o, and MODC.o. The extension may be different on your
operating system. Refer to page 25 for a list of filee extensions on your
operating system.

331

Librarian Commands
FULLDIR, LIST

FULLDIR, LIST

List Contents of Library or Library Module

Syntax:
Command Argument

FULLDIR {path}libname{(mod{,mod} . . .)} {listfile}
LIST {path}libname{(mod{,mod} .. .)} {listfile}
Where:
path Host specific path specification.
libname Library file referenced. If the name of the library file has a
suffix, then it is used as is. If the library file name has no
suffix, then "a" ("lib" for DOS) is appended to create the
library file name.
mod Module to be listed.
listfile Filename to receivdisting; if not specified, default to
standard list device.
Description: The LIST command is used to request a complete or péstialy of a

library. Every specified module is listed, along with a list of External
References and Public Symbols. See the "Librarian Listing Description"
chapter for the listing format.

Example:

LIST TRIG.a (ARCSIN,TANGEN) TRIG.LIST

The above Commandilcause the librarian to write information pertaining
to modules "ARCSIN" and "TANGEN", which are members of the library
"TRIG.a"into the host system file "TRIG.LIST".

332

Librarian Commands

HELP
HELP
Display Current Valid Commands and Syntax
Syntax:
Command Argument
HELP
Description: The HELP command displays thercently valid librarian commands and the

acceptable syntax for each.

The librarian has two contexts with different valid commands. The first
context is when there is no current library, in other words, no CREATE or
OPEN command has been executed or a SAVE or CLEAR command has
been issued. The second context is wheareeat library exists.

Example:

ar68k> help
CLEAR
CREATE library_name
DIRECTORY library_name[(module_namd]] [list_filename]
END
FULLDIR library_name[(module_name])] [list_filename]
HELP
OPEN library_name
SAVE

ar68k> create libl

ar68k> help
ADDLIB library_name[module_name]]
ADDMOD filenamel,]
CLEAR
DELETE module_namel],
DIRECTORY library_name[(module_namg]] [list_filename]
END

333

Librarian Commands
HELP

EXTRACT module_name]]

FULLDIR library_name[(module_name])] [list_filename]
HELP

REPLACE filenamel,filename]

SAVE

334

Librarian Commands
OPEN

OPEN

Open an Existing Library

Syntax:
Command Argument
OPEN {path}libname{(module{,module}. . .)}
Where:
path Host specific path specification.
libname Library file name. If the name of the library file has a suffix,
then it is used asis. Ifthe library file name has no suffix,
then "a" ("lib"for DOS) is appended to create the library
file name.
module If modules are specified, only those modules are included in
the current library. If no modules are specified, all modules
from "libname" are included.
Description: The OPEN command is used to specify that an existing libraryisto be

referenced in conjunction with succeeding maintenance commands. If the
maintenance commands require that a new generation of the library be
created, the new version or updated library will have the saamee s the
current library. If the library cannot be located or opened for input, an error
is reported. Ifthe librarian is operating in batch mode, execuftibbewn
terminated.

Example:

OPEN MATH.a (ARCSIN,SQUARE)

In this example, modules ARCSIN and SQUARE are opened in library
MATH .a.

335

Librarian Commands

REPLACE
REPLACE
Replace Library Module
Syntax:
Command Argument
REPLACE filename{,filename} . ..
Where:
flename Filename of file containing module. If the filenames
contain suffixes, the filename is used as is. If the filenames
have no suffixes, then ".0" (".obj"for DOS) is appended to
the filename before it is used.
Description: The REPLACE command is used to replace a library module with a

non-library module of the sam@me. This command directs the librarian to
open anamed module file. The library module is then replaced with a module
of the same name from the Ndibrary file it opened.

Example:
REPLACE SENTIN.o

The Command above directs the librarian to replace module SENTIN with a
copy of the module named SENTIN, located in a file named SENTIN.o.

336

Librarian Commands

SAVE
SAVE
Create Library File Saving Contents of Current Library
Syntax:
Command Argument
SAVE
Description: The SAVE command is used to terminate the librarian and writeutinerd

library, saving the results of the preceding commands.

Prior to the SAVE command, the maintenance commands preceding were
only checked for correct syntax and module existence. At SAVE time the
actual procssing of the maintainenceroonands takes place. SAVE
indicates that a library is to be built following the rules of the preceding
commands.

Example:

CREATE NEW.a
ADDMOD RELl.0,REL2.0
ADDMOD FORTUN.o
SAVE

In this example, "REL1", "REL2"and "FORTUN"relocatable object modules
will be saved in libraryamed NEW.a.

337

Librarian Commands
SAVE

338

Assembler Error Messages

This appendix describes the error messages and warnings that appear if errors
in the source program are detected during the assembly process.

339

Assembler Error Messages

(500)«(517)

(500)
(501)

(502)
(503)
(504)
(505)
(506)
(507)
(508)
(509)
(510)
(511)
(512)
(513)
(514)
(515)
(516)
(517)

The error message is printed on tiseing immediately following the
statement in or.

The following list will serve as a guide to diagnosing thee Most error
messages are self-explanatory. The listing displays a totat @unt. See the
"Error Message Formats" appendix for explanations of error severity levels.

The errors and messages for the Assemblelisiesl and described below.
No error.
Missing argument.

The argument is missing or containsidegal character, etc. Mismatch on
common/noncommon section type.

Operator expected but not found.

A symbol was found which is invalid in this context.
Right parenthesis not valid in this context.
Operator not valid in this context.

Expression terminator found prematurely.
Operand expected but not found.

Unbalanced parentheses.

Complex relocatable value not valid in this context.
Stack underflow (internal error).

Invalid operands for \"operator.

Invalid operands for & operator.

Invalid operands for | operator.

Invalid operands for | | operator.

Invalid operands for = operator.

Invalid operands for < > operator.

Invalid operands for > = operator.

340

(518)
(519)
(520)
(521)
(522)
(523)
(524)
(525)

(526)
(527)
(528)
(529)
(530)

(531)
(532)

(533)
(534)

Assembler Error Messages
(518)—(534)
Invalid operands for > operator.
Invalid operands for < operator.
Invalid operands for < = operator.
Invalid operands for > > operator.
Invalid operands for < < operator.
Invalid operands for * operator.
Invalid operands for / operator.

Invalid character.

This message is produced as the result of a variety of syntactic errors. A
character may be invalid within the context where it is found. The input line
may be too long. A register name may berfd where one is not allowed.

Closing string delimiter missing.

String longer than 4 characters invalid in this context.
Invalid opcode.

Invalid opcode/qualifier combination.

Undefined symbol.

There is a symbolic name in the operand field that has never been defined.
The symbol should have been previously defined for certain directives and was
not, but may have been defined after the directive. A symbol declared on the
XDEF directive was not used in the program.

Invalid nesting of IF . . . ENDC..
Invalid nesting of IF . . . ELSEC . .. ENDC.

The opcode mnemonic is not a valid instruction, directive, or a macro call. A
macro defined within another macro, or conditional assembly statements are
nested too deeply. ELSEC, ENDC, or ENDM has been used without
preceding IF or MACRO.

Missing ENDC.

IF stack overflow; limit is 16 nesting levels.

341

Assembler Error Messages

(535)—«(553)

(535) This directive not permitted in absolute assembly.

(536) Code generation not permitted inOFFSET setion.

(537) Integer value is outside of its legal range.

(538) Label required on this directive.

(539) Duplicate IDNT directive (ignored).

(540) Relocatable expression invalid in this context.
A relocatable expression is used for a field that is not 16 or 32 bits long. An
operand that should be absolute is relocatable. An ORG directive makes a
reference to an external symbol.

(541) Comma expected but not found.

(542) Invalid section name.

(543) Section cannot be both COMMON and non-COMMON.

(544) Nested macro definition.

(545) Too many sections.

(546) Invalid symbol.

(547) This sort of symbol cannot be made an external definition.

(548) Invalid external symbol.

(549) Value will be sign-extended to 32 bits at runtime.

(550) Unable to open Include file.

(551) Invalid formal parameter name.

(552) Invalid local symbol name.

(553) Duplicate label (ignored).

The label in the statement has previously appeared in the label field. A label
on a SET directive previously appeared in a statement other than a SET
directive, or a label on a statement other than a SET directive now appears on
a SET directive. A label appears more than once in an XDEF directive. A
symbol defined in an XREF directive appears in the label field of some

342

(554)
(555)
(556)
(557)
(558)
(559)

(560)

(561)

(562)
(563)
(564)
(565)
(566)
(567)
(568)
(569)
(570)
(571)
(572)
(573)

Assembler Error Messages
(554)—(573)

statement. A keyword appears in the label field or in an XDEF or XREF

directive.

