ORION INSTRUMENTS

PROGRAM

PERFORMANCE
ANALYZER

ORION Instruments

e — — ——— — —— — —— 4

Program Performance
Analyzer

ORION Instruments, Incorporated
702 Marshall Street

Redwood City, California

94063

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 1

The UniLab Il Program Performance Analyzer

Introduction

This manual describes the Program Performance Analyzer Option (PPA), a new
hardware/software tool which allows you to examine and test your microprocessor
code as it executes in real time on your target board. The PPA, based on the
successful UniLab '™ hardware, gathers data about your program while your target
board runs at full speed.

This tool not only helps you develop bug-free code, but also gives you the
information you need to optimize the performance of that code.

The information in this chapter explains how to install and use the Program
Performance Analyzer Option (PPA). A guide to analysis is included, together with
typical examples and a troubleshooting guide.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 2

8.

Contents

Overview of the Program Performance Analyzer (PPA)
Setting up the PPA

When to use which-- choosing the correct PPA mode

The Three PPA Modes

The Main PPA Menu

The Interactive Screen

The PPA and Symbolic Labels

Installing the Software

Installing the UniLab software on a Hard Disk Drive
Installing the UniLab software on a Floppy Disk Drive
Rebooting the Computer

Installing the PPA software

Loading the Target Program into Memory
Enabling Emulation Memory

Loading from Disk Files

Loading from ROM

Running the Program from a Chip on Target Board

Using the Address-Domain Analyzer

Simple Procedure for Address-Domain Analysis
The Address-Domain Histogram

The Function Keys

Performing an AHIST Test

Saving Histograms

Using the Time-Domain Analyzer

Simple Procedure for Time-Domain Analysis
The Time-Domain Histogram

An Analogy for Understanding THIST

The Function Keys

Performing a THIST Test

Using the Multiple-Pass Address-Domain Analyzer
Simple Procedure for Muliple-Pass Analysis

The Multiple-Pass Address-Domain Histogram

An Analogy for Understanding MHIST

The Function Keys

Troubleshooting
Operating Problems
Error Messages

Specifications

Command Glossary

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 3

Page
4

16

19

22

33

41

47

50

1. Overview of the Program Performance Analyzer
(PPA)

1.1 Basics

What the PPA does

The Program Performance Analyzer (PPA) gathers data about your software and
displays that data as both a numeric table and a bar graph.

Confidence in your data

The data reflects the true performance of your software, because the PPA gathers
performance data while your microprocessor board executes at full speed.

Menu or command interface

You gain access to the PPA features either through the commands or through the
PPA menu. See section 1.5 for details.

Address-domain and Time-domain

Use the Address-domain Analyzer (AHIST) to determine the level of program
activity in the entire program, or in any specified sub-section, down to a single byte.

Use the Time-domain Analyzer (THIST) to determine the run time of any single
range of code. Your results will be accurate to within 20 milliseconds.

Multiple pass Address-domain

Use the Multiple pass Address-domain Analyzer (MHIST) to determine the
execution time of any group of code ranges. MHIST gives you more accurate results
than AHIST and expresses the results in milliseconds rather than in number of
accesses to memory. The times will be accurate to within 20 milliseconds.

See section 1.3, When to use which, for information on choosing among the
three PPA commands.

Symbolic labels

It is easy to specify the code you are interested in. All you do is enter the symbolic
names of your procedures and functions. The PPA automatically converts
the symbols into addresses. Or, if you want, you can manually enter the addresses.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 4

Save data and picture

Whether you use symbols or numbers, you only have to enter the information
once-- the PPA software includes a utility for saving the set-up data. You can save the
data from a test to show a colleague or to include in a presentation.

To make certain that you don't mix up your files, the PPA provides a full-screen
width title-- ample room for including date and program information on the screen.

You can also use the graphs in written reports. The touch of a function key
(ALT-F9) saves the image of the screen to a text file, which you can then print out or
place in a document.

A complete solution
With the PPA you can solve the problems once you find them. The underlying
UniLab software provides you with all the tools you need to trace execution of your

code, examine registers and memory-- even alter the code with a line-by-line
assembler.

The PPA and your software'’s profile
The PPA collects data about the behavior of a program as it executes. You then
compare the actual behavior of your program with the expected profile or "signature” of
the program. You can locate problems in your code by noting the differences from your
design expectations. And you can optimize your code by watching its behavior during |
actual running conditions.

In fact, you can alter the input conditions and watch how your program responds--
or compare two test runs gathered under two different input conditions. ‘
1.2 Setting up the PPA
The equipment requirements

You need a UniLab II'™ system, version 3.12 or above. Your host computer must be
an IBM compatible, with 320K or more of RAM.

How you configure your software for the PPA

The PPA is called from within the UniLab Il software environment. You configure
your UnilLab software by using the enabling word SOFT. You must also copy the
HIST.OVL file into your orRION directory.

The installation procedure is covered in detail in section 2.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 5

1.3 When to use which-- choosing the correct PPA mode

You call up the PPA with one of three commands: AHIST, THIST, and
MHIST. Both THIST and MHIST have two data collection modes, as described in
section 1.4.

Address or Time domain ?

If you are interested in the general behavior of your program, or in the relative
resource use of several modules, then you should use one of the two address domain
histograms, AHIST or MHIST.

If you want to know the execution time of the main loop or of any single sub-section
of the code, then you will want to use THIST, the time domain histogram. THIST is
especially useful for looking at a section of code whose execution time yaries.

AHIST or MHIST ?

You should use either AHIST or MHIST when you want to collect data on several
address ranges of your program. The fundamental difference between the two: for
each range you specify, AHIST gives you a count of the number of times memory in the
range is accessed, while MHIST tells you the elapsed time between access to the first
address and access to the last address in the range.

In addition, AHIST gives you faster but less accurate resuits. MHIST gives you
greater accuracy by collecting data on only one bin at a time. Note that the bin limits
you set up are preserved when you move back and forth between AHIST and MHIST.

The two modes have a similar apppearance, but act very different. AHIST collects
data on all address ranges at once, but goes through a collect-analyze cycle. So it
misses any events that occur while it is analyzing.

MHIST cycles through your bins, collecting data on only one bin at a time. 1t first
finds the mean time for each address range, then finds the number of times the first
address in each range is executed. Altogether MHIST requires twice as many passes
as you have bins. For each "pass” you will want to restart the operation you are
interested in, as described in section 6.2.

When MHIST is needed

Use MHIST whenever you need accuracy and AHIST is not able to provide it.
AHIST will give you false results whenever there is "shadowing" or "swamping."

Shadowing

Shadowing occurs when AHIST consistently sees the execution of only a small
section of code-- and the rest of the code falls into the shadow of this routine.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 6

For example, your histogram shows activity only in the section of code that occurs
immediately after you leave a status loop. While AHIST is busy analyzing this data, the
rest of your code executes. When AHIST looks at the bus again, your program is back
in the status loop. :

When you have this problem, usually one bin will show a low level of activity and
the others will show none. However, sometimes several bins will show activity.

Swamping

Swamping is a closely related problem: AHIST sees gnly the execution of the
module that occurs most of the time. When the program does execute some other
module, AHIST usually is analyzing the trace buffer. When you have this problem,

usually one bin will show a high level of activity. ~While getting swamped AHIST might
sporadically catch part of the execution of modules other than the dominating one.

When to use MHIST

If the data you capture with AHIST exhibits neither shadowing nor swamping, then
you can be fairly confident of your results. If you do see problems, then we recommend
that you use MHIST. ,

MHIST assumptions

MHIST will work best if your program has certain characteristics:

1) It executes (approximately) the same operation or series of operationsii
during each "pass” of data collection. See below and in section 6. |
2) The first address and last address in each routine (as specified on the;

MHIST screen) is accessed only once each time the routine is called. !
Getting valid results with MHIST

There are three ways to make certain that your program will perform the same
series of operations during each pass. See section 6.2 for more details.

1) Have reset enabled (RESET) so that the program starts again with each pass.
You will also need to have any inputs read by your system set up in the same
configuration or sequence.

