MICROTEK

Development Solutions For Embedd

ed

System Design

wa)sAs juaw d0|)9/\e q (Ja)xo edﬂemc)d

MICROTEK

Development Systems Division

For x86 Processors

SLD™

Source Level Debugger
for the

PowerPack® Emulator

User’s Manual

MICROTEK INTERNATIONAL
Development Tools

Doc. No. 149-001081

Part No. 15055-000

May 1996

Trademark Acknowledgments

PowerPack is a registered trademark and SLD is a trademark of Microtek
International.

IBM, LAN, and OS/2 are trademarks of IBM.

Microsoft is a registered trademark and MS, MS-DOS, and Windows are
trademarks of Microsoft Corporation.

NS486SXF is a trademark of National Semiconductor Corporation

Intel is a registered trademark and Intel386 and Intel486 are trademarks of
Intel Corporation.

PC-NFS is a registered trademark of Sun Microsystems.

©1992, 1994, 1995, 1996 MICROTEK INTERNATIONAL
All Rights Reserved
Printed in the U.S.A

The material in this manual is subject to change without notice. Microtek International assumes no
responsibility for errors that may appear in this manual. Microtek makes no commitment to update,
nor to keep current, the information contained in this manual. The software described in this
manual is furnished under a license or nondisclosure agreement, and may be used or copied only in
accordance with the terms of the agreement. No part of this manual may be reproduced or
transmitted in any form or by any means without the express written permission of Microtek.

MICROTEK INTERNATIONAL

Development Systems Division 6, Industry East Road 3
3300 N.W. 211th Terrace Science-based Industry Park
Hillsboro, OR 97124-7136 Hsinchu 30077

USA Taiwan, ROC

Tel: (503) 645-7333 Tel: +886 35 772155

Fax: (503) 629-8460 Fax: +886 35 772598

Email: info@microtekintl.com = Email: easupport@adaral.adara.com.tw
‘Web: http://www.microtekintl.com

Contents

Getting Started 1
Documentation 1
How to Contact Microtek 3
Host System Requirements and Recommendations 3

Defining the Debug Environment

5
Creating a Loadfile 5
Starting and Ending an Emulator Session 5
Selecting a COM Port and Baud Rate 7
Co-ordinating Inte1386 Emulator and Target CPUs 7

8

Starting a Log File
Mapping and Initializing Memory 9
Loading a Loadfile 11
Symbolic Addresses 14
Enabling Memory Access 16
Using a Script 17
Leveraging Previous Emulation Sessions 18
Keyboard Shortcuts 18
Example: Enabling Inte]1386 EX Expanded Memory 19
Debugging in Source and Stack 21
Viewing Source 21
Managing Breakpoints 23
Starting and Stopping Emulation 27
Examining Source After Emulating 29
Scrolling Trace With Source 29
Examining and Editing Variables 30
Monitoring the Stack 31
Configuring the Stack Window 32
Setting the Stack Base Address and Size 34

SLD User's Manual iii Contents

Debugging in Registers and Memory 37
Viewing and Modifying the CPU Registers 37

Editing the CPU Registers 37

Resetting the CPU Registers 38

Resetting the Target Board 38

Enabling the Target Signals 38

Viewing and Modifying Memory 39

Changing the Memory Window Display 40

Changing the Memory Contents 41

Viewing and Modifying the Internal Peripheral Registers 42

Changing the Peripheral Window Display 43

Changing the Peripheral Register Values 44

Debugging With Triggers and Trace 47
Controlling Trace Collection 47

Automating Trace Capture 47

Formatting Trace Capture 51

Specifying Trigger Conditions 53

Chaining Trigger Conditions 54

Chaining Emulators 57

Defining Events 57

Viewing the Collected Trace 60

Examples of Triggering 61

powerpak.ini File Reference 67
Toolbar Reference 83
Toolbar Menus 83

File Menu 83

Configure Menu 84

Layout Menu 85

Toolbar Buttons 85

Map Dialog Boxes 87

Map Dialog Box Buttons 88

Map Dialog Box Fields 88

Load Dialog Boxes 89

Contents iv SLD User's Manual

Shell Window Reference 93
Shell Window Contents 93

Shell Window Menus 93

File Menu 94

Edit Menu 94

View Menu 95

Options Menu 95

Entering Commands in the Shell Window 96

Shell Window Commands 97

Notational Conventions 97

Commands and System Variables Grouped by Function 98

Command Dictionary 105

Source Window Reference 155
Source Window Contents 155

Source Window Menus 155

File Menu 156

Edit Menu 157

View Menu 159

Run Menu 159

Breakpoints Menu 161

Options Menu 162

Source Window Buttons 165

Function Popup Menu 166

Variable Popup Menu 167

Variable Window Reference 169
Variable Window Contents 169

Variable Window Menus 170

Edit Menu 170

View Menu 171

Variable Menu 171

Breakpoint Window Reference 173
Breakpoint Window Contents 173

Breakpoint Window Menus 173

File Menu 174

Breakpoints Menu 174

Breakpoint Window Buttons 175

SLD User's Manual v

Contents

Stack Window Reference 177
Stack Window Contents 177

Stack Window Menus 178

File Menu 178

Options Menu 178

CPU Window Reference 181
CPU Window Contents 181

Options Menu 182

Memory Window Reference 183
Memory Window Menus 183

Memory Window Menus 183

Edit Menu 184

View Menu 185

Options Menu 186

Single-Line Assembler Dialog Box 187

Peripheral Window Reference 189
Peripheral Window Contents 189

Peripheral Window Menus 189

Edit Menu 190

View Menu 191

Register Edit Dialog Boxes 191

Trace Window Reference 193
Trace Window Contents 193

Trace Window Menus 194

File Menu 194

Edit Menu 195

View Menu 195

Trace Menu 196

Timestamp Menu 198

Goto Menu 199

Contents

SLD User's Manual

Event Window Reference 201
Event Window Contents 201

Event Window Menus 202

File Menu 202

Edit Menu 202

Trigger Window Reference 205
Trigger Window Contents 205

Condition Fields 206

Action Fields 207

Trigger Window Menus 208

Edit Menu 209

Options Menu 209

Level Menu 210

SLD User's Manual

vii

Contents

Contents Viii SLD User's Manual

Getting Started

The term “PowerPack emulator” refers to any PowerPack® in-circuit emulator for embedded
system development. The terms “PP”, “SW”, and “EA” refer to the PowerPack PP, SW, and
EA emulators respectively. The terms “SLD software”, “emulator interface”, and “debugger
software” refer to the SLD™ source-level debugger.

This chapter describes the emulator and debugger documentation, host system requirements,
and how to contact Microtek International for information and technical support.

Documentation

The following describes the printed and on-line documentation
resources for the PowerPack emulators. The manuals in your emulator
package are the SLD™ Source-Level Debugger User’s Manual
(referred to as the User’s Manual) and either the PowerPack® EA/SW
In-Circuit Emulator Hardware Reference, the PowerPack® EA-NS486
In-Circuit Emulator Hardware Reference, or the PowerPack® PP In-
Circuit Emulator Hardware Reference (each referred to as the
Hardware Reference and formerly known as the Up & Running).
Other, related publications described at the end of this list are not
included in your emulator package.

Resource Chapter

Hardware Getting Started

Reference Software Installation
Hardware Installation
Tutorial
Target Hardware

User’s Manual Getting Started

How to... Defining the Debug
Environment
Debugging in Source

SLD User's Manual

Contents
Parts, features, documentation, support

Configuring your PC or workstation;
installing the SLD software

Installing the PowerPack hardware; running
the confidence tests

Practicing basic emulator tasks
SAST board schematics; signals
Host sytem requirements; contacting Microtek

Creating a loadfile; starting and exiting the
SLD software; configuring memory and
registers; using an initialization file

Viewing source code, disassembly, and stack;
editing variables; controlling emulation

Getting Started

Reference

PowerPack

SLD Help
For help on using
online help, choose
How to Use Help from
any SLD Help menu or
press <F1> twice.

Related
Publications

Getting Started

Debugging in
Registers and
Memory

Debugging with
Triggers and Trace

powerpak.ini File
Toolbar

Shell Window
Source Window
Variable Window
Breakpoint Window
CPU Window
Stack Window
Memory Window
Peripheral Window
Trace Window
Event Window

Trigger Window

Accessing CPU and peripheral signals and
numeric or disassembled memory contents

Emulation and trace control using triggers;
numeric and symbolic address formats

powerpak.ini file contents

Toolbar controls

Shell window contents, controls, commands
Source window contents, controls
Variable window contents, controls
Breakpoint window contents, controls
CPU window contents, controls

Stack window contents, controls
Memory window contents, controls
Peripheral window contents, controls
Trace window contents, controls
Event window contents, controls

Trigger window contents, controls

Whether or not the emulator is active, you can invoke the SLD online
help from within Windows. Choose the SLD Help icon (shown at left).
SLD online help conforms to the standard Windows help interface, as
described in your Microsoft Windows documentation.

For help from within the SLD software, choose a Help menu item; or,
press <F1> at any time. In most SLD dialog and message boxes, you
can choose a Help button for context-sensitive help. In the Shell
window, you can list Shell command syntax with a Help command.

Topic

‘Windows 3.1; Windows 95;

Resource

Microsoft documentation

Windows for Workgroups 3.11

Your target processor

Your toolchain and loadfile

format

C++ name mangling

Your chip vendor documentation

Your compiler, assembler, linker,
and converter documentation

The Annotated C++ Reference
Manual, Margaret Ellis and Bjarne
Stroustrup (Addison-Wesley, 1990)

2 SLD User's Manual

How to Contact Microtek

To register for technical support and ongoing product information,
complete and mail the registration card enclosed with the emulator.

Contact Microtek/DSD to purchase an Extended System Warranty
(ESW). An ESW provides firmware, software, and hardware updates
and priority service, in addition to repairs.

As a Microtek customer, you can contact Microtek technical support for
help with an emulator problem during your warranty period. The email
and fax lines are operational 24 hours a day, 7 days a week.

Internet email csupport@ microtekintl.com (technical support)
info @ microtekintl.com (other information)

World Wide Web http:\\www.microtekintl.com (product news)
Microtek/DSD, (503) 645-7333 voice; (503) 629-8460 fax

Western USA (voice contact available Monday through Friday,
8:00 am to 5:00 pm USA Pacific Time)
Microtek, (610) 783-6366 voice; (610) 783-6360 fax
Eastern USA (voice contact available Monday through Friday,
8:00 am to 5:00 pm USA Eastern Time)
Microtek, +886-35-77-2155 voice; +886-35-77-2598 fax

Hsinchu, Taiwan (voice contact available Monday through Friday,
8:00 am to 5:00 pm Taiwan Time)

Adara +886-2-501-6699 voice; +886-2-505-0137 fax
International, (voice contact available Monday through Friday,
Taipei, Taiwan 8:00 am to 5:00 pm Taiwan Time)

Before you call, please read the PowerPack® Emulator Problem Report
Form in the SLD on-line help.

When you call, please be at your computer with the SLD software
running and have the emulator documentation and filled-out problem
report form (printable from the on-line help) nearby.

Host System Requirements and Recommendations

SLD User's Manual

e An Intel486 or Pentium processor based or 100% compatible PC

e Windows 95; or, MS-DOS 5.0 or 6.x with Windows 3.1 or
Windows for Workgroups 3.11 running in 386-enhanced mode

e Atleast 8M bytes of RAM

3 Getting Started

Getting Started

At least 8M bytes of free memory after you have loaded your
Windows interface and any other applications besides the SLD
software.

At least SM bytes of available disk space

A VGA or Super VGA graphics card and color monitor (a graphics
accelerator card recommended to boost performance; a monitor
capable of at least 800x600 operation recommended)

A mouse

A serial port for connection to the emulator (16550 UART
recommended for operation at 57.6K baud and above)

At least 4M bytes for a swap file (permanent swap file
recommended, with a disk cache such as smartdrive for improved
Windows performance)

Config.sys entries of at least Files=30 and Buffers=30

4 SLD User's Manual

Defining the Debug Environment

This chapter describes how to:

e Create a loadfile for symbolic debugging and emulation.

e Invoke and exit the SLD software.

o Configure the emulator for your target processor and your personal working style.

e Create and run command scripts, including an automatic command script.

Creating a Loadfile

To debug at the source level (with source code and symbolic names),
you must retain symbolic debugging information in your loadfile. Use
compiler, assembler, and linker switches to suppress optimization and
to add symbolic information. See your toolchain documentation.

Be sure your loadfile is in OMF86 or OMF386. Most x86 toolchains
can generate the appropriate format. Contact your toolchain vendor for
specific information.

- The emulators and debuggers are not guaranteed to work correctly
Toolchain with unsupported toolchains.

CAUTION

For information on toolchain options, see the Hardware Reference and
the readme.txt file.

Starting and Ending an Emulator Session

Turn on the emulator before turning on your target system. Power
Power must be applied and removed in the correct sequence. Failure to
CAUTION follow this sequence will severely damage your target system and the
emulator. Turn power on in the following sequence:

1. Apply power to the emulator.
2. Apply power to the target system.

Once the software is installed on your host computer, the firmware is
- loaded into your emulator, and your target system and the emulator are
PowerPack powered-on, start an emulation session from the PowerPack SLD icon
SLD (shown at left). The first time you invoke the SLD software after
installation, a series of dialog boxes require initial information.

SLD User's Manual 5 Defining the Debug Environment

The Toolbar is the first SLD window to appear and must remain open.
Closing the Toolbar exits the SLD software. Minimizing the Toolbar
hides any other open (including minimized) SLD windows; restoring
the Toolbar redisplays (with the same screen layout) those SLD
windows.

Toolbar buttons and menus provide quick access to the most frequently
used commands and windows. Grayed-out buttons indicate features
unavailable for a particular processor or emulator configuration.

Toolbar: the SLD
software’s main control File

PowerPack SLD Toolbar

Configure Layout Windows Help
panel Setup Target Emulation Trace Misc

Before starting emulation, initialize the emulator for the modules you
are debugging and arrange the desktop for your own convenience. Such
preliminary tasks can include:

e Start a record of your Shell window activities.
e Map memory and specify some loading options.
e Enable display updates to occur during emulation.

e Enable signals and specify initial CPU and peripheral register
values.

You can do many of these tasks with the SLD menus and buttons, from
the Shell window command line, or from a script (an ASCII file of
Shell commands) in the Shell window. You may also need to edit
powerpak.ini with a text editor.

To end an emulator session, do one of:

e Choose the Exit command from the file menu on the Toolbar.

e Double-click the system box in the upper left corner of the Toolbar.
e With focus on the Toolbar, press <Alt><F4>.

Turn off your target system before turning off the emulator. Power
Power must be applied and removed in the correct sequence. Failure to
CAUTION Sollow this sequence will severely damage your target system and the
emulator. Turn power off in the following sequence:

1. Remove power from the target system.

2. Remove power from the emulator.

Defining the Debug Environment 6 SLD User's Manual

Selecting a COM Port and Baud Rate

Select COM Port
dialog box for serial
communication
between your PC and
emulator

Select Baud Rate
dialog box for
communication
between your PC and
emulator

If your emulator is connected to your host PC via RS-232C serial
communications and you are starting the SLD software for the first time
since installation, you must specify the COM port and baud rate used
for communication between your host system and the emulator. Your
choices are saved in powerpak.ini. In the Select COM Port dialog box,
choose the appropriate serial port and choose Connect.

I Select COM Port l

Cancel

In the Select Baud Rate dialog box, choose the appropriate baud rate.
On some host systems, baud rates above 57600 can require a special
Windows driver.

I Select Baud Rate I

Baud Rate
19200
O 38400
@ 57600
O 115200

Co-ordinating Intel386 Emulator and Target CPUs

CPU Configuration
dialog box for co-
ordinating the
emulator’s bondout
processor with your
target processor

SLD User's Manual

For an Intel386 emulator, a CPU Configuration dialog box appears the
first time you start the SLD software. (If you first see a message box
asking you to remove a jumper, ensure there is no jumper on TP1.)

CPU Configuration

Emulator CPU: Target CPU:

Boscnsor DNETCRNT

7 Defining the Debug Environment

In the Target CPU field, select the processor in your target design. In
the Emulator CPU field, select the stepping of the bondout processor in
the emulator probe head. To discover the stepping, look for the part
number (FPO) on the chip. Production FPOs are 8 digits followed by a
change indicator. Pre-production and obsolete parts use a 5-digit code
starting with Q.

CPU Step Production FPO Pre-production FPO
386EX A XA or xB Q8492

B xD Q7949

C Q8042
386CX or SX A xA Q8307

B xB Q8543

Starting a Log File

Sequence of Shell
commands for logging

A logfile records all that appears in the Transcript pane of the Shell
window. The following sample sequence sets up the Transcript pane
and opens a log file to record Shell commands and results.

Echo On; // Commands you enter appear
// in the Transcript pane.

Results On; // Results of the commands appear
// in the Transcript pane.

DasmSym On; // Disassembly in the Transcript
// pane uses symbol names.

Log “emu1.log”; // The log filename is emu1.log.
Overwrite; // Each time you start logging overwrites any prior
//'logging. The opposite command is Append

Logging On; // Start writing to emu1.log. The date and time
// are recorded when you start and stop logging.

Version; // Display and log version information for
// the emulator, DOS, and Windows.

/... /I Your emulation session activities...
Logging Off; // Stop writing to emu1.log.

You can do some of the above commands in the Shell window menus
¢ To echo commands, toggle the View menu Echo Command item.

e For results display, toggle the View menu Show Results item.

Defining the Debug Environment 8 SLD User's Manual

Shell window View
menu with Echo
Command and Show
Results enabled

Shell window Options
menu with Log Results
disabled (logging is
stopped) and
Overwrite Log File
enabled

¥ Echo Command

Y Show Results

Clear Transcript

e To specify whether to overwrite or append new information to an
existing log file, choose the Options menu Overwrite Log File item
or Append To Log File item.

e To specify the log filename, fill-in the Options menu Log File
Name dialog box.

e To start or stop logging, toggle the Options menu Log Results item.

The next time you start logging, the new log overwrites any previously
logged information, destroying the logfile’s previous contents.

Log Results
Log File Name...

Append To Log File
¥ Overwrite Log File

Set History Size...

Set Transcript Size...

Mapping and Initializing Memory

Map dialog box with
128K bytes of overlay
memory mapped for
RAM (unrestricted
read and write) access

SLD User's Manual

This section applies to emulator configurations with overlay memory.

Before loading your code or symbols, you must map memory. You can
use a memory map saved previously or specify a new configuration.

Open the Map dialog box from the Toolbar either with the Map button
or by choosing the Configure menu Map item. The following shows a
Map dialog box with 8K bytes mapped.

= Map
Size (KB) Type
Overlay RAM

Start Addr
0x00000000

End Addr
0x0001FFFF

Access Space

128

[Add “ Edit H Delete | | Save HBestore' | Close ” Help ‘

The Map dialog box lists any already configured sections of memory.
Use the buttons along the bottom of the Map dialog box to:

Add Configure a new section of memory.

9 Defining the Debug Environment

Edit Reconfigure the selected section. Use the mouse or arrow
keys to select from the list in the dialog box.

Delete Revert the selected section to unconfigured memory.

Save Save to a map file the memory configuration listed in the
dialog box.

Restore Configure memory from a previously saved map file.
The Add and Edit buttons pop-up a dialog box to specify regions as:

o for PP-386 and SW-386 emulators, any multiple of 4K bytes
starting on any 4K address

¢ for EA-486 emulators, any multiple of 128K bytes starting on any
128K address

e for EA-NS486 emulators, any multiple of 64K bytes starting on any
64K address

You can specify the size either as a hexadecimal number of bytes with
the Length button selected or by a hexadecimal ending address with the
End Addr button selected.

The Add and Edit dialog boxes also provide mapping options, with
inapplicable options greyed-out depending on the target processor:

e overlay or target memory, as listed in the Map dialog box Type
column

e for 386 EX, 386 CX, and Intel486 SLE processors, User or SMM
space, as listed in the Map dialog box Space column

e how the emulator treats memory accesses, as listed in the Map
dialog box Access column:

RAM allows reads and writes without breaking.

ROM allows reads; disallows writes; an attempted write

break causes a break. For 386 and Intel486 emulators with
memory mapped to Target, writes are allowed but break
emulation. This option is unavailable for EA-NS486
emulators.

ROM allows reads; disallows writes; does not break on any

nobreak access. For 386 and Intel486 emulators with memory
mapped to Target, ROM nobreak is the same as RAM;
that is, writes are allowed and do not break emulation.

NONE disallows reads and writes; breaks on any access. For
386 and Intel486 emulators with memory mapped to
Target, accesses are allowed but break emulation. This
option is unavailable for EA-NS486 emulators.

Defining the Debug Environment 10 SLD User's Manual

Edit dialog box,
accessed from the
Map dialog box Edit
button; similar to the
Add dialog box
popped-up from the
Map dialog box Add
button

Mapping: Shell
command sequence

sataddc B [P [overay [
LengthiEnd Addr————— Accessi[PAM 4]
® th: —_—
® Length 0x2000 g Spce Mode
 End Addr: User [1SMM
| oK I | Cancel I | Help |

You can also use the Shell window to map memory. The following
sample sequence of commands prepares a 386 emulator and memory for
loading code or symbols:

Map Clear; // Maps all memory to target, removing
// any existing map configuration.
RestoreMap “emui.map”; /l Maps memory from a map saved

// previously. emu1.map contains
// the line: map 0x0 Oxffff ram.

Map 0x10000 RomBrk; // emu1.map maps only part of memory,
// not including the 4K-byte block starting

// at address 0x10000. This Map command

// configures memory from 0x10000 to 0x10fff

// as ROM and specifies that any attempt to

/l access this space will break emulation.

Loading a Loadfile

Loading: Shell
command sequence

SLD User's Manual

Once memory is configured, you can load the file to be debugged. The
PowerPack emulators support OMF86 and OMF386 loadfile formats.

For loadfiles generated with the Borland C compiler, before loading
enter MaxBitFieldSize 16 on the Shell command line.

You can load a file during emulation. Be sure the file’s load addresses
do not overlap the memory occupied by the running program. Loading
a file at a location in use stops the emulator in an unpredictable state.

The following sample sequence of commands loads code and symbols:

Loadsize Long; /Il (default) The loadfile is written to memory
// in double-word accesses, which is the
// fastest way to load code.

Load “myfile.obx” code symbols nhodemand nowarn status;
// Load code and symbols from the myfile.obx loadfile.

11 Defining the Debug Environment

Source window File
menu showing the two
most recently used
loadfiles

Load dialog box,
accessed from the
Toolbar Load button

You can do the above operations using various SLD window menus.

To load code and symbols, open the Load dialog box with the Toolbar
Load button or with the Source window File menu Load File item. To
reload one of the last four files loaded, you can choose a Source window
File menu loadfile pathname. The pathnames are added to the bottom
of the File menu as you load files.

Load Code...
Load Information...

Browse Modules...
Previous Browsed Module
Next Browsed Module

Exit
1..ERPAK\SAMP386\DEM0386.0MF

2..POWERPAKISAMP386\DEMO.OMF

In the Load dialog box, the name of the previous file that was loaded is
automatically filled-in. Or, you can browse the directory and file lists to
specify a different loadfile.

File Name: Directories:
demo386.omf l c\powerpakisamp386
demo.omf 4+ =\ Py
| demo386.omf | = powerpak]

B sampt

g

List Files of Type: Drives:
[OMFx86 Files(“OMF) [#| [= c ms-dos_62 [4]

Before choosing the OK button to load the file, you can choose the
Options button in the Load dialog box to open the Load Options dialog
box. The loadfile format (OMF86 or OMF386) and the target processor
determine what options are available; some options may be missing or
greyed-out on your emulator. If you have already loaded a file, the
options you specified previously are preserved.

Defining the Debug Environment 12 SLD User's Manual

Load Options dialog
box, with options for
loading an OMF386
loadfile into a 386 EX
emulator, popped-up
from the Load dialog
box Options button

SLD User's Manual

= Load Options

& Load Code

Load Symbols
D On Demand Symbol Loading
O Demangle C++ Names
O Update Symbol Bases

[JLoad Initial Register Values
X Report Status
| Report Warnings

I oK | l Cancel [[Help I

Be sure the space option (User or SMM) you select is compatible with
the address space you configured in the Map dialog box. This option is
applied to where the code is loaded.

You can load code, symbols, or both from any loadfile. For example,
load only code if symbols are already loaded; load only symbols for
debugging ROM code. To load code, check the Load Code box. To
load symbols, check the Load Symbols box and any combination of
boxes under Load Symbols:

On-demand symbol loading defers loading local symbol and line-
number information for each module until it is needed; i.e. until
either the module is displayed in the Source window or a
breakpoint is set in the module. Advantages of on-demand symbol
loading include faster initial loading, faster lookup for the symbols
that are demanded, and less memory occupied by the loaded file
because only the fewest required symbols are loaded.

For C++ code containing virtual functions, overloaded functions,
and some other symbol types, the emulator can demangle the first
instance of each such symbol. Subsequent instances remain
mangled in the emulator symbol table rather than duplicated, so
you can access all symbols in your program. However, the names
do not appear mangled in your source. The warning message C++
duplicate name detected alerts you to the presence of mangled
names.

OMF386 symbol server base addresses can be updated in
conjunction with register initialization.

OMF386 startup code or linker directives can initialize the processor
registers.

13 Defining the Debug Environment

You can request or suppress information about the load process and
results. For a dynamic report of the loading process, check Report
Status. In the Load Complete dialog box, a bar graph fills to indicate
the percent loading complete; loading statistics are updated
continuously during the load process. To review the load information
after closing the Load Complete dialog box, open the Source window
File menu Load Information dialog box.

Load Complete dialog -
box, similar to the Load
Informaton dialog box, Loadfile: C:\POWERPAK\SAMP386\DEMD_OMF
showing the results of Module:
loading an OMF86
loadfile |
Bytes: 886 Lines: 213
Modules: 3
Symbols: 96 PC: 0200:01A0
Types: 333 Stack Base: 0026:1000
Functions: 5 Stack Size: 0x1000
[ox] (8]
Suppress warning messages during loading by un-checking Report
Warnings.
Symbolic Addresses

Any program symbol, interpreted as a symbolic <segment>:<offset>,
is a virtual address. You can reference a symbol in a command, dialog
box, or expression. Simplify such references by taking advantage of
how the emulator resolves names. For example, for a symbol in the
current module, you need not specify the module and function.

The loader creates a symbol table with the names of all modules,
functions, variables, and line numbers in the loadfile. The symbol
information is hierarchical, with each symbol representing a range of
addresses that can contain other symbols. At the top of the hierarchy
are modules, public labels, and public variables. The subsequent levels
are:

Modules contain functions, static variables, and line and column
numbers.

Functions contain parameters, local variables, static variables, line
numbers, and blocks.

Blocks are handled as unnamed functions. Nested blocks can
contain local and static variables defined in scope.

Defining the Debug Environment 14 SLD User's Manual

One-name symbols

SLD User's Manual

Using this symbol hierarchy, you can uniquely specify any symbol.
Fully qualified symbols have one, two, or three alphanumeric names

begi

nning with #. Partly qualified symbols default to the current

module and function, that is, the scope of the current program counter.

1.

2.
3.
4

Look up the symbol at the lowest level of the hierarchy.
If no match is found, look up the symbol at the next level.
If no match is found, look up the symbol at the global level.

If no match is found, the symbol name does not exist. Return a
symbol-not-found error.

To find the address of a symbol with one name:

If the module and function are defined by the context, look up the
name as a variable within the scope of the function.

If the module but not the function is defined by the current context
(for example, you have stepped from the module into a called
assembly routine), look up the name within the scope of the
module.

If no module or function is defined by the current context, look up
the name as a module, public variable, or label.

If the name is a number, look up the number as a module name or
as a line number within the current module.

#module1 Returns the beginning address of modulel.

#function1 For a function in the current module, returns the address.

#va

#55

Otherwise, returns the address of a function in the global
table. (Only static functions are not in the global table.)

riable1 Returns the address of a global or public variable or of a
variable inside a nested block, function, or module.

Returns the address of line 55 in the current module.

To find the address of a symbol with two names:

If a module is defined by the current context, look up the first name
as a function contained within the module. Otherwise, look up the
first name as a module, then as a global function.

If the module and function are defined by the context, look up the
second name as a variable within the scope of the function.

If the module but not the function is defined by the current context
(for example, you have stepped from the module into a called
assembly routine), look up the second name as a variable within the
scope of the module.

15 Defining the Debug Environment

Two-name symbols

Three-name symbols

If no module or function is defined by the current context, look up
the second name as public variable or label.

If the first name is a number, look up the first name as a module

name or as a line number within the current module. If the second
name is a number, look up the second name as a line number if the
first name is a module or function, otherwise as a column number.

#55#15 Returns the address in the current module on line

55, column 15.

#module1#100 Returns the address of line 100 in module1.
#modulei#func1 Returns the address of func1 in modulei.

#modulel1#var1l Returns the address of var1 in module1.

#func1#tvari Returns the address of func1 in the current

module. Or, if funci is global, returns the
address of var1 in the scope of func1.

To find symbolic variables with three names:

The first name must be a module. The second and third names can
be line and column numbers in the module; or, the second can be a
function in the module while the third is a variable or line number
in the second’s scope.

If the third name is a variable it is first looked up within the
module and function context. If not found, it is looked up as a
global variable or label. A globle symbol's address is returned even
if outside the scope of the module identified by the first name.

#mod1#25#1 Returns the address of module mod1,

column 1, line 25.

#mod1#func1#100 Returns the address of module mod1, line

100.

#mod1#funci#vari Returns the address of module mod1,

function func1, variable var1.

To display line numbers in the Source window, open the View menu
and check Line Number. In the Shell window, you can list all line-
number records for the current module with displaySymbols lines.

Some line numbers are comment lines and have no compiled code.

Enabling Memory Access

You can access memory during emulation, to read or write the current
values in target memory and on-chip peripheral registers (but not CPU

Defining the Debug Environment 16 SLD User's Manual

registers). Such reads and writes take a small, additional amount of
processor time and can thus affect your program’s performance.
Memory access is initially disabled and must be enabled if, for example,
you want to refresh the Memory or Peripheral window during
emulation. To enable memory access, either:

e On the Shell command line, enter RunAccess On.
e Enable (check) the Toolbar Configure menu Run Access item.

Run Access does not allow CPU register access. The CPU registers
cannot be accessed during emulation; their display is updated only
when emulation halts.

Using a Script

Shell window after the
include.me sample
initialization script has
run, with an Include
command to run
custom.inc ready to be
entered on the Shell
window command line

SLD User's Manual

A script is a text file of Shell commands. To run a script, use the
Include Shell command or the Shell window File menu Include File
dialog box. You can put an Include command in a script.

In the powerpak.ini file [InitScript] section, you can specify a script to
run automatically at SLD initialization. Edit the script = line in
powerpak.ini. For example, script = c:\sld\user\myscript. If you
specify no pathname (for example, script = myscript), be sure your
script is in the directory with the SLD software.

File Edit View Options
include "“include.me";
/7 -
// Here is an example of a start up script:

Windows Help

/7

// version; // get version information about
// alias “ver" ‘wversion"; // example of aliasing a command
f// map 8 FfEFFfp; // set up overlay memory map

r

/7 This file, include.me, is run each time PowerUieuws
// 1is brought up. Edit this file with commands teo set
// up your environment. The [InitScript] section of
// the file pwrviews.ini {(in your Windows directory)
// can be edited to eliminate this feature or to

// change the name of the initial script file.

include *‘custem.inc";|

17 Defining the Debug Environment

Leveraging Previous Emulation Sessions

You can shorten your setup time in subsequent emulation sessions by
saving map, chip select, event, and log files.

You can save the map information to a file. In the Shell window enter
a MapSave command, specifying a path and filename; or, fill-in the
Map dialog box Save button dialog box. Later, you can restore the
saved map with a Shell window MapRestore command or the Map
dialog box Restore button.

You can save chip select information. In the Shell window enter the
SaveCS command, specifying a path and filename; or, fill-in the
Toolbar Configure menu Save Chip Selects dialog box. Later, you can
restore the saved registers with the Shell window RestoreCS command
or the Toolbar Configure menu Restore Chip Selects item. See the
Hardware Reference for a list of the registers saved for each processor.

You can save event definitions. In the Shell window enter an
EventSave command, specifying a path and filename; or, fill-in the
Event window File menu Events As dialog box. Later, you can restore
the saved events with the Shell window EventRestore command or the
Event window File menu Restore Events item.

Instead of retyping command sequences, you can save the sequence to
be made into a script that you can run with an Include command or
automatically as the initialization script. During an early emulation
session, even if you usually use the menus, open a log file and record
lengthy or frequently repeated tasks by entering the commands in the
Shell window. Edit the log file with a text editor, creating a script to be
run in future emulation sessions. By logging an emulation session, you
can test and record error-free command sequences.

Keyboard Shortcuts
You can use function keys instead of commands or menu items:
F1 Open a window for SLD on-line help.
F2 Halt emulation.
F3 Start trace.
F4 Stop trace.
F5 Set focus to the Toolbar window.
Fo6 Set focus to the next open SLD window.
F7 Step Into.

Defining the Debug Environment 18 SLD User's Manual

F8 Step Over.
F9 Start emulation (Go)

F10 Activate the menu bar for keyboard use.

Example: Enabling Intel386 EX Expanded Memory

You can read and write any peripheral register by editing the field
values in the Peripheral window or by entering Dump, Fill, and Write
commands on the Shell window command line.

To access some of the peripheral registers with the Shell commands,
you must first enable expanded I/O space. Once expanded I/O space is
enabled, you can use both the Peripheral window and the Shell
command line to access many peripheral registers.

‘When expanded I/O space is disabled, the affected registers appear in
the Peripheral window with question marks (?) in their address fields.
A question mark indicates you can access the register via the Peripheral
window but not from the Shell command line.

To enable expanded I/O space, close (not minimize) the Peripheral
window, then set the ESE bit in the REMAPCEFG register by three
sequential writes to I/O addresses 0x22 and 0x23. (The sequence must
write twice to each address.) For example, enter the following Size
and Fill commands on the Shell command line:

Size Byte;

Fill 23p 23p 0x00 Byte IO;

Fill 22p 22p 0x80 Byte I0O;
Size Word;

Fill 22p 23p 0x0080 Word 10;

The Size command specifies the physical size of the data access. The
Byte and Word specifiers in the Fill commands inform SLD of the
supplied data format.

SLD User's Manual 19 Defining the Debug Environment

Defining the Debug Environment 20 SLD User's Manual

Debugging in Source and Stack

This chapter describes how to:

e Set, view, and clear breakpoints.

e Control program execution.

e Examine and modify variables and the stack.

Viewing Source

Source window
Options menu Source
Path dialog box

SLD User's Manual

After loading an executable file, you can view the source file associated
with each module in the Source window. The Source window initially
displays code at the current program counter (CS:EIP). The instruction
or statement pointed to by the program counter is marked by >>.

When you open the Source window after loading but before executing
code, the program counter may be in the assembly startup code
designed to execute before main(). If the startup code is from an
available assembly source file, the Source window displays the assembly
source. If the startup code was generated by the compiler, the Source
window displays the disassembly from memory.

To view a different module, choose the File menu Browse Modules
item. All loaded modules are listed. If a module’s source has been
modified more recently than the loadfile, a warning message appears
and an asterisk marks the source filename in the Source window title.

If the emulator cannot find the source file corresponding to the module
you are browsing, you may need to modify the source search path list.
Modify the list in the Source window Options menu Source Path dialog

box.

Edd... ” Edit... H Delete] Close I Cancel ” Help]

To add a pathname to the Source Path dialog box, choose the Add
button and enter a directory or file pathname in the Open dialog box.

2] Debugging in Source and Stack

Edit Path dialog box,
accessed from the
Source window
Options menu Source
Path dialog box Edit
button

Source window
Options menu Source
Path dialog box listing
multiple paths to be
searched sequentially
from top to bottom of
the list

A

Debugging in Source and Stack 22

To edit a path, use the mouse or the <Up Arrow> and <Down Arrow>
keys to select a path in the Source Path dialog box; choose the Edit
button; and edit the path string.

Path:
C-\POWERPAK\SAMP386\

Igancel I I Help J

|QK|

The emulator searches the paths in the order they are listed in the
Source Path dialog box, stopping at the first file that matches the source
filename in the loadfile. If you have duplicate filenames in different
directories, order the source path search list so the emulator finds the
correct one first. For example, in the following, the emulator searches
first samp386, then build-a, build-b, and finally build-c.

B serw
'C:A\POWERPAKISAMP386

c\powerpakisamp386\build-a}
c\powerpakisamp386\build-b}

c\powerpakisamp386ibuild-c\

I_édd... ||__§_dit... lgelete]wse ”_Qancel ||_ﬂLeIp I

When symbolic information (including the source file pathname) is
available for a module, you can view the module as source code with or
without interleaved disassembly. Use the Source window View menu to
toggle between Source Only and Mixed Source And Assembly.
Modules with no associated source file can only appear as disassembly.
To see symbols in the disassembly, check the Toolbar Configure menu
Symbolic Disassembly item.

You can split the Source window into two panes by clicking and
dragging on the split box at the top of the vertical scroll bar. A split-
box cursor appears at the right of the split bar (see figure at left). To
resize the panes, use the mouse to drag the split box.

With two Source window panes, you can work in two different modules
or two areas of the same module independently. To move between
panes, click in the inactive pane to make it active.

SLD User's Manual

Managing Breakpoints

Breakpoint window
listing the state
(enabled or disabled),
type (permanent or
temporary), and source
location of each
currently defined
breakpoint

Shell window showing
breakpoints listed in
response to a Bkpt
command

S>

SLD User's Manual

At a breakpoint, emulation halts before executing the instruction at the
breakpoint address. A temporary breakpoint is then cleared; a
permanent breakpoint remains. A breakpoint set on a non-executable
statement automatically moves to the next executable instruction.

In PP and EA emulators, you can set 256 software breakpoints; in SW
emulators, you can set 128 software breakpoints. You can set up to four
hardware breakpoints, which use the DR[0:3] debug registers. See the
DR command description in the “Shell Window Reference” chapter.

To display the currently set breakpoints, open the Breakpoint window.

= Breakpoint ‘
File Breakpoints Windows Help

Set | clear |50 To Source] Enable | Disable | Enable All | Disable All |

State ___Type _ Breakpoints — ————
Perm. 00002000L dm main,main,line59,col 6-1

Enable Pernm. 800026FCL dm_func,printall,line153,col8-1
Enable Perm. 800020A4L dm func,remove,line118,colf-1

To list breakpoints in the Shell window, enter a Bkpt command with no
arguments.

File Edit View Options Windows Help
bkpt | +]
// SRC bkpt: Ena Perm 2000L (@8) dm_main,main,Line59

/7 SRC bkpt: Ena Perm 20FCL (@1) dm_func,printall,Line153 | |
I// SRC bkpt: Ena Perm 208A4L (@2) dm_func,remove,lLine118 1

e | [+

>

#[[»

« [+

You can set breakpoints from the:
e Shell window Bkpt command

e Breakpoint window Set button or Breakpoints menu Set Breakpoint
item

e Source window source display or various Breakpoints menu items

To set a breakpoint from the Source window display, using the mouse:

1. Move the mouse pointer to the left of the source line where you
want to set a breakpoint.

2. When the mouse pointer changes shape to a cross-hair cursor
(shown at left), click on the primary mouse button to set a
permanent breakpoint or on the secondary button to set a

23 Debugging in Source and Stack

temporary breakpoint. (On a mouse configured for right-handed
use, the primary is the left button and the secondary is the right
button.) The line with the breakpoint is highlighted in red.

