Pubt ication Number 87000068
Release
June 1981

$10.00

9520 SOFTWARE DEVELOPMENT SYSTEM

Z80 CROSS-ASSEMBLER SOFTWARE
USERS MANUAL

Millennium Systems, Inc.
19050 Pruneridge Avenue
Cupertino, CA 95014
Telephone: (408) 996-9109
TWX/TELEX # 910-338-0256

Copyright @ 1981. No part
of this publication may be
reproduced without written
permission from Miilennium

Systems, a subsidiary of
American Microsystems, Inc.

PREFACE

This manua! is intended to provide the user of a Millennium Systems 9520
Software Development System with sufficient knowledge to assemble and generate
object code programs using the Millennium Systems Z8§0 Cross-Assembier. |+
should be understood that the information contained in this manual is valid oniy
when the 9520 Software Development System is used to assemblie programs that will
be executed in Millennium Systems' 9508 MicroSystem Emulator unit.

\ .
The material in this manual is up-to-date at the time of publication, but is
subject to change without notice.

Copies of this publication and other Millennium publ ications may be obtained
from the Millennium sales office or distributor servicing your locality.

RELATED PUBLICATIONS

Other support documentation to be used in conjunction with this manual is as
follows: .

o Millennium Systems 9520 Software Development System Users Manual
o Millennium Systems 9508 MicroSystem Emulator Users Manual

o CP/M® 2.2 Interface Guide

o ED: A Context Editor for the CP/M Disk System Users Manual
o CP/M 2.2 Alteration Guide |

o CP/M Dynamic Debugging Tool (DDT) Users Guide

o CP/M Assembler (ASM) Users Guide

o An Introduction to CP/M Features and Facilities

o CP/M 2.2 Users Guide

o MP/M® Multi-Programming Monitor Control Program Users Guide
o Word Star® Users Guide

~

o Applicable Addendums for 9508 MicroSystem Emulator Manua! which describe
emul ation procedures for the following types of microprocessors:

280
8048/49/21/41
6800/01/02/09
8080/8085

ii

PREFACE

ASSISTANCE

If you require any assistance on this product, please call Miilennium Systems
Customer Service on the toll-free, hot-line numbers listed below:

National (800) 538-9320/9321

California (800) 662-9231

CP/M® and MP/M® are trademarks of Digital Research.

WordStar® is a trademark of MicroPro |nternational Corporation.

CONTENTS

Chapter

1 INTRODUCTION. & ¢ ¢ ¢ o o« & @
OVERVIEW.
ASSEMBLER INPUT
ASSEMBLER OUTPUT.

2 ASSEMBLER SOURCE MODULE FORMAT

INTRODUCT ION. .

Z80 SYMBOLIC STATEMENT FORMAT

THE LABEL FIELD «

THE OPERATION FIELD

THE OPERAND FIELD . . . &
THE COMMENT FIELD « « . &

USING SYMBOLS

Programmer-Defined Symbols.
Pre-defined Symbois
Ruies for Creating Symbols.

NUMERIC VALUES.

Scalar Values « « « « « + &
Address Values.
NOTATION RULES FOR SPECIFYING CONSTANTS
Numeric Constants . « « ¢« « ¢« « « &
String Constants. « « ¢ ¢ o o o & &
Null Strings. « « ¢ ¢ ¢ ¢ ¢« ¢ « o &
String to Numeric Conversion. . . .
EXPRESSIONS PERMITTED IN THE OPERAND FIELD.

Hierarchy of Expression Operators and Fu

Description of Expression Operators
Binary Arithmetic Operators
Unary Operators . « . « . &
Relational Operators. . . .

Numer i¢ Comparisons .
String Comparisons. .
String Concatenation.
Functions « « « . . «
STRING VARIABLES. .
ASET Strings. « « . .

.

String Text Substitution.

3 STATEMENT SYNTAX CONVENT IONS
INTRODUCT I ON.

-

and

~
[

MILLENNIUM SYSTEMS ASSEMBLER STATEMENT SYNTAX « . . « &
Use .of Upper and Lower Case
Blank Fields. . « « ¢« « .
Braces and Brackets . . .
TrailingDots « « « . . .

MP/M OR CP/M STATEMENT SYNTAX

Command Name.
Delimiters. « « « o« o«
Parameters. « « « «
Trailing Dots

Letters

and

nctions . .
Functions .
Punctuation

. * e

Page.

141

CONTENTS

Chapter , Page

4 ASSEMBLER DIRECTIVES: « o o o o o o o o o o o s o o o s o o o o o «
INTRODUCTION: « ¢ o o o o o o s o o s o o o o o o o o s o o o o
LISTING FORMAT CONTROL DIRECTIVES ¢ & ¢ & ¢ ¢ 4 o o o o o o o &

LIST @and NOLIST & & & 4« v o & o o o s o o o 5.0 o o o o o =

General Listing Format Control Options. « ¢« « ¢« o & & o &

Macro Listing Format Controi Optionse « « ¢« ¢ ¢ o &« o« 4 &
Conventiong for Listing Confrol . . « ¢ ¢ ¢ & ¢ ¢« ¢ o & &

PAGEe ¢ o « « « o e o o o o 2 o o o o s o s o o s o o o s s = »
SPACE ¢ ¢ ¢ o v ¢« o o o o o o o e o 2 o o o o s s o« s o s s s
TITLE o o ¢ o & o ¢ o o o a o s o o o o o o o o o o o o s o o o
STITLEe & o ¢ o o o o o o o o o o o o o o s o o o o o s o o o
WARNING & « -0 o o & e ¢ 4 & & o = e e e e 2 e s s s s s s
SYMBOL DEFINITION DIRECTIVES. e e s 4 s e s s s s e s s e s 4 e s a
EQU & o« & o o o o o o o o s o o o o o o s o o« o a o o o o s o
STRING: & & ¢ & o ¢ o o o o ¢ o e o s o o o o o o 2 s o s o o
ASET. & o o ¢ 2 o o o o o & s s e s e s s s s s e s e s e
LOCAT ION COUNTER CONTROL D|RECT|VE. e s e s s e s e e e s e e
ORG ¢ « ¢ o o ¢ o o o o « o o o s s o o o o s a s a s o o o o «
DATA STORAGE CONTROL DIRECTIVES « o ¢ o o o o o o o o o o o o« o o &
BYTEe o o ¢ ¢ o o o o o o ¢ o o o « s o o o a s s « o « s s o »

WORD. * e o e ;-. . e & & .8 & & e s o o o e s & ® e & o & & & o

ASC" e & & & ® ® @ 5 5 & ® 6 & @ e 5 &6 s ® & e @ ° * & s = o o

MACRO DEFINITION DIRECTIVES o o o « o o o o o @« o ¢ o o o o o s o &
MACRO « ¢ o o ¢ o o o o o o o o o o s s o s s s o a s s s s o «
ENDMe o ¢ o o o e o o o o o o o ¢ a o s s o « s o o s o o s o o
REPEAT and ENDR o & o o ¢ o ¢ o ¢ « e o o o o o o o o s o s o o.
INCLUDE + ¢ o & & o o o o o o o o o o o s o o s o 5 o o s o o o

CONDITIONAL ASSEMBLY DIRECTIVES ¢ ¢ « ¢ o ¢ o o o o o o o o o o o @
IF, ELSE, and ENDIF « ¢ & & ¢ ¢ o ¢ ¢ o o o o o o o s o s s o o
EXITM o ¢ 6 6 e o o o o e o o o o o o o o o o o s o o o « o o

SECTION DEFINITION DIRECTIVES « ¢ ¢ o ¢ o 2 o s o o a o o « « = o s
Relocation Options. « ¢ ¢ ¢ a v o e ¢« ¢ ¢ o o o o o o o o « s
SECTION & ¢ v 4 4 o o o o o o o a o o o s o o o o s o o o s a
COMMONe & & ¢ o o o o o o o o o « o o o o s o o s o s s o s o o
RESERVE « ¢ o ¢ o o ¢ o ¢ o o o o o o o o o o o s s s s ¢ o s
RESWIME: & ¢ & & o o o o o o o o s o o o o 2 a s o s s a s s 2
GLOBAL. c s s s & s 6o s s s 8 e s e s s e e s s e s s e e e s P

NAME. s o ® e s = ® @ e 8 8 @® @ ® & 0 3 &8 & e ® * e & 8 8 0w . by

MODULE TERMINATION DIRECTIVE. * o s s e s s e s e s e s s s s e s .

END ® e ® & 8 2 s e o o e o e e &5 e ® ® o e o ® e » a e o @ .

5 MACROS
INTRODUCTION. & & o 4 ¢ o o e o o o o o o s o o o o o s o o o
BASIC MACRO EXPANSION PROCESS ¢ 2 ¢ « ¢ o « o o o o s o o o o o o
MACRO DEFINITION DIRECTIVE:. « « ¢ = ¢ o « o o « o o a s o o s o
Macro Definition Directive Conventions. « « o« ¢ ¢« o « = « &«

CONTENTS

Chapter Page
5 MACROS (cont.)
MACRO DEFINITION BLOCKe & & o o ¢ o o o o o o o o o &

Source Code Alteratione « o « o o o« o o o o o o o o o s o o
Addditional Special Macro Definition Conventions. . . « . .
The B Character « ¢ « ¢ ¢ ¢ o « o o o o o o o s o o s o »
The # Character « .« o« o ¢ ¢ o « o o o o o s o o o o « o =
The ZCharacter « « o o« « ¢ o o o o o s o o s« o o s o o
Thet or A Character. « « « o« « o ¢« o o o s ¢ s s .«
MACRO TERMINATION @ & ¢ o o o ¢ o o o o s s s o s o o s « s o s
MACRO CALLING & ¢ ¢« o ¢ o o ¢ o o o s s o o s s o o s s o s o »
INCLUDE Directive Text Insertion: « « « ¢« o ¢ o o o o s o o
Text Substitution ¢« « ¢« ¢« ¢ & ¢ o o o o o o o 5 o « s o
Special Macro Calling Characters. « ¢« « ¢« ¢ ¢« o s o« &+ « » =«
The |1 Construct. o« o o o ¢ o ¢ o o o o o o s s o s o o »
The t or A\ Character. « « ¢« ¢ o ¢« o o« o s o s o o o o o =
Additional Macro Argument Conventions « « o « o o o o o o o
EXAMPLES. & o« ¢ ¢ & o o o o o s o o 5 2 s o s s s « s s o o o &«
CONDITIONAL ASSEMBLY: o « & o o o o 2 o o s o s s s s« s s « o
NesSTING ¢ ¢ o o ¢ ¢ o o o ¢ o ¢ o o o o 6 o o o s o o o« o o
Conditional Macro Termination « « « o « o o « o o 2 o o o
EXAMPLES. &« ¢ ¢ o o o o o 2 2 s o o s s o o s s o s s a°¢ o o &
IF=ENDIF BlOCKS « o & o o o o o o o o s o s s o e s o o o o
REPEAT=ENDR BlOCKS: « « o o ¢ « « o o s o o o o s o o o o
MACRO EXPANSION SUMMARY ¢« & o « « o « o o s o o o o o s o o » =

6 ASSEMBLER OPERATING PROCESURES
INTRODUCTION: o & o o o o o o o o o o o o o o o s o o o o o o o
PURPOSE « o o o« o o ¢ o o o s o « ¢ o o o o s s o s » o o o o o
EXPLANATION « & & ¢ ¢ o o o o o o o o o o o ¢ o o s s s o o o @

7 ASSEMBLER L!STING FORMAT
INTRODUCTION. « » « .

THE ASSEMBLER LISTING ¢ ¢ ¢ o o v o ¢ o o o o o ¢ o o s o o o o

HeadingSe « o ¢ o o ¢ o o ¢ o o o o o o o o o o o o o o o o

The Listing Lings o ¢ o o ¢ o o ¢ o o o o s ¢ ¢ o o o o o« &

THE SYMBOL TABLE. ¢ & o ¢ ¢ ¢ o o o o o o ¢ o o o o s o o o o »

Appendices

A SOURCE MODULE CHARACTER SET ¢ « o o ¢ « o o ¢ o o o o o o o o o o

B ASSEMBLER DIRECTIVES: o o ¢ o ¢ o o = o o o o e o o a o o s o o o s

c HEXADEC IMAL -CONVERSION TABLES « ¢ « ¢ ¢ ¢ o ¢ o o o o o o o o o o

D - ASSEMBLER ERROR CODES « & o ¢ o o ¢ o o ¢ o ¢ s o s = o o o o o o o

E RESERVED WORDS. ¢ « « ¢ o o o o o o o o« o o o o s s s s o s o o o »

vi

CONTENTS

Figure

~ N

-1
-1
-1

Table

2-1

Properly Formatted Z80.Source Program
The Macro Expansion Process « « « « o o« s « o &
Sample Assembier and Symbol Table Listing . . .

Hierarchy of Expression Operators and Functions

Page

vii

Chapter 1

INTRODUCT ION

OVERVIEW

A Cross Assembler is an assembler program. |t executes on one type of

microprocesscr-based system, and transiates assembly |anguage source programs
into object modules for execution (after suitable link operation) on a different

type of microprocessor-based system.

The Z80 Cross-Assembler executes on the 9520 Software Development System to
assemble Z80 Assembly Language source programs into relocatable object modules.
These object moduies are |inked appropriately (using the 9520 Linker Utility) to
create load modules.

The load modules thus created, however, are executable only by downioading the
object code from the-9520 system to a 9508 MicroSystem Emulator Unit which is
configured with the Z80 Emul ator Option components for execution. The load

module can also be downloaded to a PROM Programmer where the user can burn a
PROM +that can be installed in, and executed at the 9508 MicroSystem Emul ator.

The manual describes the Z80 Cross-Assembler as follows:

Chepter 1, lntroduction and Overview, provides the user with an overview of the
280 Cross-Assembler and basic information relative to the input/output opera-
tions of the assembler.

Chapter 2, Assembler Source Module Format, describes the format conventions
which must be adhered to when using the assembler.

Chapter 3, Statement Syntax Conventions, explains and illustrates the syntax
conventions used in the assembler.

Chapter 4, Assembler Directives, describes the assembler directives used in the
MILLENNIM SYSTEMS Assembler.

Chapter 5, Macros, explains the operation of macros.

L

Chapter 6, Assembler Operating Procedures, describes the syntax required to
translate source code into executable binary object code.

Chapter 7, Assembler Listing Format, illustrates and explains the various parts
of an assembler |isting.

1=1

I NTRODUCT 1ON

Assembler 1nput

The MILLENNIM SYSTEMS Z80 Assembler trans!ates user-written programs into exe-
cutable binary format. The user's program must be written in Z80 symbolic nota-
tion (assembly language), and becomes the source module for assemblier operation.
User-written programs can be entered into disk files with the text editor
program, using procedures described in the 9520 Software Development System
Users Manual. |f the source module is contained in more than one flexible disk
file, each file name must be specified by assemble command (ASM) parameters.

All valid input devices can originate assembler input. The assembler reads the
source module twice, once for each pass. When it encounters an END directive or
reads the end of the last file during the first pass, the assembler begins the
second pass and starts assembly.

Assembler Output

Assembler output comprises an object module, program listings, and appropriate
information messages. The object module contains executable binary instructions
and data constants translated from the source module. The entire object file
must be |inked and then loaded into program memory in order to execute the
transl ated user program on the Z80 Emulator Processor.

Program 1istings produced by the assembler are composed of |ine numbers, the
generated object code, and the source code as entered in the source module.
Wherever an error is detected, an error code is printed on the display device
and the user must refer to the listing to specify the nature of the problem.

Following the source code listing, a symbol table alphabetically lists all sym-
bols entered in the program. The table also gives the hexadecimal value of each
symbol and indicates undefined symbols. Below the symbol table, a message indi-
cates the number of source |ines, the number of assembled |ines, the number of
bytes available, and the number of errors and undefined symbols.

To transfer the listing and object file to a disk, enter output file names as
ASM command parameters. To fransfer assembler listing and object files to an
output device (such as a line printer) instead of a file, specify the name of
the device as the ASM command parameter.

The MILLENNIW SYSTEMS Assembler makes two passes through the source module.
The first pass determines the number of storage bytes required for each state-
ment, and assigns a starting address value for the first byte of each statement
| ine. The location counter, set to zero before the first pass begins, advances
after each statement is read. This action effectively generates the starting
address for each statement. The symbo! table is also constructed during the °
first pass. During the second pass, the source module and the symbol table are
used to generate the object module and the |istings.

INTRODUCT ION

After assembly completion, each |ine containing an error is output to the
display device, with an error code specifying the nature of the error. Below
all error displays, a message indicates the number of source !ines, the number
of assembled lines, the number of bytes available, and the number of any errors
or undefined symbols. |f an irrecoverable error prevents assembly completion,
the program aborts and an error code indicates the cause.

Chapter 2

ASSEMBLER SOURCE MODULE FORMAT

INTRODUCT | ON

Symboltic Z80 instructions, assembler directives, macro calls, and explanatory
comments the source module. Each Z80 source moduie statement must be
entered according to the MILLENNIUM SYSTEMS Z80 Assembler format. When
translated by the assembler, the source module becomes the object module to be

executed.

Three types of source module statements may be used:
1. Z80 symbolic instructions,
2. assembler directives, and

3. macro calls.

Z80 SYMBOLIC STATEMENT FORMAT

Each source module |ine may contain up to 128 characters, and is terminated by a
carriage return. Allowable source module characters are detailed In Appendix A.
Blank |ines can be used to improve readability of the source module listing.

The blank lines do not affect the translated program.

Each Z80 instruction, assembler directive, or macro call consists of four
fields: the label. field, the operation field, the operand field, and the comment
field. During program assembly, each Z80 source module instruction is
trans!ated by the assemblier into one, two, three, or four bytes of code in the
object module. The length depends upon the instruction type, and the number and
type of operands required.

The labe! field, when used, must begin in the first-character position of a
line. The operation and operand fields must begin anywhere after the first-
character position and end in any |ine character position within the
128-character range. The comment field may begin in any l|ine character position
and must end within the 128-character range. Field sequence may not be changed,
however; and the correct order can only be as follows:

LABEL OPERATION OPERAND COMMENT

Throughout this manual, this field sequencing format is shown above each source
line to illustrate proper assembler source !ine formatting.

ASSEMBLER SBODRCE WOBMRE FORMAT

Readability is improved when each field in the source module begins at a
constant position within the tine. This columnar forman can be easily imple-
mented by using the tab setting function to define field starting positions.

Figure 2-1 is an example of a properly formatted source module.
LABEL OPERAT ION OPERAND COMMENT
STRING S1(80) ;DE?INE STRING VARIABLE S1 WITH
;80 CHARACTER MAXIMWM
L1 EQU 3 ;DEF INE CONSTANT SYMBOL L1 TO EQUAL 3
L2 ASET 4 ;DEF INE VARIABLé SYMBOL L2 TO EQUAL 4
ORG 100H ;STARTS OBJECT CODE OF NEXT INSTRUC-

;TION AT 100H

LD A”(HL) ;LOAD REG.A WITH CONTENTS OF MEMORY
sPOINTED TO BY HL REGISTER PAIR.

END ;END OF PROGRAM
Figure 2-1. Properiy Formatted 780 Source Program

A general description of the characteristics of each source module field
follows. MILLENNIUM SYSTEMS Assembler directives are described in Chapter 4 and
{isted in Appendix B. Macro calls are described in Chapter 5.

The Label Field

Labels may be used in all Z80 instructions, macro calls, and assembier direc-
tives. Every label must be unique within each source module. Duplicate labels
prevent proper program execution and cause an error code to appear on the
display device and in the listing. The label field, when used, must start in
the first-character position of the line. A blank or tab terminates the !abel
field; therefore, imbedded blanks or tabs are not permitted within the field.

Labels represent addresses associated with locations in a source module. The
EQU and ASET directives are the only statements requiring label usage. In all
other directives, label usage is optional. EQU and ASET directives always
equate the required label to the constant or expression value in the operand
field. The ASET directive allows the assigned symbol value to be modified;- the
EQU directive does not. For all other directives, the label meaning is depen=
dent upon the particular directive. Generally, the label transiates to the
memory address of data or a data constant value. A {abel in a Z80 instruction
transtates to the address of the first byte of the instruction.

ASSEMBLER SOURCE MODULE FORMAT

ORG and BLOCK directives must contain constants or operand symbols that have
already been defined. Operands in all other directives may reference l|abel sym-
bols that are defined in later statements.

The Operation Field

The operation field contains the mnemonic operation code for a Z80 symbolic
instruction, an assembler directive, or a macro call. The mnemonic specifies
the operation or function to be performed at program execution time, or by the
assembier during program translation and assembly. An instruction specifies the
object code to be generated and the action to be performed on any operands that
foliow. An assembler directive specifies certain actions to be performed during
assembly and might not generate any object code. The macro call specifies the
macro definition block to be expanded.

The operation field begins after the label field is terminated. I|f the labe! is
omitted, the operation field may begin anywhere after the first-character posi-
tion in the line. The operation field is terminated by one or more spaces, by a
tab or carriage return, or by a semicolon indicating the start of a comment
fietd.

I f the operation field does not contain a Z80 instruction, an assembler direc-
tive, or a macro call, the assembler rejects the entire statement and prints an
error code. Four bytes of zero value are generated by the assembler to fill the
area where a valid instruction would otherwise have been stored.

The Operand Field

The operand field specifies values or locations required for the given assembler
directive, instruction, or macro call. The operand field, if present, begins
after the operation field is terminated. Spaces may be used In the operand
field. Two or more operands are separated by commas. The flield is terminated
by as carriage return, or by a semicolon indicating the start of a comment
field. ’

The operation code (appearing in the operation field) determines the type and
number of items required for the operand field. |f more than one item is
required, the sequence of item appearance is determined by the operation code.

Operands required for macro calls and assembler directives are discussed in
Chapters 4 and 5, and summarized in Appendix B.’

Nine types of information are permitted in the instruction operand field. Each
Instruction determines the operand types and their proper sequence. Refer to
the Z80 Emul ator Addendum for a summary of Z80 instruction requirements.

ASSEMBLER SOURCE MODULE FORMAT

The following list defines the nine operand item types and their required syntax
for Z80 instructions: ’

OPERAND ITEM TYPE OPERAND ITEM SYNTAX
1) A Z80 register containing the operand A (8 bits)
data B (8 bits)
c (8 bits)
D (8 bits)
E (8 bits)
H (8 bits)
! (8 bits)
L (8 bits)
R (8 bits)
“IX (16 bits)
Y (16 bits)
SP (16 bits)
2) A Z80 16-bit register pair containing BC
the operand data DE
HL
AF
*3) A 16-bit register pair enclosed within (BC)
parentheses indicating a register (DE)
holding an absolute memory address. (HL)
4) An indexed'expression indicating a (1X + expression) (I1X - expression)
memory address (1Y + expression)(lY - expression)
5) An 8-bit data or address constant Expression
within the range, -127 to +255. An
immediate value.
6) A 16-bit data or address constant Expression
within the range, -32,768 to 32,767.
An immediate value.
7) An 8-bit 1/0 device address within (Expression)
the range, 0 to 255.
8) A 16-bit operand data value. Expression
9) A parenthesized 16-bit expression _ (Expression)

indicating a memory address.