2) Have reset disabled (RESET ') and have your program start the operation of
interest when the stimulus lines change. You simply put the stimulus cable in the
PROM programmer socket, and then connect the lines to the appropriate point on your
board. Just before each pass, stimulus outputs SO through S3 stobe high and then low
again, while S4 through S7 strobe low and then high again. For more information on
the stimulus outputs, consult section 6.2 of this document and section 8 of chapter 6.

3) Have reset disabled and manually start the operation of interest just before each
pass.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 7

1.4 The three PPA modes

The three PPA commands, AHIST, MHIST and THIST, give you access to three
different ways to examine your program.

AHIST: address-domain histogram

In the address-domain mode, the PPA measures program activity in each
user-selected address-range bin.

The column labeled "COUNT" shows, for each address range, the number of times
any byte in that range is used. The graph shows what percentage of observed activity
takes place in the address range of each bin.

MHIST: multiple-pass address-domain histogram

MHIST allows you to measure the absolute execution time of each address range
bin (in milliseconds).

You can display either an address-domain graph of the total execution times, or a
chart of average execution time, number of times called and total execution time. You
will probably want the chart display when gathering data, since it gives you a clearer
idea of how MHIST gathers data.

MHIST: two ways to start

You can start MHIST in one of two modes:

the Manual loop start (F1) and
the Timed loop start (ALT-F1).

In either mode, you can stop at any time by pressing either the ESCAPE key or
function key 10 (F10).

Manual loop

When you press F1, MHIST will determine the average execution time of the
address range in the first bin. MHIST will continue this operation until you press any
key. It will pause, and wait for you to press another key. Then it will determine the
average execution of the second bin.

After all the average execution times have been determined, MHIST will take
another set of passes, determining the number of times each bin is called. It will
continue to count the number of times the routine is called until you press a key, then it
will pause and wait for you to press any key before it moves on to any other bin.

Crion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 8

Timed loop

When you press ALT-F1 MHIST will prompt you for the length of time (in
milliseconds) that you want to gather data on each bin. Then it will go through the
same series of operations as the Manual loop, but without any need for you to touch
the keyboard.

THIST: time-domain histogram

In the time-domain mode, the PPA measures the time spent executing a section of
code.

You specify the section by pressing F9 and entering the start and stop address.

The column labeled "couNT" shows the number of times the duration falls into each
time bin. The graph displays this information as percentages of the the total number of
executions. The screen also displays the mean run-time.

THIST: Two ways to collect data

There are two ways to start the THIST PPA:

the Entry-Exit start and
the Code Range start.

Entry-Exit

When started with F1, the PPA records the elapsed time starting when your :
program accesses the first address in the range and only stopping when your program:
accesses the last address. Note that this is the same mode used by MHIST whenit

gathers average execution time data. -

Code Range

When started with ALT-F1, the PPA records the elapsed time starting when the
program fetches an instruction from any address within the range and stopping when
the program fetches any instruction from outside the range.

IMPORTANT: The Code Range mode will only work properly if the macro
FETCH is defined for your processor-specific software package. Check the
Glossary section of your Target Application notes.

Orion Instruments, Inc. - Program Pérformance Analyzer
November 21, 1986 Page 9

1.5 The main PPA menu

Once the PPA is installed, a menu screen can be displayed by pressing the
ALT key and the F10 key at the same time. Here is what you should see
when you press ALT-F10 :

4 ™

Prxogram Perfomance Analyzexr Henu

TIME DOMAIN Performance Anaylzer

ADDRESS DOMAIN Performance Analyzer

MULTIPLE PASS ADDRESS DOLMAIN Performance Analyzer
SAVE FILE for Program Performence Analyzer

LOAD FILE for Program Performance Analyzer

UNRILAB II tlenu

EX] EXIT to Command tfode
(Press the Function Key to select)

gz
2 [

This menu display lets you select the PPA commands by means of
function keys rather than typing in the commands directly.

F1 is equivalent to THIST.

F2is equivalent to AHIST.

F3 is equivalent to MHIST.

F4 is equivalent to HSAVE (you will be prompted for a file name).
F5 is equivalent to HLOAD (you will be prompted for a file name).
F6 will allow you to go directly to the UniLab |l main menu mode.

This is the same as pressing F10 from the command mode.

F10 returns you to the UniLab environment, the command mode.

Pressing ALT-F10 gets you back into this menu from the command mode.

In the following discussions, we will refer to the commands that you use to call up
the Program Perfomance Analyzer. You may wish to use the menu in the day-to-day
operation of the PPA, since you won't have to remember the command words and you
won't have to type in as many keystrokes.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 10

1.6 The interactive screen: AHIST, MHIST and THIST

All data and commands are entered into interactive screens. The screen is called
up with one of the three PPA commands, AHIST, MHIST or THIST.

The AHIST screen display

(Servo Control Routine - Initial testing of ver 0.4/9jul8é flw)
Address Bins ¢+ Count 1+ ¥ 1 O 6 12 18 24 30
0 - FFF 10974 24 '
1000 - IFFF E7AD 21
2000 - 2FFF 0 0
3000 - 3FFF 8E73 12
4000 - 4FFF 11CS6 25
5000 - 7FFF 0 0
8000 - 8OFF BiF9 16
8100 - FFFF 0 0
- 1
- L}
-]
- 1
- L}
-— 1
- []
} l l 1
0 30)
Start Symbols Subdivide Delete Clear Counts |
Clear All Title Trigger Spec 16 Bits Exit
\ J
The top line

The top line of the screen is reserved for 80 characters of text. You can enter a title
or notes into this field, after pressing F7. :

The second line

The second line is blank in AHIST, but shows the address bounds, the mean time
and the time scale in THIST. In MHIST it shows the time scale (currently
unchangeable) and the name "Multiple Pass Histogram."

You set the value of the address bounds for THIST by pressing F9 and entering
hexadecimal values. You can also enter a symbolic label-- see the discussion on the
bins and symbolic labels, on page 7.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 11

The THIST screen display

Servo Control - Optimization for version 0.7 25 Aug 86 RWJ h
240 - 4C9 ' tfean time: 0 usec Time scale: 100 milliseconds 1
Time Bins 1 Count 1+ ¥ ¢ O 6 8 12 16 20

1 L]
0 - 2499 14 13) '
2500 - 4999 28 19
5000 - 7499 17 16
7500 - 9999 9 8
10000 - 12499 11 10
12500 - 14999 9 8
15000 - 17499 5 4
17500 - 19999 0 O
20000 - 22499 0 0 1
22500 - 24999 0 0 1
25000 - 27499 18 17
27500 - 29999 0 0
i 1 t } 1 1
6 8 12 16 20
Start Symbols Subdivide Delete Clear Counts
Clear All Tltle Set Units Adr Bounds Exit
Code range start y

Column titles

The third line contains the scale of the graph and the column titles.

The graph area

The most active portion of the screen shows a bar graph (histogram) of your
program's execution. Each bar represents the proportion of activity or percentage of
run-times that fall into the corresponding bin.

The scale across the top varies automatically as the data changes. It automatically
adjusts the scale and the display to make the best use of the screen space.

Count and % Columns

The information expressed in the graph is also displayed numerically. The two
columns immediately to the left of the graph show the raw counts and the percentages.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 12

MHIST graph display

(Test of two routines—- initial test ver 0.5/12jul86 fub \
! Multiple Pass Histogram 1 Time scale: 10 milliseconds 1
Address Bins 1Tot Times ¥ 139 38 46 54 62 70

0230 - 347 1 2088480 66
1200 1670 1 1074460 33

i
1 1 1] Ll 1

30 38 46 54 62 70

Start Symbols Subdivide Delete Clear Counts

Clear All Title Chart 16 Bits Exit
Timed loop start

\ y

MHIST chart display

(Test of two routines-- initial test ver 0.5/12jul86 fuwb h
! tfultiple Pass Histogram ' Time scale: 10 milliseconds 1
Address Bins 11 Aver. Exec.Time 1 Num. Times Called 1Tot. Exec Time 1
0230 - 347 ' 60 usec ' 100343 ' 2088480 usec !
1200 - 1670 ¢ 20 usec ' 119258 ! 1074460 usec !