Incompatible usage: Motorola does not permit a label on this directive.
Section was declared both Short and non-Short. SectiorilWbe Short.
NO not permitted on this flag.

Unknown or missing option flag.

Register list invalid in this context.

W or .L extension on register not valid in this context.

User should verify the validity of the extension on register.
Aregister in a colon-separated pair is invalid in this context.
Register pairs cannot be separated by a colon in this instruction.
A colon-separated pair of registers is invalid in this context.
Register pairs cannot be separated by a colon in this instruction.
Register expected but not found.

Aregister in a register list is invalid in this context.

Registers separated by - in register list must be in ascending order.
Registers separated by - in register list must be of same type.
Invalid expression contains a register.

Left parenthesis expected but not found.

Square brackets invalid in this context.

Multiple arithmetic expressions invalid within an operand.

Left brace expected but not found.

Colon expected but not found.

Right brace expected but not found.

Equals sign expected but not found.

343

Assembler Error Messages

(574)~(592)

(574) TO or DOWNTO expected but not found.

(575) DO expected but not found.

(576) Nesting of WHILE . . . ENDW invalid.

(577) Nesting of REPEAT . . . UNTIL invalid.

(578) Nesting of IF . .. ELSE . .. ENDI invalid.
Nested FILE or INCLUDE directives. ELSE and/or ENDI have been used
without the preceding required structural syntax directive.

(579) Nesting of IF . . . ENDI invalid.

(580) Nesting of FOR . . . ENDF invalid.
Invalid extension for nested FILE or INCLUDE directives. ENDF has been
used without the preceding required structural syntax directive.

(581) BREAK found outside a structured-syntax loop construct.

(582) NEXT found outside a structured-syntax loop construct.

(583) Invalid condition code in structured syntax directive.

(584) < (condition code) expected but not found.

(585) Code generated is equivalent in some cases. Recoding recommended.

(586) THEN expected but not found.

(587) This instruction has too many operands.

(588) This combination of operands is not valid for this instruction.

(589) Too few bytes allocated on Pass 1 for forward reference.

(590) This instruction will not work on the declared processor type.
The instruction or operandiitegal for the specifieghrocessor. Use the
CHIP directive to specify another processor.

(591) FAIL directive assembled.
A programmed eror has occurred.

(592) Register list required for REG directive operand.

344

Assembler Error Messages

(593)—<(607)
(593) This directive invalid outside a macro.
(594) This character invalid within real constant.
(595) Areal constant was expected here.
(596) Real numbers invalid in this context.
(597) This real number too small to represent. Zero substituted.
(598) This real number is too large to represent. Infinity substituted.
(599) Macros nested too deeply. Use OPT NEST if this was your intent.

When nesting macros, the buffer available for macro parameters is full.

(600) Real numbers invalid in this context.
(601) Value was truncated to fit in its field.

An evaluated expression or constant is out of range for the field of the actual
machine instruction in which it is to be contained.

(602) Calculated displacement does not fit in truncated field.
(603) Structured Directives not properly closed.
(604) Local symbols from this section not included in HP asmb_synild.

When assembling with the "generate HP format output files" option, more
than one relocatable section was mapped to HP section PROG, HP section
DATA, or HP section COMN. Local symbols from these extra sections are
not written to the "asmb_sym" assembler symbol file and will not be available
for debugging. To eliminate this warning, move the extra sectionsinto a new
source module.

(605) Out of virtual memory.

You have exceeded the host system’s limit for process size. Try using the
(big) command line option.

(606) Invalid Value for alignment, can only be 0, 1, 2, or 4.

(607) End of File inside a macro or repeat definition.

345

Assembler Error Messages

(608)—625)

(608) Expression stack overflow.
The expression stack can hold about 45 entities. A single expression, therefore,
cannot contain more than 45 entities. An entity is a symbol, an operator, a
literal, parentheses, and so on. The expression "a+ b" has three entities. If you
must create a single expression that has enough entities to overflow the
expression stack, you may be able to circumvent the limit by using EQUs to
build the expression from subexpressions.

(609) Value is outside of its legal range.

(610) lllegal branch to odd address.

(611) Unable to create or open intermediate file.

(612) lllegal high-level debug syntax.

(613) Incompatible processor/ co-processor combination.

(614) User label conflicts with register name.

(615) Floating point hex number too big for specified size.

(616) Too many relocations in this section. Limitis 64K.

(617) (Not Used)

(618)

(619)

(620)

(621) Macro/repeat definition terminated by assembler.

(622) Macro expansion buffer overflowed. Truncated.

(623) Too many formal parameters. Limitis 36.
The limit to the number of parameters for a macro is tfsistyReduce the
number of formal parameters in the macro definition.

(624) Macro names cannot contain a period (.).
Periods are not allowed in macro names (except as the first character).

(625) Macro definition has too many local symbols.

The maximum number of local symbols allowed in a macro definition is 90.

346

(626)

(627)

(628)

(629)

(630)

(631)

(632)
(633)

(634)

Assembler Error Messages
(626)—634)

Invalid model parameter.

The model parameter may bessing in the IRP assembler directive.
Expanded macro line is too long.

Break the line into two shorter lines.

Recursive expression evaluation.

lllegal CHIP identifier.

Invalid operand for .STARTOF. operator

Check that the operand is a section name.

Invalid operand for .SIZEOF. operator

Check that the operand is a section name.

The number of nesting levels for macros cannot exceed 100.
W or .L extension on cache not valid in this context

The extension is not allowed on cache registers.

Extra operand(s) ignored

347

Assembler Error Messages
(634)—(634)

348

Loader Error Messages

This appendix describes the error messages and warnings that may appear
during Linking.

349

Loader Error Messages

Errors and messages from the Load#irbe non-fatal or fatal. If the error is
non-fatal, the Load W proceed after the error isreported. Ifthe erroris
fatal, the Loader will reort the error, and the loadlMerminate
immediately.

Command erors are usually due to invalid ronands or command
parameters and usually cause termination of the logdmepss in batch
mode. If commandreors are encountered in interactive mode, the Load
usually continues.

Errors and messages disted beneath the actualromand in eror. Load
messages normally occur during the loading of object modules initiated by the
LOAD command. These messages may be fatal or informative. For most
load messages, the message is followed by the record number in the input
module and the actual record in error. For a particular module the module
name is alsdisted at the start of the messages.

The mode of operation determines whether the informational message is
flagged as a warning or as an error. The severity of the error also varies
depending on the mode and environment. In general, the error or message is
more severe for the user of a batch file or command line mode, and less severe
for the user of interactive mode.

Most load errors should not occur. Iftheydo, the user is advised to first
reassemble the program, and then to reload. Ifthe erreisperthe user
may contact Hewlett-Packard.

350

(300)

(301)

(302)

(303)

(304)

(305)

(306)

(307)

Loader Error Messages
(300)—<307)
The errors and messages hsted and described below.
Bad IEEE Object Record.

Either the object module has been corrupted or it is nBEEIrelocatable
object file.

Maximum Number Of Sections Exceeded.
The maximum number of allowable sections (2000) has been exceeded.
Section Mismatch.

A section was typed common in one place and noncommon in another, or
short in one place and long in another. This message may arise if a section is
mentioned for the first time in a SECT, COMMON, PAGE, CPAGE, or
NOPAGE command, as these commansisgn the long attribute to

newfound sections.

Section Overlap.

Due to user specified addresses, or absolute sections, one or more of the
sections overlap. Some sections of memory may have multiple values loa
This message is non-fatal and loading continues, but it usnalys that you
should change the load addresses so the sections do not overlap.

Module Too Large.

At final load time the combined lengths of all program sections exceed the
maximum memory size, established by the CHIRw@@nd.

Reserved Memory Table Full.

There are too many non-adjacent sections in the link. Try to reduce the
number of non-adjacent sections.

Out of memory.
The loader has run out ofemory in the host system.
Duplicate Public.

A PUBLIC is defined that was already defined in another module. Loading
will continue and the symbol will be listed.

351

Loader Error Messages

(308)(318)

(308)

(309)

(310)

(311)

(312)

(313)

(314)

(315)

(316)

(317)

(318)

Invalid CHIP Command.

The CHIP command as specified by the user is not a legal loader command.
Invalid Command.

