Software Reference Manual
for
National Instruments

GPIB11-Series Interface Cards

January 1987 Edition

Part Number 310001-01

National Instruments
12109 Technology Boulevard
Austin, Texas T78727-6204

(512) 250-9119

Copyright 1977, 1980-1983, 1985, 1987 by National Instruments.
All Rights Reserved.

User Written Software Drivers

Customers who wish to write their own software handlers for our
GPIB interface cards should be aware of the following matters.

The large scale integrated (LSI) circuits used on the GPIB11-2,

GPIB11V=1, and the GPIB11V-2 are highly complex and

sophisticated. Because of the complexity of the circuits,

manufacturers do not provide complete and exhaustive logic tables

that describe the behavior of the circuits for every combination

of 1input signals and sequence of input signals. Nor do they

provide schematic and timing diagrams so that knowledgeable users
can analyze the circuits. Often, even the manufacturer will

become aware of an idiosyncrasy only after a user has tried to do

something the manufacturer had not tried.

One reason NI provides comprehensive software packages for its
interfaces 1is to overcome the 1long learning cycle needed to
thoroughly understand the behavior of these components. The
exact manner in which we implement the high level functions
supported by our software is undoubtedly not the only way to
implement these functions. However, the software does work, and
the hardware we deliver has been tested with this software. NI
1s responsible for delivering cards that implement specified IEEE
Std. 488-1978 interface functions but cannot guarantee that those
functions can be implemented by the user using other programming
techniques, even if those techniques seem perfectly reasonable.

Customers who write their own software or modify ours - no matter
how minor the modification may seem - should be aware that they
may be making assumptions about the behavior of the components
that may in fact not be true.

Before writing or modifying utility software, it i1s strongly
recommended that users first test the interface with National
Instruments unmodified software. This will not only confirm that
the hardware/software pagkage performs to specifications, but it
will also provide a base from which to proceed in the development
of new software. In addition, the user should become thoroughly
familiar with this manual, IEEE Std. 488-1978, National
Instruments' operating and service manual for the specific
interface card, manufacturers' data handbooks for the components
used, and programming information of the instruments that will be
connected to the GPIB.

2
2
2
2
2
2
2

3
3
3
3
3
3

1
2
2
2
2
2
3

1
2
2
2
2
3

1
2
3
)

1
2
3

TABLE OF CONTENTS
Preface

Section One -~ Introduction

Section Two - Utility Routine

GENERAL 00 P OB NP OPLLENLLOEES L0000 0CLONIEENINNERNNOIEOBIROILOIOIEORIRIOLOIEEOGDS
SYNTAX CC R Y I B R I I I A A I A A I IR BN B R Y B N B R A A I A I I A I Y B I I IR)
FORTRAN Call S 9 98 000000000000 0680000200060 060090800008000
BASIC Call evceescesecoccoosossosnscssssssssssansossssnne
MACRO Call © 00 0% 0000 B LR LELILIOIEOINEPIOLIIOIRIOIEOIEOIEIEOIITOEOIETODS
DeVice Table PO P PP PO OLLEIIRODEILIPLINIOIOIELIEOLIEOINROLIOEOITOLOEONBOEONTLDYS
FUNCTIONS 0D PR NP DNOLENNOPNNEEIECERNIOIEONIENIIOIECEOEONOIOBITOIEOPIOIEOLEOLIOIEEOETDS
IBUP WRITE PO 0 0P C O POPOIPILEN PPN LELEDEEIOIISIOIIIPIIOGETLTS
IBUP READ 00 8 00000000000 0OOEPOLLOEPINPOLIOLENOLELININOIEOERPLEOIOIEOIEOEDPNOIETBEDL
IBUP CLEAR CRCEE I S B I I I IR O I B Y A R I B I A I A I I I A A B I I I R
IBUP TRIGGER evevosessccoosoososcesscoosasssccecnnsas
IBUP REMOTE sovececcoccssonoscsssoscasassossssassonsss
IBUP LOCAL ¢veeceesocoescccccsssssasassssasssssnnnss
IBUP POLL P00 0B LGPPSR ONINLLRELCEOIEPINOEOIISIEDNOIOEOIBSIOIEOLIEOIBIINOETITE
IBUP CONFIGURE sveccosescosenosacsvsoscssscsccvonnnes
IBUP PASS CONTROL cceecscsosccsocscscossascocssnnosssoes
IBUP DEFINE S 6200000000000 0000000000080 0000s0000rPsRN
IBUP FINISH sevececccocscscssscososssconoosccsconssssos

Section Three - Driver Routine

GENERAL ® 8 0 0 8 0005800000 PON B PN SN0 PENOEEI ST TDSNTYS
SYNTAX P00 000000 P OO IELEN NN NS PONOOPLOOLNRLOLEPINELIEOENOSIOEONINOIELOEOSETDLTDS
FORTRAN Call L L BRI B B I B B AR BRI AR N BRI BN BN R AR BB BB B LR)
BASIC Call 0000000800006 0 0000000000000 000000000800800
Macro Call L B B B I B I B B B BB B BB I R B B B B Y BN BB B B R R
FUNCTIONS @08 5000500000 EI LN NNNLIINNLENIOEEPLININOEEEEOENINIEDN
GPIB COMMAND ® P00 EOD PPN NGOG ESIOELIBILISIOLEOENIELIOEOIEOEOEOETSTDS
GPIB WRITE ecvevcevovoonoosssossssanssssssssosssoanse
GPIB READ 0002 5 00500000000 POPPOOLPIOELISIRNIOIOEINOLOLOLNLILEOEOELLES
GPIB TRANSFER sececesosscocccccccccsscscassssassssss
GPIB CLEAR ® 906 0000000000 PeINOCRNSELIPIOLOLIEOEOIEOPIOLEOIRNOEOLESIONILOIEOEDNOIDS
GPIB REMOTE G 0 000 00000 S 00N IO SLLENP OO PP PIEPNPEIOEESEDLIDOITSIDS
GPIB LOCAL 0060000 NP ROSNISIENLIPIOIOLOEIDNOIOPOIOEOIEINOIOLROIEBIEDDPOLEOLES
GPIB PARALLEL POLL secsevovesvocsesscsoccoosesansconocse
GPIB PASS CONTROL L R B B I I B IR IR R IR BB BB BB I I I N R B R R)
GPIB SET STATUS ceececossvcosscscossassssssscsssssos
GPIB MONITOR cteesceoccocnsoncssascnsnscssnsnscnanes
GPIB READ COmAND L B B I B BN I B BB R B BB BB B I B B BB
GPIB SET PARAMETERS ¢ecoeesocsonssoscesssssossasscas
GPIB TEST SRQ seveescsccessscosssssscsssssoscsssssssccss
GPIB FINISH eecvocsooscscescoccoscsnssacossnscssnnss
GPIB[U] STATUS S 0 9 0P S OSSP ODO SOOI NOOESEENNNSPEIPEOE SIS
GPIBLU] SPBYTE tecesesvscsncnsosssacscacancscosncnns

NNNI'\)NI\)NN

SIS I VI V)
I 1t 1

]
WVOO~_NOAUVIWWMN O = -

10

N
11
-

-

2=-12
2=-13
2-14
2-15

3-1
3-2
3-2
3-1
31
3-4
3-5
3-6
3-8
3-10
3-11
3-12
3-13
3-114
3-15
3-16
3=-17
3-18
3-19
3-20
3-21
3-22
3-23

N g g o - i e I
. L]
WO~ Ul Flw N —=

Ul \»
e o
w N =

Section Four - Software Installation

STEP 1: REQUIRED DISTRIBUTION FILES seeeececccacacassss
STEP 2: FILE NAMING CONVENTION seeecescsossscccsacnnnse
STEP 3: ASSEMBLY PARAMETER EDITING ceccsecocccesccccsns
STEP 4: RSX INSTALLATION coveesnooossonssssoanscscsssnes
STEP 5: RT (TSX) HANDLER INSTALLATION «eccevececcsccnse
STEP 6: STAND-ALONE INSTALLATION sssevessacescccesccces
STEP 7: BASIC INSTALLATION cececescesccecncssossccssane
STEP 8: FORTRAN/MACRO INSTALLATION seceevoscorscccosons

Section Five ~ Interactive Control Program

INSTALLATION ® 9 00 0005 0000000 E0ELE0NE00BCENBNIILOENISIENII IR
OPERATION R R R A I A A B S I A AU IR I A A LI A I A A
IBIC EXAMPLE RUN 5 5 0 0 5 909 PO E P NP0 LTI IELLETNENIODS

{
—_ N -

411
411
412

42

u1\|nm
Ul -

List of Figures

Figur‘e 1.1 - Utility Softwar'e R I IR SRS I N B O BN B R B BN 1-2

Figure 3.1 = Driver Program Block Diagram eccseeeses 3=3

Table
Table

Table
Table
Table
Table
Table

Table

List of Tables

write MOdeS e 00 NGRS OLRLOIIBIOENIOIBOOGEOLOENOESOICS
Read MOdeS 2950 0D S8 0000 R RISCOECOENOONDNEESS

Files Required for Installation sec....
Source File Description sceeesccececees
Source File Renaming eeccesccecscoscsccsne
Driver Assembly Parameters scececcecsee

IBIC Input FOPmat s e e 00 eeOPBRNOOLLILOESEDOINTINTS

Register Contents after Bus Init
with GPIB Cable Removed sceeesecscscnes

Section One

INTRODUCTION

The software package delivered with your GPIB11-series interface
card consists of two modules as shown in Figure 1.1. The first
is the utility routine, which contains information about the
instruments connected to the IEEE Std. 488-1975/1978 Standard
Digital Interface for Programmable Instrumentation, known as the
General Purpose Interface Bus (GPIB). The utility routine uses
this information to relieve the applications programmer of some
of the addressing protocol inherent in many GPIB OPERATIONS. The
utility routine makes use of the second module, the driver
routine, to conduct the actual bus I/0. A user program normally
calls the utility routine, but, in those circumstances where
additional flexibility 1s required, direct interaction with the
driver routine is possible. The driver routine may also be used
in a stand-alone environment.

An interactive control program is included in the standard
software package. It allows the user to call any of the utility
or driver functions from a terminal. This feature enables the
user to efficiently check the installation of the hardware and
the software. The control program also permits single-step
control and operation of the IEEE-488 devices on the bus to aid
in the development of application software.

The software in the standard package may be used with the RT and
RSX operating systems. Optional software is available for use
with the UNIX and the VAX/VMS operating systems. With either of
these options, additional reference material is included in the
form of a UNIX Addendum or a VAX/VMS Addendum. The utility and
driver routines are available as MACRO source files, which may be
assembled as FORTRAN-, BASIC-, or MACRO-callable subroutines. In
addition, 1if the GPIB interface card is being used in a system
where it is the only GPIB Controller, then code which supports
the 1"pass control" protocol is not assembled, thereby reducing
the size of the driver routine as well as the I/0 overhead.