- 1 1 [] 1
- 1 1] []
- 1 L [] []
- 1 L}]]
- 1 L} [] 1
- 1 []] 1
- 1 L} 1 []
- 1 1 L 1
- 1 L} L} 1
- [] []] 1
-] L} L} 1
- []] [] 1
- 1 [} L} 1

Start 3] Symbols Subdivide Delete Clear Counts

Clear Allj#¥d Title Graph 16 Bits Exit

Timed loop start
\, J
Orion Instruments, Inc. - Program Performance Analyzer

November 21, 1986 Page 13

Function key menu

The menu of commands appears below the graph area. These commands are
operated by the function keys, F1 to F10.

Except for F8 and F9, all of the functions are the same for both AHIST and THIST.

The message areas

The two lines at the bottom of the screen are used for error messages and other
miscellaneous purposes.

The line immediately above the function key menu is used only for status
messages. AHIST and THIST will display only the "Now collecting data"
message, while MHIST will display one of four messages, depending on the status of
the data collection process:

Collecting average execution times.
Collecting number of times called.
Paused: press any key to continue.
Paused: will resume in a moment.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 14

1.7 The PPA and Symbolic Labels

On the left side of the screen you enter for each bin either a symbolic label or two
numbers. Press F2 to toggle between entering numbers and entering symbolic labels.

In AHIST and MHIST a bin is a range of memory addresses, such as 10 to AQ. In
THIST a bin is a range of time, such as 10 to 20 milliseconds. As the PPA collects
information about your program, it sorts the data into your bins.

AHIST and MHIST addresses are always entered in hexadecimal format. THIST
time values are always entered in decimal, while the address is entered in
hexadecimal. Time values are always output in decimal.

You can label each bin with a name, up to 14 characters long. When you enter a
label the PPA will look in the symbol table for a symbol with the same name. The
value of the symbol will be used as the lower limit of that bin.

If the PPA finds the symbol, then it will look for a second symbol, the same as the
first except for an with "X" as a suffix. The PPA will use the value of this symbol as the .
upper limit, the eXit point.

For example, you can label the third bin with the name runc1. The PPA will use
the value of the symbol FUNC1 as the lower limit, and the value of the symbol FUNC1x
as the upper limit. Of course, if you have not defined the symbols or have not loaded
the symbol file into the UniLab system, then the PPA will not translate them.

See section 1.5 of chapter 6 in the UniLab Reference Manual for detailed
information on loading symbol files.

You can turn off this symbol translation feature by disabling the UniLab's symbol
table, with SYMB'.

Press F2 to toggle between the display of bin limits and the display of the bin
name.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 15

2. Installing the Software

2.1 General

Requirements

This software package runs on the IBM PC/XT/AT'™ and on any computer
compatible with the IBM microcomputers. Your computer must have at least 320K of
RAM.

In addition, your target board must be connected to the UniLab and the UniLab
connected to your host computer, as described in Chapter 2 of the UniLab Manual.

Where to go

If the UniLab software is already installed as described in Chapter 2 of the UniLab
Manual, skip to Section 2.5.

If you have not already installed the UniLab software, a short installation procedure
is given in 2.2 for a computer with a hard disk, and 2.3 for a computer with two floppy
diskette drives. Then follow the rebooting procedure given in 2.4 before turning to
Section 2.5.

2.2 Installing the UniLab System Software on a Computer with a Hard
Disk Drive

Insert the master UniLab diskette into floppy drive A:. To execute the INSTALL
batch file, enter:

A>INSTALL

The INSTALL batch file copies all of the software into the ¢: \ORION directory,
and either creates or alters the AUTOEXEC .BAT file in the root directory.

In addition, you must create or alter the CONFIG.SYs file in your root directory
(c:\) and copy the files from the Glossary diskette to the C: \ORION directory.
There is a sample CONFIG.SYS file on the distribution diskette.

Refer to the UniLab Manual, Chapter 2, Software Installation, for more details.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 16

23 Installing the UniLab System Software onto a PC with a Floppy
Disk Drive

Put a DOS master diskette in drive A:. Put a blank diskette in drive B: and format
it as a "system" diskette with the DOS command:

FORMAT B:/S
When the diskette is formatted, take your DOS master out of drive a: and replace it
with the UniLab distribution diskette. Copy all of the UniLab files to the newly formatted
diskette, using the DOS command:
COPY A:* * B:
Now put the UniLab distribution diskette away, and put the newly configured disk in
drive A:. Reboot your computer. Note that you must boot the computer with the correct
CONFIG.sYs file before using the UniLab software.

Refer to the UniLab Manual, Chapter 2, Software Installation, for more details.

24 Rebooting the Computer

The new settings in the CONFIG.SYS and AUTOEXEC.BAT files will not take effect
until the computer is rebooted.

Rebooting Procedure
With a Hard Disk:
Hold down the CTRL and ALT keys, and tap the DEL key.
OR
Turn the power off and back on again. (On some computers, you must
wait for up to 30 seconds before turning on again.)
With a Floppy Disk:

Put the new bootable diskette in drive A:, then reboot as for the hard disk above.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 17

25 Installing the Program Performance Analyzer Software
(after UniLab Software is installed)

General
This procedure applies to both hard and floppy disk drive installations.

Procedure

1. Copy the PPA overlay file to the UniLab Diskette or to the ORION directory.
The overlay filename is HIST .OVL.
2. Call up the UniLab program:

ULxx.COM

The UniLab log-on screen is displayed.

3. Enter SOFT <CR>.
You are prompted to assign a filename to the PPA.
Enter HIST.COM (or another filename of your choice).

The UniLab system creates a new .COM file and then returns you to DOS.

4. Enter your new PPA <filename> at the DOS prompt.

The UniLab log-on screen is displayed. It now includes the message
"Program Performance Analyzer Installed."”

This completes the software installation. Your new .coM file, created in step 3
above, now resides on the disk. You won't need to use the configuring word SOFT
again.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 18

3. Loading the Target Program into Memory

3.1 Program Source
The PPA analyzes a program running on your microprocessor control board. The
program may reside in emulation memory or in a memory chip on your board.
Before you can analyze the program, you must either:
enable emulation ROM and load the program,
OR

disable emulation ROM and put your PROM chip on your board.

Program in emulation memory

Normally you will load your program into emulation memory, from either a disk file
or a ROM or EPROM.

In either case you first enable emulation memory with the UniLab command
<start address> TO <end address> EMENABLE.
The address range for this command will depend on the memory map of the particular
control board you are using. Refer to the UniLab Reference Manual, Chapter 6,

Section 2, for a more detailed discussion. See also the entry for EMENABLE in
chapter 7, Commands.

Program in ROM or EPROM

For final testing, you may wish to run your program directly from a memory chip on
your target board.

In this case, first use the EMCLR command to disable emulation memory.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 19

3.2 Loading from Disk Files

Most people will use one of two commands to load a program from a file to
emulation ROM, depending on the format of the file produced by your assembler or
compiler:

1. Binary format. Load the file with:
<from addr> <to addr> BINLOAD <filename>
The filenames usually end in .BIN, .COM, or .TSK. The screen prompts for the

filename if it is not included on the command line.

2. Intelt™-format HEX object format. Load the file with:

HEXLOAD <filename>

You are prompted for the filename if it is not included on the command line. You
do not specify a loading address with HEXLOAD.

The UniLab system also supports HEXRCV and MLOADN commands, for,
respectively, loading from a remote system and loading from host RAM. Refer to the
UniLab Reference Manual, Chapter 6, Section 2, on Readying and Loading Memory,
as well as to Chapter 7, Commands.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 20

3.3 Read a Program from ROM or EPROM

You can also use the UniLab software to read a program into emulation memory
from a ROM or EPROM. UniLab supports all popular devices (refer to Appendix G in
the UniLab Reference Manual).

