Price $50

il

< HInn
]

b

il

Z
m{
z
—
wl

z|
w
g ||

o1
fl

Reference Guide for the
Unilab 8620

UniLab

analyzer-emulator

ORION Instruments, Inc.
180 Independence Drive
Menlo Park, California
94025

Reference Manual for the
UniLab 8620

UniLab

Reference Manual

ORION Instruments, Inc.
180 Independence Drive
Menlo Park, California
94025

UNiL.AB REFERENCE MANUAL

CONTENTS

GLOSSARY CONTENTS (alphabetical list), iii
Guide to DOCUMENTALION.......c.vveririrersresrersressaeeseseeesssenesenses vi
Commands Listed by Function i
APPENDICES. 251
Writing Macros 253
Operator-Level and Macro-Level Unilab System................... 254
How to Write @ MaCrO.....cvcevvureirimesiiseicireeseeecne e e senssennas 255
Load Macros From @ SCreem.......ccuuvuireiiessriscereenesreresesesesseseenns 257

Create a Forth File..........ccociirinicrccncrniecenscseensseseenen 257
Breakpoint MaCrOS.........cuveeeervissennmssnsissesesessssesessesssessssenes 258
Write Test PrOGraims.........c.covvierenerenennierrenssscsincensseensssssesenes 260
Include Messages in MaCroscvoveeeceenvivesnessinsnssnsesnsessnnns 262
Removing Macros..........vivimiinisienensineieessesrescesasasssesensessssinnes 262
Make Custom Operator SYSIEIMSewrrrmemserivssrsissornsenss 263
About the Macro Language.........veueeveeeeeneroncessisecasseesseneons 264

UniLab Forth Operating System.........ccvcevurevenrivenennne. 265

Alterations to PADS Forth Words.........cecorueueurerrerennen. 265

UniLab’s Forth EdItOr........ccccconrnnnniienernreneenerevsssinns 266
Stack Diagraimis.......ocemeuerercrrireerienssisessssassssssesssesennns 266
File and Editor Commands.........ccccvmmurunmurennrivecreiinisnnas 267
DeCOMPIIEr.....cueviiriieieieieinerirres st resssssesens 268
Character I/O........coovenenmernnrnseseee v, 269
Macros that Accept Input...........cccoeverericrvvnrenrnrnennnns 270
Move Data Between PC and Emulation Memory.................. 272

Read Host Image of the Trace.......cuvoeiveereiveeneerereeecensseeseinns 273
Use <TST> to Access Memory Values.......cccoeurvmeeiererennnnna, 275
Using Register CONENLS........cccrivrerrereirercnrenserrerernssssrssssssseneras 276
Forth Reference 281
How DEBUG Works. 291

6/89 i CONTENTS

CONTENTS

UNILAB REFERENCE MANUAL

FOorth Reference.....cciuereeceenrencencrcesaresceereecscosroncanen 281
HoW DEBUG WOTKS ..ccoeeenirencnerecnnanceanencnsenncsscsocenees 291
Examining Interrupt Routines 295
Real-Time Trace of Interrupts 296
Breakpoints and Interrupts........ccoeens
Object- and Symbol-File Formats....... ceresasresensenes 301
Define 2 .MAP Fileccouveirveeriicc s 302
ODbJect FOIMALS ...c..oveivririesies st snniens 304
Intel Extended Hex format.........ccoveeciiirenmnieniinienninens 304
Tekhex format ..o 307
Motorola Hexadecimal format (S-records) 309
Symbol FOIMALSsceervieiiinneienere i,310
Manx symbol file......ccoovvminiiinnc .. 310
Avocet symbol file.... oo 311
Microtek symbol file e e 312
SYMFIX FOIMALS......ccrvrermiiiiieriiinesiessirnasensnnnsnenesesnnees 313

Software Development Systems, Inc. Files............. 314

Mixed Symbol and Object Formats (OMF)

Unilab Symbol-File FOrmat.........ccooiniiniiinncicinenenns

High Level Language SUppOrt..c.ccoceeeaseerennarensenaacnes 319

Source Tiacking :

Single Stepping through Source Lines.......... .

Sources of Cross-Assemblers &

C Cross-Compilers......ceuienerereeenassemseienesreveseneennnas 325

UniLab Specificationsccceceueieniieeeirancceennenaaneenaans 335

Custom Cables....cciieimmmemmenennerierenereemeonnessssssencannasens 341

The Analyzer Cable........oviviinini 343
Problems with Decoded OE- Signals............ccoceovnunnie. 343
Analyzer Connector Signals.........ccoeiniincnninnns 344
Analyzer Cable DeSigh.......cocvviriieenenrnnn s 346

The ROM Cable......cccoiviiinviicnnns RPN, 348

Avoid Memory Contention.couvuiieeeinriuneennies 349

ROM Connector & Unilab Circuitry........ccoovivvvineeees 349

ROM Connector Signals.........coovimernciininnnninn 350
UniLab Input Latches & Clock Logic diagramccoovevnes

Orion Cable Jumpers diagrams
Cable Specifications.........c.....coenee.
INDEX ereeemmerennoensosnseens eestemaceserereerensssasanrenanransisns 369

UNILAB REFERENCE MANUAL

GLOSSARY CONTENTS
Alphabetical list with page numbers.

16BIT vovvrennnennns 1
JAFTER civiveencnnns 2
2AFTER vovvenncnnens 3
3AFTER ..ivvvnennnns 4
8BIT ...ivvireiinnnenn 5
(colon) «.ocvonn.. 6
<TST> i ieiienennnens 9
=BC tiiiiieaaea 10
=EMSEGcecevenen 11
=HISTORY 13
=MBASE0c0.c.. 14
=OVERLAYcvcuouen 15
ZPORT vvveencnnnonnns 16
=register 17
=SAMP ... iiiie e 18
=STROBEccuvvuvenn 19
=SYMBOLScec0ovnn 20
=WAIT ... i e e eiaens 21
2FREEt 22
BDR .t o viieiennnnnnn 23
ADR? .t irinnnnnans 24
AFTER ..o irivnnnnnnns 25
AHIST0ceeunun. 27
ALSO tivvvennncannns 28
ALT-FKEY . ccevevnnnn 29
ANY ... iiinnnnnnnn 30
AS ittt 31
ASC i ittt iieiarnn 32
ASCII ... rnenann 33
ASM ... iiiiiiie 34
ASM-FIIE 35
B toverennennennnns 36
2 37
BINLOAD «.ccvevenens 38
BINSAVEovveunns 40
BPEX ..t iiiienenens 41
BPEX2 . .ovivvennnnnnns 42
BYE (it 43
CATALOG .+ . viveeevens 44
CKSUMvvvennn. 45
CLRMBPveevenens 46
CLRSYMc.vvvenenn 47
COLOR . it iiieennennn 48
CONT tivverennennnnn 49
CONTROL ..o vvnvnnnn 51
CTRL-FKEY 52
CYCLES? v evvvenernnn 53

6/89

DF viveeiiennnennnnn 54
DASM tevivenannnnnnn 55
DASM' tevveneceannnn 56
DATA vivveenannnnnnn 57
DCYCLES - vevvevrennnn 59
DEBUG ceveennncennnn 60
DEBUG' +ivevevennnnn 61
DEVENTS +vvvvnvennnn 62
DM teireeeenenenannn 63
DMBP teveennnnvnnnnn 64
DN tieeiiieneenennns 65
DOS tvvivnnnnnnnnnnn 66
EDIT MACROS 67
EMCIR vvvvvvnnnnnnnn 68
EMENABLE +vveevnnn.. 69
EMIT voieveeeennnns 71
EMMOVEOD +v.ooevennnn. 72
EMMOVELvvvunn.. 73
EMSTAT .vvvvenvennn. 74
ESTAT ©vvverennnnnnn 75
EVENTS? cveveennnnnn 76
FETCH «vvvueveennnnnn 77
FILTER vevevcnnnnnn. 78
FIND-ADR ..vovvnnnnn 79
FIND-CONT +.vvvennn. 79
FIND-DATA «.vevunn.. 79
FIND-HADR «vveuvnnn. 79
FIND-HDATA vevvevn.. 79
FIND-LADR 79
FIND-MISC v.oveunn.. 79
FIND-WDATA 79
FIND-XXXX ¢csveecene 80
FKEY vivivrnnnnnnnnn 81
FKEY? cvvivnnnnnnnnn 82
[83
()2 S 84
GH tiii i iiieiaannn 85
HADR tvvivencnnnnann 86
HARDWAREcvv.- 87
HDAT .vvvvinnnnnnnnn 88
HDATA vvvevvrnnnnnnn 89
HELP .ivvvrnrnnnnnas 91
HELPH cvvevnnnnennns 92
HELP DEBUG 93
HEXLOAD . vvvrevennnnn 94
HLOAD ®vvvvuvnnencnns 96
HSAVE .vvvvvrnnnnnns 97
]

CONTENTS

UNILAB REFERENCE MANUAL

INFINITE. ccvucvvnnns 98 ONLY.uuvunvnnnnnanens 149
INIT. cevennnansosons 99 OPERATOR. v vvuvvcen- 150
INSIGHT. . evvvennenns 100 o) T 151
INT.eeeemenaarsaoenns 101 PAGEO......ccccccenne 152
INT ' ceeneoccnoncenns 102 PAGEl.......ccveenven 153
IS.cceinieunnnnocnns 103 PAGINATE. ..ccvvevens 154
ISMODULE. +vvvnvsevns 104 PAGINATE'..vevererns 155
ISOFFSET. ccvuunnnsns 105 PATCH. ..vvonnncnnnne 156
ISSEG...cevenarnecns 106 PCYCLES...cenusecees 157
LADR. svvevennococnns 107 PEVENTS....cvenecens 158
LOADER. « 1 vvnvvonenns 108 PINOUT. .. vonvuvennns 159
IPuervinnnnnnnnnncns 113 POPUPS...veveececens 160
LTARG. . .ecevevosnnen 114 POP..vovrveoncsonnnne 162
| P 115 POP'..viieneneennnne 163
Moo e immnnneeennnnns 116 PPRA.cevvnennnnnnnnnne 164
M2 eeneeernnnannnens 117 PRINT...cvenanreccns 165
MACRO. . vvvvnmnuncnns 118 PRINT'..ovvnnnounnns 166
MACRO 2...ceanvennn- 119 PROM. . .nevnnennnnnes 167
MACRO 3...vvvuecosns 119 o 168
MACRO 4.cvvnnnnnnnns 119 o7 U 169
MACRO 5..vvvvenrreen 119 oK I 170
MACRO 6..cvuecvnnens 119 QUALIFIERS........-. 171
MACRO 7envvvnnunenns 119 RB.oviunnnnnnnnnnnns 172
MACRO B....ovvcveens 119 RCOMP. ..cvnnennnenen 174
MACRO 9..cvvuornsens 119 READ....vennnunnnnns 175
MAKE-OPERATOR. 120 READ-ROM. «vvvencenn 176
MAPSYM. .ovvnunenrees 121 RES..cvvuvannnnnnnnns 178
MAPSYM+. o vvvvcnnenns 123 RES=cecvunonnnrenens 179
MASK. .. ovvrnnnnnenns 124 RES='.ieuenrnnnnunnrns 180
MCOMP.....ovuvonnnne 125 RESET.:veeununneeens 181
MDUMP...oveusrnasons 126 RESET'..ccnrencanres 182
MEMO....vvvnvraneens 127 RESIGHT...ceveresens 183
MESSAGE. . .vcuneennns 128 25 G 184
MFILL..ouoonnnnanennes 129 120712 185
MHIST....cocvecunenns 130 RZ.veeenonanasensons 186
MISC...vvvenrrnonnen 131 L= J R R 187
MISC'.v.veiscennensn 133 Stiveeennonanensanns 188
51 P 134 SAMP....0veossoreosns 189
MM!.oeonenennnnnanens 135 SAVE-SYS..eueennnnen 190
MMZ. o eneenecrcennns 136 SChuvinnnnnnnnnnnnns 191
MMOVE....veeoconnons 137 13 o} 192
MODE. .. .vvnnncnnnnns 138 SET-COLOR. . .cvveene- 193
MODIFY...cvvuunnennns 139 SET-EM.vvvunnnannnes 194
MS.ueverrrmnnnnnnnns 140 SET-GRAPH-COLOR. 195
NDATA...covvnrnnene- 141 SET-TRIG..eeenveenss 196
[142 SHOWC. . .vvuveanneons 197
NORMB....vvrooneseen 143 SHOWC' ..vvunnnnnrens 198
NORMM. . svvvrnnnnneen 144 SHOWM. . cvvennnnnesns 199
NORMT....ecvevveenen 145 SHOWM'covrennnens 200
NOT...vvvvrmnennnnns 146 SHOW MACROS......... 201
131017 J 147 =3 G 202
NXeeororoonennnannns 148 SMBP .. vvvnennnrsnens 203

CONTENTS v 6/89

UNILAB REFERENCE MANUAL

SOFT civvinennnnenns 204 THIST ...vivieennan. 228
SOFTWARE 205 TMASK ...vivinennnn. 229
SOURCEcv0uuu 206 TN (et iiiiiietnenn. 230
SOURCE'cnvennn 207 1 231
SPLIT ciivvinnennnne 208 TO teveiiinnnnninnnn 232
SRttt 209 TOFILE 233
SSAVEciinnnn. 210 TOFILE' 234
2 N 211 TOP/BOT v.ovvevennnn. 235
STARTUP ...ccvvvenn. 212 TRACK ..cvvvinnnnn.. 236
STEP-INTO 213 TRACK' .i.ivinnnn... 237
STEP-LINE 214 TRAM ...cvvvinnnnn.. 238
STEP-OVER 215 TRAM'couiuvn... 239
STIMULUS 216 TRIG ... iiinncnnnn. 240
SYMB ..viiiiennnnnn 217 B 241
SYMB'c...... 218 TSAVEovvinnnn.. 242
SYMDELcvevuunnn 219 TSHOWe.ua.... 243
SYMLISTvvou.. 220 TSTAT ...vviniennnnn. 244
SYMLOADc0n. 221 10 S, 245
SYMSAVE 222 USEC?couvnnn. 246
N 223 VER? ...iiiiinnnnnn. 247
T iiei ittt 224 WORDSov0nn.. 248
TCOMP 225 WRITE-EPROM 249
TD tieeiiiiieieeenan 226 WSIZEccoven... 250
TEXTFILE0.... 227

6/89 v CONTENTS

UNILAB REFERENCE MANUAL

GUIDE TO DOCUMENTATION

Reference Manual

This Reference Manual contains information mainly for advanced users.
It describes the Unilab’s macro-programming features; the complete
UniLab command set, including advanced and rarely used commands;
and appendices about custom cables (for those without an Emulation
Module), debugging interrupt routines, object and symbol formats, etc.

These are not needed for most UniLab operations. We suggest you rely
on the separate User’s Guide and On-Line Help until necessity requires
details found only in this volume, or until experience has prepared you
for the “graduate school” it represents.

User's Guide

The User’s Guide describes the features and operation of the Unilab
8620. It contains everything most users will need to know. Further
elaboration can be found easily via the On-Line Help facilities, described
therein.

Target Application Notes

Your optional Disassembler/DEBUG (DDB) software package is shipped
with Target Application Notes containing processor-specific details and
cautionary notes. Refer to it before connecting the Unilab to any target
system other than an Orion MicroTarget™.

INTRODUCTION vi 6/89

UNiLAB REFERENCE MANUAL

Glossary of Commands

The glossary which comprises the bulk of this volume documents the
complete, generalized set of UniLab commands. The explanations are
essentially the same as those provided by On-Line Help. You can
display the glossary entry for any command by typing:

HELP <command>

Processor-Specific Commands

Every disassembler/DEBUG (DDB) software package includes
commands specific to that package, which are not documented in this
manual. To learn more about processor-specific words, consult your
Target Application Notes and the “Processor specific” option of the Help
PopUp (press A1t -F1 for recent notes about your DDB).

6/89 vii

INTRODUCTION

UNILAB REFERENCE MANUAL

Glossary Format
The first line of each glossary entry is the command. The second line
shows the command with its parameters, if any, inside <angle brackets>.

Some commands have a final entry on the second line, e.g.:

« PPA Part of the optional Program Performance Analyzer.

o F# Assigned to the indicated function key when pressed at
the Command> prompt. (Such default assignments can
be changed by the user.) Commands assigned to F8
are usually accessed via the mode panels or the
Configuration PopUp rather than executed by name.

« Macro System Only a valid command when used in the macro mode
of UniLab operation (see MACRO).

« Rarely Used

Definition
The first block of text tells what the command does.

Usage
The next block of text tells how and when to use the command.

Example
Most glossary entries includes annotated examples.

Comments

This includes warnings, historical notes, and other bits of information
(not included for every command).

INTRODUCTION viii 6/89

UNILAB REFERENCE MANUAL

COMMANDS LISTED BY FUNCTION
Each Unilab command is shown below, logically grouped by function,
along with any alternate methods of invoking it. A full description of

each is provided in the alphabetical glossary.

Analyzer Triggers
1AFTER NDATA
2AFTER NO
3AFTER NORMB Trigger Dialog (F6)
=SAMP)) NORMM Trigger Dialog (F6)
ADR Trigger Dialog (F6) NORMT Trigger Dialog (F6)
ADR? Analyzer PopUp NOT Trigger Dialog (F6)
AFTER Trigger Dialog (F6) NOW? Analyzer PopUp
ALSO Trigger Dialog (F6) NX
ANY ONLY Trigger Dialog (F6)
AsS Analyzer PopUp PCYCLES
CONT Trigger Dialog (F6) PEVENTS
CONTROL o1 Trigger Dialog (F6)
CYCLES? Analyzer PopUp 02 Trigger Dialog (F6)
DATA Trigger Dialog (F6) 03 Trigger Dialog (F6)
DCYCLES Trigger Dialog (F6) QUALIFIERS Trigger Dialog (F6)
DEVENTS Trigger Dialog (F6) READ Trigger Dialog (F6)
EVENTS? RES— Alt-F5
FETCH Trigger Dialog (F6) RES-!
FILTER Trigger Dialog (F6) RESET Analyzer PopUp
FIND-ADR RESET' Analyzer PopUp
FIND-CONT s Trigger Dialog (F6)
FIND-DATA
FIND-HADR 5t Cul-F9
FIND-HDATA SAMP Analyzer PopUp
FIND-LADR SET-TRIG F6
FIND-MISC SR
FIND-WDATA SST
FIND-xxxX : STARTUP Fo
HADR Trigger Dialog (F6) T
HDAT TD
HDATA Trigger Dialog (F6) N
INFINITE TNT
INT TO Trigger Dialog (F6)
INT' TRIG Trigger Dialog (F6)
LADR Trigger Dialog (F6) TS
MASK Trigger Dialog (F6) TSTAT Trigger Dialog (F6)
MISC Trigger Dialog (F6) USEC? Analyzer PopUp
MISC!
6/89 ix

CONTENTS

UNILAB REFERENCE MANUAL

Configuration Macros
16BIT
8BIT ;
=EMSEG Configuration PopUp <TST>
=HISTORY ASCII
=MBASE Mode Panel (F8) gggiz
;g“;EMggiz Configuration PopUp EDIT MACROS Shift-F10
=WAIT EMIT o
DEBUG Mode Panel (F8) MACR)
DEBUG' Mode Panel (F8) MACRO_2 Shift-F2
EMCLR Configuration PopUp ~ MACRO_3 Shift-F3
EMENABLE Configuration PopUp MACRO_4 Shf&'F‘i
EMSTAT Configuration PopUp MACRO_5 Shf&'FZ
ESTAT Configuration PopUp MACRO_6 Sh%ﬁ_F
HARDWARE Mode Panel (F8) MACRO_7 Sh%ft-F7
INTT Ctel-F6 MACRO_8 Shift-F8
MODE F8 MACRO_9 Shift-F9
PATCH DDB MAKE-OPERATOR
SAVE-SYS Configuration PopUp ggERATOR
SET-COLOR Configuration PopUp sc
SET-EM Configuration PopUp ~ SHOW_MACROS Shift-F1

SET-GRAPH-COLOR

SOFT Conliguration PopUp
SOFTWARE Mode Panel (F8)
InSight DEBUG

=STROBE =BC

INSIGHT Ctrl-F3 CLRMBP

RESIGHT Ctrl-F4 DMBP
G Debug PopUp
GB Debug PopUp
GW Debug PopUp
LP Debug PopUp
R
RB Debug PopUp
RI Trigger Dialog (F6)
RMBP
RZ Debug PopUp
SI Trigger Dialog (F6)
SMBP
STEP-INTO F4
STEP-LINE Al-F4
STEP-OVER F3

INTRODUCTION

6/89

UNILAB REFERENCE MANUAL

DOS and User Interface Memory
?FREE ASM Memory PopUp
ALT-FKEY ASM-FILE
AscC Special PopUp CKSUM Memory PopUp
BYE Configuration PopUp pM Memory PopUp
CATALOG Special PopUp DN Ctrl-F2
CTRL-FKEY EMMOVEOQ
B# EMMOVE1
B. M
D# M! P
DOs Special PopUp M? Memory PopUp
FKEY MCOMP Memory PopUp
FKEY? Alt-F3 MDUMP Memory PopUp
HELP F1 MFILL Memory PopUp
HELP+ Cul-F1 MM
HELP_DEBUG Alt-F1 MM! Memory PopUp
LOADER MM?
MEMO Special PopUp MMOVE Memory PopUp
MESSAGE MODIFY Memory PopUp
POP Mode Panel (F8) PAGEO
POP' Mode Panel (F8) PAGE1
POPUPS F10 TRAM
PRINT Mode Panel (F8) TRAM'
PRINT' Mode Panel (F8)
T.
WORDS Help PopUp
PPA Symbols
AHIST Orion PopUp CLRSYM
MHIST Orion PopUp Is
PPA Alt-F10 ISMODULE
THIST Orion PopUp %:gggSET
SYMB Mode Panel (F8)
SYMB' Mode Panel (F8)
SYMDEL
El;ﬁgﬁ;‘:m;‘;& SYMLIST Special PopUp
PROM
RCOMP Eprom PopUp
READ-ROM Eprom PopUp
RES
SET
STIMULUS

WRITE-EPROM Eprom PopUp

6/89

xi

INTRODUCTION

UNILAB REFERENCE MANUAL

Files Display
BINLOAD Files PopUp (F5) BPDM Mode Panel (F8)
BINLOADL Files PopUp (F5) BPT Mode Panel (F8)
BINSAVE Files PopUp (F5) COLOR Mode Panel (F8)
BINSAVEL Files PopUp (F5) DASM Mode Panel (F8)
HEXLOAD Files PopUp (F5) DASM' Mode Panel (F8)
HLOAD Files PopUp (F5) PAGINATE Mode Panel (F8)
HSAVE Files PopUp (F5) PAGINATE' Mode Panel (F8)
LOADER SHOWC Mode Panel (F8)
LTARG Files PopUp (F5) SHOWC' Mode Panel (F8)
Mﬁngr SHOWM Mode Panel (F8)
SSAVE ALLF9 zggvl:réE Mode Panel (F8)
SYMFILE Files POPUP (FS) SOURCE'
SYMFIX LOADER SPLIT F2
SYMLOAD Files PopUp (F5) TOP /BOT End
SYMSAVE Files PopUp (F5) TRACK
TCOMP Files PopUp (F5) TRACK'
TEXTFILE Files PopUp (F5) WSIZE
TMASK
TOFILE Mode Panel (F8)
TOFILE' Mode Panel (F8)
TSAVE Files PopUp (F5)
TSHOW Files PopUp (F5)
TX
TXH

INTRODUCTION

Xii

UNILAB REFERENCE MANUAL

16BIT

no parameters Macro Sysiem

Selects 16-bit mode for memory emulation, trace display, and PROM
reading/writing.
%
Usage

You probably won't use this command. It sets the Unilab to work with
processors that have a 16-bit data bus. If you have purchased a
disassembler, either this command or 8BIT is built into the software.

Comments

16BIT is one word (i.e., no space after the 16). This command changes
both the trace display and the signals put onto the target’s bus by the
UniLab. If you are not using an Emulation Module, you will need a 16-
bit ROM cable (which terminates in two ROM plugs rather than one).

The HL and LH commands determine the order in which the trace shows
the bytes (also preset by your UniLab DDB software).

6/89 1

GLOSSARY

UNILAB REFERENCE MANUAL

1AFTER

1AFTER <trigger_ spec>

Clears the current trigger specification and enables trace filtering.
Instructs the analyzer to record bus cydes that match the trigger
specification, plus the first cycle that follows each such occurrence.

Usage

The UniLab stores the trigger cycle and the following one, every time it
sees bus conditions that match the trigger spec. This is similar to ONLY,
but it also stores the cycle immediately after the trigger cydle.

The disassembler will not work properly on code fragments, and should
be disabled via F8 or with DASM' while you are using the xAFTER
commands. After setting the trigger spec, use S to start the analyzer. The
“trigger status display line” shows how many cycles have been recorded.
The Unilab automatically displays the trace after the entire trace buffer
is full.

Checking the Trace

If you want to see the trace without waiting for the buffer to fill
completely, press Esc to stop the analyzer, and type T to display the
data that has been collected thus far.

The trace buffer fills from the bottom, and each new cycle pushes up
the already recorded data. Thus, if you do interrupt the process of
recording bus cycles, what you want to see is probably in the last part of
the buffer.

Examples

1AFTER 1200 ADR S
Records each cycle with 1200 on the address lines, and the following

cycle.

1AFTER 235 TO 560 ADR S
Records two cycles every time a cycle has an address from 235 ~ 560.

Comments
Don'’t put a space between the number and AFTER. 1AFTER is a single
word, not a word preceded by a parameter.

This command can be used when seeking the cause of a memory-cycle
error, to show the address of the cycle after the one that caused the

memory access.

xAFTER initializes all trigger features, so NORMX is unnecessary before
using these commands.

GLOSSARY 2

6/89

UNiLAB REFERENCE MANUAL

2AFTER

2AFTER <trigger spec>

Same as 1AFTER, but two following cycles are recorded with each
trigger cycle.
B _————————————
Usage

Sets the analyzer to record the trigger cycle and the two following

cycles, every time it sees conditions that match the trigger specification.

Comments
See 1AFTER.

6/89 3 GLOSSARY

UNILAB REFERENCE MANUAL

3AFTER

3AFTER <trigger_ spec>

Like 1AFTER, but three following cycles are recorded with each trigger

cycle.
M

Comments
See 1AFTER. This type of filtered trace will sometimes contain enough
information to provide a useful disassembly.

GLOSSARY 4 6/89

UNILAB REFERENCE MANUAL

8BIT

no parameters Macro System

Selects eight-bit mode for the trace display and memory emulation, and
for PROM burning and reading.

Usage
You probably won't use this command. It sets the Unilab to work with
processors that make use of eight-bit data. If you have purchased a

disassembler, either this command or 16BIT is built into the software.

Comments

8BIT is one word, with no space between the numeral 8 and the rest of
the command. If you are not using an Emulation Module, you will need
a 8-bit ROM cable (which terminates in one ROM plug rather than two).

6/89 5

GLOSSARY

UNILAB REFERENCE MANUAL

. (colon)
no parameters Macro System

The colon character begins a macro definition. The word following the
colon is the name of the macro. Primarily for advanced users and for
programmers who write automated test routines.

]

Usage

An easier way to define simple macros is to use EDIT_MACROS (shift-
F10). This lets you assign short (one-line) command sequences to the
shifted function keys, and doesn’t require MACRO mode operation.

Once a macro is defined, you can execute any lengthy series of
commands just by invoking its name. See the appendix “Writing Macros”
for further information. See also BPEX.

What a Macro Does

If you repeatedly execute a particular sequence of commands, or use the
same file frequently, consider taking the time to define a one-word
macro. It can save time and trouble, even in the short term.

A macro is a new command, created from pre-existing commands and
their usual parameters. For example,

LOADUP 0 3FFF BINLOAD A:MYPROG ;

creates a macro called LOADUP that uses the Unilab command BINLOAD
to load a file called “myprog” from drive A:. You can see that typing
LOADUP is easier and less error-prone than using the parameters-
BINLOAD-filename sequence to load this file.

How to Define Macros
A macro’s definition begins with a colon and ends with a semicolon (;).
The first word after : is the macro’s name, and the rest is its definition.

There must be at least one space after the colon, and another before the
semicolon. You can use any commands and parameters, even other
macros you have already defined, as long as one or more spaces
separate each item:

: NAME FIRSTWORD SECONDWORD VALUE THIRDWORD ;

GLOSSARY 6 6/89

UNILAB REFERENCE MANUAL

Forth

When you define a macro, you are using the Forth programming
language. With it, you can define new Unilab commands that use condi-
tional statements, loops, and more. The best introduction to this powerful
language is Leo Brodie’s Starting FORTH (Prentice-Hall),

Why Macros

The example below defines a macro called READRAM. After the macro
has been defined, typing READRAM will set a trigger to record cycles that
read from the address range 1000 — 1FFF.

Example
: READRAM ONLY READ 1000 TO 1FFF ADR § ;
Defines a macro called READRAM,

Comments

Whenever the word immediately following : is typed, the result is the
same as if the rest of the words up to ; were typed. After entering the
above example, typing the word READRAM will have the same effect as
typing ONLY READ 1000 TO 1FFF ADR S.

To save a macro definition, use the “save conFiguration” option of the
Configuration PopUp (or SAVE-SYS) before leaving the Unilab
program.

See the appendix “Writing Macros” for more information.

6/89 7

GLOSSARY

UNiLAB REFERENCE MANUAL

; (semicolon)
no parameters Macro System

Ends a macro definition started by : (colon).

W
e — e —— e

Usage
See the preceding discussion of : (colon), and the appendix “Writing

Macros.”

GLOSSARY 6/89

UNiLAB REFERENCE MANUAL

<TST>

<value> ' <TST> ! Macro System

Set this constant to one to turn off the output of some messages, and to
leave on the stack many results which are normally printed on the
screen.
S ———————.
Usage

Used during testing procedures, and for sophisticated macros. When
<TST> is set to one, words like MM? leave their results on the stack
rather than displaying them. When setting this constant to a value, the
apostrophe must precede the command.

Example
: NEWMM? (addr -- val)
1 ' <TST> ! MM? O ' <TST> ! ;

This macro will act the same as MM? but will leave the word value it
finds on the stack instead of displaying it.

Comments
<TST> is mainly used for writing advanced, automated test macros. See
the appendix “Writing Macros” for more information.

Remember to set <TST> back to zero when you are done.

6/89 9

GLOSSARY

UNiLAB REFERENCE MANUAL

=BC

<n> =BC

Changes the contents of the BC register to n.

Usage

An example of register-control commands available with a DEBUG
package. This command addresses the Z80’s internal register BC. Consult
your Target Application Notes for commands to alter your particular
processor’s registers.

Example
1234 =BC
Puts 1234 in the BC register.

Comments

You can use the register commands only while the processor is at a
DEBUG breakpoint. (See STEP-INTO or RB for more about break-
points.)

This is a typical register-changing-instruction format. A similar command
is provided for each of the processor’s internal registers, except SP.

No space appears between the = and the register name.

Advanced Users

Related commands will copy the contents of any register to the UnilLab
operating system’s stack. The names for those commands are similar to
the ones used to change the register’s contents, but instead of starting
with an = sign, they end with a 2.

For instance, in the Z80 DDB, you would use BC? to get the last value
of the BC register pair. You could then use this value in conditional
loops, or could mask off and automatically change only the C register at
a breakpoint. See the appendix “Writing Macros.”

Other DDBs will have commands like:

Change register Put register contents
contenis on stack

=R1 R1?

=X X?

=DPTR DPTR?

GLOSSARY 10 6/89

UNILAB REFERENCE MANUAL

=EMSEG

<hex_digit> =EMSEG Rarely Used

Sets the A16 — A19 context for subsequent EMENABLE statement(s). This
determines which 64K segment of memory the emulated ROM will
occupy. You can also set this value from within the SET-EM panel.

You Probably Don’t Need to Bother

This value must be set properly, or the UniLab will not put the program
opcodes onto the target system bus. This variable is preset for each DDB
software package. If you do need to change the value of EMSEG, you
will find SET~EM easier to use.

Why It May Matter

Although the upper four bits of our 20-bit address bus are meaningful
only with processors that can address more than 64K of memory,
=EMSEG is always set to some value by the processor-specific DDB
software.

On some microprocessors, those four lines are floating high; on others,
several of the lines are pulled low. And on processors with more than 16
bits of address, these inputs to the Unilab are connected to the upper
bits of the address bus.

How It Works
This command just sets a variable. EMENABLE is the command that
actually enables memory.

‘When It Matters

The Unilab looks at the upper four bits of address (A16 — A19) during
fetch and read cydles, to see if your microprocessor wants to fetch an
instruction from emulation ROM. If the upper four bits that the UniLab
sees don’t match the =EMSEG parameter, the UniLab will not respond to
the microprocessor’s request.

Use ESTAT to see how this command affects the settings of emulated
memory.

6/89 1

GLOSSARY

UNiLAB REFERENCE MANUAL

Examples

7 =EMSEG

Tells emulation memory to come onto the bus only when the upper four
bits of the 20-bit address bus have the value 7 hex (0111 binary: A19 is
0, and A16 — A18 each are one.)

F =EMSEG O TO 1lFFF EMENABLE
Enables addresses FO000 to F1FFF.

E =EMSEG 0 EMENABLE ALSO F =EMSEG 0 EMENABLE
Enables addresses E0000 — EO7FF and FO000 — FO7FF.

Comments

The four most significant bits of the UniLab’s 20-bit, memory-enable
addressing are selected with =EMSEG, so that subsequent statements
only refer to 16-bit addresses. EMENABLE commands enable emulation
memory in blocks of 2K.

A read or fetch command from the target processor refers to emulation
memory only when:

« A16 — A19 agree with the =EMSEG value, and

« A1l ~ Al5S indicate an enabled 2K block.

Inputs A16 — A19 (displayed in the trace as the right-hand digit of the
CONT column) are the values seen by the emulation-enable logic. If
they aren’t connected, they will “float” as all 1s (hex F).

The =EMSEG command has no effect until an EMENABLE or INIT sends
the data to the Unilab.

GLOSSARY 12 6/89

UNILAB REFERENCE MANUAL

=HISTORY

<#Kbytes> =HISTORY

Selects the amount (in hex) of memory allocated to screen history.

Usage

Allows you to change the amount of host RAM dedicated to saving
information that scrolls off the top of the screen. The maximum is 3C
Kbytes (decimal 60).

The new setting does not take effect until you use the “save
conFiguration” option of the Configuration PopUp, exit from the UniLab
software, and restart it.

Use ?FREE to find the current allocation.

Why Change It
You might want to have a longer record of on-screen events, or you
might want to free some of the host RAM for other purposes.

Example

3C =HISTORY
Allocates the maximum space allowed for line history.

6/89 13

GLOSSARY

UNILAB REFERENCE MANUAL

=MBASE

<n> =MBASE F8

Sets the number base in which the MISC inputs (MO — M7) to the UniLab
will be shown in the trace display.

Usage

The miscellaneous inputs (MISC) to the Unilab are usually displayed in
binary. This allows you to see, directly, which inputs are receiving a
high signal, and which are receiving a low signal. But you may have a
different use for these inputs—like reading data from onboard RAM—for
which a hex or decimal display would be more useful.

Normally, you will use the mode panel (F8) to change this feature, but
the panel only toggles the display between binary and hex. For other
bases, you must type the command explicitly.

If you are working with an eight-bit processor, this command also
changes the number base of the HDATA column.

Examples
10 =MBASE
Sets a hexadecimal display, the most space efficient. Note that A, not 10,

specifies a decimai dispiay.

8 =MBASE
Selects octal display mode.

A =MBASE
Selects decimal display mode.

2 =MBASE
Returns to binary display mode.

Comiments
The MISC inputs can be connected to any target signals you like.

GLOSSARY 14 6/89

UNILAB REFERENCE MANUAL

=OVERLAY

<address> =QOVERLAY

Changes the emulation ROM addresses used by the DEBUG software.
=) = T SOTWaS.

Usage

Use this command when your target software must use the memory
normally reserved for DEBUG code, or if InSight requires more overlay
area than DEBUG had previously used.

When DEBUG is enabled, the reserved area (which is just two bytes on
most processors) cannot contain user code. The overlay area, located
above the reserved area, is used to swap DEBUG routines into memory.
Target code can reside there and be executed, but DEBUG routines
cannot be used there. (See the appendix, “How DEBUG Works.™)

This command changes the location of both the overlay and the
reserved area. You must use the “save conFiguration” option of the
Configuration PopUp (or SAVE-SYS) to make the change permanent.

To find the current address of the reserved area, use A1t-F1 to display
the HELP_DEBUG options, then choose topic 1.

Example

2310 =OVERLAY

Moves the reserved area to start at 2310, and puts the overlay area
above there.

Comments

The overlay area must be entirely within a bank of emulation memory.
Be careful when changing its location—be sure it does not extend
beyond your current emulation memory boundaries.

You can, instead, disable the DEBUG features for completely transparent
operation. See DEBUG'.

6/89 15

GLOSSARY

UNILAB REFERENCE MANUAL

=PORT

<address> =PORT

Changes the address where the Unilab software expects to find the
host’s parallel interface card (default = 0220H).

Usage

Used to change the parallel card’s port address. Only needed if you wish
to connect multiple UniLab 8620s to your host computer, or if you have
another peripheral device that uses port addresses 0220H — 023FH.

Acceptable values for =PORT are:

200 220 240 260 280 2A0 2CO0 2EO
300 320 340 360 380 3A0 3CO 3EO

You will need to change the jumpers on the slot card to reflect any
change in address. See the User’s Guide appendix “Parallel-Board
Configuration.”

You must use the “save conFiguration” option of the Configuration
PopUp (or SAVE-SYS) to make the change permanent.

Fvamnl
Example

240 =PORT
Tells the software to look for the UniLab at host port address 240.

GLOSSARY 16 6/89

UNILAB REFERENCE MANUAL

=register

<word> =register

This is the format of cpu-specific commands that change the contents of
a register to n. (No space between the = and the register name.)

_
Usage

Represents one kind of processor-specific, register-control commands
available with a DEBUG package. Consult the Target Application Notes
for commands that will alter the contents of your processor’s registers.

Example
1234 =BC
Puts 1234 in the BC register.

Comments
You can use register commands only while the processor is at 2 DEBUG
breakpoint. See STEP-INTO or RB for more about breakpoints.

This is a typical register-changing instruction format. A similar command
is provided for each of the processor’s internal registers, except SP.

Advanced Users

There are equivalent commands which will get the contents of any
register, after a breakpoint display, and copy the value onto the stack.
The names for these commands are the same as those for changing the
register’s contents but they do not start with an equals sign, they end
with a question mark.

For example, in the Z80 DDB, you would use BC? to retrieve the last
value of the BC register pair. You could then use this value in
conditional loops; or you could mask off and automatically change only
the C register at a breakpoint. See the Reference Manual appendix
“Writing Macros.”

Other DDB’s will have commands like these:

Change register Put register contents
contents on stack

=R1 R1?

=X X?

=DPTR DPTR?

6/89 17 GLOSSARY

UNiLAB REFERENCE MANUAL

=SAMP

<#milliseconds> =SAMP

Adjusts the delay between cycles collected by the Unilab commands
SAMP and ADR?. The default is 100H milliseconds (about 1/4 second).

Usage
Changes the length of the delay in order to see more or fewer samples
per second. Set it to zero for the fastest possible sampling rate.

You must use the “save conFiguration” option of the Configuration
PopUp (or SAVE-SYS) in order to make the change permanent.

Example

400 =SAMP

Slows the sampling rate to approximately one per second (400H
millisecond delay between samples).

GLOSSARY 18 6/89

UNILAB REFERENCE MANUAL

=STROBE

<#fmilliseconds> =STROBE

Changes the length of the stimulus pulse that can be sent from the
InSight display (default = 30H). See INSIGHT for more information.

Usage

Use this to change the length of the stimulus pulse generated by InSight.
You must use the “save conFiguration” option of the Configuration
PopUp (or SAVE-SYS) to make the change permanent.

Example

200 =STROBE
Sets the InSight display’s stimulus strobe to 200H milliseconds duration.

6/89 19 GLOSSARY

UNILAB REFERENCE MANUAL

=SYMBOLS

<#Kbytes> =SYMBOLS

Sets the amount of space allowed for Unilab symbol tables.

Usage
Allows you to change the amount of host RAM dedicated to storing the
symbol table. The maximum is hexadecimal 80 Kbytes (decimal 128).

The new setting will not take effect until you use the Configuration
PopUp to “save conFiguration,” exit from the UnilLab software, and
restart the saved system.

Use ?FREE to view the current allocation.

Why Change It

You might want a larger symbol table, or you may need to conserve
host RAM for other purposes.

Example

80 =SYMBOLS
Makes the symbol table the maximum possible size.

GLOSSARY 20 6/89

UNILAB REFERENCE MANUAL

=WAIT

<#milliseconds> =WAIT

Determines how long after resetting the target processor the UniLab will
wait before checking for a working processor clock.

Usage

Used when the target system needs a longer interval after reset to start
functioning. The default value is 140 (hex). Use the “save conFiguration”
option of the Configuration PopUp (or SAVE-SYS) to make this change
permanent.

Example

280 =WAIT
Sets the wait time to twice the default value.

6/89 21

GLOSSARY

UNILAB REFERENCE MANUAL

?FREE

no par ameters

Displays the amount of host RAM allocated to screen history and to the
symbol table. Also shows how much host RAM is currently free.

Usage
Used to find how much you can increase the amount of space dedicated
to history or to the symbol table, or whether you need to reduce it.

See =HISTORY and =SYMBOLS.

GLOSSARY 22

6/89

UNILAB REFERENCE MANUAL

ADR
<word> ADR

<word> TO <word> ADR

Sets the trigger specification for analyzer inputs AQ — A15. (Sets trigger
for AQ — A19 if <word> is a five-digit address ending in a period.)

Usage

De?egmﬁnes which 16-bit addresses will trigger the analyzer. Can also
trigger on 20-bit addresses. With TO, the trigger will occur on any value
in the address range. If NOT precedes the address value(s), the Unilab
will trigger outside the specified address (or range).

All previous entries to the address trigger spec are erased unless you
precede this spec with the word ALSO.

Examples

NORMT 1023 ADR S

Trigger on address 1023. NORMT causes the trigger to appear at the top
of the trace.

NOT 120 TO 455 ADR S
Trigger on address outside the range 120 — 455.

12345. ADR S
Trigger on 20-bit address 12345. The 1 will appear in the right digit of
the CONT column.

Warning—You can inadvertently produce “cross-products” when using
more than one ALSO statement with ADR:

1200 ADR ALSOC 8 ADR ALSO 1503 ADR
Sets the analyzer to trigger when the address is 1200, 0008 or 1503. But
because of cross-products, it will also trigger on address 0003 and 1508.

Comments
AS is a convenient abbreviation for NORMT ADR S.

Generally, you can use multiple ALSCs without cross-products if the
high-order byte of the previous spec and the new one match. To avoid
this problem entirely, specify the two bytes of the address separately
with HADR and LADR.

6/89 23 GLOSSARY

UNILAB REFERENCE MANUAL

ADR?

no parameters

Displays addresses seen on the bus—approximately ten every second.

Usage

This command displays ten of the addresses that appear on the bus each
second. This is useful for getting a rough idea of how a program
behaves. (To change the rate of sampling, see =SAMP.)

Terminate the display by pressing any key.

Example
ADR?
This command is never used in combination with anything else.

Comments

Useful for monitoring program flow in a rough manner. For example, it
will be obvious if the target program gets stuck in a loop. ADR? turns
RESET off and sets a trigger spec of its own, so use one of the NORMx
words before starting a new trigger spec.

GLOSSARY 24 6/89

UNILAB REFERENCE MANUAL

AFTER

AFTER <qualifier_ specification>

Precedes the description of a qualifying event. Qualifying events are bus

states that must be seen before the analyzer will search for the trigger.

Usage

Qualifiers are used to postpone the analyzer’s search for a trigger until
an event that matches the qualifier specification has been seen on the
target bus. Each qualifier must begin with AFTER. In other regards,
qualifiers are defined like triggers.

You can specify up to three qualifiers, a sequence of bus cycles that
must appear on the target bus with no intervening cycles before the
analyzer will begin to watch for the trigger event. The trigger itself can
appear any time after the qualifier, or sequence of qualifiers, has
occurred.