1=1

USER

[Y
|
= |
|
\{

o e o e
o e o e e e e e

A
I
I
I
v
fmmmm————————t
DRIVER

I
+

A
|
e
|
v

I
+

PROGRAMMABLE
INSTRUMENTS

Figure 1.1 - Utility Software

1=2

Section Two
UTILITY ROUTINE

2.1 GENERAL

The utility routine allows convenient programming of the GPIB by
hiding the complexities of GPIB addressing and protocol and
presenting a simple, understandable user interface. The utility
routine makes one or more calls on the driver routine in order to
perform its functions. Addressing and data transfer information
is kept in a device table allowing the user to refer to
interfaced instruments by a device table slot number, analogous
to a "logical unit number." Some specialized functions that are
not provided by the utility routine may be performed by directly
calling the driver routine. The user level FORTRAN, MACRO, or
BASIC interface to the utility routine is independent of whether
the driver routine is installed as a device handler or as a user
interrupt routine and is independent of which operating system is
used.

The first time the utility routing is called, it automatically
issues the driver routine function calls CLEAR and REMOTE, since
this is the usual sequence to begin GPIB operation.

NOTE

If the interface is not installed as a
System Controller, these calls are
ignored.

All utility routine function calls (IBUP) are synchronous, i.e.,
the return to the calling program is not done until the I/0
completes successfully or terminates on an error.

2.2 SYNTAX

The calling syntax for the utility routine functions is described
in the following sections.

2.2.1 FORTRAN Call

The calling program must declare IBUP as an integer-valued
function. To perform a utility routine function, the calling
program executes a FORTRAN function call, as in:

J=IBUP(FUNCTN,ARG1,...,ARGN).

FUNCTN is an integer expression that gives the function code, and
ARG1 through ARGN are any argument expressions required by the
particular function. The value returned by IBUP indicates the
success or failure of the operation. Calls with improper
function codes return an error.

2.2.2 BASIC CALL

Utility routine functions are invoked using the BASIC CALL
statement, as in:

CALL "IBUP" (F,Al,...AN).

F is an integer expression giving the function code and A1l
through AN are any integer or string arguments required by the
particular function. No indication is given to the calling
program if the call is unsuccessful; however, a message is
printed at the terminal in the event of an error. Calls with
improper function codes are ignored. All arguments to BASIC are
either integers or strings. BASIC syntax for integers requires
an appended % as in:

CALL "IBUP" (2%,1%).

BASIC¥2 will return the standard error codes found in Appendix E
in the X% argument. - The syntax for BASIC+2 as well as BASIC and
FORTRAN can be found in Appendix D.

2.2.3 MACRO Call

Calling utility routine functions from an assembly language
program is done via:

JSR PC, IBUP

with RS pointing to a list of argument references. The standard
FORTRAN PC calling convention is used. The utility routine does
not and cannot distinguish between a call from a FORTRAN program
and a call from an assembly language program. The arguments are
the same in both cases.

On return from IBUP, RO contains the value of the function as
defined in the FORTRAN call. The registers R1 through R5 are not
preserved across a MACRO call to IBUP.

2.2.4 Device Table

The device table contains an entry for each instrument which 1is
connected to the GPIB. Each entry contains six bytes giving the
instrument's talk address, listen address, secondary address,
read mode, write mode, and End-0f-Data character. The instrument
is then referred to by its location in the device table (slot
number) in all calls to the utility routine. Slot 0 is reserved
for the GPIB interface card.

The size of the device table is an assembly time parameter. The
table may contain unused slots which can then be dynamically
modified at run-time. An entry in the device table is a single
line of the form:

"device TTT, LLL, SSS, R, EOD, W j;Instrument name"

where TTT is the octal talk address (or 0 if the device cannot be
a talker); LLL is the octal listen address (or 0 if the device
cannot be a listener); SSS is the octal secondary address (or O
if GPIB extended addressing 1s not being used); R is the data
transfer mode to use when reading from the device; EOD 1is the
End-0Of-Data character (used with certain read modes); and, W is
the data transfer mode to use when writing to the device. Refer
to Tables 3.1 and 3.2. for descriptions of the write and read
data transfer modes, respectively.

Most instruments provide a switch which allows the user to select
the lower five bits of the GPIB address to which it will respond.
The switch should never be set to all ones since this would
conflict with the special GPIB commands Untalk (UNT) and Unlisten
(UNL). Any other setting is legal provided each GPIB device has
a unique address. To construct a talk address from the five bit
switch setting, add octal 100 to the octal switeh value. To
construct a listen address add octal 40 to the switch value. To
construct a secondary address add octal 140 to the switch value.

The following line is an example of a device table entry for a
typical instrument whose GPIB address switch has been set to
binary 00110 (or octal 006):

"device 106, 46, 0, 0, 0, O ;typical device"
or, equivalently:

"device 'F, '&, 0, 0, 0, O jtypical device"
2.3 FUNCTIONS
The following sections describe the utility routine functions in

detail and give example calls in the FORTRAN and BASIC calling
syntaxes.

A negative value returned by the function indicates an error.

Error conditions and values are described under the referenced
driver routine functions in Chapter 3.

In addition to the error codes described with each function,
there is a special error code which applies to systems in which
the driver routine is installed as a device handler. If an error
code of EOPEN(-17.) is returned, it means that the utility
routine was unable to access the handler, usually because the
handler was not loaded.

2-4

IBUP WRITE

IBUP

WRITE

FORTRAN:

BASIC:

(function code = 0)
J=IBUP(0,D,ARRAY,LENGTH)

D is an integer giving the device (slot)
number. ARRAY 1is- an array of bytes to be
written to the device. LENGTH is an integer
giving the size of the array in bytes. The
returned value 1is the number of bytes
transferred if successful or the code returned
by the GPIB COMMAND function or WRITE function
if an error occurs.

CALL "IBUP"(0%,D%,W$)
D is an integer giving the device (slot)

number. W$ is a string of bytes to be written
to the device.

The WRITE function addresses the selected device as Listener and

transfers

the data bytes from the computer to that device using

the write mode specified in the device table (see Table 3.1).

The WRITE function calls the GPIB COMMAND function to perform the
addressing and the GPIB WRITE function to transmit the data, and
the GPIB COMMAND to perform the unaddressing. For more details,
refer to the GPIB driver routine description.

2=5

IBUP READ
IBUP READ (function code = 1)
FORTRAN: J=IBUP(1,D,ARRAY,COUNT)

D is an integer giving the device (slot)
number. ARRAY is a byte array in which bytes
received from the device are placed. COUNT is
an integer giving the number of bytes to read.
The returned value is the actual number of
bytes read for a successful read and the code
returned by the GPIB COMMAND function or READ
function if an error occurs.

BASIC: CALL "IBUP"(1%,D%,R$,C%)

D is an integer giving the device (slot)
number. R$ is a string variable in which bytes
received from the device are placed. C is an
integer giving the number of bytes to read.

The READ function addresses the selected device as Talker and
transfers the data bytes from that device to the computer using
the read mode specified in the device table (see Table 3.2).

The READ function calls the GPIB COMMAND function to perform the
addressing and the GPIB READ function to input the data. For
more details, refer to the GPIB driver routine description.

IBUP CLEAR
IBUP CLEAR (function code = 2)
FORTRAN: J=IBUP(2,D)

D is an integer giving the device (slot)
number. The rettuned value is 1 unless an
error occurred, in which case it is the code
returned by the GPIB COMMAND function or CLEAR
function.

BASIC: CALL "IBUP" (2%,D%)

D is an integer giving the device (slot)
number.

The CLEAR function is used to selectively clear one device on the
GPIB, to simultaneously clear all devices on the GPIB, or to
initialize the GPIB itself by sending the Interface Clear (IFC)
message. If the device (slot) number is O all devices are
cleared (via the DCL interface message); if it is negative the
GPIB interface is initialized (via the IFC uniline message);
otherwise, only the selected device is cleared (via the SDC
interface message).

The CLEAR function calls the GPIB COMMAND function to perform the
addressing and sending of the Selected Device Clear (SDC) or
Device Clear (DCL) message. The GPIB CLEAR function is called to
send the IFC message. For more details, refer to the GPIB driver
routine description.

2=7

IBUP TRIGGER
IBUP TRIGGER (function code = 3)
FORTRAN: J=IBUP(3,D)

D 1is an integer giving the device (slot)
number. The returned value is 1 unless an
error occurred, in which case it 1is the code
returned by the GPIB COMMAND function.

BASIC: CALL "IBUP"(3%,D%)

D is an integer giving the device (slot)
number.

The TRIGGER function is used to selectively trigger one device or
to simultaneously trigger all devices. If the device (slot)
number is 0 all devices are triggered; otherwise, only the
selected device is triggered.

The TRIGGER function calls the GPIB COMMAND function to perform
the addressing and sending of the Group Execute Trigger (GET)
message. For more details refer to the GPIB driver routine
description.

2-8

IBUP REMOTE
IBUP REMOTE (function code = U)
FORTRAN: J=IBUP(L,D)

D is an integer giving the device (slot)
number. The returned value is 1 unless an
error occurred, in which case it is the code
returned by the GPIB COMMAND or REMOTE
functions.

BASIC: CALL "IBUP"(4%,D%)

D is an integer giving the device (slot)
number.

The REMOTE function is used to put a selected device in remote
mode, to put all devices in remote mode, or to put all devices in
remote mode with local lockout. If the device (slot) number is
0, all devices are put in remote mode; if it is negative, all
devices are put in remote mode with Local Lockout; otherwise,
only the selected device is put in remote mode. Unless the local
lockout mode is used, an interfaced device may override the
remote program control by means of a front panel local mode
switch.

The REMOTE function calls the GPIB COMMAND function to perform
the addressing and sending of the Local Lockout (LLO) message.
The GPIB REMOTE function is called to send the Remote Enable
(REN) message. For more details refer to the GPIB driver routine
description.

2-9

IBUP LOCAL
IBUP LOCAL (function code = 5)
FORTRAN: J=IBUP(5,D)

D is an integer giving the device (slot)
number. The returned value is 1 unless an
error occurred, in which case it is the code
returned by the GPIB COMMAND or LOCAL
functions.

BASIC: CALL "IBUP"(5%,D%)

D is an integer giving the device (slot)
number.

The LOCAL function is used to return a selected device to local
mode, to return all devices to local mode, or to return all
devices to local mode and cancel the Local Lockout message. If
the device (slot) number is 0, all devices are returned to local
modej if it is negative, all devices are returned to local mode
and the Local Lockout message is cancelled; otherwise, only the
selected device is returned to local mode.

The LOCAL function calls the GPIB COMMAND function to perform
addressing and sending of the Go-To-Local (GTL) message. The
GPIB LOCAL function is called to cancel the REN and LLO messages.
For more details, refer to the GPIB driver routine description.

2-10

IBUP POLL
IBUP POLL (function code = 6)
FORTRAN: J=IBUP(6,D)

D is an integer giving the device (slot)
number. The returned value is the status byte

(or parallel poll byte) unless an error
ocecurred, in which case it is the code returned

by the GPIB COMMAND, READ, or PARALLEL POLL
functions.

BASIC: CALL "IBUP"(6%,D%,P%)

D is an integer giving the device (slot)
number. P is the integer variable in which the
status byte (or parallel poll byte) is
returned.

The POLL function is used to serially poll a selected device, to
poll all devices in parallel, or to test if any device is
requesting service. If the device (slot) number is 0, all
devices are polled in parallel. If it is negative, the status of
the SRQ line is returned (which is =1 if no device is requesting
service and 1 if at least one device is requesting service and
the GPIB interface card is the active controller; i.e., able to
service the request). Otherwise, the selected device is polled
serially and its status byte 1is returned.