To read a program from a ROM or EPROM, first exit from the PPA screen to the
UniLab environment. Then place the chip into the UniLab's prom socket, as shown
below. Press F10 for the main menu, then press F9 to get the PROM reader menu.

(D

PROH READER HENU

READ 2716/48016 - use P16
READ 2532 - use P16
READ 2732 - use PIM32
READ 2764 - use PiI64
READ 27128 - use P64 (PIIS6 for 27128A)
READ 272S6 - use PIIS6
READ 27512 - use PIIS12

Go to PROI Programmer lenu
RETURN TO MATIN MENU

Press the function key to select the item required.

28 Pin
Rom/Eprom

24 Pin
Rom/Eprom

[VHTHVETH U VHTHVHTY

Note that the 24-pin chips plug into
the UniLab socket shifted all the way
to the left.

3.4 Running a program from a ROM or EPROM on the Target Board

You may want to check the program as it runs in a ROM or EPROM on your control |
board. This will allow you to confirm that the program runs on the target board in its
final form.

Enter EMCLR, to keep the UniLab emulation ROM off the bus. You can then use
the PPA in the usual way.

Orion Instruments, inc. - Program Performance Analyzer
November 21, 1986 Page 21

4. Using the Address-Domain Analyzer
4.1 Summary of a Simple Procedure for Address-Domain Analysis

The program should already be in emulation ROM, or in a ROM or EPROM chip on
your board, as described in section 3 of this chapter.

1. Enter the command AHIST, to bring up the blank AHIST screen.

2. Enter the desired addrass limits (in hexadecimal) into the
two left columns or press F2 and enter symbolic labels for each bin.

3. Press F1 (Start).

Your microprocessor will start executing your code, and the PPA will start collecting
data about your program. Press any key to stop program execution.

4.2 The Address-Domain Histogram

The Address-Domain Histogram shows the level of program activity in each range
of addresses you specify. To analyze a new program, first load the program into
memory. Then call up the AHIST screen with the command AHIST.

Specifying address ranges: Strategy

Memory addresses can be entered in several ways. The total range of
addressable memory can be entered in one bin, and the range expanded over several
bins using F3 (Subdivide) and the cursor down key on the numeric keypad. This
divides the address range equally among the bins. This is the preferred method for
early studies of the program.

Alternatively, you can enter the range separately for each bin. This is the way to
examine specific functions, or analyze non-contiguous sections of code.

When examining a small section of code, it may be useful to assign the remainder
of memory to a single bin, so that activity outside of the section under review can be
monitored. This strategy can backfire-- the PPA can end up missing the data you want
to see because it is spending so much time monitoring and sorting the activity in the
remainder.

Changing bin limits

When the sections of interest are identified, parts of the code can be discarded
using F4 (Delete). Other parts can be expanded for closer study using F3
(Subdivide). Bin limits can be changed by simply typing over the address entries, so
that a bin retains the same label. However, if the label is a valid symbol, the value of
the symbol will override the number that you type in.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 22

Symbolic labels

You can use a symbolic label to assign bin limits. Press F2 to toggle between the
display of addresses and the display of symbols.

After you enter a name, the PPA will search the symbol table.

If that symbol name is found it will use that value to replace the lower limit of the
bin.

If it finds the symbol in the symbol table, the PPA will search for a symbol to use as
the value for the upper limit. It looks for the same symbol name with an additional
suffix "x."

Defining labels

The convention described above allows you to use a single name to refer to a
functional range of memory.

You will have to use the appropriate label to mark the beginning and end of each
range of interest in your source file. For example, label the entry point of your
initialization routine with the name "pGM_START," and label the exit point of that routine
with the name "PGM_STARTX."

You will then need to generate a symbol file with your assembler/linker and load
that symbol file into the UniLab symbol table. See section 1.5 of chapter 6 of the
UniLab Reference Manual for detailed information on symbols.

You can also make use of the UniLab command IS to define symbols. You will find'
this especially useful for defining the exit points of ranges that already have symbolic
names for the entry points. For example, to define an area of memory 100
(hexadecimal) bytes long that starts at the already defined label "sorTLOOP," you type:

SORTLOOP 100 + IS SORTLOOPX
Many high-level languages create labels only for the entry points of functions. If

you are working in a high-level language, you might find that you will have to use the
IS command to create labels for the exit points.

Saving symbols

You can save the current symbol table with SYMSAVE, and load it again later
with SYMLOAD. These commands are especially useful after you have defined
symbols with IS, or selectively deleted symbols.

Use SYMLIST to get an ordered list of the current symbol file. You can then
delete symbols with <symbol #> SYMDEL.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 23

Labels and addresses

The PPA will automatically translate a symbol into a value when you enter the
AHIST screen and each time you either move the cursor through a label field or enter a
new name as a symbolic label. When the PPA finds a symbol, it overwrites the current
value of the bin limit with the new value that it has found. Of course, the PPA does
nothing if the label you specify is not in the current symbol table.

You can turn off the translation of symbols by disabling the UniLab symbol table.
Use the UniLab command SYMB' to turn off the translation of symbols. SYMB
re-enables this feature-- as do IS, SYMFILE, and SYMLOAD.

The address bus -- 16 or 20 bits

The address bins are normally interpreted as 16-bit numbers, even if you enter a
five digit hex number (the most significant digit is ignored). Press F9 to toggle
between a 20-bit and 16-bit address bus.

A 20-bit address bus will allow the PPA to differentiate between addresses in
different 64K segments. For example, 30000 and 40000 (hexadecimal) are both
interpreted as the same address (0000) when you specify 16-bits, but are seen as two
different addresses when you specify 20-bits.

It is a good idea not to select 20 bits unless you really need it. The high four bits of
the address inputs to the UniLab hardware, A16 to A19, are usually not connected and
"float high" on processors with a 16-bit address bus. This means that the UniLab sees
the 16-bit address 0000 as the 20-bit address FO000. In some cases, such as the Z80,
these high order address lines are used to tell the UniLab more about the activity of
other control lines on the target microprocessor.

Therefore, unless your processor has a 20-bit address bus, the high four bits of the
address should be ignored by the Program Performance Analyzer. This is the default
condition.

Even if your processor has a 20-bit address bus, you should, for convenience, keep
the PPA in 16-bit mode unless you need to distinguish between addresses in 64K
segments. If you need to select addresses from a program that occupies more than
one 64K segment, use F9 to toggle to 20 bits and enter the additional digit in all
addresses to specify the 64K segment (using ranges from 00000 to FFFFF).

Naming screens
F7 (Title) opens a field one line by 80 characters across the top of the screen. A

title for the screen can be entered here, or notes to identify the screen should it be
stored and retrieved at a later date. See subsection 4.5, Saving Histograms.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 24

Modifying the trigger spec

The PPA uses the underlying UniLab command language to communicate with the
UniLab hardware.

Function key F8 gives you access to this same command language. You can use
this function key to alter the trigger specification (the trigger specification tells the
hardware what bus cycles to collect information on). You can alter the trigger spec so
that data is not collected until after some event occurs, or so that only certain types of
bus cycles are collected-- only reads, or only those with a certain data byte.

F8 opens a trap door into UniLab software environment. This means that once you
press F8 you can enter any UniLab command. However, we recommend that you only
use this feature to alter the trigger spec and perform other simple commands, such as
turning symbols on and off.

You can filter the trace by specifying some further criteria that each cycle must
meet, besides addresses. For example, limit the trigger specification to only read
cycles with the command: READ.

You can delay the collection of data until after a "qualifying event" has ocurred, with.
the command AFTER <qualifying event>. For example, wait until address 4500
appears on the bus with the command: AFTER 4500 ADR.

You can safely change any aspect of the trigger except the trigger addresses,
which are automatically set by the PPA. Refer to Chapter 6, Section 4, in the UniLab
Reference Manual for more information on triggers.

After you press F8, you are back in the UniLab environment until you press <CR>.
Remember that the function keys are assigned different commands in UniLab. Be

aware that if UniLab commands are invoked for a purpose other than altering the
trigger, then you might have to use the command AHIST to re-enter the PPA.