*An expression which Is only partially enclosed within parentheses Is never a
memory contents reference. Example:

LD A,(5+4); place contents of 9 into A

LD A,(5)+4; place the value 9 into A

2-4

ASSEMBLER SOURCE MODULE FORMAT

The $§ is used within operands to symbol ize the first byte of the statement in
which it appears. The effect of $ usage is equivalent to using a label in that
statement. wHentusing +he $§ to reference addresses, consult the Z80 Emulator
Addendum for t+he number of bytes in each instruction. The two instruction
seqguences that follow are equivalent.

LABEL OPERAT I ON OPERAND COMMENT
1) TIMER DEC c ;DECREMENT C REGISTER, LABEL
‘ s INSTRUCTION TIMER
JR NZ,TIMER ;JUMP BACK IF C NON-ZERO
2) DEC c ;DECREMENT C REGISTER

JR NZ, $~1 ~ ;JUMP BACK IF C NON-ZERO

The $ represents the address of the first byte in the JR instruction. Since the
DEC instruction takes one byte, $-1 represents the first byte in the preceding
instruction.

Caution should be exercised when using the $ symbo!, since program !ogic errors
could result. |In the preceding example, an error might occur if an instruction
were inserted between the DEC and JR instructions without changing the $-1
expression. Inserting an instruction in the first example requires no other
changes. ‘ '

Any symbols for the Z80 registers, and register pairs have been pre-defined by
the assembler. Any data constant, or |/0 device address in the operand field
may be represented by expressions. An expression may consist of the following:
1) a single number,
2) a string constant,

3) a symbol, or

4) multiple numbers, string constants, and/or symbols combined with
arithmetic and/or logical operations. ..

The assembler evaluates an expression in the operand field of a statement. |If
the expression violates permissible limits for the operand field, an error code
is displayed. Additional information concerning expressions appears later in
this section.

ASSEMBLER SOURCE MODULE FORMAT

Any symbol appearing in the operand field that is not pre-defined by the
assembler (see Pre-defined Sympbols in this section) must be defined in the |abel
field of an EQU or ASET directive or any Z80 instruction in the source module,
or in the operand fieid of a GLOBAL, STRING, SECTION, COMMON, or RESERVE
directive.

A statement may contain both the operand symbo! and its label definition, as in
the case of an instruction that jumps to itself. For example:

LABEL OPERAT I'ON OPERAND COMMENT

HERE JR NZ ,HERE ;HANG HERE {F PREVIOQUS RESULT
;1S NON-ZERO

Typically, however, the symbol is defined in another statement. |f the symbol
is not defined in any statement, an error code is displayed. Additionally, sym-
bols appearing in the operand field of ASET, EQU, ORG, and BLOCK directives must
have been defined in the labe! field of a previous statement. Operand symbols
in all other statements may be defined in the label fields of |later statements.

If an illegal item appears in the operand field, the assembler flags the item
with an error code on the display device and in the listing. All operand
expressions. are processed by the assembler to obtain 16-bit results. The
assembler ignores any overflow conditions that occur while evaluating
expressions. |f the operand expression requires an 8-bit value and the value
represented is greater than this, an error code is displayed and the assembler
processes only the lower eight bits of the 16-bit value. An undefined value in
the operand field is treated as zero, and causes an error.

The Comment Field

Programs containing comments are more readable, and hence easier to debug and
modify. The optional comment field begins with a semicolon, is terminafed by a
carriage return, and follows all other statement fields. |f no other fields are
used, the comment field may begin anywhere in the statement.

String and macro substitution may be performed in the comment field. (Refer to
the Chapter 2 subsection entitled String Text Substitution and to Chapter 5 for
discussion on string and macro substitution.) Since the single quote character
signals substitution, the character must be preceded by a caret (A) or up-arrow
(t) character when used for purposes other than substitution.

2-6

ASSEMBLER SOURCE MODULE FORMAT

USING SYMBOLS

Symbo! usage makes a program easier to read and modify, and reduces the risk of
error*during program modification. Symbols are defined when they appear in the
labe! field of 280 instructions, macro calls, and assembler directives, or in
the operand field of GLOBAL, SECTION, COMMON, RESERVE, MACRO, or STRING direc-
tives. After having been defined, symbols can be used in the operation and
operand fields of Z80 instructions, macro calls, and assembler directives.

A symbol label in a Z80 instruction represents the address of the first byte of
that instruction. Such a label allows the user to transfer control (jump or
call) to an instruction without knowing its absolute address. To transfer
control, place the instruction symbol in the operand field of the jump or call
instruction.

The meaning of a label symbol used as an operand for an assembler directive is
dependent upon the directive. Generally, the symbol represents the memory
address of data or a data constant value. Through the use of symbols, the
directive operand field can refer to a data constant or a memory data area
without regard to the absolute memory address. This is especially heipful when
modifying a data constant frequentl!y referred to by other statements. The
programmer need only change the defining statement, rather than all statements
referencing the constant.

Some symbols are created by the programmer, and others are pre-defined by the
assembler.

Programmer-Defined Symbols

Programmer-defined symbols are assigned values during the assembler's first
pass. Operand fields referring to the symbols are transiated during the
assembler's second pass. The ORG and BLOCK directives each alter the contents
of the assembler location counter during both assembler passes. Because the
alteration value is specified in the operand field of the ORG and BLOCK direc-
tives, any symbol appearing in the operand field of these directives must also
be defined in the label field of a previous statement in the source module. The
EQU directive operand field may contain a forward reference to a symbol, if the
symbol does not appear in the operand field of an ORG, BLOCK, or another EQU
directive. Forward referencing operand symbols are, however, allowed in all
other statements. -

Redefinition of symbols is generaliy not allowed. A previously defined ASET
symbol, however, may be redefined in another ASET directive.

ASSEMBLER SOURCE MODULE FORMAT

Pre-defined Symbols

Certain words are reserved as pre-defined symbol names for use2 in the operation
and operand fields of source programs. Among these words are the following
register symbols, assembler directives, instruction mnemonics, assembler |isting
options and operators. Refer to Appendix E for a compliete list of reserved
words. for the Z80 Assembler. '

1}, The contents of 8-bit reg?sfers are specified by the character corresponding
to the register name. The register names are A, B, C, D, E, H, |, L, and R.

2) The contents of 16-bit double registers and register pairs consisting of two
8-bit registers are specified by the two characters corresponding to the
register name or register pair. The double register names are IX, 1Y, and
SP. The register pair names are AF, BC, DE, and HL.

3) The 280 instruction mnemonics (refer to Appendix E).

4) The Assembler directives, options, and operators(refer to Appendices B and
E).

5) The MILLENNIWM SYSTEMS Assembler directives reserved for future use (refer
to Appendix E). ‘

Rules for Creating Symbols

The first character in a symbol must be alphabetic. The remainder of the symbol
may be cémposed of the following characters: the letters A through Z; the num-
bers O through 9; and the special characters, . (period), _ (underscore), and
$ (dollar sign). Lower-case letters are interpreted in their upper-case form.
A symbo! may contain up to eight characters. Only the first eight characters of

the symbol are used, and excess characters are ignored. All pre-defined symbols
are reserved words and cannot be redefined.

NWERIC VALUES

The assembler defines two types of numeric values, scalars and addresses.
Scalar values represent arbitrary numeric values. Address values represent
actual memory locations within a program.

Scal ar Values
Scalar values are signed integers ranging from -32,768 to +32,767. Scalar

values serve as counting values in a program, rather than as actual references
to memory locations. Scalar values are completely defined upon assembly.

2-8

ASSEMBLER SOURCE MODULE FORMAT

Address Values

Address values represent actua! memory locations within a user program. Address
values are unsigned numbers ranging from 0 to 65,535. The assembler produces
relocgfable object code, that is, object code whose locations are defined during
| inking. Upon assembly, address values are relative to an assembler-defined
base (or starting point). Therefore, actual memory locations associated with
address values are unknown until after the !inking process occurs.

More than one address base may exist within a given assembly. The user may
define additional address bases by issuing a SECTION, COMMON, or RESERVE direc-
tive. Refer to _aapter 4 describing these directives and their relocation
options. Since an address value lacks complete definition upon assembly,
address value usage is more restrictive than scalar value usage. A unique loca-
tion counter exists for each assembler-defined base in a user program. The $
symbo! (current location counter contents) represents an address value.

NOTATION RULES FOR SPECIFYING CONSTANTS

Constants may be either numeric or string constants.

Numer ic Constants

Numbers are integers and are assumed to be decimal unless otherwise specified.
This means a number without a suffix is evaluated according to the decimal
number base. A suffix letter code must be used to specify a radix other than
decimal. The following suffixes are available:

1} H for hexadecimal. For example: 35H
All numbers must begin with a numeric digit; therefore, a zero must
precede al! hexadecimal numbers beginning with the hexadecimal digits
A through F. Exampies of this follow:

0B5H and OFFH
2) O (capital o, not zero) or Q for octal. For example: 760 and 76Q
3) B for binary. For example: 101101108
Leading zeros are appended to or trunceted from constants to produce 8- or
16-bit values as required by the particular operand. Blanks are not permitted

within a numeric constant. Refer to Appendix C for hexadecimal, decimai, and
binary number conversion tables. '

2-9

ASSEMBLER SOURCE MODULE FORMAT

String Constants

In addition to symbols and numeric constants, operations may also contain string
constants. String constants can be generated by using ASCII strings. ASCHI '
(American Standard Code for Information Interchange) is a standard code for
representing characters transmitted between the computer and peripheral devices
such as teletypes, printers, and terminals. String constants and variables may
be combined intfo string expressions using special operators. A string
expression may be used anywhere a normal expression is allowed. String
constants are written by enclesing ASCI| characters within double quotes (™. A
string constant may contain any character within the source code character set
except a carriage return.

A double character may be incliuded within a string by preceding it with a caret
character (A). The caret character removes the special meaning from any
character and al lows the special character to be treated as a regular part of
the text. A caret may also be included within a string by entering two carets.
Examples of string constants and caret usage follow:

"ABCDEF" results in the string ABCDEF
"{23AM"34" results in the string 123"34
AN . results 'in the string ~N

Null Strings

A string containing zero characters is a null string. A nuil s+ring'is entered
as two double quotes without intervening text or spaces ("").

String To Numeric Conversion

If a string expression is used where a numeric value is required, the string is
automatical ly converted to a numeric value. The numeric value of a string is
defined as follows:

The numeric value of the nul! string (") is zero.

The numeric value of a one-character string is a 16=bit value whose high

order nine bits are zeros and whose low order seven bits contain the ASCI|
code for the character.

The numeric value of a two-character string is a 16-bit value as well. In this

case, the ASCII code for the leftmost character is in the high~order byte. The
ASC1! code for the second character from the left is in the low-order byte. °

2-10

-3
ctving
> Q“ﬁ?a“

ASSEMBLER SOURCE MODULE FORMAT

The numeric value of a string longer than two characters is the numeric value of
the leftmost two characters in the string. An error code is displayed when this,
occurs.

Examples of string to numeric conversion follow. The numeric values for ASCII
charagters are found in Appendix C.

STRING NUMERIC VALUE
" 0

nAn 41H

nym 31324

ny23t 31324 (truncation error occurs)

EXPRESSIONS PERMITTED IN THE OPERAND FIELD

N
The operas+eos field may contain an expression consisting of one or more terms
acted on by expression operators. A term is either a symbol, a numeric

constant,¥ or an expression enclosed within parentheses. The value of a term may
gpe an address, a scalar value, or undefined. Spaces are permitted within an

expression; the assembler reduces the expression to a single value. When an
invalid term is used, the display device and the listing show an error code, and
the value of the expression is undefined.

The following outline lists the expression operators and functions. A chart
describing the hierarchy of all expression operators and functions follows this
summary. Each expression operator and function is described in greater detail,
completing this discussion.

Unary Arithmetic QOperators Relational Operafbrs

OPERATOR MEANING OPERATOR MEANING
+ Identity = equal
- sign ‘inversion < not equal
> greater than
<= less than or equal
Binary Arithmetic Operators < less than
>= 9veater, than v €gua/
OPERATOR MEANING
* multiplication Binary Logical Operators
/ division
+ addition OPERATOR MEANING
- subtraction ~.
MOD remainder & and oy
SHL shift left ! inclusive ode
SHR : shift right 1 exclusive or
Unary Logical Operator String Concatenation Operators
OPERATOR MEANING OPERATOR MEANING
not (bit inversion) : string concatenation

2-11

ASSEMBLER SOURCE MODULE FORMAT

FUNCT IONS
HI (exp)

Returns the most significant byte of a numeric expression. The expression
may be either an address or a scalar value. I|f an address is specified as
the Hl function argument, subsequent operations must not be performed on the
H! function resuit. The HI function result is numeric. :

LO (exp)

Returns the least significant byte of a numeric expression. The expression
may be either an address or a scalar value. |f an address is specified as
the LO function argument, subsequent operations must not be performed on the
LO function result. The LO function result is a—okrirg€ Numeric.

DEF (sym)

Returns -1 (true) if the symbo! has been previously defined in this pass.
Otherwise, returns 0 (false). The DEF function result is numeric.

i

SEG (string expression,expl,exp2)

Extracts exp2 characters from the specified string, starting with the
character, expl. |f the end of the string is encountered before exp2 charac-
ters are extracted, only those characters up to the string end are extracted.
Both expl and exp2 must be scalar values. The SEG function result is a
string.

NCHR (string expression)

Returns the current number of characters in the specified string. For a
string variable, the length returned may be less than the length defined by
the STRING directive. The NCHR function result is numeric.

ENDOF (section name)

Upon linking, the ENDOF function returns the address of the last byte of the
specified section. The symbol specified in this function must be a global
symbol. |f the symbol is not a section name, the address of the symbol is
returned. Further operations may be performed on the result of ENDOF, prol
vided the operations are allowed for address values. The ENDOF function

result is numeric.

2-12

ASSEMBLER SOURCE MODULE FORMAT

BASE (expl,exp2)

Returns =1 (true) if the two expressions, expl and exp2, share the same base.
Otherwise, returns 0 (false). The BASE function result is numeric.

STRING (exp)

Returns the value of the expression as a six-character string. The five
rightmost characters represent the decimal value of the expression; the left-
most. character indicates whether the number is positive or negative. I[f the
leftmost character is a minus, "-", the number is negative. |f that

character is a zero, "O", the number is positive. The expression must be a
scal ar value.

SCALAR (exp)

Converts the address value of the expression to a scalar value.

Hierarchy of Expression Operators and Functions

In multip! e-operator expressions, operators and functions are evaluated in the
order of their precedence. Table 2-1 illustrates this hierarchy. The functions
at the top of the table have the highest precedence. The operators at the bot-
tom of the table have the lowest precedence. All expression operators and func-
tions located on the same | ine have equal precedence, and are evaluated from
left to right. Parentheses may be used to override the order of precedence, and

parentheses are evaluated from inward to outward. The most deeply parenthesized
subexpressions are evaluated first.

|f the expression entered is too complex for the assembter to translate, an

expression error code is displayed. This does not occur when parentheses
nesting depth is three or less.

Table 2-1. Hlerarchy of Expression Operators and Functions.

Lo Hl SEG NCHR DEF ENDOF BASE STRING SCALAR
+ - (unary plus and minus)
* / SHL SHR MOD
+ - (addition and subtraction)
| = <> < <= > >=
&
! 11

2-13

ASSEMBLER SOURCE MODULE FORMAT

Description of Expression Operators and Functions

In addition to the arithmetic (+, =, *, /) and logical (, &, !, !!) operators,
several other operators and functions are allowed within numeric expressions.
These operators and functions provide additional arithmetic functions and a
means for comparing numeric quantities.

Binary Arithmetic Operators .

Binary arithmetic operaférs act on numeric values, which may be scalar or
address values. Scalar values may appear within arithmetic operations in any
combination. Only the following binary arithmetic operations are permitted when
acting upon addresses:

SCALAR VALUE + ADDRESS = ADDRESS
ADDRESS + SCALAR VALUE = ADDRESS
ADDRESS - SCALAR VALUE = ADDRESS
ADDRESS - ADDRESS = SCALAR VALUE (Both addresses-musf be based

to the same section.)

Any other combination of address terms yields an undefined resul+t.

MOD is a binary operator that computes the remainder when the first operand is
divided by the second operand. For example, an Instruction entered as A MOD B
yields the remainder resulting from A/B. The program segment that follows
demonstrates MOD operator usage.

LABEL OPERAT ION OPERANDS COMMENT

AX EQU 5 MOD 2 ;AX 1S SET TO 1, SINCE 5/2 YIELDS A
;REMAINDER OF 1

BX EQU 14 MOD AX ;BX IS SET TO O, SINCE 14/1 YIELDS A

;REMAINDER OF O

CcZ EQU (BX+29)MOD 25 ;CX 1S SET TO 4, SINCE 0+29 YIELDS 29
;AND 29/25 YIELDS A REMAINDER OF 4

DX EQU (-5) MOD 2 ;0X IS SET TO -1, SINCE -5/2 YIELDS A
. ;REMAINDER OF -1

*

SHL and SHR are binary operators that shift their first operands the number of
bit positions specified by their second operands.

2-14

ASSEMBLER SOURCE MODULE FORMAT

SHL performs a left logical shift (equivalent to multiplying by two). Zeros are
shifted into the right end of the 16-bit value. Bits shifted out of the lef+t-
most bit position are lost.

SHR pérforms a right logical shift. Zeros are shifted into the leftmost bit
positions. Bits shifted from the rightmost bit position are lost. Shifts of 16
or more bits generate a result of zero and produce a truncation error code. The
program segment that follows demonstrates SHL and SHR operator usage.

LABEL OPERAT ION OPERAND COMMENT
OX EQU 1 SHL 1 ;VALUE ASSIGNED TO DX IS 2, SINCE A

;SHIFT LEFT ONCE CAUSES 1 TO BE
sMULTIPLIED BY 2

EX EQU DX SHR 1 ;VALUE ASSIGNED TO EX IS 1 SINCE DX
; (2) SHIFTED RIGHT IN A BINARY FASHION
;YIELDS 1

FX EQU O06EOH SHL 3 ;VALUE ASSIGNED TO FX IS 3700H,

;SINCE 2 CUBED IS 8, AND 8 TIMES
;06EOH is 3700H

GX EQU OFFFFH SHR 16 ;VALUE ASSIGNED TO GX IS 0, SINCE
;OFFFFH SHIFTED RIGHT [N A BINARY
;FASHION YIELDS 0

Unary Operators

All unary operators may act upon scalar values. The plus sign (+) is the only
unary operator permitted to act upon addresses.

Relational Operators

The relational operators include =, <>, >, <, <=, and >=. Relational
operators allow signed numeric, unsigned numeric, and string comparisons.

Numer ic Compar isons

If either of the operands of a relational operator is wumeric, the relational
operators perform signed or unsigned numeric comparisons. A signed numeric com—
parison Is performed on two scalar values, a string and a scalar value, or a
scalar and a string value. An unsigned numeric comparison Is performed whenever
one of the operands is an address. Comparison of two -addresses based in dif-
ferent sections results in an undefined value. These comparisons are summarized

as follows:

2-15

ASSEMBLER SOURCE MODULE FORMAT

STRING SCALAR ADDRESS

STRING String Comparison Signed Numeric Unsigned Numeric
Compar ison Comparison

SCALAR Signed Numeric Signed Numeric Unsigned Numeric
Comparison Compar ison Compar ison

ADDRESS Unsigned Numerié Unsigned Numeric Unsigned Numeric
Comparison Compar ison Compar ison

|f a comparison is performed between an address and a string or scalar value,
the base of the address is first added to the string or scalar value. 1f two
addresses are compared, they must have the same base, or an error results.

For signed comparisons, numbers range from -32768 to 32767. For unsigned com-
parisons, numbers range from 0 to OFFFFH (65,535).

An operator in a numeric comparison determines whether the specified rela-
tionship exists between its two operands. The resulting value is 0 if the rela-
tionship is false and ~1 (OFFFFH) if the relationship is true. Examples of
relational operator usage follow.

LABEL OPERATION OPERAND COMMENT

T EQU -5 >7 ;VALUE ASSIGNED TO T IS 0O, SINCE -5
;1S NOT GREATER THAN 7

P EQU 7>=-5 ;VALUE ASSIGNED TO P IS -1, SINCE 7
;1S GREATER THAN -5

u. EQU T<>P ;VALUE ASSIGNED TO U IS -1, SINCE R
;1S NOT EQUAL TO P

String Comparisons

The relational operators (=, <>, >, <, <=, >=) may be used to compare the
values of two string expressions. When strings are compared using these rela-
tional operators, the comparison is made numerically, according to the ASCI|
col lating sequence. Refer to Appendix C for the correct character ordering
sequence of ASCI| characters.

hd

String comparison is performed only when both operands of a relational operator

are strings. If only one of the operands of a relational operator is a string,
the string is converted to a scalar value and a numeric comparison is performed.

2-16

ASSEMBLER SOURCE MODULE FORMAT

String comparison always proceeds from left fto right. |f two strings are equal
through the last character of the shorter string, the shorter string is con-
sidered to be less than the longer string.

.

Examples ot string comparisons follow.

MAB"™ = "AB™ results in -1 (frue)
"AB" < > "AB" results in 0 (false)
"AN > g resul+s in 0, since A is less than B

"ABC" > "AAAA" resuits in -1, since B is greater than A

"ABC" > M"ABC" resuits in 0, since "ABC" has three characters
"ABC" has four, including the final space

nugnn. results in -1, since a null string is less than a
blank character

1 < mn results in -1, since the numeric value of the
ASC!| character "™ is 31H and is

greater than 1

String Concatenation

:

The concatenation operation combines two strings into a single string. The
operator used to specify string concatenation is the colon (:). The colon mayd
be used to concatenate any two string expressions. An error occurs when an
attempt is made to concatenate two numeric values or a string and a numeric
value. Examples of string concatenation follow:

WA, ngy results in "AB"
Wi, nn _ results in ", since two null strings produce a
null string
NAN . ugN results in "AB", since a null string and a character

produce the character .
MAN results in "A M

WABCn M N2N . results In "ABC12"

ASSEMBLER SOURCE MODULE FORMAT

Functions

Hl and LO are unary functions that respectively extract the high- and low-order
eight bits of their operands. References to Hl or LO are written as single
argument functions. The value to be acted on appears in parentheses, following
the keyword Hl or LO. |f this value is an address, further operations on the
result of Hi or LO are disallowed. Examples of HlI and LO function usage follow:

LABEL OPERAT ION OPERAND COMMENT

| XB EQU H! (OCOOFH) sVALUE ASSIGNED TO IXB IS COH

JX EQU LO (OCOOFH) ;VALUE ASSIGNED TO JX IS OFH
KX CiIH

KX EQU LO (H!(OCOOFH) ;VALUE ASSIGNED TO & IS =t

Z EQU 5 + LO(Q) ;s INVALID WHEN Q 1S AN ADDRESS

DEF is a unary function that determines whether a symbol! has already been
defined. DEF is referenced as a single-argument function. The argument must be
a symbol and may not be an expression. |f the argument symbol has already been
defined, the value of DEF is -1 (OFFFFH). |f the argument has not been defined,
the value of DEF is 0. A pre-defined symbol used as an argument causes an
error. Examples of DEF function usage follow.