Alternatively, using the Source window Breakpoints menu, either:

e Position the Source cursor where the breakpoint is to be set and
select Set Permanent Breakpoint or Set Temporary Breakpoint.

e Regardless of the Source cursor position, choose Set Breakpoint
and fill-in the Set Breakpoint dialog box.
Source window _ reakpoints
Breakpoints menu Set Permanent Breakpoint

Set Temporary Breakpoint
Set Breakpoint...

Clear
Enable
Disable

Clear All
Enable All
Disable All

Show All...

To set a breakpoint from the Breakpoint window, pop-up the Set
Breakpoint dialog box from either the Set button or the Breakpoints
menu Set Breakpoint item.

The Set Breakpoint dialog box Breakpoint At field accepts both
numeric and symbolic addresses. For symbolic addresses, you can
browse the Modules and Functions drop-down lists. For C++ source,
mangled names (which you can also list with a DisplaySymbols Shell
command) appear in these drop-down lists. These names include
member functions from all classes defined in a source module and its
header files; global (non-class related) functions; and compiler-
provided default constructors and destructors.

Set Breakpoint dialog ——— - — —
box, accessed from = Set Breakpoint
either the Source i . :
window Breakpoints Breakpoint at: |
menu Set Breakpoint Modules Functions
item, the Breakpoint [dm_m ain | t| ‘main | * ‘
window Breakpoints State———— Tepe———————— Space:
o, or the Eroskpon © Enable © Pormanent
Mndow Set button { Disable) Temporary

I Set I l Close | | Help |

Debugging in Source and Stack 24 SLD User's Manual

Breakpoint window
Breakpoints menu

Set a breakpoint:
multiple statements
per line

SLD User's Manual

You can co-ordinate the Source and Breakpoint window displays. To
open the Breakpoint window from the Source window, choose the
Source window Breakpoints menu Show All item. To display the
source of a specific breakpoint, in the Breakpoint window highlight the
breakpoint and choose either the Breakpoints menu Go To Source item
or the Go To Source button.

Set Breakpoint...
Clear

Enable
Disable

Clear All
Enable All
Disable All

Go To Source

Avoid setting breakpoints on inline functions. The Set Breakpoint
dialog box flags no inline functions. If you have set a breakpoint on a
function and stepping does not advance the Source window cursor, it is
an inline function. Stepping through instructions in your class
definition advances the program counter but not the Source cursor.
Remove the breakpoint on the function and restart emulation.

In Mixed Source And Assembly view, the assembly instructions for all
inline functions appear after the last source line of the module.

If your program has more than one source statement per line number
and the toolchain provides statement-level line number information,
you can set a breakpoint on any statement in a line. For example:

If (errorNumber) errorHandler(errorNumber);

To set a breakpoint on the errorHandler call, when errorNumber is
nonzero:

1. From the Source window Options menu, set the level of step
granularity by toggling Step Execution Granularity to Statement.

2. Click on errorHandler(errorNumber), open the Breakpoint menu,
and choose Set Permanent Breakpoint. Or, double-click on
errorHandler(errorNumber) and choose Permanent Breakpoint.

3. The entire line is highlighted as a breakpoint, with the actual
breakpoint set on the second statement. From the View menu,
choose Mixed Source And Assembly to see the breakpoint on the
second statement.

To set a breakpoint at the statement level, you must know how many
spaces your compiler uses for a tab character. For example:

25 Debugging in Source and Stack

How tab width affects
setting breakpoints at
statement level

Using disabled and
enabled breakpoints

The following line of three statements is compiled with a tab width of
eight:

<tab><tab>for (j = 0; j < max_num; j++) {

The compiler tab width produces the following column ranges:

j=0; columns 0 through 26

j < max_num; columns 27 through 39

j++ columns 40 through 45

Setting the Source window tab width to four instead of eight puts j = O;
at column 13 and j < max_num; at column 20. It is then difficult to
set a breakpoint on the correct statement.

Symbols must be loaded before you can set breakpoints on line numbers
or functions. If you chose On Demand Symbol Loading when loading
your program, the symbols needed for a breakpoint are loaded either
when you set the breakpoint or when you display the source for the
module containing them.

You can enable and disable all or individual breakpoints, using either
the Source or Breakpoint window Breakpoints menu Enable/Disable
(All) items or the Breakpoint window Enable/Disable (All) buttons. An
enabled breakpoint is defined and active; emulation breaks when the
breakpoint is reached. A disabled breakpoint is defined but inactive;
emulation does not break when the breakpoint is reached.

For example, an interrupt handler named MyIntr (in a module named
ModB) might be started at any time. To discover whether MyIntr is
starting during execution of another function named Atomic (in a
module named ModA), the designer does the following:

1. Set a breakpoint, enabled, at the beginning of #ModA#Atomic.
2. Set a breakpoint, enabled, at the end of #ModA#Atomic.
3. Set a temporary breakpoint, disabled, at #ModB#MyIntr.
4. Go. MyIntr can execute without causing a break.
5

At the first Atomic breakpoint, enable the MyIntr breakpoint.
Calling MyIntr during Atomic execution causes a break and clears
the MyIntr breakpoint. If MyIntr is not called, at the second
Atomic breakpoint disable the MylIntr breakpoint.

You can remove all or individual breakpoints by any of:

e Choose the Source or Breakpoint window Breakpoints menu Clear
All item.

Debugging in Source and Stack 26 SLD User's Manual

e In the Breakpoint window, select a breakpoint and choose Clear
from either the buttons or the Breakpoints menu.

e In the Source window, click in the left margin of the red-
highlighted line containing the breakpoint; or, move the cursor to
the breakpoint and choose the Breakpoints menu Clear item.

e On the Shell command line, enter a BkptClear command.

Starting and Stopping Emulation

With the Source window buttons and menus and various Shell
commands, you can emulate one or more instructions at a time or as a
free-running program.

Source window Run m
and Options menus

Go F9
and button bar Halt F2
Step Into F7
Step Over F8

Go Until Call
Go Unil Reun R
Go into Return Tab Width...

Source Step Granularity »
Step Count...

Goto Cursor
Go From Cursor

- Browser History Depth...
Step Into Continuously

Step Over Continuously Source Line Delimiter >
Reset Set Go Buttons »
Reset And Go Compiler Used...

Step breaks after executing one to 100 instructions or statements,
according to how you set the Options menu Step Count and
Source Step Granularity items. The Shell Step and
StepSrc commands can do the same.

Step Into and Step Over specify how transfer instructions
(such as jumps or function calls) affect where emulation
breaks after stepping:

Into breaks at the first instruction or statement
at the transfer destination.

Over breaks at the first instruction or statement
following the transfer instruction.

SLD User's Manual 27 Debugging in Source and Stack

Reset
And Go

Halt

Continuously repeatedly steps until you halt it.

executes your program to the next enabled breakpoint or
until you halt it. The Toolbar Go button and the Go Shell
command do the same. The Golnto and GoUntil Shell
commands provide the same functionality as the Go
Until/Into Call/Return buttons and Run menu items.

From Cursor = moves the program counter to the
instruction at the Source cursor, then starts
emulation.

To Cursor emulates until the program counter reaches
the Source cursor.

Into Call breaks at the first instruction or statement
at the next transfer destination.

Into Return breaks at the first instruction or statement
following the next transfer instruction.

Until Call breaks at the last instruction or statement
before the next transfer instruction.

Until Return breaks at the last instruction or statement
before a return from the next transfer
instruction.

To change the Into Call and Into Return buttons to Until
Call and Until Return, select from the Options menu Set Go
Buttons item Until Call/Return choices.

Resets your target system, then operates as Go. The
ResetAndGo Shell command does the same.

Stops emulation. The Toolbar Halt button and the Halt
Shell command do the same.

To discover whether emulating or halted, look in the Status window or
icon or enter EmuStatus on the Shell command line. When emulation
has halted, to discover the cause of the break, look in the Status window
or enter Cause on the Shell command line.

How fast a Step operation executes depends on the number of SLD
windows open. Each window must be updated after each step. You can
close or minimize any open SLD window (except the Toolbar) to
improve performance. Speeding up stepping can be useful when you
use long or frequent Step Continuously operations.

In C++, stepping into a declaration can call a constructor with any
initialization parameters and its base class constructors.

Debugging in Source and Stack

28 SLD User's Manual

Examining Source After Emulating

SLD User's Manual

The Source window display shows the next statement or instruction:

e When emulation halts at a breakpoint, the program counter stops at
the instruction containing the breakpoint.

e When emulation halts after a Step Into or Go Into Call, the
program counter points to the first instruction in the function.

e When emulation halts after a Step Over or Go Into Return, the
program counter points to the first instruction after the return.

e When emulation halts after a Go Until Call or Go Until Return, the
program counter points to the call or return instruction.

In Source Only view, a function with no associated source is not
displayed after a Step Into when the program counter points to the first
instruction in the function. To display the disassembly of such a
function, toggle the view to Mixed Source And Assembly.

You can also view disassembled instructions in the Memory window or
by entering a Dasm command on the Shell command line.

To modify loaded instructions, use the Memory or Shell window as
described in the chapter on debugging in registers and memory. Such
code patching is reflected in the disassembly shown in the Source
window in Mixed Source and Assembly view. Note that the
disassembly at the patched addresses no longer matches the source file
contents.

For C++, you can select the following mangled or demangled symbols
in the Source window:

¢ Function symbols

Global variables

Global class objects
e Local variables and class objects
You cannot select class.memberFunction type objects.

The scope-resolution operator (::) is interpreted as a token separator,
not recognized as part of a symbolic address.

Scrolling Trace With Source

When the Source and Trace windows are linked, you can scroll through
the Trace window and view the corresponding code scrolling
synchronously in the Source window. To link these displays:

29 Debugging in Source and Stack

Trace window View
menu co-ordinating the
Trace and Source
window displays

Variable menu,
popped-up by double-
clicking on a variable
named MsgTx in the
Source window

1. In the Trace window, open the View menu and choose Instruction
to display the trace as disassembly.

2. Re-open the View menu and choose Linked Cursor.

Clock
Bus
¥ Instruction

v Linked Cursor

v Timestamp

Y Auto
Uselb
Use32

Examining and Editing Variables

You can examine and edit global, static, and local variables in the
Variable window by either:

e In the Source window, double-click on the name of the variable you
want to view. In the pop-up menu, choose Inspect Variable.

= Variable: MsgTx
Inspect Variable
Set Perm. Breakpoint
Set Temp. Breakpoint

e In the Variable window, open the Variable menu, choose Add, and
enter the name of the variable you want to view. Specify a fully
qualified symbol.

In the Variable window, you can:

View variable types and values. Non-pointer variables
appear in magenta. For enum type variables, the
enumerated name follows the hexadecimal value. For
example:

enum color ¢ = 0x2 = lavender

Dereference a pointer variable by double clicking. Dereferenceable
pointers appear in blue. For example, DS:000E is the
address of the variable pointed to by cellPtr:

CELL_TYPE *printall#cellPtr = DS:000E

To dereference a pointer, either double click on the
pointer name, or select the pointer and choose the
View menu Show item. A new line appears in the
Variable window listing the location pointed to. The

Debugging in Source and Stack 30 SLD User's Manual

Variable window
showing cascaded
dereferenced pointers

Edit

Select

Remove

Retrieve

following shows a Variable window with next
dereferenced from the first entry (cur) and stringPtr
dereferenced from the second entry (the dereferenced
next):

= Variable .

File Edit View Variable Windows Help

LINKS remove#i*cur { :_‘
struct LINKS *next = DS:0000;
signed char *stringPtr = DS:0000;
signed short int length = 0x0 = 0;

H
LINKS removelicur->»*next {
struct LINKS xpext = DS:0053;
signed char *stringPtr = DS:0000;
signed short int length = 6x0 = 0;
b
signed char removeficur->next->xstringPtr = 0x53 = "S™;

] [+

I 1

a value. Editable values appear in red. Integer
variables can be edited in hexadecimal or decimal,
floating point variables in floating point format, and
characters in their hexadecimal ASCII equivalent. To
edit a value, either double-click on the value; or single-
click on the value and choose the Edit menu Edit item.
Press <Enter> to end editing or <Esc> to cancel
editing. Outside of the current stack context, local
variable values are unknown.

a variable or its value by clicking on it. Yellow
indicates a selected symbol or value.

a selected variable from the display. Either choose the
Variable menu Delete item or press the <Delete> key.
This does not delete the variable from your program,
only from the current variable inspection list.

removed variables with the Variable menu Undelete
item.

You can also examine program symbolic information using the Shell
AddressOf, NameOf, ConfigSymbols, DisplaySymbols, GetBase,
SetBase, and RemoveSymbols commands.

Monitoring the Stack

The Stack window contains a stack list pane, a variables list pane, and a
stack meter. (You can also list the stack information in the Shell
window using Stackinfo and DisplayStack commands.)

SLD User's Manual

31 Debugging in Source and Stack

Stack window with
emulation halted in
remove, called from
main, showing stack
usage down to 50.0%
from the high-water
mark (arrow on the
right of the stack
meter) of about 58%

File Options Windows Help
Stack Return 50.0%

$$:000005CC CS:FFFFE40C remove(...)

$5:000005D8 CS:FFFFE315 main(...)

Parameters & Local VUariables
signed long remouve#place = 0x3 = 3; t
signed long remove#i = 0x0 = 0;

struct LINKS xremove#iptr = DS:000001DA;
struct LINKS xremove#icur = DS:00000158;

«]] -

Configuring the Stack Window

Once a program has executed into one or more functions, the stack list
contains frames representing the nested calls. Frame information can
include the stack and return addresses of the functions, names of
functions with symbolic information available, and the parameters and
local variables associated with the function calls. The top frame
represents the function currently in scope.

When symbolic information is available for a function, you can display
the parameters and local variables in the variables list pane by selecting
the frame in the stack list pane. Variables appear in the same format as
in the Variable window.

Stack usage is described by the stack meter. The percent of stack area
currently in use appears in blue.

To configure the stack and return address display, toggle the Options
menu Include Stack Address and Include Return Code Address items.
The stack address is the address of the frame in the stack area. The
return address is the load address of the next instruction in the calling
function.

Debugging in Source and Stack 32 SLD User's Manual

Stack window Options
menu with all stack
statistical displays
enabled

SLD User's Manual

Stack Area...

Alarm Limit...

v Include Stack Address
v Include Return Code Address

v Enable High-Water Mark
v Enable Alarm Limit

Inspect Source

To view the source or disassembly of a function, select the frame and
choose the Options menu Inspect Source item. The Source window
displays the function.

You can configure the stack meter to show the highest level the stack
has reached since initialization. This high-water mark is an arrow on
the right of the stack meter. Enable (check) the Options menu Enable
High-Water Mark item; or enter an EnableHighWaterMark Shell
command.

You can set an alarm on the stack meter to notify you when stack usage
exceeds a specified percentage of the stack area. If the alarm limit is
exceeded when emulation halts, a warning message appears. Choose
the Options menu Alarm Limit item and specify a percent value from 1
to 100. Then, enable (check) the Options menu Enable Alarm Limit
item. Alternatively, in the Shell window you can set an alarm limit and
enable the alarm message with SetStackAlarm and
EnableAlarmLimit commands. The alarm limit appears as a red line
across the stack meter.

No alarm message appears until emulation halts. During emulation,
the stack can exceed the alarm limit without displaying the warning
message. To monitor the amount of memory used by the stack while
emulation continues, emulate by stepping continuously. Choose the
Source window Run menu Step Over Continuously or Step Into
Continuously item.

Halting emulation updates the stack information with the:
e current function and variable information

e percentage of the stack in use

e High-Water Mark, if enabled

e alarm, if enabled

If, after emulation halts, the monitored stack area is discovered to be
mismatched with the program’s stack area, some Stack window features
are invalidated and grayed-out in the menus. For example, the alarm,
high-water mark, and stack meter become unavailable.

33 Debugging in Source and Stack

Monitoring multiple
stacks

Stack Area dialog box,
accessed from the
Stack window Options
menu

Determining how large
a stack area to allocate

Debugging in Source and Stack 34

For multiple stacks, you can track the stack currently in use. Create
Shell aliases to define the base and size of each stack. For example:

alias “s1” “SetStackArea 4000 1007;
alias “s2” “SetStackArea 3000 1007

‘When emulation halts, switch to monitoring the current stack by
entering one of the aliases on the Shell command line.

Setting the Stack Base Address and Size

The stack base address and the stack size are typically put into the
loadfile by your compiler. Otherwise, the emulator looks for a default
stack base address in the powerpak.ini file. If powerpak.ini also
specifies no base address, the current stack pointer (SS:ESP) value is
used. An undefined stack size defaults to 4K bytes.

To discover the current stack base and size, either enter Stackinfo on
the Shell command line, or in the Stack window open the Options menu
and choose Stack Area. The values in the dialog box describe the
current stack allocation. The following shows a Stack Area dialog box.

= Stack Area
Base Address:
[55.000005E] |
Number of Bytes:
[64 |
[ok] [cancel | [Help |

If you edit these values, ensure the Base Address matches your
program’s stack base and the Number of Bytes accommodates as much
of your program’s allocated stack area as you want to watch. When the
SS:ESP is outside the stack area recognized by the emulator, the stack
statistical information is invalid.

Changing the stack size recognized by the emulator does not affect the
amount of memory available to your program for stack activity.
Changing the stack base recognized by the emulator does not affect the
SS:ESP. The stack base and size are used only by the emulator to
maintain the stack usage statistics.

You can also change the stack area by a SetStackArea Shell command
or by SetStackBase and SetStackSize Shell commands.

The Stack window can help you determine the minimum amount of
memory to allocate for the stack:

1. Open the Options menu and choose Enable High-Water Mark.

SLD User's Manual

Execute your program for maximum code coverage.

Halt execution.

4. Note the high-water mark (maximum stack usage as a percentage
of the allocated stack area) on the stack meter.

5. Remake your loadfile, increasing or decreasing the allocated stack
for efficient usage.

SLD User's Manual 35 Debugging in Source and Stack

Debugging in Source and Stack 36 SLD User's Manual

Debugging in Registers and Memory

This chapter describes how to access the CPU registers, the peripheral registers, and
memory.

Viewing and Modifying the CPU Registers

You can view and change CPU registers and control signals from the
CPU window, Toolbar, Source window, and Shell command line.

CPU window showing
the execution point m
(CS:EIP) at Options

18:FFFFE3E4 and the S i rszape [
stac.ktop and base EIP FFFFE3EL
(SS:ESP and EAX 068606080
SS:EBP) at 20:5E0 EBX 080606000

ECX 0oooanso
EDX 00800000
EBP 000065E8
ESP 008865E8
EDI 00000000
ESI 80880668
CS 0018
DS 0028
ES 8028
FS 8628
GS 0028
§S 0628
GDTBASE FFFFEBBO
GDTLIMIT 883F
GDTAR FFFFEBBO
IDTBASE 0000O5E0
IDTLIMIT @8FF
IDTAR FFFFFFFF
LDTR @868
LDTBASE 00800000
H LDTLIMIT FFFF
LDTAR FFFF7FFF

The CPU window is updated when emulation halts. A highlight
indicates a register value has changed.

Editing the CPU Registers
To edit a CPU register, either:
o Enter a Register command on the Shell command line.

e In the CPU window, double-click on the register, or select the
register and press <Enter>. Enter the new value in the dialog box.

SLD User's Manual 37 Debugging in Registers and Memory

CPU Register dialog
box for editing the EIP,
popped-up from the
EIP line in the CPU
window

Register: EIP

Hex: 000001AD, Decimal: 416

[oxo00001A0 |

| OK | | Cancel | I Help |

Resetting the CPU Registers
When you reset and reinitialize the processor:
e The processor RESET pin is asserted.

e The program counter (CS:EIP) is set to 0:FFFFFFFO for the EA-
NS486 and to FOO0:FFFO for all other emulators.

e All SLD windows are updated. The Stack window display is
invalid because the stack is reset. The Source window displays the
beginning of your startup code, at the program counter.

You can reset the processor from the Toolbar Configure menu, from the
Source window Run menu, from the CPU window Options menu, or by
entering Reset on the Shell command line.

If the reset fails:

1. From the Toolbar Configure menu or the CPU window Options
menu, choose Reset CPU Only; or enter Reset CPUonly on the
Shell command line. This resets the processor without updating
the SLD windows.

2. Reset your target.

Reset the processor again, without specifying CPU only, to update
the SLD windows.

Resetting the Target Board

You can reset your target board independently of resetting the SW or
EA emulator. To use this feature, connect your target reset input to the
Reset Out pin on the back panel of the emulator before turning-on the
emulator; and edit powerpak.ini before starting the SLD software. See
the Reset command description in the “Shell Window Reference”
chapter and the [SystemlInfo] section description in the “powerpak.ini
File Reference” chapter.

Enabling the Target Signals

Enabling a signal uses that signal from your target system rather than
from the emulator. To enable or disable the target signals, check or

Debugging in Registers and Memory 38 SLD User's Manual

CPU Options menu

Signals configurable

for the EA-486

uncheck each signal in the CPU window Options menu Signals item.
(For a list of configurable signals, see the Hardware Reference.)

Reset

Reset CPU Only

gna RDY# Enable
Windows RESET Enable
HOLD Enable
Help Index NMI Enable
Help With Help | \NTR Enable
Help With CPU | A20M# Enable
Exit FLUSH# Enable
KEN# Enable
SLE Enable

Disabling a signal disconnects it from the target and controls it from
the emulator. For example, the emulator drives the 386 signals as:

READY# asserted
RESET negated
HOLD negated
NMI negated
INTO-INT3 (Intel386 EX) negated
INT4-INT7 (Intel386 EX) negated
NA# negated
SMI# (Intel386 CX and EX) negated
INTR negated
A20M# (Intel386 CX) negated
ERROR#, PEREQ, BUSY# (coprocessor) negated

You can also enable and disable signals with the Shell Signal
command.

Viewing and Modifying Memory

SLD User's Manual

You can view and edit memory from the Memory window and by
entering Dump, Write, Fill, Copy, and Search Shell commands.

Because reading and writing memory takes a small amount of processor
time, which can degrade your program execution, memory access is
initially disabled during emulation. Memory access is used in
managing the Memory and Peripheral window displays and in
changing memory contents with Memory, Peripheral, and Shell window

39 Debugging in Registers and Memory

commands. To enable memory to be accessible during emulation, do
one of the following before starting emulation:

e Open the Toolbar Configure menu and enable Run Access.

e Enter RunAccess On on the Shell command line.

Changing the Memory Window Display

You can view memory as disassembly or numeric values in up to 20
independent Memory windows. Choose the desired format from each
Memory window View menu. Multiple Memory windows are
distinguished by a number from 0 through 19 in the title bar.

In the disassembly view, you can specify whether program symbols or
their numeric addresses appear. Check (enable) or uncheck the Toolbar
Configure menu Symbolic Disassembly item.

FI.rSt-OPened Memory = Memory 0: Disassembly View v| -
window showing - " . . .
disassembly File Edit View Options Windows Help
CS:01A0 FA CLI B
€s:01A1 FC CcLD
CS:01A2 B82000 MOU AX, 0020
CS:01A5 8ECO MOU ES,AX
CS:01A7 BFEOOO MOU DI,0000 | |
CS:01AA B83202 MOV AX.0232 [+
“l [+
In a numeric view, memory appears as hexadecimal or decimal bytes,
words, or double words followed by the ASCII equivalent, with dots
representing non-printable characters.
First-opened Memory VN T | -
window showing : . . . Memry 0: Hex Words View H
hexadecimal words File Edit View Options Windows Help
DS:0000 1EFF FFFE F7FF FDBE FDFF F411 F8FF FEE8 {.pUu+%guy.ouesp ||
DS:0010 ©068 8000 0019 0100 G460 6300 4096 0808 ...N.... ...H@.. | |
DS:0020 0000 2000 0615 1400 8010 6060 EO81 8140 N maen
DS:0030 FD3F F7CO FEB? F74A 73DF FF30 FEFF FA9C ?0A++pJ+BsOyypMG
DS:0046 EFFF FF4B FFFF FFE4 FFBF FF19 FTFF FFFA UIKQYU&U:Y.U9+0y |
«[| [+

To view another area of memory, double-click in the address column of
the Memory window; or enter a numeric or symbolic address in the Edit
menu Go To Address dialog box. A symbol must have a fixed address;
that is, it cannot be a local variable or stack-resident parameter. Space
and address mode options are greyed-out when unavailable.

Debugging in Registers and Memory 40 SLD User's Manual

Go To Address dialog
box, accessed from
the Memory window
Edit menu Go To
Address item, for
displaying the current
execution point in the
Memory window

SLD User's Manual

== Go To Address

Address:

[cs:EIR]

l L] | L]

[ok | [cancel | [Hew |

If you are unsure of a symbol name or an address, you can research it
from the Shell command line:

DisplaySymbols lists module, variable, and function names with
line number and address information.

AddressOf lists the address of a specified symbol.
NameOf lists the symbol closest to a specified address.

To speed-up scrolling in the Memory window, choose the Options menu
Read Ahead item. Using read-ahead near a non-existent memory
region can cause a memory access failure.

Changing the Memory Contents
To change the memory contents, you can:

e Edit the hexadecimal, decimal, or ASCII values in the Memory
window. Position the Memory cursor and overtype the display.

e Assemble code and data into memory using the Memory window
Single-line Assemblerdialog box as described below.

e On the Shell command line, enter AsmAddr and Asm commands
or Write, Fill, or Copy commands

To assemble lines of code into memory via the Memory window:
1. Check (enable) the Memory window View menu Disassembly item.

2. On the line to be changed, double-click anywhere except in the
address column. The Single-line Assembler dialog box Source
Line field shows the address and value of the line to be changed.
(To close the dialog box without assembling, choose Cancel. Once
a line is assembled, the Cancel button changes to a Close button.)

3. Type a line of assembly code in the dialog box.
Select the space and the operand/address size, as needed.

5. Choose Assem to write the code to memory and update the Memory
window. The single-line assembler checks the syntax and reports
any error without writing the erroneous line.

41 Debugging in Registers and Memory

Single-Line Assembly
dialog box, accessed
by double-clicking on a
line of disassembly in
a Memory window

Memory window
Options menu

6. Repeat steps 3 through 5 to assemble subsequent lines. Choose
Skip to leave a line unchanged.

7. Choose Close to close the dialog box.

= Single-Line Assembly

Source Line: CS:0000

PUSH___ BP |
Space:

= E N
[Cancel | [[Assem | | Skip | [Help |

When the Memory window shows any view other than disassembly, you
can edit the numeric and ASCII values. Position the cursor on the first
value you want to change and type the new value. A value must fall
within the range of the displayed radix. For example, in decimal byte
radix the maximum value in a field is 255; if you try to replace 199
with 299, it is truncated to 200. An illegal (non-decimal or non-
hexadecimal) entry causes a beep:

When you refresh the SLD window displays, changes to memory are
reflected in all Memory windows, in the Source window disassembly,
and in the Variable window values.

The numeric format displayed in the Memory window does not affect
how memory is accessed. Memory access is set by the Size command
or the Options menu, not by the View menu. For example, if
Size=byte, memory accesses are byte-sized even when the Memory
window display is Hex Words.

¥ Byte Access
Word Access
DWord Access

V¥ Write Verify
Read Ahead
Reread On Write

Viewing and Modifying the Internal Peripheral Registers

Debugging in Registers and Memory 42

This section applies to the PP-386EX, EA-386EX, SW-386EX, and
EA-NS486 emulators.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Such access

SLD User's Manual

Peripheral window for
the SW-386 EX,
showing the peripheral
mnemonics fully
compressed

SLD User's Manual

includes scrolling and refreshing the Memory and Peripheral windows
and reading and writing memory from the Memory, Peripheral, and
Shell windows. You can enable memory to be accessible during
emulation; however, any such access can degrade your program
execution. Before starting emulation, either:

¢ Open the Toolbar Configure menu and enable Run Access.

e On the Shell command line, enter RunAccess ON.

Changing the Peripheral Window Display

Registers are displayed hierarchically. At the top level are the
peripheral mnemonics; then the registers for each peripheral; then the
bit fields for each register. You can expand or compress each level.
When the display is fully compressed, only the peripheral mnemonics
appear.

= Peripheral b B
File Edit View Windows Help

Expand a peripheral by clicking on the (+). The (+) changes to a (-)
indicating the peripheral is expanded; a list of the peripheral’s registers
appears. Registers marked with (+) can be further expanded; click on
the (+) to show the bit fields. Click on the (-) to recompress a line.

The register and bit field display columns are:

e The (+) or (-) expansion/compression indicator

e The register address; or, for a bit field, the bit number
e The field value

e The register or field mnemonic

e A description of the register or field

43 Debugging in Registers and Memory

Peripheral window for
the SW-386 EX
showing the DMA
peripheral expanded to
registers and the
DMACMD1 register
expanded to bit fields

Register Edit dialog
box, accessed from
the SW-386 EX
Peripheral window
display or Edit menu
Register item.

Debugging in Registers and Memory 44

To display all peripherals and registers in expanded format, open the
View menu and choose Expand All.

=2 Peripheral n -
File Edit View Windows Help
[} DMA +
+] 0000000P 0000 DMAOTARD-1 Channel 0 Target Address Bits 0:15
0000001P 0000 DMAOB 1 a el 0 Byte Co B I
[+) 0o000O2P 0000 DMATTARO-1 Channel 1 Target Address Bits 0:15
(+) 00000O3P 0000 DMA1BYCO-1 Channel 1 Byte Count Bits 0:15

[} Oo00008P OO DMACMD1 Command 1 Register

7. 0 reserve reserved bits 7:5

4: 0 PRE fixed priority

3 0 reserve reserved bit 3

2: 0 CE enable channel 0 and 1

1: 0 reserve reserved bits 1:0
(+] 0000008P 00 DMASTS Status Register
[+] 0000009P 00 DMASRR Soft Request Register [write]
(+] 0000009P 0O DMASRR Software Request Register [read)
(+) 0000DOAP 00 DMAMSK Individual Channel Mask Register

(+} 000000BP 00 DMAMOD1 Mode 1 Register
000000CP 00 DMACLRBP DMA Clear BP SW command
+] [+

]

To navigate in the Peripheral window, enter a peripheral or register
name or address in an Edit menu Go To... dialog box.

You can view the internal registers for each peripheral from the Shell
command line with a Dump command. (For some 386EX and NS486
registers, use the 10 argument.) Your processor may require setup
before some peripheral registers are accessible. See your processor
documentation.

Changing the Peripheral Register Values

Double-click anywhere on a register line; or select the register, open the
Edit menu, and choose Register. You can edit the register and
individual field values in the Register Edit dialog box.

= DMA DMACMD1 - Command 1 Register
Register Value: WRITE ONLY

Fields:

reserved bits 7:5

fixed priority

reserved bit 3

enable channel 0 and 1

reserved bits 1:0

1: Reserved bits, write zeros to these bits
reserved bits 1:0

Field Value:

-

| Write ” Close l| << Prev H Next >> Il Help

SLD User's Manual

You can modify the internal registers for each peripheral from the
Peripheral window or from the Shell command line with a Fill, Copy,
or Write command. (For some 386EX and NS486 registers, use the 10
argument with these commands.) Your processor may require setup
before some peripheral registers are accessible. See your processor
documentation.

SLD User's Manual 45 Debugging in Registers and Memory

Debugging in Registers and Memory 46 SLD User's Manual

Debugging With Triggers and Trace

The PowerPack PP, EA, and SW emulators all collect trace during emulation. They differ in
the amount of information collected and in the level of control you have over the trace
collection. Triggers are available in the PP and EA emulators for complex control of
emulation and trace collection. Events, also available in the PP and EA emulators, describe
patterns of signal, data, and address bus activity for trigger conditions and trace search

parameters.

Controlling Trace Collection

Toolbar showing the
Trace Start, Stop, and
Show buttons

Trace Capture dialog
box specifying trace
collection to start when
emulation starts

SLD User's Manual

The SW and PP emulators start collecting trace when you start
emulation. You can turn trace off and on during emulation with the
Toolbar Trace Stop and Start buttons.

PowerPack SLD Toolbar
File Configure Layout Windows Help
Setup Target Emulation Trace Misc

In the EA emulator, you can specify whether trace collection starts with
emulation. From the Trigger window Options menu or the Trace
window Trace menu, choose Trace Capture and enable (check) or
disable (uncheck) Collect Trace When Emulation Starts.

== Trace Capture F

Trigger Position Capture Mode

F @ Clock Cycles
O Center O Bus Cycles
O Post

|Z|!nstrucﬁon Mode Assist
IE Collect Trace When Emulation Starts

[ok][cancet | [Hewp

Automating Trace Capture

You can program the EA and PP emulators to automatically start and
stop trace collection during emulation according to specified patterns of
bus activity (called events) and other conditions. Such conditions with

47 Debugging With Triggers and Trace

their resulting actions are called triggers and are defined in the Trigger

window.
PP emulator Trigger -

i i = Trigger - Level 0 -
window, showing Toff 1 __Trigg e [
and Next actions File Edit Options Level Windows Help

Condition Actions

eventname enable ext | anable ext §seq vst|brk|toff nestlincd vstd incl vstl |extlo exthi
D
O
L
O
O
O
O

entl | 1 O

ext [l

EA emulator Trigger -

i i = Trigger - Level 0 -
window, showing Ton, I _ : lgger - Leve
Toff, Trac, and Trig File Edit Options Level Windows Help
actions Condition Actions

eventname enable ext § seq vst|brkiton toff trac |trig | strtd stop0 rstd strtl stopl rstl |ext outvstts

frar 0 | 1
freav 1| 1

OO0 O0oOooocood

Trigger actions affecting trace include:

e stopping trace permanently a specified number of frames after the
condition occurs (Toff in the PP; Trig in the EA)

e in the PP, with multiple trace buffers selected, closing the current
buffer a specified number of frames after the condition occurs and
starting subsequent trace in the next buffer (Next)

e in the EA, suspending trace immediately (Toff)
e in the EA, starting trace when the condition occurs (Ton)

e in the EA, collecting a single trace frame when the condition
occurs (Trac)

Each trace frame is a snapshot of the processor bus activity and other
signals occurring during a single clock or bus cycle.

Debugging With Triggers and Trace 48 SLD User's Manual

PP Trace Control
dialog box, accessed
from the Trigger
window Options menu
or the Trace window
Trace menu

EA Trace Capture
dialog box, accessed
from the Trigger
window Options menu
or the Trace window
Trace menu

SLD User's Manual

To specify the PP multiple buffers and the number of frames for delayed
triggering in either emulator, use the PP Trace Control dialog box or
the EA Trace Capture dialog box.

O Halt When Last Trace Buffer Full

 Trigger Position
@ Pre O Center O Post
Number of Trace Buffers [x Size)
@1x256K) CO8((x32K) O 64 x4K)
C2x128K) O16 x16K) O 128 x2K)
O 4 [x64K) O 32x8K) O 256 [x1K)
| ok | | Cancel | | Help l

= Trace Capture

Trigger Position

®
O Center
O Post

Instruction Mode Assist
|Zl Collect Trace When Emulation Starts

Capture Mode
@® Clock Cycles
(O Bus Cycles

| oK I I Cancel | | Help |

In the PP, you can divide 256K frames of trace information among
several buffers. Trace captured into each buffer is contiguous; trace in
different buffers can come from separate parts of your program. For
example, you can capture 256 separate blocks of 1K frames of trace , a
single block of 256K trace frames, or various intermediate
combinations. Each buffer is identified by a number, starting with 0,
displayed in the Trace window title bar.

PP tracing starts in Buffer 0 when emulation starts and wraps around to
overwrite the current buffer each time it fills up. The Next trigger
action finishes filling the current buffer then starts filling the next
buffer. If you enable (check) the Halt When Last Buffer Full box,
tracing stops when all buffers have been filled. This operation
overwrites the first buffer with several cycles after the end of the last
buffer.

In the EA, you can delay the start of tracing until a trigger condition is
met during emulation. To start emulation without tracing, disable
(uncheck) the Trace Capture dialog box Collect Trace When Emulation
Starts. Trigger actions to start tracing include:

49 Debugging With Triggers and Trace

Ton starts tracing with the frame in which the trigger occurs.
Trac captures only the frame in which the trigger occurs.

In the PP, the Toff action fills the current buffer then stops recording
trace. In the EA, only one buffer is available. The Toff action stops
recording trace immediately after the trigger frame. The Trig action
fills the buffer then stops recording trace.

If multiple conditions are satisfied simultaneously, the emulator
attempts to perform all the associated actions. For PP tracing, a Toff
triggered by one condition can override a Next triggered by another
condition. For EA tracing, simultaneous Ton, Toff, and Trac actions
have no effect if tracing is previously on; or simulate a single Trac
action if tracing is previously off.

For the EA Trig and the PP Toff and Next actions, you can specify
approximately how many trace frames are saved after the frame in
which the trigger occurs. In the Trace Control or Trace Capture dialog
box Trigger Position field, enable:

Pre to collect no frames after the trigger. The trigger frame
appears at or near the end of the buffer. In the PP, a few,
frames can appear in the buffer after the trigger frame. In
the EA, no frames are collected after the trigger frame.

Center to fill the buffer with an approximately equal number of
frames before and after the trigger. The trigger frame
appears in the middle of the buffer. In the EA, frames are
collected for 125000 clock cycles following the trigger.

Post to fill the buffer with frames mostly after the trigger. The
trigger frame appears at or near the beginning of the buffer.
In the EA, frames are collected for 250000 clock cycles
following the trigger.

After a Trig or PP Toff, trace is suspended until emulation halts and is
restarted or until you manually start trace with the Toolbar Trace Start
button or the Trace window Trace menu Start item. Both restarting

emulation and manually starting trace clear previously collected trace.

You can collect all or a subset of the frames occurring after a Center or
Post Trig action. To collect a block of frames within the Trig timer
125K or 250K clock cycle limit, define Toff and Ton triggers. To
collect selected frames, define Trac triggers. The zero frame is the
trigger frame; if trace is off when the Trig occurs, the zero frame is the
next frame collected.

Debugging With Triggers and Trace 50 SLD User's Manual

SLD User's Manual

Formatting Trace Capture

The trace information varies between emulators, including the
following for each bus cycle (SW emulators) or for each bus or clock
cycle (PP and EA emulators):

e the frame number relative to either the triggering event or the
instruction where tracing was stopped

e atimestamp for EA and PP emulators

e address bus values

e data bus values

e signal values, as listed in the Hardware Reference
e disassembled instructions

In the EA, you can capture more bus cycles or more detailed
information by specifying trace frames to be bus-cycle or clock-cycle
captures, respectively. In the Trace Capture dialog box Capture Mode
field, enable:

Clock Cycles to capture bus activity and other signals every clock
cycle. Trace captured in this mode includes program
activity and other processor messages and can be
displayed as clock cycles, bus cycles, or disassembled
instructions. The frame numbers are continuous.

Bus Cycles to capture bus activity every bus cycle. The full set of
bus pins is recorded as a unit, spanning multiple clock
cycles if necessary, and can be displayed only as bus
cycles. This capture mode covers more of your
program execution but includes only the signals
corresponding to program activity. For example, the
branch messages required for disassembling trace are
not captured.

The PP captures only clock cycles, which can be displayed as clock or
bus cycles or disassembled.

To be able to disassemble the trace, use clock-cycle capture and include
information about branches taken. Include such information by
enabling the PP Trace window View menu BTM Cycles item or the EA
Trace Capture dialog box Instruction Mode Assist.

In both the PP and EA (regardless of the EA capture mode), you can
specify the trigger to match conditions for either bus or clock cycles.
For example, to match a condition that occurs during a single bus cycle
but not within a single clock cycle, enable (check) the Trigger window
Options menu Bus item.

51 Debugging With Triggers and Trace

PP System Clock
Frequency Setup
dialog box, accessed
from the Trace window
Timestamp menu

The PP and EA timestamps count differently. The PP timestamp is
computed from the target processor clock. Specify the clock speed in
the System Clock Frequency Setup dialog box.