You cannot use MISC inputs as qualifiers.

Delays and Repetitions

You can specify how many bus cycles must follow the last qualifier
before the UniLab will look for the trigger. (See PCYCLES. Default = 0
PCYCLES.)

You can specify how many complete repetitions of the qualifier

sequence must occur before the Unilab will look for the trigger. (See
PEVENTS. Default = 1 PEVENTS.)

6/89 25

GLOSSARY

UNILAB REFERENCE MANUAL

Examples
NORMT 100 ADR AFTER 535 ADR S
Triggers on address 100, any time after address 535 is seen on the bus.

AFTER 3F DATA S

Adds a second qualifying event, which must occur before the first. Now,
address 535 must be immediately preceded by data 3F before UniLab
will look for address 100 on the bus.

NORMT 100 ADR AFTER 535 ADR AFTER 3F DATA S
A single statement with the same result as the two above.

NORMT AFTER NOT 345 ADR AFTER 344 ADR S
Triggers if any address other than 345 immediately follows 344.

Comments

Equivalent results can be obtained with <n> QUALIFIERS to set the
number of qualifiers; the four related commands TRIG, Q1, 02, and Q3
can then be used to define the various triggers. But for most users,
AFTER is the more natural way to do it. You will find the other
commands handy when you want to change the description of an
qualifier sequence without starting from scratch.

GLOSSARY 26 6/89

UNILAB REFERENCE MANUAL

AHIST

no parameters PPA

AHIST, the address-domain histogram, invokes the optional Program
Performance Analyzer (PPA) to display the activity of your target
program in up to 15 user-specified address ranges. See also MHIST and
THIST.

Usage)

Allows you to examine the performance of your target software, to see
where the program spends its time. Press Esc to exit from this menu-
driven feature.

Before you use the PPA the first time, you must issue the command
SOFT to install this optional feature.! SOFT performs a SAVE-SYS, then
exits to DOS. The next time you boot the Unilab software, the PPA will
be installed.

Start the Histogram—To produce a histogram, first specify the upper and
lower limits of each address “bin” you want displayed, then start the
histogram.

When you issue the command AHIST, you get the histogram screen
with the cursor positioned on the first bin. You can then type a lower
and upper limit for each bin. Press return, tab, or an arrow key to move
to the next field.

Press F1 to start displaying the histogram.

Save to a File—You can save a histogram’s setup (i.e., bin limits, title,
and any labels) in a file, along with any collected data, after you exit
from the histogram screen. Just type HSAVE <filename> at the
Command> prompt. Or, use the Files PopUp instead.

Load From a File—You can load a previously saved histogram by typing
HLOAD <filename> at the Command> prompt, or via the Files PopUp.
Loading a histogram file also invokes the PPA in the correct mode.

Example
AHIST
This command is never used in combination with anything else.

10niy the first time you use the PPA.

6/89 27

GLOSSARY

UNILAB REFERENCE MANUAL

ALSO

no parameters

Used with EMENABLE and with trigger-specification commands. Adds the
following input-group specification to the current trigger, instead of
overwriting any existing value for that input group.

Usage

The trigger-spec commands CONT, ADR, DATA, HDATA, HADR, LADR, and
MISC, normally cause the Unilab to replace any existing parameters
with the new ones. By using ALSO, you can instruct the Unilab to
trigger on the old or the new conditions.

EMENABLE normally dears any previous settings when it enables the
new addresses in memory. By using ALSO, you can add 2 new range of
emulation memory without losing the current settings. (See the second
example below.)

In trigger specifications, ALSO is only necessary when you expand the
existing specification of an input group. The UnilLab automatically ANDs
the specs of different groups, unless you explicitly clear the current
trigger (e.g., with NORMX).

Note: You can inadvertently produce “cross products” when using more
than one ALSO statement with ADR. (See ADR.)

Examples

12 DATA ALSO 34 DATA

Sets the analyzer to trigger on either 12 or 34 data (without the ALSO,
only 34 data would be seD.

10 DATA ALSO 5 DATA ALSO 3 DATA 1200 ADR
Sets the analyzer to trigger when the data is 10 or 5 or 3 and the address
is 1200.

0 TO 7FF EMENABLE ALSO 2000 TO 2FFF EMENABLE
Enables two ranges of emulation ROM.

Comments

Applies only to the first EMENABLE or trigger spec command that
follows.

GLOSSARY 28 6/89

UNILAB REFERENCE MANUAL

ALT-FKEY

<key#> ALT-FKEY <command>

Assigns a command to an Alt-function key combination.

Usage

Reassigns the function keys on IBM PCs and compatibles. Press Alt-F1
(see the FKEY? command) to view all the current function-key
assignments.

The function keys allow you to execute a command or macro with a
single keystroke. The default assignments represent many common
functions, but you can change them to suit your particular needs and
working habits.

To make such assignments permanent, use the “save conFiguration”
option of the Configuration PopUp (or SAVE-SYS) before quitting.

Example
2 ALT-FKEY WSIZE
Assigns the command WSIZE to Alt-F2.

Comments

To execute a sequence of commands in this way, even including
parameters, define a macro (see MACRO) and then assign the macro to a
function key. (See EDIT_MACROS for information about Easy Macros.)

See also FKEY and CTRL-FKEY.

6/89 29

GLOSSARY

UNILAB REFERENCE MANUAL

ANY

ANY <input_group>

Sets a trigger on any value in the specified input group.

Usage

Provides a way to clear the trigger specification for a single input group.
This saves the trouble of re-typing a trigger spec from scratch when you
just want to clear one input group’s specs.

Example

ANY CONT

Triggers when any value appears on the CONT input lines (although the
rest of the trigger spec remains unchanged and in effect).

Comments

The macro definition of this command looks like this:
: ANY 0 TO FFFF ;

GLOSSARY 30 6/89

UNILAB REFERENCE MANUAL

AS

<addr> AS

An abbreviation for NORMT <addr> ADR S.
%ﬁ
Usage

Defines an analyzer trigger spec, and starts the analyzer. The trigger
event appears near the top of the trace as cycle zero. A useful

abbreviation—saves keystrokes when you just want to trigger on an
address.

Won’t work on address ranges (i.e., with TO) or with NOT.
Example

1234 As

Triggers on an address value of 1234.

Comments
The macro definition of this command:
: AS NORMT ADR S ;

6/89 31

GLOSSARY

UNILAB REFERENCE MANUAL

ASC

no parameters Alt-F4

Displays an on-screen chart of the ASCII characters.

Displaysan on-screenchant & A€ 20— =0

Usage
Shows each character with its decimal and hex value.

Example
ASC
This command is never used in combination with anything else.

Comments

This saves the trouble of hunting for a printed ASCII table. (See MODIFY,
if you want to type ASCII characters directly into emulation memory or
target RAM.

GLOSSARY 32 6/89

UNILAB REFERENCE MANUAL

ASClI

ASCII <character>

Converts the following character into the ASCII code for that character.
See also EMIT.
S —— _————

Usage
A quick way to get the ASCII code for a single character. See also ASC.

Example
ASCII z
Leaves on the stack the ASCII code for lower-case z.

6/89 33 GLOSSARY

UNILAB REFERENCE MANUAL

ASM

<address> ASM <instruction>

Invokes the processor-specific, line-by-line assembler.

Usage

Patches assembly language code to the given address in emulation ROM.
Allows you to overwrite target program addresses in the Unilab’s
emulation ROM, to quickly fix simple bugs when you find them. The
assembler overwrites memory—it does not insert instructions.

If you do not include the address, ASM will use the current value stored
by the ORG command.

Assembling Multiple Instructions

If you do not include an assembly language instruction, ASM will display
the address to which it is assembling, and wait for an instruction
followed by a carriage return.

The assembler will continue to prompt you with consecutive addresses,

patching the hand-entered code into memory until you press End on a
blank line.

Conventions

The line-by-line assembler will only accept assembly language
instructions, not ORIGIN or EQU statements. (Use the Unilab command
IS if you need to define symbols.)

Only type one instruction per line.

The normal conventions of assembly language apply, e.g., at least one
space between the instruction and the operands. The Target Application
Notes list the instruction set recognized by the assembler.

Examples
0 ASM LD SP, 3000
Alters the first instruction of the LTARG program of the Z80 package.

100 AsSM
Invokes the assembler, starting at address 100. The assembler displays a

blank line beginning with that address, and waits for you to enter an
assembly language instruction,

GLOSSARY 34 6/89

UNILAB REFERENCE MANUAL

ASM-FILE

<addr> <start_screen> <end_screen> ASM-FILE

Invokes a version of the line-by-line assembler that assembles code from
the screens in a Forth file.
_=
Usage

A way to make large patches to your program, or to write prototype
code without leaving the Unilab environment—or just to write a few
lines that you may want to edit and re-load. ASM-F ILE follows the same
input conventions as ASM.

Include comments on a screen by preceding them with a semicolon (€3]
The assembler will ignore everything after the semicolon on that line,
The semicolon can be the first character on a line, or it must be
preceded by a space.

Forth Files and the Editor

You will want to put your code into a file of its own if you want to save
or archive it. You must make a macro-level system before you can use
the file commands. (See MACRO.)

If you only have a few lines of code to write, you can use the MEMO
screen. See MEMO for advice about the Forth screen editor.

Opening a New File

Create a new file with OPEN <filename>. It will be created with three
screens; increase its size with <#screens> SCREENS (IK is allocated
per screen).

Type <screen#> EDIT to get into the file. Use screen zero only for
comments, if at all, because code cannot be loaded from it later.

When you are finished assembling from anything other than the default
system file, press F10 twice: once to get into the PopUp display, and
again to exit. This reopens the UniLab system file. If you don’t do this,
some On-Line Help and error messages may not work.

Examples

1200 1D 1F ASM-FILE
Loads assembly code into memory, starting at address 1200, from

screens 1D - 1F of the currently open Forth file.

1 4 ASM-FILE
Loads code from screens 1 - 4, starting at the current value of ORG.

6/89 35 GLOSSARY

UNILAB REFERENCE MANUAL

B#

B# <binary_number> Rarely Used

Interprets the following number as a binary number.

Usage

Useful when you want to input a number in binary—saves time with
pencil and paper. Quick, what is the hex value of 2 number with 1 at
locations 0, 3, 7, 9 and 10? Let the computer do that work for you.

Examples

B# 0101010001001
The same as entering 0A89H.

NORMT B# 1111110 MISC S
Triggers when the MISC inputs are 11111110

Comments

Changes the base to binary, just for the next number. Allows input of
individual binary numbers, just as D# allows decimal input.

GLOSSARY 36 6/89

UNILAB REFERENCE MANUAL

B.

<hex number> B. Rarely Used

Displays the preceding hex number as a binary number.

s ————————————————— ——— ————— —————
Usage

When you want to find the binary equivalent of a hex number, this will
save pencil and paper.

Example

A89 B.
Displays the binary equivalent of A89, which is 101010001001.

6/89 37

GLOSSARY

UNiILAB REFERENCE MANUAL

BINLOAD

<from_addr> <to_addr> BINLOAD <filename>

Loads a binary file from disk into emulation memory. Prompts for the
filename if you don't include it on the command line.

Usage

Starts loading a binary file into memory at the from_addr, and stops at
the to_addr or at the end-of-file, whichever comes first. The binary file
should contain only executable code. This command fully supports DOS
pathnames, and can be used to load the product of a cross-compiler into
emulation memory.

Use with .COM, .BIN, or .TSK files. See HEXLOAD for Intel hex files,
LOADER for other formats. See also BINSAVE.

Example

0 400 BINLOAD \ASM\MAIN.BIN

Loads the binary DOS file MAIN.BIN from the \ASM directory, starting at
location 0 and ending at location 400.

Comments

Loads the exact binary contents of a file until DOS indicates end-of-file
or the to_addr is reached. If you don’t know the ending address, just
enter FFFF as to_addr, and loading will stop at the end-of-file.

The Orion software can load to target RAM as well. As with all memory-
writing commands, don’t write into your stack area when loading into
RAM. See STEP-INTO and RB.

Operator Shortcuts

You can load binary files via the Files PopUp, or press F5 at the
Command> prompt.

GLOSSARY 38 6/89

UNILAB REFERENCE MANUAL

For Advanced Users
When using BINLOAD in an advanced macro, you have two options:

1. Include in the macro’s definition the name of the file you wish it to

load. This is useful in macros that are used with the same files—or
with files of the same name—every time. For example:

: MY LOAD 0 7FF BINLOAD MY.BIN ;

2. When the macro is executed, have it ask the user to supply the name
of the desired symbol file. As shown below, [COMPILE] defers the
following command’s action until the macro is executed. For example:

¢ MY LOAD ¢ 7FF [COMPILE] BINLOAD ;

6/89 39

GLOSSARY

UNILAB REFERENCE MANUAL

BINSAVE

<from_addr> <to_addr> BINSAVE <filename>

Saves the specified range of memory as a binary file, prompting for the
filename if you didn’t include it. Or use the Files PopUp instead.

Usage

This command saves a range of program memory to a disk file, fully
supporting DOS pathnames. Often used after loading a program via
HEXLOAD, since the new binary file will load faster than the hex version.

Example
100 4FF BINSAVE
Saves target locations 100 — 4FF to a disk file. Since a filename was not

entered after BINSAVE, the user will be prompted it.

Comments
Saves the binary contents of a range of target memory as a named file.
This file can later be reloaded with the BINLOAD command.

You can use this command to save the contents of target RAM as well.
See also STEP-INTO and RB.

Operator Shortcuts
You can save binary files via the Files PopUp (F5).

Advanced Usage in Macros
When using BINSAVE in an advanced macro, you have two options:

1. Include in the macro’s definition the name of the file you wish it to
save. This is useful in macros that generate the same files—that is, files

of the same name—every time. For example:

: MY LOAD 0 7FF BINSAVE MY.BIN ;
2. When the macro is executed, have it ask the user to supply a filename
for the output file. As shown below, [COMP ILE] defers the following
command’s action until the macro is executed. For example:

: MY LOAD 0 7FF [COMPILE] BINSAVE ;

GLOSSARY 40 6/89

UNILAB REFERENCE MANUAL

BPEX

BPEX <macro_name> Macro System

Executes the specified command or macro at every breakpoint, after
displaying the register contents.

—_ e e - -
%
Usage

Allows you to automatically execute a command or macro at every
breakpoint.

BPEX will not accept a string of commands, just the first word that
follows. This means no parameters can be used directly with BPEX, but
there is a way to work around this apparent limitation. In the example
below, the macro called SEE-RAM invokes MDUMP, which requires two
parameters; but the same values are to be used each time it is executed,
so they are included within the macro’s definition. The one-word macro
name is then assigned to BPEX normally, the required parameters
implicit in the macro’s definition.

See MACRO, : (colon), and the appendix “Writing Macros.”

Turn It Off
To turn off automatic execution of a command at every breakpoint,
simply type: BPEX NOOP.

Example
SEE-RAM 8000 8080 MDUMP ;
Defines a macro called SEE~RAM that dumps 80 memory locations.

BPEX SEE-RAM
Executes the newly defined macro by dumping the above-specified

range of memory at every subsequent breakpoint.

Comments

Available only with DEBUG packages. This is useful if you want, for
example, to watch a memory window as you single-step through the
program, as above.

6/89 41

GLOSSARY

UnNiLAB REFERENCE MANUAL

BPEX2

BPEX2 <macro_name> Macro System

Executes a second macro at each breakpoint.
__—w

Usage
See BPEX.

GLOSSARY 42 6/89

UNILAB REFERENCE MANUAL

BYE

no parameters

Exits from Unilab program.

Usage
Returns to DOS. Use the “save conFiguration” option of the
Configuration PopUp to save the current state of the system.

Use the Unilab command DOS instead, if you just want to execute a few
DOS commands and return to the UniLab.

Example
BYE
This command is never used in combination with anything else.

GLOSSARY

UNILAB REFERENCE MANUAL

CATALOG

no parameters

Displays a directory of all the available pinouts. The proper cable hook-
ups for each microprocessor are shown along with the pinouts.
_—

Usage

Once this word is entered, select the number of the microprocessor
diagram you'd like on the screen. You can continue looking at pinouts
until you press Esc to exit.

Comments

The pinout information is contained in three library files on the Orion
Utilities diskette. The Unilab system can run without them, but
CATALOG and PINOUT will not work unless these files are in the
\ORION directory on your disk.

GLOSSARY 44 6/89

UNILAB REFERENCE MANUAL

CKSUM

<from addr> <to_addr> CKSUM

Calculates the checksum for a given range of memory. Useful for error-
checking.

Usage
A good way to make a PROM easy to check for burn-in errors or
corrupted locations. Allows you to record the checksum of your

program—or better yet, make the checksum equal to zero.

Example
800 FFF CKSUM
Prints a 16-bit checksum for the data in addresses 800 — FFF

Comments

You may want to patch the complement of this value into your PROM.
You can produce a PROM with a checksum of zero by using the
following method, which sacrifices only two bytes:

First, store zero where the checksum will be: 0 FFE MM! in the above
example. Second, use CKSUM to calculate the checksum. Last, patch in

the complement of the sum.

For example, if the sum is 1234, use the command -1234 FFE MM!.
The resulting PROM will have a checksum of 0.

6/89 45

GLOSSARY

UNILAB REFERENCE MANUAL

CLRMBP

no parameters

Clears any multiple breakpoints that have been set.

Usage

Used to wipe the slate clean and start setting multiple breakpoints again.
Use SMBP to set the breakpoints.

Example

CLRMBP

This command is never used in combination with anything else.

Comments
Clears all the numbered breakpoints set with SMBP. To clear one at a
time, see RMBP.

GLOSSARY 46 6/89

UNILAB REFERENCE MANUAL

CLRSYM

no parameters

Clears the current symbol table.
_
Usage

Used to get rid of any symbols currently defined for your program. It’s a
good idea to save the symbol table first, in case you decide you want
them after all. (See SYMSAVE.)

You could instead use SYMB", to turn off the effects of the symbol table
without erasing it.

Example
CLRSYM
This command is never used in combination with anything else.

Comments

SYMLOAD clears the symbol table automatically before it loads the new
symbols.

6/89 47

GLOSSARY

UNILAB REFERENCE MANUAL

COLOR

no parameters F8 — Rarely Used

Displays in color. Only effective when used with a color monitor.

Usage

Turns on the color display. You have to use the “save conFiguration”
option of the Configuration PopUp (or SAVE-SYS) afterward if you
want the UniLab program to start up with the color display.

Changing Colors

Use the UniLab command SET-COLOR to show the settings as you
change them. You will have to save the system configuration if you want
to preserve the new colors.

Example

COLOR
This command is never used in combination with anything else.

GLOSSARY 48 6/89

UNILAB REFERENCE MANUAL

CONT
<byte> CONT Rarely Used

<byte> TO <byte> CONT
<byte> MASK <byte> CONT

Sets the analyzer trigger spec for the CONT inputs (control lines C4 — C7
and A16 — A19).

Usage

The CONT input lines actually represent two different types of inform-
ation. The upper four bits represent the processor cycle type. The lower
four bits come from the four highest address lines, A16 — A19.

When you precede it with one number, CONT causes the UniLab to
trigger when the inputs equal that number. When you use TO, the
UniLab triggers on any value in the range. NOT causes the Unilab to
trigger when the value falls outside the specified range or value.

You can use <k> MASK <m> CONT to examine any subset of the eight
input lines. See below for details.

Unless you use ALSO, the previous trigger spec is cleared when you use
this command.

Examples

B# 00011111 CONT

Specifies a cycle in which inputs C7, C6, and C5 are zero, and C4, A19,
Al18, A17, and A16 are one.

70 TO 7F CONT
Specifies a cycle in which input C7 is zero and C6 — C4 are one (A19 —
A16 can be any value).

F MASK 3 CONT
Specifies a cycle in which inputs A19 and A18 are zero, and A17 and
A16 are one (C7 — C4 can be any value).

GLOSSARY

UNILAB REFERENCE MANUAL

Comments
The low four bits of the CONT lines refer to the highest four bits of the
address, the segment-address bits that are set by =EMSEG.

When you use the command <k> MASK <m> CONT, the bits in <k>
with a value of one represent the inputs the Unilab will examine. The
<m> indicates what value those lines must have in order to trigger.

For example, FO MASK AO CONT tells the UniLab to only look at the
upper four bits of the CONT lines. The A0 tells the UniLab to trigger
when bits 7 and 5 are high while bits 6 and 4 are low. The UnilLab will
ignore the value of the lower four bits.

GLOSSARY 50 6/89

UNILAB REFERENCE MANUAL

CONTROL

CONTROL FILTER Rarely Used

Used before FILTER to set a filter specification on just the CONT inputs.
ﬁ

Usage

Rarely used. You probably will never use this command, which triggers
on the full specification, but filters based only on the eight bits of the
CONT inputs.

The filter mechanism of the Unilab gets turned on by the XAFTER
macros. Those commands set the filter to MISC' FILTER, which allows
you to filter all inputs except for the MISC wires.

See also HDAT, MISC', and NO.

The CONT Inputs

The upper four CONT bits identify the processor cycle type, while the
lower four bits identify address bits A19 - A16. This command makes it
possible to filter on cycle type and on memory segments.

Example

NORMT CONTROL FILTER WRITE 1200 ADR A7 DEVENTS S
Triggers on 1200 address, and then records only write cycles. You must
use DEVENTS to get a trace buffer full of cycles that match the filter
spec. (The Unilab 8620’s trace buffer holds AA8 cydles. The first filtered
cycle in a trace is always non-valid.)

6/89 51

GLOSSARY

UNILAB REFERENCE MANUAL

CTRL-FKEY

<key#> CTRL-FKEY <command>

Assigns a command or macro to a Ctrl-function key combination.

Usage
Reassigns the function keys on IBM PCs and compatibles. Alt-F1 (see
the FKEY? command) shows the current assignments.

Function keys allow you to execute a single command or macro with
one keystroke. The default assignments execute many common
functions, but you might want to change them to suit your particular
needs and working habits.

To make your assignments permanent, use the “save conFiguration”
option of the Configuration PopUp (or SAVE-SYS).

Example
5 CTRL-FKEY DOS
Assigns the Unilab command DOS to Ctr1-F5.

Comments

To execute a string of commands in this manner, perhaps even
including parameters, define 2 macro (with :) and assign the macio’s
name to a function key. (See EDIT_MACROS for information about easy
macros.)

See also FKEY and Alt -FKEY.

GLOSSARY 52 6/89

UNILAB REFERENCE MANUAL

CYCLES?

<from_addr> <t o_addr> CYCLES?

Counts the number of bus cycles between two addresses.
_-
Usage

Used to count the number of bus cycles required by a loop, as in the
first example below, or by the code between any two addresses. See
USEC? to count the milliseconds between two addresses.

Bus Cycle Count

Not the number of machine cycles or the number of instructions fetched,
but the number of bus cycles that occur between appearances of the first
address and the second on the bus.

Example

123 123 CYCLES?

Counts the cycles between two occurrences of the address 123, as when
this address is inside a loop

123 456 CYCLES?
Counts the cycles between address 123 and address 456.

Comments

Useful for checking quickly whether a loop works as you intended.
CYCLES? sets its own trigger spec, which you will have to clear with a
NORMx command before proceeding with other trigger specifications.

6/89 53

GLOSSARY

UNILAB REFERENCE MANUAL

D#

D# <decimal number> Rarely Used

Treats the number that follows as a decimal value, rather than hexa-
decimal, which is the default.

Usage

Saves the trouble of converting 2 number to hex before using it as input.
Examples

D# 16 ADR

Equivalent to entering 10 ADR.

D# 32 .

Displays 20 (the hex equivalent of 32 decimaD.

D# 135 B.
Converts a number from decimal to binary.

D# 1000 MS
Pause 1 second.

Comiments
See aiso B# for entering binary nummbers.

GLOSSARY 54 6/89

UNILAB REFERENCE MANUAL

DASM

no parameters F8

Enables the trace disassembler.

Usage

Turns on disassembly of machine code. You will usually want this on,
turning it off for functions like xAFTER and SAMP. To turn off the
disassembler, use DASM!.

Normally, you will use the mode panel (F8) to toggle this feature on/off.

Turns on the disassembly in the trace display.

Comments
Works only if you have installed an optional disassembler.

6/89 55

GLOSSARY

UNILAB REFERENCE MANUAL

DASM'

no parameters F8

Disables the trace disassembler.

Usage
Turns off disassembly of machine code. See DASM.

Normally, you will use the mode panel (F8) to toggle this feature.
Example

DASM'
Removes the trace display’s column for disassembled instructions.

GLOSSARY 56 6/89

UNILAB REFERENCE MANUAL

DATA
<byte> DATA

<byte> TO <byte> DATA
<byte> MASK <byte> DATA

Changes the analyzer trigger for the data inputs (DO — D7).

The Data Inputs

The Unilab gets an address and data from the bus during each memory
read and write. The “data” that appears on the bus could be a value or a
machine code instruction. (See “Comments” below for information on
triggering on a 16-bit data bus.)

Usage

The simplest use sets a trigger on a single data value. The UniLab will
trigger when it sees that hex number on the bus as data. (See the first
example below.)

Ranges of Data
TO lets you set a trigger on any data between two byte values, inclusive.
(See the second example below.)

NOT
NOT causes the Unilab to trigger when the value on the DATA inputs is
outside the specified range or value.

Masking

You can use <k> MASK <m> DATA to examine any subset of the eight
data lines. The high bits of <k> that have a value of one represent the
inputs the UnilLab will examine, while the bit configuration of byte <m>
indicates what value those lines must have in order to trigger.

For example, 80 MASK FF DATA selects only the highest data bit for
examination (with binary value 1000 0000), and tells the UniLab to
trigger when this bit has a high value. (The instruction 80 MASK 80
DATA would have the same effect.)

6/89 57

GLOSSARY

UNILAB REFERENCE MANUAL

Examples

NORMT 12 DATA S

Clears previous trigger settings with NORMT, then sets a trigger on data
input 12, and uses S to start the analyzer.

12 TO 34 DATA
Requires a data value between 12 and 34 hex in order to trigger.

FO MASK 30 DATA
Instructs the UniLab to examine the four highest data bits, and to trigger

when it finds a three on those lines.

23 DATA ALSO 45 DATA
Will trigger on a cycle that has a data value of either 23 or 45 hex.

Comments

The data inputs (DO — D7) are normally connected via the emulator
cable at the ROM socket. On 16-bit processors, DATA is only half the
data bus, and HDATA is the other half.

If you need to use a large number of ALSO terms, see NDATA.

GLOSSARY 58 6/89

UNILAB REFERENCE MANUAL

DCYCLES

<f#cycles> DCYCLES

Sets how many cycles the Unilab will record after finding a cycle that
matches the trigger specification.

Usage

When the UniLab sees the trigger event on the target board, it consults
this variable to determine how many more cycles to record. Each time a
new cycle enters the trace buffer, the oldest recorded cycle is lost. After
the UniLab records the specified number of post-trigger cycles, it
displays the trace buffer’s contents.

Why You Don’t Need to Bother—This command is executed by a number
of other commands. NORMT, for example, sets the delay value so that the
trigger event is near the top of the trace buffer (ten cycles from the top).

Why You Might Want To—You might want to see the trace starting 260
cycles after a known event—perhaps you don’t know where the
program goes at that time. The DCYCLES command does the job
perfectly.

Example
104 DCYCLES
Specifies 104 hex delay cycles (260 decimal)

Comments

NORMT, NORMY, and NORMB set DCYCLES so that the trigger is at the top,
middle, and bottom of the trace, respectively. S+ increases the number
of delay cycles by AAAH cycles, so you can see what follows the events
in the current trace. The maximum possible delay count is FFFF.

GLOSSARY

UNILAB REFERENCE MANUAL

DEBUG

no parameters F8

Re-enables DEBUG after it has been disabled by DEBUG"' or EMCLR.

Usage

Use this when you have turned off the DEBUG features and now want
to use them again. STEP -INTO will not work until this and the
hardware STEP-INTO are enabled. (RB automatically executes this
command and re-enables DEBUG.)

Normally, you will use the mode panel (F8) to enable/disable this
feature. Press ALt —F1 or use the Help PopUp for On-Line Help with
DEBUG and information about processor-specific features.

Additional Information

Use HELP <command> for details about the following, which represent
the most common DEBUG functions:

G GB GW

LP R RB

RZ STEP-INTO STEP-LINE
STEP-OVER SOFTWARE HARDWARE

GLOSSARY 60 6/89

UNiLAB REFERENCE MANUAL

DEBUG'

no parameters F8

Turns off the DEBUG features.

Usage

’Ihi;sagcommand is used for complete transparency—emulation memory is
not affected by the Unilab operation. (DEBUG is disabled automatically
by EMCLR.) It allows your program to use areas otherwise reserved for
DEBUG vectors and overlays. Press Ct r1-F1 and press 2 to show the
reserved areas for your processor.

Normally, you will use the mode panel (F8) to toggle this feature on/off.
Comments

The command RESET <addr> RB re-enables DEBUG automatically, if
it was turned off.

6/89 61

GLOSSARY

UNILAB REFERENCE MANUAL

DEVENTS

<f#events> DEVENTS Rarely Used

Sets the number of trigger events that must occur before the Unilab
freezes the trace buffer. Also forces 1 DCYCLES.
—_____—_-—__—-———__—__-—_—_————-—-—_——-
Usage

Used to see the nth target bus cycle that matches the trigger
specification. Rarely useful. The nth occurrence shows as the last cycle
in the trace buffer.

See also PEVENTS.
Example

NORMT 1800 TO 18FF ADR 30 DEVENTS
Sets 30 delay events—the last cycle in the trace will be the thirtieth

access to memory between addresses 1800 and 18FF.

GLOSSARY 62 6/89

UNILAB REFERENCE MANUAL

DM

<start_addr> <count> DM

Disassembles <count> number of lines, starting at the given address.

Usage
Very useful for examining memory. Allows you to see what instructions
are in emulation memory, and in RAM as well. (See also DN.)

Can give misleading results if start_addr isn’t the first address of an
opcode; but even then, it will generally come into sync after a few
instructions.

Example
100 10 DM
Disassembles 10 lines, starting at address 100

Comments

Normally disassembles from ROM. Works only if you have an optional
disassembler. (See STEP-INTO and RB.)

6/89 63

GLOSSARY

UNILAB REFERENCE MANUAL

DMBP

no parameters

Displays the settings of all eight multiple breakpoints.

Usage
Used to show the settings of your multiple breakpoints. Automatically
executed whenever you set one of the eight multiple breakpoints with
SMBP.

Example

DMBP
This command is never used in combination with anything else.

GLOSSARY 64 6/89

UNILAB REFERENCE MANUAL

DN

no parameters

Displays a special disassembly window on the right-hand side of the
screen. Prompts for the starting address of the disassembly. Displays one
instruction per line and fills the dedicated window.

Usage

This command is similar to DM, except it writes into a portion of the
screen used only for this feature. Use it to keep a disassembly on screen
while performing other operations.

The disassembly produced by DN will stay on the screen if you exit from
the display with End. If you use Esc to exit, it will not stay on the
screen.

You can also remove the display by using F2 to get rid of the split
screen and then scrolling (or, if currently looking at an unsplit screen,
press F2 twice).

Example
DN
This command is never used in combination with anything else.

Comments
Due to limited screen space, DN doesn't display symbols.

6/89 65

GLOSSARY

UNILAB REFERENCE MANUAL

DOS

DOS <DOS_command>

Execute a2 DOS command from the Unilab program. Or, use with no
parameters to exit to DOS temporarily. Return to the Unilab by typing
EXIT.

Usage

Us::g this when you have reason to use a DOS utility. You can execute a
single command, or go to DOS and execute a series of commands. If
you go to DOS, you can return to the Unilab program by typing EXIT
at the DOS prompt (A> or B> or C>).

If you use BYE to exit the Unilab program, you will have to start it again
normally at the DOS prompt.

Examples
DOS DIR /w
Executes the DOS command DIR /w.

DOsS
Allows you to execute any series of DOS commands and return to the
UniLab program.

DOS RENAME MY.BIN OLD.BIN
Changes the name of a file called MY.BIN to OLD.BIN,

For Advanced Users

You cannot use DOS in advanced macros. In order to access DOS
functions in a macro, you use the lower level command <D0OS>.,
<DOS> expects the command to precede it in quotes. For example, if

you wanted to change the name of a file with a macro, you would do it
like this:

: CHANGE_FILE " RENAME ORION.BIN PLANS.BIN" <DOS> ;

Or if you wanted a listing of all binary files in a directory called \WORK,
you would enter:

: WORK DIR " DIR \WORK*.BIN" <DOS> ;

Note that the first quote must have a leading and a trailing space.

GLOSSARY 66 6/89

UNILAB REFERENCE MANUAL

EDIT_MACROS

no parameters Shift-rF10

Invokes the macro view/edit display.

Usage
EDIT_MACROS provides an easy way to assign a series of commands to
a function key.

Once within the EDIT MACROS display, choose a macro number and
type any series of commands that you can execute from the keyboard.
This group of commands is assigned to a shifted function key.

For example, if you press 3 when prompted for the macro number, your
macro will be assigned to function key Shift-F3, and can also be
invoked by typing the command MACRO_3.

Exit the EDIT-MACRO display by pressing Esc.
Example
EDIT MACROS

After you type EDIT_MACROS, you will be prompted for the number of
the macro you wish to define or edit.

6/89 67

GLOSSARY

UNILAB REFERENCE MANUAL

EMCLR

no par. ameters

Tells the UniLab not to emulate ROM—clears the emulation memory
settings.

]

Usage
Tells the UnilLab not to respond to any microprocessor requests for data

or instructions. Used only when you want to run a program from on-
board ROM.

Instead of running the program from a chip, you can use the EPROM
PopUp to read a program into emulation memory from most ROM chips.

Side Effect
This word also disables all DEBUG features. To turn them on again, use
the DEBUG toggle in the mode panel (F8), or type DEBUG.

Example

EMCLR
This command is never used in combination with anything else.

GLOSSARY 68 6/89

UNiLAB REFERENCE MANUAL

EMENABLE
<address> EMENABLE

<from_addr> TO <to_addr> EMENABLE

Enables emulation memory; needed before you can load a program. See

also SET-EM.
_———

Usage
Used to enable memory from within macros. Otherwise, the SET~EM
interface is easier to use.

You must first set =EMSEG properly when you use EMENABLE.

Given a single address, EMENABLE enables the 2K memory region that
includes the address. Given a range, EMENABLE enables the group of 2K
blocks that contain the range.

You can use the “save conFiguration” option of the Configuration PopUp
(or type SAVE-SYS) to make the current seftings permanent.

Enable a Range of Addresses

TO enables emulation memory from the beginning of the 2K segment
that includes the <from_addr> to the end of the 2K segment that
includes the <to_addr>.

Clear Previous Settings
Unless you precede an emulation statement with ALSO, it clears any
previous EMENABLE settings.

Watch Out

When you try to emulate two separate ranges of memory, you can
accidentally overlay the two. For example, with a 32K UniLab, 0 and
8000 refer to the same physical location in the Unilab. Of course, you
can enable separate areas which do not overlap; e.g.,, 0 TO 3FFF and
C000 TO FFFF would not conflict.

6/89 69

GLOSSARY

UNILAB REFERENCE MANUAL

Examples
F =EMSEG O EMENABLE
Enables target addresses 0 — 7FF with A16 — A19 set high.

0 TO 1FFF EMENABLE ALSO FFFF EMENABLE
Enables 0 — 1FFF and F800 — FFFF.

F =EMSEG 0 EMENABLE ALSO E =EMSEG 0 EMENABLE
Enables locations FOO00 — FO7FF and EQ000 — EQ7FF

Comments

The Unilab’s enable logic first compares the A16 — A19 value from the
most recent =EMSEG statement with the present bus address. Address
inputs A11-A15 then get compared to an enable map in which each
entry corresponds to a 2K segment of memory. When the segment and
the 2K block are enabled, the UniLab accepts the address, and puts its
data on the bus.

GLOSSARY 70 6/89

UNILAB REFERENCE MANUAL

EMIT

<code> EMIT

Types the character represented by the ASCII code. See also ASCT I,

ASC.
%

Usage
Used as a quick way to get the character that corresponds to an ASCII
code.

Example

03 EMIT
Types a heart-shaped graphic character.

6/89 71 GLOSSARY

UNILAB REFERENCE MANUAL

EMMOVEO

<start_addr> <end addr> <dest> EMMOVEO

Moves a block of memory from the current page of emulation memory
to PAGEQ.
M
Usage

Moves data from one 64K page of emulation memory to the other. See
also MMOVE (for moves within a page), and EMMOVE1 (for moving to
PAGEL).

Examples

PAGE1 1000 2000 1000 EMMOVEO

After making PAGE1 the current page, copies the data from 1000 — 2000
to addresses beginning at 1000 in PAGEO.

PAGE1l 200 2FF FF00 EMMOVEO
Copies the data from 200 — 2FF in PAGE1 to FFO0 — FFFF in PAGEO.

Comments

Make certain the code you move is relocatable. If it is not, you may have
to patch some of the absolute address references. In general, exercise
cantion—use DM on the moved memory to see if the instructions still do
what you intend.

GLOSSARY 72 6/89

UNILAB REFERENCE MANUAL

EMMOVE

<start_addr> <end_addr> <dest> EMMOVE1

Moves a block of memory from the current page of emulation memory
to PAGEL.

%

Usage
Moves data from one 64K page of emulation memory to the other. (See
also MMOVE, for moves within a page.)

See EMMOVEOQ.

6/89 73 GLOSSARY

UNILAB REFERENCE MANUAL

EMSTAT

no parameter S

Graphically displays the emulation memory settings. See also SET-EM,
ESTAT.

#

Usage
Used to see which 2K blocks of target ROM are being emulated by the
Unilab.

Example

EMSTAT
This command is never used in combination with anything else.

GLOSSARY 74 6/89

UNiLAB REFERENCE MANUAL

ESTAT

no parameters

Provides a text-only description of the status of emulation memory. See
also EMSTAT, SET-EM.

6/89 75 GLOSSARY

UNILAB REFERENCE MANUAL

EVENTS?

no parameters

Starts the analyzer and counts the occurrences of the currently defined
trigger event.

Usage

Useful for monitoring events for which you don’t need a trace. An
excellent way to see whether the program does what it should. This
command will reveal whether a routine messes up spectacularly or
performs flawlessly.

Examples
NORMT 123 ADR EVENTS?
Counts the occurrences of address 123.

NORMT 123 ADR FF DATA EVENTS?
Counts the occurrences of cycles containing data value FF and address
123.

NORMT WRITE 78 TO FF DATA 1210 ADR EVENTS?
Counts how often a data value greater than 78 is written to location

1210.

Comments
You can also count such things as error conditions or system usage.

Use this command to sync a scope on the Unilab’s test-point output.

GLOSSARY 76 6/89

UNILAB REFERENCE MANUAL

FETCH

no parameters

Tells the Unilab to look for the trigger event only during fetch cycles.

Usage

To search for a particular opcode. When you use this command in a
trigger spec, the Unilab will not look for the trigger during read or write
cycles. Similar commands are used to recognize read and write cycles.

This command is not available for all processors; check your Target
Application Notes.

Examples
NORMT FETCH 120 ADR S
Triggers when the program fetches from address 120.

NORMT FETCH NOT O TC 7FF ADR S
Triggers if the program tries to fetch an instruction from outside the 0 —

7FF range.
Comments

This command, included with most processor-specific DDB packages,
specifies a range of CONT values corresponding to fetch cycles.

6/89 77

GLOSSARY

UNILAB REFERENCE MANUAL

FILTER

<filter type> FILTER Rarely Used

Selects the type of trace filter, according to the preceding command (i.e.,
CONTROL, HDAT, MISC', or NO).

Why You Don't Need to Bother—For most trace filtering, you will use the
commands ONLY or XxAFTER, which automatically select the MISC'
filter. The NORMx words turn off filtering.

Use this command to set a filter spec that is different from your trigger
spec. This is sometimes very useful.

Example

NORMT CONTROL FILTER READ 1200 ADR A7 DEVENTS S
Triggers when the processor reads from address 1200—then produces a
filtered trace of the A7 (hex) read cycles that occur after that.

GLOSSARY 78 6/89

UNILAB REFERENCE MANUAL

FIND-ADR
<16-bit_wvalue> FIND-ADR
FIND-CONT
<8-bit_value> FIND-CONT
FIND-DATA

<8-bit value> FIND-DATA
FIND-HADR
<8-bit_wvalue> FIND-HADR
FIND-HDATA
<8-bit_value> FIND-HDATA
FIND-LADR
<8-bit_value> FIND-LADR
FIND-MISC
<8-bit_wvalue> FIND-MISC
FIND-WDATA

<16-bit_value> FIND-WDATA

6/89

79

See: FIND—-xXXxX

See: FIND-XXXX

See: FIND-XXXX

See: FIND-XXXX

See: FIND-XXXX

See: FIND-XXXX

See: FIND-XXXX

See: FIND-XXXX

GLOSSARY

UNILAB REFERENCE MANUAL

FIND-xxxx

<value> FIND-XXXX

The FIND- family of words will search the trace buffer for a particular

value.
W

Usage

Used to search the trace buffer from the siart for an address, data, MISC,
or CONT value. After finding the first such occurrence, NX will find the
next match.

The FIND-xxxx family of words:

FIND-ADR FIND-LADR FIND-HADR
FIND-WDATA FIND-DATA FIND-HDATA
FIND-MISC FIND-CONT

The FIND-xxxx words search for 8-bit values, except FIND-ADR and
FIND-WDATA, which search for 16-bit values.

Example

3289 FIND-ADR

Finds and displays the cycle containing address 3289 in the current trace
buffer.

GLOSSARY 80 6/89

UNILAB REFERENCE MANUAL

FKEY

<key#> FKEY <command>

Assigns a command to a function key. See also ALT-FKEY, CTRL-FKEY,
and EDIT MACROS.

Usage
Reassigns the function keys on IBM PCs and compatibles. A1t -F1 (see
the FKEY? command) shows the current function-key assignments.

The function keys allow you to execute a single command or macro
with a single keystroke. The default assignments represent most
common functions, but you can change them to suit your particular
needs and working habits.

Use key number A (hex) to assign a command to F10. To make your
reassignments permanent, use the “save conFiguration” option of the
Configuration PopUp.

Example
2 FKEY STARTUP
Assigns the command STARTUP to the F9 key.

Comments

To execute a string of commands in this manner, perhaps even
including parameters, define a macro (with :) and assign the macro’s
name to a function key. For example,

DUMP100 0 100 MDUMP ;
6 FKEY DUMP100
allows you to dump locations 0 — 100 by pressing F 6.

You must be in the macro-level system to define a macro with the :
(colon) and ; (semi-colon). Alternatively, you could enter the same
command as an Easy Macro and execute it with one of the shifted
function keys.

GLOSSARY

UNILAB REFERENCE MANUAL

FKEY?

no parameters Alt-F3

Displays the current function key assignments.

Usage
Used to see the command or macro name that each function key will
execute when pressed.

See FKEY, ALT-FKEY, CTRL-FKEY, and EDIT_MACROS to reassign
keys.

Example

FKEY?
This command is never used in combination with anything else.

GLOSSARY 82 6/89

UNILAB REFERENCE MANUAL

G

<addr> G

Goes to the indicated address. Releases the microprocessor from the
DEBUG breakpoint and lets it continue executing code from <address>.
This is equivalent to changing the program counter.

Usage

Used at a DEBUG breakpoint, when you want to change the program
counter and release the target from the breakpoint. G is one of several
ways to do this.

G sets the program counter to addr and lets the target microprocessor
resume executing code there. (Reset was turned off automatically when
the DEBUG breakpoint was established.) After that, you can enter a
trigger spec and restart the analyzer, or you can use one of the “big
picture” words: ADR?, SAMP, and NOW?.

You could, instead, use STARTUP to restart the analyzer and the board
at the same time. Or use NORMx followed by a trigger specification and
S to restart the analyzer and give a trace of the event you describe.

Example

1030 G

Exits from a DEBUG breakpoint, and resumes execution of the target
program at location 1030.

Comments

Appropriate if you have a DEBUG package and have run to a
breakpoint by entering RESET <addr> RB or STEP-INTO. You can let
the microprocessor resume at any point in the program; the DEBUG
breakpoint will be released.

Use GB if you wish to resume the program at an address different from
the one you are stopped at, but with a new breakpoint set.

