
Publication Number 87000068
Release
June 1981
$10.00

9520 SOFTWARE DEVELOPMENT SYSTEM

zao CROSS-ASSEMBLER SOFTWARE
USERS MANUAL

Millennium Sys~ems, Inc.
19050 Pruner i dg'e Avenue
Cupertino, CA 95014
Telephone: C408) 996-9109
TWX/TELEX # 910-338-0256

Copyright@ 1981. No part
of this publication may be
reproduced without written
permission from Millennium
Systems, a subsidiary of
American Microsystems, Inc.

PREFACE

This manual is intended to provide the user of a Millennium Systems 9520
Software Development System with sufficient knowled9e to assemble and generate
object code programs using the Millennium Systems Z~O Cross-Assembler. It
shoulc be understood that the information contained in this manual is val id only
when the 9520 Software Development System is used to assemble programs that wil I
be executed in Mi I lennium Systems' 9508 MicroSystem Emulator unit.

I

The material in this manual is up-to-date at the time of publication, but is
subject to change without notice.

Copies of this publication and other Millennium publications may be obtained
from the Mi I lennium sales office or distributor servicing your locality.

RELATED Pl.BLICATIONS

Other support documentation to be used in conjunction with this manual is as
fol lows:

o Mi I lennium Systems 9520 Software Development System Users Manual

o Mi I lennium Systems 9508 MicroSystem Emulator Users Manual

o CP/M• 2.2 Interface Guide

o ED: A Context Editor for the CP/M Disk System Users Manual
',

o CP/M 2.2 Alteration Guide

o CP/M Dynamic Debugging Tool COOT> Users Guide

o CP/M Assembler CASM> Users Guide

o An Introduction to CP/M Features and Facilities

o CP/M 2.2 Users Guide

o MP/Me Multi-Programming Monitor Control Program Users Guide

o Word Star• Users Guide

o Applicable Addendums for 9508 MicroSystem Emulator Manual which describe
emulation procedures for the fol lowing types of microprocessors:

i i

Z80
8048/49/21/41
6800/01/0\10!
8080/8085

PREFACE

ASSISTAtCE

If you require any assistance on this product, please cal I Millennium Systems
Customer Service on the tol I-free, hot-I ine numbers I isted below:

. '

National C800J 538-9320/9321

California C800} 662-9231

CP/Me and MP/Me are trademarks of Digital Research.

WordStare is a trademark of MicroPro International Corporation.

i Ii

CONTENTS

Chapter

2

3

Iv

Page.

I NTRODUCT I ON. . . , _,
OVERVIEW.
ASSEMBLER
ASSEMBLER

INPUT •
OUTPUT.

ASSEMBLER SOURCE MODULE FORMAT
INTRODUCTION ••••••••
zao SYMBOL I c STATEMENT FORMAT ••
THE LABEL FIELD •••

. .. .
THE OPERATION FIELD •
THE OPERAND FIELD
THE COMMENT FIELD ••
USING SYMBOLS • • • • • •••

Programmer-Defined Symbols.
Pre-defined Symbols •••••
Rules for Creating Symbols.

NLMERIC VALUES •••
Scalar Values ••••••
Address Values ••••••••

NOTATION RULES FOR SPECIFYING CONSTANTS •
Numeric Constants ••

. .
String Constants. • • • • • • • ••••••••••••
Nul I Strings ••••••••••••••••
String to Numeric Conversion •••••••••

. . . .
EXPRESSIONS PERMITTED IN THE OPERAND FIELD ••••••••

~ierarchy of Expression Operators and Functions ••••
Description of Expression Operators and Functions •••••
Binary Arithmetic Operators • • ••••
Unary Operators • • • • • ••• . .
Relational Operators. • • • ••••••••••••
Numeric Comparisons .• • • • • • • • •
String Comparisons ••
String Concatenation.
Functions • • • •••

STRING VAR I ABLES. • • • • • •
ASET Strings. • ••••
String Text Substitution •••••• ·• ••

STATEMENT SYNTAX CONVENTIONS '

. . . .

I NTRODUCT I ON. •
MILLENNILM SYSTEMS ASSEMBLER STATEMENT SYNTAX •••••

Use of Upper and Lower Case Letters and Punctuation
Blank Fields. • • • • • • • • • • •••
Braces and Brackets • • • • • • • • • • • •
Tr a I I I ng Dots • • • • • • • • • • •

MP/M ~ CP/M STATEMENT SYNTAX •••••••••
Conmand Name. • • • • • • • • • • • . . .
Del !miters. • • ••••

. .

Parameters ••
Tr a i I I ng Dots

Chapter

4

5

ASSEMBLER DIRECTIVES.
INTRODUCTION.
LISTING FORMAT CONTROL DIRECTIVES

LI ST and NOLI ST
General Listing Format Control Options.
Macro Listing Format Control Options.
Convention~ for Listing Control

PAGE.
SPACE
TITLE
STITLE.
WARNING

SYMBOL DEFINITION DIRECTIVES.
EQU
STRING.
ASET.

LOCATION COUNTER CONTROL DIRECTIVE.
ORG

DATA STORAGE CONTROL DIRECTIVES
8 YTE.
WORD.
ASCII

MACRO DEFINITION DIRECTIVES
MACRO
EN().1.
REPEAT and ENDR
INCLUDE

CONDITIONAL ASSEMBLY DIRECTIVES
IF, ELSE, and ENDIF
EXITM

SECTION DEFINITION DIRECTIVES
Relocation Options.
SECTION
C(1.1MON.
RESERVE
RESLME.
GLOBAL.
NAME.

MODULE TERMINATION DIRECTIVE.
END

MACROS
INTRODUCTION.
BASIC MACRO EXPANSION PROCESS
MACRO DEFINITION DIRECTIVE.

Macro Definition Directive Conventions.

CONTENTS

Page

..
I ' ~

v

CONTENTS

Chapter

5

..

MACROS <cont.)

MACRO DEFINITION BLOCK •
Source Code Alteration.
Adddltlonal Special Macro Definition Conventions.

The @ Character
The # Character
The % CharaC'ter
The ·1' or A Character.

MACRO TERMINATION
MACRO CALL I NG •

INCLUDE Directive Text Insertion.
Text Substitution •
Special Macro Cal I ing Characters.

The [1 Construct. •
The 1' or/\. CharaC'ter.

Additional Macro Argument Conyentions
EXAMPLES.
CONDITIONAL ASSEMBLY.

Nes"ti ng •
Conditional Macro Termination •

EXAMPLES.
IF-ENDIF Blocks •
REPEAT-ENDR Blocks.

MACRO EXPANSION SIJ4MARY •

6 ASSEMBLER OPERATING PROCESURES

7

INTRODUCTION.
PURPOSE •
EXPLANATION •

ASSEMBLER LISTING FORMAT
I NTRODUCT I ON.

THE ASSEMBLER LISTING •
Head I ngs.
The Listing Line.

THE SYMBOL TABLE.

Appendices

vi

A
B
c
D
E

SOURCE MODULE CHARACTfR SET •
ASSEMBLER DIRECTIVES.
HEXADECIMAL ·CONVERSION TABLES •
ASSEMBLER ERROR CODES
RESERVED WORDS. •

..

• •

Page

CONTENTS

Figure Page

2-1 Properly Formatted Z80.Source Program • • w •

5-1 The Macro Expansion Process •••••••••••••••••
7-1 Sample Assembler and Symbol Table Listing •••••••••••••

Table

2-1 Hierarchy of Expression Operators and Functions ••••••••••

vii

Chapter 1

INTRODUCTION

OVERVIEW ..
A Cross Assembler is an assembler program. It executes on one type of
microprocessor-based system, and translates assembly language source programs
into object modules for execution <after suitable I ink operation> on a different
type of mi~roprocessor-based system.

The Z80 Cross-Assembler executes on the 9520 Software Development System to
assemble Z80 Assembly Language source programs into relocatable object modules.
These object modules are I inked appropriately <using the 9520 Linker Utility) to
create load modules.

The load modules thus created, however, are executable only by downloading the
object code from the-9520 system to a 9508 MicroSystem Emulator Unit which is
configured with the Z80 Emulator Opt·ion components for execution. The load
module can also be downloaded to a PROM Programmer where the user can burn a
PRCJ-1 that can be installed in, and executed at the 9508 MicroSystem Emulator.

The manual describes the Z80 Cross-Assembler as follows:

Chapter 1, Introduction and Overview, provides the user with an overview of the
Z80 Cross-Assembler and basic Information relative to the input/output opera­
tions of the assembler.

Chapter 2, Assembler Source Module Format, describes the format conventions
which must be adhered to when using the assembler.

Chapter 3, Statement Syntax Conventions, explains and ii lustrates the syntax
conventions used in the assembler.

Chapter 4, Assembler Directives, describes the assembler directives used in the
MILLENNILM SYSTEMS Assembler.

Chapter 5, Macros, explains the operation of macros.

Chapter 6, Assembler Operating Procedures, describes the syntax required to
translate source code into executable binary object code.

Chapter 7, Assembler Listing Format, II lustrates end explains the various parts
of an assembler I isting.

1 -1

INTROOl.CTION

Assembler Input

The MILLENNl'..M SYSTEMS Z80 Assembler translates user-written programs into exe­
cutable binary format. The user's program must be written in Z80 symbolic nota­
tion (assembly language>, and becomes the source module tor assembler operation.
User-written programs can be entered into disk tiles with the text editor
program, using procedures described in the 9520.Sottware Development System
Users Manual. If the source module is contained in· more than one flexible disk
file, each file name must be.'specified .by assemble command CASM> parameters.

Al I val id input devices can originate assembler input. The assembler reads the
source module twice, once tor each pass. When it encounters an END directive or
reads the end of the last file during the first pass, the assembler begins the
second pass and starts assembly.

Assembler OutpuT

Assembler output comprises an object module, program I istings, and appropriate
information messages. The object module contains executable binary instr~ctions

and data constants translated from the source module. The entire object file
must be I inked and then loaded into program memory in order to execute the
translated user program on tne Z80 Emulator Processor.

Program I istings produced by the assembler are composed of I ine numbers, the
generated object code, and the source code as entered in the source module.
Wherever an error is detected, an error code is printed on the display device
and the user must refer to the I isting to specify the nature of the problem.

Fol lowing the source code I isting, a symbol table alphabetically I ists al I sym­
bols entered in the program. The table also gives the hexadecimal value of each
symbol and indicates undefined symbols. Below the symbol table, a message indi­
cates the number of source I ines, the number ot assembled I ines, the number of
bytes available, and the number of errors and undefined symbols.

To transfer the I isting and object file to a disk, enter output tile names as
ASM command parameters. To transfer assembler I isting and object files to an
output device <such as a I i ne printer) instead of a f i I e, specify the name of
the device as the ASM command parameter.

The MILLENNILM SYSTEMS Assembler makes two passes through the source module.
The first pass determines the number ot storage bytes required for each state­
ment, and assigns a starting address value for the first byte of each statement
I ine. The location counter, set to zero before the first pass begins, advances
after each statement is read. This action effectively generates the starting
address for each statement. The symbol table Is also constructed during the ~
first pass. During the second pass, the source module and the symbol table are
used to generate the object module and the I istlngs. ·

1-2

INTRODUCTION

After assembly completion, each I ine containing an error is output to the
di sol ay device, with an error code specifying the nature of the error. Below
al I error displays, a message indicates the number of source lines, the number
of assembled I ines, the number ot bytes available, and the number ot any errors
or undefined symbols. If an irrecoverable error prevents assembly completion,
the program aborts and an error code indicates the cause.

1~

Chap1"er 2

ASSEMBLER SOURCE MODULE F<H4AT

INTRODl.CTION

Symbolic Z80 instructions, assembler directives, macro cal Is, and explanatory
comments fi\9ri the source module. Each Z80 source module statement must be
entered according to the MILLENNILJ.1 SYSTEMS Z80 Assembler format. When
translated by the assembler·, the source module becomes the object module to be
executed.

Three types of source module statements may be used:

1. zao symbolic instructions,

2. assembler directives, and

3. macro cal Is.

Z80 S'IMBOLIC STATEMENT FCR4A.T

Each source module I ine may contain up to 128 characters, and is terminated by a
carriage return. Allowable source module characters are detailed in Appendix A.
Blank I ines can be used to improve readabil Tty of the source module I isting.
The blank I ines do not affect the translated program.

Each ZBO instruction, assembler directive, or macro cal I consists of four
fields: the label- field, the operation field~ the operand field, and the comment
field. During program assembly, each Z80 source module Instruction is
translated by the assembler into one, two, three, or four bytes of code in the
object module. The length depends upon the instruction type, and the number and
type of operands required.

The label field, when used, must begin in the first-character position of a
I ine. The operation and operand fie Ids must begin anywhere after the first­
character position and end in any I ine character position within the
128-character range. The comment field may begin in any I ine character position
and must end within the 128-character range. Field sequence may not be changed,
however; and the correct order can only _be ~s follows:

LABEL OPERATION OPERAND C()1MENT

Throughout this manual, this field sequencing format is shown above each source
I ine to II lustrate proper assembler source I ine formatting.

2-1

ASSEMBLER SOOBCE ~QBM~[FORMAT

Readability is improved when each field in the source module begins at a
constant position within the I ine. This columnar forman can be easily imple­
mented by using the tab setting function to define field starting positions.
Figure 2-1 is an example of a properly formatted source module.

LABEL

L1

L2

OPERATION OPERAND

STRING s 1 (80)

EQU 3

ASET 4

ORG 100H

LO A,<HU

COMMENT

;DEFINE STRING VARIABLE S1 WITH
;80 CHARACTER MAXIMLM

;DEFINE CONSTANT SYMBOL Ll TO EQUAL 3

;DEFINE VARIABLE SYMBOL L2 TO EQUAL 4

;STARTS OBJECT CODE OF NEXT INSTRUC­
;T I ON AT 100H

;LOAD REG.A WITH CONTENTS. OF MEMORY
;POINTED TO BY HL REGISTER PAIR.

END ;END OF PROGRAM

Figure 2-1. Properly Formatted Z80 Source Program

A general description of the characteristics of each source module field
fol lows. MILLENNILM SYSTEMS Assembler directives are described in Chapter 4 and
I isted in Appendix B. Macro cal Is are described in Chapter 5.

The Label Field

Labels may be used in al I Z80 instructions, macro cal Is, and assembler direc­
tives. Every label must be unique within each source module. Duplicate labels
prevent proper program execution and cause an error code to appear on the
display device and in the I isting. The label field, when used, must start in
the first-character position of the I ine. A blank or tab terminates the label
field; therefore, imbedded blanks or tabs are not permitted within the field.

Labels represent addresses associated with locations in a source module. The
EQU and ASET directives are the only statements requiring label usage. In al I
other directives, label usage is optional. EQU and ASET directives always
equate the required label to the constant or expression value in the operand
field. The ASET directive al lows the assigned symbol value to be moditied;·the
EQU directive does not. For al I other directives, the label meaning is depen!
dent upon the particular directive. Generally, the label transiates to the
memory address of data or a data constant value. A label in a Z80 instruction
translates to the address of the first byte of the instruction.

2-2

ASSEMBLER SOtR:E MOOll..E FORMAT

ORG and BLOCK directives must contain constants or operand symbols that have
already been defined. Operands in al I other directives may reference label sym­
bols that are defined in later statements.

The OperaTion Field

The operation field contains the mnemonic operation code for a Z80 symbolic
instruction, an assembler directive, or a macro cal I. The mnemonic specifies
the operation or function to be performed at program execution time, or by the
assembler during program translation and assembly. An instruction specifies the
object code to be generated and the action to be performed on any operands that
fol I ow. An assembler directive specifies certain actions to be performed during
assembly and might not generate any object code. The macro cal I specifies the
macro definition block to be expanded.

The operation field begins after the label field is terminated. It the label ls
omitted, the operation field may begin anywhere after the first-character posi­
tion in the I ine. The operation field is terminated by one·or more spaces, by a
tab or carriage return, or by a semicolon indicating the start of a col'TITlent
field.

If the operation field does not contain a Z80 instruction, an assembler direc­
tive, or a macro cal I, the assembler rejects the entire statement and prints an
error code. Four bytes of zero value are generated by the assembler to tit I the
area where a val id instruction would otherwise have been stored.

The Operand Field

The operand field specifies values or locations required tor the given assembler
directive, instruction, or macro cal I. The operand field, It present, begins
after the operation field· Is terminated. Spaces may be used In the operand
field. Two or more operands are separated by col'TITlas. The field is terminated
by as carriage return, or by a semicolon indicating the start of a col'TITlent
f lei d.

The operation code <appearing in the operation field) determines the type and
number of items required tor the operand field. It more than one item is
required, the sequence of item appearance is determined by the operation code.

Operands required for macro calls and assembler direc~-ives are discussed In
Chapters 4 and 5, and summarized in Appendix 8.'

Nine types of information are permitted in the instruction operand field. Each
Instruction determines the operand types and their proper sequence. Refer to
the Z80 Emulator Addendum tor a summary of Z80 instruction requirements.

2-3

ASSEMBLER SOURCE MODULE FCH4AT

The fol lowing I ist defines the nine operand item types and their required syntax
tor Z80 instructions:

OPERAND ITEM TYPE

1) A Z80 register containing the operand
data

2> A Z80 16-bit register pair containing
the operand data

*3> A 16-bit register pair enclosed within
parentheses indicating a register
holding an absolute memory address.

4) An indexed expression indicating a
memory address

5> An 8-bit data or address constant
within the range, -127 to +255. An
immediate value.

6) A 16-bit data or address constant
within the range, -32, 76a to 32, 767.
An immediate value.

7> An 8-bit 1/0 device address within
the range, 0 to 255.

a> A 16-bit operand data value.

9) A parenthesized 16-bit expression
indicating a memory address.

OPERAND ITEM SYNTAX

A C8 bi ts>
8 C 8 bits>
C C8 bits>
D C8 bits>
E C8 bits>
H ca bits>
1 ca bits>
L ca bits>
R C8 bits)
IX (16 bits)
I Y· C 1 6 b its)
SP C 1 6 bi ts)

BC
DE
HL
AF

CBC>
COE>
CHU

(IX + express Ion) CI X - express ion>
CIY + expression>CIY - expression)

Expression

Expression

<Expression)

Expression

<Express ion)

*An· expression which Is only partially enclosed within parentheses 1s never a
memory contents reference. Example:

2-4

LO A,C5+4>; place contents ot 9 into-A
LO A,C5)+4; place the value 9 into A

ASSEMBLER SOURCE MOOlLE F<H4AT

The $ is used within operands to symbolize the first byte of the statement in
which it appe~s. The effect of $ usage is equivalent to using a label in that
statement. wr:e n' using the $ to reference addresses, consu It the Z80 Emu I ator
Addendum for the number of bytes in each instruction. The two instruction
sequences that fol low are equivalent.

LABEL OPERATION OPERAND COMMENT

1) TIMER DEC c ;DECREMENT C REGISTER, LABEL
;INSTRUCTION TIMER

JR NZ, TIMER ; JlJ.1P BACK IF C NON-ZERO

2) DEC c ;DECREMENT C REGISTER

JR NZ, $-1 ; JlJ.1P BACK IF C NON-ZERO

The $ represents the address of the first byte in the JR instruction. Since the
DEC instruction takes one byte, $-1 represents the first byte in the preceding
instruction.

Caution should be exercised when using the$ symbol, since program logic errors
could result. In the preceding example, an error might occur if an instruction
were Inserted between the DEC and JR instructions without changing the $-1
expression. Inserting an instruction in the. first example requires no other
changes.

Any symbols tor the Z80 registers, and register pairs have been pre-defined by
the assembler. Any data constant, or 1/0 device address in the operand field
may be represented by expressions. An expression may consist of the fol lowing:

1> a single number,

2> a string constant,

3) a symbol, or

4) multiple numbers, string constants, and/or symbols combined with
arithmetic and/or logical operations. ,

The assembler evaluates an expression in the operand field of a statement. If
the expression violates permissible limits tor the operand field, an error code
is dlspl ayed. Additional information concerning expressions appears later in
this section.

2-5

ASSEMBLER SOURCE MODULE F~AT

Any symbol appearing in the operand field that is not pre-defined by the
assembler (see ?re-defined ·symt>ols in this section) must be defined in the label
field of an EQU or ASET directive or any ZBO instruction in the source module,
or in the operand tield of a GLOBAL, STRING, SECTION, CCMMON, or RESERVE
directive.

A statement may contain both the operand symbol and its label definition, as in
the case of an instruction that jumps to itself. For example:

LABEL OPERAT l"ON

HERE JR

OPERAND

NZ,HERE

COMMENT

;HANG HERE IF PREVIOUS RESULT
; IS NON-ZERO

Typically, however, the symbol is defined in another stat~ment. If the symbol
is not defined in any statement, an error code is displayed. Additionally, sym­
bols appearing in the operand field of ASET, EQU, ORG, and BLOCK directives must
have been defined in the label field of a previous statement. Operand symbols
in al I other statements may be defined in the label fields of later statements.

If an i 11 egal item appears in the operand field, the assembler flags the item
with an error code on the display device and in the I !sting. Al I operand
expressions. are processed by the assembler to obtain 16-bit results. The
assembler ignores any overflow conditions that occur while evaluating
expressions. If the operand expression requires an 8-bit value and the value
represented is greater than this, an error code is displayed and the assembler
processes Only· the lower eight bits of the 16-bit value. An undefined value in
the operand field is treated as zero, and causes an error.

The Conment Field

Programs containing comments are more readable, and hence easier to debug and
modify. The optional comrnent field begins with a semicolon, Is terminated by a
carriage return, and follows all other statement fields. If no other fields are
used, the comment field may begin anywhere in the statement.

String and macro substitution may be performed in the comment field. <Refer to
the Chapter 2 subsection entitled String Text Substitution and to Chapter 5 for
discussion on string and macro substitution.> Since the single quote character
signals substitution, the character must be preceded by a caret <~> or up-arrow
Ct) character when used for purposes other than substitution.

2-6

ASS94BLER SOllCE MODULE FOFl4AT

USING S'IMBOLS

Symbol usage makes a program easier to read and modify, and reduces the risk of
error•during program modification. Symbols are defined when they appear in the
I abel field of Z80 instructions, macro cal Is, and assembler directives, or in
the operand field of GLOBAL, SECTION, CCMMON, RESERVE, MACRO, or STRING direc­
tives •. After having been defined, symbols can be used in the operation and
operand fields of Z80 instructions, macro calls, and assembler directives.

A symbol label in a Z80 instruction represents the address of the first byte of
that instruction. Such a label al lows the user to transfer control Cjump or
cal I) to an instruction without knowing its absolute address. To transfer
control, place the instruction symbol in the operand field of the jump or cal I
instruction.

The meaning of a label symbol used as an operand tor an assembler directive is
dependent upon the directive. Generally, the symbol represents the memory
address of data or a data constant value. Through the use of symbols, the
d i rect i ve operand tie I d can re fer to a data constant or a memory data area
without regard to the absolute memory address. This is especially helpful when
modifying a data constant frequently referred to by other statements. The
programmer need only change the detining statement, rather than al 1 statements
referencing the constant.