The POLL function calls the GPIB COMMAND and GPIB READ functions
to conduct a serial poll and the GPIB PARALLEL POLL function to
conduct a parallel poll. Note that the parallel poll byte is
logically "OR"ed with octal U400 before being returned. For more
details, refer to the GPIB driver routine description.

IBUP CONFIGURE
IBUP CONFIGURE (function code = 7)
FORTRAN: J=IBUP(7,D,S,L)

D is an integer giving the integer device
(slot) number. S is an integer giving the
sense of the response. L is an integer giving
the data 1line for the response. The returned
value is 1 unless an error occurred, in which
case it is the code returned by the GPIB
COMMAND function.

BASIC: CALL "IBUP"(7%,D%,3%,L%)

D is an integer giving the device (slot)
number. S 1is an integer giving the sense of
the response. L is an integer giving the data
line for the response.

The CONFIGURE function is used to configure a selected device for
parallel polling or to unconfigure all devices. If the device
(slot) number is 0, all devices are unconfigured; otherwise, the
selected device 1s configured to respond on line L when its
individual status bit (ist) is true (S>0) or to respond when its
ist bit is false (S=0). If S is negative, the selected device is
unconfigured.. The response 1lines are numbered 1 to 8,
corresponding to bits 0 to 7 in the parallel poll byte.

The CONFIGURE function calls the GPIB COMMAND function to perform
addressing and sending of the Parallel Poll Enable (PPE) and
Parallel Poll Disable (PPD) messages and sending of the Parallel
Poll Configure (PPC) and Parallel Poll Unconfigure (PPU)
messages. For more details, refer to the GPIB driver routine
description.

2=-12

IBUP PASS CONTROL
IBUP PASS CONTROL (function code = 8)
FORTRAN: J=IBUP(8,D)

D is an integer giving the device (slot)
number. The returned value 1is 1 unless an
error occurred, in which case it 1is the code
returned by the GPIB COMMAND function.

BASIC: CALL "IBUP" (8%,D%)

D is an integer giving the device (slot)
number.

The PASS CONTROL function is used to allow the selected device
(with Controller capabilities) to control the GPIB.

The PASS CONTROL function calls the GPIB COMMAND function to
perform all the addressing and sending of the Take Control (TCT)
message. The GPIB PASS CONTROL function is called to let the
selected device become the Controller-In-Charge. For more
details, refer to the GPIB driver routine description.

2-13

IBUP DEFINE
IBUP DEFINE (function code = 9)
FORTRAN: J:IBUP(9,D,TAD,LAD,SAD,RMD,EOD,WMD)

D is an integer giving the device (slot)
number. TAD is an integer giving the GPIB Talk
address (0100 to 0136 octal, or O if the device
is not a Talker). LAD is an integer giving the
GPIB Listen address (040 to 076 octal, or 0 if
the device 1s not a Listener). SAD is an
integer giving the GPIB Secondary address (0140
to 0176 octal, or 0 if the device does not have
a Secondary address). RMD and WMD are integers
giving the read and write modes, respectively.
(See Tables 3.1 and 3.2.) EOD is an integer
giving the End-Of-Data character for certain
read modes. The returned value is a 1 to
indicate success or a negative number to
indicate an error.

BASIC: CALL "IBUP"(9%,D%,T%,L%,S%,R%,E%,W%)

D is an integer giving the device (slot)
number. T is an integer giving the GPIB Talk
address (0100 to 0136 octal, or 0 if the device
is not a Talker). L is an integer giving the
GPIB Listen address (040 to 076 octal, or O if
the device is not a Listener). S is an integer
giving the GPIB Secondary address (0140 to 0176
octal, or O if the device does not have a
Secondary address). R, E, and W are integers
giving the read mode, End-Of-Data character,
and write mode respectively. (See Tables 3.1
and 3.2.)

The DEFINE function replaces the information in the device table
with the arguments specified in the call. No GPIB operation is
performed.

2-14

IBUP FINISH

IBUP FINISH (function code = 10)
FORTRAN: J=IBUP(10)
BASIC: CALL "IBUP"(10%)

The FINISH function is used to terminate usage of the GPIB by
calling the GPIB FINISH function routine to disable interrupts
and re-initialize the interface and to close the I/0 channel 1if
necessary. The returned value is a 1 to indicate success or a
negative number to indicate an error.

2-15

Section Three

DRIVER ROUTINE

3.1 GENERAL

The driver routine provides the complete flexibility to
accomplish all GPIB operations but requires the user to be
familiar with the IEEE Std. U488-1978 specification. In most
applications, the utility routine provides all the functions
which are needed; however, in certain circumstances, additional
flexibility is required, necessitating a direct call on the
driver routine by the user program. Such calls may be freely
intermixed with calls upon the utility routine.

The driver routine may be-

* installed as a handler under the RSX operating system,
* installed as a handler under the RT operating system, or

* linked under RT to the user applications program to run
under RT or to run stand-alone under no operating system.

When the driver is installed as handler, the funection calls
(GPIB) are synchronous, i.e., the return to the calling program
is not done until the I/0 completes successfully or terminates on
an error. When the driver is linked to the applications program,
either synchronous or asynchronous I/0 is selected at
configuration time. With asynchronous operation, the calling
program initiates I/0, continues processing, and returns at a
later time to wait for completion or termination of the I/0. See
Section U4.3. For most applications, synchronous I/0 is
recommended.

3.2 SYNTAX

The calling syntax for the driver program functions 1s described
in the following sections.

3.2.1 FORTRAN Call

The calling program must declare GPIB as an integer valued
function. To perform a driver program function, the calling
program executes a FORTRAN function call as in:

J=GPIB(FUNCTN,ARG1,...,ARGN).

FUNCTN is an integer expression which gives the function code and
ARG1 through ARGN are any integer or array argument expressions
required by the particular function. The integer value returned
by GPIB indicates the success or fallure of the operation. Calls
with improper function codes return an error.

) 4
\ NON-8US FUNCTIONS
DISPATCH 3Y FUNGTION TYPS
/ 1
SET STATUS
SET PARAMETERS
INTERRUPT READ COMMAND
ORIVEN NON=INTERRUPT
sus 8US FUNCTIONS
FUNCTIONS
AREMOTE/LOCAL
CLEAR
Y pass CONTROL
PARALLEL POLL
MONITOR

— __ _ _/ STAAT THE TIMER FUNCTICN
B AND —— ==
| THE 8US I/Q FUNCTICN
|
!

‘7 RETURN A
: COMMAND
CCUNT TO THE SEAD

e TRANSFER

! SERIAL POLL

[GPIB WAIT

| (

’ | |

I) |

' WAIT FOR THE TIMER OR |

b —_— — BUS VO FUNCTION]

(AND CANCEL
THE OTHER FUNCTION

C e)

Figure 3.1 - Driver Program Block Diagram

7 N\
o RETUth)

3.2.2 BASIC Call

Driver program functions are invoked using the BASIC CALL
statement as in:

CALL "GPIB"(F,ATl,...,AN).

F is an integer expression giving the function code, and A1
through AN are any integer or string arguments required by the
particular function. No indication is given to the calling
program if the call is unsuccessful. If unsuccessful, the user
is notified by a message at the terminal. Calls with improper
function codes are ignored. Note that the BASIC syntax for
integers requires an appended % as in:

CALL "GPIB"(0%,C$).

BASIC+2 will return the standard error codes found in Appendix E
in the X% argument. The syntax for BASIC+2 as well as BASIC and
FORTRAN can be found in Appendix D.

3.2.3 Macro Call

Calling driver routine functions from an assembly language
program is done via:

JSR PC,GPIB

with R5 pointing to a list of argument references; i.e., the
standard FORTRAN PC calling convention is used. The driver
routine does not and cannot distinguish between a call from a
FORTRAN program and a call from an assembly language program.
The arguments are the same in both cases.

On return from GPIB, RO contains the value of the function as in
the FORTRAN call. The registers R1 through R5 are preserved
across a call to GPIB.

3.3 FUNCTIONS

The following sections describe the driver routine funections in
detail, especially with regard to the interaction with the
interface card's Controller function; i.e., whether or not the
interface card 1s the System Controller and/or the Active
Controller.

A negative value returned by the function indicates an error.
Error codes and descriptions are in Appendix E.

GPIB COMMAND
GPIB COMMAND (function code = 0)
FORTRAN: J=GPIB(0,ARRAY,LENGTH)

ARRAY is an array of command bytes to be sent
out on the GPIB. LENGTH is an integer giving
the size of the array in bytes. The returned
value 1s the number of bytes transferred if
successful or a negative number indicating an
error.

BASIC: CALL "GPIB"(0%,C$)

C$ is a string of command bytes to be sent out
on the GPIB. If an error occurs, a message is
printed and the routine returns to BASIC
immediate mode.

The COMMAND function is the only means by which multiline command
messages may be sent on the GPIB. The utility routine or the
user program calls this function to address and unaddress Talkers
and Listeners in preparation for data byte transfers (via READ,
WRITE, or TRANSFER). This function is also called to send the
other multiline command messages: DCL, GET, GTL, LLO, PPC, PPD,
PPE, PPU, SDC, SPD, SPE, and TCT.

If the interface card is the Active Controller, the command
messages are output immediately. Otherwise, the program will
wait until it becomes Active Controller (by receiving control
from another Controller) and output the messages at that time.
While waiting, the interface requests service from the current
Active Controller (the status byte, octal 101, reflects that it
is requesting control be passed back).

If the interface card is configured as the System Controller, the
CLEAR function must be called prior to the first call to COMMAND.

GPIB WRITE
GPIB WRITE (function code = 1)
FORTRAN: J:GPIB(1,ARRAY,LENGTH,MODE)

ARRAY is an array of data bytes to be sent to
all Listening devices. LENGTH is an integer
giving the size of the array in bytes. MODE is
an integer specifying the output format. The
returned value is the number of bytes written
to signal sucecess or a negative number
indicating an error.

BASIC: CALL "GPIB"(1%,W$,M%)

W$ is a string of data bytes to be sent to all
Listening devices. M 1s an integer specifying
the output format. If an error occurs, a
message 1s printed and the routine returns to
BASIC immediate mode.

The WRITE function is the only means by which data messages may
be sent from the computer to one or more Listening devices. It
is assumed that the GPIB interface card has already been
addressed as the Talker and one or more devices have been
addressed as Listeners by using a call to the COMMAND function or
that another Controller is active and has done the GPIB
addressing.

If the interface card is the Active Controller when WRITE is
called, the driver routine will put the Controller on standby and
proceed to send out data bytes immediately. Otherwise, if the
card is not the Active Controller, the routine will wait until
the GPIB interface card is addressed as Talker by another
Controller and output the data bytes at that time. While it is
waiting, the driver routine requests service from the Active
Controller (the status byte, octal 102, reflects that it is
requesting to talk).

The output modes are described in Table 3.1.

Mode

Table 3.1 - Write Modes

Description

Terminate on count.

Data bytes are output unmodified
until the requested byte count is
reached.

Terminate on count with END.

Same as mode 0 but the uniline
message, END,, is transmitted with
the last byte.

END is the message received when
the EOI (End of Identify) line is
asserted during data transfers,
i.e.y, when ATN is false.