6/89 83 GLOSSARY

UNILAB REFERENCE MANUAL

GB

<go_to_addr> <breakpo int_addr> GB

Goes to the first address and starts executing code, with a breakpoint set
at the second address.
_———-——————————————
Usage

When you want the microprocessor to resume the program at a
particular address and run to a new breakpoint.

Example
1200 330 GB
Resumes the program at address 1200, with a breakpoint set at 330.

Comments

Available if you have a DEBUG package and are stopped at a
breakpoint. See RB or STEP -INTO for ways to set breakpoints.

GLOSSARY 84 6/89

UNiLAB REFERENCE MANUAL

GW

<addr> GW

Goes to the indicated address and waits until the analyzer is started.
Releases the target board from the DEBUG breakpoint.

Usage

Used to continue executing the program, starting at the given address,
after a new trigger spec has been defined. A specialized but very useful
command.

Example

1100 GW NORMT 1200 ADR S

Sets the microprocessor’s program counter to 1100 and waits for the
analyzer to be started. The trigger spec sets the analyzer to capture a
trace at address 1200. Then the analyzer is started with the S command
and the microprocessor is released from the breakpoint. The analyzer
will trigger when address 1200 shows up on the bus.

Why This is Useful—This command utilizes a combination of DEBUG
breakpoints and the UniLab analyzer. If you were to use RZ to release
the microprocessor from the DEBUG breakpoint, address 1200 might be
executed before you could type the trigger spec. Be sure to use one of
the NORMx words to clear any trigger spec DEBUG may have set.

Note that reset is always automatically turned off after any DEBUG
operation.

6/89 85

GLOSSARY

UNILAB REFERENCE MANUAL

HADR
<byte> HADR Rarely Used

<byte> TO <byte> HADR
<byte> MASK <byte> HADR

Sets the trigger value for the high byte (A8 — A15) of a 16-bit address.
W

Usage

You can use this trigger-spec command in the same way as DATA, CONT,
etc. However, it is most frequently used when setting an address trigger
that uses many calls to ALSO.

Address Inputs—You will normally use ADR to set 16 or 20 bits at once,
but there are limits to the use of ALSO in combination with ADR (see
ADR). You can change the trigger spec of the low-order address byte
with LADR, of the second byte with the HADR command, and of the high
four bytes (for 20-bit addresses) with CONT or ASEG.

Example
NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
Sets the analyzer to trigger on any of the addresses 1234, 1210 or 1205.

Comiments

Makes it possible to treat the first two bytes of an address separateiy.
LADR is the lower byte, HADR the higher. The Unilab works with up to
20-bit addresses.

GLOSSARY 86 6/89

UNILAB REFERENCE MANUAL

HARDWARE

no parameters F8

Enables installation of the non-maskable interrupt vector. -

Usage

This command re-enables the Unilab's use of the NMI (or IRQ) pin and
vector to execute STEP-INTO. It also allows you to get an “instant
breakpoint” by toggling the NMI pin of the target microprocessor. If
InSight is implemented in your DDB package, this will be automatically
enabled when you enter InSight.

Only disable this feature for more transparent operation, when you don't
need all the DEBUG features. See also SOFTWARE. (See DEBUG ' for
complete transparency.)

Normally, you will use the mode panels (F8) to change this feature,

6/89 87

GLOSSARY

UNILAB REFERENCE MANUAL

HDAT

HDAT FILTER Rarely Used

Used before FILTER to set a filter spec based only on the high byte of
the DATA inputs (D8 — D15).

s e P

Usage
You will probably never use this command. It triggers on the full
specification, but filters based only on the eight bits D8 — D15.

While deciding whether to include the current cycle in a filtered trace,
the Unilab will check only these eight bits of the 48 inputs. This is a
good way to see all bus cycles that have a certain value in the upper
data byte.

The filter mechanism of the Unilab gets turned on by ONLY and
*AFTER. Those commands set the filter to MISC' FILTER, which
allows you to define a trigger based on all inputs except the HDATA and
MISC wires.

See also CONTROL, MISC', and NO.

High Data Inputs

On 16-bit processors, these lines represent the high byte of the 16-bit
data path. On 8-bit processors, the lines can float or be connected to
other signals on the target board.

Example
NORMT HDAT FILTER 80 TO FF HDATA

3410 ADR A7 DEVENTS S
This captures a trace showing only cycles with D15 high, beginning with

the first bus cycle that has D15 high and address 3410. DEVENTS tells
the analyzer how many filter-matching events to record (up to the total
size of the trace buffer).

GLOSSARY 88 6/89

UNILAB REFERENCE MANUAL

HDATA
<byte> HDATA

<byte> TO <byte> HDATA
<byte> MASK <byte> HDATA

Changes the analyzer trigger for the high byte of 16-bit data path (D§ —
D15). On eight-bit processors, these are spare inputs.
%
Usage

The simplest use sets a trigger for a single value on the high-order byte
of the data inputs. The Unilab will search for the byte value, and trigger
when it sees that hex number on the bus as data.

Note that by looking at just the high-order byte, the Unilab doesn’t care
about the low-order byte—so i actually searches for a range. (See the
first example below.) To specify a single, 16-bit wide data value, you
must use both HDATA and DATA.

The Data Inputs—The UniLab gets both address and data during each
bus cycle. The “data” that appears on the bus may be either a value or a
machine code instruction. On eight-bit processors, inputs D8 — D15 can
be connected to anything you like.

Ranges of Daia—ToO lets you set a trigger on any data in a range
between two byte values, inclusive. (See the third example below.)

NOT—NOT causes the Unilab to trigger when the value falls outside the
specified range or value.

Masking

You can use <k> MASK <m> HDATA to examine any subset of the eight
most significant data lines. The high bits of <k> tell the analyzer which
bits to examine, while the bit configuration of byte <m> indicates what
values the lines must have for a trigger to occur.

For example, 01 MASK FF HDATA selects only the least significant data
bit for examination (with binary value 0000 0001), and tells the UniLab
to trigger when that bit has a high value. (The instruction 01 MASK 01
HDATA would have the same effect.)

6/89 89

GLOSSARY

UNILAB REFERENCE MANUAL

Examples

NORMT 12 HDATA S

Clears all previous trigger settings with NORMT, sets a trigger for data
input 12xx (actually 1200 — 12FF), then uses S to start the analyzer.

12 HDATA 80 DATA
Sets a trigger on the 16-bit data value 1280.

12 TO 34 HDATA
Sets a trigger on data values from 12xx and 34xx hex (i.e., 1200 — 34FF).

FO MASK 00 HDATA
Sets a trigger based on the four highest bits of data, and looks for a zero
on those lines.

12 TO 23 HDATA ALSO 45 HDATA
Sets a trigger on cycles in which the high data byte is from 12 - 23, or is
45.

Comments

You must use a special 16-bit cable with processors that use a 16-bit
data bus. That cable has two ROM plugs—one for the even byte, one for
the odd byte.

If you need to use a large number of ALSC icuis, se¢ NDATA.
The HDATA inputs are named for their use in the 16BIT mode. In the

8BIT mode, they are displayed as a separate column and can be used
as extra MISC inputs, typically to look at target I/O.

GLOSSARY 90 6/89

UNILAB REFERENCE MANUAL

HELP

HELP <command> Fl
HELP

Finds the reference information for a command. With no word
following, displays a screen about On-Line Help. Press Ctr1-F1 for
additional help by category, A1t -F1 for help with processor-specific
functions. Shift-F1 displays the current Easy Macros.

Usage
Displays information about a command from the On-Line Help version

of the glossary of commands. (See also WORDS.)
Examples

HELP

Displays the main help screen.

HELP BYE
Provides information about the BYE command.

6/89 91

GLOSSARY

UNILAB REFERENCE MANUAL

HELP+
Ctrl-F1

no parameters
Provides On-Line Help, by category, about a variety of UniLab functions.

GLOSSARY 92 6/89

UNILAB REFERENCE MANUAL

HELP_DEBUG

no parameters Alt-F1

Offers On-line Help for DEBUG operations and processor-specific
features.

6/89 93 GLOSSARY

UNILAB REFERENCE MANUAL

HEXLOAD

HEXLOAD <filename>

Loads an Intel hex format object file into the Unilab’s emulation
memory. Prompts for the filename if you don’t include it. Or, use the
Files PopUp.

Usage
Loads into emulation memory a program that was stored in Intel hex
format. You can then run, debug, and alter that program like any other.

Binary format files are more compact, and load two to three times faster.
You may want your assembler to produce binary format files, if it can.
Or, after loading your program with HEXLOAD, save it with BINSAVE to
create a new binary file for future use. Binary format files are loaded
with BINLOAD or the Files PopUp.

Intel hex format files contain information about where each opcode
should be stored. Be sure the proper sections of emulation memory are
enabled before loading the file. See EMENABLE.

Loading Into RAM

The Unilab will not load a file into RAM unless you have stopped the
processor at a DEBUG breakpoint. A program (LTARG, for example)
must already have been loaded into emulation memory and run to a
breakpoint (e.g., with RESET <address> RB).

If your target processor is not at a DEBUG breakpoint, attempts to load

into memory that is not enabled will generate an “auto-breakpoint.” You
will see

“—step-into-" and “Accessing target ram or I/O” messages.

Example

HEXLOAD MYPROG.HEX
Loads an Intel hex format file called MYPROG.HEX.

GLOSSARY 94 6/89

UNILAB REFERENCE MANUAL

Comments

Only record types 0 — 3 are supported. Bytes 7 and 8 of each line in the
file tell what record type that line uses. See also the appendix “Object-
and Symbol-File Formats.”

16-bit processor note: If the UniLab detects a type 2 record (extended
address), then address bits A16 — A19 will be compared to the current
=EMSEG; data won't be loaded if it is intended for a segment other than
the current one.

Operator Shortcuts
You can load hex files via the Files PopUp.

6/89 95

GLOSSARY

UNiLAB REFERENCE MANUAL

HLOAD

HLOAD <filename> PPA

Loads from a disk file the setup data for a histogram. This is only used
with the optional Program Performance Analyzer.

Usage

Loads into memory a PPA template—or an entire run you saved
previously—then invokes the correct histogram: AHIST, MHIST, or
THIST.

Example
HLOAD AUGZ28.HST
Loads into memory the information in the file AUG28.HST that had been

saved with HSAVE.

Operator Shortcuts
You can load histogram files via the Files PopUp or from the PPA.

GLOSSARY 96 6/89

UNILAB REFERENCE MANUAL

HSAVE

HSAVE <filename> PPA

Saves to a file the data describing a histogram. This is only used with the
optional Program Performance Analyzer, after exiting from THIST,
MHIST, or AHIST. Or use the Files PopUp.

Usage

This is handy when you periodically run a histogram of a program and
want to save the bin settings. It can also be used to save a particular run
of the Program Performance Analyzer, including the collected data, for
later review or comparison.

Load the information back into memory with HLOAD or use the Files
PopUp.

Example
HSAVE AUG28.HST
Saves as a file the data that describes the last histogram you saw before

exiting from AHIST, THIST, or MHIST.

Operator Shortcuts
You can save histograms via the PPA menu or the Files PopUp.

6/89 97

GLOSSARY

UNILAB REFERENCE MANUAL

INFINITE

INFINITE PEVENTS Rarely Used

Used only before PEVENTS, instead of a count, to indicate that the
trigger event must immediately follow the qualifiers.

Usage

Used with a trigger specification (see ADR, DATA, READ, WRITE, etc.)
and a qualifier specification (see AFTER and QUALIFIERS), when you
are only interested in the trigger event if it occurs during the bus cycle
that immediately follows the qualifying cycle(s).

Background

By default, the UniLab searches just for the first occurrence of the
qualifying sequence. After the sequence has been found once, the
UniLab proceeds to look for the trigger.

With <count> PEVENTS, the Unilab searches for the qualifying events
until it finds them <count> number of times; then it looks for the
trigger.

What It Really Does—INF INITE causes the Unilab to search for the
qualifying sequence and, when it finds it, to see if the very next cycle
matches the trigger spec. If not, the Unilab starts looking for the
qualifiers again.

Example

123 ADR AFTER 345 ADR INFINITE PEVENTS
Triggers if address 123 immediately follows address 345.

GLOSSARY 98

6/89

UNILAB REFERENCE MANUAL

INIT

no parameters

Sends an initialization message to the Unilab.
——_———-—-————___—__—h————

Usage

If the Unilab was not properly connected when you executed the
software, or if you tumed off the UniLab during use, it must be re-
initialized. This command re-initializes the UniLab without the need to
return to DOS.

When you start the software, it initializes the instrument just after the
screen clears and the Unilab version number is displayed. If you tap any
key right after the screen clears, the automatic initialization won’t occur.
You will then have to type INIT before you can send commands to the
instrument.

Example
INIT
This command is never used in combination with anything else.

Comments
Initializes the mode bits, baud rate, and emulation enable map. Executed
automatically after PROM operations to re-initialize the analyzer modes.

Al

6/89 99

GLOSSARY

UNILAB REFERENCE MANUAL

INSIGHT

no parameters Ctrl-F3

Provides access to the Insight display/control panel.

Usage
Displays the InSight panel, ready to poll the processor at any address.

See also RESIGHT to re-enter InSight with the prior InSight trigger intact.

Example

INSIGHT
This command is never used in combination with anything else.

GLOSSARY 100 6/89

UNILAB REFERENCE MANUAL

INT

no parameters _ Rarely Used

Generates a low-going signal on the NMI- wire when the current
qualifiers have been satisfied. The signal goes high again when the
trigger is satisfied.
_—————————
Usage

Useful for causing the target to execute an interrupt routine when the
analyzer goes into trigger-search state (i.e., after the qualifier sequence
has been found). Can also be used to prevent damage to equipment by
branching control to a “soft shutdown” routine when some error
condition occurs. (You must, of course, write and install your own
shutdown routine.)

Orion DEBUG packages use this command internally. If you want to use
it, disable the STEP-INTO feature with the mode panel (F8) or with
SOFTWARE. :

NORMXx turns off INT.

Example

NORMT INT AFTER 123 ADR S

Interrupts the target processor during the bus cycle after address 123 is
reached, then triggers immediately.

NORMT INT 12 DATA AFTER 345 ADR S
Interrupts during the bus cycle after address 345 occurs, then will trigger

when 12 data occurs.

Comments

The interrupt occurs when the qualifying sequence is complete, not
when the trigger event is detected. This makes it possible to trigger on
something specific after the interrupt occurs.

6/89 101

GLOSSARY

UNILAB REFERENCE MANUAL

INT'

no parameters Rarely Used

Disables the INT mode. See INT.

Usage
Not often used, since NORMx also disables the INT mode. Only used to

reissue the current trigger specification without generating a hardware
interrupt.

GLOSSARY 102 6/89

UNILAB REFERENCE MANUAL

IS

<value> IS <name>

Assigns a symbolic name to an address or data value.
e ___———————— —————
Usage

Used to define mnemonic names for numerical information, which then
can be used as command parameters and will appear in traces and
disassemblies. If you already have an assembler-generated symbol table,
use the symbol table features of the UniLab to load it, and just use this
command to create individual labels ‘on the fly,’ as the need arises. (See
the Files PopUp and LOADER.)

IS turns on symbol display mode.

Example

1234 IS MREGISTER

Assigns to 1234 the symbolic name MREGISTER—wherever that value
occurs, it will be displayed by this label as long as the symbol display is
active.

Comments
See also ISMODULE, ISOFFSET, ISSEG, SYMB, SYMB', SYMSAVE,
CLRSYM and the Files PopUp.

6/89 103

GLOSSARY

UNiLAB REFERENCE MANUAL

ISMODULE

<module#> ISMODULE <new_name>

Assigns a new name to a module by its symbol-table number.

Usage

Changes the name of the file referred to by symbol table line-number.
Use this command when the symbol table has assigned an inaccurate file
extension to a filename.

Example
1 ISMODULE OUT.C
Assigns the name OUT.C to module #1 in the Unilab’s symbol table.

3 ISMODULE PROMO0O0O
Assigns the name PROM0000 to module #3.

Comments

See also IS, ISSEG, SYMB, SYMB', SYMSAVE, CLRSYY, SYMLOAD and
the Files PopUp.

GLOSSARY 104 6/89

UNILAB REFERENCE MANUAL

ISOFFSET

<16~bit> ISOFFSET <name> 8088/86 DDB

Assigns a symbolic name to an offset from the current segment. For use
with the 8088/86 family DDB only.
_-———————
Usage

To make mnemonic names for memory locations, which then can be
used with commands and which will show in traces and disassemblies.

If you already have an assembler-generated symbol table, use the
symbol table features of the Unilab to import it—see LOADER and the
Files PopUp (F5).

ISOFFSET creates a segmented symbol whose value depends on both
the offset and the current segment. ISOFFSET defaults to the value of
Cs:, but you can override it; see the example below.

ISOFFSET will create an unnamed segment symbol if a segment symbol
with the correct value does not yet exist.

ISOFFSET turns on symbol display mode.

For more information on ISOFFSET and the 8088/86 address space,
refer to Orion’s Engineering Technical Note #24 (ETN-24).

Example

1234 ISOFFSET CODE-ADR
Gives the name CODE-ADR to 1234 offset from CS:.

9988: 5678 ISOFFSET MYSYMB
Assigns the name MYSYMB to 5678 offset from 9988.

Comments
See also IS, ISMODULE, ISSEG, SYMB, SYMB', SYMSAVE, CLRSYM.

6/89 105

GLOSSARY

UNiLAB REFERENCE MANUAL

ISSEG

<value> ISSEG <name> 8088/86 DDB

Assigns a symbolic name to a segment value. For use with 8088/86
family DDB only.

e]

Usage

Used to assign 2 mnemonic name to a segment, for use with the
UniLab’s memory operations. If you already have an assembler-
generated symbol table, you will prefer the symbol table features of the
UniLab; see LOADER and the Files PopUp.

You can use ISSEG to add symbols before or after you have loaded a
symbol table.

Use this to create a named offset symbol before using ISOFFSET, since
ISOFFSET will create an unnamed segment symbol if a symbol with the
correct value does not yet exist.

When you enter the name of a segment symbol, it overrides the default
segment value of the next memory operation. For more about ISSEG
and the 8088/86 address space, refer to Orion’s Engineering Technical
Note #24 (ETN-24).

Example
9988 ISSEG MYSEG
Assigns the name MYSEG to segment value 9988.

Comments
See also IS, ISMODULE, ISOFFSET, SYMB, SYMB ', SYMSAVE, CLRSYH,
SYMLOAD.

GLOSSARY 106 6/89

UNILAB REFERENCE MANUAL

LADR
<byte> LADR Rarely Used

<byte> TO <byte> LADR
<byte> MASK <byte> LADR

Sets the trigger value for the low-order byte of the address (A0 — A7).
—_——ce) e s a

Usage

You can use this trigger-spec command in the same way as DATA, CONT,
etc. However, it is most frequently used when setting an address trigger
that uses many calls to ALSO.

LADR is also useful for setting a trigger on a Z80 port address. The ports
of that processor have one-byte addresses, and the Z80 puts the contents
of the A register on the upper byte of the address lines when it outputs
to a port.

Address Inputs—You will normally use ADR to set 16 or 20 bits at once,
but there are limits to the use of ALSO in combination with ADR (see
ADR). You can change the trigger spec of the low-order address byte
with LADR, of the second byte with the HADR command, and of the high
four bytes (for 20-bit addresses) with CONT or ASEG.

Example
NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
Sets the analyzer to trigger on any of the addresses 1234, 1210, or 1205.

Comments

Makes it possible to treat the first two bytes of the address separately.
(HADR is the upper half.)

6/89 107

GLOSSARY

UNiLas REFERENCE MANUAL

LOADER

Not a Unilab command—execute from DOS.

Loads object code files and mixed symbol-and-object files.

Usage

LOADER is a standalone application for processing OMF and other files;
it produces symbol and binary files which can be loaded by the Unilab.
(See SYMLOAD, BINLOAD, and HEXLOAD, or use the Files PopUp.) This
utility can also process fixed-format symbol records that you describe to
the loader; it usually makes two passes through such a file, informing
you of the status.

Invoking the Loader—Just type LOADER at the DOS prompt to display
the menu shown below. If you include all the necessary command-line
arguments (see following) when you first invoke the loader, it exits to
DOS after successful completion. It can be very efficient to use LOADER
in a batch file with your compiler/assembler/linker, to translate the
output files after each new pass, and then start the Unilab.

Formats processed by LOADER:
F1l) OMF51 Intel OMF for the 8051 family. (1 o s)
F2) OMF86 Intel OMF for the 88/86 family. (1 o s)
F3) OMF80 Intel OMF for the 8080 family. (1 o s)
F4) TEKHEX Tektronix Hex. (o)
F5) MOTORS Motorola S records. (o)
F6) SYMFIX User-defined fixed-length format. (s)
F7) 2500AD Linker option M (Microtek). (s)
F8) MANX ASCII file—value, then name. (s)
F9) AVOCET ASCII file—name, then value. (s)
F10) sDSI Software Development Systems Inc. (1 s)
End EXIT from LOADER
Esc Go to LOADER command mode (1) = line numbers
(s) =symbols
(o) = object code
Explanation

Press the key that corresponds to the format of the file you want to
load—you will be prompted for its filename.

GLOSSARY 108 6/89

UNILAB REFERENCE MANUAL

Command-Line Options & LOADER

Several options allow you to control the loader. These ‘switches’ can
follow LOADER on the command line or in a batch file; or they can be
used after invoking the loader menu, by entering its command mode
(F9). Command mode also allows you to review a record of the loading
process (see below). Which load command you use determines what
kind of file the loader will process—this is always the last command-line
option:

LOADER first opt .. last_opt load command filename

Command-line options:

-D Eliminates symbols with same
value; saves space and speeds
file translation.

-E Reports all errors and warnings.
(Usually only fatal errors cause the
loader to terminate.)

-0 filename Changes output filename. (Defaults
are ORION.BIN and ORION.SYM.)
-U Suppresses upper-case conver-

sion. Permits case-sensitive sym-
bols, but all commands must then
be in upper case.!

~-W Waits for a keypress before
exiting LOADER; mostly used in
batch files to see file-size messages
before exiting from the loader.

Load commands (descriptions on previous page):

OMF51 OMF86 OMF80
TEKHEX MOTORS SYMFIX
2500AD MANX AVOCET
SDSI

Example

C> LOADER -0 VERS02 -D OMF51 SIEVE.A51
Processes the file SIEVE.A51, creating output files VERS02.BIN and
VERS02.SYM, and eliminating duplicate symbols.

170 make the UniLab case-sensitive as well, go to MACRO mode, bype
L/U? OFF and enter all subsequent Unilab commands in upper case.

6/89 109 GLOSSARY

UNiLA8 REFERENCE MANUAL

Review Loading Process—To review a record of the loading process, go
to the loader’s command mode and press F5 repeatedly. This moves
back through a record of actions taken by the loader. Move forward
again with Fé.

Loader Output—If the file you are processing contains symbols, the
loader will create a symbol file named ORION.SYM. (Use the -0 option
to specify a base filename other than ORION.)

If the file is of a format that can only address a single 64K segment (e.g.,
OMF51 and TEKHEX), the object code will be named ORION.BIN.
(Again, use the -0 option to specify a base filename other than ORION.)

If the format can address multiple 64K segments, a separate binary file is
created for each 64K segment addressed by the application. Each of
these files has a name in the form xORION.BIN, where x is the hex
value of the file’s destination =EMSEG. For example, FORION.BIN should
be loaded into F =EMSEG.

Load the New Files

After the loader creates the output files, it tells you where in memory to
load each of them. Start the UniLab software and enable memory in
those segment(s). Then use BINLOAD and SYMLOAD, or the Files PopUp,
to load the binary file(s) and the symbol file. (The binary file—but not

the symbol file—can be loaded into the UDL as well.)

GLOSSARY 110 6/89

UNILAB REFERENCE MANUAL

Supported File Formats

LOADER directly supports most widely used file formats. Details of the
formats themselves are discussed in the appendix “Object- and Symbol-
File Formats.” They include:

» absolute Object Module Format (OMF) for the 8051 family

« OMF for the 8086 family

« OMF for the 8080 family

« Tektronix Hex (but not, yet, extended TekHex)

« Motorola S records

+ 2500AD symbol files (linker option M—Microtek)

« MANX symbol files (and others with one symbol per line, consisting of
a four-digit hex value followed by the name)

« AVOCET symbol files (and others with one symbol per line consisting
of the name followed by a four hex-digit value)

» Software Development Systems, Inc. files (which usually have a .OUT
extension)

« Other fixed-record-length files are supported via SYMFIX, described in
On-Line Help and in the appendix.

6/89 111

GLOSSARY

UNILAB REFERENCE MANUAL

Notes:

GLOSSARY 112 6/89

UNILAB REFERENCE MANUAL

LP

no parameters

Executes a loop once and stops.
e —————

Usage

You must already have stopped the microprocessor at a DEBUG
breakpoint (see RB) and be at an address that will be executed again
(i.e., within a loop). This command allows the program to run around
the loop once and up to the current address, displaying the registers
when it stops.

Watch Out—Won’t work if the program counter register is pointing
above the first instruction or below the last instruction in the loop. Only
works when you are within the loop. See the Target Application Notes
for your processor about any additional restrictions.

Example
LP
This command is never used in combination with anything else.

Comments

LP works by saving the current breakpoint address, executing STEP~
OVER (single-steps without following branches), and then
<saved_address> RB. Processors with multiple-byte breakpoint
opcodes will execute STEP -OVER several times.

6/89 113

GLOSSARY

UNILAB REFERENCE MANUAL

LTARG

no par ameters

Loads a simple target program into the Unilab’s emulation memory.
_—-r0 ===

Usage

A good way to gain familiarity with the Unilab. Packaged with the
optional disassembler, this command enables the proper section of
emulation memory and loads a simple program. You can then use the
STARTUP command to capture a trace of your target system as it
executes this simple program.

Watch Out: Processors with External Stacks—The LTARG program uses
the memory map of the Orion MicroTarget. If your target system does
not have RAM and ROM where the LTARG program needs them, it will
not run without some patching.

The Target Application Notes for each DDB includes an LTARG sample
session.

Example

LTARG
This command is never used in combination with anything else.

GLOSSARY 114 6/89

UNILAB REFERENCE MANUAL

M

<byte> M

Stores a byte in ROM or RAM, and increments the reference address.

Usage

A prior ORG statement must be used to set the initial reference address.
If that address is in emulation ROM, M simply stores the specified byte
there and increments the ORG value for further use by M or another
memory-patching command.

M can change the contents of target RAM just as easily, if the micropro-
cessor is at a breakpoint. But if the target program is still running when
the M command is issued and the ORG address is not in emulation
memory, first STEP~INTO gets an invisible breakpoint, then the memory
operation is performed, and normal execution resumes. (See STEP~
INTO for details; if it isn’t enabled, this won’t work in RAM.)

As with all memory-patching commands, be careful not to overwrite
your stack area when writing into RAM.

Examples
3000 ORG 12 M
Stores a 12 at 3000.

150 ORG 5 M 10 M
Stores a 5 at location 150, and a 10 at 151,

Comments

Used for entering data tables, program patches, etc. (See also MM, MM!,
and M!.)

6/89 115 GLOSSARY

UNILAB REFERENCE MANUAL

M!

<byte> <addr> M!

Stores a byte of data at the specified address.

Usage

Used to patch program memory. Similar to M but doesn't require a
previous ORG statement—instead requires an address parameter. (See
also M.)

M! can change the contents of target RAM just as easily, if the micropro-
cessor is at a breakpoint. But if the target program is still running when
the M! command is issued and the address is not in emulation memory,
first STEP-INTO gets an invisible breakpoint, then the memory
operation is performed, and normal execution resumes. (See STEP-
INTO for details; if it isn’t enabled, this operation won't work.)

As with all memory-patching commands, be careful not to overwrite
your stack area when writing into RAM.

Examples

12 3000 M!
Stores a 12 at 3000.

5 150 M! 10 150 M!
Stores a 5 at location 150, and a 10 at 151.

Comments

Used for entering small patches—areas larger than one byte can be
changed with fewer keystrokes by other memory commands. (See also
MM, MM!, and M.)

GLOSSARY 116 6/89

UNILAB REFERENCE MANUAL

M?

<addr> M?

Displays the byte stored at the specified address.

Usage

Used to find out what is stored at a single memory location, in either
ROM or RAM (see below). Use MM? for looking at words, and MDUMP or
DM to see larger areas of memory.

Example
1210 M2
Displays the byte stored at 1210.

Comments

If the address is in emulation memory, its contents will be displayed;
otherwise, the UniLab will attempt to use DEBUG features to display
target RAM. (See STEP-INTO for details; if it isn’t enabled, this won’t
work in RAM.)

6/89 117

GLOSSARY

UNILAB REFERENCE MANUAL

MACRO

no par ameters

Switches the UniLab software to a macro-level system.

Usage

Only necessary to write macros or for access to the “internal” words of
the Unilab software. For information about macros, refer to the glossary
entry for : (colon), and the appendix “Writing Macros.” See also

EDIT MACROS for information about simple macros that do not require
the macro system.

Several otherwise-unused files must be in the Unilab directory when
you switch the software to the macro-level system. Included on your
UniLab diskettes are files with an .OPR extension for the normal,
operator-level system; and others with an .MCR extension for the macro
system. You should have one .OPR and one .MCR file for every .EXE or
.OVL file. When you switch to the macro system, the Unilab software
will search for an .MCR file whose name matches that of the current
.EXE file.

You can save the Unilab software in its macro-level state any time after

using the MACRO command: SAVE-SYS (normally invoked via the “save
conFiguration” option of the Configuration PopUp) will save an IXE file
and a matching .MCR file to the new filename you specify.

Example
MACRO
Converts the UniLab software to a macro system.

Comments
In the operator system (see OPERATOR and MAKE-OPERATOR), you have
access only to the commands in the Unilab glossary and to the some-

what limited Easy Macros. However, these features suit many users
admirably.

GLOSSARY 118 6/89

UNILAB REFERENCE MANUAL

MACRO_2

no parameters
(See EDIT_MACROS.)

MACRO_3

no parameters
(See EDIT_MACROS.)

MACRO_4

no parameters
(See EDIT_MACROS.)

MACRO_5

no parameters
(See EDIT_MACROS.)

MACRO_6

no parameters
(See EDIT_MACROS.)

MACRO_7

no parameters
(See EDIT MACROS.)

MACRO_8

no parameters
(See EDIT MACROS.)

MACRO_9

no parameters
(See EDIT_MACROS.)

6/89

119

Shift-F2

Shift-rF3

Shift-r4

Shift-F5

Shift-Fé

Shift-r7

Shift-rF8

Shift-r9

GLOSSARY

UNILAB REFERENCE MANUAL

MAKE-OPERATOR

MAKE-OPERATOR <filename> Macro System

Use this command to create an operator-level system (i.e., restricted
access to UniLab commands) with access to words you have defined in
the MACRO system.
W
Usage

This command performs four actions:

1) saves the current macro system,

2) creates a new version of the operator system,
3) saves the new operator system, and

4) exits to DOS.

The standard (default) operator system only offers access to commands
documented in the On-Line Help version of this glossary. A newly
created operator system also recognizes any macro-level commands you
defined, but still restricts access to the advanced features of the macro
system.

Filenames—To make an operator system with this command, your
Unilab directory must contain the MAKE file from the Orion Utilities
diskette.

Example

MAKE-OPERATOR TESTER

Saves a macro system with the filename TESTER.MCR, then creates an
operator system and saves that as TESTER.EXE, with the associated file
TESTER.OPR.

GLOSSARY 120 6/89

UNILAB REFERENCE MANUAL

MAPSYM

MAPSYM <filename>

Reads from a .MAP file the information the UniLab needs to support
high-level source code. Clears the current symbol table before loading

the information. See also MAPSYM+.
%

Usage

Makes it possible to display high-level language source files in the trace.
After you issue this command, each line of your source code will be
displayed just before the instructions generated by that line. (The source
files must be in the current directory, or they will not be found.)

You do not need to use this command if your linker puts out an OMF51
or OMF86 file, or if you are using the SDSI 68000 or Z80 C compiler.
Output files from those linkers contain all the line number information to
display high-level language source files. MAPSYM is of limited use and
is only needed if you have another file format and want to insert infor-
mation from your text file into the trace display or disassembly listings.

Use SYMLIST to view the contents of the symbol table, save it to disk
with SYMSAVE, and reload it later with SYMLOAD. You can turn off the
display of high-level source files with SOURCE ",

Also see the appendix “Object- and Symbol-File Formats.”

-MAP File Formats

You can use a Microsoft- or ORION-format .MAP file. The Microsoft
-MAP file contains a mixture of symbol and line-number data. The Orion
-MAP file is simply an ASCII file containing an unlimited number of file
records, one for each source file, which makes it easier to generate a
.MAP file.

In Orion-format .MAP files, the first line of every file record contains the
keyword SOURCE followed by the source code’s filename. Each
remaining line in the file record consists of a line number from the
source code and the absolute 16-bit address of the code generated by
that line. A file record is terminated by a blank line.

The .MAP file is terminated by two blank lines. Every line of the .MAP

file must end in a carriage return and a line feed (ASCII codes ODH and
OAHD.

6/89 121 GLOSSARY

UNILAB REFERENCE MANUAL

Sample Orion .MAP File

The following is a simple example of an Orion format .MAP file. This file
describes the relationship between the source files and the machine
code for a simple C program. The program was generated from two
source files. (Notice that only some lines of the source file generated
code.)

Sample Orion .MAP File:

SOURCE SIMPLEl.C
2 0034

5 0040

6 0050

<blank line>
SOURCE SIMPLE2.C
3 0055

5 0070

<blank line>

<blank line>

Example

MAPSYM TEST.MAP

Loads into the symbol table the information in .MAP file TEST.MAP. The
source files themselves are not opencd untll needed, 2.g., while locking

at a trace display or at a disassembly from memory.

GLOSSARY 122 6/89

UNILAB REFERENCE MANUAL

MAPSYM+

MAPSYM+ <filename>

Like MAPSYM, but doesn't clear the symbol table before loading the .MAP
file.

6/89 123 GLOSSARY

UNILAB REFERENCE MANUAL

MASK

<bytel> MASK <byte2>

Specifies a mask for the trigger specification that immediately follows.
—_———————
Usage

A modifier used with ADR, CONT, DATA, HADR, HDATA, LADR, and MISC.
The first byte describes which of the eight lines to watch (a bit set to

one means pay attention, a zero means ignore that wire). The second
byte tells the UniLab what value to look for on those lines.

The UniLab ignores inputs that the first byte tells it to ignore. Thus, 01
MASK 01 has the same effect as 01 MASK FF.

Example
NORMT 2 MASK 2 MISC S
Triggers if input M1 goes high.

NORMT B# 0010 MASK B# 0010 MISC s
The same effect as the first example—iriggers if input M1 goes high.

NORMT 3 MASK 2 MISC S
Requires inputs M1 = 1 and M0 = 0 in order to trigger.

Comments
MASK cannot be used with TO, NOT, or ALSO.

GLOSSARY 124 6/89

UNILAB REFERENCE MANUAL

MCOMP

<start_addr> <end_addr> <comp_addr> MCOMP

Compares two areas of memory and indicates differences.

Usage
Compares the two areas of memory, and gives a message about each
discrepancy. Press any key to abort.

Example Report
110 117 810 MCOMP

Data is 16 at addr 0110 ..but is 5 at addr 0810
Data is 90 at addr 0112 ..but is 80 at addr 0812
Data is 27 at addr 0116 ..but is 23 at addr 0816

You only need to enter three addresses—the starting and ending address
of the first block of memory, and the starting address of the second.

Verifying ROMs

If you want to compare a ROM to a program on disk, first load the
program using BINLOAD or HEXLOAD. After that, use the EPROM PopUp
to read the contents of the PROM into a different memory area. You can
then use MCOMP to compare the two target areas.

Example
100 300 800 MCOMP
Compares data at target addresses 100 — 300 to the data at 800 — A0O.

Comments
Works on emulated ROM or target RAM. (See STEP-INTO and RB.)

6/89 125

GLOSSARY

UNILAB REFERENCE MANUAL

MDUMP

<from addr> <to_addr> MDUMP

Displays the contents of an area of memory. (See also MODIFY.)

Usage

Allows you to look at any size block of memory. Press any key to freeze
the scrolling of the display. Press any key again to continue. While
scrolling is stopped, press any key twice quickly to stop.

Example
1234 1334 MDUMP
Displays the contents of locations 1234 — 1334 in hex and ASCII.

Comments

As with all M commands, this displays the contents of emulation memory
if the address has been EMENABLEd, otherwise DEBUG features will
display the contents of target RAM. (See STEP-INTO and RB.)

GLOSSARY 126 6/89

UNILAB REFERENCE MANUAL

MEMO

no parameters Alt-F2

Displays, and allows editing of, the on-line memo pad.

Usage
A handy way to keep notes to yourself, and to store macros or useful
series of commands.

Helpful prompts are always displayed. Press F1 for more help. Exit the
full-screen editor with Esc or End. End will save your work, Esc will
allow you to exit without saving your changes to the screen.

Example
MEMO
This command is never used in combination with anything else.

Comments
This works only when EDITxx.VIR and MEMQ.SCR from the Orion
Utilities diskette are in the same disk directory as the Unilab program.

See the appendix “Writing Macros” for help with the editor.

R

6/89 127

GLOSSARY

UNILAB REFERENCE MANUAL

MESSAGE

no par: ameters

Gives a screenful of information about recent updates and additions to

the Unilab software.
M

Usage
Helps you to be sure you know the latest capabilities of the UniLab.

GLOSSARY 128 6/89

UNILAB REFERENCE MANUAL

MFILL

<from_addr> <to_addr> <byte> MFILL

Fills every location in an area of memory with the same byte.

Usage

A good way to see if the address and data lines connect properly on the
target board: you can fill an area of memory, and then examine it with
MDUMP.

One way to find out what is happening on your board when LTARG
won’t work: starting at the reset address, fill a block of memory with
NOP instructions and then use STARTUP. You should see a trace of
consecutive addresses. This is a heavy-handed way to poke a single byte
into memory: see MM, M, MM!, and M! for more elegant ways to do this.)

Like other memory-altering commands, if you use this to access RAM
and you aren’t stopped at a breakpoint, STEP -INTO is automatically
invoked to first get an invisible breakpoint. (See STEP-INTO for details.)

Example
1200 1300 20 MFILL
Fills locations 1200 — 1300 with the value 20 hex.

Comments

As with all memory-writing commands, be careful not to write into your
stack area when loading into RAM.

6/89 129

GLOSSARY

UNILAB REFERENCE MANUAL

MHIST

no parameters PPA

MHIST, the multiple-pass, address-domain histogram, invokes the
optional Program Performance Analyzer (PPA) in the mode which
displays the execution time of the code in up to 15 user-specified
address ranges. See also THIST and AHIST.

e ——— —— —— —————— — -
Usage

Allows you to examine the performance of your software, to see where
your program spends most of its time. Press Esc to exit from this menu-
driven feature.

Before you use the PPA the first time, you must issue the command
SOFT to install it.! SOFT performs a SAVE-SYS, then causes an exit to
DOS. The next time you boot the Unilab software, the PPA will be
installed.

Start the Histogram—To produce a histogram, first specify the upper and
lower limits of each address “bin” you want to display, then start the
histogram.

When you issue the command MHIST, you get the chart screen with the
cursor positioned on the {irsi bin. You can then type a lowei and uppei
limit for each bin. Press return, tab, or an arrow key to move to the next
field. Press F1 or Alt-F1 to start the histogram.

Save to a File—You can save a histogram’s setup (i.e., bin limits, title,
and any labels) in a file, along with any collected data, after you exit
from the histogram screen. Just type HSAVE <filename> at the
Command> prompt or use the Files PopUp.

Load From a File—You can load a previously saved histogram by typing
HLOAD <filename> at the Command> prompt, or via the Files PopUp.
Loading a histogram file also invokes the PPA in the correct mode.

Example
MHIST
This command is never used in combination with anything else.

Operator Shortcuts
This command is available on the Orion PopUp and the PPA menuy,
which can be displayed by pressing A1t-F10.

10nly the first time you use the PPA.

GLOSSARY 130 6/89

UNILAB REFERENCE MANUAL

MISC
<byte> MISC

<byte> TO <byte> MISC
<byte> MASK <byte> MISC

Changes the analyzer trigger for the miscellaneous inputs.

The MISC Inputs

The Unilab’s 48-bit-wide trace buffer has room for eight more bits than
are used for the data, address, and control lines. These eight input lines
are available for sensing anything on the target board that you want to
know about, or that you want the UniLab to trigger on. For example,
you could hook them to an output port, to trigger when a particular bit
configuration gets asserted on that port.

Qualifier and filter specifications always ignore the MISC inputs.

Usage
The simplest use sets a trigger on a single value on miscellaneous inputs.

The Unilab will search for the byte value and will trigger when it sees
that hex number on the lines. (See the first example below.)

Ranges—TO lets you set a trigger on any input between two byte values,
inclusive. (See the second example below.)

NOT—NOT causes the Unilab to trigger when a value is detected outside
the specified range or value.

Masking—You can use <k> MASK <m> MISC to examine any subset of
the eight miscellaneous lines. This is particularly handy when you only
have one or two of the MISC inputs connected to your board. You don’t
care about the logic level of the other six lines, since they don’t mean

anything.

6/89 131

GLOSSARY

UNILAB REFERENCE MANUAL

The high bits of <k> mark the bits to be examined, while the bit
configuration of <m> indicates what values the lines must have for a
trigger to occur.

For example, 03 MASK FF MISC selects only bits MO and M1 for
examination (with binary value 0000 0011). The Unilab will trigger
when both these bits have a high value. The instruction 03 MASK 03
MISC would have the same effect.

With Filtering—All trace-filtering methods and qualifiers ignore the MISC
inputs. Since they still effect triggering, this makes the MISC inputs
particularly useful as trigger inputs for filtered traces.

Examples

NORMT 12 MISC S

Clears all previous settings with NORMT, sets a trigger for miscellaneous
input 12, and uses S to start the analyzer.

12 TO 34 MISC
Specifies a miscellaneous input value in the range 12 - 34 hex.

FO MASK 00 MISC
Sets a trigger based on the four highest bits. The UniLab will trigger

when it finds zero on those lines.

23 MISC ALSO 45 MISC
Sets a trigger on cycles where the MISC input is either 23 or 45 hex.

Comments

The MISC inputs can be connected to anything, and are often used to
look at target 1/O.

GLOSSARY 132 6/89

UNILAB REFERENCE MANUAL

MISC'

MISC' FILTER Rarely Used

Used before FILTER to enable filtering on all inputs except the
MISCellaneous (MO — M7) and HDATA inputs (D8 — D15).

Why You Don’t Need to Bother

This is taken care of by ONLY and by xAFTER, so it is unlikely that you
will need to use this command directly. (See also CONTROL, HDAT, and
NO.)

NORMzx turns filtering off.
Example

MISC' FILTER
Enables filtering on all inputs except MO — M7 and D8 - D15.

6/89 133

GLOSSARY

UNILAB REFERENCE MANUAL

MM

<word> MM

Stores a 16-bit word into ROM or RAM, and increments the reference
address.

—_—— -

Usage

A prior ORG statement must be used to set the initial reference address.
If that address is in emulation ROM, MM simply stores the specified word
there and increments the ORG value for further use by MM or another
memory-patching command.

MM can change the contents of target RAM just as easily, if the micropro-
cessor is at a breakpoint. But if the target program is still running when
the MM command is issued and the ORG address is not in emulation
memory, first STEP—INTO gets an invisible breakpoint, then the memory
operation is performed, and normal execution resumes. (See STEP -
INTO for details; if it isn’t enabled, this won't work in RAM.)

As with all memory-patching commands, be careful not to overwrite
your stack area when writing into RAM.

Examples

3000 ORG 1210 MM
Stores 1210 at 3000.

150 ORG 5000 MM 7001 MM
Stores 5000 at location 150 and 7001 at 152.

Comments
Useful for entering data tables, program patches, etc. See also M, MM!,
and M!. See ASM for information about the line-by-line assembler.

If you have a disassembler, the byte order is set correctly; otherwise,
you can set it with HL or LH.

GLOSSARY 134 6/89

UNILAB REFERENCE MANUAL

MM!

<word> <addr> MM!

Stores a 16-bit word of data at the specified address.

