CUPL" 2.

0)

The Universal Compiler

For

Programmable Logic

QUICK

REFERENCE

GUIDE

COPY TMPL.PLD
INTO
YOUR_FILE_NAME.PLD

Y

EDIT YOUR_FILE_NAME.PLD
TO ADD DESCRIPTIONS
FOR YOUR DESIGN

r__l

RUN CUPL TO PUT YOUR
DESIGN INTO A SPECIFIC -
TARGET DEVICE

EDIT
YOUR_FILE_NAME.PLD

TO CORRECT
ANY ERRORS

A

|

REATE STIMULUS/RESPONSE FUNCTION‘
TABLE IN YOUR_FILE_NAME.SI AND |-t
RUN CSIM (THE SIMULATOR) -

EDIT
YOUR_FILE_NAME S|
TO CORRE!
ANY ERRORS

cT

ANY
SIMULATOR
ERR"ORS

DOWNLOAD TO PROGRAMMER
AND PROGRAM BLANK DEVICE

CUPL and CSIM
INPUT and OUTPUT FILES

(STIMULUS/REPONSE
FUNCTION TABLE)
YOUR_FILE_NAME.SI

(LOGIC SOURCE FILE)
YOUR_FILE_NAME.PLD

TARGET
DEVICE
INFORMATION
CUPL YOUR_FILE_NAME.ABS CSIM
THE > THE
COMPILER SIMULATOR
TARGET
- DEVICE
‘ DATA
LIBRARY L

YOUR_FILE_NAME.SO
(SIMULATOR OUTPUT
WITH ERRORS)

(LIST FILE W/ERRORS)
YOUR_FILE_NAME.LST
P I—

YOUR_FILE_NAME.JED
(JEDEC FILE WITHOUT
TEST VECTORS)

(DOCUMENTATION FILE)
YOUR_FILE_NAME.DOC

P S

YOUR_FILE_NAME .HEX

YOUR_FILE_NAME.JED
(JEDEC FILE WITH
TEST VECTORS)

YOUR_FILE_NAME.HL

Yy v y y

LOGIC PROGRAMMER
(PROM PROGRAMMER)

THE TEMPLATE FILE

Supplied with the CUPL files is a file named TMPL.PLD.
This is a blank template file which you should use to
build your logic source file. Its structure is as follows:

PARTNO <FOR_THIS_FUNCTION>;
NAME <YOUR_FILE_NAME>;
DATE <DATE_OF_LAST_CHANGE>;
REV <CURRENT_REV_NO>;
DESIGNER <YOUR_NAME>;
COMPANY <YOUR COMPANY>;
ASSEMBLY <WHERE_PLD_USED>;
LOCATION <ON_PC_BOARD>;

/****************************/

/* <FILLIN TITLE BLOCK WITH> */

/* <EXPLANATION OF LOGIC FUNCTION> */
[ %% sk sk ok ok koo ok ok ok ok sk ok ok sk okok sk ok ok sk ok /

/* ALLOWABLE TARGET DEVICE TYPES: */
/* <LIST MENU OF DEVICES> */

/%% INPUTS %/

PIN <NUMBER> = <NAME> ;
/#%%<DESCRIPTION>*%/

/%% OQUTPUTS *x*/

PIN <NUMBER> = <NAME> ; .
/#*<DESCRIPTION> 3%/

/%% DECLARATIONS AND INTERMEDIATE
VARIABLE DEFINITIONS *x*/

<INTERMEDIATE_VARIABLE = EXPRESSION>;
<FIELD BIT_FIELD_VAR = [VARIABLE LIST]>;

/#**% LOGIC EQUATIONS s/
<OUTPUT = EXPRESSION>;

RUNNING CUPL

In order to compile a specific logic source file
(YOUR_FILE_NAME.PLD) for a specific target device,
type the following:

CUPL [FLAGS] TARGET_DEVICE_CODE YOUR_FILE_NAME
For example:
CUPL -J -A P16L8 RAMCNTRL

which would compile the logic source file
RAMCNTRL.PLD for a generic PAL16L8 Target Device,
while producing a JEDEC File (YOUR_FILE_NAME.JED)
and an absolute format file (YOUR_FILE_NAME.ABS)
which must be present if the simulator (CSIM) is to be
run later.