System Clock Frequency:

[25.000 |

I OK I uancell I Help I

The EA timestamp increments at 25 MHz, regardless of the target clock
speed, with a range of approximately 733 minutes. For faster target
systems, sequential frames can have identical timestamps.

To show elapsed time in trace, you can format the PP or EA timestamp
relative to specific trace frames and reset the EA timestamp to 0 in
various ways:

Reset the EA timestamp any time, regardless of concurrent
emulation or trace activity, by choosing the Trace window
Timestamp menu Reset Timestamp Now item.

Start the EA timestamp at 0 each time you start emulation, by
initially enabling the Trace window Timestamp menu Reset
Timestamp When Halted item.

Reset the EA timestamp according to trigger conditions with the
Rst Ts action.

Show the time before and after a zero frame with the Trace window
Timestamp menu Relative To Frame item.

Show the incremental time between each frame with the Trace
window Timestamp menu Delta item.

Show the time since the EA timestamp was last reset with the
Trace window Timestamp menu Absolute item.

To specify a zero frame for the relative timestamp, enter a frame
number in the Trace window Timestamp menu Zero At Frame dialog
box. The default zero frame is one of:

the trigger frame of an EA Trig or PP Toff or Next action

the last frame collected when trace stops for any other reason

Debugging With Triggers and Trace 52 SLD User's Manual

Specifying Trigger Conditions

Trigger conditions are combinations of the following:

o A set of address bus, data bus, and signal values, called an event.
The available signals differ between the EA and PP emulators and

between the different processors supported for each emulator. See
the Hardware Reference.

e The Trigger In pin on the front panel of the emulator. (See the
Hardware Reference for an illustration of the Trigger In pin.)

e Counter and timer values based on clock cycles and event
detection. The counter and timer options differ between the EA

and PP.
PP emulator Trigger — N
window with the l Trigger - Level 0 I ”
counter option selected File Edit Options Level Windows Help
Condition Actions
event name_enable ext | enable ext | seq vst|brk|toff next|inc vstd incl vstl |extlo exthi
EI
O
O
O
O
(]
O
cntl D
ext |
EA emulator Trigger N
= T - Level 0 v
window with one of the | - - "gge_r eve
timer options selected File Edit Options Level Windows Help
Condition Actions

eventname enable ext § seq rst{brk|ton toff trac|trig|strt0 stop0estd strtl stopl vstl|ext outfrstts

Oo00 oooooooo

To use an event as a trigger condition, define one or more events; then,
select an event name from an Event Name drop-down box in the
Trigger window. Make the event an active condition by checking the
Enable box next to the Event Name box.

SLD User's Manual 53 Debugging With Triggers and Trace

To use the Trigger In signal as a separate event, check the enable box
next to the Ext event below the event name boxes and counter or timer
fields. To AND the Trigger In signal with an event, enable the event
then check the Ext box in the same row as the event. In the PP, Trigger
In is active-low. In the EA, you can specify Trigger In as active-high or
active-low by selecting the appropriate Trigger window Options menu
Trigger In Active item.

PP emulator Trigger = Trigger - Level 0 -]
window condition File Edit Options Level Windows Help

ANDing Evnt1 with the

A . Condition Actions
Trigger In (ext) signal

eventname enable ext § seq vst| brk |toff nest|start stop reset |extlo esthi

b [+|2 0|0 O[N[0 O[O0 0
1

Conditions can be enabled simultaneously (on a single trigger level) or
sequentially (on different trigger levels). The current trigger level, 0
through 3, appears in the Trigger window title bar. Display each level
from the Trigger window Level menu.

To trigger on any of two or more conditions regardless of the order in
which they occur, enable the conditions simultaneously. Each time one
of the conditions occurs, the associated trigger actions are taken. If two
or more conditions occur together, the emulator does all the associated
actions. Some actions override others when done simultaneously:

e Toff (PP) overrides Next, turning trace off without starting another
trace buffer.

e Ext Lo (PP) overrides Ext Hi, generating a low PP Trigger Out
signal and no high Trigger Out signal.

e Rst0/1 overrides Inc0/1, resetting and not incrementing a counter.

e Stop (or EA Stop0/1) overrides Start (or EA Strt0/1), stopping a
timer.

e Rstoverrides Seq, activating the Level O trigger and not
incrementing the trigger level.

Chaining Trigger Conditions

To avoid triggering on one condition until a prior condition has been
met, enable the conditions on sequential levels. On the first level,
enable the first condition and specify a Seq action. Seq suspends the
current-level trigger and activates the next-level trigger. Disable the
second condition on the first level and enable it on the next level.

All levels must list the same set of up to eight events in the Event Name
column and must specify the same counter or timer values; but the
events and counters or timers can be enabled differently, can have

Debugging With Triggers and Trace 54 SLD User's Manual

different external-trigger co-conditions, and can cause different actions
at each level.

PP emulator Trigger = Trigger - Level 0 [~]
sgquential windows File Edit Options Level Windows Help
with: Condition Actions
¢ the in_insert event eventname enable ext §seq vst|brk |toff nest|start stop veset |extlo exthi
and the timer in_insert || B3 O Ojg|o O 0O
enabled at level 0 in_printall | &) CJ
« the in_printall event in_remove] ¢] [J
and the timer +|0
enabled at level 1 |00
(activated when O
in_insert occurs) +| O
o the in_remove event | O
enabled at level 2 e (20 |K OIR OO0 00K ®|O O
(activated when
in_printall occurs ext O
after in_insert has
occurred)
= Trigger - Level 1 -
File Edit Options Level Windows Help
Condition Actions
eveniname enable ext J seq vst]brk [toff next|start stop reset |extlo exzthi
in_insert [% |
mpantal[¢] X OO0 OO0 XK O OO0 0O
in_remove| * |
+| O
+ 0
+ 0
+| O
+| O
e (g200 | O|XR OO0 OO0OX® B (O 0O
ext]
= Trigger - Level 2 u
File Edit Options Level Windows Help
Condition Actions
eventname enable ext § seq tst|brk|toff next|start stop teset |extlo exthi
in_insert ¢} CJ
in_printall | #] O
in_[emnvg! B4 D D D D E D D D L__‘ D D
|0
+|O
+| O
+ 0O
+ O
e (5200 |1
ext [

SLD User's Manual 55 Debugging With Triggers and Trace

You can also schedule conditions by counting events or clock cycles.
Select the paired counters, the single timer, or the EA paired timers
from:

e the PP Trigger window Options menu Counter or Timer items

e the EA Trigger window Options menu 2 Counters, 2 Timers, or
Cascaded Timer items

Enable an event to start the timer or counter and, optionally, events to
stop and reset the timer or counter. Enable and fill-in the box beside
the timer or counter as follows:

e A timer starts at 0 to count clock cycles when a start (for the tmr
timer), strtO (for the EA tmr0 timer), or strtl (for the EA tmrl)
action occurs. The timer increments at the clock rate of the
emulation processor and wraps to 0 after reaching its maximum
value. When the number of clock cycles specified in a timer box
has elapsed, the timer action occurs. To stop a timer without
resetting it, enable an event to do a stop, stop0, or stop1 action.
Another event can restart the timer to continue. To reset a timer to
0 without stopping it, enable an event to do a reset, rst0, or rstl
action. In PP emulators, reset and stop a timer on a single
condition by specifying both actions. In EA emulators, define two
identical conditions, one with a reset action and the other with a
stop action.

P!’ emu|_ator Trigger — Trigger - Level 0 [~]
window timer set to File Edit Options Level Windows Help
count 1000 clock — -
cycles Condition Actions
event name enable ext | seq rst|brk|toff next|start stop reset |extlo exthi
Intl X OO0 OO0 O O o O
Evtl s Ojoooooor ®B|Oo 0O
b4
3
b4

000000

frar

XIOOoo ojo 0O

|_ e |1+ [1e
X
O
O
O

000

ext

O

e A counter starts at 0 and increments each time an inc0 (for cnt0) or
inc1 (for cntl) action occurs. When a counter reaches the number
specified in its box, the counter action occurs. To reset a counter to
0, enable an event to do a rstQ or rstl action.

Debugging With Triggers and Trace 56 SLD User's Manual

PP emulator Trigger
window counters set to
count 50 instances of
Evnt5 or Evnt6
between instances of
Evnt1 or Evnt2 and to
count 100 instances of
Evnt7 or Evnt8
between instances of
Evnt3 or Evnt4

SLD User's Manual

= Trigger - Level 0 u
File Edit Options Level Windows Help

Condition Actions
evertname enable ext§seq vst|brk|toff next|mcl vstl incl vstl |extlo exthi
et (o OO0 OO OOXOO|X® O
oz (¢ OO0 OROOOXEOO|X® O
peti (¢|® OO0 OO OIO0DOORX| KX O
et (o OO0 ORIOOO0OCOOXR|® O
ros [¢|R OO0 O0OOC0CXRIROOO|O0 K
s (o OO0 O0O0OROROOO|O0 K
rar (¢ OO0 OO0 ROOXO|O X
s (| ODOOROOCOX®O|O0 X
cntd |50 R OoOrROooOopmoog|x®x 0O
cntl | 100 X OoOOROoOOI0o0og|® 0O
ext O

Chaining Emulators

You can signal an external device with the PP ext lo and ext hi trigger
actions or the EA ext trigger action. For example, when using multiple
emulators in a multiprocessing target, an ext action from one emulator
can appear as an ext condition in another emulator. The ext output
signal appears on the Trigger Out pin on the emulator chassis, as
described in the Hardware Reference.

In the PP, specify a low or high output by enabling the ext lo or ext hi
action, respectively. In the EA, enable the ext action and choose the
Trigger window Options menu Trigger Out Active High, Low, or Open
Collector configuration.

Defining Events

An event is a combination of bus values:

Address Reading or writing to a specific address, set of addresses,
inside an address range, or “not” the described addresses.

You can specify symbolic or numeric addresses.

Data Reading or writing a specific value, set of values, range of
values, or “not” the described values. You can specify

symbolic or numeric data.

Signal High or low logic levels on various processor signals. You
can also specify don’t-care for signals. For a list of

supported signals, see the Hardware Reference.

Define an event in the Event window. Editing the Event window
differs from editing a dialog box. The <Enter> key has no effect on the

57 Debugging With Triggers and Trace

Event window,
accessed from the
Trigger or Trace
window Edit menu

Add Event dialog box,
accessed from the
Event window Edit
menu, for creating a
new event name

Symbolic and numeric
address-translation Shell

field that you are editing. To ensure a field accepts an entry, move the
cursor by clicking on another field or button. Pressing the <Delete>

key to delete a highlighted value has no effect; press the space-bar
instead.

You can open the Event window from the Trigger or Trace window, by
opening the Edit menu and choosing Events.

== Event: in_remove n
File Edit Windows Help
Active Event: lin_remove Iil
not start @EndAddr O Length _mask
addr: [[3tfea70P | [3tteazop [0x3FFFFFF |
start end mask

data: [J1 I |

01 X 01 X 01 X

01 X 01 X

QO @BHEF OO @ LOCkKt O O @ HOLD O O @ INTR O O @ ERRORY
8(88M/|0#©OOADS¢ OQ@®HDA OO ®sMit O O @ PEREQ
QO

Dict © O @ READY# O O @ RESET O O @ SMIACTE? O O @ A20M#
WiRt O O @ NAR OO @®NM O O @® BUSY#?

If no events are defined, the Add Event dialog box appears. Otherwise,
to add a new event, in the Event window open the Edit menu, choose
Add Event, and enter the new Event name.

Add Event
Name:
lev1 4‘
r oK —I lgancel | | Help l

To define the address of an event: (If you don’t care what addresses are
accessed, leave all the Addr fields blank.)

1. Enter a symbolic or hexadecimal numeric address in the Addr Start

field. This is the first address in the region where the event can
occur.

2. Select End Addr or Length. Enter either the last address in the

memory region where the event can occur, or the length in bytes of
the region. If you specify no end address or length, the event is
defined for the start address only.

If you are unsure of an address or address range, you can use the
Shell window AddressOf and NameOf commands or the Source
window Function pop-up menu.

For example, use Shell commands as shown in the following to

Debugging With Triggers and Trace 58 SLD User's Manual

commands

Function menu
popped-up by double-
clicking on the printall
symbol in the Source
window

Load address of the
printall function

SLD User's Manual

find address information for defining an event relative to the
dm_main module’s main function or cell variable:

-~ - (-
File Edit View Options Windows Help

nameof c¢s5:37 // Identify the function at this address. +
/7 #dm_main#86#1 (function main+6x37 [55])

addressof #main // Show the address range of the function.
// 6200:0000..003F

nameof 28:18 // Identify the symbol closest to this address.
// #dm_main#icell+Bx2 [2]

addressof #icell // Show the address range of the variable.
// BO20:000E..0049 [60]

*

«[1 [+
>
%A

Another way to find the memory region of a function is via the
Function pop-up menu. In the Source window, double-click on the
function name and choose Show Load Address.

ld Function: printall
Go To Source
Show Load Address
Set Perm. Breakpoint
Set Temp. Breakpoint
Clear Breakpoint

PowerPack SLD

Function printall: Address starts at.
0018:FFFFEACO..FFFFES47.

Optionally, you can enter a hexadecimal-AND mask value. The
mask dictates which bits of the address are don't-care's (0) and
which must match (1).

To match only addresses outside of the range or set you specified,
check the Not box.

To define the data of an event: (If you don’t care what data is read or
written, leave all the Data fields blank.)

1.

Enter numeric values in the Data Start and Data End fields. The
emulator interprets the numbers as decimal unless you use the 0x
prefix. For example, 10 is translated to 0OXO00A, and 0x10 is
accepted as 0x0010.

Enter a hexadecimal-AND mask, using F’s to match corresponding
positions in the data pattern.

59 Debugging With Triggers and Trace

3. To match data outside of the specified range or set, check Not.

Specify signal states for the event by toggling the low (0), high (1) or
don't care (X) buttons next to each signal mnemonic. Active-low
signals are shown with a hash mark (#).

The signals available depend on the target processor, as described in the
Hardware Reference. The mnemonic identifying each signal
corresponds to the signal’s primary function, regardless of whether you
reconfigure the signal for other use.

You can define events in one emulator session and save them for reuse
in another session. To save events to a file, in the Event window open
the File menu and choose Save Events As. To retrieve saved events,
choose Restore Events. Or, enter EventSave and EventRestore
commands on the Shell command line.

Viewing the Collected Trace

To display a trace buffer, open the Trace window. Only PP emulators
support multiple trace buffers, navigable with the Goto menu Previous
Buffer, Next Buffer, and Buffer items.

The Status window or icon message shows whether the emulator is
tracing. You need not halt emulation to examine a snapshot of the
collected trace. Each time trace stops, the Trace window is updated.

Read the abbreviated signal mnemonics vertically. For a list of
supported signals, see the Hardware Reference.

Trace window with no

trace collected File Edit View TIrace Timestamp Goto Windows Help

Trace ﬂ -

-4y
-43
42
-41

timestamp

-1.3200 us
-1.3200 us
-1.2800 us
-1.2400 us

a address

p
00002130
00082130
00002130
00002130

bbbb mdw rb bbsk hh rsni pp ae £ XXXXXXXX
data eeee icr dr sime 11 srmn cw ha

fpb
eco
3218 0 yy 86an da tsit dt ld r k f
111
111
111
111

-

01234567
00000000

u
0O0E0000 1110 ICW ©1 1110 00 0006 10 01 1
1 00000600
1
1

OFO70683 0080 MCR 01 1110 60 0600 10 01
O1F64683 0060 MCR 01 1116 60 0000 106 01
O1F64683 0060 MCR 01 1116 00 0000 10 01

00000000
06600000

[e[T

e[T I4]

From the View menu, you can display trace as:

Clock mode

Bus mode

Instruction

mode

address, data, and signal values at each clock cycle (PP

and EA emulators)

address, data, and signal values at each bus cycle

disassembly of executed instructions and the memory

accesses associated with the executed instructions

For the emulator to disassemble the trace information, you must have
captured the clock-cycle branch-taken messages.

Debugging With Triggers and Trace

60

SLD User's Manual

When viewing trace as disassembly (Instruction mode), you can link the
Source and Trace window displays. When the windows are linked,
scrolling the disassembled trace scrolls the corresponding source code
synchronously. To link the Source and Trace cursors, do the following
sequence

1. Choose the Trace window View menu Instruction item.

2. Enable the Trace window View menu Linked Cursor item.

Examples of Triggering

The illustrations in this section show PP 386CX emulator displays. The
displays and options vary for different emulators and processors. This
section demonstrates various trigger window configurations and
describes their effects on emulation control.

Break Emulation If Evntl occurs, emulation breaks.

Trigger - Level 0

Edit Options Level Windows Help
Condition Actions

eventname enable ext | seq vst| brk |toff next|ined vstd incl vstl |extlo exthi

DDDDDDDDD o O
A

Enable Evntl and choose the brk action.

File

Start emulation.

Tracing starts.

L e

Emulation stops when the trigger occurs. (Tracing stops when
emulation stops.)

Stop Trace Without

Breaking Emulation If Evntl occurs, trace collection stops.

Trigger - Level 0
File Edit Options Level Windows Help
Condition Actions

eventname enable ext | seq tst| brk [toff next[incd rstd incl rstl jextlo exthi
ETNE =] [agalj=]-ga]=g=g=ya) = py=
Tim
Enable Evntl and choose the toff action.
2. Start emulation.

3. When the trigger occurs, the trace buffer fills according to Trace
Control; tracing stops; emulation continues.

SLD User's Manual 61 Debugging With Triggers and Trace

Act On Multiple Events Epaple up to eight global events. Enabled events are processed in

parallel. For this example, multiple trace buffers must be defined in
the Options menu Trace Control dialog box and Counters must be
selected in the Options menu.

= Trigger - Level 0 ﬂ
File Edit Options Level Windows Help

Condition Actions
eventname ensble ext §seq rst|brk |toff nextiincd vst incl vstl extlo exthi
ratt ¢ OO OKOOIOXKOOIX O
iz (o OO0 0RO OO OOR O
s R OO0 ORIOCOIOCO0OOXR|K O
et (¢ OO OO OO O0ORKR|X® O
s (¢ OO OO0 RIBOOOI0 K
s (¢ OO0 OO0K OROOON0 K
rr (R OO0 OOCOCRIOOXO| O K
et (¢ OO OOK OOOXDO|O K
cnt 50 K OO0 OO O0o0oo0o|x® 0O
cntl | 100 X OO0 OROOODO0O00|X®X O
ext O

Enable the Event names in the eight drop-down list boxes.
2. Specify the actions to be taken when each event occurs:

e Evntl, Evnt2, Evnt3, and Evnt4 break emulation, reset one of
the counters, and write O to the external trigger-out signal.

e Evnt5 and Evnt7 fill the current trace buffer according to
Trace Control and start collecting trace into the next trace
buffer; increment one of the counters; and write 1 to the
external trigger-out signal.

e Evnt6 and Evnt8 stop tracing, increment one of the counters,
and write 1 to the external trigger-out signal.

e If Evnt5 and Evnt6 together occur 50 times without Evntl or
Evnt2 occurring, cnt0 reaches 50, breaks emulation, and
writes 0 to the external trigger-out signal.

e If Evnt7 and Evnt8 together occur 100 times without Evnt3 or
Evnt4 occurring, cntl reaches 100, breaks emulation, and
writes 0 to the external trigger-out signal.

If multiple events occur simultaneously, all associated actions are
taken. Some actions preclude others; for example, only ext lo or ext hi
can occur when a brk also occurs.

Debugging With Triggers and Trace 62 SLD User's Manual

AND an Event With an
External Input

Trigger on External
Input Alone

Define Sequential
Triggers For Capturing
Trace

SLD User's Manual

Logically AND the condition with an external trigger input low signal
by checking the ext box (ext is to the right of enable).

= Trigger - Level 0 H
File Edit Options Level Windows Help
Corndition Actions

eventname _enable ext § seq vst| brk|toff next|start stop veset |extlo esthi
w8 M|0 0RO O[0O0 O[]0 O |
o]

The trigger condition is true when Evntl occurs during a low value on
the emulator’s external trigger input.

Enable ext on the last line of the Condition pane to set a trigger on an
external signal alone (ext is located at the bottom of the left column).

= Trigger - Level 0 ﬂ
Eile Edit Options Level Windows Help

Condition Actions
eventname ensble ext § seq vst| brk |toff next|start stop reset |estlo exthi

K O00OO0O0OOoood

00RO O00 Ooj0 0O

This condition is true when the emulator’s external trigger input is
low.

Capture trace following each of three events in three separate trace
buffers. This example uses a PP Intel386 CX emulator running the
demo386.omf sample program installed with SLD.

Define buffers 8K bytes long. Position the trigger so the event appears
near the beginning of the buffer (Post).

63 Debugging With Triggers and Trace

Trace Control dialog
box specifying 32
buffers of 8K bytes
each, with the trigger
frames near the
beginning of each
buffer

Event window defining
a Memory Code Read
event in the insert
function

Event window defining
a Memory Code Read
event in the printall
function

= Trace Control

[Halt When Last Trace Buffer Full
[Trigger Position
O Pre O Center @® Post

" Number of Trace Buffers [x Size]

O1x256K) O8x32K) O 64 [x4K)
O2x128K) O 16 x16K) O 128 (x2K)
O 4 [x64K) @32 (x8K) O 256 [x1K)

[Tok] [cancet | [Hep |

Define an event at the first code location inside each of three function
calls: insent, printall, and remove. To find the addresses, use Xit:

Xlt #insert;
// 0018:FFFFE41C = FFFFE41CL = 3FFE41CP

The following figure shows the three event definitions.

=) Event: in_insert ﬂ
File Edit Windows Help

Active Event: |in_insen |i|
not start @ EndAddr O lLength _mask
addr: [|3ffed1cP | [3tfea1cp J_| | Ox3FFFFFF |
start end mask
data: 1| I || |

01 X 01 X 01 X 01 X 01 X
QO@®BHE? O O @ LOCKE O QO @ HOLD QO O @ INTR O O @ ERRORY
Q@O wMior ® OO ADSE OO @HWDA QO @®sMir O O @ PEREQ
@ O O pict OO @ READYR O O @ RESET O O @ SMIACT? O O @ A20M#
® OO WRE OO @ NAr OO ®NM OO @® BUSYH

= Event: in_printall ﬂ

File Edit Windows Help

Active Event: Iin_printall

]
not start ® End Addr O Length _mask

addr: [[3ffc4c0P | [3tte4cor| [0x3FFFFFF |

start end mask
dots: O] —
01X 01 X 01 X 01 X 01 X
QC@®BHE# O O @ LOCKE O O @HOLD O O @ INTR O O @ ERROR#
O@®OMion® O Oanst OO @HDA OO ®sMt O C@® PEREQ
@ O OpiIck O O @® READYR O O ® RESET O O @ SMIACTE O O @ A20M#t
® OO WRE OO @® NAR OO ® N O O @® BUSYH

Debugging With Triggers and Trace 64 SLD User's Manual

Event window defining
a Memory Code Read
event in the remove
function

PP emulator Trigger
sequential windows
with:

o the in_insert event
and the timer
enabled at level 0

o the in_printall event
and the timer
enabled at level 1
(activated when
in_insert occurs)

o the in_remove event
enabled at level 2
(activated when
in_printall occurs
after in_insert has
occurred)

SLD User's Manual

= Event: in_remove n
File Edit Windows Help
Active Event: [in_remove |_£|
not start @ End Addr O Length _mask
addr: (] [3ttc470P | [3tteazop | [ox3FFFFFF
start end mask
data: [| I I |
01 X 01 X 01 X 01 X 01X
OO @®BHE® O O @ LOCK? O O @ HOLD O O @ INTR O O @ ERRORY
OQ@OMiIon® OCADSE OO @®@HWDA OO ® sMe O O @ PEREQ
(Q

O @ RESET O O @ SMIACTE O O @ A20M#
O

O
® O O WRE OO @ NAR OO ® N O O @ BUSY#

Enable the Options menu Clock, setting the event trigger to respond to
clock cycles.

Enable the Options menu Timer, displaying a tmr line at the bottom of
the Condition pane. Check the tmr enable box. Type 8200 in the tmr
value field, specifying 8200 clock cycles to elapse between timer
triggers. This demo program is so small that the events defined for the
triggers occur multiple times in the trace captured to post-fill an 8K-
byte trace buffer. Since only one trace-control action (toff, next) can
occur in each buffer, the timer ensures that tracing moves to the next
buffer before sequencing to the next trigger.

= Trigger - Level 0 n
File Edit Options Level Windows Help
Condition Actions

eventname enable ext | seq vst|brk |toff nest|start stop veset |extlo exthi
minsert (¢ O|0O OO0 O 0O
in_printall | # O
in_remove| +| (]

+| O

+| O

| O

+| O

+ O
ke 3200 | O|X OO0 OO0OK X (O O
ext |

65 Debugging With Triggers and Trace

= Trigger - Level 1 ﬂ
File Edit Options Lewvel Windows Help
Condition Actions
event name enable ext § seq vst| brk|toff next|start stop veset |extlo exthi
in_insert | ¥ O
mpintall [} @ OO OO0 BRI O OO O
in_remove #] [J
+| O
+| O
+| O
+|O
+| O
ke (5200 |K O OO0 OO0OKXK ®|O O
ext O
= Trigger - Level 2 n
File Edit Options Level Windows Help
Condition Actions
eventname enable ext | seq st brk|toff next|start stop reset |extlo exthi
in_insert |+] O
in_printall | * O
mremove | OO0 OO0 OO0 O OO 0O
+|O
+| O
+|O
+| O
+ O
e [g200 | OJ
ext O

Each of the first two triggers captures trace following its event and
starts a timer to run while the buffer fills. When the buffer is full,
tracing begins in the next buffer. When the timer finishes, it stops,
resets itself, and arms (sequences to) the next trigger.

The final trigger turns trace off, filling the current buffer. Emulation
continues but trace does not.

Debugging With Triggers and Trace 66 SLD User's Manual

powerpak.ini File Reference

This chapter describes the contents of the powerpak.ini file.

Backup

CAUTION

SLD User's Manual

The SLD software installation creates the powerpak.ini file in your
Windows directory.

Always back up powerpak.ini. Once you have modified powerpak.ini,
you may need to restore the default contents by reinstalling the SLD

software.

The following sections can appear in powerpak.ini:

Section Purpose
[Comm] Host-to-emulator communication
[CPUlInfo] Intel debug register allocation

[DefaultLayout] Window screen locations
[InitScript] Script file to run on invocation

[LoadOptions] Load options

[Network] Network information

[Serial] Host system COM port number
[Sourcelnfo] Source window Go, Step, and View options
[StackInfo] Stack window options

[StatusInfo] Status window options

[SystemInfo] Target support

[ToolBarInfo] Toolbar configuration options

[ToolChain] Section names and bitfield information
[TraceInfo] Trace Control and Trigger window options
[TrigInfo] Trigger window options

[Variablelnfo] Toolchain Variable window options

Many entries are toggle settings with possible values of 1 or 0. For
such entries, 1 is enable and O is disable.

Whenever possible, change entries using menus or Shell commands
rather than modifying powerpak.ini in a text editor.

Avoid modifying any entry not documented in this chapter.

67 powerpak.ini File Reference

[Comm]

describes
host/emulator
communication

Select Baud Rate
dialog box, popped-up
automatically the first
time you start the SLD
software

powerpak.ini lines

type=[serial | pcnfs | lanserver] describes how the emulator
communicates with your host system. This entry is set to serial by the
SLD installation and changed by the PP emulator network installation.
If your network configuration changes, affecting communication
between the host system and the PP emulator, edit powerpak.ini.

serial specifies serial communication.
penfs defines the emulator as a node on a PC-NFS network.
lanserver defines the emulator as a node on an OS/2 LAN server.

BaudRate=[19200 | 38400 | 57600 | 115200] specifies the baud
rate for communication between the emulator and your host system.
The first time you start the SLD software, you must specify a baud rate.
For some host systems, baud rates above 57600 require a special

Windows driver.
I Select Baud Rate I

Baud Rate

O 19200
O 38400

[Comm]

igrefm:%;?;ﬁ"at // This is thg installled default communication type.
57600 baud /! Network installation changes this entry.
type=serial
// The BaudRate and com port (in the [Serial] section) are
// unspecified until you fill-in the appropriate dialog boxes.
BaudRate=57600
[CPUInfo]
allocates debug dr [<num>]=[user | system)] specifies whether each debug register
register use

powerpak.ini File Reference 68

is reserved for use by your program or by the emulator for hardware
breakpoints.

<num> specifies the debug register as 0, 1, 2, or 3.
user enables your program’s access to the debug register.
system reserves the debug register for use by the emulator,

SLD User's Manual

blocking your program’s access to the register.

pgg:d’ptf‘k'i"i lines // The emulator adds this section when you use a DR command,
SR 1 Ugé'R // as described in the “Shell Window Reference” chapter.
Shell command [CPUinfo]
dr O=system
dr 1=user
dr 2=system
dr 3=system
[DefaultLayout]
specifies Window The<SLDWindow>Presenter=[<Dimensions>] specifies the

screen dimensions

screen locations and sizes for the initially displayed SLD windows.

Move and resize the SLD windows using the Windows mouse or
cursor. To save the layout without exiting the SLD software, choose
the Toolbar Layout menu Save Layout Now item. If you are likely to
change the layout again before exiting but want the same initial layout
the next time you start, disable the Layout menu Save Layout On Exit
item.

The emulator fills-in this section when you save the layout.

[InitScript]

def{'"te?IWhiCh S:Te// script=[<scriptFile>] sets <scriptFile> as the initialization script

Script file executes 5

when you invoke SLD (the file of Shell commands run each time y(‘>u s:tart the SLD.software).
Either specify a full pathname or put the script in the SLD directory
(e.g., c:/powerpak). When no <scriptFile> is specified, none runs.
To change this entry, edit powerpak.ini.

powerpak.ini lines H i

speciying sample [InitScript]

// The sample script include.me is installed with the SLD
software.
script=include.me

initialization script

[LoadOptions]

specifies load options [LoadOptions] entries can be changed in the Load Options dialog box.
To open the Load Options dialog box, choose the Toolbar Load button;
or choose the Source window File menu Load Code item. In the Load
dialog box, after browsing the filename to be loaded, choose the

SLD User's Manual 69 powerpak.ini File Reference

Options button. Load command arguments override the
[LoadOptions] entries.

AddressSpace=[user | smm] specifies Intel x86 SMM or User
address space when the file is loaded. Choose the Load Options dialog
box User or SMM button.

LoadSymbol=[1 | 0] specifies whether symbols are loaded. For
example, when symbols are already loaded, turn off symbol loading
and load only code. Toggle the Load Options dialog box Load Symbols
item.

LoadCode=[1 | 0] specifies whether to load code. For example,
when debugging in ROM, turn off code loading and load only symbols.
Toggle the Load Options dialog box Load Code item.

LoadReportStatus=[1 | 0] specifies whether the load progress
indicator appears during loading. Toggle the Load Options dialog box
Report Status item.

LoadReportWarning=[1 | 0] specifies whether load warnings
appear. Toggle the Load Options dialog box Report Warnings item.

LoadOnDemand=[1 | 0] specifies whether symbolic information is
loaded for all modules immediately or loaded only when needed.
Symbolic information includes local symbol and line-number
information for a module. Such information is needed when either the
module is displayed in the Source window or a breakpoint is set in the
module. Advantages of on-demand symbol loading include faster
initial loading, faster lookup for the symbols that are demanded, and
less memory occupied by the loaded file since only the required
symbols are loaded. Toggle the Load Options dialog box On Demand
Symbol Loading item.

LoadDemangle=[1 | 0] specifies whether symbols are demangled for
the first instance of each overloaded function in a C++ program.
Toggle the Load Options dialog box Demangle C++ Names item.

LoadUpdateBase=[1 | 0] specifies whether x86 symbol base
addresses are updated. For example, if your descriptor table bases are
nonzero, you can save time by having the load process update your
symbol base addresses from the descriptor table information. Toggle
the Load Options dialog box Update Symbol Bases item. This option
must be used in conjunction with LoadRegister (toggle the Load
Options dialog box Load Initial Registers item).

LoadRegister=[1 | 0] specifies whether x86 initial register values are
loaded. For example, if your initialization code does nothing but
initialize the registers, you can save time by having the load process
extract the register information from your initialization code. Then,

powerpak.ini File Reference 70 SLD User's Manual

you need not execute the initialization code. Toggle the Load Options
dialog box Load Initial Register Values item.

powerpak.ini lines to [LoadOptions]
ombols mmotatey !/ 1=enable, 0 = disable
(into User space, if /l The following are the installed default values.
thereis a choice)and ~ LoadSymbol=1
to report progress while | 0adCode=1
loading LoadReportStatus=1
LoadReportWarning=0
LoadOnDemand=0
LoadDemangle=0
LoadUpdateBase=0
LoadRegister=0
// The following is installed for some processors.
AddressSpace=User

[Network]

lists available PP emulators=<name>[,<name>...] specifies one or more PP

emulators emulators installed on the network. When multiple <names> appear
in the list, a dialog box appears so you can choose one. This section is
added by the network installation. Change this entry by editing
powerpak.ini directly.

[Serial]

d;ﬁnzséf;e f;;OM port comport=com[1 12 | 3 | 4] sets the COM port connecting your host

attached to the . .

emulator or debugger system with the emulator. The first time you start the SLD software,

hardware this dialog box adds the [Serial] section and comport entry. To change
the COM port later, edit powerpak.ini.

Sialog b, pappc T Selemcompon ||
dialog box, popped-up Select COM Port

automatically the first Com Ports

time you start the -

SLD software O com
® come
O com3
< coma

powerpak.ini lines to [Serial]
use COM port 2 comport=com2

SLD User's Manual 71 powerpak.ini File Reference

[Sourceinfo]

controls the Source DisplayLineNum=[0 | 1] specifies whether source line numbers are
g;’;gz”: display and displayed in the Source window. Toggle the Source window View menu
Line Number item.

StepCount=<num> specifies how many steps (1 to 0OxX7FFFFFFF)
are executed per Step command. Choose the Source window Options
menu Step Count item and fill-in the dialog box. Or, enter a Step or
StepSrc Shell command.

ViewSource=[1 | 0] specifies the Source window display either as
source from the source file (1) or as a combination of source and
disassembly (0). Choose the Source window View menu Source Only
item or Mixed Source And Assembly item.

UseGolnto=[1 | 0] specifies whether the Source window Call and
Return buttons perform Go Into (1) or Go Until (0) emulation. Open
the Source window Options menu Set Go Buttons item; choose Until
Call/Return or Into Call/Return.

UseLineExecGranularity=[1 | 0] specifies whether a step executes
an entire source line (1) or a single source statement (0). Open the
Source window Options menu Set Step Granularity item and choose
Source Line or Source Statement. Or, enter a StepSrc Line or StepSrc
Statement Shell command.

HistoryDepth=<num> specifies how many source browsing locations
(1 to 50) are saved. Fill-in the Source window Options menu Browser
History Depth dialog box.

TabWidth=<num> specifies the number of spaces (1 to 32) that
replace a tab character in the Source display. The installed default is
TabWidth=8. Fill-in the Source window Options menu Tab Width
dialog box.

SourceDelimiterUseCRLF=[1 | 0] specifies the source delimiter (the
ASCII character string used by the debugger to delimit a source line) as
carriage return/linefeed (1), the DOS newline string or as linefeed only
(0), the UNIX newline string. When SLD is installed, the delimiter is
carriage return/linefeed. Open the Source window Options menu Source
Line Delimiter item; choose Carriage Return/Linefeed or Linefeed Only.

OperandAddressSize=[0 | 1 | 2] specifies the x86 address mode for
viewing disassembly in the Source window as:

0 derives the address mode based on the pmode.
1 uses 16-bit address mode.
2 uses 32-bit address mode.

powerpak.ini File Reference 72 SLD User's Manual

powerpak.ini lines
specifying Source
window options for
associating source
files with modules,
displaying source or
disassembly, and
stepping

SLD User's Manual

Open the Source window View menu Operand/Address Size item;
choose Auto, Usel6, or Use32.

DefaultModuleExtensions=[C, ASM, CPP, CXX, S] specifies the
default source file extensions. To change this entry, edit powerpak.ini.
‘When the source filename is stripped of its extension, the emulator
searches for the filename with the default module extension.

LoadFile[0 | 1 | 2 | 3]=<pathname> specifies the pathnames of the
last four source files you have loaded. This entry is updated
automatically when you load a module with associated source.

NumAliasPath=<number> specifies how many directories are listed
as source paths. This entry is updated automatically when you add or
delete a source path.

SourcePathAlias<num>=<path> specifies a source path. There are
as many of these entries as are counted in NumAliasPath. A
SourcePathAlias entry is added, changed, or deleted each time you
add, change, or delete a source path. Choose the Source window
Options menu Source Path item. In the Source Path dialog box, to add a
new path, choose Add and fill-in the Add dialog box; to change a path,
select the path, choose Edit, and fill-in the Edit dialog box; to delete an
existing path, select the path and choose Delete.

[Sourcelnfo]

/I The following are the installed default values.
// 1 = enable, 0 = disable
DisplayLineNum=1

StepCount=1

ViewSource=1

UseGolnto=1

UseLineExecGranularity=1
HistoryDepth=10

TabWidth=8

SourceDelimiterUseCRLF=1

// O=auto, 1 = use16, 2 = use32
OperandAddressSize=0

// default source module extensions
DefaultModuleExtensions=C,ASM,CPP,CXX,S
LoadFileO=

LoadFile1=

LoadFile2=

LoadFile3=

// The following entries are not installed, but
// are added when you display source.
NumAliasPath=

SourcePathAliasO=

73 powerpak.ini File Reference

[Stackinfo]

controls the display
and other options in
the Stack window.

powerpak.ini lines

specifying options for
stack usage statistics

StackSize=<num> specifies the stack size and must match the target's
allocated stack size. Unless specified in the load file, the stack size
defaults to 4K bytes. Fill-in the Stack window Options menu Stack Area
dialog box; or in the Shell window enter a SetStackArea or
SetStackSize command.

StackBaseAddr=<hex_addr> specifies the stack base address, as
defined in the load file. Fill-in the Stack window Options menu Stack
Area dialog box; or in the Shell window enter a SetStackArea or
SetStackBase command.

PercentAlarmLimit=<num> specifies the alarm limit as a percentage
of the stack size, from 1 to 100. Fill-in the Stack window Options menu
Alarm Limit dialog box; or in the Shell window enter a SetStackAlarm
command.

EnableAlarmLimit=[1 | 0] specifies whether the emulator displays a
warning message when stack usage reaches the percentage of the stack
area specified by PercentAlarmLimit. Toggle the Stack window
Options menu Enable Alarm Limit item; or in the Shell window enter
EnableAlarmLimit or DisableAlarmLimit.

EnableHWM-=[1 | 0] enables or disables the high water mark. Toggle
the Stack window Options menu Enable High-Water Mark item; or in
the Shell window enter EnableHighWaterMark or
DisableHighWaterMark.

ViewStackAddr=[1 | 0] enables or disables displaying the Stack
window stack address (the location of the frame on the stack). Toggle
the Stack window Options menu Include Stack Address item.

ViewCodeAddr=[1 | 0] enables or disables displaying the Stack
window code address (the called function’s return destination). Toggle
the Stack window Options menu Include Code Address item.