LABEL OPERATION OPERAND COMMENT

MK EQU DEF (K) ;VALUE ASSIGNED TO MK IS -1 IF K IS
;ALREADY DEF INED

Q EQU DEF (N) ;VALUE ASSIGNED TO Q IS O IF N IS
; UNDEF INED

RX | EQU DEF (RX) ;VALUE ASSIGNED IS 0. THE SYMBOL ON

;THE LEFT OF THE EQU DIRECTIVE IS
;UNDEF INED UNTIL THE EXPRESSION
;ON THE RIGHT IS EVALUATED

S WORD DEF (S) ' ;A WORD OF OBJECT CODE CONTAINING
;OFFFFH(=1) IS GENERATED. THE LABEL
;ON THE WORD STATEMENT IS DEFINED
;BEFORE THE STATEMENT IS EVALUATED,

2-18

ASSEMBLER SOURCE MODULE FORMAT

The SEG function (segmentation) is used to extract a portion of a string. The
SEG function uses three arguments. The first argument is the string (or string
expression) from which a substring is fo be extracted. The second argument is a
numer ic expression specifying the position of the leftmost character of the
striny where the substring is fo be extracted. Characters within the string are
numbered from left to right starting with one. The third argument is a numeric
expression specifying the number of characters to be extracted. The specified
characters are extracted unless the end of the string is encountered first. In
this case, only those characters up to the end of the string are extracted. The

fol lowing examples illustrate properties of the. SEG function:
SEG(™ABCD", 2,2) results in "BC"
SEG("ABCD",1,4) results in "ABCD"
SEG("ABCD", 3,3) results in "cp"

SEG("ABCD",5,2) results in "™(+he null string, resulting in
: zero characters) .

SEG("ABCD",3,0) results in nn

The NCHR function may be used to determine the number of characters in a string
expression. NCHR is referenced as a single-argument function, that argument
being the string expression whose length is to be determined. The result of
NCHR is numeric and not a string value. Examples of NCHR function results

fol low.

NCHR (") ' results in 0
NCHR ("ABC'") results in 3
NCHR(SEG("XYZ",2,1) results in 1
SEG("ABC" ,NCHR("ABC™ ,1) results in "C", since C is the last

character of "ABC"

The ENDOF function returns the address of the last byte of a section. The argu-
ment for ENDOF must be the. section name whose ending address is to be deter-
mined. An example of ENDOF usage follows:

LABEL OPERAT ION OPERAND COMMENT

RESERVE STACK, 100H sNAMES A SECTION, STACK, AND
;ALLOCATES AT LEAST 256 BYTES

LD SP,ENDOF (STACK) ;LOAD STACK REGISTER WITH THE END
:OF THE STACK '

2-19

ASSEMBLER SOURCE MODULE FORMAT

The BASE function determines whether two expressions share the same base. |If
the expressions share the same base, the value of BASE is true (OFFFFH).
Otherwise, the value of BASE is faise (0). Examples of BASE function results
foltow. Q,R, and ZZ represent addresses where Q and R share a common base,
while ZZ does not.

BASE (Q,R) results in OFFFFH (tfrue)
BASE (Q,Q+15) results in OFFFFH (true)
BASE (ZZ,Q) results in 0 (false)
BASE (Q,Q-R) results in 0 (false) because Q-R is scalar
BASE (5,15) results in OFFFFH (true) because 5 and 15
are both scalar
BASE (5,Q-R) results in OFFFFH (true)
BASE (5,ZZ-Q) results in Error since subfracfiod is not valid

between addresses with different bases

The STRING function returns the decimal value of an expression as a six-
character string. The expression must be a scalar value. When the value does
not fill six digits, leading zeros appear in the resulfing string. |If the
expression value is negative, a minus sign is placed in the resu|+|ng string.
Examples of STRING function results follow:

STRING(5) results in "000005"
STRING(5+15) results in- "000020"
STRING(OFFH) results in "000255"
STRING(-0FFH) results in "-00255"

The SCALAR function converts the address value of the expression to a scalar
value. The resulting scalar value is equal to the displacement of the address
value from the address value's base. Upon iinking, the resuiting scalar value
might not be the same as the final value of the expression. The SCALAR function
does not affect scal ar-valued expressions.

2-20

ASSEMBLER SOURCE MODULE FORMAT

An example of scalar conversion follows:

VD
LABEL . QPERAT ION OPERAT-OiN¢ COMMENT
SECTION X ;DEFINES A NEW SECTION NAMED
: X
Al ORG 7 ;ADVANCES LOCATION COUNTER
;TO ADDRESS 7. ASSIGNS ADDRESS
;37 TO Al
WORD SCALAR($) MOD 2 ;CONVERTS ADDRESS 7 TO SCALAR
;VALUE. PERFORMS 7/2 AND
;RETAINS REMAINDER 1.
sALLOCATES ONE WORD TO
;s VALUE 1 -
SECTION " ASDF sDEF INES NEW SECTION NAMED
;ASDF
A2 ORG 6 ;sADVANCES LOCATION
sCOUNTER TO ADDRESS 6 WITHIN
;SECTION ASDF. ASSIGNS 6 TO A2
WORD SCALAR(A1)+SCALAR(AZ2) ;ALLOCATES ONE WORD

;CONTAINING SCALAR VALUE 13

Note that if the SCALAR function were not entered in the above WORD directives,
an error would result. Scalar values are unaffected by changes in address base.
Thus, in the above program, the scalar result of the operation WORD SCALAR(A1)

+ SCALAR(A2) remains unchanged no matter what base values are assigned to sec-
tions X and ASDF upon linking.

STRING VARIABLES
String variables enhance the value of string expressions by providing a means

“for storing string expression values. A string variable is a symbol with an
associated string value, and is created by use of the STRING directive.

2-21

ASSEMBLER SOURCE MODULE FORMAT

The desired string variable names are defined in the operand field of the STRING
statement. The maximum character length of the value to be stored in the

string variable may be specified by entering a numer&c expression in the operand
field. When this optional character length expressiqn iis not specified, an
eight-character length is assumed. In the following example, a string variable
is defined as STRVAR, with a maximum character length of 16.

LABEL OPERATION OPERAND

STRING STRYAR(16)

For further discussion pertaining to STRING statements, refer to Chapter 4
describing assembler directives.

“ASET Strings

The ASET directive assigns a string expression value to a string variable
defined with the STRING directive. The string variable is entered in the label
field of the ASET directive; the string expression is entered in the operand
fielde The string expression value is evaluated and assigned to the string
variable. |[f the resulting string expression's length is longer- than the maxi-
mum string variable length, the string expression is truncated before assign-
ment, and an error code is displayed. Examples of ASET string usage follow.

LABEL OPERATION OPERAND COMMENT

STRING A1,A2(2),A3(45) ,A4(0) ;DEFINES STRING VARIABLE A1
. sWITH A DEFAULTING VALUE
;LIMIT OF 8 CHARACTERS
;DEFINES STRING VARIABLES
;A2, A3, AND A4 WITH
;RESPECTIVE VALUE LIMITS OF
. 32, 45, AND O CHARACTERS

Al ASET "AB" ;VALUE OF A1 IS "AB"
A2 ASET At ;VALUE OF A2 IS "AB"
A4 ASET A1:A2 ;VALUE OF A4 s ™

; TRUNCATION ERROR SINCE A4
;ALLOWS A VALUE LIMIT OF O
;CHARACTERS

A3 ASET "A MEDIUM LONG STRING" ;VALUE OF A3 is "A
;sMEDIUM LONG STRING"

Al ASET A3 ;sVALUE OF A1 IS "A MEDIWM".
; STRING TRUNCATED

2-22

ASSEMBLER SOURCE MODULE FORMAT

String Text Substitution

String variables may be used for modification of source text being processed by
the assembler. Using string variables makes it possible to insert code into a
sourck line, thus allowing the code to be processed as if it were part of the
original source line. Before the assembler processes a source line, it scans
the |ine for string variables enclosed within single quote characters. When
'such a variable is encountered, it is replaced with the specified value and the
scan continues. When the entire line has been scanned and al! code substitu-
tions are made, the assembler then processes the line. For example assume the
assembler processes the following code:

LABEL OPERATION OPERAND
STRING oP

oP ASET "WORD"
'opP! 1,2,3

When the assembler scans the line containing 'OP' 1,2,3, the string variable
'OP' is replaced with the value defined for the substitution, "WORD". The |ine
resul ting upon assembly follows:

WORD 1,2,3
String substitutions can occur anywhere within.a line of code including within

string constants and comments.” For the examples that follow, assume that Al,
A2, A3, and A4 are defined as specified.

LABEL OPERAT I ON OPERAND
STRING A1,A2,A3,A4

Al ASET "YTE"

A2 ASET "123,456"

A3 ASET "COMMENT"

A4 ASET nn

2-23

ASSEMBLER SOURCE MODULE FORMAT

Assume that the following substitutions are then performed.

SOURCE CODE RESULTS AFTER SUBSTITUTION

BYTE 'At1','A2! BYTE YTE, 123,456

WORD 1 'A4! WORD 1

A4 ASET" 'A3' " . A4 ASET "COMMENT"

WORD ™" 'A4' " WORD "COMMENT™"

B'A1''A2'-200 BYTE 123,456-200

B'ATA2! BYTE 123,456 (error code displayed due to undefined

instruction mnemonic, since space was
omitted between 'Al1' and 'A2')

Since the single quote character always signals string substitution, it is
necessary to precede the character with a caret (A) if string replacement is
not be be performed. The caret character allows the single quote character to
then be interpreted as a literal character In a statement. An example
demonstrating caret usage follows: ' '

ASCI1 "™WHAT 's UP pocK?" results in WHAT'S UP DOC?

2-24

Chapter 3

STATEMENT SYNTAX CONVENT IONS

INTRODUCT ION

Many of the following chapters in this manual contain MILLENNIUM SYSTEMS
Assembler and MP/M or CP/M statement descriptions. Each statement description
is preceded by a syntactical block showing the required statement format. This
section describes the syntax conventions for MILLENNIUM SYSTEMS Assembler and
MP/M or CP/M statements.

MILLENNIUM SYSTEMS ASSEMBLER STATEMENT SYNTAX

MILLENNIW SYSTEMS Assembler directives and macro calls may contain up to four
fields. Each field name is indicated in the syntactical block above the
corresponding field item, as shown in the following example.

SYNTAX I
LABEL OPERAT ION OPERAND COMMENT
{symbol] BYTE '{éxpressioﬁ} [,expressionl [;charstring]

Use of Upper and Lower Casé Letters and Punctuation

A capitalized item in a field must be entered exact!y as shown. Punctuation
del imiters such as commas, semicolons, or parentheses must also be entered
.exactly as shown. Spaces or tab characters terminate each field and begin the
next. An item shown in lower case letters is a fterm signifying the entry type.

The following descriptive terms are used to signify entry type unless otherwise
specified:

1} symbol - as defined in Chapter 2
2) expression - as defined in Chapter 2
3} charstring - a string of one or more characters.

Blank Fields

Any field left blank is an illegal field for that statement.

STATEMENT SYNTAX CONVYENT [ONS

Braces and Brackets

When an item is enclosed in braces{:;, the item must be present in the state-
ment. |tems enclosed in brackets [| are optional. Braces and brackets are
used for syntactical representation only and shouid not be entered as part of
the statement. Braces and brackets may be nested. The following is an exampie
of braces and brackets nested in braces.

{{sfrvar 1} [lenexp l]}

Trail ing Dots

A line of dots following an item indicates that the item can be repeated a
number of times. The item cannot be repeated beyond the end of the line being
entered. In the example that follows, the item can be repeated.

(,symboll...

MP/M OR CP/M STATEMENT SYNTAX

A MP/M or CF/M statement contains a command and in some cases, one or more para-
meters with del imiting characters. An example of a typical MP/M or CP/M state-
ment syntactical block follows:

SYNTAX

{COMMANQ} [device 1.D.] : {file namé} [.file typel

Command Name

The command name (eight characters, maximum) identifies a MP/M or CP/M system
util ity name. ‘ :

Del imiters

Items in the command |ine must be separated by del imiters when entered into the
terminal. A space is used as the main del imiter. The colon is used to del imit
the device identification and the file name. The period, which Is necessary
only when the file type is specified, is used to delimit the file name and file
type«

STATEMENT SYNTAX CONVENT IONS

Parameters

The parameters or controlling conditions of each command !|ine are shown in the
preceding MP/M or CP/M statement syntactical block. Each parameter may consist
of a Yile name, a function, a device name, an indicator or an assigned value.
When a parameter is shown capital ized, it must be entered exactly as shown.
Parameters shown in lower case letters are descriptive fterms to signify the
type of entry. .

Braces and Brackets

When appearing MP/M or CP/M statement, syntactical descriptions, braces and
brackets have the same meaning as when used with MILLENNIUM SYSTEMS Assembler
statements. Additionally, parameters stacked within either braces or brackets
indicate that only one of the enclosed items should be selected for statement
entry. In the following example, an object file name or an object device may be
selected, but not both.

‘object file name |
object device ’j
Trail ing Dots

Trailing dots within MP/M or CP/M statement syntactical blocks indicate repeti-
tive parameters.

Chapter 4

ASSEMBLER DIRECT I VES

INTRODUCT ION

The following assembler directives are available:

Listing Format Control Directives

LIST
NOLIST
PAGE
SPACE
TITLE
STITLE
WARNING

Symbol Definition Directives

EQU
STRING
ASET

Location Counter Control Directive

ORG

Data Storage Control Directives

BYTE
WORD
ASClI
BLOCK

Macro Definition Directives

MACRO
ENDM
REPEAT
ENDR
INCLUDE

ASSEMBLER DIRECTIVES

Conditional Assembly Directives

IF

ELSE
ENDIF

EXITM

Relocatable Section Definition Directives

SECTION

COMMON

RESERVE
RESWE
GLOBAL
NAME

Module Termination Directive

END

LISTING FORMAT CONTROL DIRECTIVES

The assembler listing format directives are presented in the order shown below:

Mnemoni

LIST
NOLIST
PAGE
SPACE

TITLE

STITLE

WARNING

C

Purpose

Enables dispiay of assembler listing features.
Disables display of assembler |isting features.
Begins the next Iisting line on the following paée.
Spaces downward a specified number of listing lines.

Creates a text line at the top of each !isting page
for program identification.

Creates a ftext line on the second line of each listing
page heading for program identification.

Upon assembly, generates a warning message on the
output device and in the listing. Also allows the
user to specify his-own warning message.

ASSEMBLER DIRECTIVES

-1ST/NOLIST

SYNTAX |
LABEL OPERATION QPERAND COMMENT

[symboli] LIST I[CNDY [,TRMI [,SW] [,CON] [,MEG] [,ME] [;charstringl

[symbol] NOLIST (CND) [,TRM] [,SYM] [,CONI] [,MEGIII,MEI {;charstringl

Purpose

Two assembier listing controi directives, LIST and NOLIST, respectively enable
and disable display of assembier |is+ing features.

Explanation

When NOLIST is specified without operands, all output to the listing file

(except the symbo! table) is suppressed. When LIST is entered without operands,
the listing is turned back on.

General Listing Format Control Qptions

Four general |isting control options (CND, TRM, SYM, and CON) may be entered
with the listing control directive, LIST, when specific features in the
assembler listing are desired for viewing. The same four listing options may be
entered with the assembler |isting control directive, NOLIST, when specific
features in the assembler listing are not desired for viewing.

The general listing control options are summarized as follows:

CND - Lists unsatisfied conditions for |F and REPEAT operations. (Refer to
the subsections describing macro definition directives and conditional
assembly directives.) The listing defaults to an OFF condition, thus
displaying only those instructions within an_IF or REPEAT condition
occurring when the condition Is satisfied. °

TRM - Causes the listing to be trimmed to a 72-character format during display.
Defaults to an OFF condition, causing the |listing to be displayed in the
standerd 13Z-character format. ’

ASSEMBLER DIRECTIVES

LIST/NOLIST (Continued)

The géneral |isting control options are summarized as follows: (continued)
SYM - Lists the symbol table. Defaults to an ON condition.
CON - Displays all assembly errors fo the consoie. Defaults to an ON

condition.

Macro Listing Format Control Options

A macro is a shorthand approach for inserting a pre-defined source code block
into a program. Refer to KChapter 5 for a discussion of macro procedures.

Only those macro instructions generating object code appear in an assembler

| isting. Some of the code generated during a macro expansion does not generate
object code upon ‘assembly, making it impossible under normal conditions to view
the entire macro expansion sequence within the assembler listing. Therefore, in
addition to the four general |isting control options, two macro |isting control

options (MEG and ME) may be entered with the LIST and NOLIST directives to

enable and disable macro expansion visibility. These options are summarized as
fol lows: : .

MEG - Lists only macro expansion code that changes the location counter.
Defaults to an ON condition. :

ME - Lists all macro expansion code except for any unsatsified |F or REPEAT
conditions. When the |isting confrol option CND is on, unsatisfied con~
ditions are also |listed. Defaults to an OFF condition. I|f either ME or
MEG is turned OFF by the user, the other is automatically turned OFF.

}f ME is turned ON by the user, MEG is automatically turned ON.

The following table demonstrates LIST AND NOLIST effects on the ME and MEG
options:

ENTRY RESULTS

NOLIST MEG MEG is OFF. ME is OFF.
NOLIST ME MEG is OFF. ME is OFF.

LIST MEG MEG is ON. ME Is OFF.

LIST ME MEG is ON. ME Is ON.

NOLIST MEG is OFF. ME is OFF.

Status of both options saved.

LIST Restores status of both options.

Upon exit from a macro expansion, the main program l|isting status is restored to
the status that prevailed before the macro was called.

44

ASSEMBLER DIRECTIVES

LIST/NOLIST (Continued)

Conventions for Listina Control

The LYST and NOLIST directives are always entered in the operation field of the
| isting control statements where they appear. More than one listing control
option may be entered with the LIST and NOLIST directives. 1In this case, each
option is separated from other options by a comma. When entering the listing
control options with the LIST or NOLIST directives, the options are placed in
the operand field of the listing control directive in any order. If the NOLIST
directive is entered without options to suppress display, and the LIST directive
is again entered without options specified, the original specified options are
retained. The number on any listing line corresponds to the original input
source |ine number. The NOLIST directive does not affect this line number
correlation.

Exampiles

The following listing control statement suppresses the symbol table listing.

LABEL OPERAT ION OPERAND "COMMENT
L
NOE#&&L SWM ;SUPPRESSES SYMBOL TABLE LISTING

The following listing control statement causes all subsequent macro expansions
and unsatisfied conditions to be included within the assembler 1listing.

LABEL OPERAT I ON OPERAND COMMENT
LIST ME,CND sLISTS MACRO EXPANS IONS

;AND ALL UNSATISIFED
;CONDIT IONS

PAGE
SYNTAX
LABEL OPERATION OPERAND COMME
Isymbol] PAGE ‘ [;charstring]

ASSEMBLER DIRECTIVES

PAGE (Continued)

Purpose
——————————

The PAGE directive causes the next listing line to begin on the following page.

Explanation.

As the source lines are read by the assembler in its second pass, they are out-
put to the listing along with any object code produced. When the PAGE directive
is encountered, a page heading is printed at the top of the new page and the
next listing line begins below the heading. The actual PAGE directive is not
printed in the listing.

A label is generally not used with the PAGE directive; however, if used, the
symbol represents the address in the assembler location counter. The location
counter contains the address of the next instruction or data byte in the program
sequence.

LABEL OPERAT | ON OPERAND COMMENT
STRING S1. (80) ' ;DEFINE STRING VARIABLE St
sWITH 80-CHARACTER
sMAX IMUM
L1 "EQU 3 ;sDEF INE CONSTANT SYMBOL
;L1 TO EQUAL 3
L2 ASET 4 ;DEFINE VARIABLE SYMBOL L2
;TO EQUAL 4
PAGE sBEGINS NEW LISTING PAGE
ORG 100H " ;STARTS OBJECT CODE OF NEXT

; INSTRUCTION AT 100H

LD A, (HL) ;LOADS THE CONTENTS OF
;MEMORY POINTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A

END ;END OF PROGRAM

4-6

ASSEMBLER DIRECTIVES

PAGE (Continued)

Upon assembly, the following listing file results from this source program. A
new page is generated after the ASET directive.

MILLENIM 280 ASM V3.3 PAGE 1
00001 STRING S1 (80) sDEF INE STRING VARIABLE S1
. sWITH 80-CHARACTER

“sMAX IMUM

00002 0003 L1 EQU 3 sDEF INE CONSTANT SYMBOL
‘ sL1 TO EQUAL 3

00003 0004 L2 ASET 4 ;DEFINE VARIABLE SYMBOL

;L2 TO EQUAL 4
MILLENILM Z80 ASM V3.3 - . . ' PAGE § 2
00005 0100 > ORG 100H sSTARTS OBJECT CODE OF

sNEXT INSTRUCTION AT 100H

00006 0100 7E LD A, (HL) ;LOADS THE CONTENTS OF
sMEMORY POINTED TO BY THE
sHL REGISTER PAIR INTO
;REGISTER A

00007 "END © END OFfPROGRAM

MILLENNIWM 2Z80 ASM V3.3 SYMBOL TABLE LISTING PAGE 11L3

STRINGS AND MACROS

§1 = = = = = 0050 S
SCALARS
L2 == = = = 0004 V

% (default) SECTION 0001
L1 = = = =~= = (0101
7 'SOURCE LINES 7 ASSEMBLED LINES 1000 BYTES AVAILABLE

4-7 4-7

ASSEMBLER DIRECTIVES

PAGE (Continued)

Note that the symbol indicators V and S respectively follow the symbols L2 and
S1. The symbol indicator V indicates that L2 is an ASET symbol. The symbol
indicator S indicates that S1 is a string. The symbol L1 has no symbol indica-
tor following it, indicating that L! is an EQU symbol. For a more complete
description of symbol indicators, refer to Chapter 7, entitled ASSEMBLER LISTING
FORMAT .

SPACE
SYNTAX
LABEL OPERATION QPERAND COMMENT
(symbol | SPACE lexpression] [;charstringl
Purpose

Whenever the SPACE directive appears in the source module, the assembler spaces
downward a specified number of lines in the listing.

Explanation

The number of |ines to be spaced downward is indicated by the expression in the
SPACE directive operand field. |f no expression is entered, one space is
generated. |f the execution of the SPACE directive crosses a page boundary, the
effect is the same as that of the PAGE directive. The actual SPACE directive is
not printed in the listing.

A label is generally not used with the SPACE directive; however, if used, the
symbol represents the address in the assembler location counter. The location

counter contains the address of the next instruction or data byte in the program
sequence.

ASSEMBLER DIRECTIVES

SPACE (Continued)

Example

Assume the following source program resides on disk.