A command specified by the user is not a legal Loader command.

Load Completed.

Message indicates normal load.

Load Not Completed.

Message indicates abnormal load.

Invalid ORDER command.

The ORDER command specified by the user is not a legal loader command.
Invalid Operand.

An operand specified for a command contains invalid characters, does not
exist, or is too large.

Chip inconsist.

The loader has encountered a file assembled with a CHIP directive which has
"greater" capabilities than the CHIP specified to the loader. For example, a
file assembled with the "CHIP 68020" directive is loaded with the "CHIP

68000" load conmand in effect. The module MAY contain insctions which
cannot execute on the target chip.

Maximum memory has been exceeded.

The program exceeds tihemory available for the target microprocessor.
Short memory has been exceeded.

The shortmemory specified is not enough for all short sections.

Section assigned address below BASE.

An absolute or relocatable section has been assigned an address less than the
address specified in the BASE command.

Internal Error.

352

(319)

(320)

(322)

(323)

Loader Error Messages
(319)—«323)

The loader has encountered a fatal internal error.

Cannot Open File.

The loader is unable to open the relocatable object file.

Unresolved Externals:.

The unresolved external symbols éiseed following this warning message.
8-bits Value Out of Range.

A relocated 8-bit value is out of range. An 8-bit field, generally an immediate
value, has too large a value. Loading continues but the loaded program often
will not run; the user should investigate.

All values are evaluated as unsigned 32-bit values. These values are expected
to be within 8 bits sign-extended (i.e., $FFFFFF80 to $FFFFFFFF or O to

$7F) displacements thaillbe sign-extended to 32 bits atun time (e.g., the
operand of MOVEQ). In the more common case of immediate values wh

are not sign-extended at runtime, the expected range is 0 to $FF or
$FFFFFFOO0 to $FFFFFFFF. In either case the value inserted in the obj
module is the low 8 bits of the complete 32-bit value, whether this &

reported or not. This message interrupts the Load Map when it appears. The
section and location relative to the beginning of the subsection (i.e., the
address that appears on the assembler listing) are given for eacreace.

The module is shown in the preceding line of the Load Map.

16-bits Value Out of Range ahnnn in module xxxx sedion yyyy.

The relocated value of an expression will not fit inttéabit field. Loading
will continue, but theerogram may not run properly. You should investigate
this warning.

For example, an absolute short instruction refers to a location that is notin
the range $0 through $7FFF orf#FF8000 hrough $FFFFFFFF. A
PC-plus-16-bit-displaament ingruction may refer to a location that is more
than + /-32K bytes from the present location.

Often, this error occurs in conjunction with an "Unresolved External" error.
The loader assigns the value zero to undefined symbols and then tries to
reference address 0.

All expressions are evaluated as unsigned 32-bit values. If a 16-bit fiidbe w
sign-extended at run-time, then the value must fall within the range $0

353

Loader Error Messages

(324)«(331)

(324)

(325)

(326)

(327)
(328)

(329)

(330)
(331)

through $7FFF or $FFF8000 hrough $FFFFFFFF. If the field il not be
sign-extended, then the value must fall in the range $0 througRFSBr
$FFFFO000rough $FFFFFFFF.

In any case, the value inserted into the field is the low 16 bits of the value.
Section Mismatch Between Symbol Def and Ref.

An XREF from the assembler had a section associated with it which does not
match the section of the XDEF with the same name, or does not match the
section associated with a previous XREF to the same symbol. Unspecified
sections are considered to match any section name. The symbol is treated as
undefined. (This message may occur in the case of duplicate XDEFs as well.)

lllegal HP section name.

The HP object file contains an illegal secticante.
Cannot open temporary file.

lllegal ALIAS command.

lllegal command for ALIAS section.

A section that was ALIASed to another section was mentioned in a loader
command. The original section nanald not be referenced.

Multiple initialization of a COMMON section.

This error occurs when more than one file defines data or instructions (as
opposed to just reserving space) in the same COMMON section. Since each
file's contribution to a COMMON section will overlap, data from one file may
overwrite data from a second file.

lllegal ALIAS for a COMMON section.
Inconsistent IEEE object format.

The loader has encountered a relocatable module that it cannot properly
interpret. Usually, this results from using different versions of assembler and
loader programs. A later version of the assembiémpnoduce a relocatable
that is rejected by an earlier version of the loader.

354

(332)

(333)

(334)

(335)

(336)

(337)

(338)

Loader Error Messages
(332)—338)
Object contains errors.

The assembler detected errors when the relocatable module was produced.
The module may contain code that will not exequrigperly.

Source file does not exist.

This warning indicates that a source file could not be found in the same place
where it was compiled and assembled.

Local symbols in CODE section.

This warning can occur if you are linkingfiles which were assembled with
version 1.20 or earlier of the assembler. Re-assemble the files.

Local symbols in DATA section.

This warning can occur if you are linkingfiles which were assembled with
version 1.20 or earlier of the assembler. Re-assemble the files.

Local symbols in COMN section.

When assembling with the "generate HP format output files" option, mor
than one relocatable section was mapped to HP section DATA. Local
symbols from these extra sections are not written to the "asmb_sym"
assembler symbol file and will not be available for debugging. To eliminate
this warning, move the extra sections to a new source module.

This warning can occur if you are linkingfiles which were assembled with
version 1.20 or earlier of the assembler. Re-assemble the files.

lllegal command for incremental linking.
Only LOAD commands are allowed during an incremental link.
Duplicate ROM section.

More than one INITDATA command wassued.

355

Loader Error Messages

(339)(347)

(339)

-

(341)
(342)

(345)
(346)

(347)

Section moved to high short section.

The loader was locating short sections in low base 00 hrough

$7FFF). It encountered a short section which would not fit in low base page.
It located the section in high base page. The addresses of high base page
depend on which microprocessor was specified with the CHiffrand:

68008 $000F800through$000F-FFF.
68000/10/332 $00FF80061tough$00F-FFFF.
68020/30/40 $FFF8000 hrough $FFFFFFF.
68030 $HFF8000 hrough $FFFFFFFF.
68040 $HFF8000 hrough $FFFFFFFF.

This value may be modified by the loader CHIP command.
Out of virtual memory.

You have exceeded the host system’s limits for process size.
This command is illegal after LOAD is used.

Incompatible incrementally linked object. Recreate the object.

The linker has read an incrementally linked relocatablefibeluced by the

HP 64870 68000/10/20 linker version 1.20. Because of a defect in the earlier
version, the file must be remade beforeilt be accepted by Id68k. You may
redo the incremental link with 1d68k version 1.30 or later.

(343)

I/O Error.

Duplicate Public From Library Module -- ignored.

A public symbol was already defined in the library.

Could Not Construct Full Path Name:

Check that the objects you are trying to link are on the same host computer.

Command Ignored:

356

(348)
(349)
(350)

(351)

(352)
(353)

(362)

(364)

(365)

(366)

(367)

(368)
(372)

Loader Error Messages
(348)—372)
Module Not Found,
Section Previously Specified Or Non_existent:
lllegal Multiple Case Specification forclass

Each class (PUBLICS, MODULES, SECTIONS) can have only one case
specification (CASE, UPPERCASE, LOWERCASE).

Write error - disk may be full.

An 1/O error occurred while writing the output file. The output fiié Rave
been removed if this error occurs.

Section mismatch between PUBLIC def and Module ref for symbodxx
Redefinition of xxx

A symbol defined by the PUBLIC command or a register has been redefined.
Definitions can be made INDEX, PUBLIC, or XDEF commands. The valu
the symbol is the value specified by the last PUBLIC command.

Too Many Errors

Any errors found after this message is showhnat be reported.

Cannot ABSOLUTE unknown section,

This section is not defined in any of the modules loaded by the linker.
Cannot ALIGN unknown section,

This section is not defined in any of the modules loaded by the linker.
Cannot ALIGN absolute section,

Absolute sections have a fixed starting address and cannot be aligned.
Absolute section cannot have the same name as other sections,
Absolute sections cannot be combined with relocatable sections.
Combined section exceeds memory space,

Section size shrunk for

The default size of a COMMON section was greater than specified by the
SECTSIZE command.

357

Loader Error Messages

(373)«(380)

(373)

(374)

(375)

(376)
(377)
(379)

(380)

24-bit Value Out of Range at

The relocated value of an expression will not fit intebit field. Athough
loading continues, the program may not run properly.