Usage

Used to patch program memory. Similar to MM but doesn’t require a
previous ORG statement—instead requires an address parameter. (See
also M!.)

MM! can change the contents of target RAM just as easily, if the
microprocessor is at a breakpoint. But if the target program is still
running when the MM! command is issued and the address is not in
emulation memory, first STEP-INTO gets an invisible breakpoint, then
the memory operation is performed, and normal execution resumes.
(See STEP-INTO for details; if it isn’t enabled, this operation won't
work.)

As with all memory-patching commands, be careful not to overwrite
your stack area when writing into RAM.

Examples
1200 3000 MM!
Stores a 1200 at 3000

5000 150 MM! 1000 152 MM!
Stores 5000 at location 151 and 1000 at 153.

Comments

Useful for entering small patches—anything larger than one word can be
done with fewer keystrokes by one of the other memory commands.
(See MM and M.)

If you have a disassembler, the byte order is set correctly; otherwise,
you can set it with HL or LH.

6/89 135

GLOSSARY

UNILAB REFERENCE MANUAL

MM?

<addr> MM?

Displays the 16-bit word that is at the specified address.

Usage

Used to find out what is stored at a single memory location, in either
ROM or RAM (see below). Use MM? for looking at words, and MDUMP or
DM to see larger areas of memory.

Example
1210 MM?
Displays the word stored at 1210.

Commernts

If the address is in emulation memory, its contents will be displayed;
otherwise, the UniLab will attempt to use DEBUG features to display
target RAM. (See STEP-INTO for details; if it isn’t enabled, this won’t
work in RAM.)

If you have a disassembler, the byte order is set correctly; otherwise,
you can set it with HL or LH.

GLOSSARY 136 6/89

UNILAB REFERENCE MANUAL

MMOVE

<start_addr> <end addr> <dest> MMOVE

Moves a block of memory from one area to another in target memory.

Usage

A good way to make more room when you need to paich extra code
into a program. You can also use this to relocate a relocatable code
module.

Like other memory-altering commands, if you use this to access RAM
and you aren’t stopped at a breakpoint, STEP-INTO is automatically
invoked to first get an invisible breakpoint. (See STEP-INTO for details.)

Smanrt Mover—Automatically prevents overwriting when moving the
contents of one area to an overlapping area. Starts moving from the
beginning or the end of the range, as necessary. (See the two examples
below.)

Examples

1000 2000 1005 MMOVE

Moves the data in locations 1000 — 2000 up 5 places. Starts moving from
the end.

200 300 125 MMOVE
Moves the data in 200 - 300 down 75 places. Starts moving from the

beginning.

Comments

Be sure the code you move is relocatable. If it isn’t, you may have to
patch some of the absolute address references. In general, exercise
caution, and use DM on the moved memory to see if the instructions still
do what you want.

As with all memory-writing commands, don’t write into your stack area
when loading into RAM.

6/89 137

GLOSSARY

UNILAB REFERENCE MANUAL

MODE

no parameters F8

Invokes the mode panels, which allow you to change the display and
log modes, to toggle certain features on/off, etc.

Usage

Press F8 once to display the first mode panel, which contains analyzer
mode switches. The second panel contains trace display mode switches.
The third panel contains log mode and DEBUG switches.

Navigating the Mode Panels—To get from one panel to another, use
PgDn. Press End to exit from the panels.

You can move around a panel and select features by pressing the TS

cursor keys. Press the — key to toggle a feature on/off. Press F1 for
help with the option that is currently highlighted by the cursor.

What They Do—See the “Mode Panels” appendix in the User’s Guide for
the complete story. You can also check the glossary entry for each
feature’s equivalent command.

Equivaien: commands jur mode-panel opiions.

Panel One: DASM SYMB POP
Panel Two: SHOWM SHOWC =MBASE PAGINATE COLOR
Panel Three: TOFILE PRINTER HARDWARE SOFTWARE

DEBUG BPDM BPT

Example
MODE
This command is never used in combination with anything else.

Operator Shortcuts
It's easier to press F8, or you can use the Configuration PopUp.

GLOSSARY 138 6/89

UNILAB REFERENCE MANUAL

MODIFY

<addr> MODIFY

Dumps a screenful of memory, like MDUMP, but lets you overwrite the
value at any address with a new one.

Usage

This invokes the memory editor, which is the best way to display and
alter memory. You can alter any location by typing a new hexadecimal
value or ASCII character.

Press End to exit from MODIFY.

Moving Around—The cursor keys move the cursor, scrolling the display
vertically as needed (see Comments, below). PgUp moves up one
screenful, PgDn moves down one.

Press Ctr1-— to move from the hexadecimal dump area to the ASCIL.
Ctrl-<« moves the cursor back.

Example

20 MODIFY

Displays a screenful of memory, starting at address 20. The cursor keys
will be reassigned as described above until you press End to save
changes and exit, or Esc to exit without saving changes.

Comments

If you change a location in memory and cause that address to scroll off
the memory editor’s screen, the change will be saved in emulation
memory even if you use Esc to exit from the editor.

6/89 139

GLOSSARY

UNiLAB REFERENCE MANUAL

MS

<count> MS Rarely Used

Pauses for <count> number of milliseconds.

Usage
Used in test programs when you need a pause. (400 hex milliseconds is
one second.)

Example

800 MS
Pauses for 2 seconds.

GLOSSARY 140 6/89

UNiLAB REFERENCE MANUAL

NDATA

<bytel> <byte2> ... <byteN> <N> NDATA

Sets N different bytes as trigger events for the analyzer.

Usage
A quick way to set triggers on many different data codes that do not fall
into ranges.

Ranges of Data—If the data falls into ranges, you can use TO instead.
For example, 12 TO 25 DATA sets the analyzer looking for any data
from 12 — 25, inclusive.

Example

Using ALSO again and again is cumbersome and requires many
keystrokes:

18 DATA ALSO 32 DATA ALSO 36 DATA ALSO 47 DATA

This accomplishes the same thing, and is less prone to error:
18 32 36 47 4 NDATA

Comments
This has the same effect as OR-ing the terms with ALSO. Any number of
terms can be listed, but be sure the count is correct.

You can use ALSO in combination with this command to add a range of
values.

6/88 141

GLOSSARY

UNILAB REFERENCE MANUAL

NO

NO FILTER Rarely Used

Used before FILTER to disable the current filter.

Usage
You will probably never use this command. It is used only to turn off
the filter while preserving the current trigger spec.

The filter mechanism of the Unilab is turned on by the XxAFTER macros.
Those commands set the filter to MISC' FILTER, which allows you to
set a trigger on all inputs except for the MISC and HDATA inputs.

See also CONTROL, HDAT and MISC'.
Example
NO FILTER

Turn off the filtering of bus cycles, but leaves the rest of the trigger spec
unchanged.

GLOSSARY 142 6/89

UNILAB REFERENCE MANUAL

NORMB

no parameters

Clears (NORMalizes) all trigger descriptions and sets the trigger event
near the bottom of the trace buffer.

Usage

Used to start a new trigger definition when you want to see the events
that lead up to the trigger. Use TSTAT to see how this command
changes the DCYCLES setting.

When you want to start from scratch with a new trigger description,
begin with NORMB, NORMM, or NORMT. These commands vary only in
where they place the trigger event in the trace buffer—at the bottom,
middle, or top.

How They Work

The NORMx commands clear the truth tables the analyzer uses to search
for the trigger event, and set the number of cycles the analyzer will wait
after the trigger before freezing the buffer. (See DCYCLES.)

Examples
NORMB
Clears any current specifications and sets four delay cycles.

NORMB NOT O TO 1000 ADR S
Shows what happened before the address went outside the 0 — 1000

range.

Comments
NORMB should be used when you want to know what leads up to the
trigger event.

See S+ to get a trace of the cycles that immediately follow those in the
current trace buffer.

Use Home to view the current trace from the top of the buffer, or
<n> TN to view it from cyde #n.

6/89 143

GLOSSARY

UNILAB REFERENCE MANUAL

NORMM

no parameters

Clears (NORMalizes) all trigger descriptions and sets the trigger near the
middle of the trace buffer.

Usage

Used to start a new trigger definition when you want to see the events
that lead up to the trigger, and also what follows it. Useful when you
want to see the context in which the trigger occurs. Use TSTAT to see
how this command changes the DCYCLES setting.

See NORMB for details.

Example

NORMM

Sets the delay cycles to 555h (1365 decimal).

Comiments
Use Home to view the current trace from the top of the buffer, or
<n> TN to view it from cycle #n.

GLOSSARY 144 6/89

UNiLAB REFERENCE MANUAL

NORMT

no parameters

Clears (NORMalizes) all trigger descriptions and sets the trigger near the
top of the trace buffer.

Usage

Used to start a new trigger definition when you want to see the events
that follow the trigger. Use TSTAT to look at how this command
changes the DCYCLES setting.

See NORMB for details.

Example
NORMT
Sets the delay cycles to 2720 decimal.

Comments
Use Home to view the current trace from the top of the buffer, or
<n> TN to view it from cycle #n.

GLOSSARY

UNILAB REFERENCE MANUAL

NOT

NOT <trigger_description>

Triggers on the first bus cycle that doesn’t match the trigger description.
—————-—

Usage

Used to tell the analyzer to trigger when some byte of the 48-channel
input bus goes outside a certain range or value. Commonly used to trap
bad data or bad addresses.

Examples
NORMT NOT 00 TO 4FF ADR S
Triggers if the address goes outside the range 00 — 4FF.

ONLY 127 ADR NOT 12 DATA S
Shows only cycles in which the address is 127 and the data is not 12.

NORMM NOT 12 DATA ALSO NOT 34 TO 56 DATA S
Triggers when the data is neither 12 nor between 34 — 56.

Comments

Sets a flag for the next trigger word (ADR, CONT, DATA, HADR, HDATA,
LADR, and MISC).

NOT clears the truth table to all 1s (except when it is used with ALSO)
and writes Os into the specified areas. This is the opposite of what would
happen if NOT weren’t used.

GLOSSARY 146 6/89

UNILAB REFERENCE MANUAL

NOW?

no parameters

Shows what is happening on the target board right now.

Usage
Shows the code the microprocessor executes during the next buffer-full

of cycles.

Example
NOW?
This command is never used in combination with anything else.

Comments

This simple macro turns off RESET (so it doesn’t restart the target), then
sets its own trigger and captures a trace.

6/89 147

GLOSSARY

UNILAB REFERENCE MANUAL

NX

no par: ameters

Finds the next match of the current F IND-xxxx value.

Usage

After you have issued a FIND-xxxx command, use NX to search the
current trace buffer for the next matching cycle. For example, use this
when you want to search the trace buffer for all accesses to a particular
memory location.

See FIND-XXXX.
Example

NX
This command is never used in combination with anything else.

GLOSSARY 148 6/89

UNILAB REFERENCE MANUAL

ONLY

ONLY <trigger description>

Fills the trace buffer only with cycles that match the description.

Usage

Clears the current trigger specification and enables filtering, so only bus
cycles that match the trigger will be recorded. For example, only the
read cycles, or only cycles that execute the code at address 0100.

Eliminate Boring Loops—This is especially useful for filtering out status
and timing loops that hog space in the display. (See the second example
below.)

Notice that, when filtering, you must use AFTER if you want to start the
trace at some particular point in the program.

ONLY and the Disassembler—Partially disassembled opcodes can be
confusing, so you will sometimes want to turn off the disassembler when
filtering a trace. Use the mode panel (F8) or DASM' to turn off the
disassembler.

Examples
ONLY READ
Searches for and records only read cycles.

ONLY NOT 120 TO 135 ADR AFTER 750 ADR S
Produces a trace starting at address 750. Excludes from the trace the

routine at addresses 120 — 135.

ONLY 0100 ADR
Records only cycles containing address 0100.

Comments

The analyzer will run until the trace buffer is full, informing you of the
number of matching cycles needed o fill the buffer. To stop the
analyzer before it is full, press Esc, then enter T to view the trace buffer.

6/89 149 GLOSSARY

UNILAB REFERENCE MANUAL

OPERATOR

no parameters Macro System

Switches the Unilab software back to an operator-level system.

Usage

This command is only used to return to the operator level after you have
entered the macro-level system with the MACRO command. An operator
system created this way won't recognize any macros defined in the
macro system. (See MAKE-OPERATOR to make an operator system that
will recognize your macros.)

The Unilab software is shipped as an operator system, which offers
access only to the Unilab commands that are found in the on-line
version of the glossary (accessed via HELP <command>); it has fewer
commands than the macro system, but enough power for most

purposes.

Filenames—In order to switch to the operator system without first
exiting to DOS, your disk directory must contain an .OPR file with the
same name as the current .EXE file. If you saved your macro system
under a new filename, that name was used only for new .EXE and .MCR
files; so you must use the DOS command COPY to copy the original
.OPR file to a new file with same name as your .EXE file—except the
extension, of course. (You can still call the original operator-level system
from DOS as before.)

See MAKE-OPERATOR to create a non-standard operator system.
Example

OPERATOR
Converts a macro-level system back to an operator-level system,

GLOSSARY 150 6/89

UNILAB REFERENCE MANUAL

ORG

<addr> ORG

Sets the origin address for subsequent memory-altering commands.

Usage
Sets the initial address used by commands that change the information
stored in several sequential bytes of memory.

You can alter emulation ROM any time and RAM, too, if you keep
STEP-INTO enabled, because the Orion software will automatically get
a breakpoint, read the RAM, and resume target execution.

If you disable STEP-INTO, you must run to a breakpoint before reading
from RAM. (See RB.)

Example
101 ORG 12 M 3410 MM
Stores 12 to location 101 and 3410 to locations 102 and 103.

Comments

Useful for entering program patches. (See also M! and MM!. See ASM for
information about the line-by-line assembler.)

6/89 151

GLOSSARY

UNILAB REFERENCE MANUAL

PAGEOQ

no parameters

Only used if your UniLab has the optional 128K memory. Selects the
bottom 64K page of emulation memory (the even EMSEG value).

Usage

Addresses that are four hex digits long (16-bit binary numbers) cover a
64K memory space, but the UniLab has an optional 128K memory space.
You must establish a context for addresses; for example, if your =EMSEG
values are E and F, this command sets the EMSEG to E (even =EMSEG),
while PAGE1 sets the EMSEG to F. Thus, after executing PAGEO, address
1300 refers to location E1300. After PAGE1, address 1300 refers to
location F1300.

Example

PAGEO
This command is never used in combination with anything else.

GLOSSARY 152 6/89

UNILAB REFERENCE MANUAL

PAGE1

no parameters

Only used if your Unilab has the optional 128K memory. Selects the top
64K page of emulation memory (odd EMSEG value).

Usage
See PAGEO above.

6/89 153 GLOSSARY

UNILAB REFERENCE MANUAL

PAGINATE

no parameters F8

Enables pagination of the trace display.

Usage
The default condition—the trace display stops after each screenful.

Normally, you will use the mode panel (F8) to toggle this feature on/off.
PAGINATE' is the corresponding command to turn off pagination.

Comments _
If you press any key while the display is scrolling, the display will stop.

GLOSSARY 154 6/89

UNILAB REFERENCE MANUAL

PAGINATE'

no parameters F8

Disables pagination of the trace display.

e
Usage

The trace display will scroll continuously—not very useful, except to
save an entire trace to a disk file. See PAGINATE.

Normally, you will use the mode panel (F8) to toggle this feature on/off.

6/89 155

GLOSSARY

UNILAB REFERENCE MANUAL

PATCH

no parameters

Redisplays the menu of processors supported by your DDB software.
e —————]

Usage
Used if you make an error selecting your processor from the
introductory display, or to try a different configuration.

Example
PATCH
This command is never used in combination with anything else.

Comments

After using PATCH or selecting the processor from the initial menu, you
can select the “save conFiguration” option of the Configuration PopUp to
save the system. The selection menu will no longer be presented each
time you enter the system. Later, you can use PATCH to reconfigure for
one of the other processors supported by your DDB software.

Only used on DDBs that can support different processors or
configurations.

GLOSSARY 156 6/89

UNILAB REFERENCE MANUAL

PCYCLES

<count> PCYCLES

Sets the number of bus cycles after the last qualifier that the analyzer
will wait before searching for the trigger event.

Usage

The default value is zero—the analyzer starts its search for the trigger
event immediately after finding the qualifiers. However, you will
sometimes want the UniLab to wait a number of cycles after the
qualifiers, before it looks for the trigger.

For example, you know a program jumps correctly from address 235 to
address 1000. But you can’t understand why the code at address 1000 is
executed again later. To trigger on the troublesome cycle, you don’t
want the UnilLab to search for address 1000 until several cycles after it
sees address 235.

Example
NORMB 1000 ADR 10 PCYCLES AFTER 235 ADR S
Triggers if 1000 occurs 10 or more cydles after address 235.

Comments

A “pass cycle” value postpones the search for a trigger. If there are
several qualifiers, the pass count starts after the complete qualifier
sequence occurs.

6/89 157

GLOSSARY

UNiLAB REFERENCE MANUAL

PEVENTS

<n> PEVENTS

Sets the number of times the Unilab must see the complete qualifier
sequence before searching for the trigger event.

Usage

Useful for catching a trace after the nth iteration of a particular sequence
of bus cycles. The default value is one—the Unilab starts to search for
the trigger event as soon as it has seen the qualifiers once. Use PEVENTS
when you don’t want to search for the trigger until the qualifiers have
occurred <n> times,

This command differs from PCYCLES, which waits a specified number of
bus cycles after the qualifiers before searching for the trigger.

Example

NORMT 12 DATA 4 PEVENTS AFTER 30 DATA S

Begins searching for 12 data (the trigger) after 30 data (the qualifier) has
been seen four times.

NORMT 100 PEVENTS AFTER 123 ADR S
Triggers as soon as address 123 has occurred 100 times.

GLOSSARY 158 6/89

UNILAB REFERENCE MANUAL

PINOUT

no parameters

Displays the pinout of your target processor.

Usage
A handy reference correlating signal names, analyzer cable connections,
and pin numbers.

Example
PINOUT
This command is never used in combination with anything else.

Comments

In order for this command to work, the three library files from the Orion
Utilities diskette must be in the same directory as the UniLab program.

6/89 159

GLOSSARY

UNILAB REFERENCE MANUAL

POPUPS

no parameters F10

Allows execution of Unilab functions from the PopUp bar.

Usage

Press F10 to place the cursor in the PopUp bar; then use the ¢« —
cursor keys to highlight the desired item, and press the Enter key to
display the related PopUp panel.

Next, use the T | cursor keys to select the desired function and press
Enter to execute it.

Press F1 while on any selection for On-Line Help with that function.

If you need the extra line of screen space, the PopUp bar can be
disabled with the mode panels (F8), or with the command POP* (re-
enable with POP).

Power Users

PopUps require fewer keystrokes than the equivalent commands, and
with an added feature you can execute any PopUp function with only
two keystrokes. Select any group in the PopUp bar by holding down
Alt and pressing the key that corresponds to the capitalized letter in the
bar. You can use the Memory PopUp, for example, by pressing A1t -M
instead of scrolling along the PopUp bar. And you can then select any of
the memory functions by pressing, once again, the letter that is
capitalized on screen; for example, the letter “M” to select the Move
option, “F” to select Fill, etc. This allows fast execution with an absolute
minimum of keystrokes.

GLOSSARY 160 6/89

UNILAB REFERENCE MANUAL

“Action” key is capitalized in PopUps:

Move Select Move by pressing M,

Fill

Display

s0dify or select Modify by pressing 0,
coaPare

checkSua

dIsossemble or select disassesble by pressing I.
fissemble

Byte change

Hord change

Keyboard shoricuts to PopUps:
Alt-0 Orion Alt-F Files Alt-E Eprom
Alt-H Help Alt-A Analyzer Alt-S Special

Alt-M Memory Alt-D Debug Alt-C Configuration

The equivalent commands are: OPOP, HPOP, MPOP, FPOP, APOP, DPOP,

EPOP, SPOP, and CPOP. These can be used in macros or assigned to
function keys.

Select “Show commands” on the Help PopUp to display the equivalent
UniLab commands next to the PopUp selections.

Example

POPUPS
This command is never used in combination with anything else.

6/89 161

GLOSSARY

UNILAB REFERENCE MANUAL

POP

no parameters F8

Enables display of the PopUp bar.

Usage
Usually done from the mode panel.

If F10 is pressed after PopUps are disabled, they will automatically
be re-enabled. Disable with POP'. (See POPUPS.)

GLOSSARY 162 6/89

UNILAB REFERENCE MANUAL

POP'

no parameters F8

Disables display of the PopUp bar.

Usage

Usually done from the mode panel. Useful when you need the extra line
of screen display. Enable with POP, or if F10 is pressed after PopUps are
disabled, they will be re-enabled automatically. (See POPUPS.)

6/89 163

GLOSSARY

UNILAB REFERENCE MANUAL

PPA

no parameters Alt-F10

Calls up the Program Performance Analyzer menu.

Usage
Displays the menu from which you can select the PPA features.

Example

PPA
This command is never used in combination with anything else.

GLOSSARY 164 6/88

UNILAB REFERENCE MANUAL

PRINT

no parameters F8
Logs all screen output to the printer. :
_——
Usage

Normally, you will use the mode panel (F8) to toggle this feature on/off.

6/89 165 GLOSSARY

UNILAB REFERENCE MANUAL

PRINT'

no parameters F8

Stops logging screen output to the printer.

Usage
Normally, you will use the mode panel (F8) to toggle this feature on/off.

GLOSSARY 166 6/89

UNILAB REFERENCE MANUAL

PROM

no parameters Rarely Used

Opens the library of EPROM read and write commands.

e ———————— — ————————=
Usage

Advanced users can include this command in macros to burn ROMs and
EPROM s or to load from them. Or you can specify the PROM on the
command line, as shown below, instead of using the menu that this
command invokes when used alone.

Example

PROM 0 7FF R2716

Loads the contents of a 2716 (which has been placed in the EPROM
Programmer socket) into emulation memory addresses 0 — 7FF.

It is easier to use this function from the Eprom PopUp. See READ-ROM

and WRITE-EPROM for more information about using EPROM
commands in macros.

6/89 167

GLOSSARY

UNILAB REFERENCE MANUAL

Q1

Q1 <trigger_spec> Rarely Used

Selects the bus-cycle description (trigger spec) that follows as qualifier
one. See also QUALIFIERS and TRIG.
w
Usage

You will rarely use this, because AF TER—which is more natural to use
—increments the context from TRIG to Q1 to 02 to Q3 each time it is
used. You will find these words handy when you want to change one
qualifier without re-typing the entire trigger spec.

Example

Q1 15 LADR

Defines qualifier number one, so the Unilab will look for 15 on the low
byte of the address lines.

Q1 ALSO 28 LADR
Alters qualifier one, so the UniLab will look for either 15 or 28 on the

low byte of the address.

GLOSSARY 168 6/89

UNiLAB REFERENCE MANUAL

Q2

Q2 <trigger spec> Rarely Used

Selects the bus-cycle description that follows as qualifier number two.
—_— = D oo esduarernumoerivo.

Usage
See Q1.

6/89 168 GLOSSARY

UNILAB REFERENCE MANUAL

Q3

Q3 <trigger_ spec> Rarely Used

Selects the bus-cycle description that follows as qualifier number three.
W

Usage
See Q1.

GLOSSARY 170 6/89

UNILAB REFERENCE MANUAL

QUALIFIERS

<1, 2, or 3> QUALIFIERS Rarely Used

Selects the number of qualifying events.

Usage
Allows you to reduce the number of qualifying events. You'll probably

prefer using AFTER to define the qualifiers, and will use this command
only to reduce the number of qualifiers without retyping the
specification. See AFTER.

Order of Qualifiers—If you have defined three qualifiers, the UniLab
looks first for 93, then for 02, and then for Q1. It must see the qualifying
events during consecutive bus cycles, or it starts over searching for 03.
(If there are only two qualifiers, the UniLab looks for Q2 followed by
01.) Unless PEVENTS or PCYCLES has been set, the UniLab will start
searching for the trigger right after it sees the entire qualifier sequence.

Example

2 QUALIFIERS S
Changes the number of qualifiers, so that the third one is ignored.

6/89 171

GLOSSARY

UNILAB REFERENCE MANUAL

RB

<addr> RB

Resumes executing the target program, with a breakpoint set at the
indicated address. Must be used with RESET enabled in order to
establish the first DEBUG breakpoint.

Usage

Th:gfirst breakpoint must be in emulated ROM and must come after the
stack pointer has been initialized. RESET must be enabled for the first
breakpoint, because a software interrupt (or a call) is inserted in the
target program. After the first breakpoint, RESET is automatically
disabled.

See also STEP-INTO and RI ... SI.

Missed Breakpoints—If the breakpoint is not reached, the processor will
continue executing code until you press any key. Pressing a key while
waiting for a breakpoint causes the Unilab to try to STEP-INTO your
program.

You can only set a breakpoint on an address that contains the first byte
of an instruction. To be sure an address gets executed by the program,
set an analyzer trigger on the same address with NORMT <address>
AS.

Be sure your program initializes the stack pointer to point at RAM—
DEBUG uses the stack to save the state of your system.

Examples

RESET 123 RB

Enables RESET and restarts the target with a breakpoint set at address
123.

1007 RB
Without restarting the target, releases the microprocessor from the

DEBUG breakpoint, and allows it to run to a breakpoint set at address
1007.

GLOSSARY 172 6/89

UNILAB REFERENCE MANUAL

Comments
The second example above will work only if the target microprocessor is
at a DEBUG breakpoint.

The first example will let the microprocessor run to a DEBUG
breakpoint (altematively, STEP-INTO would try to get an immediate
breakpoint). RESET doesn't restart your target—it enables the reset flag,
so that the following S or RB restarts the target.

DEBUG uses the analyzer triggers internally and may leave them in an
unknown state. After using DEBUG, always use one of the NORMx words
to clear the trigger spec.

See also G, GB, GW, RZ, STEP-INTO, RI, and SI.

6/89 173

GLOSSARY

UNiLAB REFERENCE MANUAL

RCOMP

no parameters Eprom PopUp

Compares EPROM with memory and indicates discrepancies.

Usage

Compares the contents of the device in the Unilab’s EPROM
Programmer socket to the contents of memory, and reports any
differences. Press any key to abort the comparison.

Example

RCOMP

Presents a list of supported EPROMs, from which you indicate which
device you are using. Prompts for the first and last memory addresses in
memory to compare to the EPROM. A list of all discrepancies will be
presented, e.g.:

Data is 23 at addr 0110 ..but is 67 in EPROM
Data is 15 at addr OF6E ..but is 35 in EPROM
Data is EF at addr 211F ..but is FF in EPROM

If your UniLab is already configured to read the EPROM device you are
using, you only need to enter two addresses—the starting and ending
address of the first block of memory:

2000 3FFF RCOMP
Compares data at target addresses 2000 — 3FFF to the data in the
installed EPROM.

Comments
Works on emulation ROM and target RAM. See STEP-INTO and RB.

To compare two blocks of data, use MCOMP.

GLOSSARY 174 6/89

UNILAB REFERENCE MANUAL

READ

no parameters

Narrows the trigger specification to read cycles only.

Usage

Instructs the UniLab to trigger only on read cycles. Handy when you
want to trigger on data values, not program opcodes; or when you want
to trigger on reads rather than writes to some address range.

On some disassembler packages, FETCH instructs the Unilab to trigger
only on fetches from program memory.

Examples
READ 13 DATA
Triggers when the processor reads a 13.

NORMT READ 1000 TO 2000 ADR S
Triggers when the processor reads any data from addresses 1000H —

2000H.

Comments

This simple macro specifies a range of CONT input values, so it is only
valid if the CONT column shows a unique value for target RAM read
operations. Like WRITE and FETCH, this is defined in the optional
disassembler software.

6/88 175

GLOSSARY

UNiLAB REFERENCE MANUAL

READ-ROM
no parameters Eprom PopUp

Displays a menu of ROM-reading routines.

Usage

This command provides access to the Unilab’s ROM-reading routines.
To copy the contents of 2 ROM into emulation memory, press the
number of the desired ROM type. The software will ask what emulation
addresses to use. (The ROM must be correctly installed in the EPROM
Programmer socket, as described in the User’s Guide.)

Operator Shortcuts
Normal access to the ROM-reading commands is from the UniLab’s
Eprom PopUp.

Advanced Usage in Macros

To read a ROM or EPROM from within a macro, first use the command
PROM to “open” the library of EPROM routines. Here are the commands
this makes available to read ROMs:

R27512 R27256
R27128 R2764
R2732 R2832
R2716

These commands need to know which addresses in memory to use, in
the format:

<start address> <end address> <command>

GLOSSARY 176 6/89

UNILAB REFERENCE MANUAL

Example
The following example puts an EPROM-reading command into a macro
named LOAD ROM.

Example command used in macro:

: LOAD_ROM
CR .™ Put PROM in socket, press any key when ready..."
KEY DROP PROM 1000 1FFF R2732 ;

Explanation:

« This macro is named LOAD_ROM (first word after the colon).

« It does a carriage return (CR), then prints (. ") a message string (the
string is terminated by ™).

« The words KEY DROP wait for the user to press any key (then drops
its value off the stack).

« PROM opens the EPROM library, and 1000 1FFF R2732 is the
command to load the contents of a 2732 PROM into addresses 1000 —
1FFF.

6/89 177

GLOSSARY

UNiLAB REFERENCE MANUAL

RES

<n> RES

Clears bit n of the stimulus generator’s output (<n> must be from 0 — 7).
e —

Usage

Simulates a peripheral input going from voltage high to voltage low. The
stimulus generator allows you to test how your system responds to
digital signals on certain lines.

Example
2 RES
Resets output S2.

1 SET 1 RES
Pulses output S1.

Comments
Used to reset individual bits of the eight stimulus outputs. See also SET
and STIMULUS.

GLOSSARY 178 6/89

UNILAB REFERENCE MANUAL

RES-

RES- <memory_access command> Alt-F5

Pulls the UniLab’s RES- output low and holds it low until the analyzer is
started.

Usage

With some target systems, you can use this command to hold the target
processor in a reset state while you access emulation memory;
otherwise, the target microprocessor will see only FFs (i.e., all data lines
high) when it tries to fetch from emulation memory. Some processors
will quietly vector to an error-handling address when this happens, but
other processors might “go south,” taking peripheral devices and battery
backup RAM with them when they go.

RES- will force your target processor to reset, whether or not reset is
enabled.

RES- won't work if your target has a “one-shot” in the reset circuit.

Alternate Solution

The more general solution to this problem is to get a DEBUG breakpoint
before you access emulation memory. That way, your processor will be
held in the idle loop while you access emulation ROM.

Example

RES- 10 DN

Pulls the reset line low, then disassembles from memory starting at
address 10. Reset will stay low until the next time you start the analyzer.

RES- 500 AsM
Pulls the reset line low, then invokes the assembler starting at address
500.

6/88 179

GLOSSARY

UNILAB REFERENCE MANUAL

RES-'

no parameters

Usage

The Unilab writes into the reserved area whenever the analyzer is
started with reset enabled. Therefore, to prevent unpredictable processor
behavior, the UniLab pulls the analyzer cable’s RES- line low. It is held
low for a long time, while the analyzer is armed and started. If the
protracted length of the reset pulse causes problems, disable it with
RES-'.

GLOSSARY 180 6/89

UNILAB REFERENCE MANUAL

RESET

no parameters F8

Selects automatic reset, enabling the target system to be reset by the
next command you use to start the analyzer.

---=—-—
Usage

Along with RESET', allows you to choose whether to restart the target
board or just to watch a program already in operation. Automatic reset is
turned on by STARTUP, and is turned off by NOW, ADR?, SAMP, and RB.

To run to the first occurrence of a breakpoint address with RB, you must
enable reset. Always type RESET <addr> RB to be sure.

The status of reset is not affected by NORMx.

Normally, you will use the mode panel (F8 at the Command> prompt) to
toggle this feature on/off.

Example

RESET
Selects auto-reset

6/89 181

GLOSSARY

UNILAB REFERENCE MANUAL

RESET

no parameters F8

Turns off the automatic reset mode. See RESET.
W

Usage
Normally, you will use the mode panel (F8 at the Command> prompt) to

toggle this feature on/off.

GLOSSARY 182 6/89

UNiLAB REFERENCE MANUAL

RESIGHT

no parameters Ctrl-r4

Re-enters the InSight control/display panel, preserving any previous
InSight trigger-address specification.
... — — — ______———— —_——
Usage

Provides access to the real-time InSight display. INSIGHT displays the
same screen, but forces the ANY ADR (i.e., 0000 TO FFFF ADR)
address spec. Whether you use RESIGHT or INSIGHT, you can change
the trigger specification from within the InSight display.

Example
RESIGHT
Re-enters the InSight display.

6/89 183

GLOSSARY

UNILAB REFERENCE MANUAL

Ri

RI <trigger_ spec> SI

Allows you get a DEBUG breakpoint when a bus cycle matches the
trigger.

Usage

Used to get a DEBUG breakpoint on any cycle that can be described
with the usual trigger specification commands. RI marks the beginning
of the trigger specification, SI marks the end.

When the bus state you specify occurs, such as a data or control value
or a range of addresses, this feature asserts a STEP-INTO. Generally, it
takes one or two instruction cycles before DEBUG gets the breakpoint.

Examples

RI 450 TO 470 ADR SI

Geis a DEBUG breakpoint after any address in the range 450 — 470
appears on the bus.

RI WRITE 34 DATA SI
Gets a DEBUG breakpoint after the value 34 is written into RAM.

Comments

This command uses the NMI or IRQ feature of the target processor to get
a breakpoint, 5o an address trigger spec will often yield a breakpoint a
few cycles after that address is executed.

RI ... SI uses some of the Unilab trigger logic. Avoid using AFTER with
them.

GLOSSARY 184

6/89

UNILAB REFERENCE MANUAL

RMBP

<breakpoint#> RMBP

Resets (clears) one of the multiple breakpoints and displays their new
status.

Usage
Used to clear a breakpoint that was set with SMBP. See CLRMBP to clear
all the multiple breakpoints.

Example
3 RMBP
Clears multiple breakpoint number 3.

Comments

Multiple breakpoints are used to break on any one of several addresses.
Eight multiple breakpoints are available, in addition to the standard
(unnumbered) breakpoint set by RB or GB.

GLOSSARY

UNiLAB REFERENCE MANUAL

RZ

no par ameters

Resumes program execution from a breakpoint, without any new break-
points set. The target processor will be released from the DEBUG
breakpoint.

———————————————————————— — —

Usage

Used to run a program from the current address. Handy command for
exiting DEBUG and letting the processor continue executing your
program.

Example
RZ
Continues executing the program from a breakpoint.

Comments

Don't specify a trigger event before RZ—it won't work. GW waits until
you start the analyzer before it releases the processor, so you can set an
analyzer trigger before you leave the breakpoint.

GLOSSARY 186 6/89

UNILAB REFERENCE MANUAL

S

no parameters

Starts the bus-state analyzer. Resets the target system if automatic RESET
is enabled.
%

Usage

You do not need to start the analyzer on the same line as the
command(s) that defines the trigger specification, though that is the
usual practice. S is a separate command that gets the analyzer going,
with whatever trigger spec you created already in place.

You can type TSTAT to see the current trigger status.

Examples
S
Starts the analyzer, with whatever trigger was last defined.

NORMT RESET 123 ADR S

Clears the trigger spec, turns on auto-reset, sets the analyzer to trigger
on address 123, and starts the analyzer. It will run until the trigger spec
(address = 123) is seen on the bus.

6/89 187

GLOSSARY

UNiLAB REFERENCE MANUAL

S+

no par ameters

Identical to S, but increases the delay cycle by AA6.

Usage

S+ changes the value of DCYCLES and restarts the analyzer. It is
handiest when you find that the current trace just starts getting
interesting at the end. S+ by itself will trigger on the same event, but
with a new trace window that starts three cycles before the end of the
current one.

Use this if your trigger event is regularly repeated during the program, or
with RESET enabled. If your trigger is only met once in the course of
program execution and RESET is disabled, the UniLab will be searching
a program in progress for an event that will not occur again.

Example

S+
Restarts the analyzer with an increased delay setting.

GLOSSARY 188

6/89

UNILAB REFERENCE MANUAL

SAMP

no parameters

Samples the 48 input lines several times a second, and displays them
until any key is pressed.
L ——— — — ———————————————————__ —————____—— — —————

Usage

A good way to get a vague idea of what is going on. It will be dlear if
the program gets stuck in an infinite loop, or if it goes far astray. But
you will not be able to see much detail, only one cycle out of every
several thousand.

Disassembly—You will probably want to turn off the disassembler, with
the mode panel (F8) or by typing DASM'. When the disassembler is
enabled, the isolated cycles will probably be disassembled incorrectly.

Example
SAMP
This command is never used in combination with anything else.

Comments

Useful when you are trying to connect analyzer inputs to something and
want to continuously monitor their state. Similar to 1 SR, but it runs
faster. Gives more detail on program execution than ADR?.

To change the sampling rate, see =SAMP.
Don't forget to use a NORMx command to start from scratch on trigger

specs after using SAMP, because it defines its own trigger. It also turns
off RESET.

6/89 189

GLOSSARY

UNILAB REFERENCE MANUAL

SAVE-SYS

SAVE-SYS <filename>

Saves the entire UniLab system in its present state as a named DOS file.
Prompts you for the filename if you don’t include it on the command
line.
__—mmm—————————————————

Usage

To save a version of the system with new macros, or with default
pathnames changed. Or, just to save the current emulation values or the
trigger definition.

Warning: does not save the symbol table. See SYMSAVE.

Example

SAVE~-SYS B:NEWUL

Saves the current state of the system to a new, executable file on the B:
drive.

Comments
The target program in emulation memory is not saved by this command.
See BINSAVE.

This command adds the .EXE file extension (o the {iiename. Since the
entire program image is saved, including any unintentional damage to
the program, always keep backup copies.

Operator Shortcuts
Usually executed via the “save conFiguration” option of the
Configuration PopUp.

GLOSSARY 190 6/89

UNILAB REFERENCE MANUAL

SC

<max# milliseconds> SC <filename>

Starts the analyzer and waits the specified, maximum number of
milliseconds for the trigger. Then, when the trigger occurs, the resulting
trace is compared to a previously saved trace.

Usage

When writing test programs, it is often useful to compare the current
trace to a known, good trace that has been saved on disk (see TSAVE).
If the traces don’t match, the host computer beeps and displays a section
of the saved trace and the first differing cycle of the current trace.

Hardware Checkout—SC is probably most useful during hardware
checkout. To get an idea of its capabilities, save a trace by typing TSAVE
test. Then pull the RAM off your target board and execute the example
below. After saving the good trace, use the same trigger spec when
getting the new trace. See the appendix “Writing Macros” for examples.

Example

400 SC test

Starts the analyzer with a 400H ms. trigger time limit (1 second), and
compares the resulting trace to the one saved in file “test.”

Comments

If the specified time limit passes before the analyzer sees the trigger
cycle, the host displays a “No Trigger” message and beeps.

6/89 191

GLOSSARY

UNILAB REFERENCE MANUAL

SET

<n> SET

Sets bit n of the stimulus generator’s output (<n> must be from 0 — 7).

Usage

Simulates a peripheral input going from voltage low to voltage high. The
stimulus generator allows you to test how your system responds to
digital signals on certain lines.

Example
7 SET
Sets stimulus output S7.

1 SET 1 RES
Pulses stimulus output S1.

Comments
Used to set the eight stimulus outputs separately. See also RES and
STIMULUS.

GLOSSARY 192 6/89

UNILAB REFERENCE MANUAL

SET-COLOR

no parameters

Changes the display colors when used with a color monitor.

Usage

After you have issued the command COLOR to inform the UniLab
software that you have a color monitor, change the display colors with
this command.

Use the cursor keys to display and choose different colors. Press End
when you have completed your choices. You will need to save the
system with the “save conFiguration” option of the Configuration PopUp
if you want the colors to be permanent.

6/89 193

GLOSSARY

UNILAB REFERENCE MANUAL

SET-EM

no parameters Alt-F7

User-friendly way to enable emulation memory.

Usage

Use the cursor keys and the space bar to enable/disable emulation
memory in 2K blocks. Ctrl~< moves the cursor to the EMSEG setting,
and allows you to change the 64K segment. Press End to save the new
settings, or Esc to revert to the previous settings.

Comments

Eliminates the need for =EMSEG, EMENABLE, and ESTAT, except within
macros.

GLOSSARY 194

6/89

UNILAB REFERENCE MANUAL

SET-GRAPH-COLOR

no parameters PPA

Changes the display colors of the graph generated by the Program
Performance Analyzer option (AHIST and THIST). Only appropriate
when using a color monitor.

= ___———— — — _____——— ____—— ——____————— |

Usage

Use this—after you have issued the command COLOR to inform the
Unilab software that you have a color monitor—to change the display
colors of the AHIST and THIST histograms. Use the cursor keys to
display and choose different colors. Press End when you have
completed your choices.

You will need to save the system with the “save conFiguration” option
of the Configuration PopUp if you want the colors to be permanent.

6/89 195

GLOSSARY

UNILAB REFERENCE MANUAL

SET-TRIG

no parameters Fé

Displays the Trigger Dialog Box.

Usage

The Trigger Dialog Box consists of a scrollable list of the most
commonly useful trigger options. You can select a simple trigger from
the list, or combine several selections into a more complex trigger. The
system provides prompts for any necessary parameters and displays the
current trigger specification at all times. See the User’s Guide discussion
of analyzer triggers for details about this feature.

Operator Shortcuts
This command is available from the Analyzer PopUp (F 6).

Advanced Users

There are two otherwise undocumented power keys:

«Ctrl-Q This traverses the different qualifier levels, allowing you to
modify lower-level qualifiers after higher ones have been defined. What
you see is what you get; even if you only define one qualifier, if you use
Ctrl-0 to move to Q3, it will set the number of qualifiers to three.

e« Ctrl-K This “kills" the current term the next time a new vaiue is

entered, instead of ALSOing it. It allows you to clear one term or one
qualifier level without deleting the entire trigger spec.

GLOSSARY 196 6/89

UNILAB REFERENCE MANUAL

SHOWC

no parameters Fg

Shows the control lines on the trace display (the default condition).

Usage
Turns on display of the control lines (C7 — C4) and of the high four bits
of the address bus (A19 — A16).

Normally, you will use the mode panel (F8) to toggle this feature on/off.

6/89 197 GLOSSARY

UNILAB REFERENCE MANUAL

SHOWC'

no parameters F8

Turns off display of the control lines on the trace display.

Usage
Turns off display of the control lines (C7 — C4) and of the high four bits
of the address bus (A19 — A16).

The Unilab always monitors these wires, and sometimes they provide
vital information (e.g., when the wires are hooked up wrong); but
usually, you don’t need to see them.

Normally, you will use the mode panel (F8) to toggle this feature on/off.

GLOSSARY 198 6/89

UNILAB REFERENCE MANUAL

SHOWM

no parameters Fg

Shows the miscellaneous lines and the HDATA lines on the trace display
(the default condition).

Usage

Turns on display of the miscellaneous lines and—on eight-bit
processors—of the high data lines. You will want to see these lines if
they are hooked to your target system. Otherwise, you can ignore them.

Normally, you will use the mode panel (F8) to toggle this feature on/off.

6/83 199

GLOSSARY

UNILAB REFERENCE MANUAL

SHOWM'

no parameters F8

Hides the miscellaneous lines and the HDATA lines on the trace display.

Usage
Turns off display of the miscellaneous lines and—on eight-bit
processors—of the high data lines.

Normally, you will use the mode panel (F8) to toggle this feature on/off.

GLOSSARY 200 6/89

UNiLaB REFERENCE MANUAL

SHOW_MACROS

no parameters Shift-Fi1

Displays the currently defined Easy Macros. Change them with

EDIT MACROS (Shift-F10).
|
Usage

Easy Macros are assigned to function keys Shift-F2 to Shift-F9.
These macros are definable while in the OPERATOR system.

For On-Line Help with the Easy Macros, press F1 while in the
SHOW_MACROS screen.

Example

SHOW MACROS
Normally, this function is invoked with Shift-F1.

6/89 201

GLOSSARY

UNILAB REFERENCE MANUAL

Sl

RI <trigger_spec> SI

Allows you to get DEBUG breakpoints on a wide variety of bus
conditions.

Usage
Always used in combination with RI. (See RI.)