Clearing data

F5 clears acquired data, so that another program run can be performed using the
same bin allocations. F6 clears both data and bin allocations, so that you can enter
new bin limits and names.
Exiting AHIST

F10 exits the AHIST screen, and returns the system to the UniLab environment.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 25

4.3 The Function Keys
This subsection lists the names and uses of the function keys in the menu.

Fl START

Starts the collection of data. If RESET is enabled the target program restarts from the ‘
first address. This is the recommended procedure.

Press any key to stop the data collection.

F2 NAMES/ADDRESSES

Each bin can be given a symbolic label. Pressing this key toggles between the bin
address range and the label. See the discussion under section 4.2 for more details.
F3 SUBDIVIDE

This key enables bins to be subdivided. Place the cursor on any bin and press F3,
which causes SUBDIVIDE in the menu to be displayed in reverse video. Then move
the cursor down, and press F3 again. The initial bin range is now divided as equally
as possible among the bins between the starting and ending cursor positions.

F4 DELETE

Place the cursor over a bin and press F4. The name and bin limits of the chosen bin
are deleted, and the bins below move up to fill the space.

F5 CLEAR COUNTS

Pressing this key resets the data count to zero.

F6 CLEAR ALL

Pressing this key clears bin limits, bin names, and data count. (Y /N) confirmation is
required.
F7 TITLE

This function allows an 80-column title or notes to be entered across the top of the
screen.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 26

F8 TRIGGER SPEC

This key opens a "trap door" to the UniLab environment, to enable the trigger
specification to be modified.

CAUTION: All function keys revert to UniLab functions until <CR> is pressed. Dof

not press any function key until you have typed in the command to
alter the trigger spec and pressed <CR>.

F9 16 BITS/20 BITS

Toggles between 16 and 20-bit addresses. You will normally leave this set to 16 bits,
especially for processors such as the Z80 that only have a 16-bit address bus.

F10 EXIT

Returns you to the UniLab environment. Requires (Y /N) confirmation.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 27

4.4 A Practical Example of AHIST

Suppose you have just completed version 0.4 of a program and you need to know
how well it works. There is a main loop in ROM1 that accesses routines resident in
ROM2 and ROM3. Unknown to you, there is a bug that causes a stack overflow. When
this happens, the program attempts to write to ROM3 instead of to the stack. This
occurs on a subroutine call, and the address on the stack tells the program where to
return to. The program then tries to read back from ROMS3 the address to RETURN to.
At this point, the program goes berserk, accessing the wrong areas.

The program is run under AHIST. You type in address ranges for each chip on the
board, the /0 and two unused address ranges. You use F2 to label each bin, and
press F7 to give the screen a title.

You press F1 to start the first run, which goes well for a time, executing the code in
ROM1 and ROM2, as well as all four of the RAM chips. I/0O operations also look good.

" Servo Control Routine - Initial testing of ver 0.4/9jul8é flw)

Address Bins 1 Count 1 ¥ 1 0 6 12 18 24 30

0 - FFF 10978 24 '
1000 - IFFF E74D 21 1
2000 —- 2FFF 0 0 s
3000 - 3FFF 8E73 12 1
4000 - 4FFF 11C56 25 1
5000 - 7FFF 0 0
8000 - BOFF B1F9 16
8100 - FFFF 0 0
- 1
-]
- []
- []
- []
- []
P]

} l l 1

0 30

Start Symbols Subdivide Delete Clear Counts

Clear All Title Trigger Spec 16 Bits Exit
\ J
Orion Instruments, Inc. - Program Performance Analyzer

November 21, 1986 Page 28

Suddenly the program goes wild, running into an area of memory where it should
not be. You can see that the program has reached ROM3 but not yet executed much
code there. Hit any key to stop.

Servo Control Routine - Initial testing of ver 0.4/9jul8é flw D

Symbolic Labels: Count + ¥ 0 6 12 18 24 30

L 1
* -1

RO 1 tlain_Lp 16208 19
RO 2 Servo_Ctl EAS6E 13
RO 3 SubRout 42D 1
RAM 1 Scratch Pd 8771 8
RAM 2 Data_Tbl 13236 16
unused area 1 0 0
I/0 BiF9 9
unused area 2 246BF 32

I l r 1

0 30
Start Addresses Subdivide Delete Clear Counts
Clear All Title Trigger Spec 16 Bits Exit
_ J
Orion Instruments, Inc. - Program Performance Analyzer

November 21, 1986 Page 29

You expand the ROMS3 bin over more bins, using F3 and the cursor down key,
clear the data (F5) and run the program again. This time it crashes within the first
section of ROM3. It mysteriously accesses the top of ROMS3 twelve times.

Servo Control Routine - Initial testing of ver 0.4/9jul86 flw h
Symbolic Labels & Count 1 ¥ 0 20 40 60 80 100
RO 3 llow 24C 98
ROM 3 mlow 0 0
ROM 3 mid 0 01
RO 3 mhigh 0 0
ROM 3 high 12 218§

[]
[}
L}
L}
]
[]
]
]
[]
]
; L T T | 1
0 20 40 60 80 100
Start Addresses Subdivide Delete Clear Counts
Clear All Title Trigger Spec 16 Bits Exit
\ y
Orion Instruments, Inc. - Program Performance Analyzer

November 21, 1986 Page 30

You now suspect a stack overflow. Just to be sure, (and to demonstrate another
feature), you change the trigger, pressing F8 and entering NOT FETCH <CR>. The
carriage return puts you back into AHIST.

Servo Control Routine - Initial testing of ver 0.4/9jul86 flw

Symbolic Labels 1 Count 1 ¥ 0 20 40 60 80 100

i 1 []
T T T 1

RO 3 llow 0
RO 3 mlow 0
ROM 3 mid 0
ROM 3 mhigh 0
ROM 3 high 16

i ¥ t t t i
0 20 40 60 80 100

Start] Addresses Subdivide Delete Clear Counts ‘
Clear All |Ljgd Title Trigger Spec 16 Bits Exit ;

FOT FETCH
\,

You press F1 to begin a new test. Now the histogram shows that the access to the
top of the ROM is not a fetch. Since the program seemed to be running normally in the
other expected areas of memory, this is probably a bad read or write. The histogram |
shows no access to ROM1 or ROM2, because the processor only fetches from those
chips.

At this point you can leave the PPA and look at the program using the UniLab
command language. What you see there verifies your findings. With this information,
you make modifications necessary for version 0.5 to run perfectly.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 31

4.5 Saving Histograms
All the information in this section applies to THIST and MHIST as well.

There are two ways to save the graph generated by a PPA--- you can save the
data, or you can save the image. If you save the data, you can later reload the same
histogram and look at the data or generate a new graph with the same setup. If you
save the image of the screen then you can include the image in the text of a report.

Save the data

If you wish to save the setup of a histogram as a file, you may do so with the
command HSAVE <filename>. Issue this command after you exit from AHIST. This
file includes both the setup information and the current state of the data at the time the
program halted.

To re-load the saved histogram, you will use the command HLOAD <filename> .
After HLOAD loads the data, it calls up the correct PPA mode.

Save the image

While in AHIST, press function key F9 while holding down the ALT key (ALT-F9).
You will then be prompted to type in the name of the file. When you enter a name and
press the <CR> key, the image of the screen will be saved.

You can look at the image with the DOS command TYPE. You can also include
the file in reports by importing the text file into your word processor. When you do this,
you will probably have to play with the margin settings a little, to get the image to look
right. The graphs use the full 80 columns of the CRT display, and you may have to edit
the display, or use a compressed printing mode to print it out. The printout of the image
will not show the bar graph correctly unless you have an IBM-compatible printer.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 32

5. Using the Time Domain Analyzer

5.1 Summary Procedure for Performing a Time-Domain Analysis

The program should already be in emulation ROM, or in a ROM or EPROM on your
board, as described in section 3 of this chapter. ,

1. Enter THIST, to bring up the blank THIST screen
2. Enter time limits into the time bins at the left of the screen.

3. Press F9 and enter address bounds at the top left of the screen,
OR press F2 and enter a symbolic label.

4. Press F1 to Start the program in the Entry-Exit mode,
OR press ALT-F1 to Start in the Code Range mode.

5.2 The Time-Domain Histogram

This feature shows you how long any specified routine takes to execute each time
the routine executes. Simple routines will always take the same amount of time,
unless they are interrupted.