[Stackinfo]

// The following are the installed default values.
StackSize=1024

StackBaseAddr=0x800

PercentAlarmLimit=95

// 1 = enable, 0 = disable

EnableAlarmLimit=0

EnableHWM=0

ViewStackAddr=1

ViewCodeAddr=1

powerpak.ini File Reference 74 SLD User's Manual

[Statusinfo]

specifies whether the . Topmost=[1 | 0] specifies whether the Status window (or icon, when

Status window s . . _
appears on top of minimized) appears on top of other SLD windows. With Topmost = 1,

other windows the Status window or icon remains in the foreground relative to any

other overlapping SLD window, regardless of which window is in focus.
Toggle the Status window Control menu Always on Top item.

pow.e.zrpgk.ini lines [StatuslInfo]
postioning the Stack // The following is the installed default value.
Topmost=1
[Systeminfo]
co-ordinates Intel386 386EmulatorCPU=[386CX A-step | 386CX B-step | none]
::Z‘é?;fgf:"d fargét gescribes the CX or SX bondout processor in the emulator probe.

386EXEmulatorCPU=[386EX A/B-step | 386EX C-step] describes
the EX bondout processor in the emulator probe.

386TargetCPU=[386SX | 386CXSA | 386CXSA - 5V | 386CXSB |
386CXSB - 3V] describes the CX or SX processor in your target
design.

386EXTargetCPU=[386EXTA | 386EXTB | 386EXTB - 3V |
386EXTC | 386EXTC - 5V] describes the EX processor in your target
design.

386EmulatorCPUs=386CX A-step,386CX B-step lists the Intel386
CX/SX bondout processors recognized as emulator processors.

386EXEmulatorCPUs=386EX A/B-step,386EX C-step lists the
Intel386 EX bondout processors recognized as emulator processors.

386TargetCPUs=386SX,386CXSA,386CXSA - 5V,386CXSB,
386CXSB - 3V lists the Intel386 CX/SX processors recognized as
target processors.

386EXTargetCPUs=386EXTA,386EXTB,386EXTB - 3V,
386EXTC,386EXTC - 5V lists the Intel386 EX processors recognized
as target processors.

The first time you start the SLD software for Intel386 emulation, a
dialog box appears for the 386[EX]EmulatorCPU and
386[EX]TargetCPU entries. To change these entries later, edit or
reinstall powerpak.ini.

SLD User's Manual 75 powerpak.ini File Reference

CPU Configuration
dialog box for co-
ordinating the
emulator's bondout
processor with your
target processor

EA and SW emulator
front panel, showing
the Reset Out pins

powerpak.ini lines for
co-ordinating the
emulator and target
processors

powerpak.ini File Reference 76

CPU (nionfi:q?ation

Emulator CPU:

386CX Astep B2

Target CPU:

To discover the stepping, look for the part number (FPO) on the chip.
Production FPOs are 8 digits followed by a change indicator. Pre-
production and obsolete parts use a 5-digit code starting with Q.

CPU Step Production FPO Pre-production FPO
386EX A xA or xB Q8492

B xD Q7949

C Q8042
386CXorSX A xA Q8307

B xB Q8543

To discover the current settings, use the Version Shell command.

targResConfig=<Configuration> specifies the asserted and negated
states of the SW and EA emulator Reset Out signal (Reset Target Shell
command):

Configuration Asserted Negated
OpenCollector low high-Z
ActiveLow low high
ActiveHigh high low

To change entries in this section, edit powerpak.ini.

SJ1]

SAST SJ2 —

oo0o0o0o0
00000

[Systeminfo]

// The emulator fills-in the following entries
// when you fill-in the appropriate dialog box.
386EmulatorCPU=

386TargetCPU=

386EXEmulatorCPU=

SLD User's Manual

386EXTargetCPU=

/I Avoid changing the following entries.
386EmulatorCPUs=386CX A-step,386CX B-step
386TargetCPUs=386SX,386CXSA,386CXSB
386EXEmulatorCPUs=386EX A/B-step, 386EX C-step
386EXTargetCPUs=386EXTA,386EXTB,386EXTB - 3V,386EXTC -
5V

/I The emulator adds this entry the first time

// you enter a Reset Target command.
targResConfig=OpenCollector

[ToolBarinfo]
saves the window SavelLayoutOnExit=[1 | 0] specifies whether the SLD window layout
;3’::;:; ddTr?ns;s (the SLD windows as you have opened, positioned, and sized them) is

single stepping. saved when you exit. If the layout is not saved, the previously saved or
default layout appears next time you start. Toggle the Toolbar Layout
menu Save Layout On Exit item.

pow_erpak.in.i lines to [TooIBarInfo]
;f,t\ae': g;ieﬁﬁgor layout // The following is.the installed default value.
SavelayoutOnExit=0

[ToolChain]

describes OMF86 OMFBaseTypeNames=CODE,DATA specifies your OMF86 code
section names and
and data section names. Edit powerpak.ini to change this entry.

bitfield information
maxBitFieldSize=[16 | 32] specifies your OMFS86 bitfield size. Use
the MaxBitFieldSize Shell command to specify 16 for loadfiles
generated with the Borland C compiler and 32 for other toolchains.

powerpak.ini lines :

resolving OMF86 [ToolChain]

// The following are the installed default values.
// OMF86 Base type names
OMFBaseTypeNames=CODE,DATA

// OMF386 - maxBitFieldSize [<16132>]
maxBitFieldSize=32

toolchain specifics

[Tracelnfo]

S?’Z the Trace linkedCursor=[on | off] turns on or off the code address link between
window options the Trace and Source windows. The link is valid only when the Trace

SLD User's Manual 77 powerpak.ini File Reference

window displays instructions (see viewType in this section) and the
Source window displays mixed source and disassembly (see
viewSource in the [Sourcelnfo] section).

When cursors are linked, the Source window scrolls automatically to
match the Trace display.

To enable linkedCursor:

1. Enable the Source window View menu Mixed Source And
Assembly item.

2. Enable the Trace window View menu Instruction Cycles item.
3. Enable the Trace window View menu Linked Cursor item.

To disable linkedCursor, disable the Trace window View menu Linked
Cursor item.

viewType=[bus | clock | instruction] sets the trace view as:
bus displays the processor signals at each bus cycle.

clock displays the processor signals at each clock cycle (PP and
EA emulators only).

instruction displays the instructions executed by the processor and the
resulting reads and writes.

Choose the Trace window View menu Clock, Bus, or Instruction Cycles
item.

timestamp=[on | off] turns on or off the PP and EA trace timestamp
display. Toggle the Trace window View menu Timestamp item.

systemFrequency=<frequency> specifies the PP emulator target
system clock frequency; 0.01 Hz < <frequency> <40 MHz. Fill-in the
Trace window Timestamp menu Setup dialog box.

tsmode=[relative | delta | absolute] specifies the PP or EA
timestamp mode as:

relative shows timestamps as elapsed time from a zero frame.

delta shows each timestamp as incremental time from the
previous frame.

absolute shows EA timestamps as elapsed time from the last
timestamp reset.

Choose the Trace window Timestamp menu Relative To Frame, Delta,
or Absolute item.

tsReset=[on | off] specifies whether the EA timestamp is set to 0 each
time emulation halts.

captureMode=[clock | bus] specifies whether the EA captures trace

powerpak.ini File Reference 78 SLD User's Manual

powerpak.ini lines
specifying Trace

as clock or bus cycles.

traceStartState=[enabled | disabled] specifies whether the EA
starts capturing trace when emulation starts.

btmCycles=[enabled | disabled] specifies whether BTM (branch-
taken message) cycles are collected and shown. A BTM cycle indicates
a change in execution flow, such as a jump. The emulator must collect
BTM cycles to display trace as instructions. Toggle the PP Trace
window View menu BTM Cycles item or the EA Trace Capture dialog
box Instruction Mode Assist item.

[Tracelnfo]
// The following are the installed default values.

options X
linkedCursor=off
viewType=bus
timestamp=on
systemFrequency=25MHz
tsMode=relative
tsReset=on
captureMode=clock
traceStartState=enabled
btmCycles=enabled
[Triginfo]
sets the Trace This section is used by the EA and PP emulators only.
Control and Trigger
window options numTraceBuffers=[11214116 132|164 | 128 | 256] specifies the

SLD User's Manual

number of PP trace buffers. Specifying the number of trace buffers also
specifies the size of each trace buffer. The buffer size options depend on
the amount of trace memory (128K or 256K bytes) in your emulator.

Fill-in the PP Trace window Trace menu or Trigger window Options
menu Trace Control dialog box Number Of Trace Buffers (X Size) item.

traceAlignment=[center | pre | post] specifies the position of the
triggering event in the trace buffer:

center Trace buffers fill before and after the trigger. The trigger
appears in the center of the trace display.

pre Trace buffers fill up to the trigger. The trigger appears
near the end of the display.

post Trace buffers fill up after the trigger. The trigger appears
near the beginning of the display.

Fill-in the Trace or Trigger window Options menu PP Trace Control or
EA Trace Capture dialog box.

79 powerpak.ini File Reference

powerpak.ini lines
specifying Trigger
options

breakOnFull=[on | off] specifies whether the emulator breaks when
all PP trace buffers become full. Toggle the Trace window Trace menu
or the Trigger window Options menu Trace Control dialog box Halt
When Last Trace Buffer Full item.

counterTimer=[counter | timer | timerx2] configures the Trigger
window counter and timer conditions:

counter enables the PP single counter or the EA paired counters.
Choose the Trigger window Options menu PP Counter or
EA 2 Counters item.

timer enables the paired timers. Choose the Trigger window
Options menu PP Timer or EA 2 Timers item.

timerx2 enables the EA single timer. Choose the EA Trigger
window Options menu Cascaded Timer item.

trigMode=[bus | clock] specifies the type of cycle used for triggering:

bus automatically samples processor pins at the proper time in
abus cycle. The trigger is based on aligned samples.

clock triggers on any cycle coming from the processor, regardless
of whether it is a valid bus cycle. Use clock triggering to
trigger on an I/O signal or on an interrupt input that can
occur on any clock cycle.

Choose the Trigger window Options menu Bus or Clock item.

triginputMode=[activeHigh | activeLow] specifies whether the EA
Trigger window Ext condition matches a high or low Trigger In signal.
Choose the Trigger window Options menu Trigger In High or Low item.

trigOutputMode=[activeHigh | activeLow | openCollector]
specifies the EA Trigger window Ext action Trigger Out signal value.
Choose the Trigger window Options menu Trigger Out Active High,
Low, or Open Collector item.

[Triginfo]

/I The following are the installed default values.
numTraceBuffers=1

traceAlignment=pre

breakOnFull=off

counterTimer=counter

trigMode=bus

triggerinActive=low

triggerOut=activeLow

powerpak.ini File Reference 80 SLD User's Manual

[Variableinfo]

supports bitfield types AutoCalcBitfieldOffsets=[1 | 0] specifies whether to calculate the

SLD software bitfield offsets automatically. Set this entry to 1 when the
toolchain does not generate bitfield member offsets.

powerpak.ini lines [Variablelnfo]
;T;"C';'igg toolchain /I The following is the installed default value.

AutoCalcBitfieldOffsets=0

SLD User's Manual 81 powerpak.ini File Reference

powerpak.ini File Reference 82 SLD User's Manual

Toolbar Reference

PowerPack SLD Toolbar

File Configure Layout Windows Help
Setup Target Emulation Trace Misc

The Toolbar opens when you start the SLD software and is always
available. Options unavailable for your emulator configuration are
greyed-out. Closing the Toolbar ends your emulator session.
Minimizing the Toolbar hides all other SLD windows and icons.

Toolbar Menus

Menu Use To:

File Exit the SLD software.

Configure Configure and initialize the debugging environment.
Layout Save your screen layout of SLD windows.

Windows Select a closed or iconized SLD window to open.
Help Open a window for help with the SLD software.
File Menu

You can exit the SLD software as you would exit any Windows
application; or you can open the File menu and choose Exit. The
emulator asks you to confirm exiting.

Exit dialog box, PowerPack SLD
popped-up from the

Toolbar File menu, to

exit from the SLD O Exit PowerPack SLD?
software

In any SLD window other than the Toolbar, choosing Exit closes only
that window. Exit is on every SLD window File menu except in the
CPU window, where Exit is on the Options menu.

SLD User's Manual 83 Toolbar Reference

Toolbar Configure
menu

Toolbar Reference

Configure Menu

Configure menu items vary between processors.

| Configure

Map...
Run Access
¥ Symbolic Disassembly

Configure Symbols

Reset
Reset CPU Only

Map... opens the Map dialog box for examining and modifying your
memory map. Choosing this menu item has the same effect as choosing
the Map button. The Map dialog box is described in the “Map Dialog
Boxes” section later in this chapter. You can also configure memory
with Map and RestoreMap Shell commands.

Run Access, when checked, enables memory access during emulation.
Memory access is used to update the Peripheral and Memory windows
and to read or write peripheral registers and memory. (Run access does
not affect CPU register access, which is always unavailable during
emulation.) Because memory access takes a small amount of processor
time, doing such operations during emulation can degrade your
program performance. Initially, run access is disabled (unchecked) and
memory access is available only when emulation is halted.

You can also enable and disable run access with the RunAccess Shell
command.

Symbolic Disassembly, when checked, uses symbolic addresses in the
disassembly displayed in the Source and Memory windows.

Save Chip Selects... records the chip-select register values in an ASCII
file. For a list of saved registers, see the Hardware Reference. The
values can be restored with the Restore Chip Selects item.

You can also save the chip select registers with the SaveCS Shell
command.

Restore Chip Selects... restores the chip-select register values from an
ASCII file. You can create this file with the Save Chip Selects item,
with a SaveCS$S Shell command, or with a text editor.

Configure Symbols updates the loaded symbols with the base address
from the descriptor table (GDT or LDT). Your program must provide
the GDTR and LDTR values and the GDT and LDT contents.

ICECFGO Register... opens the ICE Peripheral Disable Register dialog
box for setting bits in the Intel386 EX processor ICECFGO register. To
enable or disable specific peripherals on ICE break, check or uncheck

84 SLD User's Manual

ICE Peripheral Disable
Register dialog box,
accessed from the
Toolbar Configure
menu ICECFGO item,
with all peripherals
enabled on ICE break

each option. The following shows an ICE Peripheral Disable Register

dialog box with all peripherals enabled on ICE break.

= ICE Peripheral Disable Register

[Jisi0 0 disabled upon ICE break

[s10 1 disabled upon ICE break
[ss10 disabled upon ICE break
[] DMA disabled upon ICE break
[J 8254 Timer disabled upon ICE break
[J wDT disabled upon ICE break

oK

Cancel

Help

Reset resets and reinitializes the target processor:

e The processor RESET pin is asserted.

e The program counter is read from memory; the Source window is
scrolled to the beginning of code.

e The stack pointer is read from memory, resetting the stack; the

Stack window display becomes invalid.

e All SLD windows are updated.

You can also reset the processor with the Source window Run menu
Reset item, the CPU window Options menu Reset item, or the Reset

Shell command.

Reset CPU Only resets only the processor and does not update the
windows. Use Reset CPU Only if Reset fails to reset the processor.

You can also reset only the the processor with the CPU window Options
menu Reset CPU Only item or the Reset Shell command.

Layout Menu

Save Settings Now saves the SLD screen layout immediately.

Save Settings On Exit saves SLD screen layout when you exit.

Toolbar Buttons

SLD User's Manual

Button Use To:

Map Open the Map dialog box (described later in this chapter) to
examine or change the memory configuration. This button
has the same effect as the Configure menu Map item. You
can also configure memory with the Map and RestoreMap

85

Toolbar Reference

Memory window
selection dialog box,
accessed from the
Toolbar Mem button
when multiple memory
windows are open

Toolbar Reference

Load

Trigger

Source

Stack

CPU

Mem

Shell commands.

Open the Load dialog box (described later in this chapter) to
load code and/or symbols. You can also load code and
symbols with the Load Shell command or the Source
window File menu Load Code item.

Open the Trigger window to define triggers and events for
controlling emulation and trace collection. This button has
the same effect as the Windows menu Trigger item. (PP
and EA only)

Open the Source window to examine source and
disassembly, manage breakpoints and stepping, and find
source corresponding to displayed trace. This button has
the same effect as the Windows menu Source item.

Open the Stack window to view the current nested calls,
associated parameters and variables, and stack usage
statistics. This button has the same effect as the Windows
menu Stack item. You can also examine the stack with the
Stackinfo and StackArea Shell commands, or modify the
stack with the StackArea, StackBase, and StackSize
Shell commands.

Open the CPU window to view and change processor
registers. This button has the same effect as the Windows
menu CPU item. You can also display and edit the CPU
registers with the Register Shell command.

Open or change focus to one of up to 20 Memory windows
to view and change memory. This button has the same
effect as the Windows menu Memory item. You can also
view and change memory with the Dump, Write, Fill,
Search, and Copy Shell commands. If more than one
Memory window (including minimized windows) is open, a
dialog box appears for choosing an existing Memory
window or open a new one.

Select Memory Window

0): Hex Words 0x0
(1): Disassembly 0x0

Cancel

il

Help

86 SLD User's Manual

Periph Open the Peripheral window to view and change peripheral
register values. This button has the same effect as the
Windows menu Peripheral item. Peripheral registers are
unavailable on some processors.

Go Start emulation from the current program counter,
controlled by previously defined breakpoints and triggers.
This button has the same effect as the <F9> key, the Source
window Go button and Run menu Go item, and the Shell
Go command.

Halt Stop emulation. This button has the same effect as the
<F2> key, the Source window Halt button and Run menu
Halt item, and the Shell Halt command.

Start Begin collecting trace. Tracing starts automatically when
emulation starts. You can start and stop trace collection
during emulation without affecting emulation. You can also
start trace with the Trace window Trace menu Start item.

Stop Stop collecting trace. You can also stop trace with the
Trace window Trace menu Stop item.

Show Open the Trace window to display collected trace. You can
examine trace during emulation. This button has the same
effect as the Windows menu Trace item.

Shell Open the Shell window for command-line entry. This
button has the same effect as the Windows menu Shell item.

Map Dialog Boxes

Map dialog box with
128K bytes of overlay
memory mapped for
RAM access

SLD User's Manual

The Map dialog box lists the configuration of each mapped region. To
select a region, click on it or use the <Up Arrow> and <Down Arrow>
keys to move the highlight.

Start Addr End Addr Size (KB) Type Access Space
oo —— i i

87 Toolbar Reference

Map Edit dialog box,
similar to the Map Add
dialog box, accessed
from the Map dialog
box Edit button

Toolbar Reference

Map Dialog Box Buttons

Button
Add

Edit

Delete

Save

Restore

Close
Help

Use To:

Open a dialog box to configure unmapped memory. Valid
Start Addr and Length/End Addr values depend on how
much memory is available.

Type:
Length{End Addr——————— Access:

@ Length: _n Space Mode
= 0x2000
O End Addr: — = { User []SMM

| 0OK I l Cancel I | Help I

For more information on the Start Addr, Length/End Addr,
and Access field values, see the list of Map dialog box field
contents below.

Open a dialog box (see the Add button description above) to
reconfigure a mapped region. This button is available when
a listed region is selected.

Revert a mapped region to unmapped memory. This button
is available when a listed region is selected.

Open a dialog box to save the listed configuration to a map
(*.map) file. You can also use the SaveMap Shell
command to save the map configuration.

Open a dialog box (see the Save button description above) to
configure regions from a previously saved map (*.map) file.
You can also use the RestoreMap Shell command to
restore a previously saved map configuration.

Close the Map dialog box.

Open a window for help on mapping.

You can also use the Map Shell command to examine and modify
memory mapping.

Map Dialog Box Fields

Field
Start Addr
End Addr

Size

Value
must start on a 4K boundary.
can end on any address.

varies between processors:

88 SLD User's Manual

Type

Access
Rights

Space

Load Dialog Boxes

e for PP-386 and SW-386 emulators, any multiple of
4K bytes starting on any 4K address

e for EA-486 emulators, any multiple of 128K bytes
starting on any 128K address

e for EA-NS486 emulators, any multiple of 4K bytes
starting on any 128K address

Specify a region size instead of an end address by
choosing the Length rather than the End Addr button in
the Map Add/Edit dialog box, then filling-in an
appropriate value in the Length/End Addr field.

is Overlay or Target. You can install 1M or 4M bytes of
overlay memory on the emulator to substitute for target
memory. To use the overlay memory, you must map a
region as Overlay. Unmapped regions are mapped as
Target and use your target board memory.

is one of the following ways to control and alert you to
memory access by your program:

RAM allows read and write access.

ROM BREAK (Intel processors only) allows read access;
prevents write access; and breaks on attempted write
access. For Target memory, write access is allowed but
causes emulation to break.

ROM NOBREAK allows read access; prevents write
access; does not break on attempted write access. For
Target memory, write access is allowed.

NONE (Intel processors only) prevents any access; breaks
on attempted access. For Target memory, read and write
accesses are allowed but cause emulation to break.

(Intel processors only) is User or SMM (system
management mode).

Open a dialog box for loading code and symbols with the Toolbar Load

button.

SLD User's Manual

89 Toolbar Reference

Load dialog box,
accessed from the
Toolbar Load button

OMF386 Load Options
dialog box, accessed
from the Load dialog
box Options button

Toolbar Reference

=

File Name: Directories:
'm I c:\powerpakisamp386
(¥ I
demo.omf % = e\ P
demo386.omf - [powerpak ™
= samp386 m

] a
List Files of Type: Drives:
[OMFx86 Files("OMF) [#| [Ec: ms-dos_62 [+]

‘When you select a loadfile, the Options button in the Load dialog box
becomes available. Choosing this button opens the Load Options dialog
box for specifying how to load code and/or symbols from the loadfile.
Available options depend on your processor and loadfile format.

‘When you are ready to load, choose the OK button. To exit the Load
dialog box without loading, choose the Cancel button. To open a
window with help on loading, choose the Help button.

== Load Options

it

O sMM

Load Code

% Load Symbols
[Jon Demand Symbol Loading
D Demangle C++ Names
[l Update Symbol Bases

[JiLoad Initial Register Values
X Report Status
D Report Warnings

| OK | |Qanl:el—| l Help l

Be sure the space you select is compatible with the address space
configured in the Map dialog box. (Intel processors only)

To enable an option, check the box beside the option. To disable an
option, uncheck the box.

Option Effect
Load Code loads executable code sections from your loadfile.
Load Symbols loads data sections and relevant symbolic

90 SLD User's Manual

SLD User's Manual

On Demand
Symbol
Loading

Demangle C++
Names

Update Symbol
Bases

Load Initial
Register Values

Report Status

Report
Warnings

information from your loadfile. When this option is
enabled, several sub-options are available.

waits to load symbolic information for each module
until it is needed, for example when you display the
module in the Source window.

uses an MRI algorithm to demangle some C++
symbols, for example overloaded function names.

reads base addresses for symbol tables, once the
registers are initialized with Load Initial Registers.

initializes the processor registers from information
put into the loadfile during compilation and linking.

displays an information box showing the load
operation progress.

displays information boxes with non-fatal anomolies
encountered during loading.

You can load a file during emulation. Be sure the file’s load addresses
do not overlap the memory occupied by the running program. Loading
a file at a location in use stops the emulator in an unpredictable state.

You can specify equivalent load options with the Load Shell command.

91 Toolbar Reference

Toolbar Reference 92 SLD User's Manual

Shell Window Reference

/7

/

+

1 File Edit Yiew Options Windows Help
include "include.me"; +
I£4

// Here is an example of a start up script:

/7 wversion;
f/ alias "ver"
/7 map 0 FFFffp;

“version™; /7 example of aliasing a comman

// This file, include.me, is run each time PowerPack SLD
// 1is brought up.
// up your environment. The [InitScript] section of
// the file powerpak.ini (in your Windows directory)
// can be edited to eliminate this feature or to

/7 change the name of the initial script file.

/7 get version information abou

// set up overlay memory map

Edit this file with commands to set

>l

Shell Window Contents

W

The Shell window contains two panes:

Transcript in the top part of the window, echoes commands and
command output.

Command Entry in the bottom part of the window, is where you enter
commands.

You can change the relative sizes of the Shell window panes. A split
box between the vertical scroll bars defines the edge between the
Transcript and Command Entry panes. When the mouse is pointing to
the split box, a split-box cursor appears (see figure at left). Drag the
split box to resize the panes.

To change focus from one pane to the other, click in the inactive pane
or press the <Tab> key.

Shell Window Menus

SLD User's Manual

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

93 Shell Window Reference

Menu Use To:

File Run a script; close the Shell window.
Edit Manage text in the Command Entry and Transcript pane
using Windows Clipboard.
View Manage the Transcript pane display.
Options Manage log files, command history, and the Transcript
size.
Help Open a window for help with the SLD software.
File Menu
Include File...
Exit

Include File... opens a dialog box wherein you can select a script (a text
file of Shell commands) to be run immediately.

Open dialog box to run

a Shell script, with the = Open
include.me script File Name: Directories:
selected I include.me I c:\powerpak
ev386sxl.clg = e 2
evdBbea.cfg = powerpak |
evibbicly £ samp386
event.dil samp.
evtimpit._dil 3 sampn486
finclude_me O Read Only
1drB0386.clg
1dr80486.cfg ™
List Files of Type: Drives:
[All Files(*.7) [¥] [=c msdos b [+]

Exit closes the Shell window without exiting the SLD software.

Edit Menu

Cut moves highlighted strings to the Windows Clipboard.
Copy copies highlighted strings to the Windows Clipboard.
Paste copies strings from the Clipboard to the Command Entry pane.

Shell Window Reference 94 SLD User's Manual

View menu with Echo
Command and Show
Results enabled

Options menu with
Overwrite Log File
enabled

History Size dialog
box, specifying that a
running history of the
20 most recent Shell
commands be kept

SLD User's Manual

View Menu

¥ Echo Command
¥ Show Results

Clear Transcript

Echo Command displays in the Transcript pane all commands you
enter in the Command Entry pane.

Show Results displays in the Transcript pane the results of commands
you enter in the Command Entry pane.

Clear Transcript blanks the Transcript pane.

Log Results

Log File Name...

Options Menu

Append To Log File
v Overwrite Log File

Set History Size...

Set Transcript Size...

Log Results starts recording into a text file all that appears in the
Transcript pane. If you have not previously specified a log filename,
the emulator uses shell.log in your SLD directory
(c:\powerpak\shell.log if you installed to the default directory).

Log File Name... opens a dialog box to specify the logfile pathname.

Append To Log File ensures that text recorded into an existing file is
added to the end of the file without destroying any prior file contents.

Overwrite Log File ensures that text recorded into an existing file
overwrites the file, destroying any prior file contents.

Set History Size... opens a dialog box to specify the maximum number
of commands retained in the history buffer. Recall past commands with
<Ctrl><Up Arrow> and <Ctrl><Down Arrow> key combinations.

Saved Commands [0-50):
[20 |

r OK j 1_§ancelJ I Help I

95 Shell Window Reference

Transcript Size dialog
box, specifying that the
275 most recent lines
of Shell command
activity be kept

Set Transcript Size... opens a dialog box to specify the maximum
number of lines retained in the scrollable Transcript pane.

franscripl Size

Transcript Size [0-1000]):
[275 |

| 0K l Lgancell I_ﬂelp I

Entering Commands in the Shell Window

Enter commands in the Shell window by one of:
e Type a command. Press <Enter> to execute it.

e Type a sequence of commands. Follow each command with a
semicolon (;). Press <Ctrl><Enter> to start a new line without
executing the already typed commands. Press <Enter> to execute
the sequence of commands.

e Execute a script (a text file of commands delimited by semicolons).
You can create or change a script in a text editor. To execute a
script, use the Shell window File menu Include item or the Include
command (described later in this chapter). In the powerpak.ini
file, you can specify a script to execute automatically when the SLD
software starts. The default initialization script is include.me.

e Recall previously entered commands from the history buffer by
scrolling with <Ctrl><Up Arrow> or <Ctrl><Down Arrow>. Edit
the command line as needed, then press <Enter> to execute. To
specify the history buffer size, fill-in the Options menu Set History
Size dialog box.

To cancel a command line without executing it, press <Esc> instead of
<Enter>. To interrupt command execution, press <Esc>.

The emulator interprets addresses as hexadecimal and data as decimal
values. Prefix hexadecimal data with 0X, as shown in the following:

Shell Window Reference 96 SLD User's Manual

Shell commands with
hexadecimal

) File Edit Yiew Options Windows Help
addresses, decimal - -
data, and hexadecimal reg cs 55 /7 Set CS rgglster to 5? declmal.'
' reg ¢s // Show CS register value in hexadecimal.
data 7 CS = 8x0837
write 10:50 033 // Urite 33 hexadecimal to segment 10, offset 50.
// Write successful.
dump 18:58 // Show hexadecimal values at hexadecimal address 10:58.
/7 00610:0050 33 60 00 60 60 00 60 60 00 00 6O 60 00 00 00 60

[[+

"l I |¢

>

ol [*

Shell Window Commands

Notational Conventions

The following notational conventions are used in the following pages:
Notation Meaning

COMMANDNAME Case is not significant in command names,

commandname keywords, and aliases. Case is significant in
CommandName Shell variables.

<placeholder> Indicates an symbol or expression argument.

[item] Brackets delimit an argument that can be
entered no more than once.

(item) Parentheses delimit an argument that must be
entered at least once.

{item} Braces delimit an argument that can be entered
Z€ero or more times.

item1 | item2 A vertical bar separates mutually exclusive
arguments.

"<string>" Delimit string constants with double quotes.

/* comment */ Delimit comments C-style or C++-style.

// comment

// response Forward slashes precede command output.

SLD User's Manual 97 Shell Window Reference

Commands and System Variables Grouped by

Function
To Do

Address
translation

Assembly;
disassembly

Breakpoints

Bus error
management

Chip select
setup

Compiler
setup

CPU data
structures

Shell Window Reference

Use
Xlt

Asm

AsmAddr

Dasm

DasmSym

Bkpt

BkptClear
DR
BusRetry

RestoreCS

SaveCS
MaxBitFieldSize
DT

GDT

GetBase
IDT

LDT

98

For

translating numeric and
symbolic address formats

assembling lines of code
directly into memory

determining the location
and address mode for
assembling into memory

showing memory contents
as disassembly

showing symbolics in
disassembled memory

setting and showing
breakpoints

removing breakpoints
managing debug registers

managing bus contention
and timeout

setting 386EX and NS486
chip select values from a
file

saving 386EX and NS486
chip select values to a file

setting the bit field limit
for OMF386 loadfiles

displaying the descriptor
table

displaying the global
descriptor table

displaying the symbol base

displaying the interrupt
descriptor table

displaying the local
descriptor table

SLD User's Manual

SLD User's Manual

Commands and System Variables Grouped by
Function (continued)

To Do

Emulation

Event
definition

Help

Loading

Memory
management

Use
PD

PMode
TSS

Go
Golnto

GoUntil

Halt
ResetAndGo

Step

StepSrc
EventRestore
EventSave

Help
Load
LoadSize

ResetLoaders
Copy

Dump

99

For

displaying the page
directory

displaying the address
mode

displaying the task state
segment

emulating

emulating until a function
call or return has occurred

emulating until just before
a function call or return

halting emulation

resetting the processor,
then emulating

emulating one or more
instructions

emulating one or more
source statements

setting event definitions
from a file

saving event definitions to
afile

invoking SLD on-line help
loading code and symbols

determining the memory
access size for loading

correcting an internal
loader error on request

copying contents between
memory locations

disassembling memory to
the Transcript pane

Shell Window Reference

Commands and System Variables Grouped by
Function (continued)

To Do

Register
access

Resetting
processor

Shell
commands

Shell Window Reference

Use
Fill

Map
RestoreMap
RunAccess

SaveMap

Search
Size

Verify
Write
Config

Register
Reset
ResetAndGo
Alias
Append
Clear

Delete

Echo

100

For

writing a repeating pattern
to memory

setting and showing
memory access options

setting map information
from a file

allowing memory access
during emulation

saving the map to a file

finding a value or pattern
in memory

determining the memory
access size

checking memory writes
writing a value to memory

configuring the 386EX
HLDA signal

reading or writing CPU
register values

resetting the processor and
SLD windows or the target

resetting the processor,
then emulating

defining one string to be
substituted for another

adding new log
information to existing log

erasing the Transcript
pane

removing a Shell variable,
alias, or link

toggling command display
in the Transcript pane

SLD User's Manual

SLD User's Manual

Commands and System Variables Grouped by
Function (continued)

To Do

Stack
management

Use
Exit
History
If

Include

Integer
Link

List
Log
Logging

Overwrite

Print

Results

String

Transcript

Time

While
DisableAlarmLimit
DisableHighWaterMark

DisplayStack

101

For
exiting the Shell window
sizing the history buffer

executing Shell commands
conditionally

executing a script

finding whether a Shell
variable is an integer

managing source
filenames

showing Shell variables
opening a log file

starting or stopping the
log

replacing previous log
with new log information

showing Shell variables
with specified text

toggling response display
in the Transcript pane

discovering whether a
Shell variable is a string

setting or showing the
Transcript pane size

showing the current date
and time

repeatedly executing Shell
commands conditionally

disabling the stack usage
alarm

disabling the stack
maximum-usage indicator

showing the stack contents

Shell Window Reference

Commands and System Variables Grouped by
Function (continued)

To Do

Status
reporting

Shell Window Reference

Use
EnableAlarmLimit

EnableHighWaterMark

FillStackPattern
SetStackAlarm
SetStackArea

SetStackBase
SetStackSize
StackInfo

$BREAKCAUSE
$EMULATING

$PROCESSOR
$PROCFAMILY

$PROCTYPE
$SHELL_STATUS
$SYSTEMTYPE
BusRetry

Cause

EmuStatus

102

For

enabling the stack usage
alarm

enabling the stack
maximum-usage indicator

writing a repeating value
to the stack area

specifying the stack usage
alarm

determining the stack base
and size

determining the stack base
determining the stack size

showing the stack
definition and statistics

showing why emulation
halted

showing whether
emulation is halted

identirying target CPU
identifying target CPU
family

identifying target CPU
type

showing the last Shell
command status

identifying emulator and
probe CPU

managing bus contention
and timeout

showing why emulation
halted

showing current emulator
activity

SLD User's Manual

SLD User's Manual

Commands and System Variables Grouped by
Function (continued)

To Do Use For
IsEmuHalted showing whether
emulation is halted
Time displaying the current
time
Version displaying host and
emulator version
information
Symbol AddressOf displaying a symbol’s load
management address
ConfigSymbols updating the symbol base
from registers
DisplaySymbols displaying program
symbolic information
NameOf displaying the symbol
associated with an address
RemoveSymbols removing loaded symbolic
information
SetBase setting the symbol base
SymbolCloseFile closing the file of recorded
symbolic information
SymbolOpenFile recording symbolic
information to a file
Target Reset resetting the processor or
control the target system
Signal determining whether
signals are driven by the
emulator or the target
Testing RAMtst running the memory
hardware confidence tests
Test running the hardware
confidence tests
Timing LapTimer displaying the timer
StartTimer starting the timer

103 Shell Window Reference

Commands and System Variables Grouped by
Function (continued)

To Do Use For
StopTimer stopping the timer
Tracing Flush flushing the cache

Shell Window Reference 104 SLD User's Manual

Command Dictionary

SBREAKCAUSEoooiiiiiiiiteeeintctesieseee ettt resatest e see s e 108
SEMULATIINGootiieiiieeenteeentneeteie st seesteseesuteee e st eaesseseensesnnens 108
SPROCESSORcctiiieiiieeteie ettt ettt stestesbestetessesaessesaessesnsans 109
SPROCFAMILYcctiiiieiieiienieeeietiieetesite st esstesae st siesseeeessesaeeessean 109
SPROCTYPE ...ttt ettt ss e e s 109
SSHELL_STATUSttt eseeestesteesasssasssessaesessasssnens 110
SSYSTEMTYPE ...ttt eie et eve s e saeseessaeeaveas 110
AdAressOfcuuiiiiiiiiiiieeee ettt sserees st eeesteeseae e e e sareeesaeaenesan 111
ALLAS .ottt et et e st e e e s et e e e s atae e e e s senaen 111
APPEIA ...ttt et sttt e e s e e ean 112
ASIN .ttt ettt e e et st e e sae e e e s s e nte s enaane e s 112
ASINAGAL ..ottt st e s 113
BERPL .ttt e 113
BRPUCICAL......ccoouniiiiieiiieeeceiieteite et e esseeeeeereeeesssaeessaesaseeesseusesssnnsesas 114
BUSRELIY .ceeviiiiiiiiiiiiiiti 114
CAUSE ..o iereeeeeneteeertteeeete e e eiteeeesrtesebe e e s s s bt e e eneressebeeeeaee s nneeseneaeaennn 115
CLEATeeiieeeteiieiiteeeereteeetee et ereseteesataee s e saeseseaeessaesneeeeesnsesssnaseens 115
CONEIZ .ttt ettt s 115
CONiGSYMDOLSceieeiiieieiiieieeiiierteeeeteeseereesseereeesseesaeeeessreesssnasenas 116
COPY ettt ettt ettt sttt s a s b s sene s 116
DIASIN ..ottt ettt ettt et e e e et e s e e st e e st e e ree s 117
DaSMISYIN...cciiiiiiiiieiieieieeett ettt sttt e seeessnre e resn et eane 117
DIEIELE. ...ttt ettt e e e s e e e e s e ae 118
Disable AlarmLimitcceeereerieerienieniineesreeeeeseeseesseressseesseseesseesnnes 118
DisableHighWaterMarkc.cccocervernnerineniieniieniienieneeicnnieserecnees 119
DiSPIAYSHACKeenerieiiieteetcte ettt 119
DisplaySymbOlS......c.ccueeerireriiiriierieteetenc ettt eresreee e 120
DR ettt ettt ettt sttt st et st st sa et esee e st et saeeeaaen 121
DT ettt ettt sae e s st e s sra s et ee st e a e e besa s e e eas e e sse e e e eeeane 122
DUIMP ...ttt ettt e et e st e e smteesntestesesneesatesenenannee 123
ECRO. ...ttt e s s e e 124
EmUSEatus. ..cccviiiiiiriiiinitiiecie ettt 124
Enable AlarmILimitcceoveeerereerrenennienienneeneneeneeenecees e sesneeseeenes 124
EnableHighWaterMarkccccceovieviminiininniniinccnciie e 125
EVENRESLOTEc..eeieiiiiiiieeeeiiere ettt ettt see e e v sne e eaee 125
EVENESAVEooiiiiiiiiiieeetecteertceeecc ettt s 125
EXAt ettt ettt ettt ettt ettt et eme e st sene e sebesebeeenne 125
Fll ..ottt ettt ee e et e st e st e et e sa e s me e sbesereeeanee 126
FillStackPattern.cccueeeuerieereieiiiieieeeeetenteenee et esr et snnesenee 126
FIOSH ..ottt ettt st s s ae e s s 127
G ...ttt ettt ettt et st s sate st e s mae e s saesseeeanee 127

SLD User's Manual 105 Shell Window Reference

G0ttt ettt e e et reteeeeeetreeaee e e e e e e e e e e s br e s e e e nraa e e ee e bbb aaa et eaeesrnrraraeenants 128
GOINLO. .. .uvviiieeirrereeeeeeeeeiitreeeeeereeeeseensneeesesensnseeeeessraneeaeessasseseesssessennens 128
(€101 8 1141 SRS 129
2 F: 1 (U U RPN 129
HEIP .ttt st 129
HiSEOTY ettt sttt e e e e s s ne e e 130
1 B AU 130,
TEBISE oottt ce et e ee e e e s snaaa e e e e e e s e rerarrereeaans 131
5373 11 16 L OO TPTN 131
IDEEEET ...ttt et ee s e te e s s s raesae e e e e e e e et aasaaaeeaen 131
ISEMUHAItEovvvreeeeieiieiiieiieee et e e eeenrere e s e e ereeraeeeeeens 132
LapTimer.....coiviiiiiiiiiiiiiiiiieittctr ettt s e 132
LD T ettt ettt e eerte e e e et e e e e e enve e s saeesesbe e e baeeesssanae e s rrnnnrrasaerees 132
LADK c.oteieeerieeeeieeeeeecteeeeeteeeeeerreeeeeesrreesnbeesesaeeeesseeesnssaesennnsnnnnsrnnsenseees 133
LSt oeetieieeiireeeeeecitnrreeeeeeetranaraereeeeeeeeeesasaaeeeesssbaaeesaesnssnraessessnnsnsaraeenns 133
| 50T T DO 134
LOAASIZE ...vvveeeeeeeieeee ettt ee ettt e e e e e es e s e s eesansseess e s saaasraaraeeees 135
L0 ettt st re et 135
LOZEING ..ottt ettt ettt et et st aaaa e s sae e e 136
MAD .ttt st s e s 136
MaXBitFieldSiZeuuvviiieeeiiieeeeeeeeeeceeeeervevevee b e eeereraeneees 137
NAMEOL ..ottt e eee e rar e e sresesseee e e s bennrareesesnsees 137
OVETWIIL ...evveeeeeerinerieeeeeeeeeeresssreesreeeeeenssseeesessesssssseesesnssssssssnnssnssseneens 138
o D T USSR 138
PINOAE ... e eee et a e e e e e araeaaeens 138
s 1 1| SRR 139
RADMISE c.ccceceeeeeecceeeeceeeeeeeereeeeeeeeeeeeeeeeeeeessesst e eeseessssssssssssnsennnnsesesssnnnsens 139
REGISIETciiuiiiiiiieieectecte ettt ettt et e e e eee e 139
RemOVESYMDOISeviiicieieieieieiieccieceeerte e e e seeere e e e e e e s 140
RSB .. iiiiiieeeieccctrrt e cerrrreveeeee e baaeseseessbaeeesse e ressrn s nnrrneens 140
RESELANAGOc.cc.eeeeietieeieeeeeceeecciiitrree e citreeeeeeeesssesereeesessssssnsenssnssssnnees 141
RESELLOAAETS.......uueeieeceeiiieeeiieeeeeeeeeeeeeeeeeineearaasessseesanssnrsasnneeereseerseees 141
RESIOTECS ... ceeee e eeeceeeeen e asbanasse s s aressnaeeeeesesnaees 141
REStOTEMADuviiiiiiieieieee ettt tee e s e rae e s ve e e e s s ra e e e s s avees 142
RESUILS «.eieiiiirieeeeeccctteeeee e rrrreeeeereeeseeeesssssaseeesesnsnsnnnsnnnnnsssnnees 142
RUNACCESS ...eveiiieeeiiiieeeiieeiereeiiiieeeeeeessssseeeeeesesssssessesssssenssnsnnnnnsssssees 142
SAVECS ...ttt ecrrrrree e e e e s e e e et rte e e e e raee e e ee e reraeaae s s raanrabaaaaann 143
SAVEMAD ..coiiiieieiecte ettt st sttt e e e s eaee 143
N 1 (o] | PPN 143
SELBASEoevieieeeciiiiieeeee et e e e ertreee e e eesnbe e e er et nae s e e et aaannaaraaaens 144
SetStaCKAIAIMccviiiiiieiiiiiriiiiieteeeeereesereceeerrreeeee e seresaseeseesssnsaseeesannns 145
SEtStACKATEA.euuiireeeieeiiiiiitereeeeeeerrtteeeeeeereeeseeseeeessesessssssnnssessenns 145
SetStaCKBASE.......uvuveiieeiieiiiiiiiieeeeeeeectteeeeeesreeaseeeeesassesssssnsnsnsssereens 146

Shell Window Reference 106 SLD User's Manual

SIZNAL coeiiiiiiiiiii s 146
SHZE ettt sttt et b e s aa e e e s en 147
StACKINFO......veiuiiiiieiiiie ettt 147
StArtTIMET . c...ceiiiiiiiiiieeeteect ettt ettt et et e s 148
N3 1<) + DO ROPUPR SR 148
SEEPSTC. ..ttt ettt st na e 148
SEOPTIMET c..eeiiiiiiiiiiiiiiit e 149
SEEIE ettt ettt e et e e e e e e ettt e et e nnnta e e enneeeenns 149
SYMDBOICIOSEFIIEccoiiriiiriiiirieiieeinee et s e eite s ssreeevae e saraeeeeas 150
SYMBOIOPENFILE.......coeiiriiiiiiier ittt rteeee e e e eree e st seeae e e e eaeaeeeeas 150
TSt eeeeeeeeeieeteeett e re et e ettres e e e e st e s e et e e e te e e ae b aae e ba e e be e e e e reaaeeenneaes 150
TIIMNC ettt re e e e e e e s e e e e e e e e eans 151
TTANSCTIPL ..ociiiiiiiiiiiiiiiiicce e 151
TS S ettt ettt st et e st e e e a e st e st e b e e e tee s saesnnne 151
VEIIEY ccitite ettt ettt st e 151
VETSION «..vvviiiiiieeeeiieeeeeeitesiteeesssteeeeesteeesassneenaneeaesssaesssessnsnseessnsnnsens 152
WHILE ..ottt ettt ste st st s et et e s ae e e e e s aae e s 152
WTHEE ..ttt ettt e sttt et e e e e e e e st e e s e e st e beeassnaessnsaennns 152
XL ettt ettt ettt e ettt be e et a et e e e st e e e e et e baeaensaaeeneennne 153

SLD User's Manual 107 Shell Window Reference

$BREAKCAUSE

System variable;
shows what caused
emulation to break.