Some symbols are created by the progranmer, and others are pre-defined by the
assembler.

Progr81111118r-Oefined Symbols

Programmer-defined symbols are assigned values during the assembler's first
pass. Operand fields referring to the symbols are translated during the
assembler's second pass. The ORG and BLOCK directives each alter the contents
of the assembler location counter during both assembler passes. Because the
alteration value is specified in the operand field of the ORG and BLOCK direc­
tives, any symbol appearing in the operand field of these directives must also
be defined in the label field of a previous statement in the source module. The
EQU directive operand field may contain a forward reference to a symbol, if the
symbol does not appear in the operand field of an ORG, BLOCK, or another EQU
directive. Forward referencing operand symbols are, ~owever, al lowed ln al I
other statements. '

Redefinition of symbols is generally not allowed. A previously defined ASET
symbol, however, may.be redefined in another ASET directive.

2-7

ASSEMBLER SOURCE MODULE FCH4AT

Pre-defined Symbols

Ir c;ertain words are reserved as pre-defined symbol names tor use in the operation
and operand fie Ids of source programs. Among these words are the fol lowing
register symbols, assembler directives, instruction mnemonics, assembler I isting
options and operators. Refer to Appendix E tor a complete I ist of reserved
w9rds. tor the Z80 Assembler.

1 h The contents of 8-b it reg i'sters are specified by the charac1ter corresponding
to the register name. The register names are A, B, C, D, E, H, I, L, and R.

2) The contents of 16-bit double registers and register pairs consisting of two
8-bit registers are specified by the two charact~rs corresponding to the
register name or register pair. The double register names are IX, IY, and
SP. The register pair names are AF, S:, DE, and HL.

3) The Z80 instruction mnemonics <refer to Appendix E).

4) The Assembler directives, options, and operators·Crefer to Appendices Band
E).

5) The MILLENNILM SYSTEMS Assembler directives reserved tor future use <refer
to Append ix E>.

Rules for Creating Symbols

The first character in a symbol must be alphabetic. The remainder of the symbol
may be composed of the fol lowing characters: the letters A through Z; the num-
bers 0 through 9; and the special characters, • <period>, <underscore>, and
$ Cdol lar sign). Lower-case letters are interpreted in their upper-case form.
A symbol may contain up to eight characters. Only the first" eight characters of
the symbol are used, and excess characters are ignored. Al I pre-defined symbols
are reserved words and cannot be redetined.

NLMER IC VALUES

The assembler defines two types of numeric values, scalars and addresses.
Scalar values represent arbitrary numeric values. Address values represent
actual memory locations within a program.

Scalar Values

Scalar values are signed integers ranging from -32, 768 to +32,767. Scalar
values serve as counting values in a program, rather than as actual references
to memory locations. Scalar values are completely defined upon assembly.

2-8

ASSEMBLER SC>mCE MODULE F<Hi1AT

Address Values

Address values represent actual memory locations within a user program. Address
values are unsigned numbers ranging from 0 to 65,535. The assembler produces
relocatable object code, that is, object code whose locations are defined during

~

I inking. Upon assembly, address values are relative to an assembler-defined
base <or starting point>. Therefore, actual memory locations associated with
address values are unknown until after the I inking process occurs.

More than one address base may exist within a given assembly. The user may
define additional address bases by issuing a SECTION, CCJv1MON, or RESERVE direc­
tive. Re fer to ~ iapter 4 describing these directives and their relocation
options. Since an address value lacks complete definition upon assembly,
address value usage is more restrictive than scalar value usage. A unique loca­
tion counter exists for each assembler-defined base in a user program. The $
symbol (current location counter contents> _represents an address value.

NOTATION RULES FOR SPECIFYING CONSTANTS

Constants may be either numeric or string constants.

Numeric Constants

Numbers are integers and are assumed to be decimal unless otherwise specified.
This means a number without a suffix rs evaluated according to the decimal
number base. A suffix letter code must be used to specify a radix other than
decimal. The fol lowing suffixes are available:

1> H for hexadecimal. For example: 35H
Al I numbers must begin with a numeric digit; therefore, a zero must
precede al I hexadecimal numbers beginning with the hexadecimal digits
A through F. Examples of this follow:

085H and OFFH

2> 0 <capital o, not zero> or Q for octal. For example: 760 and 76Q

3) B for binary. For example: 101101108

Leading zeros are appended to or truncated from constants to produce 8- or
16-bit values as required by the particular operand. Blanks are not permitted
within a numeric constant. Refer to Appendlx C for hexadecimal, decimal, and
b ·i nary number conversion tables.

2-9

ASSEMBLER SOURCE MODULE FORMAT

String Constants

In addition to symbols and numeric constants, operations may also contain string
constants. String constants can be generated by using ASCII strings. ASCII
<American Standard Code for Information Interchange> is a standard code tor
representing characters transmitted between the computer and peripheral devices
such as teletypes, printers, and terminals. String constants and variables may
be combined into string expressions using special operators. A string
expression may be used anywhere a normal expression is al lowed. String
constants are written by ench>sing ASCII characters within double quotes (11). A
string constant may contain any character within the source code character set
except a carriage return.

A double character may be included within a string by preceding it with a caret
character(""')· The caret character removes the special rreaning from any
character and al lows the special character to be treated as a regular part of
the text. A caret may also be included within a string by entering two carets.
Examples of string constants and caret usage fol low:

11ABCDEF 11 results in the string ABC DEF

11 1 23A11 34 11 results in the string 12311 34

II /\All results 'in the string /\.

Nul I Strings

A string containing zero characters is a nul I string. A nul I string is entered
as two doub I e quotes without i nterven Ing text or spaces C 1111) •

String To Numeric Conversion

It a string expression is used where a numeric value is required, the string is
automatically converted to a numeric value. The numeric value of a string is
detined as fol lows:

The numeric value of the nul I string <""> is zero.

The numeric value of a one-character string is a 16-bit value whose high
order nine bits are zeros and whose low order seven bits contain the ASCII
code for the character.

The numeric value of a two-character string is a 16-bit value as wel I. In this
case, the ASCII code for the leftmost character is in the high-order byte. The
ASCII code for the second character from the left Is in the low-order byte. ~

2-10

ASSB4BLER SOU:CE MODULE F<R4AT

The numeric value of a string longer than two characters is the numeric value of
the leftmost two characters in the string. An error code is displayed when this11
occurs.

Examples of string to numeric conversion fol low. The numeric values for ASCII
chara~ters are found in Appendix c.

STRING
II II

"A II
"12 11

"1 23"

NUMERIC VALUE
0
41H
3132H
3132H <truncation error occurs>

EXPRESSIONS PERMIITED IN THE OPERAN> FIELD
ncl.

The opera~field may contain an expression consisting of one or more terms
1acted on by expression operators. A term is either a symbol, a numeric

•. constantt'or an expres.sion enclosed within parentheses. The value of a term may
'f¥ 1~ifbe an address, a scalar value, or undefined. Spaces are permitted within an
::0""~ 1""expression; the assembler reduces the expression to a single value. When an

invalid term is used, the display device and the listing show an error code, and
the value of the expression Is undefined.

The fol lowing outline I ists the expression operators and functions. A chart
describing the hierarchy of al I expression operators and functions fol lows this
summary. Each expression operator and function Is described in greater detail,
completing this discussion.

Unary Arithmetic Operators

OPERATOR
+

MEANING
Identity
sign inversion

Binary Arithmetic Operators

OPERATOR
*
I
+

MOD
SHL
SHR

MEANING
rm.ii tip I ication
division
addition
subtraction
remainder
shift left
shift right

Unary.Logical Operator

Relational Operators

OPERATOR MEANING
= equal
<> not equal
> greater than
<= I es.s than or
< less than
">=- '"'f~ttv +Ito'"

Binary Logical Operators

OPERATOR

&

! !

MEANING

and O'Y
Inclusive .Qk
exclusive or

String Concatenation Operators

equal

•'r' C'l<Jc/

OPERATOR MEANING OPERATOR MEANING
not Cblt Inversion> string concatenation

2-11

ASSEMBLER SOURCE MOOULE F°"4AT

FUNCTIONS

HI <exp)

Returns the most significant byte ot a numeric expression. The expression
may be either an address or a scalar value. It an address is specified as
the HI function argument, subsequent operations must not be performed on the
HI function result. The ~I function result is numeric •

....

LO (exp)

Returns the least significant byte of a numeric expression. The expression
may be either an address or a scalar value. If an address is specified as
the LO function argument, subsequent operations must not be perform~d on the
LO function result. The LO function· result is a-a+FiR~e 1"1c.nw~"''·

DEF Csym)

Returns -1 Ctrue) it the symbol has been previously defined in this pass.
Otherwise, returns 0 (false>. The ~EF function result is numeric.

SEG <string expression,expl,exp2)

Extracts exp2 characters from the specified string, starting with the
character, expl. If the end of the string is encountered before exp2 charac­
ters are extracted, only those characters up to the string end are extracted.
Both expl and exp2 must be scalar values. The SEG function result is a
string.

NCHR <string expression>

Returns the current number of characters in the specified string. For a
string variable, the length returned may be less than the length defined by
the STRING directive. The NCHR function result is numeric.

ENDOF <section name)

Upon I Inking, the ENDOF function returns the address of the last byte of the
specified section. The symbol specified in this function lllJSt be a global
symbol. It the symbol is not a section name, the address of the symbol is
returned. Further operations may be performed on the result of ENDOF, pro!
vided the operations are allowed tor address values. The ENDOF function
result Is numeric.

2-12

ASSEMBLER SOtR:E MODU...E FORMAT

BASE <exp1,exp2)

Returns -1 <true> if the two expressions, exp 1 and exp2, share the same base.
Otherwise, returns 0 (false). The BASE function result is numeric.

STRING (exp>

Returns the value of the expression as a six-character s-tring. The five
rightmost characters represent the decimal value of the expression; the left­
most character indicates whether the number is positive or negative. If the
leftmost character is a minus, "-", the number is negative. If that
character is a zero, "0", the number is positive. The expression must be a
seal ar value.

SCALAR <exp)

Converts the address value of the expression to a scalar value.

Hierarchy of Expression Opera'tors and Functions

In multiple-operator expressions, operators and functions are evaluated in the
order of their precedence. Table 2-1 II lustrates this hierarchy. The functions
at the top of the table have the highest precedence. The operators at the bot­
tom of the table have the lowest precedence. Al I expression operators and func­
tions located on the same I lne have equal precedence, and are evaluated from
left to right. Parentheses may be used to override the order of precedence, and
parentheses are evaluated from Inward to outward. The most deeply parenthesized
subexpressions are evaluated first.

If the expression entered Is too complex for the assembler to translate, an
expression error code is displayed. This does not occur when parentheses
nesting depth is three or less.

Table 2-1. Hierarchy of Expression Operai"ors and Functions.

LO HI SEG NCHR DEF ENDOF BASE STRING SCALAR - - -- -- -- --
. ---.
+ - (u nar_y_ _2_1 us and mi nus>
* z SHL SHR MOD
+ -- <addition and sub-traction>
= <> < <= > >=
&
! ! !

2-13

ASSEMBLER SOURCE MODULE F~AT

Description of Expression Operators and Funct"lons

In addition to the arithmetic C+, -, *,/>and logical C, &, !, !!) operators,
several other operators and functions are al lowed within numeric expressions.
These operators and functions provide additional arithmetic functions and a
means for comparing numeric quantities.

Binary Arithmetic Opera1"ors .,

Binary arithmetic operators act on numeric values, which may be scalar or
address values. Scalar values may appear within arithmetic operations In any
combination. Only the fol lowing binary arithmetic operations are permitted when
acting upon addresses:

SCALAR VALUE + ADDRESS = ADDRESS

ADDRESS

ADDRESS

ADDRESS

+ SCALAR VALUE = ADPRESS

- SCALAR VALUE = ADDRESS

- ADDRESS = SCALAR VALUE <Both addresses must be based
to the same section.)

Any other combination of address terms yields an undefined result.

MOD is a binary operator that computes the remainder when the first operand is
divided by the second operand. For example, an Instruction entered as A MOO B
yields the remainder resulting from A/B. The program segment that follows
demonstrates MOD operator usage.

LABEL OPERATION OPERANDS COMMENT

AX EQU 5 MOD 2 ;AX IS SET TO 1 , SINCE 5/2 YIELDS A
;REMAINDER OF 1

BX EQU 14 MOD AX ;BX IS SET TO 0, SINCE 14/1 YIELDS A
;REMAINDER OF 0

CZ EQU CBX+29>MOD 25 ;CX IS SET TO 4, SINCE o+29 YIELDS 29
;AND 29/25 YIELDS A REMAINDER OF 4

DX EQU C-5) MOD 2 ;DX IS SET TO -1 , SINCE -5/2 YIELDS
;REMAINDER OF -1

..
SHL and SHR are binary operators that shift their first operands the number of
bit positions specified by their second operands.

2-14

A

ASSEMBLER SOURCE MODlLE F<R4AT

SHL performs a left logical shift (equivalent to multiplying by two>. Zeros are
shifted into the right end ct the 16-bit value. Bits shifted out of the left­
most bit position are lost.

SHR p~rtorms a right logical shift. Zeros are shifted into the leftmost bit
positions. Bits shifted from the rightmost bit position are lost. Shifts of 16
or more bits generate a result of zero and produce a i'runcation error code. The
program segment that fol lows demonstrates SHL and SHR operator usage.

LABEL

DX

EX

FX

GX

OPERATION

EQU

EQU

EQU

EQU

Unary Operators .

OPERAND

1 SHL 1

DX SHR 1

06EOH SHL 3

OFFFFH SHR 16

COMMENT

;VALUE ASSIGNED TO DX IS 2, SINCE A
;SHIFT LEFT ONCE CAUSES 1 TO BE
;MULTIPLIED BY 2

;VALUE ASSIGNED TO EX IS 1 SINCE DX
;C2) SHIFTED RIGHT IN A BINARY FASHION
;YIELDS 1

;VALUE ASSIGNED TO FX IS 3700H,
;SINCE 2 CUBED IS 8, AND 8 TIMES
; 06EOH is 3700H

;VALUE ASSIGNED TO GX IS O, SINCE
;OFFFFH SHIFTED RIGHT IN A BINARY
;FASHION YIELDS 0

Al I unary operators may act upon scalar values. The plus sign C+> is the only
unary operator permitted to act upon addresses.

Relational Operators

The relational operators include=, <>, >, <, <=, and >=. Relational
operators al low signed numeric, unsigned numeric, and string comparisons.

Numer i c Coq>ar I sons

If either of the operands of a relational operator is.'11umeric, the relatlonal
operators perform signed or unsigned numeric comparisons. A signed numeric com­
parison rs performed on two scalar values, a string and a scalar value, or a
scalar and a string value. An unsigned numeric comparison is performed whenever
one of the operan~s rs an address. Comparison of two ·addresses base·d in d t f-
f erent sections results Jn an undefined value. These comparisons are sunvnarized
as fol I ows:

2-15

A SSB4BLER SOURCE MODULE FCR4A T

STRING SCALAR ADDRESS

STRING String Comparison Signed Numeric Unsigned Numeric
Comparison Comparison

SCALAR Signed Numeric Signed Numeric Unsigned Numeric
Comparison Comparison Comparison

.,
'

ADDRESS Unsigned Numeric Unsigned Numeric Unsigned Numeric
Comparison Comparison Comparison

It a comparison is performed between an address and a string or scalar value,
the base of the address is first added to the string or scalar value. If i'No
addresses are compared, they must have the same base, or an error·results.

For signed comparisons, numbers range from -32768 to 32767. For unsigned com­
parisons, numbers range from 0 to OFFFFH (65,535).

An operator in a numeric comparison determines whether the specified rela­
tionship exists between its two operands. The resulting value Is 0 it the rela­
tionship is false and -1 COFFFFH> it the relationship is true. Examples of
relational operator usage follow.

LABEL OPERATION OPERAND COMMENT

T EQU -5 > 7 ;VALUE ASSIGNED TO T IS 0, SINCE -5
; IS NOT ~EATER THAN 7

p EQU 7 > = -5 ;VALUE ASSIGNED TO P IS -1, SINCE 7
; IS ~EATER THAN -5

u . EQU T < > P ;VALUE ASSIGNED TO U IS -1, SINCE R
;IS NOT EQUAL TOP

String Comparisons

The relational operators C=, <>, >, <, <=, >=) may be used to compare the
values of two string expressions. When strings are compared using these rela­
tional operators, the comparison is made numerically, according to the ASCII
collating sequence. Refer to Appendix C tor the correct character ordering
sequence of ASCII characters.

String comparison is performed only when both operands of a relational operator
are strings. If only one of the operands of a relational operator is a string,
the string is converted to a scalar value and a numeric comparison is performed.

2-16

ASSEMBLER SOURCE MOOll.E F<H4AT

String comparison always proceeds from left to right. It two strings are equal
through the last character of the shorter string, the shorter string is con­
sidered to be less than the longer string.

Examples of stri~g comparisons fol low.

"AB" = "AB II results

II AB II < > "AB II results

"A" > "B II results

"ABC" > "AAAA II results

"ABC" > "ABC II results

II II< II II. results

1 < "1 II results

S1"ring Conca1"ena1"1on
. .

in

in

In

in

in

In

In

-1 (true)

0 (false>

0, since A is less than B

-1, since B Ts greater than A

O, s i nee "ABC" has three characters
"ABC" has four, including the final space

-1, since a nul I string Js less than a
blank character

-1, since the numeric value of the
ASC 11 character "1" Ts 31H and is
greater than 1

The concatena~lon operation combines two strings into a single string. The
operator used to specify string concatenation Ts the colon <:>. The colon may.JI-'
be used to concatenate any two string expressions. An error occurs when an
attempt is made to concatenate two numeric values or a string and a numeric
value. Examples of string concatenation fol low:

II A II : "B II results in

""·"" . results In

"A II: II II: "B" results in

"A II:"" results in

II ABC II : II J ": "2" results in

"AB"

"", s I nee two nu 11 strings produce a
nul I string

"AB", s I nee a nu I I str i ng and a character
produce the character'._

"A "

"ABCl 2"

2-17

ASSEMBLER SOURCE MODULE F<»tAT

Functions

HI and LO are unary functions that respectively extract the high- and low-order
eight bits of their operands. References to HI or LO are written as single
argument functions. The value to be acted on appears in parentheses, fol lowing
the keyword HI or LO. If this value is an address, further operations on the
result of HI or LO are disallowed. Examples of HI and LO· function usage fol low:

.,

LABEL OPERATION OPERAND COMMENT

I XB EQU 1-i I COCOOFH) ;VALUE ASSIGNED TO IXB IS COH

JX EQU LO COCOOFH> ;VALUE ASSIGNED TO JX IS OFH
I()(CIH

KX EQU LO CH I COCOOFH) ; VALUE ASSIGNED TO '1- IS 1, Ii HlbC R~

z EQU 5 + LO CQ) ; INVALID- WHEN Q IS AN ADDRESS

DEF is a unary function that determines whether a symbol has already been
defined. DEF is referenced as a single-argument function. The argument must be
a symbol and may not be an expression. If the argument symbol has already been
defined, the value of DEF is -1 COFFFFH). If the argument has not been defined,
the value of DEF is O. A pre-defined symbol used as an argument causes an
error. Examples of DEF function usage fol low.

LABEL OPERATION

MK EQU

Q EQU

RX EQU

s WORD

2-18

OPERAND

DEF CK>

DEFCN>

DEFCRX)

DEF CS>

COMMENT

;VALUE ASSIGNED TO MK IS -1 IF K IS
;ALREADY DEFINED

;VALUE ASSIGNED TO Q IS 0 IF N IS
;UNDEFINED

;VALUE ASSIGNED IS O. THE SYMBOL ON
;THE LEFT OF THE EQU DIRECTIVE IS
;UNDEFINED UNTIL THE EXPRESSION
;ON THE RIGHT IS EVALUATED

;A WORD OF <EJECT CODE CONTAINING
;OFFFFHC-1) IS GENERATED. THE LABEL
;ON THE WORD STATEMENT IS DEFINED
;BEFORE THE STATEMENT IS EVALUATED~

ASSEMBLER SOUR:E MOOlLE FORMAT

fhe SEG function <segmentation) is used to extract a portion of a string. The
SEG function uses three arguments. The first argument is the string <or string
expression) from which a substring is to be extracted. The second argument is a
numeric expression specifying the position of the leftmost character of the
strin~ where the substring is to be extracted. Characters within the string are
numbered from left to right starting with one. The third argument is a numeric
expression specifying the number qf characters to be extracted. The sp~cified
characters are extracted unless the end of the string is encountered first. In
this case, only those characters up to the end of the string are extracted. The
fol lowing examples ii lustrate properties of the. SEG function:

SEGC "ABCD", 2, 2> results in "BC"

SEGC "ABCD", 1, 4) results In "ABCD"

SEGC "ABCD", 3, 3) results in "CD"

SEGC "ABCD", 5, 2) results in "" C the nul I string, resulting in
zero characters)

SEGC "ABCD", 3, O> results in ""
The NCHR function may be used to determine the number of characters in a string
expression. NCHR is referenced as a single-argument function, that argument
being the string expression whose length is to be determined. The result of
NCHR is numeric and l"WJt a string value. Examples of PCHR function results
fol I ow.

NCHR < "")

NCHR ("ABC II)

NCHR (SEG< "XYZ II, 2, 1)

SEG< "ABC" ,NCHRC "ABC">, 1)

results in

results in

results in

results in

0

3

"C", s i nee C is the I ast
character of "ABC"

The ENDOF function returns the address of the last byte of a section. The argu­
ment for ENDOF must be the section name whose ending address ls ·to be deter­
mined. An example of ENOOF usage fol lows:

LABEL OPERATION

•
•
RESERVE

LO

OPERAND

STACK, 1 OOH

SP,ENOOF <STACK>

COMMENT

;NAMES A SECTION, STACK, AND
;ALLOCATES AT LEAST 256 BYTES

;LOAD STACK REGISTER WITH THE END
: OF THE STACK

2-19

ASSEMBLER SOURCE MODULE FOR'4AT

The BASE function determines whether two expressions share the same base. It
the expressions share the same base, the value ot BASE is true COFFFFH).
Otherwise, the value ot BASE is false CO). Examples ot BASE function results
fol low. Q,R, and ZZ represent addresses where Q and R share a common base,
while ZZ does not.

BASE CQ,R) results in OFFFFH C true>

BASE CQ,Q+l 5) results in OFFFFH (true) .,
'

BASE CZZ,Q) results in 0 Cf a I se)

BASE CQ,Q-R) results in 0 Ctal se) because Q-R is seal ar

BASE (5, 15) results in OFFFFH Ctrue) because 5 and 15
are both scalar

BASE C5,Q-R> results in OFFFFH Ctrue)

BASE C5,ZZ-Q> results in Error since subtraction is not val Id
between addresses with different bases

The STRING function returns the decimal value of an expression as a six­
character string. The expression must be a scalar value. When the value does
not fil I six digits, leading zeros appear in the resulting string. If the
expression value is negative, a minus sign is placed in the resulting string.
Examples of STRING function results fol low:

STR I NGC5) results in "000005"

STRINGC5+15) results in· ·"000020 If

STRINGCOFFH> results in "000255"

STRINGC-OFFH) results in "-00255"

The SCALAR function converts the address value of the expression to a scalar
value. The resulting scalar value is equal to the displacement of the address
value from the address value's base. Upon I inking, the resulting scalar value
might not be the same as the final value of the expression. The SCALAR function
does not affect scalar-valued expressions.