GLOSSARY 202 6/89

UNILAB REFERENCE MANUAL

SMBP

<addr> <breakpoint#> SMBP

Sets one of the eight multiple breakpoints on the given address.

Usage

Allows you to set up to eight breakpoints, in addition to the
unnumbered breakpoint set by RB or GB. The status of all eight
breakpoints is displayed every time you set or clear one of them.

Set all but one of the multiple breakpoinis with SMBP. Next, use RB or GB
with the remaining breakpoint address, to run the target until it executes
any of the addresses you have set.

If the processor stops at an address set by SMBP, that breakpoint must
be cleared (see RMBP) before the processor can run to the next
breakpoint with RB or GB.

Example
123 4 SMBP
Sets breakpoint #4 at address 123,

4 RMBP 250 RB
Releases the previous multiple breakpoint (assuming the breakpoint in

the above example was reached) and runs to another breakpoint, at 250
or any other address set earlier with SMBP.

Comments

Before resorting to multiple breakpoints, examine the possibility of
doing the same thing more easily and quickly by using the powerful
analyzer capabilities.

See also STEP-OVER, CLRMBP, RMBP.

6/89 203

GLOSSARY

UNiLas REFERENCE MANUAL

SOFT

SOFT <filename> PPA

Enables the optional Program Performance Analyzer for the new
command file it creates. Prompts for the filename if you don'’t include it
on the command line.

Usage

Needs to be used only once. Reconfigures your software, so you can use
the Program Performance Analyzer commands AHIST, MHIST, THIST,
HSAVE, HLOAD, and SET-GRAPH-COLOR.

Do not use SOFT until you have copied the files from the PPA diskette
into your \ORION directory.

Example

SOFT ppaZ80

Creates a new .EXE file, PPAZ80, which will recognize the Program
Performance Analyzer commands.

GLOSSARY 204 6/89

UNILAB REFERENCE MANUAL

SOFTWARE

no parameters F8

Disables the hardware STEP-INTO function (non-maskable interrupt
vector installation).

Usage
This command disables the UniLab’s ability to execute the hardware
STEP-INTO, and enables the software single-step features.

The DEBUG features include the ability to send a non-maskable
interrupt (NMI) or an interrupt request (JRQ) to the target processor.
Orion software uses this to get breakpoints at any time. You can enable
software single-stepping instead if your target system needs to use these
signals, sacrificing only the ability to single-step into interrupts and to get
immediate breakpoints.

Comments
See HARDWARE to re-enable the vector installation.

Use this command to preserve your target system’s ability to use NMI or
IRQ while under test. After executing SOFTWARE, the Unilab operating
system will use software simulation to follow branches. (To follow
program flow without using the hardware NMI or IRQ pin and vector,
flags and return addresses on the stack are inspected by DEBUG.)

Operator Shortcuts
Normally, you will use the mode panels (F8) to toggle this on/off.

6/89 205

GLOSSARY

UNILAB REFERENCE MANUAL

SOURCE

No parameters

Re-enables the display of source code interleaved with disassembly of
machine code. SOURCE is automatically enabled when you load a .MAP

file with MAPSYM.
#

Usage
It is necessary to use this command only if you previously disabled high-
level support with SOURCE' (e.g., to see more code on screen).

About High-Level Support—Orion’s high-level support shows the source
code that generated each line of your assembly code. To use this
feature, load your .MAP file with MAPSYM and have relevant source files
in the current directory.

Source Tracking—If you use TEXTFILE to view your source code file in
the upper window of the split screen, the source-tracking feature will be
enabled. This updates the on-screen listing to show the source code that
generated the line being shown in the other window by the analyzer,
disassembler, or DEBUG. Go back to the upper window (press End) to
view your original text file.

To use source tracking, you must load symbols containing high-level line
number information (or use MAPSYM to load a .MAP file) and the
relevant source files must be in the current disk directory. (Also see
TRACK.)

See LOADER and MAPSYM for more details.

GLOSSARY 206 6/89

UNILAB REFERENCE MANUAL

SOURCE'

no parameters

Turns off the display of source code.

Usage
See SOURCE.

6/89

207

GLOSSARY

UNILAB REFERENCE MANUAL

SPLIT

no parameters F2

Toggles split-screen mode on/off.

Usage

Provides the ability to simultaneously look at two traces, or at two parts
of the same trace. You can also compare a trace on screen with the
assembly code (DN) and with your source text file (TEXTFILE).

The right quadrants of the screen are reserved for the output of DN and
for the mode panels (F8). Text displayed via TEXTFILE and On-Line
Help is shown in the upper window.

Navigating—Press End to move the cursor from one window to the
other.

History—The history mechanism saves a record of what happens during
your sessions with the Unilab, but it only records activity from the
bottom window.

Example
SPLIT i L . .
This command is never used in combination with anything eise.

Operator Shortcuts
This command is also executed by pressing F2.

GLOSSARY 208 6/89

UNILAB REFERENCE MANUAL

SR

<n> SR

Starts the analyzer repeatedly. Displays n lines each time trigger occurs.
e __]

Usage

Very useful for logging things repeatedly. You should first set the trigger
and starting point of the display with S and TN. If you use RESET, the
target system will be reset each time the analyzer starts.

Siopping—You started the infinite loop by entering SR. Break out by
pressing any key.

Hard Copy—Use the mode panel (F8) or PRINT to log all output to the
printer. The mode panel also contains a feature that allows you to log to
a disk file. (See TOFILE.)

When to Use Something Else—If the events you want to see occur more
often than once per second and you want to view them in sequence,
use XAFTER with AA9 SR to log bursts of the events in filtered format.

Example

20 SR

Repeatedly displays twenty lines of the trace buffer, restarting the
analyzer after each display.

6/89 209

GLOSSARY

UNILAB REFERENCE MANUAL

SSAVE

SSAVE <filename> Alt-F9
Saves the screen image as a DOS text file.
Usage

Saves any screen image you want, e.g., a graph generated by the
Program Performance Analyzer option.

Example

SSAVE nice.scr
Saves the current screen as the disk file nice.scr.

GLOSSARY 210 6/89

UNILAB REFERENCE MANUAL

SST

<trigger_spec> SST

Starts the analyzer in the standalone mode.

Usage

Use SST rather than S to start the analyzer looking for a cycle that may
take a while to find. Then you can exit from the UniLab program (with
BYE), or even disconnect your host PC while the UniLab searches for the
trigger.

Either way, the LED on the UniLab goes out when it finds the trigger.
Then, just plug in the Unilab again and call up the software with TS as
a “command tail.” If the trigger was found, the trace will be displayed. If
it wasn’t reached, you can abort and re-initialize with INIT.

If you re-enter the system without the TS command tail, press Enter
before the log-on screen is displayed. This will prevent the Unilab from
reinitializing the trace buffer and overwriting its contents.

Example

NORMB 1200 TO 1300 ADR WRITE 3F TO FF DATA SST
Searches for this trigger in standalone mode.

Comments

Handy when you want to search for an obscure bug without tying up
the host computer.

See also TS.

6/89 211

GLOSSARY

UNILAB REFERENCE MANUAL

STARTUP

no parameters F9

Restarts the target system and shows a trace of the initial cycles of target
system operation.

Usage
Very useful in the first stage of system checkout. Allows you to check
the first few instructions, to be sure they execute properly.

The RES- wire from the analyzer cable must be properly connected to
the target system, or the Unilab will not be able to reset the target. (See
your Target Application Notes.

The very first cycle (cy# 0) is particularly important, because if the
wrong data is fetched—often due to the address not being properly
EMENABLEd—the program will immediately “blow up.”

Multiple RESET

Some systems with simple R-C reset circuits (no hysteresis) will appear
to reset intermittently many times before they finally settle down to
stable operation. This is a nuisance if you want to look at a trace early in
the program, but you will be able to see the program when it does
finaily settie down.

If your system does this, consider putting a logic element into your reset
circuit, such as two Schmitt triggers in a row (part number LS14). Then
your system will always get a good, strong reset signal.

Example
STARTUP
This command is never used in combination with anything else.

Comments

This is a target-specific macro that, in most versions, looks for the reset
vector address on the bus. If that address doesn’t show up, the system

will wait forever. Or, if a HALT instruction is fetched, it will display the
message “Target Processor is Stopped.” (See “General Troubleshooting”
in the User’s Guide)

GLOSSARY 212 6/89

UNiLAB REFERENCE MANUAL

STEP-INTO

no parameters F4

Establishes 2 DEBUG breakpoint immediately or, if you are already at a
breakpoint, executes a single instruction.

Usage
Supported by all Orion DEBUG packages. Uses the target processor’s

non-maskable interrupt (NMD or the interrupt request IRQ) pin. This
allows you to set a DEBUG breakpoint on a running program. (Use RB
or RI ... ST to set breakpoints if the program is already stopped.)

Auto-Breakpoini—If this feature is enabled, you can read or write RAM
and I/O without first stopping at a DEBUG breakpoint. When you access
a non-emulated address while the target is running, the UniLab issues a
hardware STEP-INTO to get an invisible breakpoint (i.e., no breakpoint
display), performs the requested operation, and releases the processor
from the breakpoint, allowing it to resume execution.

Single-Stepping—Two separate commands allow flexibility when you
single-step through code. If you are at a breakpoint, STEP-INTO
executes the next instruction, no matter what. It follows jumps and
branches (e.g., places in the code that always branch over a data area);
another single-step command skips them (see STEP-OVER).

Comments

You may wish to disable STEP-INTO if your target uses the NMI (or
IRQ) pin, or for some other reason. If so, use the mode panel (F8) or
SOFTWARE. Note, however, that disabling STEP-INTO also disables SI,
which uses the non-maskable interrupt. Likewise, disabling DEBUG (via
the mode panel or DEBUG ') also disables STEP-INTO.

On a number of DDBs, disabling the hardware STEP~INTO enables a
software STEP-INTO that will follow all program branches and returns.
To use it, toggle from hardware to software in the mode panel, then use
STEP-INTO (F4) normally.

6/89 213

GLOSSARY

UNILAB REFERENCE MANUAL

STEP-OVER

no parameters F3

Resumes target execution, with a breakpoint set to the address after the
next instruction.

b aaaaaee—————— ——_ ___————————— ————— ——— ___—— |

Usage .

Used while stopped at a breakpoint, when you want to execute only the
next instruction pointed to by the program counter. With it, you can step
past loops and branches, which is often very useful. For example, if the
program counter is pointing at a subroutine call, use STEP-OVER to see
the state of the processor when it returns from the routine.

Fall Through Loops—You usually won’t want to single-step through
loops as many times as the microprocessor executes them. This
command allows you to go through a loop just once.

How It Works

This command uses RB to set a breakpoint at the address just after the
instruction pointed to by the program counter. So the program runs until
it reaches that address.

Watch Out—TIf the program never reaches the breakpoint address, it will
run without stopping. For example, if you don’t want to use STEP-OVER
at the last command in an infinite loop (the jump back to the
beginning), the program never reaches the code that follows that last
jump.

Comments
Available only when the processor is at a breakpoint.

Use STEP-INTO when you wish to single-step through the execution of
loops and branches.

6/89 215

GLOSSARY

UNiLAe REFERENCE MANUAL

STIMULUS

<byte> STIMULUS

Changes the eight stimulus-generator outputs (SO — S7) to correspond to
the specified byte, and pulses the ST- output.

Usage
Useful for changing all the stimulus outputs at once. Use SET or RES to
set/reset individual signals.

Example
10 STIMULUS
Makes all stimulus outputs zero, except 4.

Comments

The stimulus outputs originate in the PROM socket on the front of the
UniLab, and are normally connected via the stimuius cabie. These
signals are used mainly to provide any test inputs the target system
needs.

GLOSSARY 216 6/89

UNILAB REFERENCE MANUAL

SYMB

no parameters F8

Enables symbol translation.

e e —

Usage

Turns symbol translation on, after it has been disabled with SYMB*.
Symbols make a trace more readable by allowing you to replace data
and addresses with symbolic names.

Normally, you will use the mode panel (F8) to toggle this feature on/off,

Symbols are defined with IS or loaded with SYMLOAD. Both commands
enable symbol translation.

6/89 217

GLOSSARY

UNiLAB REFERENCE MANUAL

SYMB'

no parameters F8

Disables symbol translation.

Usage
Type this to turn off symbol translation without clearing the symbol
table. See CLRSYM if you want to clear the table.

Normally, you will use the mode panel (F8) to toggle this feature on/off.

GLOSSARY 218 6/89

UNILAB REFERENCE MANUAL

SYMDEL

<symlist#> SYMDEL

Allows you to remove a symbol from the current symbol table.

Usage

Use SYMLIST first to get a list of all the symbols (sorted according to
each symbol’s user-assigned value). This list is numbered. You delete a
symbol by using its list number, not its value.

Example

5 SYMDEL
Deletes the fifth symbol in the list displayed by SYMLIST.

6/89 219

GLOSSARY

UNIL.AB REFERENCE MANUAL

SYMLIST

no parameters

Displays a list of all currently defined symbols, sorted in numeric order
according to each symbol’s user-assigned value.

Usage

This function verifies that your symbol file has successfully loaded, and
shows symbols defined with IS. It also gives the information you need
to selectively delete symbols. (See SYMDEL.)

Example

SYMLIST
Lists all the current symbols.

GLOSSARY 220 6/89

UNiLAB REFERENCE MANUAL

SYMLOAD

SYMLOAD <filename>

Loads a UniLab-format symbol table from the disk file. Prompts for the
filename if you don’t include it on the command line.

Usage

Loads a symbol table that was saved with SYMSAVE or created by the
standalone LOADER program. These are variable-length files, allowing
symbols up to 255 characters long. (See the appendix “Object- and
Symbol-File Formats.”)

Warning: not compatible with UniLab-format symbol tables saved with
SYMSAVE before version 3.0.

Example
SYMLOAD B:oldsyms
Loads a symbol table file from the B drive.

Operator Shortcuts
This function can be used via the Files PopUp.

Advanced Usage in Macros
When using SYMLOAD in an advanced macro, you have two options:

1. Include in the macro’s definition the name of the symbol file
you wish it to load. This is useful in macros that are used with
the same files—or with files of the same name—every time.

Example:
: MY LOAD O 7FF SYMLOAD MY.BIN ;

2. When the macro is executed, have it ask the user to supply the
name of the desired symbol file. As shown below, [COMPILE]
defers the following command’s action until the macro is
executed.

Example:
: MY LOAD 0 7FF [COMPILE] SYMLOAD ;

6/89 221 GLOSSARY

UNILAB REFERENCE MANUAL

SYMSAVE

SYMSAVE <filename>

Saves the current symbol table as a named DOS file. Prompts for the
filename if you don't include it with the command.

Usage
This command saves only the symbol table—the “save conFiguration”
option of the Configuration PopUp saves the entire system. SYMSAVEd

files can be reloaded later with SYMLOAD.

Example
SYMSAVE july3.sym
Saves the current symbol table as a disk file called july3.sym.

Operator Shortcuts
This function can be used via the Files PopUp.

Advanced Usage in Macros
When using SYMSAVE in an advanced macro, you have two options:

1. Include in the macro’s definition the name of the symbol file
you wish it to save. This is useful in macros that generate the
same files—that is, fiies of the same name—every time.

Example:
: MY LOAD 0 7FF SYMSAVE MY.BIN ;

2. When the macro is executed, have it ask the user to supply a
filename for the output file. As shown below, [COMPILE]
defers the following command’s action until the macro is
executed.

Example:
: MY LOAD O 7FF [COMPILE] SYMSAVE ;

GLOSSARY 222 6/89

UNILAB REFERENCE MANUAL

T

no parameters

Displays the trace, from its current starting point, until any key is
pressed.
.

Example

T
Displays the trace.

Comments

The starting point for the trace display is defined by the most recent TN
command. (STARTUP usually sets it to -4.) If the starting cy# is not
actually in the buffer, the trace is started four lines from the closest cycle
number that is in the buffer.

6/89 223

GLOSSARY

UNiLAB REFERENCE MANUAL

T.

<hex number> T.
Displays the decimal equivalent of a hex number.
Usage

Shows the decimal equivalent—compare this with D#, which allows you
to enter a decimal number that will be used by the next command.

This word is similar to B. which shows the binary equivalent of a hex
number.

Examples

10 T.
This will cause 16 to be displayed.

333 133 - T.
This will display 512, the decimal equivalent of 333 minus 133 (hex).

GLOSSARY 224 6/89

UNILAB REFERENCE MANUAL

TCOMP

<n> TCOMP <filename>

Compares the contents of the current trace buffer to a trace that was
previously stored in the named file. Compares the last <n> cycles.
Aborts and indicates an error if any bit fails to compare.

Usage

Very useful in automated testing of target systems. Use TSAVE to save
the trace of a known, good system,; later, use that trace as the standard
by which to judge the performance of other systems. If TCOMP finds a
difference between the current trace and the one in the file, it displays
five lines of the stored trace and the first bad line from the trace of the
system being tested.

You can use TMASK to force TCOMP to ignore one or more inputs when
comparing the traces—see TMASK for details.

You can also use SC to compare traces.

Example
AAA TCOMP march.2
Compares the entire trace to the one stored as the disk file march.2.

Operator Shortcuts
This function is easily accessed via the Files PopUp.

Comments

AAA is the hexadecimal size of the Unilab 8620’s trace buffer. To
compare just part of the trace, use a smaller number; then TCOMP will
ignore the first part of the file. This is useful for skipping already-known
discrepancies.

If TCOMP behaves in a confusing manner, try using it with the
disassembler disabled (type DASM' or F8, the mode panel).

6/89 225

GLOSSARY

UNILAB REFERENCE MANUAL

D

no par ameters

Stops the analyzer and displays the current contents of the trace buffer.
]}

Usage

Used to see what is going on, when the trigger has not occurred or
when you are producing a filtered trace that you do not think will fill the
trace buffer. Normally, the trace is automatically uploaded to the host
when the trigger occurs.

TD skips the first cycle in the buffer and any other empty space (all 1's)
at the top of the buffer.

Example

TD

This command is never used in combination wi
Comments

Since the buffer is filled with 1s before the analyzer is started, a partly
full filtered trace will have good data only near the end. TD skips such

empty space.

GLOSSARY 226 6/89

UNILAB REFERENCE MANUAL

TEXTFILE

TEXTFILE <filename>

Allows you to look at a text file from within the Unilab program.
Usage

TEXTFILE only works in the upper window. It will take a few seconds
to analyze the file, and then will display the first window of text. You
can't alter the file in any way—only look at it.

This feature could replace hard-copy listings for looking at your source
code while you debug it.

Moving Through the File

Press this: To display this:

20103 s NN the next screenful
N S the next line
PgUp..... the previous screenful

the previous line

a specific line number in the file
the beginning of the file

toggles cursor into other window

Example
TEXTFILE \memo\projectl
Opens the DOS file projectl, in the directory called memo.

Operator Shortcuts
This function can be accessed via the Files PopUp.

6/89 227 GLOSSARY

UNiLAB REFERENCE MANUAL

THIST

no parameters PPA

THIST, the time-domain histogram, invokes the optional Program
Performance Analyzer to display how often the elapsed time between
two addresses falls into each of up to 15 user-specified time periods. See
also AHIST and MHIST.

Usage

Allows you to examine the performance of your software. You can see
how the elapsed time between any two addresses changes, as different
conditional jumps or branches are taken. You will probably want to
measure the time between two addresses in your program’s main loop.

Before you use the PPA the first time, you must issue the command
SOFT to install it.! SOFT performs a SAVE-SYS, then causes an exit to
DOS. The next time you boot the Unilab software, the PPA will be
installed.

Start the Histogram—To produce a histogram, first specify the upper and
lower limits of each address “bin” you want to display, then start the

histogram.

When you issue the command THIST, the histogram screen is dispiayed
with the cursor positioned on the first bin. You can then type a lower
and upper limit for each bin. Press return, tab, or an arrow key to move
to the next field. Press F1 to start the histogram.

Save 10 a File—You can save a histogram's setup (i.e., bin limits, title,
and any labels) in a file, along with any collected data, after you exit
from the histogram screen. Just type HSAVE <filename> at the
Command> prompt or use the Files PopUp.

Load From a File—You can load a previously saved histogram by typing
HLOAD <filename> at the Command> prompt, or via the Files PopUp.
Loading a histogram file also invokes the PPA in the correct mode.

Example
THIST
This command is never used in combination with anything else.

Operator Shortcuts
This function can be used via A1t-F10, the PPA menu.

10nly the first time you use the PPA.

GLOSSARY 228 6/89

UNILAB REFERENCE MANUAL

TMASK

<byte_value> TMASK

Sets a mask that tells TCOMP which columns of the trace display to
compare.

S S ——

Usage

Useag when comparing traces, to filter already-known discrepancies or
unimportant error messages (e.g., to ignore different MISC wiring). The
lower six bits of the hex byte’s value tell TCOMP which input groups to
use when comparing traces. The default is 3F (0011 1111 binary), which
tells TCOMP to compare all columns.

Mask Bits—Each of the six bits corresponds to one of the analyzer’s
input groups. If the bit is set to one, TCOMP will include that group in its
comparisons:

Binary Inputs Hex
0000 0001 LADR 1
0000 0010 HADR 2
0000 0100 CONT 4
0000 1000 DATA 8
0001 0000 HDATA 10
0010 0000 MISC 20
&/89 229

GLOSSARY

UNILAB REFERENCE MANUAL

TN

<n> TN

Displays the trace buffer, starting at cycle n. Sets the starting point of
subsequent trace displays.

Usage

For random access to the trace buffer, when you also want to change
the starting point that will be used by T. (To see a cycle without
changing the default starting point of the display, use TNT.)

Example

12 TN

Displays the trace, starting 12 cycles after the trigger. Subsequent traces
in this session will also be displayed starting 12 cycles after the trigger.

Commeiis
You will usually use TNT. Use TN only when you want to display from
the same cy# on later trace displays.

GLOSSARY 230 6/89

UNILAB REFERENCE MANUAL

TNT

<n> TNT

Displays the trace buffer, starting at cycle n (default = -5).

Usage

Allows random access to the trace buffer. TN does the same thing, but
changes the default starting point used by T when it displays subsequent
traces.

Example

=7 TNT
Displays the trace starting 7 cycles before the trigger.

6/89 231 GLOSSARY

UNILAB REFERENCE MANUAL

TO

<number> TO <number> <command>

Sets a flag to indicate that a range of numbers is being entered.

Usage

Used with the trigger-description commands to define a trigger on a
range of numbers. (See ADR, CONT, DATA, HADR, HDATA, LADR, and
MISC.)

Example

12 TO 34 DATA

Tells the analyzer to look for any data-input values in the range 12 — 34,
inclusive.

GLOSSARY 232 6/89

UNILAB REFERENCE MANUAL

TOFILE

TOFILE <filename> F8

Opens a DOS text file and starts copying all screen output to it.

Usage

Logs all screen output to a disk file. You can include this command on
the DOS command line as a “command tail.” You will be prompted for
the filename if you don’t include it.

You must first type this command explicitly at the Command> prompt, to
open the file. Then the mode panel (F8) can be used to toggle logging
on/off. (See also TOFILE'.)

Example
C> ULZ80 TOFILE A:JUNE7.LOG

Comments
Files produced in this way can be edited with a word processor, or
displayed with the DOS command TYPE <filename>.

6/89 233

GLOSSARY

UNiLAB REFERENCE MANUAL

TOFILE'

no parameters F8

Stops sending a copy of the screen output to a DOS text file.

Usage
Used to stop logging information to a file. Normally, you will use the
mode panel (F8) to toggle this on/off.

See TOFILE.

GLOSSARY 234 6/89

UNILAB REFERENCE MANUAL

TOP/BOT

no parameters End

Toggles the cursor between the top and bottom windows of the split
screen.

Usage
Usually, you will just press End. This command is only active when the

screen has been split. See SPLIT for details about windows.
Example

TOP/BOT

This command is never used in combination with anything else.

Operator Shortcuts
This function is normally used by pressing the End key.

6/89 235

GLOSSARY

UNILAB REFERENCE MANUAL

TRACK

no parameters

Turns on the source-tracking feature.

Usage

If a TEXTFILE window is open, the proper source file will be opened
and displayed in the upper window as you perform DEBUG functions,
look at traces, or disassemble memory. This is the default, and is done
automatically if high-level lines are loaded in the UniLab symbol table.
Each time a new source line is shown in the breakpoint display, trace, or
disassembly, the corresponding section of the source file is shown in the
upper window. Disable this feature by returning to a full-screen display
(F2) or by typing TRACK'.

GLOSSARY 236 6/89

UNILAB REFERENCE MANUAL

TRACK'

no parameters

Turns off the source-tracking feature.

Usage
See TRACK.

6/89 287 GLOSSARY

UNiLAB REFERENCE MANUAL

TRAM

no parameters

Turns off a flag, so that subsequent memory reference commands refer
to RAM rather than ROM. Necessary only with processors that allow
ROM and RAMto occupy the same address space, or that address more
than one 64K segment of memory.

Usage

Only needed when referring to RAM that occupies the same 16-bit
address space as ROM, as when working with the 8051 or 8048, which
have data memory and/or special function registers at the same
addresses as program memory.

This flag stays reset until you use the command TRAM'.

Why You Don’t Need to Bother—QOrion DDB packages for processors
with these types of memory configurations have special commands for
inspecting and changing the contents of RAM and special-function
registers.

Example
TRAM 0 F MDUMP
Dumps the contents of RAM addresses § — F.

Comments

This can get you into trouble: if you use RB after TRAM, you will be
setting a breakpoint in RAM. That is fine if you intend to do so, but can
be disastrous if you meant to set the breakpoint in ROM.

GLOSSARY 238 6/89

UNILAB REFERENCE MANUAL

TRAM'

no parameters

The default condition: sets a flag so that subsequent memory reference
commands refer to ROM rather than RAM.

Usage
Only needed after using TRAM or similar processor-specific commands.

Example

TRAM' 30 3F MDUMP
Dumps the contents of ROM addresses 30 — 3F.

6/89 239 GLOSSARY

UniLas REFERENCE MANUAL

TRIG

TRIG <specification>

The specification following will be used as the trigger event.

Usage

As opposed to Q1, 02, 03, and AFTER, which tell the analyzer to use the
following specification as a qualifier. Useful to alter the trigger without
altering or retyping the existing qualifiers. If you use TRIG and still want
the analyzer to use the existing qualifiers, issue the appropriate 0x
command before starting the analyzer.

Example
TRIG 123 ADR
Searches for 123 on the address lines.

Comments

Used to set the TRIG truth-table context after your use of Q1, 02, 03, or
AFTER has selected another truth table. Useful if you change your mind
about the trigger spec after you have defined a qualifier.

The four truth tables are TRIG, Q1, 92, and Q3.

GLOSSARY 240 6/89

UNILAB REFERENCE MANUAL

TS

ULxx TS

Displays the trace buffer’s contents; used after the analyzer was started
with the SST (standalone) command.

e ————]
Usage

When you use SST to start the analyzer, you can exit from the UniLab
environment (with BYE) and use other programs, or even disconnect the
UniLab from the host computer. When the analyzer finds the trigger
cycle, the light next to the analyzer cable goes out. You can retrieve the
trace any time after that.

To display the trace, restart the Unilab software with a TS in the
“command tail.” Or start the Unilab normally, but press Enter before
the initial display appears. This prevents the UnilLab from reinitializing
the trace buffer, which would overwrite its contents. You can then type
TS to display the data.

Example

C>ULZ80 Ts

The Z80 UniLab system is executed from DOS with the TS command
tail. If the system was previously exited after an SST trigger spec, and if
that trigger was reached, the trace buffer data will be displayed upon re-

entry.

6/89 241

GLOSSARY

UNILAB REFERENCE MANUAL

TSAVE

TSAVE <filename>

Saves the current trace buffer as a file.

— — — ————————————— — ———___________—_____________J]
Usage

A good way to save information about a trace for later review (see
TSHOW), or for automatic comparison to another trace (see TCOMP and
SO).

Example
TSAVE good.trc
Saves the current trace as a disk file named good.trc.

Operator Shortcuts
This function can be accessed via the Files PopUp (F5).

GLOSSARY 242 6/89

UNILAB REFERENCE MANUAL

TSHOW

TSHOW <filename>

Displays a previously saved trace.

e
Usage

A useful way to examine traces saved to disk manually or by an
automatic testing program. (See TSAVE.) Use TCOMP if you want to
compare the current trace buffer to a saved trace—it will serve most
purposes better than studying a trace visually. (To print a trace in
progress, turn on the log-to-printer switch via the mode panels before
you start the analyzer.)

Example

TSHOW good.trc

Displays the trace named good.trc, which was saved as a file earlier by
TSAVE.

Operator Shortcuts
This function is easily accessed via the Files PopUp.

Comments
After you use TSHOW, the host computer’s memory contains the recalled
trace, and you can use T, TN, or TNT to control how it is displayed.

To reload the Unilab's current trace buffer back into the host, type TD.

TSHOW changes the DCYCLES setting, so the cycle numbers may be
incorrect.

6/83 243

GLOSSARY

UNILAB REFERENCE MANUAL

TSTAT

no parameters F7

Displays the current trigger’s status—the entire specification, including
qualifiers, delay and pass counts, filtering, and reset.

Usage
A good way to review the current settings, especially to see that the
UniLab interprets your trigger specification commands as you intend.

Example
TSTAT
This command is never used in combination with anything else.

Operator Shortcuts
This is the same as pressing F7.

Simplified Display

In OPERATOR mode, TSTAT shows a simplified version of most trigger
specifications. For instance, instead of 4 DCYCLES, it says “Trigger at
Bottom™; and it displays “read cycles” or “fetch cydcles” instead of the
explicit filter commands. But if you switch to MACRO mode, or define a
fairly complex trigger, TSTAT will show the entire specification. (See
OPERATOR and MACRO.)

GLOSSARY 244 ©6/89

UNILAB REFERENCE MANUAL

X

<line#> TX

Moves to the specified line number of the open text file.

Usage
A good way to move around a text file quickly. (See TEXTFILE.)

Example
300 TX
Moves to line 300 (decimal) of the currently open text file.

Comments

The <line#> is interpreted as a decimal number, because text files
viewed with the TEXTFILE command are displayed with decimal line
numbers. To move to a hex line number, type:

<line#> TXH

6/89 245

GLOSSARY

UNILAB REFERENCE MANUAL

USEC?

<from_addr> <to_addr> USEC?

Counts the number of microseconds between two addresses.

Usage
Used to count the execution time in microseconds of a loop (first
example below) or of any segment of code (second example). See

CYCLES? to count the number of bus cycles between two addresses.

Examples
123 123 USEC?
Measures the execution time of the loop that contains address 123.

123 456 USEC?
Measures the execution time of the code in addresses 123 — 456.

Comments

Useful for checking execution times. USEC? makes its own trigger spec,
so you will have to start fresh on your trigger after using this command.

GLOSSARY 246 6/89

UNILAB REFERENCE MANUAL

VER?

no parameters

Prints information about your version of the UniLab software.

ees — ———— —————— ——————— —— ———— — ————]
Usage

Used to show the processor selected (if your software supports multiple
processors), as well as emulation memory size, date of most recent
DEBUG software update, and the version number of your UniLab system
software.

Example
VER?
128K Emulation Memory
Configured for 80188/24Nov88/uld.04

Comments

When calling for technical support, you will be asked to type this
command, so Orion’s staff can know what equipment and software
version you are using.

6/89 247

GLOSSARY

UNILAB REFERENCE MANUAL

WORDS

WORDS <command>

Displays an alphabetical list of the Unilab’s commands, starting with any
command or characters included with it on the command line.

Usage
Used to remind you of the names of Unilab commands. Press any key
to stop the listing.

Example

WORDS INIT
Shows an alphabetical list of Unilab commands, starting with INIT.

GLOSSARY 248 6/89

UNILAB REFERENCE MANUAL

WRITE-EPROM

no parameters

Displays the EPROM programming screen.

Usage

Provides access to the EPROM writing routines. This command presents
the menu of supported ROMs. From this menu, program an EPROM by
typing the number that labels the type of EPROM you are using, The
software will prompt for the start and end addresses in emulation
memory of the source.

See “EPROM Programmer” in the User’s Guide for details.

Advanced Usage in Macros

To burn an EPROM from within a macro, first use the command PROM to
“open” the library of EPROM routines. Here are the commands this
makes available to burn EPROMs:

P27512 P27256
P27128 P2764
p2532 P2732A
P2716

These commands need to know which addresses in memory to use, in
the format:
<start address> <end address> <command>

The following example puts an EPROM-burning command into a macro
named BURN.

: BURN
CR ." Put EPROM in socket, press any key when ready..."”

KEY DROP PROM 0 7FFF P27256 ;

Explanation:

« This macro is named BURN (first word after the colon).

+ It does a carriage return (CR), then prints (. ") a message string (the
string is terminated by ").

+ The words KEY DROP wait for the user to press any key (then drops
its value off the stack).

- PROM opens the EPROM library, and 0 7FFF P27256 is the
command to burn a 27256 EPROM with the contents of emulation
memory addresses 0 — 7FFF.

6/89 249 GLOSSARY

UNILAB REFERENCE MANUAL

WSIZE

no parameters Alt-F8

Allows you to adjust the size of the split-screen windows. See also

SPLIT.
_—— e

Usage

After you type this, use the up- and down-arrow keys to adjust the
vertical dimensions of the windows. Press End to accept your changes
and exit, or Esc to quit without changing the window sizes.

Example

WSIZE
This command is never used in combination with anything else.

GLOSSARY 250 6/89

UNiILAB REFERENCE MANUAL

APPENDICES
Writing Macros 253
Operator-Level and Macro-Level UnilLab System.................... 254

How to Write a Macro

Create a Forth File........cccooiiiiiinereccneneeesseee e
Breakpoint Macros.....
Write Test Programs................ .
Include Messages in Macros......c.uuieirercererecsnencnenssnsenenenns
RemOVINg MacrOS.......cccccurmencrrrenciereeeenessisrsenssesssssesenas 2 262
Make Custom Operator SYSIemSevuvervsrererersrreeseresereenens 263
About the Macro Language............coveueereveeerennnsninsensssessinsens 264
Unilab Forth Operating System...

Alterations to PADS Forth Words.... . 265
Unilab’s Forth EQItOr.......c..onmunininnninccienrenenenaeseresnnas 266
Stack Diagrams.........cceeveernen. ..266
File and Editor Commands.... ...267
Decompiler.....cccoeririnnnnee ...268
Character I/O......cocomeeneuens 2 269
Macros that Accept Input........cccvveveeurerrrennn,270
Move Data Between PC and Emulation Memory.... W 272
Read Host Image of the Trace.......ccorsrvvvrerereerenans ..273
Use <TST> to Access Memory Values. w275
Using Register CONLENLS.........cevuiiuneeerinrrenmssssssnsssensesesesenes 276
Forth Reference 281
How DEBUG Works. 291

6/89 251 APPENDICES

APPENDICES: INDEX

UNiLAB REFERENCE MANUAL

Examining Interrupt ROULNES.........ccovieiriiineieiiienanns 295
Real-Time Trace of Interrupts.... ... 296
Breakpoints and INterrupts ... eesinsesesreeinns 298
Object- and Symbol-File FOrmats.......ccecrveerermeeecsees 301
Define a .MAP Filec..oceoirennsnc e 302
Object FOrmats.........ooeremienenenecerineneeeseneesnes 304
Intel Extended Hex format..........cccoeovivnicninncnnenn, 304
Tekhex format.......ccoccvvverieinveneiennccnesen 307
Motorola Hexadecimal format (S-records)309
SYMDbBOl FOIMALS ..ottt s 310
Manx symbol file........ccooverivirieiccnnreiereceicn e 310
Avocet symbol file........ 311
Microtek symbol file...........cooevneniiicii 312

SYMFIX FOIats.c.coevrermiereenerisencicrensesssenssssees s 313

Software Development Systems, Inc. Files......c......... 314
Mixed Symbol and Object Formats (OMF)cocveveereninnne 31§
UniLab Symbol-File Format.........coocniiiiiniiniiicns 316
High Level Language SUPPOTt...ceieeceeceeecenecraraccraenens 319
Source Tracking ... 321
Single Stepping through Source Lines........ouiniiinin. 322
Sources of Cross-Assemblers &
C Cross-Compilers...... ceeererneseasensenenees vereverntneeneences 325
UniLab Specifications....cccuceerevereerrecnerierieeceecrecsennsns 335
Custom Cables cereeessssessenerrasessennnnanase 341

The Analyzer Cable......cccoivvevicveicnneiriinnesnienns ...343
Problems with Decoded OE- Signals... ... 343
Analyzer Connector Signals.......c.covvininnincninceninnns 344
Analyzer Cable Desigh.......c...ccocovernernnninniiiiinienes 346

The ROM Cable.......cocvivirmieicceenree s acne e 348
Avoid Memory Contention.........ooeevnnnninconneninnns 349
ROM Connector & UnilLab Circuitry........cccevvvniiene, 349
ROM Connector Signals.......ccocveevererrnnieeenneeresnienenes 350

UnilLab Input Latches & Clock Logic diagramccceveneens 353

Orion Cable Jumpers diagrams........c.cococeccvvverernncnccnenns 355

Cable Specifications...........ocovicciiic e 355

INA@X 1.ttt ettt et 369

252

6/89

UNiLa8 REFERENCE MANUAL

WRITING MACROS

Introduction

Easy Macros allow you to link Unilab commands, and to execute them
with a single function key. They provide enough macro power for most
users. (See EDIT-MACROS.)

If you choose to advance, the UniLab’s macro-level system will provide
a number of advantages over Easy Macros. You can:

« write longer macro sequences,

« extend the Unilab command language with your own custom
commands,

» create complex control structures,

- rename Unilab commands—abbreviate existing commands, or
make them longer and more descriptive of your application,
and

» define as many macros as memory allows.

If you wish to write advanced macros or test routines, familiarize
yourself with this appendix. Any macro language requires familiarity
with its vocabulary and syntax. The UniLab’s macro features derive their
power from Forth, the underlying programming environment, so its
macro capabilities are endless—and well documented elsewhere (see
“About the Macro Language” later in this appendix).

1t is not necessary to learn Forth to use the Unilab. And you don’t need
to use control structures to write useful macros—but for further

reference, the Unilab control structures are explained in several books
about Forth.

6/89 253 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Operator-Level and Macro-Level Systems

The default Unilab software environment is known as the operator-level
system. You can use PopUp selections, any command in the On-Line
Help glossary, and Easy Macros. The Command> prompt is displayed at
this level.

The macro-level system provides advanced UnilLab commands, plus the
entire Forth programming language. With it, you can add new
commands to the UniLab system and then return to the normal mode of
operation. The ok prompt is displayed at this level.

Type MACRO to invoke the macro-level system—the word ok will
replace the usual Command> prompt.

APPENDIX: WRITING MACROS 254 6/89

UNILAB REFERENCE MANUAL

How to Write a Macro

A macro definition begins with : (a colon) and ends with ; (a semi-
colon). These will not be recognized by the UniLab software unless you
are in the macro-level system (i.e., type MACRO).

Always put a space after the colon, and another before the semicolon—
every element in a macro definition must be delimited by one or more

spaces.

The first word after the colon is the macro’s name—what you will type
to execute the new command. Following its name is the sequence of
parameters and current commands that it will execute. As always, the
macro definition concludes with a semi-colon. (See the glossary entry for

:)

Example macro definition:

: D10 DUP 10 + MDUMP ;

Creates a macro called D10, which will dump ten memory locations.
This new command requires the starting address of the range to dump.
E.g., in use it will be preceded by an address:

<start_addr> D10

Explanation:
: Begins the macro definition.
D10 Name of the new command.
DUP Copies the last parameter that was entered (the address).

10 + Adds 10 (hex) to it.
MDUMP Displays the range start_addr to start_addr+10
; Concludes the macro definition.

After defining this macro, you could type:

342 D10

to display the contents of addresses 342 — 352. If you then used the
“save conFiguration” option of the Configuration PopUp, this new
command would be a permanent part of your UniLab system. (All
numbers are in hexadecimal, and all math operations use postfix
notation.)

6/89 255 APPENDIX: WRITING MACROS

Write Macros on Forth Screens

UNILAB REFERENCE MANUAL

It is easiest to write, test, and alter macros in files (with the Forth-screen
editor), and to then load the macros from the file.

The UniLab software normally keeps open a file named 8620.SYS for
some system functions. Another file is available for writing macros or
just for typing notes on its three screens. Type MEMO to display the first
of those screens. You'll also see prompts for using the Forth-screen
editor. Press Esc to exit from the editor.

WU WN PO

10

2 BUFFERS:

Fl more help F2 restore scr
F3 erase scr F4 exit & load
F5 search spec F6 next search
F7 insert scr F8 copy scr
F9 open file F10 save scr

0 CHRS 0 LINES
C:\ORION\MEMO.SCR of 3 screens

4 up line End save & exit
down line Del delete char
-» char right Ins ins/overtype
<4~ char left PgUp prev scr
Ctrl—p word right PgDn next scr
Ctrl4= word left Esc quit

Press F1 io iist more editor commands:

Ctrl K delete line

Ctrl N insert blank line
Ctrl I tab (3 spaces)

Ctrl P compress next blanks

Ctrl J move word to buffer
Ctrl C retrieve word from buffer
Ctrl G move line to buffer
Ctrl Y copy line to buffer
Ctrl L retrieve line from buffer

APPENDIX: WRITING MACROS

256

6/89

UNILAB REFERENCE MANUAL

Load Macros From a Screen

After you type a macro on a screen, press F4 to load the contents of that
screen into memory. When they are on screens, your macros are easily
available for later alteration, as the occasion demands.

Create a Forth File for Macros
After working with macros a short while, you will find it very convenient
to store them in separate, loadable files.

Create a new file by typing:

OPEN <filename>
If a file by that name doesn’t already exist, this creates one with
three blank screens (default size). If the specified file already

exists, this command just opens it.
Increase the open file’s size by typing:

<#screens> SCREENS
1K is allocated per screen. Always specify at least two screens

(numbered from zero, i.e., 1 SCREENS). Screen number zero
can’t be loaded into memory—Ileave it blank or just use it for
comments.

<screen#> EDIT
Moves you into a file after it has been opened, invoking the

Forth-screen editor used by MEMO.
To close a file of screens and return to the Unilab’s macro level, type:

UDL.SCR

Closes your file and re-opens the 8620.SYS file. If you don’t do this,
some of the On-Line Help facilities and error messages will not work.
This is done automatically if you use F10 twice (i.e., enter and then
leave the PopUp Ban). '

6/89 257 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Breakpoint Macros

Suppose you need to know—every time a subroutine is executed—the
value of a port and the contents of a memory buffer. You could define a
macro to provide exactly what you need.

First, a macro could be written to show the port and memory-buffer
contents:

: DISP_MEM&PORT 24 INP 7C00 7CFF MDUMP ;
Some text strings and a carriage return will improve the display:

: DISP_MEM&PORT
." Value at Sensor=" 24 INP CR
." Data Buffer=" 7C00 7CFF MDUMP ;

Now, when stopped at a breakpoint, you can execute the new macro by
typing DISP_MEM&PORT. The macre could be assigned to 2 function

key, or to an Easy Macro and executed with a shifted function key.

To execute this macro when the program reaches a subroutine labelled
CALC DELAY, type this command:

CALC_ DELAY RB DISP_MEM&PORT

Using BPEX
There is a way to add any macro to a Unilab breakpoint display. You
do this with BPEX, the breakpoint-execution assignment command.

To install the above macro into your system’s BPEX, type:

BPEX DISP_MEM&PORT
By patching in your macro, you have customized the breakpoint display.
Now, DISP_MEM&PORT is executed automatically at every breakpoint
display. In this example, CALC_DELAY RB will now execute
DISP_MEM&PORT after the register display and before the “next step”
disassembly.
To disable the customized breakpoint display, type:

BPEX NOOP
The possibilities with BPEX are endless. You could insert a macro to turn

off timers on the target board or to resume program execution
immediately after the breakpoint display.

APPENDIX: WRITING MACROS 258 6/89

UNILAB REFERENCE MANUAL

In fact, you can do many things with BPEX that are similar to the the
UniLab’s InSight display. In effect, you can “roll your own” custom
InSight routine!

Once you have the memory displays set into BPEX, you can define a
recurring breakpoint which continually monitors the register contents
and the memory locations. You need to use a Forth loop structure. A
simple Forth loop can be constructed with BEGIN ... UNTIL. For
instance:

: MY INSIGHT
BEGIN
CALC DELAY RB ?TERMINAL
UNTIL ;

produces a series of breakpoints until you press a key.