Time bins and time scale

The collected times are sorted into the bins, for which you have specified
time-ranges which bracket your guess at the actual execution time. For example, if
you expect a routine to take about 10 milliseconds, then you could set the time scale to
1 millisecond (using F8) and subdivide a range of 0 to 30 over all the bins. :

The histogram will show you the percentage of execution times that fall into each
bin-range. The overall mean-time is shown at the top of the screen.

Starting THIST

There are two ways to start collecting data with the THIST PPA: Entry-Exit and
Code Range. These two starts will give different results from the same setup.

The Entry-Exit start (F1) measures time starting when the UniLab sees the first
address in the specified range. All activity, including calls and jumps to other routines,
is measured until the program accesses the last address in the range.

The Code Range start (ALT-F1) records the time of execution from the initial fetch
of any address in the code range until the program fetches an instruction from outside
the range.

IMPORTANT: The Code Range mode will only work properly if the macro
FETCH is defined for your processor-specific software package. Check the
Glossary section of your Target Application notes.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 33

5.3 An Analogy for Understanding THIST

An analogy may help in understanding the working of the time histogram.

The investigation begins

Let's say that a woman, Rosalie, thinks that Kevin, her husband, is spending too
much time in a particular tavern. She decides to get some hard data before
confronting him. Rosalie develops a system where she goes to the bar every day to
collect data on how long Kevin is there. When she comes home, she puts the day's
reading into files: 0-2:00 hours, 2:01-4:00 hours, 4:01 to 6:00 hours, and so on. Once
a week she looks through the files and updates her "bar" graph.

Subdividing

The second file starts to get fat, so she starts more files for that category, say
2:01-2:30, 2:31-3:00, 3:01-3:30, and 3:31- 4:00.

Entry-Exit

At first, when she goes to the bar, Rosalie parks outside where she can watch the
entrance and exit. When she sees her husband go in the entrance, she starts her
stopwatch, and lets it run until she sees him come out the exit. She then determines
that he has spent 3 hours and 27 minutes in the bar.

This, of course, is the Entry-Exit method. Using this method, the unfortunate
woman has no way of knowing that Kevin left the bar through the bathroom window
and spent over 2 hours in the apartment across the back alley, before returning to the
bar by the back way and finally leaving through the front door.

Code Range

Upon becoming aware of the situation, Rosalie changes her data-collection
method. She takes up residence inside the bar (in a suitable disguise-- fake nose and
glasses). She then observes whether her husband is actually present, running her
stopwatch only while he is there. If Kevin leaves by the back door, the window or
teleportation, Rosalie still knows how long he spent in the bar. She has, in fact, just
invented the Code Range method.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 34

The moral

The method you use depends on what you want to know. The wife in our example
may in fact be more interested in how long her husband is away from home than in
how long he is drinking at the bar. In this case, Entry-Exit would be perfectly

appropriate.

The code-range method is better for "in-line" code-- a function or procedure that
stays within a small area of memory while executing. Your code probably does not
look like this, except for specialized assembly language routines.

More typically, your code will contain many jumps and branches, and most routines
will call to subroutines. The entry-exit mode is more suitable for use with this type of
assembly language coding. Code generated by high-level languages also tends to
have this sort of structure. The entry-exit mode lets you see how much time is taken up
by your routine, including any "errands" that it might run to other areas of memory.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 35

5.4 The Time-Domain Function Keys
This is a list of the function keys displayed, together with their descriptions.

F1 start gathering data in the Entry-Exit mode.
ALT-F1 start gathering data in the Code Range mode.

F2 through F7

These keys have the same functions as the address-domain keys.

F8 SET LIMITS

This sets the units of the time scale: 10 microseconds, 100 microseconds, 1
millisecond, and 10 milliseconds. For example, a bin limit value of 2 means 20
microseconds when the scale is 10 microseconds. (Note that the screen uses the
abbreviation usec for microseconds.)

Use the right arrow key to change the time scale; press the END key in the numeric
keypad to return to the THIST screen.

NOTE: The resolution for the time histogram is accurate to within

20 microseconds. It will not be useful to set bin limit values

in smaller increments.
F9 ADR BOUNDS
Address Bounds. These two addresses are entered in hexadecimal on the second line
of the screen, or you can press F2 and then enter a symbolic label. See the
discussion of symbols in section 4.2 of this chapter for more information.

The address bounds are the starting and ending address of the code to be tested.

<CR> returns the cursor to the bin limit section of the screen.

F10 EXIT

Returns you to the UniLab environment.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 36

5.5 A Practical Example of THIST

Your program is running, and you're ready to begin optimizing the code. You
decide to start by running a time test on the main loop. Unknown to you, an
initialization routine is called repeatedly, and takes a long time to execute. The routine

should only be called once.

You enter THIST and get the blank screen. You enter the address range (F9),
using the start and stop addresses of the main loop. You set the scale to 10
milliseconds (F8) using the right arrow to set the time, and the End key (same as
numeric key pad #1) to return to the THIST screen. This relatively large time scale
ensures that even events that take longer than you would think are covered. You enter
a time range of 0 to 30000 into the top bin, and subdivide the bin into twelve bins
(press F3, then the down arrow 11 times to indicate a totol of 12 bins, and press F3

again).

You press F1 to start and run in Entry-Exit mode. All the data falls into the top bin.

(Servo Control - Optimization for version 0.7 25 Auwg 86 RWJ
240 - 409 ! Mean time: 0 usec + Time scale: 10 milliseconds 1
Time Bins ¢ Count ¢ ¥ o 20 40 60 80 100

! l 1]] [

0 - 2499 243 99 ; 3 3 B
2500 - 4999 0 0 =
S000 - 7499 0 0
7500 - 9999 0 0 1
10000 - 12499 0 0
12500 - 14999 0 0 =
15000 - 17499 0 0
17500 - 19999 0 0 1

20000 - 22499 0 0

22500 - 24999 0 0

25000 - 27499 0 0

27500 - 29999 0 0 ¢

— 1
- []
— 1
} t t t t i
0 20 40 60 80 100
Start [FYSymbols Subdivide Delete Clear Counts
Clear All |#4Title Set Units Adr Bounds Exit
L Code range start)
Orion Instruments, Inc. - Program Performance Analyzer

November 21, 1986 Page 37

Since you don't like this display, you clear the counts with F5.

Then you change the time scale to 100 microseconds with F8, and run the program

again.

You now get a much better display of data. The times fall into several bins--
including a surprising number in the 25000-27499 bin. You suspect that the large
number of execution times indicates a problem. You decide to investigate further.

Servo Control - Optimization for version 0.7 25 Aug 86 RWJ h
240 - 409 1 Mean time: 0 usec Time scale: 100 milliseconds 1
Time Bins t Count '+ ¥ 1 0 6 8 12 16 20

] 1 1
0 - 2499 14 13) o
2500 - 4999 28 19
S000 - 7499 17 16
7500 - 9999 9 8
10000 - 12499 11 10
12500 - 14999 9 8
15000 - 17499 S 4
17500 - 19999 0o 0
20000 - 22499 0 o
22500 -~ 24999 0 o
25000 - 27499 18 17
27500 - 29999 0 0
i t t t } {
6 8 12 16 20
Start Symbols Subdivide Delete Clear Counts
Clear All Title Set Unlts Adr Bounds Exit
Code range start)

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 38

In order to narrow down the problem area, you clear the counts again (F5) and
change the second address (F9) to point at the half-way mark of the main loop. This
time when you press F1 you don't get any long execution times.

You now know that the long execution times are caused by code that either resides
in or is called from the second half of the main loop. You press F9 again, and change
both the starting and ending address, so that you are examining only the third quarter
of the main loop.