2-20

An example of scalar conversion fol lows:

LABEL .. OPERATION

SECTION

Al ORG

WORD

SECTION

A2 ORG

WORD

/ID
OPERA~

x

7

SCALAR<$) MOD 2

ASDF

6

SCALARCA1>+SCALAR<A2>

ASSEMBLER SOUR:E MOOt.LE FORMAT

COMMENT

;DEFINES A NEW SECTION W\MED
:X

;ADVANCES LOCATION COUNTER
;TO ADDRESS 7~ ASSIGNS ADDRESS
; 7 TO A 1

;CONVERTS ADDRESS 7 TO SCALAR
;VALUE. PERFORMS 7/2 AND
;RETAINS REMAINDER 1.
;ALLOCATES ONE WORD TO
; VALUE 1

;DEFINES NEW SECTION W\MED
;ASDF

;ADVANCES LOCATION
;COUNTER TO ADDRESS 6 W ITH IN
;SECTION ASDF. ASSIGNS 6 TO A2

;ALLOCATES ONE WORD
;CONTA l.N I NG SCALAR VALUE 13

Note that if the SCALAR function were not entered in the above WORD directives,
an error would result. Scalar values are unaffected by changes in address base.
Thus, in the above program, the scalar result of the operation WORD SCALAR<Al>
+ SCALARCA2) remains unchanged no matter what base values are assigned to sec­
tions X and ASDF upon I inking.

STRING VARIABLES

String variables enhance the value of string expressions by providing a means
·for storing string expression values. A string variable is a symbol with an
associated string value, and is created by use of the .. STRING directive.

2-21

ASSEMBLER SOUR:E MODULE FOOMAT

The desired string var i ab I e names are def i. ned in the aper and fl e I d of the STRING
statement. The maximum character length of the value to be stored in the
string variable may be specified by entering a numer1~c expression in the operand
field. When this optional character length expressiqn ~is not specified, an
eight-character length is assumed. In the following example, a string variable
is defined as STRVAR, with a maximum character length of 16.

LABEL OPERATION OPERAND

STRING STRVARC 16)

For further discussion pertaining to STRING statements, refer to Chapter 4
describing assembler directives.

·ASET Strings

The ASET directive assigns a string expression value to a string variable
defined with the STRING directive. The string variable is entered in the label
field of the ASET directive; the string expression is entered in the operand
field. The string expression value is evaluated and assigned to the string
variable. It the resulting string expression's length is longer· than the maxi­
mum string variable length, the string expression is truncated before assign­
ment, and an error code is di.splayed •. Examples of ASET string usage follow.

LABEL OPERATION

STRING

Al ASET

A2 ASET

A4 ASET

A3 ASET

Al ASET

2-22

OPERAND

A1,A2C2>,A3C45),A4CO>

COMMENT

;DEFINES STRING VARIABLE Al
;WITH A DEFAULTING VALUE
;LIMIT tF 8 CHARACTERS
;DEFINES STRING VARIABLES
;A2, A3, AND A4 WITH
;RESPECTIVE VALUE LIMITS OF
;2, 45, AND 0 CHARACTERS

"AB" ;VALUE OF Al IS "AB"

Al ;VALUE OF A2 IS "AB"

Al:A2 ;VALUE OF A4 IS ""
;TRUNCATION ERROR SINCE A4
;ALLOWS A VALUE LIMIT OF 0
;CHARACTERS

"A MEDI~ LONG STRING" ;VALUE OF A3 is "A
;MEDI~ LONG STRING"

A3 ;VALUE OF Al IS "A MEDI~".
;STRING TRUNCATED

ASSEMBLER ~E MODlLE FCR4AT

String Tex-t Substitution

String variables may be used tor modification of source text being processed by
the assembler. Using string variables makes it possible to insert code into a
sourc~ I ine, thus al lowing the code to be processed as it it were part of the
original source I ine. Before the assembler processes a source I ine, it scans
the I ine tor string variables enclosed within single quote characters. When
·such a variable is encountered, it is replaced with the specified value and the
scan continues. When the entire I ine has been scanned and al I code substitu­
tions are made, the assembler then processes the I ine. For example assume the
assembler processes the fol lowing code:

LABEL OPERATION OPERAND

STRING OP

OP ASET ''WORD"

'OP' 1, 2, 3

When the assembler scans the I ine containing 'OP' 1,2,3, the string variable
'OP' is replaced with the value defined for the substitution, "WORD". The I ine
resulting upon assembly fol lows:

WORD 1, 2, 3

String substitutions can occur anywhere within al lne of code including within
string constants and comments.· For the examples that follow, assume that Al,
A2,·A3, and A4 are defined as specified.

LABEL OPERATION OPERAND

STRING A 1,A2,A3,A4

Al ASET "YTE"

A2 ASET "123,456"

A3 ASET "CG4MENT"

A4 ASET ""

2-23

ASSEMBLER SOURCE MODULE F°"4AT

Assume that the fol lowing substitutions are then performed.

SOURCE CODE

BYTE 'A1','A2'

WORD 1 'A4 I

A4 ASET" 'A3' "

WORD " 'A4 I "

B'A1 I 'A2'-200

S 'Al '·'A2'

RESULTS AFTER SUBSTITUTION

BYTE YTE,123,456

WORQ

A4 ASET "CQ.1MENT"

WORD "CQ.1MENT"

BYTE 123, 456-200

BYTE 123,456 <error code displayed due to undefined
instruction mnemonic, since space was
omitted between 'A1' and 'A2'>

Since the single quote character always signals string substitution, it is
necessary to precede the character with a caret(""") if string replacement is
not be be performed. The caret character al lows the single quote character to
then be interpreted as a I iteral character in a statement. An example
demonstrating caret usage fotl ows: · ·

ASC 11 ''WHAT 'S UP Docl..? 11 results in WHAT'S UP DOC?

2-24

Chap'ter 3

STATEMENT SYNTAX CONVENTIONS

INTROOLCTION

Many of the fol lowing chapters in this manual contain MILLENNIUM SYSTEMS
Assembler and MP/M or CP/M statement descriptions. Each statement description
is preceded by a syntactical block showing the required statement format. Th~s
section describes the syntax conventions for MILLENNILM SYSTEMS Assembler and
MP/M or CP/M statements.

M ILLENNI~ SYSTEMS ASSEMBLER STATEMENT SYNTAX

MILLENNILM SYSTEMS Assembler directives and macro cal Is may contain up to four
fields. Each field name is indicated in the syntactical block above the
corresponding field item, as shown io the fol lowing example.

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol 1 BYTE {.expression} [,expression} [; charstr i ng J

Use of Upper and Lower case LeTters and Punctua'tion

A capitalized item in a field must be entered exactly as shown. Punctuation
delimiters such as conrnas, semicolons, or parentheses must also be entered

.exactly as shown. Spaces or tab characters terminate each field and begin the
next. An item shown in I ewer case I etters is a term signifying the en.try type.
The fol lowing descriptive terms are used to signify entry type unless otherwise
specified:

1) symbol as defined in Chapter 2

2> expression - as defined in Chapter 2

3) charstring - a string of one or more characters.

Blank Fields

Any field left blank ts en JI legal field for that statement.

3-1

STATEMENT S'OO'AX CONVENTIONS

Braces and Brackets

When an item is enclosed in braces{}, the item must be present in the state­
ment. Items enclosed in brackets (1 are optional. Braces and brackets are
used for syntactical representation only and should rot be entered as part of
the statement. Braces and brackets may be nested. The fol lowing is an example
of braces and brackets nested in braces.

{{"~tr var 1} CI enexp 11}

Tr a i I t ng Dots

A I ine of dots fol lowing an item indicates that the item can be repeated a
number of times. The item cannot be repeated beyond the end of the I ine being
entered. In the example that follows, the item can be repeated.

(,symbol I ...

MP /M ~ CP /M STATEMENT S'OO' AX

A MP/M or CP/M statement contains a command and in some cases, one or more para­
meters with delimiting characters. An example of a typical MP/M or CP/M s-tate­
ment syntactical block fol lows:

SYNTAX

{ CCMMAND} (device I .o. 1 : { f i I e name} C. f i I e type I

Conwnand Name

The command name (eight characters, maximum) identities a MP/M or CP/M system
uti I ity name.

Del tmiters

Items in the conrnand I lne must be separated by delimiters when entered into the
terminal. A space Is used as the main del imitar. The colon is used to det imi"t
the device identlflca"tion and the file name. The period, which ls necessary
only when the tile type ls specltled, Is used to del imlt the tile name and tile
type,

3-2

STATEMENT SYNTAX CONVENTIONS

Parsneters

The parameters or control I i ng conditions of each command I i ne are shown in the
preceding ~P/M or CP/M statement syntactical block. Each parameter may consist
of a ~ile name, a function, a device name, an indicator or an assigned value.
When a parameter is shown capitalized, it must be entered exactly as shown.
Parameters shown in lower case letters are descriptive terms to signify the
type of entry.

Braces and Brackets

When appearing MP/M or CP/M statement, syntactical descriptions, braces and
brackets have the same meaning as when used with MILLENNIUM SYSTEMS Assembler
statements. Additionally, parameters 5Tacked within either braces or brackets
indicate that only one of the enclosed items should be selected for statement
entry. In the fol lowing example, an object file name or an object device may be
selected, but not both.

Trai I Ing Dots

[
object ti I e name I
object device _J

Trail Ing dots within MP/M or CP/M statement syntactical blocks indicate repeti­
tive parameters.

3-3

INTROOLCTION

The fol lowing assembler directives are available:

Listing Format Control Directives

LIST
NOLI ST
PAGE
SPACE
TITLE
STITLE
WARNING

Symbol Definition Directives

EQU
STRING
ASET

Location Counter Control Directive

ORG

Data Storage Control Directives

BYTE
WORD
ASCII
BLOCK

Macro Def lnition Directives

MACRO
ENClv1
REPEAT
ENDR
INCLUDE

Chapi"er 4

ASSEMBLER DIRECTIVES

4-1

ASSEMBLER DIRECTIVES

Conditional Assembly Directives

IF
ELSE
ENOIF
EXITM

Relocatable Section Definition Directives

SECTION
CCMMON
RESERVE
RESL.ME·
GLOBAL
NAME

Module Termination Directive

ENO

LISTING F{Rl4AT CONTROL DIRECTIVES

The assembler I isting format directives are presented in the order shown below:

Mnemonic

LIST

NOLI ST

PAGE

SPACE

TITLE

STITLE

WARNING

Purpose

Enables display of assembler I isting features.

Disables display of assembler I isting features.

Begins the next I isting I ine on the following page.

Spaces downward a specified number of I isting I ines.

Creates a text I i ne at the top of each I i sting page
for program identification.

Creates a text I lne on the second line of each I istlng
page heading for program identification.

Upon assembly, generates a warning message on the
output dev lee and In the I lsti ng. Al so al I ows the.
user to specify his·own warning message.

4-2

ASSEMBLER DIRECTIVES

_ J ST /NOLI ST

SYNTAX
..

LABEL OPERA TI ON OPERAND COMMENT

[symbol I LIST [CNDI [,TRMI [,S'T'Ml [,CONJ [,MEGI [,MEI [;charstringl

C symbol I NOLI ST CCND J C, TRM J [, S'T'M I [,CONJ [,MEG I [,ME I [; charstr i ng 1

Purpose

Two assembler I isting control directives, LIST and NOLI ST, respectively enable
and disable display of assembler I isting features.

Explanation

When NOLI ST is specified without operands, al I output to the 1 isting tile
<except the symbol table) is suppressed. When LIST is entered without operands,
the I i"sti ng is turned back on.

General Listing Format Control Options

Four general I isting control options CCND, TRM, S'T'M, and CON) may be entered
with the I isting .control directive, LIST, when specific features in the
assembler I isting are desired tor viewing. The same tour 1 isting options may be
entered with the assembler I isting control directive, NOLI ST, when specific
features in the assembler listing are not desired tor viewing.

The general I isting control options are summarized as fol lows:

CND - Lists unsatisfied conditions tor IF and REPEAT operations. <Refer to
the subsections describing macro definition directives and conditional
assembly directives.> The I isting defaults to an OFF condition, thus
displaying only those instructions within an.__ IF or REPEAT condition
occurring when the condition Is satlstled. ·~

TRM - Causes the I !sting to be trimmed to a 72-character format during display.
Defaults to an OFF condition, causing the I !sting to be displayed In the
standard 132-character format.

4-3

ASSEMBLER DIRECTIVES

LI ST/NOLI ST CConi"i nued)

The general I isting control options are summarized as fol lows: (continued)

S'IM - Lists the symbol table. Defaults to an ON condition.

CON - Displays all assembly errors to the console. Defaults to an ON
condition.

Macro Listing Format Control Options

A macro is a shorthand approach for inserting a pre-defined source code block
into a program. Refer to KChapter 5 for a discussion of macro procedures.

Only those macro instructions generating object code appear in an assembler
I isting.· Some of the code generated during a macro expansion does not generate
object code upon ·assembly, making it impossible under normal co~dltions to view
the entire macro expansion sequence within the assembler listing. Therefore, In
addition to the tour general I isting control options, two macro 1 lstlng control
options CMEG and ME> may be entered with the LIST and NOLIST directives to
enable and disable macro expansion vlsibil ity. These options are summarized as
fol I ows:

MEG Lists only macro expansion code that changes the location counter.
Defaults to an ON condition.

ME - Lists al I macro expansion code except tor any unsatsif ied IF or REPEAT
conditions. When the I isting control option CND is on, unsatisfied con­
ditions are also I isted. Defaults to an OFF condition. If either ME or
MEG is turned OFF by the user, the other is automatically turned OFF.
If ME is turned ON by the user, MEG is automatically turned ON.

The following table demonstrates LIST AND NOLIST effects on the ME and MEG
options:

ENTRY

NOLIST MEG
NOLIST ME
LIST MEG
LIST ME
NOLI ST

LIST

RESULTS

MEG is OFF. ME is OFF.
MEG is OFF. ME is OFF.
MEG is ON. ME Ts OFF.
MEG is ON. ME Ts ON.
MEG Ts OFF. ME is OFF.
Status of both options saved.
Restores status of both options.

Upon exit from a macro expansion, the main program I fstlng status is restored to
the status that prevailed before the macro was cal led.

4-4

ASSEMBLER DIRECTIVES

LIST/NOLIST CConTinued)

Conventions for Listina Control

The LlST and NOLIST directives are always entered in the operation field of the
I isting control statements where they appear. More than one I isting control
option may be entered with the LIST and NOLIST directives. In this case, each
option is separated from other options by a comma. When entering the listing
control options with the LIST or NOLIST directives, the options are placed in
the operand field of the I isting control directive in any order. If the NOLIST
directive is entered without options to suppress display, and the LIST directive
is again entered without options specified, the original specified options are
retained. The number on any 1-isting· I ine corresponds to the original input
source I ine number. The NOLI ST directive does not affect this I ine number
correlation.

Exanp I es

The fol lowing I isting control statement suppresses the symbol table I isting.

LABEL OPERAND COMMENT

S'r'M ;SUPPRESSES S'r'MBOL TABLE LISTING

The fol lowing listing control statement ca~ses al I subsequent macro expansions
and unsatisfied conditions to be included within the assembler listing.

LABEL

PAGE

SYNTAX

LABEL

.[symbol 1

OPERATION

LIST

OPERATION

PAGE

OPERAND

ME,CND

OPERAND

COMMENT

;LISTS MACRO EXPANSIONS
;AND ALL UNSATISIFED
;CONDITIONS

COMMENT

[; charstr i ng 1

4-5

ASSEMBLER DIRECTIVES

PAGE CCorrti nued)

Puroose

The PAGE directive causes the next I isting I ine to begin on the fol lowing page.

Explanation.

As the source I ines are read by the assembler in its second pass, they are out­
put to the I isting along with any object code produced. When the PAGE directive
is encountered, a page heading is printed at the top of the new page and the
next I isting I ine begins below the heading. The actual PAGE directive is not
printed in the I isting.

A label is generally not used with the PAGE directive; however, if used, the
symbol represe.nts the address in the assembler location counter. The location
counter contains the address of the next instruction or data byte in the program
sequence.

LABEL OPERATION

STRING

Ll EQU

L2 ASET

PAGE

ORG

LO

END

4-6

OPERAND

Sl· C80)

3

4

lOOH

A, CHU

COMMENT

;DEF I NE STRING VAR I ABLE S 1
;WITH 00-CHARACTER
;MAXIMLM .

;DEFINE CONSTANT S'l'MBOL
;L 1 TO EQUAL 3

;DEF I NE VAR I ABLE S'l'MBOL L2
;TO EQUAL 4

;BEGINS NEW LI ST I NG PAGE

;STARTS OBJECT CODE OF NEXT
;INSTRLCTION AT 100H

;LOADS THE CONTENTS OF
;MEMORY PO I NTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A

;END OF PROGRAM

ASSEMBLER DIRECTIVES

PAGE (Corrtf nued>

Upon assembly, The following I !sting file resulTs from This source program. A
new page is generated after The ASET directive.

MILLEN I LM zao ASM V3. 3

00001

00002 0003 Ll

00003 0004 L2

MILLEN I LM Z80 ASM V3. 3

00005 0100 >

00006 0100 7E

STR I NG S 1 C 80 >

EQU 3

ASET 4

ORG 100H

LO A, CHU

;DEF I NE STRING VARIABLE S 1
;WITH 80-<:HARACTER
;MAXIMLM

;DEFINE CONSTANT SYMBOL
;L 1 TO EQUAL 3

;DEFINE VARIABLE SYMBOL
; L2 TO EQUAL 4

;STARTS OBJECT CODE CF
;NEXT INSTRLCTION AT 100H

;LOADS THE CONTENTS CF
;MEMORY PO I NTED TO BY THE
;HL REGISTER PAIR INTO
;REGISTER A

I

00007 END ;END Of" PROGRAM

PAGE

PAGE \ 2.

MI LLENN I LM zao ASM V3. 3 SYMBOL TABLE LI ST I NG PAGE ~ 3

STRINGS AND MACROS

S1 - - - - - 0050 S

SCALARS

L2 - - - - - 0004 V

% <default) SECTION 0001

Ll-----<0101>

7 ·SOURCE LI NES 7 ASSEMBLED LINES 1000 BYTES A VA I LABLE

4-7 4-7

ASSEMBL.ER DIRECTIVES

PAGE <Coni'i nued)

Note that the symbol indicators 'I and S respectively follow the symbols L2 and
S1. The symbol indicator V indicates that L2 is an ASET symbol. The symbol
indicator S indicates that S1 is a rtring. The symbol L1 has no symbol indica­
tor fol lowing it, indicating that L1 is an EQU symbol. For a more complete
description of symbol indicators, refer to Chapter 7, entitled ASS8"1BLER LISTING
FORMAT.

SPACE

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol I SPACE [expression I [; charsi"r i ng I

Purpose

Whenever i"he SPACE direci"ive appears in The source module, i"he assembler spaces
downward a specified number of lines in the lisi"ing.

Explanaf'ion

The number of I ines i"o be spaced downward is indicai"ed by the expression in the
SP~CE directive operand field. If no expression is entered, one space is
generated. If the execui"ion of the SPACE direci"ive crosses a page boundary, the
effect is the same as that of the PAGE directive. The aci"ual SPACE directive is
not prini"ed in the I isting.

A label is generally not used with the SPACE direci"ive;·however, if used, the
symbol represents the address in the assembler location couni"er. The location
counter contains the address of the nexi" instruci"ion or data byi"e in i"he program
sequence.

4-8

ASSEMBLER DIRECTIVES

SPACE <ConTinued)

Exarnp1 e

Assume The fol lowing source program resides on disk.

LABEL OPERATION

STRING

L1 EQU

L2 ASET

SPACE

ORG

LO

END

OPERA NO
I

S1 (80.)

3

4

10

lOOH

A, CHU

COMMENT

;DEFINE STRING VARIABLE 51
;WITH SO-CHARACTER MAXIMUM

;DEFINE CONSTANT S'fMBOL
;L 1 TO EQUAL 3

;DEFINE VARIABLE S'fMBOL
;L2 TO EQUAL 4

;SPACES DOWNWARD 10
; LI ST I NG LINES

;STARTS OBJECT CODE OF
;NEXT INSTRLCTION AT 100H

;LOADS THE CONTENTS OF
;MEMORY .PO I NTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A

;END OF PROGRAM

4-9

ASSEMBLER DIRECTIVES

SPACE CContt nued)

Upon assembly, the following lisi"ing file results from.
1
this source program. Ten

I ines are generated between the ASET and ORG directive~.~

MI LLENN I LM zao ASM V3. 3

00001

00002 0003 Ll

00003 0004 L2

00005 0100 >

00006 . 0100 7E

00007

STRING Sl (80)

EQU 3

ASET 4

ORG 100H

LO A,_ CHU

END

;DEF I NE STRING VARIABLE S1
;WITH SO<HARACTER
;MAXIMIJ.1

;DEFINE CONSTANT S'tMBOL
;L 1 TO EQUAL 3

;DEF I NE VAR I ABLE S'tMBOL
; L2 TO EQUAL 4

;STARTS OBJECT CODE CF
;NEXT INSTRLCTION AT lOOH

;LOADS THE CONTENTS CF
;MEMORY PO I NTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A

;END OF PROGRAM

MI LLENN I LM zao ASM V3. 3 S'tMBOL TABLE LI ST I NG.

STRINGS AND MACROS

Sl - - - - - 0050 S

SCALARS

L2 - - - - - 0004 V

. % C defauJ t SECT I ON CO 101)

Ll -----0
7 SOURCE LINES

4-10

7 ASSEMBLED LINES 1000 BYTES AVAILABLE

PAGE 1

PAGE 2

ASSEMBLER DIRECTIVES

TITLE (Continued)

SYNTAX ..
LABEL OPERATION OPERAND .COMMENT

I symbol l TITLE {string expression} I; charstr i ng I

Purpose

The TITLE directive creates a text I ine at the top of each I isting page for
program identification.

Explanai"ion

The character string specified as the TITLE operand is printed in the page
heading between the assembler version number and the page number. As many as 31
characters may be entered. Any characters exceeding the 31-character I imit are
truncated. The actual TITLE directive is not printed on the I isting.