GPIB READ
GPIB READ (function code = 2)
FORTRAN: J=GPIB(Z,ARRAY,LENGTH,MODE,EOD)

ARRAY is an array in which bytes read from the
Talker are placed. LENGTH is an integer giving
the number of bytes to read. MODE is an
integer specifying the input format. EOD is an
integer containing the End-0f-Data character.
The returned value 1s equal to the actual
number of data bytes read if the operation was
successful or a negative number indicating an
error.

BASIC: CALL "GPIB"(2%,R$,L%,M%,E%)

R$ is a string variable in which bytes read
from the Talker are placed. L is an integer
giving the number of bytes to read. M is an
integer specifying the input format. E is an
integer containing the End-0f-Data character.
If an error occurs, a message is printed and
the routine returns to BASIC immediate mode.

The READ function is the only means by which data bytes may be
sent from a Talking device to the computer. It is assumed that
another device has been addressed as Talker by using a call to
the COMMAND function, or that another Controller is active and
has done the GPIB addressing.

If the interface card is the Active Controller when READ is
called, the driver routine will enable the programmable listen
function, put the Controller on standby, and begin reading data
bytes. Otherwise, the driver routine will wait until the GPIB
interface card is addressed as Listener and input the data bytes
at that time. While it is waiting, the driver routine requests
service from the current Active Controller (the status byte,
octal 104, reflects that it is requesting to Listen).

The input modes are described in Table 3.2.

Table 3.2 - Read Modes

Mode Description
0 Terminate on count or END.

Data bytes are read until the
requested byte count is reached or
the uniline message, END, is detected.

END is the message received when
the EOI (End or Identify) line is
asserted during data transfers,
i.e., when ATN is false.

2 Terminate on count or END or EOD.
Same as mode 0 except reading is also
terminated when a byte is read which
is equal to End-0f-Data (EOD) character.

4 Terminate on count only.
Data bytes are read until the requested
byte count is reached. END or EOD
will not terminate the read.

* 6 Terminate on count or EOD.
Data bytes are read until the requested
byte count is reach, or until a byte is
read which is equal to the value of EOD.
END will not terminate the read.

* Mode 6 is not available on DMA boards, i.e., END cannot
be selectively ignored when EOD is recognized.

GPIB TRANSFER
GPIB TRANSFER (function code = 3)
FORTRAN: J=GPIB(3)

The returned value is 1 if the operation was
successful or a negative number indicating an
error.

BASIC: CALL "GPIB"(3%)

If an error occurs, a message is printed, and
the routine returns to BASIC immediate mode.

The TRANSFER function is used to allow a transfer of data bytes
from a Talking device to one or more Listening devices without
having the computer participate. It is assumed that a device has
been addressed as Talker and one or more devices have been
addressed as Listeners by using a call to the COMMAND function.
If the interface card is not the Active Controller, an error is
returned immediately. Otherwise, the Controller is placed in the
stand-by state allowing data transfer between the addressed
devices at the highest speed possible.

The routine returns immediately to the caller and the transfer

continues until the next COMMAND, PARALLEL POLL, or CLEAR
function call.

3-10

GPIB CLEAR
GPIB CLEAR (function code = 4)
FORTRAN: J=GPIB(4)

The returned value is 1 if the interface card
is the System Controller or a negative number
indicating an error.

BASIC: CALL "GPIB"(4%)

If an error occurs or the interface card is not
the System Controller, a message is printed and
the routine returns to BASIC immediate mode.

The CLEAR function is used to initialize the GPIB by sending the
IFC message. It returns an error unless the interface card is
configured as the System Controller. This function 1is used to
activate the Controller-In-~-Charge function of the System
Controller and to recover from a GPIB error.

3-11

GPIB REMOTE

GPIB REMOTE (function code = 5)
FORTRAN: J=GPIB(5)

The returned value is 1 if the interface card
is the System Controller or a negative number
indicating an error.

BASIC: CALL "GPIB"(5%)

If an error occurs or the interface card is not
the System Controller, a message is printed and
the routine returns to BASIC immediate mode.

The REMOTE function is used when placing devices in remote mode.
It returns an error if the interface card is not configured as
the System Controller. REMOTE sends the REN message; however,
devices on the GPIB are not actually placed in remote mode until
they are addressed as Listeners. The REN message remains
asserted until the GPIB LOCAL function is called.

3-12

GPIB LOCAL
GPIB LOCAL (function code = 6)
FORTRAN: J=GPIB(6)
The returned value is 1 if the interface card
is the System Controller or a negative number
indicating an error.

BASIC: CALL "GPIB"(6%)

If an error occurs or the interface card is not
the System Controller, a message is printed and
the routine returns to BASIC immediate mode.

The LOCAL function is used to place devices in 1local mode. It
returns an error if the interface card is not configured as the
System Controller. LOCAL clears the REN message, forecing all
devices on the GPIB to return to local mode.

3-13

GPIB PARALLEL POLL
GPIB PARALLEL POLL (funetion code = T)
FORTRAN: J=GPIB(7)

The returned value is the Parallel Poll result
or a negative number indicating an error.

BASIC: CALL "GPIB"(7%,P%)

The Parallel Poll result is returned in P. 1f
an error occurs, the routine returns to BASIC
immediate mode.

The PARALLEL POLL function is used to poll the interfaced devices
which have been configured for parallel polling. A device may be
dynamically configured by using the COMMAND function or
statically configured by a switch on the device.

If the interface card is the Active Controller, the program will
take the poll immediately and return the results. Otherwise, the
program will return an error.

The Parallel Poll result is the 8 bit response which appeared on
the GPIB DIO lines, logically "OR"ed with octal 400.

3-14

GPIB PASS CONTROL
GPIB PASS CONTROL (function code = 8)
FORTRAN: J=GPIB(8)

The returned value is 1 if the interface card
is the Active Controller on entry or a negative
number indicating an error.

BASIC: CALL "GPIB"(8%)

If an error occurs or the interface card is not
the Active Controller, a message is printed and
the routine returns to BASIC immediate mode.

The PASS CONTROL function is used to allow another GPIB
Controller to take charge of the GPIB. When PASS CONTROL is
called it is assumed that a device with the Controller capability
has already been addressed as Talker and sent the TCT message by
using a call to the COMMAND function. The driver routine then
places the Controller function in the idle state, allowing the
other Controller to assume control., If the interface card is not
the Active Controller, an error is returned.

When another COMMAND, WRITE, or READ call is made to the GPIB
driver routine and control has not been returned, service is
requested from the current Active Controller (the status byte
which is presented when the interface card is serially polled is
octal 101, 102, or 104, for COMMAND, WRITE, or READ,
respectively). If the interface card is the System Controller,
it may take control from any other Controller at any time by
calling the CLEAR function.

3-15

GPIB SET STATUS
GPIB SET STATUS (function code = 9)
FORTRAN: J=GPIB(9,S)
S is an integer specifying the status. The

returned value is always 1 or a negative number
indicating an error.

BASIC: CALL "GPIB"(9%,5%)

S is an integer specifying the status. If an
error occurs, the proutine returns to BASIC
immediate mode.

The SET STATUS function is used to set the individual status bit
(IST) which 1is used in the response to a Parallel Poll. If the
argument is non-zero, the status bit 1s set true. If the
argument is zero, the status bit is set false.

3-16

GPIB MONITOR
GPIB MONITOR (function code = 10)
FORTRAN: J=GPIB(10,M)

M is an integer specifying MONITOR mode ON or
off. The returned value is always 1 or a
negative number indicating an error.

BASIC: CALL "GPIB"(10%,M%)

M is an integer specifying MONITOR mode ON or
OFF. If an error occurs, the routine returns
to BASIC immediate mode.

The MONITOR function is used to allow the interface card to read
and monitor command bytes which are sent by another Controller
while the interface card is not the Active Controller. If the
argument to MONITOR is zero, then monitoring is disabled. If the
argument is non-zero, monitoring is enabled, and applicable
command bytes are automatically read from the GPIB and placed in
a 32 byte FIFO buffer. Command bytes are read from the buffer
using the READ COMMAND function (see GPIB READ COMMAND).

Monitoring command bytes 1s not a standard GPIB operation. The
command bytes that can be monitored depend on which GPIB
interface card, the type and group of message, and the address
state of the interface card. .

3=-17

GPIB READ COMMAND
GPIB READ COMMAND (function code = 11)
FORTRAN: J=GPIB(11)

The returned value is the next command byte
that was monitored, -1 if no command byte is
available, or another negative number 1if an
error occured.

BASIC: CALL "GPIB"(11%,C%)

C is an integer variable in which the next
command byte that was monitored 1s placed. 1If
no byte is available, =1 is returned in C. If
an error occurs, the routine returns to BASIC
immediate mode.

The READ COMMAND function is used in conjunction with the MONITOR
function to read command bytes sent out on the GPIB by another
Controller. :

If a command byte is not available if the FIFO buffer, -1 is
returned so that the user program may loop, waiting for a
command, or continue processing and call later to check for a
command byte. Command bytes are placed in 32 byte internal
buffer. If the buffer fills, subsequent GPIB command bytes are
lost until buffer space becomes available (no indication of lost
bytes is available).

3-18

GPIB SET PARAMETERS

GPIB

SET PARAMETERS (function code = 12)
FORTRAN: J=GPIB(12,T)

T is an integer giving the time 1limit in
seconds. The returned value is always 1 or a
negative number if an error occurred.

BASIC: CALL "GPIB"(12%,T%)

T is an 1integer giving the time 1limit in
seconds. If a error occurs, the routine
returns to BASIC immediate mode.

The SET PARAMETERS function is wused to establish the
driver routine time limit parameter. The time limit is
used only for interrupt-driven GPIB functions. The
default, or initial, value for the time limit is 10
seconds. If T=0, no time limit is imposed on interrupt-
driven GPIB functions.

3-19

GPIB TEST SRQ
GPIB TEST SRQ (function code = 13)
FORTRAN: J=GPIB(13,W)

If W is non-zero, the function waits until SRQ
is asserted. Otherwise, the function returns
immediately. The returned value is -1 if 3RQ
is not being asserted and 1 if one or more
devices are asserting SRQ. Any other negative
number indicates an error.

BASIC: CALL "GPIB"(13%,5%,W%)

S is an integer variable which is set to 1 if
SRQ is asserted and set to -1 if SRQ is not
asserted. If an error occurs, this routine
returns to BASIC immediate mode.

The TEST SRQ function 1is wused to check 1f any devices are
requesting service. If SRQ is found to be asserted, a Serial
Poll is usually done to determine which device 1is in need of
service.

3-20

GPIB FINISH

GPIB FINISH (function code = 14)
FORTRAN: J=GPIB(14)
BASIC: CALL "GPIB"(14%)

The FINISH function disables all interface card interrupts and
initializes the interface card. The return value is 1.

3=21

GPIB[U] STATUS
GPIB[U] STATUS (function code = 15)

FORTRAN: J=GPIBU(UNIT,15,ARRAY,COUNT)
J=GPIB(15,ARRAY,COUNT)

BASIC: CALL "GPIBU"(UNIT%,15%,ARRAY%,COUNT%)
CALL "GPIB"(15%,ARRAY%,COUNT%)

This call enables the user to monitor the state of the driver.
The effect of the call is to place the contents of the interface
nit Control Block into the buffer at address ARRAY. UNIT is the
interface board unit number. Integer COUNT is the number of
bytes to be placed in the buffer. If a COUNT equal to or greater
than the actual size of the data area is used, then the entire
data area is placed in the buffer. The actual size and content
of the data area varies with each type of interface board.
Detailed knowledge of the driver is generally required in order
to interpret the data.