ORDER command could not be obeyed for section,

An impossible section order was specified in the ORDERmand. For
example,

ORDER sectl,sec2,sect3
SECT sect2=0

Since sect2 must begin at address 0, sectl cannot precede sect2.
No modules were loaded

No LOAD or LOAD_SYMBOLS commands were specified. Anotheoe
may have prevented the linker from reading the LOAD command. Note that a
library will not be loaded if there are no undefined externals.

Invalid modifier, modifier

Duplicate section name specified in INITDATA command(s)
Invalid INITDATA command

The INITDATA command is nssing operands.

*'is no longer a valid comment character in this context

Use a semicolon (;) to begin comments in linker command files. (This is a
change from earlier versions of the assembler.)

358

Librarian Error Messages

This chapter describes the error messages and warnings that may appear while
executing the librarian.

359

Librarian Error Messages

(100)—107)
The librarian writes error messages to the curlistihg device. Somereors
are fatal, and some are warnings, depending upon the circumstances of the
particular operation. See the "Error Message Formats"appendix for
explanations of librarian error severity levels.
After executing the librarian, you should review tiséing to make certain
that all commands have beproperly processed. A message is written to the
listing device each time a library is written into a file.
The errors and messages for the librarianiiated and described below.
(100) Could not close file [filename] to open another file.
The librarian attempts to keep as many files open as it can to reduce overhead.
If too many files are open it must close one to open a new one.
(101) Unable to open file [filename] in mode [module name].
The librarian received an error when trying to open thmed file in the
named module.
(102) Unable to close file [filename].
The librarian received an error when trying to close thaed file.
(103) Unable to open input file [filename].
The librarian received an error when trying to open thaed file.
(104) File [filename] not included.
The contents of the named filélnot be included in the library.
(105) File not included.
The named file has not been included in the library.
(106) File [filename] exists already.
This message appears if the CREATE command is used and the library name
exists as a file already.
(107) File [filename] does not exist.

This message appears if the OPEN command is used and there is no such file.

360

Librarian Error Messages

(108)—207)
(108) Library file [libname] not opened.
This message appears if the OPEN command is used but the library could not
be opened.
(109) Library file [libname] not included.

The contents of the named library file are not included in tineeat library.
This message appears if the ADDLIB command is used and the module
cannot be included in the current library.

(200) Module [module name] not found.
A named module was noddind in the target library.
(201) Module [module name] not found.
A named module was noddind in the target library.
(202) Module [module name] not found in current library.
The named module was naiuind in the library being built. Check the Bpay.
(203) Module [module name] already exists in current library.
Duplicate module names.
(204) [filename] is a library file.

This is an informative message that appears when the librarian was looki
a module file.

(205) [filename] is not a library file.
This is an informative message that appears when the librarian was looking for
a libraryfile.

(206) Module [module name] is not being included in the library.

Self explanatory.
(207) Bad object record.

Either the object module has been corrupted or it is not a HP-HREI695
relocatable object file.

361

Librarian Error Messages

(208)—(258)

(208)

(209)

(210)

(250)

(251)

(252)

(253)

(254)
(255)

(256)

(257)

(258)

Bad library header record.
The library may have been corrupted.
Duplicate symbol [filename].

Two different modules have the same public definition symbol. The Librarian
is always case sensitive with symbols.

Bad object record in file [filename].

The library or module file may have been corrupted.

Out of memory.

The librarian could not allocate any more memory from the system.
Failed writing library.

This message is always preceded by the precise reason for the failure.
Fseek or ftell error.

It is possible that one of the object files used to build the library has been
corrupted.

Library [libname] not written.

This message is always preceded by the precise reason for the failure.
Failed writing module [module name] to file [filename].

Replacement not done.

The librarian was unable to perform the REPLACE as specified.
Extraction Failed.

The librarian was unable to perform the EXTRACT as specified.
lllegal command.

Retype the command or argument. This message could also mean that the
user attempted to start the command sequence with the ADDMOD command.

Abrupt ending of comment.

There was a new line before the second quote.

362

Librarian Error Messages
(259)—(259)

(259) Quote not terminated.

There was a new line before the second quote.

363

Librarian Error Messages
(259)—(259)

364

Error Message Formats

This chapter explains the difference between warnings, errors, and fatal errors.

365

Error Message Formats
Error Classes

Error Classes

There are three classes of errors that may occur during assembler,
linker/loader, or librarian execution: warnings, errors, and fatal errors.

Warnings

Warnings announce something timaightbe a problem in the output file.

For example, the loader warns of a section mismatch between the definition
and reference of a symbol. This may or may not indicate a problem with the
program.

After a warning, the output files are written normally.

After a warning ar68k, as68k, and |d68kuet a return code indicating
"success" so that command files and "make" operations coniorneally.

Errors

Errors announce something that IS wrong in the output file. For example, an
unresolved external symbollicause a loaderreor. A reference to an
unresolved symbolillcauseproblems at run-time.

After an error, the output files are written normally. The output files are
complete and may be useful in subsequent operations.

After an error ar68k,s68k, and Id68k retrn a return code indicating “error"
so that command files and "make" operaticiops

366

Error Message Formats
Error Classes

Fatal Errors

A fatal error announces a condition that causes gsieg to be discontinued.
For example, the linker/loader produces a fatal error when one of its input
modules is not a valid IEEE relocatable file.

After a fatal error, the output files are incomplete and corrupt. They are not
useful for subsequent operations.

After an error ar68k,s68k, and Id68k retrn a return code indicating “error"
so that command files and "make" operaticiops

367

Error Message Formats
Interactive and Non-Interactive Conditions

Interactive and Non-Interactive Conditions

Some conditions produce either warnings or errors, depending on whether the
tool is run in interactive or batch mode. In interactive mode, a particular
condition causes a warning because the user has a chance to reissue the
command orrectly. In batch mode, the same condition causes an error.

For example (on the HP-UX operating system), suppose th&filedoes not
exist. If we invoked the librarian in batch mode as follows:

$ ar68k -a "tt2.0" lib.a

We would see an error.

< ar68k >
(101) unable to open file tt2.0.
ERROR: (104) file tt2.0 not included.
(253) Library lib.a not written.
Warnings = 0
Errors =1

In interactive mode, if we typed the following command:
ar68k> addmod tt2.0

We would see a warning.

(101) unable to open file tt2.0.
WARNING: (104) file tt2.0 not included.

368

Converting to HP B3641 Assembly
Language .

This appendix describes how you can convert source files written for the HP
64845 assembler so that they will work with the 68000 Family
Assembler/Linker/Librarian.

369

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Assembly Language Programs

Note

Converting HP 64845 Assembly Language
Programs

This appendix documents the changes that must be made to source files
written for the HP 64845 assembler so that they can be assembled with the HP
B3641 assembler. Not everything that appears in the HP 64845 fauraes

files can be translated into something which the HP B3641 assembler will
recognize, but a good portion can.

Source file conversion ilities may be gpplied with the assembler as
“contributed software.” These utilities, fipplied,will not be supported by
Hewlett-Packard.

Some of the source file conversions described in this appeniadow

instructions to be assembled with no errors on theBB&41 assembler.

However, the relocatable object code generated may not always be the same.
Identical instructions may cause different code to be generated due to the
method in which the assembler chooses asking modes or optimizes
instructions. For example, given a source file line of "MOVE.L # 1,D0", the

HP 64845 assembler will generate code for a MOVEuresion with two

words of extension while the HP B3641 assembler will generate a MOVEQ
instruction with zero words of extension.

370

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Assembly Language Programs

Labels, assembly language instructions, numeric terms, ancheats Wl not
have to be changed. Areas which require changes are listed below.

» Chip Directives. You are required to tell the HP 64845 assembler to
generate instructions for a certain microprocessor by including a string in
the first line & column of the source file. For example:

"68000"
2680107
'68008’

Depending on what your target processor is, you either replace the chip
string with the appropriate HB3641 assembler CHIP directive, or

remove the chip string from the source file altogether. In the absence of a
CHIP directive (or equivalent comand line optin), theB3641 defaults

to the 6800@rocessor. CHIP directives egivalent to the preceding chip
strings are as follows:

CHIP 68000
CHIP 68010
CHIP 68008

« Flags. The HP B3641 assembler has flags that affect its behavior (see the
OPT assembler directive). For the HP B3641 assembler to operate in a
manner that is most like the HP 64845 assembler,lyould always
include the following directives in programs to be assembled by the HP
B3641 assembler.

OPT NOABSPCADD ; Absolute expressions in PC-relative operands
; are treated as displacements.
OPT NOPCR ; Do not optimize absolute operands to be PC-relative.