Example

Assume the fol lowing TITLE statement is entered in a source program:

LABEL OPERATION OPERAND·

TITLE ''THIS IS THE PROGRAM TITLE"

Upon assembly, the specified TITLE appears within the heading at the top of each
I isting page of the program as follows:

MILLENNILM zao ASM vx.x THIS IS THE PROGRAM TITLE PAGE 1

4-11

ASSEMBLER DIRECTIVES

STITLE <ConTinued)

SYNiAX

L:\SEL OPERATION OPERAND COMMENT

[symbol I STITLE {string expression} (;char st; i ng I

Purpose

The STITLE directive creates a text I ine at the top of each I isting page heading
for program identification.

ExplanaTion ~

The character string specified as the STITLE operand is printe~etween the page
heading and the first source: code I i ne. A b I ank I i ne is automat i ca I I y inserted
between the string and the beginning of the source code. As many as 72 charac­
ters may be entered. Any characters exceeding the 72-character I imit are trun­
cated. The actual STITLE directive is not printed on the I isting.

Exanple

Assume the fol lowing TITLE statement is entered in a source program:

LABEL OPERATION OPERAND

STITLE ''THIS LINE' DEMONSTRATES STITLE USAGE"

Upon assembly, the specified STITLE I ine appears within the heading at the top
of each I isting page &f tAe ~FS§FaAi'°'as follows:

PAGE

C source code)

4-12

ASSEMBLER DIRECTIVES

WARNING

SYNTAX

LABEL OPERATION OPERAND COMMENT

I symbol l WARNING (message!

Purpose

When an error i,s suspected within source code, the WARNING directive can be
entered to generate an error message at assembly time. Thus, the nature of the
errors in a program can be described upon assembly and listing.

Explanation

A warning message may be entered as a comment in.the WARNING directive. Uni ike
other comments, the warning message is not preceded by a semicolon. Upon
assembly, this optional message is printed on the assembly listing and on the
output device, flagging the suspected error. The fol lowing assembler message is
a I so di sp I ayed on both the assemb I er I i sting and the _output device during
assembly, below the specified warning message:

Example

Assume the fol lowing WARNING directive is entered within a source program below
a I ine containing an error.

LABEL OPERATION

WARNING

COMMENT

**** ENTRY OUT CF SEQUENCE

4-13

ASSEMBLER DIRECTIVES

WARNING <Continued)

Upon assembly, the specified warning I ine appears below the source I ine con­
taining the error. The message, •****ERROR 001, also appears below the spe­
cified warning message.

OOCC 0003 - LEN ASET ~HR C "ABB")
0000 WARN I NG ., ****ENTRY our CF SEQUENCE
*****ERROR: 001

Symbol Definition Directives

The assembler symbol definition directives are presented in the order shown in
the fol lowing summary.

Mnemonic

EQU

. STRING

ASET

4-14

Purpose

Permanently assigns a value to a symbol le name.

Declares the named statement symbols as string variables •

Assigns or reassigns an expression's value to a string or
numeric variable symbol.

ASSEMBLER DIRECTIVES

EQU

sn~TAX

LABEL OPERATION OF"ERAND COMMENT

symbol EQU {express ion} [; charstr i ng l

Purpose

The EQU directive permanently assigns a value to a symbolic name.

Explana-tfon

The symbol In the label field of an EQU directive is the symbolic name and the
expression in the operand field represents the value. The symbol acquires the
same base as the operand expression. No redefinition of this symbol is
.permitted.

The EQU directive operand field may contain a forward.reference to a symbol
label if the symbol does not appear in the operand field of an ORG, BLOCK, or
another EQU directive. ·

If a symbol is declared in a GLOBAL directive and ls defined by an EQU direc­
tive, the expression in the operand field of the EQU directive may not contain a
HI, LO, or ENDOF function applied to an address. An error results when this
occurs.

Exanple

The fol lowing I ine demonstrates EQU directive usage:

LABEL

L1

OPERATION

EQU

OPERAND

3

C~MENT

;ASSIGNS THE VALUE 3 TO THE
;CONSTANT S"1?-1BOL L 1.

4-15

ASSEMBLER DIRECTIVES

STRING

SYNTAX

LABEL OPERATION OPERAND COMMENT

I symbol I STRING B stnar 1} '1 ~ I en exp" 1l cj ~ strvar2} 11 e nexp 2l].. : I ; char str i ng I

Purpose

The STRING directive declares the symbols named in the statement to be string
variables.

Explanation

The STRING directive declares the symbols "strvar1" and "strvar2" to be string
variables. A string variable is a symbol with an associated string value.
Numeric expressions "lenexp1" and "lenexp2" may be opt.ional ly entered next to
the string variables to specify the maximum character length of the values
stored In the string variables. This maximum character length must be a scalar
value greater than or equal to zero. When the optional character length
expression. is not specified, an eight-character maximum length is assumed. If
the optional character length expression is specified, It must be enclosed
within parentheses. An operand symbol named in a statement containing the
optional character length expression must not be~forward reference.

~

A symbol must be declared with the STRING directive before it may be used as a
string variable. Symbols declared as string variables must not be used for any
other purpose within a program. Any number of string variables may be declared
with the STRING directive. When a string variable is initially declared, its
value is the same as that of the nul I string.

4-16

STRING <Continued>

Exanples

The fQI lowing examples demonstrate STRING directive usage:

LABEL OPERATION OPERAND

STRING STR C 14)

'/.
STRING A 1 I A2, A3, A4 '4(NCHR ("1234 ")_

ASSEMBLER DIRECTIVES

COMMENT

;DEC~RES STR
;AS A STRING
;VARIABLE WITH
;A MAXIMLM
;CHARACTER
;LENGTH OF 14

;DECLARES Al
;THROUGH A4
;AS STRING
;VARIABLES
;WITH A
;MAXIMLM
;CHARACTER
;LENGTH OF 8.
; DECLARES X AS
;A 4-CHARACTER
;ST!ilNG
;VARIABLE SINCE
;THE NLMBER
;OF CHARACTERS
;IN "1234" IS 4.

4-17

ASSEMBLER DIRECTIVES

ASET

SYNTAX

LABEL OPERATION OPERAND COMMENT

symbol ASET {expression} [;charstringl

Purpose

The ASET directive is used to assign or reassign an expression value to a string
or numeric variable symbol.

Exp I ana-tion

The string or numeric var iab I e symbol ·is entered in the 1 abel fie Id of an ASET
directive. A string variable symbol must have first been defined with the
STRING directive. A numeric variable symbol must not have been previously
defined, unless by another ASET directive. Variable symbols may not be sub­
sequently redefined as labels, or be redefined by an EQU, STRING, SECTION,
Ca.1MON RESERVE, GLOBAL, OR MACRO directive. The value of a variable symbol may,
however, be redefined by another ASET directive.

The expression value Is entered in the operand field. The expression is then
evaluated and the value is assigned to the variable symbol.

If an ASET directive contains a string-valued symbol and a numeric-valued
expression, the numeric expression is converted to a string. This conversion is
val id only when the numeric expression is a scalar value. The decimal value of
the numeric expression is assigned to the string-valued symbol. The assigned
string is six characters long, with the leftmost character being a minus sign if
the value is negative. All numeric values are prefixed with leading zeros if
less than six characters long. The numeric-expression to string-symbol conver­
sion process is diagrammed as fol lows:

LABEL OPERATION OPERAND COMMENT

string ASET numeric ;RESULTS IN EXPRESS I.ON
· ;CONVERSION TO STRING

4-18

ASSEMBLER DIRECTIVES

ASET <Continued)

If the ASET directive contains a numeric-valued s'ymbol and a sf'ring-valued
expre~sion, the string expression is converted to a numeric value. Refer to
Chapter 2 of this manual, ASSEMBLER SOURCE MODULE FORMAT, which describes String
to Numeric Conversion. The si"ring-expression to nu~eri~-symbol conversion pro-
cess is diagrammed· as fol I ows: -

LABEL . OPERATION

numeric ASET

OPERAND

s"tring

COMMENT

;RESULTS IN EXPRESSION
;CONVERSION TO NLMERIC

Conversion is not required when a string-valued symbol is set to a string
expression or a numeric-valued symbol is set to a numeric expression. W~en a
symbol is set to an expression value, the ~ymbol acquires the same section as
the expression.

For si"ring variable symbols where the length of the resulting expression value
exceeds the maximum symbol string length, the expression value is truncated on
the right before assignment. A truncation err~r code is then displayed.

~xanples

Examples of typical ASET instructions and the resulting string-valu~d symbol
expression values follow:

LABEL OPERATION

STRING

Al ASET

A2 ASET

OPERAND

Al ,A2C2> ,A3C45} ,A4CO>

"AB"

Al

COMMENT

;DEFINES STRING VARIABLE.
;Al WITH A DEFAULTING
;VALUE LIMIT OF 8
;CHARACTERS. DEFINES
;STRING VARIABLES A2, A3,
;AND A4 WITH RESPECT I VE
; VALUE LIM ITS OF 2, 45, AND
;O CHARACTERS

' ;VALUE OF Al IS "AB"

;VALUE OF A2 IS "AB"
<Program continued on next
_page}

4-19

ASSEMBLER DIRECTIVES

ASET (Continued)

LABEL OPERATION

A4 ASET

A3 }.SET

Al ASET

OPERAND COMMENT

Al:A2 ;VALUE OF A4 IS"",
;TRUNCATION ERROR SINCE
;A4 ALLOWS A VALUE OF
;ONLY 0 CHARACTERS

"A MEDILM LONG STRING" ;VALUE OF A3 IS "A MEDILM
;LONG STRING"
; 0 CHARACTERS

A3 ;VALUE OF A 1 IS "A MED I lJ.1 11
,

;TRUNCATION ERROR

The fol lowing example demonsTrates sTring-To-numeric and numeric-To-sTring
expression conversion.

LABEL OPERATION OPERAND COMMENT

STRING A 1,A2 ;DEFINES STRING VAR I ABLES
;A 1 AND A2

Al ASET 14 ;VALUE OF Al IS "000014 II

A2 ASET -1 ;VALUE OF A2 IS "-00001"

Al ASET 5EH ;VALUE OF Al IS 11000094 II

Bl ASET 2 ;NLMER IC SYMBOL, Bl, IS SET
;TO THE NLMERICALLY
;CONVERTED EXPRESS I ON, A2.
; TRUNCA T"I ON ERROR OCCURS,
: SINCE A2 IS GREATER THAN
;TWO CHARACTERS C-00001).
;THE TWO RESULTING
; LEFTMOST ASC I I CHARACTERS
;ARE -0, GIVING Bl A
;NLMERIC ASET VALUE OF
; 2030H

4-20

ORG

SYt.ffAX

LABEL

(symbol l

Purpose

OPERATION

TITLE

ASSEMBLER DIRECT I YES

OPERAND COMMENT

{r/J expression) (; charstr i ng l

The ORG directive sets the contents of the assembler location counter to either
the address specified by the operand expression, the next address divisible by
the operand expression, or the next odd address.

Explanation

Omission of the optional I <slash) operator sets the location counter to the
address specified by the operand expresion. For example, when the.following ORG
directive is entered, the next instruction in the program begins at location 100H
in the current section.

ORG 100H

It an ORG directive is omitted at the beginning of a program, the assembler loca­
tion counter is set to O. Usage of the I operator in the operand field causes
the location counter to be set to the next location divisible by the operand
expression. For examp I e, when the· current I ocation counter contains 1 OOH and the
fol lowing ORG directive is entered, the next instruction begins at location 111H.
<The next location divisible by 151-1 is 111H.>

ORG /151-1

It the current location counter is divisible by the operand condition when the I
operator is present, the location counter is unaffected. It the operand
expression is "/0", the location counter is set to the next odd value. For
example, then the current loeatlon counter contains lOOH, and the fol lowing ORG
directive is entered, the next Instruction begins at location 101H.

ORG /0

4-21

ASSEMBLER DIRECTIVES

ORG (Continued)

It t:-:'a current "'.)cation counter is al ready set to an odd value when the "/0"
operand "is enter:d,' the location counter is unaffected.

The optional I operator may be used only with scalar-valued operand expressions.

Use care 1 when entering the I operator, since the expected results may not be
retained upon I ink in~. For example, it ORG /0 is entered, the Linker puts the
section containing this directive on an odd address, the ORG result is on an
even address. This problem can be corrected by using the LOCATE command in the
Linker. (Refer to the 9520 Software Development System Users Manual.)

Any symbol contained in the operand expression must have been defined ·in the
label field ot a previous statement in the program. It the operand expression
contains a symbol previously defined in the label field ot an EQU directive, the
operand field ot that EQU directive must not contain forward-referenced symbols.

A label symbol is generally not entered with thi.s statement; however, it used,
· the symbol· represents the resu I ting value ot the I ocati on counter.

Exanple

The fol lowing ORG statement causes the object code generated by the next
instruction to begin at location 100H.

LABEL OPERATION

•
ORG

Ll LD

4-22

OPERAND

lOOH

A, CHU

COMMENT

;STARTS OOJECT CODE CF
;NEXT INSTRUCTION AT 100H

;LOADS THE CONTENTS CF
;MEMORY PO I NTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A

ASSEMBLER DIRECTIVES

ORG CConi'i nued)

Upon assembly, The I isTing I ines for The preceding insTrucTions appear as
fol lows:

00005 0100 >

00006 0100 7E L1

ORG lOOH

LD A, CHU

;STARTS OBJECT CODE CJ=
;NEXT INSTRUCTION AT lOOH .
;LOADS THE CONTENTS OF
;MEMORY POINTED TO BY THE
;HL REGISTER PAIR INTO
;REG. A

Notice the relocation indicator (>) on I ine 00005. The LD insi'ruction objeci'
code begins at location 100H •

.. atit Storage Conrrol DI rectl ves

The assembler data storage control directives appear in the order shown in the
fol lowing summary.

Mnemonic

BYTE

WORD

ASC 11

BLOCK

Purpose

Al locates one byte of memory to each expression specified in the
operand fiel~.

· A I 1 ocates two bytes of memory to each expression specified in the
operand field.

Stores ASCII text in memory.

Reserves a specified number of bytes ln memory.
'-.

4-23

Cl 0 99>--
ASSEMBLER DIRECTIVES

BYTE

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symb.ol 1 BYTE {expression) [,expression] [; charstr i ng 1

Purpose

This directive al locates one byte of memory to each expression specit·ied in the
operand field.

Explanation

Each data byte is represented by an expression. The data is stored in the
object module in the order in which it appears In the operand field. It more
than one expression ls specified in the operand field, the expressions are
stored in consecutive bytes. The optional label field symbol represents the
address ct the ti rst byte ct. data spec_! tied by the d lrecti ve.

If the expression represents a value exceeding the eight-bit capacity, the
least significant bits are used and a truncation error code ls displayed.
example, a statement containing the fol lowing BYTE directive generates 32H
assembly and issues a truncation error response.

LABEL OPERATION

BYTE

Example

OPERAND

"K2"

COMMENT

;GENERATES 32H,
;TRUNCATION ERROR

In the following BYTE directive, one byte of memory is all_ocated to the
expression values 24 hexadecimal ·and 22 decimal. The label symbol, FSTBYT,
represents the address of the first byte specified, 24H.

LABEL OPERATION

FSTBYT BYTE

4-24

OPERAND

24H,22

COMMENT

;ALLOCATES ONE BYTE OF
;MEMORY TO THE
; EXPRESS I ON· VALUES 24H
;ANO 22 DECIMAL

eight
For
upon

WORD

SYNTAX

LABEL. OPERATION
wca.o

C symbol l /...s¥"ffC-

Purpose
~~IW

ASSEMBLER DIRECTIVES

OPERAND COMMENT

{expressio~ £,expression] C ; charstr i ng l

~~directive al locates "two bytes of memory to each expression specified in The
operand f-iel d.

Explana"tion

This directive is identical to the BYTE directive except that two bytes of
~emory are al located in the object module for every expression specified in the
operand field. These "two-byte values are stored in memory with the low byte
first, followed by the high byte. If an expression represents a singTebyte
value, the high byte is stored as zero. If more than one expression is spe­
cified In the operand field, the expressions are stored in consecutive words.
The optional I abe.I fie Id symbol represents the address of the first byte of data
stored in memory.

4-25

(1 0 99) -----------------------------
ASSEMBLER DIRECT I VES

WCRD <Continued)

Exanple

1 n the to 1 1 owing WORD directive, °t'#O bytes of memory are al 1 ocated to the
expression values 356 and 427 decimal. The label symbol LABS'l'M represents the
address of the first byte of the value 356 decimal.

LABEL OPERATION

LABS'r1~ WORD

4-26

OPERAND

356,427

COMMENT

;ALLOCATES TWO BYTES <:F
;MEMORY EACH TO THE
; EXPRESS I ON VALUES. 356 ANO
;427 DECIMAL

ASSEMBLER DIRECTIVES

ASCII

SYNTAX

LABEL OPERATION OPERAND COMMENT

!symbol I ASCII {string expressiorij!,string expression l;charstringl

Purpose

The ASCII directive al lows the user to store text in memory easily.

Explana"tion

ASCII characters may be specified in the operand field in the form of a string
expression. If more than one operand is specified on a I lne, each operand is
separated by a comma. The optional label symbol represents the memory address
allocated to the first operand field character.

4-27

(1 0 99>--
ASS94BLER DIRECTIVES

ASCH <Con-ti nued)

Exanpl es

Assume the following lines of source code reside on disk:

LABEL OPERATION OPERAND COMMENT

ASCII ''HELLO", "GOODBYE" ;PUTS HELLO AND
;GOODBYE IN OBJECT
;MODULE AS ASC I I
;CODE

ASCII "BYE II ;PUTS BYE IN OBJECT
;MODULE AS ASC I I
;CODE

ASCII "" ;PUTS NULL STRING
;IN OBJECT MODULE
;AS ASC I I CODE

STRING STRl (20) ;DEFINES STR 1 AS
;STRING VARIABLE
;WITH A MAXIMLM
;CHARACTER LIM IT
;OF 20

STRl ASET "ABCDEF" ;ASSIGNS ASC 11
; VALUE CF ABCDEF
;TO STRl

ASCII STRl ;PUTS ABCDEF IN
;OBJECT MODULE AS
;ASC 11 CODE

ASCII STRl:" ":STRINGCNCHRCSTR1) > ;PUTS ABCDEF I A
;BUiNK, AND THE
;NLMBER cr:
;CHARACTERS IN
; ABC DEF C 6) I N
;OBJECT MODULE AS
;CONCATENATED
~ASC 11 CODE

•

•

4-28

ASSEMBLER DIRECTIVES

ASC 11 (Con-ti nued)

The hexadecimal object code generated by the s-tring expressions in the preceding
source code is shown as fol lows:

SOURCE OBJECT

"HELLO","GOODBYE" 48454C4C4F474F4F44425945

"BYE" 425945

'"' C nothing>

"ABCDEF 11
(str i ng va I ue of STR 1) 414243444546

"ABCDEF 000006" 41424344454620303030303036

For hexadecimal and ASCII.conversion tables, refer to Appendix C.

4-29

(1 0 99) -----------------------------
. ASSEMBLER DI RECT I VES

BLOCK

SYNTAX

LABEL OPERATION OPERAND COMMENT

I symbol I BLOCK {expression} [; charstr i ng I

Purpose

The BLOCK directive reserves a specified number of bytes in memory.

Explanation

The BLOCK operand expression indicates the number of bytes to reserve in memory.
The operand expression must be a positive value. The operand expression must be
either a numeric or string constant, or a symbol. It the operand expression
contains a symbol, the symbol must be previously defined in the program.
Additionally, if the symbol is defined by the EQU directive, that EQU direc­
tive's operand field must conform to these same rules. The expression speci-
f led in the BLOCK operand must be a scalar value.

· Exanple

The fol lowing BLOCK directive reserves a 32-byte memory storage block:

LABEL OPERATION

BLOCK

4-30

OPERAND COMMENT

;RESERVES 32 BYTES OF
:MEMORY

ASSEMBLER DIRECT I VES

BLOCK <Coni' i nued)

Macro Definii'ion Direci'ives

The m~cro definition directives are presented in the order shown in the
fol lowing summary. A complete description of macro capability is presented in
Chapter 5.

Mnemonic

MACRO

EN!lw1

REPEAT

ENDR

INCLUDE

Purpose

Defines the name of a source code block used repeatedly within a
program.

Terminates the macro def inltion block.

Enables the macro I ines following the REPEAT statement up to
the ENDR 5Tatement to be assembled repeatedly.

Signals the corresponding REPEAT block termination.

Inserts texi' from a specified file into the program.

4-31

(1 0 99) -----------------------------
ASSEMBLER DIRECTIVES

MACRO

SYNTAX

LABEL

[symbol I

Purpose

OPERATION

. MACRO

OPERAND COMMENT

{symbol1 [; charstr i ng l

The MACRO directive defines tne name of a source code block used repeatedly within
a program.

Explanation

A macro is a shorthand method for inserting a block of source code into a
program one or more times. The MACRO directive names the source code block to
be inserted into the main program. The symbolic macro name appears in the
operand field of the MACRO directive, and is later used as a reference when the
source code block is called tor insertion during assembly. The block of source

.code to be inserted is cal led the macro definition block, and Immediately
fol lows the MACRO directive. The macro definition block terminates with an ENOM
directive. When the macro name appears within the operation field of the main
program during assembly, the macro definition block is inserted and assembled
within the main program •. This process is cal led macro expansion.

The symbolic macro name and the macro definition block are generally defined at
the beginning of a user program. The macro name and definition block must be
defined prior to the ini~ial macro definition block usage.

For a further description of macro capability and usage, refer to Chapter 5.

4-32

ASSEMBLER DIRECTIVES

MACRO CConTinued)

Example
~

The MACRO directive below defines the block of macro code following the direc-
tive.

LABEL OPERATION

·MACRO

BYTE

WORD

END-1

•

•

OPERAND

MACRNAME

3, 5, 1

2

COMMENT

;DEFINES MACRNAME AS MACRO
;NAME

;ALLOCATES ONE BYTE OF
;MEMORY EACH TO THE CONSTANT
;VALUES 3, 5, AND 1

;ALLOCATES TWO BYTES a=
;MEMORY TO THE CONSTANT
;VALUE 2

;ENO OF MACRO DEFINITION
;MACRNAME

Later statements in this program may cal I the macro definition block whenever the
specified BYTE and WORD statement sequence is desfred.

4-33

(1 0 99>--
A SSEMBLER 0 I RECT I VES

END4

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol I ENCM (; charstr Ing I

Purpose

The ENCM directive signals the end of a macro definition block.

Explanation

When an ENCM directive is encountered in a macro definition block, the macro is
terminated and assembly continues with the next statement in the program
fol lowing the macro call. ·

Exanple

The following ENCM directive terminates the macro definition block named NUMNAK.

LABEL OPERATION

MACRO

BYTE

WORD

4-34

OPERAND

Nu.1NAK

3,27,22

255

COMMENT

;DEF INES NLM NAK AS MACRO
;NAME

;ALLOCATES ONE BYTE a=
;MEMORY TO THE CONSTANT
; VALUES 3, ·27, AND 22

;ALLOCATES TWO BYTES a=
;MEMORY TO THE CONSTANT
;VALUE 255
;END OF MACRO DEFINITION

ASSE>4BLER DIRECTIVES

REPEAT - ENDR

SYl-ITAX

LABEL OPERATION OPERAND COMMENT

[symbol 1 REPEAT {expression1J _£,expression21 [; charstr i ng J

£symbol] ·ENDR £; charstr i ng 1

Purpose

The REPEAT directive enables the macro I ines following the REPEAT directive, up
to the ENDR directive, to be assembled repeatedly. The ENDR directive signals
theend of each repeat cycle.