3-22

GPIB[U] SPBYTE
GPIB[U] SPBYTE (function code = 16)

FORTRAN: J=GPIBU(UNIT,16,STAT)
J=GPIB(16,STAT)

BASIC: CALL "GPIBU"(UNIT%,16%,STAT%)
CALL "GPIB"(16%,STAT%)

This function enables the user to set or change the status byte
that the interface will send when it is serially polled. UNIT is
the interface board unit number. Integer STAT i1s the interface
board serial poll status byte. If the board is not the
Controller-In-Charge and bit 0100 (octal) is set in the status
byte, SRQ is asserted as soon as this call is made.

The status byte remains in effect until any one of the following
ocecurs:

* Another call to GPIB[U] SPBYTE alters the status byte.

* A call to GPIB[U] READ or GPIB[U] WRITE is made while the
interface is not already addressed. The status byte is
then replaced by 0102 or 0104 (refer to GPIB[U] READ,
GPIB[U] WRITE).

% A call to GPIB[U] FINISH clears the status byte.

* The interface becomes Controller-In-Charge, in which case
the status byte is cleared.

3-23

Section Four

SOFTWARE INSTALLATION

The files and procedures to use for installing the GPIB software
depend on the interface card that is used, the target operating
system, and the language support desired. The many options
avallable make the description of the installation necessarily
detailed; however, you will quickly see that for a given software
and hardware configuration the actual effort involved is minimal.
The following steps should be followed to install the proper
software for a single interface card on your system. Contact the
factory for special instructions if you are installing more than
one GPIB interface card in your system. For UNIX or VAX software
installation, see the appropriate addendum. For an overview of
the entire installation process, refer to Appendix F.

4.1 STEP 1: REQUIRED DISTRIBUTION FILES

Table 4.1 1lists the files which are needed for each
configuration. Locate the operating system you will be using
along the top row and the interface card you will be using down
the 1left column. At the intersection is the 1list of the files
required for installation. These files should be copied from the
distribution medium to a suitable working area. The files of the
original distribution should be left undisturbed so that they can
be used for later reference, or for restarting the installation
procedure. In addition to the files listed in Table 4.1 the file
IBSCLI.MAC is used for all configurations that require BASIC
support. A brief description of each file is given in Table U4.2.

Note that the stand-alone modules may actually be used under RT
as a user interrupt routine in place of the RT handler. (The 0S
assembly parameter indicates whether the software is to run under
RT or stand-alone. And the DVR assembly parameter indicates
whether it is to run with a handler or not, as explained in
Section 4.3.) This is the recommended installation under RT
because RT is not a multi-user operating system. It 1is not
possible to use the stand-alone modules under RSX because they do
not support the RSX connect-to-interrupt feature.

4,2 STEP 2: FILE NAMING CONVENTION

If the software 1s being installed as an RSX or RT handler, the
files must be renamed. Under both operating systems device
handlers are restricted to two-letter mnemonics. The file names
should be changed as shown in Table 4.3.

The stand-alone version of the driver routine does not need to be
renamed. For simplicity, in the following descriptions the name
IBDP.MAC will be used to refer to the appropriate stand-alone
driver routine IBDP.MAC, IBVDP.MAC, IB2DP.MAC, or IBV2DP.MAC.

Table 4.1 - Files Required for Installation

Note: IBSCLI.MAC is required for BASIC support.

Interface Operating System (and Installation)
RSX-11 RT-11, TSX RT=11 No 0S
stand-alone
(handler) (handler) (1linked (linked
routine) routine)
GPIB11=1 IBUP.MAC IBUP.MAC IBUP.MAC IBUP.MAC
IBUDP.MAC IBUDP.MAC IBDP.MAC IBDP.MAC
IBDRV.MAC IB.MAC
IBTAB.MAC
GPIB11V-1 IBUP.MAC IBUP.MAC IBUP.MAC IBUP.MAC
IBUDP.MAC IBUDP.MAC IBVDP.MAC IBVDP.MAC
IBVDRV.MAC IBV.MAC
IBVTAB.MAC
GPIB11=2 IBUP.MAC IBUP.MAC IBUP.MAC IBUP.MAC
IBUDP.MAC IBUDP.MAC IB2DP.MAC IB2DP.MAC
IB2DRV.MAC IB2.MAC
IB2TAB.MAC
GPIB11V=-2 IBUP.MAC IBUP.MAC IBUP.MAC IBUP.MAC
IBUDP.MAC IBUDP.MAC IBV2DP.MAC IBV2DP.MAC
IV2DRV.MAC IBV2.MAC :
IV2TAB.MAC

Table 4.2 - Source File Description

IBUDP.MAC Handler interface routine that provides the
GPIB() functions under RT and RSX.

IBUP.MAC Utility routine providing IBUP() calls for all
installations (conditional assembly code selects
installation option)

IBDP.MAC GPIB11-1 stand-alone driver routine providing
GPIB() calls

IBVDP.MAC GPIB11V-1 stand-alone driver routine providing
GPIB() calls.

IB2DP.MAC GPIB11-2 stand-alone driver routine providing
GPIB() calls.

IBV2DP.MAC GPIB11V=-2 stand-alone driver routine providing
GPIB() calls.

IB.MAC GPIB11-1 RT Device Handler

IBV.MAC GPIB11V=1 RT Device Handler

IB2.MAC GPIB11-2 RT Device Handler

IBV2.MAC GPIB11V=-2 RT Device Handler

IBDRV.MAC GPIB11=-1 RSX Device Driver

IBTAB.MAC

IBVDRV.MAC GPIB11V=1 RSX Device Driver

IBVTAB.MAC

IB2DRV.MAC GPIB11-2 RSX Device Driver

IB2TAB.MAC

IV2DRV.MAC GPIB11V=-2 RSX Device Driver

IV2TAB.MAC

IBSCLI.MAC BASIC Function Table (for use in re-linking BASIC when the

routines are conditionally assembled for use with BASIC)

Table 4.3 - Source File Renaming

Distribution Name RT New Name RSX New Name
IB.MAC IB.MAC N/A
IBV.MAC IB.MAC N/A
IB2.MAC IB.MAC N/7A
IBV2.MAC IB.MAC N/A
IBDRV.MAC N/A IBDRV.MAC
IBTAB.MAC N/A IBTAB.MAC
IBVDRV.MAC N/A IBDRV.MAC
IBVTAB.MAC N/A IBTAB.MAC
IB2DRV.MAC N/A IBDRV.MAC
IB2TAB.MAC N/A IBTAB.MAC
IV2DRV.MAC N/A IBDRV.MAC
IV2TAB.MAC N/A IBTAB.MAC

4.3 STEP 3: ASSEMBLY PARAMETER EDITING

If the default UNIBUS address and vector address have been
changed or 1if the default assembly parameters are unsuitable,
then the driver file (e.g., IBDRV.MAC and IBTAB.MAC, or IB.MAC,
or IBDP.MAC) must be edited before proceeding. Table 4.4 lists
the driver assembly parameters, their meaning, and their default
values for each interface., The driver assembly parameters are
located at the beginning of the file.

The linked drivers have two assembly parameters, ASYNCH and DIAG,
that should normally be left with their default values (0).
Setting ASYNCH to a non-zero value causes GPIB to return
immediately without waiting for the operation to complete. 1In
this case, if a non-zero value is returned by GPIB, it means the
operation did complete (negative for error, positive otherwise).
A zero result means the operation is in progress, and the
function IBWAIT must be called prior to issuing another GPIB
call. The value returned by IBWAIT is the same as what would be
returned by GPIB 1f ASYNCH were 0. Setting DIAG to a non-zero
value causes a user defined function, IDLEFN, to be called within
all the internal wait loops of the driver. This feature is used
for diagnostic purposes and should not normally be used.

The assembly parameters in the utility file (IBUP.MAC) and the
handler interface file (IBUDP.MAC) may also need editing. Table
4,4 lists the assembly parameters for them, their meanings, and
their default values. The utility file also contains the device
table that must be edited to describe the devices interfaced to
the GPIB. A description of the information contained in the
device table appears in Chapter 2 , Section 2.2.4.

After editing the driver and utility files, proceed to Step 4 for
RSX handler installation, Step 5 for RT handler installation, and
Step 6 for stand-alone installation or user interrupt routine
installation under RT.

4-6

Table 4.4 - Driver Assembly Parameters

Name Meaning Default value
1-1 Tl T A1-2 11v-2
UADDR UNIBUS (or Q-BUS) address of 167700 167700 167710 167710
interface
VECT Interrupt vector address 300 300 310 310

RT legal values: 060-0474

PRI Software interrupt priority 200 200 200 200
as shown in the Processor
Status Word. BR4 = 200,
BR5 = 240, BR6 = 300, and
BR7 = 340. The software
priority must be equal to
or greater than the hardware
interrupt level.

ONLYC Set to zero if more than one 0 0 0 0
Controller is on GPIB. Set to
non-zero value if interface is
the only Controller on GPIB.
If ONLYC is non-zero, code
supporting pass control and
bus monitoring is not assembled.

PPENAB Parallel Poll Enable. If PPENAB N/A N/A 1 1
is non-zero, code supporting the
Parallel Poll function is assembled.
If PPENAB is zero, the code is not
assembled. On all interfaces except
Rev D or later versions of the
GPIB11-2, PPENAB must be zero if
the hardware driver option switch
is set to three-state mode. Other-
wise, PPENAB must be non-zero if
Parallel Polls are to be conducted.

TRI High speed timing for three-state N/A N/A 0 0

GPIB. If TRI is zero, open
collector timing for handshake

" is used. If TRI is 4, high speed
timing for handshake is used. In
general, the TRI value must be
consistent with the setting of the
hardware driver option switch and
with the value of PPENAB.

Table 4.4 - Driver Assembly Parameters (Continued)

Name Meaning Default value
-1 nv-1 1-2 11v-2

SAC System Controller. SAC must be N/A N/A 1 1
non=-zero if the interface card
is the System Controller, and
zero if the card is not the System
Controller. SAC must agree with
the setting of the hardware System
Controller option switch where the
switch exists.

EXT Extended GPIB addressing. Set EXT N/A N/A 1 1
to 2 if GPIB extended addressing is
used and to 1 if normal addressing
is used.

MSA GPIB Secondary address. If EXT N/A N/A 10 140
is 2, set MSA to an octal number
representing the low five bits of
the interface's GPIB secondary
address. If EXT is 1, set MSA to
140,

MA GPIB Primary address. Set MA to N/A N/A 25 25
an octal number representing the
low five bits of the interface's
GPIB primary address.

The following parameters appear only in the stand-alone versions
of the driver file:

BASIC BASIC support. Set BASIC to some 0 0 0 0
non-zero number to enable assembly
of code implementing the software
interface to BASIC. Set BASIC to
zero if you are implementing a
FORTRAN/MACRO-callable driver.

0s Set 0S to 1 if the stand-alone 0 0 0 0
driver is to be operated as a user
interrupt service routine running
under the RT operating system. If
0S is 1, then code which notifies
RT of interrupts is assembled. Do
not use the stand-alone driver
under RT unless you set OS to 1,
otherwise, stack corruption and an
eventual system crash will result.