This time, the code often takes a long time to run. You look at the listing for that
part of your program and find a call to an initialization routine that you suspect is
delaying the program execution. You clear the counts again, and this time enter
addresses just before and just after the suspiscious call .

You press F1 once again, and immediately see that there are multiple, lengthy run

times.
4 : ™\
Servo Control - Optimization for version 0.7 25 Aug 86 RWJ
3E2 - 3F7 1 Mean time: 0 usec 1+ Time scale: 100 milliseconds
Time Bins 1 Count ¢ ¥ 0 20 40 60 80 100
| 1 [l L 1]
0 - 2499 0 0 1 ’)) i)
2500 - 4999 0 0 1
5000 - 7499 0 0
7500 - 9999 0 0
10000 - 12499 0 0 1
12500 - 14999 0 0 1
15000 - 17499 0 0
17500 - 19999 0 0
20000 - 22499 0 0
22500 - 24999 0 0 =
25000 - 27499 27 99
27500 - 29999 0 0
- 1
- 1
- []
i t t t + i
0 20 40 60 80 100
Start] Symbols Subdivide Delete Clear Counts
Clear All |[F4Title Set Units Adr Bounds Exit
Code range start y
Orion Instruments, Inc. - Program Performance Analyzer

November 21, 1986 Page 39

Now the program can be corrected, and the test of the routine rerun. You have
found the bug and exterminated it. The trace of the corrected program shows,
properly, only one very long execution time, indicating that the initialization routine is
now called only once.

7 \
Servo Control - Optimization for version 0.7 25 Aug 86 BRWJ
240 - 4C9 ' Mean time: 659 ms ¢ Time scale: 100 microseconds

Time Bins 1 Count 1+ ¥ 1 0 6 8 12 16 20
0 - 2499 21 15 j '

2500 - 4999 30 22

S000 - 7499 26 19

7500 - 9999 14 10

10000 - 12499 18 13

12500 - 14999 11 8

15000 - 17499 15 11

17500 - 19999
20000 - 22499
22500 - 24999
25000 - 27499
27500 - 29999

o000
00000

1
I 1] 1 L 1

6 8 12 ie 20

Start Symbols Subdivide Delete Clear Counts
Clear All T:Ltle Set Units Adr Bounds Exit

Code range start

5.6 Saving Histograms

See section 4.5. The commands for saving histogram data and images is the same
for all three PPA modes.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 40

6. Using the
Multiple-Pass Address-Domain Analyzer

6.1 Summary of a Simple Procedure for Multiple-Pass Analysis

The program should already be in emulation ROM, or in a ROM or EPROM chip on
your board, as described in section 3 of this chapter.

1. Enter the command MHIST, to bring up the blank MHIST chart screen (NOTE: if
you enter MHIST after leaving AHIST, then the bin limits will be preserved.
Within MHIST you can use F6 to clear the bin limits).

2. Enter the desired address limits (in hexadecimal) into the
two left columns or press F2 and enter symbolic labels for each bin. Note that
MHIST allows overlapping bins, or nested ones for that matter.

3. Press F1 to Start collecting data in Manual Loop mode,
OR
press ALT-F1 to Start in Timed Loop mode.

In Manual Loop mode, your microprocessor will start executing your code, and
the PPA will determine the average execution time of the first bin. You can press any
key to make the PPA pause, then when you press any key again, the PPA will collect
data on the second bin. When the PPA has the average execution time of all bins, it
will start collecting the number of times called for each bin. So to move from bin to bin
you will need to press a key to pause and then again to continue. :

In Timed Loop mode, you will be prompted to enter the length of time to collect
data on each bin. You must enter this (decimal) number in milliseconds. The
maximum is approximately 65000 milliseconds, or 65 seconds. The PPA will then
determine the average execution time and the the total number of times called for each
bin. You will not need to press another key after you enter a valid number and press
carriage return. If you do press a key, you will prematurely stop collecting data on the
current bin.

In either mode, you can stop at any time by pressing either F10 or the ESC key.
And in both modes the figures you get will be expressed in milliseconds and will be
accurate to within 20 milliseconds.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 41

6.2 The Multiple-Pass Address-Domain Histogram

See section 4.2. The information in that section also applies to MHIST, except for
the discussion of specifying trigger specs. Additional information specific to MHIST
appears below.

The Multiple-pass Address-Domain Histogram shows the average execution time,
number of times called and total execution time of each bin. The average execution
time is approximate, while the number of times called is exact. To analyze a new
program, first load the program into memory. Then call up the MHIST screen with the
command MHIST.

Changing from Chart to Graph

When you call MHIST, it will start up displaying the Chart screen. This display
shows you the average execution time, the number of times called and the total
execution time for each bin.

Press F8 to toggle between chart display and the graph display. The graph display
shows you gnly the total execution time and a histogram of the total execution time.

Both displays highlight the number that is being altered while gathering data.

Getting valid results: starting with RESET, manually triggering an action
or using the Stimulus outputs

The results that MHIST gives you are only valid if your target software is executing
the same series of instructions each time you start it up. For this reason you should
use one of three strategies:

1) The simplest is to have reset enabled (RESET), which will cause the target
program to start over from the beginning each time. With this method you can
perform a timed loop start.

2) Disable reset (RESET') and manually start some operation on your target
system at the start of data collection for each bin. With this method you would want to
perform a manual loop start.

3) Disable reset (RESET') and use the stimulus outputs to trigger some
operation on your target system at the start of data collection for each bin. MHIST
automatically sends a strobe out on the stimulus outputs at the start of data collection
for each bin. With this method you can use a timed loop start.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 42

MHIST normally holds the outputs SO through S3 low and S4 through S7 high.
Just before MHIST starts collecting data on each bin, it reverses these outputs and
then returns them to their usual values.

line # : Q 1 2 3 4 5 6 7
normal value: 0 0 0 0 1 1 1 1
value during strobe: 1 1 1 1 0 O 0 O
Note that MHIST sends these signals out whether or not you use them.

Additional stimulus information

You can only use the stimulus outputs if your program reads an input value and
then takes an action when a certain value appears-- or if you are willing to write the
extra code to test the value and take an action. The best way to use these stimulus
outputs is to look for the positive-going or negative-going edge.

To use the stimulus outputs you need to connect the stimulus cable to the PROM
programmer socket, as shown below. The ends of the cables are labeled.

See section 8 of chapter 6 if you need additional information on the stimulus
outputs.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 43

6.3 An analogy for MHIST
An analogy may help in understanding the multiple-pass histogram.

A suspiscion is hatched

Divorce seems imminent for Rosalie and Kevin, the couple who starred in the
THIST analogy.

Kevin has become suspiscious of his wife, and has decided to keep track of how
she spends her time. He decides that if would be too obvious to tail her. Instead he
will watch outside of three locations he knows Rosalie frequents: her place of work, a
health spa and an cappuccino bar.

Catching the average time

He spends a day in front of each place, watching when she enters and leaves.
Each time she leaves he writes down the elapsed time and resets his stopwatch. That
way he is able to determine how long she spends inside each place, on the average.

A data collection problem

Kevin realizes that his wife might only step outside for a breath of fresh air, and
then immediately go back inside. He would not be able to spot these entrances, since
he is busy writing down the elapsed time and resetting his watch. So Kevin doesn't
even know if Rosalie behaves this way.

MHIST has the same difficulty-- while the PPA is recording the elapsed time and
resetting the clock, your program could re-enter the routine you are monitoring. That's
why you need the second pass through each bin.

Determining the number of events

Kevin, who has lost his job by now, decides to spend another three days on the
project. This time, he spends a day in front of each place, just watching the entrance
and keeping track of how often his wife goes in. He figures that once he knows how
often Rosalie goes into each building, he can multiply the average stay by the number
of stays and thus calculate the total amount of time she spends in each building.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 44

The husband's assumptions
Kevin has made two assumptions:

1) Rosalie's behavior is constant from day to day.

2) The average time he calculated is valid, even though it might not
include gll of the visits Rosalie made to each location. That is, Kevin
assumes that the visits he misses (when determining average time)
do not deviate from the mean.