Explanation

When a REPEAT directive is encountered upon macro expansion, the first
expression specified in the operand field is evaluated. The I ines up to the
ENDR directive are ignored when the REPEAT operand, ".expression1" is equal to
zero (false>. If the expression is true (non-zero>, ·the lines up to the ENOR
directive are assembled repeatedly until the expression does equal zero, or the
maximum number of repeat cycles Is exceeded. The second operand "expresslon2"
may be optionally entered to specify the maximum number of repeat cycles. 1f
the maximum number of repeat cycles is not specified, the value of "expresslon2"
defaults to 255. Attempts to repeat beyond the value of "expresslon2" causes an
error code to be displayed. Both operand expressions must be scalar values.

REPEAT - ENDR blocks may be nested. The nesting depth is I imited only by the
amount of memory available to the assembler. Each REPEAT condition must be pro­
perty nested, th-us having a ma'tching ENDR occurring within the scope of tha't par­
ticular REPEAT condition. REPEAT ~ ENDR blocks may not cross the boundary of a
macro expansion or of an IF - END IF block. A REPEAT - ENDR b I ock is val rd only
within a macro definition block.

4-35

C1 0 99>--
ASSEMBLER DIRECTIVES

REPEAT - ENDR <Continued)

Exanple

The example that fol lows demonstrates REPEAT - ENDR block usage within a macro
named CONDR ID.

LABEL OPERATION

MACRO

AGAIN ASET

REPEAT

BYTE

AGA·IN ASET

ENOR

·BYTE

ENCJ.1

4-36

OPERAND

CONOR 10

AGAIN < = 27

AGAIN

AGAIN + 1

OOH

CoMMENT

;DEF '.1 NES CONDR ID AS MACRO
;NAME

;INITIALIZES AGAIN TO EQUAL
;1 AT ASSEMBLY TIME

;REPEAT WHILE AGAIN IS LESS
;THAN OR EQUAL TO 27

;GENERATES ONE BYTE CF
;MEMORY TO AGAIN

; INCREMENT AGAIN AT
;ASSEMBLY TIME

;END CF REPEAT CONDIT I ON

;GENERATES CARRIAGE
;RETURN

;ENO OF MACRO DEFINITION

ASSEMBLER DIRECTIVES

I tell.JOE

SYNTAX

LASEL OPERATION OPERAND COMMENT

[symbol J INCLUDE {s1'ring expression}· [; charstr i ng I

Purpose

The INCLUDE directive is used to insert text from a specified source file into a
program.

ExplanaTion

When the INCLUDE directive is encountered, text from the file specified in the
operand field is inserted into the program. If the INCLUDE directive ls con­
tained in a macro body, the text file ls inserted at macro expansion time.
Parameters within the included file cannot reference arguments used in the con­
taining macro. Refer to Chapter 5 for a discussion of text substitution within
macro~. The text file specified by the INCLUDE directive may not terminate a
MACRO, REPEAT or IF block. Additionally, the text may not contain another
INCLUDE directive.

An INCLUDE directive may also be used within normal source code, outside of
macro definition blocks. When this occurs, the Inserted text may contain macro
def In it ions.

4-37

(1 0 99) -----------------------------
A SS948LER 0 I RECT I VES

I ~LUOE <Continued>

Exanple

ihe fol lowing example demonstrates INCLUDE directive usage.

LABEL OPERATION

•

INCLUDE.

INCLUDE

INCLUDE

OPERAND

"B : F I LEA • SRC "

"A : F I LES. SRC"

''F I LEC. SRC

COMMENT

;INSERTS FILE A OF DRIVE B INTO
;THE CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCATION COUNTER.

;INSERTS FILE Ba= DRIVE A INTO
;THE CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCATION COUNTER.

;INSERTS FILE C OF DRIVE A INTO
;THE CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCATION COUNTER.

NOTE: The third INCLUDE statement specifies FILEC.SRC. The default logical
drive designator "A" wi 11 be prefixed, making It A:FILEC.SRC.

Condtttonal Assembly Dire<:Tives

The conditional assembly directives are presented in the order shown in the
fol lowing ~ummary.

Mnemonic

IF

ELSE

ENDIF

EXITM.

4-38

Purpose

Causes the assembly of the source code I ines fol lowing the
IF directive, up to the .ENDIF directive, when the specified
operand expression is true (non-zero>.

Causes an alternate source block to be assembled when the con­
taining IF expression Is false.

Signals the corresponding IF block termination.

Termi nate·s the current macro expansion before· encountering an
ENIJ4 directive.

ASSEMBLER DIRECTIVES

IF - ELSE - ENDIF

..
SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol l IF {express i onJ t; charstr i ng l

[symbol l ELSE [;chars-tr i ng l

tsymb61 l ENDIF [;chars-tr i ng l

Purpose

The IF directive causes assembly of the source code lines fol lowing the IF
directive, up to the ENDIF (or ELSE, if present) directive, when the specified
operand expression is true. The ELSE directive causes an alternate source block
to be assembled when the containing IF expression ls false. ENOIF signals the
corresponding IF block termination.

Explanation

When an IF directive ls encountered, the expression specified In operand field
is evaluated. If the result of the expression is zero (false) source lines bet­
ween the IF and ENDIF directives are ignored <not assembled). The ENDIF direc­
tive then terminates the condition. If the. result of the expression is non-zero
<true>, the source I ines are assembled once normally.

An optional ELSE direci"ive block may be nested within the IF source block. If
an ELSE block is present, a false IF expression causes assembly of the source
I ines from the ELSE directive up to the ENDIF direci"ive. The ELSE block is
ignored when the expression in the IF directive operand field is true. Only one
ELSE directive is al lowed wt.th.in each IF-ENDIF block.

IF - <ELSE> - ENDIF blocks may be nested as deeply as desired, I lmited only by
the snount of memory available to the assembler. Each IF directive must be pro­
perly nested thus having a matching ENDIF occurring within the scope of that
particular IF condition. IF - <ELSE> - ENDIF blocks may not cross the boun­
daries of REPEAT - ENDR blocks, macro expanslons, and other IF - <ELSE> - ENDIF
blocks.

4-39

Cl 0 99>--
ASSEMBLER DIRECTIVES

IF - ELSE - ENDIF CCon"tt nued)

Exanples

The fol lowing example demonstrates IF - CELSE> - ENDIF block usage:

"LABEL OPERATION OPERAND COMMENT
'-....

IF It t 1 I " = "" ;CHECKS TO SEE IF THE FIRST .
;MACRO ARGUMENT IS
;UNDEFINED

WORD OF7H ; IF SO, GENERATES A WORD
;CONTAINING OF7H

ELSE ;OTHERWISE
WORD '1 I ;GENERATES A WORD

;CONTAINING THE FIRST
;ARGUMENT

ENDIF ;END OF IF CONDITION

The fol lowing example demonstrates nested IF - <ELSE> - ENDIF block usage:

LABEL

4-40

OPERATION

IF

IF

WORD

ELSE

WORD

ENDIF
ELSE

WORD

ENDIF

OPERAND

n 11 I "<>""

. '1 '< OFOH

OF7H - '1'

'1 I

OF7H

COMMENT

;CHECKS TO SEE IF THE FIRST
;MACRO ARGUMENT
;EXISTS
;IF SO, CHECKS TO SEE IF THE
; F I RST MACRO ARGUMENT IS
;LESS THAN OFOH
;IF SO, GENERATES ONE WORD
;CONTAINING THE DIFFERENCE
;BETWEEN OF7H ANO THE
;FIRST ARGUMENT
;OTHERWISE, IF FIRST
;ARGUMENT IS ffiEATER
;THAN OFOH •••
;GENERATES ONE WORD
;CONTAINING FIRST MACRO
;ARGl.MENT
;END CF INNER IF CONDITION
;OTHERWISE, IF THE
;ARGUMENT DOES t\OT EXIST •••
;GENERATE A WORD
;CONTAINING OF7H
;ENO CF OUTER IF CONDITION

ASSEMBLER DIRECTIVES

EXITM

SYNTAX

LA~EL OPERATION OPERAND COMMENT

[symbol J EXITM [; charstr i ng I

Purpose

The EXITM directive terminates the ·current macro expansion before encountering
an EN().1 directive.

Explanation

EXITM is generally used within IF - CELSE> -ENDIF and REPEAT - ENDR blocks to
conditionally terminate macro expansions. EXITM is val id only within a macro
definition block.

Example

The fol lowing EN().1 directive terminates the macro de"finition block named NLMNAK.

LABEL OPERATION

MACRO

BYTE

IF

BYTE

EXITM

ENDIF
BYTE

END4

OPERAND

CONIJ4AC

1, 2,0

" '3' "=""

255

'3 r

COMMENT

;DEFINES CONDMAC AS MACRO
;NAME
;ALLOCATES ONE BYTE CF
;MEMORY FOR EACH CF THE
;THREE VALUES 1, 2, AND 0
;TESTS TO CETERM I NE IF
; 3RD PARAMETER IN
;MACRO CAtL EXISTS
; IF ~D ARGUMENT DOES NOT
;EXIST, ONE BYTE IS ALLOCATED
;CONTAINING 255 DECIMAL
;TERMINATES MACRO
;EXPANSION~ IF CONDITION IS
;SATISIFED
;END OF IF CONDITION
;OTHERWISE, ONE BYTE IS
;ASSIGNED CONTAINlNG THIRD
;ARGLNENT
;END CF MACRO CEFINITION

4-41

(1 0 99>--
ASSEMBLER DIRECTIVES

Section Definition Directives

The section definition directives appear in this subsection in the order shown
in the summary below. Retoca~ion options used with the section definition
directives tot low this summar1. For a discussion of the methods by which the
Linker relocates sections, reter to the 9520 Software Development System Users
Manual •

Mnemonic

SECTION

CCMMON

RESERVE

RESLME

GLOBAL

NAME

4~2

Purpose

Declares a t}nker sectiqn, assigns a section name, and defines
the section parameters.

Declares a Linker section, assigns a section name, and defines
t~e section type to be conmon.

Sets aside a work space in memory. Upon I inking, all reserve
·sections with the same name are concatenated into a single

reserve section.

Continues the definition of code for a given section.

Declares one or more symbols to be global variables.

Declares the name of an object module.

ASSEMBLER 0 I RECT I VES

RELOCATION OPTIONS

The PAGE, INPAGE, or ABSOLUTE option may be specifieai in, the operand fie Id, to
direct the relocation of a block of code in the SECTION and CCMMON directives.
The P~GE or INPAGE option is also available to the RESERVE directive. When
options are not specified, the section is relocated on any byte address. The
effects of these options are su~marized as fol lows:

PAGE

I NPAGE

ABSOLUTE

-Causes the section to be rel.ocated at the starting address of a
physical block of memory. This block of memory, also cal led a
"page", is 256 bytes long with a starting address that is
evenly divisible by this length. Therefore, the starting
address of a page may be 0,256,512, etc.

- Causes the section to be relocated on any byte address provided
the section does not extend across page boundaries.

- Causes the memory al I ocation to be the actual areas specified
by the ORG directives at assembly time. CNo relocation of this
section is performed.> Arithmetic functions performed on
addresses defined in absolute sections are subject to the same
restrictions as addresses performed on relocatable sections.
Refer to Section 2 describing Binary Arithmetic Operators.

If rio option is entered with the section definition directives, the specified
section ls byte relocatable, indicating a lack of restrictions on where the
Linker may place the section.

4-43

(1 0 99) -----------------------------
ASSEMBLER O I RECT I VES

SECTION

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol J C; charstr i ng I SECTION {symbol} [PAGE J , I NPAGE
,ABSOLUTE

Purpose

The SECTION directive is used to declare a program section, assign the section a
name, and define its parameters.

Explanation

Al I program text fol lowing the SECTION. directive, up to the next SECTION,
CQ.1MON, or RESLME directive,' is defined to be a program section. Al I text
within a program section is assembled with the same location counter, and hence,
has the same base. Each.section has a separate location counter and must be
relocated as a block. The initial value of the location counter for a given
section is O. The symbol specified in the SECTION operand field is the section
name, and is a global symbol. -The section name must be unique to each assembly
and, therefore, cannot appear in multiple SECTION directives. When separate
object modules containing sections with the same name are linked, an error is
generated.

The optional second operand in the SECTION directive can be used to place
restrictions on the relocatabil ity of the section. <Refer to previous
discussion on Relocation Options in this subsection.) If no option is speci­
fied, the Linker considers the section to be byte relocatable.

4-44

ASSEMBLER DIRECTIVES

SECTION <Corrrinued)

When a label symbol is entered on the SECTION directive, the symbol represents
address 0, the initial value of the resulting section's location counter.
Additlonal ly, the declared section name in the operand field may be used as a
normal global symbol, and referenced in the operand field of other s-tatements
throughout the assembly. The section name has the same value as the label on
the SECTION directive. .

Exanple

The fol lowing source I ine demonstrates SECTION directive usage.

LABEL OPERATION

SECTION
•
•

OPERAND

SECl

COMMENT

;GENERATES BYTE
;RELOCATABLE SECTION,
;SECl

4~5

ASSEMBLER DIRECTIVES

C<M40N

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol t CCJ.1MON {symbol} [PAGE J
, I NPAGE·
,ABSOLUTE

[; charstr i ng I

Purpose

The CCMMON directive declares a section, associates a name with the section,
assigns the section parameters, and defines the section type to be common.

Explanation

The CCJ.1MON directive performs the same functions as the SECTION directive,
except that the same name may identity corrvnon sections in more than one source
module. Comrnon sections with the same name are relocated at the same address by
the Linker. Each section with the same name should specify the same relocation
option; otherwise, the desired relocation might not result at I ink time. The
Linker at locates enough memory to contain the largest of the common sections
with the same name.

This section type is modeled after the COv1MON area of FORTRAN.

Example

The fol lowing example demonstrates Ca.1MON directive usage.

LABEL OPERATION OPERAND

Ca.1MON WRKAREA

COMMENT

;DEFINES WRKAREA AS A C().1MON
; SECT I ON. IF WRKAREA EXISTS
;IN MULTIPLE C8JECT MODULES.
;LINKER CHOOSES THE LARGEST
;SECTION ~ED WRKAREA FOR

. ;MEMORY ALLOCATION

(1 0 99>---
ASSEMBLER DIRECTIVES

RESERVE

SYNTAX

LABEL OPERATION

l symbol l RESERVE

Purpose

OPERAND

tsymbol, expression) r,,PAGE]
L: INPAGE

.

COMMENT

I; charstr i ng l

The RESERVE directive is used to set aside a workspace in memory. Upon I inking,
all reserved workspaces <sections> with the same name are combined into a single
section.

Explana-tion

The symbol in the operand tield ot the RESERVE directive is the assigned name ot
the section. The operand expression specifies the number ot bytes to be
reserved tor the current object module. The expression must be a scalar value.
The RESERVE directive does not change the current section.

~ore than one object module may contain reserve sections ot the same name. The
length ot the reserve section al located by the Linker is the sum of all reserve
sections with the same name.

ASSEMBLER DIRECTIVES

RESERVE <Corrrlnued)

Exampl.e,

The fol lowing example demonstrates section space al location with the RESERVE
directive.

LABEL 'OPERATION

RESERVE

•
•

WORD

WORD

OPERAND

BNCHCODE, 100H

BNCHCODE

. ENDOFCBNCHCODE>

CCt+11:NT

;RESERVES A SECTION DEFINED
;AS BNCHCODE ANO
;·ALLOCATES 256 BYTES CF
;Me.10RY TO BE ADDED TO THE
; SIZE OF BNCHCODE

;PLACES ONE WORD I N THE
;CURRENT SECT ION HAVING
;THE ADDRESS ~ THE
;BEGINNING CF THE BNCHCODE
;SECT ION
;PLACES ONE WORD IN THE
;CURRENT SECT I ON HA VI NG
;THE ENDING ADDRESS CF
;BNCHCODE

(1 0 99>---

RESLME

SYNTAX

LABEL
..

[symbol I

Purpose

OPERATION

RESLME

OPERAND

tsymbol l

ASSEMBLER DIRECTIVES

COMMENT

[; charstr i ng I

The RESLME directive continues the definition of a given section.

Explanation

The RESLME directive continues the definition of the section specified by the
optional operand symbol. If no operand symbol is used, the definition of the
default section is continued. Any source code that is not preceded by a SECTION
or CQ.1MON directive is included in the default section. The name given to the
default section is a percent sign <%> fol lowed by the object file name. When no
object file is present, the name given to the default section is%.

If used, the label symbol is assigned the value of resumed section's location
counter.

Exanple

The example that fol lows demonstrates section definition resumption with the
RESLME directive.

LABEL OPERATION OPERAND COMMENT

SECTION A31 ;DEFINES SECTION A31
•

SECTION ·931. ;DEFINES SECTION 631
•
•
•
RESLME A31 ;RESLMES SECTION A31
•
•
•

ASSEMBLER DIRECTIVES

GLOBAL

SYNTAX

LABEL OPERATION OPERAND COMMENT

(symbol" I GLOBAL ~sym.bol} I, symbol I ••• I; charstr i ng l
I

Purpose

The GLOBAL directive declares one or more symbols to be global variables. A
global variable located in one source module may be referenced by another source
module.

Explanation

Symbols specified in the GLOBAL directive operand field are designated to be
g I ob al var i ab 1 es. GI ob al variables de·t i ned in the current assembly are cal I ed
bound globals. It the global variables are not defined in the current assembly,
they are called unbound globals and their references must be resolved by the
Linker.

The value of a global symbol must be unique within an assembly. A maximum of
254 names may be defined to be global variables.· This maximum includes all·
names used in SECTION, CCJ.ilMON, RESERVE, and GLOBAL directives.

(1 0 99)---
ASSEMBLER DIRECTIVES

GLOBAL <Con~lnued)

Exsnple

The following example demonstrates definition of global variables with the
GLOBAL directive.

~

LABEL OPERATION

•
GLOBAL

•

HIGUY EQU

CALL

•
•

OPERAND

HIGUY,BYEGUY

$

BYE GUY

COMMENT

;DEFINES THE SYMBOLS HIGUY
;AND BYEGUY TO BE USED AS
; GLOBAL SYMBOLS

;HI GUY IS EQU I VALENT TO
;CURRENT LOCATION
:COUNTER
;JIJ.1PS TO SUBROUTINE
;BYEGUY DEFINED IN
;ANOTHER ASSEMBLY

ASSB4BLER DIRECTIVES

NAME

I.

SYNT.A.X

LABEL OPERATION OPERAND COMMENT

!symbol l
'

NAME {symbolJ ! ; charstr Ing I

Purpose
NA..r\E olWay..t..s +k.L ... ~ o[~ ol.J·~ 11111~Jk..

The +Nbl..''Oi!directlve(i-s u:see to insert lexl from a specified source tile int9 g..

~r"Q§Pem-

Explanation

The symbol in the operand field of the NAME directive is the name assigned to
the object module. If more than one NAME directive appears within an assembly,
only the fl rst NAME d lrectl ve Is used;. the rest are ignored.

Note that the object module name, as declared by the NAME directive, is distinct
from the file name that the object module Is stored under. Note also that the
default section derives its name from the object file, not the NAME directive.

Exanple

The fol lowing example demonstrates the object module naming with the NAME
directive.

LABEL OPERATION

NAME

•
•
•

OPERAND

~PLsus/

COMMENT

;NAMES Cl3JECT MODULE
;~PLSUS

(1 0 99)---
ASSEMBLER DIRECTIVES

END

MODULE TERMINATION DIRECTIVE

SYNTAX

LABEL OPERATION OPERAND COMMENT

[symbol 1 END [expression) [; charstr i ng l

Purpose

The END directive terminates source modules.

Explanation

The END directive terminates a source module contained in one or more disk
files. A source module is also terminated when the end of the last input file
is read. END directive usage is, therefore, optional.

The optional expression in the operand field represents the starting address for
program execution, which is called a transfer address. If present, the spe­
cified operand value is placed in the object module and may be used by the MP/M
or CP/M LOAD comm~nd when loading the object module into program memory. At
I ink time, if more than one modut e has a transfer address, the first. one encoun­
tered ls used.

Chap'ter 5

MACROS

INTRODOCTION

A mac~o is a shorthand approach tor inserting source code into a program. A
macro is often used when the same, or nearly the same, code is repeatedly used
within a program. A block ot macro code is cal led a macro definition block.
The source code that results from this block may be altered each time the macro
is cal led so that the object code generated depends on the information specified
in the macro cal I. The code generated by a macro call is cal led a macro expan­
sion, since it results from, and ls usual'ly larger than, the macro cal led.

This section describes al I phases of macro definition, calling, and expansion.
The structure of this section closely fol lows the process leading up to macro
expansion. First, an examination of the general macro expansion process is
ii lustrated to provide a basis of understanding. An examination of each phase
of the process is then present~d in greater detail.

Basic Macro Expansion Process

The macro expansion process is illustrated in figure 5-1. A wriTten explanation
of the process follows the figure.

MACRO name
Lines of Defined Source Code
•

MACRO DEFINITION
•
ENIJ.1
User Program Source Code
•
•

MACRO CALL name arguments

f MACRO EXPANSION

User Program Source Code
•

•
END

Figure 5-1. The Macro Expansion Process

5-1

MACROS.

As mentioned, there are three phases of macro usage: definftion; calling, and
expansio~. First the macro must be defined. The macro is given a name fol lowed
by a boay. ,The macro is defined in a macro definition directive. The macro
body is calied a macro definition block. The macro definitfon block is made up
of source I ines that are stored in unassembled form, until the macro is used.
To use the macro, the programmer codes a macro cal I within a program.. The macro
name appears, in .the macro cal I directive's operation fie Id. When the macro call
is encountered during assembly, the macro definition block is inserted and
assembled within the. main pr:~gram. This process is cal led _macro expansion.

' '
The user may alter any parameters used within the macro definition block by
inserting corresponding arguments within the operand field of a macro call. One
line at a time, the assembler replaces the specified parameters. with
corresponding arguments in the macro call. The assembler f~serts the line from
the macro definition block into the user program. The l ine:;fs then assembled·•
This procedure repeats for each line in the macro definition block.