4-8

Table 4.4 - Driver Assembly Parameters (Continued)

Name Meaning Default value
Utility Handler Interface
File File '
BASIC BASIC support. Set BASIC to a 0 0

non-zero number if you are
generating a BASIC-callable
utility routine. Set BASIC

to zero if you are generating

a FORTRAN/MACRO-callable utility
routine. If BASIC is non-zero,
then code implementing the
software interface to BASIC is
assembled.

DVR Driver installation Set DVR 0 2
to 0 if you are generating a
standalone version of the driver,
or an RT user interrupt routine
version of the driver. Set DVR
to 1 if you are generating an RT
handler version of the driver.
Set DVR to 2 if you are generating
an RSX handler version of the
driver. ’

4.4 STEP 4: RSX INSTALLATION

The RSX handler version of the driver routine is supplied as a
loadable driver. For more details on the installation of an RSX
device driver refer to "RSX11-M Guide to Writing an I/O Driver"
(AA-2600D-TC), Sections 3.3.2 through 3.3.5. The following
procedure is essentially the same as the example for a loadable
driver that is provided in the RSX manual.

Note 1: In this example of assembling and task-building the
driver, the files RSXMC and RSX11M.STB must have been produced by
the SYSGEN for the current system configuration. If a SYSGEN has
been done on the system for a configuration other than the current
configuration, files may exist with these names but the resulting
installation of the driver will be incorrect.

Note 2: The RSX event flag is the value of the constant RSXEFN in
the handler interface routine IBUDP. The RSX I/0 channel is the
value of the constant RSXCHAN in the same routine.

Note 3: The UIC's could vary depending on the version of RSX.
Assemble both the driver and its data base:

MAC>IBDRV,IBDRV=[1,1]EXEMC/ML,[200,200]RSXMC/PA:1,IBDRV
MAC>IBTAB, IBTAB=[1, 1 JEXEMC/ML,[200,200]RSXMC/PA: 1,IBTAB

Then task-build the driver:

TKB>[1,54]1IBDRV/-HD/~MM,,[1,54]IBDRV=
TKB>IBDRV,IBTAB
TKB>[1,54]RSX11M.STB/SS

TKB>[1, 1]JEXELIB/LB

TKB>/

TKB>STACK=0
TKB>PAR=DRVPAR: 120000: 10000

TKB>//

Note: The PAR option may specify any appropriate partition
name but the address and size must be as shown, REGARDLESS
OF THE ACTUAL PHYSICAL ADDRESS OF THE PARTITION!

Then load the driver:
LOAD 1IB:

Finally, assemble the handler interface and the utility routine:

MAC>IBUP,IBUP=IBUP
MAC>IBUDP,IBUDP=IBUDP

4-10

Proceed to Step 7 for BASIC installation and step 8 for FORTRAN/MACRO
installation.
4.5 STEP 5: RT (TSX) HANDLER INSTALLATION

For more details on the installation of an RT device handler refer to "RT-
11 System Generation Manual" (AA-5283B-TC), Section 3.6.5.

Note: sysgen RT with conditionalized timeout support.
Assemble the driver:
For RT Version 4

R MACRO
*#IB,IB=SYCND,IB

For RT Version 5

.R MACRO
*IB,IB=[Monitor], SYSGEN,CND.IB

where Monitor is substituted with XM.MAC, SJ.MAC, or FB.MAC
Then link the driver:

.R LINK
*IB.SYS=IB

Then install and load the driver:

«INSTALL IB:
.LOAD IB:

Finally, assemble the utility routine:

+R MACRO
*IBUP,IBUP=IBUP
*TBUDP, IBUDP=IBUDP

Proceed to Step 7 for BASIC installation and Step 8 for FORTRAN/MACRO
installation.

4.6 STEP 6: STAND-ALONE INSTALLATION

The stand-alone version of the driver and utility routines can be assembled
and linked on an RT system. RT-11 commands are shown in this step for
purposes of illustration. The driver file is referred to as IBDP.MAC but
should actually be the appropriate file corresponding to the GPIB interface
being used. Assemble the driver file and the utility file:

R MACRO

*IBDP,IBDP=IBDP
*IBUP,IBUP=IBUP

411

Proceed to Step 7 for BASIC installation and Step 8 for FORTRAN/MACRO
installation.

4.7 STEP 7: BASIC INSTALLATION

For more details on the incorporation of assembly language routines into
BASIC under RT, refer to "BASIC-11/RT-11 Installation Guide." If there are
other assembly language routines to be linked in addition to these, then
edit IBSCLI.MAC to 1include them in the function table. Assemble the
function table:

MACRO/OBJECT:MYCLI BSMAC+BSASM+IBSCLI

Link BASIC together by running SUCNFG as described in the Installation
Guide, being sure to answer the question "Do you want call support?" with
Ny, " When prompted for module names, respond with MYCLI, IBDP, IBUP, and
BSCLLB, all on separate 1lines, and then terminate the list with a blank
line. Note that IBDP is NOT to be included in the 1list 1if the driver
routine was installed as a device handler (Steps 4 or 5); in this case,
specify IBUDP instead. If IBDP is included, it cannot be in an overlay
region (since it must always be in memory to catch and service interrupts).

The resulting version of BASIC supports GPIB and IBUP operations as
described in the manual, both in immediate mode and in program mode.

4.8 STEP 8: FORTRAN/MACRO INSTALLATION

The object modules IBDP.OBJ and IBUP.OBJ may be placed in the system
library so that any references to them in a FORTRAN or MACRO program will
be resolved automatically at link time. Note that IBDP is NOT to be placed
in the 1library 1if the driver routine was installed as a device handler
(steps 4 or 5). Instead, place IBUDP.OBJ in the system 1library 1if the
driver was installed as a device handler. If IBDP is placed in the
library, it can never be linked into an overlay region, since it must
always be in memory to catch and service interrupts.

412

Section Five

INTERACTIVE CONTROL PROGRAM

IBIC is an interactive program that allows the GPIB to be
controlled from terminal input using a convenient syntax. This
program is especially useful for interactively debugging and
trouble shooting a complete GPIB system - the bus, the
instruments, the interface card, and the driver and utility
software as well. IBIC may be wused to quickly verify the
behavior of an instrument instead of having to generate several
versions of production software to do that. If a sequence of
calls issued from IBIC works properly then it 1is reasonably
certain (apart from possible timing considerations) that the same
sequence of function calls issued from a program will work the
same.

5.1 INSTALLATION

The IBIC source file must be edited to set the parameter 0SS to
the proper value.

0S = 0 if stand-alone
0S = 1 if RT (handler or linkable routine)
0S = 2 if RSX

After being edited the source file is assembled with MACRO using
the command:

IBIC,IBIC=1IBIC

The object file is then linked or task-built with the driver and
utility routines (see Chapter U4 for installation procedures for
these modules) using the appropriate command for the target
operating system:

IBIC=1IBIC,IBUP,IBUDP for TKB under RSX with driver installed
as RSX handler

IBIC=IBIC,IBUP,IBUDP for LINK under RT with the driver installed
as an RT handler

IBIC=IBIC,IBUP,IBDP for LINK under RT with the stand-alone driver,

for use stand-alone or as user interrupt
routine under RT

5-1

5.2 OPERATION

IBIC sends a prompt character (:) to the terminal and waits for
input specifying the arguments to a GPIB or IBUP function call.
The results of the funetion call are then printed on the terminal
and another prompt is sent. The cycle repeats indefinitely until
a control/c is typed (under RT) or a control/z (end-of-file) is
typed (under RSX).

The syntax of the arguments 1is fairly simple and easily
correlated with the FORTRAN and BASIC calling sequences as
described in Chapters 2 and 3, and the semantics correspond
exactly. The arguments are identical for all functions except
COMMAND, WRITE, and READ. For COMMAND and WRITE, the buffer
length is not specified (the string 1length is automatically
counted by IBIC) and for READ an input buffer is not specified
(one is supplied by IBIC).

Table 5.1 lists the format of the input to IBIC. All arguments
enclosed in angle brackets (<>) stand for integers. A1l
arguments enclosed in double quotes (") stand for strings. An
integer is considered to be base 10 unless it begins with a 0
digit, in which case it is treated as base 8, e.g., 16 is the
same as 020. A string 1s a sequence of characters that is
enclosed in double quotes, e.g., "a string" is a string. All
arguments are separated by one or more spaces or tabs. The
square brackets ([]) surround optional characters of a mnemonic,
e.g., IBUP may be written out completely or abbreviated as I.
The function code supplied to IBUP or GPIB may be the mnemonic
shown in the table or the corresponding integer value, e.g.,

g cl
is equivalent to
g 4

Upper and lower case characters are treated the same for
mnemonics but are distinct within a string. A special mechanism
is available for specifying non-printing characters within a
string by using the backslash character, (\). The format for
generating an arbitrary 8-bit byte is \nnn where nnn stands for
the 1, 2, or 3 octal digits which specify the byte. For
convenience a further abbreviation 1is available for the most
common non-printing characters: .

\r stands for carriage return (equivalent to \15)
\n stands for line feed (equivalent to \12)

\t stands for tab (equivalent to \11)

\b stands for backspace (equivalent to \10)

To actually include the backslash character in the string it 1is
necessary to precede it with a backslash, e.g., \\ stands for the
character \ by itself. A double quote may also be included in

5-2

the string by preceding it with a \ as in \".

The usual conventions apply for deleting a character or line from
terminal input.

The returned values from the GPIB or IBUP calls are printed in
decimal except for legal parallel poll, serial poll, and read
command responses. These are printed in octal (the 0400 bit
should be ignored). String data from a read call is written,
directly following the byte count, using the convention for non-
printing characters described above.

5-3

Table 5.1

IBIC INPUT FORMAT

ilbup] wlrite] <dev> "data"

ifbup] reald] <dev> <len>

ilbup] cllear] <dev>

ifbupl tirigger] <dev>

i[bup] rem[ote] <dev>

i[bup] 1[ocall <dev>

i[bup] pol1l] <dev>

ilbup] colnfigure] <dev> <sense> <line>
i[bup] palsscontrol] <dev>

i[bup] d[efine] <dev> <tad> <lad> <sad> <rmd> <eod> <wmd>
i[bup] flinish]

glpib] colmmand] "emds"
glpib] wlrite] "data" <wmd>
glpib] reald] <len> <rmd> <eod>
glpib] trlansfer]

glpib] cllear]

. glpib] rem[ote]

glpib] 1[ocall

glpib] parlallelpolll]
glpib] palsscontrol]

glpib] sets[tatus] <s>
glpib] mlonitor] <m>

glpib] readc[ommand]

glpib] setplarameters] <t>
glpib] telstsrql <w>

glpib] flinish]

glpib] st[atus] <count>
glpib] splbyte] <byte>

5.3 IBIC EXAMPLE RUN

The following is an example
issued while running IBIC.
IBIC, it is not the only sequence that could be used to write to
a device on the GPIB.

sequence of GPIB function calls
While it illustrates the syntax of

In this example the National Instruments interface is the System
Controller (SAC).

..

.

IBIC

Command

gpib
1

gpib
1

gpib
1

gpib
1

gpib
2

gpib

gpib

gpib

gpib

finish

setp 60

clear

remote

command "_?"

command "U!"

write "\061\062\063" 0

write "45678" 2

command "_?"