Related topics:
SEMULATING,
Cause, Go, Golnto,
GoUntil, Halt,
ResetAndGo, Step,
StepSrc

$BREAKCAUSE
Case is significant. Enter this variable in upper case.

Knowing what caused emulation to break can be useful; for example, a
script can single-step repeatedly until the target processor is reset.

$BREAKCAUSE is updated when emulation breaks. Its value
indicates the cause of the break:

0 No cause (for example, emulation not yet started)
Target processor was reset

Emulator was halted

Processor single step

Execution breakpoint reached

© U A N =

External break request

9 Unknown cause

/* Following is part of a script that stops after any execution
breakpoint. $Z is an undeclared Shell variable that stops the
script. */

go;

while (SEMULATING) {;}; /* loop until emulator halts */

if (S BREAKCAUSE==5) {$Z;}; /* test for execution breakpoint */

SEMULATING

System variable;
shows whether the
emulator is running.

Related topics:
$BREAKCAUSE,
Cause, Go, Gointo,
GouUntil, Halt,
ResetAndGo, Step,
StepSrc

$SEMULATING
Case is significant. Enter this variable in upper case.

Knowing whether the emulator is running can be useful, for example,
to control script execution flow based on emulation status.

$EMULATING has the value:
1 The emulator is running.
0 The emulator is halted.

bkpt #main; /* stop after registers initialized */
ResetAndGo; /* start from the power-on level */
while (SEMULATING) {;}; : /* loop until emulator halts */

Shell Window Reference 108 SLD User's Manual

$PROCESSOR

System variable;
identifies target

$PROCESSOR

processor. Case is significant. Enter this variable in upper case.
Related topics: $PROCESSOR identifies the processor in your target design as:
$PROCFAMILY, Value Processor
PROCTYPE,
gSYSTEMTYPE, 386¢cx Intel386 CX
Version 386dx Intel386 DX
386ex Intel386 EX
386sx Intel386 SX
3exc Intel386 EX C-step
486 Intel386 CX
486dx Intel386 EX
486sx Intel386 SX
ns486 National Semiconductor NS486SXF
none No processor specified
$PROCFAMILY
System variable; $PROCFAMILY
identifies target
processor family. Case is significant. Enter this variable in upper case.
Related topics: $PROCFAMILY has the value:
$PROCESSOR, Value Processors in Family
PROCTYPE,
gSYSTEMTYPE, FAM"_Y_X86 Intel386, Intel486, or NS486SXF
Version
$PROCTYPE
System variable; $PROCTYPE
identifies target
processor type. Case is significant. Enter this variable in upper case.
Related topics: $PROCTYPE identifies the processor type in your target design as:
$PROCESSOR, Value Processors Categorized as This Type
PROCFAMILY,
gSYSTEMTYPE, 80386 Intel386 EX, CX, or SX
Version 80486 Intel486 SX or NS486SXF
SLD User's Manual 109 Shell Window Reference

$SHELL_STATUS

System variable; $SHELL_STATUS

shows whether the last -

shell command Case is significant. Enter this variable in upper case.

gzlc?elsﬁglly. Knowing whether a Shell command completed successfully can be
useful, for example, to control script execution flow based on whether
prior commands executed correctly.
$SHELL_STATUS has the value:
0 The command completed normally.
nonzero An error occurred. The $SHELL_STATUS value is the

SLD software error code.
bkpt #main; /* stop after registers initialized */
Reset; /* try to reset processor and update SLD windows */
If ($SHELL_STATUS) {
Print “Didn’t Reset”;
Reset CPUonly}; /* Reset without updating SLD windows */

$SYSTEMTYPE

System variable; $SYSTEMTYPE

identifies emulator and

probe processor. Case is significant. Enter this variable in upper case.

Related topics: $SYSTEMTYPE identifies your emulator as:

$PROCESSOR, Value Emulator

PROCFAMILY,

gPROCTYPE, Version P P386¢cx PP emulator for the Intel386 CX processor
PP386dx PP emulator for the Intel386 DX processor
PP386sx PP emulator for the Intel386 SX processor
LC386ex SW emulator for the Intel386 EX processor
LC3exc SW emulator for the Intel386 EX C-step processor
LC486 EA emulator for the Intel486 processor
LC486dx EA emulator for the Intel486 DX processor
LC486sx EA emulator for the Intel486 SX processor
LCns486 EA emulator for the NS486SXF processor

Shell Window Reference 110 SLD User's Manual

AddressOf

Returns the numeric
address of a module,
function, line, or

AddressOf <address>
<address> is a partly or fully qualified symbol name.

variable. AddressOf returns the numeric address where the symbol is loaded.
Related topics: For local variable addresses (stack offsets), use DisplaySymbols. You
DisplaySymbols, . .
GetBase, NameOf, cannot use AddressOf to obtain the address of a local variable, because
RemoveSymbols, a local variable has no fixed location.
SetBase
addressof #Blank_TxBuf; // address range of a function
// 6A6..6BF
addressof #MsgRXx; // address range of an array variable
// E68..E87 [32]
For function names, you can obtain the same information in the Source
window by double-clicking on the function name to display the
Function pop-up menu, then choosing Show Load Address.
Alias

Define or list an alias.

Related Topics:
Delete

SLD User's Manual

Alias ["<name>" ["<value>"]]
<name> is the alias. The quotation marks are required.

<value> assigns a value to the specified name. The quotation
marks are required. Inside <value>, replace double
quotation marks with single quotation marks.

With no arguments, Alias lists all currently defined aliases. Alias
“<name>* displays the value of <name>.

Use alias to shorten or change commonly used command strings.

alias "s1" "include 's1.inc";

Alias "increment" "$a = $a + 1; $a;"
$a=0;

increment;

// 0x1 1

increment;

/1 0x2 2

111 Shell Window Reference

Append

Appends to log file.

Related topics:
Log, Logging,
Overwrite, Echo,
Results

Append

When Append has been specified, logging adds text to the end of the
current log, preserving the log’s prior contents.

You can also configure logging to append to a file with the Shell
window Options menu Append To Log File item.

Echo On; // Commands you enter appear
// in the Transcript pane.
Results On; // Results of the commands appear
// in the Transcript pane.
Append; // Subsequent logging will add

// to any prior log contents.
// Open the log file emu1.log.

// Start writing log information. The emulator
// immediately puts the time and date in the log file.

/... // Your emulation activities...

Logging Off; // Stop writing log information. The emulator
// immediately puts the time and date in the log file.

Log “emu1.log”;
Logging On;

Asm
Write assembly to Asm <string>
memory. . .
<string> is an assembly language statement.
Related topics:
Asm Addr,ll’)asm, Asm checks the syntax of <string> and writes the instruction bytes to
DasmSym memory at the current assembly address. (Determine the current

Shell Window Reference 112

assembly address with AsmAddr.)
Symbolic assembly is not supported.

Asm nop;
// 000000 4E71 nop
// Number of bytes: 2

You can also assemble new instructions and data into memory with the
Single-Line Assembler dialog box.

SLD User's Manual

AsmAddr

Set the address where
the Asm command will
write.

Related topics:
Asm, Dasm,
DasmSym, Pmode

AsmAddr [<mode>] [<address>] [<space>]

<mode>

<address>

<space>

specifies the addressing mode:

Auto derives the addressing mode based on Pmode.
Use16 uses 16-bit operands and addresses.

Use32 uses 32-bit operands and addresses.

is a numeric or symbolic address of the location where the
next Asm command will write.

specifies the emulator address space as:
e user, smm, or io for 386 EX emulators

e user or smm for 386 CX and Intel486 SLE
emulators

e user or io for NS486 emulators
e user for 386 SX and Intel486 non-SLE emulators

With no arguments, AsmAddr displays the current assembly address in
the current addressing mode. :

AsmAddr 2000;
// Asm address offset: 2000

Bkpt

Display, set, or modify
breakpoints.

Related topics:
BkptClear, DR

SLD User's Manual

Bkpt [enable | disable] [temporary | permanent] [<address>]
[@<ID>] [<space>]

enable
disable
temporary
permanent
<address>

<ID>

with @<ID> specified, enables the breakpoint; otherwise
enables all breakpoints.

with @<ID> specified, disables the breakpoint; otherwise
disables all breakpoints.

removes the breakpoint when the breakpoint halts
emulation.

retains the breakpoint when the breakpoint halts
emulation. To remove the breakpoint, explicitly delete it.

a numeric or symbolic address. When this address is
accessed, the breakpoint (if enabled) halts execution.

is an integer from 0 to 65534 uniquely identifying the

113 Shell Window Reference

breakpoint. Either you or the emulator assigns an ID
when a breakpoint is defined. Specifying an existing ID
modifies the identified breakpoint. The at (@) is
required.

<space> for 386 EX, 386 CX, or Intel486 SLE emulators specifies
smm or user (the default) address space.

With no arguments, Bkpt displays all current breakpoints. Source
information is also displayed when a match exists with the symbol
table.

bkpt disable @12 /* disable the breakpoint with ID 12 */

You can also set breakpoints using the Source window mouse or
Breakpoints menu, or the Breakpoint window Set button or
Breakpoints menu.

BkptClear

Remove breakpoints.

Related topics:
Bkpt, DR

BkptClear @<ID> | <address> [<space>] | all

<ID> removes the breakpoint with the specified ID number. The
at (@) is required.

<address> removes the breakpoint at the specified code address.

<space> for 386 EX, 386 CX, or Intel486 SLE emulators specifies
smm or user (the default) address space.

all removes all temporary and permanent breakpoints.

Use BkptClear to remove a specified breakpoint or all temporary and
permanent breakpoints.

BkptClear @1; /* remove breakpoint with id 1 */
BkptClear all; /* remove all breakpoints */

You can also clear breakpoints with the Source window mouse or
Breakpoints menu, or the Breakpoint window Clear button or
Breakpoints menu.

BusRetry

Assert bus error after
timeout.

BusRetry [on | off]

on turn retry on.

off turn retry off.

With no arguments, BusRetry displays its current setting.

Shell Window Reference 114 SLD User's Manual

Disable retry when contention exists with another driver or when a slow
device takes longer than the timeout.

Cause

Display the cause of Cause

the last break in

emulation. Use this command when emulation is halted to discover the reason for the
Related topics: most recent halt. Possible Cause responses are:
$BREAKCAUSE e No cause is recorded.

e The target processor was reset.

e You entered a Halt command.

e The emulator completed a Step.

¢ Emulation encountered an execution breakpoint.

e The emulator received an external break request.

e The cause is unknown.

The break cause also appears in the Status window.
Clear
Clear the Shell Clear

window Transcript
pane.

Use Clear to remove all text from the Shell window Transcript pane.
The Shell window View menu Clear Transcript item does the same.

Config

Define Intel386 EX
HLDA pin function.

SLD User's Manual

Config ignoreHLDA [on | off]

on causes the emulator to ignore the HLDA pin state. Set config
ignoreHlda on when HLDA is programmed as an I/O bit.

off (default) causes the emulator to examine the HLDA pin state before
generating overlay RAM or trace/trigger strobe.

With no arguments, Config displays its current setting.

On the 386 EX, you can program the HLDA pin to function either as
HLDA function or as an I/O bit. The emulator hardware must know
when the bus has been granted to an external master so that overlay RAM
cycles are disabled to prevent corruption. If the HLDA pin is visible, the
emulator disables overlay RAM cycles. Otherwise, the emulator assumes

115 Shell Window Reference

no external masters exist.

When using the Intel Evaluation Board, which programs the HLDA pin
to be an I/O bit, set config ignoreHlida on.

ConfigSymbols

Update symbol ConfigSymbols [<base>]

base address from

the x86 descriptor <base> is the base name for the group of symbols to be updated.
table.

With no arguments, ConfigSymbols reconfigures all symbols in your
program.

This command updates the specified symbols with the base address
obtained from the descriptor table (either GDT or LDT). To get the

correct symbol base, the target program must set up the correct values of
GDTR and LDTR and the contents of those tables.

You can also update the symbol base address with the Toolbar Configure
menu Configure Symbols item.

Copy

Copy one region of
target or overlay
memory to another.

Related topics:
Dump, Fill,
RunAccess,
Search, Size,
Verify, Write

Shell Window Reference

Copy <start> (<end> | Length <len>) [<space>] [Target]
To (<dest> | Target | <dest> Target) [<space>]

<start> specifies the starting address of the region to be copied.

<end> specifies the ending address of the region to be copied.

<len> specifies the number of bytes to be copied. The Length
keyword is required.

<space> specifies user (the default) or:
smm for 386 EX, 386 CX, or Intel486 SLE emulators
io for NS486 emulators

Target overrides any overlay mapping to use target memory as the
source or destination.

<dest> Specifies the starting address that will be copied into. The

To keyword is required.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Use
RunAccess to enable Copy during emulation; however, such access can
degrade your program execution.

/* Copy 64 KB from address 0x0 to overlay at the same address: */

116 SLD User's Manual

map 0 10000;
copy 0 length 1000 target to O;

/* Copy from overlay to target: */
copy 0 length 1000 to 0 target;

/* Copy from overlay to overlay: */
copy 1000 length 1000 to 4000;

/* Use symbolic addresses: */
copy #func1 #func2 to #ram_area target;

You can also copy memory with the Memory window Edit menu Copy
Memory item.

Dasm
Disassemble Dasm [<mode>] [<start> [<end>] [<space>]]
memory.
<mode> Specifies the addressing mode:
Related Topics:
Ase,: :ddr oplcs Auto derives the addressing mode based on the pmode.
DasmSym Use16 uses 16-bit operands and addresses.
Use32 uses 32-bit operands and addresses.
<start> is the first address of the region to disassemble.
<end> is the last address of the region to disassemble.
<space> for 386 EX, 386 CX, or Intel486 SLE emulators specifies
smm or user (the default) address space.
With no arguments, 10 instructions are disassembled beginning at the
current assembly address. (To find the current assembly address, use
AsmAddr.) When only <start> is specified, 10 instructions starting at
<start> are disassembled.
You can also view disassembled memory with the Memory window View
menu Disassembly item, or interleaved in your source text with the
Source window View menu Mixed Source And Asm item.
DasmSym
Control symbolic DasmSym [on | off]
disassembly in the L.
Shell window. on (default) turns on symbolic disassembly.
Related topics: off turns off symbolic disassembly.
AsmAddr, Dasm

SLD User's Manual

With no arguments, DasmSym displays the current setting.
Symbolic disassembly displays symbols in the disassembly shown in the

117 Shell Window Reference

Memory window in Disassembly view, the Source window Mixed Source
And Asm view, and the Trace window Instruction view.

You can also toggle symbolic disassembly with the Toolbar Configure
menu Symbolic Disassembly item.

Delete
Delete a Shell Delete (Alias “<name>“ | <variable> | Link “<filename>*)
variable or alias .
<name> is the alias to be deleted. The Alias keyword and the
Z‘?’a‘ed Topics: quotation marks are required.
1as
<filename> identifies a file link to be deleted. The Link keyword and
the quotation marks are required.
<variable> is the Shell variable to be deleted.
$a=9$b=0;
list;
//$a=0
//$b=0
Delete $a
list
//$b=0
Alias Ilall ll$a;ll ;
Alias;
/Il a: "$a;"
Delete Alias "a";
Alias;
DisableAlarmLimit
Disable the wamning DisableAlarmLimit
message for L .
excessive stack You can set an alarm (using EnableAlarmLimit) to notify you when
usage. stack usage exceeds a specified percentage of the stack.
Related topics: DisableAlarmLimit turns off this alarm.
DisableHighWater- Yoy can also disable the alarm by un-checking the Stack window
Mark, Options menu Enable Alarm Limit item
DisplayStack, p :
EnableAlarmLimit,
EnableHighWater-
Mark,

FillStackPattern,

Shell Window Reference 118 SLD User's Manual

SetStackAlarm, ,
SetStackArea,
SetStackBase,
SetStackSize,
Stackinfo

DisableHighWaterMark

Disable keeping
track of the stack
maximum usage.

Related topics:
DisableAlarmLimit,
DisplayStack,
EnableAlarmLimit,
EnableHighWater-
Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stackinfo

DisableHighWaterMark

You can set an indicator in the Stack window to keep track of the stack
high-water mark (the maximum stack usage). DisableHighWaterMark
turns off this indicator.

You can also disable the high-water mark by un-checking the Stack
window Options menu Enable High-Water Mark item.

DisplayStack

Display the stack
frames.

Related topics:
DisableAlarmLimit,
DisableHighWater-
Mark,
EnableAlarmLimit,
EnableHighWater-
Mark,
FillStackPattern,
SetStackAlarm,
SetStackBase,
SetStackSize,
Stackinfo,
SetStackArea

SLD User's Manual

DisplayStack [locals | hex]
locals includes symbols for automatic variables.

hex displays the stack in hexadecimal radix, 16 bytes per line.
When you specify no arguments, the display defaults to:

e addresses when no symbolic information is available

e addresses and function names when symbolic information is
available

You can also view the stack frames, with stack and return addresses,
arguments, and local variables, in the Stack window.

119 Shell Window Reference

DisplaySymbols

Display all symbols DisplaySymbols [modules | functions | publics | lines | sorted |
or display one of the #<module>]
following: modules,

functions, public modules lists module names only.
symbols, or lines.

functions lists modules, global variables, functions, and blocks.
Related topics:

AddressOf, publics lists all printable symbols including publics (code labels
GetBase, NameOf, and variables defined publicly across modules). For
RemoveSymbols, example, libraries normally contain no local symbols but
SetBase accessible global variables in libraries appear as public
symbols.
lines follows each module by the line numbers loaded for that

module. With each line number is listed the line’s ending
column and start address.

sorted sorts the module list alphanumerically.

<module> lists all symbols for the specified module. The hash mark
(#) is required.

With no arguments, DisplaySymbols displays modules, global
variables, functions, and local variables, but not publics nor individual
line numbers.

If you have previously issued a SymbolOpenFile command, the
DisplaySymbols output is directed to the symbol file.

The output is displayed in four columns:

e The symbol scope (MODULE, VARIABLE, FUNCTION, BLOCK,
PUBLIC VAR, PUBLIC LABEL) appears in the first column.
Each line is indented to show the level or scope of the symbol in the
symbol hierarchy. Modules and publics are at the root level.
Functions defined in a module are indented one level. Variables
local to a function are indented under that function. Blocks are
treated as unnamed functions and indented for each nesting level.

e The symbol name appears in the second column.

e The symbol type appears in the third column: the variable type; the
function return type; the module source line number range; or the
register description for a local register variable or argument.

e The symbol address appears in the fourth column. For static (fixed
address) symbols, the address range in bytes appears followed by the
decimal size of the range in square brackets ([<size>]). Local stack
variable addresses are signed offsets from the stack frame pointer.

Shell Window Reference 120 SLD User's Manual

DR

Control debug DR [<num> Bkpt | User | [Data <mode> <address> <size>
register use. [Exact]]]
<num> identifies the debug register as O, 1, 2, or 3.
Bkpt makes the register available for execution breakpoints.
User reserves the register for use by your program. The

emulator avoids using this register for execution
breakpoints and modifies DR7, allowing user access to any
debug register.

Data configures the register as a data read/write breakpoint.
<mode> is one of:

X sets the register to instruction execution mode.
Emulation breaks on execution of the instruction
starting at <address>.

W sets the register to data write mode. Emulation breaks
on a write to <address> in user space.

rw sets the register to data read/write mode. Emulation
breaks on a read or write to <address> in user space.

<address> specifies the virtual or linear base address of the
breakpoint.

<size> specifies 1, 2, or 4 bytes starting with <address> as the
address range of the data breakpoint. Emulation breaks on
any data access completely or partly overlapping this range.

Exact ensures the processor waits after each instruction for all
data cycles to complete. (Such waiting can degrade your
program’s performance.) A data breakpoint occurs
immediately after the instruction that caused the breakpoint
data cycle. (Execution breakpoints always occur exactly.)
With exact not specified, several instructions can execute
beyond the one that caused the breakpoint data cycle.

With no arguments, DR lists the debug register configurations.

When you set a breakpoint in the Source or Breakpoint window or with
the Bkpt command, the emulator implements the breakpoint as either a
DR or a software interrupt and as an execution or a data breakpoint.
SLD installation configures DR[0..3] for execution breakpoints selected
by the emulator and disables program access to DR7. To change this
configuration, use DR to:

e Assign a specific execution or data breakpoint to each DR. A total

SLD User's Manual 121 Shell Window Reference

of four DR breakpoints can be concurrently defined, whether
specified by you or by the emulator.

e Reserve each DR for program use, preventing the emulator from
implementing a breakpoint in that register. Such reservation also
enables undetected program access to system registers and DR7.
Program changes to DR7 can cause unpredictable emulator

behavior.
dr O user; /* Reserve dr0 for the target system. */
dr 1 bkpt; /* Allow dr1 to be used as an execution breakpoint. */
dr2; /* Show the current configuration of dr2. */

dr 3 data w 400L dword; /* Define a double-word data write */
/* breakpoint at linear address 400. */

DT

Display descriptor DT (<selector> | <range> | <register> | Base <address> (<range>
tables. I Limit <bytes>)) [All]

Related topics: <selector> specifies a selector.
GDT, IDT, LDT, .
PD, TSS <range> specifies the first and last of a range of selectors.

<register> is any CPU mnemonic specifying a register containing a
selector in the first 16 bits.

<address> specifies the descriptor table base address. The Base
keyword is required.

<bytes> specifies a range of selectors as a number of bytes. The
Limit keyword is required.

All displays all entries, including invalid or reserved.

The descriptor table displayed for each selector is specified by the
selector’s bit 2 (TI).

dt 0x08 0x48 all; /* displays all entries */
/* from selector 0x08 to 0x48 */

dt ds; /* displays the current ds descriptor entry */

Shell Window Reference 122 SLD User's Manual

Dump

Dump memory Dump [Loop] <addri> [<addr2>] [Byte | Word | Long | Dword]

contents to the
<
screen, formatted. [<space>]

<addr1> specifies the first address to be displayed. The address can

CRelated_ topics: be symbolic or numeric.
opy, Fill,
RunAccess, <addr2> specifies the last address to be displayed. Omitting
323:;?0\%:’ <addr2>.displays 16 bytes. The address can be symbolic
or numeric.
Byte displays byte values.
Word displays word values.
Long displays double word values.
Dword is the same as Long.

<space> specifies the address space as:
e user, smm, or io for 386 EX emulators
e user or smm for 386 CX and Intel486 SLE emulators
e user or io for NS486 emulators
e user for 386 SX and Intel486 non-SLE emulators

Loop repeatedly preforms the operation but prints no output to
the screen, even if errors occur.

The physical read uses the Size command settings rather than the
format size set by Dump. For example, if Size=Byte when a Dump
command specifies Word, the emulator reads a set of byte-sized values
and reformats them to display as word-sized values.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Use
RunAccess to enable Dump during emulation; however, such access
can degrade your program execution.

You can also view memory contents in up to 20 simultaneously active
Memory windows as hexadecimal or decimal bytes, words, or dwords
with equivalent ASCII characters; or as disassembled instructions.

SLD User's Manual 123 Shell Window Reference

Echo

Display or toggle Echo [on | off]
command echo.

on starts displaying entered Shell commands in the Transcript pane.
Related topics:
Append, Echo, Log, ~ Off stops displaying entered Shell commands in the Transcript pane.

Logging, Overwrite, yith no argument, Echo displays its current setting.

Resuits
You can also toggle echoing with the View menu Echo item.
EmuStatus
Report the current EmuStatus
emulation status.
Use EmuStatus after IsEmuHalted returns no result.
Related topics: -
$EMULATING, isemuhalted;
IsEmuHalted emustatus;
// Processor is running.
halt;
// 961C60 0000 0000 ORI.B #00,D0
isemuhalted;
// The emulator is halted.
The emulation status (halted or running) is also reported by the Status
window or icon title and by the SEMULATING system variable.
EnableAlarmLimit
Enable a stack EnableAlarmLimit
alarm limit.
If, when emulation halts, the stack usage is exceeding the alarm limit set
Related topics: by SetStackAlarm, you are notified.
DisableAlarmLimit,
DisableHighWater- ~ You can also enable the alarm limit by checking the Stack window
Mark, Options menu Enable Alarm Limit item.
DisplayStack,
EnableHighWater-
Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stackinfo

Shell Window Reference 124 SLD User's Manual

EnableHighWaterMark

Track maximum EnableHighWaterMark
stack usage. . .
This command enables an arrow on the Stack window stack meter to
Related topics: show the maximum stack area usage. The arrow moves when the stack
DisableAlarmLimit, rows to an address beyond reviously used. The arrow position is
DisableHighWater- & ! yond any previousty used. 1he positio
Mark, the stack high-water mark.
DisplayStack, . . .
EnableAlarmLimit You_ can also enable the plgh-water mark.by checking the Stack window
FillStackPattern, Options menu Enable High-Water Mark item.
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stackinfo
EventRestore
Retrieve saved EventRestore "<filename>"
event definitions.
<filename> specifies a file containing event definitions. The quotation
Related topics: marks are required.
EventSave
Events read from the file are added to the set of current events. Events
from the file overwrite current events with the same name.
You can also restore events from a file with the Event window File
menu Restore Events item.
EventSave

Save Events to a
file.

EventSave "<filename>"

<filename> specifies the file in which to store current event definitions.

Related topics: The quotation marks are required.

EventRestore
You can also save events to a file with the Event window File menu
Save Events item.

Exit

Exit the Shell exit

window.

SLD User's Manual

This command closes the Shell window. To exit the emulator, open the
Toolbar File menu and choose Exit. You can also close the Shell
window with the Shell window File menu Exit item.

125 Shell Window Reference

Fill

Fill memory with Fill <addr1> <addr2> <data> [Byte | Word | Long | Dword]
data. [<space>]

Related topics: <addr1> is the first address in the region to be filled. Addresses can

Copy, Dump, . .
RUNAGCeSS, be symbolic or numeric.

Search, Size, <addr2> is the last address in the region to be filled.
Verify, Write

<data> is up to 256 bytes of data to be written. The value is
repeated as needed to fill the region.

Byte specifies the data is a byte value.
Word specifies the data is a word value.
Long specifies the data is a double word value.
Dword is the same as Long.
<space> specifies the emulator address space as:
e user, smm, or io for 386 EX emulators
e user or smm for 386 CX and Intel486 SLE emulators
e user or io for NS486 emulators
e user for 386 SX and Intel486 non-SLE emulators

The physical write uses the Size command settings rather than the
format size specified in the Fill command. For example, if Size=Byte,
Fill uses byte-sized memory accesses.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Use
RunAccess to enable Fill during emulation; however, such access can
degrade your program execution.

Fill 0 1234 0x0 dword; /* Fills memory from 0 to 64K with 0x0 */
// Fill successful.

You can also fill memory with the Memory window Edit menu Fill
Memory item.

FillStackPattern

Initialize the stack. FillStackPattern

Related topics: With FillStackPattern, you can initialize the stack with a pattern to

DisableAlarmLimit, enable the stack usage statistics.
DisableHighWater-

Mark, Other commands can also initialize the stack:

Shell Window Reference 126 SLD User's Manual

DisplayStack,

EnableAlarmLimit, ~ ® If you specify the stack base and size with FillStackArea, you can
EnableHighWater- also initialize the stack in the single FillStackArea command.
Mark, . . ;

Setsat‘;ckAlarm, e Enabling the high-water mark (the EnableHighWaterMark

SetStackArea, command) automatically fills the stack with the pattern.

SetStackBase,

SetStackSize,

Stackinfo

Flush

Flush the Intel486 Flush

cache.
/* Disable cache so all code and data fetches appear on the bus */
Signal KEN disable /* Disable KEN# */
Flush /* Flush the cache */

GDT

Display the global GDT (<selector> | <range> | <register>) [Base <address>

descriptor table. [Limit <bytes>]] [All]

Related topics: <selector> specifies a selector.

DT, IDT, LDT, PD,
TSS

SLD User's Manual

<range> specifies the first and last of a range of selectors.

<register> is any CPU mnemonic specifying a register containing a
selector in the first 16 bits.

<address> specifies the descriptor table base address. The Base
keyword is required.

<bytes> specifies a range of selectors as a number of bytes. The
Limit keyword is required.

All displays all entries, including invalid or reserved.

With no arguments, GDT shows all valid entries in the range gdt_base
to gdt_base+gdt_limit.

GDT displays the global descriptor table entries for a selector or range
of selectors. The selectors displayed are determined by <selector>,
<register>, Base <address> with either <range> or Limit <bytes>,
or the current gdt_base and gdt_limit.

gdt 0x00 0x18 base 501010L; /* Display GDT entries*/
/* from 501018L (selector 0x08) to 501028L */
/* (selector 0x18). The table base is 501010L. */

127 Shell Window Reference

GetBase

Get one or all base
names and their
address offsets.

GetBase [<basename>]

<basename> displays only the specified base.

Related topics: With no arguments, all bases loaded into the symbol table are displayed
AddressOf, along with their offset values.

DisplaySymbols, . . . S~
Na,r:,eéf,y Compilers and linkers place symbols into groups called bases, assigning
RemoveSymbols, names to the groups. GetBase displays these symbol bases.

SetBase

Go

Start emulation. Go

Related topics: This command is equivalent to any of the following:

$BREAKCAUSE, .

$EMULATING, e Choose the Toolbar or Source window Go button.

gzbﬁ;l(i? ;T:O’ e Choose the Source window Run menu Go item.

ResetAndGo, Step,
StepSrc

e Press the <F9> key.

Gointo

Emulate to a
stepped-into or
returned-into
function.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Go, GoUntil,
Halt, ResetAndGo,
Step, StepSrc

Shell Window Reference

Golnto [Call | Return][Line | Statement]

Call If a call is executed within the current function, emulation
continues through the call and into the called function,
halting on the beginning of a line or statement. This line
or statement can be the first instruction of the function or
later, depending on how the compiler generates code and

line-number start addresses.

Return If a return is executed within the current function,
emulation continues through the return, halting on the
beginning of the next line or statement of the function

returned to.
Line breaks on a source line.
Statement breaks on a source statement.
With no arguments specified, the first Golnto you use defaults to
Golnto Call Statement. If you have previously used Golnto with
arguments, any Golnto without arguments defaults to the arguments
you used before.

128 SLD User's Manual

You can also do these Go variations with the Source window buttons
(configured by the Source window Options menu Set Go Buttons item)
and from the Source window Run menu.

GoUntil

Emuilate until a call
or return.

Related topics:
$BREAKCAUSE
System Variable,
$EMULATING
System Variable,
Cause, Go, Golnto,
Halt, ResetAndGo,
Step, StepSrc

GoUntil [Call | Return] [Line | Statement]

Call within the current function, emulates until a call or return
is executed.

Return within the current function, emulates until a return
instruction is executed.

Line breaks on a source line.

Statement breaks on a source statement.

With no arguments, the first GoUntil you use defaults to GoUntil Call
Statement. If you have previously used GoUntil with arguments, any
GoUntil without arguments defaults to the arguments you used before.

GoUntil emulates until a call or return is executed, then stops.

Because of how Call and Return work, the assembly instructions
immediately before the call or return are not necessarily executed.

You can also do these Go variations with the Source window buttons
(configured by the Source window Options menu Set Go Buttons item)
and from the Source window Run menu.

Halt
Halt emulation. Halt
Halt stops emulation when the current instruction finishes executing.
This command is equivalent to any of the following:
e Choose the Toolbar or Source window Halt button.
e Choose the Source window Run menu Halt item.
e Press the <F2> key.
Help
Show Shell Help [<command>]
command syntax.

SLD User's Manual

<command> is a Shell window command name.

129 Shell Window Reference

Use Help to list, in the Transcript pane, the command syntax for one or
more Shell window commands. With no argument, Help lists all
commands alphabetically.

You can also pop-up on-line help from any SLD window Help menu or
by pressing the <F1> key.

History

Control number of History [<size>]
saved commands.

<size> specifies the number of commands (0 to 50) to save in the
Shell command history buffer.

With no arguments, History reports the current history buffer size.

Press <Ctrl><Up Arrow> or <Ctrl><Down Arrow> to recall commands
sequentially from the history buffer to the Command Entry pane. You
can edit recalled lines before entering them.

You can also set the history size with the Shell window Options menu
History Size item.

IDT

Display the interrupt |DT (<index> | <range> | <register>) [Base <address> [Limit
descriptor table. <byteS>]] [A"]

Related topics: <index> specifies an index.
DT, GDT, LDT, PD, - _
TSS <range> specifies the first and last of a range of selectors.

<register> is any CPU mnemonic specifying a register containing a
selector in the first 16 bits..

<address> specifies the descriptor table base address. The Base
keyword is required.

<bytes> specifies a range of indexes as a number of bytes. The
Limit keyword is required.

All displays all entries, including invalid or reserved.

With no arguments, IDT shows all valid entries in the range idt_base to
idt_base+idt_limit.

IDT displays the interrupt descriptor table entries for an index or range
of indexes. The selectors displayed are determined by <index>,
<register>, Base <address> with either <range> or Limit <bytes>,
or the current idt_base and idt_limit.

Shell Window Reference 130 SLD User's Manual

idt 0x00 0x18 base 501010L /* Display IDT entries */
/* from 501018L (selector 0x08) to 501028L */
/* (selector 0x18). The table base is 501010L. */

If..Else
Conditionally If (<condition>) {<block>} [Else {<block2>}]
execute Shell . .
window commands. <condition>evaluates to nonzero or zero. The parentheses are required.
<block1> is a list of Shell commands, delimited with semicolons, to
be executed when <condition> evaluates to nonzero. The
braces are required.
<block2> is a list of Shell commands, delimited with semicolons, to
be executed when <condition> evaluates to zero. The
braces and Else keyword are required.
$a=0;
If ($a) {
utruen;
}
else {
"false";
I
// false
Include
Read commands include "<filename>"
from a file.
<filename> identifies a file containing Shell commands (a script). The
quotation marks are required.
The commands are executed as if entered in the Command Entry pane.
You can put an Include command in a script.
include "d:\shell.cmd"; /* executes d:\shell.cmd */
You can also run a script with the Shell window File menu Include item.
Integer
Identifies an integer. Integer (<variable>)
Related topics: <variable> is a Shell variable name. The parentheses are required.
String

SLD User's Manual

131 Shell Window Reference

Use Integer to discover whether a variable value is an integer. Integer
returns 1 if <variable> is an integer and O otherwise.