Macro Definition Directive

A macro is defined by first entering the macro definition di,rective in the
fol lowing format. In this macro definition directive, "name11 is the macro name
that is later used as a refer.ence for .the macro ca I l •

'

MACRO name

Macro Definition Directive Conventions

A macro is generally defined at the beginning of a program. A macro rrust always
be defined prior to its initial use. A macro may not be defined within another
macro definition block. A macro name is a symbol containing up to eight charac­
ters, the first character being al phabet i c. The macro name must be unique from
all symbols in a user program. ·

Macro Definition Block

The I ines fol lowing the macro definition directfve, up-· to and including an ENDM
directive, become a pre-defined block of code referred to as a macro definition
block. A macro definition block may contain any instruction or assembler direc­
tive (except the END and MACRO directives>. A macro definition block may con­
tain cal Is to other macros or even cal Is to itself. When a macro cal I occurs
within another macro definition block, any replacement that may occur on the
macro call is performed before the inner macro is cal led. A macro definition
ble<;k may not contain the definition of another macro.. ~

5-2

MACROS

Source Code Alteration

A~ additional macro capability al lows code to be altered within a macro defini­
tion block. Upon expansion, parameters within single quotes, serving as place
holders in the macro definition block, are replaced by the arguments defined in
a macro cal I •

I

In summation:

Parameters

Arguments

are place holders 'within a macro-definition block.

are values, defined within a macro cal I directive,
that replace parameters.

Any numeric parameter surrounded by single quotes C'N'> is replaced by the Nth
argument passed to the current macro expansion. In the following BYTE direc­
tive, tor example, the first argument pas_sed to the current macro expansion is
substituted for the first parameter, labeled !1 ', upon macro expansion.

BYTE 3, 5, I 1 I

N may be either a number or a numeric-valued ASET symbol. An ASET symbol is
assigned a value by the ASET directive. This capability is discussed in Chapter
4, ASSEMBLER DIRECTIVES, describing the ASET directive. If N is greater than
the number of arguments provided, the nut I string is ,substituted. Text subsi"i-
tut"ion may occur ~nywhere on a I ine. · ·

Addl"ttonal Speciat Macro Def.tnl"tion Characters

The fol lowing special characters are only available for use within macro defini­
tion blocks.

The @ Charac"ter

The "at" character, when surrounded by single quotes('@'>, provides unique
labels for each macro expansion. The@ character is replaced by a four­
character hexadecimal value that is unique within eac._h macro cal I. In the
example that fol lows, each time the macro is called, 8 unique tour-character
hexadecimal value replaces the@ character. The following statement creates a
unique seven-character label.

LABEL OPERATION OPERAND

LAB'@' EQU $

5-3

MACROS

The '8" Character (Continued)

The '@' in the preceding label is replaced by a number unique to the current
macro cal I. This replacement prevents U.B from being defined more than once by
subsequent macro cal Is.

The I Character <Continuedl

The "pound" character, when surrounded by single quotes ('#') is replaced by a
five-digit decimal number. The number represents the total number of arguments
that are passed to the current macro expansion. In the example that fol lows,
expansion of al I I ines of code within a REPEAT block continues until the total
number of arguments passed is exceeded. Suppose three arguments are passed
during expansion of the macro containing this code:

LABEL OPERATION OPERAND COMMENT

J ASET ;INITIALIZES J TO EQUAL 1
;AT ASSEMBLY TIME

REPEAT J <= 'II' ;REPEAT WHILE J IS LESS THAN
;OR EQUAL TO 3

J ASET J + 1 ; I NC REM ENT J

•

ENDR ;END CE REPEAT CONDITION

The % Character

The "percent" character, when surrounded by sing I e quotes ('% '), is rep I aced by
the name of the current section or conman. The name is returned as a string.
If the current section is the default section, the nul I string is returned.

5-4

MACROS

The % Character (Con-ti nued)·

In the example that follows, the percent sign character is used to represent the
name of the current section.

LABEL OPERATION OPERAND COMMENT

STRt·NG SECNAM C 8> ;DEFINES STRING, SECNAM,
;WITH EIGHT-CHARACTER
;MAXIMlJ.1

SEC NAM ASET " '%' " ;SECNAM IS SET TO N'\ME CF
;CURRENT SECT ION

SECTION BBB ;DEFINES NEW SECTION BBB

•
REStME 'SECNAM I ;RESUMES PREVIOUS SECTION

The t or A Character

The up-arrow < -t) or caret (A) character may be enter.ed just prior to any
character having special meaning, thus al lowing the special character to be
interpreted as a regular part of the text. The·up-arr-ow Ct> or caret(./\.)
character Is available tn all phases of the MILLENNllJ4 SYSTEMS Assembler and ts
described in the manner in which It affects macro definition. In the example
that fol lows, the caret (J\) character removes the special meaning of the single
quote character.

LABEL OPERATION OPERAND

ASCII ''THAT/'- 'S ALL FOLKS."

Upon macro expansion, the fol lowing code Is generated in memory.

THAT'S ALL FOLKS.

Macro Tenn I nation

A macro def tnttlon bl~k ts terminated by an EN~ statement.

5-5

MACROS

Macro Cal 1 i ng

A macro is invoked when a macro cal I is encountered within a program. A macro
cal I contains the macro name to be called in the statement's operation field as
fol I ows:

LABEL OPERATION OPERAND

name

Include OirecTive Text' lnserTion

A not her method for ca I· I i ng text into a program i nvol ves INCLUDE directive usage.
The INCLUDE directive (see Chapter 4, describing ASSEMBLER DIRECTIVES> may be
used to insert text into a program from a specified file. The INCLUDE directive
may be a part of a MACRO, IF - ENDIF, or REPEAT - ENDR block, as long as it does
not terminate any of those blocks. The name of the file to be inserted is
entered in the operand field of the INCLUDE directive as fol lows:

LABEL OPERATION OPERAND

INCLUDE string expression

Text Substi-tu~ion

Optional arguments separated by commas within the operand field of the macro
cal I define the values to rep I ace the parameters within the block as the macro
is expanded. For examp I e, the fol I owing macro cal I invokes the macro named
EVALC and defines the arguments 25 and ARG2 for substitution within the block of
code as the macro is expanded.

LABEL OPERATION

EVA LC

OPERAND

25,ARG2

COMMENT

;INVOKES MACRO EVALC AND
;DEFINES FIRST TI'JO
;ARGUMENTS FOR
;SUBSTITUTION WITHIN MACRO
;DEFINITION BLOCK AS 25
;ANO ARG2

The preceding example contains the following arguments:
Argument 1 = 25
Argument 2 = ARG2

A label· appearing In a macro call is assigned the value of the location counter
prior to macro expansion.

5-6

MACROS

Special Macro Calling CharacTers

The fol lowing special function is available for use within macro cal Is.

The [1 Construct

Square brackets [1 may be used to group code for inclusion as an argument within
a macro cal I. Al I characters enclosed within square brackets are considered to

,represent a single argument. Square brackets may not be nested. Uni ike the
a~gument resulting when a character string is enclosed within double quotes, the
square brackets are not passed to the source text during macro expansion. For
examp I e, the fol I owing macro cal I. parameters produce the corresponding
arguments:

LABEL OPERATION OPERAND

PNPOG ABC, 1, "ABC, 1 ",[ABC, 11

COMMENT

; INVOKES MACRO
;PNPOG ANO
; SUBSTITUTES THE
;ARGlJv1ENTS ABC,
; 1 , "ABC , I " , ABC , 1

The preceding example contains the following arguments:

Argument 1 = ABC
Argument 2 = 1
Argument 3 = "ABC, 1"
Argument 4 = ABC, 1

The -t- or A Character

The up-arrow Cf) or caret (-"\) character may be entered just prior to any
character having special meaning, thus allowing that character to be interpreted
as a regu.1 ar part of the text. The up-arrow (+> or caret CA) is ava i I ab I e in
all phases of the MILLENNILM SYSTEMS Assembler and is described in the manner in
which it affects macro cal Is. The example that fol lows allows the comma and
square bracket characters, respectively, to be interpreted as part of the argu­
ments SML,J and CBCJ when the macro TIME is invoked:

LABEL OPERATION

TIME

OPERAND

1 , 2, 94L I\, J, I\ [BCAJ

COMMENT

;INVOKES MACRO TIME AND
; SUBSTITUTES THE
;ARGJ.4ENTS
;1,2,94L,J,AND CBCJ

5-7

MACROS

The [l Construct <Continued)

The preceding example contains the following arguments:

Argument 1 = 1
Argument 2 = 2
Argument 3 = SML,J
Argument 4 = [BC l

Additional Macro Argument Conventions

Any I ead i ng or tra i I i ng blanks are removed from the argument upon macro
expansion. Blanks inserted within an argument are retained. It there are only
blanks between two commas, the resulting argument is empty. To force a para­
meter to be replaced by blanks, it may be enclosed within square brackets.
Examples of these conventions fol low:

LABEL OPERATION OPERAND

PQRO A,B, C ,,C O,E I,"",[J,[A[J

The preceding example expands to the fol lowing arguments. Asterisks are used
only In this example to indicate the beginning and end ot the argument and are
not expanded as part ot the macro text.

Argument 1 = *A*
Argument 2 = *8*
Argument 3 = !IC*
Argument 4 = **
Argument 5 = * D,E *
Arg!Jment 6 = *" "*
Argument 7 = * *
Argument 8 = *[*

Any number or length ot arguments may be entered within the operand field of a
macro cal I, as long as the I ine does not exceed 128 characters Cnot including a
carriage return). In addition, after arguments are substituted tor parameters,
the Ii nes resulting from the macro expans_ion rrust not exceed 128 characters.
Otherwise, an error code ts displayed.

5-8

MACROS

Examples_

The tol lowing text includes two examples ot macro detinition, calling, and the
resulting expansions. The tirst example ii lustrates a simple macro expansion.
The second example is more complex and ii lustrates two contiguous macro expan­
sionsl where one is reterenced by the other.

Example

In this example, a macro is detined as EVALC·. Two parameters, 1 and 2, are
d~tined and surrounded by single quotes within the macro definition block.

LABEL OPERATION

MACRO

BYTE

WORD

6NDM

OPERAND

EVA LC

5 I f 1 f

'2'

COMMENT

;DEFINES EVA LC AS MACRO
;NAME
;ALLOCATES ONE BYTE CF
;MEMORY FOR THE CONSTANT
; VALUE 5 AND ONE BYTE FOR
; THE F I RST PARAMETER
;WITHIN EVA LC
;ALLOCATES TWO BYTES a=
;MEMORY FOR THE SECOND
;PARAMETER WITHI~ EVALC
;END OF MACRO c:EFINITION

Assume the following call appears within a user program.

LABEL OPERATION OPERAND

EVA LC 25,357

'

CCJ.1MENT

;INVOKES MACRO EVALC AND
; SUBSTITUTES THE
;ARGLJ.1ENTS 25 AND 357 FOR
;THE FIRST TWO
;PARAM.ETERS WITHIN EVALC

This macro call generates the following macro expansion and substitutes the
arguments 25 and 357 for the first two parameters ('1' and '2') within the macro
definition block. The argument 357 requires two bytes of memory as defined by
the WORD statement within the macro definition block.

LABEL OPERATION

BYTE

WORD

OPERAND

5,25

.357

MACROS

Exanples CConTinued)

Example 2

In the following example, two macro definition bloc~s are sequentially defined
Ql and Q2. One parameter is defined within each macro definition block. A
macro cal I, Ql 7, is defined within Q2. This statement cal Is the macro, Q1.

LABEL

PARMl

OPERATION

MACRO
ASET

BYTE

ENIJ4

MACRO
BYTE

Ql

BYTE

ENIJ4

OPERAND

Ql
1

3,5,'PA~1 1

Q2
3,5, 1 1 1

7

8,9,10

COMMENT

;DEFINES Ql AS MACRO ~ME
;ALLOWS SYMBOLIC REFERENCE
;TO THE FIRST PARAMETER
;ALLOCATES CNE BYTE Cf
;MEMORY EACH FOR THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE FIRST
;PARAMETER PASSED TO Q1,
;'PARM1'
;END OF MACRO DEFINITION Ql

;DEF INES Q2 AS MACRO ~ME
;ALLOCATES ONE BYTE OF
;MEMORY EACH FOR THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE FIRST
;PARAMETER PASSED TO
;Q2,'1'
;CALLS MACRO Ql AND
;ASSIGNS THE VALUE 7 TO THE

·;FIRST PARAMETER PASSED
;TO Ql, 'PAR-11 I

;ALLOCATES ONE BYTE OF
;MEMORY EACH TO THE
;CONSTANT VALUES 8, 9, AND
; 10
;END Cf MACRO DEFINITION
:Q2

Assume the fol lowing macro cal I appears within a user program to invoke the
macro defined as Q2:

LABEL OPERATION

Q2

5-10

OPERAND

3

COMMENT

;CALLS THE MACRO Q2 AND
; SUBST IT LITES THE ARGUMENT
;3 FOR THE FIRST PARAMETER
j I 1 I

MACROS

Exanp I es CCorrti nued)

This macro cal I generates the following macro expansion:

LABEL OPERATION

BYTE
BYTE
BYTE

OPERAND

3,5,3
~, 5, 7
8,9.10

In this example, the macro cal I Q2 3, causes the first statement within the
macro 02, BYTE 3,5, '1 ',to be expanded to BYTE 3,5,3. Expansion proceeds to the
next statement that cal Is the macro 01 and appears as Q1 7. This statement
causes expansion to continue with the statement, PARM1 ASET 1, thus al lowing
PARM1 to be used as a symbol le reference to the first parameter. This causes
the next statement within 01 to be expan~ed as BYTE 3,5,7, replacing BYTE
3,5, 'PARM1 '· Expansion within macro 01 terminates then terminates with the ENDM
directive. This termination causes expansion to continue with the next state­
ment in the referencing macro, Q2. ·The statement BYTE 8,9,10 is the next state­
ment that is expanded. Control then returns to the main program upon expansion
ot the ENll-1 directive, which terminates the macro expansion, Q2.

CondiTional Assembly

Macros may be defined such that their expansion is conditional; that is, based
upon the values of the parameters they use. IF - ELSE - ENDIF blocks allow con­
ditional assembly and are val id in all phases of the MlLLENNILM SYSTEMS
Assembler. REPEAT - ENDR blocks also allow·conditional assembly and are only
val id within a macro definition. The two methods tor performing conditional
assembly are summarized as fol lows. For further information pertain int to IF -
ELSE - ENDIF and REPEAT - ENDR usage, refer to Chapter 4, ASSEMBLER DIRECTIVES.

OPERATION OPERAND

IF expr

ELSE

ENDIF

Turns off the assembly process if
the expression is equal to zero
(false). Succeeding statements
are passed over and are not acted
upon until the ENDIF, or optional
ELSE, statement is encountered.

Regenerates assembly process when
IF expression equals zero.
Usage is optional.

Terminates the program text .
.controlled by the corresponding

I F statement.
(Program continued on next page.)

5-11

MACROS

Conditional Assembly

OPERATION

2> REPEAT

ENDR

Nesting

OPERAND

expr1,expr2 If expr 1 is equal to zero
(false>, statements up to the
ENDR statement .are ignored.
Otherwise, +he statements are
assembled and the assembler
repeats the process again until
the express Ion: is equal to zero.
A REPEAT block stops iterating
when the specitied expression
maximum, expr2, is reached. It
expr2 is not specified, the
REPEAT block stops after 255
iterations.

Terminates the program text
controlled by the corresponding
REPEAT statement.

IF - ELSE - END IF b I ocks and REPEAT - ENDR b I ocks may be nested. The nest Ing
depth is I imited only by the amount of memory available to the assembler. Each
IF cor:id it ion must be proper I y nested, having a matching END IF stateme.nt that
occurs within the scope of that particular IF condition. Only one ELSE direc­
tive is permitted within each IF - ENDIF block. In addition, each REPEAT con­
dition rrust be properly nested, having a matching ENDR statement occurring
within the scope of that particular REPEAT condition. IF - ENDIF and REPEAT -
ENDR blocks may not cross the boundary of a macro expansion or the boundaries of
each other.

Conditional Macro Termination

The EXITM directive terminates the current macro expansion before the assembler
encounters an END4 directive. The EXITM directive is generally used within IF -
ELSE ~ ENDIF and REPEAT - ENDR blocks to conditionally terminate macro expan­
sions. EXITM Is val id only within macro definition blocks.

5-12

MACROS

EXA.MPLES

IF - ENDIF Blocks

The fol lowing example demonsTrates the definition, calling, and
macro~ us i ng an IF - END IF b I ock. The· ex amp I e al so demons Tr ates
EXITM·directive To conditionaily terminate the macro expansion.
example, a macro is defined as CONDIF and.uses tour parameters.

expansion of a
the use of an

In this

LABEL OPERATION.

MACRO

BYTE

IF

BYTE

EXITM

ENOIF
BYTE

BYTE

ENll-1

OPERAND

CONDIF

'1 ', '2' ,0,0,0

n I 3 I H:lllf

255

13 I

H I (I 4 I) I LO(I 4 I)

COMMENT

;DEFINES CONDIF AS MACRO
;NAME
;ALLOCATES ONE BYTE OF
;MEMORY FOR EACH OF FI VE
;VALUES. THE FIRST AND
;SECOND VALUES ARE THE
;FIRST AND SECOND
;PARAMETERS FOR
;SUBSTITUTION BY THE MACRO
;CALL ARGlJ.4ENTS. THE ~D,
;4TH, AND 5TH VALUES ARE
;THE CONSTANT I 0
;TESTS ~D ·PARAMETER TO
;DETERMINE IF IT EXISTS
; IF ~D PARAMETER DOES NOT
;EXIST, ONE BYTE IS
;GENERATED CONTAINING
;255 DECIMAL
;TERMINATES MACRO
;EXPANSION, IF CONDITION
; IS SAT I SF I ED
;END OF IF- CONDIT I ON
;OTHERWISE, ONE BYTE IS
;ASSIGNED CONTAINING ~D
;PARAMETER
; SWAPS BYTES OF 4TH
;PARAMETER
;ENO OF MACRO DEFINITION

5-13

MACROS

IF - ENOIF Blocks CCorrtinued)

Assume the fol lowing macro call appears within a main program.

LABEL OPERATION OPERAND

CONDIF 22,29,27,25

COMMENT

;INVOKES MACRO CONDIF AND
;USES THE ARGLMENTS 22, 29,
; 27, ANO 25 FOR SUBST I TUT I ON
;OF THE FIRST FOUR
;PARAMETERS

This macro cal I substitutes the arguments 22, 29, 27, and 25 for the parameters
labeled·'1', '2', '3', and '4'. Notice that the substitution indicator(+) is
displayed prior to each I isted source I ine where substitution occurs.

0000 16100000+ BYTE 22,29,0,0,0 ;ALLOCATES ONE BYTE CF
;MEMORY

0004 00
0005 18 + BYTE 27 ;OTHERW I SE, . ONE BYTE IS

;ASSIGNED
0006 0019 + BYTE HI (25)LOC25) ; SWAPS BYTES CF 4TH

;PARAMETER

If the third substituted argument in this expansion had been empty rather than
27, the EXITM statement would have terminatedf further macro expansion.

5-14

MACROS

REPEAT - ENDR Blocks

In the following example of a REPEAT -ENDR block, a macro is de+.ir:ed as CONDR
and defines the ASET symbol, AGAIN.

LABEL

AGAIN

AGAIN

OPERATION

MACRO

ASET

REPEAT

BYTE

ASET

ENDR
BYTE

ENCM

OPERAND

CON DR

AGAIN < + '#'

'AGAIN'

AGAIN +

OOH

COMMENT

;DEFINES CONDR AS MACRO
;NAME
;INITILIAZES AGAIN iO EQUAL
; 1 AT ASSEMBLY TIME
;REPEAT WHILE AGAIN IS LESS
;THAN OR EQUAL TO TOTAL
;NO. OF ARGUMENTS ON TH IS
;CALL
;GENERATES ONE BYTE OF
;MEMORY CONTAINING THE
;CURRENT PARAMETER
;INCREMENT AGAIN AT
;ASSEMBLY TIME
;END OF REPEAT CONDIT I ON
;GENERATES A CARRIAGE
;RETURN
;END OF MACRO DEFINITION

Assume the following macro cal I appears wfthfn a main,program.

LABEL OPERATION OPERAND

CONDR 25,26,27

COMMENT

;INVOKES MACRO CONDR AND
;SUBSTITUTES THE ARGUMENTS
;25, 26, AND 27 FOR THE FIRST
;THREE PARAMETERS

5-15

MACROS

REPEAT - ENOR Blocks (t6oiitrioeeM)

This macro cal I generates the following macro expansion and substitutes the
arguments 25, 26, and 27 for the parameter labeled 'AGAIN'. The substitutions
occur for as many times as there are arguments specified in the macro cal I, as
defined by the '#' character. In this case, there are three arguments specified
and the '#' character is replaced by 3.

0'001 AGAIN ASET 1
FFFF + REPEAT AGA IN<=00003

0000 19 + BYTE 25
0002 AGAIN ASET AGA I N+l

ENDR
FFFF + REPEAT AGA IN<=00003

0001 lA + BYTE 26
0003 AGAIN ASET AGA I N+l

ENDR
FFFF + REPEAT AGAIN<=00003

00002 18 + BYTE 27
0004 AGAIN ASET AGA IN+l

ENDR
0003 OD BYTE OOH

END4
00005 0004 END

Macro Expansion Summary

The I Ines of code within the macro definition block are not assembled with the
rest of the program, but are saved until macro expansion time. Blank I Ines or
comment I ines are exceptions to this rule since they are not saved for expan­
sion. The macro definition block, therefore,· does not generate object code upon
assembly. When the macro name appears within the operation field of the main
program during assembly, the body of the macro is inserted and assembled within
the main program.

Prior to the assembly of each line in the macro definition block, the assembler
scans for the presence of the single quote character. An argument defined in
the macro cal I then replaces the parameter within the single quote characters.
After substitution, the scan continues from the first character fol lowing the
replaced text until the end of the current I lne. The I lne is Inserted into the
user program. The assembler then generates object code and processes the I ine.
The assembler continues to obtain I ines from the macro definition block in this
manner until an EN[l.1 or EXITM statement Is encountered. At that time, expansion
c·on;rnues with the statement forlowlilg the macro cal 1. "

./

5-16

Chapi"er 6

ASSEMBLER OPERATING PROCEDURES

INTRODU:TION

This chapter describes the syntax required for the MILLENNIUM SYSTEMS Assembler
to translate source code into executable binary obj~ct code.

PURPOSE
~t&'o

SYNTAX
R't~

{_..}{Filename} !F1 F2 F3J

The '61 <assembler)
disk.

command al lows the user to assemble a specified program on a

EXPLANATION
f\'t6VO

The command~ means assemble. The filename is the name of the source file to
be assembled. The file type extension is not included in the command. MP/Mor
CP/M uses the file name to generate:

- The source Filename by appending.~
- The I ist Filename by appending • ~
- The object Filename by appending.~

The three flags CF1, F2, F3) are optional. The first flag is associated with
the · source file, the second flag is the object file, and the third flag with
the I i st f i I e. The f I ags are one character each and have the fol I owing meaning:

A through P - Logical disk
Z - Do not produce a f i I e
X - Applies only to Flag 3

on the console.

drives

CF3> and means put the Listing

NOTE: If the filename has a logical drive designator <A:filename)
and the flag specifies a different logical dr-fve, the flag
takes precedence.·

6-1

Chap'ter 1

ASSEMBLER LI ST I NG FCR-1AT

INTROOlCTION

The assembler I isting is composed ot two parts:

1) the source program assembler 'isting with the object dOde·generated tor
each instruction; and

2) a table of al I symbols used in The program.