This list of Target Device types and their corresponding
device codes can be found in an Appendix of.the manual.

A list of CUPL option flags is presented below:

—J —» Produce YOUR_FILE_NAME.JED, the JEDEC
format downloadable file.

—» Produce YOUR_FILE_NAME.ABS for later
use by CSIM.

—» Automatically run CSIM after running CUPL.

—» Produce YOUR_FILE_NAME.LST with line
numbers and error messages.

— 1 - Produce YOUR_FILE_NAME.HL
downloadable HL format file for IFL..

—» Produce YOUR_FILE_NAME.HEX ‘“*ASCII Hex
Space’’ format file. ‘

—» Produce YOUR_FILE_NAME.DOC with fuse
map file.

—» Produce YOUR_FILE_NAME.DOC with fully
expanded product-terms.

-» Program security fuse.

—» Disable global product-term merging. (FPLA
devices).

— MO0 Perform no logic minimization.

— M1 Perform local logic minimization (default).

— M2 Perform logic minimization until equations fit

in target device.
— M3— Perform full logic minimization.
— D —» Deactivate unused OR-terms (Increases
speed in FLPAs).
— U —» Use specified library for compilation.

—A

-3
—-L

—H
—F
—X

—G
—R

*PAL is a Registered Trademark of Monolithic Memories, Inc.



CUPL SYNTAX

e LOGICAL OPERATORS

& = LOGICAL AND
# = LOGICAL OR
$ = LOGICAL XOR
| =

LOGICAL NEGATION

e FREE FORM COMMENT STRUCTURE:
/% = START COMMENT
*/ = END COMMENT

e VARIABLE EXTENSIONS

VAR.D = EXP; /* D of D FLIP-FLOP */

VAR.J = EXP; /* J of J-K FLIP-FLOP */
VAR.K = EXP; /* K of J-K FLIP-FLOP */
VAR.R = EXP; /*R of R-S FLIP-FLOP*/

VAR.S = EXP; /%S of R-S FLIP-FLOP*/
VAR.AR = EXP; /*ASYNCHRONOUS FF RESET*/
VAR.AP = EXP; /*ASYNCHRONOUS FF PRESET*/
VAR.SR = EXP; /*SYNCHRONOUS FF RESET*/
VAR.SP = EXP; /#SYNCHRONOUS FF PRESET*/
VAR.OE = EXP; /* THREE-STATE ENABLE */

e NODE DECLARATIONS:
NODE VARIABLE_NAME; /*SINGLE NODE, AS WHEN=*/
/*USED FOR *‘COMPLEMENT_ARRAY' "/
/%N IFL DEVICES.*/

NODE [VARIABLE_LIST];

/#MULTIPLE NODES, AS WHEN:*/
/*USED FOR BURIED STATEx*/
/*BITS.*/

o THE DISTRIBUTIVE PROPERTY: (From BOOLEAN
Algebra)
A & (B # C) is replaced by A&B # A&C
(where & operations are performed before # operations)
deMorgan’s Theorem: (From BOOLEAN Algebra)
'(A#B) is replaced by 'A & !B
also
'(A&B) is replaced by 'A # !B
NOTE: This symbology tends to create large numbers of
Product-Terms.

CUPL SYNTAX

e MACRO SUBSTITUTION:
A symbolic name may be arbitrarily created and defined
as in:

MEMREQ = MEMW # MEMR;

where ‘*‘MEMREQ" does not appear as a Pin variable
name.

"*MEMREQ’’ may then be used in expressions for other
variables. Whenever ‘‘MEMREQ’’ is used, the value
“MEMW # MEMR"’ will be substituted.

e THE LIST NOTATION:

Groups of variables may be represented in a shorthand
list notation in any of the following formats:

[A,B,C] as in [MEMR, MEMW, IOR, 10W]

or [XN.z] as in [ADR7..0]
which replaces
[ADR7, ADR6, ADR5, ADR4, ADR3, ADR2, ADR1, ADRO]

e BIT FIELDS

A group of bits may be declared to be equal to a single
symbolic name as in:

FIELD I0ADR = [A7..0];
where afterward, ‘‘|IOADR’’ may be used in expressions.

e EQUALITY AND ADDRESS RANGE:

The *“:"" operator compares a bit field with a hex con-
stant value or list of constant values as in:
|I0ADR:C3

or
I0OADR: [10..3F]

which will be true for addresses in the range of 10 hex .

through 3F hex inclusively.