* Pseudo-Ops Some pseudo-ops used in HP 648A&rse files have
comparable directives in the HP B3g#bduct. See “Converting
HP 64845 Pseudo-Ops"later in this appendix for more information.

* Operand Symbols and Delimiters Various operand symbols and
delimiters will have to be modified; for example, the HP 64845 uses
brackets where 68000/10 syntax specifies parentheses, the symbol for
“current assembly location counter"is different, string delimiters are
different, and logical operators have different forms. See “Converting
HP 64845 Operands" later in this appendix for more information.

371

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Assembly Language Programs

Character Strings. Character strings are packed differently in words or
longwords. See “Converting Character Constants" later in this appendix
for more information.

Macros. Macros are similar; however, there are some fundamental
differences between HP 64845 macros and HP B3641 macros. See
“Converting HP 64845 Macros” later in this appendix for more
information.

Miscellaneous The HP 64845 assembler sometimes allows white space
where the HP B3641 assembler does not. See “Converting HP
64845—Miscellaneous” for more information about this and other
miscellaneous coversions.

In addition to issuesusrounding coversion of HB4845 assembler files for

use with the HP B3641 assembler, there are issues with usiegiectally

linked or library files created with earlier versions of the HP 64870 assembler.
Refer to “Compatibility with older HP 64870 Files” later in ths appendix for
further information.

372

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

Converting HP 64845 Pseudo-Ops

Listed below are the pseudo-ops allowed in HP 6484i5ce files and their
counterparts (if any) in the HB3641 assembler.

HP 64845 HP B3641

ABSOLUTE_LONG No substitute. The OPT FRL directive in the HP B3641

ABS_LONG assembler is used to force absolute long addressing in
forward references only. The ABS_LONG pseudo-op
will force the absolute long address mode in forward
and backward references. To force the absolute long
address mode, use the .L extension on individual
operands (e.g., "(< exp>).L").

ABSOLUTE_SHORT No substitute. The OPT FRS directive in the HP B3641

ABS_SHORT assembler is used to force absolute short adirg in
forward references only. The ABS_SHORT pseudo-op
will force the absolutet®rt address mode in forward
and backward references. To force the absolute short
address mode, use the .W extension on individual
operands (e.g., "(< exp>).W").

ASCII/ASC DC.B
A5 REL ON No substitute. The linker/loader INDEX command
A5 REL OFF provides for A2-A5 relative addseing. If the

A5 REL_ON pseudo-op is used, be sure to use the
linker/loader INDEX command and specify the
run-time value of "An" as the value you woukbkagn to
A5 when answering the HP 64845
"PROG,DATA,COMN,A5?" linker question.

BINARY/BIN DC

The operand must be specified as a binary number by
adding a "%" prefix or a "B" suffix. (Warnings will be
generated if the operand ofthe DC directive must be
truncated to fit intdl6-bits. The BIN pseudo-op will

373

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

COMN
DATA

DECIMAL/DEC

END
EQU

EVEN
EXPAND
EXTERNAL
GLOBAL/GLB

HEX

IF/ELSE/
ENDIF/IFEND

INCLUDE

also truncate to word lengths, but no warning is
generated.)

COMMON COMN
SECTION DATA,.D
DC
(Warnings will be generated if the operand of the DC
directive must be truncated to fit ini6-bits. The
DECIMAL pseudo-op will alsoruncate to word
lengths, but no warning is generated.)
END
EQU
ALIGN 2
OPT C,,M,ML,MC
XREF
XDEF
DC
The operand must be specified as a hexadecimal
number by adding a "$" prefix or a "H" suffix.
(Warnings will be generated if the operand of the DC
directive must be truncated to fit ini6-bits. The
HEX pseudo-op will alsortincate to word lengths, but

no warning is generated.)

IFNE/ELSEC/ENDC

INCLUDE

374

LIST

MASK

* HP 64845 Instructions:
*,

MASK 77H,101B

ASCIl ’abcd’
MASK OA5H
ASCIl ef

* HP B3641 Equivalent:

*

AND VAL SET 77H

OR_VAL SET 101B
DC.B 'a’&AND_VAL!OR_VAL
DC.B 'b’&AND_VAL!OR_VAL
DC.B 'c’&AND_VALIOR_VAL
DC.B 'd'&AND_VAL!OR_VAL

AND_VAL SET OA5H
DC.B '@ &AND_VAL!OR_VAL
DC.B 'f&AND_VALIOR_VAL

NAME
NOLIST
NOWARN

OCT/OCTAL

ORG

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

LIST, OPT S
No substitute. It is possible to duplicate this operation
by ANDing and ORing each character in the ASCII

pseudo instruction’s operand with values defined in
SET directives.

Remember, MASK only affects strings defined with the
ASC/ASCII pseudo irtsuction.

No substitute.

NOLIST, OPT -S

OPTW

DC

The operand must be specified as an octal number b
adding a "@" prefix or "O" or "Q" suffixes. (Warnings
will be generated if the operand of the DC directive
must be truncated to fit intb6-bits. The OCT
pseudo-op will alsortincate to word lengths, but no

warning is generated.)

ORG

375

Converting to HP B3641 Assembly Language

Converting HP 6 4845 Pseudo-Ops

PROG

REAL

REPT

RORG

SET

SKIP

SPC

TITLE

WARN

SECTION PROG,,P
DC.S, DC.D

In the HP 64845 assemblehst reals are generated

by using "E" to specify the power of ten (e.g., 1.0E2) and
long reals are generated by using "L" to specify the
power often (e.g., 1.0L2). With the HP B3641
assembler, always use "E" to specify the exponent and
use "DC.S"to generate short reals or "'DC.D"to
generate long reals.

REPT andENDR

The HP 64845 assembler allows you to repeat one
statement. The HB3641 assembler allows you to
repeat a number of statements (the statements between
REPT and ENDR); therefore, you must add the ENDR
directive after the statement which is to be repeated.
OPT NOPCR,NOPCS

The RORG directive is not exactly equal to OPT
NOPCR,NOPCS. The RORG directive affects
"absolute to relocatable" references and "relocatable to
absolute"references. No HP B3641 flag does this.
SET

PAGE

SPC
TTL

OPT -W

376

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Operands

Converting HP 64845 Operands

Arithmetic operators and numeric terms in HP 64845 operands do not have to
be changed before they are assembled with the HP B3641 assembler.

The HP 64845 assembler allowed spaces aftemtas in some operanlists
(e.g., lists of symbols in the GLOBAL and EXTERNAL pseudo-op
operands). The HP B3641 assembler will not allow spaces in operand lists.
Any time a space appears in an operand, the remainder of the line is
interpreted as a coment.

Other parts of the operand fields which must be changed are shown below.

HP 64845 HP B3641

[] ()

The HP 64845 assembler syntax requires brackets when
using the indirect address mode operands. These
brackets should be changed to parentheses before
assembling with the HP B3641 assembler.

$ *
Current assembly location counter symbol.

N n o 1A

The HP 64845 assembler allowed three types of string
delimiters. In the HP B364Dbarce file, only the single
qguote () and the caret (*) can be used as string
delimiters. When using the single quote character as a
string delimiter and you wish to include a single quote
as part of the string, use two adjacent single quotes.
The same is true for the caret character.

377

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Operands

Converting Character Constants

Be careful when using character constants as word or longword operands. The
HP 64845 assembler right justifies character constants. The HP B3641
assembler left justifies character constants on word or longword boundaries.
For example:

MOVE.L #A',.DO ; HP 64845 moves $00000041.
; HP B3641 moves $00004100.

Converting Logical Operators

Different symbols are used for logical operators in the HP 64845 assembler.
The HP B3641 equivalents are shown below.

HP 64845 HP B3641
AN. &

Logical AND.
.NT. "

Logical one’s complement.

.OR. !

Logical OR.
SL. <<

Shift left.
.SR. >>

Shift right.

378

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Macros

Converting HP 64845 Macros

There are some fundamental differences between macros in t6434p
assembler and macros in the HP B3641 assembler. The HP 64845 assembler
provides greater flexibty with its conditional macro assembly imactions,

and the capability offered by these conditionatrimstions cannot be

completely duplicated by the HP B3641 assembler. However, other parts of
HP 64845 macros are similar to HP macros.

Macro Headings

Macro headings are the same in both assemblers with one exception: macro
parameters must begin with the ampersand (&) character in tH61845
assembler. The ampersand is a special character in the HP B3641 assembler
and will cause eors if used in macro pameters. The solution to this

problem is: 1) remove the ampersand character in the macro definition line,
and 2) precede the parameter with "&&" in the macro body.