THE ASSEMBLER LISTING

The assembler I isting is composed of headings, I ines of source code I isting
information, and error responses relating to any assembling errors.

Headings

Each page of the assembler I isting contains a heading. The heading includes The
assembler version on the left side of the page, and the page number on the right
side of the page, as shown below:

MILLENNILM zao ASM vx.x PAGE X

If the TITLE directive is used, a 30-character string expression may be lnser~ed

at the top of each I isting page tor program· identification. The character
string specified as the TITLE operand is printed on the first character line
between the assembler version number and the page number, shown as follows:

MILLENNILM zao ASM vx.s THIS IS THE PROGRAM TITLE PAGE X

If the STITLE directive is used, a 72-character string expression may be
inserted on the second tine of each I isting page for program identification.
The character string specified as the STlrLE operand is printed between the page
heading and the first source code I ine. A blank I ine is automatical ty inserted
between the string and the beginning of the source code. A program iden-
tif icatlon heading created with the STITLE directive appears below:

MILLENNILM Z80 ASM VX.X
THIS LINE DEMONSTRATES STITLE USAGE
(blank line>

• <source code)

PAGE X

7-1

ASSEMBLER LISTING FOR-4AT

The Listing Line

The heading is fol lowed by a blank I ine and the I isting information. Each
source program I ine is translated and output in the fol lowing sequence:

1) a l i ne number,

2) the memory location of the instruction or data,

3) the translated object code,

4) a relocation indicator if relocation occurs on the I ine,

5) a substitution indicator if substitution occurs on the I ine, and

6) the original source I ine.

The I isting line may be 72 or 132 characters wide, dependent upon whether the
TRM option for the LIST and NOLI ST directives is active. The first listing line
field is a five-character decimal line number. Line numbers are not I isted for
macro expansion I ines. The second listing field is a four-char~cter hexadecimal
location counter. This field may also represent a symbol value for an EQU
directive. Both the I ine number and the location counter are right justified
with leading zeros when necessary, and are separated from each other by one
space.

The object field fol lows the location counter field, and the fields are
separated by one space. The object code is left justified and may be a maximum
of eight hexadecimal characters wide. If an instr~ction generates more than
eight hexadecimal characters, al I additional object code is I isted on subsequent
I i nes.

If relocation occurs in a I ine, the greater-than character (>) fol lows the
object field. Actual relocation is performed at I ink time.

It a substitution occurs in al ine, the plus character(+) fol lows the reloca­
tion indicator or the object field. Al I substitutions occur before the I ine is·
I i sted. The examp I e that fol I ows shows the p I us sign preceding a I i ne where a
substitution occurs.

00001 0000 030502 +BYTE 3,5,2

7-2

;ALLOCATE ONE BYTE .CF
;MEMORY FOR EACH OF THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE VALUE DEFINEO
;TO SUSST ITUTE FOR 1 1 1 <IN.
;THIS CASE THE VALUE IS 2>

ASSEMBLER LISTING FORMAT

The Listing Line CCon1"i nued>

The SQurce code fol lows the relocation or substitution indicators or the object
code field, and the fields are separated by one space. If the TRM option is ON
when entered with the LIST directive, 52 spaces remain in the I isting I ine for
the source code. Any source code exceeding the 52-character I imit is truncated.
If the TRM option is OFF, either by default or when entered with the NOLIST
directive, 112 characters remain in the I isting for the source code. Any source
code exceeding the 112-character I imit is truncated. •

Any non-printing character, other than the space, tab, or carriage return
characters, is represented by a question mark <?> in the I isting. The assembler
translates the character replaced by the? to the original character form.

To summarize, the I isting I ine appears as follows:

XXXX LLLL DD DD DD DD > + SSSSS •••••

Each field is represented as fol lows:

x
L
D

=
=
=

Line number, right justified
Memory location Cor EQU statement symbol value>
Object code

>
+
s

=
=
=

Relocation indicator (relocation is performed at I ink time)
Substitution indicator <substitution has occurred before I i~ting>
Source Ii ne

Error REsponse

It an error occur.s in an instruction, the I ine containing the error is followed
by an error response. This is also true when the instruction generates more
than one I ine of object code. The error response takes the fol lowing form:

*****ERROR code

The "code" in the above error response is replaced by._a three-digit number in<li­
cating the type of error detected. For a description of all error codes and
their corresponding messages, refer to Appendix D. If the error response prece­
des an additional message, "FATAL ERROR; ASSEMBLY ABORTED AT LINE XXXX", the
severity of the error is such that the Assembler cannot continue execution.

7-3

ASSEMBLER LISTING F~AT

THE S'YMBOL TABLE

The symbol table fol lows the I isting, indicating al I sytnbcSI s used in the source
module and the values these symbols represent. The symbol table al so categor­
izes al I symbols according to their type or base, tor ease in referencing. The
structure ot the symbol table fol lows a three-part format: a ~eading, symbols
and their values (categorized by type or base), and two I ihes providing sta­
tistical program assembly information •.

Each symbol"table page contains a heading fol lowing the format shown below:

MILLENNILM Z80 ASM Vx.x SYMBOL TABLE LISTING PAGE x

Below the heading, symbols and their corresponding hexadecimal values appear in
categories according to their type or base. Headings precede each category
describing the group ot symbols in each category. The poss i b I e symb_ol headings
are as fol I ows:

STRING AND MACROS

SCALARS

name SECTION characteristic (length)

name CCMMON characteristic (length)

7-4

Al I string and macro symbols are I isted
under this category.

Al I symbols having scalar values and al I
undefined symbols are I isted under this
category.

Al I symbols based to the named Linker
section are I isted. The section charac­
teristic indicates whether the section is
relocated at the starting address ot a
physical memory block CPAGE>, whether
the section is relocated on any byte
address within a page CINPAGE>, or
whether the section is based to the
actual address specified by the ORG
directive at assembly time (ABSOLUTE).
Refer to the discussion on Section
Definition Directives in Chapter 4. If
no characteristic is I isted, the section
is byte relocatable. The length of the
named section is specif i e.d in bytes.

Same as SECTION category, except that
more than one conmon section with the
same name is val id aT I ink time. ..

THE S"IMBOL TABLE

name RESERVE characteristic (length)

name UNBOUND GLOBAL

ASSEMBLER LISTING F°"4AT

Same as SECTION category, except that al I
sections with the specified name are com­
bined into a single section at link time.

An unbound global is a. symbol declared in
a global statement, having no value in
this assembly. The named unbound global
must be defined in other assemblies or at
I ink ti me. If an unbound glob al is used
to assign a value to a symbol in this
assembly, that symbol is I isted under the
UNBOUND. GLOBAL category in the symbol
table I isl'ing.

Columns conl'aining symbols and their corresponding hexadecimal values are I isted
alphabel'ical ly under each cal'egory. When a symbol has fewer than eight charac­
l'ers, dashes and spaces<- - -> serve as padding between a symbol and its value.
The value field contains four hexadecimal characters and righl' justified, with
leading zeros where necessary. The value field for undefined symbols appears as
a series of asterisks <****). Each value fs fol lowed by several spaces and the
next symbol. A typical symbol table I istfng I ine might appear as fol lows:

S't'M --- 0101 S't'MB2 - - 0025 S't'MB3 - -0022 S't'MBOL4 **** S't'MBOL5 0121

The number values for string and macro symbols indicate the number of bytes used
by the symbol for text storage. The number values for ASET symbols indicate the
I ast va I ues assigned to the symbols. The number values tor GLOBAL and ENDOF
symbols represent the addresses prior to relocation.

Symbol indicators may appear after the symbol values. An indicator also appears
if a high or low truncation occurs at I ink time. The symbol indicators are sum­
marized as fol lows:

S - String symbol
M - Macro symbol
V - ASET symbol
G - GI obal symbol
H - High truncation indicator (truncation will occur at I ink time)
L - Low truncation indicator <truncation will occur at I ink time>
E. - ENDOF symbol Cval ue wl 11 be adju.sted at· 1 ink time)

Al I symbols without Indicators are EQU symbols. The number vel ues for these
symbols Indicate their values during assembly.

7-5

ASSEMBLER LISTING FORMAT

THE S'lt4BOL TABLE

If the TRM option is specified with the NOLIST directive, or is
due to default, the symbol table I isting is five columns wide.
option is specified with the LIST directive, causing the option
symbol table I isting is three columns wide.

otherwise OFF
If the TRM
to be ON, the

Two I ines appear below the symbol table display providing statistical infor­
mation about the current assembly. The first I ine shows the number of source
I i nes, the number of assemb I ed I i nes, and the number of ava i I ab I e bytes. The
number of available bytes indicates the amount of space available for further
data manipulation or symbol storage within the assembler. The second statisti­
cal I i ne indicates the number of errors and unde tined symbol s, if .any.

7-6

ASSEMBLER LISTING FOFl4AT

A sample assembler and symbol table I isting is shown in figure 7-1.

MI LLENN I LM Z80 ASM V3.3 THIS IS THE TITLE
THIS LINE IS THE STITLE OF MY PROGRAM

..
00003 STRING s 1 (80)

00004 0003 L1 EQU 3
***** ERROR 003

00005 0004 L2 ASET 4

00006 0100> ORG 100H

00007 0100 7E L1 LO A, CHU
***** ERROR 002

00008 END

PAGE

;DEFINE STRING VARIABLE S1 WITH
; 80~HARACTER MAX IMLM
;DEFINE CONSTANT SYMBOL L1 TO
;EQUAL 3

;DEFINE VARIABLE SYMBOL L2 TO
;EQUAL 4
;STARTS OBJECT CODE OF NEXT
;IN?TRUCTION AT 100H
;LOAD REG. A WITH CONTENTS OF
;MEMORY PO I NTED TO BY HL
;REGISTER PAIR. MULTIPLY-DEFINED
; SYMBOL, L1.

; END OF PROGRAM

MILLENNILM Z80 ASM V3.3 SYMBOL TABLE LISTING PAGE 2

STRINGS AND MACROS

S1 - - - - - 0050 S

SCALARS

L2 - - - - - 0004 V

% (default) SECTION C0101)

L1 - - - - - 0100
15 SOURCE LINES 15 ASSEMBLED "LINES 1000 BYTES AVAILABLE
2 ERRORS

Figure 7-1. Sample Assembler end Symbol Table Listing

7-7

SYMBOLS

A• .3-

0 ••• 9

$

, C comma)

"

[1

@

%

*

I

+

()

\

Appendix A

SOUR:E MOOULE CHARACTER SET

DEFINITION

letters used in symbols; lower-case characters Cother than in
strings and comments> are interpreted as the corresponding
upper-case characters

numbers used in symbols and constants

used in symbols, and to represent assembler location counter
contents

used in symbols

used In symbols

precedes a comment
del imiter for operand items

string delimiter

string concatenation operator

string substitution delimiter

total number of arguments passed to current macro expansion

group macro code to be treated· as a single argument

provides unique labels for each macro expansion

is replaced by name of current section or common in a macro
expansion

binary arithmetic operation, multiplication

binary arithmetic operation, division

unary or binary arithmetic operator, addition

unary or binary arithmetic operator, subtraction

override precedence of operators

unary logical operator, not

A-1

SOlR:E MOOlLE CHARACTER SET

SYMBOLS

&

! !

SPACE

TAB

CARRIAGE
RETURN

/\or t

/\/\ort t

=

< >

>

<

>=

<=

A-2

DEFINITION

binary logical operator, and

binary logical operator, Inclusive or

binary logical operator, exclusive or

t iel d del imitel",

t iel d del im iter

field and I i ne de I i m i ter

al lows following special character to have I lteral meaning

al lows the second caret or up-arrow character to have I iteral
meaning

rel atlonal operator, equal

relational operator, not .equal

relational operator, greater than

rel atlonal operator, less than

rel atlonal operator, greater than or equal

relational operator, less than or equal

DIRECTIVE

ASCII

ASET

BLOCK

BYTE

Ca.1MON

ELSE

END

ENDIF

ENCJ.1

ENDR

EQU

EXITM

GLOBAL

IF

INCLUDE

LI ST

MACRO

NAME

NOLI ST

ORG

Appendix B

ASSB4BLER DIRECTIVES

OPERATION

stores ASC I I text in memory

assigns or reassigns an expression value to a 5Tring or numeric
variable symbol

reserves a specified number of bytes in memory FF//
al locates one byte of memory to each expression specified

declares Linker section, assigns name, defines type to be common

when expression is false, causes assembly of alternate source
I i nes between ELSE and END IF d I rect i ves

terminates source modules

signals corresponding IF block termination

terminates a macro definition block

signals end of each REPEAT cycle

permanently assigns a value to a symbol

terminates expansion of current macro before encountering ENDM
'

declares symbols to be global variables

when expression is true, causes assembly of source I ines between
IF and ENDIF directives

inserts text from specified file into the program

enables display of assembler listing features

defines the name of a source code block used repeatedly within a
program

declares name of an object module
......

disables display of assembler listing features

sets contents of location counter

B-1

ASSEJ4Bl.ER DIRECTIVES

DIRECTIVE

PAGE

REPEAT

RESERVE

RESIJ-1E

SECTION

SPACE

STITLE

STRING

TITLE

WARNING

WORD

B-2

OPERATION

begins the next I isting I ine on the following page

enables macro I Ines between REPEAT and ENDR directives to be
assembled repeatedly

sets aside a workspace in memory

continues de~lnition of code for a given section

declares Linker section, assigns name, defines parameters

spaces downward a specified number of I istlng I Ines

creates a text I lne on the second I ine of each I !sting page
heading for program identification

declares symbol to be a string variable

creates a text line at the top of each I isting page heading for
program identification

generates specified warning message on the output device and in
the I isting

allocates two bytes ct memory to each expression specified

ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVE SYNTAX

LABEL OPERATION OPERAND COMMENT

" [symbol I ASCII {.string expression} [,string expression! ••• [; charstr i ng I

{symbol} ASET {express ion} I; charstr i ng I

I symbol I BLOCK {express I on} I; charstr i ng I

[symbol l BYTE [expression} !,expression! ••• I; charstr i ng l

!symbol J CCMMON { symboO [PAGE J I; charstr Ing l
INPAGE
ABSOLUTE

I symbol l ELSE I; charstr i ng l

!symbol l END !express lonl !;charstrlngl

!symbol l ENDIF I; charstr i ng l

!symbol l EN!J.i1 I; charstr i ng l

[symbol 1 ENDR [; charstr i ng J

{symbol} EQU [expression} [; charstr i ng J

[symbol J EXITM [; charstr i ng l

lsymbol l GLOBAL {symbol} I, symbol l ••• [; charstr i ng I

[symbol l IF {expression} [; charstr i ng J

I symbol I INCLUDE [string expression} I; charstr i ng J

[symbol l LIST ICND J l ,TRM l l ,SYM l [,CONJ I ,MEG! [,MEI I; charstr i ng l

[symbol J MACRO .(symbol} I; charstr i ng J

!symbol I NAME {symbol} I; charstr i ng I
-,_I..~

!symbol I NOLI ST ICND I l, TRM I !,S'l'MI l ,CON I !,MEG! l ,ME I I; charstr i ng I

!symbol I ORG {!/!expression} [; charstr i ng I

[symbol I PAGE [; charstr i ng I

<Directives continued on next page>

B-3

ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVE SYNTAX <Coni"inued)

LABEL OPERATION OPERAND COMMENT

[symbol I

[symbol I

[symbol I

[symbol I

[symbol I

[symbol]

[symbol]

[symbol I

REPEAT

RESERVE

RESLME

SECTION

SPACE

ST ITLE

STRING

TITLE

!symbol I WARNING

I symbol WORD

8-4

{expression 1} I , express i on2 I •••

{symbol , express i or0-r, PAGE J
L. INPAGE

I; charstr i ng I

[; charstr i ng I

l symbol- I

[symbol} L-, PAGE j-
, INPAGE

ABSOLUTE

[expression]

{string expression}

{{si"rvar 1} l C I enexp 1) ~ [si"rvar2

{string expressionJ

{expresslon}l,expressionl •••

[; charstr i ng I

[; charstr i ng J

I; charstr i ng I

I; charstr i ng I

[(lenexp2l] ••• l;charsi"ringl

[; charstr i ng I

!message I

l;charsi"ringl

Appendix C

HEXADECIMAL CONVERSION TABLES

ASCII CODE CONVERSION TABLE

0

0 NUL , SOH
2 STX
3 ETX
4 EOT

LEAST 5 ENO

SIGNIFICANT 6 ACK
CHARACTER 7 BEL

8 BS
9 HT
A LF
B VT
c FF
D CR
e so
F SI

HEXAOECIMAL

MOST SIGNIFICANT CHARACTER

, 2

DLE SP
DC1
DC2
DC3 #

DC4 $
NAK O/o
SYN &

ETB
CAN
EM

SUB
ESC
FS
GS
RS
us I

EXAMPLES

W=57
H =48
a= 61
t = 74

@=40
NUL = 00
DEL= 7F

3

0 ,
2
3
4
5
6
7
8
9

<
=
>
'?

4 5 6

@ p

A a a
B R b
c s c
D T d
e u e
F v f

G w g
H x h

I y

J z
K [k

L \

M] m
N /\ n
0 0

7

p

q
r
s
t

u
v
w
x
y
z
{
I

I

} -
DEL

C-1

Hexadecimal Conv<:;ts'on

.. _, . ..,.......

DKimal-Hu:adeeimal-Slnary Equivalents 0-25510 --Mesa- Si,,ary Mexa- Si,,ary 1-1exa- Si,,.ry I-lex_.- Si,,ary
Oect- aec- &-olt Oeci- aec:1- s-c1c Oeci· aec:1- 8-Clt O.Ci- aec- S-oit ,,., .. ma.I ~· maJ mal Cod• mal mal Code mat mai COde

0 00 0000 0000 54 '° 0100 0000 128 80 1000 0000 192 co 1100 OOC-0
1 01 0000 0001 55 41 0100 0001 129 S1 1000 0001 193 C1 110000Cl
2 02 0000 0010 ee 42 0100 0010 130 112 1000 0010 19' C2 1100 00'0
3 03 0000 0011 57 '3 0100 0011 131 113 1000 0011 195 c:J 1100oci1
4 °" 0000 0100 SI "" 0100 0100 132 S4 1000 0100 198 C.& 11ooo·co
5 OS 0000 0101 89- 45 0100 0101 133 85 1000 0101 197 cs 1100 01c1
8 oe 0000 0110 70 48 01000110 13' 88 1000 0110 1911 C& 1100 01 :o
7 07 0000 0111 71 47 0100 0111 135 117 10000111 199 C7 1100 01 '1
8 : 0000·1000 n 41 0100 1000 138 : 1000 1000 200 C& 1100 1C,.~
9 . iYiii 1001 73 49 0100 1001 137 1000 1001 201 C9 1100 1001
10 QA 0000 1010 74 •A 0100 1010 138 SA 1000 1010 202 CA 1100 1010
11 OB 0000 1011 75 48 0100 1011 139 SB 1000 1011 203 ca 1100 1011
12 oc 0000 1100 7S 4C 0100 1100 140 SC 1000 1100 204 cc 1100 1100
13 ~~ 0000 1101 n 40 0100 1101 141 so 10001101 205 co 11001101
14 loo001110 78 •e 0100 111(l 142 ee 1000 1110 2oe ce 1100 in<J
15 o;: 0000 ,, 11 79 4F 0100 1111 143 8F 1000 1111 207 CF 110011n
18 10 0001 0000 80 50 0101 0000 144 90 1001 0000 208 00 1101 0000
17 11 0001 0001 S1 S1 0101 0001 145 91 1001 0001 209 01 1101 0001
18 12 0001 0010 82 52 0101 0010 148 92 1001 0010 210 ~ 1101 0010
19 ~:: 0001 (J(l11 113 c3 0101 0011 147 93 1001 00•1 211 1101 0011
20 14 0001 0100 84 54 0101 0100 148 i4 1001 0100 212 04 1101 0100
21 15 0001 0101 85 55 0101 0101 149 9! 1001 0101 213 05 1101 0101
22 18 0001 0110 81 5e 0101 0110 150 9e 1001 0110 214 oe 1101 0110
23 17 0001 0111 87 57 0101 0111 151 97 1001 0111 215 07 1101 0111
24 18 0001 1000 S8 58 0101 1000 152 98 1001 1000 2115 08 ·101 1000
25 19 0001 1001 89 Si 0101 1001 153 99 1001 1001 217 09 1101 1001
28 1.A 0001 1010 90 SA 0101 1010 15' 9.A 1001 1010 218 OA 1101 1010
27 18 0001 1011 91 58 0101 1011 155 98 1001 1011 219 08 1101 1011
21 ~g 0001 1100 92 SC 0101 1100 156 :g 1001 1100 220 gg 1101 1100
29 0001 1101 93 50 Q•('_1 1101 157 1001 1101 221 1161 1101
30 1e 0001 ,, 10 94 5E 0101 1110 158 9E 1001 1110 222 OE 1t01 1110
31 1F 0001 1111 95 SF 0101 1111 1S9 9F 1001 1111 223 OF 1101 1111
32 20 0010 0000 H 60 0110 0000 180 AO 1010 0000 224 eo 11100000
33 g 0010 0001 97 81 0110 0001 1111 Al 1010 0001 22S ~1 1110 0001
3" 0010 0010 98 112 0110 0010 1112 A.2 1010 0010 2211 ~ 1110 0010
35 23 00100011 99 63 01100011 1113 A.3 1.:·00011 m EJ 1110 0011
38 24 0010 0100 100 84 0110 0100 1114 M 1010 0100 228 E4 1110 0100
37 2S 0010 0101 101 85 0110 0101 1115 AS 1010 0101 229 e 1110 0101
31 ~ 00100110 102 se 0110 0110 188 A! 1010 0110 230 es 1no 0110
39 00100111 103 67 0110 0111 1e1 .A.7 1 0100111 231 ~ 1110 on~
4(1 28 0010 1000 1G& 68 0110 1000 168 A8 1010 1000 232 ES 1110 1000
41 29 0010 1001 10S 159 0110 1001 1e9 A9 1010 1001 233 E9 1110 1001
42. 2A 0010 1010 1oe SA 0110 1010 170 AA 1010 1010 234 EA ~ 110 1010
'3 28 0010 1011 107 ea 0110 1011 171 A.8 1010 1011 235 ~~ 1110 1011