LABEL OPERAT ION

STRING

L1 EQU

L2 ASET

SPACE

ORG

LD

END

OPERAND COMMENT

s1 (80) ;DEFINE STRING VARIABLE St
sWITH B80-CHARACTER MAXIMWM

3 ;DEF INE CONSTANT SYMBOL
;L1 TO EQUAL 3

4 ;DEF INE VARIABLE SYMBOL
;L2 TO EQUAL 4

10 ;SPACES DOWNWARD 10
;LISTING LINES

100H ;STARTS OBJECT CODE OF
sNEXT INSTRUCTION AT 100H

A, (HL) ;LOADS THE CONTENTS OF
;MEMORY POINTED TO BY THE
sHL REGISTER PAIR INTO
;REG. A

;END OF PROGRAM

4-9

ASSEMBLER DIRECTIVES

SPACE (Continued)

Upon assembly, the following listing file results from this source program. Ten
| ines are generated between the ASET and ORG directives.,

MILLENNIWM Z80 ASM V3.3 PAGE 1
00001) STRING S1 ;DEFINE STRING VARIABLE S1
sWITH 80-CHARACTER
sMAXIMWM
00002 0003 U1 EQU 3 ;DEF INE CONSTANT SYMBOL
;L1 TO EQUAL 3
00003 0004 L2 ASET 4 ;DEFINE VARIABLE SYMBOL
;L2 TO EQUAL 4
00005 0100 > ORG 100H ;STARTS OBJECT CODE OF
sNEXT INSTRUCTION AT 100H
00006 .oi0co0 TE : LD A, (HL) ;LOADS THE CONTENTS OF
sMEMORY POINTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A
00007 . END ;END OF PROGRAM
MILLENNIUM Z80 ASM V3.3 SYMBOL TABLE LISTING" PAGE 2

STRINGS AND MACROS

S1 ~ = = - - 0050 S
SCALARS
L2 - - -~ - 0004 Vv

7 SOURCE LINES 7 ASSEMBLED LINES

4-10

1000 BYTES AVAILABLE

ASSEMBLER DIRECTIVES

TITLE (Continued)

SYNTAX '

LABEL QPERATION OPERAND \ .COMMENT |

[symbol] TITLE {é+ring expressioq} | [;charstringl I
Purpose

The TITLE directive creates a text line at the top of each listing page for
program identification.

Explanation

The character string specified as the TITLE operand is printed in the page
heading between the assembler version number and the page number. As many as 31
characters may be entered. Any characters exceeding the 31-character |imit are
truncated. The actual TITLE directive is not printed on the listing.

Example

Assume the following TITLE statement is entered in a source program:

LABEL OPERATION OPERAND -
TITLE "THIS |S THE PROGRAM TITLE"
Upon assembly, the specified TITLE appears within the heading at the top of each

I isting page of the program as fol!lows:

MILLENNIW Z80 ASM VX.X THIS IS THE PROGRAM TITLE PAGE 1

ASSEMBLER DIRECTIVES

STITLE (Continued)

SYNTAX '

LABEL OPERAT ION OPERAND . COMMENT l

(symboli | STITLE {string expression} [;charstring] ‘
Purpose

The STITLE directive creates a text line at the fop of each listing page heading
for program identification.

Explanation &+

The character string specified as the STITLE operand is prinfedé;fween the page
heading and the first source code line. A blank |ine is automatically inserted
between the string and the beginning of the source code. As many as 72 charac-

ters may be entered. Any characters exceeding the 72-character |imit are trun-
cated. The actual STITLE directive is not printed on the listing.

Example

Assume the following TITLE statement is entered in a source program:

LABEL OPERATION OPERAND

STITLE "THIS LINE DEMONSTRATES STITLE USAGE"

Upon assembly, the specified STITLE |ine appears within the heading at the top

of each |isting page et—¥+he—progras’ as follows:

ILLENNIWM Z80 ASM VX.X _ PAGE 1
(blank 1ine) T § LiN€E DEMOMSITRATES STITLE VSAGE

. (source code)

ASSEMBLER DIRECTIVES

WARNING
SYNTAX '
LABEL OPERAT | ON OPERAND COMMENT '
[symbol] WARNING [messagel ,
Purpose

When an error is suspected within source code, the WARNING directive can be
entered to generate an error message at assembly time. Thus, the nature of the
errors in a program can be described upon assembly and |isting.

Expl anation

A warning message may be entered as a comment in the WARNING directive. Unlike
other comments, the warning message is not preceded by a semicolon. Upon
assembly, this optional message is printed on the assembly listing and on the
output device, flagging the suspected error. The following assembler message is
also displayed on both the assembler listing and the output device during
assembly, below the specified warning message:

follaladall ERROT;fOOI:

Example
Assume the following WARNING directive is entered within a source program below
a line containing an error.

LABEL OPERAT I ON COMMENT
WARNING %% ENTRY OUT OF SEQUENCE

ASSEMBLER DIRECTIVES

WARNING (Continued)

Upon assembly, the specified warning line appears below the source !ine con-
taining the error. The message, ***** ERRCOR 001, also appears below the spe-
cified warning message.

000C 0003 - LEN ASET NCHR("ABB")

000D WARNING '~ *®%XENTRY QUT OF SEQUENCE
#ERROR: 001 :

Symbol Definition Directives

The assembier symbol definition directives are presented in the order shown in
the following summary.

Mnemonic Purpose

EQU Permanently assigns a value to a symbol ic name.

.STRING Declares the named statement symbols as string variables.
ASET Assigns or reassigns an éxpresslon's value to é string or

numer ic variable symbol.

4-14

ASSEMBLER DIRECT I VES

EQU
SYNTAX '
LABEL OPERATION OPERAND COMMENT |
symbol EQU {expression} [;charstring! ,
Purpose

The EQU directive permanently assigns a value to a symbolic name.

Expl anation

The symbol in the label field of an EQU directive is the symbol ic name and the
expression in the operand field represents the value. The symbol acquires the
same base as the operand expression. No redefinition of this symbol is
permitted.

The EQU directive operand field may contain a forward reference to a symbol
|abel [f the symbol does not appear in the operand field of an ORG, BLOCK, or
another EQU directive. :)

lf a symbol is declared In a GLOBAL directive and is defined by an EQU direc-
tive, the expression in the operand field of the EQU directive may not contain a

Hi, LO, or ENDOF function applied to an address. An error results when this
occurs.

Example

The following !ine demonstrates EQU directive usage:

LABEL OPERAT ION OPERAND COMMENT

L1 EQU 3 ;ASSIGNS THE VALUE 3 TO THE
: sCONSTANT SYMBOL L1.

ASSEMBLER DIRECTIVES

STRING

SYNTAX

| LABEL OPERATION OQPERAND COMMENT

[symbol 1 STRING {{sfrvarl} ((lenexp!) 1} [{,sfrvarZ} [Ienepo)g"; [;charstringl

~

Purpose

The STRING directive declares the symbols named in the statement to be string
variables.

Expl anation

The STRING directive declares the symbols "strvarl" and "strvar2" to be string
variables. A string variable is a symbol with an associated string value.
Numer ic expressions "lenexpl!" and "lenexp2" may be optionally entered next to
the string variables to specify the maximum character length of the values
stored In the string variables. This maximum character length must be a scalar
value greater than or equal to zero. When the optional character length
expression is not specified, an eight-character maximum length is assumed. |If
the optional character length expression is specified, it must be enclosed
within parentheses. An operand symbol named in a statement containing the
optional character length expression must not betforward reference.

A symbol must be declared with the STRING directive before it may be used as a
string variable. Symbols declared as string variables must not be used for any
other purpose within a program. Any number of string variables may be dec!ared
with the STRING directive. When a string variable is initially declared, its
value is the same as that of the null string. ’

ASSEMBLER DIRECT I VES

STRING (Continued)

Examples

The fellowing examples demonstrate STRING directive usage:

LABEL OPERATION OPERAND COMMENT

STRING . STR(14) ;DECLARES STR
;AS A STRING
; VARIABLE WITH
;A MAXIMWM
;CHARACTER
sLENGTH OF 14

STRING A1,A2,A3,A4,’:(NCHR("1234") ;DECLARES Al
. ' ;THROUGH A4

;AS STRING
;VARIABLES
SWITH A
sMAXIMUM
;CHARACTER
;LENGTH OF 8.
;DECLARES X AS
;A 4-CHARACTER
;STRING
;VARIABLE SINCE
;THE NUMBER
;OF CHARACTERS
;IN mM1234" 1S 4,

4-17

ASSEMBLER DIRECTIVES

ASET
SYNTAX |
LABEL OPERATION OPERAND COMMENT |
symbol ASET {gxpression} {;charstringl ‘
Purpose

The ASET directive is used to assign or reassign an expression value to a string
or numeric variable symbol.

Expl anation

The string or numeric variable symbol 'is entered in the label field of an ASET
directive. A string variable symbol must have first been defined with the
STRING directive. A numeric variable symbol must not have been previously
defined, unless by another ASET directive. Variable symbols may not be sub-
sequently redefined as labels, or be redefined by an EQU, STRING, SECTION,
COMMON RESERVE, GLOBAL, OR MACRO directive. The value of a variable symbo! may,
however, be redefined by another ASET directive.

The expression value is entered in the operand field. The expression is then
evaluated and the value is assigned to the variable symbol.

If an ASET directive contains a string-valued symbol and a numeric-valued
expression, the numeric expression is converted to a string. This conversion is
val id only when the numeric expression is a scalar value. The decimal value of
the numeric expression is assigned to the string-valued symbol. The assigned
string is six characters long, with the leftmost character being a minus sign if
the value is negative. All numeric values are prefixed with leading zeros if
less than six characters long. The numeric-expression to string-symbol conver-
sion process is diagrammed as fol!lows:

LABEL OPERAT ION OPERAND COMMENT

sfrlng_ ASET numeric ;RESULTS IN EXPRESSION
' . . -sCONVERSION TO STRING

4-18

ASSEMBLER DIRECTIVES

ASET (Continued)

' the ASET directive contains a numeric-valued symbol and a string-valued
expregsion, the string expression is converted to a numeric value. Refer to
Chapter 2 of this manual, ASSEMBLER SOURCE MODULE FORMAT, which describes String
to Numeric Conversion. The string-expression to numeric-symbol conversion pro-
cess is diagrammed- as foilows:)

LABEL - OPERAT 10N OPERAND COMMENT

numeric ASET . string ;RESULTS IN EXPRESSION
;CONVERSION TO NWMERIC

Conversion is not required when a string-valued symbol is set to a string
expression or a numeric-valued symbol is set to a numeric expression. When a
symbol is set to an expression value, the symbol acquires the same section as
the expression. :

For s+ring variable symbols where the length of the resulting expression value
exceeds the maximum symbol string length, the expression value is truncated on
the right before assignment. A truncation error code is then displayed.

xamples

Examples of typical ASET instructions and the resu|+ihg string-val ved symbol
expression values follow: '

LABEL OPERAT ION OPERAND COMMENT

STRING A1,A2(2),A3(45),A4(0) ;DEFINES STRING VARIABLE.
‘ ;A1 WITH A DEFAULTING

; VALUE LIMIT OF 8
;CHARACTERS. DEFINES
;STRING VARIABLES A2, A3,
;AND A4 WITH RESPECTIVE
; VALUE LIMITS OF 2, 45, AND
;0 CHARACTERS

Al ASET "AB" ;VALOE OF A1 IS "AB"

A2 ASET Al ;VALUE OF A2 IS "AB"
(Program continued on next
page)

ASSEMBLER DIRECTIVES

ASET (Continued)

LABEL QPERATION

OPERAND COMMENT

A4 ASET

A3 ASET

Al ASET

A1:A2 ;VALUE OF A4 IS ",
;TRUNCAT ION ERROR SINCE
;A4 ALLOWS A VALUE OF
;ONLY O CHARACTERS

"A MEDIUM LONG STRING" ;VALUE OF A3 IS "A MEDIWM
;LONG STRING"
; 0 CHARACTERS

A3 ;VALUE OF A1 IS "A MEDIWM",
; TRUNCAT ION ERRCR

The following example demonstrates string-to-numeric and numeric-to-string

expression conversion.

LABEL OPERATION OPERAND COMMENT
STRING A1,A2 _ ;DEF INES STRING VARIABLES
: A1 AND A2 |
Al ASET 14 ;VALUE OF A1 IS "000014"
A2 ASET -1 ;VALUE OF AZ IS "-00001"
AT ASET SEH VALUE OF A1 IS "000094"
B1 ASET

4-20

2 ;sNUMERIC SYMBOL, B1, IS SET
. ;TO THE NWMERICALLY

;CONVERTED EXPRESSION, AZ.
s TRUNCATION ERROR CCCURS,
:SINCE A2 IS GREATER THAN
;TWO CHARACTERS (-00001).
;THE TWO RESULTING
;LEFTMOST ASCI1 CHARACTERS
;ARE =0, GIVING Bt A
;NUMERIC ASET VALUE OF
; 2D 30H

ASSEMBLER DIRECTIVES

ORG
SYNTAX ‘
LABEL OPERATION - QPERAND COMMENT
{symbol] TITLE {(/1 expressioﬁ} .(;charsfringl ,
Purpose

The ORG directive sets the contents of the assembler location counter to either
the address specified by the operand expression, the next address divisible by
the operand expression, or the next odd address.

Expl anation

Omission of the optional / (slash) operator sets the location counter to the

address specified by the operand expresion. For example, when the.following ORG
directive is entered, the next instruction in the program begins at location 100H
in the current section.

ORG 100H

If an ORG directive is omitted at the beginning of a program, the assembler |oca-
tion counter is set to 0. Usage of the / operator in the operand field causes
the location counter to be set to the next location divisible by the operand
expression. For example, when the current location counter contains 100H and the
foliowing ORG directive is entered, the next instruction begins at location 111H.
(The next location divisible by 15H is 111H.)

ORG /1%H
If the current location counter is divisible by the operand condition when the /
operator is present, the location counter is unaffected. |f the operand
expression is "/0", the location counter is set to theé next odd value. For

example, then the current location counter contains 100H, and the following ORG
directive is entered, the next instruction begins at location 101H.

ORG /0O

4-21

ASSEMBLER DIRECTIVES

ORG (Continued)

| f t¥2 current "scation counter is already set to an odd value when the "/Q"
operand ‘is enterad, the location counter is unaffected.

The optional / operator may be used only with scalar-valued operand expressions.

Use care'when entering the / operator, since the expected results may not be
retained upon linking. For example, if ORG /O is entered, the Linker puts the
section containing this directive on an odd address, the ORG result is on an
even address. This problem can be corrected by using the LOCATE command in the
Linker. (Refer to the 9520 Software Development System Users Manual.)

Any symbol contained in the operand expression must have beén defined in the
|abe! field of a previous statement in the program. 1f the operand expression
contains a symbol previously defined in the label field of an EQU directive, the
operand field of that EQU directive must not contain forward-referenced symbols.

A label symbol is generally not entered with this statement; however, if used,
" the symbol represents the resulting value of the location counter.

Example

The following ORG statement causes the object code generated by the next
instruction to begin at location 100H.

LABEL . OPERATION OPERAND COMMENT

[
[

ORG 100H ;STARTS OBJECT CODE OF
' ;NEXT INSTRUCTION AT 100H

Li LD A, (HL) ;LOADS THE CONTENTS OF
sMEMORY POINTED TO BY THE
sHL REGISTER PAIR INTO
;REG. A

4-22

ASSEMBLER DIRECTIVES

ORG (Continued)

Upon assembly, the listing |ines for the preceding instructions appear as
fol lows:

00005 0100 > ORG 100H ;STARTS OBJECT CODE OF
;NEXT INSTRUCTION AT 100H

00006 0100 7E L1 LD A, (HL ;LOADS THE CONTENTS OF
sMEMORY POINTED TO BY THE
;HL REGISTER PAIR INTO
sREG. A

Notice the relocation indicator (>) on |ine 00005. The LD instruction object
code begins at location 100H.

.ata Storage Control Directives

The assembler data storage control directives appear in the order shown in the
following summary.

Mnemonic Purpose
BYTE Allocates one byte of memory to each expression specified in the

operand field.

WORD " Allocates two bytes of memory to each expression specified in the
' operand field.

ASCI | Stores ASCl| text in memory.

BLOCK Reserves a specified number of bytes {n memory.

4-23

(1 0 99)
ASSEMBLER DIRECT!VES

BYTE

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol] BYTE {expressioﬁ} (,expression] [;charstringl
Purpose

This directive allocates one byte of memory to each expression specified in the
operand field.

Exp! anation

Each data byte is represented by an expression. The data is stored in the
object module in the order in which it appears in the operand field. I|f more
than one expression is specified in the operand field, the expressions are
stored in consecutive bytes. The optional labe! field symbol! represents the
address of the first byte of data specified by the directive.

|t the expression represents a value exceeding the eight-bit capacity, the eight
least significant bits are used and a truncation error code is displayed. For
example, a statement containing the following BYTE directive generates 32H upon
assembly and issues a truncation error response. .

LABEL OPERAT I ON OPERAND COMMENT
BYTE "Ka" ' ;GENERATES 3ZH,

; TRUNCAT ION ERROR

Example

In the following BYTE directive, one byte of memory is allocated to the
expression values 24 hexadecimal and 22 decimal. The label symbol, FSTBYT,
represents the address of the first byte specified, 24H.

LABEL OPERAT |ON OPERAND COMMENT
FSTBYT BYTE 244,22 ;ALLOCATES ONE BYTE OF

;MEMORY TO THE
;EXPRESSION- VALUES 24H
;AND 22 DECIMAL

4-24

ASSEMBLER DIRECTIVES

WORD

LY

SYNTAX

LABEL . OPERAT I ON OPERAND COMMENT

[symbol]l (B¥FE= {?xpression [,expression] [;charstringl

Purpose

The word : v
dhis directive allocates two bytes of memory to each expression specified in the
operand field.

Expl anation

This directive is identical to the BYTE directive except that two bytes of
memory are allocated in the object module for every expression specified in the
operand field. These two-byte values are stored in memory with the low byte '
first, followed by the high byte. I|f an expression represents a single byte
value, the high byte is stored as zero. |If more than one expression is spe-
cified in the operand field, the expressions are stored in consecutive words.
The optional label field symbo! represents the address of the first byte of data
stored in memory.

4-25

(1 0 99

ASSEMBLER DIRECTIVES

WORD (Continued)

Example

In the following WORD directive, two bytes of memory are allocated to the

expression values 356 and 427 decimal. The label symbol LABSY represents the
address of the first byte of the value 356 decimal.

LABEL OPERATION OPERAND COMMENT

LABSYM WORD 356,427 ;ALLOCATES TWO BYTES OF
sMEMORY EACH TO THE
;EXPRESSION VALUES 356 AND
;427 DECIMAL

4-26

ASSEMBLER DIRECT!VES

ASCI |
SYNTAX
LABEL OPERAT ION OPERAND COMMENT
[symbol) ASCIHI {s?ring expressioﬁ}[,sfring expression [;charstringl
Purpose

The ASCI| directive allows the user to store text in memory easily.

Expl anation

ASCi| characters may be specified in the operand field in the form of a string
expression. |f more than one operand is specified on a |ine, each operand is
separated by a comma. The optional label symbol represents the memory address
allocated to the first operand field character. .

4-27

(1 0 99

ASSEMBLER DIRECTIVES

ASCH (Continued)
Examples
Assume the following |ines of source code reside on disk:

LABEL OPERAT ION OPERAND COMMENT

ASCH! "HELLO", "GOODBYE" ;PUTS HELLO AND
;GOODBYE IN OBJECT
;MODULE AS ASCI |

;CODE
ASCII "BYE™ ;PUTS BYE IN OBJECT
: : ;MODULE AS ASCII
;CODE
ASCII e | ;PUTS NULL STRING

; IN OBJECT MODULE
;AS ASCII CODE

STRING STR1 (20) sDEF INES STR1 AS
;STRING VARIABLE
sWITH A MAXIMWM
sCHARACTER LIMIT
;OF 20

STR1 ASET "ABCDEF " ;ASSIGNS ASCI |

; VALUE OF ABCDEF
;TO STR1

ASCll ' STR1 : ' ;PUTS ABCDEF [N
;OBJECT MODULE AS
;ASCII COOE

ASClHI STR1:" ™ STRING(NCHR(STR1)) ;PUTS ABCDEF, A
;BLANK, AND THE
;NUMBER OF
;CHARACTERS IN
;ABCDEF (6) IN
;OBJECT MODULE AS
;CONCATENATED

;ASC11 CODE

4-28

ASSEMBLER DIRECTIVES

ASCtH! (Continued)

The hexadecimal object code generated by the string expressaons in the preceding
source code is shown as follows:

SQURCE 0BJECT

"MELLO", "GOODBYE" A8454CACAFAT4F4F 44425945
"BYE" 425945

"o (nothing)

"ABCDEF" (string value of STR1) 414243444546

"ABCDEF 000006" | 41424344454620303030303036

For hexadecimal and ASC!! conversion tables, refer to Appendix C.

4-29

(1 0 99
" ASSEMBLER DIRECTIVES

BLOCK
SYNTAX
LABEL OPERATION OPERAND . COMMENT
[symbol] BLOCK o {?xpressiod} [;charstring!
Purpose

The BLOCK directive reserves a specified number of bytes in memory.

Expl anation

The BLOCK operand expression indicates the number of bytes to reserve in memory.
The operand expression must be a positive value. The operand expression must be
either a numeric or string constant, or a symbol. |f the operand expression
contains a symbol, the symbol must be previously defined in the program.
Additionally, if the symbol is defined by the EQU directive, that EQU direc-
tive's operand field must conform to these same rules. The expression speci-
fied in the BLOCK operand must be a scalar value.

- Example

The following BLOCK directive reserves a 32-byte memory storage block:

LABEL OPERATION OPERAND COMMENT

BLOCK 2+ 32 ;RESERVES 32 BYTES OF

sMEMORY

ASSEMBLER DIRECT I VES

BLOCK (Continued)

Macro Definition Directives

The mdcro definition directives are presented in the order shown in the

following summary. A complete description of macro capability is presented in
Chapter 5. :

Mnemonic Purpose

MACRO Defines the name of a source code block used repeatedly within a
program.

"ENDM Terminates the macro definition block.

REPEAT Enables the macro lines following the REPEAT statement up to
the ENDR statement to be assembled repeatedly.

ENDR = Signals the corresponding REPEAT block termination.

INCLUDE Inserts text from a specified file into the program.

4-31

(1 0 99
ASSEMBLER DIRECTIVES

MACRO
SYNTAX
LABEL OPERAT | ON QPERAND COMMENT
[symbol] - MACRO {symbol} [;charstring]
Purpose

The MACRO directive defines the name of a source code block used repeatedly within
a program. - -

Expl anation

A macro is a shorthand method for inserting a block of source code into a
program one or more times. The MACRO directive names the source code block to
be inserted into the main program. The symbolic macro name appears in the
operand field of the MACRO directive, and Is later used as a reference when the
source code block is called for insertion during assembiy. The block of source
.code to be inserted is called the macro definition block, and immediately
follows the MACRO directive. The macro definition block terminates with an ENODM
directive. When the macro name appears within the operation field of the main
program during assembly, the macro definition block is inserted and assembled
within the main program. This process is called macro expansiocn.

The symbol i¢c macro name and the macro definition block are generally defined at
the beginning of a user program. The macro name and definition block must be
defined prior to the initial macro definition block usage.

For a further description of macro capability and usage,'refer to Chapter 5.