Explanation

Unasserts all lines on the GPIB

Sets the interface board's timeout
value so the board will wait
approximately 60 seconds for an
operation to complete before
returning a -6.

Asserts IFC for 100 microseconds,
then leaves IFC unasserted and
ATN asserted.

Asserts REN

Sends universal UNTalk and UNListen
with ATN asserted and leaves ATN
asserted.

Sends Talk Address octal 125 (ASCII U)
Listen Address ocatal 41 (ASCII !) with
last byte (write mode 0), leaving ATN
unasserted.

Unasserts ATN and sends octal 61, 62, and
63 (ASCII 1,2,3), without asserting EOI
with last byte (write mode 0), leaving
ATN unasserted.

Unasserts ATN and sends octal 64, 65, 66,
67, and 70 (ASCII 4,5,6,7,8), asserts EOI
with last byte (write mode 2), leaving
ATN unasserted.

Note: the above two gpib write function
calls are split into two calls instead of
one for the purpose of demonstration.

Sends universal UNTalk and UNListen with
ATN asserted and leaves ATN asserted.

5«5

The following is an example sequence of ibup function calls
issued while running IBIC. It illustrates the syntax of IBIC and
is not the only sequence that could be used to write to a device
on the GPIB. In this example, the National Instruments interface
is the System Controller (SAC). Also, the device table in the
file 4ibup.mac has been configured with slot 1 containing the
appropriate information regarding GPIB addresses and the write
mode. (Slot 0 is reserved for information about the interface.)

: ibup write 1 "12345678n Addresses the device defined in slot one
8 of the device table, sends it the string of
eight characters and unaddresses all device

If this is the first ibup function call issued (or the first one
issued since a gpib finish or ibup finish) it would result in the
same sequence of events as the gpib function cals above, starting
with gpib clear, through the last gpib command "_7?". If this was
not the first ibup call issued, the results would be the same as
the gpib function cals above, starting with the first gpib
command "_?", through the last gpib command "_2?". The one
significant difference between the ibup call and the gpib
sequence, while it would be unasserted after the ibup write call.

ibup read 1 5
5
abede

ibup define 1 0107 047 0 0 O

ibup read 1 10

5
abede

Addresses the device defined in slot one
of the device table, reads from it a
string of a maximum of five characters,
prints out what it reads and unaddresses
all devices.

2 Redefines slot one in the device table.
(This might be done to, say, change the
read mode. The read mode of zero indicates
that a read should terminate if EOI is
sent.)

Addresses the device defined in slot one of
the device table, reads from it a string of
a maximum of ten characters, prints out what
it reads and unaddresses all devices

(In this case, since only five characters
were read, the device talking must have
asserted Eol with the fifth data byte to
terminate the transmission.)

ibup write 2 "big mess\r" Addresses the device defined in slot 2 of

-9

the device table, tries to write to it
and finds (by the state of the handshake
lines) no one listening. (The problem
could be that the address in the device
table is incorrect or that device two is
not hooked up to the GPIB.)

APPENDIX A

MULTILINE INTERFACE COMMAND MESSAGES
(Sent and Received with ATN TRUE)

Hex Octal Decimal ASCII Message Hex Octal Decimal ASCII Message
00 000 0 NUL 20 040 32 SP MLA
01 001 1 SOH GTL 21 o1 33 ! MLA
02 002 2 STX 22 042 34 " MLA
03 003 3 ETX 23 043 35 # MLA
o4 004 4 EOT SDC 24 o4y 36 $ MLA
05 005 5 ENQ PPC 25 045 37 % MLA
06 006 6 ACK 26 046 38 & MLA
o7 oo7 7 BEL 27 o047 39 ! MLA
08 010 8 BS GET 28 050 40 (MLA
09 011 9 HT TCT 29 051 41) MLA
oA 012 10 LF 24 052 42 * MLA
0B 013 11 vt 2B 053 43 + MLA
ocC 014 12 FF 2C 054 4y , MLA
oD 015 13 CR : 2D 055 45 - MLA
OE 016 14 S0 2E 056 46 . MLA
OF 017 15 SI 2F 057 47 / MLA
10 020 16 DLE 30 060 48 0 MLA
11 021 17 DC1 LLO 31 061 49 1 MLA
12 022 18 DC2 32 062 50 2 MLA
13 023 19 DC3 33 063 51 3 MLA
14 024 20 DC4 DCL 34 064 52 y MLA
15 025 21 NAK PPU 35 065 53 5 MLA
16 026 22 SYN 36 066 54 6 MLA
17 027 23 ETB 37 067 55 7 MLA
18 030 24 CAN SPE 38 070 56 8 MLA
19 031 25 EM SPD 39 071 57 9 MLA
1A 032 26 SUB 3A 072 58 : MLA
1B 033 27 ESC 3B 073 59 H MLA
1C 034 28 FS 3C 074 60 < MLA
1D 035 29 GS 3D 075 61 = MLA
1E 036 30 . RS 3E 076 62 > MLA
1F 037 31 us 3F 077 63 ? UNL

Hex Octal Decimal ASCII Message

40
31
y2
43
4l
45
46
47

48
49
ua
4B
4c
up
4E
4r

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

100
101
102
103
104
105
106
107

110
111
112
113
114
115
116
17

120
121
122
123
124
125
126
127

130
131
132
133
134
135
136
137

64
65
66
67
68
69
70
71

72
73
T4
75
76
77
78
79

80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95

o=zZIIrRaHHDm QTHIEOQWrErR

FE<cHlowoOoo

P N PG

APPENDIX A

MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA

MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA

MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA

MTA
MTA
MTA
MTA
MTA
MTA
MTA
UNT

MULTILINE INTERFACE COMMAND MESSAGES (CONT'D)
(Sent and Received with ATN TRUE)

Hex Octal Decimal ASCII Message

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
T1
72
73
74
75
76
77

78
79
TA
7B
7C
D
TE
TF

140
141
142
143
144
145
146
147

150
151
152
153
154
155
156
157

160
161
162
163
164
165
166
167

170
171
172
173
174
175
176
177

96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111

112
113
114
115
116
17
118
119

120
121
122
123
124
125
126
127

’,

<o 3" o ARG P DT | HOQAOoD

o —— NG M

DEL

MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE

MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE
MSA,PPE

MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD

MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD
MSA,PPD

APPENDIX B

RT HANDLER SPECIAL FUNCTION CODES

Special Driver Function
Function Code* Implemented
-1 COMMAND

=4 TRANSFER

-5 CLEAR

-6 REMOTE

=7 LOCAL

-8 PARALLEL

=9 SERIAL

=10 PASS CONTROL
=11 SET STATUS
-12 MONITOR

=13 READ COMMAND
-4 -
=15 TEST SRQ
=16 FINISH

Description

Similar to the WRITE I/0 program request
except that ATN is asserted while the data
in the I/0 buffer is written onto the GPIB.

Similar to the READ I/0 program request
except that the I/0 buffer is unused.

The Parallel Poll byte is returned as the
first byte in the I/0 buffer.

The status bytes received in the Serial
Poll overwrite the command bytes originally
in the I/0 buffer. ‘

The "ist" bit is set if the I/0 word count
is non-zero and cleared if it is zero.

Monitoring is enabled if the I/0 word cou@t
is non-zero and disabled if it is zero.

The next command byte is returned as the |
first byte in the I/0 buffer. If no command
bytes are available, an error is returned.

This function is provided as a means to set
the WRITE and READ modes and EOD. The first
three bytes of the I/0 buffer are used to
set the WRITE mode, READ mode, and EOD
character, respectively.

An error is returned if SRQ is not asserted.

¥Decimal value unless otherwise noted.

Special
Function Code#*

APPENDIX C

RSX HANDLER QIO FUNCTION CODES

Driver Function

0

1

10

11

12

Implemented Description
- Cancel I/0
WRITE
READ
- Attach
- Detach
COMMAND Similar to WRITE except that ATN is asserted
while the data bytes are written on the GPIB.
TRANSFER Similar to READ except that the I/0O buffer
is not used.
CLEAR This is a control function; no buffer or
count is used. :
REMOTE This is a control functionj no buffer or
count is used.
LOCAL This is a control function; no buffer or
count is used.
PARALLEL The Parallel Poll byte is returned in the
second word of the I/0 status block.
PASS CONTROL This is a control function; no buffer or
count is used.
SET STATUS The "ist" bit is set if the first of the

QIO device dependent parameters is non-zero

and cleared if it is zero.

APPENDIX C

RSX HANDLER QIO FUNCTION CODES (CONT'D)

Special Driver Function
Function Code* Implemented

13 MONITOR

14 READ COMMAND

15 -

16 TEST SRQ

17 FINISH

18 STATUS

19 SPBYTE

Description

Monitoring is enabled if the first of the
QIO device dependent parameters is non-zero
and disabled if it is zero.

The next monitored command byte is returned
in the second word of the I/0 status block.
If no command bytes are available, an error
is returned.

This function is provided as a means of
setting the WRITE and READ modes and EOD.
The first three bytes of the QIO device
dependent parameters are used to set the
WRITE mode, READ mode, and EOD character,
respectively.

The first QIO device dependent parameter is
a 1 if SRQ is to be waited for, or 0 if SRQ
only is desired.

This is a control function; no buffer or
count is used.

The buffer and count specify the location
and amount of internal handler data to be
returned.

The first QIO device dependent parameter
will become the byte next sent in response
to a serial poll.

¥Decimal value unless otherwise noted.

Cc=-2

APPENDIX D

FORTRAN SYNTAX

UTILITY ROUTINE SUMMARY

Name
WRITE J=IBUP(0,D,ARRAY,LENGTH)
READ J=IBUP(1,D,ARRAY,COUNT)
CLEAR J=IBUP(2,D)
TRIGGER J=IBUP(3,D)
REMOTE J=IBUP(4,D)
LOCAL J=IBUP(5,D)
POLL J=IBUP(6,D)
CONFIGURE J=IBUP(7,D,S,L)
PASS CONTROL J=IBUP(8,D)
DEFINE J=IBUP(9,D,TAD,LAD,SAD,RMD,EOD,WMD)
FINISH J=IBUP(10)

DRIVER ROUTINE SUMMARY
Name
COMMAND J=GPIB(0,ARRAY,LENGTH)
WRITE J=GPIB(1,ARRAY,LENGTH,MODE)
READ J=GPIB(2,ARRAY,LENGTH,MODE,EOD)
TRANSFER J=GPIB(3)
CLEAR J=GPIB(Y4)
REMOTE J=GPIB(5)
LOCAL J=GPIB(6)

PARALLEL POLL J=GPIB(7)
PASS CONTROL J=GPIB(8)
SET STATUS J=GPIB(9,S)
MONITOR J=GPIB(10,M)
READ COMMAND J=GPIB(11)
SET PARAMETERS J=GPIB(12,T)
TEST SRQ J=GPIB(13,W)
FINISH J=GPIB(14)

APPENDIX D (CONT'D)