Unique Label Generation

In the HP 64845 assembler, unique local labels are created whenever a macro
is called by using four ampersand charact&&&&) in macro definition

labels. The HP B3641 assembler uses the "\@" characters to accomplish the
same thing. When converting HP 64845 macros, replace evenyewcce of
"&&&&" with "\@" before assembling with the HB3641 assembler.

Be aware that the unique local symbols generated are not the same. For
example, suppose you specify the "LABE&&&" local symbol in a HP

64845 macro definition. Theoanterpart in the HB3641 would be
"LABEL\@". On the first macro call in the HP 64845 assembler, the symbol
created would be "LABEL0001". With the HP B3641 assembler, the first
macro call would create the symbol "??0001".

379

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Macros

Label

Conditional Assembly Within Macros

The HP 64845 assemblprovided for conditional assembly within macros
with four conditional instructions:

SET
AF
.GOTO
.NOP

The "SET" Instruction

The ".SET" conditional instruction in H®4845 macros can be replaced with
the HP B3641 "SET" directive.

The "IF" Conditional Branch Instruction

In the HP 64845 assembler, the "IF"tingtion is a conditional branch
instruction that uses six relational operators:

EQ.
NE.
LT.
GT.
LE.
GE.

The "IF" conditional branch instruction has the following format:

Operation Operand Comment

<exp> .<relational operator>. <exp> label

If the value of the comparison is true, the HP 64845 assembler goes to the
"label" in the macro definition and continues to process the macro definition
instructions from that stament.

While you can set up (in the HP B3641 assembler) a macro definition that
contains a conditional macro call to itself, there is no way for a macro to call
parts of itself. The "IF"instruction cannot be duplicated.

380

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Macros

The "GOTO" Unconditional Branch Instruction

The ".GOTO"unconditional branch instruction cannot be duplicated because
of the same reasons listed above for the ".IF" conditional brantiuatisn.

The "NOP" Instruction

The "NOP"instruction is a no-operation instruction, and the effect is the
same as if the assembler were to begin Bsing the stament immediately
following this instruction. The "NOP"instruction can be used with the "IF"
and ".GOTO" conditional instructions to exit the macro conditionally. While
the HP B3641 assembler does podvide anything similar to the "NOP"
macro instruction, it does provide the MEXIT macro instruction to exit a
macro.

Indexing Parameters

The HP 64845 assemblprovides a way to index pameters in a macro
parametelist by using two ampersands and a macro local symbol (e.g.,
&&SYMB). The macro local symbol SYMB is usually set to equal a number,

or possibly a macro pameter, with the ".SET" insuction. The HB3641
assembler also provides paneter indexing with the "\n" macro operator

(where n = the number of the parameter). Symbols set equal to numbers are
not allowed with the "\n" operator. To convert "&&SYMB" to "\n", you must
backtrack to find the number that SYMB equals and substitute that number
for "n".

381

Converting to HP B3641 Assembly Language
Converting HP 6 4845— Miscellaneous

Converting HP 64845— Miscellaneous

White Space

The HP 64845 assembler sometimes allows white space in lists of operands.
This white space will causerers when assembled with the HBB641
assembler. For example,

EXTERNAL LAB1, LAB2

should be rewritten as:

XREF LAB1,LAB2

White Space in Macro Parameters

In the HP B3641 assembly language, white space delimits an actual macro
parameter, even inside quoted strings. Therefore, strings containing white
space should be surrounded by angle brackets (<, >) as shown in the
following example.

M1 MACRO P1
ENDM
M1 <'TWO WORDS">

382

Converting to HP B3641 Assembly Language
Compatibility with older HP 6 4870 and HP 64874 Files

Note

Compatibility with older HP 64870 and HP 64874
Files

If you have been using an older revision of the HP 64870/B1464
68000/10/20/332 Assembler Linker Librarian or the HP 64874 68030/40
Assember Linker Librarian, you can still useuy old relocatable, library, and
source files with the HB3641. When using older files, there are three areas
for compatibility that must be considered:

* Relocatable and Library Files
» Assembler Source Files

* Linker Command Files

In the following text, the CHIP directive is mentioned several times. Anywhere
the CHIP directive can be used, the OPT P= directive can also be used to
specify the target processor.

Relocatable and Library Files

Relocatable files produced by older versions of the thͦ and

HP 64874 and library filegroduced by the most recent version of the HP
64870 and HP 64874 Librarian are accepted, unchangathatsfiles by the
HP B3641.

The reverse is not always true. Relocatable and library files produced by the
HP B3641 Assembler/Linker/Librarian wilot be accepted by older versions

of the HP 64870 or HP 64874 assemblers if the CHIP directive used when
these files were created is not one that is accepted by the HP 64870 or

HP 64874. (For example, a CHIP 68030 directive used with the HP 64870, or a
CHIP 68020 directive used with the HP 64874.) One of the two followirag e
messages will occur:

FATAL ERROR: (300) Bad IEEE Object Record Module: Part: Header
Position: 0

or
ERROR: (314) Chip inconsistent

383

Converting to HP B3641 Assembly Language
Compatibility with older HP 6 4870 and HP 64874 Files

In addition to the CHIP directive problem, changes in the output module
format (OMF) will prevent the HP B3641 linker from linking output from
versions of the HP 64870 assembler thggport the old OMF.

Assembly Source Files

Assembly files used with the HP 64874 Assembler/Linker/Librarian do not
require CHIP directives to identify the target processor, although if they are
present (and correct), they do not cause an error. If you use these same files
with the HP B3641, and wish to target the 68030 or 6@040essor, you must
include explicit CHIP directives in the files or specify the target processor on
the command line when you invoke the assembler.

384

About this Version

How this version of the assembler differs from previous versions.

385

Chapter F: About this Version

Version 2.01

Version 2.01

PC Platform Support

The assembler is now available for personal computers running MS-DOS.

Re-organized manual

TheUser's GuideandReferencemanuals have been combined and the
chapters have been re-organized a bit.

Version 2.00

Note: These changes may require you to change your linker
command files.

Combined products

The HP B3641 68000 Family Assembler/Linker/Librarian combines the HP
64870 and HP 6487droducts into a single assembler that supports all
Motorola68000 family micoprocessors.

New features: as68k

Byte relocation is now supported.
The operators * and / are now allowed in relocatable expressions.

The assembler now warns when extra operands are detected for assembler
directives.

Passing a string that contains a space as a maampgar no longer
causes improper macro expansion.

386

Chapter F: About this Version
Version 2.00

A label on a odd address and on a line by itself now gets the odd addr
rather than the address of the next even aligned instruction.

Sections may now have an alignment attribute of 1, in addition to
alignments of 2 and 4.

Positional parameters and local macro labalmotbe placed in the label
part of an ENDM (macro terminator) directive. The same effect can be
achieved by placing the label on the line prior to the ENDM directive.

The EQU directive now supports simple forward references (a symbol
with no operands) and allows constant offsets to be added or subtracted
from external symbols.

A coprocessor id field number of 7 is now accepted correctly as an
operand by the FOPT directive.

The IFDEF and IFNDEF directives have been added. These directives
control conditional assembly based on whether a symbol is defined or not
defined.

The syntax of the ORG directive has been extended to allow absolute
sections to be named.

The CHIP directive now accepts additional chip types. The valid chip
types accepted and corresponding instruction sets allowed are as follows:

Input Processor String Instruction Set Allowed
68000 68000
68EC000 68000
68HC000 68000
68HCO001 68000
68008 68000
68010 68010
68302 CPU32
68330 CPU32
68331 CPU32

387

Chapter F: About this Version

Version 2.00
68332 CPU32
68333 CPU32
68340 CPU32
CPU32 CPU32
68020 68020
68EC020 68020
68030 68030
68EC030 68EC030
68040 68040
68EC040 68EC040

The CHIP directive no longer supports an absolute sgwe. Processor
types are processed as strings.

* The behavior of the XDEF and XREF directives has been changed. An
XDEF will override a previous XREF for any symbol that has not already
been defined.

New features: 1d68k

* The symbol table manager has been enhanced. This results in as much as a
30 percent performance increase on large links.

e Static functions and static variables noew appear in the Local Symbol
Table section of the map file.

* The comment character in linker command files has been changed from
an asterisk (*) to a semicolon (;). The asterisk can still be used as a
comment character only if it is placed in column 1. Usage in other than
column 1 causes a collision with the use of * with the MER G Ehoand.