4-32

ASSEMBLER DIRECTIVES

MACRO (Continued)

Example

The MACRO directive below defines the block of macro code foliowing the direc-
tive.

LABEL OPERAT I ON OPERAND COMMENT
A
' - MACRO MACRNAME sDEF INES MACRNAME AS MACRO
; NAME
BYTE 3,5,1 ;ALLOCATES ONE BYTE OF

;MEMORY EACH TO THE CONSTANT
sVALUES 3, 5, AND 1

WORD 2 ;sALLOCATES TWO BYTES OF
sMEMORY TO THE CONSTANT -
sVALUE 2

ENDM : ;END OF MACRO DEFINITION
sMACRNAME

Later statements in this program may call the macro definition block whenever the
specified BYTE and WORD statement sequence is desired.

4-33

(1 0 9%9)
ASSEMBLER DIRECTIVES

ENDM

SYNTAX

LABEL OPERATION QPERAND COMMENT

[symbo! | ENDM ' {;charstringl
Purpése

The ENDM directive signals the end of a macro definition block.

Expl anation

When an ENOM directive Is encountered in a macro definition block, the macro Is
terminated and assembly continues with the next statement in the program
following the macro call.) '

Example

The following ENIM directive terminates the macro definition block named NUMNAK.

LABEL OPERATION .OPERAND COMMENT
MACRO NUMNAK ;DEF INES NUMNAK AS MACRO
: s NAME
BYTE 3,27,22 ;ALLOCATES ONE BYTE OF

;MEMORY TO THE CONSTANT
; VALUES 3, .27, AND 22

WORD 255 ;ALLOCATES TWO BYTES OF
sMEMORY TO THE CONSTANT
s VALUE 255
;END OF MACRO DEFINITION

ASSEMBLER DIRECTIVES

REPEAT - ENDR

SYNTAX

LABEL QPERAT ION OPERAND COMMENT

fsymbol] REPEAT {expressionf}.I,expressionZI (;charstringl

{symbol | “ENDR [;charstringl
Purpose

The REPEAT directive enables the macro lines following the REPEAT directive, up
to the ENDR directive, to be assembled repeatedly. The ENDR directive signals
t+he end of each repeat cycle.

Expl anation

When a REPEAT directive Is encountered upon macro expansion, the first
expression specified in the operand field is evaluated. The lines up to the
ENDR directive are ignored when the REPEAT operand, "expressionl" is equal to
zero (false). |f the expression Is true (non-zero), the !ines up to the ENDR
directive are assembled repéatedly until the expression does equal zero, or the
max imum number of repeat cycles is exceeded. The second operand "expression2"
may be optionally entered to specify the maximum number of repeat cycles. 1f
the maximum number of repeat cycles is not specified, the value of "expression2"
defaults to 255. Attempts to repeat beyond the value of "expression2" causes an
error code to be displayed. Both operand expressions must be scalar values.

REPEAT =~ ENDR blocks may be nested. The nesting depth is limited only by the
amount of memory available to the assembler. Each REPEAT condition must be pro-
perly nested, thus having a2 matching ENDR occurring within the scope of that par-
ticul ar REPEAT condition. REPEAT - ENDR blocks may not cross the boundary of a
macro expansion or of an IF - ENDIF block. A REPEAT - ENDR block is valid only
within a macro definition block.

4-35

(1 0 99

ASSEMBLER DIRECTIVES

REPEAT - ENDR (Continued)

Example

The example that follows demonstrates REPEAT - ENDR block usage within a macro
named CONDRID.

LABEL OPERAT I ON OPERAND COMMENT
MACRO CONDR 1D ;DEFINES CONDRID AS MACRO
;s NAME
AGAIN ASET 1 sINITIALIZES AGAIN TO EQUAL
;1 AT ASSEMBLY TIME
REPEAT AGAIN < = 27 sREPEAT WHILE AGAIN IS LESS
;THAN OR EQUAL TO 27
BYTE AGA IN ;GENERATES ONE BYTE OF
sMEMORY TO AGAIN
AGAIN ASET AGAIN + 1 ; INCREMENT AGAIN AT
‘ : ;ASSEMBLY TIME
ENDR - ;END OF REPEAT CONDITION
- BYTE , ODH ;GENERATES CARRIAGE
;RETURN
ENDM ‘ ;END OF MACRO DEFINITION

4-36

ASSEMBLER DIRECT1VES

INCLUDE
SYNTAX
LABEL OPERAT I ON OPERAND COMMENT
[symbol] INCLUDE {s*ring expressiod}‘ [;charstringl
Purpose

The INCLUDE directive is used to insert text from a specified source file into a
program. -

Expl anation

When the INCLUDE directive is encountered, text from the file specified in the
operand field is inserted into the program. |f the INCLUDE directive is con-
tained in a macro body, the text file is inserted at macro expansion time.
Parameters within the included file cannot reference arguments used in the con-
taining macro. Refer to Chapter 5 for a discussion of text substitution within
macros. The text file specified by the INCLUDE directive may not terminate a
MACRO, REPEAT or IF biock. Additionally, the text may not contain another
INCLUDE directive.

An INCLUDE directive may also be used within normal source code, outside of
macro definition blocks. When this occurs, the inserted text may contain macro

definitions.

4-37

(1 0 99)
ASSEMBLER DIRECTIVES

INCLUDE (Continued)

Example

The following exampie demonstrates INCLUDE directive usage.

LABEL OPERAT I ON OPERAND COMMENT

INCLUDE. "B:F ILEA .SRC" ; INSERTS FILE A OF DRIVE B INTO
; THE CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCAT ION COUNTER.

INCLUDE "A:F |LEB.SRC" ;INSERTS FILE B OF DRIVE A INTO
sTHE CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCATION COUNTER.

INCLUDE "FILEC.SRC ;INSERTS FILE C OF DRIVE A INTO

;THE CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCAT ION COUNTER.

NOTE: The third INCLUDE statement specifies FILEC.SRC. The default logical
drive designator "A" wil! be prefixed, making it A:FILEC.SRC.
Conditional Assembly Directives

The conditional assembly directives are presented in the order shown in the
following summary. ‘

Mnemonic Purpose
IF Causes the assembly of the source code lines following the

IF directive, up to the ENDIF directive, when the specified
operand expression is true (non-zero).

ELSE Causes an al ternate source block to be assembled when the con-
taining IF expression is false.

ENDIF Signals the corresponding !F block termination.

EXIT™ Terminates the current macro expansion before encountering an
ENDM directive. ‘

4-38

ASSEMBLER DIRECTIVES

IF - ELSE - ENDIF

SYNTAX

LABEL OPERAT | ON OPERAND COMMENT

[symbol] IF {?xpressfod} [;charstring]

[symbol] ELSE {;charstring]

[symbol | ENDIF [;charstringl
Purpose

The IF directive causes assembly of the source code lines following the IF
directive, up to the ENDIF (or ELSE, if present) directive, when the specified
operand expression is true. The ELSE directive causes an altfernate source block
to be assembled when the containing |F expression is false. ENDIF signals the
corresponding IF block termination.

Expl anation

When an |F directive Is encountered, the expression specified in operand field
is evaluated. |f the result of the expression is zero (false) source |ines bet-
ween the IF and ENDIF directives are ignored (not assembled). The ENDIF direc-
t+ive then terminates the condition. |f the result of the expression is non-zero
(true), the source |ines are assembled once normally.

An optional ELSE directive block may be nested within the IF source block. If
an ELSE block is present, a false |F expression causes assembly of the source

| ines from the ELSE directive up to the ENDIF directive. The ELSE block is
ignored when the expression in the |F directive operand field is true. Only one
ELSE directive is allowed within each IF-ENDIF block.

|F - (ELSE) - ENDIF blocks may be nested as deeply as desired, |imited only by
t+he amount of memory available to the assembler. Each IF directive must be pro-
perly nested thus having a matching ENDIF occurring within the scope of that
particular |IF condition. |IF - (ELSE) - ENDIF blocks may not cross the boun-
daries of REPEAT - ENDR blocks, macro expansions, and other |F - (ELSE) - ENDIF
blocks.

4-39

(1 0 99)

ASSEMBLER DIRECTIVES

|F - ELSE - ENDIF (Continued)

Examples

The following example demonstrates IF - (ELSE) - ENDIF block usage:

LABEL OPERAT | ON OPERAND COMMENT
LABEL OPERAT ION OPERAND COMMENT
IF norgromoz onw ;CHECKS TO SEE IF THE FIRST
) sMACRO ARGUMENT 1S
; UNDEF INED
WORD OF TH ;IF SO, GENERATES A WORD
;CONTAINING OF ™H
ELSE ;OTHERWISE
WORD " ;GENERATES A WORD
;CONTAINING THE FIRST
) sARGUMENT
ENDIF ;END OF IF CONDITION

The following ‘example demonstrates nested |F - (ELSE) - ENDIF block usage:

1

LABEL OPERATION OPERAND COMMENT
IF g neonn ;CHECKS TO SEE IF THE FIRST
) ;MACRO ARGUMENT
;EXISTS
IF "1'< OFCH ;1F SO, CHECKS TO SEE IF THE

;FIRST MACRO ARGUMENT IS
;LESS THAN OFOH

WORD OF™H - "1 ;IF SO, GENERATES ONE WORD
;CONTAINING THE DIFFERENCE
;BETWEEN OF 7H AND THE
;F IRST ARGUMENT

ELSE ;OTHERWISE, IF FIRST

' ;ARGUIMENT IS GREATER

;THAN OFCH...

WORD " ;GENERATES ONE WORD
;CONTAINING FIRST MACRO
;ARGUMENT
ENDIF ;END OF INNER IF CONDITION
ELSE ;OTHERWISE, IF THE
: ;ARGUMENT DOES NOT EXIST...
WORD . OF TH . ;GENERATE A WORD
- ;CONTAINING OF7H
ENDIF ;END OF OUTER IF CONDITION

440

ASSEMBLER DIRECTIVES

EXIT™
SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] EXIT™ {;charstringl
Purpose

The EXITM directive terminates the current macro expansion before encountering
an ENDM directive.

Explan‘aﬂon

EXITM is generally used within IF - (ELSE) ~ENDIF and REPEAT - ENDR blocks to

conditionally ferminate macro expansions. EXITM is valid only within a macro
definition block.

Example

The following ENDM directive terminates the macro definition block named NUMNAK.

LABEL OPERAT I ON OPERAND COMMENT .
MACRO CONDMAC ;OEF INES CONDMAC AS MACRO
s NAME
BYTE 1,2,0 ;ALLOCATES ONE BYTE OF

;MEMORY FOR EACH OF THE
;THREE VALUES 1, 2, AND O

IF : "ozt n=mnn sTESTS TO DETERMINE IF
; 3RD PARAMETER IN

: sMACRO CALL EXISTS

BYTE 255 ;|F 2RD ARGUMENT DOES NOT
;EXIST, ONE BYTE IS ALLOCATED
;CONTAINING 255 DEC IMAL

EXIT™ ;TERMINATES MACRO
;EXPANSION _IF CONDITION IS
;SATISIFED
ENDIF ;END OF IF CONDITION
BYTE '3 ;OTHERWISE, ONE BYTE IS
~ ;ASSIGNED CONTAINING THIRD
} ' s ARGUMENT
ENOM sEND OF MACRO DEFINITION

4-41

(1.0 99)
ASSEMBLER DIRECT I VES

Section Definition Directives

The section definition directives appear in this subsection in the order shown
in the summary below. Relocation options used with the section definition
directives foilow this summary. For a discussion of the methods by which the
Linker relocates sections, refer to the 9520 Software Development System Users
Manual . .

Mnemonic Purpose
SECTION Declares a Uinker sectign, assigns a section name, and defines

the section parameters.

COMMON Declares a Linker section, éssigns a section name, and defines
the section type to be common.

RESERVE Sets aside a work space in memory. Upon linking, all reserve
* sections with the same name are concatenated into a single
reserve section. .

RESWE Continues the definition of code for a given section.

GLOBAL Declares one or more symbols to be global variables.
NAME Declares thé name of an object module.

442

ASSEMBLER DIRECT!VES

RELOCATION OPT |ONS

The PAGE, INPAGE, or ABSOLUTE option may be specifiec’'in the operand tield, to
direct the reiocation of a block of code in the SECTION and COMMON directives.
The PAGE or INPAGE option is also available to the RESERVE directive. When
options are not specified, the section is reiocated on any byte address. The
effects of these options are summarized as follows:

PAGE - Causes the section to be relocated at the starting address of a
physical block of memory. This block of memory, also called a
"page", is 256 bytes long with a starting address that is
evenly divisible by this length. Therefore, the starting
address of a page may be 0,256,512, etc.

I NPAGE - Causes the section to be relocated on any byte address provided
the section does not extend across page boundaries.

.

ABSOLUTE - Causes the memory allocation to be the actual areas specified
by the ORG directives at assembly time. (No relocation of this
section is performed.) Arithmetic functions performed on
addresses defined in absolute sections are subject to the same
restrictions as addresses performed on relocatable sections.
Refer to Section 2 describing Binary Arithmetic Operators.

|f no option is entered with the section definition directives, the spec}fied
section Is byte relocatable, Indicating a lack of restrictions on where the
Linker may place the section.

4-43

(1.0 99)
ASSEMBLER DIRECTIVES

SECTION
SYNTAX
LABEL CPERATION QPERAND COMMENT
[symbo!] SECTION {§ymboq. ,PAGE [;charstring]
, INPAGE
,ABSOLUTE
Purpose

The SECTION directive is used to deélare a program section, assign the section a
name, and define its parameters.

Expl anation

All program text following the SECTION directive, up to the next SECTION,
COMMON, or RESWME directive,' is defined fo be a program section. All tfext
within a program section is assembied with the same location counter, and hence,
has the same base. Each section has a separate location counter and must be
relocated as a block. The initial value of the location counter for a given
section is 0. The symbol specified in the SECTION operand field is the section.
name, and is a global symbol. -The section name must be unique to each assembly
and, therefore, cannot appear in multiple SECTION directives. When separate
object modules containing sections with the same name are linked, an error is
generated.

The optional second operand in the SECTION directive can be used to place
restrictions on the relocatabil ity of the section. (Refer to previous
discussion on Relocation Options in this subsection.) |f no option is speci-
fied, the Linker considers the section to be byte relocatable.

4-44

ASSEMBLER DIRECT | VES

SECTION (Continued)

When a label symbol is entered on the SECTION directive, the symbol represents
address 0, the initial value of fthe resulting section's location counter.
Additionally, the declared section name in the operand field may be used as a
normal global symbol, and referenced in the operand field of other statements
throughout the assembiy. The section name has the same vaiue as the label on
the SECTION directive.

Example

The following source |ine demonstrates SECTION directive usage.

LABEL OPERAT iON OPERAND COMMENT
SECTION SEC1 ;GENERATES BYTE
. : ;RELOCATABLE SECTION,
. ;SEC1

445

ASSEMBLER DIRECTIVES

COMMON
SYNTAX
LABEL OPERAT | ON OPERAND COMMENT
{symbol T COMMON {symbol} ,PAGE [;charstring!
, INPAGE-
,ABSOLUTE
Purpose

The COMMON directive declares a section, associates a name with the section,
assigns the section parameters, and defines the section type to be common.

Explénafion

The COMMON directive performs the same functions as the SECTION directive,
except that the same name may identify common sections in more than one source
modul e. Common sections with the same name are relocated at the same address by
the Linker. Each section with the same name should specify the same relocation
option; otherwise, the desired relocation might not result at link time. The
Linker allocates enough memory to contain the largest of the common sections
with the same name.

This section type is modeled after the COMMON area of FORTRAN.

Example
The following example demonstrates COMMON directive usage.

- LABEL CPERATION OPERAND COMMENT

COMMON WRKAREA ' ;DEF INES WRKAREA AS A COMMON
. ;SECTION. IF WRKAREA EXISTS
;IN MULTIPLE OBJECT MODULES.
;LINKER CHOOSES THE LARGEST
;SECTION NAMED WRKAREA FOR
. sMEMORY ALLOCATION

b

b_ai

(1 0 99)
ASSEMBLER DIRECTIVES

RESERVE
SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] RESERVE {;ymbol, expressioﬁ} ,PAGE [;charstringl
» INPAGE
Purpose

The RESERVE directive is used to set aside a workspace in memory. Upon linking,
all reserved workspaces (sections) with the same name are combined info a single

section.

Expl anation

The symbol in the operand field of the RESERVE directive is the assigned name of
the section. The operand expression specifies the number of bytes to be
reserved for the current object module. The expression must be a scalar value.
The RESERVE directive does not change the current section. '

t

More than one object module may contain reserve sections of the same name. The
length of the reserve section allocated by the Linker is the sum of all reserve
sections with the same name.

ASSEMBLER DIRECTIVES

RESERVE (Continued)

Example

The following example demonstrates section space allocation with the RESERVE
directive.

LABEL ‘OPERAT ION OPERAND COMMENT
RESERVE BNCHCODE, 100H ;RESERVES A SECTION DEF INED

;AS BNCHCODE AND
;ALLOCATES 256 BYTES OF
sMEMORY TO BE ADDED TO THE

;SIZE OF BNCHCODE

WORD BNCHCODE ‘ ;PLACES ONE WORD IN THE
sCURRENT SECTION HAVING
;THE ADDRESS OF THE
;sBEGINNING OF THE BNCHCODE
;SECTION

WORD . ENDOF (BNCHCODE) ;PLACES ONE WORD IN THE
;CURRENT SECTION HAVING
;THE ENDING ADDRESS OF
;BNCHCODE

48

(1 0 99

ASSEMBLER DIRECT I VES

RESWE

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol] RESWME Isymbol] [;charstringl
Purpose

The RESWE directive continues the definition of a given section.

Expl anation .

The RESWE directive continues the definition of the section specified by the
optional operand symbol. |[f no operand symbol is used, the definition of the
default section is continued. Any source code that is not preceded by a SECTION
or COMMON directive is included in the default section. The name given to the
defaul+ section is a percent sign (%) followed by the object file name. When no
object file is present, the name given to the default section is %.

I f used, the label symbol is assigned the value of resumed section's location
counter.

Example

The example that follows demonstrates section definition resumption with the
RESWE directive.

LABEL OPERAT ION OPERAND . COMMENT
SECTION A3l ;DEF INES SECTION A31
SECTION B31- ;DEF INES SECTION B31
RESWE A31 ;RESUMES SECTION A1

ASSEMBLER DIRECTI VES

GLOBAL
SYNTAX
LABEL OPERATION QPERAND COMMENT
{symbol’} GLOBAL ;§ymbol} {,symboll... (;charstringl
Purpose

The GLOBAL directive declares one or more symbols to be global variables. A
global variable located in one source module may be referenced by another source
modul e.

Expl anation

Symbols specified in the GLOBAL directive operand field are designated to be
global variables. Global variables defined in the current assembly are called
bound globals. |f the global variables are not defined in the current assembly,
they are called unbound globals and their references must be resolved by the
Linker.

The value of a global symbol must be unique within an assembly. A maximum of

254 names may be defined to be global variables.” This maximum includes ail’
names used in SECTION, COMMON, RESERVE, and GLOBAL directives.

450

(1 0 99)

ASSEMBLER DIRECTIVES

GLOBAL (Continued)

Example

The following example demonstrates definition of global variables with the

GLOBAL directive.

LABEL OPERAT | ON
GLOBAL
HIGUY EQU
CALL
5

OPERAND COMMENT

HIGUY,BYEGUY ;OEF INES THE SYMBOLS HIGUY
;AND BYEGUY TO BE USED AS
;GLOBAL SYMBOLS

$ sHIGUY 1S EQUIVALENT TO

’ | ;CURRENT LOCAT ION
:COUNTER ,

BYEGUY ;JUMPS TO SUBROUT INE

;BYEGUY DEFINED IN
;ANOTHER ASSEMBLY

ASSEMBLER DIRECTIVES

NAME
SYNTAX
LABEL OPERAT | ON OPERAND COMMENT
—_— —_— —— _—
[symbol] NAME {symbol} [;charstringl
Purpose

NAME detlares the nrme o{ w Objecd meduie
The +MGLUDE directive(t 7 e

Expl anation

The symbol in the operand field of the NAME directive is the name assigned to
the object module. |f more than one NAME directive appears within an assembly,
only the first NAME directive is used; the rest are ignored.

Note that the object module name, as declared by the NAME directive, is distinct
from the file name that the object module Is stored under. Note also that the
default section derives Its name from the object file, not the NAME directive.
Example

The following example demonstrates the object module naming with the NAME
directive.

LABEL OPERAT ION OPERAND COMMENT
NAME /'{NPLSUB}/ ;NAMES OBJECT MODULE
;s MPLSUB

&_S2

(1 0 99
ASSEMBLER DIRECTIVES

END

MODULE TERMINATION DIRECTIVE

I

SYNTAX

LABEL OPERAT ION OPERAND COMMENT

{symbol] END [expression] [;charstring!
Purpose

The END directive terminates source modules.

Expl anation

The END directive terminates a source module contained in one or more disk

files. A source module is also terminated when the end of the last input file
is reade END directive usage Iis, therefore, optional.

The optional expression in the operand field represents the starting address for
program execution, which is called a transfer address. |f present, the spe-
cified operand value is placed in the object module and may be used by the MP/M
or CP/M LOAD command when loading the object module into program memory. At

link time, if more than one module has a transfer address, the first one encoun-
tered Is used.

453

Chapter 5

MACROS

INTRODUCT ION

A macko is a shorthand approach for inserting source code into a program. A
macro is often used when the same, or nearly the same, code is repeatedly used
within a program. A block of macro cade is called 2 macro definition block.
The source code that results from this block may be al tered each time the macro
is called so that the object code generated depends on the information specified
in the macro call. The code generated by a macro call is called a macro expan-
sion, since it results from, and is usually larger than, the macro called.

This section describes all phases of macro definition, calling, and expansion.
The structure of this section closely follows the process leading up to macro
expansion. First, an examination of the general macro expansion process is
illustrated to provide a basis of understanding. An examination of each phase
of the process is then presented In greater detail.

Basic Macro Expansion Process

The macro expansion process is illustrated in figure 5-1. A written explanation
of the process follows the figure.

MACRO name
Lines of Defined Source Code

MACRO DEFINITION .
ENDM
User Program Source Code

-

MACRO CALL name arguments

MACRO EXPANSION

User Program Source Code

END

Figure 5-1. The Macro Expansion Process

MACROS.

As mentioned, there are three phases of macro usage: definition, calling, and
expansioq. First the macro must be defined. The macro is given a name followed
by a boay. ,The macro is defined in a macro definition directive. The macro
body is called a macro definition block. The macro definition block is made up
of source |ines that are stored in unassembled form, until the macro is used.

To use the macro, the programmer codes a macro call within a program. The macro
name appears, in the macro call directive's operation field. When the macro call
is encountered during assembly, the macro definition block is inserted and
assembled within the main program. This process is called macro expansion.

The user may alter any parameters used within the macro definition block by
inserting corresponding arguments within the operand field of a macro call. One
line at a time, the assembler rep!aces the specified parameters. with
corresponding arguments in the macro call. The assembler ifiserts the line from
the macro definition block into the user program. The line%is then assembled.
This procedure repeats for each line in the macro definition block.