Everything between BEGIN and UNTIL will be repeated, until the flag
before the UNTIL is true—in this example, a breakpoint will happen
each time CALC_DELAY is called in the program. The Forth word
?TERMINAL is used to exit the loop by passing a true flag to UNTIL if
any key on the terminal is pressed.

Now, you can just turn on the printer (or the log-to-file switch), type

MY INSIGHT, and go to lunch. On your return, there should be enough
data about your program collected for a leisurely inspection of its
actions.

Summary: Breakpoint Macros

You have been introduced to the basic techniques for extending the
UniLab commands. For most, this is a good place to stop. Only read the
rest of this appendix when you need more power or flexibility.

But once you master BPEX, you may want to create loops to test the
condition of register values, or to mask and change flags. At that stage,
read the last part this appendix, called “DEBUG Variables.” Then learn
about Forth control structures like IF ... ELSE ... THEN and DO ... LOOP.

6/89 259 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Write Test Programs

You can use the macro capability of your UniLab system to write
automatic test programs. In this section, we present some examples you
can adapt to your specific needs.

The NOP Test

A good first test for a new system is simply to let it execute no-op
instructions. For example, let's assume you have a Z-80 system with
addresses 0 — 7FF enabled. You fill enabled memory with the 00 (nop)
opcode by typing 0 7FF 0 MFILL. Next you use the Analyzer PopUp,
or type STARTUP, to display the trace as the target starts after reset. If
the address bus has a short or is open, it will show in the trace display
as a departure from the normal sequence of addresses.

The Known, Good Test

The UniLab can compare the current contents of the trace buffer with a
trace saved on disk (see TSAVE) and will report any differences. You
can, thus, automate system checkout by comparing the trace of an
untested system to one saved from a known, good system.

STARTUP and S are not well suited to automated test macros, since they
cause the trace to be displayed until a key is pressed. Use this instead:

<n> SC <filename>

Starts the analyzer, waits n milliseconds, then compares to the trace that
is stored on disk as <filename>. This is very useful for automated test
sequences. (Of course, you will have to use TSAVE to save the reference
trace from a good system.)

Automated NOP-test macro using SC:

TEST1 O 7FF O MFILL NORMT RESET 100 SC A:.TRC ;

Explanation

This macro defines a preliminary test named TEST1. When executed, it
will fill the first 7FF memory locations with zeros (nop instructions),
reset the target processor, start the analyzer, wait 100 milliseconds, and
then compare the contents of the trace buffer to a trace that was saved
as a file on drive A.

APPENDIX: WRITING MACROS 260 6/89

UNiLAB REFERENCE MANUAL

With such a macro, a technician can test a system simply by typing
TEST1. The Unilab will reply with an OK if the current trace matches
the one stored on disk.

Compare traces afier triggering:

: TEST2 NORMT 6FF ADR 400 SC A:.TRC ;

If these two tests each work properly when used separately, we can
easily combine them into a single test:

: TEST ." Test 1:" TEST1 ." Test 2:" TEST2 ;

Explanation

This defines a new word TEST to execute the two macros (above) in
sequence, identifying each and displaying an OK if the system passes the
test. (Note that ." <message>" will print <message> on the screen
when the macro is executed). If the target system fails either test, the
process stops and SC displays the faulty bus cydes.

6/89 261 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Include Messages in Macros
You can use a macro to display a message to the Unilab’s operator. Just
start your message with . " and end it with " as above.

You can also use KEY to wait for a keystroke. This word also leaves the
ASCII code of the pressed key on the stack. You can get rid of the code
with DROP or use it as you wish. For example, you could use it to
decide the next action:

: SIMPLE-TEST
." This is a simple test " CR

." Do you wish to continue 2?(y/n) " KEY
ASCII y = IF REAL-TEST THEN
.'I BYe ” ;

This new word, SIMPLE-TEST, will execute the word REAL-TEST if the
user presses “y.” If any other key is pressed, it will just print the closing
“Bye.”

Removing Macros
If you define a test that doesn’t work, erase the definition by typing:

FORGET <macro_name>

Warning: FORGET also forgets everything you defined gffer
<macro_name>. Type VLIST for a list of all defined words, from last to
first.)

Another method of effectively “erasing” a macro is to define another
macro, using the same name. The latter-most definition supercedes any
earlier ones, and is the one that FORGET operates on.

APPENDIX: WRITING MACROS 262 6/89

UNILAB REFERENCE MANUAL

Make Custom Operator Systems

The operator-level system hides advanced macro commands and most
Forth words. In this way, someone who doesn’t use Forth can avoid
confusion. For example, this prevents you from mistyping WORDS and
accidentally executing WORD instead, a special Forth command which
would cause unexpected results.

It also shields the user from accidentally entering the compiling state,
and from disastrous crashes caused by unknowing use of Forth words.
The Command> prompt denotes the operator-level system.

In the OPERATOR mode you can use the PopUps, all UniLab commands
that are in the manuals, and On-Line Help; but you cannot make macros
(except Easy Macros).

To define macros and save the resulting system at the operator level, use
the MAKE-OPERATOR command. This will first save the current macro-
level system, asking for a filename. Then it will reconfigure for the
operator level, again asking for a filename. Use the same filename, or a
different name if you want both an OPERATOR and a MACRO system
available on your hard disk. (Users of floppy-disk-based systems will not
have room on one disk for two systems.)

6/89 263 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

About the Macro Language

Your system’s macro features, as described so far, are only the tip of the
iceberg. A complete Forth system is resident within the Unilab software.
This language includes control structures such as DO ... LOOP, IF ...
ELSE ... THEN, and BEGIN ... UNTIL. See the appendix, “Forth
Reference.” You can define much more complex macros than the
examples we have covered.

To learn more about Forth, the best book is:
Starting Forih by Leo Brodie
Prentice-Hall
Englewood Cliffs, New Jersey

To contact Forth users or to receive a catalog of books, etc.:
Forth Interest Group
P.O. Box 8231
San Jose, California 95155
(408) 277-0668

They sponsor the meetings of many local chapters and publish
the bi-monthly journal Forth Dimensions.

Many Forth books and programs are available from:
Mountain View Press Inc.
P.O. Box 4656
Mountain View, California 94040
(415) 9614103

The UniLab software was originally developed from the MVP-
Forth Professional Application Development System (PADS; see
following). The public-domain part of that system, a modified
Forth-79 Standard, is included with the UniLab. Excellent
documentation is provided in All About Forth by Glen B. Haydon,
a complete glossary of Forth words.

To buy the manual for the PADS Forth system, if you plan to use the
UniLab software’s Forth capabilities:

ForthKIT

240 Prince Ave.

Los Gatos, CA 95030

The manual includes source code in Forth screens, and docum-
entation for many nice utilities that are included with the system.

APPENDIX: WRITING MACROS 264 6/89

UNILAB REFERENCE MANUAL

UniLab Forth Operating System

The UniLab operating system is a full-featured Forth compiler. It was
derived from the PADS Forth system developed by Tom Wempe and
distributed by Mountain View Press. PADS (the Professional Applications
and Development System) was an extension of the Forth-79 Standard.
Orion subsequently changed this Forth compiler’s structure somewhat,
and augmented it to handle larger memory areas.

The Unilab Forth is still, basically, a 16-bit Forth system (i.e., the
maximum number of bits in a single number is 16 bits).

The two main changes in structure are:

« The Forth system is now multi-segment: it operates in more
than one 64K block of the host PC’s memory. Although PADS
Forth has a way to deal with this, we have taken it further by
making it more transparent. You will not have to deal with it in
any explicit way.

« The “heads” of all words (the name and link fields) are
separated from the “bodies” (the parameter and code fields).
This allows more room for definitions in a single 64K address
space.

Alterations to PADS Forth Words
NOT Renamed to XOT, in order to avoid conflict with the Unilab
command NOT. We recommend using 0= instead.

EMIT Now vectored through TYPE, rather than vice-versa. TYPE is

Sast.

TYPE Changed to write directly to the PC’s memory-mapped video
buffer.

CFA CFA is a valid hexadecimal number, so we renamed it CFADR.

SCR Most user-variable names in Forth are preceded by an asterisk.
Thus, SCR is renamed *SCR in the UniLab Forth system.

6/89 265 APPENDIX: WRITING MACROS

UNiLAB REFERENCE MANUAL

UnilLab’s Forth Editor

While writing complex macros, you will want to use the editor. The
Forth Screen Editor from the PADS system has been modified by Orion
for use with the file commands OPEN, OPEN-TO, COPYF->F, etc., as
documented in PADS.

Invoke the editor with <screen#> EDIT. The default file in the Unilab
system is 8620.SYS, which is used for messages, certain displays, and
some other functions. If you open another file and later execute UniLab
commands which need this data, you may get some strange €rror
messages. Type UDL. SCR or press F10 twice at the Command> prompt
to re-open the 8620.5YS file.

All cursor and editor functions are displayed on screen when the editor
is invoked. Press F1 at the Command> prompt or use the Help PopUp
to find details about editor functions.

Stack Diagrams
As a matter of programming convention, each Forth definition includes a

stack diagram that shows the stack effects of that word. This is just to
help the readability of the code. The diagram is shown in parentheses
so, like other comments, it won't be executed even when it is in-line
with Forth code. Anything to the left of the double hyphens represents
parameters on the stack needed by that word, to the right are the stack
results of its execution. For example,

Example uses of stack diagrams:

WORD1 (—--) Requires no parameters, and returns
no values to the stack.

WORD2 (nl n2 -- n3) Requires two parameters, and returns a
third value to the stack.

APPENDIX: WRITING MACROS 266 6/89

UNILAB REFERENCE MANUAL

File and Editor Commands

FILE. (==
Prints the pathname and size of the current screen file.

OPEN <filename> ()
Opens the specified file, making it the current screen file. Creates the file

if it doesn’t already exist. Press F9 to open another file.

EDIT (n ——)
Invokes the Forth editor at screen n. See the PADS editor documentation

for related words.

v (-
Invokes the Forth editor at the last screen edited.

INCLUDE <filename> (—-)
Used in a Forth source file; opens the specified file, loads screen one,

and returns to the previously active screen file. Supports nesting.

SCREENS (n ——)
Extends the current screen file to <n> screens. Does nothing if n is less
than the current size of the file—won’t decrease the size of a file. To
decrease the size of a file, create a new file with OPEN, use OPEN-TO
and COPYF->F (see PADS documentation), delete the old file, and
rename the new one.

COPY (nl n2 -—)
Copies screen nl to screen n2 in the current screen file.

6/89 267 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Decompiler

Your UniLab software includes a simple decompiler. It is useful when
you want to understand any of the Unilab or Forth words, or to recall
your own words’ definitions. To use it, type:

' <word> XX

where <word> is any word in the system. Each time you type XX, the
decompiler will print the address, contents, and name of each sequential
word in the definition of <word>.

When you decompile words that are referenced in other segments, you

might see rather strange decompilations beginning with the word
[SEGIMP].

APPENDIX: WRITING MACROS 268 6/89

UNILAB REFERENCE MANUAL

Character I/O

We have a function-key handler (KFUNC-KEY) in the definition of
EXPECT. You may wish to defeat this key handler, to prevent a test
technician from accessing the function-key assignments. Do this by, first,
making a variable to save the current function-key handler. Below, it’s
called FUNC-SAVE.

Defining a variable to save the function-key handler:

VARIABLE FUNC-SAVE
' <FUNC-KEY> @ FUNC-SAVE ! (save function key handler)

' NOOP CFADR ' <FUNC-KEY> ! (cripple function key handler)

Command 1o restore the function-key bandler:

FUNC-SAVE @ <FUNC-KEY !

Definition of a word that detects function keys and regular keys:

: EX-KEY? 0 0 0 0 16 INTCALL (ROM call for key scan)
DUP FF AND 0= ; (-- asc f) (fis true if function key)
Case Sensitivity

A word called UPPER_KEY returns only upper-case values when a key is
pressed. It also detects function and cursor keys, returning unique values
for them (i.e., bit 7 is set). This makes the system insensitive to the case
of user input. All new words in the dictionary will be converted to upper
case, and all lower-case hexadecimal digits will be converted before they
are interpreted as numbers.

Most user input is converted to upper case by this word:

: L->U (addr --)
L/U? IF <L->U> ELSE DROP THEN ;

If you want a system that is case sensitive, change the constant L/U? to
zero, as shown below.

Command to make your system case-sensitive:

' L/U? OFF

6/89 269 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Macros that Accept Input

GET#/SYM (--4df)

Use GET#/SYM in a macro definition to prompt the user for a literal or
symbolic value during the macro’s execution. It leaves a double number
and a flag on the stack, which are then used by subsequent macro com-
mands, If the user provides a symbol that is not in the current symbol
table, the flag will be zero (false) and the double number meaningless. A
correct response—a hex number or valid symbol—results in the flag
value of one (true) and the double number on the stack.

<G#> is a number-input word. When executed, this command waits for
the user to enter a number followed by Enter. <G#> leaves the number
and a flag on the stack. If the input was a valid number, the flag is true.

All character output, even when using EMIT, is sent through TYPE.
Output can also be routed to the printer and to a DOS file.

The following word issues a carriage retum if you are within <n>
characters of the right margin:

?WRAP (n ——) (CRif less than n chars left on line)

APPENDIX: WRITING MACROS 270 6/89

UNiLAB REFERENCE MANUAL

Commands that Require Filenames

The file-loading words are immediate, so you can compile a filename
right into a macro. This can be done if you use the same filename every

time with a macro.

Include a filename in a word’s definition:

: MY MACRO
0 TO 7FFF EMENABLE
0 TO 7FFF BINLOAD MYPRG.BIN
STARTUP ;

To write a macro that doesn’t compile the filename, precede the file-
loading word with [COMPILE]. That way, MY MACRO will prompt the

user for a filename when it is executed,

Prompt user for filename when the macro is executed:

: MY_MACRO
0 TO 7FFF EMENABLE
0 TO 7FFF [COMPILE] BINLOAD
STARTUP ;

6/89 271

APPENDIX: WRITING MACROS

UniLab Internals

UNILAB REFERENCE MANUAL

Words that move data between PC and Emulation Memory:

EMREADN-MAIN

Where:

EMLOADN-MAIN

Where:

(start _tadr end_tadr hadr --)

start_tadr = start emulation memory address
end_tadr = end emulation memory address

hadr = start host address.

(start_hadr end_hadr tadr --)

start _hadr = start host address
end hadr = end host memory address
tadr = start emulation memory address

APPENDIX: WRITING MACROS 272

6/89

UNILAB REFERENCE MANUAL

Read the Host’s Image of the Trace

The uploaded trace buffer exists in its own host-memory region, defined
by the word ABUF. (The actual data starts at ABUF plus four; the first
four bytes are not valid data.) Use the words T@ and TCR@ to fetch words
or bytes from the trace-image area. These manage the requisite “long”
fetches—just provide the offset from the start of the buffer. For example:

ABUF 40 + T@
Accesses the fortieth byte in the trace image, and leaves its value on the
stack.

Data is stored in this sequence:

LADR | HADR | CONT | LDATA | HDATA | MISC

Any byte of data can be read in the trace-buffer image by specifying the
cycle, the order, and the starting address of ABUF. The table below
shows how to find, for cycle #n in the trace buffer, the address of each
type of data:

Trace data Label Address of byte in cy# n
low address A0 - A7 n * 6 + (ABUF + 4)
high address A8 - AlS n * 6 + (ABUF + 5)
control Cco-C7 n * 6 + (ABUF + 6)
low data D0 -D7 n * 6 + (ABUF + 7)
high data D8 - D15 n * 6 + (ABUF + 8)
miscellaneous MO - M7 n * 6 + (ABUF + 9)

Note: n is the absolute cycle number, which is not the same as the cycle
numbers shown in the trace display. NORMB, for instance, numbers
cycles so that cy# 0 is near the end of the trace; the absolute cydle
number is directly related to a cydle’s position in the trace buffer.

To see the absolute cycle numbers, filter the display by typing MISC'

FILTER. This renumbers all the cycles, starting with cy# 0 at the top of
the display.

6/89 273 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

Using the above table, a command to display the value in the Low Data
field at cycle n could be found using the following macro.

Calculate offset into buffer, then feich and print the data:

: GET DATA (n-)
6 * (multiply cycle number by 6)
ABUF + (add result to start address of buffer image)
7+ (add offset to low data field)
TC@ . ; (fetch data and print it }

Now, 7C GET DATA will print the value of the Low Data byte at cycle
7C. To leave the value on the stack (e.g., for further testing) instead of
printing it, leave the period out of the definition.

Usually, the trace buffer is full when the trigger is reached, so ABUF is
uploaded immediately from the UniLab to the host PC’s memory. But if
the trigger occurs before the buffer is full, the UniLab displays the
additional number of cycles it wants before it will upload the data (Pass
Count = xxx). If the buffer never fills, or if you don’t need to wait for a
completely full buffer, press <cr> and type the TD command; the buffer
contents will be uploaded and displayed.

Manual Transmission

To start the analyzer without displaying the resulting trace, use ASTART
instead of S. Use the command TRIGWAIT to wait for the current trigger
and then freeze the buffer. The command ADUMP will manually upload
the trace buffer into host memory, without displaying the trace.

For instance, this simple macro starts the analyzer, waits for the trigger,
and then uploads the data without displaying a trace:

: mystart astart trigwait adump ;

APPENDIX: WRITING MACROS 274

6/89

UNILAB REFERENCE MANUAL

Use <TST> to Access Memory Values in Macros

There is a way to toggle some Unilab commands to leave a number on
the Forth stack, for use in macros, instead of printing them on the
screen. Switch them to this mode by changing the constant <TST>.

To leave results on the stack:
! <TST> ON

To return the normal display of results:
' <TST> OFF

Use this during testing procedures or in sophisticated macros. When
<TST> is “on,” words that return a single value (such as MM?), and some
DEBUG-specific words (such as INP) leave their results on the stack
instead of printing them. The apostrophe must precede the <TST> when
setting it on or off.

Example use of <TST>:

: BREAK ON 2
' ITST> ON
BEGIN
CALC_DELAY RB 1234 MM? 27 =
UNTIL
' <TST> OFF ;

Explanation

This will work like the loop shown in the section on BPEX, but it will
stop executing breakpoints when the value at memory location 1234h is
equal to 27h. Here, <TST> is set to off when the operation has finished.

6/89 275 APPENDIX: WRITING MACROS

Using Register Contents

UNILAB REFERENCE MANUAL

All the Orion DEBUG routines have facilities for changing register
contents. They vary somewhat from processor to processor, but words
like =HL and =B are used to change HL and B registers to a new value.

Similarly, HL? and B? copy the values of the HL and B registers to the
UniLab operating system stack, so they can be tested or compared with
other values. In general, any time a register value can be changed with
an =register command, it can also be retrieved with a register?
command. Every =register command has an equivalent register?

command in the macro-level system.

With conditional statements, you can use register contents to stop a
loop. For instance, instead of using 2 TERMINAL to terminate the earlier
BPEX routine, we can test a register’s contents for a certain value.

Execute a macro uniil a register bolds a certain value:

: SHOW_ALL CALCS
BEGIN CALC_DELAY RB
B? 7F = UNTIL ;

Explanation

Here, the B register in our hypothetical DEBUG software is tested. When
it finally contains the value 7F, the routine will stop and we can inspect
all data collected so far. Or, we could wait until the B register exceeds

7F.

Execute a macro until a regisier exceeds a certain value:

: SHOW_ALL_CALCS BEGIN CALC DELAY RB
B? 7F > UNTIL ;

APPENDIX: WRITING MACROS 276

6/89

UNILAB REFERENCE MANUAL

As you get more experienced with macros, the power of the operating
system will allow even more complex macros.

Change the contenis of a register if a flag bit is set:

: ZEROB_ON_OV
CC? 4 AND IF 0 =B THEN ;

Explanation

This routine masks off bit 2 of the value in the CC register (with the 4
AND) and, if it isn’t zero, changes the contents of the B register to zero.
This routine could be used in a loop that runs to a breakpoint at
TEST_POINT, waits until the CC register has bit 2 set, then sets B to
zero and checks to see if the A register is greater than the X register.

Run until bit 2 of CC is set and A is greater than X:

: CATCH A>X RESET
BEGIN
TEST_POINT RB
CC? 4 AND
IF 0 =B
A? X? >
IF ." Routine finished" EXIT
THEN
THEN
AGAIN ;

6/89 277 APPENDIX: WRITING MACROS

UNILAB REFERENCE MANUAL

The same routine with comments:

: CATCH_A>X { Name of the macro is CATCH_A>X)
RESET (Start with RESET enabled)
BEGIN (Start loop)

TEST POINT RB (Runto breakpoint at test_point)
CC? 4 AND (Check to see if CC register has bit 2 set)
IF 0 =B { If CC bit 2 is set, set B register to zero,}
A? X? > (then check if A register is greater than X)
IF ." Routine finished" EXIT (quit if A>X)
THEN { every IF conditional must end with THEN)
THEN
AGAIN ; (Go to BEGIN again if A isn’t greater)
(RESET is disabled after first RB command.)

APPENDIX: WRITING MACROS 278

6/89

UNILAB REFERENCE MANUAL

Notes:

6/89 279 APPENDIX: WRITING MACROS

Notes:

APPENDIX: WRITING MACROS

280

UNILAB REFERENCE MANUAL

6/89

UNILAB REFERENCE MANUAL

FORTH REFERENCE

All Forth commands documented here are available from the Unilab’s
macro-level system. Stack diagrams are shown:

(inputl input2 -- outputl output2)
where the top of the stack is on the right. (Le., input2 is the top item on
the stack before the word is executed, output2 is the top of the stack
after the word is executed.) See the key to operands, below.

For more information, see All About Forth by Glen B. Haydon (Mountain
View Press). Also see “About the Macro Language” in the previous
appendix. The following chart was adapted from the Forth-79 Handy
Reference; it and other Forth products are available from the:

Forth Interest Group

P.O. Box 8231

San Jose, CA 95155 USA

408-277-0668

Key to Operands

d, dl 32-bit signed numbers
addr, addrl 16-bit addresses
char 7-bit ASCII character value
n, nl 16-bit signed numbers
u unsigned 16-bit number
byte 8-bit byte
flag Boolean flag (1 = true, 0 = false)

6/89 281 APPENDIX: FORTH REFERENCE

UNILAB REFERENCE MANUAL

Stack Manipulation

DUP (--nn) Duplicate top of stack. “dupe”

DROP n--) Discard top of stack.

SWAP (nl1 n2 -- n2 n1). Exchange top two stack items.

OVER (n1 n2 - nl n2 n1) Copy second stack item to top.

ROT (nl n2 n3 - n2 n3 nl) Rotate third item to top. “rote”

PICK (nl --n2) Copy nth item to top. Thus,
1 PICK =DUP, 2 PICK = OVER.

ROLL (- Rotate nth item to top. Thus,
2 ROLL = SWAP, 3 ROLL = ROT.

?DUP (n--n@) Duplicate only if non-zero.
“query-dup”

>R n--) Move top item to return stack for
temporary storage (use caution).
“to-1”

> (—-n) Retrieve item from return stack.
“r-from”

RE@ (—-m “r-fetch” Copy top of return stack
onto stack.

DEPTH (-m Count number of items on stack.

Comparison

< (nl n2 —- flag) True if nl < nZ. “less-than”

= (nl n2 -- flag) True if top two numbers are equal.
“equals”

> (nl n2 - flag) True if n1 > n2. “greater-than”

o< (n -- flag) True if top number is negative.
“zero-less”

0= (n -- flag) True if top number is zero. Equiva-
lent to NOT. “zero-equals”

0> (n -- flagd True if top number > zero.
“zero-greater”

D« (d1 42 -- flag) True if d1 < d2. “d-less-than”

U< (un1 un2 - flag) Compare top two items as unsigned

APPENDIX: FORTH REFERENCE

integers. “u-less-than”

282 6/89

UNILAB REFERENCE MANUAL

MOD

/MOD

* /MOD

*/

U/MOD

6/89

Arithmetic and Logical

(n1 n2 -- sum) Add top two numbers on stack.
“plus”

(d1 d2 -- sum) Add double-precision numbers. “d-
plus”

(n1 n2 -- diff) Subtract (n1 — n2). “minus”

(n - n+1) Add 1 to top number. “one-plus”

(n--n-) Subtract 1 from top number.
“one-minus”

(0 - n+2) Add 2 to top number. “two-plus”

(n - n-2) Subtract 2 from top number.
“two-minus”

(nl n2 -- prod) Multiply. “times”

(n1 n2 -- quot)

(n1 n2 -- rem)

(n1 n2 -- rem quot)

(n1 n2 n3 -- rem quot)

(n1 n2 n3 -- quot)

(unl un2 -- ud)

(ud un — urem uquot)

(n1 n2 -- max)

Divide (n1/n2). Quotient will be
rounded toward zero. “divide”
Modulo (i.e., returns the remainder
from dividing n1/n2). Remainder
has same sign as nl. “mod”

Divide, giving remainder and
quotient. “divide-mod”

Multiply, then divide (n1*n2/n3),
with double-precision intermediate.
“times-divide-mod”

Similar to * /MOD, but gives quotient
only, rounded toward zero.
“times-divide”

Multiply unsigned numbers, leaving
the unsigned, double-precision
result. “u-times”

Divide double number by single,
giving unsigned remainder and
quotient. “u-divide-mod”

Leave greater of two numbers.
max”

«

283 APPENDIX: FORTH REFERENCE

UNILAB REFERENCE MANUAL

MIN (nl n2 - min) Leave lesser of two numbers. “min”

ABS - Inb Absolute value. “absolute”

NEGATE (n--mn Leave two’s complement.

DNEGATE (d--d) “d-negate” Leave two’s complement
of double-precision number.

AND (nl n2 -- and) Bitwise logical AND.

OR (nl n2 -- on) Bitwise logical OR.

XOR (nl1 n2 -- xor) Bitwise logical exclusive-OR. “x-or”

Memory

¢ (addr -- n) Replace the address on the stack by
the number at that address. “fetch”

! (n addr --) Store n at addr. “store”

ce (addr — byte) Fetch the least significant byte only.
“c-fetch”

c! (n addr --) Store the least significant byte only.
“c-store”

? (addr --) Display the value that is at address.
“question-mark”

+! (naddr --3 Add n to the number at addr.
“plus-store”

MOVE (addrl addr2 n --) Move n numbers, starting from
addrl, to memory starting at addr2,
if n>0.

CMOVE (addrl addr2 n --) Move n bytes, starting from addr],
to memory starting at addr2, if n>0.
“c-move”

FILL (addr n byte --) Fill n bytes in memory with byte,

APPENDIX: FORTH REFERENCE

beginning at addr, if n>0.

284 6/89

UNILAB REFERENCE MANUAL

Control Structures
DO...LOOP do:(end+1 start --) Set up loop, given index range.
I (-- index) Place current loop index on data
stack.
J (- index) Return index of the next outer loop

LEAVE)

in the same definition.

Terminate loop at next LOOP or
+LOOP, by setting the limit equal to
index.

DO ... ¥LOOP do:(limit start --) Like DO ... LOOP, but adds stack
+LOOP: (n --) value (instead of always 1) to index.

IF ...(true)... THEN

IF ...(true)... ELSE ..

BEGIN ... ONTIL

BEGIN ... WHILE ...

EXIT

EXECUTE

6/89

Loop terminates when index in
greater than or equal to limit (n>0),
or when index is less than limit
(n<0). “plus-loop”

If:(flag -) If top of stack true, execute.

.(false)... THEN

If:(flag -) Same, but if false execute ELSE
clause.

until:(flag -) Loop back to BEGIN until true at
UNTIL.

REPEAT

while:(flag -) Loop while true at WHILE. REPEAT
loops unconditionally to BEGIN.
When false, continue after REPEAT.

- Terminate execution of colon
definition. (May not be used within
a DO ... LOOP.)

(addr --) Execute dictionary entry at
compilation address (e.g., the
address returned by FIND).

285 APPENDIX: FORTH REFERENCE

UNILAB REFERENCE MANUAL

Terminal Input/Output

CR (- Do a carriage return and line feed.
“opn

EMIT (char) Type the ASCII value from stack.

SPACE - Type one space.

SPACES (n--) Type n spaces, if n>0.

TYPE (addr n --) Type the string of n characters
beginning at addr, if n>0.

COUNT (addr -- addr+1 n) Leave address of string (first byte at
addr contains length) to TYPE from.

-TRAILING (addr nl -- addr n2) Reduce character count of string at
addr, to omit trailing blanks.
“dash-trailing”

KEY (-- chan Read key and leave ASCII value on
stack.

EXPECT (addrn--) Read n characters (or until carriage
return) from terminal to address,
with null(s) at end.

QUERY - Read line of up to 80 characters
froin terminal to Wnput buffer.

WORD (char -- addr) Read next word from input stream
using char as delimiter, or until null.
Leave address of length byte.

Numeric Conversion

*BASE (- addn System variable containing radix for
numeric conversion.

DECIMAL (--) Set decimal number base.

(n--) Print number with one trailing
blank, and sign if negative. “dot”

U. (un --) Print top of stack as unsigned
number with one trailing blank.
“u-dot”

CONVERT (dl addrl -- d2 addr2) Convert string at addrl+1 to double
number. Add to d1, leaving sum d2
and addr2 of first non-digit.

<#) Start numeric output string

APPENDIX: FORTH REFERENCE

conversion. “less-sharp”

286 6/89

UNILAB REFERENCE MANUAL

(udl - ud2) Convert next digit of the unsigned
double number and add character
to output string. “sharp”

§s (ud--00) Convert all significant digits of the
unsigned double number to output
string. “sharp-s”

HOLD (char -) Add ASCII char to output string.

SIGN n-) Add minus sign to output string if
n<0.

#> (d - addr n) Drop d and terminate the numeric

output string, leaving addr and
count for TYPE. “sharp-greater”

Mass Storage Input/Output
LIST (n-) List screen n and set SCR to contain
n.

LOAD n-) Interpret screen n, then resume
interpretation of the current input
stream.

*SCR (-- addr) System variable containing screen
number most recently listed.

BLOCK (n - addp) Leave memory address of block,
reading from mass storage if
necessary.

UPDATE (--) Mark last block referenced as
modified.

BUFFER (n --addp) Leave address of a free buffer,
assigned to block n; write previous
contents to mass storage if

UPDATEd.

SAVE-BUFFERS =) Write all UPDATEd blocks to mass
storage.

EMPTY-BUFFERS (-) Mark all block buffers as empty,

without writing UPDATEd blocks to
mass storage.

6/89 287 APPENDIX: FORTH REFERENCE

UNILAB REFERENCE MANUAL

Defining Words

Begin colon definition of xxx.
“colon”

End colon definition. “semi-colon”
Create a two-byte variable named
xxx; returns address when execut-
ed.

Create a constant named xxx with
value n; returns value when execut-
ed.

Used to create a new defining word,
with execution-time routine in high-
level Forth. “does”

Dictionary

T XXX -
; -
VARIABLE xxx (--)

xxx: (- addr)
CONSTANT XXX n-)

xxx:(-- n)
CREATE ... DOES>

does:(- addr)
' XXX (-- addn)
FIND { -- 3dddd
FORGET Xxxx -

APPENDIX: FORTH REFERENCE

Find address of xxx in dictionary; if
used in definition, compile the
address. “tick”

Leave compilation address of next
word in input stream. If not found
in CONTEXT or FORTH, leave 0.
Forget all definitions back to and
including xxx.

288

6/89

UNitAB REFERENCE MANUAL

Compiler

, (n-) Compile a number into the
dictionary. “comma”

ALLOT n-) Add two bytes to the parameter
field of the most recently-defined
word.

.M -) Print message (terminated by ™). If
used in definition, print when
executed. “dot-quote”

IMMEDIATE -) Mark last-defined word to be
executed when encountered in a
definition, rather than compiled.

LITERAL n-) If compiling, save n in dictionary, to
be retumned to stack when definition
is executed.

STATE (-~ addp) System variable whose value is non-
zero during compilation.

[- Stop compiling input text and begin
executing. “left bracket”

] =) Stop executing input text and begin
compiling. “right bracket”

COMPILE - Compile the address of the next
non-IMMEDIATE word into the
dictionary.

[COMPILE] - Compile the following word, even if

IMMEDIATE. “bracket-compile”

6/89 289 APPENDIX: FORTH REFERENCE

UNILAB REFERENCE MANUAL

Miscellaneous
(> Begin comment, terminated by } on
same line or screen; use a space

after the opening parenthesis.
“paren” and “close-paren”

HERE (-- addr) Leave address of next available
dictionary location.

PAD (- addr) Leave address of a scratch area of at
least 64 bytes.

*>IN (- addr) System variable containing the
character offset into the input
buffer; used, e.g., by WORD. “to-in”

*BLK (-- addr) System variable containing the
block number currently being
interpreted, or 0 if from terminal.

“b-1-k”

ABORT (--) Clear the data and return stacks, set
execution mode, return control to
terminal.

QoIT (=) Like ARORT, but doesn’t clear the

data stack or print any message.

APPENDIX: FORTH REFERENCE 290 6/89

UNILAB REFERENCE MANUAL

How DEBUG WORKS

Unilab DEBUG functions use the analyzer, emulation memory, a special
idle register, and some of the target processor’s resources to provide the
traditional DEBUG functions of in-circuit emulators. Breakpoints can be
set, the target code can be single-stepped, registers can be changed, and
the contents of target RAM and ports can be displayed and modified.
Because the Unilab is not an in-circuit emulator, it uses different
techniques to do this. Following is a discussion about how this is done.

The sequence of DEBUG operations that sets a software breakpoint can
be described graphically. Imagine the target memory space as a line that
extends from address 0 to address FFFF:

0000 FFFF

Think of your code as executing along this line, with program branches
and jumps “off” and “onto” the line. For instance, a jump from address
1F80 to address 2800 would look something like this:

ogoo FFFF

oaamrnn,,
o .

6/89 291 APPENDIX: DEBUG

UNiLAB REFERENCE MANUAL

When you issue the command RESET <addr> RB, the DEBUG features
install vectors for the software breakpoint and insert some code—usually
a NOP and RTI—in the reserved area. The instruction at <addr> is
copied elsewhere, then overwritten by the software breakpoint opcode.
The overlay area (usually right above the reserved area) is saved also,
uploaded to the host PC’s memory.

Software breakpoint reserved area

The command RB starts the analyzer, with the idle register “armed.”
When the software breakpoint is executed, the program will jump to the
software-interrupt vector (SWI), which contains the address of the
reserved area:

.

o L"""'"""""""-.:‘i

idle at (O swi vector
reserved areq

Software breakpoint

When the analyzer “sees” the address of the reserved area on the bus, it
turns on the idle register. This two-byte register is placed on the data
bus instead of emulation memory. It contains 2 *branch -2” instruction.
While the idle register is turned on, the microprocessor is caught in the
idle loop, and can do nothing but execute this branch instruction .

AppENDIX: DEBUG 292 6/89

UNILAB REFERENCE MANUAL

Now the Unilab prepares to gather data about the breakpoint. First, the
UniLab downloads the DEBUG code into the overlay area:

e Wle [still going)

download code at
overiay area

Next, the Unilab releases the idle register, causing the microprocessor to
run the downloaded code. A trace is captured and uploaded to the host.
This provides all the data shown in the breakpoint display (register
values, stack pointer, flags, program counter). Other DEBUG code
segments can then be downloaded to change registers, and to read/write
ports or target RAM:

release idle

>

run dounloaded code at
overiay area
then refurn to idle

Cer

At the end of each such code segment, a branch instruction points back
to the start of the reserved area. The idle register is still “armed,” and
puts the microprocessor into a loop again:

O iie

restore overlayed
code

6/89 293 AppPenDIX: DEBUG

UNILAB REFERENCE MANUAL

Finally, the original code from the overlay area is downloaded from the
host and returned to its place, and the software-interrupt opcode is
overwritten by the original instruction from that address. “Beneath” the
idle register, waiting to be executed, is an RTI instruction, usually the
second byte of the reserved area.

The processor is kept in the tight loop until another DEBUG function is
executed (e.g., STEP-OVER, GB, =register, target RAM operation), or
until the processor is released from the breakpoint (e.g., RZ, G, or GW).

When you release the processor from a breakpoint, the program counter
is “backed up,” so the RTI instruction will cause the original instruction
at the breakpoint address to execute:

o ",

K: "'-..,
Restore opcode replaced release idle, ad just pc
by software breakpoint execute RTI

Hardware breakpoints work the same way, but an NMI (or IRQ) signal
sends the microprocessor to the hardware vector, not to the software-
interrupt vector.

APpPENDIX: DEBUG 294 6/89

UNILAB REFERENCE MANUAL

M
EXAMINING INTERRUPT ROUTINES

Interrupt-driven code on microcontroller boards can be difficult to debug
with traditional techniques. Single-stepping to examine program flow
can give misleading information about programs that respond to timer
counters or to externally generated interrupt service requests.

When single-stepping, the microprocessor is effectively slowed down to
one instruction per step. Meanwhile, peripheral devices (including on-
chip timer counters) continue to operate at full speed.

Further, this continuous servicing of interrupt requests can mask, or even
cause, subtle bugs. For example, suppose a program exhibits a problem,
but only if a device’s interrupt occurs within a few instructions of the
interrupt-enable instruction. The program and hardware design may
prevent that code from being interrupted during real-time execution.
During single-stepping (with interrupts enabled), that block will be
interrupted immediately.

The Unilab provides several ways to analyze and debug interrupt-driven
code, depending on what you want to examine. With the Unilab bus-
state analyzer (to capture real-time traces) and the UniLab DEBUG
features (to set breakpoints and single-step), you should be able to fix
tough interrupt bugs quickly.

To watch interrupi routines in action:

1. Use a trigger to capture a real-time trace of the interrupt routines.

2. Or set a breakpoint in the interrupt routine and single-step through it.

3. With some processors, you can set a breakpoint in non-interrupt code
and use STEP-INTO (F4) to single-step into the interrupt code.

To watch your code without seeing interrupt routines:

1. Use a filtered trigger (conditional recording) to capture a real-time
trace.

2. Or set a breakpoint in non-interrupt code and use STEP-OVER (F3)
and RB to single-step, while transparently servicing your interrupts.

3. Or set a breakpoint in non-interrupt code and disable interrupts
before single-stepping with STEP-INTO (F4).

6/89 295 APPENDIX: INTERRUPTS

UNILAB REFERENCE MANUAL

Real-Time Trace of Interrupts

In general, a real-time trace is the best way to examine the flow of a
program, especially of interrupt routines. In its destined environment,
your target will operate in real time. The best way to examine your
program’s behavior in real time is to capture traces with the analyzer.

When you see trouble in the program flow, you may want to set a
breakpoint and examine the internal registers. But the trace should be
used as the main tool for spotting such problems; the DEBUG features
are used only after a program flow problem has been found.

Examples: Trigger Analyzer on Interrupt
To capture a trace of your interrupt service routine, specify the trigger
with this command line:

<interrupt_ vector_ address> AS

AS invokes NORMT, so the trigger in this exampie would be near the top
of the buffer. To see more of the program prior to the interrupt, type:

NORMM <interrupt vector_address> ADR S

NORMM sets the trigger at the middle of the buffer, so the first half of the
buffer will contain the cycles that preceded the interrupt, and the other
haif will contain post-interrupt cycies.

If resetting is enabled (with RESET), the Unilab will issue a reset pulse
to the target system before starting the bus-state analyzer. If resetting is
disabled (with RESET"), the bus analyzer will monitor the program in
progress.

APPENDIX: INTERRUPTS 296 6/89

UNILAB REFERENCE MANUAL

To trigger on the second execution of an interrupt-service routine, type:
NORMM <int_vec_addr> ADR AFTER <int_vec_addr> ADR

To capture an ISR after it executes a specific number of times, add n
PEVENTS to the above command line. Now the analyzer can be started
with S to capture a trace of the “nth + 1” execution of the interrupt
routine.

To capture a trace of the interrupt-service routine after some other code
executes, use the command line:

NORMM <int_vec addr> ADR AFTER <other_ addr> ADR

to delay the search for the interrupt vector address until after the other
address is seen. As above, you can use PEVENTS to capture a trace of
the interrupt routine after the nth execution of the other routine.

6/89 297 APPENDIX: INTERRUPTS

UNILAB REFERENCE MANUAL

Breakpoints and Interrupts

After using the bus-state analyzer to spot a problem, you may want to
set breakpoints and examine the internal registers of your processor.
Keep in mind that your timer counters will continue to count down
when your processor is stopped at a breakpoint, and that peripheral
devices will continue to operate in real time while your processor single-

steps.

Use RESET <addr> RB or the optional hardware-interrupt commands
STEP-INTO (F4) or RI <trigger_spec> SI to set a breakpoint.
Interrupt routines in the target system will not interfere with a
breakpoint unless they are non-maskable. To examine non-maskable
interrupts, stick with the analyzer techniques discussed above.

Once the processor is stopped at a breakpoint, an interrupt can occur
any time, but it will not be serviced. The various DEBUG commands
interact with pending interrupt requests in different ways, described
below:

« In general, STEP-OVER (F3) transparently services interrupt requests,
and re-establishes DEBUG control when the processor returns from the
interrupt.

« <addr> RB behaves similarly. RB releases the processor from the
current breakpoint and sets another software breakpoint set at the
specified address. DEBUG will get a breakpoint when that address is
executed, whether it is in the interrupt routine or in other code.

« RI <trigger_ spec> SI releases your processor from the current
breakpoint and gets a new hardware breakpoint after the specified
trigger occurs.

« The hardware STEP -INTO (F4) exhibits different behaviors on
different processors, depending on the structure and timing of the
interrupts. For example, on the 8051 family of processors, STEP-INTO
single-steps into an interrupt service routine if the request is asserted
while the processor is at the breakpoint. But on 65/xx processors,
STEP-INTO will “stall” at the same address when there is a pending
interrupt request—at that point, you must service the interrupt (use
STEP-OVER, RB, or RI ... SI) or disable interrupts.

APPENDIX: INTERRUPTS 298 6/89

UNILAB REFERENCE MANUAL

Examples: Set Breakpoints on Interrupts
To get a breakpoint in your interrupt service routine, you have two
choices. Type:

RESET <interrupt_service routine address> RB

to restart the target system with a software breakpoint set up at the
specified address. Or use:

RI <int_ routine addr> ADR

to specify the trigger. Then use ST to start the bus-state analyzer, with
the hardware interrupt “armed.”

The first will get a breakpoint at the address you specify, the second will
get a breakpoint (via a hardware interrupt) after the address appears on
the bus.

Both RB and RI ... SI disable resetting after the breakpoint is reached.

To capture the second execution of your interrupt service routine, first
set a breakpoint within the interrupt service routine and then use LP to
get a breakpoint the next time that routine is executed. Or use:

RI <int_routine addr> ADR 2 PEVENTS SI

to set a breakpoint after the second time the interrupt routine address
appears on the bus.

Note that RI sets a special trigger spec that causes the address you
specify to appear as the first qualifier. In general, you shouldn’t use an
additional AFTER in an RI ... ST trigger specification. Thus, to trigger on
its second appearance, just use PEVENTS. To capture the “nth”
execution of your interrupt service routine, type:

<n> PEVENTS

in the above command line. Or set a breakpoint in the interrupt service
routine and use the LP command n - 1 times.

To capture a trace of the interrupt service routine after some other code
executes, first set a breakpoint on the other code with RB or RI ... SI.
Then set the subsequent breakpoint on the interrupt service routine.

6/89 299 APPENDIX: INTERRUPTS

UNILAB REFERENCE MANUAL

Notes:

APPENDIX: INTERRUPTS 300 6/89

UNILAB REFERENCE MANUAL

OBJECT- AND SYMBOL-FILE FORMATS

The Unilab software can directly load binary images and Intel hex files.
All other file formats must be processed by Orion’s LOADER utility,
which converts object files into binary images, and converts symbolic
information into the Unilab symbol file format.

The formats handled by LOADER are described in this appendix, along

with the Intel hex format and the Unilab symbol-file format. See the
glossary entry for LOADER for details about using the utility.

6/89 301 APPENDIX: OBJECT & SYMBOL FILES

UNiLAS REFERENCE MANUAL

Define a .MAP File

You can use Microsoft or Orion format .MAP files, which are just ASCII
files that consist of one series of records for each source file. You can
have any number of records per .MAP file. (See MAPSYM for details.)