$a =0;

Integer($a);

/11

If (integer($a)) { "it is an integer"; }
// it is an integer

IsEmuHalted

Discover whether IsEmuHalted
emulator is halted.

Use IsEmuHalted to discover whether the emulator is halted. No

Related topics: response indicates the emulator is not halted. If you get no response,
gén&ﬁﬁlﬁNG also use EmuStatus or $EMULATING.
isemuhalted;
halt;
// 961C60 0000 0000 ORI.B #00,D0
isemuhalted;
// The emulator is halted.
The emulation status (halted or running) is also reported by the Status
window or icon title and the SEMULATING system variable.
LapTimer
Takes a snapshotof | apTimer
the timer. .
Without stopping the timer, shows the number of milliseconds elapsed
Related topics: since the timer was started.
StartTimer,
StopTimer LapTimer;
while (laptimer < 5000) {};
LDT

Displays the local LDT (<selector> | <range> | <register>) [Base <address> [Limit
descriptor table. <bytes>]] [A||]

Related topics: <selector> specifies the selector from the GDT to identify the LDT
DT, GDT, IDT, PD, base and limit
TSS ’

Shell Window Reference 132 SLD User's Manual

<range> specifies the first and last of a range of selectors.

<register> is any CPU mnemonic specifying a register containing a
selector in the first 16 bits.

<address> specifies the descriptor table base address. The Base
keyword is required.

<bytes> specifies a range of selectors as a number of bytes. The
Limit keyword is required.

All displays all entries, including invalid or reserved.

With no arguments, LDT shows all valid entries in the range Idt_base
to Idt_base-+Idt_limit.

LDT displays the interrupt descriptor table entries for a selector or range
of selectors. The selectors displayed are determined by <selector>,
<register>, Base <address> with either <range> or Limit <bytes>,
or the current Idt_base and Idt_limit.

Idt Ox00 0x18 base 501010L; /* Displays LDT entries */
/* from 501018L (selector 0x08) to 501028L */
/* (selector 0x18). The table base is 501010L. */

Link

Establish source file
links

Link [<file1> [<file2> 11
<file1> is a filename that has or needs a link.

<file2> is the filename to be linked to <file1>. Omitting <file2>
displays the link already defined for <file1>.

With no arguments, Link displays all file links.

If the Source window fails to find <file1>, it searches for <file2>.

Link util.c util0215.c // Use util0215.c wherever util.c
/I is specified for source display.

List

List Shell variable
values.

SLD User's Manual

List [<variable>]
<variable> is a Shell variable name.

With no arguments, List displays all the Shell variables and their values.

List;
/I (system) $SHELL_STATUS = 262158

133 Shell Window Reference

Load

Load code and Load "<filename>" [User | SMM] [[No]Code] [[No]Symboils]
z}r”t’;’i"gf‘:’ é”nfgped [[No]Demand] [[No]Demangle] [[No]UpdateBase]
g Y [Module <name>] [Reload] [[No]LoadRegister] [[No]Warn]

Related topics: [[No]Status]
LoadSize . .
<filename> is the pathname of the file to be loaded. The
quotation marks are required.
User loads code into user memory.
SMM for 386 EX, 386 CX, or Intel486 SLE emulators,
loads code into system management mode memory.
[No]Code loads or does not load code.
[No]Symbols loads or does not load symbols.
[No]Demand initially loads only global symbols (variables,

module names, global function names, type
definitions) and defers loading local symbolic
information (local variables and line numbers) until
needed or initially loads all symbols.

[No]Demangle demangles or does not demangle C++ names.

[No]UpdateBase updates symbol bases or does not update symbol
bases, for OMF386 loadfiles on x86 emulators. Use
updatebase in conjunction with loadregister.

<name> after on-demand loading, loads symbols for the
specified module Use this option in a script for
debugging specific modules. Load symbols with this
option to eliminate any delay on viewing a module.
The Module keyword is required.

Reload purges old symbols and loads new ones.

[No]LoadRegister loads or does not load initial register values from
OMF386 loadfiles.

[No]Warn displays or does not display warnings from the
loader.

[No]Status displays or does not display load statistics.

With only <filename> specified, the default is Load “<filename>*
User Code Symbols Demand NoDemangle NoUpdateBase
NoLoadRegister NoWarn Status;

You can load code and symbols during emulation. Avoid loading into
an area of memory occupied by the executing code. Loading into
memory that is being executed can stop the emulator in an unpredictable

Shell Window Reference 134 SLD User's Manual

state.

Load demo.omf;

// 1986 bytes code loaded.
// 2 module(s) loaded.

// Load complete.

Load demo.omf module dm_main; /* load code and symbols */
/* from a module */

load demo.abs nocode; /* load symbols only, on demand*/
Load demo.abs nosym; /* load code only */
load demo.abs nodemand; /* load all code; load */

/*symbols on demand */
load sample.abs reload nowarn; /* load code and symbols; */

/* display no warnings*/

You can also load files with the Toolbar Load button or from the Source
window File menu.

LoadSize
Set the memory LoadSize [Byte | Word | Long | Dword]
write-access size .
for the load Byte writes memory by bytes.
command. Word writes memory by words.
Related topics: Long (default) writes memory by longs. Writing in Long is the
Load, Size
fastest way to load code.

Dword is the same as Long.
Log
Display or set the Log ["<filename>"]
name of the log file. . . .

<filename> is the name of the logfile to be opened or created. The
Related topics: quotation marks are required.

Logging, Append,
Overwrite, Echo,
Results

SLD User's Manual

With no arguments, Log displays the current log filename.

Logfile "c:\shell.log";
Log;
// log file name: c:\shell.log

You can also open a log file with the Options menu Log File Name item.

135 Shell Window Reference

Logging

Display or toggle the
logging setting.

Related topics:
Log, Append,
Overwrite, Echo,
Results

Logging [on | off]

on starts echoing commands and results to the logfile.

off stops echoing commands and results to the logfile.
With no arguments, Logging reports whether logging is on.

In overwrite mode, each time you turn-on logging for a given logfile
destroys prior information in that file. To preserve prior information,
enter Append before Logging on.

You can also toggle logging with the Options menu Log Results item.

Map

Substitutes overlay
memory for all or
part of the target
system memory.

Related topics:
MapRanges,
RestoreMap,
SaveMap

Map [Clear | <base> [<end>] [Target] [<access>]] [<space>]
Clear clears all map blocks.

<base> is the address to start a memory region. The address is
rounded down to the nearest boundary block equal to the
amount of memory mapped:

e For PP-386 and SW-386 emulators, you can map any
multiple of 4K bytes starting on any 4K address.

e For EA-486 emulators, you can map any multiple of
128K bytes starting on any 128K address.

e For EA-NS 486 emulators, you can map any multiple
of 64K bytes starting on any 64K address.

<end> is the last address of the region. This address is rounded
up to the top of the region containing the end address, as
described for the <base> argument above.

Target maps the memory region to target memory.

<access> specifies access permissions. Your emulator offers some or
all of the following ways to control and report your
program’s memory accesses:

RAM allows read and write access (the default).

ROM allows read access; prevents write access; does
not break on attempted write access. (Intelx86
emulators allow writes to target memory.)

ROMbrk allows read access; prevents write access; breaks
on attempted write access. (Intelx86 emulators

Shell Window Reference 136 SLD User's Manual

allow writes to target memory but such writes
break emulation.) This option is unavailable on
NS486 emulators.

None prevents any access; breaks on attempted access.

(Intelx86 emulators allow access to target
memory but such access breaks emulation.) This
option is unavailable on NS486 emulators.

<space> specifies the emulator address space as:

user, smm, or io for 386 EX emulators

user or smm for 386 CX and Intel486 SLE emulators
user or io for NS486 emulators

user for 386 SX and Intel486 non-SLE emulators

With no arguments, Map displays the current map settings.

map O ram;

// Mapped block starting at address 00000000 to 0000FFFF RAM

You can also map memory with the Toolbar Map button.

MaxBitFieldSize

Set the maximum bit MaxBitFieldSize [16 | 32]

field size for

OMF386 loadfiles. 16 Sets the maximum bit field size to 16 bits for Borland C compiler-
generated OMF386 loadfiles.

32 Sets the maximum bit field size to 32 bits (default) for all other

loadfiles.
NameOf
Find the symbol NameOf <address>
representing an
address. <address> is a numeric address.
Related topics: Use NameOf to look up a specified address and display the symbol that
AddressOf, most closely matches the address.
DisplaySymbols,
GetBase, NameOf 0x0900;

RemoveSymbols, // #main#144#1 (function main)

SetBase

SLD User's Manual

137 Shell Window Reference

Overwrite

Overwrites the log
file.

Related topics:
Append, Echo, Log,
Logging, Results

Overwrite

When Overwrite has been specified, starting to log (Logging On)
destroys any prior logfile contents.

You can also configure logging to overwrite prior information with the
Shell window Options menu Overwrite Log File item.

PD

Display the page PD [range]

directory. X . .
<range> is the address range of the entries to be displayed.

Related topics:

DT, GDT, IDT, LDT,
TSS

With no argument, PD displays the first eight page directory entries.

reg cr3 0x5e0000;

write 0x5e0000p 0x12345007 0x56789067 0x0 0x0 0x0 0x0 0x0 dword;
// Write successful.

pd; // same as pd 0xOL 0x02000000L;
// 00000000L present user read/write table=12345000

// 00400000L present accessed dirty user read/write table=56789000
// 00800000L NOT PRESENT

// 00C00000L NOT PRESENT

// 01000000L NOT PRESENT

// 01400000L NOT PRESENT

// 01800000L NOT PRESENT

// 01C00000L present dirty supervisor read/write table=6F04C000
/!

Pmode

Displays the Pmode

processor mode.

Shell Window Reference

The x86 processors operate in various address modes (pmodes). These
are real, virtual-86 (V86), protected, and System Management Mode
(SMM). Protected mode is further divided into 16-bit and 32-bit
protected modes.

The Intel386 DX and Intel386 SX processors have no SMM.

pmode;
// Processor mode = Prot32

The pmode also appears at the bottom of the Status window icon.

138 SLD User's Manual

Print

Display a Shell
variable or string
constant value.

Print (<variable> | "<string>")
<variable> is the name of a Shell variable.
<string> is a string constant. The quotation marks are required.

The parentheses are required.

$a ="5;
Print ("abc");
// abc

Print($a);
// 0x5 5

RAMtst

Run the memory
hardware
confidence tests.

RAMtst [Loop] <address1> <address2> [<space>]

Loo repeats the low-level operations in the specified test so the
P P P
operation can be observed on an oscilloscope. Press <Esc>

_?:gted topics: to stop looping. An error does not halt the test loop.
<address1>is the first address in the range to test.
<address2>is the last address in the range to test.
<space> specifies the emulator address space as:
e user, smm, or io for 386 EX emulators
e user or smm for 386 CX and Intel486 SLE emulators
e user or io for NS486 emulators
e user for 386 SX and Intel486 non-SLE emulators
The tests appropriate for your emulator are described in the Hardware
Reference.
ramtst 0x0000 OxFFFF; /* Test memory from 0x0 to Oxffff. */
Register
Display or set Register [<name> [<value>]] [...]
register values.
<name> is a CPU register mnemonic.
<value> is the value to be put into the register.

SLD User's Manual

With no arguments, Register displays all the registers. A <name>

139 Shell Window Reference

without a <value> displays the value of the specified register.

You can also view and edit the registers in the CPU window.

RemoveSymbols

Remove all loaded
symbols and clear
all allocated symbol
tables.

Related topics:
AddressOf,
DisplaySymbols,
GetBase, Load,
NameOf, SetBase

RemoveSymbols

Reset
Resetthe targetor Reset [CPUonly | Target]
processor.

CPUonly resets the processor without updating the SLD windows.
Related topics: Use this argument only if Reset without CPUonly fails to
ResetAndGo

reset the processor:

1. Enter Reset CPUonly, resetting the processor without
updating the SLD windows.

2. Reset your target.

Enter Reset again, without CPUonly, to update the
SLD windows.

Target puts a pulse signal on the SW or EA emulator Reset Out
pins for approximately one millisecond. For Reset Out
signal values, see [SystemInfo] in the “powerpak.ini File
Reference” chapter. The Reset Out pins are on the front
panel of the SW or EA emulator, as shown in the following
figure. The bottom pin is grounded. Connect these pins to
a reset or other appropriate input on your target board.

SJ1 —

SAST SJ2 —

oco0o0o00
oco0o0o00

With no argument, Reset sends a RESET signal to the processor. All

Shell Window Reference 140 SLD User's Manual

CPU register contents are lost on reset:
e The processor RESET pin is asserted.

e The program counter and stack pointer are reset and other segment
registers are set to 0. The Source window displays the program
counter location. The Stack window display becomes invalid.

e All SLD windows are updated.

You can also reset the emulator from the Toolbar Configure menu, the
Source window Run menu, or the CPU window Options menu.

ResetAndGo
Assert and release ResetAndGo
the target reset line. . . .
This operation is required to start some target systems. For example,
gelatted topics: targets that use an external watchdog timer or power-saver hardware
ese may require that you use ResetAndGo.
You can also reset the processor and start emulation with the Source
window Run menu Reset And Go item.
ResetLoaders
Reinitialize the ResetlLoaders "<loadpath>"
loaders when you . . . L.
get an error <loadpath> is the path to the directory containing loaders.ini. The
medssage telling you quotation marks are required.
to do so.
With no argument, Resetl.oaders uses the SLD directory.
RestoreCS
Restores the chip- RestoreCS "<filename>"
select register .)] .))
values. <filename> is an ASCII file describing chip select register values.
] The quotation marks are required.
Related topics:
SaveCS The ASCII file contains an entry for each register. Each entry can be

SLD User's Manual

up to 80 characters long, containing the following sequential fields:

<REGISTER NAME in upper case>

<1 to 20 spaces>

<hexadecimal value>

<new line or white space>

<any comment text other than OA or 0>

141

Shell Window Reference

You can create the chip select file with a SaveCS command. For a
processor-specific list of registers, see the Hardware Reference.

You can also restore the chip selects with the Toolbar Configure menu
Restore Chip Selects item.

RestoreMap

Restores asaved RestoreMap "<filename>"

map configuration. . . § . . .
<filename> is a file containing a map configuration. The quotation

Related topics: marks are required.

Map, MapRanges,

SaveMap You can also restore the map from a file with Map dialog box Restore
button, accessible via the Toolbar Map button.

Results

Set the Transcript Results [on | off]

pane results display. . . .
on (default) displays Shell command results in the Transcript pane.

Related topics:

Append, Echo, Log,
Logging, Overwrite,
Results

off displays no Shell command results in the Transcript pane.
Without arguments, Results displays the current setting.

You can also toggle results with the View menu Show Results item.

RunAccess
Set the target RunAccess [on | off]
processor access)] .))
mode during off (default) disables reading and writing memory during emulation.
emulation.

on enables reading and writing memory during emulation.
Related topics: . . :
Copy, Dump, Fil, Without arguments, RunAccess displays the current setting.
Search, Size, Memory access is used for operations that read and write the peripheral
Verify, Write

Shell Window Reference

registers and memory, including scrolling or updating the Peripheral
and Memory window displays. Because reading and writing memory
takes a small amount of processor time, memory access is initially
disabled during emulation. Use RunAccess to enable memory
accesses during emulation; however, such access can degrade your
program execution.

You can also toggle Run Access with the Toolbar Configure menu Run
Access item.

142 SLD User's Manual

SaveCS

Saves the chip- SaveCS "<filename>"
select registers.
<filename> is the filename where the chip select register values are to
Related topics: be saved. The quotation marks are required.
RestoreCS, .
ConfigCS Different chip select registers are saved for different processors. See
the processor-specific lists in the Hardware Reference.
Restore the register values from the file with RestoreCS.
You can also save the chip selects with the Toolbar Configure menu
Save Chip Selects item.
SaveMap
Saves a memory SaveMap "<filename>"
map configuration. . .)
<filename> specifies the pathname of the file where the memory map
Reiated topics: is to be saved. The quotation marks are required.
RestoreMap .
Restore the map from the file with RestoreMap.
You can also save the map from the Map dialog box, accessible from
the Toolbar Map button.
Search
Search for a pattern - Search <start> <end> [Not] <data> [Byte | Word | Long | Dword]
In memory. [<space>]
Related topics: <start> is the first address in the address range to be searched.
Copy, Dump, Fill Addresses can be symbolic or numeric.
RunAccess, Size,
Verify, Write <end> is the last address in the range to search.
Not searches for the first pattern mismatch rather than the first
pattern match.
<data> is a pattern for which to search, up to 256 bytes long.
Byte specifies the data is a byte value.
Word specifies the data is a word value.
Long specifies the data is a double word value.
Dword is the same as Long.
<space> specifies the emulator address space as:

SLD User's Manual

e user, smm, or io for 386 EX emulators

143 Shell Window Reference

e user or smm for 386vCX and Intel486 SLE
emulators

e user or io for NS486 emulators
e user for 386 SX and Intel486 non-SLE emulators

The physical read of memory uses the Size command settings rather
than the format size set by the Search command. For example, if
Size=Byte, Search reads memory in byte-sized memory accesses.

Because reading and writing memory takes a small amount of
processor time, memory access is initially disabled during emulation.
Use RunAccess to enable Search during emulation; however, such
access can degrade your program execution.

Fill O ffff Ox0 user;
Write 400 0x1234 user;

Search 0 ffff 0x1234 user;
// pattern found at 400

You can also search for a pattern in memory with the Memory window
Edit menu Search Memory item.

SetBase

Relocate symbols. SetBase <base> <address>

Related topics: <base> is the base name for the symbols to be relocated. Case is
AddressOf, significant.

DisplaySymbols, .

GetBase, NameOf, = <address> is the new numeric or symbolic base address.
RemoveSymbols

SetBase relocates the symbols in the specified <base> to their offset
addresses plus the specified <address>. The default base address is O.

You can use SetBase to quickly relocate all symbols in a base. For
example, if code is loaded by the target program into memory other
than where it was linked, you can set the base address to the new load
address using SetBase, thus matching the code symbol addresses to
the memory where the code is loaded.

To discover the base names and their address offsets, use GetBase.

Shell Window Reference 144 SLD User's Manual

SetStackAlarm

Ii?e’{t the stack alarm SetStackAlarm <percent>
limit.
<percent> is a percentage of the stack area, from 1 to 99.
Related topics: ..
DisabIeAIa‘:mLimit, Use SetStackAlarm to set the stack alarm limit as a percentage of the
DisableHighwater- stack. The alarm appears as a red line on the stack meter in the Stack
Mark, window.
DisplayStack, L
EnableAlarmLimit, When enabled (see EnableAlarmLimit), the stack alarm notifies you if
Enla\t/lblekHighWater- the stack usage is exceeding the alarm limit when emulation halts.
ark,
FillStackPattern, You can also set the stack alarm with the Stack window Options menu
SetStackArea, Alarm Limit item.
SetStackBase,
SetStackSize,
Stackinfo
SetStackArea
Redefine the stack SetStackArea [<address> <size> [fillArea]]
location and size. . . .
<address> is a numeric or symbolic base address.
Related topics: . . .
DisableAlarmLimit, ~ <Size> is the stack size in bytes.
Dls;ala)lringhWater- fillArea initializes the stack area.
DisplayStack, With no arguments, SetStackArea shows the current settings (the
EnableAlarmLimit,
EnableHighWater- same as Stackinfo).

Mark, This command changes the addresses used by the emulator for stack
FillStackPattern, e f .
SetStackAlarm, monitoring and does not affect your program’s stack allocation.
SetStackBase, Separate Shell commands (SetStackBase and SetStackSize) exist to
gteatfgff';s'ze’ set the stack base and size. Because of the delay between command

SLD User's Manual

executions, using the separate commands to redefine the stack can
temporarily define an invalid stack area for the emulator’s stack
monitoring operations. SetStackArea sets the stack base and size in a
single command.

To fill the stack area with a pattern without changing the base and size,
use FillStackPattern.

setstackarea 0x1000 0x500 fillarea;

You can also set the stack base and size with the Stack window Options
menu Stack Area item.

145

Shell Window Reference

SetStackBase

Setthe stackbase SetStackBase <address>
address. . . .
<address> is a numeric or symbolic base address.
Related topics: .
DisabIeAIa,:mLimit, This command changes the base address used by the emulator for stack
DisableHighwater- ~ monitoring and does not affect your program’s stack base address.
Mark, . .
DisplayStack, Separate Shell commands exist to set the stack base and size. Because
EnableAlarmLimit, of the delay between command executions, using separate commands to
EnableHighWater- redefine the stack can temporarily define an invalid stack area for the
Mark P Y
FillStackPattern, emulator s‘stacl.i monitoring operations. SetStackArea sets the stack
SetStackAlarm, base and size with a single command.
SetStackArea, .
SetStackSize, To show the current stack settings, use Stacklnfo.
Stackinfo SetStackBase F000;
You can also set the stack base with the Stack window Options menu
Stack Area item.
SetStackSize
Set the stack size. SetStackSize <size>
Related topics: <size> is the stack size in bytes.
DisableAlarmLimit, . .
DisableHighWater- 1his command changes the stack size used by the emulator for stack
Mark, monitoring and does not affect your program’s stack size.
DisplayStack, . .
EnableAlarmLimit, Separate Shell commands exist to set the stack base and size. Because
EnableHighWater- of the delay between command executions, using separate commands to
F'III\SAtarkl,(P " redefine the stack can temporarily define an invalid stack area for the
Sletsia(z;kAalas;n ’ emulator’s stack monitoring operations. SetStackArea sets the stack
SetStackArea, ' base and size with a single command.
25;3;?;12&%, To show the current stack settings, use Stackinfo.
SetStackSize 200;
You can also set the stack size with the Stack window Options menu
Stack Area item.
Signal
Display or set Signal [[<name> [Enable | Disable]] | [All Enable | All Disable]]
whether signals are . . .
enabled. Enable drives the specified signal by your target system.

Shell Window Reference

146

SLD User's Manual

Disable drives the specified signal by the emulator.
All Enable connects all signals.
All Disable disconnects all signals.

<name> identifies a signal. For a processor-specific list of
configurable signals, see the Hardware Reference.

With no arguments are specified, Signal displays the status of all
signals. To display the status of a particular signal, specify only
<name>.

signal;

// READY# ENABLE
// RESET DISABLE

// HOLD DISABLE

// NMI DISABLE

// NA# DISABLE

// INTR DISABLE

// Coprocess DISABLE

signal reset enable;
// RESET ENABLE

You can also toggle the signal connections with the CPU window
Options menu Signals item.

Size

Selects memory Size [Byte | Word | Long | Dword]
access size.

Byte, Word, Long, and Dword specify the size of subsequent memory
Related topics: accesses. Dword is the same as Long. The memory access size is

Copy, Dump, Fill, . . .
RUNACcess, independent of the display size.
3;3?’0“’ Verify, With no argument, Size reports the current setting.
rite
You can also specify the memory access size from the Memory window
Options menu.
Stackinfo

Display the stack Stackinfo

information. . . .
This command displays the current stack information. The number of
Related topics: frames shows the call nesting level.
DisableAlarmLimit,
DisableHighWater- Stackinfo;
Mark, // stack base = 12345678

SLD User's Manual 147 Shell Window Reference

DisplayStack, // size =0
EnableAlarmLimit, i =
EnableHighWater- // current stack pointer = 87654321
Mark, // frames = 0
FillStackPattern, // alarm limit = 0%, DISABLED
SetStackAlarm, // high water mark = 00000000
SetStaciAres, /| stack type = high to low
SetStackBase, yp 9
SetStackSize The same information appears in the Stack window.
StartTimer
Start the timer. StartTimer
Related topics: This command resets the elapsed time to zero and starts the timer.
LapTimer,
StopTimer
Step
Emulate one or Step [Into | Over] [<count>]
more instructions. . . .

Into (default) if a function call is encountered, executes the
ggﬁé?;gﬂﬁséis function call as a step and continues according to
System Variable, <count> within the called function.
gE"fUL':\/T'!‘;lC;‘I Over if a function call is encountered, executes the entire

stem Variable, L . . .
szu se, Go, Golnto, function ‘(mcludmg any functions it cal?s) asa s1ngl§ step
GoUntil, Halt, and continues according to <count> within the calling
ResetAndGo, function.
StepSrc p
<count> specifies how many steps to do. A large <count> can
cause stepping to go for a long time. Press <ESC> to
break out of stepping before the step count is finished.

The default granularity and count are determined by the Source

window Options menu Source Step Granularity and Step Count items.

You can also step with the Toolbar Step button, various Source window

buttons, and the Source window Run menu.

StepSrc
Step emulationby StepSrc [Into | Over] [Line | Statement] [<count>]
source lines or . . .
statements. Into (default) if a function call is encountered, executes the
Related topi function call as a step and continues according to
elated topics: o .
$BREAKCAUSE <count> within the called function.

Shell Window Reference

148

SLD User's Manual

System Variable,
SEMULATING
System Variable,
Cause, Go, Golnto,
GoUntil, Halt,
ResetAndGo, Step

Over if a function call is encountered, executes the entire
function (including any functions it calls) as a single step
and continues according to <count> within the calling
function.

Line sets the step granularity as one source line. A source line
can contain more than one statement. Lines can be out-
of-order relative to the sequence of instructions the
compiler generates.

Statement sets the step granularity as one statement.

<count> specifies how many steps to do. A large <count> can
cause stepping to go for a long time. Press <ESC> to
break out of stepping before the step count is finished.

The default granularity and count are determined by the Source
window Options menu Source Step Granularity and Step Count items.

You can also step with the Toolbar Step button, various Source window
buttons, and the Source window Run menu.

StopTimer
Stop and report on StopTimer
the timer. . . .
Stop the timer and show the number of milliseconds elapsed since the
Related topics: previous StartTimer command.
LapTimer,
StartTimer

String

Discover whether a
variable is a string.

Related topics:
Integer

SLD User's Manual

String (<variable>)
<variable> is a Shell variable name. The parentheses are required.

String returns 1 if the variable is a string and O otherwise.

$a = Ilqrsll;

String($a);

// 0x1 1

if (string($a)) { "it is a string"; }
/l itis a string

149 Shell Window Reference

SymbolCloseFile

Close the symbol
text file.

DisplaySymbols,
SymbolOpenFile

SymbolCloseFile
Closes the file opened by SymbolOpenFile.

SymbolOpenfFile

Open a text file.

DisplaySymbols,
SymbolCloseFile

SymbolOpenFile “<filename>"
<filename> is the name of a file. The quotation marks are required.

Opens a text file with the specified filename. Subsequent output from
DisplaySymbols is directed to the specified file. The file can be
viewed with an editor or file browser.

Test

Run the hardware
confidence tests.

Related topics:
Ramtst

Test [Loop] [Repeat | Continue] [Brief | Verbose] [Except]
[<name> | <number>]

Loop repeats the low-level operations in the specified test so the
operation can be observed on an oscilloscope. Press
<Esc> to stop looping.

Repeat repeats the specified test until you press <Esc>.
Continue continues through all tests, even if one fails.

Brief displays only the final test result.

Verbose displays every test result and progress report.
Except excludes the specified tests and runs all others.
<name> specifies one or more tests by name.

<number> specifies one or more tests by number.

With no arguments, Test runs all tests and displays the results.

To run these tests, connect the Stand-Alone Self-Test (SAST) or null
target board as described in the Hardware Reference. The tests
appropriate to your emulator are also described in the Hardware
Reference.

Shell Window Reference 150 SLD User's Manual

Time

Show the current
date and time.

Time

Transcript

Set the number of
lines saved in the
transcript pane.

Related topics:
Echo, Results

Transcript [<size>]

<size> is the number (0 to 1000) of lines to be saved in the

scrollable Transcript pane.

You can also set the transcript size with the Options menu Set
Transcript Size item.

TSS
Displays task state. TSS (<selector> | <register>) [Base <address> [Limit <bytes>]]
segments. [Tss286 | Tss386]] [All]
Related topics: <selector> specifies the selector from the GDT to identify the TSS
ESTGPDJ DT, base and limit. With no selector specified, the current
' tss_base and tss_limit are used.
<register> is any CPU mnemonic specifying a register containing a
selector in the first 16 bits.
<address> specifies the descriptor table base address. The Base
keyword is requried.
<bytes> specifies a range of selectors as a number of bytes. The
Limit keyword is required.
All Displays all entries, including invalid or reserved entries.
Tss286 specifies Intel286 processor segmentation.
Tss386 specifies Intel386 processor segmentation.
With no entries, TSS displays all task state segments plus the I/O bit
map in the range tss_base to tss_limit.
TSS displays the task state segments for any selector or base address.
Verify
Toggles onand offa \erify [on | off]

read-after-write.

SLD User's Manual

on checks values written to memory (default).

151 Shell Window Reference

Related topics:
Copy, Dump, Fill,
Load, RunAccess,
Search, Size, Write

off does not check writes.

Verify checks writes by reading-back the written value and comparing
the read value with the value supposedly written. If they do not match,
an error is returned. Verification can happen after a Write, Fill, or
Load. Verification does not affect the target processor during
emulation.

You can also toggle write verification with the Memory window
Options menu Write Verify item.

Version

Report the emulator \/ersion

version information.
Use version when logging an emulator session to record which version
of the emulator hardware, software, and firmware is in use. The
information from this command is also needed when you contact
Microtek for technical support or product upgrades.
You can also view some version information from the Toolbar Help
menu About item.

While

Repeatedly execute While (<condition>) { <block> }

statements while the
condition is true.

<condition>evaluates to true (non-zero) or false (zero). The
parentheses are required.

Related Topics:
If...Else <block> is one or more Shell commands delimited with
semicolons. The braces are required.
While <condition> is true, the <block> executes.
$a = 0; While ($a < 500) {$a = $a + 1;}
Write

Write to a memory
address.

Related topics:
Copy, Dump, Fill,
RunAccess,
Search, Size, Verify

Shell Window Reference

Write [Loop] <address> <data> [Byte | Word | Long | Dword]

[<space>]
Loop repeats the write without printing, even if errors occur.
<address> is a numeric or symbolic starting address.

<data> is up to 256 data values to be written.

152 SLD User's Manual

Byte specifies the data is a byte value.

Word specifies the data is a word value.
Long specifies the data is a double word value.
Dword is the same as Long.

<space> specifies the emulator address space as:
e user, smm, or io for 386 EX emulators

e user or smm for 386 CX and Intel486 SLE
emulators

e user or io for NS486 emulators
e user for 386 SX and Intel486 non-SLE emulators

The physical write to memory uses the Size command settings rather
than the format size specified in the Write command. For example, if
Size=Byte, Write commands write by byte-sized memory accesses.

Because reading and writing memory takes a small amount of
processor time, memory access is initially disabled during emulation.
Use RunAccess to enable Write during emulation; however, such
access can degrade your program execution.

XIt

Translates an x86 Xlt <address>

numeric adaress. . . .

<address> is a numeric or symbolic address.
Related topics:
AddressO€ Xt translates any numeric or symbolic address to its equivalent linear
NameOf or physical form, according to x86 numeric addressing rules. For a

virtual address, Xlt displays the linear and physical equivalents. For
linear or physical addresses, XIt displays the physical equivalent.

Xit #upperitstartup
// 0020:00F35BD0 = 00F35BDOL = F35BDOP

SLD User's Manual 153 Shell Window Reference

Shell Window Reference 154 SLD User's Manual

Source Window Reference

== 0 e owe 86 v |~
File Edit View Run Breakpoints Options Windows Help
Go || Halt || Step Into || Step Over II Into Call “ Into Return]| Go To Cursor|

[600167] for (i = 0; i < cellPtr->length; i++) { |1

[00016T7] 0200:0128 CT46F60000 MOV WORD PTR [BP-0A],0000

[060167] 0200:012D E90400 JHP dm_func#167 (printall)

[000167] 0200:0130 8346F601 ADD WORD PTR [BP-08A],01 1
>>[060167] 0200:0134 8BSEFA MOV BX, [BP-06] —

[000167] 0200:0137 8B4TO4 MOU AX, [BX+04] +
- -

Source Window Contents

e

The Source window displays:
e when enabled, the source line numbers
e when available, the source lines

e when enabled, the disassembly corresponding to each source line,
including the load address, hexadecimal code, and instructions

You can display two independently scrolling Source window panes.
To reveal the second pane, drag the split box cursor (see figure at left)
above the top arrow of the vertical scroll bar. To change focus to a
pane, click in the inactive pane or press <Tab>.

Source Window Menus

SLD User's Manual

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:

File Load and view modules; close the Source window.
Edit Navigate through source.

View Configure the source and disassembly display.
Run Start or stop emulation; step; reset.

Breakpoint Define and manage breakpoints.

Options Manage source display options and emulation
controls.

155 Source Window Reference

File menu, showing
previously loaded files
demo386.omf and
demo.omf

Load Information
dialog box, describing
a successful
demo.omf load

Windows Open another SLD window.

Help Open a window for help on the SLD software.
File Menu
Load Code...

Load Information...

Browse Modules...
Previous Browsed Module
Next Browsed Module

Exit

1 ...ERPAK\SAMP386\DEMO0386.0MF
2 ...POWERPAK\SAMP386\DEMO.OMF

Load Code... opens the Load dialog box to load code or symbols from a
loadfile. This has the same effect as choosing the Toolbar Load button,
as described in the “Toolbar Reference” chapter. To reload a file,
choose from the (up to four) files listed at the bottom of the Source

window File menu.

Load Information... opens an information box describing the loadfile
and what has been loaded into the emulator. The display differs

between Pprocessors.

Module:

= Load Complete

Loadfile: C:\POWERPAK\SAMP386\DEMO.OMF

Bytes

Modules:
Symbols:
Types:
Functions:

Lines: 213

PC: 0200:01A0
Stack Base: 0026:1000
Stack Size: 0x1000

ok | [Hew |

Browse Modules... opens a dialog box to change the module (source,
disassembly, and symbols) displayed in the Source window.

Source Window Reference

156

SLD User's Manual

Browse Modules dialog
box, with dm_func
selected

SLD User's Manual

= Browse Modules

t""’d |CAPOWERPAK\SAMP386\DEM
Tia;g:" age: Assembly

Address: |8/12/1994-14:21:30
Path: 0200:0040..0198

«[1 1»

L1 o] [oK] [[Concel | [Hew]

To select a module, click on the module name or use the <Up Arrow>
and <Down Arrow> keys to scroll the cursor. For the selected module,
the dialog box displays:

Load File: The loadfile path and filename

Language: The language of the source file

Time: The date and time the loadfile was created
Address: Where in memory the module is loaded
Path: The source file path and filename

Choose OK to browse to the selected module or Cancel to exit the
dialog box without changing the Source window display.

Previous Browsed Module changes the Source window display back to
the module you last viewed. The SLD software maintains a list of
which modules you have browsed and in what order you browsed them.

Next Browsed Module changes the Source window display to the next
module in the browse history.

Exit closes the Source window. To exit the SLD software, use the
Toolbar File menu Exit item.

1, 2, 3, 4 lists the last four files you loaded. Reload a file by choosing it
from this list. This method of reloading a file bypasses the Load and
Load Options dialog boxes.

Edit Menu
| Edit

Search...
Search Next

Go To Line...
Go To Address...
Go To CS:EIP

Search opens a dialog box for searching the Source window text for a
specific string. Case is significant in the search string. The search

157 Source Window Reference

starts from the Source cursor and stops at the first instance of the string
found. If the string is not found, the search stops at the end of the
module. To search the entire module, position the Source cursor at the
beginning of the module before starting the search.

Search dialog box, for
finding a string in the
source display Search for:
[ok 1 | cancet | [Hep |
Search Next searches again for the last string you entered in the Search
dialog box. The search starts from the cursor and stops at the first
match or the end of the module.
Go To Line... opens a dialog box to move the Source cursor to a
specific line. If you specify a line number beyond the last line in the
current module, the Source cursor moves to the end of the module.
Go To Line dialog box, -
for f|nding aline
number in the source Line Number:
display -)
= |
| ok 1| I_Qancel I | ﬂelpJ
Go To Address... opens a dialog box to move the Source cursor to a
specific address. If no source is available for the address you specify,
the Source window shows disassembled code beginning at that address.
30 Tottons b
box, for finding code Go To Address
load address Address:
FFFFE3E4 in User ~
space |CS:FFFFE3E4]

Space:

OperandfAddress Size:

|Auto l_&_l

| |

OK

Cancel | I Help l

You can specify:

Space:

Operand/Address
Size:

Source Window Reference

User or SMM (system management mode),
depending on the processor

Use16 (16-bit), Use32 (32-bit), or Auto (pmode-
derived) addressing mode.

158 SLD User's Manual

View menu, showing
the Operand/Address
Size sub-menu

Run menu, listing the
keyboard-shortcut
function keys for
emulation control

SLD User's Manual

Go To CS:EIP moves the Source cursor to the current program

counter.

View Menu

v Source Only
Mixed Source and Asm

Vv Line Numbers

Operand/Address Size Vv Auto

Uselb
Use32

Source Only, when checked, displays only your source code.

Mixed Source and Asm, when checked, displays the source code lines
interleaved with the corresponding disassembly lines from memory.

Line Numbers, when checked, displays the source file line numbers

Operand/Address Size opens a sub-menu with the following choices to

display disassembly text:

Auto Operand/address size is 16-bit or 32-bit, depending on the

pmode.
Usel6 Operand/address size is 16-bit.
Use32 Operand/address size is 32-bit.

Run Menu
Go F9
Halt F2
Step Into F7
Step Over F8
Go Until Call
Go Until Return
Go Into Call

Go Into Return

Goto Cursor
Go From Cursor

Step Into Continuously
Step Over Continuously

Reset
Reset And Go

Go or pressing <F9> starts emulation.

159

Source Window Reference

Halt or pressing <F2> stops emulation.

Step Into or pressing <F7>, when the program counter is on a function
call, executes the call to the function and stops before the first
instruction in the function. Step Into and Step Over are the same
operation when the program counter is not on a function call.

To step into a function with no associated source, before stepping
enable the View menu Mixed Source and Asm item to display
disassembly in the Source window. Otherwise, Step Into operates the
same as Step Over for that function. The Source window must be able
to display the program counter where emulation halts.

Step Over or pressing <F8>, when the program counter is on a
function call, executes the call as a single step. This step executes the
function, returns, and stops before the first instruction following the
return. (However, encountering a breakpoint in the stepped-over
function stops emulation at the breakpoint.) The Source window
continues to display the calling function.

Go Until Call executes from the program counter to the beginning of a
statement or line (depending on the granularity) containing a call.

Go Until Return executes from the program counter to the beginning
of a statement or line (depending on the granularity) containing a
return.

Go Into Call executes from the program counter and stops before the
first instruction in the next called function.

Go Into Return executes from the program counter through the first
return instruction and stops before the first instruction after the return.

Go To Cursor executes from the program counter and stops before the
selected line or statement in the Source window.

Go From Cursor moves the program counter to the selected line or
statement in the Source window, then starts emulation.

Step Into Continuously does Step Into operations until you halt it.
Step Over Continuously does Step Over operations until you halt it.

Reset asserts the RESET pin of the target processor, causing the CPU
to reset the internal registers, the program counter, and the stack
pointer. The RESET pin is then released. All SLD windows are
updated; the Source window displays the beginning of code (where the
program counter points) and the Stack window display is invalid.

Reset And Go does a Reset, as above, and starts emulation from the
power-up reset vectors. The reset vectors must be previously set.

Source Window Reference 160 SLD User's Manual

Breakpoints menu with
all items enabled,
indicating at least one
breakpoint is defined

Set Breakpoint dialog
box to set a
permanent, initially
enabled breakpoint at
address 73
(hexadecimal) in the
dm_main module main
function

SLD User's Manual

Breakpoints Menu

Set Permanent Breakpoint, Set Temporary Breakpoint, Set
Breakpoint..., and Show All... are always available; Clear, Enable, and
Disable are available when you have selected a breakpoint from those
listed in the Breakpoint window; Clear All, Enable All, and Disable All
are available when one or more breakpoints are listed. To select a
breakpoint, click on it or move the highlight with <Up Arrow> and
<Down Arrow> keys.