Macro Definition Directive

A macro is defined by first entering the macro definition directive in the
following format. |In this macro definition directive, "name" is the macro name
that is later used as a reference for the macro call.

MACRO name

Macro Definition Directive Conventions

A macro is generally defined at the beginning of a program. A macro must always
be defined prior to its initial use. A macro may not be defined within another

macro definition block. A macro name is a symbol containing up to eight charac-
ters, the first character being alphabetic. The macro name must be unique from

ail symbols in a user program.

Macro Definition Block

The lines following the macro definition directive, up®to and including an ENDM
directive, become a pre-defined block of code referred to as a macro definition
block. A macro definition block may contain any instruction or assembler direc-
tive (except the END and MACRO directives). A macro definition block may con-
tain calls to other macros or even calls to itself. When a macro call occurs
within another macro definition block, any replacement that may occur on the
macro call is performed before the inner macro is called. A macro definition
block may not contain the definition of another macro.. *

MACROS

Source Code Al teration

"An additional macro capability allows code to be altered within a macro defini-
"+ion block. Upon expansion, parameters within single quotes, serving as place
holdars in the macro definition block, are replaced by the arguments defined in
a macro call.

\ .
In summation:
1

Parameters - are place holders within a macro-definition bl ock .

Arguments - are values, defined within a macro call directive,
that replace parameters.

Any numeric parameter surrounded by single quotes ('N') is replaced by the Nth
argument passed to the current macro expansion. |In the following BYTE direc-
tive, for example, the first argument passed to the current macro expansion is
substituted for the first parameter, labeled '1', upon macro expansion.

BYTE 3,5,'1"

N may be either a number or a numeric-valued ASET symbol. An ASET symbol is
assigned a value by the ASET directive. This capability is discussed in Chapter
4, ASSEMBLER DIRECTIVES, describing the ASET directive. If N Is greater than
the number of arguments provided, the null string is substituted. Text substi-
tution may occur anywhere on a line. ' ' '

Additional Special Macro Definition Characters

The following special characters are only available for use within macro defini-
tion blocks.

The @ Character

The "at" character, when surrounded by single quotes ('@'), provides unique

| abels for each macro expansion. The @ character is replaced by a four-
character hexadecimal value that is unique within each macro call. In the
example that follows, each time the macro is called, a unique four-character
hexadecimal value replaces the @ character. The following statement creates a
unique seven-character label.

LABEL " OPERAT ION OPERAND
LAE'E' EQU $

MACROS

The '@" Character (Continued)

The '@' in the preceding labe! is replaced by a number unique to the current

macro call. This replacement prevents LAB from being defined more than once by
subsequent macro calls.

The # Character (Continued)

The "pound" character, when surrounded by single quotes ('#') is replaced by a
five-digit decimal number. The number represents the fotal number of arguments
that are passed to the current macro expansion. In the example that follows,
expansion of all lines of code within a REPEAT block continues until the total
number of arguments passed is exceeded. Suppose three arguments are passed

dur ing expansion of the macro containing this code:

LABEL OPERAT | ON OPERAND COMMENT
J ASET 1 ~ ;INITIALIZES J TO EQUAL 1
| AT ASSEMBLY TIME
REPEAT J <= § sREPEAT WHILE J IS LESS THAN
;OR EQUAL TO 3
J ASET J+ 1 s INCREMENT J
ENDR :END OF REPEAT CONDITION

The £ Character

The "percent" character, when surrounded by single quotes ('%'), is replaced by
the name of the current section or common. The name is returned as a string.
I f the current section is the default section, the null string is returned.

5-4

MACROS

The € Character (Continued)-

In the example that follows, the percent sign character is used to represent the
name of the current section.

LABEL OPERAT ION OPERAND COMMENT
STRING SECNAM(8) ;DEF INES STRING, SECNAM,
;sWITH EIGHT-CHARACTER
. sMAXIMUM
SECNAM ASET morgr o ;SECNAM {S SET TO NAME OF
sCURRENT SECTION
SECTION B8BB ;DEF INES NEW SECTION BBB
RESWME " 'SECNAM' ;RESWMES PREVIOUS SECTION

The 1 or /\ Character

The up-arrow (4) or caret (A) character may be entered just prior to any
character having special meaning, thus allowing the special character to be
interpreted as a regular part of the text. The up-arrow (1) or caret (A)
character is available In all phases of the MILLENNIUM SYSTEMS Assemblier and Is
described in the manner in which it affects macro definition. In the example
t+hat follows, the caret (A) character removes the special meanlng of the single
quote character.

LABEL OPERAT ION OPERAND

ASCI1I © "THAT A\ 'S ALL FOLKS."

Upon macro expansion, the following code Is generated in memory.

THAT'S ALL FOLKS.

Macro Termination

A macro definition block Is terminated by an ENDM statement.

MACROS

Macro Calling

A macro is invoked when a macro call is encountered within a program. A macro

call contains the macro name to be called in the statement's operation field as
fol lows:

LABEL OPERAT ION OPERAND

name

Inctude Directive Text Insertion

Another method for calling text into a program involves INCLUDE directive usage.
The INCLUDE directive (see Chapter 4, describing ASSEMBLER DIRECT!IVES) may be
used to insert text into a program from a specified file. The INCLUDE directive
may be a part of a MACRO, IF - ENDIF, or REPEAT - ENDR block, as long as it does
not terminate any of those blocks. The name of the file to be inserted is
entered in the operand field of the INCLUDE directive as follows:

LABEL OPERAT I ON OPERAND

I NCLUDE string expression

Text Substitution

Optional arguments separated by commas within the operand field of the macro
call define the values to replace the parameters within the block as the macro
is expanded. For example, the following macro call invokes the macroc named

EVALC and defines the arguments 25 and ARG2 for substitution within the block of
code as the macro is expanded.

LABEL OPERATION OPERAND COMMENT

EVALC 25,ARG2 ; INVOKES MACRO EVALC AND
;OEFINES FIRST TWO
;ARGUMENTS FOR
;SUBSTITUTION WITHIN MACRO
;DEFINITION BLOCK AS 25
;AND ARG2

The preceding example contains the following arguments:
Argument 1 = 25
Argument 2 = ARG2

A label appearing in a macro call is assigned the value of the location counter
prior to macro expansion.

5-6

MACROS

Special Macro Call ing Characters

The following special function is available for use within macro calls.

The [] Construct

Square brackets [] may be used to group code for inclusion as an argument within
a macro call. All characters enclosed within square brackets are considered to
,represent a single argument. Square brackets may not be nested. Unlike the
argument resul ting when a character string is enclosed within double quotes, the
square brackets are not passed to the source text during macro expansion. For
example, the following macro call parameters produce the corresponding
arguments:

LABEL OPERATION OPERAND COMMENT

PNPDG ABC,1,"ABC, 1", [ABC,1] ; INVOKES MACRO
;PNPDG AND
;SUBSTITUTES THE
;ARGUMENTS ABC,
;1,"ABC, '",ABC, 1

The preceding example contains the following arguments:

Argument 1 = ABC
Argument 2 = 1
Argument 3 = "ABC,1"
Argument 4 = ABC,1

The A or /\ Character

The up-arrow (f) or caret (A) character may be entered just prior to any
character having special meaning, thus allowing that character to be interpreted
as a regular part of the text. The up-arrow (4) or caret (~\) is available in
all phases of the MILLENNIUM SYSTEMS Assembler and is described in the manner in
which it affects macro calls. The example that follows allows the comma and
square bracket characters, respectively, to be interpreted as part of the argu-
ments SML,J and [BC] when the macro TIME is invoked:

LABEL OPERAT ION OPERAND COMMENT
TIME 1,2, ML A, J,/\IBCA ; INVOKES MACRO TIME AND
;SUBSTITUTES THE
sARGUMENTS

31,2,9ML,J,AND (BC]

MACROS

The [] Construct (Continued)

The pfeceding example contains the following arguments:

Argument 1 =1
Argument 2 = 2
Argument 3 = SML,J
Argument 4 = [BCI

Additional Macro Argument Conventions

Any leading or trailing blanks are removed from the argument upon macro
expansion. Blanks inserted within an argument are retained. |f there are only
blanks between two commas, the resul ting argument is empty. To force a para-
meter to be replaced by blanks, it may be enclosed within square brackets.
Examples of these conventions follow: -

LABEL OPERAT | ON OPERAND :
PQRD A,B, C ,,L D,E I," " [1,[All

The preceding example expands to the following arguments. Asterisks are used

only in this example to indicate the beginning and end of the argument and are
not expanded as part of the macro text.

_Argument 1 = ¥A®
Argument 2 = *g*
Argument 3 = *C*
Argument 4 = **
Argument 5 = * D,E *
Argument 6 = *" "
Argument 7 = * *
Argument 8 = ¥*[*

Any number or length of arguments may be entered within the operand field of a
macro call, as long as the |ine does not exceed 128 characters (not including a-
carriage return). In addition, after arguments are substituted for parameters,
the lines resulting from the macro expansion must not exceed 128 characters.
Otherwise, an error code Is displayed.

MACROS

Examples

The following text includes two examples of macro definition, calling, and the
resul ting expansions. The first example illustrates a simple macro expansion.
The second example is more complex and illustrates two contiguous macro expan-
sions, where one is referenced by the other.

Example 1

In this example, a macro is defined as EVALC. Two parameters, 1 and 2, are
défined and surrounded by single quotes within the macro definition block.

LABEL OPERAT ION OPERAND COMMENT
MACRO EVALC ;DEF INES EVALC AS MACRO
s NAME
BYTE 5,'1! : ;ALLOCATES ONE BYTE OF

;MEMORY FOR THE CONSTANT
;VALUE 5 AND ONE BYTE FOR'
;THE FIRST PARAMETER
sWITHIN EVALC

WORD 2 ;ALLOCATES TWO BYTES OF
;MEMORY FOR THE SECOND

| ;PARAMETER WITHIN EVALC
ENOM ;END OF MACRO DEF INITION

Assume the following call appears within a user program.
LABEL OPERAT ION OPERAND COMMENT

EVALC 25, 357 ; INVOKES MACRO EVALC AND
sSUBSTITUTES THE
;ARGUMENTS 25 AND 357 FOR
;THE FIRST TWO
;PARAMETERS WITHIN EVALC

This macro call generates the following macro expansion and substitutes the
arguments 25 and 357 for the first two parameters ('1' and '2') within the macro
definition block. The argument 357 requires two bytes of memory as defined by
the WORD statement within the macro definition block.
LABEL OPERAT ION OPERAND

BYTE - 5,25

WORD 357

MACROS

Examples (Continued)

Example 2

In the following example, two macro definition blocks are seguentially defined
Q1 and Q2. One parameter is defined within each macro definition block. A
macro call, Q1 7, is defined within Q2. This statement calls the macro, Qt.

LABEL CPERATION OPERAND COMMENT
MACRO Q1 ;DEFINES Q1 AS MACRO NAME
PARM1 ASET 1 ;ALLOWS SYMBOLIC REFERENCE
;TO THE FIRST PARAMETER
BYTE 3,5, 'PARM1! ;ALLOCATES ONE BYTE OF

sMEMORY EACH FOR THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE FIRST
;PARAMETER PASSED TO Qt,

; TPARM1 !
ENDM ;END OF MACRO DEFINITION Q
MACRO Q2 | ;DEFINES Q2 AS MACRO NAME

BYTE 351! sALLOCATES ONE BYTE OF
: sMEMORY EACH FOR THE

;CONSTANT VALUES 3 AND 5,
sAND FOR THE FIRST .
sPARAMETER PASSED TO
. 191
tho 1

01 7 ;CALLS MACRO Q1 AND

: ;ASSIGNS THE VALUE 7 TO THE
" ;FIRST PARAMETER PASSED
: ;TO Q1, 'PARMT!

BYTE 8,9,10 ;ALLOCATES ONE BYTE OF
;MEMORY EACH TO THE
;CONSTANT VALUES 8,9, AND
;10

ENDM ;END OF MACRO DEFINITION
:Q2

Assume the following macro call appears within a user program to invoke the
macro defined as Q2:

LABEL OPERATION OPERAND _ COMMENT

Q2 3 ;CALLS THE MACRO Q2 AND
;SUBSTITUTES THE ARGUMENT
;3 FOR THE FIRST PARAMETER

;'1'

5-10

MACROS

Examples (Continued)

This macro cal!l generates the following macro expansion:

LABEL OPERAT ION OPERAND
BYTE 35,3
BYTE 35,7
BYTE 8,9.10

In this example, the macro call Q2 3, causes the first statement within the
macro Q2, BYTE 3,5,'1', to be expanded to BYTE 3,5,3. Expansion proceeds to the
next statement that calls the macro Q1 and appears as Q1 7. This statement
causes expansion to continue with the statement, PARM1 ASET 1, thus allowing
PARM1 +o be used as a symbol ic reference to the first parameter. This causes
the next statement within Q1 to be expanded as BYTE 3,5,7, replacing BYTE
3,5,'PARM1', Expansion within macro Q! terminates then terminates with the ENOM
directive. This termination causes expansion to continue with the next state- -
ment in the referencing macro, Q2. ‘The statement BYTE 8,9,10 is the next state-
ment that is expanded. Control then returns to the main program upon expansion
of the ENDM directive, which terminates the macro expansion, Q2.

Conditional Assembly

Macros may be defined such that their expansion is conditional; that is, based
upon the values of the parameters they use. |IF = ELSE - ENDIF blocks allow con-
ditional assembly and are valid In all phases of the MILLENNIUM SYSTEMS
Assembler. REPEAT - ENDR blocks also allow conditional assembly and are only
val id within a macro definition. The two methods for performing conditional
assembly are summarized as follows. For further information pertainint to IF =
ELSE - ENDIF and REPEAT - ENDR usage, refer to Chapter 4, ASSEMBLER DIRECTIVES.

OPERATION OPERAND

D) |F ' expr Turns off the assembly process if
: the expression is equal ‘o zero
(false). Succeeding statements
are passed over and are not acted
upon until the ENDIF, or optional
ELSE, statement is encountered.
~ .
ELSE Regenerates assembly process when
IF expression equals zero.
Usage is optional.

ENDIF - : Terminates the program text
.controlled by the corresponding
IF statement.
(Program continued on next page.)

5-11

MACROS

Conditional Assembly
OPERAT ION OPERAND

2) REPEAT exprl,expr2 If expr 1 is equal to zero
(false), statements up to the

ENDR statement are ignored.
Otherwise, +he statements are
assembled and the assembler
repeats the process again until
the expression:is equal to zero.
A REPEAT block stops iterating
when the specified expression
maximum, expr2, is reached. |f
expr2 is not specified, the
REPEAT block stops after 255
iterations.

ENDR Terminates the program text
controlled by the corresponding
REPEAT statement.

Nesting

IF - ELSE - ENDIF blocks and REPEAT - ENDR blocks may be nested. The nesting
depth is |imited only by the amount of memory available to the assembier. Each
IF condition must be properiy nested, having a matching ENDIF statement that
occurs within the scope of that particuiar IF condition. Oniy one ELSE direc-
tive is permitted within each IF - ENDIF block. In addition, each REPEAT con-
dition myst be properiy nested, having a matching ENDR statement occurring
within the scope of that particul ar REPEAT condition. |F ~ ENDIF and REPEAT -
ENDR blocks may not cross the boundary of a macro expansion or the boundaries of
each other.

Conditional Macro Termination
The EXITM directive terminates the current macro expansion before the assembl er
encounters an ENDM directive. The EXITM directive is generally used within IF -

ELSE - ENDIF and REPEAT - ENDR blocks to conditionally terminate macro expan-
sions. EXITM is valid only within macro definition blocks.

5-12

MACROS

EXAMPLES

|IF - ENDIF Blocks

The following example demonstrates the definition, calling, and expansion of a

macro*using an IF - ENDIF block.

The- example also demonstrates the use of an

EXITM- directive to conditionally terminate the macro expansion. In this
example, 3 macro is defined as CONDIF and.uses four parameters.

LABEL OPERAT ION.

MACRO

BYTE

IF
BYTE

EXITM

ENDIF
BYTE

BYTE

ENDM

OPERAND
CONDIF

'1','2',0,0,0

notg3rnzun

255

131

HI('47),l'4")

COMMENT

sDEFINES CONDIF AS MACRO

; NAME

;ALLOCATES ONE BYTE OF
;sMEMORY FOR EACH OF FIVE

;s VALUES. THE FIRST AND
;SECOND VALUES ARE THE
sFIRST AND SECOND
;PARAMETERS FOR
;SUBSTITUTION BY THE MACRO
;sCALL ARGUIMENTS. THE XD,

.34TH, AND 5TH VALUES ARE

;THE CONSTANT, O

;TESTS 2RD -PARAMETER TO
;DETERMINE IF IT EXISTS
s|F 2RD PARAMETER DOES NOT
;EXIST, ONE BYTE 1S
;GENERATED CONTAINING
;255 DECIMAL

sTERMINATES MACRO
;EXPANSION, [F CONDITION
;1S SATISFIED

;END OF [F CONDITION
;OTHERWISE, ONE BYTE IS
;ASSIGNED CONTAINING 2RD
; PARAMETER

;SWAPS BYTES OF 4TH

; PARAMETER

;END OF MACRO DEFINITION

5-13

MACROS

IF - ENDIF Blocks (Continued)

Assume the following macro call appears within a main program.
LABEL OPERAT I ON OPERAND COMMENT

CONDIF 22,29,27,25 ; INVOKES MACRO CONDIF AND
' ;USES THE ARGWMENTS 22,29,
327, AND 25 FOR SUBSTITUTION
;OF THE FIRST FOUR
;PARAMETERS

This macro call substitutes the arguments 22, 29, 27, and 25 for the parameters
|abeled-'"1', '2', '3', and '4'. Notice that the substitution indicator (+) is
displayed prior to each listed source |ine where substitution occurs.

0000 16100000+ BYTE 22,29,0,0,0 ;ALLOCATES ONE BYTE OF
;MEMORY
0004 00
0005 1B + BYTE .27 . ;OTHERWISE,. ONE BYTE IS
' ;ASSIGNED
0006 0019 + BYTE H1(25)L0(25) ;SWAPS BYTES OF 4TH

;PARAMETER

I f the third substituted argument in this expansion had been empty rather than
27, the EXITM statement would have terminatedf further macro expansion.

5-14

MACROS

REPEAT - ENDR Bl ocks

In the following example of a REPEAT - ENDR block, a macro is defired as CONDR
and defines the ASET symbol, AGAIN.

LABEL | OPERAT | ON

MACRO

AGAIN ASET
REPEAT

BYTE

AGAIN ASET

ENDR
BYTE

ENDM

QOPERAND COMMENT

CONDR sDEF INES CONDR AS MACRO
; NAME

1 ;INITILIAZES AGAIN TO EQUAL
;1 AT ASSEMBLY TIME

AGAIN < + '#! ;REPEAT WHILE AGAIN IS LESS

;THAN OR EQUAL TO TOTAL
sNO. OF ARGUMENTS ON THIS
;CALL
TAGAIN' ;GENERATES ONE BYTE OF
;MEMORY CONTAINING THE
» ;CURRENT PARAMETER
AGAIN + 1 s INCREMENT AGAIN AT
;ASSEMBLY TIME
sEND OF REPEAT CONDITION
ODH ;GENERATES A CARRIAGE
;RETURN
;END OF MACRO DEF INITION

Assume the following macro call appears within a main program.

LABEL OPERAT | ON

CONDR

OPERAND COMMENT

25,26,27 s INVOKES MACRO CONDR AND
;SUBSTITUTES THE ARGUMENTS
725, 26, AND 27 FOR THE FIRST
; THREE PARAMETERS

MACROS

REPEAT - ENDR Bl ocks CSohtinedl)

This macro cal!l generates the following macro expansion and substitutes the -
arguments 25, 26, and 27 for the parameter labeled 'AGAIN'. The substitutions
occur for as many times as there are arguments specified in the macro call, as
defined by the '#' character. |In this case, there are three arguments specified
and the '#' character is replaced by 3. '

0001 AGAIN ASET 1
FFFF + REPEAT AGA IN<=00003
0000 19 + BYTE 25
0002 AGAIN ASET . AGA IN+1
ENDR
FFFF + REPEAT AGA IN<=00003
0001 1A + . BYTE 26
0003 AGA IN ASET AGA IN+1
ENDR
FFFF + REPEAT AGA IN<=00003
00002 18 + BYTE 27
0004 AGA IN ASET AGA IN+1
ENDR
0003 00) : BYTE ODH
_ ' ENDM
00005 0004 . END

Macro Expansion Summary

The lines of code within the macro definition block are not assembled with the
rest of the program, but are saved until macro expansion time. Blank lines or
comment |ines are exceptions to this rule since they are not saved for expan-
sion. The macro definition block, therefore, does not generate object code upon
assembly. When the macro name appears within the operation field of the main
program during assembly, the body of the macro is inserted and assembled within
the main program.

Prior to the assembly of each line in the macro definition block, the assembler
scans for the presence of the single quote character. An argument defined in
the macro call then replaces the parameter within the single quote characters.
After substitution, the scan continues from the first character following the
replaced text until the end of the current line. The line Is inserted into the
user program. The assembler then generates object code and processes the |ine.
The assembler continues to obtain |ines from the macro definition block in this
manner until an ENOM or EXITM statement Is encountered. At that time, expansion
continues with the statement following the macro call. . .

5-16

Chapter 6

ASSEMBLER OPERATING PROCEDURES

INTRODUCT ION

This chapter describes the syntax required for the MILLENNIUM SYSTEMS Assembler
to transiate source code into executable binary object code.

SYNTAX A1

{We}{Filenamer (F1 F2 F3]

PURPOSE
Atoe

The W8N (assembier) command allows the user to assemble a specified program on a
disk.

EXPLANAT ION
T w0
The command ABM means assemble. The filename is the name of the source file +to

be assembled. The file type extension is not included in the command. MP/M or
CP/M uses the file name to generate:

- The source Filename by appending . WP SkC
- The |ist Filename by appending . WA\ LST
- The object Filename by appending . HEX c)&ﬁa

The three flegs (F1, F2, F3) are optional. The first flag is associated with
the ° source file, the second flag is the object file, and the third flag with
the list file. The flags are one character each and have the fol!lowing meaning:

A through P - Logical disk drives

Z - Do not produce a file '

X - Applies only to Flag 3 (F3) and means put the Listing
on the console. N

L,

NOTE: If the filename has a2 logical drive designator (A:filename)
and the flag specifies a different logical drive, the flag
takes precedence.: :

6-1

Chapter 7

ASSEMBLER LISTING FORMAT

| NTRODUCT ION
The assembler |isting is composed of two parts:

1) the source program assembler |isting with the object code: generaTed for
each instruction; and

2) a table of all symbols used in the program.

THE ASSEMBLER LISTING

The assembler |isting is composed of headings, |ines of source code !isting
information, and error responses relating to any assembl ing errors.