"" 2C 0010 1100 108 SC 0110 1100 172 A.C 1010 1100 238 1~·0 11_00_
4! 20 0010 1101 109 60 0110 1101 173 A.0 1010 1101 237 EC :110 1101
Ae 2E 00101110 110 SE 0110 1110 174 AE 1010 1110 23a EE 1110 1110
•7 2F 0010 1111 1,., 5F 0110 1111 175 AF 1010 1111 239 EF 1110 1111
41 ~ 0011 0000 112 70 0111 0000 1711 BO 1011 0000 240 FO 1111 0000
•9 0011 0001 113 71 0111 0001 in 91 101, 0001 2'1 F1 1111 nnn1
50 32 0011 0010 114 72 0111 0010 178 S2 1011 0010 242 F2 1111 0010
Sl 33 0011 0011 115 73 0111 0011 179 B3 1011 0011 243 F3 1111 0011
52 3" 0011 01oa 1111 74 0111 0100 180 8' 1011 0100 244 F• 1111 0100
53 ;: 0011 0101 117 75 0111 0101 181 B5 1011 0101 24S F5 1111 0101
5' 0011 0110 118 1.6- 0111 0110 182 _ee 1011 OHO 24! F6 1111 0110
55 37 0011 0111 119 n 0111 0111 1113 87 1011 0111 247 Fi 11, 1 01,,
51 31 0011 1000 120 711 0111 1000 184 ea 1011 1000 241 F8 1111 1000
S1 39 0011 1001 121 79 0111 1001 185 BS 101, 1001 249 F9 1111 1001
51 : 0011 1010 122 7A 0111 1010 188 BA 1011 1010 2!0 FA 1111 1010
st ~11 1011 123 78 0111 1011 187 ee 1011 1011 251 FB 1111 1011
80 3C 0011 1100 124 7C 0111 1100 188 BC 1011 1100 252 FC , 111 1100
111 30 0011 1101 125 70 0111 1101 189 BO 1011 1101 253 FO , 111 1101
82 3E 0011 1110 121 7E 0111 1110 190 ee 1011 1110 254 FE 11q 1110
53· 3F 0011 1111 127 7F 0111 ,, 11 191 BF 1011 1111 255 FF 1111 1111

C-2

Hexadecimal Conversion Tabres

HEX ADDITION

HEXADECIMAL AOOITION TABLE , 2 3 I 4 5 I 6 I 7 8 9 A el c 0 I E I F
1 2 I 3 I 4 I s 6 i I 8 9 A 8 Cl 0 E F 10
2 3 4 I s l 6 7 8 I 9 A 8 c DI E F 10 ,,
3 4 5 6 I 7 8 9 A B c D I E F 10 11 12
4 5 6 7 l a· 9 A 8 Cl D E F I 10 11 12 13
5 6 7 8 I 9 Al 81 c 0 E I F 10 11 12 13 14
6 7 I 8 9 I A I 8 c 0 E F I 10 11 12 13 14 15
7 8 9 Al 8 c D e F l 10 11 i2 I 13 14 15 16
8 9 A Bl C I D E F 10 ,, 12 13 14 15 16 17
9 A 8 CI D E F 10 ,, 12 13 14 15 I 16 17 18
A 8 c 0 l E F 10 11 12 I 13 14 is 16 17 18 19
B c D E I F 10 11 12 13 14 15 16 I 17 18 19 1A
c 0 E F J 10 11 12 13 14 15 16 17 18 19 1A 16
D E F 10 I 11 I 12 13 ,, 15 16 17 18 19 1A 18 1C
e F I 10 11 l 12 13 ,, 15 16 1i 18 19 I 1A 18 ic 10
f. 10 11 i2113 14 15 16 17 18 19 I 1A 18 ic 1D 1E

HEX F+S = 1i

HEX 10 - 16 DEC
HEX 7 = 7 DEC - -HEX ii = 23 DEC

c-:

Hexadecimal Conversio,, Tabres

HEX MULTIPLY

HEXIOECtMAL MULTIPLICATION TABLE , I 2 I 3 I 4 5 e I 1 8 9 I A 8 c 0 E F , , 1 2 3 I 4 I s 6 7 8 9 A 1~ IC D E F
2 2 I 4 6 a I A c E 10 12 14 I is is 1A ic 1e
3 3 I 6 9 c F i2 15 18 ie ie 2i 24 27 2A 20
4 4 I a c io I i4 ia ic 20 24 28 I 2C 30 34 38 3C
s 5 I A F I i4 19 ie 23 28 20 32 37 I 3C 41 46 48
6 6 I c 12 I is ie 24 2A 30 i 36 3C 42 I 48 I 4E 54 SA
7 7 I E I is ic 23 I 2A 3i 38 j 3F ! 46 40 S4 58 62 69
s a I io is 20 I 28 30 3S 40 i 48 I 50 58 60 68 70 78
9 9 l 12 16 24 20 36 3f AS 51 SA 63 I 6C 75 7E 87
A A I 14 i E I 28 I 32 I 3C 46 so SA 64 6E 78 82 SC 96
B B I 16 2i 2C 37 42 40 S8 63 6E 79 84 SF 9A AS
c C I is I 24 30 I 3C 48 S4 60 I SC 78 84 90 9C AS 84
0 0 1 1A 27 I 34 4i 4E SB 68 7S I 82 SF 9C A9 I 86 C3
E E I 1C 2A I 38 46 I S4 62 I 70 I 7E I 8C 9A AS 86 ~ 02
F F I 1 e 1 20 1 3C 1 4B 1 sA 69 78 87 96 AS B4 I C3 02 E1

HEX 9x8 = 48
HEX 40 = 64 OEC
HEX 8 = a DEC -HEX 48 = 72 DEC

C-4

Appendix D

ASSEMBLER ERROR CODES

The fol lowing error code numbers signify the MILLENNILM SYSTEMS Assembler error
mes9ages describing them. Upon assembly and in assembler I istings, error codes
and messages appear immediately below the source I ine containing an error.

***** ERROR

*****ERROR

*****EFROR

*****ERROR

*****ERROR

*****ERROR

001: (no message displayed.)

Indicates that a user-entered WARNING message has assembled.
Refer to WARNING directive explanation in Chapter 4.

002: Symbol already defined

Indicates that the symbol defined has been previously defined in
the program assembl i ng sequence. Occurs when the same symbol is
equated to two values Cw ith EQU directive) or when the same sym­
bol I abel s two instructions.

003: Symbol value Phase Error

Indicates that the label or EQU symbol value differs between
passes, or that the section aassignment of a label or EQU symbol
value differs between passes.

004: II legal EQU of GLOBAL

I nd i cates that an unbound gl oba I is assigned the value of
another unbound global <with EQU directive>. Error occurs
because unbound globals are not assigned values in the current
assembly.

005: Global definition may not use HI, LO, or ENDOF

Indicates that the value assigned to the global symbol involved
HI, LO, or ENDOF function usage. Occurs when a gt obal symbol is
equated to HICx> or LO<x>, where xis an address, or ENDOFCy>,
where y is the section name whose endi.J;l_g address Is to be found.

006: String expression required

Indicates that a numeric value appears where a string value is
required. Operations requiring string expressions Involve con­
catenation, SEG and NCHR function usage, end ASCII, TITLE, or
STITLE directive usage.

D-1

ASSB4BLER ~ CODES

***** ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

D-2

007: Undefined BLOCK or ORG expression

The operand expression of an ORG or BLOCK directive is either
undefined or a forward reference. Occurs when an undefined or
misspelled symbol appears in an ORG or BLOCK directive, or a
symbol is assigned a value after the ORG or BLOCK references the
symbol •

008: lnvalid.,dRG out of section

Indicates that the ORG operand expression represents an address
defined outside the current section. Examine previous RESLME or
SECTION statements for errors.

009: Negative block length

Indicates that the BLOCK operand expression represents a negative
value.

010: Macro already defined

Indicates that more than one MACRO directive contains the same
name.

Ott: Macro definition phase error

Indicates two possible errors: The macro was cal led before
being defined, or the macro was defined during the second
assembler pass, but not the first.

012: Memory fut I on Macro cal I

Indicates insufficient space to perform macro expansion. Occurs
when too many long arguments are specified for parameter substi­
tution, too many symbols are entered in macro definition, or the
macro repeats itself infinitely.

Ot3: Missing ENDR or ENDIF

Indicates that a conditional assembly (IF or REPEAT> block
failed to complete assembly. Occurs when a conditional assembl¥
block begins assembly within a macro definition and the macro
terminates (with an ENIJ.1 directive) before the conditional
assembly terminates <with an ENDR or ENDIF directive>.

***** ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSEMBLER ERRM CODES

014: Duplicate definition of section name

Indicates that the section name has already been defined as a
label symbol during the current assembler pass.

015: END directive invalid within an INCLUDE file

Indicates an invalid END directive is present within an INCLUDE
f i I e.

016: ENDR or ENDIF mis-matched

Indicates that an improper termination directive was used for a
conditional assembly. block. Occurs when ENDR is entered to ter­
minate an IF block, ENDIF is entered to terminate REPEAT block,
or when IF and REPEAT blocks overlap each other producing the
same effect.

017: Iteration I imit exceeded

Indicates an attempt to assemble a REPEAT block more than the
specified number of times. It the al lowed number of repeat
cycles is left unspecified, the error message is displayed when
256 repeat cycles are completed.

018: Misplaced ELSE

Indicates that an ELSE directive occurs outside its
corresponding IF-ENDIF block, or that more than one ELSE direc­
tive occurs within the scope of one IF-ENDIF block.

019: Operation invalid for address

Indicates that an operation al lowing only scalar values was
appl led to an address value.

020: Divisor ts zero

Indicates that the Assembler attempted to divide by zero. Also
occurs when the Assembler attempts to determine the remainder of
a division by zero with the MOD operator (for example, A MOD O>.

D-3

ASSEMBLER ERROR CODES

***** ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

0-4

021: Text following I ignored

Indicates that information following a bracketed macro parameter
has been ignored.

022: ENDOF operand ls scalar
.........

Indicates that the specified section name in the ENDOF stateme'nt
is a non-global, seal ar symbol.

023: ENOOF already applied

Indicates an attempt to perform an ENOOF function upon an
address resulting from a previous ENDOF function.

024: ENDOF operand is not global

Indicates that the specified section name in the ENDOF statement
represents a non-globa! symbol.

025: Operation on HI or LO of address

Indicates an attempt to perform an arithmetic or unary operation
upon an address that has had HI or LO applied to it.

026: Addition of addresses

I nd i cates an attempt to add one address to another.

027: Conti icting section bases

Indicates an attempt to subtract or compare addresses based to
different sections or having different ending byte addresses.

028: Address subtracted from scalar

Indicates an aTtempt to subtract an address from a scalar value •

..

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSEMBLER ERROR CODES

029: Negative string length

Indicates that a ne~ative value was specified for the string
length when the stri'ng was declared with the STRING directive.

030: String length phase error

Indicates that the string expression value differs between the
assembler's first and second pass. Occurs when the string
length expression contains a forward reference.

031: Redeclaration of string variable

Indicates a second attempt to declare the same string variable.

032: String declaration phase error

Indicates that the string value was defined during the
assembler's second pass, but not its first.

033: I nval id string name

Indicates that an invalid string varia91e name has been entered
as an operand in the STRING directive.

034: END Inside an unclosed block

Indicates that an END statement occurs within an IF, REPEAT, or
MACRO definition block. Occurs when an ENDIF, ENDR, or ENDM
directive is either missing or misspelled.

035: Value truncated to byte

Indicates that the value entered exceeds one byte <value tal Is
outside the range-128 to 255). The value Is truncated total I
within one-byte range.

036: lnval id character follows label

Indicates that a character other than a space was encountered
fol lowing a label.

D-5

ASSEMBLER ERRCR COOES

***** ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

0-6

037: Extra operans ignored

Indicates that extra operands appear In the statement. The
complete statement entered prior to the extra operands is
assembled, and the extra operands are ignored. Occurs when a
statement is miscoded, an invalid delimiter occurs in the
operand I ist, or a semicolon does not precede a comment. This
error al so oecurs when a logical not 11

\
11 operator or a function

fol lows what could be interpreted as a complete expression.
This complete expression is either composed of or ends in a
constant, a symbol , or a right parentheses ") ". The portion of
the statement that precedes the logical not operator or function
is assembled and the remaining portion of the operand is
ignored.

038: String variable used as label

Indicates that a string variable is present in the label field
of an instruction. Label is ignored.

039: lnval id' operation code

Indicates that the Assembler is unable to recognize the opera­
tion In the statement, or that the Assembler disallows the
operation to be processed in its entered context. Occurs when
the operation is misspelled, an invalid delimiter fol lows the
label, or a macro is called prior to its definition.

040: I nval id character

Indicates that the Assembler has encountered a character, out­
side the val id character set, that was not enclosed within
double quotes.

041: Syntax error

Indicates that the statement does not conform to the required
syntax. Refer to Appendix B tor required syntax tor Assembler
directives.

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSEMBLER ERROR CODES

042: lnval id option or separator

Indicates that the Assembler encountered an invalid delimiter
between I isting control options in the LIST or NOLI ST directive
operand fie I d. Occurs when spaces de I i mi t the options where
commas are required, or when an invalid listing control option
is entered.

043: No label on EQU or ASET

Indicates that a symbol is either missing from or inval id for
the label field of an EQU or ASET directive.

044: I nval id Macro name

Indicates that the macro name is missing from the operand field
of the MACRO directive, or that the macro name is an invalid
symbol. Occurs when a previously-defined symbol is entered as a
macro name, a macro name 1 s missing from the macro directive
operand field, or an invalid delimiter is entered between the
macro operation and macro name.

045: lnval Id relocation option

Indicates an attempt to specify an invalid relocation option
<other than PAGE, INPAGE, or ABSOLUTE> when declaring a section.
When this error occurs, the assembler ignores the lnval id
option, and handles the specified section as if it were byte
relocatable.

046: MACRO within a Macro

Indicates that a macro definition statement was encountered
within a macro expansion or a macro definition block.

047: lnval id except in Macro

Indicates that an EXITM, EN[).1, REPEAT, or ENDR directive
appeared outside a macro definition block.

D-7

ASSEMBLER ERRM CODES

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

D-8

048: I nval Id operand

Indicates that the specified operand is either incomplete or
inaccurate for the context required by the operation. If the
required operand is an expression, this error indicates that the
first item in the operand field is not a variable, constant, a
left parentheses "(", a minus sign "-", or a logical not "\" •

.,
049: Address-assigned to string

Indicates an attempt to assign an address value to a string
var i ab I e sym bo I •

050: Section definition Phase error

Indicates that the specified section or relocation option dif­
fers between the Assembler's first and second pass.

051: Section definition Phase error

Indicates that the specified section was defined during the
second, but not the first, Assembler pass.

052: Too many Section or Globals

Indicates that the number of declared sections and global sym­
bols exceeds 254. The Assembler does not accept the current
section or global declaration.

053: lnval id relocation option

Indicates that the ABSOLUTE relocation option was specified in
the RESERVE directive operand field.

054: Negative RESERVE length

Indicates that a negative-valued byte length was specified as
the RESERVE operand expression.

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSB4BLER ERROR CODES

055: I nva I id section name

Indicates that an invalid symbol was declared as a SECTION,
C~MON, or RESERVE name. Occurs when the symbol name is
misspelled, contains invalid characters, is a reserved word, or
is a previously-defined label.

056: lnval Id RESERVE length

Indicates that the required RESERVE operand expression
(specifying the number of bytes reserved for the current object
module) is either entered incorrectly, entered without a comma
before the expression, or absent from the RESERVE directive.

057: RESLME section ·undefined

Indicates that the resumed section is defined in a later state­
ment in the assembly process.

058: RESLME of RESERVE section

Indicates an attempt to resume a reserved section.

059: Resumed section inval Id

Indicates that the resumed section was declared after the 254th
section or global symbol was declared.

060: Global operand already defined

Indicates that the global symbol was referenced before it was
declared to be global. See GLOBAL directive explanation in
Chapter 4.

061: GLOBAL declaration Phase error

Indicates that a symbol was not declared In both passes of the
assembler.

D-9

ASSB4BLER ERROR CODES

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

D-10

062: Too many Sections and Globals

Indicates undefined globals, or more than 254 globals and sec­
tions defined.

063: Invalid radix

I ndlcates an"-~nval id radix character in the constant. The 9520
Software Development System recognizes only CH> hexadecimal, CO>
or CQ> octal, and (8) binary radix codes.

064: lnval id digit

Indicates an invalid digit in the indicated number base. For
example, 100318 contains an invalid digit. Radix 8 indicates
this to be a binary number, making digit 3 invalid.

065: Unmatched string or parameter delimiter

Indicates an unmatched .quotation mark del !miter or square
bracket del !miter.

066: Line too long after replacement

Indicates expanded line is too long. Only 128 characters are
al I owed.

067: Extra replacement identifier

Indicates extra information following the replacement indicator
in a macro definition block.

068: Replacement invalid outside of Macro

Indicates improper use of replacement indicators#,@, and%
outside of a macro definition block.

069: Undefined replacement string

Indicates that the string variable has not yet been defined as~
string.

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSB4BlER ~CODES

070: lnval id replacement identifier

Indicates that the replacement specification used is invalid.

071: Scalar value required

Indicates an address value where a scalar value was required.

072: lnval id expression

Indicates that the specified expression is either incomplete or
inaccurate for the context required by the operation.
Expressions are recognizable when the fol lowing values appear in
the first item position of the operand: a variable, a constant,
a left parentheses "<", a minus sign"-", or a logical rot
character "'"·

073: Section size Phase error

Indicates that the number of bytes generated for this section
d ur Ing the first pass Is smal I er than the number of bytes
generated during the second pass.

074: Undefined symbol

Ind lcates that a symbol in an express Ion has ro value.

075: String truncated

Indicates that the number of characters assigned to the string
is greater than the string definition. See ASET Strings,
Chapter 2.

076: Negative SEG operand

Indicates a negative number In the oP'erand of the SEG function.
See SEG, Chapter 2.

0-11

ASSEMBLER ERROR COOES

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

D-12

077: SEG r.-arting operand is zero

Indicates a zero in the starting position of the SEG operand.
See SEG, Ciapter 2.

078: Insufficient workspace

Indicates tfi·21t a temporary data manipulation area has been
exceeded. Could be caused by conditional assembly or string
functions i-hat leave too I ittle memory to perform the required
operat i ans.

079: Value too large

Indicates that the value of the space operand exceeds 255, and
has been truncated.

080: I nval id NAME symbo I

Indicates that the sy~ol in the operand field of the NAME
directive !>egins with a non-alphabetic character and is, there­
fore i nval id.

081: II legally substituted EN~

Indicates that an EN~ directive was substituted within the body
of a macro expansion before the normal end of the macro is
encountered.

082: Nested INCLUDE directive

Indicates tiiat the tile inserted into the program with the
INCLUDE dir'!Ctive contains another INCLUDE directive.

083:Mlssing ENDIF

Indicates that a conditional IF block with a missing ENDIF
directive was Included in the program.

084:Mlssing EN().1 tor included macro

Indicates that a macro definition block with a missing EN().1
directive was included In the program.

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSEMBLER ERROR CODES

085: String value too large

Indicates that a string value to be used as a number exceeds "hilo
characters in length.

086: Shift count exceeds 16

Indicates an attempt to shift right or left more than 16 bits.

087: Too many symbols

Indicates a tack of room in the Assembler's symbol table to con­
tain al I symbols used by the program. The Assembler discon­
tinued processing the program.

088: I nval id transfer I abel

Indicates that a label used for the transfer address on an END
directive ls an unbound global, a scalar, or the result of a
previous HI, LO, or ENDOF function.

090: ENDOF appt led to a bound GLOBAL

Indicates that the ENDOF function was used with a bound GLOBAL
instead of a SECTION. In the case of an unbound GLOBAL, the
function Is resolved at link time.

091: Unable to assign INCLUDE file

I ndlcates that MP/Mor CP/M could not gain access to the file.
This message wit t be accompanied by a message on the console
during each pass. An SRB status code will indicate the reason
that MP/Mor CP/M could not assign the file.

The tot lowing error messages apply only to the Z80 As~embler:
....

*****ERROR 254: lnval Id operand specification

The syntax of an operand Is lnval id, or the operand type Is not
val Id for the current Instruction, or the combination of
operands Is not val Id for the instruction.

D-13

ASSEMBLER ERROR COOES

Error Messages applying only to the Z80 Assembler <Continued)

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

*****ERROR

D-14

253: Unmatched parentheses

A left parentheses which may specify 'contents of' does not have
a corresponding right parentheses.

252: lnval id index displacement

The dlsplace~ent portion of an indexed operand is invalid.

251: Too many elements in expression

In certain contexts parenthesized expressions or subexpressions
may not contain more than 40 Identifiers and, or string
constants.

250: lnval Id operand combination

The combination of operands specified is not val id for the
current Instruction.

249: lnval Id branch condition for JR

A jump condition other than Z, NZ, C, or NC was specified for a
JR i nstructlon.

248: Destination involves HI, LO, or ENDOF

The destination specified in a JR or DJNZ instruction involves
the ii legal use of one of the Indicated functions.

247: Relative jump out of current section

The destination of a JR or DJNZ instruction is not in the
current section.

246: Relative jump out of range

The destination of a JR or DJNZ instruction is not within the
range -126 to +129 from the current Instruction.

*****ERROR

*****ERROR

*****ERROR

*****ERROR

ASSEMBLER ERRM CODES

245: Invalid bit position

The first operand of BIT, RES, or SET instruction did not spe­
cify a scalar value in the range 0-7.

244: lnval id RST address

The operand of a RST instruction was either relocatable or was a
sea I ar or ab sol ute address whose val ue was not 0, 8, 1 OH, 18H,
20H, 28H, 30H, or 38H.

243: IM operand is not seal ar 0, 1 or 2

The operand of IM is invalid.

242: Index displacement out of range

Index must be a byte value in range -128 to +127.

D-15

Appendix E

RESERVED WORDS

The"zso Microprocessor instruction mnemonics, register symbols and MILLENNIUM
SYSTEMS Assembler directive names must not be used as symbol i c labels. The
fol lowing names are reserved for these special uses:

zeo INSTRtX;TION MNEMONICS

ADC CPD DI IN JR NOP POP RLA RRCA SRA

ADD CPDR DJNZ INC LO OR PUSH RLC RRD SRL

AND CPI El IND LOO OTDR RES RLCA RST SUB

BIT CPIR EX INDR LDDR OTIR RET RLD SBC XOR

CALL CPL EXX INI LOI OUT RETI RR SCF

CCF DAA HALT INIR LDIR OUTD RETN RRA SET

CP DEC IM JP NEG OUTI RL RRC SLA

Z80 REGISTER SYMBOLS RESERVED FOR FllTURE USE JlJ4P CONDITIONS

A H BC SP XREF M (minus> C C carry>
B I DE NC C noncarry) PE <parity even>
c L HL NZ C non-zero) PO (parity odd>
D R IX P <positive) Z (zero>
E AF IY

MILLENNllJ4 SYSTEMS ASSEMBLER DIRECTIVES, OPTIONS & OPERATORS

ABSOLUTE ELSE IF NCHR SEG WORD
ASCII END INCLUDE NOLI ST SHL
ASET ENDIF INPAGE ORG SHR
BASE EN™ LIST PAGE SPACE
BLOCK ENDOF LO PAGED ST ITLE
BYTE ENDR MACRO REPEAT STRING
CND EQU ME RESERVE S'r'M
C().1MON EXITM MEG RESUME TITLE
CON GLOBAL MOD SCALAR TRM
DEF HI NAME SECTION WARNING

E-1

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	E-01