« The command continuation character in linker command files is now the
pound sign (#) instead of the plus sign (+).

» The escape character in linker command files is now a single quote ()
instead of the dash (-).

388

Chapter F: About this Version
Version 2.00

The linker can now link an unlimited number of modules. In previous
versions, exceeding the limit of 500 modules could cause a core dump

The linker now generates an entry for tisection in the MODULE
SUMMARY of the map file.

Section names in the SECTION SUMMARY of the map file are no
longer limited to 8 characters.

The linker will now generate anrer if no modules are loaded.

The LIST and NLIST commandsiivot be sipported in future releases
of the linker.

The LISTMAP command now has an option to set the page length for the
map file listing.

The new LOAD_SYMBOLS command itrsicts the linker to allocate
space for a module, but to only load symbols and debug information from
the module.

The ORDER and SORDER commands now accept a section type
argument.

The PUBLIC linker command now allows PUBLIC sym1= sym2+ offset
syntax.

The new SECTSIZE command can be used to change section sizes at link
time.

The START command Wnow accept a symbol or a value as an argument.

389

Chapter F: About this Version
Version 2.00

390

Index

Index

"in linker command files201
hexadecimal constant pref201

in linker command file203

See alsdocation counter

wild card in linker command file238
_,in HP format files192

A2-A5 relative addressing4 — 71
A2-A5 relative addressing, examp&y
ABSOLUTE loader comman@05 — 206
absolute long modd6
absolute sectiorl86
absolute short modd6
absolute vs. relocatable symbd@g
ADDLIB librarian command273
ADDMOD librarian command274
address format in assembler listid§
address lined88
address mode88 — 49
absolute shortl87
and the 688848
user control of62 — 63
address register indirect modés
with 8-bit displ. & index (68000 modeli4
with 8-bit displ. & index (68020 modeli4
with base displ. & index (68020 modedy
with displacement44
with postincrement43
with predecrement4
address register indirect with displacement aglsirey mode 64
address registers A2-A324 — 225
address roundind91

391

Index

addresses
even and oddl91
odd locations43
addressing modes
68000 model40
68020 model41
68332 model42
addressing modes, operand syntax &2d
advantages of A2-A5 relative addressiég
ALIAS loader command207
ALIGN assembler directived0
ALIGN loader command<208
alignment (section) attributes6
alignment, sectionl88
ALIGNMOD loader command£08
arguments
linker command201
as68k feature
ASCII vs. EBCDIC character strings4
assembler
character se8
constantsl2 — 15
directives 85 — 156
error message289 — 298
introduction 1 — 20
listing format descriptionl8
statements3 — 4
structured control directive$70
symbols9 - 11
assembler listing
hint for debugging addressd91
assembler syntax
rules 50
assembly language
converting HP 648450airce files320 — 322
instructions23
location counter symbol1l
assembly program counter
Sedocation counter(*)
asterisk, librarian command charact264

392

Index

attributes (section)
common vs. noncommoiis
section type77
short vs. long76
attributes, sectiorl87

base addres&89

BASE loader command90, 209

blanks, librarian command fil@65

BREAK directive (loop exit)179

brief format library listing example, descriptidz69

C flag in assembiler listind9
CASE loader command210 — 211
case sensitivity
in linker 201
character constants4
character constants, HP 64845 and HP B3828
character set (assembleB)
CHIP assembler directivel — 92
CHIP loader commandg12 — 213
CLEAR librarian command®75
COMLINE assembler directiv®3
comma, librarian command charact264
command format, linke201
command syntax, libraria@64 — 265
comment field4
comment statemend
comments
librarian command file265
linker command file (;)203
comments, loadeR03
COMMON assembler directiv®4 — 95
COMMON loader comman@14
common sectionl87
common vs. noncommon section attribuf&s
complexrelocatable expressio88 — 84
conditional execution, IF.. THEN...ELSE...ENOIF5 - 176

393

Index

constantsl2 — 15

character14

integer 12

linker command forma01
contents, sectiori88
continuation, loade04
CONTROL register37
converting HP 648450sirce files

conditional assembly within macr@30

logical operators328

macro heading829

macro indexing paramete?31

macros329 — 331

operands327 — 328

pseudo-ops323 — 326
CPAGE loader comman@15
CREATE librarian comman®76
cross reference table forma0

data

in ROM 226 — 228

sharing between sectioris37
DC assembler directiv®6 — 98
DCB assembler directiv®9 — 100
DELETE librarian comman®77
directives

list of 86

ALIGN 90

assembler85 — 156

BREAK (structured control)179

CHIP 91-92

COMLINE 93

COMMON 94 -95

DC 96 -98

DCB 99 -100

DS 101 -102

ELSE (structured syntax} 75— 176

ELSEC 103

END 104

ENDC 105

ENDF 173 -174

394

Index

directives (continued)
ENDI 175-176
ENDM 161
ENDR 106
ENDW (structured syntax178
EQU 107 - 108
FAIL 109
FEQU 110-111
FILE 112
FOPT 113
FOR 173-174
FORMAT 114
IDNT 115
IF (structured syntaxL75 — 176
IF GT 116
IFC 117 - 118
IFDEF 119
IFEQ 116
IFGE 116
IFLE 116
IFLT 116
IFNC 117 - 118
IFNDEF 119
IFNE 116
INCLUDE 120
INTFILE 121
IRP 122
IRPC 123
LIST 124
LLEN 125
LOCAL 165-166
MACRO 159
MASK2 126
MEXIT 167
NAME 127
NEXT (structured control)179
NOFORMAT 114
NOLIST 128
NOOBJ 129
NOPAGE 130

395

Index

directives (continued)
OFFSET131-132
OPT 133 -138
ORG 139 -140
PAGE 141
PLEN 142
REG 143
REPEAT (structured syntax}77
REPT 144
RESTORE 145
SAVE 146
SECT/SECTION147 — 148
SET 149
SPC 150
structured controfl70
TTL 151
UNTIL (structured syntax)L77
WHILE (structured syntax)L78
XCOM 152
XDEF 153
XREF 154 - 156
DIRECTORY librarian comman@®78 — 279
DS assembler directivé01 — 102
dynamically allocated data areas, A2-A5 relative addresSihg

E E flagin assembler listindg9
EBCDIC vs. ASCII character strings4
ELSE directive (structured synta)75— 176
ELSEC assembler directivé03
END assembler directivd04, 116
END librarian command80
END loader comman@17
ENDC assembler directiv&05
ENDF directive (structured syntaX)73 — 174
ENDI directive 175 - 176
ENDM directive 161
ENDR assembler directivé06
ENDW directive (structured syntax)78
EQU assembler directivé07 — 108
ERROR loader commané18

396

Index

error messages

assembler289 — 298

classes316 — 317

formats 315 — 318

interactive vs. non-interactivé18

librarian 266, 309 — 314

loader 299 — 308
even addresse$91
example assembly statemeris- 6
example library listing descriptio269
EXIT librarian command280
EXIT loader command219
expressionsl6 — 17

relocatable83 — 84

structured controfl71 — 172
EXTERN loader commandg20
external symbols81
EXTRACT librarian command81

FAIL assembler directivel09

features of as68I2

FEQU assembler directivé10 — 111

FILE assembler directivd 12

floating-point constant4.3

floating-point coprocessor
registers37

floating-point coprocesso68881) and address modé8

FOPT assembler directivel3

FOR directivel73 - 174

FOR..ENDF bop 173-174

FORMAT assembler directive$14

FORMAT loader comman@21

format of assembler statemerds- 4

formats for error messaged5 — 318

forward defined symbols, code generation €dr

FP data register87

FPCR register37

FPIAR register37

FPSR register37

FULLDIR librarian command282

function codes, not supportetd®0

397

Index

HELP librarian comman®83 — 284

hexadecimal constants in linker commarzfxl

how a librarian works258 — 263

how code is generated for forward defined symigils
hp format absolute files, generating2