Sample Orion format .MAP file:

SOURCE SIMPLEl.C
2 0034

5 0040

6 0050

<blank line>
SOURCE SIMPLE2.C
3 0055

5 0070

<blank line>
<blank line>

Explanation

This file describes the relationship between source files and machine
code for a simple C program. The program was generated from two
source files. Notice that only some of the source lines generated code.

APPENDIX: OBJECT & SymBoL FILES 302 6/89

UNILAB REFERENCE MANUAL

Compatible Symbol Tables

2500AD
Specify file format M to the linker to output a Microtek-format file.

8051-family compilers
Most will output an OMF-51 file—look for the OMF-51 or Intel-
compatible option.

8088- and 8086-family compilers
Most will output an OMF-86 file—look for the OMF-86 or Intel-
compatible option.

8080-family compilers
Most will output an OMF-80 file—look for the OMF-80 or Intel-
compatible option.

Archimedes—8051
Specify file format -F AOMF8051 to the linker to output an OMF-51 file.

Archimedes—other processors

Specify the ~£ linker option with any Archimedes 8-bit C compiler to
produce an OMF-51 output file, allowing the Unilab to provide high-
level language support. If you do not want high-level lines in the symbol
file—e.g., to save LOADER file conversion time—specify -F MSD-I to
output a Manx file (ASCII file with a value followed by the name).

Avocet
Specify option -PlainDump to the linker to output an Avocet file (ASCII
file with the name followed by a value).

Allen-Ashley
Produces an Avocet file (ASCII file with the name followed by a value).

Manx

Can produce an OMF86 output file, allowing the UnilLab to provide full
high-level language support. If you do not want high-level language
lines in the symbol file—e.g., to save LOADER file conversion time—you
can specify option -T to output a Manx symbol file.

Software Development Systems, Inc. (formerly Uniware)

The loader can process the output file of the SDSI cross-compiler.
Specify option -£ to the compiler to produce symbols in the output file.
Set the downloader output format to “image” for a binary object file, and

use the —W option with the downloader to prevent loading into target
RAM.

6/89 303 APPENDIX: OBJECT & SYMBOL FILES

UNILAB REFERENCE MANUAL

OBJECT FORMATS

Intel Extended Hex format

Intel Extended Hex format represents an object image by using a fairly
simple ASCII file. Intel literature also refers to this format as the
Hexadecimal Object File Format.

Four types of records can occur in an Intel Hex file:
Data Record
Extended Address Record
End-of-File Record
Start Address Record

The Unilab command HEXLOAD will process the first two types,
terminating when the end-of-file record occurs. The start address record
is ignored.

The Extended Address Record is used to specify the “segment base
address” for subsequent Data Records. If the target program stays within
a single 64K physical segment, the Hex file does not need Extended
Address Records.

The Data Record contains up to 255 data bytes, as well as the offset
address for loading the data bytes. If there are no Extended Address
Records, the offset address is the physical address (offset from the
current UniLab EMSEG).

All Intel hex records consist of a single line of ASCII characters, starting
with a colon (:) and terminating with a checksum, followed by a
carriage return and line feed (ASCII codes 0Dh and 0Ah). Adding all the
hex digits (grouped in pairs), including the checksum, gives a zero result
in the low byte.

APPENDIX: OBJECT & SYMBOL FILES 304 6/89

UNILAB REFERENCE MANUAL

Use TYPE to view the file, and you will see the ASCII characters for the
addresses, record lengths, data bytes, and checksums. Perform a binary
dump of the file, and you will see the ASCII codes for the characters.

Data Record (type O2)
Record | Record Load Record Data Check
mark length address type . sum
(variable
" 1 number
" o0 of chars)
Example data record

:GEBPF82@1122334455667788939AABBCCDDEEZL

Split into fields for readability:
: OE @OF8 @@ 112233445566778899AARBCCDDEE @1

Explanation
This example will load @Eh bytes into memory, starting at offset 3@Fsh.

Extended Address Record (type 92)
Record R d Filler-- Record Check
rm(ﬁ(l:noZ:h Ze:& type UsBA sum
" "gon “BBBB" o2
Example
1020003323 9BBF 3

Split into fields for readability:
T 92 2@0ed 32 3993 F3

Explanation

This example will set the USBA (Upper Segment Base Address) to
P93B. This means that the address specification in subsequent data
records will be an offset from the 20-bit absolute address @9@BGh.

6789 305 APPENDIX: OBJECT & SYMBOL FILES

UNILAB REFERENCE MANUAL

Start Address Record (type @3)
Record | Record Filler— Record [P Check
mark length Zeroes type sum
" B4 "BDBDB" 3"
Example
:Q4PPPBIIFFFBTB23ET

Split into fields for readability:
: 24 goed @3 FFF@ ©@23 E7

This example will set the “start address” to FFF@:0@23 (20-bit address
FFF23). The UnilLab’s HEXLOAD command will ignore this record.

End-of-File Record (type @1)
Record Record Filler— Record Check
mark length Zeroes type sum
" o~ "BOBP" o |
Example
:OQBBBBB1FF

Split into fields for readability:
T 90 2odd @1 FF

Explanation

The end of file record always looks the same. The UnilLab’s HEXLOAD
command will terminate when it sees a record with a record-length
value of zero.

APPENDIX: OBJECT & SYmBOL FILES 306 6/89

UNILAB REFERENCE MANUAL

Tekhex format

Standard Tektronix Hexadecimal format (Tekhex) represents an object
image using a fairly simple ASCII file. (Extended Tekhex, not yet
supported by Orion, includes symbolic information as well.)

Tektronix documentation refers to the different record types as “blocks.”
Three types of records can occur in a standard Tekhex file:

Data Record

Termination Record

Abort Record

LOADER utility will process the first type, terminating when either of the
other two is encountered. The Termination Record should mark the
formatted end-of-file. The Abort Record is used for “termination upon
communication error” of a transmission from a host computer to a
remote instrument.

Tekhex data records have two checksums. The first is for the load
address and the byte count. The second checksum is for the data. The
checksum equals the low byte of the sum of the hex digits (grouped in
pairs).

Data Record
Record Load Byte First Data Second
mark address count Check . Check
sum (variable sum
"/ number
of chars)
Example

/120@27192310233348536@71C

Split into fields for readability:
/ 120@ @7 19 @1982@8304@50607 1C

Explanation
This example will load seven bytes into memory, starting at address
1200.

6/88 307 APPENDIX: OBJECT & SYMBOL FILES

Termination Record
Record Transfer Byte Check
mark address count sum
L] / " l’mn
Example
/12342346

Split into fields for readability:
/ 1234 @@ 46

Explanation

The transfer address for this record is the starting ad

LOADER ignores the transfer address.

Abort Record
Record Second ASCII message
TP slash alerting uscr o
mark cause of
"/ n/m termination.
Example

// HANDSHAKE FAILURE,

TRANSMISSION ABORTED

Explanation
The LOADER terminates when it encounters an abort record.

APPENDIX: OBJECT & SYMBOL FILES

308

UNILAB REFERENCE MANUAL

B R e Y
UIc couc,

6/89

UNILAB REFERENCE MANUAL

Motorola Hexadecimal format (S-records)

Motorola Hexadecimal format represents an object image by using a
fairly simple ASCII file. It is popularly called the Motorola S-record
format, because the character “S” marks the start of a record, which
never contains more than 80 characters. Adding all the hex digits
(grouped in pairs), including the checksum, gives the result FFh in the
low byte; this doesn't include the record mark. Motorola documentation
refers to groups of records as “blocks.”

There are ten S-record types:
SO group header record
81 data and 16-bit load address
S2 data and 24-bit load address
S3 data and 32-bit load address
S5 number of records in the group
S7 termination record for a group of $3 records
88 termination record for a group of S2 records
S9 termination record for a group of $1 records

Orion’s LOADER utility will process the S1, S2 and S3 records. The others
will be ignored, any symbol information they contain discarded.

Generalized S-record

Record Record Load Data Check
mark length address sum
(variable
»Snx 4, 6, or 8 chars orfminh:z)
Example
S128@3@331122334455F5

Split into fields for readability:
S1 @8 @32@ 1122334455 F5

Explanation
This S1 record is eight bytes long, not including the record mark or
length. It loads five bytes, starting at address @333@.

6/89 309 APPENDIX: OBJECT & SYMBOL FILES

UnNiLAB REFERENCE MANUAL

SYMBOL FORMATS

Manx symbol file

The Manx symbol file represents symbolic information in a simple ASCII
format. This format is produced by the Manx Aztec C compiler. Many
other compilers and assemblers produce similar or identical files.

The Manx format—Each line in the file defines a single symbol, and
consists of a four-digit hex value, followed by a space (one or more

blanks) and a variable-length name. Every line ends with a carriage
return and line feed (ASCII codes @Dh and @Ah).

The file terminates with an end-of-file mark (ASCII code 1Ah) on a line
by itself. The loader will not process any symbol information that is on
the same line as the end-of-file mark.

Example Manx-format symbol file:

@@23 firstsym
@2@67 another sym
2pl@ third sym
@@45 last-one

Binary dump of example:

VNV BNE6ORTBUBIDODAID 0023 firstsym..0
30363706l EGET4686572F 379D 067 ancther sym.
MN3LN20DM4EBEIREAFTZTIIOMD L0010 third sym.
BN ABNCELTBADFESDR L0045 last-are..
iy .

APPENDIX: OBJECT & SyYmBOL FILES 310 6/89

UNILAB REFERENCE MANUAL

Avocet symbol file

The Avocet symbol file represents symbolic information in a simple
ASCII format. This format is produced by the Avocet cross-assemblers.
Many other compilers and assemblers produce similar or identical files.

The Avocet format—Each line in the file defines a single symbol, and
consists of a variable length name, followed by a space (one or more
blanks) and a four-digit hex value. Every line ends with a carriage return

and line feed (ASCII codes @Dh and @Ah).

The file terminates with an end-of-file mark (ASCII code 1Ah) on a line
by itself. The loader will not process any symbol information that is on

the same line as the end-of-file mark.

Example Avocei-format symbol file:

firstsym 1023
another sym 2067

third sym 3010
last-one £045

Binary dump of example:

66692 TBMATVO0202020313DRNB
DROLEEFEMUNBGERFBBO0R
N3BIDCRAMBESRAFBOOANN
0200BIALVDD0RCELBUADEF
EES2020202020202066303435MDAIA

firstsym 1023
..ancther sym 2
067. .third sym
3010 ..lasto
re f045...

6/89

311

APPENDIX: OBJECT & SYMBOL FILES

UNILAB REFERENCE MANUAL

Microtek symbol file (produced by the 2500AD assembler)
The Microtek format file is not in ASCII format:

Start of | Variable number of End of
file Module records, File
each a variable
FE number of bytes FF
Sizeof ! Module name Length of Size of | Variabie number of End of
module : rest of symbol Symbol records, Module
name module addresses
. *Size of name" each a variable FE
1byte . number of bytes 3 bytes 1 byte number of bytes
. e
Size of - Symboel name Symbol value
symbol -
name 2,3,0r4
: *Size of name* bytes, depending on
1byte : number of bytes *size of symbol addresses"
" 0

Legitimate values for “size of symbol addresses”:

16-bit address, stored as iow byte, high byte.

24-bit address, stored as high byte, middle byte, low byte.
segmented address stored as low,high of segment, then offset.
32-bit address, stored in high-to-low order.

AV IS)
]

APPENDIX: OBJECT & SymBoL FILES 312 6/89

UNILAB REFERENCE MANUAL

SYMFIX Formats

The LOADER option SYMFIX allows you to load a wide variety of fixed-
record-length files. This option is used with files that consist only of a
series of records, each of which has the same format and length.
(SYMF IX cannot skip header information in files.)

The SYMFIX argumenis describe fixed-file formats:

<a> <c> <d> <e> <f> SYMFIX

= offset from start of record to start of name field*

= 1 if address is 4 ASCII digits, or 0 for 16-bit binary address
byte number of start of address field in record*

1 if binary address has most significant byte first

ASCII code of pad characters used to fill between symbols
record length*

O QLODW
I

*Note: Parameter a is “zero-indexed”; if the name field starts on the third
byte, use 2. Parameter c is “one-indexed”; if the address field starts on
the third byte, use 3. Parameter f is a count; if there are five bytes in the
record, use 5.

6/89 313 APPENDIX: OBJECT & SYMBOL FILES

UNILAB REFERENCE MANUAL

Example spec for a 2500AD abbreviated symbol-table file:

C> LOADER 0 O B 1 0 E SYMFIX MYFILE.SYM

Explanation

The above example will properly process files that follow this format:
no offset from start-of-record to start-of-name (a=0)
ten (decimal) bytes for the symbol name
two bytes for the binary, MSB-first symbol value (b=0 and d=0)
two pad bytes, for a total of OEh bytes (f=0E)
the symbol value, thus, starts at offset 0Bh in the record (c=0B)
the pad bytes are value 00 (e=00)

Binary dump of example:

4F. 4558 54 00 00 00 00 00 00 08 2800 00 53 4 12 +..ST
42 31 00 00 00 00 00 00 08 36 00 00 42 55 2 4E Bl6..HRL
0000000000000853000424LFFN0 e S HOP..

This is a2 dump of the 2500AD format. SYMF IX can handle many other
fixed-file formats as well.

Softwarc Development Systems, Inc. Files

The Software Development Systems, Inc. output file format is proprietary
and will not be described here. The .OUT file contains object code, line-
number information, and global symbols. They have a very flexible
symbol and line handler to produce expanded symbol and line infor-
mation. The loader will provide a symbol format readable by the

UniLab.

APPENDIX: OBJECT & SYMBOL FILES 314 6/89

UNILAB REFERENCE MANUAL

MIXED SYMBOL AND OBJECT FORMATS

OMF-51 (Object Module Format for 8051 family)

An OMF-51 file represents symbolic information, debug information, and
data records. The file is not in ASCII form. It is also referred to as AOMF-
51 (i.e., Ashling, or Absolute, OMF-51). This rather complicated format
has become the de facto standard for encoding 8051-family object
modules. Most compiler vendors now support OMF-51, for the sake of
compatibility with Intel tools.

The OMF-51 specification includes “relocatable” records and absolute
records. Orion’s LOADER supports only the absolute records. (Relocat-
able records have not yet had their absolute locations in memory
determined.) Use a linker/locator package to translate a file with
relocatable and “fixup” records into a file with only absolute records.

No documentation on OMF-51 is publicly available. A close relative of
the format is described in a 40-page Intel publication:

MCS 80/85 Relocatable Object Module Formats

Order #121747-001

OMF-86 (Object Module Format for 8086 family)

An OMF-86 file represents symbolic information, debug information, and
data records. The file is not in ASCII form. This rather complicated
format has become the de facto standard for encoding 8086-family object
modules. Most compiler vendors now support the OMF-86.

The OMF-86 specification includes “relocatable” records and absolute
records. Orion’s LOADER supports only the absolute records. (Relocat-
able records have not yet had their absolute locations in memory
determined.) Use a linker/locator package to translate a file with
relocatable and “fixup” records into a file with only absolute records.

OMF-86 is described in a 120-page Intel publication:
8086 Relocatable Object Module Formats
Order # 121748-03@31

For a good article on OMF-86:
PC Tech Journal, pp. 62 — 81, October 1985, Vol. 3 No. 10.
Focuses on the use of OMF in the MS-DOS environment, but
serves as a good introduction to the format.

OMF-80 (Object Module Format for 8080 family)
No documentation on OMF-80 is publicly available.

6/89 315 APPENDIX: OBJECT & SYMBOL FILES

UNILAB SYMBOL-FILE FORMAT

UNILAB REFERENCE MANUAL

Here, the normal Unilab file facilities are used to reveal the symbol
format. If you understand the basic Unilab commands, this will show

how to investigate the symbol file’s properties for yourself.

COMMAND> clrsym

COMMAND> 100 is one hundred
COMMAND> 200 is two_hundred
COMMAND> 40 is forty
COMMAND> 25 is twenty-five

COMMAND> symlist
sym0001 0025 TWENTY-FIVE
sym0002 0040 FORTY
sym0003 0100 ONE_HUNDRED
sym0004 0200 TWO HUNDRED

COMMAND> symsave XX.sym
COMMAND> 0 7ff 0 mfill

COMMAND> 0 7ff binload xx.sym end = 67

COMMAND> 0 6f mdump

992 01 00 40 00 08 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
YN MO T RS T
524544 01 00 00 00 (2 0B 54 57 4F 5 48 55 4
4452 45 44 01 00 00 40 00 05 46 4F 52 54 59 01
2F 00 24 00 02 00 13 00 00 00 00 00 00 00 00 00

BBEWNEo

APPENDIX: OBJECT & SYMBOL FILES

316

6/89

UNILAB REFERENCE MANUAL

The four parts of the beader of a UniLab-format symbol file:

SYMBOL FILE ID# (this is also at 20 bytes into file):
0 99201 0040 000800000000 0000000000 RN F

VERSION NUMBER (currently 1; check your system for current
number—it may change.)
0 % 9201 0040 0008 00 00 00 00 00 00 00 00 00 [- RN

POINTER START OF INDEX (minus 20-byte header:
0 % % 01 004000 08 00 00 00 00 00 00 00 00 00 S R

NUMBER OF SYMBOLS (times 2):
0 % %201 0040 0008 00 00 00 00 00 00 00 00 00 [N AR

The Unilab format for symbol records:

The first number is the symbol type—symbols defined by IS or
translated by the LOADER are of type 01.

20 0100000 BEFEFELTFTBDHEHN aeeeanad QE HND
N 454

The next 32 bits are the symbol value. The name follows in ASCII,
preceded by a count byte (B characters in this example).

20 00XV BFELSFR/8DSELM 0 e QE HND
0 R454

At the end of the file is an index to all symbols. Here, the first symbol
starts 002F bytes after the header, the second at 0024 bytes after, the
third at 0002 bytes after, and the last at 0013 after.

60 2002400 001300000000 000000 00 00 /S

Note: The index has the symbols sorted by value. If you make or
translate a symbol file for the Unilab with your own program, you must
sort them by value for the symbol interface to function properly.

6/89 317 APPENDIX: OBJECT & SYMBOL FILES

UNILAB REFERENCE MANUAL

Notes:

APPENDIX: OBJECT & SYMBOL FILES 318 6/89

UNILAB REFERENCE MANUAL

|
HIGH LEVEL LANGUAGE SUPPORT

UniLab has several features that help you debug code written in high
level languages such as C. You can use function names and global
variable names!t and refer to statements (by line number) in your
source code. This dramatically simplifies debugging. In addition,
Unilab Source Tracking automatically displays the appropriate sections
of your source file while you work. You will no longer have to search
through hard-copy listings, cross reference maps, and link tables.

In general, the main requirement for UniLab high-level language
support is that the compiler generates an extended symbol table that
relates lines in your source text with addresses in the compiled code.
The addresses represent the code that is generated by these high level
instructions. (On-line help is provided for each processor to help you
create the proper file format with your compiler and on how to load
this high level information into the Unilab.)

The Unilab can correlate lines from your source text with the compiled
code while you use the analyzer, inspect or modify memory, and
perform DEBUG functions.

The Unilab treats these high level line "tags" as special types of
symbols. When loaded into the UniLab they appear in the symbol
table along with normal symbols. There are two different types of high
level symbols:

1. Addresses which point to lines in a source module.
In the symbol table these appear as

sym00AC 0657 L0171 M5 of module TEST51.C
This tag shows that symbol #00AC is address 0657 in the

compiled code and was generated by line 171 in source
file number 5 (named TEST51.C).

2. Names of source modules.
In the symbol table these appear as

symOOBA 0005 module TESTS51.C
This tags the source file named TEST51.C as file number 5.

The number 5 is a cross-reference "ID number" used by

fNote: every Unilab system can suppor: bigh level symbols, bowever, not every
crosscompiler generates this type of information. Check information in your
processor-specific Application Notes (located in each PPAK) and on the LOADER
to see which compilers are supported for your processor.

6/89 319 APPENDIX: HIGH LEVEL LANGUAGE SUPPORT

UNILAB REFERENCE MANUAL

UniLab to identify the different source files. You can have many
source modules. When the Unilab shows a line in a disassembly
or at a breakpoint, the source file is opened and the line is
printed.

Lines from the source text will be shown just like symbols when
disassembling memory, viewing a trace, or at breakpoints.

High level source lines with disassembly from memory:

MAIN 03C8 90000C
03CB 120323

MOV DPTR, #C
LCAL ?ENTER_L17

L0050_M3 set_timers(); /* setup the timers */
03CE 73900 MOV R1,#0
03D0 1203B7 LCAL SET_TIMERS

L0051 _M3 set_int0(); /* setup the int pin */
03D3 7200 MOV R1, #0
03D5 120328 LCAL SET_INTO

LO0S7_M3 time = O0x800; /* set default delay *x/
0308 7BOO MOV R3, #0
03DA 7208 MOV R2, #8

High level source lines in the trace display:

cy# CONT ADR DATA
82 7F 0359 COFO PUSH B_
86 TF 035B 22 RET
LOO037_M3 output (TCON,Cx51), /* set tC,1 */
8A TF 03BD 7B51 MOV R3, #51
8C 7F O3BF 8BS88 MOV TCON,R3
L0038_M3 output (TMOD, 0x10); /* tl=8-~bit,t0=13b*/
90 7F 03C1 7B10O MOV R3, #10
92 TF 03C3 8B89 MOV TMOD,R3
L0039 M3 }
96 TF 03C5 02035C LJMP ?LEAVE L17
9A 7F ?LEAVE_L17 035C DOOS6 POP 6
9E 7F 035E D007 POP 7
A2 TF 0360 DOEC POP ACUM
a6 7F 0362 F581 MOV SP,A
A8 TF 0364 C007 PUSH 7
AC T7F 0366 C006 PUSH 6
BO 7F 0368 22 RET
L0051 M3 set_int0(); /* setup the int pin */
B4 F 03D3 7900 MOV R1, $0
B6 TF 03D5 1203A8 LCAL SET_INTO
BA 7F SET_INTO 03A8 900000 MOV DPTR, #RESET _
BE TF 03AB 120323 LCAL ?ENTER L17

High level line source line at a DEBUG breakpoint:

SP=2F A=2C DPTR=0002 IE=60 PSW=01 (cafbbv-P)
RO=DD R1=00 R2=06 R3=C3 R4=06 R5=2A R6=00 R7=2B T0=0 T1=0
B =05 PO=DD P1=FF P2=05 P3=FF IP=E0 CON=00 TCON=00 TMOD=00

L0O150_M4 set_timers(); /* setup the timers */
05DD 7900 MOV R1, $#0
APPENDIX: HIGH LEVEL LANGUAGE SUPPORT 320

UNiLAB REFERENCE MANUAL

You may also use the line numbers as symbols. For instance, you can
use L0171_M5 instead of an address to set a trigger spec or to get a
breakpoint. If you use the Debug PopUp to set a breakpoint, you can
enter 1L.0171_M5 when you are requested to enter the address.

Normally you will not have to invoke any command or special feature to
enable high-level support. Simply load the symbol table after loading
your program code into the Unilab. This feature is enabled by default.
If for some reason you wish to turn it off, use the command SOURCE '
(the ending apostrophe is part of the word). To re-enable, use the
command SOURCE.

IMPORTANT: In order for the Unilab to open the proper file and show
the proper lines, the source file must be in the current directory.

Source Tracking

The UniLab's Source Tracking feature allows you to see automatically
more than a single line from the source file when you are disassembling,
using the analyzer or DEBUG. Source tracking automatically correlates
the compiled code with your source text.

In order to use Source Tracking, select SPLIT screen display mode (F2).
Use the lower window to do your normal activities. When a source line
appears in a trace, disassembly or at a breakpoint, the upper window
will show an entire section from the source file. You will see the section
of your source code which generated the compiled code in the upper
screen window while you inspect and debug the actual code in the
lower window. You won't have to sift through reams of print-outs of
your source code while you are debugging and analyzing.

If you wish to use the upper window for other purposes, you can turn
off the Source Tracking feature with the command TRACK' (don't
forget the apostrophe). Re-enable with TRACK.

6/83 321 APPENDIX: HIGH LEVEL LANGUAGE SUPPORT

UNILAB REFERENCE MANUAL

Single Stepping through Source Lines

As mentioned above, the UniLab can set breakpoints on line numbers.
You can set a breakpoint on any line that is executed in your target code
and use line numbers to begin execution at other places in your code.

In order to DEBUG high-level code quickly, the UnilLab has a STEP -
LINE method of breakpointing. Like the STEP-OVER function which
sets a breakpoint on the next instruction in memory, STEP-LINE sets a
breakpoint on the next address tagged by a high level line symbol.
STEP-LINE is assigned to function key Alt-F4.

You must be careful using this feature. Its primary use is to get quickly
to a point in the code, so you then can use the lower level single-step
routines to analyze the compiled code in detail. If you use a structure
such as

Linel0Q {nvnvaeeinn)

Linel0l 1f (expression)
Linel02 else (expression)
Linel03 (expression)

and you use Ali-F4 to single step, you will probably get to a point where
DEBUG returns the message "Waiting for address xxxx
(Line101 M3)". Like STEP-OVER (F3), STEP-LINE (Alt-F4) sets a
bieakpoint at the next higher expiession. 11 the cxpression ncver
executes, then you will not get a breakpoint. In the example above, if
you are at a breakpoint at Line 100, then used STEP-LINE, a breakpoint
would be set at Line101. At Line101 if you use STEP-LINE again, the
next breakpoint would be set at Line 102. If the "if" part of the
statement is taken, the "else” part will not be executed. If you want to
step through this kind of code, use STEP-INTO (F4) to follow the low
level execution of the processor until you get to the line tagged by the
next high level symbol.

APPENDIX: HIGH LEVEL LANGUAGE SUPPORT 322 6/89

UNILAB REFERENCE MANUAL

Here is an example of STEP-LINE. We'll begin at a breakpoint set on
the symbol MAIN:

SP=2C A=00 DPTR=06C3 IE=60 PSW=00 (cafbbv-p)

R0=08 R1=00 R2=06 R3=C3 R4=06 R5=C3 R6=00 R7=2A TO=0 T1=0

B =00 PO=D7 P1=FF P2=05 P3=FF IP=E0Q SCON=00 TCON=00 TMOD=00
MAIN 05D7 900002 MOV DPTR, #2

Command> STEP-LINE (or press Alt-F4)

SP=2F A=2F DPTR=0000 IE=60 PSW=01 (cafbbv-P)

RO=9D R1=00 R2=06 R3=10 R4=06 R5=2F R6=05 R7=E2 T0=0 T1=0

B =04 PO=E2 P1=FF P2=05 P3=FF IP=EQ0 SCON=00 TCON=71 TMOD=10

L0151 _M4 set_int0(); /* setup the interrupt pin */
Q5E2 12CD03 LCALL SET INTO

Line 151 from source module 4 was the next address tagged with a high
level line number in the symbol table.

6/89 323 APPENDIX: HIGH LEVEL LANGUAGE SUPPORT

UNILAB REFERENCE MANUAL

IN Intel Description
3065 Bowers Ave. C cross compiler. Must also purchase
Santa Clara, CA 95051 the RLL (relocate, link, load) utility to
(800) 874-6835 create ROMable code.
Symbol support

After linking and locating the code,
load the absolute object module with
option “OMF86” of Orion’s LOADER.

IT Introl Description
647 West Virginia St. C cross-compiler, with assembler
Milwaukee, WI 53204 included.
(414) 276-2937
Symbol support

Produces “AVOCET” or “MANX”
symbol files, with the Introl symbol-
name lister ISYM. Which to use is a
matter of personal taste. Consult the
Introl documentation if more details
are needed.

AVOCET: First, make an ISYM
command file “avo.sym” with the
contents:

%n %c(@4H)

Then, use the following command to
produce a symbol file that can be
loaded by option “AVOCET” of Orion
LOADER:

isym -cavo.sym <obj. file>
[,<obj. file>] > <outfile>

MANX: First, make an ISYM
command file “mnx.sym” with these
contents:

%c(@4H) 3%n

Then, use the following command to
produce a symbeol file that can be
loaded by option “MANX” of Orion’s
LOADER:

isym -cmnx.sym <obj. file>
[,<obj. file>] > <outfile>

APPENDIX: SPECIFICATIONS 324 6/89

UNILAB REFERENCE MANUAL

[|
SOURCES OF

CROSS-ASSEMBLERS &
C CROSS-COMPILERS

The Unilab software is designed to work with any assembler or
compiler. To load the target program, however, the Unilab first needs
the object code in binary or Intel hex format.

The Unilab LOADER utility converts Motorola S-records, TEKHEX files,
OMF51, OMF80, and OMFS86 into binary files. It also loads many
common symbol file formats. See the appendix on object and symbol
file formats.

As a service to our users, we have compiled this list of inexpensive
cross-assemblers and compilers. The two-character abbreviations refer

to sources listed on the following pages.

For Aztec C, see MANX Software Systems (MX).
For UniWare, see Software Development Systems (SD).

6/89 325 APPENDIX: VENDORS

(Following pages explain vendor codes across top row.)

Cross-Assemblers

1802/5

25| aa| av| cv|ex| wr| sp|

6301

6305

HD64180

6502

6800/2/8

6801/3

6805

6809

68000

68HC11

NSC800

8048-50/41

8051/31

8080

8085

8086/8

8096

z8

z-80

Z-8000

SUPER 8

Symbol
support?

w
w4
o
=
2
o

APPENDIX: VENDORS

326

UNILAB REFERENCE MANUAL

6/89

UNILAB REFERENCE MANUAL

C Cross-Compilers
(Following pages explain vendor codes across top row.)

25|AR|BCIFRIIMIIN|IT]MC[MT]MKIOK]SD[UNIWI

1802/5 L . ., hone . . .
6301 o e | : I e ¢ : : »
6305 : re : : ! : H : H :
HD64180 I : T T . s . s
6502 . : : : R : . : . . : .
6800/2/8 . . : R : R : R : : R .)
6801/3 e le I I i ! le I I I m I 1 @
6805 L e
6809 e I I i le I e i i 1 1 1 i &
68000 OO T T O OO DO S
68EC11 ie P te : e ¢ v 7 i ®
NSC800 RO
8048-50/41)) " none
8051/31 e e ;. e : . e I .
8080 none
8085 o : I I : 1
8086/8 L L te e 1 i e e : . »
8096 N R T 1
Z8 R R T e ! : A
Z2-80 e e i I e I I i1 i & : &
2-8000 AN T S S S S T S
SUPER 8 T R S U T
symbol | | & i i 1 i .
support? | Y {Y i? Y i? iY

6/89 327 APPENDIX: VENDORS

Vendor List
Contact the vendor directly for recent information. This list is a service
to our customers, and does not constitute a recommendation.

25

AR

2500AD Software Inc.
P.O. Box 480

Buena Vista, CO 80017
(719) 395-8683

(800) 843-8144

Alien Ashiey

395 Sierra Madre Villa
Pasadena, CA 91107
(818) 793-5748

Archimedes

1728 Union St.

San Francisco, CA 94123
(415) 567-4010

APPENDIX: VENDORS

UNILAB REFERENCE MANUAL

Description

They include recursive macros,
nested conditional assembly, listing
control, and a linker. C cross-
compilers available, too.

Symbol support

Specify file format M to 2500AD
linker. Produces symbol files
loadable by option “2500AD” of
Orion’s LOADER.

Description

Resident editing capability, assembly
to memory. Macro/relocatable
versions also available.

Symbol support
Produces symbol files loadable by

option "AVOCET” of Crion LCADER.

Description

C cross-compiler for 8051. Also,
280/64180, 6301/3, 6801/3, 68HC11,
8096.

8051 symbol support: Specify file
format -F AOMF8051 to the
Archimedes linker. Produces symbol
files loadable by option “OMF51” of
Orion’s LOADER.

Other processors: All of the
processors supported by Archi-
medes can be linked to produce an
OMF51 output file. This format is
preferable, since it contains all sym-
bols and line number information.
You may also specify file format -F
MSD-I to the linker to produce sym-
bol files which can be loaded via the
“MANX” option of Orion’s LOADER.

328 6/89

UNILAB REFERENCE MANUAL

AV

BC

cYy

EN

FR

&89

Avocet Systems Inc.
120 Union Street
P.O. Box 490
Rockport, ME 04856
(800) 448-8500

Byte Craft

421 King Street North
Waterloo, ON N2J 4E4
Canada

(519) 888-6911

FAX: (519) 746-6751

Cybernetic Micro
Systems

P.O. Box 3000

San Gregorio, CA 94074

(415) 726-3000

Enertec Inc.

19 Jenkins Ave.
Lansdale, PA 19446
(215) 362-0966

Franklin Software, Inc.
888 Saratoga Avenue, #2
San Jose, CA 95129
(408) 296-8051

InterMetrics

733 Concord Ave.
Cambridge, MA 02138
(617) 661-1840

Description
CP/M-80 or MS-DOS versions.

Symbol support
Specify file format -PlainDump to the

Avocet linker. Produces symbol files
loadable by option “AVOCET” of
Orion’s LOADER.

Description
6805 C cross-compiler.

Symbol support
Planned for future. Contact Orion for
details.

Description
Conditionals, macros. Written in 8088
assembler.

Symbol support
Not known.

Description
Cross-assembler.

Symbol support

Produces ASClI-format symbol files
readable by the loader. Enertec calls
this option the “Orion” symbol file.

Description
C cross-compiler for 8051.

Symbol suppori
Produces OMF51 output files for
high-level support by the UniLab.

Description
C cross-compiler.

Symbol support
Not known.

329 APPENDIX: VENDORS

IN Intel
3065 Bowers Ave.
Santa Clara, CA 95051
(800) 874-6835

IT Introl
647 West Virginia St.
Milwaukee, WI 53204
(419 276-2937

APPENDIX: VENDORS

UNiLAB REFERENCE MANUAL

Description

C cross compiler. Must also purchase
the RLL (relocate, link, load) utility to
create ROMable code.

Symbol support

After linking and locating the code,
load the absolute object module with
option “OMF86” of Orion’s LOADER.

Description
C cross-compiler, with assembler
included.

Symboi support

Produces “AVOCET” or “MANX”
symbol files, with the Introl symbol-
name lister ISYM. Which to use is a
matter of personal taste. Consult the
Introl documentation if more details
are needed.

AVOCET: First, make an ISYM
command file “ave sym” with the
contents:

%n %c(g4H)

Then, use the following command to
produce a symbol file that can be
loaded by option “AVOCET” of
Orion LOADER:

isym -cavo.sym <obj. file>
[,<obj. file>] > <outfile>

MANX: First, make an ISYM
command file “mnx.sym” with these
contents:

%c(@4H) %n

Then, use the following command to
produce a symbol file that can be
loaded by option “MANX” of Orion’s
LOADER:

isym -cmnx.sym <obj. file>
[,<obj. file>] > <outfile>

330 6/89

UNILAB REFERENCE MANUAL

MC MicroComputer Control | Description

(609) 466-1751 C cross-compiler for 8051, Super 8, Z80.
Symbol support
Not known.
MS Microsoft Description
10700 Northup Way C compiler for 8086, 8088.

Bellevue, WA 98004
Symbol support

Can load .MAP file with UniLab
command MAPSYM. But you must
manipulate the output file (normally
in .EXE format) to make it suitable
for embedded controller applica-
tions, or purchase a linker from
another company. The linker/locater
from Systems&Software, for
example, will output an absolute
OMF-86 format file, which can be
loaded by Orion’s LOADER.

Link&Locate from:
Systems&Software
3303 Harbor Blvd., C11
Costa Mesa, CA 92626
(714) 241-8650

PC-Locate from:
Aldia Systems

P.O. Box 37634
Phoenix, AZ 85069
(602) 866-1786

Phar Lap Software

60 Aberdeen Avenue

Cambridge, MA 02138

(617) 661-1510

Their product generates ROM-able
code from other manufacturers’ C
compilers and assemblers.

For some details of putting Microsoft
code into ROM, and a LOCATE utility,
see “Putting ROM Code in its Place,”
by Rick Naro, Dr. Dobb’s Journal,
December 1987.

6/89 331 APPENDIX: VENDORS

MT

MX

OK

SD

Microtec Research
Box 60337

Santa Clara, CA 94088
(408) 733-2919

Manx Software Systems
One Industrial Way
Eatontown, NJ 07724
(800) 221-0440

Okapi Systems, Inc. -
P.O. Box 3095
Everett, WA 98203
(200) 258-1163

Software Development
Systems

(formerly UniWare)

3110 Woodcreek Dr.

Downers Grove, IL 60515

(312) 971-8170

(800) 448-7733

APPENDIX: VENDORS

UNILAB REFERENCE MANUAL

Description
C cross compilers for 68000, 68008,
68010, 68020, 8085, Z80, 64180, 8088,
8086, 80188,

Symbol support
Produces OMF86 output for the
8088/8086 family.

Description
C cross-compilers for 8086, 68000,
8080, Z80, 6502.

Symbol support

Specify file format -T to linker to
produce symbol files readable with
the “MANX” option of Orion’s

LOADER. OMF86 output is available
for the 8088/8086 family.

Description
C cross-compilers for 8051, 6801/3,
6301/3.

Symbol support
No OMF51 output files produced at
this time.

Description

Range of 8- and 16-bit cross-
assemblers. C cross-compiler for
68000 and Z80 family (NSC-800 and
64180).

Symbol suppont

Specify option -f to the SDS
compiler to produce symbols in the
output file. See previous discussion.

332 6/89

UNILAB REFERENCE MANUAL

UN Unidot Inc.

wi

6/83

602 Park Point Dr. #225
Golden, CO 80401
(303) 526-9263

Wintek

1801 South St.
Lafayette, IN 47904
(317) 742-8428

Description

C cross-compilers.

Symbol support
Not known.

Description

C cross-compilers.

Symbol support
Not known.

APPENDIX: VENDORS

UNILAB REFERENCE MANUAL

Notes:

APPENDIX: SPECIFICATIONS 334 6/89

UNILAB REFERENCE MANUAL

UNILAB SPECIFICATIONS

Host Computer Interface

Parallel Orion bus, card fits in short slot.
IBM PC 5 1/4”, MS-DOS format diskettes.

Emulator

» Download in five seconds for 64K binary file from AT hard disk.

« 150 ns. max. access time emulation ROM memory, 32K x 8-bit or 16K x
16-bit standard (128K bytes opticnal).

« Individual 2K segments selectable in any combination in a 128K range.

» 20-bit enable address decoding.

» Standalone operation possible as a ROM emulator.

+ 16-bit idle register loops target CPU allowing loading of emulation
RAM and resumption of program execution.

« Optional, target-processor-specific software gives full debug
capability, including target-register and -memory display/change,
breakpoints, single step, next step, and a real-time display).

« Program loading software: from hex or binary disk files, hex serial
download, memory image, ROM read.

6/89 335 APPENDIX: SPECIFICATIONS

UNILAB REFERENCE MANUAL

Bus-State Analyzer

+ 48-bit-wide trace display and memory.

» Extensive filtering, 2730 bus-cycle trace buffer

« 48 data inputs (two groups of eight can be separately clocked).

« Four clock signal inputs, gated to form one bus clock:
297 ns. minimum cycle. Clock-edge filter prevents retrigger before
100 ns.

+ 1 microsecond crystal-controlled timer.

« Address demultiplexing latches (also used by emulator).

Analyzer Trigger

- Four-step sequential trigger.

« RAM truth tables allow search for any eight-bit function/value at
each of six input groups, for each of four trigger steps.

- Eight truth tables x four-step trigger = thirty-two (256-bit tables).

« 16-bit inside/outside range detection on address lines.

« Four-bit segment enable gives 20-bit address capability. 20-bit single
address detection, or 16-bit range detection, in any four-bit segment.

« Pass Counter: wait up to 65,382 events or cycles before fourth step.

- Before/After at pass-count trigger enable.

« Delay Counter: wait up to 65,382 events or cycles, then stop the trace.

« Filter, records only cycles that match the trigger.

« Oscilloscope-sync output on trigger.

« Interrupt-target output on trigger, (if enabled).

« LED indicates waiting for trigger, standaione operation supported
while waiting.

APPENDIX: SPECIFICATIONS 336 6/89

UNILAB REFERENCE MANUAL

Software Features

PopUp or command driven, with single context for all four

instruments:

« 48-Channel Bus-State Analyzer

« In-Circuit Emulator

« PROM Programmer

« Stimulus Generator

« Line-by-line assembler

« High-level language support

- Supports common cross-assembler symbols, provides a loader utility
for Intel OMF files, Motorola S records, and Tektronix Hex files.

« Extensible macro capability.

« Cursor-key control of text and trace display

« Pop-up, mode-switch displays

« User-definable split-screen displays

» On-Line Help, with glossary

« 40 user-definable, soft keys

- Bonus on-screen features: calculator, ASCII table, IC pinout library,
memos/messages, direct DOS access, EGA/ECD support (or use
monochrome CRT).

Software Options
 Program Performance Analyzer
- target-specific Disassembler/DEBUG software

EPROM Programmer

* Smart programming algorithm for high speed.

+ 28-pin Textool (zero-insertion-force socket) handles 24- and
28-pin devices.

« Programs single-supply EPROM:s.

* See User’s Guide chapter “EPROM Programmer” for a detailed list of
supported PROM/EPROM devices.

« Optional programming module available for 27512, 2716B, 2732B.

6/89 337 APPENDIX: SPECIFICATIONS

UNILAB REFERENCE MANUAL

Signal Inputs
« TTL logic levels (74ALS inputs).
« 0.1 ma. maximum loading, includes emulator and analyzer.

Signal Outputs

« TTL logic levels (74LS244 outputs).

« 100 ohms forward-terminating resistors on Emulator data lines.
« Reset output (RES-): open collector, 7406 through 47 ohms.

« Interrupt output (NMI-): open collector, 7406, low true.

« Nine Stimulus outputs (at EPROM socket): 8255 NMOS outputs.

Physical

Size: 2.1” high x 13” wide x 7.8” deep
Weight: 4 lbs. (1.8 kg.)

Shipping weight: 11 Ibs. (5 kg.)

Fits easily in a slim-line briefcase.

Power

100 kHz switching supply
110V + 10% 50/60 Hz 15 watts (standard)
220V + 10% S0/60 Hz 15 watts (optional)

Host Compuier Requircmenis
IBM-compatible PC, XT, AT, PS/2

MS-DOS 2.0 or above

320K RAM

dual floppy drives, or hard drive

one short slot for Orion parallel-bus adaptor card
monochrome and EGA compatible

APPENDIX: SPECIFICATIONS 338 6/89

UNiLaB REFERENCE MaNUAL

Accessories Included

User’s Guide

Reference Manual

16-pin IC clip

Input stimulus cable

Component-clip adaptor probes (2)
Programming modules PM16, PM32, PM64, PM56

Accessory Options
Personality Paks for more than 150 microprocessors include:
« Disassembler/DEBUG software (DDB-xxx).
» Optional programming module available for 27512, 2716B, 2732B.
+ Connection hardware, consisting of either:
a ROM emulator cable (8-bit, 24-pin version #C8-24 unless otherwise
specified; see below) and an analyzer cable preconfigured for your
target processor.
or:
an Emulation Module. Replaces the processor on your target board.

Some Personality Paks also include a MicroTarget, an expandable target
board. Check with your Orion Sales Representative for current product
information.

Emulator Cable options:

Description Part Number
8-bit, 24-pin ROM emulator cable C8-24 (standard)
8-bit, 28-pin ROM emulator cable C8-28

8-bit, direct connect emulator cable C8-D

16-bit, 2 x 24-pin ROM emulator cable C16-24

16-bit, 2 x 28-pin ROM emulator cable C16-28

16-bit, direct connect emulator cable C16-D

&/89 339 APPENDIX: SPECIFICATIONS

UNILAB REFERENCE MANUAL

Notes:

APPENDIX: SPECIFICATIONS 340 6/89

UNILAB REFERENCE MANUAL

CusTOM CABLES

The Sockets

The two 50-pin connectors on the front of the Unilab carry extra
signals, so operation of the instrument can be easily altered for different
target processors. Because clock-logic requirements vary from one
processor family to another, jumpers are used on the connector to
make some of the connections.

Altering Standard Cables

Standard ribbon cables are provided that will work for most systems.
In some cases, these cables must be reconfigured for proper operation
with a target system. The connections are made with the kind of
insulation-displacement U-contacts used in “Scotchflex” and “Quick-
Connect” prototyping systems, so they can be changed easily.