NOTE: Hex constant values must contain the proper
number of nibbles to include the most significant bit of
the Bit-Field variable list.

Also, the *":""operator may also be used to operate on a
Bit-Field variable list, as in:

IOADR:& — A7 & A6 &AS & A4 & A3 & A2 & AT & AD
IOADR:# — A7 # A6 # A5 # A4 # A3 # A2 # A1 # AO

PALASM-TO-CUPL
LANGUAGE TRANSLATOR

This program will convert logic source files in the
PALASM* Format to the CUPL source file format.

To convert one or more PALASM source files to CUPL for-
mat type:
PTOC FILE_NAME1 FILE_NAMEZ2 ...(RET)
For example:
PTOC BUS_CNTL.ASM (RET)
which would produce the following CUPL format files:

BUS_CNTL.PLD.

and, if the original PALASM file had the ‘‘Function
Table’’ information,

BUS_CNTL.S
THE CUPL PREPROCESSOR

This program operates on the CUPL source file before
compiler operations actually begin. Capabilities include:

String Subsystem:
$DEFINE ARG1 ARG2

where ARG1 is replaced with ARG2 until
SUNDEF ARG1 is encountered.

File Inclusion:
$INCLUDE FILENAME

where the referenced file becomes part of the specifica-
tion at Compile time.

Conditional Compilation:

Portions of the source specification may be compiled or
not depending on whether or not the Argument (ARG)
has been defined using the $DEFINE command. The for-
mats are:

SIFDEF ARG
...STATEMENTS...
SELSE
...STATEMENTS...
SENDIF

or, if not defined:

$IFNDEF ARG
...STATEMENTS...
SELSE
...STATEMENTS. ..
SENDIF 7

“PALASM is a Registered Trademark of Monolithic Memories. Inc.

CSIM: THE SIMULATOR

CSIM is a Stimulus/Response Function Table oriented
simulator which will compare each expected response
with that which the logic in the associated .PLD file
would produce given the specified stimulus.

The simulator input file (YOUR_FILE_NAME.SI) must
contain the same header information as the associated
logic source file (YOUR_FILE_NAME.PLD). Also, CUPL
must have been previously run for the .PLD file with the
—A option flag to produce an absolute file
(YOUR_FILE_NAME.ABS), and also with the —J flag if
you would like CSIM to append the function table Test-
Vector information to your .JED file in order to produce a
.JED file with both fuse and testing information.

The general format for the .Sl file is:

“*HEADER INFORMATION”’

ORDER:
VAR1, VAR2, ..., VARN ;

VECTORS:

STIMULUS PATTERN 1
STIMULUS PATTERN 2

RESPONSE PATTERN 1
RESPONSE PATTERN 2

STIMULUS PATTERN N RESPONSE PATTERN N

Within the Vector Table, inputs are defined with **1”’
(+5V), ‘0"’ (GND) while outputs are defined with *‘H”’
(+5V), "L’ (GND), and **Z"’ (High Impedance). Don’t
cares are represented by X. A *** "’ in the response field
causes the simulator to determine the output according
to the logic definition contained in the .ABS file which
was derived from your .PLD file.

o DIRECTIVES
(Place on any row of vector table)
$MSG 'YOUR_MESSAGE’" ;
SREPEAT n ;
$TRACE n ;
SEXIT ;

To run CSIM, type:
CSIM [FLAGS] TARGET_CODE YOUR_FILE_NAME

e CSIM FLAGS

—J - Produce a .JED file with test vectors.
— L —» Produce a .SO file (simulator output).
—V —» Display simulator output vectors.

— U —» Use specified library for compilation.