ﬁreakpoints

Set Permanent Breakpoint
Set Temporary Breakpoint
Set Breakpoint...

Clear
Enable
Disable

Clear All
Enable All
Disable All

Show All...

Set Permanent Breakpoint sets a permanent breakpoint at the cursor.
Set Temporary Breakpoint sets a temporary breakpoint at the cursor.

Set Breakpoint... opens a dialog box to set a breakpoint at a specific
address.

= I Set Breakpoint

Breakpoint at: I#dm_func#insert l

Modules Functions

am_one B
State] Type] Space:
@ Enable @ Permanent |user I I l
O Disable O Temporary

I Set —l I Close J | Help J

Fill-in the dialog box as follows:

Breakpoint at: can be a numeric or symbolic address. For symbolic
addresses, choose a module and a function from the
drop-down list boxes.

State can be toggled to Enable or Disable. The emulator
ignores a disabled breakpoint.

161 Source Window Reference

Type can be permanent or temporary. A temporary
breakpoint is removed after it causes the break.

Space: can be User or SMM for some processors.

Choose the Set button to define the breakpoint or the Close button to
close the dialog box without defining a new breakpoint.

Clear removes a breakpoint at the Source cursor.

Disable marks the breakpoint at the Source cursor to be ignored when
emulation executes through the code where the breakpoint is located. A
disabled breakpoint highlight in the Source window is grey.

Enable marks the breakpoint at the Source cursor to cause a break
when emulation executes through the code where the breakpoint is
located. An enabled breakpoint highlight in the Source window is red.

Disable All disables all currently defined breakpoints. The breakpoints
remain defined.

Enable All enables all currently defined breakpoints.
Clear All removes all breakpoints. No breakpoints remain defined.

Show AlL.. opens the Breakpoint window, described in the Breakpoint
Window Reference chapter.

Options Menu

Source Path...

Tab Width...

Source Step Granularity »
Step Count...

Browser History Depth...
Source Line Delimiter »
Set Go Buttons »

Source Path opens a dialog box to add, delete, or change the paths to
the source files used in generating your loadfile. You can define up to
50 source paths. The path list is saved in powerpak.ini.

When you browse a module in the Source window, the emulator
searches the source paths for the corresponding source file in the order
they appear in the dialog box, from top to bottom.

Source Window Reference 162 SLD User's Manual

Source Path dialog
box, specifying
c:\powerpak\samp386
as the path for all
source files

Edit Path dialog box for
changing the
c:\powerpak\samp386
entry in the Source
Path dialog box

Tab Width dialog box,
replacing tabs with 8
spaces

Tab Width And
Statement-Level
Breakpoints

SLD User's Manual

I Add... || Edit... || D_eleteJl Close H Cancel || Help I

To select a source path for editing or deleting, click on it or use the <Up
Arrow> and <Down Arrow> keys to move the highlight.

The Source Path dialog box buttons are:

Add...

Edit...

Delete

Cancel

Close

opens a dialog box for adding a new source path to the
emulator’s list of source paths. Select a source file; choose OK
to add the path or Cancel to close the dialog box without
adding the path.

opens a dialog box for editing the selection.

Edit Path

Path:

C:\POWERPAK\SAMP386%
| 0K l

IQancel l | Help I

removes the selection from the source path list.

closes the Source Path dialog box, first asking you whether to
keep or abandon the Add, Edit, and Delete changes.

replaces Cancel when you click on OK. This button closes the
Source Path dialog box, keeping all changes you have made.

Tab Width... opens a dialog box to specify the number of spaces the
Source window uses to replace a tab character in your source file. The
default is eight spaces.

Tab Width [1-32):

@ |

[ok |

|§ance|| I Help l

To set a breakpoint at the statement level, you must know how many
spaces your compiler uses for a tab character. For example:

<tab><tab>for(i = 0; i < MAX_NUM; I++){

/*source line*/

163 Source Window Reference

The compiler generates column range information for the three
statements in this line, using a tab width of 8:

i=0 columns 0 to 26
i < MAX_NUM columns 27 to 39
i++ columns 40 to 45

If you set the Source window Tab Width to 4, then use the Source
cursor to set a breakpoint on the first i (column 13) or the second i
(column 20), the breakpoint is within the first statement's column
range. The third i is within the second statement's range.

Source Step Granularity opens a sub-menu to specify whether a Step
command steps by source lines or by source statements. Some C
compilers allow more than one statement per line, separated by
semicolons. You can step through such a source line by statements.

Source Step

Granularity sub-menu Source Step Granularity v Source Line
specifying source line Step Count... Source Statement

stepping

Step Count opens a dialog box to set the steps (1 to 100) executed per

Step command.
Step Count dialog box
specifying one step per
Step command Step Count:

[|
T | L__gam:el I l Help I

Browser History Depth opens a dialog box to set the maximum
number of browsed modules (0 to 50) that can be recalled. The
emulator maintains a list of the modules you browse and the order in
which you browse them. Use the Previous Browsed Module and Next
Browsed Module items in this menu to cycle through the modules.

Previous Browsed Module displays the next earlier module in your
browse history.

Next Browsed Module displays the next later module in your browse
history.

Source Line Delimiter opens a sub-menu to set the ASCII string used
by the compiler to delimit a source line.

Source Line Delimiter : — n n
sub-menu set for DOS + Carriage ReturnfLinefeed

source files | Set Go Buttons | Linefeed Only

Source Window Reference 164 SLD User's Manual

Set Go Buttons sub-
menu specifying Into
Call/Return buttons

Into Call/Return and
Until Call/Return
buttons

Carriage (the default) recognizes a carriage return followed by a

Return/ linefeed as the string indicating the end of a line. This is

Linefeed the DOS standard line delimiter. Displaying a UNIX file
with Source Line Delimiter as Carriage Return/Linefeed
shows the entire source file as a single line.

Linefeed recognizes a linefeed as the end-of-line indicator. This is

Only the UNIX standard line delimiter. Displaying a DOS
source file with Source Line Delimiter set to Linefeed Only
shows a black dot at the end of each line.

Set Go Buttons opens a sub-menu to toggle the operation of the Call
and Return buttons between Go Until and Go Into.

Set Go Buttons Until CallfReturn
v Into Call{Return

I Into Call || Into Return I

[until call J[Until Return |

Source Window Buttons

Source window button
bar configurations

SLD User's Manual

These buttons provide quick access to commonly used Run menu items,
described earlier in this chapter.

The Source window button bar has two possible configurations. To
toggle between them, choose the Options menu Set Go Buttons item
and choose Until Call/Return or Into Call/Return.

| Go || Halt || SteE Into I SteE Over I Into Call Ilnto Return IEo To Curso‘
| Go I Halt I Steg Into I SteE Over I Until Call |Un|i| RetumIEo To Cursol

Button Use To:

Go Start emulation from the program counter, the same as
the Run menu Go.

Halt Stop emulation, the same as the Run menu Halt.

Step Into Step into a function call at the program counter, the
same as the Run menu Step Into.stepping:Source
window

Step Over Step over a function at the program counter, the same

as the Run menu Step Over.

Until Call Go from the program counter and break before the next

165 Source Window Reference

function call, the same as the Run menu Go Until Call.

Into Call Go from the program counter and break after the next
function call, before executing the function, the same as
the Run menu Go Into Call.

Until Go from the program counter and break before the next
Return return instruction, the same as the Run menu Go Until
Return.

Into Return Go from the program counter and break after the next
return instruction, the same as the Run menu Go Into
Return.

Function Popup Menu

To pop-up the Function menu, select a function name in a source line.
The selected function name is highlighted.

Eg;ggg?ur:z;udouble-
clicking on a printall Go To Source

string in the source Show Load Address
display Set Perm. Breakpoint
Set Temp. Breakpoint
Clear Breakpoint

Go To Source puts the Source cursor at the beginning of the function
source code. If no source is available, the Source window can display
the function in disassembly. To enable the disassembly display, open
the View menu and choose Mixed Source and Asm.

Show Load Address opens an information box listing the memory
address range occupied by the function.
Load Address dialog

box showing the
printall load address

PowerPack SLD

Function printall: Address starts at:
0200:00FC..0198.

Set Perm. Breakpoint sets a permanent breakpoint at the highlight.

Set Temp. Breakpoint sets a temporary breakpoint at the highlight.
Clear Breakpoint clears the breakpoint at the highlight.

Source Window Reference 166 SLD User's Manual

Variable Popup Menu

To pop-up the Variable menu, select (double-click on) a variable name
in a source line. The selected variable name is highlighted.

xs:i?$e;yuaouble- bl Variable: staticlterations

clicking on a Inspect Variable .
staticlterations string in Set Perm. Breakpoint
the source display Set Temp. Breakpoint

Inspect Variable adds the variable to the Variable window, described
in the Variable Window Reference chapter. If the Variable window is
not already open, Inspect Variable opens it.

Set Perm. Breakpoint sets a permanent breakpoint on the highlight.

Set Temp. Breakpoint sets a temporary breakpoint on the highlight.

SLD User's Manual 167 Source Window Reference

Source Window Reference 168 SLD User's Manual

Variable Window Reference

= Variable
File Edit View Variable

struct LINKS =top = DS:00008;
LINKS *top {

signed char =stringPtr
signed short int length

}

LINKS top->=next {
struct LINKS =next
signed char =stringPtr
signed short int length

b

struct LINKS =pext = DS:0000;

DS :0060;

signed char top->next->=*stringPtr

-

Windows Help
il
DS :0000;
6x8 = 0;
DS:06008;
0x8 = 0;
= 9x0 = ""; o1
-

Variable Window Contents

The Variable window displays the types, symbolic names, and values of

global and

local variables. Variable symbolic information appears in

the following colors:

Red

Blue

Magenta

SLD User's Manual

indicates an editable value. Integer variables can be edited
in hexadecimal or decimal, floating point variables in
floating point format, and characters in ASCII or the
hexadecimal equivalent. To edit a value, either double-click
on the value; or single-click on the value, open the Edit
menu, and choose Edit. Press <Enter> to end or <Esc> to
cancel editing.

indicates a pointer variable you can dereference by double
clicking. To dereference a pointer, either double click on the
pointer name or open the View menu and choose Show. A
new entry is added to the Variable window, showing the
variable that was pointed to.

indicates a variable. For enum type variables, the
enumerated name follows the hexadecimal value.

169 Variable Window Reference

Variable Window Menus

Some items are on/off toggles, on when a check mark (v) appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:
File Close the Variable window.
Edit Find and edit a listed variable.
View Reorganize or refresh the display.
Variable Add or remove variables from the display.
Windows Open another SLD window.
Help Open a window for help with the SLD software.
Edit Menu
Search Next
Edit

Search... opens a dialog box to find a variable in the display. The case-
sensitive search stops at the first occurrence or at the end of the display.

Search dialog box,
finding the string top-
>next->*stringPtr in the
Variable window

Search

Search for:

top->next->*stringPtr

| ok | |Qancel| I Help l

Search Next finds the next occurrence of the last variable searched for.

Edit puts an edit field on an editable (red) value. Type a new value in
the field. Floating-point values use floating-point format. Characters
use hexadecimal or ASCII. Integers use decimal or hexadecimal.

Variable window
showing Edit field on
the value of the *next
symbol

Variable Window Reference

= Variable n -
File Edit View Variable Windows Help
LINKS =top { |+ |
struct LINKS =npext = DS:|f
signed char =*stringPtr = DS:0000; ||
signed short int length = 8x8 = 8;
H 0
«] [[+

170

SLD User's Manual

View menu showing
Sort sub-menu to
display variables in the
order they are added to
the Variable window

Variable window
dereferencing the
*stringPtr pointer

Variable window in
compressed mode

Variable menu

SLD User's Manual

View Menu

Show
Compress
Refresh Display

Show adds a line to the Variable window dereferencing the selected
variable. This item is available when you have put the Variable cursor
on a dereferenceable (blue) symbol, such as a pointer.

Variable

File Edit View Variable Windows Help

LINKS =top { *
struct LINKS =pext = DS:0000;
signed char xstringPtr = DS:0808;
signed short int length = 8x0 = 0;

y -
signed char top->xstringPtr = 8x8 = “*; [J]
L1 d

Compress collapses multi-line variables to the first line.

= Variable - -
File Edit View Variable Windows Help
LINKS xtop {

*
[+]

«] 1 »

Refresh Display updates the displayed symbols and values.
Sort opens a sub-menu to arrange the variables:

By History in the order they were added to the display.
By Variable Name alphabetically.

Variable Menu

Variable
Add...

Delete
Undelete

Add... opens a dialog box to add a variable name to the display.

171 Variable Window Reference

Add dialog box to

display the bufCount

variable from the Variable:

printall function Yanable:
[Fprintali#butCount] |
I OK I | Cancel | I Help |

Delete removes the selected variable from the display.

Undelete restores to the display the last variable removed.

Variable Window Reference 172 SLD User's Manual

Breakpoint Window Reference

= Breakpoint M=
File Breakpoints Windows Help

Set || clear]5o To Sourcd| Enable | Disable || Enable Al | Disable all
State __Type ___Breakpoints

o -_—
0060266FL dm_main,main,line67,colB-1

8060826FCL dm_func,printall,line153,c0l16-1

Breakpoint Window Contents

The Breakpoint window displays the following information about each

breakpoint:

State Whether the breakpoint will cause a break (Enable) or
not (Disable) when emulation executes through the
code where the breakpoint is located.

Type Whether the breakpoint will remain defined (Perm.)
or be removed (Temp.) after causing a break.

Breakpoints The load address, module name, function name,

source line number, and source column number where
the breakpoint is located. The column number can be
affected by the number of spaces the compiler and
emulator use for tab characters (the Tab Width).

Breakpoint Window Menus

Some items are on/off toggles, on when a check mark (¥) appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:

File Exit the Breakpoint window.

Breakpoints Define, remove, enable, and disable breakpoints.
Windows Open another SLD window.

Help Open a window for help with the SLD software.

SLD User's Manual 173 Breakpoint Window Reference

Breakpoints menu with
all items enabled,
indicating at least one
breakpoint is defined

Set Breakpoint dialog
box defining a
permanent, initially
enabled breakpoint at
the first instruction of
the printall function in
the dm_func module

File Menu

Exit closes the Breakpoint window.

Breakpoints Menu

The items available in the Breakpoints menu depend on whether
breakpoints are defined and selected. Set Breakpoint... and Go To
Source are always available; Clear, Enable, and Disable are available
when you have selected a breakpoint from those listed in the Breakpoint
window; Clear All, Enable All, and Disable All are available when one
or more breakpoints are listed. To select a breakpoint, click on it or use
the <Up Arrow> and <Down Arrow> keys to move the highlight.

Set Breakpoint...

Clear
Enable
Disable

Clear All
Enable All
Disable All

Go To Source

Set Breakpoint opens a dialog box to define a new breakpoint.

= Set Breakpoint -
Breakpoint at: I dm_func#printall I
Modules Functions
{dm_funl: Jil [printall [il
State Type] Space:
(® Enable (® Permanent _
O Disable O Temporary
I Set I 1 Close l | Help }

Fill-in the dialog box as follows:

Breakpoint at: a numeric or symbolic address. You can choose a
module and function from the drop-down list boxes.

State toggled to Enable or Disable. The emulator ignores a
disabled breakpoint.
Type permanent or temporary. A temporary breakpoint is

removed after it causes the break.

Space: User or SMM, depending on the processor.

Breakpoint Window Reference 174 SLD User's Manual

Choose the Set button to define the breakpoint or the Close button to
close the dialog box without defining a new breakpoint.

Clear removes the selected breakpoint.

Disable marks the selected breakpoint to be ignored when emulation
executes through the code where the breakpoint is located.

Enable marks the selected breakpoint to cause a break when emulation
executes through the code where the breakpoint is located.

Disable All disables, without removing, all breakpoints.
Enable All enables all breakpoints.
Clear All removes all breakpoints. No breakpoints remain defined.

Go to Source opens the Source window, described in the “Source
Window Reference” chapter, and positions the source cursor at the
specified breakpoint.

Breakpoint Window Buttons

SLD User's Manual

These buttons provide quick access to commonly used Breakpoints
menu items, described earlier in this chapter.

|__sSet | Clear 5o To Sourcd| Enable || Disable |_Enable All || Disable All ||
Button Use To:

Set Open a dialog box to set a breakpoint, the same as the
Breakpoints menu Set Breakpoint... item

Clear Remove a selected breakpoint, the same as the
Breakpoints menu Clear item.

Go To Source ~ Open the Source window to show the specified
breakpoint in source or disassembly, the same as the
Breakpoints menu Go To Source item.

Enable Define that the specified breakpoint will cause a
break next time it is encountered in emulation, the
same as the Breakpoints menu Enable item.

Disable Define that the specified breakpoint will cause no
break next time it is encountered in emulation, the
same as the Breakpoints menu Disable item.

Enable All Enable all breakpoints, the same as the Breakpoints
menu Enable All item.

Disable All Disable all breakpoints, the same as the Breakpoints
menu Disable All item.

175 Breakpoint Window Reference

Breakpoint Window Reference 176 SLD User's Manual

Stack Window Reference

=

Stack

File Options Windows Help

‘

Stack Return

S:000005CC CS:FFFFE40C remove(...)

$5:000005D8 CS:FFFFE315 main(...)

Parameters & Local Variables

50.0%

signed long remove#{place = 0x3 = 3; L)
signed long remoue#i = Ox0 = 0;
struct LINKS xremove#ptr = DS:000001DA;
struct LINKS xremove#icur = DS:08000158;
4]
Ll [+
Stack Window Contents

SLD User's Manual

The Stack window has three panes:

Frame List

Parameters and
Local Variables

Stack Meter

lists the stack address, the return address, and the
name of each function on the current call stack.
Each line is a stack frame.

lists the type, name, and value of each parameter
and local variable in the selected stack frame. The
format and colors are the same as in the Variable
window.

graphically shows the stack usage statistics,
including the percent of the stack area currently in
use, an alarm marker at a specified usage level, and
a mark at the highest percent usage for the current
emulation.

177 Stack Window Reference

Stack Window Menus

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:

File Close the Stack window; refresh the stack display.

Options Configure the stack area; toggle the Frame List address
display; manage stack usage statistics; inspect the
source.

Windows Open another SLD window.
Help Open a window for help on the SLD software.

File Menu
Refresh Display reads memory and updates the displayed information.

Exit closes the Stack window.

Options Menu

Options menu with all m

stack statistical options Stack Area...

enabled i
Alarm Limit...

v Include Stack Address
v Include Return Code Address

+ Enable High-Water Mark
v Enable Alarm Limit

Inspect Source

Stack Area... opens a dialog box to set the stack base address and size.
Stack Area dialog box =

setting the base = Stack Area
tahd::::: :)n geSize o Base Address:
monitored for stack [0020:000005E0] |
actity Number of Bytes:
1504 l
TS | l Cancel I | Help l

Alarm Limit... opens a dialog box to define the alarm limit as a
percentage (1 to 100) of the Stack Meter.

Stack Window Reference 178 SLD User's Manual

Alarm Limit dialog box
setting the alarm at
95% of the monitored
stack area

SLD User's Manual

Percent of Size (1 - 100%):

[o5] |
| 0K I |Qancel| | ﬂelpj

Include Stack Address, when checked, displays stack addresses in the
Frame List, in a column labeled Stack. The stack address is the address
of the frame in the stack area

Include Return Code Address, when checked, displays code addresses
in the Frame List, in a column labeled Return. The code address is the
return address to the calling function.

Enable High Water Mark, when checked, displays the high-water
mark on the Stack Meter. The high-water mark indicates the highest
percentage that has been used of the stack area.

Enable Alarm Limit displays a warning message each time emulation
stops while the alarm limit is exceeded.

Inspect Source opens the Source window, described in the “Source
Window Reference” chapter, and positions the Source cursor to show
the selected function’s source. To select a function, in the Frame List
click on the frame or use the <Up Arrow> and <Down Arrow> keys to
move the highlight.

179 Stack Window Reference

Stack Window Reference 180 SLD User's Manual

CPU Window Reference

1 Options \

EFLAGS

EIP

EAX

EBX

ECX

EDN

EBP

ESP

EDI

ESI

cs

DS

ES

FS

GS

ss
GDTBASE
GDTLIMIT
GDTAR
IDTBASE
IDTLIMIT
IDTAR
LDTR
LDTBASE
H LDTLIMIT
LDTAR

80000082

vrnBoditszapc

FFFFE3EL
00060000
gpeanoes
ooees000
dsosenee
600005ED
600005E0
se800000
80000000
2018
a628
ae2a
8628
8020
aezae
FFFFEGBO
883F
FFFFEDBB
000005E0
BOFF
FFFFFFFF
aeee
00080000
FFFF
FFFF7FFF

+*

CPU Window Contents

Register Edit dialog
box for changing the

EIP register

SLD User's Manual

The CPU window lists the processor registers by mnemonic. Different
registers appear for different processors, as listed in the Hardware
Reference. The register values are updated and the changed values
highlighted each time emulation halts.

To edit the register values, double-click on a register value; or, move
the cursor with <Up Arrow> and <Down Arrow> then press <Enter>.

Register: PC

Hex: 000006A2, Decimal: 1698
[oxo0000642 |

| ok | |Qancel| I Help |

181 CPU Window Reference

Options Menu

Options menu showing
the EA-486 signals
controlled by the
emulator

Reset

Reset CPU Only

Signals Y RDY# Enable
- Y RESET Enable

Windows

v HOLD Enable
Help Index ¥ NMI Enable
Help With Help |[¥ INTR Enable
Help With CPU v A20M# Enable
v FLUSH# Enable
/ KEN# Enable

¥ SLE Enable

Exit

Reset resets and reinitializes the target processor:

The processor RESET pin is asserted.

The program counter is read from memory; the Source window is
scrolled to the beginning of code.

The stack pointer is read from memory, resetting the stack; the
Stack window display becomes invalid.

All SLD windows are updated.

Reset CPU Only resets only the processor and does not update the
windows. Use Reset CPU Only if Reset fails to reset the processor.

Signals opens a sub-menu to specify whether certain signals are
controlled by the target (unchecked) or by the emulator (checked).
Different signals can be enabled for different processors. For a list of
the signals configurable in your emulator, see the Hardware Reference.

Windows opens a sub-menu to open another SLD window. This item
is equivalent to the Windows menu in other SLD windows.

Help Index opens a window with the table of contents for SLD help.

Help With Help opens a window on using a Windows help facility.
Help With CPU opens a window with SLD CPU window help.
Exit closes the CPU window.

CPU Window Reference

182 SLD User's Manual

Memory Window Reference

= Memory 0: Hex Words View (user] v |4

| File Edit View Options Windows Help

DS:00800 BBB3 CDSB BE2D F288 BB39 7A3A C47B 33FC *»[1-%.09»:2¢*
DS:0618 F9FB BFEE B790 SFA4 SFD5 E9F6 FCC3 8DFD Gui M-®_0_oé
DS:0020 71BF FEBB E332 9948 AF77 FFBF 67FF 37BF ,q»p23@Ru ;i
DS:0830 FFFF FFEA FEBS 9AAS CB6E DEEE BSBF FF33 yijdypp¥MnEib;

Memory Window Menus

The window title identifies the Memory window by number, describes
the display format, and identifies the address space. You can have up
to 20 Memory windows open simultaneously for a variety of views.

The leftmost column is the address. Address formats differ for different
processors. To view another area of memory, double-click in the
address column of the Memory window. Enter a numeric or symbolic
address in the Go To Address dialog box. Any symbol you enter must
have a fixed address; you cannot Go To local variables or stack-resident
parameters.

The memory contents can be in disassembly or numeric format.
Numeric format shows the hexadecimal or decimal values and, in the
rightmost column, the equivalent ASCII values. You can edit memory
contents directly in the numeric and ASCII formats by positioning the
cursor (a vertical bar) with the mouse, then overtyping the memory
display. Disassembly can include symbols; in the Toolbar Configure
menu, toggle Symbolic Disassembly.

Memory Window Menus

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:

File Exit the Memory window.

Edit Edit memory; navigate the memory display.
View Choose numeric or disassembly display formats.
Options Manage memory access options.

Memory Window Reference 183 SLD User's Manual

Go To Address dialog
box for finding address
0:0 in user space

Search Memory dialog
box for finding a
pattern in an address

range

Memory Window Reference

Windows Open another SLD window.
Help Open a window for help with the SLD software.
Edit Menu

Go To Address...
Search Memory...
Fill Memory...
Copy Memory...

Go To Address... opens a dialog box to change the Memory window
display to a specified numeric or symbolic address. For some

processors, you can specify User or SMM space.

= GoTo Address
Address:
o:0 |
Space: Operand/Address Size:
fer | &l
| oK || Cancel I | Help I

Search Memory... opens a dialog to search a specified address range
for a specified pattern. The search stops at the first occurrence of the

pattern in the range. If the pattern is not found,
does not move.

the Memory cursor

From l

To |

Pattern |

| ok

1 l_QancelI I

Help |

Fill Memory... opens a dialog box to fill an address range with a

specified pattern.

184

SLD User's Manual

Fill Memory dialog box
for writing a repeating
pattern to an address
range

Copy Memory dialog
box for copying
memory contents from
one address range to
another

View menu, displaying
memory contents as
disassembly

=) Fill Memory

o E—
N

Space [EETMNL

| 0K I Qancell Help I

Copy Memory... opens a dialog box to copy one address range to
another or to copy target memory to overlay memory.

Copy Memory
[From: To:
Start: | I Start: li
@M

@ End I O T:rnget
O Length
@ Map
O Lot Space (o] [oncer] [Con]

View Menu

Disassembly

Hex Bytes

¥ Hex Words
Hex DWords
Decimal Bytes
Decimal Words
Decimal DWords

¥ Auto
Uselb
Use32

¥ User
SMM

Refresh Display

Disassembly displays memory disassembled. In Disassembly view, you
can double-click on a disassembled line to open the Single Line
Assembler dialog box (described later in this chapter).

Hex Bytes displays memory as hexadecimal 8-bit integers with values
from 0 to FF.

Memory Window Reference 185 SLD User's Manual

Options menu,
specifying 8-bit
memory access and
verification of memory
writes

Memory Window Reference

Hex Words displays memory as hexadecimal 16-bit integers with
values from 0 to FFFF.

Hex Dwords displays memory as hexadecimal 32-bit integers with
values from 0 to FFFFFFFF.

Decimal Bytes displays memory as decimal 8-bit integers with values
from O to 255.

Decimal Words displays memory as decimal 16-bit integers with
values from 0 to 65,535.

Decimal DWords displays memory as decimal 32-bit integers with
values from 0 to 4,294,967,295.

Auto uses the pmode to determine whether operands and addresses are
interpreted as 16-bit or 32-bit values. For a description of pmodes, see
the Hardware Reference.

Use16 interprets operands and addresses as 16-bit values.
Use32 interprets operands and addresses as 32-bit values.
User displays processor user memory.

SMM displays processor system management mode memory (available
in some processors).

Refresh Display re-reads memory and refreshes the screen. This
happens automatically when emulation halts.

To update or scroll the Memory window during emulation, enable Run
Access before starting emulation. Check the Toolbar Configure menu
Enable Run Access item; or enter a RunAccess Shell command.

Any run-time memory access, such as that used to update the Memory
window, takes a small amount of time from the processor and thus can
degrade your program performance.

Options Menu

¥ Byte Access
Word Access
Dword Access

V Write Verify
Read Ahead

Reread On Write

Byte Access specifies 8-bit cycles for memory access.

186 SLD User's Manual

Word Access specifies 16-bit cycles for memory access. For writing a
byte, the word containing the byte is read, the appropriate byte replaced,
and the word re-written. Words at even addresses are read and written
as words. Words at odd addresses are read and written as two words.
For example, for writing a word of data at an odd address:

The word containing the first byte (odd address minus 1) is read.
The lower byte of the data is put into the upper byte of the word.
The word is re-written at odd address minus 1.

The word containing the second byte (odd address plus 1) is read.
The upper byte of the data is put into the lower byte of the word.

IS o M

The word is re-written at odd address plus 1.

DWord Access specifies two 16-bit cycles for memory access. Long-
word memory writes act as follows:

1. Long-word writes on long-word boundaries use long accesses.

2. Word writes and byte writes read long words, replace the byte or
word, and write back as long words.

Set the memory access size to long (dword) for faster loading.

Write Verify, when checked, compares any value written with write,
fill, or copy with the expected value and reports discrepancies.

Toggling Write Verify does not affect load verification. Use the verify
Shell command to toggle load verification. With Verify=0n, a byte
read back that does not match the byte written returns an error.

Read Ahead, when checked, reads ahead and caches more data than is
displayed in the Memory window screen, for faster scrolling.

With read-ahead enabled, scrolling through peripheral registers or near
invalid memory regions can cause Unterminated Memory Access
eITOrS.

Reread On Write, when checked, refreshes the memory display when
you edit the numeric or ASCII fields in the display. Toggling Reread
On Write does not affect Memory window refreshing for memory
changes done outside of the memory display. For example, load, fill,
write, and copy operations always refresh the memory display.

Single-Line Assembler Dialog Box

You can patch code into memory an assembly-line at a time with the
single-line assembler. With the Memory window in Disassembly view,
double-click on the line you want to replace.

Memory Window Reference 187 SLD User's Manual

Single-Line Assembly m——

dialog box, assembling = Single-Line Assembly

a DEC instruction at R

location CS:FFF3 Source Line: CS:FFF3
[DEC__ WORD PTR [BX-0031 |
Space: Operand/Address Size:

freer Bl | g
| Cancel l | Assem ' Skip I Help l

Type a line of assembly language in the text box.

Source Line: shows the address where the line will be assembled.

Space: for some processors, can be User or SMM.
Operand/ is unavailable.

Address Size:

Cancel closes the single-line assembler dialog box without

assembling. Once you have assembled a line, this
button changes to Done. Choosing Done closes the
dialog box; your assembled changes remain in

memory.

Assem assembles the line into memory; advances the address.
Skip advances the address without assembling the line.
Help opens a window for help on the single-line assembler.

Memory Window Reference 188 SLD User's Manual

Peripheral Window Reference

= Peripheral

File Edit View Windows Help
D A

[+) MST

(+] TMR

(+) SLY

(+] COMI1

(+] COM2

(] PORTS92

(+) CSU

(+] SSIO

(+] RFSH

(+)] WDT

(+] CLK

(+] CCR

+) PIO

v]a

em B

Peripheral Window Contents

Different peripherals are supported for different processors.

The Peripheral window shows the peripheral register information
heirarchically. Click on the (+) or (-) at the left of a line to expand or
collapse the hierarchy. At the top level (the only level visible when the
heirarchy is fully collapsed) are the peripherals. Expanding a
peripheral shows its registers. Expanding a register shows its bit fields.
Full expansion lists the register address, bit field bit position, value,

name (mnemonic), and description.

Peripheral Window Menus

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu
File

Edit
View
Windows
Help

Peripheral Window Reference

Use To:

Exit from the Peripheral window.

Edit a register; navigate the Peripheral display.

Refresh, expand, or compress the display.

Open another SLD window.

Open a window for help with the SLD software.

189

SLD User's Manual

Go To Peripheral
dialog box for finding a
peripheral by name

Go To Register dialog
box for finding a
peripheral register by
name

Go To Address dialog
box for finding a
peripheral register by
hexadecimal address

Edit Menu

Register...
Go To Peripheral...
Go To Register...
Go To Address...

Register... opens a Register Edit dialog box (described later in this
chapter) to edit the selected register. To select a register or bit field, use
the mouse or <Up Arrow> and <Down Arrow> keys to move the
highlight. Selecting a peripheral selects its the first register.

Go To Peripheral... opens a dialog box to scroll to the peripheral
specified by name.

= Go To Peripheral

Peripheral Name:

[l

I OK I |Qance||| Help I

Go To Register... opens a dialog box to scroll to the register specified

by name.

Go To Regist;r

Register Name:

I OK | Iganctﬂ” Help I

Go To Address... opens a dialog box to scroll to the register specifed by

address.

Peripheral Window Reference

Go To Address

Address:
I |
| 0K I I Cancel J | Help I
190 SLD User's Manual

View menu

View Menu

Expand All

Compress All

Refresh Display

Expand All expands the hierarchy completely, showing all peripheral,
register, and bit field mnemonics, with the addresses or bit positions,
values, and descriptions of the registers and bit fields.

Compress All collapses the hierarchy completely, showing only the
peripheral mnemonics.

Refresh Display re-reads the readable registers and refreshes the
screen. This also occurs automatically when emulation halts.

To update or scroll the Peripheral window during emulation, enable
Run Access before emulating. Check the Toolbar Configure menu
Enable Run Access item; or enter a RunAccess Shell command. Any
run-time memory access, such as that used to update the Peripheral
window, takes a small amount of time from the processor and thus can
degrade your program performance.

Write-only register fields display the most recent value you entered
using the Peripheral or Shell window interface. Values written by
program execution are not captured by the emulator.

Register Edit Dialog Boxes

Register Edit dialog
box for changing the
CSO low address
register value

Different registers have different field values.

CSU CSDADL - Chip-select 0 Low Address Register

Register Value: |11

Fields:
address bits 5:1
activate channel only if not in SMM mode
enable the automatic BS8# signal generation.
110 bus cycle

external READY# ignored.
must be zeros
wait states

Field Value: 15: Chip-select 0 lower 5 address bits

mn address bits 521
[~}

[wite]| cose || <«prev || Next>> || hHep |

Peripheral Window Reference 191 SLD User's Manual

Register Value shows the register contents in hexadecimal. You can
edit this field.

Fields lists each bit field mnemonic in the register and its
effect on the processor. To select a bit field, click or
use the <Up Arrow> and <Down Arrow> keys to move
the highlight.

Field Value is a spin box showing the value of the bit field selected
in the Fields box. You can edit this field. To ensure
you enter an acceptable value for the bit field, click on
the spin arrows or use the <Up Arrow> and <Down
Arrow> keys to change the value. Editing the Field
Value changes the Register Value.

The selected bit field position and a description of the bit field
according to its current value are listed under the Fields box, to the
right of the Field Value spin box. This description changes when you
change the bit field value.

Write writes the value shown in Register Value:.
Close closes the Register Edit dialog box.

<<Prev displays the Register Edit dialog box for the previous
register in the Peripheral window list.

Next>> displays the Register Edit dialog box for the next register in
the Peripheral window list.

Help opens a help window on the Register Edit dialog box.

Peripheral Window Reference 192 SLD User's Manual

Trace Window Reference

File Edit View Trace Timestamp Goto Windows Help
bbbb mdw rb bbsk hh rsni pp ae f p b f Xxxxxxxxx
timestamp a address data eeee icr dr sime 11 srmn cw haec ol
P 3210 o yy 86an da tsit dt 1d r k f u 01234567
-44 -1.3200 us 00002130 ©OGEGEOG 1110 ICW 61 1110 00 0000 10 61 1 1 1 1 00OCOOEO |+
-43 -1.3200 us 00002130 OFGTO683 0000 MCR 61 1110 60 0600 16 61 1 1 1 1 6OOEOOEO
-42 -1.2800 us 00002130 O1F64683 0000 MCR 61 1110 60 0660 16 61 1 1 1 1 GOOEEOEO
-41 -1.2400 us 00002130 O1F64683 0000 MCR 01 1110 00 0060 18 61 1 1 1 1 00000000
l« l l»

Trace Window Contents

Trace features differ between the PP, EA, and SW emulators. Different
signals are available for different processors. Grayed-out menu names
and items indicate unavailable features.

The Trace window has three views:
Bus displays every cycle of bus activity.

Clock (PP, EA) displays address, data, and processor status
signals aligned on clock cycles.

Instruction displays disassembled instructions. The first
instruction must follow a change in execution flow.

Each trace frame (one line in the Trace window) contains the following
information, in columns from left to right:

Frame number The number of the trace frame relative to the clock
cycle on which tracing stopped. The frame number
increments by one for each captured frame. For
unqualified trace, a frame is captured on each clock or
bus cycle. EA qualified trace captures a frame on
each cycle meeting the qualification criteria. In
instruction and bus views, the frame numbers are
discontinuous because multiple clock cycles make up
a single bus or instruction frame.

Timestamp (PP, EA) The time the trace frame occurred, relative
to a specified frame or time.
Address The value on the address bus.

In bus or clock view:

Trace Window Reference 193 SLD User's Manual

Data The value on the data bus

Signals The values of processor-specific signals. The signal
mnemonic labels are formatted vertically. For a list of
traced signals, see the Hardware Reference.

In instruction view, disassembly is shown instead of data and signals.
Also, the number of clock cycles between instruction frames describes
how many cycles have elapsed between signals appearing on the target
processor external pins (for example, the number of cycles between
successive prefetches); this number does not, for example, report how
many clocks the processor used to execute an instruction.

Trace Window Menus

File menu

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:

File Save trace to a buffer; close the Trace window.
Edit Open the Event window; search for an event; clear trace.
View Configure the trace display; link the Source window

display to scroll with the Trace window cursor.
Trace Control and configure trace capture.

Timestam Configure the timestamp and the system clock
p frequency.

Goto Navigate through the Trace buffer.

Windows Open another SLD window.

Help Open a window for help on the SLD software.
File Menu

Save As...
Exit

Save As... opens a dialog box to save the trace buffer to a file. Enter
the filename. If a file with the specified name already exists, it will be
overwritten. The (Trace) Save As dialog box differs between emulators:

File Name: is the drive, directory, and filename you specified in
the first dialog box. You can edit this string.

Save Format (PP) saves the trace in bus, clock (when available), or
instruction format.

Trace Window Reference 194 SLD User's Manual

PP Edit menu, with
Events and Search
items available

PP Search Buffer
dialog box to search
for event ev1 in trace
buffer 0, from frame
-105 to the end of the
buffer

Buffer (PP) with multiple buffers configured, saves a
specified range of buffers.

Frame (PP) saves a specified range of frames.

Exit closes the Trace window.

Edit Menu

Events...
Search...

Clear Trace

Events... opens the Event window.

Search... opens a dialog box to find an event in the currently displayed
trace buffer. For PP emulators, the title bar shows the buffer searched.

= Search Buffer: 0

Search Event: |ey1 E

I 0K | |Qance|| | Help I

Search Event select an event from the list of defined events.
Start Frame select the frame to start searching.

Clear Trace clears all trace buffers and resets the buffer pointer to
zero. (The current trace buffer is automatically cleared and reset when
you start emulating or tracing.)

View Menu

Different items are available for different emulators.

Trace Window Reference 195 SLD User's Manual

PP view menu
displaying trace as
clock cycles,
displaying timestamps,
and collecting BTM
cycles to allow
disassembly
(Instruction instead of
Clock view)

¥ Clock
Bus
Instruction

¥ Linked Cursor

¥ BTM Cycles

¥ Timestamp

¥ Auto
Uselb
Use32

Clock (PP, EA) displays trace as clock cycles. Capture trace in clock
mode for clock cycle display.

Bus displays trace as bus cycles. Trace captured in bus mode can be
displayed only as bus cycles.

Instruction displays trace as disassembly . Capture trace in clock mode
and capture branch trace messages for instruction mode display.
Frames prior to any such messages cannot be disassembled. To capture
branch trace messages, in the PP enable the View menu BTM cycles
item or in the EA enable the Trace menu Trace Capture dialog box
Instruction Mode Assist.

Linked Cursor synchronizes the Source and Trace window cursors, so
scrolling the Trace window displays the corresponding code in the
Source window. This feature is available only in instruction view.