Pop the cable clamp off the connector by gently prying open the end
with a small screwdriver at the points shown below. Carefully release
each end of the connector before you try to remove the cover.

Pry end of screwdriver in
this hole, at each end, while
holding the connector body.

Lo] o]] o] o] [
(o]] o)][] [

6/89 341 APPENDIX: CABLES

UNiLAB REFERENCE MANUAL

Wires can be disconnected by just pulling them out of the connecting
pin’s wedge with small needle-nose pliers. If you are doing changes like
this often, you can get a special tool from a 3M distributor to push the
wire into the connections, Otherwise, carefully push the wire down in
its wedge by placing a screwdriver tip adjacent to the wedge connector
(not in it) to force the wire down so that the insulation is cut and the
wire makes contact. Note that these connections are identical to the
ones used on “Quick-Connect,” “Speedwire,” and “Scotchflex” proto-
typing boards.

You can use #26-30 solid or stranded wire for making connections.
Wire-wrap wire works nicely. If you are jumpering a probe wire to a
second pin (as on pins 21 — 22 of cable E), hold the wire in place with
your thumb while you use a small needle-nosed plier to put the
necessary “jog” in the wire before you push it onto the connector.

If you are working with several families of processors and require
different jumper options, you should probably buy additional analyzer
cables to avoid changing jumpers every time you change processor
families.

APPENDIX: CABLES 342

6/89

UNiLAB REFERENCE MANUAL

The Analyzer Cable
The analyzer is internally connected to all the signals on the ROM cable.

To pick up any additional signals required for full monitoring of bus
operations, connect patch wires from the analyzer cable to your
processor pins. This is usually done with a 40-pin dip-clip. The wires
can also be plugged into .025” wire-wrap pins.

The Unilab comes with an analyzer cable preconfigured for the
processor of your choice. You can purchase additional cables or alter
the original cable to support other processor families.

Problems with Decoded OE- Signals

Most analyzer-cable configurations (all but B, H, M, and N—see
diagrams at the end of this appendix) assume you have a memory-
enable signal connected to the OE- pin of the ROM socket into which
the emulator cable is plugged. The OE- pin is pin 20 of the 24-pin ROM,
or pin 22 of the 28-pin ROM.

If you have address decoding in this signal (or if this pin is simply
grounded) there may be problems, because it is used as a low-true
master enable for the emulator’s tri-state data bus outputs. Thus, this
signal is needed in order to prevent the Unilab from getting onto the
bus at the wrong time in systems that multiplex addresses over the data
bus.

Most cable designs connect this input to the OE- signal on the ROM
socket with a jumper between pins 42 and 39 on the analyzer
connector. (The OE- signal is passed inside the Unilab from the ROM
cable to pin 39 of the analyzer connector.)

If your target system has a ground or address decoding on the OE- pin
of the ROM socket, you may have to separately connect pin 42 of the
analyzer cable to an appropriate memory-enable signal. On Intel bus
controllers, this signal is called MEMR-. Note that this signal also
prevents the UniLab from getting onto the bus during 1/O cycles.

With address decoding in the OE- signal, the UniLab will be unable to
emulate memory for other ROM sockets.

6/89 343 APPENDIX: CABLES

UNILAB REFERENCE MANUAL

Analyzer Connector Signals

Pin#_ Signal

1 M7

2 M6

3 M5

4 M4

5 M3

6 M2

7 M1

8 MO

9 GND
10 Al9E
11 Al8E
12 Al7E
13 Al6E
14 +5V
15 RDD
16 RES-
17 NMI-
18 GND
19 K2-
G c7
21 Kl-
22 cé
23 WR-
24 c5
25 RD-
26 c4
27 AlSE
28 ALE
29 INVI

APPENDIX: CABLES

Remarks
MISC-byte input to analyzer.

Signal ground.
Msb emulator address inputs. Page select only.

Msb emulator address input. To enable RAM.
Not used. Could power external circuits.
Emulation enable. Can use to disable processor RD".
Target reset. Open 7406 collector + 47 ohms.
Interrupt. Open 7406 collector.

Return for RES-.

Clock input. ITCY' = MTCY + (K1' and K29
Contiol input. Normally used for R™W, 10, etc.
Clock input. ITCY' = MTCY + (K1' and K29
Control input. Normally used for R/W, 1/O, etc.
Clock input. MTCY = RD' + WR'

Control input. Normally used for R/W, 1/O, etc.
Clock input. MTCY = RD' + WR'

Control input. Normally used for R/W, 1/O, etc.
Msb emulator address input.

Address Latch Enable for A0 — A19.
Uncommitted inverter input.

344

6/83

UNILAB REFERENCE MANUAL

(Continued)

30 INVO Uncommitted inverter output.

31 DICY TCY dock delayed 100 ns.

32 cer! CONTROL byte input register clock (+ edge).
33 HACK HADRess byte input register clock.

34 MCK' MISC byte input register clock.

35 TCY' LADR, DATA and HDATA input register clock.
36 ITCY' Intel clock output. Jumper to TCY, CKs
above.

37 MTCY' Motorola clock output. Jumper to TCY, CKs.
38 ALE' Inverter output from pin 28 input.

39 OE' Output Enable' signal from ROM socket.

40 IDLE' Not used. Low when IDLE loop active.
DMA?

41 CE' Chip Enable' signal from ROM socket.

42 CEE' Emulator Output Enable’ (unlatched).

43 c3 CONTROL inputs. Normally A16 — A19 from below.
44 C2 " "

45 Cl " "

46 CO L »

47 Al%s Latched emulator address signal (A19E).

48 Al8s " "

49 Al7s " !

50 Al6s ! !

6/89 345 APPENDIX: CABLES

UNILAB REFERENCE MANUAL

Analyzer Cable Design

You can design your own cables for new processor types by copying
and combining the techniques shown in the schematic and textual
descriptions that follow. The list of the analyzer connector’s signals,
preceding, should assist further. While most of those signals are self-
explanatory, the analyzer input register clocking deserves some
explanation. The analyzer logic, and three of the six analyzer input
bytes, are clocked by the + edge of TCY' (pin 35). The other three
input bytes (pins 32 — 34) are usually jumpered to this clock, but can be

connected separately to clock their inputs at other parts of the clock
cycle.

UniLab Clock Logic

741508 741514
U17 v %" 5

3
P2 pin name I \]_L
31 DICY T
35 TCY' = : >
ig RD- 5’741500
23 WR- 4 3
37 MTCY' ————— Q 6 74502
19 K22 —————
21 KI- ———— 74ALS02 ’
L 3d
4

The usual source of TCY' is [TCY' for Intel-type processors, or MTCY'
for Motorola types. MTCY' goes low whenever both RD- and WR- are
high. By connecting these inputs to Motorola’s E and VMA signals, the
analyzer will be clocked on the falling edge of E if VMA is true. ITCY'
goes low when RD- or WR- goes low, or when both K1- and K2- go low.
Clocking, in this case, occurs at the end of the WR- or RD- pulse. DTCY
is an inverted, delayed version of TCY'". By using this signal to clock the
CONTROL input register (CCK?, the source of the clock (e.g.,, WR- can
be captured reliably as an analyzer input.

APPENDIX: CABLES 346 6/89

UNILAB REFERENCE MANUAL

Avoid Memory Contention

When using a ROM cable, all ROMs being emulated must be removed
from their sockets, in order to prevent bus contention. The ROM cable
plugs into only one of the sockets—except in 16-bit systems, where
there must be a second ROM plug in one of the most-significant-byte
ROMs. In eight-bit systems, the most-significant data bits are brought
out in a separate cable, and can be used as extra general-purpose
analyzer inputs.

ROM Connector & UniLab Circuitry

The next page presents the ROM connector signals. It is followed by a
schematic diagram of the Unilab’s input circuitry and by diagrams of all
Orion’s standard cable jumpers. Along with the chart of ROM
connector signals (preceding), these should provide all the information
needed to customize your emulator cable.

6/89 347 APPENDIX; CABLES

UNILAB REFERENCE MANUAL

The ROM Cable

There are four types of standard ROM cables (also see the appendix
“UniLab Specifications™):

C824 For 8-bit processors and 24-pin PROMs (2716, 2732)
C8-28 For 8-bit processors and 28-pin PROMs (2764,128,256)
C16-24 For 16-bit processors and 24-pin PROMs

C16-28 For 16-bit processors and 28-bit PROMs

The C8-24 cable has an A1l pin, which can be left in the Al11 receptacle
on the ROM cable if you are using 2732s or 32K ROMs. If you are using
16K ROMs, the receptacle must be connected to the A1l signal at the
processor.

Other MSB address signals are connected to the processor similarly. Pin
numbers for making these connections to the major processors are
shown in this appendix. Note that 24-pin cables will work fine in 28-pin
ROM sockets, if they are just plugged in leaving pin #1 of the socket
open. Extra address signals are picked up at the processor.

To minimize interconnections and signal loading, the analyzer data and
address connections are also taken from the ROM cable. If your system
has a unidirectional buffer between the ROM socket and the processor,
these connections will not show data during write cycles. You can
correct this by cutting the jumper ribbon cable on your ROM cabie,
and installing a separate ribbon cable to the analyzer inputs on pins 35 —
42 (also 27 — 34 for 16-bit systems). Or you can order a custom cable
(C824HD, C1624HD), or a C8D or C16D cable that makes all connec-
tions at the processor.

APPENDIX: CABLES 348 6/89

UNiLAB REFERENCE MANUAL

Avoid Memory Contention

When using a ROM cable, all ROMs being emulated must be removed
from their sockets, in order to prevent bus contention. The ROM cable
plugs into only one of the sockets—except in 16-bit systems, where
there must be a second ROM plug in one of the most-significant-byte
ROMs. In eight-bit systems, the most-significant data bits are brought
out in a separate cable, and can be used as extra general-purpose
analyzer inputs.

ROM Connector & UnilLab Circuitry

The next page presents the ROM connector signals. It is followed by a
schematic diagram of the UniLab’s input circuitry and by diagrams of all
Orion’s standard cable jumpers. Along with the chart of ROM
connector signals (preceding), these should provide all the information
needed to customize your emulator cable.

&89 349 APPENDIX: CABLES

Pin# Signal

UNILAB REFERENCE MANUAL

ROM Connector Signals

Remarks

1 Al4E
2 Al2E
3 Al3E
4 ATE
5 A8E
6 AGE
7 A9E
8 ASE
9 AllE
10 AdE
11 OE'
12 A3E
13 Al1OE
14 A2E
15 CE'
16 AlE
17 AQE
18 GND
19 D7E
20 Dexr
21 DOE
22 DSE
23 D1E
24 D4E
25 D2E
26 D3E
27 D11E
28 D1CE
29 DI12E

APPENDIX: CABLES

Direct connect on 256K ROMs (lower-left pin).
Direct on 64K or larger ROMs.

Direct on 128K or larger ROMs.

Emulator address inputs.

Direct on 32K or larger ROMs.

Emulator address input.

To pin 39 on analyzer connector (for jumpering).
Emulator address input.

" n
L] n

To pin 41 on analyzer connector (for jumpering).

Emulator address inputs.

Signal ground. Shields address inputs from data out.
Emulator data output (odd addresses).

350 6/89

UNILAB REFERENCE MANUAL

(Continued)

30 DIE ! !

31 D13E " '

32 D8E ! !

33 D14E ! "

34 D15E " "

35 D7A Analyzer data inputs. Usually jumpered to DnE.
36 DéA " "

37 DOA " "

38 D5A " "

39 Dl1A " "

40 D4a " "

41 D2A " !

42 D3a " !

43 DI15A (LSB and MSB paralleled for 8-bit.)

44 D14aA ! !

45 D8A ! "

46 D13a " "

47 D9%A " " Note: MSB and LSB are
48 Dl2A " ’ swapped for Intel
49 D10A " " convention; e.g., D8
50 D1l1A ’ " above is really DO, etc.
6/89 351

APPENDIX: CABLES

UNILAB REFERENCE MANUAL

Notes:

APPENDIX: CABLES 352 6/89

UniLab Input Latches and Clock Logic

ICpin P2pin name
Plpin P2pin name 46 Al6s
P2 pin name 12 Al7e 7 45 Al7s
29 INVI 11 Al8e ——4 us 44 Al8s
10 Al%e ——3 43 Al9s
— 26 Cla
30 INVO — 24 C5a
e ALS373 22 Cba
— 20 Cla
17 AGe ——8
P2 pin name 5 I 32 cck
28 ALE 20 name
) IC pin
741802 P2pin Plpin name AS8s
7 J—
) A%e 13 AYs
38 ALE 13 Al0e ——i8 u1s AlOs
9 Alle ——7 Alls
2 A12e —18 Al2s
3 Ale ——{14 ALSIT3 Al3s
1 Alte ——117 Alds
27 AlSe =14 Al5s
1B Albe ——13 1 P2pin name
“Tm 33 HACK'
N name
Plpin name TGP AOs 7
16 Ale 13 Als 13 ust
14 A2 ——14 U14 ::s 17
. . 12 A% ——i 17 s ——118 LADR
UniLab Clock LOglC 10 Ade ——18 ALS3T3 ‘ Ads |y
. ASe ———13 ASs —d8 ALS3T4
€& A6 =——4 Abs 4
4 ATe |8 ATs I,
5oMe— T T
. ICpin
Plpin name
37 D0a —
39 Dla —J18 U8
41 D28 ——d14
74807, 42 D3a ———113 HDATA
4 40 Dl —Jy17
38 DSa —3 ALSI74
36 D6a —]7
35 Dla ——18
Plpin name IC pin Plpin name IC pin
1 M7 —]8 45 D8a 4
P1 = Emulator Cable Connector 2 Y (J— u7 47 D9a —8 U9
3 M5 3 49 D10a ——q14
P2 = Analyzer Cable Connector 4 M4 —17 MISC 50 Dlla —113 LDATA
5 M3 e—Ji3 48 Dl2a ——17
. . 6 M2 —114 ALS374 46 Dl3a ———3 A1$374
UniLab Input Latches and Clock Logic 7 ML 18 4 Dl —]7
8 MO —— 4 43 Dl5a —i3
P2 pin name

33 HACK:

UNILAB REFERENCE MANUAL

252558585

Al17S
Alé6S

6/89

£ [%)

N

—
(=3

_Jalsrllwl Jul lui flfl

—
»H

Jj.
oy
o

—_ =
9 [d
L
—_

o0

1)
(=]

KEY

I
~

8

50

CABLE A
for 8085,
80186/188 (<12 Mhz),
8086 min, 8088 min

M1 =\
M6 —,
us —
M4 —,
M !
M2] 6
Ml =
MO —-—ls
GND 51
A19 1 10
Al8 S5
Al7 {15
Al6 BEY
+5V — 14
RDD 2
RES- —1s
NMI- 5
GND lis
K2- -1—9{
Ki- —2-1-4
WR- S
= 24
RD- =
c4 ¢ g
AlS ?4
ALE = bre
INVI L 2!
INVO ——30
DICY
CCK! * I\"’52
HACK' TN
MK [’ 34
TCY' -ga
IIcy’]
MTCY' " 36
ALES g
OF 391
IDLE' L0
CE' at!
OEE by
S sl
Q | =
Cl 7t
<o 46
A198 7
A18S g
Al7S v
Al6S 50
CABLEB
for 6303, 6502
6511Q, 6800,
6802, 6803,
6805 (romless),
6809, 6809E

APPENDIX: CABLES

UNILAB ReFERENCE MANUAL

Mo —, M6 —,
¥ f— v =
M 14 4 M3 —54 4
M —¢ M2 ———1¢
Ml — M — 1
oD . D —_—t 8
Al9 —2—410 A19 —— o
Al ——] A18
A7 le A7 Tl"_{u
v el N B
RDD 1 RDD 14
NMI- —7{ 16 NMI— L 16
GND 1——4 18 (€30 Y —— l7_|18
D — K2- sl
I;ll [, 20 12‘1’ — 20
- 21 - 21
WR. 2 = 2
- — WR-
o ; » Cs 2
RD- ———e——] RD-
o % § o ?_*zsg
Al5 ot Al5 bl
ALE —_ '3-) ALE _425
INVI 2% J INVI 29|
INVO 'T INVO 130
DIcy 3! DICY -
CCK' ccK’
. 32 \ 52
HQ% r ﬁ\ HACK' ﬁ\l
TCY' Il B o 1;125 ez
EaV 3‘\‘
ey 16 ITcY' 16
MICY' 37! MICY' 3!
ALE' l3g ALE' g
OF OF' 3
IDLE "\ I IDLE |
CE' I\ % P AN
OEE' 4 OFF a1
a 42 s ho2
@ 42 - s 3 :
cl et c |
o 4 s 75
A19S o A195 il
A18S A188 }
Al7S - Ca ALTS - 3
A16S 50 Al6S 5o
CABLE C CABLED
for Z8000 family for
Z-8 expanded,
Super8 expanded

APPENDIX: CABLES 356 6/89

UNiLAB REFERENCE MANUAL

S5S5RERE

i

Als

MCK'

6/89

uil

- e ~N

0o

FEEFRET

5

[
& R

N7

»
oo}

=
[=

-
Cl
r

w
~

77

8 &

w

~J
w
o0

41

CABLEE
for 64180,
8048 (romless),
78 piggyback,
Super8 piggyback,
780

w m
M6 —————
v ——-
M —
w ——1
M —
M ——1
M) e
GND —————
A1) —————
Alg
L e T
Al6 > 3
+5V {1 4
RDD 5 '
gf; T
3 7,
GND —5
K2 L
. & KEY
I-)
WOR6 _> :\22
s 23'\424
1
AlS 77 2%
ALE ~———— {75'
s ||y]
INVO [e
prey TN
CCK' 32
HACK’ Ts"\
MCK' [™
TCYI K
ey
MICY' 19! 36
ALE l2g
GE —1
IDLE' \ lao
CE T
OEE' 5
G rtia
e b
<0 46
A198 .
Al8S by
Al78 |
Al16S o
CABLEF
for
8048 piggyback
(ROM clocked)

357

APPENDIX: CABLES

M —
Ms —2
vs -3-'
Md .
s i
M — g
M1 =
e
GND 5
A19 — 0
Al18 -1-14
Al7 —— 1,
Al6 ol
+5V — 14
RDD =
RES- —16
GND — 5
K2- —194
fori —%
K1- T'
c6 —A,,
WR ﬁ\
S > 2%4
RD- =
o 2%
AlS —ﬁl
ALE ey | — o
INVI
INVO » 30
DICY 31!
CCK! 5
HACK' 5
MCK' l: N,
Y =
ey _3?\36
MICY' 37!
ALE' l3g
OF 19
IDLE' lag
CE' a1
OEE' "
G ah
Q ey
a =
@ 46
A198 a
A18S g
A17S pes
A16S 50
CABLE G
for 1802

APPENDIX: CABLES

358

252558555

AlS

INVI
INVO

CCK'
HACK'
MCK'

ITcy’
MICY

OF'
IDLE'

OEE'

Cl1

Al9S
Al8S
Al7S
AlGS

UNILAR REFERENCE MANUAL

—
—,
—1
—F
__.——{6
—_—
——.——‘8
— 1
- 10
—"—___4'_'*12
|13
___—'_7' 114
T
_‘__‘16
T
18
1o
— %0
7T,
] ‘72
51
H ‘24
>3
4 B
_ﬂl\\ 27 lae
?94]
30
3
132
['3‘3'\
34
_\35
|6
37
| l3g
39
l4o
a1 .
r)
43 -
a5
46
47
L
75
50
CABLEH
for 8080

6/89

UNILAB REFERENCE MANUAL

v -
M7 — | M -
M6 5 NV S—
M5 — Vi—
M ——, V — —
M3 —l v)
M s M1 —
M1 | —)
D 8 GND 5
R 9 ag— 42
e o Al L
A T AT — 10
6 I Alg 1
oy ﬁ* L) — 14
oD = e ——
RDD - RDD —— :
) 16 NME -
- —‘L' GND e 18
GND " ND i
% - st
o) |20 Ki- w
Kl- - 5 .
s — WR. L
- _234 g .y
o~ 24 i~ .
o I o —i
s i el AlS 7
ALS 2 13 -
Vi B INVI 5
o 29 INVO e
DTCYNVO 50 DICY o
31l s Y
ccK . oo H
HACK' = IACK L,
MCK' I: Nay o 35:] !
TCY' 3\‘ Iy .
Tncy’ 56 ey 37
MICY' 4 oY .
ALE las L :
b 3 IDLE' \ lao
IDLE' | 40 s -
CE 4l I ob .
OEE' » e i
G 43 poet 1 b
@ | = = 45'
ca - a .
5 46 A198 i
A19S el Aiss g
AT R ALTS -
AL7S ATTS .
Al6S | 50
CABLEK
ferSas for 65/11]
for 80286 piggyback family

APPENDIX: CABLES
359
6/89

w m
M6 —
v =
M —
v i
M2 e
Yl —
M)
GND 1
Al ————————
Al8 e
Al e ——|
Al6 BEL
+5V] 14
RDD =l
RES- — 16
GND 18
K2- BUL
(of) S ——--—-|2]l 20
(¢3 15
WR- 231,
G 124
m §
G4 {
AlS - %
ALE fag
Ki- P “
INVO 30
DICY 3/
CcCK'
HACE ﬁ‘\rﬂ-
I A
Y .3\
Ty %
MICY -
ALE b
OF 39
IDLE lag
CE' 41\
OEE' o
a sh
@ vy
C1 Ki
@ 46
A198 pu
Al8S b
Al7S -
A168 50
CABLEL
for 8086 max
8088 max

APPENDIX: CABLES

EESEESRS

[») x Q
FEEEPEIEEY

q

Kl1-

8

HACK'

360

UNILAS REFERENCE MANUAL

b KEY

il
=)
Iy

Fﬁuj\

CABLEM
for 6805 piggyback
family
(with clock
divider circuit)
6/89

UNILAB REFERENCE MANUAL

M7 — _Tl
R e
w ——
M=
¥ —+
M =1
m ——
MO _—_—'8
GND o]
A9 ——.0
Al8 oo
A7 —,,
Al6 el
+5V _114
RDD Ry
RES. ———f— 4
117
GND — s
K2- —ﬁ{
K1- 214
6 2
WR- oo
i~ 24
RD-
G4 2
AlS ot
ALE —T2s
INVI %5
INVO b5
DTCY 3/
CCK' '
HACK" . e
o o
TCY' .3/
ey [I3
MIcY Eik
ALE l3g
OE' 7
IDLE lap
CE' Wl
OEE' 9
8 3]
a A
@ 46
A195 a
A18S g
Al7S -
Al68 o
CABLEN
for 6801 piggyback
family, 6301
iggyback famil
piggy’ y
/89

EfBszzzzfssssxass

LI

o
&

K2-

Al78
Al6S

I

8

vy
- g #5522

:}

Jail:llollwl fL PIL

el Fl ld

iy

& = B B *® & *

[y
o0

g ¢ 8

?‘\i
"
37
| 253
39

lo
41' N

rvA
43
-y
=

46
47
|
497

50
CABLEP
for 68000
68008

APPENDIX: CABLES

UNILAB REFERENCE MANUAL

w =
M7 —14 M1 —I_+2
v 2 M5 o
M —3-| v _—*4
e -, W -
M3 7-1 v E
M1 6 M1 -
Ml —7-1 M _——48
ND 8 GND ————
Y ——-——|—9—1 ALY ———
Al9 0 N f—
A8 e A
Al ——— A —
Al6 - Ale ’
A — 14 RDD ~e——f el
RDD =l e —
RES- 16 M —] W’
NMI- - A S—
GND ———————{ D ——T N
K2 ———l o ——w
1 — —i2 —
K- T :
by 12
o
RD- . §
o — 5
AlS =
ALE i
INVI N
INVO | 30
prey 31
cek' b
HACK 's?‘\
MCK' [2
ey | s
MICY’ %
ALE b3
oF B\ |
IDLE' ©
CE' at!
OFE!)
G rxan
Q bz
g Til
@ 4
A195 aH| !
ALTS - AL7S -
ALTS - A1TS .
AlL6S %
CABLER
A for 8096 family
for NSC-800

6/89
362
APPENDIX: CABLES

UNILAB REFERENCE MANUAL

"5 B - 2
w— |3 e — |3
B —f —
M —1 oy w—t
M—— 1 ¢ M —1
E — o ——
AL — A19 ——10
Al8 Al8 L
A7 1-'1__| . Al7 ”_,12
ne ——4 s [
R+DD R T gDD 4
RDL e -

N —— = 16 |, 16
GND = _1__,18 GND L"ls
D — s Tt)\

K1 | 20 < > 20
bR I < *T\
WR —— 1 | 2 WR- -

RD-] RD- ——ee
S — -{26 A ———] ——*26
Al5 7t AlS =l
I‘;ILV? — _——II 28 n;rALv? __I'_"‘zs
INVO » INVO 2 |
DTCY | 50 DICY 30
ceK 3 cok T
e N ik ENN
R o [P
. ; , 3\
MTITg E——‘! 36 MngYY -
ALE 3 - 7
o I3 s 38
IDLE* ¥\ | 2 IDLE’ B\ | 0
CE' | CE']
OEE' “ - 4
e 42 OEQE 7
port izl S af
a (| * “
a !
o 4 ps 45
46 46
Al9S 47 Al9s 4
Al8S lrg A18S kg
A17S | A17S -
Al6S 50 Al6S 50
CABLE S CABLET
for 801867188 for.8031
(>12 Mhz) 8051 piggyback
6/89 363 APPENDIX: CABLES

o —
M6 I_q)
M —
=
M3
M2 EER—g
Mi .
Mo — g
GND -
A19 EEN
Al8 -
Al7 =,
Al6 5
SV T
e —
RES — L2
M-
GND — 13
K2- -
¢ 20
Ki- T
o — 2,
WR- -
N —o4
RD- =
G —2
AlS _
ALE - omy 2
INVI . I
INVO [=+
e TN
oK 32
HACK' N
- MCK' »
TCY' [.
ey’ 36
Mrey 57
ALE I3
OF 39!
IDLE | la0
CcE 4
OEE! rs)
pt al
@ =
cl -
@ 46
AI195 i
AL8S -
Al7S -
AL6S s
CABLEU
for 68HC11

APPENDIX: CABLES

KEY

364

UNILAB REFERENCE MANUAL

6/89

UNILAB REFERENCE MANUAL

Cable Specifications

The following descriptions refer to the analyzer cables whose
schematics appear in this appendix. They briefly explain how the
analyzer and emulator clocking is derived, and are intended as a basis
for customizing your own cable hook-up scheme.

Since +5 volts is available at the connector, you could make cables with
logic gates on them, if necessary. If you want to make a more
conventional, processor-specific emulator plug that plugs strictly into
the processor socket in the target system, the RDD signal on pin 15 can
be used with an OR gate to disable the RD- strobe at the processor
when emulation memory is active. This makes it unnecessary to unplug
any ROMs that are being emulated, so all UniLab connections from both
connectors could be made directly to a piggyback processor, with all
signals except the RD' strobe directly connected. This sacrifices
universality and some transparency, but it might be more convenient in
some sjtuations. The Orion Emulation Modules use this feature.

Cable A The CONTROL byte input register clock (pin 32) is
isolated from the other input clocks and connected to
ALE' (pin 38) on the 8088 and 8086 family (MIN mode).
This causes SO-2 to be clocked at the end of the ALE
signal. All other input clocks (pins 33 — 36) are jumpered
to ITCY' (pin 36), so that clocking will occur at the end of
a low pulse on RD', WR’, or INTA' (K1-). Since K2- must
be held low, it is connected to RES OUT on the 8085. C6 is
internally connected to K1- to identify interrupt cycles.

To provide fewer cable variations, the 16-bit Intel
processors all use the K1- and K2- inputs to derive a read
and INTA clock by gating DT/R' and DEN' together. The
write clock for the expanded mode can then come from
either IOWC' or MWTC' at the bus controller. Note also
that K1- is jumpered to C6 at the cable connector, so that
(DT/R) can be used both as a clock and an analyzer input
without two separate connecting wires. AQ needs to be
connected only if you have a 16-bit processor, as it is
taken care of by the eight-bit ROM cable.

Cable B The Unilab address latch enable and CCK' pin are
jumpered to the inverted DTCY signal, so that control
signals and addresses will be latched after the rise of the E
clock signal on Motorola processors. This prevents
trouble from the extremely short hold time of the
address signals. Also note that the analyzer is clocked by
the MTCY signal on the fall of E.

689 365 APPENDIX: CABLES

Cable C

Cable D

Cable E

Cable F

Cable G

APPENDIX: CABLES

UNILAB REFERENCE MANUAL

The ALE signal is inverted, using the uncommitted
inverter on pins 29 and 30. The control signals are latched
at the end of the address strobe.

A very simple configuration with all analyzer inputs
clocked by ITCY.

C5, C6, and C7 are jumpered to WR-, K1-, and K2- so that a
single probe can be used to make both connections. All
analyzer inputs are clocked by DTCY, so that the source
of the clock will be captured. WR', M1', and IORQ' are all
used for clocking, and are captured by the analyzer to
identify the cycle type on the Z80. The address latches are
enabled by DTCY' to prevent trouble from the short
address hold time on Z-80 A', B', and C' instruction
fetches.

For the Z-80 only, A19 is connected to MREQ', so that OE'
on the ROM socket needn’t include an 1/0 term. Because
of this, you only need to use 7 =EMSEG when this signal is
low.

The OE' signal at the ROM is jumpered directly to the
(RD-) clock input. C5 is jumpered to WR- and C6 is
jumpered to K1-, so that if a clock signal is connected to
either of these leads, the signal will be captured by the
analyzer without a separate connection. To reliably
capture that input, the CONTROL byte input clock (CCK)
is connected to DTCY. The address latch enable is
connected to DTCY through the uncommitted inverter, in
order to prevent trouble from short address hold times.
Since CE' at the ROM socket is connected to A16, you
must use E =EMSEG to get enable when this signal goes
low. You can use F =EMSEG to make the UniLab ignore
this signal, then the EMENABLE statement; followed by
ALSO E =EMSEG, then repeat the EMENABLE statement.

Used only for the 1802 family, the TPB signal is used to
clock the control inputs while the analyzer is clocked by
MRD or MWR. Since the Unilab address latches cannot be
separated, the MSB addresses must be connected to the
target address latch outputs.

366

6/89

UNILAB REFERENCE MANUAL

Cable H Used only for the Intel 8080, the O/2TTL clock signal is
taken from pin 6 of the 8224 clock generator. The DBIN'
signal is inverted and connected to K1-. The analyzer
clock function is thus O/2:-DBIN + WR. The MEMWR-
signal at the 8228 bus controller is used as an emulator
enable. [/OW- MEMR-, MEMW-, and INTA- are
connected to C7 — C4 so that the left digit of the analyzer
control column will identify the cycle types as follows: F =
I/OR, B = MEMR, D = MEMW, E = INTA, 7 = [/OW.

Cable | Used only for the 80286, the ALE signal from the 82288 is
jumpered to the CONTROL clock input so that 80 and S1
will be captured.

Cable K Connects C7 to OE', which is R/W, inverts CE and
connects it to Al15. A15 can be jumpered to A12 — 14 at
the end of the cable for true address display.

Cable L Identical to cable A, except the uncommitted inverter is
used to invert the DEN signal on an 8288 bus controller.
This inverter output is jumpered to the K1- input. Con-
nect the DEN wire to pin 16 of the 8288 bus controller.
AO needs to be connected only if you have a 16-bit
processor, as it is taken care of by the eight-bit ROM
cable.

Cable M This cable is used on Motorola piggyback development
chips. Since no bus clock signal is provided by the
processor, a circuit board is provided that derives a clock
from the signal at the crystal. This circuit includes a
74HCT74 CMOS divide-by-4 counter, which is reset
whenever a transition occurs on the AQ signal. This reset
ensures that the analyzer clock will be in sync with the
internal processor clock.

Cable N Identical to cable K, except the clock polarity is reversed.

Cable P Identical to cable D, except the OEE' input is grounded so
that emulation will be enabled when either half of the data
bus is read.

Cable Q Similar to cable A, except C7 is connected to A19 to help
the disassembler to distinguish between memory and 1/O
cycles. On the NSC-800, A19 is then connected to M/1O.
Also, K1- is not connected to C6 as on cable A.

Cable R Used only for the 8096 family, DTCY is used to properly
clock in the status lines INST and WR-.

6/89 367 APPENDIX: CABLES

Cable S

Cable T

Cabie U

APPENDIX: CABLES

UNILAB REFERENCE MANUAL

Similar to cable A, except CCK- is clocked in by TCY-.
This allows the 80188/186 family to run at higher speeds,
although the status lines S0, S1, and S2 must be pre-
latched with an external D-type latch.

Identical to cable E, except ALE is connected directly to
the processor’s ALE.

Similar to cable E, except the emulator output enable
(OEE-) is derived from DTCY-. Used only on 68HC11.

UNILAB REFERENCE MANUAL

INDEX

Specific commands appear alphabetically in the glossary, and are listed
by page number and are also grouped by general function in the

introductory material.

.EXE 118, 150, 190, 204, 331
=register 276
16-bit
address, trigger on 86
cables 339, 348, 365, 367
checksum 45
cross-assemblers 332
data bus 58, 88, 90
data, trigger on 89
emulation 1, 12
idle register 329
load address 309
memory fetch 136
memory store 134, 135
processor, special note 95
range detection 336
16BIT 1
20-bit
address bus 11
addresses 23, 86, 107, 335
32K
ROM cable 348
Unilab 69
8-bit
ROM cable 5

address-domain histogram 27
multiple-pass 130
analyzer
& qualifiers 25
additional cables 342
cable connections 159, 365
connector signals 344
custom cables 346
how to start 187, 188
mode switches 138
standalone mode 211, 241

used by DEBUG 291
assembler

& Forth screens 35

convert files 325

on-line 34

symbol table 103
Avocet symbol file 311

B
base
convert hex value to binary 37
convert hex value to decimal
224
input a binary value 36
of MISC/HDATA display 14
binary (See base)
binary file
convert from object files 325
load from disk 38, 301
save memory as 40
vs. hex format files 94
breakpoint
& interrupt routines 299
how DEBUG works 291
multiple 46, 185, 203
set on address 172
via NMI or IRQ 87, 213
via trigger spec 184
breakpoint macros 41, 42, 258,
277

cable
& 16-bit data bus 90
& RES- wire 212
16-bit ROM cable 1
analyzer 339
connector signals 344

369 INDEX

designing 340
OE- pin requirement 343
emulator 339
24-pin 348
connector signals 350
options 339
remove ROMs 349
schematics 349
standard 348
specifications 365
display CPU connections 44,
159
stimulus 216, 336
character 1/0 270
checksum 45
command file
& PPA 204
command language
extensible 253
command-line arguments
& LOADER 109
command tail 211, 233, 241
compare
memory ranges 125
regisier contents 276
traces 191, 225, 243, 260
with masking 229
CONT column 12, 23
CONT inputs 49
control structures 253
copy
Forth screen 267
register contents 10, 17, 276
ROM to emulation ROM 176

D
DDB vi
processors supported 156
DEBUG -
& breakpoint macros 41
& hardware interrupt 213
& interrupt routines 295, 298
& mode panels 138
& NMI 87
& running from ROM 68
& software single-step 205
disable for transparency 61
help with 60

9/88

UNILAB REFERENCE MANUAL

how it works 291

re-enabling 60

required resources 15, 291

variables 276
decimal

convert hex value to decimal

224

input a decimal value 54

set base 14
delay cycles 59

set by NORMx 143
disassembler vi, 55, 56

and non-sequential cycles 2,

149

optional 336

sets byte order 134, 135, 136
DOS ‘

execute a command 66

exit to 43

version required 338

E
Easy Macros 118, 201
& macro-level system 253
editor
for Forth screens 35, 127, 256,
260, 267
memory 139
emulation memory
& 128K Unilab 152, 153
& cable signals 347
& DEBUG requirements 291
add a range 28
assign 12, 69, 194
clear settings 68
disassemble from 63
display settings 74, 75
load into 38, 94, 176
move between pages 72, 73
move data to/from PC 272
save to EPROM 249
unplug emulated ROMs 365
Emulation Module 339, 365
without one 1, 5
emulation ROM (See also
emulation memory) 15
assemble patches 34
assign segment 11

370 INDEX

UNILAB REFERENCE MANUAL

hardware specs 335
EPROM PopUp 68
EPROM Programmer 337

display menu 249
execution timing 246

F
filter the trace 2, 4, 78, 133, 149
absolute cycle numbers 273
disable filter but preserve
trigger 142
don’t wait for buffer to fill 226
on cycle type 51
on DATA inputs 88
turn off disassembler 149
floppy-disk
space limitations 263
Forth 7, 35, 254
changes to PADS/Forth-79 265
character I/O 270
control structures 259
decompiler 268
editor and file commands 267
files 35, 257
for information 264
hide from operator 263
leave results on stack 275
loop structure 259
screen editor (See also MEMO)
35, 256, 266
stack diagrams 266
Unilab operating system 265
Forth Interest Group 281
function key
assignments 29, 52, 81
display assignments 82
macro execution 6, 67, 201,
258
save/restore handler 269

glossary
on-line version vii

H

hex format object file
load from disk 94
hexadecimal

6/89

convert decimal to hex 54
MISC/HDATA display 14
used in macros 255
Hexadecimal Object File 304
High Level Languages 319
histogram
address-domain 27
load file 96
multiple-pass address-domain
130
save to file 27, 97
time-domain 228
history buffer
& split screen 208
set size 13
show size 22
host
image of trace buffer 273
requirements 335, 338
show RAM allocation 20, 22
to change port address 16

I
idle register 292
initialize
preventing 211
UniLab 99
input circuitry 349
input groups
& truth tables 336
InSight 19, 87, 100, 183, 259
increase overlay area 15
install
breakpoint macro 258
the PPA 27
Intel
hex format 94, 301, 304
OMF 108, 315
interrupt (See NMI, IRQ)
interrupt routines
& DEBUG 298
ways to examine 295
interrupt-driven code 295
IRQ 87, 184, 205, 213, 294

371

INDEX

L
latches 330, 341, 366
line-by-line assembler 34
load
.MAP file 206
binary file 38
fixed-record-length files 313
Forth screens 35
hex files 94
histogram file 27, 96
macros from file 256
symbol file 108
target program 325
into target RAM 38

M

macro
-level system 118, 253, 254, 263
assign to function key 29
breakpoint execution 41, 42,

258
commands 281
conditional execution 276
definition 6, 8, 255
Easy Macros 67, 201
example 255, 262
language 7, 253, 264
load from Forth file 35
provide access to operators
120

save in Forth file 257

Manx symbol file 310

mask
address inputs 86, 107
CONT inputs 50
data inputs 57, 89
MISC inputs 131
trace comparison 229
trigger spec 124

memory (See also emulation
ROM)
128K UniLab 152
64K segment 11
bus contention 349
calculate checksum 45
change 115, 116, 134, 135, 139
compare ranges 125
disassemble from 63

9/88

UNILAB REFERENCE MANUAL

emulation 12
enable emulation 194
enable via macro 69
examine 117, 126, 136
fill a range 129
load into RAM 94
move a range 137
patch 34
RAM/ROM context switch 238,
239
save to file 40
screen history 13
MicroTarget 114, 339
Microtek format file 312
MISC
inputs, and filtering 131
set base 14
use of inputs 14
mode panels 138
Motorola Hexadecimal 309
multiple-pass, address-domain
histogram 130

N

NMi 87, 184, 205, 294
& immediate breakpoint 213
generate signal on 101

Object Module Format 315
On-Line Help 91
& glossary vii
& split screen 208
by category 92
DEBUG 60
Easy Macros 201
processor-specific vii
requires system file 35, 257
operator
-level system 118, 120, 150
make new version 263
vs. macro-level 254
output
Forth character 1/O 270
from LOADER 109
reset line 179
screen vs. stack 9

372 INDEX

UNILAB REFERENCE MANUAL

stimulus generator 178, 192,
216

to file 233, 234

to printer 165, 166, 209

trigger on target signal 131

P

I:Tara.llel-interface card
change port address 16

PPA

address-domain histogram 27

correct mode 27

display menu 164

install 27, 204

load file 96

multiple-pass, address-domain
histogram 130

time-domain histogram 228

Program Performance Analyzer
(See PPA)

PROM
calculate checksum 45

PROM socket
& stimulus outputs 216

Q

qualifier 25, 98, 131, 157, 158, 168,
169, 170, 171, 240

Quit, how to 43

RAM
& DEBUG operations 213
& history buffer 13, 22
& symbol table 20, 22
host requirements 338
load into 94
same address as ROM 238
read 77, 175
a ROM chip 176
Reference Manual vi
register (See also InSight)
display, then execute macro
41, 258
idle 292
register commands 10, 17, 276
RES- 179, 180, 212, 332
reserved area 15, 180, 292

689

reset 85, 173, 179, 180, 181, 182,
209, 296, 338
intermittent signal 212
interval after 21

ROM (See also emulation
memory)
cable (See cable)
call, used in macro 269
connector signals 350
run from 68
same address as RAM 238
verify contents 125

save
histogram to file 27, 97
macro-level system 118
macros in Forth file 35
memory to binary file 40
new operator system 263
symbol table 121, 222
trace to file 242
Unilab system settings 190
screen
history 13, 22
split screen 208, 235, 250
SDSI 303, 314
segment base address 304
single-step (See also DEBUG,
breakpoint) 213, 214, 215
& interrupt routines 298
& loops 113
high-level 322
via hardware 87
via software 205
software
DDB vi
Software Development Systems
303, 314
software single-step 205
source code
& Forth files 267
.MAP files 121, 123, 302
display 206, 207, 227
spaces
in macro definitions 6, 255
stack
character 1/0 33, 71, 262

373

copy register to 10, 17
diagrams 266, 281
replace screen output 9
target memory 38
stack
& DEBUG 205
pointer & breakpoints 172
start the analyzer 2, 187, 211, 274
stimulus generator 178, 192, 216
symbol
define a 103
formats 301, 310
UnilLab format 316
segmented 105
symbol table
.MAP files 121, 123
change contents 219
change module name 104
clear 47
disable translation 218
enable translation 217
load symbol file 108, 221
RAM allocation 20, 22
save to file 222
view 121, 220
SYMFIX 313

T
target
& reset 181, 182
automated testing 225
before connecting .vi
display pinout 159
interrupt routines 298
Orion MicroTarget 339
patch memory 34
RAM & DEBUG 151
release from breakpoint 83
required resources 291
sensing output 131
supply inputs 216
Target Application Notes vi
Tektronix Hexadecimal 307
text
in macro definitions 258
text file
& split screen 208
display 227

9/88

UNILAB REFERENCE MANUAL

move to a line in 245
save screen image as 210
use a log file 233, 234
time-domain histogram 228
timing execution 246
trace buffer
& host image 273
absolute cycle numbers 273
compare to file 225
display before full 2
display contents 226, 230
filter 149
prevent initialization 211
re-load to host 243
save to file 242
search for value 80, 148
size 51
trigger location 59
upload without displaying 274
trace display 14, 55, 138, 154, 155,
197, 198, 199, 200, 223, 229, 273
trigger
-style breakpoint 184
commands 23, 25, 28, 30, 31,
49, 57, 59, 62, 76, 77, 83, 80,
88, 89, 107, 124, 131, 141,
143, 146, 149, 157, 158, 175,
187, 209, 232, 240, 244, 336
pre-set triggers 196
rigger cycle
& indicator LED 241
filter 2, 3, 4
set a time limit 191
trigger specification (See also
trigger)
choose from pre-set 196
clear 143
display 244
trigger status display line 2

UniLab
commands 248
environment 254
operating system 265
software 118, 264
symbol file 316
User’s Guide vi

374

INDEX

UNILAB REFERENCE MANUAL

w
window
& text file 227
change size 250
disassembly 65
move to other 235
split-screen display 208
write cycles 77

6/89

375

INDEX

ur

Joje[nuId-12ZATeue

OpIND AOUAIAIAY [SWN[OA

ORION INSTRUMENTS, INC. —
z ‘IIIII'

180 Independence Dr., Menlo Park, CA 94025 g l
Telephone 415-327-8800 . ® II”I'
TLX 530942 FAX 415-327-9881 . <

= ity
—_— W s .r_r,"llii!'

zZ
- e e o e __H“!!I

INSTRUMENTS o iy

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	xBack