BASIC SYNTAX

UTILITY ROUTINE SUMMARY

Name
WRITE CALL "IBUP"(0%,D%,W$)
READ CALL "IBUP"(1%,D%,R%,C%)
CLEAR CALL "IBUP"(2%,D%)
TRIGGER CALL "IBUP"(3%,D%)
REMOTE CALL "IBUP"(4%,D%)
LOCAL CALL "IBUP"(5%,D%)
POLL CALL "IBUP"(6%,D%,P%)
CONFIGURE CALL "IBUP"(7%,D%,S%,L%)
PASS CONTROL CALL "IBUP"(8%,D%)
DEFINE CALL "IBUP"(9%,D%,T%,L%,S%,R%,E%,W%)
FINISH CALL "IBUP"(10%)
DRIVER ROUTINE SUMMARY
Name
COMMAND CALL "GPIB"(0%,C$)
WRITE CALL "GPIB"(1%,W$,M%)
READ CALL "GPIB"(2%,R$,L%,M%,E%)
TRANSFER CALL "GPIB"(3%)
CLEAR CALL "GPIB"(4%)
REMOTE CALL "GPIB"(5%)
LOCAL CALL "GPIB"(6%)

PARALLEL POLL CALL "GPIB"(7%,P%)
PASS CONTROL CALL "GPIB"(8%)

SET STATUS CALL "GPIB"(9%,S%)
MONITOR CALL "GPIB"(10%,M%)
READ COMMAND CALL "GPIB"(11%,C%)
SET PARAMETERS CALL "GPIB"(12%,T%)
TEST SRQ CALL "GPIB"(13%,W%,S%)
FINISH CALL "GPIB"(14%)

D-2

APPENDIX D (CONT'D)

BASIC+2 SYNTAX

UTILITY ROUTINE SUMMARY

Name

WRITE CALL IBUP BY REF(0%,D%,W$,LEN(W$),X%)

READ CALL IBUP BY REF(1%,D%,R$,LEN(R$),X%)

CLEAR CALL IBUP BY REF(2%,D%,X%)

TRIGGER CALL IBUP BY REF(3%,D%,X%)

REMOTE CALL IBUP BY REF(4%,D%,X%)

LOCAL CALL IBUP BY REF(5%,D%,X%)

POLL CALL IBUP BY REF(6%,D%,X%)

CONFIGURE CALL IBUP BY REF(7%,D%,3%,L%,X%)

PASS CONTROL CALL IBUP BY REF(8%,D%,X%)

DEFINE CALL IBUP BY REF(9%,D%,T%,L%,S%,R%,E%,W%,X%)

FINISH CALL IBUP BY REF(10%,X%) '
DRIVER ROUTINE SUMMARY

Name

COMMAND CALL GPIB BY REF(0%,C$,LEN(C$),X%)

WRITE CALL GPIB BY REF(1%,W$,LEN(W$),M%,X%)

READ CALL GPIB BY REF(2%,R$,LEN(R$),M%,E%,X%)

TRANSFER CALL GPIB BY REF(3%,X%)

CLEAR CALL GPIB BY REF(4%,X%)

REMOTE CALL GPIB BY REF(5%,X%)

LOCAL CALL GPIB BY REF(6%,X%)

PARALLEL POLL CALL GPIB BY REF(7%,X%)
PASS CONTROL CALL GPIB BY REF(8%,X%)

SET STATUS CALL GPIB BY REF(9%,S%,X%)
MONITOR CALL GPIB BY REF(10%,M%,X%)
READ COMMAND CALL GPIB BY REF(11%,X%)
SET PARAMETERS CALL GPIB BY REF(12%,T%,X%)
TEST SRQ CALL GPIB BY REF(13%,W%,X%)
FINISH CALL GPIB BY REF(14%,X%)

After the BASIC+2 call the parameter X% will contain the value
that would have been returned by the equivalent FORTRAN function
call.

D-3

FORTRAN/
MACRO
Mnemonic Value*

0K

ENONE

ECACFLT

ENOTCAC

ENOTSAC

EIFCLR

ETIMO

ENOFUN

ETCTIMO

ENOIBDEV

>0

-1

-2

-8

]
O

EIDMACNT =-10

APPENDIX E

ERROR CODE SUMMARY

Basic

Message

ale--no space

CAC conflict

not CAC

not SAC

IFC abort

timeout

bad fetn code

TCT timeout

no listeners

ber error

Description

For READ, WRITE, and COMMAND calls,

the returned value is the number of

bytes transferred in decimal. For

PARALLEL POLL and SERIAL POLL calls,
the octal poll response "OR"ed with

0400 is returned. For READ COMMAND

calls, the octal command byte "OR"ed
with 0400 is returned.

No error
Unused (special internal code)
No room to allocate string

No command byte available (READ COMMAND)
or SRQ not asserted (TEST SRQ)

ATN remains asserted after IFC sent
(bus problem)

Not Active Controller for operation
requiring CAC (software problem)

Not System Controller for operation
requiring SAC (software problem)

IFC caused operation to abort
(bus problem)

Operation did not complete within
allotted time (bus problem)

Non-existent driver function code
(software problem)

Take control not completed within
allotted time (bus problem)

No Listeners addressed or no devices
connected (bus problem) or on GPIB11-2
GPIB11V-2 interfaces, a GPIB WRITE
protocol error

Internal DMA completed without byte
count going to zero (hardware problem)

APPENDIX E

ERROR CODE SUMMARY (CONT'D)

FORTRAN/

MACRO Basic
Mnemonic Value# Message
ENOPP =11 no PP
EITIMO =12 ir timeout
EINEXM =13 ir nex memory
ENEXMEM ~14 nex memory
ECNTRS -15 ber-bar error
ENOUMR -16 UNIBUS map
EOPEN =17 open err

-18 -
- -19 -
ENOQUFN -20 bad ibup fetn code
ENODEV =21 no device
ENOLAD =22 device not L
ENOTAD =23 device not T
EHDLR -100 handler problem

#Decimal unless otherwise noted.

E=2

Description

PP operation attempted on three-state
GPIB (software problem)

Internal register DMA did not complete
within allotted time (hardware problem)

Internal register DMA aborted due to
non-existent memory (software/hardware
problem)

GPIB DMA aborted due to non-existent
memory (software/hardware problem)

Byte address and byte count are
inconsistent following GPIB DMA
(hardware problem)

no UNIBUS map register is available for
the RSX handler (try again)

IB handler cannot be opened
(software problem)

<unused>
<unused>

Non-existent utility function code
(software problem)

Illegal device slot number
(software problem)

No listen address for selected device
(software problem)

No talk address for selected device,
or GPIB address in Define call is not
legal (software problem)

communications problem with handler
(probably incorrect installation)

APPENDIX F

FIRST STEPS FOR INSTALLING A GPIB11-SERIES INTERFACE

STEP 1:
REMOVED

WITH OPERATING SYSTEM NOT BOOTED AND INTERFACE BOARD

Examine the addressable Q=-BUS or UNIBUS registers of
the interface board that are listed in Table F.1.

Expected Results: The processor halts or returns an
error message on attempting to read non-existent I/0
memory .

Other Results: If registers contents are printed out it
indicates that some other device is already at the address
intended for the GPIB interface. Pick another Q-BUS or
UNIBUS base address and reconfigure the switches on the
board (and likewise in the software).

STEP 2:
INSTALLED

STEP 3:

WITH OPERATING SYSTEM NOT BOOTED AND INTERFACE BOARD

Double check Address, Vector, and GPIB Address switch
settings on the board. With the power OFF, insert the
card into the backplane. Power up the system. With
the operating system still NOT booted, examine the
addressable Q-BUS or UNIBUS registers listed in Table
F.1.

Expected Results: See Table F.1.

Other Results: If processor halts or gives a non-
existent memory error the Q-BUS or UNIBUS address
switches on the board are not set correctly. Check
carefully that all switches on the board reflect the
desired addresses. If the contents are incorrect,
another device may be set to the same Q-BUS or UNIBUS
address, or the switches may not be set correctly on
the board.

INSTALL THE SOFTWARE AND RUN IBIC

Make sure the software is installed properly (Chapter
4) and that the interface 1is configured as System
Controller (SAC=1). Run the Interactive Control
Program, IBIC (Chapter 5) to issue the following
commands. (If the interface will not be used as the
System Controller after this installation check,

F-1

reconfigure the software parameters and/or hardware
switches appropriately after completing this step.)

STEP 3.1: USING IBIC, SEND GPIB CLEAR

Expected Results: A value of 1 should be returned. If
possible, use a bus tester or logic probe to see if
the ATN line is asserted.

Other Results: To interpret error codes, see Appendix E.
If system crashes or hangs, double check software
parameters that were configured before assembling. Check
EVERY FILE USED to make sure all assembly time parameters
have been given a correct value. With GPIB11-2 boards
check to see that the NPG wire is correctly configured on
the backplane. On GPIB11-1 boards, check the VECTOR
switch configuration on the board.

STEP 3.2: USING IBIC, SEND GPIB REMOTE

Expected Results: A value of 1 should be returned. If
possible, use a a bus tester or logic probe to see if
the REN line is asserted.

Other Results: To interpret error codes, see Appendix E.

STEP 3.3: USING IBIC, SEND GPIB COMMAND "?"

The 7?7 1in double quotes represents the UNListen
command. This step requires that a Talker or Listener
device that is known to work properly is connected to
the interface to accept the commands. A bus tester
specifically designed to hold up the handshake so that
the data lines can be observed is recommended.

Expected Results: A value of 1 should be returned. If
possible, use a a bus tester or logic probe to see if
the ATN line is asserted and that the correct data
lines are asserted.

Other Results: To interpret error codes, see Appendix E.
If the system crashes or hangs, check the VECTOR switch
settings on the board and the VECTOR value assigned in the
software before assembly.

After completing these steps, dée IBIC to issue any other
commands that will be used in the application software. Again, a
known working device must be attached to the GPIB to receive the
commands. IMPORTANT: The sequence of commands is important for
the proper operation of the GPIB. Consult the IEEE 488-1978
gpecification along with Chapters 2 and 3 of this manual for the
correct protocol.

F-3

TABLE F.1

REGISTER CONTENTS AFTER BUS INIT WITH GPIB CABLE REMOVED

ADDRESS
GPIB11-1

base +0
+2
+4
+6

GPIB11V-1

base +0
+2
+4
+6
+10

+12
+14
+16

REGISTER

RSR
RDB
TSR
TDB

CTSR/ISR
CTSR/CSR
CTSR/ASR
CTSR/ACR
CTSR/ASWR

CTSR/SPR
CTSR/CPIR
CTSR/DIR

GPIB11-2 (through REV D)

base +0
+2
+4
+6

GPIB11-2 (REV E)

base +0
+2
+4
+6

GPIB11V-2

base +0
+2
+4
+6

[] Indicates range of WRITE/READ registers.

BCR
BAR
CSR
CCF

BCR
BAR
CSR
CCF

BCR

BAR

CSR
XAR/CCF

CONTENTS

000000
000000
000000 (+400 if SACS)
000000

000000% or 000020%

000000% or 000020%

000000%

000360%

GPIB Address*(+40 if SACS)
(+100 if EXT)

000000%*

000000%

000000%

*¥(+400 1f V8=1)

000000 [000000-17T77771
000000 [000000-177777]
000200
177777

000000 [000000~177777]
000000 [000000-177777]

000200 (+2000 if OPEN COLLECTOR)

177777

Xxxxxx [000000-177777]
XXXXXX [000000-177777]

000277 (+2000 if OPEN COLLECTOR)

140377 [140377-177777]

can be deposited in the register and examined.

F-4

Values within this range

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04