BTM Cycles (PP) generates Intel-x86 BTM cycles and collects them in
trace. A BTM cycle is a special bus cycle executed by the Intel bondout
processor when execution is discontinuous (e.g., at a jump, call,
interrupt, or return). BTM generation degrades real-time execution
slightly. For trace to be displayed as instructions, BTM cycles must be
collected. Toggling BTM Cycles clears the trace buffer.

Timestamp displays the timestamps.

Auto uses the pmode to determine whether operands and addresses are
interpreted as 16-bit or 32-bit values.

Usel6 interprets operands and addresses as 16-bit values.

Use32 interprets operands and addresses as 32-bit values.

Trace Menu

The Trace menu differs between emulators.

Trace Window Reference 196 SLD User's Manual

EA Trace menu, with
Trace Capture item
instead of PP Trace
Control

Start F3
Stop F4

Trace Capture...

Start (or pressing the F3 key) starts trace collection. This occurs
automatically when emulation begins.

Stop (or pressing the F4 key) stops trace collection.

Trace Control... (PP) opens a dialog box to configure how trace
information is collected.

colog box wih o1
dialog box with one race Contro

buffer configured and [Halt When Last Trace Buffer Full
the trigger positioned N -
near the end of the Irigger Position

buffer

@ Pre O Center O Post

Number of Trace Buffers [x Size}

@®1x256K] O8x32k) O 64 [x4K)
O2x128K) O 16 [x16K) O 128 [x2K]
O 4x64K) O 328K O 256 x1K)

ok | |§ancel| | Help I

Halt When Last
Trace Buffer Full

Trigger Position

Number of Trace
Buffers (x Size)

stops emulation after the last trace buffer has been
filled. This overwrites the first trace buffer.

positions the trigger frame in the trace buffer:

Pre collects cycles before the trigger. The
event appears near the end of the buffer.

Center collects cycles before and after the trigger.
The event appears in the middle of the
buffer.

Post collects cycles after the trigger. The event
appears near the beginning of the buffer.

with 256 bytes of trace memory installed,
configures 256 trace buffers each of which is 1K
byte (512 frames) long, or a single trace buffer
256K bytes long, or any of various combinations
in between. With 128K bytes of trace memory,
you have the same choices for number of buffers
but each buffer is half the size.

Trace Capture... (EA) opens a dialog box to configure how trace
information is collected.

Trace Window Reference

197 SLD User's Manual

Trace Capture dialog

box to: = Trace Capture

e position the trigger
as the last frame

e collect trace as
clock cycles

¢ include branch
trace messages

o start tracing when
emulation starts

Trigger Position

O Center

O Post

Capture Mode
@® Clock Cycles
O Bus Cycles

|E Instruction Mode Assist
[X] Collect Trace When Emulation Starts

OK l L Cancel | Lﬂelp l

Trigger Position

Capture Mode

Instruction Mode
Assist

Collect Trace When

Emulation Starts

positions the trigger frame (the frame matching
a Trigger window condition with a Trig action)
in the trace buffer:

Pre saves any frames before the trigger to
the limit of the trace buffer and stops
trace after the trigger.

Center stops trace 125000 clocks after the
trigger.

Post stops trace 250000 clocks after the
trigger.

For Center and Post collection, the number of
frames collected after the trigger depends on
whether trace is initially on, qualified, or turned
on or off during the time limit. Frames before
the trigger are lost only as needed to make room
for frames after the trigger.

collects trace as clock or bus cycles. Trace
collected as bus cycles can be viewed only as
bus cycles

collects branch trace messages generated when
execution flow is discontinuous. Such messages
provide address synchronization necessary for
disassembly.

starts trace collection when emulation starts
rather than waiting for a manual start or trigger
action.

Timestamp Menu

Timestamp is available for PP and EA emulators.

Trace Window Reference

198 SLD User's Manual

EA Timestamp menu
calculating timestamps
relative to a base frame
specified in Zero At
Frame

PP Setup dialog box
specifying the system
clock frequency as
25.000 MHz

Absolute

v Relative To Frame
Delta

Zero At Frame...

¥ Reset Timestamp When Halted

Reset Timestamp Now

Relative To Frame shows timestamps as elapsed time from a base
frame specified in Zero At Frame.

Delta shows timestamps as incremental time between frames.

Absolute (EA) shows timestamps as elapsed time from the last
timestamp reset.

Zero At Frame... sets the base frame for calculating the Relative To
Frame timestamp. In the trace display, the zero frame is marked with
dashes (--).

Setup... (PP) opens a Setup dialog box to set the system clock
frequency, used in calculating the PP timestamp. Enter a floating-point
value from 0.01 Hz to 40 MHz.

System Clock Frequency:

[25.000 |

[ok | rgancell ' Help I

The EA timestamp increments at a constant rate of 33 MHz,
independent of the system clock.

Reset Timestamp Now (EA) resets the timestamp to 0.

Reset Timestamp When Halted (EA) resets the timestamp every time
emulation halts.

Goto Menu
The Trigger Frame is available for EA and PP emulators.

Multiple buffer navigation (Next Buffer, Previous Buffer, and Buffer...)
is available for PP emulators when multiple buffers are configured.
Frame navigation (Start Frame, Trigger Frame, and End Frame) apply
to the current buffer.

Trace Window Reference 199 SLD User's Manual

EA emulator qualified trace captures separate frames or blocks of
frames in a single buffer rather than separate blocks of frames in
separate buffers. Use frame navigation to find specific events.

PP Goto menu with

multiple buffers
configured §t:art Frame
Trigger Frame
End Frame
Frame...
Next Buffer
Previous Buffer
Buffer...
Start Frame scrolls to the first frame.
Trigger Frame (EA, PP) scrolls to the trigger frame.
End Frame scrolls to the last frame.
Frame... opens a dialog box to scroll to a specified frame in the
displayed trace buffer.
Frame dialog box for —
finding a frame = Frame
number Frame Number:
(-2 to 26315)
Cancel I
o]
Previous Buffer (PP) displays the next lower numbered buffer.
Next Buffer (PP) displays the next higher numbered buffer.
Buffer... (PP) opens a dialog box to display the specified buffer.
PP Buffer dialog box,

with four buffers
configured, for
displaying buffer 0

Trace Buffer:

(0 to 3)

Cancel

0

ddi

Trace Window Reference 200 SLD User's Manual

Event Window

Reference

Event: evl n
File Edit Windows Help

Active Event: Ievl l_i_l

not start @ EndAddr O Length _mask

addr: O [oxo| | [oxFF |0x3FFFFFF |

start end mask
data: [] | 0x0055 | |ox00Aa | |oxFFFF |
01 X 01 X 01 X 01 X 01 X
O O@®BHEY O O @RESET O QO @BUSYR OO @® P21 O O ® P3d
OO ® MIor O O @ NMI OO @®ERRORY C O @ P22 O O ® P32
OO @®bpickt OO @ INTA OOQO@®PEREQ OO @® P23 O O @ P33
QO @®wRt OO @ INTS OC@®csby OO @®P2AO O ® P34
QO @®apst O O @ INTS OO @®@P1S OO @® P25 QO @® P35
O O @ READYZ O O @ INT? OO @® PG OO ® P26 OO ® PIE
O O @ Na# OQO@®@sMr OO @®PLY SO ®P7TO0O®P3T
OC@®Bssr OO @® SMIACTE O O @ P20 GO @® P30

Event Window Contents

Events are available for EA and PP emulators. Different signals are

available for

different processors, as listed in the Hardware Reference.

The Event window defines an event to be used as a condition for

triggering or
Active Event

addr

data

mask

not

Event Window Reference

as a pattern for searching in trace. The fields are:

names the event described in the Event window. This
name identifies the event in the Trigger and Trace
windows.

describes a single address or range of numeric or
symbolic addresses. Select End Addr to specify the last
location in a range or Length to specify the number of
bytes in the range.

describes a data value or range of data values.

is a hexadecimal value to be bitwise-ANDed with the
described addresses or data. Use all F’s to include all
contiguous values in the described range. Vary the
mask to describe a discontinuous pattern of values.

when checked, defines the event as any memory access
that does not match the described range or pattern.

201 SLD User's Manual

01X specifies each signal value as low (0), high (1), or
don’t-care (X). Active-low signals are shown with a
hash mark (#). The signals available depend on the
target processor.

Event Window Menus

File menu

Edit menu

Some items are on/off toggles, on when a check mark (v') appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:

File Save and restore events in files; close the Event window.
Edit Add, delete, and redefine events.

Windows Open another SLD window.

Help Open a window for help with the SLD software.

File Menu

Save Events As...
Restore Events...
Exit

Save Events As... opens a dialog box to save the events to a file.

Restore Events... opens a dialog box to add events from a previously
saved file. Currently defined events are not deleted; events with
duplicate names are overwritten from the file.

Exit closes the Event window.

Edit Menu

Add Event...
Delete Event
Clear Event
Delete All Events

Add Event... opens a dialog box to create a new event. Enter the name
of a new event in the box and choose OK. The new event then appears
as the Active Event, with all fields cleared, in the Event window.

Event Window Reference . 202 SLD User's Manual

Add Event dialog box

i Add Event
for naming a new event

|Qancel| | Help I

Delete Event deletes the currently displayed event.
Clear clears the event definition fields without deleting the event name

Delete All Events deletes all currently defined events.

Event Window Reference 203 SLD User's Manual

Event Window Reference 204 SLD User's Manual

Trigger Window Reference

== Trigger - Level 0 v
File Edit Options Level Windows Help
Condition Actions
aventname enable ext §seq st brklton toff trac|trig| strtd stopl vstd strtl stoplrstl|est outlrstts
et 2] O[O U O OO O O OO 0
|0
+|0J
+|0]
|0
4|0
+|[]
+|0
0|1 D
rl[1 Ol
ext D

Trigger Window Contents

Triggers are available for PP and EA emulators.
The Trigger window has two panes:

Condition describes one or more conditions, including events, an
external trigger-low signal, and either two counter values
or a timer value.

Actions specifies one or more actions to be taken for each
condition met during emulation. When multiple
conditions are met simultaneously, all associated actions
are taken.

The title bar displays a level number from 0 to 3. The level O trigger is
enabled when you start emulation. Each trigger can, as one of its
actions, disable itself and enable the next level trigger. Thus you can
define up to four sequential triggers.

Trigger Window Reference 205 SLD User's Manual

Condition Fields

Trigger condition fields

showing paired timers, Condition Condition Condition
paired counters, or a event name enle ext eventhame enable ext eventname enable ext

single timer event 1 |+|B [event_ | |& event 1 || <

+|0] +|] <

+|[] +|0] +|0

+|O +|0J +|O

+| |0 |0

+|0] +|0] +|0

+|[] +|O0 |

+|] +|U |

r0|1] ontd [1 O bl O

vl|1 Ll entt [1 O
E:m Ll ext O ext O

event name

enable

ext

cnt0/1

tmr0/1, tmr

Trigger Window Reference

Select an event by the name defined in the Event
window. You can use up to 8 events per trigger. If no
event is defined when you click on an event name
condition, the Event Name dialog box appears for
defining a new event.

Activate a condition. You can define several conditions
and actions, then vary your triggering scheme by
enabling them in different combinations.

(This is the ext that appears when an event, timer, or
counter is enabled.) Specify that the condition must
occur at the same time as an external trigger signal. The
PP external trigger is active-low. Set the EA external
trigger input active-low or active-high with the Options
menu Trigger In Active items.

To configure the PP Trigger window for a pair of 10-bit
counters (each with a value range of 1 to 1023), enable
the Options menu Counter item. To configure the EA
Trigger window for a pair of 16-bit counters (each with a
value range of 1 to 65535), enable the Options menu 2
Counters item.

Type a target value in a counter field and enable the
counter. Trigger actions can reset (to 1) or increment
(by 1) the counter. When the count matches the
specified number, the counter condition is met and the
associated actions occur.

To configure the EA Trigger window for a pair of 10-bit
timers, enable the Options menu 2 Timers item. Each
timer has a value range of 1 to 1023 clock cycles.

206 SLD User's Manual

ext

To configure the PP Trigger window for a single 20-bit
timer, enable the Options menu Timer item. To
configure the EA Trigger window for a single 32-bit
timer, enable the Options menu Cascaded Timer item.
The timer has a value range of 1 to 1,048,575 (PP) or
4,294,967,295 (EA) clock cycles.

Type a target value in a timer field and enable the timer.
Trigger actions can start counting clock cycles from the
current number; stop counting without resetting the
timer; or reset the timer to 1. You can combine resetting
with either starting or stopping the PP timer; for such
combinations in the EA, define two identical conditions.
When the timer count matches the specified time, the
timer condition is met and the associated actions occur.

The timer increments at the clock rate of the emulation
processor and wraps to 0 after reaching its maximum
value. To calculate how much time is represented by a
complete cycle of the timer, use:

PP_wrap_time = (2%) / (clock_period)
EA_wrap_time = (2%) / (clock_period)

For example, at 25 MHz, the PP timer wraps in about 42
ms; at 16 MHz, in about 65.5 ms. The EA timer, always
at 33 MHz, wraps in about 128 seconds.

(This is the ext in the lower left corner of the Trigger
window.) Detect an external trigger signal. The PP
external trigger is active-low. Set the EA external
trigger input active-low or active-high with the Options
menu Trigger In Active items.

Action Fields

EA trigger action fields
showing controls for
paired timers, paired
counters, or a single
timer

seq

Trigger Window Reference

Actions

segq rst

brk |ton toff trac|trig| stril stopl(vst) strtl stoplrestlext out|rstts
OOooOoOooOooboOoOoonl b

Actions

[seq rst[brk[ton toff trac tri% incl rstl incl vstl{extout|rsttd

Actions

ooy

seq tst{brk|ton toff tmc'trii start stop reset|est out|rst i

Disable the current trigger and enable the next level trigger.

207 SLD User's Manual

rst Disable the current trigger and enable the level O trigger.

brk Halt emulation.

toff (EA) Suspend trace until another tracing command or
action.

toff (PP) Fill the current buffer according to the Trace Control

dialog box settings, then turn trace off until emulation is
halted and restarted.

next (PP) With multiple buffers defined, fill the current trace
buffer according to the Trace Control dialog box settings,
then start collecting trace in the next buffer.

ton (EA) Start trace.

trig (EA) Fill the trace buffer according to the Trace Capture
dialog box settings, then turn trace off until emulation is
halted and restarted.

trac (EA) Collect the current bus or clock cycle.

inc0/1 Increment ctr0 or ctrl by 1.
rst0/1 Reset ctr0 or ctrl to 0.

start Start tmr from its current value.
stop Stop tmr at its current value.
reset Reset tmr to 0.

strt0/1 (EA) Start tmr0 or tmr1 from its current value.
stop0/1 (EA) Stop tmr0 or tmr1 at its current value.
rst0/1 (EA) Reset tmr(or tmr1 to 0.

extout (EA) Put alow, high, or open-collector value on the
external trigger signal. Set the EA external trigger output
with the Options menu Trigger Out items.

extlo/hi (PP) Put a low or high value on the external trigger signal.
st ts (EA) Reset the timestamp.

Trigger Window Menus

Some items are on/off toggles, on when a check mark (v) appears.
Others take immediate action. Items with ellipses pop-up dialog boxes.

Menu Use To:
File Exit the Trigger window.
Edit Specify an event using the Event window.

Trigger Window Reference 208 SLD User's Manual

EA Options menu
configured for
conditions with
counters and an
active-low external
trigger input; and for
actions with open-
collector external
trigger output and bus-
cycle event recognition

Options Configure the trace buffers; toggle counter/timer
conditions and actions; toggle bus/clock cycle triggering.

Level View a specified trigger level.

Windows Open another SLD window.

Help Open a window for help with the SLD software.
Edit Menu

Events... opens the Event window

Options Menu

| opuons I

Trace Capture...

Y 2 Counters
2 Timers
Cascaded Timer

v Bus
Clock

Trigger In Active High
/ Trigger In Active Low

Trigger Out Active High
Trigger Out Active Low
¥ Trigger Out Open Collector

Trace Control... (PP) or Trace Capture... (EA) opens the Trace
Control or Trace Capture dialog box, described in the “Trace Window
Reference” chapter.

Counter (PP) or 2 Counters (EA) configures two 10-bit (PP) or 16-bit
(EA) counters for use in trigger conditions and actions.

Timer (PP) or Cascaded Timer (EA) configures a 20-bit (PP) or 32-bit
(EA) timer for use in trigger conditions and actions.

2 Timers (EA) configures two 10-bit (PP) or 16-bit (EA) timers for use
in trigger conditions and actions.

Bus lets the trigger recognizes conditions on valid bus cycles only.
Choose Bus mode except when:

e tracking hardware bus problems possibly caused by processor
cycles between valid address, data, or status cycles

e triggering on the initial transition of a hardware signal

Trigger Window Reference 209 SLD User's Manual

Level menu showing
the first level

Clock uses clock cycles as trigger conditions. Address, data, and status
events occur at different clocks. Chose Clock mode for a single event
that tests conditions including address, data, and status.

Trigger In Active High (EA) configures the external trigger input
active high.

Trigger In Active Low (EA) configures the external trigger input
active low.

The Trigger Out (EA) items configure the external trigger output:

Menu Item Active Inactive

Trigger Out Active High +5V GND

Trigger Out Active Low GND +5V

Trigger Out Open Collector GND Resistor pull-up to +5V
Level Menu

Choosing a level displays the conditions and actions for that trigger.

Y Show Level 0
Show Level 1
Show Level 2
Show Level 3 |

Level 0 shows the triggers active when emulation starts or after a Rst
action.

Level 1 shows the triggers active after a Level O trigger’s Seq action.
Level 2 shows the triggers active after a Level 1 trigger’s Seq action.

Level 3 shows the triggers active after a Level 2 trigger’s Seq action.

Trigger Window Reference 210 SLD User's Manual

Index

$BREAKCAUSE system variable, 108
$EMULATING system variable, 108
$PROCESSOR system variable, 109
$PROCFAMILY system variable, 109
$PROCTYPE system variable, 109
$SHELL_STATUS system variable, 110
$SYSTEMTYPE system variable, 110

Active Event, 202
Add dialog box, 172
Add Event dialog box, 58, 203
address
assembly, 113
breakpoint, 24, 174
bus, 193
event, 57, 58, 201
function, 32
load, 11, 111, 157, 158, 166
mode, 72, 138
numeric, 40
radix, 96
register, 190
Shell commands, 113
stack, 74, 119, 177, 179
stack monitoring, 34
symbol base, 13, 84, 91, 116, 144
symbolic, 14, 40, 84, 120
tracing, 51
translation, 111, 137, 153
virtual, 14
AddressOf command, 111
alarm limit, 33, 74, 118, 119, 124, 145,
178,179
Alarm Limit dialog box, 179
Alias command, 111
Always On Top, 75
Append command, 112
Asm command, 112
AsmAddr command, 113
assembly
address, 113
modified code, 29

SLD User's Manual 211

Shell commands, 112, 113
Single-Line Assembler dialog box,
185
source display, 21
automatic variables, 119

baud rate, 4, 7, 68
Bkpt command, 113
BkptClear command, 114
bondout processor, 8, 110
Borland C, 11
branch, 60
break
cause, 108, 115
memory access, 10, 89, 136, 137
breakpoints
C++, 24
configuring, 26, 175
hardware (debug registers), 68, 121
inline functions, 25
line numbers, 26
line vs statement, 25
listing, 23
overview, 23, 161, 173
removing, 26, 166, 175
setting, 23, 166, 167, 174, 175
Shell commands, 113, 114
source, 23, 175
tab width, 163
Browse Modules dialog box, 157
Browser History Depth dialog box, 164
BTM Cycles, 51, 60, 77, 79, 196
Buffer dialog box, 200
bus
address, 193
BusRetry command, 114, 115
code and data fetches, 127
contention, 114, 115
data, 194
external master, 115
HLDA, 115
timeout, 114, 115

Index

bus cycles, 51, 60, 77, 78, 79, 80, 196,
198, 208, 209
BusRetry command, 114

C++
breakpoints, 24
documentation, 2
loading, 13, 69, 70, 91, 134
source, 29
stepping, 28
cache, 127
carriage return/linefeed, 72, 164
Cause command, 115
chip select registers, 18, 84, 141, 143
Clear command, 115
Clipboard, 94
clock, 77, 78, 199
clock cycles, 51, 60, 77, 78, 79, 80, 196,
198, 206, 207, 208, 210
code address, 32
colors
Source window, 23, 24, 27
Stack window, 32
Variable window, 31, 169
COM port
see serial port, 7
commands
aliases, 111, 118
closing the Shell window, 125
command line, 96
completion status, 110
history, 95, 96, 130
lap timer, 132, 148, 149
log, 95
see script, 96
see Shell commands, 93
see Shell variables, 93
see system variables, 93
syntax, 97
transcript, 95, 96, 115, 124, 142, 151
comment lines, 16
communication
baud rate, 4, 7, 68
network, 68, 71
serial port, 4, 7, 68, 71
compiler
see toolchains, 11

Index 212

confidence tests, 139, 150
Config command, 115
config.sys, 4
ConfigSymbols command, 116
contention, 114, 115
Copy command, 116
Copy Memory dialog box, 185
counters, 56
see trigger actions, 79, 80
see trigger conditions, 79, 80
CPU Configuration dialog box, 7, 76
CPU registers
access during emulation, 17
editing, 37, 181
initializing, 13, 69, 70, 91
modifying, 139
reset, 160
resetting, 38, 160
CS:EIP
see program counter, 21
cursor
cross-hair in Source window, 23
editing in Memory window, 183
emulation control, 160
linked Source and Trace windows,
61,77,78
location in Source window, 158
Memory window, 41
Shell window, 93
split-box in Source window, 22, 155

Dasm command, 117
DasmSym command, 117
data bus, 194
debug registers, 68, 121
breakpoints, 23
decimal, 96
Delete command, 118
descriptor tables
DT, 122
GDT, 84, 127
IDT, 130
LDT, 84, 132, 133
loading, 69, 70
symbol base addresses, 116
task state segments, 151
DisableAlarmLimit command, 118

SLD User's Manual

DisableHighWaterMark command, 119
disassembly
inline functions, 25
memory display, 117, 185
source, 30
source display, 21, 72, 77, 78, 159,
196
stepping into functions, 29
symbols, 22, 84, 117
trace, 30
trace display, 51, 60, 77, 78, 196
DisplayStack command, 119
DisplaySymbols command, 120
DOS newline, 72, 165
DR command, 121
DT command, 122
Dump command, 123

EA, 1
Echo command, 124
Edit Path dialog box, 163
email, 3
emulation control
breakpoints, 23
calls and returns, 27, 128, 129, 160
examples of triggering, 61
function keys, 18
Halt When Last Trace Buffer Full,
79, 80, 197
lines vs statements, 128, 129
reset, 141, 160
script, 108
see stepping, 28
source cursor, 160
Source window, 28, 72, 159, 165
starting emulation, 27, 128, 129, 141
status, 28, 108, 115, 124, 132
stopping emulation, 28, 129
Toolbar, 28, 87
trigger actions, 79, 80, 205, 208
EmuStatus command, 124
EnableAlarmLimit command, 124
EnableHighWaterMark command, 125
event file, 18, 60, 125, 202
EventRestore command, 125
events
address, 58

SLD User's Manual 213

data, 59
defining, 202
event file, 18
mask, 59
overview, 57, 201
removing, 203
searching trace, 195
signals, 60
trigger condition, 53, 206
Trigger In signal, 53
EventSave command, 125
Exit command, 125
Exit dialog box, 83
exiting SLD, 83
expanded I/O space (Intel386), 19

fax, 3

Fill command, 126

Fill Memory dialog box, 185
FillStackPattern command, 126
Flush command, 127

Frame dialog box, 200

frame number, 51

function keys, 18

Function menu, 166

Function pop-up menu, 59, 111

GDT command, 127

Get symbol address, 111

GetBase command, 128

global descriptor table, 127
global variables, 30, 120

Go command, 128

Go From Cursor, 28

Go To Address dialog box, 158, 184, 190
Go To Cursor, 28

Go To Line dialog box, 158

Go To Peripheral dialog box, 190
Go To Register dialog box, 190
Golnto command, 128

GoUntil command, 129

Index

Halt, 28
Halt command, 129
Halting emulation, 129
hardware breakpoints, 23
Hardware Reference, 1
help
function key, 18
online Help window, 2
Shell command syntax, 129, 130
Help command, 129
hexadecimal, 96
high-water mark, 33, 74, 119, 125, 126,
127,179
History command, 130
HLDA signal, 115

ICE Peripheral Disable Register dialog
box, 84

ICECFGO register, 84

IDT command, 130

If..Else command, 131

Include command, 131

include file
see script, 17

include.me, 96

initialization script, 17, 69, 96

inline functions, 25

Instruction Mode Assist, 51, 60, 77, 79,
198

Integer command, 131

Intel Evaluation Board, 115, 116

Intel386 debug registers, 121

Intel386 EX HLDA pin, 115

Intel386 symbol base addresses, 134

interrupt descriptor table, 130

Into Call, 28

Into Return, 28

IsEmuHalted command, 132

jumper, 7

Index 214

keyboard, 19

LapTimer command, 132
layout, 6, 69, 75, 77, 83, 85
LDT command, 132
Level, 54
levels, 210
line numbers, 25, 26
displaying, 72
finding, 158
listing, 16, 120
linear address, 153
linefeed, 72, 164
Link command, 133
Linked Cursor, 30, 61, 77, 78, 196
linker
see toolchains, 11
List command, 133
loacator
see toolchains, 11
Load Address dialog box, 59, 166
Load command, 134
Load Complete dialog box, 14
Load dialog box, 12, 90
Load Information dialog box, 14, 156
Load Options dialog box, 12, 90
loaders, 141
loadfile
formats, 5, 11
load address, 11
path, 72, 73, 157
preparing, 5
startup code, 13
loading
C++,13
code, 13
during emulation, 91, 134, 135
Load Complete dialog box, 14
Load dialog box, 12
Load Options dialog box, 12
memory access size, 187
options, 69, 70
register initialization, 13, 134
reloading, 12, 157
Shell commands, 11, 12, 134, 135

SLD User's Manual

Source window, 12
Source window File menu, 156
symbols, 13, 134, 140
Toolbar, 12, 86, 89
LoadSize command, 135
local descriptor table, 132, 133
local variables, 30, 111, 119, 120, 177
Log command, 135
log file
configuring, 9
Log File Name dialog box, 9
logfile
opening, 8, 95
previous information, 9, 95, 112, 138
starting, 9, 95, 135, 136
status, 135, 136
stopping, 9, 136
Logging command, 136

numeric, 40, 123, 185
searching, 143, 144, 184
Single-line Assembler dialog box,
41, 185
viewing, 40
writing, 151, 152, 153
memory mapping
emulator differences, 10
Map dialog box, 9
map file, 10, 18
overlay, 10, 89
regions, 88, 89, 136
Shell commands, 11, 136
target, 10, 89
Toolbar, 9, 84, 85
Memory window selection dialog box, 86
Microtek, 3
multiple buffers, 49

Map Add dialog box, 88
Map command, 136
Map dialog box, 87
Map Edit dialog box, 88
map file, 10, 18, 88, 142, 143
mapping
see memory mapping, 136
MaxBitFieldSize command, 137
memory access
access rights, 10, 89, 136
access size, 42, 123, 135, 143, 144,
147, 152, 153, 186
during emulation (Run Access), 39,
84, 116, 123, 126, 142, 143, 144,
152,153
failure, 41, 187
Intel386 expanded I/O space, 19
read ahead, 41, 187
re-read on write, 187
write verification, 151, 152, 187
memory contents
ASCIL, 40
copying, 116, 185
disassembly, 40, 84, 117, 185
display formats, 183
filling repetitively, 126, 184
modifying, 39, 41
multiple Memory windows, 86, 183

SLD User's Manual 215

NameOf command, 137
network, 68, 71

newline, 72

NONE access right, 10, 136, 137
non-executable statement, 23

on-line help, 18

online help, 2

optimization, 5

OS/2 LAN server, 68

overlay memory, 9, 10, 89, 115
Overwrite command, 138

page directory, 138

parameters, 32, 119, 177

PC-NFS network, 68

PD command, 138

peripheral registers
access during emulation, 16
configuring the display, 43
Intel386 expanded I/O space, 19
modifying, 44, 191
overview, 189

Index

physical address, 153
pmode, 138
Pmode command, 138
pointers, 30
PowerPack, 1
PP, 1
Print command, 139
printable symbols, 120
processor
bondout, 110
emulator probe head, 8, 110
Intel386 emulator and target CPUs,
7,75
Intel386 stepping, 8, 76
target, 8, 109
program counter
>> source marker, 21
location, 159
resetting, 38, 85, 140, 141, 160, 182
source cursor, 160
stepping, 29
program variables
dereferencing pointers, 169, 171
displaying, 30, 31, 111, 167, 169,
170, 171
modifying, 31, 169, 170
stack, 177
protected modes, 138
public symbols, 120

qualified trace, 193, 208

radix, 96

RAM access right, 10, 136

RamTst command, 139

Read Ahead, 187

read-after-write, 151, 152

real mode, 138

Register command, 139

Register dialog box, 38

Register Edit dialog box, 44, 181, 190,
191

registers
access during emulation, 84
ICECFGO, 84
Index 216

initializing, 134
see chip select file, 143
see chip select registers, 84
see CPU registers, 13, 121
see debug registers, 23, 121
see peripheral registers, 13, 121
relocating, 144
RemoveSymbols command, 140
repairs, 3
Reread On Write, 187
reset
CPU registers, 38, 140, 160, 182
display, 38, 85, 140, 141, 160, 182
emulation control, 141, 160
program counter, 38, 85, 160, 182
stack pointer, 38, 85, 160, 182
target, 28, 38, 108, 115, 140
Reset And Go, 28
Reset command, 140
Reset Out signal, 38, 76, 140
RESET signal, 85, 160, 182
ResetAndGo command, 141
ResetLoaders command, 141
RestoreCS command, 141
RestoreMap command, 142
Results command, 142
return address, 179
Return symbol address, 111
ROM break access right, 10, 136
ROM nobreak access right, 10, 136
RS-232C, 7
Run Access, 17, 40, 43, 84, 116, 123,
126, 142, 143, 144, 152, 153
RunAccess command, 142

SAST board, 150
SaveCS command, 143
SaveMap command, 143
scope, 14
screen layout, 6, 69, 75, 77, 83, 85
script, 17, 18
conditional statements, 131, 152
running, 94, 96, 131
Search Buffer dialog box, 195
Search command, 143
Search dialog box, 158, 170
Search Memory dialog box, 184

SLD User's Manual

section names, 77
Select Baud Rate dialog box, 7, 68
Select COM Port dialog box, 7, 71
serial port, 4, 7, 68, 71
service, 3
Set Breakpoint dialog box, 24, 174
SetBase command, 144
SetStackAlarm command, 145
SetStackArea command, 145
SetStackBase command, 146
SetStackSize command, 146
Setup dialog box, 199
Shell commands

AddressOf, 111

Alias, 111

Append, 112

Asm, 112

AsmAddr, 113

Bkpt, 113

BkptClear, 114

BusRetry, 114

Cause, 115

Clear, 115

Config, 115

ConfigSymbols, 116

Copy, 116

Dasm, 117

DasmSym, 117

Delete, 118

DisableAlarmLimit, 118

DisableHighWaterMark, 119

DisplayStack, 119

DisplaySymbols, 120

DR, 121

DT, 122

Dump, 123

Echo, 124

EmuStatus, 124

EnableAlarmLimit, 124

EnableHighWaterMark, 125

EventRestore, 125

EventSave, 125

Exit, 125

Fill, 126

FillStackPattern, 126

Flush, 127

GDT, 127

GetBase, 128

Go, 128

SLD User's Manual 217

Golnto, 128
GoUntil, 129
Halt, 129

Help, 129
History, 130

IDT, 130

If..Else, 131
Include, 131
Integer, 131
IsEmuHalted, 132
LapTimer, 132
LDT, 132

Link, 133

List, 133

Load, 134
LoadSize, 135
Log, 135
Logging, 136
Map, 136
MaxBitFieldSize, 137
NameOf, 137
Overwrite, 138
PD, 138

Pmode, 138

Print, 139
RamTst, 139
Register, 139
RemoveSymbols, 140
Reset, 140
ResetAndGo, 141
ResetLoaders, 141
RestoreCS, 141
RestoreMap, 142
Results, 142
RunAccess, 142
SaveCS, 143
SaveMap, 143
Search, 143
SetBase, 144
SetStackAlarm, 145
SetStackArea, 145
SetStackBase, 146
SetStackSize, 146
Signal, 146

Size, 147
StackInfo, 147
StartTimer, 148
Step, 148
StepSrc, 148

Index

StopTimer, 149
String, 149
SymbolCloseFile, 150
SymbolOpenFile, 150
Test, 150
Time, 151
Transcript, 151
TSS, 151
Verify, 151
Version, 152
While, 152
Write, 152
Xlt, 153
Shell variables
integers, 131
listing, 133
printing, 139
strings, 149
Show Load Address dialog box, 111
Signal command, 146
Signals
controlled by emulator, 38, 146, 147,
182
event, 57, 60, 202
HLDA, 115
RESET, 38, 85, 140, 141, 160, 182
Reset Out, 38, 76, 140
target, 38, 60
tracing, 60, 194
Trigger In, 53, 79, 80, 206, 207, 210
Trigger Out, 54, 57, 79, 80, 208, 210
Single-line Assembler dialog box, 41,
112, 185, 188
Size command, 147
SLD software, 1
software breakpoints, 23
source
assembly, 21
breakpoints, 23, 175
browsing modules, 72, 156, 157,
162, 164
disassembly, 22, 84, 117, 159
function on stack, 179
functions, 33
lines vs statements, 25, 128, 129
program counter, 21
searching, 158
Source Path dialog box, 21
Source window configuration, 22, 72

Index 218

trace disassembly, 61, 77, 78, 196
source delimiter, 72, 164
source file, 21, 72, 73, 118, 133, 157, 162
Source Path dialog box, 21, 163
source-level debugger, 1
SS:ESP
see stack pointer, 34
stack address, 32, 74, 177, 179
Stack Area dialog box, 34, 178
stack base, 34
stack frames, 32, 119
stack pointer
monitored stack area, 34
resetting, 38, 85, 140, 141, 160, 182
stack size, 34
stack usage
alarm limit, 74, 118, 119, 124, 145,
178,179
configuring, 32
configuring the display, 33, 74
function source, 179
high-water mark, 74, 119, 125, 126,
127,179
monitored area, 34, 74, 126, 127,
145, 146, 178
overview, 177
stepping, 33
StackInfo command, 147
StartTimer command, 148
static variables, 30
status
break cause, 28, 108, 115
emulation, 28, 108, 124, 132
tracing, 60
Step command, 148
Step Continuously, 28
Step Count dialog box, 164
stepping
break cause, 108, 115
C++,28
calls and returns, 29, 148, 149, 160
configuring, 72
inline functions, 25
lines vs statements, 148, 149, 164
overview, 27
program counter, 29
Shell commands, 148, 149
Source window, 160, 165
speed, 28

SLD User's Manual

StepSrc command, 148
StopTimer command, 149
String command, 149
string constant, 139
SW, 1
symbol file, 120, 150
symbol table
C++, 13
contents, 14
displaying bases, 128
SymbolCloseFile command, 150
symbolic address, 14
symbolic debugging
address translation, 137, 153
breakpoint, 174
breakpoints, 23, 24, 26
C++, 13, 24, 29, 69, 70
descriptor tables, 116
disassembly, 22, 40, 84, 117
event address, 58, 201
function scope, 32
list symbols, 120
loading, 13, 69, 70, 90, 91, 134, 140
memory, 40, 183, 184
name resolution, 14
name scope, 14
preparing loadfile, 5
program variables, 30, 169
single-line assembly, 112
source, 21, 22
stack, 32, 119
symbol base address, 84, 91, 116,
144
symbol scope, 120
SymbolOpenFile command, 150
syntax, 97
system variables
$BREAKCAUSE, 108
$EMULATING, 108
$PROCESSOR, 109
$PROCFAMILY, 109
$PROCTYPE, 109
$SHELL_STATUS, 110
$SYSTEMTYPE, 110

tab width, 72
Tab Width dialog box,, 163

SLD User's Manual 219

target memory, 10, 16, 89
task state segments, 151
telephone, 3
temporary breakpoint, 23
Test command, 150
Time command, 151
timeout, 114, 115
timer
see trigger actions, 56
see trigger conditions, 56
Shell lap timer, 132, 148, 149
Trigger window, 210
timestamps, 51, 52, 77, 78, 193, 196,
199, 208
Toolbar
exiting the SLD software, 6
loading, 12
mapping memory, 9, 84
overview, 6
toolchains
Borland C, 11, 77, 137
HiWare, 81
linker directives, 13
loadfile format, 5
MaxBitFieldSize, 11, 77, 137
section names, 77
unsupported, 5
trace buffers
also see trace frames, 60
clearing, 195
contents, 50
Linked Cursor, 61
multiple buffers, 79, 197, 199, 208
overview, 49
searching, 195
trigger position, 50, 79, 197, 198
viewing, 60
Trace Capture dialog box, 47, 49, 198,
208
trace control
bus cycles, 51, 77, 79, 208
clock cycles, 51, 77, 79, 208
disassembly, 51, 77, 79, 196
function keys, 18
manual, 47, 197
qualified trace, 200
starting with emulation, 47, 77, 79
Toolbar buttons, 87
triggering, 48, 49, 50, 77, 79, 208

Index

Trace Control dialog box, 49, 197, 208, Vv

209
trace file, 194 Variable pop-up menu, 30, 167
trace frames variables
contents, 48, 51, 193 see program variables, 30
disassembly, 51, 77, 78, 117, 196 see Shell variables, 30
display formats, 77, 78, 193, 195 Verify command, 151
timestamps, 52, 77, 78, 196, 199 Version command, 152
trigger frame, 200 virtual address, 14
Trace Save As dialog box, 194 virtual-86 (V86) mode, 138
trademarks, iv
Transcript command, 151 w
Transcript pane
commands, 8 warranty, 3
emulator responses, 8 While command, 152
logging, 8 Windows
trigger actions communications, 7, 68
condition sequencing, 210 documentation, 2
counters, 56, 79, 80, 208, 209 host system requirements, 3
emulation control, 79, 80 interface, 69, 75, 77, 83, 85, 94
overview, 207 stepping speed, 28
precedence, 50, 54 window navigation keys, 18
timers, 56, 79, 80, 208, 209 World Wide Web, 3
trace control, 48, 49, 50 Write command, 152
Trigger Out signal, 54, 57, 79, 80, write verification, 187
210
trigger conditions X
bus or clock cycles, 51, 79, 80, 209
counters, 56, 79, 80, 206, 209 Xt command, 153
events, 53

overview, 53, 206
sequencing, 54, 210
timers, 56, 79, 80, 206, 207, 209
Trigger In signal, 79, 80, 210
Trigger In signal, 53, 79, 80, 206, 207,
210
Trigger Out signal, 54, 57, 79, 80, 208,
210
TSS command, 151

UNIX newline, 72, 165

Unterminated Memory Access error, 187
Up & Running, 1

updates, 3

User’s Manual, 1

Index 220 SLD User's Manual

MICROTEK INTERNATIONAL, INC
Development Systems Division
3300 N.W. 211th Terrace
Hillsboro, OR 97124-7136
Phone: (503) 645-7333
Fax: (503) 629-8460
Email: info@microtekintl.com
Web: http://www.microtekintl.com

6, Industry East Road 3
Science-Based Industry Park
Hsinchu 30077
Taiwan, ROC
Phone: +886 35 772155
Fax: +886 35 772598
Email: easupport@adaral.adara.com.tw

SLD™ Source Level Debugger for the PowerPack® In-Circuit Emulator
for x86 Target Processors
User’s Manual
Part Number 15055-000