HP section typel89

HP Section type attribut&8

IADDR register 37
IDNT assembler directivel15
IF directive
BREAK not allowed179
IF directive (structured syntax}75 — 176
IF.. THEN...ELSE...ENDI conditional executioh75 — 176
IFC assembler directivd17 — 118
IFDEF assembler directivé19
IFEQ assembler directivé16
IFGE assembler directivé16
IFGT assembler directiva16
IFLE assembler directivd 16
IFLT assembler directivel 16
IFNC assembler directiva17 — 118
IFNDEF assembler directivé19
IFNE assembler directiva16
immediate mode48
INCLUDE assembler directivd 20
INCLUDE loader command222 — 223
incremental linking191
INDEX loader command24 — 225
A2-A5 relative addressing5
indirect addr. modes, absolute vs. relocatable expres§éns
initcopy routine 227
INITDATA loader command226 — 228
INITDATA section 226
initdata() routine226
initializing data 226 — 228
instruction operand84
instructions (assembly languag23}
integer constant42
INTFILE assembler directived 21
IRP assembler directivé22
IRPC assembler directivi&23

398

Index

K keywords170

L label field 4
librarian
command characterd64
definition 258
example listing268
features257
introduction 255 - 270
listing format descriptior266
messages and error conce 3t
operation 258
overview 258 — 263
librarian command<71 — 288
ADDLIB 273
ADDMOD 274
CLEAR 275
CREATE 276
DELETE 277
DIRECTORY 278 — 279
END 280
EXIT 280
EXTRACT 281
FULLDIR 282
HELP 283 - 284
LIST 282
OPEN 285
QUIT 280
REPLACE 286
SAVE 287 — 288
librarian error message309 — 314
library listing, brief format exampl€69 — 270
library modules190, 220
linker
See alsdoader
linker/loader
commandsl97 — 254
features185
introduction 183 — 196
linking 81
linking loader
Sedoader

399

Index

LIST assembler directivd 24
LIST librarian command282
LIST loader command&30 — 232
LISTABS loader commandg33
listing of dructured directivesl82
listing format

assemblerl8
listings, loader193 — 196
LISTMAP loader command&34
LLEN assembler directivel 25
load addres489
LOAD loader command235 — 236
LOAD_SYMBOLS loader comman@37
loader

error message299 — 308

functions of 186

listing format descriptionl93 — 196

operation 185
loader command®16

ABSOLUTE 205 - 206

ALIAS 207

ALIGN 208

ALIGNMOD 208

BASE 209

CASE 210-211

CHIP 212 -213

comment203

COMMON 214

continuation204

CPAGE 215

END 217

ERROR 218

EXIT 219

EXTERN 220

FORMAT 221

INCLUDE 222 - 223

INDEX 224 — 225

INITDATA 226 —228

INTFILE 229

LIST 230-232

400

Index

loader commands (continued)
LISTABS 233
LISTMAP 234
LOAD 235-236
LOAD_SYMBOLS 237
MERGE 238 — 239
NAME 240
NLIST 241 —242
NOERROR 218
NOPAGE 243
ORDER 244 - 246
PAGE 247
PUBLIC 248 — 249
RESADD/RESMEM 250 — 251
SECT 252
SECTSIZE 253
SORDER 244 — 246
START 254
WARN 218
loader commands, summafp8
LOCAL directive 165 — 166
location counter (*)11, 75, 82
long section188
loop exit-BREAK directive 179

macro bodyl160
macro call162 — 164
MACRO directive 159
macro headindl59
macro parametercnt 168
macro statemen6
macro terminatorl6l
macros157 — 168
names296
macros, MEXIT 167
MASK?2 assembler directivd26
memory allocation, order 0of89
memory indirect post-indexed mode (68020 modtd)
memory indirect pre-indexed mode (68020 mod&s)
memory space assignmef©89 — 190
MERGE loader comman@38 — 239
message severit§18

401

Index

MEXIT directive 167

MMUSR register35

modes (address), user control&f — 63
module name265

N NAME assembler directived 27
NAME loader command240
NARG assembler reserved symhtd
NARG reserved symbol68
nesting of structured directivek31
NEXT directive (structured controll79
NLIST loader comman®41 — 242
NOERROR loader commang18
NOFORMAT assembler directivekl14
NOLIST assembler directivda28
noncommon sectiorl87
noncommon vs. common section attribufés
NOOBJ assembler directivé29
NOPAGE assembler directivé30
NOPAGE loader comman@43
numeric linker command argumen261

O odd addresse$91
odd memory locations, addressiAg
OFFSET assembler directivE31 — 132
OPEN librarian comman@85
operand field4
operand syntax and addressing mo8&s
operands34
operation field4
operatorsl6 — 17
OPT assembler directivé33 — 138
ORDER loader command89, 244 — 246
order of overlapping section245
ORG assembler directiv&39 — 140
overlapping sections and section ord&h

P PAGE assembler directivé4l
PAGE loader comman@47
page relocationl91
parameter@unt (macros)168
parentheses, librarian command chara@é4
PC memory indirect post-indexed mode (68020 modé&I)

402

Index

PC memory indirect pre-indexed mode (68020 modl)
PC with 8-bit displacement and index mo@8F00 model)46
PC with 8-bit displacement and index mo@8@20 model)47
PC with base displacement and index ma&@RO20 model)47
PC with displacement mod46
PC, contents at execution tind3
PLEN assembler directivé42
plus sign, librarian command charact265
processing order, linker201
program counter symbol

Sedocation counter (*)
program sectiong5 — 80

how the assembler assigBé

other things to knowr9
PUBLIC loader comman®48 — 249

gualifiers 24
QUIT librarian command280

R flag in assembler listind9
REG assembler directivé43
register direct moded3
registers34 — 37

floating-point 37
relocatable expressiorg3 — 84
relocatable sectiorl86
relocatable vs. absolute symb@2
relocation 73 — 84
relocation flags19
relocation typesl9l
REPEAT directive (structured syntag)/7
REPEAT..UNTIL bop 177
REPLACE librarian comman@86
REPT assembler directivé44
RESADD/RESMEM loader commanas0 — 251
reserved symbol$, 10
RESTORE assembler directivist5
return codes’

librarian 266

linker/loader error messagd®3

403

Index

ROM
initializing data from226
ROM, copying data fron226 — 228

S sample test prograr@66 — 267
SAVE assembler directiva46
SAVE librarian command87 — 288
SECT loader comman@s2
SECT/SECTION assembler directivied7 — 148
section attributes
common vs. noncommoiib
how the assembler assigBé
short vs. long76
section types
attributes77
sections75 - 80, 186 — 188
names187
alignment 188
attributes187
contents188
initialized data226
types 189
types of 186
SECTSIZE loader commang53
semicolon, librarian command charact264
semicolon,in linker command file201, 203
SET assembler directivi&49
severity, messag@18
shared data sectiork37
short section187
short vs. long sectior76
SIZEOF
generally17
SORDER loader commani89, 244 — 246
SPC assembler directivis0
SR register35
START loader comman@54
STARTOF
generally17
statement examples — 6
statements, assembl&r— 4
statically allocated data areas, A2-A5 relative addresgbg

404

Index

status registeB7
MMU 35
processor35
structured control expssions171 — 172
structured control statnents169 — 182
structured directivéistings 182
structured directive nesting81
subsectionsl87, 191
symbol names
HP format files192
symbol typesll
symbols
assembler9 — 11
beginning with two question marks
external 81
forward defined, code generation féd
local 165 — 166
location counter (*)11
relocatable vs. absolut@2
reservedl10
valid examples9
syntax for effective address field® — 61

TTL assembler directivedl51
type (section) attribute37

until directive (structured syntax}77
use of special characteg64
user control of address modég — 63

valid symbols, examples ¢f
variants of instruction type83

WARN loader comman®18

warnings, librarian266

WHILE directive (structured syntax}.78
WHILE...ENDW loop 178

XCOM assembler directivd 52
XDEF assembler directivd53
XREF assembler directivé54 — 156

405

Index

406

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met it§ighed
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau'’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or repfaeaducts which

prove to be defective.

Warranty service of this producilibe performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility onpyon HP’s prior
agreement and Buyer shall pay HRIsind trip travel expenses. In all other
cases, products must be returned to a servidéyatesignated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming insructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,

unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fithess for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other custssistance agements
are available for Hewlett-Packard products.

For any assistance, contaouy nearest Hewlett-Packard Sales and Service
Office.

	In this Book
	Contents
	Quick Start Guide
	Getting Started
	Command Syntax

	Reference
	Assembler Introduction
	Instructions and Address Modes
	Relocation
	Assembler Directives
	Macros
	Structured Control Statements
	Linker/Loader Introduction
	Linker/Loader Commands
	Librarian Introduction
	Librarian Commands
	Assembler Error Messages
	Loader Error Messages
	Librarian Error Messages
	Error Message Formats
	Converting to HP B3641 Assembly Language
	About this Version

	Index
	Certification and Warranty