Headings

Each page of the assembler listing contains a heading. The heading includes the
assembler version on the left side of the page, and the page number on the right
side of the page, as shown below:

MILLENNIW Z80 ASM VX.X PAGE X

I1f the TITLE directive is used, a 30-character string expression may be inserted
at the top of each listing page for program identification. The character
string specified as the TITLE operand is printed on the first character line
between the assembler version number and the page number, shown as fol!lows:

MILLENNIWM Z80 ASM VX.S THIS IS THE PROGRAM TITLE PAGE X

If the STITLE directive is used, a 72-character string expression may be
inserted on the second line of each |isting page for program identification.

The character string specified as the STITLE operand is printed between the page
heading and the first source code line. A blank line is automatically inserted
between the string and the beginning of the source code. A program iden- '
tification heading created with the STITLE directive appears below:

MILLENNIWM Z80 ASM VX.X PAGE X
THIS LINE DEMONSTRATES STITLE USAGE
(blank | ine)

. (source code)

ASSEMBLER LISTING FORMAT

The Listing Line

The heading is followed by a blank line and the listing information. Each
source program line is transiated and output in the following seguence:

1) a line number,
2) the memory location of the instruction or data,
3) +the transiated object code,

4) a relocation indicator if relocation occurs on the line,
5) a substitution indicator if substitution occurs on the line, and

6) the original source line.

The listing line may be 72 or 132 characters wide, dependent upon whether the
TRM option for the LIST and NOLIST directives is active. The first listing line
field is a five-character decimal line number. Line numbers are not listed for
macro expansion lines. The second listing field is a four-character hexadecimal
location counter. This field may also represent a symboi value for an EQU
directive. Both the |ine number and the location counter are right justified
with leading zeros when necessary, and are separated from each other by one
space.

The object field follows the location counter field, and the fields are
separated by one space. The object code is left justified and may be a maximum
of eight hexadecimal characters wide. |f an instruction generates more than
eight hexadecimal characters, all additional object code is |isted on subseguent
| ines.

If relocation occurs in a line, the greé*er—fhan character (>) follows the
object field. Actual relocation is performed at link time.

{f a substitution occurs in a line, the plus character (+) foilows the reloca-
Tion indicator or the object field. All substitutions occur before the line is -
listed. The examplie that follows shows the plus sign preceding a |ine where a
substitution occurs.

00001 0000 030502 + BYTE 3,5,2 ;ALLOCATE ONE BYTE OF
sMEMORY FOR EACH OF THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE VALUE DEF INED
;TO SUBSTITUTE FOR '1' (IN
;THIS CASE THE VALUE 13 2)

ASSEMBLER LISTING FORMAT

The Listing Line (Continued)

The sQurce code follows the relocation or substitution indicators or the object
code field, and the fields are separated by one space. |f the TRM option is ON
when entered with the LIST directive, 52 spaces remain in the listing line for
the source code. Any source code exceeding the 52-character |imit is truncated.
If the TRM option is OFF, either by defauit or when entered with the NOLIST
directive, 112 characters remain in the listing for the source code. Any source
code exceeding the 112-character |imit is truncated.

Any non-printing character, other than the space, tab, or carriage return
characters, is represented by a question mark (?) in the listing. The assembler
transl| ates the character replaced by the ? to the original character form.

To summarize, the listing |ine appears as follows:

XXXX LLLL DDODDDDDD >+ SSSSS.....

Each field is represented as follows:

Line number, right justified

Memory location (or EQU statement symbol value)

Object code

Relocation lndlcafor (relocation is performed at link time)
Substitution indicator (subsflfuflon has occurred before |isting)
Source | ine

nw+ vOr x
I I I |

Error REsponse

If an error occurs in an instruction, .the line containing the error is followed
by an error response. This is also true when the instruction generates more
than one |ine of object code. The error response takes the following form:

%#%¥FRROR code

The "code" in the above error response is replaced by a three-digit number indi-
cating the type of error detected. For a description of all error codes and
their corresponding messages, refer to Appendix D. |[|f the error response prece-
des an additional message, "FATAL ERROR; ASSEMBLY ABORTED AT LINE XXXX", the
severity of the error is such that the Assembler cannot continue execution.

ASSEMBLER LISTING FORMAT

THE SYMBOL TABLE

The symbol table follows the !listing, indicating al! symbdls used in the source
module and the values these symbols represent. The symbol table also categor-
izes all symbols according to their type or base, for ease in referencing. The
structure of the symbol! table follows a three-part formaf:la heading, symbols

- and their values (categorized by type or base), and two lines providing sta-
tistical program assembly information. .

Each symbol” table page contains a heading following the format shown below:

MILLENNIUM Z80 ASM Vx.x SYMBOL TABLE LISTING PAGE x

Below the heading, symbois and their corresponding hexadecimal values appear in
categories according to their type or base. Headings precede each category
describing the group of symbols in each category. The possible symbol headings
are as follows:

STRING AND MACROQS All string and macro symbols are |isted
under this category.
SCALARS ’ " All symbols having scalar values and all
. undefined symbols are |isted under this
category.

name SECTION characteristic (length) All symbols based to the named Linker
section are listed. The section charac-
teristic indicates whether the section is
relocated at the starting address of a
physical memory biock (PAGE), whether
the section is reiocated on any byte
address within a page (INPAGE), or
whether the section is based to the
actual address specified by the ORG
directive at assembly time (ABSOLUTE).
Refer to the discussion on Section
Definition Directives in Chapter 4. |f
no characteristic is |isted, the section
is byte relocatable. The length of the
named section is specified in bytes.

name COMMON characteristic (length) Same as SECTION category, except that

more than one common section with the
same name is valid at link time. .

7-4

ASSEMBLER LISTING FORMAT

THE SYMBOL TABLE

name RESERVE characteristic (length) Same as SECTION category, except that all
sections with the specified name are com-
bined into a single section at link time.

name UNBOUND GLOBAL An unbound global is a symbol decliared Iin
a global statement, having no value in
this assembly. The named unbound global
must be defined in other assembiies or at
link time. |f an unbound global is used
to assign a value to a symbol in this
assembly, that symbol is listed under the
UNBOUND GLOBAL category in the symbol
table tisting.

Columns containing symbols and their corresponding hexadecimal values are |isted
alphabetical ly under each category. When a symbol has fewer than eight charac-
ters, dashes and spaces (- - =) serve as padding between a symbol and its value.
The value field contains four hexadecimal characters and right justified, with
leading zeros where necessary. The value field for undefined symbols appears as
a series of asterisks (****)_, FEach value Is followed by several spaces and the
next symbol. A typical symbol table listing |ine might appear as follows:

SM --- 0101 SWB2Z - - 0025 sSWMB3 - -0022 SYMBOL4 **¥** SYMBOLS 0121

. The number values for string and macro symbols indicate the number of bytes used
by +he symbol for text storage. The number values for ASET symbols indicate the
last values assigned to the symbols. The number values for GLOBAL and ENDOF
symbol s represent the addresses prior to relocation.

Symbql indicators may appear after the symbol values. An indicator also appears
if a high or low truncation occurs at link time. The symbol indicators are sum-
marized as follows:

- String symbol

- Macro symbol

- ASET symbol

Global symbol

- High truncation indicator (truncation will occur at link time)
- Low truncation indicator (truncation will occur at |ink time)
. = ENDOF symbol (value will be adjusted at fink time)

MmMrIToOoO<Iwnw
1

All symbols without indicators are EQU symbois. The number values for these
symbols indicate their values during assembiy.

ASSEMBLER LISTING FORMAT

THE SYMBOL TABLE

|f the TRM option is specified with the NOL!IST directive, or is otherwise OFF
due to defau!t, the symbol table listing is five columns wide. 1f the TRM
option is specified with the LIST directive, causing the option to be ON, the
symbol table listing is three columns wide.

Two | ines appear below the symbol table display providing statistical infor-
mation about the current assembly. The first |ine shows the number of source

| ines, the number of assembled !ines, and the number of available bytes. The
number of available bytes indicates the amount of space available for further
data manipul ation or symbol storage within the assembler. The second statisti-
cal line indicates the number of errors and undefined symbols, if any.

7-6

ASSEMBLER LISTING FORMAT

A sample assembler and symbol table listing is

MILLENNIUA Z80 ASM V3.3
THIS LINE IS THE STITLE OF MY PROGRAM

00003 STRING S1(80)
" 00004 0003 L1 EQU 3

*#%%% ERROR 003

00005 0004 L2 ASET 4

00006 0100> ORG 100H

00007 0100 TE L1 LD A, (HL)

**%%% ERROR 002

00008 END

ILLENNIUM Z80 ASM V3.3

z L] L] [] L]

STRINGS AND MACROS

SCALARS

%2 (default) SECTION (0101)

Ll = = = - - 0100
15 SOURCE LINES 15 ASSEMBLED LINES
2 ERRORS

THIS IS THE TITLE

shown in figure 7-1.
PAGE 1

;DEFINE STRING VARIABLE S1 WITH
; 80-CHARACTER MAXIMWM

;DEF INE CONSTANT SYMBOL L1 TO
;EQUAL 3

;DEF INE VARIABLE SYMBOL L2 TO
;EQUAL 4

;STARTS OBJECT CODE OF NEXT

; INSTRUCTION AT 100H

sLOAD REG. A WITH CONTENTS OF
sMBEMORY POINTED TO BY HL
;REGISTER PAIR. MULTIPLY-DEF INED
;SYMBOL, L1.

;END OF PROGRAM

SYMBOL TABLE LISTING PAGE 2

1000 BYTES AVAILABLE

Figure 7-1. Sample Assembler and Symbol Table Listing

Appendix A

SOURCE MODULE CHARACTER SET

SYMBOLS DEFINITION
A..2 letters used in symbols; |lower-case characters (other than in

strings and comments) are interpreted as the corresponding
upper-case characters

0...9 numbers used in symbolé and constants

$ used in symbols, and to represent assembler location counter
contents

. used in symbols

- used in symbols

; precedes a comment ‘

, (comma) del imiter for operand items

" string delimiter

: string concatenation operator

! string substitution del imiter

total number of arguments passed to current macro expansion

(1] group macro code to be treated as a singfe argument

e provides unique labels for each macro expansion

) is replaced by name of current section or common in a macro
expansion

* binary arithmetic operation, muitiplication

/ binary arithmetic operation, division

+ unary or binary arithmetic operator, addition

- unary or binary arithmetic operator, subtraction

O override precedence of operators -

\ unary logical operator, not

SOURCE MODULE CHARACTER SET

SYMBOLS
&

!

'
SPACE

TAB

CARRIAGE
RETURN

Norft

NAAortt

DEFINITION

binary logical operator, and -

binary logical operator,

inclusive or

binary logical operator, exclusive or

field del imiter

field del imiter

field and line del imiter

allows following special character to have |iteral meaning

al lows the second caret or up-arrow character to have |iteral

meaning

rel ational
relational
relational
rel ational
rel ational

rel ational

operator,
operator,
;
operator,
operator,

operator,

operator,

equal

not equal

greater than

less than

greater than or equal

less than or equal

Appendix B

ASSEMBLER DIRECTIVES

DIRECTIVE

ASCI|
ASET

BLOCK
BYTE
COMMON

ELSE

END
ENDIF
ENDM
ENDR
EQU
EXIT™
GLOBAL

iF

I NCLUDE
LIST

MACRO

NAME
NOL ST

ORG

OPERAT ION
stores ASCI! text in memory

assigns or reassigns an expression value to a string or numeric
variable symbol

reserves a specified number of bytes in memory AF:f:: f{

al locates one byte of memory to each expression specified
declares Linker section, assigns name, defines type to be common

when expression is false, causes assembly of alternate source
| ines between ELSE and ENDIF directives

terminates source quules

signals corresponding IF block termination

terminates a macro definition block

signals end of each REPEAT cycle

permanently assigns a value fo a gymbol

terminates expansion of current macro pefore encounter ing ENDM
decl ares symbols to be globai variableg

when expression is true, causes assembly of source |ines between
I}F and ENDIF directives

inserts text from specified file into the program
enables display of assembler listing features

defines the name of a source code block used repeatedly within a
program

decl ares name of an object module
\'&
disables display of assembler listing features

sets contents of location counter

B-1

ASSEMBLER DIRECTIVES

DIRECTIVE

PAGE

REPEAT

RESERVE
RESWME
SECTION

SPACE

STITLE

STRING

TITLE

WARNING

WORD

OPERAT {ON
begins the next listing line on the following page

enabies macro |ines between REPEAT and ENDR directives to be
assembled repeatedly

sets aside a workspace in memory

continues detinition of code for a given section

declares Linker section, assigns name, defines parameters
spaces downward a specified number of listing lines

creates a text line on the second line of each |isting page
heading for program identification

decl ares symbo! to be a string variable

creates a text line at the top of each listing page heading for
program identification

generates specified warning message on the output device and in
the listing

al locates two bytes of memory to each expression specified

ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVE SYNTAX

LABEL

.

{symbol]
{symbo[}
{symbol)
[symbol]

[symbol]

[symbol]
[symbol]
{symbol]
[symbol]
[symbol i
{symbol}
[symbol]
[symbol]
{symbol]
[symbol]
{symbol]
Isymbol]
[symbol]
[symbol]
[symbot]

[symbol]

OPERAT I ON

OPERAND COMMENT

ASCHI
ASET
BLOCK
BYTE
COMMON

ELSE
END
ENDIF
ENDM
ENDR
EQU
EXITM
GLOBAL
IF
INCLUDE
LIST
MACRO
NAME
NOLIST
ORG
PAGE

.{§fring expressioﬁ} [,string expressionl... [;charstringl

{gxpression}- [;charstring]
{expressioﬁ} [;charstringl
{expressiod} [,expressionl... {;charstringl
{symbog , PAGE T [;charstringl
» INPAGE
ABSOLUTE

{;charstringl

lexpressionl {;charstringl
[;charstring!

{;charstringl

{;charstringl

{expression} [;charstringl

[;charstringl

{symbol} {,symbol ... [;charstringl
{expressioﬁ} {;charstringl
{Efring expressio{} {;charstringl

ICNDI! [,TRMI] [,SWM] [,CON] [,MEG] [,ME] {;charstringl
{symbol} ' [;charstringl
{symbol} [;charstringl

ICNDI [,TRMI] [,S5WM] [,CONI [,ME&] [,ME] [;charstringl
{l/lexpressio&} {;charstring]

[;charstring]

(Directives continued on next page)

B-3

ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVE SYNTAX (Continued)

LABEL
{symbol |

[symbol |

{symbol |

[symbol)

[symbol]
[symbot]
[symbol]
{ symbol I
[symbol]

[Symbol

OPERATION OPERAND

REPEAT {éxpressioni} l,expression2l...

RESERVE {symbol,expressioﬁ}[_,PAGE
|, INPAGE
RESWME [symbot |
SECTION {symbol} [[,PAGE |
, INPAGE
ABSOLUTE |
SPACE lexpression]
STITLE {éfring expression}
STRING {kéfrvar1}[(lenexp1)£} ,strvar2 [(]enepo{] .-
TITLE {string expression}
WARNING ;
WORD {expression}!,expressionl...

COMMENT
{;charstringl

[;charstringl

[;charstringl

[;charstringl

[;charstring!
{;charstringl
[;charstring]
{;charstringl
{message]l

[;charstringl

Appendix C

HEXADECIMAL CONVERSION TABLES

ASCIl CODE CONVERSION TABLE

HEXADECIMAL

MOST SIGNIFICANT CHARACTER

-_— "] 1 2 3 4 5 6 7
@ | NUL DLE SP 0 @ P P
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 o] S c s
4 EOT DC4 S 4 o} T d t
LEAST 5 ENQ NAK % 5 E U e u
SIGNIFICANT 6 ACK SYN & 6 F v t v
CHARACTER 7 BEL ETB ' 7 G w g w
8 8BS CAN (8 H X h X
9 HT EM 9 | Y i y
A LF SUB : J Z i 2
B vT ESC <+ K [kK
c FF FS , < L \ i :
D CR GS - = M] m
E SO RS . > N A n -~
F Si us / ? 0 - o DEL
EXAMPLES
w =57
H =48
a=#61
t=74
@ =40
NUL = 00
DEL =7F

C-1

Hexadecimal Convsrsion

L T ———

Decimai-Hexadecimai-8inary Equivaients 0-255,,

19 | 0001 1001 59 Q101 1001 183 99 1001 1001 a7 09 | 1101 1001
1A | 0001 1010 SA | 0101 1010 154 9A 1001 1010 218 OA | 1101 1010
18 | 000t 1011 9 58 | 0101 1011 185 98 [1001 10113 219 D8 | 1101 1011
1C | 000t 1100 92 5C | 0101 1100 158 9C | 1001 1100 220 OC] 1101 1100

10 10001 1101 93 [1s] 001 1101 187 i) 1001 1101 221 20 11101 1101
1€ } 0001 1110 94 SE | 0101 1110 158 9€ 1001 1110 22 OE | 11011110
1F {0001 1111 95 SF 0101 1111 159 9F 1001 1111 23 DF [1101 1111
0010 0000 96 0110 0000 180 AQ | 1010 0000 224 g0 | 1110 0000
0010 0001 §7 81 0110 0001 181 Al 1010 0001 2258 g1 1110 0001
0010 0010 98 82 0110 0010 182 A2 1010 0010 22¢ 2 *110 0010
0010 0G11 9 0110 00113 183 A3 1270 0011 27 £3 1110 0011
0010 0100 100 0110 0100 184 A4 | 10100100 228 E¢ | 11100100
0010 §101 ple} 0110 0101 185 AS 1010 0101 229 2] 1110 0101
0010 0110 102 0110 0110 168 A6 | 10100110 230 E6 (11100110
0010 0111 103 0110 0111 187 A7 110100111 231 =7 [1110011
0010 1000 104 0110 1000 188 A8 | 1010 1000 232 S8 11110 1000
0010 1001 108 9110 1001 169 AS | 1010 1001 233 E9 | 1110 1001
0010 1010 106 8A | 0110 1010 170 AA 1010 1010 234 EA | 11101010
0010 1011 107 68 | 0110 1011 171 A8 11010 1011 238 EB | 1110 1011
0010 1100 108 8C | 01101100 172 AC 11010 1100 238 EC 11110 1100
Q010 1101 109 6D | 011Q 1101 173 AD] 1010 1101 237 ED [110 10
0010 1110 110 6E 0110 1110 174 AE | 1010 1110 238 EE 1110 1110
0010 1111 m 6F | 0110 1111 178 AF | 1010 1111 229 EF 1110 1111
0011 0000 112 70 | 0111 0000 178 Bg | 1011 0000 240 FO | 1111 0000
0011 0001 113 71 0111 0001 177 21 1011 0001 241 F1 1111 0001
0011 0010 114 72 0111 0010 178 82 | 10110010 242 F2 {1111 0010
0011 0011 118 73 | 0111 0011 179 B3 110110011 243 F3 | 11110011
Q011 0100 118 74 | 0111 0100 180 84 | 1011 0700 44 Fa | 1111 0100
0011 010 17 75 0111 0101 181 8s 1011 0101 248 Fs 1111 010
0011 0110 18 78 0111 0110 182 [1011 0110 24§ F§ 1111 0110
0011 Q111 119 77 g111 Q111 183 87 |01 0 247 F7 1171 0111
0011 1000 120 78 0111 1000 184 B8 1011 1000 248 F8 1111 1000
0011 1001 121 7 0111 1001 188 89 1011 1001 249 F9 1111 1001
0011 1010 122 7A | 0111 1040 186 BA | 10111010 250 FA | 11111010
001t 1019 123 78 | 01111011 187 BB | 1011 1011 251 £8 1111 1011
0011 1100 124 7C 01111100 188 8C | 10111100 252 FC 11111100

Mexs-| Binary Hexa-{ Binary Hexa-| Binary Hexi-] Binary

Deci-| ces- St Oeci-| dec:- 8-pit Deci-| cec:- 8-t Deci-| qeci- s-oit

mat mal Code mai mai Coce mal mat Code mal mat Code
Q 00 | 0000 0000 54 40 | 0100 0000 128 80 1000 0000 192 CO0 | 1100 0OCO
1 01 0000 0001 (4] 41 0100 0001 129 81 100G 0001 193 c1 1100 0GC
2 02 {0000 0010] 42 | 0100 0010 130 82 | 1000 0010 194 C2 | 11000610
3 G3 {0000 0011 §7 43 | 0100 0011 131 83 | 1000 0011 195 C3 | 1100 0C*1
4 04 10000 0100 68 44 | 0100 0100 132 84 | 1000 0100 196 | Cs |11000°08
5 [+ 000Q 0101 -3 [0100 0101 133 as 1000 0107 197 [+L3 1100 01¢1
(] 06 | 0000 0110 70 48 | 0100 0110 134 a8 | 10000110 198 Cc8 [110001:0
7 07 {0000 Q111 7 47 0100 Q111 138 87 1000 0111 199 C7 | 110001
3 08 | 0000 1000 72 48 | 0100 1000 136 a8 1000 100G 200 c8 | 1100 1020
9 29 ! 0000 1091 3 49 | 0100 1001 137 89 | 1000 1001 201 C9 | 1100 1001
10 oA 0000 1010 74 4AA 0100 1010 13a 8A 1000 1010 202 CAa 1100 1613
11 08 | 0000 1011 75 48 | 0100 1013 139 88 | 1000 1011 203 C8 | 1100 101!
12 oC {0000 1100 78 4C | 0100 1100 140 8C | 1000 1100 204 CC | 1160 1100
13 QD | 0000 1101 ka4 40 | 0100 1101 141 80 1000 1101 208 CO | 1100 1101
14 0% 100001110 78 4E 1 0100 1110 142 8€ | 1000 1110 208 CE 111001119
15 oF 0000 1111 b4] 4F 0100 1111 143 8F 100C 1111 207 CF 1100 113
16 190 | 0001 0000 80 $0 | 0101 0000 144 90 | 1001 0000 208 0Q | 1101 0000
17 11 | 0001 0001 81 1 Q0101 0001 148 91 1001 0001 209 (=} 1101 000
18 12 | 0001 0010 a2 52] 0101 0010 148 92 | 1001 0010 210 02 | 11010010
19 13 10001 0011 a3 £3 10101 0011 147 93 1001 00+ 211 B3 1110100
20 14 | 0001 0100 a4 54 | 0101 0100 148 34 1001 0100 212 04 {1101 0100
21 18 | 0001 0101 as 55] 0101 0101 149 95 1001 0101 213 Ds | 1101 01
2 16 | 0001 0110 88 56 0101 9110 180 o6 1007 0110 214 08 | 11010110
3 17 | 0001 0111 a7 57 G101 0111 151 97 1001 0111 218 D7 | 1101 Q11
r) 18 0001 1000 88 58 0101 1000 152 98 1001 1000 216 [of.] *101 1000

a9
90

8

agnTRE D

BR2BEEIRLRBRCBELIELLLAZEEEURERBR2EIBIAR
ghgﬁﬂﬂkﬁ§8638%%“KﬁﬁﬂﬁﬁﬁufﬂhSB

3D | 0011 1101 128 0] 0111 1101 189 80 1101 1101 253 FD | 1111 1101
3E 0011 1110 1268 7€ {0111 1110 190 BE | 1011 1110 254 FE 11131110
IF | 0011 1111 127 7F {0111 1111 191 8F (110111111 255 FF 1111 111