Of course, we make similar assumptions when using MHIST.
Kevin's method: stimulus and response

Kevin has cleverly manipulated Rosalie, to protect the first assumption. He knows
that she will always follow the same routine after they have an argument. So on the
morning of every day that he wants to gather data, he starts the same fight with her.

Of course, this couple has been having the same argument every morning for the
last five years, so Rosalie suspects nothing.

The moral

Remember that your program must perform the same operation during each pass,
or your results will not be valid.

As for Kevin and Rosalie: they were thinking of divorce, but then realized that no
one else would be able to put up with their bizarre behavior.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 45

6.4 The Function Keys
This subsection lists the names and uses of the function keys in the menu.

Fl START

Starts the collection of data. If RESET is enabled the target program restarts from the
first address each time the PPA starts to collect data on a bin. This is the
recommended procedure.

Press any key to pause, and then press any key again to continue with the next data
collection.

The PPA will stop collecting data when you have looped through all the bins twice--
once for average execution time and once for number of times called. Or you can
press F10 or the ESC key to stop the data collection

ALT-F1 TIMED LOOP START

Starts the collection of data in the timed loop mode.

F2 through F7

These keys have the same functions as they do under AHIST.

F8 CHART/GRAPH

This key toggles between the chart display and the graphical display of the data

collected by MHIST. When you are collecting data, you will probably want the Chart
display, since it gives you a clear idea of what the PPA is doing.

F9 16 BITS/20 BITS

Same as under AHIST, toggles between 16 and 20-bit addresses. You will normally
leave this set to 16 bits, especially for processors such as the Z80 that only have a
16-bit address bus.

F10 EXIT

Returns you to the UniLab environment. Requires (Y /N) confirmation.

6.5 Saving Histograms

See section 4.5.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 46

7. Troubleshooting

7.1 Operating problems
Here are some hints that will help you avoid problems.
Installation Hints
- AIwayé move the HIST.ovL file into the orRION directory on your working disk.

- Make certain that you have entered the configuration word SOFT from within the
UniLab software.

- Always use the correct version of the CONFIG.sYs file.
Target Program Loading

If the program is run in the emulation memory, the proper range of emulation ROM
must be enabled (EMENABLE). If the program is run from the chip, the emulation ‘
ROM must be disabled (EMCLR).

The RSP’ command can be used to disable the debug for a completely
transparent emulation during the use of the PPA. When you do this, be sure to
re-enable the debug with RSP before attempting to set a breakpoint.

If the debug is not disabled, it will insert code into the ORION reserved area for your
processor. Refer to the UniLab Reference Manual and the Target Application notes for
further information.

Symbolic labels

Use the UniLab command SYMLIST to verify that your symbol file has loaded
properly. You can use <symbol #> SYMDEL to delete any unwanted symbols.

The PPA will look at all the symbolic label fields whenever you enter AHIST or
THIST. Ifit finds a symbol then it will update the address bin. If you don't want it to do
this, then disable the symbol table with SYMB'. You can enable the symbol table
again with SYMB. Several other commands also re-enable the symbol table: IS,
SYMFILE, and SYMLOAD.

The PPA will not try to find the symbol for the exit address (with suffix "x") unless it
finds the symbol for the entry address.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 47

If AHIST or MHIST Does Not Run Properly:

- check that the 16-bit address (F9) is selected, unless the program operates across
64K segments.

- make certain that RESET is in the state you want (either enabled or disabled).

If THIST Does Not Run Properly:

- check that the address range entered is within the range of the program under test.
- check that the starting and ending addresses are correct.

If you are getting the wrong information using ALT-F1 (Code Range mode):

- make sure that the macro FETCH is defined for your processor- specific software
package.

- if you have a processor that has "extra" bus cycles, as many Motorola processors do,
make certain that those bus cycles do not appear to be fetches from an address
outside of the normal code range.

If you get an "RS-232 error" after using the PPA
- the UniLab hardware can end up in an indeterminate state if the PPA is exited from

abnormally. The command INIT will not work-- but all you have to do is turn the
UniLab off for a second, turn it on again and then type in INIT.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 48

7.2 Error Messages

Bad Range - can't subdivide - This error occurs if you try to subdivide a
bin with an invalid or missing number, or one that has the lowbound larger than the
highbound.

Boundaries for bins overlap - AHIST and THIST will not produce a
histogram until this error is fixed. It occurs if any two ranges of addresses or times
share a region. For example,

1000-2000 and 1500-2500
or even just

1000-2000 and 2000-3000.

Can't create file - This error occurs if the name you specify for the file is an
invalid name, or if DOS cannot create a file for some other reason.

Disk full - This error occurs if you try to use TSAVE or try to save a screen
image file when there is not enough room on your disk.

File not found - If you try to load a non-existent file with HLOAD, you will get
this message. Common errors are mispelling, using the wrong file extension, or not
specifying the proper path. You can look at the disk directory at any time by pressing
F10 to leave the PPA display and then typing

DOS DIR (0orbpos DIR A: orany valid DOS command).
You must be in the UniLab environment (command mode) to do these DOS functions.

Invalid or missing number - This error occurs if you try to run a test with no

bin defined, or with one limit defined but not the other, or with a label entered butno |
values, or with a numeric field containing a value that is not a number in the base you |
are using. For example, FF is not a number in decimal (which THIST requires). You
will not be able to produce a histogram until you correct the mistake.

Invalid start and stop address for THIST - This error tells you that
one of the two address bounds that you gave to THIST is missing or is not a number in
the base you are using.

Lowbound is larger than highbound - This error occurs if a bin has a
starting value that is higher than the ending value. You cannot produce a histogram
until you correct the mistake.

Not enough bins available - This error occurs if you try to allot more than 15
bins using F3 (Subdivide). This can occur if you already have several bins alloted and
then try to subdivide one of them among all the bins. Be sure to delete enough bins to
allow room for expansion.

RS-232 error #xX - This error can occur after an abnormal exit from the PPA
software. You will have to turn off the UniLab, wait a second and turn it back on. Then
you will be able to type the command INIT.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 49

8. Specifications

8.1 Operating method and limitations
AHIST

The AHIST PPA works by collecting 170 bus cycles at a time in a trace buffer and
sorting them into the bins that you specify. The PPA filters the data it gathers, so that
the addresses of the 170 cycles fall between the highest and lowest address that you
specify.

Generally, you can be confident of your results once the percentage data has
stabilized.

However, this method has two main limitations:

1) If you are looking exclusively at a range of code that seldom occurs, you will
get a "shadow" effect. The first 170 cycles of the routine will be gathered, and then the
PPA will not gather data during the time it is sorting the data into bins.

2) If you are looking at a very small range of code that occurs periodically, and
also looking at a range of code that occurs continuously, you can get a "swamped-out"
effect. The trace buffer will be continually filling up with cycles from the ccde that is
continuously executing, and might miss the execution of the small code range.

MHIST

The multiple-pass histogram collects average times the same way that THIST does,
and then collects the number of times called by keeping a count of the number of times
that the first address is accessed.

The times are accurate to within 20 milliseconds, and the count of the number
of times called is accurate up to FFFF hex, provided that the first address is accessed
only once each time the routine is called.

THIST
The THIST PPA works by timing the duration of a function. It sorts each sample into

a bin as soon as it finds one. You can have confidence in the results to within 20
microseconds.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 50

Glossary of commands

AHIST
Calls the address-domain histogram, described in section 4 of this chapter.

HLOAD <filename>
Loads the histogram data stored in the file, and then calls up the proper histogram.
Use this command only on files saved with HSAVE.

HSAVE <filename>
Saves the data from the last histogram displayed, after exiting to the UniLab
environment.

MHIST
Calls the multiple-pass address-domain histogram, described in section 6 of this

chapter.

SSAVE
Saves the screen image as a DOS text file. This command is always assigned to

function key ALT-F9, whether you are in the PPA or not.

THIST
Calls the time-domain histogram, described in section 5 of this chapter.

Orion Instruments, Inc. - Program Performance Analyzer
November 21, 1986 Page 51

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