Hexadecimal Conversion Tabies

[.=

HEX ADDITION

HEXADECIMAL ADDITION TABLE

1l2]3lalslelzislolalelclolelcr
1§21 31415167 81 61A|BICID|EIFI[10
2| 3[4 5167|819 AajB[CIDIE|FT[10]MN
31 4 56 7|81 S|AlBIC|DIETF|10][11]72
4 | 516 | 7|8 S8 A BICIDJ[ETF[10][11[12]13
5§67 | 818 | AIBICITOIE]|FTI 0] 11[12][13]14
6H 71819 | Al BICIDIE|F{10][11]12]13 1415
718 9| A[B|C| D] EJFJ10]11]12|13]14]15]16
8§l | ABICID|E|FJ10]11]12(13]14] 1516 | 17
S| A B|CIDJE[F|i0[1]12]13 14| 15[16 17|18
Al B|CIDJE[F[10|11[12{13(14 15[1617 [18] 19
BIC|O|E[F 1011121314156 17] 18 19 1A
C|O[E [Fli0] 11121314516 |17 18] 18 [1A[1B
DI E F 10111 12|13 1415416 |17 18| 18 [1A [1B]iC
| EJ F 170111213]| 14| 15 (16 [17 |18 [19| 1A 1B [1C | 1D |

" F{10]11]12|13[14| 15| 16|17 {18 |19 |1A[1B|iC [1D| 1E

HEX F+8 = 17

— =

MEX 10 = 16 DEC

HEX 7 = _7 DEC

HEX 17 = 23 DEC

Hexadecimal Conversior Tables

HEX MULTIPLY

HEXIDECIMAL MULTIPLICATION TABLE

1| 213l elslelvialolalblciolelcr |

1 11 2131 41651617189 A BICIO|EF
2 21 46!l 8t A{ClEIIO}12]14])16]| 18] 1A|1C]| 1E
3 31 6 |9 CTF|12[151 18| 1B|1E[21 |24 27 | 2A[2D |
4 4 8 | Cl10)14 18 [1C[20| 24128 | 2C | 30| a4 | 38 | aC
5 5 Al Fil1al19[1E1 23128120} 32[3713C]| 41 [46] 48
6 6 C 112 18| 1E[24 [2A 1307 36 | 3C| 42 | 48 | 4E | 54 | 5A
7 7 | E |15 1C| 23 |2A| 31138 3F | 46 | 4D 1 54 | 58 | 62 | 69
8 8§ | 101181 20| 28 1 30 | 38 | 40 48 | 50| 58 | 60| 68 | 70 | 78
) 9 1211B1 24| 2D {36 | 3F| 48] 51 | SA[63 16C| 75 | 7TE| 87
A A | 141E]1 28132 |3C| 46| 50| 5A| 64 [6E | 78] 82 |8C| 96
B B | 16 [21]2C1 3742 4D/ 58| 631 6E[79 | 84| 8F | SA | A5
C C | 18124|30/13C|48|54]6016C| 78|84 [90|9C]|A8]| B4
| O D | 1A[27[34 41 [4E |58 68] 75|82 8F |9C| A9 | B6| C3 |
E E | 1ICI2A| 38 | 46 | 54 |62 1 70| TE 8C | 9A | AB | BB | Ca | D2
F J F | 1IE|2D|3C|4B[5A[69| 78| 87 | 96| A5 [B4 | C3 | D2 | E1

HEX 9x8 = 48

SR—

HEX 40 64 DEC

HEX 8 = 8 DEC

HEX 48 = 72 DEC

Appendix D

ASSEMBLER ERROR CODES

The following error code numbers signify the MILLENNIUM SYSTEMS Assembler error
messages describing them. Upon assembly and in assembler listings, error codes
and messages appear immediately below the source line containing an error.

*%%%% ERROR

*****ERROR

*¥%AXELROR

*%%**ERROR

* %% **ERROR

* %% % %ERROR

001: (no message displayed.)

Indicates that a user-entered WARNING message has assembled.
Refer to WARNING directive explanation in Chapter 4.

002: Symbol already defined

Indicates that the symbol defined has been previously defined in
+he program assembi ing sequence. Occurs when the same symbol is
equated to two values (with EQU directive) or when the same sym-
boi labels two instructions.

003: Symbol value Phase Error

Indicates that the label! or EQU symbol value differs between
passes, or that the section aassignment of a labei or EQU symbol
value differs between passes.

004: iilegal EQU of GLOBAL

I ndicates that an unbound global is assigned the value of
another unbound global (with EQU directive)l. Error occurs
because unbound giobals are not assigned values in the current
assembly.

005: Global definition may not use HI, LO, or ENDOF

Indicates that the value assigned to the global symbol involved
Hi, LO, or ENDOF function usage. Occurs when a global symbol is
equated to HI(x) or LO(x), where x is an address, or ENDOF(y),

where y is the section name whose ending address Is to be found.

006: String expression required
Indicates that a numeric value appears where a string value is
required. Operations requiring string expressions involve con-

catenation, SEG and NCHR function usage, and ASCII, TITLE, or
STITLE directive usage.

D-1

ASSEMBLER ERROR CODES

%%%% ERROR

*XXRAXCQQOR

*#EXAEDROR

%ERROR

*%E¥XERROR

*****ERROR

*****ERROR

007: Undefined BLOCK or ORG expression

The operand expression of an ORG or BLOCK directive is either
undefined or a forward reference. Occurs when an undefined or
misspelled symbol appears in an ORG or BLOCK directive, or a
symbol is assigned a value after the ORG or BLOCK references the
symbol .

008: Inval id ORG out of section

| ndicates that the ORG operand expression represents an address
defined outside the current section. Examine previous RESWME or
SECTION statements for errors.

009: Negative block length

| ndicates that the BLOCK operand expression represents a negative
val ue.

010: Macro already defined

{ ndicates that more than one MACRO directive contains the same
name.

011: Macro definition phase error

Indicates two possible errors: The macro was called before
being defined, or the macro was defined during the second
assembler pass, but not the first.

012: Memory full on Macro call

Indicates insufficient space to perform macro expansion. Occurs
when foo many long arguments are specified for parameter substi-
tution, too many symbols are entered in macro definition, or the
macro repeats itself infinitely.

013: Missing ENDR or ENDIF

Indicates that a conditional assembly (IF or REPEAT) block
failed fo complete assembly. Occurs when a conditional assembly
block begins assembly within a macro definition and the macro
terminates (with an ENDM directive) before the conditional
assembly terminates (with an ENDR or ENDIF directive).

ASSEMBLER ERROR CODES

%%% ERROR

*#%¥%XEQROR

% % *ERROR

**%%*ERROR

*%##*ERROR

**#¥¥ERROR

* XXX XERROR

014: Dup!licate definition of section name

indicates that the section name has already been defined as a
| abel symbol during the current assembler pass.

015: END directive invalid within an INCLUDE file

Indicates an invalid END directive is present within an INCLUDE
file.

016: ENDR or ENDIF mis-matched

Indicates that an improper termination directive was used for a
conditional assembly. block. Occurs when ENDR is entered to ter-
minate an {F block, ENDIF is entered to terminate REPEAT biock,
or when |F and REPEAT blocks overlap each other producing the
same effect.

017: literation limit exceeded

Indicates an attempt to assemble a REPEAT block more than the
specified number of times. |f the allowed number of repeat
cycles is left unspecified, the error message is displayed when
256 repeat cycles are completed.

018: Misplaced ELSE

Indicates that an ELSE directive occurs outside its
corresponding {F-ENDIF block, or that more than one ELSE direc-
+ive occurs within the scope of one |F-ENDIF block.

019: Operation invalid for address

Indicates that an operation allowing only scalar values was
appl ied to an address value.

020: Divisor Is zero

Indicates that the Assembler attempted to divide by zero. Also
occurs when the Assembler attempts to determine the remainder of
a division by zero with the MOD operator (for example, A MOD O).

ASSEMBLER ERROR CODES

**#2% ERROR

*%%%*ERROR

*#%RXERROR

*RXXRERROR

*****ERROR

*****ERROR

* xR XXERROR

* ¥R HXERROR

D-4

021: Text following | ignored
Indicates that information following a bracketed macro parameter

has been ignored.

022: ENDOF operand is scalar

N
Indicates that the specified section name in the ENDOF statement
is a non-global, scalar symbol.
023: ENDOF already applied
Indicates an attempt to perform an ENDOF function upon an
address resulting from a previous ENDOF function.
024: ENDOF operand is not global
Indicates that the specified section name in the ENDOF statement
represents a non-giobal symbol.
025: Operation on Hl or LO of address
Indicates an attempt to perform an arithmetic or unary operation
upon an address that has had Hl or LO applied to it.
026: Addition of addresses

Indicates an attempt to add one address to another.

027: Confl icting section bases

Indicates an attempt to subtract or compare addresses based to
different sections or having different ending byte addresses.
028: Address subtracted from scalar

Indicates an attempt to subtract an address from a scalar value.

ASSEMBLER ERROR CODES

**¥%%ERROR

*%% ¥ ¥ERROR

* %% %ERROR

*#%%¥CDQROR

%% %% ¥ERROR

* R HFERROR

* %% #*ERROR

%% %% ¥ RROR

029: Negative string length

Indicates that a negative value was specified for the string
length when the string was declared with the STRING directive.
030: String length phase error

Indicates that the string expression value differs between the
assembler's first and second pass. Occurs when the string
length expression contains a forward reference.

031: Redeclaration of string variable

Indicates a second attempt to declare the same string variable.

032: String declaration phase error

Indicates that the string value was defined during the
assembler's second pass, but not its first.

033: Invalid string name

Indicates that an invalid string variable name has been entered
as an operand in the STRING directive.’

034: END inside an unclosed block

indicates that an END statement occurs within an |F, REPEAT, or
MACRO definition block. Occurs when an ENDIF, ENDR, or ENDM
directive is either missing or misspelled.

035: Value truncated to byte

Indicates that the value entered exceeds one byte (value falls
outside the range-128 to 255). The value is truncated to fall
within one-byte range.

036: Invalid character follows |abel

Indicates that a character other than a space was encountered
following a !abel.

ASSEMBLER ERROR CODES

*%#%% ERROR

*¥#XXEQROR

*#XAXERROR

* ¥ %X XERROR

*¥%XAEQQOR

b0-6

037: Extra operans ignored

Indicates that extra operands appear in the statement. The
complete statement entered prior to the extra operands is
assembled, and the extra operands are ignored. Occurs when a
statement is miscoded, an invalid delimiter occurs in the
operand list, or a semicolon does not precede a comment. This
error also oteurs when a logical not "\" operator or a function
fol lows what could be interpreted as a compiete expression.
This complete expression is either composed of or ends in a
constant, a symbol, or a right parentheses "™". The portion of
the statement that precedes the logical not operator or function
is assembied and the remaining portion of the operand is
ignored.

038: String variable used as |abel

Indicates that a string variable is present in the label field
of an insfruction. Label is ignored.

039: Invalid’operafion‘code

I ndicates that the Assembler is unable to recognize the opera-
tion in the statement, or that the Assembler disalliows the
operation to be processed in its entered context. Occurs when
the operation is misspelled, an invalid delimiter follows the
label, or a macro is called prior to its definition.

040: Invalid character

Indicates that the Assembler has encountered a character, out-
side the val id character set, that was not enclosed within
double quotes.

041: Syntax error

indicates that the statement does not conform to the required

syntax. Refer to Appendix B for required syntax for Assembler
directives.

ASSEMBLER ERROR CODES

* %% %%E RROR

* % ¥ ¥ERROR

* %% **ERROR

* %% XRERROR

*****ERROR

* %% %XERQROR

042: Invalid option or separator

Indicates that the Assembler encountered an invalid de!imiter
between |isting control options in the LIST or NOLIST directive
operand field. Occurs when spaces del imit the options where
commas are required, or when an invaiid listing control option
is entered.

043: No label on EQU or ASET

Indicates that a symbol is either missing from or invalid for
the label field of an EQU or ASET directive.

044: |nval id Macro name

Indicates that the macro name is missing from the operand field
of the MACRO directive, or that the macro name is an invalid
symbo!. Occurs when a previously-defined symbol is entered as a
macro name, a macro name Iis missing from the macro directive
operand field, or an invalid del imiter is entered between the
macro operation and macro name.

045: Invalid relocation option

Indicates an attempt to specify an inval id relocation option
(other than PAGE, INPAGE, or ABSOLUTE) when declaring a section.
When this error occurs, the assembler ignores the Invalid
option, and handies the specified section as if it were byte
relocatable.

046: MACRO within a Macro

Indicates that a macro definition statement was encountered
within a macro expansion or a macro definition block.

047: Inval id except in Macro

Indicates that an EXITM, ENDM, REPEAT, or ENDR directive
appeared outside a macro definition block.

ASSEMBLER ERROR CODES

* %% **ERROR

* #%*¥ERROR

* %% % *ERROR

* %% * ¥ERROR

*#%%¥ERROR

* 4% % ¥ERAOR

*****ERROR

048: Inval id operand

Indicates that the specified operand is either incomplete or
inaccurate for the context required by the operation. I|f the

required operand is an expression, this error indicates that the

first item in the operand field is not a variable, constant, a
left parentheses "(", a minus sign "-", or a logical not "\",
049: Address assigned to string

Indicates an attempt to assign an address value to a string
variable symbol.

050: Section definition Phase error

indicates that the specified section or relocation option dif=-
fers between the Assembler's first and second pass.

051: Section definition Phase error

Indicates that the specified section was defined during the
second, but not the first, Assembler pass.

052: Too many Section or Globals

Indicates that the number of dec!ared sections and global sym-
bols exceeds 254. The Assembler does not accept the current
section or global deciaration.

053: Invalid reiocation opfionb

Indicates that the ABSOLUTE relocation option was specified in
the RESERVE directive operand field.

054: Negative RESERVE |ength

Indicates that a negative-valued byte iength was specified as
the RESERVE operand expression.

ASSEMBLER ERROR CODES

*****ERROR

* %% % ¥ERQOR

* ##¥XERQOR

* %% %%ERROR

*%%XXEDOOR

* XX XXERROR

* %% %¥ERROR

055: Invalid section name

indicates that an invalid symbol was declared as a SECTION,
COMMON, or RESERVE name. Occurs when the symbol name is
misspel led, contains invalid characters, is a reserved word, or
is a previously-defined label.

056: {inval 1d RESERVE length

Indicates that the required RESERVE operand expression
(specifying the number of bytes reserved for the current object
module) is either entered incorrectly, entered without a comma
before the expression, or absent from the RESERVE directive.
057: RESWE section undefined

Indicates that the resumed section is defined in a later state-
ment in the assembly process.

058: RESWME of RESERVE section

Indicates an attempt to resume a reserved section.

059: Resumed section inval id

Indicates that the resumed section was declared after the 254+h
section or global symbol was dec!ared.

060: Giobal operand already defined

Indicates that the global symbol was referenced before it was
declared to be global. See GLOBAL directive explanation in
Chapter 4.

061: GLOBAL declaration Phase error

Indicates that a symbol! was not declared in both passes of the
assembler.

ASSEMBLER ERROR COOES

e %ERROR 062: Too many Sections and Globals

Indicates undefined globals, or more than 254 globals and sec-
tions deflined.

*EXX¥ERROR 063: Invalid radix
Indicates an~inval id radix character in the constant. The 9520
Software Deve!l opment System recognizes only (H) hexadecimal, (0)
or (Q) octal, and (B) binary radix codes.

* %X X*ERROR 064: Invalid digit
Indicates an inval id digit in the indicated number base. For
example, 10031B contains an invalid digit. Radix B indicates
this to be a binary number, making digit 3 invalid.

*¥%%XERROR 065: Unmatched string or parameter del imiter
Indicates an unmatched quotation mark del imiter or square
bracket del imiter.

* %% %2ERROR 066: Line too long after replacement

Indicates expanded line is too long. Only 128 characters are
al lowed.

**#%%ERROR 067: Extra replacement identifier

Indicates extra information following the replacement indicator
in a macro definition block.

**%#%ERROR 068: Replacement invalid outside of Macro

Indicates improper use of replacement indicators #, @, and %
outside of a macro definifjon block.

*%¥%XERROR 069: Undefined replacement string

Indicates that the string variable has not yet been defined as a
string.

ASSEMBLER ERROR CODES

*% %% *ERROR

* % %% #ERROR

* %% HEQROR

*% %X HERROR

* %% $*ERROR

*#REXERROR

*HRRXEQROR

070: Invaiid repiacement identifier

Indicates that the replacement specification used is invalid.

071: Scalar value required

Indicates an address value where a scalar value was required.

072: invalid expression

Indicates that the specified expression is either incompiete or
inaccurate for the context required by the operation.
Expressions are recognizable when the following values appear in
the first item position of the operand: a variable, a constant,
a left parentheses "(", a minus sign "-", or a logical not
character "\",

073: Section size Phase error

Indicates that the number of bytes generated for this section
during the first pass is smaller than the number of bytes
generated during the second pass.

074: Undefined symbol

Indicates that a symbol in an expression has no value.

075: String truncated

Indicates that the number of characters assigned to the string
is greater than the string definition. See ASET Strings,
Chapter 2. '

076: Negative SEG operand

Indicates a negative number in the oEérand of the SEG function.
See SEG, Chapter 2.

ASSEMBLER ERROR CODES

*****ERROR

*****ERROR

* k%% XEQROR

%% %¥EQROR

*X % XREQQOR

*#%%¥EQDOR

*****ERROR

% %% XERROR

077: SEG srarting operand is zero

Indicates a zero in the starting position of the SEG operand.
See SEG, Crapter 2.

078: Insufficient workspace

Indicates that a temporary data manipulation area has been
exceeded. Could be caused by conditional assembly or string
functions rhat ieave too |little memory to perform the required
operations.

079: Value too large

Indicates *hat the value of the space operand exceeds 255, and
has been truncated.

080: Invalid NAME symbol

Indicates that the symbol in the operand field of the NAME
directive begins with a non-alphabetic character and is, there-
fore invalid.

081: lllegally substituted ENDM

Indicates that an ENOM directive was substituted within the body
of a macro expansion before the normai end of the macro is
encountered.

082: Nested INCLUDE directive

Indicates that the file inserted into the program with the
INCLUDE directive contains another INCLUDE directive.
083:Missing ENDIF

Indicates that a conditional IF block with a missing ENDIF
directive was included in the program.

084:Missing ENDM for included macro

Indicates that a macro definition block with a missing ENDM
directive was included in the program.

ASSEMBLER ERROR CODES

*#¥¥XERROR 085: String value too large

Indicates that a string value to be used as a number exceeds two
characters in length.

*XXAXERROR 086: Shift count exceeds 16

Indicates an attempt to shift right or left more than 16 bits.

* ¥ ¥XXERROR 087: Too many symbols

Indicates a lack of room in the Assembler's symbol table to con-
tain all symbols used by the program. The Assembler discon-
tinued processing the program.

* ¥ ¥ ¥ XERROR 088: Inval id transfer l|abel

Indicates that a |abel used for the transfer address on an END
directive is an unbound giobal, a scalar, or the result of a
previous HI, LO, or ENDOF function.

- ®%EXRERROR 090: ENDOF appl ied to a bound GLOBAL

13

I ndicates that the ENDOF function was used with a bound GLOBAL
instead of a SECTION. In the case of an unbound GLOBAL, +the
function is resolved at iink time.

* %k #%ERROR 091: Unable to assign INCLUDE file
Indicates that MP/M or CP/M could not gain access to the file.
This message will be accompanied by a message on the console

during each pass. An SRB status code will indicate the reason
that MP/M or CP/M could not assign the file.

The following error messages apply only to the Z80 Asggmbler:

*HX#AERROR 254: Invalid operand specification

The syntax of an operand is invalid, or the operand type Is not
val id for the current instruction, or the combination of
operands Is not val id for the Instruction.

ASSEMBLER ERROR CODES

Error Messages applying only to the Z80 Assembler (Continued)

* % *ERROR

*HXX¥ERROR

**##XERROR

* ¥ %X XCRROR

*RRAXERROR

*XXAXERQROR

* %X XXERROR

* %% AXERROR

D-14

253: Unmatched parentheses

A left parentheses which may specify 'contents of' does not have
a corresponding right parentheses.

252: Invalid index displacement

The displacemént portion of an indexed operand is invalid.

251: Too many elements in expression

In certain contexts parenthesized expressions or subexpressions
may not contain more than 40 identifiers and, or string
constants.

250: Invalid operand combination

The combination of operands specified is not valid for the
current instruction.

Ll

249: Inval id branch condition for JR

A Jjump condition other than Z, NZ, C, or NC was specified for a
JR instruction.

248: Destination involves Hl, LO, or ENDOF

The destination specified in a JR or DINZ instruction involves
the illegal use of one of the indicated functions.

247: Relative jump out of current section

The destination of a JR or DINZ instruction is not in the
current section.

246: Relative jump out of range

The destination of a JR or DIJNZ instruction is not within the
range -126 to +129 from the current instruction.

ASSEMBLER ERROR CODES

* ¥X*¥ERROR

* ¥ X XCDROR

* %% % ¥ERROR

* %% % ¥ERROR

245: Invalid bit position

The first operand of BIT, RES, or SET instruction did not spe-
cify a scalar value in the range 0-7.

244: Inval id RST address

The operand of a RST instruction was either reiocatable or was a

scal ar or absolute address whose value was not O, 8, 10H, 18H,
20H, 28H, 30H, or 384.

243: IM operand is not scalar 0, 1 or 2

The operand of IM is invalid.

242: Index displacement out of range

Index mist be a byte value in range -128 to +127.

D-15

Appendix E

RESERVED WORDS

The ‘Z80 Microprocessor instruction mnemonics, register symbols and MILLENNIUM
SYSTEMS Assembler directive names must not be used as symbol ic labels.

foilowing names are reserved for these special

Z80 INSTRUCT ION MNEMONICS

uses:

ADC CPD DI IN JR NOP POP RLA RRCA SRA
ADD CPDR DJUNZ INC LD OR PUSH RLC RRD SRL
AND CPI El IND LDD OTDR RES RLCA RST SuB
BIT CPIR EX INDR LDDR OTIR RET RLD SBC XOR
CALL CPL EXX INI LDI out RETI RR SCF

CCF DAA HALT INIR LDIR ouTD RETN RRA SET

CP DEC IM JP NEG ouT| RL RRC SLA

280 REGISTER SYMBOLS RESERVED FOR FUTURE USE JUMP CONDIT IONS

A H BC SP XREF M (minus) C (carry)

B | DE NC (noncarry) PE (parity even)
c L HL NZ (non-zero) PO (parity odd)
D R I X P (positive) Z (zero)

E AF Y

MILLENNIUM SYSTEMS ASSEMBLER DIRECTIVES, OPTIONS & OPERATORS

ABSOLUTE ELSE NCHR SEG WORD
ASCtI END INCLUDE NOLIST SHL

ASET ENDIF INPAGE ORG SHR

BASE ENDM LIST PAGE SPACE

BLOCK ENDOF LO PAGED STITLE

BYTE ENDR MACRO REPEAT STRING

CND EQU RESERVE SM

COMMON EXITM MEG RESWME TITLE

CON GLOBAL MoD SCALAR TRM

DEF HI NAME SECTION WARNING

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	E-01

